
HAL Id: tel-00567851
https://theses.hal.science/tel-00567851

Submitted on 22 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New sparse representation methods; application to
image compression and indexing

Joaquin Zepeda Salvatierra

To cite this version:
Joaquin Zepeda Salvatierra. New sparse representation methods; application to image compression
and indexing. Human-Computer Interaction [cs.HC]. Université Rennes 1, 2010. English. �NNT : �.
�tel-00567851�

https://theses.hal.science/tel-00567851
https://hal.archives-ouvertes.fr

No d’ordre : 4257 ANNÉE 2010

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Traitement du signal et télécommunications

Ecole doctorale Matisse

présentée par

Joaquin ZEPEDA SALVATIERRA
préparée à l’INRIA Rennes - Bretagne Atlantique

Institut National de Recherche en Informatique et en
Automatique

Nouvelles méthodes

de représentations

parcimonieuses;

Application à la

compression et

l’indexation d’images

Thèse soutenue à Rennes

le 28 octobre 2010

devant le jury composé de :

Michel BARLAUD
Professeur, Université de Nice

Sophia-Antipolis / président

Francis BACH
Chercheur, INRIA/ rapporteur

Jean-Luc STARCK
Directeur de recherche, CEA/ rapporteur

Onur GULERYUZ
Chercheur, DOCOMO / examinateur

Christine GUILLEMOT
Directeur de recherche, INRIA/

directeur de thèse

Ewa KIJAK
Mâıtre de conférences, Université de

Rennes 1 / co-directeur de thèse

To my wife, for her unconditional support and motivation.

To my children, for being living motivation.

To my parents, for their hard work and example.

To Tatio, who put forth this challenge.

Acknowledgments

I would like to thank Francis Bach, Michel Barlaud, Onur Guleryuz and Jean-

Luc Starck for accepting to be members of the PhD jury and for taking the time

to carefully read this manuscript. Their suggestions have been taken into account

and have significantly improved the final version.

I would like to thank my thesis supervisors, Christine Guillemot and Ewa Ki-

jak, for making available all the resources needed to carry out the work in this

thesis, for opening the doors to the various interesting topics treated in this work

and for their counsel these past three years.

I would also like to thank all the members of the two projects (TEMICS and

TEXMEX) I belonged to during this endeavour. In particular, from TEMICS, I

thank Gagan Rath for various discussions on sparse representations and because

reading his articles is what made me seek a position in IRISA; Jean-Jacques Fuchs

for sharing his knowledge of sparse representations without reservation; and Cedric

Herzet for various discussion that shaped the direction of my research.

From project TEXMEX, I would like to thank in particular Patrick Gros for

adopting me in his team and making available computational resources without

which most simulations in this work would not have been possible; and Hervé Jegoú

for sharing, without reservation, his contagious enthusiasm and his knowledge of

image description and indexing and for providing an admirable example of what

can be accomplished during and after a PhD thesis.

Contents

1 Introduction 1

1.1 Structure du manuscrit . 3

1.2 Partie I : Etat de l’art . 3

1.2.1 Chapitre 2 : Représentations parcimonieuses 4

1.2.2 Chapitre 3 : Description et indexation d’images 4

1.3 Partie II : Contributions . 5

1.3.1 Chapitre 4 : Iteration-Tuned Dictionaries (ITD) 5

1.3.2 Chapitre 5 : Tree-Structured Iteration-Tuned Dictionaries . . 7

1.3.3 Chapitre 6 : Compression d’images utilisant ITAD 10

1.3.4 Chapitre 7 : Recherche approximative avec les représentations

parcimonieuses . 11

I Literature Review and Summary of Contributions 15

2 Sparse Representations 17

2.1 Problem formulation . 17

2.2 Sparse decomposition algorithms 18

2.2.1 The matching pursuit family 18

2.2.2 Basis Pursuit . 20

2.3 Dictionary Training Methods . 20

2.3.1 The method of optimal directions 21

2.3.2 Unions of orthogonal matrices 21

2.3.3 The K-SVD dictionary . 24

2.3.4 Learning schemes based on atom dependencies 25

2.3.5 Online dictionary learning 27

2.4 Applications in image processing 28

2.4.1 Inpainting . 28

2.4.2 Denoising . 29

2.4.3 Texture separation and classification 30

2.4.4 Image compression . 31

2.5 Contributions (1 of 2) . 32

2.5.1 Iteration-Tuned Dictionaries (ITDs): A new overcomplete

dictionary framework . 32

2.5.2 The Iteration-Tuned and Aligned Dictionary (ITAD) 33

2.5.3 Rate-distortion analysis for overcomplete dictionaries 33

ii Contents

2.5.4 New ITD-based image codec 34

3 Image Description and Indexing 35

3.1 Local image description . 35

3.1.1 Transformation-covariant region detectors 36

3.1.2 Region Normalization . 38

3.1.3 Region Description . 38

3.2 Image searches using local descriptor 40

3.2.1 Local descriptor voting mechanisms 40

3.2.2 Approximate searches with the sparse-matrix index 41

3.3 Sparse representations in image description and search 42

3.3.1 Semi-local searches using Bag-of-Features (BOF) 42

3.3.2 Exact and approximate searches 43

3.3.3 A manifold descriptor and similarity measure 45

3.4 Contributions (2 of 2) . 46

3.4.1 New formulation for sparse representations 46

3.4.2 Data conditioning for sparse-matrix indices 46

II Contributions 49

4 Iteration-Tuned Dictionaries 51

4.1 Introduction . 51

4.2 Background . 51

4.2.1 Sparse representations using overcomplete dictionaries . . . 52

4.2.2 Matching pursuit . 53

4.2.3 Complexity . 53

4.3 The Iteration-Tuned Dictionary . 54

4.3.1 ITD structure . 54

4.3.2 Signal decomposition using ITDs 55

4.3.3 Advantages of the ITD approach 55

4.4 Construction of Iteration Tuned Dictionaries 56

4.4.1 Problem formulation . 57

4.4.2 Layer update process . 58

4.4.3 Convergence . 62

4.4.4 Example of ITD structure 63

4.5 Results . 64

4.5.1 Experimental setup . 66

4.5.2 Experiment 1: Sparsity vs. PSNR 68

4.5.3 Experiment 2: Rate-distortion performance 70

Contents iii

4.6 Conclusion . 77

5 Tree-Structured Iteration Tuned Dictionaries 79

5.1 Introduction . 79

5.2 Notation . 80

5.3 Background . 80

5.3.1 Sparse representations using overcomplete dictionaries . . . 81

5.3.2 The matching pursuit family 81

5.3.3 The iteration-tuned dictionary 82

5.4 Tree-structured ITD (TSITD) . 83

5.4.1 A more general ITD framework 83

5.4.2 The TSITD candidate selection law 83

5.4.3 Signal decomposition using TSITD 84

5.4.4 TSITD training . 85

5.4.5 Orthogonality of selected-atoms matrices and consequences . 86

5.5 Reduced TSITD (rTSITD) . 92

5.5.1 Reduced candidate dictionaries and their path reduction

matrices . 92

5.5.2 Branch reduction matrices 93

5.5.3 The rTSITD tree structure 94

5.5.4 Signal decomposition using rTSITD 95

5.5.5 Signal reconstruction using rTSITD 97

5.5.6 Complexity . 98

5.5.7 Practicality for large tree-structures 104

5.6 The Iteration-Tuned and Aligned Dictionary (ITAD) 104

5.6.1 Geometrical motivation for the ITAD alignment operation . 104

5.6.2 The ITAD structure as a particular case of (r)TSITD 106

5.6.3 Training the ITAD structure 108

5.7 Results . 112

5.7.1 Summary of results . 112

5.7.2 Dictionary training . 113

5.7.3 Datasets . 113

5.7.4 Experiment 1: PSNR vs. sparsity 114

5.7.5 Experiment 2: Image compression 115

5.7.6 Experiment 3: Denoising . 118

5.8 Conclusion . 122

Appendix 5.A Parameter selection for reference dictionaries 124

5.A.1 Selection of K-SVD parameter κ 124

5.A.2 Selection of SD parameters La and κ 124

5.A.3 Selection of ONLD parameter κ 127

iv Contents

Appendix 5.B Rate-distortion analysis for codecs based on overcomplete

dictionaries . 127

5.B.1 Distortion as a function of quantization noise variance . . . 128

5.B.2 Estimate of the rate . 129

6 Image Compression Using ITAD 133

6.1 Introduction . 133

6.2 Notation . 134

6.3 The proposed image codec . 135

6.3.1 Block slicer and AC / DC splitter 135

6.3.2 DPCM coding of DC components 136

6.3.3 ITAD-based transform coding of AC components 137

6.3.4 Global rate-distortion criterion for block sparsity selection . 139

6.3.5 Bit-stream format . 141

6.4 Results . 143

6.4.1 Experimental setup . 143

6.4.2 ITAD codec construction . 144

6.4.3 Quantitative experiments . 145

6.4.4 Qualitative experiments . 146

6.5 Conclusion . 147

7 Approximate Nearest Neighbors 151

7.1 Introduction . 151

7.2 Background . 153

7.2.1 Sparse representations . 153

7.2.2 The sparse-matrix index . 154

7.3 Sparse support selection . 155

7.3.1 The reduced vector . 155

7.3.2 Relation to reference sparse distances 156

7.3.3 Exact solution for certain xb 157

7.3.4 Minimizing upper bound . 157

7.3.5 Probabilistic approach . 158

7.4 Construction of CB . 159

7.5 Data conditioning . 160

7.6 Results . 161

7.6.1 Evaluation of data conditioning 163

7.6.2 Improvement over reference systems 165

7.7 Conclusion . 166

Appendix 7.A Distribution of sphere-uniform data projections 167

Appendix 7.B Optimal distribution of sparse support 168

Contents v

8 Conclusion 171

Appendix A Review of Selected Topics 173

A.1 Matrix algebra . 173

A.2 The Singular Value Decomposition 174

A.3 Information theory . 175

A.3.1 Entropy coding . 175

A.3.2 Scalar quantization . 176

Appendix B Notational Conventions and Acronyms 179

Appendix C Article submissions 183

Bibliography 185

List of Figures

3.1 Local image description block-diagram 36

3.2 The SIFT descriptor . 39

4.1 The ITD training algorithm using J top-down iterations 59

4.2 ITD layer update algorithm . 62

4.3 Sample run of iterative top-down ITD training 64

4.4 Example of ITD layer dictionaries 65

4.5 Sample images from the FERET dataset. 66

4.6 K-SVD parameter selection . 68

4.7 PSNR versus sparsity: K-SVD versus ITD. 70

4.8 PSNR versus sparsity: SD versus ITD. 71

4.9 PSNR versus sparsity: K-SVD versus concatenated ITD. 72

4.10 PSNR versus sparsity: K-SVD versus cITD for N = 256; cITD

trained using J = 1, 3 top-down training iterations. 73

4.11 Computation of experimental rate-distortion bound 74

4.12 Experimental rate-distortion bounds: cITD versus K-SVD 74

4.13 Experimental decomposition complexity: ITD versus K-SVD . . . 76

4.14 Rate-distortion curves: ITD versus K-SVD 76

4.15 Experimental decomposition complexity: ITD versus SD 77

4.16 Rate-distortion curves: ITD versus SD 77

5.1 Candidate construction algorithm 87

5.2 Recursive TSITD construction algorithm 88

5.3 The TSITD and rTSITD structures 89

5.4 Example of TSITD candidate dictionaries 91

5.5 Storage gain of rTISTD over TSITD 94

5.6 (r)TSITD decompositions . 96

5.7 (r)TSITD reconstructions . 96

5.8 Complexity gain of rTSITD and hTSITD over TSITD 101

5.9 Complexity gain of rTSITD and hTSITD over (separable SD) OMP

256 . 103

5.10 The ITAD alignment operation . 105

5.11 The ITAD structure . 107

5.12 Storage gain of ITAD over ITD . 108

5.13 Mean atom energy vector of reduced dictionaries D′
i 110

5.14 Example of ITAD candidate dictionaries 111

viii List of Figures

5.15 The FERET dataset . 114

5.16 ITAD experiment 1: PSNR vs. sparsity 116

5.17 ITAD experiment 2: Image compression 117

5.18 BITD / TSITD experiment 3: Denoising - Parameter selection . . . 120

5.19 BITD / TSITD experiment 3: Denoising - quantitative 121

5.20 BITD / TSITD experiment 3: Denoising - qualitative 122

5.21 ITAD experiment 3: Denoising . 123

5.22 Selection of K-SVD training RMSE threshold κ 125

5.23 Selection of SD atom sparsity La 125

5.24 Selection of SD training RMSE threshold κ 126

5.25 Selection of ONLD training RMSE threshold κ 126

6.1 The ITAD-based image codec . 136

6.2 The ITAD block coder . 137

6.3 Rate-distortion transform coding using ITAD 140

6.4 Global rate-distortion sparsity-selection criterion - comparison to

standard method . 142

6.5 ITAD codec bit-stream . 143

6.6 Rate-distortion curves - effect of quantization step size 143

6.7 Rate-distortion curves - effect of number of atoms 144

6.8 Rate-distortion curves - comparison against state-of-the-art 145

6.9 ITAD codec, qualitative evaluation at 0.3 bpp 149

6.10 ITAD codec, qualitative evaluation at 0.4 bpp 150

7.1 Data conditioning for ANN searches 160

7.2 A model for affine normalization errors 162

7.3 Image episodes . 163

7.4 Data conditioning: A more uniform distribution 164

7.5 Data conditioning: Distance preservation 164

7.6 Comparison of reduced vector schemes 165

7.7 Reduced vectors versus sparse representation 166

7.8 Distribution of the projection of uniformly distributed data 167

A.1 Prefix-code tree for Huffman code 176

List of Tables

4.1 List of notational conventions. 52

4.2 ITD configurations (n and C) . 67

5.1 TSITD, rTSITD and ITAD: List of notational conventions. 80

5.2 Complexities of common algebraic operations 98

5.3 Parameters used for reference trained dictionaries K-SVD , SD and

ONLD . 112

5.4 ITAD vs. DCT / K-SVD / ONLD / SD - Compressibility 114

5.5 ITAD vs. DCT / K-SVD / ONLD / SD - Rate-distortion 118

5.6 BITD / TSITD experiment 3: Denoising - Parameter selection . . . 119

6.1 Rate (bpp) and distortion (dB) for the images in Fig. 6.9. 147

6.2 Rate (bpp) and distortion (dB) for the images in Fig. 6.10. 147

B.1 List of notational conventions. 180

B.2 List of acronyms. 181

Chapitre 1

Introduction

Les représentations parcimonieuses utilisant des dictionnaires redondants sont de-

venues le couteau suisse de la communauté de traitement d’image. Utilisant la

simple notion de parcimonie, les recherches ont abouti à l’élaboration d’algo-

rithmes performants dans des domaines aussi compétitifs et bien établis que la

compression, le débruitage, la classification, la restauration et le filtrage d’images.

La parcimonie se prête aisément à une explication graphique et intuitive : ima-

ginons un grand ensemble d’images que nous coupons en petits blocs de même

taille (disons 0, 5 × 0, 5 cm pour les besoins de l’illustration). En triant tous ces

blocs, nous trouverons facilement des groupes de blocs qui sont très semblables

entre eux, et de chaque groupe de blocs similaires nous pouvons alors choisir

un bloc-représentant unique. En examinant ensuite ces représentants, nous re-

marquons que certains d’entre eux présentent des motifs simples et d’autres des

motifs plus complexes. Certains des blocs plus complexes ressemblent même à des

combinaisons de blocs plus simples. Nous pouvons donc réduire notre ensemble de

représentants en supprimant les plus complexes d’entre eux qui ne sont que des

combinaisons de représentants plus simples. En répétant ce processus plusieurs

fois, nous obtiendrons un ensemble réduit de blocs, appelé dictionnaire, contenant

des blocs simples (pour la plupart), appelés atomes, et qui peuvent être combinés

de façon à reproduire (raisonnablement bien) chacun des blocs découpés originel-

lement du grand ensemble d’images. Il n’est pas difficile d’imaginer que le nombre

d’atomes conservés est inversement proportionnel au nombre d’atomes nécessaires

pour reproduire l’un des blocs d’origine.

L’exercice précédent permet d’introduire, en termes simples, les notions impor-

tantes de parcimonie, redondance et compressibilité qui ont donné lieu à une grande

quantité d’activités de recherche ces dernières années. En effet, plus le nombre

d’atomes conservés à la fin de l’exercice est grand (i.e., plus notre dictionnaire

est redondant), plus il sera facile de représenter les blocs d’origine avec seulement

un petit ensemble des atomes (i.e., un ensemble parcimonieux). On parle alors de

représentations parcimonieuses des blocs d’origine. Nous pouvons aussi dire que

les blocs d’origine sont compressibles dans le dictionnaire construit, puisque ce

dictionnaire a été construit de façon à représenter parcimonieusement (et raison-

nablement bien) l’ensemble des blocs d’origine. Cet exemple souligne également la

nécessité d’algorithmes d’apprentissage de dictionnaires, étant donné un ensemble

2 Chapitre 1. Introduction

d’images (comme nous l’avons fait manuellement à l’exercice précédent). C’est

l’un des grands thèmes explorés dans cette thèse : nous développons

une nouvelle structure de dictionnaire et un algorithme d’apprentis-

sage permettant de rendre une classe de signaux plus compressible que

le dictionnaire de référence de l’état-de-l’art.

Il n’est pas très difficile d’imaginer comment la parcimonie peut être utilisée

pour compresser les images : si les représentations des blocs de l’image obtenues

sont suffisamment parcimonieuses, chaque bloc d’une image que nous souhaitons

compresser peut être représenté de façon compacte par les identifiants des atomes

choisis et les coefficients qui définissent la combinaison de ces atomes. Apprendre

un dictionnaire pour chaque classe d’images spécifiques (comme nous l’avons fait

ci-dessus pour notre ensemble image) peut alors fournir un moyen de compres-

ser les données image. Il s’agit d’une approche que nous explorons dans

cette thèse et qui produit de bons résultats en compression d’images,

supérieurs à ceux du dernier standard (JPEG2000).

Peut-être le plus important, la parcimonie offre aux chercheurs une descrip-

tion mathématique simple et efficace de ce à quoi peut ressembler une image :

des données qui peuvent être représentées parcimonieusement à l’aide d’un dic-

tionnaire bien choisi. Si nous combinons ce modèle simple avec une estimation de

l’image en question, la parcimonie peut s’avérer un puissant outil de traitement

d’images. Par exemple, supposons que nous ayons une image bruitée, dégradée par

le vieillissement ou prise avec des capteurs de mauvaise qualité. Si notre modèle de

représentation parcimonieuse de l’image est adéquat, l’image nette (indisponible)

sera compressible tandis que la composante de bruit ne le sera pas. Alors une

représentation parcimonieuse de l’image bruitée devrait produire une version de

l’image plus nette et plus attrayante. Nous considérons dans cette thèse l’ap-

plication des représentations parcimonieuses au débruitage d’images.

L’utilisation du dictionnaire que nous proposons dans un schéma de

débruitage fournit de meilleurs résultats qu’un dictionnaire de l’état de

l’art.

Les signaux parcimonieux et compressibles ont aussi attiré l’attention de la

communauté de recherche d’images, dont le souci est de trouver, dans une base de

données d’images, des images similaires à une image requête donnée. Une raison

importante de l’intérêt pour la parcimonie dans cette application particulière est

la faible complexité des calculs de distances entre vecteurs, lorsque ceux-ci sont

parcimonieux. Cependant un nouveau problème se pose dans ce contexte : les

approches de représentations parcimonieuses ont été développées par la commu-

nauté de traitement d’image dans un souci de fidélité de la reconstruction, sans

considérations pour savoir si les distances calculées entre les vecteurs parcimonieux

représentent correctement la similarité visuelle entre les blocs d’image correspon-

1.1. Structure du manuscrit 3

dants. Cette dernière question est en effet une préoccupation de recherche très

récente. Nous attaquons ce sujet dans le dernier chapitre de cette thèse,

où nous présentons un nouveau schéma de représentation parcimonieuse

plus approprié pour la recherche d’image.

1.1 Structure du manuscrit

Cette thèse est divisée en deux parties en dehors du présent chapitre d’introduc-

tion. La première partie, composée de deux chapitres, établi un état de l’art ainsi

qu’un résumé des principales contributions de la thèse dans les domaines respectifs

des représentations parcimonieuses (Chapitre 2), et de la description et recherche

d’images (Chapitre 3). Dans la deuxième partie, composée des quatre chapitres res-

tants (du Chapitre 4 au Chapitre 7), nous présentons en détails les contributions

de cette thèse en structuration et apprentissage de dictionnaires, en débruitage

et compression d’images, et en recherche d’images utilisant des représentations

parcimonieuses.

Afin de ne pas alourdir la présentation des travaux, quelques-uns des calculs

et des analyses mathématiques sont détaillés dans de petites annexes à la fin de

certains chapitres. Le contenu de ces annexes incluses à la fin des chapitres fait

partie des contributions de la thèse.

Nous avons également inclus deux annexes à la fin du manuscrit. Annexe A

constitue un rappel concis des principaux outils utilisés dans la thèse, à savoir :

(i) l’algèbre linéaire, (ii) la décomposition en valeurs singulières et (iii) la théorie

de l’information. Dans Annexe B figurent deux tables de référence utiles qui

présentent les conventions utilisées dans le manuscrit : Table B.1 (Pg. 180) résume

les conventions de notation et Table B.2 (Pg. 181) les acronymes.

Dans le reste de ce chapitre, nous effectuons un résumé du manuscrit chapitre

par chapitre.

1.2 Partie I : Etat de l’art

La Partie I de ce manuscrit est composée des deux chapitres, l’un sur les représen-

tations parcimonieuses, l’autre sur la description et l’indexation d’images. Pour

chacun des domaines, un état de l’art et les principales contributions de la thèse

sont présentées.

4 Chapitre 1. Introduction

1.2.1 Chapitre 2 : Représentations parcimonieuses

Le Chapitre 2 commence par introduire formellement le problème d’optimisation

permettant d’obtenir une représentation parcimonieuse d’un vecteur signal. Ce

problème est difficile à résoudre exactement et est donc généralement résolu en

utilisant l’un des nombreux algorithme méthodes gloutons tels que le Matching

Pursuit (MP), l’Orthogonal Matching Pursuit (OMP) et sa version optimisée

l’Optimized Orthogonal Matching Pursuit (OOMP). Ces trois algorithmes de la

famille des Matching Pursuit sont décrits ainsi que l’algorithme Basis Pursuit

(BP).

Ensuite, nous passons en revue divers algorithmes d’apprentissage de dic-

tionnaires, y compris trois algorithmes de l’état de l’art [Aharon 2006b, Ru-

binstein 2010a, Mairal 2010a] que nous utilisons par la suite comme référence

pour l’évaluation de nos travaux. Nous donnons ensuite plusieurs exemples d’al-

gorithmes qui exploitent la compressibilité du signal dans différentes tâches de

traitement d’image.

À la fin du chapitre, nous résumons les contributions apportées dans cette thèse

dans le domaine des représentations parcimonieuses.

1.2.2 Chapitre 3 : Description et indexation d’images

Le Chapitre 3 présente un état de l’art des domaines de la description (locale) et de

l’indexation des images. La description locale d’une image peut être décomposée

en trois blocs fonctionnels. Le premier bloc sélectionne les régions de l’image

qui peuvent être détectées de façon répétable (stable) dans différentes prises de

vues d’une même scène ou d’un même objet. Dans le deuxième bloc, les régions

sélectionnées sont géométriquement normalisées pour obtenir une représentation

canonique de chaque région [Mikolajczyk 2005a]. Enfin, dans le troisième bloc,

les valeurs d’intensité des pixels de chaque région normalisée sont utilisées pour

construire un vecteur de longueur fixe, selon l’un des nombreux algorithmes de

description existants [Mikolajczyk 2005b]. Dans ce chapitre, nous décrivons pour

chacun des trois blocs mentionnés les différents algorithmes de la littérature.

Lorsque des descripteurs locaux sont utilisés pour décrire de grandes bases

d’images, il est nécessaire d’organiser les descripteurs de la base de données dans

une structure d’index qui permet de réduire la complexité de la recherche dans

la base. Plusieurs systèmes d’indexation actuels [Sivic 2003, Philbin 2008, Nis-

ter 2006, Jégou 2008, Zepeda 2009, Zepeda 2010e] reposent pour cela sur des

représentations parcimonieuses des données signal. Nous présentons les indices de

matrices creuses, qui sont une représentation des matrices creuses consistant à

ne considérer que les coefficients non nuls, utilisés pour réduire la complexité des

1.3. Partie II : Contributions 5

calculs de produits scalaires entre des vecteurs parcimonieux.

Plusieurs travaux existants qui appliquent les représentations parcimonieuses

à la description et l’indexation d’image sont ensuite présentés. L’un des tra-

vaux décrit est une mise en œuvre des indices de matrices creuses en utilisant

la quantification vectorielle (qui est un cas particulier des représentations par-

cimonieuses) [Sivic 2003]. Dans un autre travail [Jost 2008], l’hypothèse que les

coefficients obtenus par MP suivent une loi de puissance décroissante permet aux

auteurs d’élaguer itérativement l’ensemble des correspondances possibles de la base

de données afin de réduire la complexité de la recherche. Enfin, nous présentons

une application qui utilise des représentations parcimonieuses pour modéliser le

sous-espace des transformations d’une région image donnée [Kokiopoulou 2008].

Ce modèle permet de réaliser un calcul de faible complexité du plus proche voisin

exact d’une région, d’une manière invariante à la transformation.

À la fin du Chapitre 3, nous résumons les contributions de cette thèse sur

l’utilisation des représentations parcimonieuses dans le domaine de la description

et de l’indexation d’images.

1.3 Partie II : Contributions

La Partie II de cette thèse est composée de quatre chapitres décrivant les contri-

butions de cette thèse.

1.3.1 Chapitre 4 : Iteration-Tuned Dictionaries (ITD)

Le travail présenté dans le Chapitre 4 introduit une nouvelle façon de structurer des

dictionnaires redondants pour les représentations parcimonieuses. Nous appelons

ce nouveau schéma dictionnaire adapté à l’itération ou Iteration-Tuned Dictionary

(ITD). La motivation sous-jacente aux ITDs provient de la nature itérative des

algorithmes de poursuite tels que OMP et OOMP. Ces algorithmes contraignent le

nouvel atome di sélectionné à l’ itération i à ajouter de nouvelles informations à la

représentation tout en étant linéairement indépendant des atomes
[
d1, . . . ,di−1

]

choisis dans les itérations précédentes. Cette exigence sur les atomes dl a motivé

l’approche proposée : les ITDs sont structurés en couches, chaque couche l se

composant d’un dictionnaires Dl.

1.3.1.1 Décompositions parcimonieuses utilisant les ITDs

Les décompositions basées sur les ITDs procèdent de la même façon que les al-

gorithmes de poursuite tel que MP, en choisissant d’abord, au début de chaque

6 Chapitre 1. Introduction

itération i, un dictionnaire candidat Di de la i-ème couche ITD. Le choix du dic-

tionnaire est réalisé en utilisant une loi de sélection des candidats. Un exemple de

loi de sélection des candidats possible sera donné par la suite dans un cas particu-

lier d’ITD. Puis, étant donné le dictionnaire Di sélectionné (composé des atomes

di), les règles de sélection de l’atome et du coefficient pour la i-ème itération de

la version ITD du MP (ITD-MP) sont données par :

d = argmax
d∈Di

∣
∣(d)T · ri−1

∣
∣ , (1.1a)

γi =(di)T · ri−1, (1.1b)

où ri représente le i-ème vecteur résiduel

ri = ri−1 − γi · di. (1.2)

Tout comme dans le cas des décompositions utilisant le même dictionnaire

(fixé) dans toutes les itérations, le nombre d’atomes L utilisé dans la représentation

ITD d’un vecteur signal y peut être choisi, par exemple, pour satisfaire un critère

d’erreur quadratique moyenne (EQM) ε2 pré-déterminée :

argmin
L

L s.t. |y − ŷL|2 ≤ d · ε2, (1.3)

où y ∈ Rd est le vecteur signal original et ŷi sa i-ème approximation. Cette

approximation peut être exprimée par ŷi = SiΓi, où

Si =
[
d1 . . . di

]
(1.4)

est la matrice des atomes sélectionnés et Γi =
[
γ1 . . . γi

]T

regroupe les coeffi-

cients (non nuls) correspondants.

1.3.1.2 Apprentissage des ITDs

De la discussion qui précède, il s’ensuit que le signal d’entrée de la couche i d’un

ITD est constituée des vecteurs résiduels ri−1 provenants de la couche précédente,

et qu’un unique atome sera sélectionné par couche i. Nous utilisons ce fait pour

formuler un programme d’apprentissage itératif des ITDs selon une approche des-

cendante.

1.3.1.3 Comparaison avec l’état de l’art

Nous comparons l’algorithme ITD proposé aux dictionnaires de l’état-de-l’art

[Aharon 2006b, Rubinstein 2010a], construit également par apprentissage, et nous

1.3. Partie II : Contributions 7

montrons que à la fois ITD peut significativement dépasser les performances des

méthodes de reference en terme de compressibilité du signal. Nous montrons

également que les ITD améliorent les performances en compression d’images, et

(dans le chaptire suivant) en débruitage.

1.3.2 Chapitre 5 : Tree-Structured Iteration-Tuned Dic-

tionaries

Nous proposons ensuite une approche contenant plusieurs dictionnaires candi-

dats par couche, que nous appelons Tree-Structured Iteration-Tuned Dictionary

(TSITD), dans laquelle les dictionnaires sont organisés selon une structure ar-

borescente. Chaque noeud k de l’arbre contient un dictionnaire candidat Dk, et

chaque atome d’un dictionnaire candidat a un fils. Ainsi, la loi de sélection des

atomes est également la loi de sélection des candidats : à une couche donnée l,

l’indice k du dictionnaire choisi et le descandant de l’atome choisie dans la couche

l − 1. La combinaison de la loi de sélection des candidats pour TSITD décrite

ci-dessus avec le schéma d’apprentissage des dictionnaires correspondant produit

des matrices des atomes sélectionnés Si orthogonales :

(Si)T Si = I ∀i,∀Si. (1.5)

L’un des avantages d’obtenir des matrices Si orthogonales tient au fait que la

pseudo-inverse d’une matrice orthogonale est donnée par sa transposée : (Si)+ =

(Si)T . On pourrait envisager des versions améliorées de (1.1) obtenues en utilisant

des variantes de l’algorithme de poursuite OMP et sa version optimisée OOMP

basées sur les ITDs [Pati 1993, Rebollo-Neira 2002]. Pourtant, le fait que ces

algorithmes reposent sur (Si)+ implique que, dans le cadre des TSITDs, ces deux

algorithmes sont tous deux équivalents, en terme de complexité, à l’algorithme

MP. Ainsi, TSITD profite à la fois de la faible complexité de l’algorithme MP

et de la meilleure représentation offerte par les algorithmes OMP et OOMP (en

terme d’erreur de reconstruction à parcimonie équivalente).

1.3.2.1 Iteration-Tuned and Aligned Dictionary

Nous introduisons en suite une représentation équivalente à la structure TSITD

appelée reduced Tree-Structured Iteration-Tuned Dictionary (rTSITD). La struc-

ture rTSITD est basée sur l’observation que la propriété TSITD (1.5) ci-dessus

implique que le rang de Dk, dont k appartient au niveau l, est d − l + 1. Alors,

avec une matrice de rotation appropriée, les atomes de Dk (qui appartiennent à

l’espace signal Rd) peuvent être exprimés de manière équivalente dans un espace

réduit Rd−l+1. Nous notons D′
k les atomes exprimés dans Rd−l+1.

8 Chapitre 1. Introduction

B′
1

1 N

1

B′
2

φb1′

1

B′
l

φb2′

d
d
−

1
d
−

l
+

1

...

φb′

11
φb′

1N

φb′

21
φb′

2N

N

N

b1′

b2′

bl′

φbl′φb′

l1
φb′

lN

a1

al

a2

Figure 1.1: La structure ITAD : les indices ai désignent les atomes di′ (et leur matrice

d’alignement correspondante φi) d’un même dictionnaire prototype D′
i.

Nous en déduisons un cas particulier de la structure réduite TSITD que nous

appelons Iteration-Tuned and Aligned Dictionary (ITAD). La structure ITAD est

obtenue en contraignant les candidats Dk ∈ Rd×N d’une même couche l à partager

la même représentation réduite D′
k = B′

k ∈ R(d−l+1)×N (pour tous les k de la

couche l). B′
i est appelé dictionnaire prototype de la l-ème couche. A partir du

dictionnaire prototype B′
l de la couche l, on retrouve un dictionnaire Dk donné

par le biais d’une matrice de rotation orthonormale Φl ∈ Rd×(d−l+1), factorisée

sous la forme Φk = φb1′ · . . . · φbl−1′ :

Di = (φb1′ · . . . · φbl−1′)D′
i, (1.6)

bj′ etant l’atome choisie de la couche j. Chaque matrice φbj′ ∈ R(d−j+1)×(d−j),

j = 1, . . . , i − 1, appelée matrice d’alignement, est associée de façon unique (cf.

Fig. 1.1) à l’un des atomes prototype parent bj′, j = 1, . . . , i − 1. Les matrices

d’alignement ont pour fonction de réduire la dimension des vecteurs résiduels à

la sortie des couches successives, et ceci est possible parce que chaque résidu est

assuré d’être orthogonal à l’atome prototype sélectionné. De fait, n’importe quelle

matrice φbj′ satisfaisant (φbj′)T bj′ = 0 permettra d’accomplir cette tâche. Nous

choisissons par la suite comme matrices d’alignement ITAD, celles qui structurent

le mieux les résidus des différents atomes d’un dictionnaire prototype donné.

La représentation compacte d’ITAD donnée dans la Fig. 1.1 illustre deux avan-

tages d’ITAD par rapport à d’autres structures ITD. Tout d’abord, décomposer

(nous montrons dans la suite comment la décomposition est réalisée) dans des

couches i successivement réduites en dimension diminue la complexité combinée

1.3. Partie II : Contributions 9

J
Découpage

en blocs

Séparateur

AC / DC

DPCM +

Codeur

Entropique

ITAD +

Codage par

tranformée

basé débit-

distorsion

{µ̃}

{ỹ}

{z}

{µ}

{y}

Figure 1.2: Le codec pour la compression d’images basé ITAD : L’image J est découpée

en blocs z (sous forme vectorielle) sans chevauchements à l’aide d’un quadrillage régulier. Les

composants DC µ et AC y de chaque bloc sont ensuite encodés séparément. L’opération

réalisée par le bloc d’encodage en bas à droite est basée sur un nouveau critère débit-

distortion permettant de déterminer la parcimonie de chaque bloc.

des opérations de décomposition/reconstruction pour des valeurs de i importantes.

Cette complexité devient même plus faible que celle des systèmes traditionnels uti-

lisant OMP avec des dictionnaires fixes. Ensuite, la structure ITAD illustrée dans

la Fig. 1.1 bénéficie d’un coût de stockage plus petit que celles des autres structures

ITD.

1.3.2.2 Evaluation

Nous montrons que TSITD/ITAD offrent plus d’avantages par rapport à ITD que

cela soit en termes de performance, de complexité, de capacité stockage nécessaire,

ou une combinaison des trois. Les évaluations sont faites en termes de (i) com-

pressibilité du signal, (ii) compression d’image, et (iii) débruitage d’image.

1.3.2.3 Analyse débit-distorsion pour les dictionnaires redondants

Dans une annexe du Chapitre 5, nous introduisons une nouvelle analyse débit-

distortion applicable aux codecs basés sur des dictionnaires redondants. Cette

analyse facilite l’évaluation des ITDs en compression d’images, mais les expres-

sions proposées ont des applications plus larges, comme par exemple dans le

développement de nouveaux schémas d’apprentissage de dictionnaires mieux adaptés

à la compression d’image.

10 Chapitre 1. Introduction

1.3.3 Chapitre 6 : Compression d’images utilisant ITAD

Dans le Chapitre 6, nous présentons un nouveau codec d’images basé sur le dic-

tionnaire ITAD présenté dans le Chapitre 5. Tout comme le codec JPEG, Le codec

proposé encode séparément la valeur moyenne de chaque bloc (coefficient DC) et

les écarts à la moyenne (coefficients AC).

1.3.3.1 L’encodeur

La Fig. 1.2 présente un diagramme en bloc illustrant les composants principaux

de l’encodeur. La première opération consiste à découper l’image en blocs sans

chevauchements de taille b × b appelés z. Chaque bloc z est ensuite décomposé

en ses coefficients DC µ (représentant la valeur d’intensité moyenne de chaque

bloc) et AC y (écarts à la moyenne). Les séquences de coefficients DC {µ} et AC

{y} sont ensuite encodées séparément. La séquence DC est encodée avec un code

DPCM suivi d’un encodeur entropique, tandis que la séquence AC est encodée

avec la transformée ITAD présentée au Chapitre 5. Un code à longueur fixe est

utilisé pour coder les indices d’atomes et un quantificateur uniforme suivi d’un

codage entropique pour coder les coefficients ITAD.

1.3.3.2 Détermination de la parcimonie basée sur un critère débit-

distortion global

Le problème de la détermination du degré de parcimonie de chaque bloc est

résolu avec une nouvelle méthode globale (i.e., prenant en compte toute l’image)

basée débit-distortion. Cette méthode consiste à distribuer (allouer) un atome

supplémentaire à la fois à chaque bloc de l’image. Le bloc choisi à chaque itération

est celui qui pour lequel l’”allocation” d’un nouvel atome offre la plus grande

réduction d’erreur de reconstruction par bit. La méthode proposée est comparée

avec une méthode communément utilisée qui consiste à choisir la plus petite par-

cimonie L (nombre d’atomes utilisés) satisfaisant une erreur quadratique moyenne

ε2 donnée :

argmin
L

L tel que |y − ŷL|2 ≤ d · ε2. (1.7)

On montre expérimentalement que la méthode proposée permet une amélioration

en performance qui peut atteindre jusqu’à 0.6 dB.

1.3.3.3 Évaluation de la méthode

Nous comparons le codec basé ITAD proposé avec le codec de l’état de l’art

JPEG2000 et son prédécesseur, le codec JPEG. Les évaluations montrent que

1.3. Partie II : Contributions 11

notre système peut offrir entre 2, 5 dB et 0, 5 dB de plus pour des débits entre

0, 15 et 0, 45 bits par pixel.

1.3.4 Chapitre 7 : Recherche approximative des plus proches

voisins avec les représentations parcimonieuses

Dans le Chapitre 7 nous explorons l’utilisation des représentations parcimonieuses

pour la recherche approximative des Plus Proches Voisins (PPV). Les représenta-

tions parcimonieuses sont intéressantes pour cette application parce que le calcul

du produit scalaire entre deux vecteurs creux a une faible complexité. Supposons

en effet que des vecteurs creux x de dimension N aient en moyenne l0 coefficients

non-nuls, le calcul du produit scalaire entre deux vecteurs ne nécessite que de l0/N
2

multiplications en moyenne. Comme nous le montrons dans l’Annexe 7.B, cette

complexité minimale est atteinte lorsque la distribution du support (i.e., la posi-

tion des coefficients non-nuls d’un vecteur creux) de l’ensemble des représentations

creuses est uniforme (toutes les positions sont utilisées à fréquences égales). L’avan-

tage de cette complexité réduite est exploitable en utilisant les indices de matrices

creuses décrites dans le Chapitre 2.

Cette faible complexité du produit scalaire est la raison pour laquelle plusieurs

travaux [Sivic 2003, Nister 2006, Philbin 2008, Jégou 2008, Zepeda 2009, Ze-

peda 2010e] se sont intéressés à l’utilisation de différentes variantes des re-pré-

sen-ta-tions parcimonieuses pour la recherche d’images. Dans le Chapitre 7, nous

proposons une extension de ces méthodes en considérant le cadre plus général

des représentations parcimonieuses basées sur les dictionnaires redondants décrits

dans le Chapitre 7. L’une des difficultés rencontrées dans cette tâche tient au fait

que la formulation généralement établie de telles représentations parcimonieuses

est basée sur un critère débit-distortion dans lequel l’erreur d’approximation (la

distorsion) est minimisée sous une contrainte de parcimonie (le débit). Bien que la

parcimonie soit importante dans le contexte de la recherche d’images, la distorsion

ne l’est pas nécessairement.

1.3.4.1 Nouvelle formulation pour la sélection du support creux

Dans ce contexte, nous développons une nouvelle formulation produisant une nou-

velle représentation parcimonieuse, appelée un vecteur réduit, obtenu en minimi-

sant une erreur d’approximation de distance, donnée par le produit scalaire entre

vecteurs creux, sous une contrainte de parcimonie (i.e., de complexité de la re-

cherche). Cette nouvelle formulation fait l’hypothèse que les données y sont com-

pressibles et que leurs représentations parcimonieuses x sont disponibles et ont été

obtenues avec un dictionnaire D tel que y = Dx. Notre but est d’approximer au

12 Chapitre 1. Introduction

mieux le produit scalaire yT

q yb entre vecteur requête et vecteur de la base. Cette

distance peut être écrite en fonction de x comme suit :

yT

q yb = xT

q DT D
︸ ︷︷ ︸

CD

xb = xqCd
︸ ︷︷ ︸

χq

xb = χT

q xb. (1.8)

On observe que la dernière expression est composée d’un produit scalaire entre

un vecteur non-creux χq et un vecteur creux xb. Le vecteur χq étant non-creux,

l’opération ne bénéficie plus d’une réduction en complexité. On considère donc

une nouvelle représentation ẍq équivalente à χq aux l0 positions P = {p1, . . . , pl0}
du support creux et nulle ailleurs. La sélection du support creux P est réalisée en

utilisant la formulation suivante :

argmin
P
|(χq − ẍq)

txb|2 tel que |P| = l0. (1.9)

Nous présentons plusieurs méthodes pour résoudre ce problème.

1.3.4.2 Conditionnement des données pour une complexité minimum

Comme expliqué précédemment, la complexité du calcul du produit scalaire entre

vecteurs creux est minimale lorsque le support creux des représentations est uni-

formément distribué sur toutes les positions possibles. Généralement les ensembles

de données ne vérifient pas cette propriété, aussi, dans le Chapitre 7, nous intro-

duisons aussi une nouvelle méthode de conditionnement des données pour traiter

ce problème. Cette méthode est basée sur l’observation que, pour des dictionnaires

suffisamment incohérents (i.e., dont les atomes ne sont pas très corrélés entre eux),

une meilleure distribution du support creux peut être obtenue avec des données

uniformément distribuées sur l’hyper-sphère unitaire. Ainsi la méthode de condi-

tionnement proposée a pour premier objectif de répartir les données le plus uni-

formément possible sur l’hyper-sphère unitaire. Cependant, dans le contexte de la

recherche des PPVs, la méthode doit également préserver les distances relatives

(produit scalaire) entre les vecteurs composant l’ensemble des données.

La méthode de conditionnement est basée sur une décomposition en valeurs

singulières de la matrice de corrélation des données originales y :

E
[
y yt

]
= Ut

yDyUy. (1.10)

Avec ceci, les données conditionnées yc peuvent être exprimées comme suit :

yc =
D−1/2

y Uyy

|D−1/2
y Uyy|

. (1.11)

1.3. Partie II : Contributions 13

1.3.4.3 Évaluation de la méthode

L’évaluation expérimentale de notre méthode de conditionnement montre que les

données conditionnés sont effectivement mieux distribuées sur l’hyper-sphère uni-

taire et que leurs distances relatives sont préservées. En combinant le conditionne-

ment avec la nouvelle représentation obtenue par le biais de (1.9), notre approche

offre un avantage significatif sur les systèmes de recherche de PPVs utilisant des

représentations parcimonieuses obtenues avec des critères débit-distortion.

Part I

Literature Review and Summary

of Contributions

Chapter 2

Sparse Representations: Review

and Contributions

Sparse representations have become a very active research topic in recent years.

Many new algorithms have been developed that take advantage of sparse repre-

sentations to achieve state-of-the-art results in a wide range of image processing

applications including inpainting, denoising, and compression.

A sparse representation scheme consists of (i) a generally overcomplete basis

(called the dictionary) and (ii) an algorithm that selects basis vectors (called the

atoms) and weighting coefficients to produce a linear approximation of an input

signal. The representation is termed sparse because only a small number of atoms

/ coefficients will be selected by the representation algorithm. Signal vectors that

can be represented sparsely with acceptable error are termed compressible. Since

signal compressibility depends on the dictionary used to obtain the representation,

various authors have come up with new training algorithms that produce dictio-

naries adapted to a particular signal class. Trained dictionaries have become an

important component of sparse representation schemes that has helped various

authors achieve strong results.

In the current chapter we begin by formulating sparse representations as an

optimization problem and then presenting various greedy algorithms used to tackle

this problem. Next we carry out a survey of various dictionary training methods

found in the literature. We then conclude the chapter by presenting concrete

examples of algorithms that use sparse representations to achieve state-of-the-art

results in image inpainting, denoising and compression.

2.1 Problem formulation

Let D ∈ Rd×N (with N > d) be the full-rank dictionary matrix D formed by N

columns d called the atoms (assumed unit norm). A sparse representation x of a

signal vector y ∈ Rd is obtained under joint fidelity and sparsity criteria:

argmin
x

|y −Dx| s.t. |x|0 ≤ L, (2.1)

where the l-0 norm | · |0 counts the number of non-zero coefficients in a vector.

18 Chapter 2. Sparse Representations

2.2 Sparse decomposition algorithms

The sparse decomposition problem in (2.1) is difficult to solve and in general

requires a combinatorial approach wherein all possible atom combinations are

tried. This approach suffers from an intractable complexity, and thus various

authors have introduced an arsenal of algorithms that attack this problem in a

computationally feasible manner.

2.2.1 The matching pursuit family

One well-known family of algorithms used to obtain approximate solutions of (2.1)

is the matching pursuit family (MPF). The MPF algorithms proceed iteratively

by selecting one new atom di at each iteration i. Let us concatenate all the atoms

selected up to the i-th iteration to define the selected-atoms matrix

Si ,
[
d1 . . . di

]
. (2.2)

One can view the MPF algorithms as solving, at each iteration i, a simplification

of the optimization in (2.1) given by

argmin
di,Γ

i

|y −
[
Si−1 | di

]
Γi|, (2.3)

where the vector Γi =
[
γ1 . . . γi

]T

contains the weighting coefficients corre-

sponding to each atom di. The resulting approximation of y at the output of the

i-th iteration will be

ŷi = SiΓi.

We consider three MPF variants termed respectively matching pursuit (MP)

[Mallat 1993], orthogonal matching pursuit (OMP) [Pati 1993] and optimized or-

thogonal matching pursuit (OOMP) [Rebollo-Neira 2002]. Each algorithm ap-

proximates (2.3) except OOMP, which solves it exactly.

2.2.1.1 Matching Pursuit (MP)

For the case of the matching pursuit (MP) algorithm, the new atom-index / coef-

ficient pair is chosen to best approximate the residue vector

ri−1 = y − ŷi−1 (2.4)

at the input of each iteration i (we assume that r0 = y) using a single-atom

representation γi · di. The MP atom / coefficient selection rules are:

argmax
di

|dT

i · ri−1|, (2.5a)

γi = dT

i · ri−1. (2.5b)

2.2. Sparse decomposition algorithms 19

Note that these rules solve (2.3) when the optimization is carried out only over

the i-th coefficient γi rather than over all coefficients Γi:

argmin
(di,γi)

|ri−1 − γi · di|. (2.6)

While the MP atom/coefficient selection rules enjoy low complexity, they suffer

from the problem that, unless there exists an atom that is collinear with ri−1 (and

this happens with probability zero), the residual norm |ri| at the output of the

i-th iteration will never be zero even for i ≥ d (i.e., even when there are more

coefficients γi than there are dimensions in y):

ŷi = y ⇐⇒ i→∞. (2.7)

2.2.1.2 Orthogonal Matching Pursuit (OMP)

Orthogonal matching pursuit (OMP) overcomes this problem by updating all co-

efficients Γi = [γ1 . . . γi]
T at iteration i using the projection unto the subspace

spanned by all atoms selected up to the i-th iteration. Letting

Si + =
(
(Si)T Si

)−1
(Si)T (2.8)

be the pseudo-inverse of the matrix of selected atoms Si in (2.2), we can express

the OMP atom / coefficient selection rules as follows:

argmax
di

|dT

i · ri−1|, (2.9a)

Γi = Si + y. (2.9b)

While MP only considers an iteration’s input residual ri−1 to obtain the i-th

atom / coefficient pair, OMP looks back to previous iterations and optimizes the

coefficients for previously selected atoms. The result is that OMP enjoys the

property that

ŷd = y. (2.10)

The property follows from that fact that D is assumed full rank and thus (2.9)

guarantees that the selected atoms will be linearly independent. Thus Si in (2.9b)

is invertible for i = d, with Si + = (Si)
−1

.

2.2.1.3 Optimized Orthogonal Matching Pursuit (OOMP)

The optimized orthogonal matching pursuit (OOMP) algorithm extends the idea

of OMP and looks back to previous iterations not only to modify all coefficients

20 Chapter 2. Sparse Representations

Γi but also to select a better atom di in each iteration i. The OOMP formulation

solves (2.3) exactly using the following atom / coefficient selection rules:

argmax
di

∣
∣
∣

[
Si−1 | di

] [
Si−1 | di

]+
y
∣
∣
∣ , (2.11a)

Γi = Si + y. (2.11b)

Note that the atom di chosen at iteration i is now a function of atoms chosen in

previous iterations (grouped to form Si−1 =
[
d1 . . . di−1

]
). The coefficients

Γi are chosen as for OMP and thus OOMP again enjoys the exact reconstruction

property (2.10) for i = d.

2.2.2 Basis Pursuit

Another approach towards simplifying (2.1) consists of substituting the l-0 norm

constraint by an l-1 norm constraint. The resulting algorithm, known as basis

pursuit [Chen 2001] is usually expressed as the solution to the following problem

argmin
x

|x|1 s.t. y = Dx. (2.12)

This formulation can be re-written as a linear program and thus solved with stan-

dard linear programming routines. The solution will generally consist of d (where

y ∈ Rd) linearly independent vectors uniquely specified by y. A sparse adaptation

of this approach can be obtained by instead minimizing the reconstruction error

subject to an inequality constraint on the sparsity (measured in terms of the l-1

norm); this can be formulated in Lagrangian form as

argmin
x

|y −Dx|2 + λ|x|1. (2.13)

2.3 Dictionary Training Methods

One common assumption made when employing sparse representations in signal

processing tasks is that the signal vectors in question are compressible, meaning

that they can be well-represented sparsely (i.e., using only a small number of dic-

tionary atoms). For this reason, various authors have come up with dictionary

training schemes that will render a signal class (defined by a representative train-

ing set) compressible: The resulting dictionary D should thus produce low-error

approximations Dx of the training signals y with sufficiently sparse x.

Let | · |F denote the Frobenius norm of a matrix. Assuming we are given a

set of training vectors y, we can write the cumulative representation error for all

training vectors as follows:

|Y −DX|2F , (2.14)

2.3. Dictionary Training Methods 21

where matrix Y = cols({y}) contains the training vectors y as columns and matrix

X = cols({x}) likewise contains the corresponding sparse representations x. Note

that the coefficients matrix X itself depends on the dictionary D: given D, the

columns of X can be calculated using, eg., an algorithm of the matching pursuit

family (cf. Section 2.2.1). Thus, dictionary training algorithms proceed iteratively

by subsequently fixing either D or X while calculating the other quantity.

One of the earliest dictionary training schemes proposed is that of Olshausen

and Field [Olshausen 1996]. Together with several subsequent publications, they

considered maximum-likelihood estimates of the optimal dictionary when assum-

ing a Gaussian or Laplace prior on the sparse representation coefficients. Both

the coefficient and dictionary update stages used in [Olshausen 1996] are based on

adaptations of steepest descent methods.

2.3.1 The method of optimal directions

The Method of Optimal Directions (MOD) [Engan 1999] instead used the fact that

the best dictionary solution to the quadratic function (2.14) can be expressed in

closed form by forcing the derivative to zero:

D = YXT
(
XXT

)−1
, (2.15)

thus solving in one step the dictionary update process. One drawback with this

approach is the high complexity of the matrix inverse, particularly for large dic-

tionaries.

2.3.2 Unions of orthogonal matrices

To simplify the training task, various researchers have instead considered dictio-

naries

D =
[
D1 | . . . | DL

]
(2.16)

that are unions of orthonormal bases Dk ∈ Rd×d, k = 1, . . . , L. Here we present

three such approaches.

2.3.2.1 Constrained sparse representations x

The first considered approach, proposed by Sezer et al. [Sezer 2008], assumes that

the sparse decomposition process is constrained so that the representation uses a

single basis Dk from D which is chosen based on a sparsity criteria. This constraint

has the important consequence that the exact solution to the sparse representation

problem (i.e., under an l-0 norm constraint) is straightforward to obtain. Letting

22 Chapter 2. Sparse Representations

xk denote the representation that uses orthonormal bases Dk, we can express the

l-0-constrained sparse representation problem as follows:

min
xk

|y −Dkxk|2 + λ|xk|0. (2.17)

The solution to the above problem is given below, where dj
k denotes the j-th

column of Dk and xk〈j〉 denotes the j-th entry of xk:

xk〈j〉 =

{

0 if |yT · dj
k| <

√
λ,

yT · dj
k if |yT · dj

k| ≥
√

λ.
(2.18)

The sparsest xk (over all bases k) thus obtained specifies the selected basis Dk

used in the decomposition.

If we now consider a large training set {y}, the previous decomposition /

basis selection process will partition the training matrix Y = cols({y}) into class

matrices

Yk = cols({y|k = argmin
j

(|xj|0)}) (2.19)

according to the basis Dk used by each y. We can likewise define the matrix Xk

with columns consisting of sparse representations xk (in Dk) of the corresponding

columns in Yk. Using this, each basis Dk can be updated by solving

argmin
Dk

|Yk −DkXk|F . (2.20)

Letting Uk and Vk denote the matrices of left and right singular vectors of XkY
T

k

the solution [Sezer 2008] to the above is given by

Dk = VkU
T

k . (2.21)

This updated version of Dk is then used to re-classify the training set (by means

of (2.19)) to obtain new Xk and Yk, thus defining an iterative procedure.

2.3.2.2 Relation to Gaussian Mixture Model

The work presented by Guoshen et al. [Yu 2010] establishes a relationship between

the constrained representation scheme [Sezer 2008] outlined above and inverse

problems based on Maximum a Posteriori (MAP) Expectation Maximization (EM)

estimates using a Gaussian Mixture Model (GMM). The problem they consider is

that of reconstructing a signal f from a degraded version y = Hf + n, where H

is a lossy operator and n is assumed to be Gaussian with covariance matrix σI.

The GMM assumption means that the signal f is assumed to come from one of

2.3. Dictionary Training Methods 23

K possible Gaussian distributions N (µk,Σk), k = 1, . . . , K. Given some initial

estimate µ̃k and Σ̃k of the model parameters, the EM solution follows by iteratively

E-step taking the estimate f̃ to be the MAP estimate with highest confidence from

all those obtained using each of the laws k and M-step estimating the parameters

(µk, Σk) for each law k using the straightforward empirical estimates calculated

from all the f̃ of the corresponding law k.

The GMM / MAP-EM signal estimates f̃ required in the M-step follow from

argmin
f

|y −Hf |2 + σ2f T Σ̃
−1

k f , (2.22)

which can be expressed in closed form by setting the derivative to zero. The impor-

tant observation made by the authors of [Yu 2010] concerns this above expression

when written in terms of the vector

xk = UT

k f , (2.23)

where Uk is the (orthonormal) principal basis of Σ̃k satisfying Σ̃k = Uk∆kU
T

k for

a diagonal, non-negative ∆k. Substituting (2.23) in (2.22) produces the following:

argmin
xk

|y −HUkxk|2 + σ2
∑

l

|xk〈l〉|2
∆k〈l,l〉

. (2.24)

This expression has a form very similar to a sparse representation problem (cf.

(2.1)) using an overcomplete dictionary H
[
U1 | . . . | UK

]
and the same

structuring constraint of [Sezer 2008] discussed above wherein a single basis Uk

can be selected for each y. Besides the obvious difference concerning the gener-

alization of the dictionary structure through the loss operator H, the coefficients

xk in (2.24) can be solved for each k by means of a linear operator (once again

expressed in closed form by setting the derivative to zero), which is not the case in

(2.18). The sparse coefficient calculation process in (2.18) is non-linear given the

explicit sparsity norm used therein instead of the weighted l-2 proxy (cf. (2.24))

produced by the GMM assumption. Yet in both approaches, this initial coefficient

calculation process is then followed by one that is non-linear consisting of selecting

the basis k yielding the greatest estimation or approximation confidence.

Dictionary structuring by means of constrained decomposition schemes is a

concept that we explore in the contributions of this manuscript. The GMM MAP-

EM approach is further related to various approaches we present in its usage of

concatenations of PCA bases obtained from partitions of the estimated data. We

use PCA bases from training set partitions but retain only the first principal

component of each basis when building our dictionary. Furthermore, we compute

PCA bases from partitions of the training set {y} (or its i-th residual set {ri})
instead of using the set of estimates {f̃}.

24 Chapter 2. Sparse Representations

2.3.2.3 Unconstrained sparse representations x

An alternative approach [Lesage 2005] to the constrained sparse representation

setups presented above again considers the structure in (2.16) but does not con-

straint the decomposition scheme to use a single Dk as above, instead using an

algorithm such as matching pursuit applied over the entire dictionary D. Again

using Y = cols({y}) and X = cols({x}), the sparse approximation of all columns

in Y can be written as

DX =
[
D1 | . . . | DL

]

X1
...

XL

 =

∑

k

DkXk. (2.25)

The dictionary update then proceeds by modifying one Dl at a time while keeping

all other bases Dk, k 6= l, fixed. Let

El = Y −
∑

k 6=l

DkXk (2.26)

be the error matrix inside (2.14) with the term DlXl removed. Each updated Dl

is chosen to minimize

|El −DlXl|2F . (2.27)

2.3.3 The K-SVD dictionary

One could envision dictionary construction schemes based on (2.27) that instead

use undercomplete orthonormal matrices Dl ∈ Rd×n with n < d columns. Further

considering optimizing Xl along with Dl when minimizing (2.27), the product

DlXl is seen to correspond to a rank n approximation of El. Thus, the solution

follows from the singular value decomposition (SVD) [Klema 1980] of El. Letting

ul
k, σl

k and vl
k denote, respectively, the k-th left-singular vector, singular value,

and right-singular vector of El, we can express the solution as:

Dl =
[
ul

1 | . . . | ul
n

]
, (2.28)

Xl = diag(σ1, . . . , σn)
[
vl

1 | . . . | vl
n

]T

. (2.29)

Indeed this is the approach taken by Aharon et al. to construct the K-SVD dic-

tionary [Aharon 2006b] corresponding to the special case where n = 1.1 Since

this approach produces new estimates of the coefficients Xl, Aharon et al. further

employ a heuristic consisting of substituting the new coefficients Xl to obtain the

1Note that this general formulation for 1 < n < d is not proposed anywhere in the literature.

2.3. Dictionary Training Methods 25

next error matrix El+1. The sparsity of Xl is preserved by considering only those

columns of El and DlXl corresponding to non-zero columns of Xl.

The K-SVD algorithm has originated a large amount of publications that adapt

it in various ways. For example, in [Mairal 2008c], a multi-scale extension is

considered that consists of forcing the atom to be null at all positions outside a

small, atom-dependant square region corresponding to a quad-tree segmentation

of the atom support. In [Mairal 2008b], K-SVD is used on color patches by

applying the training procedure directly on the vector obtained by concatenating

all three color channels. An application in image classification is also considered

in [Mairal 2008a].

2.3.4 Learning schemes based on atom dependencies

2.3.4.1 Sparse dictionaries

A large number of off-the-shelf dictionaries exist that enjoy advantages in terms

of both their negligible storage requirement and the low usage complexity rela-

tive to more recent learned (unstructured) dictionaries [Rubinstein 2010b]. The

benefits of off-the-shelf dixtionaries follow since these dictionaries are defined an-

alytically: storage of a large matrix D is not necessary and instead the dictionary

structure is stored as a routine that carries the analysis and synthesis directly,

taking advantage of the structured nature of the dictionary to lower the complex-

ity of both operations. Many examples of such dictionaries exist in the literature,

beginning with the Fast Fourier Transform (FFT) and the the Discrete Cosine

Transform (DCT), all the way to the more recent wavelets and related structures

(see [Rubinstein 2010b] for a chronological survey).

While learned dictionary matrices D suffer from an increased usage complexity

and storage footprint, their adaptivity to the particular signal class is at the root

of state-of-the-art results in various signal processing tasks. Thus the question

comes to mind of whether it is possible to retain the best qualities of both ap-

proaches. A very recent dictionary learning formulation proposed by Rubinstein

et al. successfully addresses this question [Rubinstein 2010a]; we refer to their

method as the Sparse Dictionary (SD) when we compare against it in Chapter 5.

Their approach considers a learned dictionary constrained to have the form

D = BA, (2.30)

where B is a fixed analytic dictionary and A is a square sparse matrix having La

(i.e., the atom sparsity) non-zero coefficients per column and is learned from the

training data. Given a signal y, one can calculate the projection coefficients via

AT BT y (2.31)

26 Chapter 2. Sparse Representations

and hence use the analytic properties of B to compute BT y efficiently; multi-

plication by AT also enjoys low complexity and storage as a consequence of the

sparsity of A.

As indicated by Rubinstein et al. the sparse matrix A can be seen as a model

for the dependencies between the columns of the base dictionary B: If one where

to consider using B as a dictionary directly, one can expect that, for a redun-

dant signal class, certain atom combinations would tend to be frequently chosen

together by a decomposition algorithm. This idea of modelling dependencies be-

tween atoms is closely related to the work we present in Chapter 4 and Chapter 5 of

this manuscript. The approach we follow to model the dependencies is nonetheless

different, as we enforce the dependencies between atoms through a new dictionary

structure and corresponding training scheme.

2.3.4.2 Tree-structured approaches

This concept of modelling atom dependencies is also at the root of the dictionary

learning scheme proposed by Jenatton et al. [Jenatton 2009]. Their method pro-

ceeds by assuming that the atoms of the dictionary are organized into a tree, with

each atom corresponding to a node A such that atoms can only be selected by

the decomposition scheme if all ancestors are also selected. In order to use this

structure to obtain a sparse representation of a signal, the authors use a sparsity

measure (i.e., in place of the l-0 or l-1 norms) [Zhao 2009] of the form

Ω(x) =
∑

A
wA|xA|, (2.32)

where wA is a weight associated to each node A and xA is obtained by retaining

from the sparse representation vector x only those positions corresponding to

node A and its ancestors. This new sparsity metric thus enforces dependencies

between atoms, and it can be substituted directly into the sparsity update stage of

any dictionary learning algorithm (the authors use the training scheme described

in [Mairal 2010a]).

A different approach was followed by Jost et al. [Jost 2006] to develop a tree-

structuring scheme for arbitrary dictionaries (they focus on analytic dictionaries

built from two mother functions, the 2-D Gaussian and one of its second-order

derivatives). Their method learned dependencies between atoms by iteratively

grouping those with high coherence to form a new atom called a molecule. The

resulting tree structure was then useful in implementing a low complexity version

of the MP algorithm.

Both of these tree-structured learned dictionary schemes are closely related to

a tree-structured scheme that we present in Chapter 4. Our scheme is different

2.3. Dictionary Training Methods 27

in that it consists instead of an entire dictionary in each tree-node and enjoys

interesting properties such as the orthogonality of selected atoms, which is a useful

property to have when considering coefficient quantization.

2.3.5 Online dictionary learning

Very recent research efforts have been directed at addressing the complexity of

the dictionary training procedure in an attempt to make them faster and/or more

suitable to online tasks such as processing of streaming data like video. These

approaches generally rely on Stochastic Gradient Descent (SGD) methods that

process a single (or a small number of) training example at a time instead of the

entire training set as a batch. This endows SGD methods with lower memory

requirements and can result in faster convergence rates [Mairal 2010a].

One interesting recent method is that termed the Image Signature Dictionary

(ISD) [Aharon 2008]. The method sacrifices some of the dictionary redundancy

in favor of compactness of the dictionary, which in turn reduces the training com-

plexity and makes the scheme interesting for online tasks. The approach assumes

that the dictionary, of size d×N , can be represented as a small image of N pixels

(eg., of size
√

N ×
√

N). Each of the atoms dk ∈ Rd can be found as a
√

d×
√

d

block centered around one of the N pixels of the ISD (periodically extended to

deal with boundary issues). As before the dictionary update proceeds as a two-

step process where the sparse representations x and the dictionary (or ISD, in this

case) are optimized alternating between the two while keeping the other fixed.

The dictionary update stage, however, is done via SGD by using a local linear

model built from a single example y at a time.

The work of Mairal et al. [Mairal 2009, Mairal 2010a] considers a variation of

this approach that employs a block-coordinate descent in the dictionary update

stage (as done in the K-SVD algorithm). Rather than employing a first order

linear model to carry out the SGD dictionary update, the approach instead min-

imizes the following cost using the exact block-coordinate (i.e., one atom at a

time while holding the remaining atoms and all sparse x fixed) minimum applied

subsequently over each atom until convergence:

DT+1 = min
D

1

t

T∑

t=1

|yt −Dxt|+ λ|xt|1. (2.33)

Note that this function differs from the empirical cost of the same form in that

the representations xt, t = 1, . . . , T were calculated using older dictionaries Dt−1:

in keeping with the on-line spirit, at the current time T a single sample yT is

drawn from the training set (or training stream), decomposed using DT to produce

28 Chapter 2. Sparse Representations

xT , and then both xT and yT are used to update the constant coefficients of

the quadratic expression (2.33), solved for D using the iterative block-coordinate

method above described. We will refer to this approach as the Online Learned

Dictionary (ONLD) when we compare our method against it in Chapter 5.

The contributions presented in this thesis do not consider online implementa-

tions of the proposed training methods. However, the learning schemes derived are

based on adaptations of the K-means algorithm for soft-coefficient, single atom

representation schemes. It is not to difficult to imagine similar adaptations of

existing online K-means algorithms [Ripley 1996], and doing so is certainly an

interesting direction that in our view offers opportunities for very competitive,

low-complexity performance in the online scenario.

2.4 Applications of sparse representations in im-

age processing

Sparse representations have a wide range of applications and in this section we

provide several examples of these.

2.4.1 Inpainting

Image inpainting, which consists of filling in missing pixels of an image, is useful

in several scenarios. In the context of data transmission, image inpainting can

provide an alternative to channel codes for bursty erasure channels [Zepeda 2006,

Rath 2004] commonly used to model packet-based network transmissions. Exam-

ples of inpainting in image manipulation include the removal of superposed text,

road-signs or publicity logos [Elad 2005].

Let us consider an image patch y =
[
yT

a yT

m

]T

consisting of two sub-vectors:

vector ya contains the available pixels while ym contains the missing pixels that

we wish to estimate. Guleryuz [Guleryuz 2006] proposes using a concatenation of

orthonormal bases that render y compressible to estimate the missing ym. Consid-

ering one such orthonormal basis D, the compressibility assumption means that,

for the affected y, there exists some sparse vector x satisfying y = Dx. Without

loss of generality we assume that x =
[
ΓT 0T

]T

and, using the orthonormality

of D, we thus write

x =

[
Γ

0

]

= DT y (2.34)

=

[
Da,n Dm,n

Da,z Dm,z

] [
ya

ym

]

, (2.35)

2.4. Applications in image processing 29

where the quantities labeled with subscripts n and z produce, respectively, the

non-zero and zero components of x. The sparsity constraint

0 = Da,zya + Dm,zym (2.36)

can then be used to obtain one possible estimate of the missing data

ŷm = −(Dm,z)
+ Da,zya. (2.37)

The problem with this approach lies in the estimation of the support of x without

which it is impossible to correctly partition DT as in (2.35). Instead one can build

an estimate ŷm iteratively by subsequently enforcing (i) an estimate of the sparsity

constraint (i.e., of the support of x) and (ii) the available data constraint. Let

the diagonal matrices ∆n, ∆a and ∆m have 1/0-valued diagonals built to select,

respectively, the non-zero entries of x and the available and missing entries of y.

We thus express the i-th estimate of y as

ŷi =

[
ya

ŷi
m

]

= ∆aŷ
i−1 + ∆m

(
D∆nD

T
)
ŷi−1. (2.38)

It can be shown [Guleryuz 2006] that the estimate ŷi
m thus obtained converges

to that in (2.37). Yet the iterative nature of the approach in (2.38) permits an

adaptive selection of the support of x wherein the support is re-considered after

every few iterations.

2.4.2 Denoising

Sparse representations have also been used to carry out image and video denois-

ing [Elad 2006b, Mairal 2008b, Elad 2006a, Protter 2009] by using the sparse prior

on the data to formulate the denoising problem as a MAP estimation problem.

The numerical solution of this MAP estimation amounts to obtaining sparse ap-

proximations of overlapping image blocks (3-D spatio-temporal blocks, for the case

of video) and then averaging over all blocks to obtain the denoised data.

Consider, for example, the vector representation N ∈ Rr·c of a noisy image of

size r× c. We can stack all unique, overlapping b× b blocks y (in vectorized form)

of the noisy image to form a large vector Y ∈ R(r−b+1)·(c−b+1) and accordingly

write the 1/0-valued matrix Ω with i-th row specifying all positions in Y where

pixel N〈i〉 occurs. We then build Ŷ by replacing each block y in Y by its sparse

approximation ŷ = Dx chosen, eg., so that the error norm |y − ŷ| is similar

to the noise variance. The denoised image estimate N̂ proposed in [Elad 2006b,

Elad 2006a] is thus built as:

N̂ =
ΩŶ + λN

ΩΩT + λ
. (2.39)

30 Chapter 2. Sparse Representations

Note that the denominator of this expression is a diagonal matrix with i-th diago-

nal entry given by ni + λ, where ni is the number of unique, overlapping blocks in

the image that contain the i-th pixel. Hence the above expression just specifies an

averaging of all sparse approximations of any given pixel with a relaxation using

the noisy image N [Elad 2006b].

2.4.3 Texture separation and classification

The application of sparse representations to texture separation has been explored

in a series of works [Starck 2004b, Starck 2004a, Peyré 2010] that assume that

image blocks y consist of a mixture of overlapping component layers uk:

y =
∑

k

αkuk. (2.40)

This model coincides with the case of mixtures between multiple images (eg., , as

can occur when taking an image through glass) or to natural images consisting of

cartoon-like shape layers with superposed texture [Elad 2005].

Sparse representations can be adapted to this source separation problem by

assuming that dictionaries Dk are available that render uk compressible but not

uj∀j 6= k. Two issues come up regarding the usage of this tool: (i) obtaining

the Dk and (ii) using them to separate the various image layers. We will focus

on the more recent approach presented in [Peyré 2010] which uses a combination

of off-the-shelf dictionaries (fixed for all the image patches) to model the cartoon

layers, while using learned, adaptive (to the neighborhood of each image patch)

dictionaries for the more complex texture layer. The formulation of the approach

uses the sparse constrain to induce the image layering yet estimates the layers

using a separate optimization (H denotes a loss matrix as in (2.22) and is set to

identity for the texture separation application):

argmin
{uk,ul}

|y −H

(
∑

k

uk +
∑

l

ul

)

|2+
∑

k

min
xk

(
|uk −Dkxk|2 + λ|xk|

)
+

∑

l

min
Dl

(
∑

j

min
xj

(
|Rj(ul)−Dlxj|2 + λ|xj|

)

)

.

(2.41)

Here we have used subscript k to denote cartoon layers that use a fixed Dk and

subscript l to denote the layers using adaptive dictionaries Dl. The adaptivity of

this approach hence concerns the third term in the expression: rather than carrying

2.4. Applications in image processing 31

out a sparse decomposition of a given texture layer ul directly, the approach

decomposes each such layer into many overlapping sub-blocks Rj(ul), j = 1, 2, . . .,

which will serve as a training set for the adaptive dictionary Dl. The above

problem is solved using three iterative stages (i) solving for the x using linear

programming methods, (ii) solving for the u using conjugate gradient descent

and (iii) solving for the Dl using gradient descent with projection unto a convex

optimization domain of bounded-norm possibilities.

The learned MCA approach above described shares similarities with a new dic-

tionary structure presented in this manuscript (Chapter 4 and Chapter 5). The

novel structure proposed also assumes that the signal patches are composed of lay-

ers that become more textured with the layer index. Hence the dictionary structure

is composed of multiple dictionaries (one or more per layer of the structure), each

concerned with one of the different layers of the signal being decomposed.

2.4.4 Image compression

Yet another application of sparse representations is that of image compression,

where sparse representations consisting of only a few non-zero coefficients conve-

niently produce compact representations of image blocks. Indeed the JPEG [Wal-

lace 1991] standard is based on the premise that natural images are compressible

in the DCT basis. Its successor, the JPEG2000 standard, instead substitutes a

wavelet basis that better satisfies the compressibility requirement for natural im-

ages. An adaptation of the JPEG standard is still very much in use for intra-coding

of video frames in the H.264 standard [Sullivan 2005].

2.4.4.1 The K-SVD facial image encoder

Recent successful attempts have been made towards using learned overcomplete

dictionaries adapted to a signal class for the purpose of image compression. By us-

ing a learned dictionary, the image encoder can benefit from the resulting greater

compressibility of the considered signal class. An example of this approach is em-

bodied in a facial image codec introduced by Bryt and Elad [Bryt 2008] based on

the learned K-SVD dictionary [Aharon 2006b] (cf. Section 2.3.3). Their approach

nonetheless employs a piecewise-affine warping of the face that ensures that the

various facial features coincide with those of a pre-specified face template. Each

non-overlapping block (taken over a regular grid) of the face template (correspond-

ing roughly to a facial feature such as the nose) thus defines a class of signals that

is then represented with a corresponding K-SVD dictionary. Thus the compress-

ibility of the image blocks in that approach relies, to a large extent, not on the

K-SVD dictionary but rather on the affine warping procedure. This warping pro-

32 Chapter 2. Sparse Representations

cedure in turn increases the codec complexity and is further sensitive to image

variations encountered in practical scenarios (eg., in lighting conditions, pose and

particularities of the subject). The approach nonetheless paid off and enjoyed

a wide improvement in PSNR over the state-of-the-art JPEG2000 [Adams 2005]

algorithm, although this comes at the expense of a large storage overhead related

to the feature-dependent dictionaries.

2.4.4.2 Sparse orthonormal transforms for image encoding

Another example of an image compression system based on trained overcomplete

dictionaries is that developed by Sezer et al. [Sezer 2008]. Their dictionary struc-

ture (cf. Section 2.3.2) consists of a concatenation of orthonormal bases. Each

image block is encoded using a single one of these bases. This approach reduces

the overhead related to coding the atom indices at the expense of reducing the

effective size of the dictionary.

2.5 Contributions (1 of 2)

In this section we summarize the contributions of this thesis in the field of sparse

representations for image processing (presented in Chapter 4, Chapter 5 and Chap-

ter 6). See Section 3.4 for a summary of contributions in the field of image de-

scription and indexing.

2.5.1 Iteration-Tuned Dictionaries (ITDs): A new over-

complete dictionary framework

In Chapter 4 we introduce a new learned overcomplete dictionary framework ap-

plicable to sparse representations called an Iteration-Tuned Dictionary (ITD). We

show how ITDs can be used to outperform the state-of-the-art trained dictionary

K-SVD (cf. Section 2.3.3) in terms of sparsity versus PSNR and obtain state-of-

the art results in image compression and denoising.

ITDs are layered dictionaries where each layer i = 1, 2, . . . , LM contains a set

{Di} of dictionary matrices called the candidate dictionaries. One Di is chosen

for use during the i-th iteration of a pursuit decomposition using a candidate

selection law ; the chosen Di will be better adapted to the structural components

of the residues at the input of the corresponding iteration.

Chapter 4 begins by formalizing the concept of ITDs and then deriving a

general ITD training scheme applicable to any given candidate selection law. In

the same chapter we then introduce two ITD instances. The first one, the Basic

Iteration-Tuned Dictionary (BITD) consists of a single candidate dictionary per

2.5. Contributions (1 of 2) 33

layer and hence the candidate selection law is trivial. The second one, Tree-

Structured Iteration-Tuned Dictionary (TSITD), consists of candidates Di that

are arranged into a tree structure across all layers. We carry out evaluations of

the new dictionary structures against the state-of-the-art K-SVD dictionary and

the (over)complete DCT dictionary and show that they outperform the reference

dictionaries in terms of (i) PSNR versus sparsity and in (ii) image denoising and

(iii) image compression applications.

2.5.2 The Iteration-Tuned and Aligned Dictionary (ITAD)

In Chapter 5 we first develop a new equivalent representation of the TSITD struc-

ture called the reduced Tree-Structured Iteration-Tuned Dictionary (rTSITD). The

rTSITD structure takes advantage of the orthogonality of the TSITD selected-

atoms matrix to represent candidate dictionaries in spaces of dimensionality d −
i + 1 that reduces with the layer index i. We show how rTSITD can enjoy both

reduced complexity and a smaller storage footprint than the equivalent TSITD rep-

resentation. We then propose a particular rTSITD dictionary called the Iteration-

Tuned and Aligned Dictionary (ITAD). ITAD offers several advantages over both

BITD and TSITD. For one thing, the ITAD storage footprint is smaller than that

of either TSITD or BITD. This in turn implies that the ITAD training process is

accordingly less complex. Yet ITAD retains several (r)TSITD properties including

the orthogonality of its selected-atoms matrices and the large dictionary redun-

dancy implicit in the tree-structuring of the candidate dictionaries. As a result

of these, ITAD will outperform TSITD in the vast majority of the practical (eg.,

regarding the size of the training set) setups considered and BITD in all setups

considered.

2.5.3 Rate-distortion analysis for overcomplete dictionar-

ies

In order to avoid codec design challenges (and the ensuing comparison biases)

related to evaluating an overcomplete dictionary’s performance in image compres-

sion, Chapter 4 includes a new rate-distortion analysis applicable to codecs based

on overcomplete dictionaries. The analysis accounts both for the increased com-

plexity of the rate control mechanism (which involves both sparsity selection and

quantizer resolution) as well as the non-orthogonality of the selected-atoms ma-

trix. The derived expressions have greater application, for example, in the design

of new training algorithms.

34 Chapter 2. Sparse Representations

2.5.4 New ITD-based image codec

In Chapter 6 we further implement a complete codec based on the ITAD structure

and show how it outperforms the state-of-the art JPEG2000 and its predecessor

JPEG. The codec uses the ITAD transform to encode the high-frequency compo-

nents of image blocks. We also introduce a novel architecture for the selection of

the sparsity of each image block based on a global (image-wide) rate-distortion

criterion.

Chapter 3

Image Description and Indexing:

Review and Contributions

The aim of image description [Jia 2008] is to allow a user to automatically estab-

lish visual similarities between a query image and one or more reference images.

Yet the process of establishing matches between images is complicated because

different users can perceive different amounts of similarity between the same pair

of images. This ambiguity in turn translates into a difficulty in expressing an

image similarity function mathematically. In order to cast the problem into a

familiar framework, the various approaches found in the literature generally con-

sist of extracting one or multiple fixed-length image descriptor vectors from each

image. The descriptors are built so that their distance under some metric roughly

translates to visual similarity. Thus the problem of establishing matches between

images is cast into a more familiar vector-space search problem [Zezula 2006].

One can roughly classify description schemes into approaches that produce

multiple local descriptors extracted from sub-regions of the image and those that

produce a single global descriptor extracted from the entirety of the image. Local

descriptors are more flexible than their global counterparts because they can be

used to launch queries locally (i.e., from a small, user selected image area). Their

local nature also makes it easier to achieve invariance to image transformations

arising when shots are taken at different times or from different perspectives.

Yet the increased flexibility of local descriptors comes at the expense of search

complexity, as many more descriptors have to be processed at query time. This

increased complexity is addressed by means of adequate indexing structures that

permit low complexity, approximate distance calculations.

3.1 Local image description

As illustrated in the block diagram of Fig. 3.1, local image description can be seen

as a a three-step process consisting of (i) detecting transformation-covariant re-

gions, (ii) normalizing the transformation undergone by these regions and (iii) de-

scribing the resulting normalized regions [Mikolajczyk 2005a]. In the following

36 Chapter 3. Image Description and Indexing

Input

image J

Transformation

Covariant

Region Detector

Region

Normalization
Descriptor

{B} {y} {s}

Figure 3.1: A set of affine covariant regions are detected in an input image. Each

region is then affine normalized. A descriptor s is then calculated on each normalized region.

discussion we will review various algorithms currently used to implement the task

of these three components of image description systems.

3.1.1 Transformation-covariant region detectors

A transformation-covariant region is a set of connected pixel positions B that

varies along with the set of transformations that concern the particular image

description system. For example, if the description system is only concerned with

invariance to scale changes, a transformation-covariant region detector aims to

detect the same set of (correspondingly scaled) regions {B} in any given scaled

versions of the same image. The region detection component of the SIFT algorithm

is a good example of a scale invariant region detector [Lowe 2004]. The algorithm

proceeds by first building a difference-of-Gaussian pyramid with each pyramid

level given by the difference of two Gaussian-filtered versions of the input image

produced with filters of increasing standard deviation σ. Each level of the pyramid

is assigned an image scale obtained from the two σ values of the corresponding

filters (eg., the smallest of the two). Then a corner detection is carried across the

three-dimensional space of the pyramid defined by horizontal and vertical pixel

positions h and v, and level scale σ. Each detected corner is thus specified by an

(h, v, σ)-tuple. In turn each tuple is interpreted as defining a circle in the original

image J (i.e., with (h, v) defining the circle center and β · σ its radius for some

fixed β) corresponding to the scale-covariant regions B.

Rather than simple invariance to scale changes, image description systems are

instead commonly concerned with invariance to affine transformations. The reason

is that affine transformations provide a good model for rigid movements of planar

surfaces in images and, in turn, 3-D objects can be modeled locally as a planar

surface. Thus local description schemes based on affine-covariant region detectors

can be used to represent complex scenes involving natural objects.

One common way [Mikolajczyk 2005a, Sivic 2003] of obtaining an affine-covariant

region detection algorithm consists of taking a corner detector such as the Har-

ris corner detector [Harris 1998] and then fitting an ellipse around each detected

corner to thus produce the regions B. The Harris detector in fact already in-

cludes all the elements necessary to define the required ellipse: Each Harris corner

3.1. Local image description 37

is chosen to locally maximize a corner saliency measure assigned to each pixel

position p =
[
h v

]T

using the pixel’s second moment matrix H(p). Letting

G(σ;p) denote the Gaussian function of standard deviation σ; I(σd;p) denote

the smoothed version of the pixel intensity function obtained using G(σd;p); and

subscripts h and v denote differentiation along the related orientation, the second

moment matrix is given by

H = G(σI ;p) ∗
[

I2
x(σd;p) Ix(σd;p)Iy(σd;p)

Iy(σd;p)Ix(σd;p) I2
y (σd;p)

]

, (3.1)

where the convolution with the matrix is carried out entry-wise and over the

spatial parameter p. The Harris corner saliency measure is defined in terms of the

singular values σi, i = 1, 2, of H as follows

|σ1σ2 − α (σ1 + σ2)
2 |

for some user-selected parameter α that enforces the degree of cornerness required.

To obtain the ellipse defining an affine invariant representation B of this corner,

one further uses the singular vectors of H to define the two principal axes of the

desired ellipse, with the length of axes i = 1, 2 given by

β/σi

for some user-selected constant β.

A more recent affine-covariant region detector, the Maximally-Stable Extremal

Region Detector (MSER) [Matas 2002], instead takes advantage of the property

that any given region of an image will retain its intensity relative to its neigh-

borhood when subject to geometrical transformations. Thus the MSER detector

chooses those regions that display large contrast relative to their neighborhood. It

does this by first increasing an intensity threshold τ starting from the minimum

intensity value (i.e., τ = 0 to 255 for 8-bit images) and then selecting connected

groups of pixels that remain relatively constant along the way, subsequently re-

peating the process with a decreasing τ (eg., from 255 down to 0) to obtain still

other pixel groups. The detected image regions B are then obtained from these

pixel groups by fitting an ellipse to each pixel group.

Mikolajczyk et al. [Mikolajczyk 2005a] have carried out extensive experimen-

tal evaluations of the various region detectors including those discussed above

and have found that the MSER and the Hessian-affine detectors tend to out-

perform others (depending on the particular image and distortion considered) in

terms of their ability to detect the same affine-covariant regions from two ver-

sions of the same scene. Nonetheless, practical schemes use multiple region de-

tectors [Sivic 2003, Jégou 2008] because some images will not result in a suitable

38 Chapter 3. Image Description and Indexing

number of regions of a specific type. For example, region detectors based on cor-

ner detectors will tend to produce high-contrast regions, while others such as the

MSER detector will produce smooth regions.

3.1.2 Region Normalization

The second step of the image description process illustrated in Fig. 3.1 consists of

obtaining a geometrically normalized version (denoted in vectorized form y ∈ Rd)

of each of the detected regions B. A common implementation of this process

takes advantage of the fact that the region detectors in the first block of Fig. 3.1

return regions B expressed in terms of simple geometrical shapes such as circles or

ellipses. Thus the region normalization process will consists of first calculating the

homography mapping the region B to a canonical instance (eg., the unit circle)

of the geometrical shape used by the detector. This homography is then used to

extract the pixel intensities of the normalized version of B and a pre-established

neighborhood, thus producing a normalized patch y that is usually square in

shape.

This process can be expressed as follows for the case of affine covariant region

detectors that produce elliptical regions: Each region is assumed represented by

B = {B,pc}, where pc is the ellipse center and B is a matrix defining its shape as

follows:

pT Bp = 1. (3.2)

The region normalization process requires a homography defined as mapping the

detected ellipse to some canonical shape chosen by convention to be the unit circle.

Letting p′ denote the coordinates of the normalized region, this canonical shape

satisfies

(p′)T p′ = 1 (3.3)

and hence the relationship to the original coordinate system is expressed from

(3.2) as

p = B− 1
2p′, (3.4)

thus showing that the required homography is given by B− 1
2 .

3.1.3 Region Description

A wide variety of methods exist to implement the third block of the image descrip-

tion process illustrated in Fig. 3.1. The most successful of these methods are based

on some variation of the description component of the SIFT algorithm [Lowe 2004],

and we thus now provide a review of this method.

3.1. Local image description 39

Normalized image patch y

Patch sub-region

for 8-bin histogram

Figure 3.2: The SIFT descriptor: The arrows denote the differential gradients at each

pixel position. A dominant orientation (i.e., the histogram peak) is first obtained from a

gradient-angle histogram built using the entire patch. Each of the 4 × 4 sub-regions is

then used to build one 8-bin histogram using gradient-angles taken relative to the previously

computed dominant orientation.

The SIFT description algorithm consists of first taking the differential gradients

of the intensity level at each pixel as given by

[
∆y〈h,v〉

∆h

∆y〈h,v〉

∆v

]T

. (3.5)

where ∆h and ∆v denote, respectively, horizontal and vertical displacement; y〈h,v〉
is the intensity level of the normalized patch at pixel position (h, v). Being a two

dimensional vector, each gradient can be expressed in polar form with an angle

given by

arctan

(
∆yh,v

∆v

/
∆yh,v

∆h

)

. (3.6)

These angles are first used to build a a single, patch-wide histogram of angles; the

position of the peak of this histogram will define the patch’s dominant orientation.

Subsequently, all gradient angles are expressed relative to this dominant angle (i.e.,

the dominant angle is subtracted from all gradient angles). The normalized patch

is then split into 4 × 4 regions, and each of the 16 regions is used to build an

8-bin histogram using the relative gradient angles previously computed. These 16

histograms are then concatenated to produce the SIFT descriptor s ∈ R128.

Various authors have proposed using variations of the SIFT method to de-

rive new descriptors resulting in a mix of improved (i) descriptor distinctiveness,

40 Chapter 3. Image Description and Indexing

(ii) descriptor construction complexity, and (iii) descriptor search complexity.

For example, the Gradient Locality and Orientation Histogram (GLOH) descrip-

tor [Mikolajczyk 2005b] uses a log-polar division of the image patch instead of

the 4 × 4 arrangement shown in Fig. 3.2. The experiments carried out by the

authors of that work shows that GLOH can yield a distinctiveness advantage over

SIFT, albeit at increased computational cost related to a required dimensionality-

reducing PCA projection. Another approach, PCA-SIFT [Ke 2004], discards the

division into sub-regions altogether and instead aggregates gradient-angles using

a projection unto the first 36 principal component vectors.The reduced dimen-

sionality of the descriptor results in reduced matching complexity, although this

comes at the expense of distinctiveness. Yet a third approach, Speeded-Up Ro-

bust Features (SURF) [Bay 2008], was conceived with a keen eye for descriptor

construction complexity: Using integral images (these allow computing the sum

of intensities in a rectangular area of arbitrary size with only 3 additions) com-

bined with a modification of the differential gradient computation using the Haar

wavelet response (which is constant over two rectangular areas) results in a very

low-complexity descriptor construction process. The integral image representation

is further exploited to build a low complexity scale-invariant region detector.

3.2 Image searches using local descriptor

In order to carry out image searches using local descriptors, one needs to devise an

aggregate similarity score applicable to descriptor sets (i.e., the query set and the

set of a potentially matching image). In this section we first present an example

of a local descriptor voting mechanism commonly used as an aggregate similarity

score. This scheme requires the computation of pairwise distances between each

query descriptor and the large quantity of index descriptors. To reduce the com-

plexity of the process, Approximate Nearest-Neighbor (ANN) search schemes are

commonly used to carry out this pairwise descriptor matching. We thus present

next the sparse-matrix index which is an ANN search scheme used by various

local-descriptor-based image search algorithms.

3.2.1 Local descriptor voting mechanisms

Voting mechanisms offer one common possibility [Lowe 2004, Sivic 2003, Jégou 2008]

of devising an aggregate similarity score applicable for locally-described image sets.

A voting mechanism takes each of the Nq query descriptor and assigns a vote to

the underlying images of each of the K database descriptors that are (approxi-

mately) nearest to each query descriptor. In the end, a total of K ×Nq votes are

3.2. Image searches using local descriptor 41

distributed amongst all database images, and the cumulative votes for each image

yields its score. Various possible flavors of this algorithm include forcing the K

nearest descriptors to be taken from different images, or counting at most one

vote when multiple K-NN descriptors belong to the same database image (note in

this case KNq will be rather a closed upper bound on the number of distributed

votes).

3.2.2 Approximate Nearest-Neighbor (ANN) searches us-

ing the sparse-matrix index

In order to obtain estimates of the nearest neighbors of the query vectors required

by voting mechanisms, many Approximate Nearest-Neighbor (ANN) methods have

been proposed very recently [Sivic 2003, Nister 2006, Philbin 2008, Zepeda 2009,

Jégou 2008, Muja 2009] that rely on a sparse representation of the images’ local

descriptors. The sparse representation allows the search scheme to benefit from

the low complexity of inner-product computations between sparse vectors. These

methods consist of adaptations of the inverted file index from the text-search

community [Zobel 2006]. We refer to the structure employed by these methods as

a sparse-matrix index.

Let us assume that we are dealing with sparse representations x ∈ N of the

local descriptors having only a few non-zero entries γ. The sparse-matrix index

will be the matrix

X = cols({xb}) (3.7)

built by placing the index vectors xb side-by-side as columns. X is used in its row-

major representation consisting of N bins Vr storing each the non-zero coefficients

γ along the r-th row of X and their identifier b:

Vr = {(γ, b)|xb〈r〉 = γ 6= 0,∀b}. (3.8)

Sparse-matrix indices are useful to carry out queries using the inner-product

distance: Given a query vector xq, only the bins Vr with r specifying a non-zero

position of xq need to be processed. The complexity of the query operation xT

q X

can be measured by the total number of multiplications carried out in the process:
∑

r s.t.
xq〈r〉 6=0

|Vr|. (3.9)

Taking the expectation over xq of this expression produces the following mean

complexity: ∑

r

p(xq〈r〉 6= 0)|Vr|. (3.10)

42 Chapter 3. Image Description and Indexing

If we assume that the non-zero positions of xq are equally distributed along all

positions, then the above mean complexity will be minimized when all bins Vr have

the same number of elements.1 If this is the case, then we can drop the constant

term |Vr| = β in (3.9) and instead express the complexity per query vector as the

number of non-zero coefficients in xq given by its l-0 norm |xq|0:
∑

r s.t.
xq〈r〉 6=0

|Vr| = β|xq|0 ∝ |xq|0. (3.11)

3.3 Applications of sparse representations in im-

age description and search

In the current section we will present several recent efforts that use the sparse rep-

resentation tools discussed in Chapter 2 in the context of image description or im-

age indexing. The first work presented is an implementation of the sparse-matrix

index above discussed. The second method presented likewise aims to reduce

query complexity but using a different approach based on iteratively pruning the

possible matches using a power-decay model of the sparse coefficients. These first

two methods deal directly with exploiting the low complexity of computations be-

tween sparse vectors. The third method can instead be seen as an alternative way

of describing and comparing image patches in a transformation-invariant manner.

3.3.1 Semi-local searches using Bag-of-Features (BOF)

The first approach [Sivic 2003] to demonstrate the feasibility of low-complexity

large-scale image searches was that carried out by Sivic and Zisserman. The

approach consisted of representing the local descriptors s of an image or a user-

selected area of the image as a single sparse vector w called a bag-of-features. The

bag-of-features vector is built by first vector quantizing each of the s using a set

of code-vectors (called visual words in this context) learned using K-means (a

variant presented in [Nister 2006] uses a tree-structured K-means approach). The

resulting quantized version of s can be represented using the 1/0-valued sparse

vectors x given by

x〈i〉 =

{
1 if i = argmink |dk − s|
0 otherwise

. (3.12)

1We show this formally in Appendix 7.B.

3.3. Sparse representations in image description and search 43

In the second step, the resulting sparse vectors x are summed and then normalized

by the number NI of SIFT descriptors in the image to obtain

f =
1

NI

NI∑

l=1

xl. (3.13)

Note that f 〈i〉 is just the frequency of occurrence of codeword di in the image.

We can likewise define the vector fDB with i-th entry giving the frequency of

occurrence across all the database of images with descriptors s that produce code-

vector di. The bag-of-features w follows by applying the predetermined weights

log 1
fDB
〈i〉

to corresponding entries of f and then normalizing by the l-1 norm as

follows:

w =
1

|w|1
diag(log

1

fDB
〈1〉

, log
1

fDB
〈2〉

, . . .) f . (3.14)

These weighting scheme is taken directly from the text-search community and is

known as Text Frequency-Inverse Document Frequency (TF-IDF) [Zobel 2006].

The bag-of-features approach has been extended in [Philbin 2008] by instead

computing the vector f in (3.13) using sparse vectors x with K ≥ 1 non-zero

coefficients at positions ik corresponding to the K code-vectors dik , k = 1, . . . , K,

nearest to s (as shown in (3.12) for the case k = 1). The value of the non-zero

coefficients of x is given by

x〈i〉 = β exp(−|s− di|2/σ2), i = 1, . . . , k, (3.15)

where σ2 is a learned, codebook-dependent parameter [Philbin 2008], and β is an

l-1 normalization constant ensuring that |x|1 = 1. The resulting bag-of-features

vector w is again built from (3.13) (using the new x) and (3.14).

3.3.2 Exact and approximate searches

Jost and Vandergheynst [Jost 2008] instead proposed using the MP decomposi-

tion algorithm (cf. Section 2.2.1.1) to obtain a low-complexity search scheme for

compressible signals. MP decompositions build the sparse representation x itera-

tively, selecting a single non-zero coefficient γi in each iteration i. The algorithm

proposed in [Jost 2008] uses an assumed power decay law on the norm of the γi,

|γi| ≤ α · i−βi , (3.16)

to prune the set of possible database matches yb of a given query vector yq under

the absolute inner product-similarity measure. The parameter α and βi in (3.16)

are learned from the database vectors.

44 Chapter 3. Image Description and Indexing

Let us assume that the signal vectors y are compressible and can hence be

represented using a selected-atoms matrix S =
[
d1 . . . dL

]
and a corresponding

vector of MP coefficients Γ =
[
γ1 . . . γL

]T

: y = SΓ. Using this, we express

the similarity measure between a query vector yq and any given database vector

yb as

|〈yq,yb〉| = |ΓT

q ST

q SbΓb|. (3.17)

The right-hand term of the above expression can be expressed as the sum of all

entries ckl of the matrix

C = diag(Γq)S
T

q Sb diag(Γb). (3.18)

as follows

∣
∣〈yq,yb〉

∣
∣ =

∣
∣
∑

k,l

ckl

∣
∣ (3.19)

=
∣
∣

ai
︷ ︸︸ ︷
∑

k,l
k+l≤i

ckl +
∑

k,l
k+l>i

ckl

∣
∣ (3.20)

The pruning scheme proceeds iteratively by considering up to the i-th representa-

tion coefficient γi at each iteration i. As illustrated in (3.20), the coefficients ckl

along the first i anti-diagonals define the current similarity estimate ai. The esti-

mation error (corresponding to the summation over the remaining anti-diagonals

i + 1, i + 2, . . .) is upper-bounded using the power decay law (3.16):

|
∑

k,l
k+l>i

ckl| ≤ |
ei

︷ ︸︸ ︷
∑

k,l
k+l>i

α2 · k−βk l−βl |. (3.21)

Using this result and the triangle inequality produces the following lower and

upper bounds on the similarity (3.20):

|ai| − |ei| ≤ 〈yq,yb〉 ≤ |ai|+ |ei|. (3.22)

The approach proceeds iteratively where, in each iteration i, the contribution of

the i-th anti-diagonal of C is removed from ei (where it appeared in upper-bound

form) and added (in exact form) to the term ai to thus improve the bounds in

(3.22). The new bounds can be used to prune the possible query responses yb at

each iteration i. For example, if the N nearest-neighbors are sought, the minimum

of the highest N lower bounds |ai| − |ei| will define a threshold. All yb having an

3.3. Sparse representations in image description and search 45

upper bound |ai|+|ei| below this threshold can be discarded from the computations

in subsequent iterations i + 1, i + 2, . . . as we are certain that they are not one of

the N nearest neighbors.

For completeness we note that a reduced-complexity version of the above

scheme is also presented in [Jost 2008] that uses a probabilistic model to make

the upper-bound in (3.21) tighter as a function of a user-selected probability that

the bound is satisfied. Thus this latter probabilistic approach is an approximate

search scheme, unlike the former deterministic approach which is exact.

3.3.3 A manifold descriptor and similarity measure

Kokiopoulou and Frossard [Kokiopoulou 2008] proposed using sparse represen-

tations to compute a transformation invariant similarity measure between two

patches, eg., a query patch and a reference patch. Since all possible transforma-

tions of the query patch define a non-linear manifold, they proposed using the

manifold distance as their transformation invariant measure. The manifold dis-

tance is given by the minimum distance between the reference patch and any point

along the transformation manifold of the query patch. Their system can be seen

as a joint implementation of the region normalization and description blocks in

Fig. 3.1 that takes each selected region B and produces a manifold that serves as

the corresponding descriptor.

To produce the manifold model of a selected region, the method relies on a

parametric dictionary consisting of atoms that are seen as continuous 2-D surfaces

dT obtained by applying transformations T to a template function α such as the

2-D Gaussian or one of its derivatives,

dT = f(T , α). (3.23)

A dictionary comprised of sampled versions of these atoms is first used to obtain

a sparse representation of a given region by means of OMP,
∑

i

γi · dTi
. (3.24)

The manifold of all possible deformations N of B is then represented analytically

as

f

(

N ,
∑

i

γi · dTi

)

=
∑

γi · dN◦Ti
, (3.25)

for an adequate transformation combination law ◦. For example, if we only con-

sider isotropic scale changes by a factor σ, then T = {σT}, N = {σN} and

T ◦ N = {σT σN}.

46 Chapter 3. Image Description and Indexing

The authors show that the inner product similarity measure between an im-

age patch and the manifold representation (3.25) of another image patch can be

expressed as the difference of functions that are convex (i.e., a DC function) in

N . Algorithms exist that produce the global minimizer of DC functions, and thus

the authors exploited this fact to produce the global manifold distance.

3.4 Contributions (2 of 2): ANN searches using

sparse representations

In this section we summarize the contributions of this thesis in the field of image

description and indexing, which we present in Chapter 7. See Section 2.5 for a

summary of contributions in the field of sparse representations.

3.4.1 New formulation for sparse representations

We propose a novel sparse representation scheme for image description and in-

dexing. Referring to the block diagram in Fig. 3.1, several image search meth-

ods [Sivic 2003, Nister 2006, Philbin 2008, Zepeda 2009, Jégou 2008] rely on a

sparse representation x of the local descriptors s. One problem with this ap-

proach pertains to the stability of the support of x as a function of normalization

errors at the output of the geometrical normalization block. Sparse representa-

tion schemes such as vector quantization or the MPF algorithms in Section 2.2.1

choose the support of x in order to maximize the fidelity of the resulting repre-

sentation (i.e., to minimize the distortion |y−Dx|). This is the correct approach

to follow in the context of image compression, but not in the context of approx-

imate nearest-neighbor searches. Thus the first contribution is to propose a new

formulation for the selection of the sparse support of x. The formulation aims to

reduce the distance approximation error under a constraint on the l-0 norm of x

which, as we saw in Section 3.2.2, is representative of search complexity.

3.4.2 Data conditioning for sparse-matrix indices

Since search complexity is minimized for a uniform distribution of the sparse

support of x (cf. Section 3.2.2), a second contribution is a new conditioning trans-

form that enforces this property for our new sparse representation scheme. The

new transform is used in a pre-processing step applied to the data vectors to be

conditioned and is aimed at (i) more uniformly distributing them on the unit

sphere while (ii) retaining their relative angular positions . We show experimen-

tally that our new conditioning transform indeed succeeds in carrying out this

3.4. Contributions (2 of 2) 47

task. The evaluation of the uniformity of the conditioned data is complicated

in high-dimensional spaces, and thus we proceed by comparing rather the dis-

tribution of the projections of the data unto various lines. To do so, we also

derive an exact analytical expression for the distribution of projections from data

uniformly-distributed on the unit hyper-sphere.

As we show in our evaluations, the combination of our new sparse represen-

tation scheme along with the data conditioning transform results in a significant

improvement in distance approximation for a fixed complexity when compared to

searches based on traditional sparse representation schemes.

Part II

Contributions

Chapter 4

The Iteration-Tuned Dictionary

4.1 Introduction

In this chapter we introduce a novel sparse representation approach that incor-

porates the iterative nature of greedy pursuit algorithms in a new overcomplete

dictionary framework called an Iteration Tuned Dictionary (ITD). ITDs consist

of a layered structure with each layer composed of a different dictionary matrix.

ITD decompositions proceed by using the dictionary from the i-th layer in the

i-th pursuit iteration. We propose an ITD training scheme that relies on single-

atom sparse representations which can be solved exactly with any approximate

algorithm such as Matching Pursuit (unlike higher sparsity representations used

by training schemes found in the literature).

We compare the proposed ITD to the K-SVD dictionary [Aharon 2006b] (cf.

Section 2.3.3) and to the Sparse Dictionary (SD) [Rubinstein 2010a] (cf. Sec-

tion 2.3.4.1) which is designed to reduce the decomposition complexity. We first

consider a concatenated ITD (cITD) setup where the trained layers are concate-

nated to form a single dictionary. The cITD scheme is shown experimentally to

provide a better sparsity / approximation error tradeoff than the reference dic-

tionaries. In a second experiment, we compute the experimental rate / distortion

bound and show that both cITD and ITD can likewise offer improved rate / distor-

tion tradeoffs. ITD further achieves this with a complexity that is much lower than

that of the reference dictionaries, and this reduced complexity makes it possible

to tap into the large rate / distortion gains achievable with high overcompleteness

factors.

For convenience, we have define some constants used throughout this chapter

in Table 4.1.

4.2 Background

We will begin the present chapter by providing a brief review of sparse representa-

tions, matching pursuit, and matching pursuit complexity. The intent is to make

the chapter self-contained and keep references to the more relevant equations at

hand.

52 Chapter 4. Iteration-Tuned Dictionaries

Symbol Definition

C Number of ITD layers.

N Total number of atoms across all ITD layers (or in a ref-

erence, fixed dictionary such as K-SVD).

n Number of atoms in an ITD layer (with N = C · n) .

dl An atom from the l-th layer that is the l-th chosen atom

from a sequence d1,d2,d3,

Table 4.1: List of notational conventions.

4.2.1 Sparse representations using overcomplete dictionar-

ies

Let D ∈ Rd×N (with N > d) be the full-rank dictionary matrix formed by N

columns da, a = 1, . . . , N , called the atoms (we assume all atoms are unit norm).

A sparse representation x of a signal vector y ∈ Rd is obtained under joint fidelity

and sparsity criteria:

argmin
x∈RN

|y −Dx| s.t. |x|0 ≤ L, (4.1)

where the l-0 norm | · |0 counts the number of non-zero coefficients in a vector.

Without loss of generality, we assume that D is full-rank and hence the mini-

mum of (4.1) will occur at the boundary |x|0 = L (assuming L ≤ d) with probabil-

ity one. Hence (4.1) consists of selecting the L atoms d1, . . . ,dL ∈ D that produce

the best approximation of y. We can thus re-write (4.1) in the following equivalent

form that is more similar to expressions we cover in subsequent sections:

argmin
d1,...,dL∈D;

Γ∈R
L

∣
∣
∣y −

[
d1 . . . dL

]
Γ
∣
∣
∣. (4.2)

To make explicit the relationship between (4.2) and (4.1), we let al ∈ {1, . . . , N}
denote the index of the l-th atom chosen in (4.2), i.e., dl = dal

. The solution x

of (4.1) can hence be obtained from the solution of the above problem as follows

(we use v[l] to denote the l-th coefficient of a vector v):

x[k] =

{

Γ[l] if k = al,

0 otherwise.
(4.3)

4.2. Background 53

4.2.2 Matching pursuit

Many algorithms exist in the literature that produce approximations of the NP-

hard problem in (4.1) (see Section 2.2). In our work we will use the Matching

Pursuit (MP) algorithm [Mallat 1993]. MP proceeds by selecting one atom /

coefficient pair at each iteration i. Let ri−1 denote the residue at the output of the

previous iteration (with r0 = y) and (·)T denote the matrix or vector transpose.

The MP atom and coefficient selection rules are given by

di = argmax
d∈D

|dT · ri−1|, (4.4a)

γi = (di)T · ri−1, (4.4b)

with ri = ri−1−γi ·di. The decomposition is carried out until L atom / coefficient

pairs are selected, where the value of L is either defined beforehand or selected

along the iterations to satisfy an RMSE threshold ε as follows:

L = min
i∈{1,2,...}

i s.t. |ri|2 ≤ d · ε2. (4.5)

We can group the coefficients produced up to the i-th iteration to form the

i-th coefficients vector

Γi =
[
γ1 . . . γi

]T

(4.6)

and likewise group the selected atoms to form the selected-atoms matrix

Si =
[
d1 . . . di

]
. (4.7)

With this, the i-th approximation can be written as SiΓi and the i-th residue

vector can be written as

ri = y − SiΓi. (4.8)

4.2.3 Complexity

In this paper we will develop structured dictionaries that result in low complexity

decompositions, and thus we will briefly review MP complexity. Note that each

MP iteration in (4.4) requires the computation of the dictionary-vector product

DT ri−1, a total of N inner-products. Hence N · L gives an exact complexity

measure (expressed in terms of inner-products) of the MP decomposition process.

However, one can trade storage space for reduced decomposition complexity by

pre-computing and storing the dictionary’s Gram matrix G = DT D. The result

is that only the first iteration will require the computation of a dictionary-vector

product [Cotter 1999]:

DT ri−1 = DT
(
y − Si−1Γi−1

)
, (4.9)

= DT y −
(
DT Si−1

)
Γi−1 (4.10)

54 Chapter 4. Iteration-Tuned Dictionaries

where we note that DT Si−1 is a sub-matrix of G and does not need to be com-

puted. In this scenario, N inner-products is a lower bound on the complexity of

all L iterations.

Rubinstein et al. [Rubinstein 2010a] proposed a Sparse Dictionary (SD) that

reduces the cost of the dictionary-vector product operation. Their dictionary is

constrained to have the form D = ΦA, where Φ ∈ Rd×N is the overcomplete DCT

dictionary and A ∈ RN×N is a learned sparse matrix having g non-zero coefficients

per column. The dictionary-vector product then has the form AT (ΦT y). Since

the DCT dictionary is separable, the term in parenthesis can be computed using

exactly M(2b− 1)b + M(2b− 1)M operations, where M =
√

N and b =
√

d; left

multiplication by AT will require at least (2g−1)N . Since a single inner-product

requires 2d− 1 operations, we can express the SD dictionary-vector product com-

plexity in terms of inner-products as follows:

(M(2b− 1)b + M(2b− 1)M + (2g − 1)N) /(2d− 1). (4.11)

4.3 The Iteration-Tuned Dictionary

In the current section we will begin by introducing the proposed Iteration-Tuned

Dictionary (ITD) structure establishing, in particular, the related notation. We

will then discuss the ITD signal decomposition strategy and show that it corre-

sponds to a constrained case of traditional, fixed-dictionary decomposition schemes.

As is the case with the fixed-dictionary sparse representation problem in (4.2) ,

the ITD decomposition problem is NP-hard, and hence we will rely on match-

ing pursuit to decompose signals using ITD. The ITD constraint that each atom

comes from a different component dictionary implies sub-optimality relative to the

unconstrained, fixed-dictionary approach. Yet the ITD approach offers several in-

teresting advantages that we discuss at the end of the section.

4.3.1 ITD structure

The main idea of our proposed algorithm is that, when carrying out an iterative

sparse decomposition of a signal y, the dictionary matrix used is replaced by a

different dictionary matrix at each iteration of a matching pursuit decomposition.

We refer to the set of all dictionary matrices available to the decomposition algo-

rithm as an Iteration-Tuned Dictionary (ITD). Formally, an ITD consists of set

of C dictionary matrices {Dk}Kk=1 with each Dk ∈ Rd×n. ITDs can be seen as

layered structures, with the k-th layer containing the k-th component dictionary

Dk. Each ITD component dictionary need not be overcomplete (i.e., n can be

less than d). Yet the total number of atoms N = C · n in the ITD structure is

4.3. The Iteration-Tuned Dictionary 55

generally greater than d. The parameters C and n are design variables that need

to be chosen experimentally.

4.3.2 Signal decomposition using ITDs

The problem of obtaining a sparse decomposition of a given signal using an ITD

setup can be formulated optimally as follows:

argmin
dk∈Dk,k=1,...,L;

Γ∈R
L

∣
∣
∣y −

[
d1 . . . dL

]
Γ
∣
∣
∣. (4.12)

This expression can be seen to correspond to a constrained version of the standard

fixed-dictionary formulation in (4.2), the constraint being that at most one atom

be chosen from each layer and that the layers be used successively from the top.

As is the case for the fixed-dictionary formulation in (4.2), the ITD sparse

decomposition problem in (4.12) is difficult to solve and generally requires a com-

binatorial approach. We thus employ a straight forward adaptation of the MP

algorithm wherein the i-th chosen atom is constrained to come from the i-th ITD

layer, as written below:

di = argmax
d∈Di

∣
∣dT · ri−1

∣
∣ , (4.13a)

γi = (di)T · ri−1. (4.13b)

Two strategies can be used to deal with iterations after the last layer C: The first

is to avoid them altogether by forcing the maximum sparsity of representations

to be C. The second is to propagate the last layer in subsequent iterations, i.e.,

∀i > C,Di = DC .

4.3.3 Advantages of the ITD approach

The ITD atom selection constraint that results in sub-optimal sparse decomposi-

tion is nonetheless also responsible for three important advantages that we now

discuss.

The first advantage is that the ITD approach using MP decompositions can

handle very large dictionary over-completeness factors (i.e., N ≫ d) with low

decomposition complexity. As discussed in Section 4.2.3, for fixed-dictionaries, a

large over-completeness implies either a large complexity penalty when computing

the dictionary-matrix product DT · ri−1 in each iteration i, or a large storage

penalty if the Gram matrix G = DT D ∈ RN×N is pre-computed. On the other

hand, an ITD with N = C · n atoms (n per layer), will require, for all sparsities

56 Chapter 4. Iteration-Tuned Dictionaries

L, only L · n inner-products. This is just a fraction of a full dictionary-vector

product, which is the least one can hope for in the fixed-dictionary case. This

reduced complexity further does not rely on the Gram matrix and is hence attained

without the extra storage penalty.

A second advantage of ITDs concerns the sparse decomposition algorithm used

in the dictionary training process. We discuss ITD training in the next section

and for now only point out that the training procedure relies on single-atom sparse

representations. Note that all training methods found in the literature rely on rep-

resentations using higher sparsity values, and in these situations, and particularly

for large (high-coherence) dictionaries, the approximate schemes used (eg., OMP

or basis pursuit) are not guaranteed to recover the optimal sparse representa-

tion [Tropp 2004]. A single-atom sparse representation, on the other hand, will

be recovered exactly with MP regardless of the dictionary size. Hence one can-

not conclude that using a practical, approximate sparse decomposition method

to train a fixed-dictionary globally should perform better than a fixed dictionary

built by concatenating ITD layers trained each using the optimal (single-atom)

decomposition. We explore this concatenated ITD (cITD) approach in the results

section and show that indeed it can outperform fixed-dictionary training methods.

Yet a third important advantage of the ITD scheme concerns the image com-

pression application. In this scenario, it is not the sparsity of the representation

that is important, but rather the number of bits required to represent, amongst

other things, the indices of the selected atoms. We can expect ITD to offer an

advantage in this situation since each ITD atom is selected from only n atoms,

whereas each fixed-dictionary atom is chosen from N = C · n possibilities. We

will see in the results section that this advantage can be sufficient to overcome

the distortion penalty resulting from the sub-optimality of the constrained atom

selection of ITD over a wide range of coding bit-rates used in general purpose

applications.

4.4 Construction of Iteration Tuned Dictionar-

ies

In this section we develop an ITD training algorithm. We begin by formulating

the ITD training problem optimally. To simplify the problem, we then propose a

top-down training scheme in which the ITD layers are trained on the residues of

the training vectors obtained at the output of the previous layer. We also propose

an iterative variant of the top-down approach. The algorithm used to update

each layer is presented next. Both the iterative top-down algorithm and the layer

update algorithm are shown to converge. We present an illustration of the trained

4.4. Construction of Iteration Tuned Dictionaries 57

ITD layers at the end of the section.

Throughout our discussion we will assume that some representative training

set {yt}Tt=1 is available. When necessary, we will thus use subscript t to indicate

quantities related to the t-th training vector. For example, training vector yt will

have a selected atoms matrix, i-th selected atom, i-th coefficients vector, and i-th

coefficient denoted by Si
t,d

i
t,Γ

i
t, and γi,t, respectively.

4.4.1 Problem formulation

The construction of the set of ITD candidate dictionaries can be expressed as the

minimization of the cumulative representation error of all training vectors. Using

the optimal ITD sparse decomposition formulation in (4.12), we can express the

optimal ITD {Dk}Ck=1 as follows:

argmin
Dk∈N ,

k=1,...,C

T∑

t=1

min
dk∈Dk,

k=1,...,Lt;
Γ∈R

Lt

∣
∣
∣yt −

[
d1 . . . dLt

]
Γ
∣
∣
∣

2

, (4.14)

where the optimization domain of each layer dictionary D1, . . . ,DC is the subset

N = {D ∈ Rd×N : ∀d ∈ D,dT d = 1} (4.15)

consisting of matrices in Rd×N with unit-norm columns. This makes the solution

unambiguous as otherwise, scaling the a-th atom by β and Γ[a] by 1/β produces

the same cost. In the above problem, the sparsity Lt of each training vector yt is

assumed fixed beforehand. A different approach consists of modifying the inner

minimization to instead optimize simultaneously over Lt with an added sparsity

penalty term of the form λ · Lt. Regardless of the method used to select Lt, the

exact ITD sparse representation problem can not be solved in general, and thus

we need to consider alternative approaches.

4.4.1.1 Top-down training

To simplify the ITD construction problem, we instead consider building the com-

ponent dictionaries one layer at a time using a top-down approach. When building

the k-th dictionary, we thus assume that all previous dictionaries D1, . . . ,Dk−1 are

readily available. Letting

Tk = {t = 1, . . . , T : Lt ≥ k} (4.16)

58 Chapter 4. Iteration-Tuned Dictionaries

denote the set of indices of those training vectors yt that use atoms from the k-th

layer, the resulting formulation for the construction of the k-th dictionary can be

expressed as

Dk = argmin
D∈N

∑

t∈Tk

min
d∈D;Γ∈Rk

∣
∣
∣yt −

[
Sk−1

t | d
]
Γ
∣
∣
∣

2

. (4.17)

When using the above top-down training approach, the sparsities Lt of each train-

ing vector yt can be set during the training process using the approach in (4.5).

Alternatively, Lt can be set to the number of layers C for all training vectors,

which is equivalent to setting ε = 0 in (4.5). Unlike fixed dictionary training

schemes, the selection of the sparsities Lt is not too critical when training ITDs,

as ITD decompositions will use a single atom from each layer. Hence our approach

is to set ∀t, Lt = C.

4.4.1.2 Iterative top-down training

The top-down training procedure described above neglects the joint nature of the

dictionary construction specified by the optimal formulation in (4.14). One way to

address this issue is to update previously constructed dictionaries using an iterative

top-down approach. Thus the k-th layer can be updated after construction of

layers k + 1, k + 2, . . . , C. Letting S̄
k+1
t contain the atoms selected for yt from

layers k + 1, . . . , Lt such that SLt

t =
[

Sk
t | S̄

k+1
t

]
, this can be expressed as

follows:

argmin
Dk∈N

∑

t∈Tk

min
d∈Dk;Γ∈RLt

∣
∣
∣yt −

[

Sk−1
t | d | S̄

k+1
t

]

Γ
∣
∣
∣

2

. (4.18)

When traversing the first iteration of the iterative top-down construction, one

can assume that all matrices S̄
k+1
t in (4.18) are initialized to the zero matrix,

and likewise assume that ∀l > k, γl,t = 0. This is equivalent to running the non-

iterative top-down construction scheme in (4.17). One can also select the sparsities

Lt of the training vectors during this first top-down iteration using (4.5), keeping

all Lt fixed in subsequent top-down iterations.

We summarize the resulting ITD training algorithm consisting of J top-down

iterations in Fig. 4.1.

4.4.2 Layer update process

The solution of the layer update expression in (4.18) consists of two minimizations

and hence each can be solved alternately to define an iterative training procedure.

When solving one minimization, the optimization variables of the other are fixed

4.4. Construction of Iteration Tuned Dictionaries 59

1: Input: Training vectors {yt}Tt=1

2: Output: ITD {Dk}Ck=1.

3: Initialization:

4: for t = 1, . . . , T do

5: Lt ← C

6: SLt

t ← 0 ∈ Rd×Lt

7: ΓLt

t ← 0 ∈ RLt

8: end for

9: Algorithm:

10: for j = 1, . . . , J do

11: for k = 1, . . . , C do

12: if j == 1 then

13:

(
Dk, {dk

t ,Γ
Lt

t }t∈Tk

)
←

LayerUpdate
(
{yt,S

Lt

t ,ΓLt

t }t∈Tk

)

14: else

15:

(
Dk, {dk

t ,Γ
Lt

t }t∈Tk

)
←

LayerUpdate
(
{yt,S

Lt

t ,ΓLt

t }t∈Tk
,Dk

)

16: end if

17: for t ∈ Tk do

18: SLt

t [∗, k]← dk
t

19: if (RMSE(yt,S
Lt

t ΓLt

t) ≤ ε)&(j == 1)&(k == 1) then

20: Lt ← k

21: SLt

t ← SLt

t [∗, 1 : Lt]

22: end if

23: end for

24: end for

25: end for

Figure 4.1: The ITD training algorithm using J top-down iterations. The LayerUp-

date function in line 13 and line 15 solves (4.18) and returns the new dictionary Dk as well

as the atom dk
t ∈ Dk selected for each yt and the corresponding coefficients vector ΓLt

t .

The operation in line 21 truncates all columns of SLt
t after column Lt. The operation in line

19 computes the root mean squared error between the two input vectors.

to the most recent values. Hence we now address first the inner minimization and

next the outer minimization of (4.18).

The solution of the inner minimization of (4.18) is straightforward if one notes

60 Chapter 4. Iteration-Tuned Dictionaries

that the optimal Γ can be expressed in terms of the optimal d as follows:

Γ =
[

Sk−1
t | d | S̄

k+1
t

]+

yt, (4.19)

where (·)+ denotes the pseudo-inverse. Hence the inner minimization of (4.18)

in fact depends on the single variable d and thus it can be solved by trying all

possible d ∈ Dk, one at a time:

min
d∈Dk

∣
∣
∣yt −

[

Sk−1
t | d | S̄

k+1
t

]

·
[

Sk−1
t | d | S̄

k+1
t

]+

yt

∣
∣
∣. (4.20)

This problem has the same form as the atom selection method of the greedy sparse

decomposition algorithm called Optimized OMP (OOMP). The inconvenience of

that approach pertains to the complexity of the pseudo-inverse computation, and

indeed one can consider instead a simpler, MP-based solution which consists of

carrying out the inner minimization of (4.18) only over the k-th coefficient γk

(i.e., the k-th element of Γ) while using, for other γl, l 6= k, the values previously

computed when building other layers Dl (recall that, during the first top-down

iteration, we assume that ∀l > k, γl = 0). The optimal γk can again be expressed

in terms of the optimal d as follows: γk = yT

t ·d, and hence the inner minimization

can again be solved by trying all d ∈ Dk one at a time:

argmin
d∈Dk

∣
∣
∣yt −

[

Sk−1
t | S̄

k+1
t

]

·
[

(Γk−1
t)T | (Γ̄k+1

t)T
]T − (yT

t · d)d
∣
∣
∣, (4.21)

where Γ̄
k+1
t contains the coefficients previously selected at layers k + 1, . . . , Lt.

Since we will use MP decompositions when using ITDs (to enjoy reduced de-

composition complexity), we will likewise use this simpler, MP-based approach in

(4.21) in the training procedure.

To now devise a solution to the outer minimization of (4.18) we first note that,

after solving the inner minimization, the squared term inside expression (4.18) can

be written as follows:

∣
∣
∣yt −

[

Sk−1
t | S̄k+1

t

][

(Γk−1
t)T | (Γ̄k+1

t)T
]T − γk,t · dk

t

∣
∣
∣

2

= |qk
t − γk,t · dk

t |2, (4.22)

where Γk−1
t / Γ̄

k+1
t , γk,t, and dk

t are the coefficients vectors, the k-th coefficient,

and the atom selected for yt. Note that, in the first top-down iteration, qk
t will

equal the k-th approximation residue rk. For latter iterations, qk
t can be though

of as the residue resulting from approximations using atoms from layers 1, . . . , k−
1, k + 1, . . . , Lt.

4.4. Construction of Iteration Tuned Dictionaries 61

If we let at ∈ {1, . . . , N} denote the index of the chosen atom dk
t ∈ Dk, then

each vector qk
t in (4.22) can be thought of as belonging to class number at out of

N possible classes, one per each of N atoms dk1, . . . ,dkN ∈ Dk of the k-th layer.

Let f(yt) denote the atom selection method (either of (4.20) or (4.21)). The class

corresponding to the a-th atom will be comprised of those vectors with indices

Qka = {t ∈ Tk : f(yt) = dka}. (4.23)

This classification process defines the first step of a two-step iterative solution to

the outer minimization of (4.18). To obtain the second step of each iteration,

we use the partition defined by the classes Qka, a = 1, . . . , N , to write the outer

optimization of (4.18) as follows:

Dk = argmin
(da)N

a=1∈N

N∑

a=1

∣
∣(qk

t)t∈Qka
− da · (γk,t)t∈Qka

∣
∣
2

F
, (4.24)

where (qk
t)t∈Qka

(respectively, (γk,t)t∈Qka
) is the matrix with columns qk

t (row-

vector with coefficients γk,t) such that t ∈ Qka. Since the cost of the above

optimization consists of a sum of squares and each column da intervenes in a

single summation term, the problem can be split into N optimizations, one per

atom dka, a = 1, . . . , N , each having the form

dka = argmin
d∈Rd,dT d=1

min
ω∈R

1×|Qka|

N∑

a=1

∣
∣(qk

t)t∈Qka
− d · ω

∣
∣
2

F
. (4.25)

Note that, unlike what is specified in (4.24), we have further considered simul-

taneously updating the coefficients (γk,t)t∈Qka
related to dka (by means of the

optimization variable ω). The reason we do this is that, since the term d · ω is a

rank-1 approximation of (qk
t)t∈Qka

, the solution dka in the joint optimization is just

the first singular vector of (qk
t)t∈Qka

[Klema 1980]. The coefficients obtained as a

consequence of this joint optimization are further exploited in future iterations of

the top-down optimization procedure.

We summarize the layer update algorithm in Fig. 4.2.

The layer update procedure above described in fact corresponds to the K-SVD

algorithm [Aharon 2006b] for the case when the sparse representations used in the

K-SVD training process are set to be unit l-0 norm and the input training set is

{qk
t }t∈Tk

. Using unit l-0 norm decompositions in the training process has the im-

portant advantage that the exact optimal atom can be selected every time. Every

dictionary training scheme available in the literature (eg., [Aharon 2006b, Rubin-

stein 2010a, Mairal 2010a]) employs sparse representations with sparsity greater

than one, and these can only be approximated (eg., using one of the matching

62 Chapter 4. Iteration-Tuned Dictionaries

1: Input: {yt,S
Lt

t ,ΓLt

t }t∈Tk
, Dk (optional)

2: Output: Dk, {dk
t ,Γ

Lt

t }t∈Tk
,

3: Initialization:

4: if input Dk not provided then

5: I ← RandSelect(N, T)

6: Dk ← (yt)t∈I
7: end if

8: Algorithm:

9: repeat

10: for t ∈ Tk do

11: dk
t ,q

k
t ,Γ

Lt

t ← Decomp(yt,S
Lt

t ,ΓLt

t)

12: a = Index(dk
t)

13: Qka ← Qka

⋃
t

14: end for

15: for a = 1 to N do

16: (u, σ,v)← SVD1
(
(qk

t)t∈Qka

)

17: dka ← u (where Dk = (dka)
N
a=1)

18: (γk,t)t∈Qka
← σ · vT

19: end for

20: until convergence of Dk

Figure 4.2: The layer update algorithm. The function RandSelect(N, T) selects N

integers in [1, N] without repetition. Function Decomp implements one of (4.20) or (4.21)

and returns the selected atom dk
t , the coefficients ΓLt

t , and the vector qk
t appearing in (4.22)

computed using the new coefficients ΓLt
t . Function Index in line 12 returns the atom index

a ∈ {1, . . . , n} of the atom dk
t such that, for Dk = (dkα)N

α=1, dk
t = dka. Function SVD1

in line 16 produces the first left-singular vector, first singular value and first right-singular

vector, where we assume ordering according to decreasing magnitude of singular value.

pursuit methods or basis pursuit). Optimality guarantees for approximate algo-

rithms only exist for low sparsity values and when the dictionary has very low

coherence [Tropp 2004], meaning that the over-completeness factor needs to be

small.

4.4.3 Convergence

The ITD training procedure in Fig. 4.1 and the layer update procedure in Fig. 4.2

are both guaranteed to reduce the optimization cost given by the approximation

4.4. Construction of Iteration Tuned Dictionaries 63

error of the training vectors

T∑

t=1

|yt − SLt

t ΓLt

t |2. (4.26)

Hence both procedures are guaranteed to converge. Regarding the ITD training

procedure in Fig. 4.1, the approximation error of the training vectors will only be

affected by the layer update procedure and hence it will converge if the layer update

procedure ensures a reduction in the cumulative error of the training vectors. This

is indeed the case, as can be seen by noting that the layer update procedure itself

consists of two steps that each are guaranteed to reduce the representation error.

The first step produces the classes in (4.23). It depends on single-atom sparse

representations, and these are always solved exactly and hence a reduction in

the approximation error of each vector yt is guaranteed. In the second step,

all atoms of the dictionary are updated following (4.25). This update replaces

the rank-1 approximation of the class matrices (qk
t)t∈Qka

with the optimal rank-1

approximation using the SVD. This update ensures a reduction in the cumulative

approximation error of each class and hence likewise ensures the convergence of

the procedure.

The convergence of the iterative top-down training procedure is illustrated

for experimental data (described in the results section) in Fig. 4.3 for an ITD

having C = 16 layers and n = 16 atoms per layer (i.e., N = 256), trained using

J = 3 iterations of the top-down procedure. Most of the reduction of the cost

is achieved in the first iteration of the top-down procedure, and this is expected

since the layers are built for the first time in the first top-down iteration. Note,

however, that running the top-down training for two more iterations succeeds in

reducing the cost by more than the reduction achieved by the last two layers in

the first iteration (as emphasized by the three horizontal lines). The last two

layers (and any other layer), however, require storage space and exploiting them

incurs decomposition complexity. In general, using iterative top-down training as

opposed to the non-iterative variant will bring noticeable benefits only for some

ITD configurations.

4.4.4 Example of ITD structure

In Fig. 4.4 we illustrate ITD dictionaries of layers i = 1, 3, 5, . . . , 15 trained on

a large set of 8 × 8 image patches and using J = 1 iterations of the top-down

training algorithm in Fig. 4.1. Note how the spatial frequencies comprising the

dictionaries increase along with the layer index i. The spatial correlation of atom

pixels is also seen to decrease with increasing layer index (i.e., the atoms become

less structured and more like noise).

64 Chapter 4. Iteration-Tuned Dictionaries

(1,1) (2,1) (3,1)

6

8

10

12

14

−δ

+δ

(Top-down iteration index, Layer index)

R
M

S
E

fo
ll
ow

in
g

la
y
er

u
p
d
a
te

Figure 4.3: Minimization cost in (4.26) (expressed in RMSE) throughout J = 3

consecutive iterations of the top-down approach in Fig. 4.1 for an ITD having C = 16 layers

and n = 16 atoms per layer. The top-down iteration index and layer index in the abscissa

correspond, respectively, to indices j and k in Fig. 4.1. Two horizontal grid lines are drawn at

±δ from a center line crossing the RMSE at indices (1, 16), where δ is the RMSE difference

from this point to that at indices (3, 16).

4.5 Results

In this section we evaluate our proposed ITD dictionary and the related con-

catenated ITD (cITD) fixed-dictionary by comparing them against the K-SVD

dictionary of Aharon et al. [Aharon 2006b] and the Sparse Dictionary (SD) of

Rubinstein et al. [Rubinstein 2010a]. We carry out two experiments in our evalu-

ation: In the first experiment we evaluate the PSNR of the sparse approximations

obtained with the various dictionaries as a function of sparsity. Sparser approx-

imations of signal vectors are likely to result in better performance in various

real-life applications [Guleryuz 2006, Mallat 2008]. In the second experiment we

thus compute experimentally the rate-distortion bound achievable with the vari-

ous dictionaries. We will see that cITD outperforms the reference dictionaries for

all rates and can even perform comparably with only half the number of atoms.

ITD can offer small gains in rate-distortion trade-off, but these come at an impor-

tant complexity advantage. This complexity advantage makes it possible to tap

into the rate-distortion gains offered by large dictionary over-completeness factors

without incurring the related complexity penalty.

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Layer 8

Layer 9

Layer 10

Layer 11

Layer 12

Layer 13

Layer 14

Layer 15

Layer 16

Figure 4.4: An example of ITD layers with C = 16, n = 64 trained on 8 × 8 image

blocks using non-iterative top-down training.

66 Chapter 4. Iteration-Tuned Dictionaries

Figure 4.5: Sample images from the FERET dataset.

4.5.1 Experimental setup

4.5.1.1 Dataset

Throughout our experiments we will use image blocks of size 8× 8 to form signal

vectors y. The blocks are taken (without overlap) from frontal pose face images

of 545 different subjects taken from the FERET dataset [Phillips 2000]: the first

445 images comprise the training set and the remaining 100 images comprise the

test set. The size of each image is 768 × 512, for a total of 2.7 × 106 possible

training blocks and 6.1× 105 possible test blocks. Since all images contain a large

background, we remove from each set the 30% least energetic (following mean

removal) blocks and randomly select 9.11 × 105 training vectors and 2.05 × 105

testing vectors. The FERET dataset is similar to the one used in [Aharon 2006b]

(see the sample thumbnail images in Fig. 4.5) and has the advantage of consisting

of a large set of uncompressed images.

4.5.1.2 ITD / cITD

In order to keep the comparison fair, we will use ITD structures having C layers

each of n atoms so that the total number of atoms N = C · n in the ITD struc-

ture equals the number of atoms N of the reference dictionaries. Decompositions

using the ITD scheme will be carried out using MP, where the atom selected in

the i-th iteration is constrained to be one of the n atoms of the i-th layer. For

simplicity, we do not propagate the last layer DC and force all sparsities (for ITD

decompositions) to be at most C.

We will also consider a concatenated ITD (cITD) scheme wherein the i-th

chosen atom is selected from all N = C · n ITD atoms. The training procedure

used to obtain cITD is the same as that described in Fig. 4.1. To keep the training

complexity low, we use the MP-based layer update process in (4.21). Unless stated

otherwise, we will run J = 1 top-down iterations (cf. Fig. 4.2), and we always use

4.5. Results 67

ITD cITD

N C n C n

256 16 16 16 16

512 16 32 16 32

1024 16 64 16 64

2048 16 128 8 256

4096 16 256 8 512

Table 4.2: Number of layers C and atoms per layer n for a given cumulative number

of atoms N = C · n.

ε = 0 (i.e., ∀t, Lt = C). We specify the number of layers C and atoms per layer

n used for a given N = C · n for both ITD and cITD in Table 4.2; these values

where chosen experimentally.

4.5.1.3 Matching pursuits

While we use MP to decompose signals with ITD, we will use OMP to decompose

signals using the all reference fixed-dictionaries. This will favor the reference dic-

tionaries since OMP updates all coefficients at each iteration i using Γi = (Si)+ y,

thus producing sparser representations. Since OMP uses the same atom-selection

rule as MP, its complexity can be lower-bounded by the N inner-product compu-

tations of the atom selection step (see the background discussion in Section 4.2)

if we neglect the extra complexity of the pseudo-inverse computation.

Note that we also use OMP to obtain cITD dictionary decompositions. In

this case the decomposition complexity at a given sparsity will be equal to that of

K-SVD using the same number of atoms.

4.5.1.4 Training of reference dictionaries

We train K-SVD dictionaries using a modified version of the software made pub-

licly available by the authors [Aharon 2006a]. K-SVD is not guaranteed to con-

verge when using practical solutions (i.e., OMP) to the sparse decomposition

step of the K-SVD training procedure. This is problematic in particular when

training large (high coherence) K-SVD dictionaries as we do here. Hence, as

suggested in [Aharon 2006b], at each K-SVD training iteration, we update the

sparse decompositions of a given training vector only when the update reduces

the representation error.

68 Chapter 4. Iteration-Tuned Dictionaries

2 4 6 8 10 12 14 16 18

30

35

40

Mean l-0 norm

P
S
N

R
(d

B
)

OMP-2

OMP-4

OMP-6

OMP-8

Figure 4.6: Performance of K-SVD (N=512) in terms of PSNR versus sparsity when

using various OMP training sparsity thresholds.

As in [Aharon 2006b, Bryt 2008], we use a fixed-sparsity OMP decomposition to

train K-SVD dictionaries. To make the comparisons fair, we will consider multiple

sparsity values (L = 2, 4, 6, 8) for each dictionary size N . The results plotted for

K-SVD in both experiments corresponds to the maximum PSNR obtained using

any of the 4 dictionaries available for that N value. See Fig. 4.6 for an example

of the performance of the four resulting K-SVD dictionaries (in terms of PSNR

versus sparsity) when using N = 512 atoms.

The SD scheme is likewise trained using the software made publicly available

by the authors. We do not modify the SD scheme to attempt to ensure convergence

as this issue is not covered in [Rubinstein 2010a]. Note that SD employs a sparse

decomposition procedure in two different steps of each training iteration, and

hence the convergence issues are more difficult to address. When training SD, we

consider 24 different dictionaries per value of N = 256, 1024, 4096 corresponding to

training vector sparsities from L = 2, 4, 6, 8, 10 and dictionary atom sparsities from

g = 8, 12, 15, 16, 17, 24 (cf. Section 4.2.3). Again we plot, in both experiments, the

maximum PSNR from that produced by any of the 24 dictionaries available for

that N .

Both K-SVD and SD training procedures are run during 70 iterations.

4.5.2 Experiment 1: Sparsity vs. PSNR

In the first experiment we evaluate how well ITD and cITD can approximate the

test set signal vectors by plotting the average PSNR versus average sparsity, when

4.5. Results 69

varying an RMSE threshold used as the OMP stopping criterion.

The results for ITD are plotted against those for K-SVD in Fig. 4.7. Generally

the ITD setup under-performs K-SVD by a wide margin when both schemes have

the same total number of atoms N . This is expected given that the ITD scheme

is structured and forces the i-th selected atom to come from the subset of n atoms

that make up the i-th layer. In other words, the effective number of atoms made

available by the ITD schemes is somewhere between the number of atoms per layer

n and the total number of atoms N . In the second experiment (on rate-distortion

tradeoffs achievable with a given dictionary) we will be more concerned by phys-

ical quantities (complexity and rate) that better reflect this effective number of

atoms. We will see then that the ITD structure offers important advantages in

this application.

The results for the cITD scheme, illustrated in Fig. 4.9 tell a different story.

By removing the structured atom selection constraint, the cITD scheme uniformly

outperforms K-SVD for all N . This result seems unexpected given the fact that,

unlike the ITD training formulation, the K-SVD training formulation does not

constrain the atom selection process. Yet, as discussed in Section 4.3.3, practical

sparse decomposition algorithms can only approximate the true solution to the

sparse representation problem (4.1). K-SVD uses this low-quality approximation

in its training procedure. On the other hand, the ITD training scheme relies on

single-atom representations, which are solved exactly with a single MP iteration.

Theoretical results [Tropp 2004] show that the quality of the OMP approximation

decreases with increasing dictionary coherence which, in turn, increases with in-

creasing dictionary size. This observation is in line with the fact that the cITD /

K-SVD performance gap increases with N .

In Fig. 4.8 we compare ITD to the SD scheme. Note that, for the larges

dictionary size N = 4096, ITD can outperform SD. For N = 256, 1024, ITD

can perform comparably to SD for low sparsity values. The advantage of the

SD scheme, however, lies in the low complexity of the dictionary-vector product

computation. We will address the issue of decomposition complexity in the second

experiment.

In Fig. 4.10 we evaluate the influence of the number of top-down iterations J

used in the ITD training procedure by plotting the experimental sparsity versus

PSNR computed on the test data. We only present results for the cITD dictionary

with N = 256 atoms, as the gain for ITD and for larger cITD dictionaries was

marginal for J > 1. The reduction in the training cost for the cITD N = 256

training procedure when using J = 3 was previously illustrated in Fig. 4.3. The

results plotted in Fig. 4.10 illustrate that using J = 3 also results in improved

performance on the test set relative to non-iterative top-down training (with J =

1). At the higher sparsity values shown, using J = 3 instead of J = 1 increases

70 Chapter 4. Iteration-Tuned Dictionaries

5 10 15

30

35

40

Mean l-0 norm

P
S
N

R
(d

B
)

ITD

K-SVD

N = 256

N = 512

N = 1024

N = 4096

Figure 4.7: PSNR versus sparsity: K-SVD versus ITD.

the performance by 0.27 dB. The gain over K-SVD reaches 0.38 dB.

4.5.3 Experiment 2: Rate-distortion performance

In the second experiment we evaluate the performance of ITD in image compres-

sion. There is a large range of design parameters that define a full image codec.

An overcomplete dictionary is only a possible transform that can be used by the

codec. Other components of an image codec include the coefficient quantiza-

tion mechanism, the selection of the representation sparsity of each image block,

methods such as deblocking filters used to deal with blocking artifacts, prediction

mechanism and other more elaborate methods such as the affine warping scheme

used in [Bryt 2008]. Since we are only interested in evaluating the performance of

the dictionaries in this application, we will proceed by computing experimentally

the rate-distortion bound achievable by each dictionary. This will avoid any biases

in the comparison resulting from external factors related to the codec design. By

establishing that a dictionary produces improved rate-distortion bounds, we es-

tablish which dictionary is a better candidate for use in an image codec based on

overcomplete dictionaries. Indeed we will see that our approach can achieve better

rate-distortion tradeoffs at a significantly reduced decomposition complexity and

this without the overhead of storing the Gram matrix as required to achieve low

complexity with fixed-dictionary approaches (cf. Section 4.2).

4.5. Results 71

5 10 15

30

35

40

Mean l-0 norm

P
S
N

R
(d

B
)

ITD

SD

N = 256

N = 1024

N = 4096

Figure 4.8: PSNR versus sparsity: SD versus ITD.

4.5.3.1 Computation of rate-distortion curves

We illustrate our method for computing the rate-distortion curve of a given dic-

tionary in Fig. 4.11: First we compute the sparse representations of the test set

vectors using multiple RMSE thresholds ε = 2, 4, 6 . . . , 22. For each ε, we quantize

all coefficients using a quantization step ∆:

γ̂i = ∆ · round(
γi

∆
). (4.27)

The value of ∆ is varied to obtain one rate-distortion sub-curve per each ε. The

final rate-distortion curve is given by the envelope of all these sub-curves.

For each (ε, ∆) pair in the sub-curves of Fig. 4.11, the distortion plotted

corresponds to the reconstruction error averaged over all test vectors. The value of

rate plotted is computed as follows: Let (a1, γ̂1), . . . , (aL, γ̂L), denote the quantized

sparse representation. This can be represented using the following rate (in bits-

per-pixel)

B =

(

R (L) +
L∑

i=1

(R (ai) + R (γ̂i))

)

/d, (4.28)

where R (·) returns the number of bits required to represent the input symbol.

Letting H (·) denote source entropy and assuming that H (ai) and H (γ̂i) are both

independent of i, the expectation of the above expression is lower bounded as

follows:

E (B) ≥ (H (L) + E (L) · (H (a) +H (γ̂))) /d. (4.29)

The rates plotted throughout are obtained using the above expression with expec-

tations and entropies estimated over the test set. We present results for bit rates

72 Chapter 4. Iteration-Tuned Dictionaries

5 10 15

30

35

40

Mean l-0 norm

P
S
N

R
(d

B
)

cITD

K-SVD

N = 256

N = 512

N = 1024

N = 4096

Figure 4.9: PSNR versus sparsity: K-SVD versus concatenated ITD.

between 0.2 bpp and 1.3 bpp which covers all general purpose scenarios.

As done in the first experiment, for the reference dictionaries we plot the

maximum PSNR at each rate from all the rate-distortion bounds produced by

each of the reference dictionaries available for each N . Recall that there are 4

K-SVD dictionaries available for each N and 24 SD dictionaries corresponding to

various training parameters.

Since each point on the envelope curve is associated to a single ε, we can like-

wise associate a single experimental mean sparsity per point of the experimental

rate-distortion bound; we illustrate this sparsity L in the legend of the example

in Fig. 4.11.

4.5.3.2 Concatenated ITD

In Fig. 4.12 we evaluate the rate-distortion performance of cITD versus K-SVD for

three different dictionary sizes N = 256, 512, 4096. Note that the cITD curves for

N = 256 and 512 perform comparably to the K-SVD curves having, respectively,

N = 512 and 1024 (i.e., twice as many atoms).

When both dictionaries have the same size, cITD offers important rate-distortion

gains (particularly for N > 256). The cITD scheme at N = 512 outperforms K-

SVD by 0.30 dB at 0.4 bpp. This gain over K-SVD increases with the rate,

reaching 0.53 dB at 1 bpp. A similar behavior is observed for N = 1024, with

cITD’s gain over KSVD rising from 0.51 dB to 0.92 dB between 0.3 bpp and 1 bpp.

The increased rate-distortion performance of cITD over K-SVD is not unexpected

given the increased sparsity versus PSNR performance of cITD (cf. Fig. 4.9).

4.5. Results 73

6 8 10 12 14 16 18

34

36

38

40

42

Mean l-0 norm

P
S
N

R
(d

B
)

K-SVD

cITD, J = 1

cITD, J = 3

Figure 4.10: PSNR versus sparsity: K-SVD versus cITD for N = 256; cITD trained

using J = 1, 3 top-down training iterations.

4.5.3.3 ITD

In Fig. 4.13 and Fig. 4.14 we plot, respectively, decomposition complexities as

a function of rate and experimental rate-distortion bounds. In both curves we

compare ITD and K-SVD for N = 256, 1024 and 4096. The corresponding com-

parisons with SD are shown in Fig. 4.15 and Fig. 4.16.

Complexity We measure decomposition complexity in terms of the number

of inner-product computations required by the atom selection process (cf. Sec-

tion 4.2). For an average decomposition sparsity L, the measured ITD complexity

will hence be given by L·n ≤ N (n the number of atoms per layer). For fixed dictio-

naries, two possible complexities are illustrated: If the pre-computed Gram matrix

G is assumed to be available, then the complexity is fixed, for all L, to the N inner-

product computations of the dictionary-vector product DT y, denoted by the light

horizontal lines at 256, 1024 and 4096 in Fig. 4.13 and at 92, 337 and 1286 (these

values are given by (4.11) using b = 8, g = 12, d = 64) in Fig. 4.15. Otherwise,

the measured complexity, as illustrated by the curves labeled K-SVD in Fig. 4.13

and SD in Fig. 4.15 is given by L times the dictionary-vector product, where L is

the average sparsity at a given rate. As discussed in Section 4.2 these complexity

values represent the real complexity for MP-based decompositions (ITD uses MP)

whereas they are only a lower bound for OMP-based decompositions (K-SVD uses

OMP).

The first observation to make regarding the results in Fig. 4.13 is that for

all N , the ITD decomposition complexity at any rate is more than one order of

74 Chapter 4. Iteration-Tuned Dictionaries

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

26

28

30

32

34

36

Rate (bpp)

P
S
N

R
(d

B
)

ε = 18, L = 1.4

ε = 12, L = 1.9

ε = 10, L = 2.3

ε = 8, L = 3.0

ε = 6, L = 4.4

ε = 4, L = 7.7

Figure 4.11: Each sub-curve is obtained for a fixed ε by varying the quantization

step size. The rate-distortion curve of a given dictionary is given by the envelope of these

sub-curves.

0.4 0.6 0.8 1

30

32

34

Rate (bpp)

P
S
N

R
(d

B
)

cITD

K-SVD

N = 256

N = 512

N = 4096

Figure 4.12: Experimental rate-distortion bounds: cITD versus K-SVD .

magnitude below the K-SVD complexity for the same N . In fact, ITD decompo-

sition complexities for all N and all rates are always below the K-SVD , N = 256

complexity curve. This is important for memory sensitive applications where one

cannot afford to store the dictionary’s Gram matrix.

The ITD curves for all N even offer an important complexity advantage, at

all rates, relative to the dictionary-vector product at the corresponding N (recall

that this is a lower bound for the atom selection complexity when using Gram

4.5. Results 75

matrix acceleration). The complexity advantage is large enough so that, for all

rates below 0.65 bpp, ITD for N = 1024 and N = 4096 incurs a complexity that

is even lower than that of the dictionary-vector product respectively at N = 256

and N = 1024 (i.e., half the number of atoms).

The ITD complexity gains are more modest when compared to the SD scheme

which was designed with complexity in mind. Yet even here the ITD complexity

for all N is close to an order of magnitude below the corresponding complexity

curve of SD. For a large range of bit-rates (up to 0.7 bpp for the ITD, N = 256

curve) the complexities are also below the dictionary-vector product complexities

of the corresponding SD dictionary.

Rate-distortion The rate-distortion bounds for the SD approach, illustrated

in Fig. 4.15, are poor, yet this is expected given the poor performance of SD in

the sparsity versus PSNR experiment. Thus we will focus in the remainder of the

section on the comparison against K-SVD .

The ITD, N = 256 setup does not outperform the K-SVD , N = 256 setup,

yet, for all rates below 0.5 bpp, the distortion penalty is less than 0.16 dB. Note

that the corresponding complexity gain of the ITD, N = 256 setup relative to

the N = 256 dictionary-vector product is 10× at 0.2 bpp and 4× at 0.5 bpp, and

hence a rate-distortion penalty of 0.16 dB is justified.

The ITD, N = 1024 curve does enjoy an important distortion gain over the K-

SVD , N = 256 setup. The gain reaches 0.58 dB at 0.6 bpp, and yet the required

complexity is also below the N = 256 dictionary-vector product for all rates below

0.6 bpp. When compared to the K-SVD , N = 1024 setup, a distortion gain is

observed for all rates below 0.7 bpp; the gain reaches 0.24 dB at 0.5 bpp.

The ITD, N = 4096 curve enjoys a distortion gain over K-SVD , N = 4096 for

all rates below 1.1 bpp. The gain reaches 0.3 dB at 0.6 bpp. Relative to the K-

SVD, N = 256 curve, the distortion gain reaches 1.15 dB. The required complexity

is above that of the N = 256 dictionary-vector product, yet it is uniformly below

the K-SVD , N = 256 curve.

In light of the poor PSNR versus sparsity results of the ITD scheme (cf.

Fig. 4.7) the ITD rate-distortion bounds illustrated in Fig. 4.14 might be un-

expected. Yet one must keep in mind that ITD offers an important advantage as

all its atom indices are in [1, n]. With n = 16 (cf. Table 4.2) one needs at most 4

bits to represent each atom index. For K-SVD , one will need at most 8 bits for

N = 256 and 12 bits for N = 4096.

The large distortion gains offered by the ITD setup for N = 1024 and N = 4096

relative to K-SVD , N = 256 are the result of a much larger dictionary over-

completeness. While comparable gains are achievable with K-SVD dictionaries

using N = 1024 and N = 4096, it is important to note that the large decomposi-

76 Chapter 4. Iteration-Tuned Dictionaries

0.4 0.6 0.8 1

102

103

104

Rate (bpp)

C
o
m

p
le

x
it
y

ITD

K-SVD

N = 256

N = 1024

N = 4096

Figure 4.13: Decomposition complexity: ITD versus K-SVD . The complexity is given

by the atom selection cost expressed as the number of d-dimensional inner products. The

horizontal lines display the single dictionary-vector product cost which equals N .

0.4 0.6 0.8 1

30

32

34

Rate (bpp)

P
S
N

R
(d

B
)

ITD

K-SVD

N = 256

N = 1024

N = 4096

Figure 4.14: Rate-distortion curves: ITD versus K-SVD

tion complexities required by fixed-dictionary schemes in general (including cITD)

makes such large over-completeness prohibitive. Hence the ITD scheme provides

an affordable mechanism, memory and complexity-wise, to tap into the benefits

of large over-completeness.

4.6. Conclusion 77

0.4 0.6 0.8 1

102

103

104

Rate (bpp)

C
o
m

p
le

x
it
y

ITD

SD

N = 256

N = 1024

N = 4096

Figure 4.15: Decomposition complexity: ITD versus SD. The complexity is given by

the atom selection cost expressed as the number of d-dimensional inner products. The

horizontal lines display the single dictionary-vector product cost given by (4.11).

0.4 0.6 0.8 1

30

32

34

Rate (bpp)

P
S
N

R
(d

B
)

ITD

SD

N = 256

N = 1024

N = 4096

Figure 4.16: Rate-distortion curves: ITD versus SD

4.6 Conclusion

In this paper we introduced a novel learned, structured dictionary called an It-

eration Tuned Dictionary (ITD). ITDs are layered structures, with each layer i

consisting of a dictionary matrix that is used in the i-th iteration of a match-

ing pursuit decomposition. We presented an ITD training procedure that, unlike

other training schemes found in the literature, relies on single atom sparse repre-

78 Chapter 4. Iteration-Tuned Dictionaries

sentations. A concatenated ITD (cITD) dictionary was also presented, consisting

of a concatenation of the dictionary matrices of all the ITD layers. The cITD

dictionary was shown to outperform other methods found in the literature in two

different evaluations, PSNR versus sparsity and achievable rate-distortion trade-

offs. The ITD scheme likewise offered gains in achievable rate-distortion tradeoffs,

while at the same time requiring a decomposition complexity well below that of

traditional, fixed-dictionary approaches using the same total number of atoms.

This complexity gain enables the ITD scheme to tap into the important rate-

distortion gains achievable with increased dictionary overcompleteness without

paying a complexity penalty, or an extra storage penalty in the form of the Gram

matrix commonly used to reduce decomposition complexity.

Chapter 5

Tree-Structured Iteration Tuned

Dictionaries

5.1 Introduction

In the last chapter, we showed that Iteration-Tuned Dictionaries (ITDs) enable

the use of highly overcomplete dictionaries with nonetheless low decomposition

complexity. The ITD approach consists of substituting the dictionary matrix Di

in each iteration i of a Matching Pursuit (MP) decomposition. The matrices Di

are trained to make them suitable to the residues at the input of the i-th MP

iteration.

In this chapter we introduce a new ITD variant, the Tree-Structured Iteration-

Tuned Dictionary, which is a constrained case of the ITD setup previously intro-

duced. The constrain consists of making the dictionary used in the i-th (called

here a candidate dictionary) iteration depend not only on the iteration index i

but also on the sequence of previously selected ancestor atoms. This approach

ensures that TSITDs having larger overcompleteness factors require the same de-

composition complexity as smaller ITDs. The resulting TSITD scheme enjoys the

interesting property that a given dictionary is orthogonal to all of its ancestor

atoms, meaning that they can be represented in spaces of reduced dimensionality.

This property is exploited to reduce the TSITD storage footprint in the form of

the reduced TSITD (rTSITD) structure.

We then present a TSITD variant called the Iteration-Tuned and Aligned Dic-

tionary (ITAD) which constrains the reduced representations of a given layer of the

rTSITD tree to be the same. ITAD hence enjoys a storage footprint much smaller

than that of TSITD, while retaining nonetheless the large redundancy related to

the TSITD tree structure. Experiments show that, for comparable complexity,

ITAD indeed outperforms ITD uniformly and TSITD in practical scenarios both

in terms of approximation error versus sparsity and in image compression and

denoising applications. We also compare both TSITD and ITAD to the K-SVD

algorithm as well as other, recently proposed approaches.

80 Chapter 5. Tree-Structured Iteration Tuned Dictionaries

Symbol Definition

K Total number of dictionaries in a (r)TSITD.

C Number of layers in an ITD/(r)TSITD/ITAD structure.

N Number of columns in a dictionary matrix.

Ll Subset of {1, . . . , K} specifying the indices k of all dictio-

naries Dk of layer l.

dl An atom from the l-th layer that is the l-th descendant

atom from a sequence d1,d2,d3, . . . found along a given

tree-path.

kl A tree-node index that is the l-th such index in a sequence

of descendant nodes k1, k2, k3, By convention, k1 = 1

specifies the root node.

Table 5.1: TSITD, rTSITD and ITAD: List of notational conventions.

5.2 Notation

We will use the notation (da)
N
a=1 to denote the matrix D consisting of N ordered

columns, with the a-th column being da. We use the notation d ∈ D to denote

that d is a column of D. In our work we consider sets of matrices {Dk}k, with

Dk = (dka)
N
a=1. Hence dklal

∈ Dkl
, l = 1, 2, . . . specifies a sequence of columns

having column indices al taken from the matrices with indices kl. To simplify the

notation, we will often specify dklal
using only the sequence index l as a superscript,

i.e., we let dl = dklal
.

For convenience, we have also summarized several constants used throughout

our work in Table 5.1.

5.3 Background

We will begin the present chapter by providing a brief review of sparse representa-

tions, matching pursuit, and the iteration-tuned dictionary. The intent is to make

the chapter self contained and keep references to the more relevant equations at

hand. See, respectively, Section 2.2, Section 2.2.1.1 and Chapter 4 for a more

detailed discussion of these three topics.

5.3. Background 81

5.3.1 Sparse representations using overcomplete dictionar-

ies

Let D ∈ Rd×N (with N > d) be the full-rank dictionary matrix D = (da)
N
a=1

formed by N columns da called atoms (throughout this paper we assume that

all atoms are unit norm). A sparse representation x of a signal vector y ∈ Rd is

obtained under joint fidelity and sparsity criteria:

argmin
x∈RN

|y −Dx| s.t. |x|0 ≤ L, (5.1)

where the l-0 norm | · |0 counts the number of non-zero coefficients in a vector.

When D is assumed to be full-rank, the minimum of (5.1) will occur at the

boundary |x|0 = L (assuming L ≤ d) with probability one. Hence (5.1) consists of

selecting the L atoms d1, . . . ,dL ∈ D that produce the best approximation of y.1

We can thus re-write (5.1) in the following equivalent form that is more similar to

expressions we cover in subsequent sections:

argmin
d1,...,dL∈D;

Γ∈R
L

∣
∣
∣y −

[
d1 . . . dL

]
Γ
∣
∣
∣. (5.2)

5.3.2 The matching pursuit family

In practice, the solution to (5.1) is approximated using a greedy pursuit algorithm

such as those of the Matching Pursuit Family (MPF). For example, the matching

pursuit (MP) [Mallat 1993] algorithm proceeds by selecting one atom / coefficient

pair at each iteration i. Let ri−1 denote the residue at the output of the previous

iteration (with r0 = y) and (·)T denote the matrix or vector transpose. The MP

atom and coefficient selection rules at iteration i are given by

di = argmax
d∈D

|dT · ri−1|, (5.3a)

γi = (di)T · ri−1, (5.3b)

with the iteration’s output residue given by

ri = ri−1 − γid
i. (5.4)

The Orthogonal Matching Pursuit (OMP) [Pati 1993] variant uses the same

atom selection rule but instead optimally updates all the coefficients

Γi =
[
γ1 . . . γi

]T

(5.5)

1We use the notation d ∈ D to denote that vector d is one of the columns of matrix D.

82 Chapter 5. Tree-Structured Iteration Tuned Dictionaries

produced up to the i-th iteration. By first defining the selected-atoms matrix

Si =
[
d1 . . . di

]
, (5.6)

the OMP coefficients at iteration i can be expressed as

Γi = (Si)+ y, (5.7)

where superscript + denotes the pseudo-inverse operation. Yet a third MPF

variant known as Optimized Orthogonal Matching Pursuit (OOMP) [Rebollo-

Neira 2002] further considers the above coefficient computation rule when choosing

each atom.

Regardless of the MPF variant used, the iterative procedure is carried out

either for a number of iterations L which is either pre-determined or selected

on-line to satisfy an RMSE fidelity criterion ε using

L = argmin
i∈{1,2,...}

i s.t. |ri|2 ≤ d · ε2. (5.8)

5.3.3 The iteration-tuned dictionary

An iteration-tuned dictionary {Dk}Ck=1 presented in Chapter 4 is a structured

dictionary consisting of a sequence of C layers, with the k-th layer containing a

single dictionary matrix Dk ∈ Rd×N . ITD-based signal decompositions force the

L selected atoms to come one from each of the first L ITD layers:

argmin
dl∈Dl,l=1,...,L;

Γ∈R
L

∣
∣
∣y −

[
d1 . . . dL

]
Γ
∣
∣
∣. (5.9)

The ITD decomposition expression above can be seen as a constrained version

of the sparse decomposition problem in (5.2): While in (5.2) the selected atoms

d1, . . . ,dL are chosen without restriction from all the atoms available (in matrix

D), in (5.9), each dl, l = 1, . . . , L is forced to come from the subset of the available

atoms found in Dl. Hence the ITD constrain means that a diminished sparsity

versus approximation error tradeoff is attainable compared to an approach that

allows dl ∈
[
D1 | . . . | DL

]
, l = 1, . . . L. Yet the constrain also results in an

important reduction in decomposition complexity that makes it possible to employ

large overcompleteness factors with tractable complexity. Furthermore, the ITD

layers are learned (see Chapter 4) so as to mitigate losses resulting from the ITD

constrain.

Similarly to (5.2), the ITD decomposition problem in (5.9) is NP-hard and is

hence solved using the matching pursuit algorithm in (5.3). The ITD constrain

implies that the atom selection in (5.3a) is carried out over the i-th layer Di.

5.4. Tree-structured ITD (TSITD) 83

5.4 Tree-structured iteration-tuned

dictionary (TSITD)

In this section we will consider a generalization of the ITD scheme of Chapter 4

that will give us access to even larger overcompleteness factors with the same

decmoposition complexity. The approach consists of organizing the ITD layers into

a tree-structure; we refer to the resulting setup as the Tree-Structured Iteration

Tuned Dictionary (TSITD). We will begin the current section by presenting a

generalization of the ITD scheme wherein each layer is allowed to contain several

candidate dictionary matrices. The TSITD scheme follows by letting the candidate

dictionary selection consist of using assigning a unique matrix from layer l to the

atom chosen from the previous layer l − 1.

5.4.1 A more general ITD framework

Like the ITD scheme, we consider a structure consisting of C layers, yet we let

each layer contain more than one dictionary matrix Dk ∈ Rd×N . The dictionary

matrices of the l-th layer are called the candidate dictionaries of that layer. We let

{Dk}Kk=1 denote the set of all candidate dictionaries found in all layers l = 1, . . . , C.

The dictionaries of the l-th layer are those with indices k ∈ Ll,

{Dk}k∈Ll
, (5.10)

where the subsets L1, . . . ,LC define a partition of {1, . . . , K}:

C⋃

i=1

Ll = {1, . . . , K}; ∀l 6= j,Ll ∩ Lj = ∅. (5.11)

5.4.2 The TSITD candidate selection law

The underlying observation motivating the TSITD candidate selection law is that

similar signals (i.e., those that result in the same selected atom given some over-

complete dictionary) tend to produce residues that are also similar. As an example

we consider the case of images, where similar edges at a given orientation are likely

to result in residues displaying ringing parallel to the edge. Hence, the atom se-

lection process can be seen as a residue classification step since the residues at

the output of a given atom are likely to share a common structure and be thus

well represented by a common dictionary. Thus the proposed TSITD candidate

selection law consists of selecting, from a given layer l ≥ 2, a dictionary Dk that

is uniquely associated to the atom dl−1 chosen from the previous layer l − 1 (by

84 Chapter 5. Tree-Structured Iteration Tuned Dictionaries

convention, the root dictionary D1 is chosen for l = 1):

Dk = child(dl−1). (5.12)

We illustrate the tree-structure induced by the above TSITD candidate selec-

tion law on the top of Fig. 5.3. Each node with index k ∈ Ll is found in the l-th

tree layer and contains a single candidate dictionary Dk. Node k gives rise to N

children nodes, one per atom of Dk. In the figure we have illustrated a sequence

k1, . . . , kl of descendant node indices satisfying (5.12) such that k1 = 1 is the root

node and, for j ≥ 2, Dkl
= child(dl−1), with kj ∈ Lj and dj ∈ Dkj

. In subsequent

discussions we will use this same notation kj / Dkj
/ dj to denote the j-th element

of a sequence of descendant nodes / dictionaries / atoms.

5.4.3 Signal decomposition using TSITD

The problem of obtaining a sparse decomposition of a given signal using the TSITD

candidate selection law can be formulated as follows, where k1 = 1 , D1 is the root

dictionary and, for l ≥ 2, Dkl
is the child dictionary of dl−1:

min
dl∈Dkl

,l=1,...,L;

Γ∈R
L

∣
∣
∣y −

[
d1 . . . dL

]
Γ
∣
∣
∣. (5.13)

Note that the TSITD decomposition expression above can be seen as a constrained

version of (5.9): in (5.9), any combination of atoms is allowed as long as one is

taken from each layer, whereas in the TSITD expression above only atom combi-

nations corresponding to TSITD tree paths are allowed. Adequate training of the

TSITD candidate dictionaries, combined with the large overcompleteness of the

TSITD structure, will result in TSITD schemes that overcome the sub-optimality

related to the TSITD atom selection constrain. Note, however, that this added

TSITD overcompleteness comes at no extra decomposition complexity when the

TSITD and ITD candidate dictionaries all have the same number of atoms N .

As was the case for ITDs the exact TSITD decomposition expression is difficult

to solve and hence we will use the MP algorithm in (5.3). The TSITD atom

selection constrain means that the atom di chosen in the i-th iteration using

(5.3a) will be forced to come from the child dictionary Dki
= child(di−1) (or the

root dictionary D1 for i = 1):

di = argmax
d∈Dki

|dT · ri−1|, (5.14a)

γi = (di)T · ri−1, (5.14b)

5.4. Tree-structured ITD (TSITD) 85

5.4.4 TSITD training

Given some representative finite training set {yt}Tt=1, the construction of the set

of TSITD candidate dictionaries can be expressed optimally as the minimization

of the cumulative representation error of the training vectors y. Using the TSITD

sparse decomposition formulation in (5.13), we can express the optimal ITD con-

struction formulation as follows:

argmin
Dk∈N ,

k=1,...,K

T∑

t=1

min
dl∈Dkl

,

l=1,...,Lt;
Γ∈R

Lt

∣
∣
∣yt −

[
d1 . . . dLt

]
Γ
∣
∣
∣

2

. (5.15)

where the optimization domain of each candidate dictionary is the subset

N = {D ∈ Rd×N : ∀d ∈ D,dT d = 1} (5.16)

consisting of matrices with unit norm columns.

5.4.4.1 Top-down training

To simplify the above problem, we instead consider a top-down training proce-

dure wherein a given dictionary Dk, k ∈ Ll is trained after all its ancestors

Dk1 , . . . ,Dkl−1
, kj ∈ Lj. With this assumption, the above TSITD training problem

becomes

argmin
Dk∈N

∑

t∈Tk

min
d∈Dk

Γ∈R
Lt

∣
∣
∣yt −

[
Sl−1

t | d
]
Γ
∣
∣
∣

2

 , (5.17)

where Sl−1
t = (dj

t)
l−1
j=1, dj

t ∈ Dkj
∀t, contains the atoms dj

t selected for yt from the

ancestor dictionaries Dkj
. Note that to obtain Sl−1

t it is necessary to carry out a

TSITD-MP decomposition of the signals yt across the nodes k1, . . . , kl−1. When

using the RMSE based MP stopping criterion in (5.8), it is possible that some

signals yt require Lt ≤ l − 1 atoms; such signals need to be excluded from the

training set of dictionary Dk (found in layer l). This explains the summation range

t ∈ Tk, defined as follows (recall that k = 1 is the index of the root dictionary):2

T1 = {t = 1, . . . , T : |yt|2 ≥ dκ2}, and (5.18a)

Tk = {t ∈ Tkl−1
: |rl−1

t |2 ≥ dκ2,dl−1
t = pk}, k > 1. (5.18b)

2We use the symbol κ (instead of ε) to denote the RMSE stopping criterion used during

training.

86 Chapter 5. Tree-Structured Iteration Tuned Dictionaries

where pk ∈ Dkl−1
refers to the atom chosen to be the parent of node k. Note that

the top-down training approach means that all the ancestor dictionaries of Dk are

trained prior to Dk. Hence, it is possible to determine the (l − 1)-th selected atom

dl−1
t of each training vector yt before training Dk.

5.4.4.2 MP-based top-down training

We consider now a second simplification of the TSITD training procedure. Inspec-

tion of (5.17) reveals that the inner minimization corresponds to an OOMP atom

selection step. One can likewise use a simplified MP atom selection step wherein

only the l-th coefficient of Γ is updated; all other l− 1 coefficients are fixed to the

values computed when training ancestor dictionaries Dk1 , . . . ,Dkl−1
. Let Γl−1

t de-

note these fixed coefficients computed from training vector yt. The term inside the

absolute value signs in (5.17) can then be written as yt−Sl−1
t Γl−1

t −γd = rl−1
t −γd.

Accordingly, we can write the simplified version of (5.17) as follows:

argmin
Dk∈N

∑

t∈Tk

min
d∈Dk
γ∈R

∣
∣
∣rl−1

t − γd
∣
∣
∣

2

 . (5.19)

The above expression can be solved using, eg., the K-SVD algorithm using an

L = 1 sparsity constrain. The procedure can be described as a K-means under

the projection distance and consists of iteratively (i) fixing Dk and classifying the

training residues according to which atom d ∈ Dk is closest (under the angular

distances) and (ii) updating each d so that it minimizes the cumulative represen-

tation error |rl−1
t − γd|2 of those training residues rl−1

t assigned to d .

For completeness, we outline the resulting TSITD candidate training proce-

dure in Fig. 5.1. The TSITD training algorithm based on the top-down training

approach and (5.19) is outlined in Fig. 5.2.

5.4.5 Orthogonality of selected-atoms matrices and conse-

quences

In (5.6) we defined the MP selected-atoms matrix of the i-th iteration as having,

in the j-th of i columns, the j-th selected atom dj. Given the TSITD candi-

date selection rule, the TSITD selected-atoms matrices will contain a sequence

of descendant atoms d1, . . . ,di so that, given a sequence of descendant nodes

k1, . . . , ki, dj ∈ Dkj
. Note that any TSITD node with index k ∈ Ll will have

a unique selected-atoms matrix Sl−1 consisting of all the ancestor atoms of that

node.

5.4. Tree-structured ITD (TSITD) 87

1: Definition: Dk = Candi({rl−1
t }t∈Tk

, N)

2: Initialization:

3: R ← RandSelect(N, |Tk|)
4: (dka)

N
a=1 ← (yt)t∈R

5: Algorithm:

6: repeat

7: Qa ← ∅, a = 1, . . . , N .

8: for t ∈ Tk do

9: a← argmaxα∈{1,...,N} |dT

kαr
l−1
t |

10: Qa ← Qa

⋃
t

11: end for

12: for a = 1 to N do

13: (uaj)j ← LSV
(
(rl−1

t)t∈Qa

)

14: dka ← ua1

15: end for

16: until convergence of D

Figure 5.1: The candidate construction algorithm Dk = Candi({rl−1
t }t∈Tk

, N) for

a node k ∈ Ll. The function RandSelect(N, T) selects N integers in [1, T] without

repetition. Function LSV in line 13 computes the left singular vectors, assumed ordered by

decreasing singular value.

One interesting TSITD property is that the tree-structuring of TSITD candi-

dates, combined with the top-down ITD construction approach of (5.19), results

in TSITDs with selected-atoms matrices Sl =
[
d1 . . . dl

]
that are orthogonal.

We summarize this result in the following theorem:

Theorem 5.4.1 (Orthogonality of TSITD selected-atoms matrices Sl). Assume

that a TSITD structure is trained using the top-down training approach outlined

in Fig. 5.2. Let k1, . . . , kl denote a sequence of TSITD descendant node indices,

Dk1 , . . .Dkl
denote the candidate dictionaries in those nodes, and d1, . . . ,dl be

any sequence of atoms such that dj ∈ Dkj
, j = 1, . . . , l. All possible selected-atoms

matrices Sl =
[
d1 . . . dl

]
will satisfy

(Sl)T Sl = I. (5.20)

Proof. The proof is based on three observations. The first observation is that the

residual training set of a candidate Dkj
is contained in the orthogonal complement

of the parent atom:

span({rj−1
t }t∈Tkj

) ⊆ span⊥(dj−1). (5.21)

88 Chapter 5. Tree-Structured Iteration Tuned Dictionaries

1: Definition: kout = SubTree(k, l, {rl−1
t }t∈Tk

) (k ∈ Ll, kout is the index of the

last node in the subtree of k)

2: Global parameters:

1. N : nominal number of atoms per candidate

2. M : minimum number of training vectors per atom

3. C: maximum layer index

4. κ: minimum residual RMSE

3: Algorithm:

4: Nk = min(N,
⌊
|Tk|
M

⌋

)

5: if not (l > C or Nk = 0) then

6: Dk = Candi({rl−1
t }t∈Tk

, Nk)

7: for t ∈ Tk do

8: dl
t = argmaxd∈Dk

|dT rl−1
t |

9: rl
t = rl−1

t − (dl T
t rl−1

t)dl
t

10: end for

11: p = k

12: for a = 1, . . . , N do

13: k ← k + 1

14: h[k] = p

15: Tk = {t ∈ Tp : |rl
t|2 ≥ dκ2,dl

t = dka}
16: k ← SubTree(k, l + 1, {rl

t}t∈Tk
)

17: end for

18: end if

Figure 5.2: Function that constructs a subtree of the TSITD structure recursively. The

entire TSITD tree is constructed using inputs k = 1 and training set {yt}t∈T1 . Function

Candi() in line 6 is implemented by the algorithm in Fig. 5.1. Node ancestry is recorded

in array h, with h[k] producing the index of the parent node of node k. Here N denotes a

nominal number of atoms, the actual number of atoms Nk per candidate Dk will depend

on the availability of training vectors.

This is a well known consequence of the MP rules in (5.3).

The second observation is that the span of Dkj
is contained in the span of its

training set:

span(Dkj
) ⊆ span({rj−1

t }t∈Tkj
) (5.22)

This relation follows from the SVD-based atom computation (cf. Fig. 5.1), as only

singular vectors corresponding to zero-valued singular values fall outside the span

of the data set on which the SVD is computed.

5.4. Tree-structured ITD (TSITD) 89

.

.

Dk1

Dk2

Dkl

a1

al

...

...

...

1 N

a2

...
...

1 N

N1

d1

d2

dl

.

.

D′
k1

= D1

D′
k2

D′
kl

a1

al

...

...
...

1 N

a2

...
...

φd1′

d

d
−

1
d
−

l
+

1

N

N1

1

φd′

k11
φd′

k1N

φd′

k21
φd′

k2N
φd2′

d1′

d2′

dl′

Figure 5.3: Top: The TSITD tree-structure. The root node k1 = 1 is indicated, as

well as two descendant nodes k2, k3; atoms dj ∈ Dkj
, j = 1, 2, 3 denote a corresponding

sequence of descendant atoms.

Bottom: The equivalent rTSITD representation. The path reduction matrices Φi (not

illustrated) of a given D′
ki

can be obtained by cumulatively left-multiplying the φdj′ , j =

i− 1, . . . , 1, backwards along the path Ai.

The third observation is that the training sets of Dk1 , . . . ,Dkl
span nested

subspaces:

span({rj
t}t∈Tkj+1

) ⊆ span({rj−1
t }t∈Tkj

). (5.23)

This follows since

rj
t = rj−1

t −
(
(rj−1

t)T dj
)
dj (5.24)

and, for t ∈ Tj, both rj−1
t and (from (5.22)) dj ∈ Dkj

are contained in span({rj−1
t }t∈Tkj

),

90 Chapter 5. Tree-Structured Iteration Tuned Dictionaries

thus establishing (5.23).

The theorem follows since, from (5.22) and (5.23), each candidate Dkj
is con-

tained inside a training subspace that is nested inside the training subspace con-

taining the parent candidate Dkj−1
. Hence, Dkj

retains orthogonality to all an-

cestor atoms dj−1,dj−2, . . . ,d1 since, from (5.21), these are orthogonal to training

subspaces that encompass Dkj
. The previous discussion establishes that any given

atom is orthogonal to all its ancestors, and this can only be the case if all Sl is

orthogonal, thus establishing the theorem.

An important consequence of the orthogonality of TSITD selected atom ma-

trices is that all MP schemes (i.e., MP, OMP, and OOMP) will produce the same

result. This follows from the fact that, for orthogonal Sl, the pseudo-inverse (Sl)+

in (5.7) will be given by the transpose (Sl)T . Hence the large redundancy of the

TSITD tree structure can be exploited using the more powerful OOMP algorithm

while incurring the lower complexity of the MP algorithm.

An important consequence of Theorem 5.4.1 concerns the maximum number

of layers (denoted C) of the TSITD structure:

Corollary 5.4.1 (Maximum number of layers C). Any TSITD satisfying (5.20)

will have C ≤ d layers, where d is the dimensionality of the input signal space,

y ∈ Rd.

This corollary follows from the observation that, given an orthogonal Sd (of

size d × d), the approximation ŷd = SdΓd at the output of the d-th layer will

be exact. Hence any remaining layers after the d-th will serve no useful purpose.

Note that one can have C < d depending on the manner in which the sparsities

of Lt of the training vectors are selected (eg., when using fixed Lt < d for all yt).

In Fig. 5.4 we present an example of TSITD candidate dictionaries along three

different branches of the tree-structure. Note that the three different branches

correspond to three different atoms of the root dictionary and that each branch

inherits structural characteristics from its parent atom: The three chosen root

atoms contain smooth edges along different directions (diagonal, anti-diagonal and

vertical) and their children dictionaries respectivly contain atoms mostly display-

ing ringing parallel to the parent’s edge. This inherited structure is more evident

in the second layer but is still observable in the third layer. This characteristic is

expected given the candidate selection law used for TSITD.

5.4. Tree-structured ITD (TSITD) 91

1

9

17

25

33

41

49

57

Node ∅

Node {23}

Node {23, 51}

Node {23, 51, 1}

Node {21}

Node {21, 1}

Node {21, 1, 48}

Node {27}

Node {27, 1}

Node {27, 1, 6}

Figure 5.4: An example of TSITD candidate dictionaries along three different branches

of the tree-structure. Each candidate Dk, k ∈ Ll is labeled using the indices {a1, . . . , al−1}
of its ancestor atoms dj = dkjaj

, kj ∈ Lj . Atom-indices increase along the rows, as

indicated for the root dictionary . The atoms selected from each dictionary are indicated by

a heavy frame. All candidate dictionaries consist of a nominal number of 64 atoms.

92 Chapter 5. Tree-Structured Iteration Tuned Dictionaries

5.5 Reduced Tree-Structured Iteration-Tuned Dic-

tionary (rTSITD)

The TSITD structure presented in the previous section exposes a very rich redun-

dancy with a computational complexity that is nonetheless comparable or even

lower than that of fixed-dictionary representations using MP. The scheme nonethe-

less suffers from a storage footprint that can be prohibitively large. As we will

see, the reduced Tree-Structured Iteration-Tuned Dictionary (rTSITD) that we

now present takes advantage of the orthogonality of the selected-atoms matrices

(cf. Theorem 5.4.1) to address this shortcoming.

We begin the present section by showing how Theorem 5.4.1 implies that we

can represent each TSITD candidate dictionary in a space of reduced dimension-

ality. An rTSITD will hence make use of these reduced candidate dictionaries to

obtain a more compact yet equivalent representation of TSITD. Under the right

configurations, we will see that rTSITD enjoys a slightly smaller storage footprint

and reduced training and decomposition complexity relative to TSITD.

5.5.1 Reduced candidate dictionaries and their path re-

duction matrices

Consider a TSITD candidate dictionary Dk, k ∈ Ll having a sequence of ancestor

atoms dj ∈ Dkj
, j = 1, . . . , l−1, so that kj ∈ Lj. All selected-atoms matrices using

atoms d ∈ Dk will have the form Sl =
[
d1 . . . dl−1 d

]
=
[
Sl−1 | dl

]
. From

Theorem 5.4.1, we know that all atoms d ∈ Dkl
must be orthogonal to all their

(shared) ancestor atoms in Si−1. Hence we can write the following consequence of

Theorem 5.4.1:

Corollary 5.5.1 (Reduced candidate dictionaries). Assume the TSITD candidate

Dk is found in the l-th layer and has ancestor atoms Sl−1 =
[
d1 . . . dl−1

]
. From

Theorem 5.4.1, it follows that

(Sl−1)T Dk = 0. (5.25)

Hence each Dk is contained in a subspace of dimensionality d − l + 1 and thus,

given an adequate rotation matrix, one can obtain an equivalent reduced form

D′
k ∈ R(d−l+1)×N . (5.26)

To obtain the reduced representation D′
k promised by Corollary 5.5.1 for some

candidate Dk of the l-th layer, we consider some arbitrary orthonormal basis

5.5. Reduced TSITD (rTSITD) 93

Φk ∈ Rd×(d−l+1) (chosen by convention) of the left null-space of the ancestor

atoms Sl−1 of Dk,

(Φk)
T Φk = I, (5.27a)

(Φk)
T Sl−1 = 0, (5.27b)

where, by convention, we let Φ1 = I (recall that k = 1 denotes the root node).

The matrix Φk is the required rotation matrix stipulated by Corollary 5.5.1 and

thus the desired reduced representation of Dk follows as

D′
k = (Φk)

T Dk. (5.28)

We refer to Φk as the path reduction matrix since it defines the mapping

between the original signal space of the root node and the reduced space containing

span(Dk).

5.5.2 Branch reduction matrices

The transpose of the path reduction matrix Φk of Dk, k ∈ Ll, reduces the dimen-

sionality of the signal-space atoms d ∈ Dk from d to d− l+1 in a single operation.

We will find it useful to instead carry out this reduction of dimensionality one di-

mension at a time. Later we will see that doing so will allow rTSITD structures

to enjoy a reduced storage footprint and decomposition complexity relative to

TSITD.

To this end, we consider the reduced representation d′ ∈ D′
k of an atom from

node k ∈ Ll. The branch reduction matrix φd′ ∈ R(d−l+1)×(d−l) of d′ is any

orthogonal matrix φd′ (again chosen by convention) that spans the left null-space

of d′ ,

(φd′)T φd′ = I, (5.29a)

(φd′)T d′ = 0. (5.29b)

Using the branch reduction matrices thus defined one can factor the path reduction

matrix Φk of a node with index k ∈ Ll as follows:

Φk = φd1′ · . . . · φd(l−1)′ , (5.30)

where d1′, . . . ,dl−1′ are the reduced representations of the ancestor atoms d1, . . . ,dl−1

of node k. Recall that Φk is orthogonal to all l − 1 of its ancestor atoms in Sl−1.

Each φdj′ in (5.30) enforces orthogonality of Φk to one of its ancestors dj.

94 Chapter 5. Tree-Structured Iteration Tuned Dictionaries

0 10 20 30 40 50 60

100

101

Number of layers LM

S
to

ra
g
e

g
a
in

Without φdi′

N = 64,φdi′

N = 256,φdi′

N = 1024,φdi′

Figure 5.5: Storage gain of rTISTD over TSITD. Storage is measured in terms of the

total number of matrix entries for the entire structure consisting of C layers.

5.5.3 The rTSITD tree structure

on the bottom of Fig. 5.3 we illustrate the rTSITD-based representation of the

TSITD tree-structure; the original TSITD tree-structure is found on the top of

the same figure. The first layer is left unchanged with D1 = D′
1. Starting with

the second layer, each TSITD candidate dictionary Dk has been substituted by its

reduced version D′
k and the branch reduction matrix φd(l−1)′ of its parent atom.

The signal-space version of the rTSITD tree could be reconstructed by means of

the path reduction matrix Φk. Although these are not illustrated, they can be

obtained from the the branch reduction matrices using (5.30).

To illustrate the resulting storage gain of the rTSITD structure, we consider

(r)TSITDs having N atoms per candidate dictionary and count the cumula-

tive number of matrix entries in all dictionaries (eg., (d− l + 1) ·N for D′
k ∈

R(d−l+1)×N , k ∈ Ll) for all C layers of the tree structure. For the case of rTSITD,

we also need to include the parent branch reduction matrices of all dictionaries for

layers 1 < i ≤ C. Due to the storage overhead represented by the branch reduction

matrices, rTSITD enjoys a storage gain only for tree-structures with a sufficiently

large number of layers C. In order to avoid this storage penalty for low C, it

is nonetheless possible to use a hybrid TSITD / rTSITD structure consisting of

signal-space (TSITD) candidates in the first few layers having nodes with indices

k ∈ Ll, l < q and reduced-space (rTSITD) representations in the remaining layers

Ll, l ≥ q. Path reduction matrices Φk,∀k ∈ Lq can be used to accomplish the

transition between signal-space and reduced-space layers, while the subsequent,

5.5. Reduced TSITD (rTSITD) 95

reduced-space layers (those with nodes indexed by k ∈ Ll, l > q) of the hybrid

structure would again use branch reduction matrices φd′ ,∀d ∈ Dk.

It is further possible to enjoy a storage gain for all C layers using only the

rTSITD structure since, in fact, it is not necessary in general to store the branch

reduction matrices φd′ : Given some algorithm (chosen by convention, eg., Gram-

Schmidt) that can be used to construct the same orthonormal basis given the

first member of the basis, one can build the branch reduction matrices φd′ on-

the-fly by applying said algorithm to the corresponding reduced atom d′ ∈ D′
k.

As illustrated in Fig. 5.5, the resulting rTSITD storage gain is uniform for all

tree-structure dimensions C. Note, however, that this approach suffers from an

increased computational complexity since the matrices φd′ need to be computed

on-the-fly.

5.5.4 Signal decomposition using rTSITD

One can use the rTSITD structure illustrated on the bottom of Fig. 5.3 to im-

plement signal decomposition and reconstruction directly in the reduced spaces

(as opposed to recurring to regeneration of the signal-space TSITD structure).

This will allow the rTSITD structure to enjoy a reduced storage footprint and

computational complexity when considering large tree structures.

In order to demonstrate first how to decompose signals using the rTSITD

structure, we recall that the MP signal decomposition rules in (5.3) rely on the

residual vectors ri at the output of the i-th iteration,

ri = ri−1 − γi · di, (5.31)

where di ∈ Dki
and k1, k2, . . . , L, with kj ∈ Lj, denotes a sequence of descendant

node indices such that k1 = 1 is the root node and, for i > 2, Dki
= child(di−1).

The orthogonality of selected atoms (Theorem 5.4.1) implies that ri computed

as above is contained in the orthogonal complement of the atoms Si chosen from

the descendant nodes k1, . . . , ki. This orthogonal complement space is spanned by

Φki+1
(cf. (5.27b)), and thus we can represent ri exactly in the reduced space Rd−i

as follows:3

ri′ , (Φki+1
)T ri. (5.32)

Using (5.31) and (5.30), the above expression produces the following method for

3For i = C, where C is the index of the last TSITD layer, this expression depends on ΦkC+1
.

For consistency, we can assume the existence of a layer C + 1 containing empty nodes. Note,

from (5.27) and the related discussion, that ΦkC+1
depends only on the ancestor atoms of a

node, which are all found in layers 1, . . . , C.

96 Chapter 5. Tree-Structured Iteration Tuned Dictionaries

D′
ki

1 N

φdi′

d
−

i
+

1

r(i−1)′ ∈ Rd−i+1

ri′ ∈ Rd−i

(
= (φdi′)T (r(i−1)′ − γi · di′)

)

di′
Di

1 N

d
r(i−1) ∈ Rd

di

ri ∈ Rd

(
= r(i−1) − γi · di

)

TSITD Decomposition rTSITD Decomposition

Figure 5.6: Illustration of the TSITD decomposition process at the i-th layer when

using TSITD and rTSITD.

ři′ ∈ Rd−i

ř(i−1)′ ∈ Rd−i+1
(
= γi · di′ + φdi′ ři′

)

ři ∈ Rd

ři−1 ∈ Rd

(
= γi · di + ři

)

TSITD Reconstruction rTSITD Reconstruction

D′
ki

1 N

φdi′

d
−

i
+

1

di′
Dki

1 N

d di

Figure 5.7: Illustration of the TSITD reconstruction process at the i-th layer when

using TSITD and rTSITD.

signal decomposition using the rTSITD structure:

ri′ = (φdi′)T (Φki
)T
(
ri−1 − γi · di

)

= (φdi′)T
(
r(i−1)′ − γi · di′) . (5.33)

From the orthogonality of path reduction matrices, it follows from (5.32) that

|ri| = |ri′|. (5.34)

Hence, the γi and di′ chosen to minimize |ri′| will also minimize |ri|. The atom

selection and decomposition can thus be carried out in the reduced-spaces of the

5.5. Reduced TSITD (rTSITD) 97

rTSITD structure by applying the MP rules directly in the corresponding rTSITD

layer:

di′ = argmax
d′∈D′

ki

∣
∣(d′)T r(i−1)′∣∣ , (5.35a)

γi = (di′)T · r(i−1)′. (5.35b)

The resulting atom/coefficient pair produces an approximation γi ·di′ of the input

residual r(i−1)′. The dimensionality of the resulting approximation error vector is

then reduced using the branch reduction matrix of the selected atom according to

(5.33), thus producing the reduced residual ri′ at the input of the following layer.

Given the property (5.34), it follows that the RMSE-based stopping criterion (5.8)

can be applied directly to the reduced residual ri′:

L = argmin
i∈{1,2,...}

i s.t. |ri′|2 ≤ d · ε2, (5.36)

We illustrate the original TSITD decomposition process and the equivalent

rTSITD approach in the left-hand and right-hand sides of Fig. 5.6, respectively.

5.5.5 Signal reconstruction using rTSITD

To illustrate how the signal reconstruction process can also be carried out using

the rTSITD structure, we first consider the following strategy for the equivalent

operation in signal-space using TSITD (left-hand side of Fig. 5.7): We traverse

the TSITD tree backwards from the last node kL visited in the decomposition

down to the root k1 = 1, accumulating the contributions of each atom dj ∈ Dkj

and coefficient γj previously selected along the way. Let the vector ři−1 denote

the result after accumulating the contributions from layer L up to the i-th layer:

ři−1 , γi · di + . . . + γL · dL (5.37)

= γi · di + ři, (5.38)

where, by convention, we let řL = 0 and we note that ř0 = ŷL produces the desired

reconstruction.

The same accumulation strategy can be implemented using the rTSITD struc-

ture and we demonstrate this by considering the reduced accumulator

ř(i−1)′ , (Φki
)T ři−1 (∈ Rd−i+1) (5.39a)

= (Φki
)T
(
γi · di + ři

)
, (5.39b)

where the second form follows from (5.38). If we now (i) write the signal-space

atom di in terms of its reduced-space version according to (5.28) and (ii) express

98 Chapter 5. Tree-Structured Iteration Tuned Dictionaries

Operation Complexity

an + bn n

aT

n bn 2n− 1

Am×nBn×k m(2n− 1)k

A−1
m×mam (1/3)m3 + 2m2

Table 5.2: Complexities of common algebraic operations [Boyd 2004] in terms of floating

point operations. The subscripts denote the dimensions of the vectors or matrices involved.

ři in terms of its reduced version using (5.39a), we arrive at the following form of

(5.39b):

ř(i−1)′ = (Φki
)T
(
γi ·
(
Φki

di′)+ Φki+1
ři′) (5.40)

= γi · di′ + φdi′ ři′. (5.41)

For completeness we note that, in substituting ři = Φki+1
ři′ = Φki+1

(Φki+1
)T ři

in (5.40) we have apparently neglected the component of ři that exists in the left

null-space of Φki
. Yet this is not a problem since, from (5.37) and (5.27b), we

know that ři ∈ span⊥ (Si
)

= span
(
Φki+1

)
.

Expression (5.41) specifies a method to carry out signal reconstruction using

the rTSITD structure directly. We illustrate the approach on the right-hand side of

Fig. 5.7: As for the TSITD strategy first described, the tree is traversed backwards

from the last node kL visited during the decomposition, but this time the branch

reduction matrices φdi′ (where di′ ∈ D′
ki

is the atom selected in the i-th iteration

of (5.35)) are used to re-map the reduced accumulator vectors ři′ back to reduced

spaces of successively higher dimensionality. The process continues until the root

node, where the reconstructed signal will be given by ř0′ = ř0 = ŷL.

5.5.6 Complexity

The rTSITD-based decomposition and reconstruction schemes outlined on the

right-hand side of Fig. 5.6 and Fig. 5.7 can be used to reduce the decomposition

and reconstruction complexities of their TSITD counterparts. To demonstrate

this, we use the number of floating-point operations as our complexity measure.

Boyd [Boyd 2004] derives this complexity measure for basic algebraic operations

and we reproduce them in Table 5.2. We will thus compute (r)TSITD complexity

using the values in this table summed over the corresponding operations.

In the subsequent discussion, we first compare rTSITD complexity to that

of TSITD and then to that of fixed-dictionary schemes using the common OMP

5.5. Reduced TSITD (rTSITD) 99

algorithm. For simplicity, we will assume that all (r)TSITD candidates and the

reference fixed-dictionary have the same number of atoms N .

5.5.6.1 rTSITD complexity gain over TSITD

Consider the TSITD atom / coefficient selection rules in (5.14): From Table 5.2,

the corresponding decomposition complexity at iteration i is (2d− 1)N , where we

have assumed that the coefficient is stored during atom selection and hence does

not need to be computed during coefficient selection. For all the layers except the

last, we further need to compute the output residual using

ri = ri−1 − γi · di. (5.42)

and this has an added cost of 2 · d. Hence, the TSITD decomposition operation

at layer i incurs the following complexity:

CD
TSITD =

{
(2d− 1)N + 2d i < L,

(2d− 1)N i = L.
(5.43)

From (5.35), the corresponding rTSITD complexity follows by substituting d

by (d− i+1). However, for all layers except the last, we further need to reduce the

output residual through left-multiplication by (φdi′)T according to (5.33). The

resulting rTSITD decomposition complexity at the i-th layer is

CD
rTSITD =

(2d− 2i + 1)N + 2(d− i + 1)

+ (d− i)(2d− 2i + 1)
i < L,

(2d− 2i + 1)N i = L.

(5.44)

Considering next the reconstruction complexity associated to the i-th layer,

this can be expressed for TSITD using (5.38) as follows:

CR
TSITD =

{
2d i < L,

d i = L.
(5.45)

where, for i = L there is no need to add řL = 0. Again we obtain the corresponding

rTSITD expression from the TSITD version by (i) using d− i+1 in place of d and

(ii) accounting for the dimensionality increase operation done by left-multiplying

by the branch reduction matrix φdi′ of the layer’s chosen atom as indicated in

(5.41). The resulting reconstruction complexity at the i-th layer is thus:

CR
rTSITD =

2(d− i + 1)+

(d− i + 1)(2d− 2i− 1)
i < L,

(d− i + 1) i = L.

(5.46)

100 Chapter 5. Tree-Structured Iteration Tuned Dictionaries

In the top of Fig. 5.8 we compare rTSITD to TSITD by plotting (see the curves

with the × markers) the gain in cumulative complexity for decompositions and

reconstructions involving L layers given by

∑L
i=1

(
CD

TSITD(i) + CR
TSITD(i)

)

∑L
i=1 (CD

rTSITD(i) + CR
rTSITD(i))

. (5.47)

The three different curves appearing in the figure correspond to three different

candidate dictionary sizes N = 64, 256, and 1024 (with signal dimension d = 64).

Given the complexity overhead related to the dimensionality reduction operation,

a reduction in complexity is attained only for sufficiently large sparsity (L ≥ 14

and L ≥ 30, for N = 1024 and 256, respectively). For too low N (eg., N = 64),

rTSITD does not attain a complexity gain at all. To address these shortcomings,

we again consider the hybrid TSITD / rTSITD structure discussed in Section 5.5.3:

up to a certain layer (layers 13, 29 and 46, for N = 1024, 256 and 64) the hybrid

structure will rely on the signal-space representations of the TSITD structure. In

the subsequent transition layer (respectively, layers q = 14, q = 30 and q = 47),

the input residues are reduced using the path reduction matrices Φk,∀k ∈ Lq,

thus enabling the usage of rTSITD in the following layers. The top of Fig. 5.8 also

displays the complexities corresponding to this hybrid structure (labeled hTSITD

in the figure), thus illustrating how it matches or outperforms TSITD’s complexity

uniformly over all layers. Note that the rTSITD and hTSITD curves for a given

N define a region of attainable complexities corresponding to a tradeoff between

storage footprint and decomposition / reconstruction complexity. The operating

curve along this region is determined by the position of the hTSITD transition

layer along the hybrid tree-structure.

5.5.6.2 Comparison to fixed-dictionary schemes using OMP

The OMP fixed-dictionary complexity expressions are similar to the TSITD com-

plexities in (5.43) and (5.45). The only difference is that the decomposition expres-

sion (5.43) needs to also include the increased cost of building the approximation

ŷi required to obtain the OMP residue ri = y−ŷi at the output of the i-th (i < L)

iteration:

ŷi =

d(2i−1)
︷︸︸︷

Si · (

i2(2d−1)
︷ ︸︸ ︷

(Si)T Si)−1 ·
i(2d−1)
︷ ︸︸ ︷

(Si)T y
︸ ︷︷ ︸

(1/3)i3+2i2

. (5.48)

The complexities of the sub-operations involved in building ŷi are indicated in

the above expression, and the OMP fixed-dictionary decomposition complexity

follows by adding the sum of all these terms to (5.43) for i < L. In the bottom of

5.5. Reduced TSITD (rTSITD) 101

0 10 20 30 40 50 60
10−0.4

10−0.2

100

100.2

Sparsity L

C
o
m

p
le

x
it
y

g
a
in

(r/h)TSITD vs. TSITD

rTSITD

hTSITD

N = 64

N = 256

N = 1024

0 10 20 30 40 50 60

100

101

Sparsity L

C
om

p
le

x
it
y

ga
in

(r/h)TSITD vs. OMP

rTSITD

hTSITD

N = 64

N = 256

N = 1024

Figure 5.8: Complexity gain of the rTSITD structure and the hybrid rTSITD / TSITD

(hTSITD) structure over (top) the TSITD structure as given by (5.47) and (bottom) fixed-

dictionary OMP schemes as given by modifying (5.47) using (5.48).

Fig. 5.8 we thus illustrate rTSITD’s complexity gain over fixed-dictionary OMP

decompositions, again providing curves for hTSITD and rTSITD for several values

of N . As shown, the hTSITD setup enjoys a complexity advantage uniformly over

all L; the rTSITD setup enjoys an advantage for sufficiently high L.

102 Chapter 5. Tree-Structured Iteration Tuned Dictionaries

5.5.6.3 Comparison to (separable SD) fixed-dictionary schemes of larger

size using OMP

In the results section of this chapter we will see that, in fact, (r/h)TSITD candidate

dictionaries having less atoms than a reference fixed dictionary can render a signal

class more compressible. Thus in the top of Fig. 5.9 we evaluate the complexity

gain of (r/h)TSITD structures with candidates having N < 256 atoms over OMP

schemes using fixed-dictionaries with 256 atoms. As illustrated in the figure, the

(r/h)TSITD structures with lower N can offer important performance gains of up

to 10× in the lowest sparsities and up to 100× in the highest sparsities.

In the bottom of Fig. 5.9 we show that (r/h)TSITD also enjoys similar com-

plexity gain when compared against OMP schemes using a Sparse Dictionary

(SD) with N = 256 atoms. Such dictionaries (cf. Section 2.3.4.1) have a structure

D = BA such that the analysis coefficients

DT ri = AT BT ri (5.49)

can be computed efficiently. For example, let us assume that B ∈ Rd×N is separa-

ble and effectively applies the same transform B0 ∈ R
√

d×
√

N along the rows and

columns of the residual image block ri√
d×

√
d

(ri is just the vertical concatenation of

the columns of ri√
d×

√
d
). The projection operation BT ri can hence be calculated

using BT

0 ri√
d×

√
d
B0, and this incurs a complexity of

(2
√

d− 1)(
√

Nd + N). (5.50)

The complexity of the subsequent multiplication by AT (where A is sparse with

La non-zero coefficients per column) can then be lower bounded by the complexity

of multiplying a full matrix of size N × La by a vector of size La (a complexity

of N(2La − 1)). Hence the total complexity when projecting a signal unto the

columns of a separable SD structure is

(2
√

d− 1)(
√

Nd + N) + N(2La − 1). (5.51)

This expression can be used in place of 2N(d − 1) in (5.43) to obtain the SD

decomposition complexity; the SD reconstruction complexity will again be given

by (5.45) (if we assume that the atoms of B are stored in full form and do not

need to be reconstructed from B0).

5.5.6.4 Dictionary training

Dictionary training complexity can also benefit from the reduced representations:

Using the branch reduction matrices φdi′ (as per (5.33)) to obtain the reduced

5.5. Reduced TSITD (rTSITD) 103

0 10 20 30 40 50 60

101

102

Sparsity L

C
o
m

p
le

x
it
y

g
a
in

(r/h)TSITD N vs. OMP 256

rTSITD

hTSITD

N = 16

N = 32

N = 64

N = 128

0 10 20 30 40 50 60

100

101

102

Sparsity L

C
om

p
le

x
it
y

ga
in

(r/h)TSITD N vs. SD OMP 256

rTSITD

hTSITD

N = 16

N = 32

N = 64

N = 128

Figure 5.9: Complexity gain (5.47) of the rTSITD structure and the hybrid rTSITD

/ TSITD (hTSITD) structure over (top) OMP schemes with general fixed dictionaries of

256 atoms and (bottom) OMP schemes using SD fixed dictionaries of 256 atoms; the SD

scheme further uses an atom sparsity of La = 15.

residues r
(i−1)′
t of the training vectors {yt}Tt=1 at the input of dictionaries of suc-

cessive layers, one can train D′
k directly by applying the candidate construction

algorithm in Fig. 5.1 to the reduced training sets as follows:

D′
k = Candi

(

{r(i−1)′
t }t∈Tk

)

, (5.52)

104 Chapter 5. Tree-Structured Iteration Tuned Dictionaries

where Tk is defined in (5.18) (equivalent definitions can be obtained using D′
k =

child(dl−1′
t)). The complexity benefit will follow from carrying the iterative cluster-

ing of the candidate construction algorithm in spaces of decreasing dimensionality.

5.5.7 Practicality for large tree-structures

The rTSITD dictionary we presented in this section allowed us to benefit from

the rich redundancy and low complexity of the TSITD structure while at the

same time mitigating, to some extent, the related TSITD storage overhead. The

resulting reduction in storage overhead is nonetheless too small to render the

scheme practical when considering candidate dictionaries with more than a few

atoms or tree-structures with more than a few layers. The TSITD storage footprint

grows very quickly with the layer index l, and the rTSITD version reduces this

footprint only by a small amount (cf. Fig. 5.5). This shortcoming will be addressed

by the ITD structure introduced in the coming section.

5.6 The Iteration-Tuned and Aligned Dictionary

(ITAD)

The rTSITD structure discussed up to now (and its signal-space version TSITD)

benefits from several important properties including a large redundancy with

tractable decomposition and reconstruction complexity, orthogonality of its selected-

atoms matrix and the resulting equivalence of all three algorithms of the matching

pursuit family. These properties are manifestations of the tree-structuring and the

ensuing fact that TSITD residues at the input of dictionaries Dk, k ∈ Ll, exist

in subspaces of reduced dimensionality d − l + 1. Yet the fact that the number

of (r)TSITD candidate dictionaries per layer will grow rapidly with the layer in-

dex i makes the structure difficult to store and train. As we will now show, the

Iteration-Tuned and Aligned Dictionary (ITAD) that we introduce in this section

succeeds in retaining the dimensionality reduction property of (r)TSITD with a

storage footprint that is nonetheless drastically smaller.

5.6.1 Geometrical motivation for the ITAD alignment op-

eration

In order to arrive at the ITAD structure, let us begin by revisiting the original ITD

structure introduced in Chapter 4 and discussed in Section 5.3. Recall that each

ITD layer l consists of a single candidate Dl and, as a result, ITD enjoys a storage

footprint that grows only linearly with the layer index l. Yet, unlike (r)TSITD,

5.6. The Iteration-Tuned and Aligned Dictionary (ITAD) 105

b′
la b′

lb

{r(l−1)′
t }t∈Gl

⊆ Rd−l+1

{r(l−1)′
t }t∈Sla

φb′

lb
φb′

la

{r(l−1)′
t }t∈Slb

{rl′
t }t∈Gl

⊆ Rd−l

Figure 5.10: The ITAD alignment operation: The residual classes of each atom are

rotated so that their null-spaces as well as their principal bases are aligned. Un-aligned

(respectively, aligned) residual classes are denoted by the oblique (horizontal) ellipses. The

first and second principal components of all three ellipses are denoted by the dashed and

dotted lines.

ITD does not enjoy a reduction of dimensionality across layers l: Considering one

ITD candidate Dl, we observe that the class of residue vectors rl produced by the

l-th layer spans the entire input signal space Rd. However, the class of residue

vectors rl produced by an ITD atom d ∈ Dl does enjoy a reduction in dimen-

sionality since it is contained in the left null-space of d. This suggests aligning

the residual classes of atoms at the output of each ITD layer by rotating them so

that the union of the resulting rotated classes enjoys the reduced dimensionality.

To retain the reduced storage of the ITD structure, this union of aligned classes

can then be used to train a single candidate dictionary in the subsequent layer.

Hence there is some interest in ensuring that the alignment operation not only

serves to reduce the dimensionality of the residual sets but that it further better

structures them for eventual representation with a single dictionary. Thus the

chosen alignment matrix will also ensure that the aligned residual classes share

a common principal basis that will further be the principal basis of the union of

aligned residual classes.

In Fig. 5.10 we illustrate the ITAD alignment process above described: Let

us assume that we have, at the input of the ITAD structure, the set of vectors

{yt}Tt=1 that were used to train the structure. Let

I1 = {t = 1, . . . , T : |yt|2 ≥ dκ2} and (5.53a)

Il = {t ∈ Il−1 : |rl−1
t |2 ≥ dκ2}, l > 1. (5.53b)

106 Chapter 5. Tree-Structured Iteration Tuned Dictionaries

The set of residues at the input of the l-th ITAD layer will be {r(l−1)′
t }t∈Il

. Dic-

tionary matrix B′
l = (b′

la)
N
a=1 will denote the l-th ITAD dictionary, which is called

the prototype dictionary of the l-th layer. Let Sla, a = 1, . . . , N denote a partition

of Il such that residues {r(l−1)′
t }t∈Sla

are those that are assigned to the a-th atom

from layer l, i.e.,

Sla =

{

t ∈ Il : argmax
b′∈B′

l

|(r(l−1)′
t)T b′| = b′

la

}

. (5.54)

The large white and gray dots in Rd−l+1 represent two such sets of residues

{r(l−1)′
t }t∈Slj

, j = a, b for two atoms b′
lj ∈ B′

l. The atom selected for each set

is incorporated into the representation of the signals, producing the sets

{

r
(l−1)′
t −

(

(r
(l−1)′
t)T b′

lj

)

b′
lj

}

t∈Sj
(5.55)

represented by the white and gray dots in the subspaces denoted by ellipses or-

thogonal to the atoms b′
lj. At this point, the ITAD alignment process takes place:

each subspace is rotated so that it coincides with the horizontal plane represent-

ing Rd−l using the rotation matrices denoted φb′
lj
. The union of all residues from

all rotated subspaces is denoted {rl′
t }t∈Il

. Pruning this set according to (5.53b)

produces {rl′
t }t∈Il+1

(not denoted), which is the input residual set of layer l + 1.

The rotation matrices φb′
lj

are selected so that the sets {rl′
t }t∈Slj

also share the

same principal component directions. In the figure, the first and second principal

components of the unaligned, projected residues (i.e., those in the white and gray

ellipses, given by (5.55)) and those of the aligned residues {rl′
t }t∈Slj

(not illustrated

but contained inside the clear ellipse) are denoted by dashed and dotted lines.

Note that in our discussion we have assumed that the input vectors {yt}Tt=1 are

the training vectors used to build the ITAD structure. For a generic input set, the

reduction in dimensionality illustrated in Fig. 5.10 will nonetheless hold, although

the rotation matrices φb′
lj

(which are learned, as we will see) are not guaranteed to

align the principal components of the sets {rl′
t }t∈Slj

. We can however assume that

the training set is a representative sampling of the target signal class, in which

case we can likewise assume alignment of principal components.

5.6.2 The ITAD structure as a particular case of (r)TSITD

The ITAD structure above described is illustrated in Fig. 5.11: Each layer l =

1, . . . , C of the ITAD structure contains a single prototype dictionary matrix B′
l ∈

R(d−l+1)×N . The output residues of each of the atoms of B′
l = (b′

la)
N
a=1 are aligned

/ reduced by means of the corresponding alignment matrix φb′
la
. Note that the

5.6. The Iteration-Tuned and Aligned Dictionary (ITAD) 107

B′
1

1 N

1

B′
2

φb1′

1

B′
l

φb2′

d
d
−

1
d
−

l
+

1

...

φb′

11
φb′

1N

φb′

21
φb′

2N

N

N

b1′

b2′

bl′

φbl′φb′

l1
φb′

lN

a1

al

a2

Figure 5.11: The ITAD structure. An equivalent rTSITD diagram for this structure

can be obtained from the right-hand side of Fig. 5.3 by letting D′
ki

= D′
i and accordingly

substituting each φdi′ by the corresponding φi.

figure resembles the rTSITD structure on the bottom of Fig. 5.3. Indeed the ITAD

structure of Fig. 5.11 is just a particular instance of the general rTSITD structure

in Fig. 5.3 where the tree-nodes of any given layer l are folded unto themselves

because they all contain the same reduced candidate dictionary D′
l. Note that

the unfolded version of the ITAD structure in Fig. 5.11 can be obtained from the

bottom of Fig. 5.3 by (i) substituting general rTSITD dictionaries D′
k, k ∈ Ll, by

the corresponding ITAD prototype dictionary B′
l,

D′
k = B′

l ∀k ∈ Ll, (5.56)

and (ii) substituting general rTSITD branch reduction matrices by the correspond-

ing ITAD alignment matrices,

φd′
ka

= φb′
la
∀k ∈ Ll,∀a = 1, . . . , N. (5.57)

Thus, the ITAD structure will enjoy all the rTSITD properties and applications

discussed in previous sections. In particular, the ITAD signal decomposition and

reconstruction complexity will be that of rTSITD, and the hybrid TSITD/rTSITD

structure discussed in Section 5.5.3 can be implemented using ITAD in place of

the rTSITD component. Furthermore, since rTSITD is just an equivalent repre-

sentation of an underlying TSITD structure, one can also obtain a TSITD repre-

sentation of ITAD corresponding to the top illustration in Fig. 5.3 (this will be

useful to visually inspect the ITAD dictionaries in signal space).

108 Chapter 5. Tree-Structured Iteration Tuned Dictionaries

0 10 20 30 40 50 60

100

101

Number of layers LM

S
to

ra
g
e

g
a
in

N = 64

N = 256

N = 1024

Figure 5.12: Storage gain of ITAD over ITD. Storage is measured in terms of the total

number of matrix entries for the entire structure consisting of C layers.

The fact that ITAD requires storage of a single prototype dictionary per layer

represents an important reduction in storage footprint relative to general (r)TSITD

structures. Note, however, that this comes at the expense of requiring the storage

of the branch reduction matrices: the matrices φb′
kl

will be obtained as part of the

training process and can no longer be built given the related reduced atom and

an orthogonalization algorithm chosen by convention (cf. Section 5.5.3). Yet even

with this consideration, the fact that the ITAD storage footprint grows linearly

with the layer index l results in a drastic storage advantage relative to (r)TSITD

and for all layers l. Even more, for a sufficiently large number of layers C, the

ITAD storage footprint will even be smaller than that of ITD. We illustrate this

point in Fig. 5.12, where we show the gain in storage footprint of ITAD relative

to ITD. Note that, in the figure, N denotes the total number of atoms per ITAD

prototype B′
l as well as the total number of atomes per ITD layer dictionary Dl.

5.6.3 Training the ITAD structure

We now propose a training algorithm to construct the ITAD structure described

above.

5.6.3.1 The prototype dictionary

Similarly to the case of rTSITD reduced candidate dictionaries in (5.52), the

ITAD prototype dictionaries will be constructed using the candidate construction

5.6. The Iteration-Tuned and Aligned Dictionary (ITAD) 109

algorithm in Fig. 5.1 applied to the reduced residuals. However, the training

set will consist of all the (aligned) reduced residual vectors at the output of the

previous layer l − 1, subject to a minimum energy constrain as per (5.53b):

B′
i = Candi

(
{rl−1′

t }t∈Il
}
)
. (5.58)

This approach is justified given (i) the ITAD constraint that a single prototype

dictionary exist per layer and (ii) the assumption that a single atom / coefficient

pair will be chosen from each ITAD layer (as is done for ITDs in general).

5.6.3.2 The alignment / reduction matrices

Regarding the ITAD alignment matrices, recall first that general rTSITD branch

reduction matrices are defined in (5.29) as being any orthonormal basis of the

left null-space of the corresponding reduced atom. Indeed, an infinity of possible

branch reduction matrices will satisfy this constraint. The ITAD scheme uses this

liberty of selection to force the aligned residual classes {rl′
t }t∈Sla

, a = 1, . . . , N to

share a common principal basis that is further the principal basis of the union

of aligned classes. Letting LSV (·) return the left-singular vectors ordered by

decreasing singular value, the previous statement can be expressed as follows:

I = LSV
(
(rl′

t)t∈Sla

)
= LSV

(
(rl′

t)t∈Gl

)
,∀a ∈ {1, . . . , N}, (5.59)

where I is the identity matrix. The right-most equality follows because the prin-

cipal basis of a dataset partitioned into subsets sharing the same principal basis is

given by that same basis. Regarding the left-most equality, the uniquely defined

alignment matrices φb′
la

for this task correspond to the ordered left-singular vec-

tors (excluding the first) of the residual vectors used to train b′
la (equal to the first

left-singular vector). We can express this formally by assuming that the training

process in (5.58) has finished and hence the set of vectors used to train atom b′
la

is given by (rl−1′
t)t∈Sla

. Atom b′
la and its alignment matrix φb′

la
are obtained from

the left-singular vectors of these residues as follows:
[

b′
la | φb′

la

]

= LSV
(
(rl−1′

t)t∈Sla

)
. (5.60)

Notice that the required LSV (·) operation is carried out in line 13 of Fig. 5.1 as

part of the Candi (·) algorithm, and hence the ITAD structure can be trained

using this same algorithm.

5.6.3.3 Example of an ITAD structure

In Fig. 5.13 we carry out a visual inspection of the l-th ITAD prototype dictionary

B′
l (for l = 1, . . . , 4) by plotting its mean atom energy vector given by

b̄
′
l =

1

N
(B′

l ◦B′
l)1, (5.61)

110 Chapter 5. Tree-Structured Iteration Tuned Dictionaries

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

Entry index n

b̄
′ i
(n

)
BITD

ITAD
i = 1
i = 2
i = 3
i = 4

Figure 5.13: Plot of the mean atom energy vector b̄
′
i of the dictionary D′

i (for i =

1, . . . , 4) as defined in (5.61) for ITAD (the corresponding ITD expression follows from (5.61)

by substituting the reduced dictionary D′
i by the signal-space ITD dictionary Di).

where the operator ◦ carries out the entry-wise product of two matrices and 1

is the all-ones vector. As a reference, we plot the corresponding measure for

the first four layers of a ITD structure built using the same training set. Note

that, for l ≥ 2 the ITAD reduced atoms are similar to the first elementary vector

e1 =
[
1 0 . . . 0

]T

which, according to (5.59), is the first principal vector of

the layer’s training set {r(l−1)′
t }t∈Gl

or of any of its atom-input constituent subsets

{r(l−1)′
t }t∈Sla

, a = 1, . . . , N . This is reasonable since the prototype dictionaries are

used to produce single-atom approximations of a layer’s input residuals and the

first principal vector of a dataset by definition provides the optimal single-vector

approximation basis [Klema 1980]. The ITD atoms, on the other hand, display

comparable energy in all positions, suggesting that they are less structured than

their ITAD counterparts. Note that the first ITAD layer also displays comparable

energy in all positions. This is expected since the first set of training residues

{yt}t∈L1 does not consist of aligned subsets.

In Fig. 5.14 we present an example of the corresponding TSITD (signal-space)

representation of the candidate dictionaries of the ITAD structure along three

different branches of the same first four layers shown in Fig. 5.13. Note that

the ITAD alignment operation results in signal-space candidate dictionaries that

display organization and structure: Layers with a higher index l consist of dictio-

naries with higher frequency content. Atoms of successive layers further inherit

the structural constitution and orientation of their ancestor atoms.

1

9

17

25

33

41

49

57

Node ∅

Node {44}

Node {44, 23}

Node {44, 23, 26}

Node {11}

Node {11, 46}

Node {11, 46, 41}

Node {54}

Node {54, 42}

Node {54, 42, 44}

Figure 5.14: An example of ITAD candidate dictionaries (TSITD signal-space repre-

sentation) along three different branches of the tree-structure. Each candidate Dk, k ∈ Ll

is labeled using the indices {a1, . . . , al−1} of its ancestor atoms dj = dkjaj
, kj ∈ Lj . Atom-

indices increase along the rows, as indicated for the root dictionary. The atoms selected

from each dictionary are indicated by a heavy frame. All candidate dictionaries consist of 64

atoms.

112 Chapter 5. Tree-Structured Iteration Tuned Dictionaries

Dictionary Parameters

K-SVD [Aharon 2006b] κ = 8, 40 iterations, DCT initialization

Sparse Dictionary (SD) [Ru-

binstein 2010a]

κ = 14, La = 15, 40 iterations, random ini-

tialization, DCT base dictionary of same size

Online Learned Dictionary

(ONLD) [Mairal 2010a]

κ = 10, 1000 seconds

Table 5.3: Parameters used for reference trained dictionaries in Fig. 5.16 and Fig. 5.17.

5.7 Results

In this section we evaluate the proposed TSITD and ITAD dictionaries by com-

paring them against (i) the ITD scheme of Chapter 4; (ii) the complete DCT

dictionary used in the JPEG standard; (iii) its overcomplete version (widely used

for initialization of learning schemes); and the state-of-the-art (iv) K-SVD dic-

tionary [Aharon 2006b], Online Learned Dictionary (ONLD) [Mairal 2010a] and

(v) Sparse Dictionary (SD) [Rubinstein 2010a].

In a first experiment, we evaluate the PSNR of the sparse approximations

obtained with the various dictionaries as a function of sparsity. Better sparse

representations are likely to result in better performance in various real-life ap-

plications [Guleryuz 2006, Mallat 2008]. The second and third experiments thus

evaluate the performance of the various dictionaries in the context of image com-

pression and image denoising. For the denoising experiment, we only compare

against K-SVD , although comparisons against various other schemes (including

one based on the overcomplete DCT) can be found in [Elad 2006b] and subsequent

publications. See [Chatterjee 2010] for a survey and interesting exploration of the

theoretical limits of image denoising.

5.7.1 Summary of results

We show experimentally that, because of the large size of the TSITD tree struc-

ture, certain TSITD configurations suffer from over-fitting to the training data,

subsequently affecting TSITD performance when evaluated on a test set different

from the training set. Our tests show that ITAD does not suffer from over-fitting.

For the denoising experiment, the training and test data are the same, and thus

TSITD over-fitting is not an issue. Thus in that experiment we observe that ITAD

generally outperforms ITD and under-performs when compared to TSITD, corre-

sponding respectively to an increased redundancy relative to ITD and a reduced

5.7. Results 113

redundancy relative to TSITD.

When compared against the (overcomplete) DCT and the state-of-the-art K-

SVD , ONLD and SD dictionaries (experiments 1 and 2), our scheme will prove

to offer significant advantages in terms of performance / complexity tradeoff.

5.7.2 Dictionary training

The number of atoms in each ITAD prototype dictionary is specified using a

nominal value N . The actual number of atoms Nk of each D′
k is selected to ensure

that at least 5 training samples exist per candidate dictionary atom using

Nk = min(N,

⌊ |Tk|
5

⌋

), (5.62)

were |Tk| is the size of the residual training set used to train Dk (cf. (5.18)).

In all experiments, training signals (respectively, test signals) will be decom-

posed using an RMSE threshold (cf. (5.8)) denoted κ (ε). We use ITD-MP for

all ITD schemes and OMP for all fixed-dictionary schemes. For ITDs in general

(including ITAD), the training threshold κ serves to prune the training set at

the input of successive layers since training residuals satisfying |ri−1
Ai
| < d · κ2 are

implicitly removed from the training set.

Training of K-SVD , ONLD and SD dictionaries is done using the software

made publicly available by the authors [Aharon 2006a, Mairal 2010b, Rubin-

stein 2010c]. The parameters used for each scheme are specified in Table 5.3.

We used extensive experimentation to select these parameters following the pro-

cedure detailed in Appendix 5.A. Note that this procedure favors the reference

dictionaries over ITAD, as it consist of using the dictionary (learned over the

training set) that yields the best curve computed over the testing set (the ITAD

learning scheme had knowledge only of the training set). For experiments 1 and

2, ITAD further required no parameter selection, as we set κ = 0 and C = d/2 for

these first two experiments.

5.7.3 Datasets

Throughout our experiments we use image blocks of size 8×8 to form signal vectors

y. For the first two experiments (sparsity vs. PSNR and compression) we will use

a dataset that is very similar to the one used in the K-SVD paper [Aharon 2006b].

It consists of frontal pose face images of 545 different subjects from the FERET

dataset [Phillips 2000]: the first 445 images comprise the training set and the

remaining 100 images comprise the test set. The size of each image is 768× 512,

114 Chapter 5. Tree-Structured Iteration Tuned Dictionaries

Figure 5.15: Sample images from the FERET dataset used for PSNR vs. sparsity and

compression experiments.

for a total of 2.7 × 106 training vectors and 6.1 × 105 test vectors. We provide

some sample images in Fig. 5.15. This is the same dataset used in Chapter 4.

For the denoising experiment we will work with commonly used images (pep-

pers256 and Barbara).

5.7.4 Experiment 1: PSNR vs. sparsity

Reference ITAD

Dictionary N PSNR Gain (dB) Complexity Gain (×)

DCT-256 32 0.47 1.45

K-SVD 64 0.30 3.96

SD 32 0.24 3.20

ONLD 32 0.58 7.76

Table 5.4: ITAD (N atoms) compressibility and complexity gains over reference dictio-

naries (256 atoms). The value of N used in the comparisons (column N) corresponds to

the lowest N resulting in an ITAD PSNR advantage across all sparsities shown in Fig. 5.16.

The values of columns PSNR Gain and Complexity Gain are measured using L = 2.5 and

assuming an hTSITD implementation of ITAD. Complexity gains are given in Fig. 5.9 top for

K-SVD / ONLD and bottom for SD. Complexities for the overcomplete DCT follow from

(5.50) and the related discussion.

In the top of Fig. 5.16 we compare the approximation error produced by ITAD,

ITD and TSITD as a function of the sparsity of the representation. Given the fact

that ITAD is just a constrained instance of (r)TSITD, one would expect TSITD

to outperform ITAD. One would further expect the greater redundancy exposed

5.7. Results 115

by the ITAD / (r)TSITD tree-structures to result in improved performance over

ITD. The ITAD behavior relative to ITD is indeed as expected: ITAD outperforms

ITD for all dictionary sizes. However, ITAD also outperforms TSITD for N ≥ 64.

TSITD becomes over-fitted to the training data for sufficiently high N given the

exponential growth of the TSITD layers. ITAD, on the other hand, does not

suffer from an exponential growth of its layers and thus does not suffer from over-

fitting. Hence ITAD can outperform TSITD with comparable decomposition /

reconstruction complexity (cf. rTSITD curves in the top of Fig. 5.8) and a storage

footprint comparable (or even smaller) to that of ITD (cf. Fig. 5.12).

In the middle and bottom of Fig. 5.16 we also compare the PSNR vs. sparsity

performance of ITAD versus the complete and overcomplete DCT dictionary and

the state-of-the-art learned dictionaries K-SVD , ONLD and SD. The results re-

ported for the reference learned dictionaries correspond to the best curve obtained

when varying the training parameters over a reasonable range (cf. Appendix 5.A).

Note that ITAD structures having N < 256 atoms per candidate outperform all

reference fixed-dictionary schemes of 256 atoms. This gain in compressibility is

hence attained at a reduced decomposition / reconstruction complexity. In Ta-

ble 5.4 we summarize these results by displaying the PSNR and complexity gains

over the reference schemes for select N using a sparsity of L = 2.5.

We note that the results in Fig. 5.16 indicate that K-SVD can outperform SD

in terms of compressibility, which seems to contradict [Rubinstein 2010a], where it

is stated that the restricted structure of the SD scheme makes it less predisposed to

become over-fitted to the training data. We believe that the optimal number of free

optimization variables (note that for K-SVD this is d ·N) is inversely proportional

to the redundancy of the data class. The data class used in [Rubinstein 2010a] is

indeed very redundant, as it consists of CT images of a fixed body part. These

images are more similar across different subjects than their corresponding face

images taken in uncontrolled conditions (as is the case for the FERET dataset).

Furthermore, as observed in [Rubinstein 2010a], the size of the training set also

influences the relative performance of the two schemes, and indeed we use much

larger training sets (2.7× 106 as opposed to at most 8× 104).

5.7.5 Experiment 2: Image compression

We now evaluate the performance of ITAD in the context of image compression by

plotting analytically derived (cf. Appendix 5.B) rate-distortion curves. Note that

schemes based on overcomplete dictionaries have recently been used to construct

image codecs that perform comparably [Sezer 2008] or even significantly better

[Bryt 2008] than the state-of-the-art JPEG2000 [Adams 2005] algorithm.

In the top of Fig. 5.17 we plot the rate-distortion curves for ITAD, TSITD

1 1.5 2 2.5 3 3.5 4 4.5
32

34

36

38

l-0 norm

P
S
N

R

ITAD vs. BITD / TSITD

ITD

TSITD

ITAD

N = 16

N = 64

N = 256

1 1.5 2 2.5 3 3.5 4 4.5
32

34

36

38

l-0 norm

P
S
N

R

ITAD vs. (overcomplete) DCT

ITAD

DCT

N = 16

N = 32

N = 64

N = 128

N = 256

1 1.5 2 2.5 3 3.5 4 4.5
32

34

36

38

l-0 norm

P
S
N

R

ITAD vs. K-SVD / SD / ONLD

ITAD

K-SVD

SD

ONLD

N = 16

N = 32

N = 64

N = 128

N = 256

Figure 5.16: PSNR vs. sparsity. Top: ITAD vs. ITD and TSITD; bottom: ITAD

vs. K-SVD and the (over)complete DCT. N denotes the number of atoms per layer (ITD),

per candidate dictionary (TSITD), per prototype dictionary (ITAD) and per fixed-dictionary

(K-SVD , ONLD and SD), resulting in comparable complexities for all schemes.

0.4 0.6 0.8 1 1.2 1.4 1.6

34

36

38

Rate (bpp)

P
S
N

R

ITAD vs. BITD / TSITD

ITD

TSITD

ITAD

N = 16

N = 64

N = 256

0.4 0.6 0.8 1 1.2 1.4 1.6

34

36

38

Rate (bpp)

P
S
N

R

ITAD vs. (overcomplete) DCT

ITAD

DCT

N = 16

N = 32

N = 64

N = 128

N = 256

0.4 0.6 0.8 1 1.2 1.4 1.6

34

36

38

Rate (bpp)

P
S
N

R

ITAD vs. K-SVD / SD / ONLD

ITAD

K-SVD

SD

ONLD

N = 16

N = 32

N = 64

N = 128

N = 256

Figure 5.17: Rate-distortion curves: (top) ITAD vs. ITD / TSITD; (bottom) ITAD vs.

DCT / K-SVD. N denotes the number of atoms per layer (ITD), per candidate dictionary

(TSITD), per prototype dictionary (ITAD) and per fixed-dictionary (K-SVD , ONLD and

SD), resulting in comparable complexities for all schemes.

118 Chapter 5. Tree-Structured Iteration Tuned Dictionaries

Reference ITAD

Dictionary N PSNR Gain (dB) Complexity Gain (×)

DCT-256 32 0.09 1.45

K-SVD 64 0.12 3.96

SD 32 0.38 3.20

ONLD 16 0.26 14.90

Table 5.5: ITAD (N atoms) rate-distortion and complexity gains over reference dictio-

naries (256 atoms). The value of N used in the comparisons (column N) corresponds to

the lowest N resulting in an ITAD PSNR advantage across all rates shown in Fig. 5.17. The

PSNR Gain is measured at 1 bpp and the Complexity Gain at L = 2.5 and assuming an

hTSITD implementation of ITAD. Complexity gains are given in Fig. 5.9 top for K-SVD /

ONLD and bottom for SD. Complexities for the overcomplete DCT follow from (5.50) and

the related discussion.

and ITD. The curves display a trend similar to that observed in Fig. 5.16: TSITD

performance drops with increasing N relative to that of ITD due to over-fitting

and again ITD outperforms TSITD for N > 64. ITAD, on the other hand, does

not suffer from over-fitting and outperforms ITD uniformly. At a rate of 1 bpp

ITAD outperforms both ITD and TSITD by at least 0.25 dB for N = 64 and by at

least 0.18 dB for N = 256. This performance benefit comes at a complexity that

is comparable to that of either TSITD or ITD (or even lower, if the hTSITD con-

figuration of ITAD were used instead, cf. Section 5.5.6.1) and a storage footprint

below that of ITD.

In the middle and bottom of Fig. 5.17 we compare ITAD to the (overcomplete)

DCT and K-SVD , SD and ONLD. The curves show that, for a fixed N , ITAD

offers a significant advantage relative to the other schemes. At 1 bpp, the differ-

ence is 0.9 dB relative to the best reference curve (K-SVD for N = 256). This

performance improvement over K-SVD comes with the added benefit of reduced

complexity (cf. bottom of Fig. 5.8). Since the other reference dictionaries (except

ONLD) are designed with complexity in mind, in Table 5.5 we show that ITAD is

able to outperform them in terms of rate-distortion (PSNR) and at the same time

enjoy a lower complexity.

5.7.6 Experiment 3: Denoising

We now test the denoising performance of the proposed structured dictionaries

in additive white Gaussian noise. We use the overcomplete-dictionary image de-

5.7. Results 119

ε/σ κ/σ λ · σ
Fig. 5.18 Top Middle Bottom

BITD 1.15 1.15 30

TSITD 1.15 1.30 1

Table 5.6: Denoising parameters selected corresponding roughly to the maxima of the

curves in Fig. 5.18.

noising method introduced by Elad et al. in [Elad 2006b]: the method consists of

first obtaining 64 sparse approximations of each image pixel (one per each 8 × 8

block containing the pixel). The denoised pixel estimate is then obtained from

the sum of these estimates and a weighted version of the input noisy image. The

weight λ applied to the noisy image is chosen as a function of the noise variance σ

(assumed known). The denoising algorithm is thus defined by λ and the training

and decomposition RMSE thresholds κ and ε. To select these three parameters,

we use image peppers256 and a noise variance σ = 10. In Fig. 5.18 we illustrate

the resulting curves used to select the three parameters for BITD and TSITD; the

chosen parameters are indicated in Table 5.6. When choosing the first parameter

ε (top of Fig. 5.18) we use κ = ε and the best λ (chosen from a finite set). When

choosing κ (middle of Fig. 5.18), we use the previously selected ε and the best λ.

Both ε and κ are fixed to the previously chosen values when choosing λ (bottom

of Fig. 5.18). Note that we only select parameters using σ = 10 and thus can

expect improved performance if the parameters were adapted to each noise level.

In Fig. 5.19 we plot the objective denoising results for three images: peppers256,

house and Barbara. The PSNR difference displayed is relative to the K-SVD

results (N = 256) reported in [Elad 2006b] and uses the same experimental setup,

including averaging the PSNR of the denoised image over 5 noise realizations. We

note in particular that improvements over K-SVD are possible even for BITD

dictionaries with N = 64. TSITD further improves upon BITD for 29 out of

the 36 plotted points (corresponding to 3 images, 6 noise levels, and 2 values of

N). For N = 256, TSITD outperforms BITD for 15 out of the 18 points plotted

since both training and test data sets correspond to the denoised image and thus

over-fitting is not an issue for large N (unlike Fig. 5.16 and fig:rxdxITAD).

In Fig. 5.20 we also present subjective results of the BITD and TSITD denoised

versions of barbara for σ = 10. Note how the dictionary used succeeds in retaining

edge details and cloth patterns.

1 1.1 1.2 1.3
0

0.5

1

Decomposition εD/σ

P
S
N

R
D

iff
er

en
ce

(d
B

)

Selection of decomposition threshold εD

BITD

TSITD

N = 64

N = 256

1 1.1 1.2 1.3 1.4 1.5

−0.1

0

0.1

0.2

0.3

εT /σ

P
S
N

R
D

iff
er

en
ce

(d
B

)

Selection of pruning threshold εT

BITD

TSITD

N = 64

N = 256

0 10 20 30 40 50 60 70

−0.2

−0.15

−0.1

−0.05

0

0.05

λ · σ

P
S
N

R
D

iff
er

en
ce

(d
B

)

Selection of λ

BITD

TSITD

N = 64

N = 256

Figure 5.18: Selection of denoising parameters using image peppers256 and σ = 10.

The selected parameters are specified in Table 5.6. The PSNR difference is relative to the

left-most point of each curve.

5 10 15 20 25

−0.2

−0.1

0

0.1

0.2

0.3

σ

P
S
N

R
D

iff
er

en
ce

(d
B

)

Peppers256

BITD

TSITD

N = 64

N = 256

5 10 15 20 25

−0.2

−0.1

0

0.1

0.2

0.3

σ

P
S
N

R
D

iff
er

en
ce

(d
B

)

House

BITD

TSITD

N = 64

N = 256

5 10 15 20 25

−0.2

−0.1

0

0.1

0.2

0.3

σ

P
S
N

R
D

iff
er

en
ce

(d
B

)

Barbara

BITD

TSITD

N = 64

N = 256

Figure 5.19: PSNR difference (dB) relative to the results reported in [Elad 2006b] for

various test images.

122 Chapter 5. Tree-Structured Iteration Tuned Dictionaries

Figure 5.20: Qualitative denoising results for image barbara. From top-left, clockwise:

original, noisy, TSITD denoised, BITD denoised.

5.7.6.1 Comparison against ITAD

In Fig. 5.21 we plot the objective denoising results for ITAD with N = 256 com-

puted on images peppers256 and Barbara. We repeat the corresponding plots for

both ITD and TSITD from Fig. 5.19. The PSNR difference displayed is again

relative to the K-SVD results reported in [Elad 2006b] and uses the same experi-

mental setup. Note that TSITD outperforms ITD for 9 out of the 12 points plotted

since both training and test data sets correspond to the denoised image and thus

over-fitting is not an issue for large N (unlike Fig. 5.16 and Fig. 5.17). Thus, for

the images displayed, TSITD performs best in general, followed by ITAD, and

finally by ITD.

5.8 Conclusion

We introduced a new Iteration-Tuned Dictionary (ITD), the Iteration-Tuned and

Aligned Dictionary (ITAD), that succeeds in retaining the large redundancy of

the Tree-Structured Iteration-Tuned Dictionary with a drastically smaller storage

footprint. ITAD accomplishes this task by means of an alignment matrix that

aligns the residues of the atoms of each layer. The alignment operators are trained

5.8. Conclusion 123

5 10 15 20 25

0

0.1

0.2

σ

P
S
N

R
D

iff
er

en
ce

(d
B

)

Peppers256

BITD

TSITD

ITAD

N = 256

5 10 15 20 25

0

0.05

0.1

0.15

0.2

σ

P
S
N

R
D

iff
er

en
ce

(d
B

)

Barbara

BITD

TSITD

ITAD

N = 256

Figure 5.21: PSNR difference (dB) relative to the results reported in [Elad 2006b] for

various test images.

to produce aligned residual sets that share a common principal basis further shared

by the union of aligned classes. We compared the resulting structure to previous

ITDs as well as to other well established dictionary structures and showed that

ITAD indeed offers an advantage in terms of sparse approximation capability, as

well as in two practical scenarios, compression and denoising.

124 Chapter 5. Tree-Structured Iteration Tuned Dictionaries

Appendix 5.A Parameter selection for reference

dictionaries

In this appendix we provide the experimental curves used to select the parameters

specified in Table 5.3 for the reference trained dictionaries: the K-SVD dictionary

of [Aharon 2006b], the Online Learned Dictionary (ONLD) of [Mairal 2010a], and

the Sparse Dictionary (SD) of [Rubinstein 2010a]. The training methods of all

three reference dictionaries require a decomposition RMSE value κ (cf. (5.8)).

The SD scheme further requires an atom sparsity La. Note that the ITAD curves

did not require any parameter tuning (κ was set to 0 for all ITAD setups in

Fig. 5.16 and Fig. 5.17).

The dictionaries are trained using the facial image training dataset described at

the beginning of Section 5.7, but the parameter selection curves presented in this

appendix are obtained using the corresponding facial image testing dataset. Note

that this favors the performance of the reference methods over ITAD, as ITAD has

no knowledge of the testing set. All training is carried out using the code made

available by the authors [Aharon 2006a, Mairal 2010b, Rubinstein 2010c].

We present PSNR versus sparsity curves throughout, but we note that the

corresponding rate-distortion curves displayed similar relative curve positions as

a function of the parameter values. In all figures, the curve corresponding to the

selected parameter is the only solid (not dash-dotted) curve.

5.A.1 Selection of K-SVD parameter κ [Aharon 2006b]

We run 40 iterations of the K-SVD training algorithm. This number is greater

than the number of iterations used in [Aharon 2006b, Bryt 2008, Elad 2006b].

Fig. 5.22 shows the results of experiments used to select κ = 8.

5.A.2 Selection of SD parameters La and κ [Rubinstein 2010a]

We use an SD dictionary of the form D = BA ∈ R64×256 with a square sparsity

matrix A having La non-zero coefficients per row and a separable overcomplete

DCT base dictionary B ∈ R64×256. This setup is similar to that used in [Rubin-

stein 2010a] (they use 100 atoms). We selected La = 15 using the curves illustrated

in Fig. 5.23 and κ = 14 using the curves in Fig. 5.17. We run 40 iterations of the

training method, which is greater than the number used in [Rubinstein 2010a].

1.5 2 2.5 3 3.5
34

35

36

37

38

39

l-0 norm

P
S
N

R

K-SVD parameter εT

ε = 4
ε = 6
ε = 8
ε = 10
ε = 12
ε = 14

Figure 5.22: Selection of K-SVD training RMSE threshold κ (cf. (5.8)). From top

to bottom at an l-0 of 2.2, the curves correspond to values of κ = 8, 6, 10, 4, 12, 14. The

selected value used in the experiments of Fig. 5.16 and Fig. 5.17 is κ = 8.

1.5 2 2.5 3 3.5 4
34

35

36

37

38

39

l-0 norm

P
S
N

R

SD parameter La

La = 5

La = 10

La = 15

La = 20

La = 25

Figure 5.23: Selection of SD atom sparsity La. From top to bottom at an l-0 of 3.8,

the curves correspond to values of La = 15, 25, 20, 10, 5. The selected value used in the

experiments of Fig. 5.16 and Fig. 5.17 is La = 15.

1 2 3 4 5 6 7
25

30

35

l-0 norm

P
S
N

R
SD parameter εT for La = 15

ε = 10
ε = 12
ε = 13
ε = 14
ε = 15
ε = 16

Figure 5.24: Selection of SD training RMSE threshold κ (cf. (5.8)) using La =

15. From top to bottom at an l-0 of 3, the curves correspond to values of κ =

14, 15, 10, 13, 17, 16. The selected value used in the experiments of Fig. 5.16 and Fig. 5.17

is κ = 14.

2 2.5 3 3.5 4 4.5 5
35

36

37

38

39

l-0 norm

P
S
N

R

ONLD parameter εT

ε = 8
ε = 10
ε = 12
ε = 14

Figure 5.25: Selection of ONLD training RMSE threshold κ (cf. (5.8)). From top to

bottom at an l-0 of 3, the curves correspond to values of κ = 10, 12, 14, 8. The selected

value used in the experiments of Fig. 5.16 and Fig. 5.17 is κ = 10.

5.B. Rate-distortion analysis for codecs based on overcomplete
dictionaries 127

5.A.3 Selection of ONLD parameter κ [Mairal 2010a]

We used κ = 10 for the ONLD method D ∈ R64×256 using the curves illustrated

in Fig. 5.25. We ran the method for 1000 seconds as this value is shown exper-

imentally to be sufficient for convergence in various curves of [Mairal 2010a] for

comparable training sets. Furthermore, we used a dedicated 16 core CPU (the

program is multi-threaded and used all cores).

Appendix 5.B Rate-distortion analysis for codecs

based on overcomplete dictionar-

ies

Consider a general sparse representation of a signal vector y ∈ Rd defined by a

set of L atom-index / coefficient pairs (a, γ). The indices a specify the columns

of the overcomplete dictionary used in the representation and we group these

selected columns to form the selected-atoms matrix S. We group the corresponding

coefficients likewise to form the vector Γ. Without quantization of coefficients, we

can thus write

y = SΓ + r, (5.63)

where r is the approximation residual vector. The number of (a, γ) pairs L is

chosen to satisfy an RMSE threshold ε:

L s.t.
√

|r|2/d ≤ ε. (5.64)

An expression for the rate and distortion of codecs using overcomplete dictio-

naries needs to take into account (i) the lossy coding of the coefficients, (ii) the fact

that the non-orthogonality of the dictionary means that the distortion in trans-

form space is not equal to the distortion in signal space, and (iii) the encoding of

the selected atom indices.

To lossy coding of the coefficients will be accounted for using an additive

quantization noise model q. From (5.63), the resulting distortion X will be given

by:

X = E
(
|y − S(Γ + q)|2

)
= E

(
|r− Sq|2

)

= E
(
|r|2
)
− 2E

(
rT Sq

)
+ E

(
qT ST Sq

)
. (5.65)

We assume that q is uncorrelated to rT S and thus we can discard the second

term in the above expression. Note that this assumption is not necessary for

decomposition schemes (eg., OMP [Pati 1993], OOMP [Rebollo-Neira 2002] and

128 Chapter 5. Tree-Structured Iteration Tuned Dictionaries

BP [Chen 2001]) that enforce orthogonality between the residual vector r and the

selected atoms in S.

Regarding the third term, we note that ST S contains unit valued diagonal

entries; we let ST S = I + G for some symmetric matrix G having zeros along

its diagonal and with SVD UG∆GUT

G . (Note that G = 0 for dictionaries that

produce orthogonal selected atom matrices, eg., orthogonal transforms and unions

of orthogonal bases [Sezer 2008]).

Letting qU = UT

G q, we can write

E
(
qT ST Sq

)
= E

(
|q|2
)

+ E
(
qT

U ∆GqU

)
(5.66)

= E
(
|q|2
)

+ E

(
∑

k

qU(k)2∆G(k, k)

)

. (5.67)

Note that the term qU(k)2 is strictly positive with probability one. Furthermore,

for non-orthogonal S, ∆G(k, k) is strictly positive for all 1 ≤ k ≤ rank(S). Hence

this second term represents a non-orthogonality penalty.

5.B.1 Distortion as a function of quantization noise vari-

ance

In analyzing the compression potential of an overcomplete dictionary, we wish to

avoid delving into the quantizer design, and for this reason it would be convenient

to summarize vector q in (5.67) into a single quantizer parameter (i.e., the quan-

tization noise variance). In order to do so, we note first that the expectations in

(5.67) involve quantities q ∈ RL, qU ∈ RL and ∆G ∈ RL×L, of dimensionality

that depends on the random variable L. In order to simplify the analysis, we

hence assume that, when conditioned on L, the entries of q (i) have variance σ2
q

and (ii) are uncorrelated:

E
(
qqT

∣
∣ L
)

= σ2
qI. (5.68)

We thus proceed by first expressing the left-hand term of (5.67) as a function

of the quantization noise variance σ2
q as follows:

E
(
|q|2
)

=
∑

L∈Z

(∫

RL

|q|2p(q|L) dq

)

p(L) (5.69)

=
∑

L∈Z

σ2
qLp(L) (5.70)

= σ2
qE (L) . (5.71)

5.B. Rate-distortion analysis for codecs based on overcomplete
dictionaries 129

Likewise, we can express the right-hand term of (5.67) as a function of σ2
q as

follows:

E

(
∑

k

qU(k)2∆G(k, k)

)

=
∑

L∈Z

[∫

RL×L

∫

RL

L∑

k=1

qU(k)2∆G(k, k)·

p(qU|G, L)p(G|L) dqU dG

]

p(L) (5.72)

=
∑

L∈Z

[∫

RL×L

L∑

k=1

∆G(k, k)

∫

RL

|qU(k)|2p(qU|G, L) dqU

p(G|L) dG dL

]

p(L). (5.73)

The inner-most integral in this last expression evaluates to σ2
q as follows from the

fact that the entries of qU are uncorrelated and white when conditioned on G and

L:

E
(
qUqT

U

∣
∣ G, L

)
= E

(
UT

G qqT UG

∣
∣ G, L

)
(5.74)

= UT

G E
(
qqT

∣
∣ L
)
UG (5.75)

= σ2
qI. (5.76)

Using this, expression (5.73) thus reduces to

E

(
∑

k

qU(k)2∆G(k, k)

)

= σ2
qE

(
L∑

k=1

∆G(k)

)

. (5.77)

Using this last expression along with (5.71), we arrive at last at the following

expression for the distortion in (5.67) as a function of σ2
q :

X = E
(
|r|2
)

+ σ2
q ·
(

E (L) + E

(
∑

k

∆G(k, k)

))

. (5.78)

5.B.2 Estimate of the rate

To obtain an expression for the rate, we assume that the coded stream consists of

the number of atoms L followed by the L atom index / coefficient pairs (a, γ). If

130 Chapter 5. Tree-Structured Iteration Tuned Dictionaries

we treat the coefficients γ as a random source of continuous-valued symbols, the

coding rate at a given distortion σ2
q is known to be [Mallat 2008]

Hd (γ)− 1

2
log2(12σ2

q),

where Hd (·) denotes the differential entropy. Letting H (·) denote the entropy for

finite alphabets, we can write an estimate of the rate in bits per patch for a sparse

coded patch of size
√

d×
√

d as follows:

R = H (L) + E (L) ·
(

H (a) +Hd (γ)− 1

2
log2(12σ2

q)

)

. (5.79)

We note that, unlike ITD frameworks, the order of the atom-index / coefficient

pairs is irrelevant for traditional fixed-dictionary representations where the atom

indices a1, . . . , aL all reference the same dictionary D. Thus for these fixed-

dictionary cases, instead of H (a) in (5.79), we consider also the entropy of the

difference (ai − ai−1) after sorting the ai such that 0 = a0 < a1 < . . . < aL.

The value for the atom-index entropy used in (5.79) will be the lowest of the two

possibilities.

Both X and R in (5.78) and (5.79) require the quantization noise power σ2
q .

To obtain an estimate of this value, we note that there are two different ways to

increase the rate of a coded patch:

1. by adding more (a, γ) pairs to the coded stream while keeping the quantizer

fixed (i.e., fixed σ2
q) or

2. by increasing the quantization rate (i.e., decreasing σ2
q) for the same set of

(a, γ) pairs.

We wish to obtain σ2
q values corresponding to the boundary of the rate-distortion

region defined by (5.78) and (5.79). To do so, we note that, at the rate-distortion

boundary, the change in distortion resulting from either method of rate control has

to be equal (otherwise the distortion can be reduced for fixed rate by transferring

bits between the two rate control methods). We let (∆ R)k and (∆ X)k (for k =

1, 2) denote, respectively, the change in rate under the k-th method of rate control

and the corresponding change in distortion. The previously stated rate-distortion

boundary constraint is thus:

(∆ X)1

(∆ R)1

=
(∆ X)2

(∆ R)2

. (5.80)

We will solve this equality for σ2
q to obtain the optimal σ2

q as a function of the

decomposition threshold ε. We proceed by first computing all the entropies and

5.B. Rate-distortion analysis for codecs based on overcomplete
dictionaries 131

expectations appearing in (5.78) and (5.79) as a function of ε. The change in

distortion and change in rate under the first method of rate control (fixed σ2
q) will

then be:

(∆ X)1 =∆
(
E
(
|r|2
))

+ σ2
q ·∆

(

E (L) +
∑

k

E (∆G(k, k))

)

, (5.81)

(∆ R)1 =∆ (H (L) + E (L) · (H (a) +Hd (γ)))−
1

2
∆ (E (L)) · log2(12σ2

q). (5.82)

To obtain the corresponding quantities under the second method of rate con-

trol, we consider adding on average one more quantization bit to each of the y

coefficients. This will have the effect of halving the quantizer bin size, effectively

reducing the quantization noise power from σ2
q to σ2

q/4 (a difference of (3/4)σ2
q):

(∆ X)2 =
3

4
σ2

q ·
(

E (L) +
∑

k

E (∆G(k, k))

)

, (5.83)

(∆ R)2 =Ly. (5.84)

Chapter 6

Image Compression Using the

Iteration-Tuned and Aligned

Dictionary

6.1 Introduction

Recent research effort has been dedicated to learning dictionaries which would

thus be adapted to a signal class for the purpose of image compression. By using

a learned dictionary, the image encoder can benefit from the ensuing greater com-

pressibility of the considered signal class. An example of this approach is embodied

in the facial image codec based on the K-SVD dictionary introduced by Bryt and

Elad [Bryt 2008]. Their approach nonetheless employs a piecewise-affine warping

of the face that ensures that the various facial features coincide with those of a pre-

specified face template. Each block of the face template (corresponding roughly

to a facial feature such as the nose) thus defines a class of signals that is then

represented with a corresponding K-SVD dictionary. It is important to note that

the compressibility of the image blocks in that approach relies, to a large extent,

not on the K-SVD dictionary but rather on the affine warping procedure. This

warping procedure in turn increases the codec complexity and is further sensitive

to image variations encountered in practical scenarios (eg., in lighting conditions,

pose and particularities of the subject).

Another example of an image compression system based on trained overcom-

plete dictionaries is that developed by Sezer et al. [Sezer 2008]. Their dictionary

structure consists of a concatenation of orthogonal bases. A single one of this

basis is selected to encode any given image block of fixed size. This approach has

the advantage that it reduces the atom-index coding overhead, yet it also reduces

the effective size of the dictionary.

In this chapter we introduce a new image codec based on the Iteration-Tuned

and Aligned Dictionary (ITAD) of Chapter 5. The ITAD structure is a recently

introduced learned structured dictionary that has been shown to outperform other

learned overcomplete dictionaries. ITAD is a particular case of the more general

Iteration-Tuned Dictionary (ITD) framework consisting of a dictionary structure

134 Chapter 6. Image Compression Using ITAD

adapted to the iterative nature of greedy pursuit algorithms such as those of the

matching pursuit family [Mallat 1993, Pati 1993, Rebollo-Neira 2002]. The pro-

posed codec uses the ITAD transform to encode the mean-removed image blocks,

while the block-mean is encoded using a common DPCM-based arrangement. The

ITAD transform coefficients are encoded using a simple uniform quantizer / en-

tropy encoder combination, while the atom indices are encoded using a fixed-length

code. We further introduce a new global method for jointly selecting the spar-

sity of the image blocks based on a rate-distortion criterion. The proposed ITAD

codec is shown to outperform the JPEG and JPEG2000 compression standards in

quantitative and qualitative evaluations.

We begin in the following section (Section 6.2) by first reviewing the ITAD

structure that is at the core of our codec. Then, in the subsequent section (Sec-

tion 6.3), we introduce the codec structure and, in particular, develop a global

(image-wide) rate-distortion criterion that allows us to better select the sparsity

of each of the component image blocks. We then carry out both quantitative

and qualitative evaluations of our codec (Section 6.4), comparing it against both

JPEG and JPEG2000 standards. Finally, we provide some concluding remarks in

the conclusion section (Section 6.5).

6.2 Notation

For ease of analysis, throughout our discussion we we will use the TSITD rep-

resentation of ITAD. Hence the structure is assumed to consist of K candidate

dictionaries Dk ∈ RN×d organized into nodes k of a tree-structure. The l-th level

of the structure consists of nodes k ∈ Ll ⊂ {1, . . . , K}. As before, we let k1 = 1

denote the root node, the sequence k1, k2, . . . , kl denote a sequence of descendant

nodes, and dj ∈ Dkj
a corresponding sequence of descendant atoms. Hence we

can arrange the atoms selected up to the i-th MP iteration into the selected-atoms

matrix

Si =
[
d1 . . . di

]
(6.1)

and, along with the corresponding MP coefficients vector Γi =
[
γ1 . . . γi

]T

,

we can write the i-th approximation of an input signal y as

ŷi = SiΓi. (6.2)

The choice of atoms and coefficients calculation can be expressed in signal space

as follows:

di = argmax
d∈Di

∣
∣(d)T · ri−1

∣
∣ , (6.3a)

γi =(di)T ri−1. (6.3b)

6.3. The proposed image codec 135

The approximation residue ri will satisfy

y = ŷi + ri. (6.4)

In our subsequent discussion we will also take advantage of the property

(Si−1)T Di = 0 (6.5)

outlined in Corollary 5.5.1, Pg. 92.

Recall (Section 5.2, Pg. 80) that the notation dj is shorthand notation for

dkjaj
, i.e., dj is an atom that is column aj of dictionary Dkj

. Note that, given

the TSITD tree-structured atom selection constrain, the node index kj is uniquely

specified by the sequence of ancestor atoms:

kj ⇐⇒ {a1, . . . , aj}. (6.6)

Our strategy will be to code the atom indices, and thus we use

aj = index(dj) (6.7)

to denote the atom index of a given atom.

We will employ a block-coding strategy wherein an image is split into B non-

overlapping blocks. When necessary, we will hence use a subscript b notation to

differentiate quantities belonging to different blocks of the image. Hence di
b, aib

and γbi will denote, respectively, the i-th selected atom for block b, its atom index,

and the corresponding coefficient.

6.3 The proposed image codec

We now present the proposed ITAD image codec that is the main contribution

of this chapter. The encoder uses the ITAD transform to compress the mean-

removed component of image blocks taken over a regular grid; we refer to the mean

of a block and a block’s mean-removed version as its DC and AC components,

respectively. In order to determine the sparsity of each individual block, we derive

a global sparsity criterion that accounts for the global image rate and distortion.

6.3.1 Block slicer and AC / DC splitter

The block diagram in Fig. 6.1 illustrates the major components of our proposed

image encoder. The first step of the process consists of slicing a given input image

J into non-overlapping
√

d ×
√

d blocks using a regular grid. Vector zb ∈ Rd

136 Chapter 6. Image Compression Using ITAD

J Block Slicer
AC / DC

Splitter

DPCM +

Entropy

Encoder

ITAD + R-D

Transform

Encoder

{µ̃b}Bb=1

{ỹb}Bb=1

{zb}Bb=1

{µb}Bb=1

{yb}Bb=1

Figure 6.1: The ITAD-based image codec: The input image J is split into disjoint

blocks z. The DC and AC components µ and y of each block z are then encoded separately.

The operation of the bottom-right AC encoding block ITAD / R-D Transform Coding is

described in Fig. 6.2 and Fig. 6.3.

denotes the vectorized version of one of these blocks, and thus the input image J

is represented at the output of the block-slicer by an ordered set these vectors:

J ⇐⇒ {zb}Bb=1. (6.8)

As illustrated in Fig. 6.1 each block zb is subsequently split into a DC and an

AC component, and the resulting AC and DC streams are encoded separately. We

let µb denote the mean component of each block, given by

µb =
1

d

d∑

j=1

zb[j]; (6.9)

yb will denote the AC (mean-removed) version obtained by subtracting µb from

each entry of zb.

6.3.2 DPCM coding of DC components

The DC components are encoded using an approach similar to that of various

block-based codecs including the JPEG image coder [Wallace 1991]. The approach

exploits the spatial correlation of the DC coefficients by means of a Differential

Pulse Code Modulation (DPCM) applied to the DC stream {µb}Bb=1. By conven-

tion, we order the DC stream using row-wise rastering and reversal of order from

line to line to better exploit the spatial correlation of the DC coefficients. The

DPCM symbols are subsequently encoded using an entropy encoder. The resulting

coded version of the DC values is denoted µ̃b.

Note that, following removal of the DC components, all AC blocks yb are

contained in the orthogonal complement of the all-ones vector 1. The fact that

AC and DC components are orthogonal means that the distortion at the output

6.3. The proposed image codec 137

yb = r0
b

(i = 1)
Dki

i++ Continue?

ri−1
b

ri
b = ri−1

b − γbi · di
b

Quantization Q(γbi)

+ entropy encoder

Atom encoder

(abi, γ̂bi)

Figure 6.2: The ITAD Block Coder (BC): Sparse decomposition at the i-th ITD-MP

iteration and subsequent encoding of the atom-index / coefficient pair.

of the codec is the sum of the distortions of the two components. For this reason,

we can disregard the DC component in the subsequent discussion on AC encoding

and instead focus on minimizing the AC distortion.

6.3.3 ITAD-based transform coding of AC components

The remaining AC component blocks yb are compressed using an encoder based

on the ITAD transform. The proposed encoder distributes bits to the various AC

blocks yb using a rate / distortion criterion that we will derive shortly. Throughout

the discussion we assume that the ITAD structure has been trained using a large

number of example AC blocks taken from a set of training images according to

the algorithm described in Section 5.6.3.

6.3.3.1 ITAD sparse decomposition of AC blocks

In the left-hand side of Fig. 6.2 we illustrate the ITAD atom / coefficient selection

process. For ease of analysis, we have used the signal-space representation of

the residue vectors ri
b and of the ITAD candidate dictionaries Dki

. The sparse

decomposition of the signal blocks yb proceeds iteratively, with each iteration of

the loop selecting one atom di
b with index abi and a corresponding coefficient γbi

from the i-th ITAD layer and accordingly producing the i-th residual vector ri
b .

6.3.3.2 Quantization of the coefficients

The coefficients γbi selected using the ITAD structure need to be quantized in

order to produce a compact representation of each yb. We use γ̂bi to denote the

quantized version of γbi and, accordingly, we let Γ̃
i

b =
[
γ̂b1 . . . γ̂bi

]
denote the

quantized version of the coefficients vector Γi
b.

138 Chapter 6. Image Compression Using ITAD

The coefficient encoding strategy consists of one uniform scalar quantizer com-

mon to all layers i of the ITAD structure:

γ̂bi = Q(γbi). (6.10)

The quantized symbols γ̂bi are then encoded using an entropy encoder unique to

each layer i.

Previous work [Goyal 1997] on quantization of coefficients from overcomplete

transforms has considered adding the quantization step in the atom selection pro-

cess illustrated in the left-hand side loop of Fig. 6.2 by substituting γ̂bi in place

of γ̂bi when building the residue ri at the input of the following iteration. For

the case of general overcomplete transforms, this approach produces better sparse

representations under quantization because the latter iterations of the decomposi-

tion process consider the non-orthogonality between residue and selected atom(s)

resulting from the finite precision of the quantized projection coefficients γ̂i.

However, as in the case of general orthogonal transforms, the orthogonality of

the ITAD selected-atoms matrices implies that ITAD sparse decompositions do

not require this extra consideration at the encoder. To illustrate this, we consider

the operation at the i-th decomposition iteration in Fig. 6.2 (for simplicity we drop

the block index b0: Note first that at the d-th decomposition iteration (where d is

the signal dimension) the approximation ŷd of y is exact,

y = SdΓd. (6.11)

Then for any i < d we can expand (6.4) as

y = ŷi + ri (6.12a)

= SiΓi + S̄
i+1

Γ̄
i+1

(6.12b)

where S̄
i+1

=
[
di+1 . . . dd

]
and Γ̄

i+1
=
[
γi+1 . . . γd

]T

contain the atoms

and coefficients corresponding to layers (i + 1), . . . , d.

We denote the i-th approximation (6.2) under coefficient quantization as

ỹi = SiΓ̃
i
. (6.13)

Accordingly, the i-th residual vector (1 ≤ i < d) under the influence of quantiza-

tion can be expressed using (6.4) as

r̃i = y − ỹi (6.14)

= SdΓd − SiΓ̃
i

(6.15)

= Si(Γi − Γ̃
i
) + S̄

i+1
Γ̄

i+1
(6.16)

6.3. The proposed image codec 139

We further define the quantization error vector qi , (Γi − Γ̃
i
) and, using ri =

S̄
i+1

Γ̄
i+1

from (6.12), we re-write (6.16) as

r̃i = Siqi + ri. (6.17)

Hence we can express the inner-product (for all atoms) appearing in the ITAD

MP decomposition operation (6.3) as follows

(r̃i−1)T Di =
(
Si−1qi−1 + ri−1

)T

Di (6.18)

= (ri−1)T Di, (6.19)

where we drop the term (qi−1)T (Si−1)T Di in the second equality following (6.5).

Thus we have shown that using either r̃i or ri in the ITAD decomposition loop in

Fig. 6.2 produces the same result.

6.3.3.3 Atom encoding

The decoder needs to know which atoms di
b have been chosen at the encoder,

and thus the encoder needs to transmit the index abi of each atom selected. The

order of these atom indices is important, since, following (6.6), the ordered set

{ab1, . . . aLb
} (Lb denotes the number of atoms chosen for block b) fully specifies

the atoms chosen across all Lb layers of the ITAD structure.

We use a fixed length code to encode each atom index abi, since we have

observed that there is only a small gain resulting from using an entropy code for

the atom indices. Assuming that the i-th ITAD dictionary contains N atoms, each

atom index thus incurs a rate penalty of

R (ai) = log2(N). (6.20)

At the output of the encoder, each image block y will be represented by an

ordered set of atom-index / quantized coefficient pairs which we denote as

YL
b = {(abi, γ̂bi)}Lb

i=1. (6.21)

6.3.4 Global rate-distortion criterion for block sparsity se-

lection

The encoder needs to select the number of atom-index/coefficient pairs Lb used

to represent each block (i.e., the block sparsity), and we now address this issue.

The sparsity selection problem can be expressed formally as follows:

argmin
L1,...,LB∈{1,...,d}

B∑

b=1

|yb − ỹLb

b |2 s.t.
B∑

b=1

R
(

YLb

b

)

≤ Ψ, (6.22)

140 Chapter 6. Image Compression Using ITAD

∀b = 1, . . . , B :

Yb = ∅, Lb = 0,

initialize BC b

∑B

b=1 R (Yb) < Ψ?

No

Yes

Done

β = argmax
b∈{1,...,B}

G ((ab,Lb+1, γ̂b,Lb+1))

Yβ ← Yβ ∪ (aβ,Lβ+1, γ̂β,Lβ+1),

Lβ + +

BC β: continue

Figure 6.3: Rate-distortion transform coding using ITAD. Each of the image blocks yb

is assumed to have a corresponding Block Coder (BC) (illustrated in Fig. 6.2).

where ỹLb

b denotes the signal vector reconstructed using Lb quantized coefficients

γ̂bi, Ψ is the allocated image rate and the R (·) operator denotes coding rate.

The above stated problem is difficult to solve exactly and would likely require

an intractable combinatorial approach. Hence we use the following strategy to

approximate the solution: We build the reconstructed image by first initializing

the approximations of all blocks to zero,

ỹ0
b = 0, Yb = ∅, Lb = 0,∀b. (6.23)

We then select one image block β at a time and improve its approximation ỹ
Lβ

β by

adding a single atom / coefficient pair to its representation Yβ, repeating the block

selection and improvement process as long as the rate constraint in (6.22) has not

been crossed. The block β chosen for improvement will be the one offering the

largest reduction in approximation error versus rate increase. Letting, (ab,i, γ̂b,i)

denote the i-th atom-index / quantized coefficient pair of block number b, we can

express this as

β = argmax
b

|yb − ỹLb

b |2 − |yb − ỹLb+1
b |2

R ((ab,Lb+1, γ̂b,Lb+1))
, (6.24)

where the denominator contains the rate of the atom-index / quantized coefficient

pair.

We now simplify the numerator of (6.24) with the help of the (orthogonal)

selected-atoms matrix Si (cf. (6.1)) and the coefficients vector Γi =
[
γ1 . . . γi

]T

.

At layer i = d (d the input signal dimension), Sd is square and hence block y (we

drop the block index b for notational convenience) is given exactly by:

y = SdΓd =
[

SL | S̄L+1
] [

(ΓL)T | (Γ̄L+1
)T

]T

(6.25)

6.3. The proposed image codec 141

where S̄
L+1

contains the atoms from layers (L+1), . . . , d and Γ̄
L+1

the correspond-

ing coefficients. Using (6.25) and ỹL = SLΓ̃
L
, we write

|y − ỹL|2 =
∣
∣
∣

[

SL | S̄L+1][

(ΓL)T | (Γ̄L+1
)T
]T − SLΓ̃

L
∣
∣
∣

2

=
∣
∣
∣

[

SL | S̄L+1][

(ΓL − Γ̃
L
)T | (Γ̄L+1

)T
]T
∣
∣
∣

2

(6.26)

=
∣
∣
∣ΓL − Γ̃

L
∣
∣
∣

2

+
∣
∣
∣(Γ̄

L+1
)T

∣
∣
∣

2

, (6.27)

where we used the orthogonality of Sd =
[

SL | S̄L+1] to go from (6.26) to (6.27).

When subtracting two expressions of the form (6.27) for sparsities Lb and Lb + 1,

as done in the numerator of (6.24), only a single squared coefficient will remain

from each of the two squared norm terms in (6.27):

|yb − ỹLb

b |2 − |yb − ỹLb+1
b |2 = (γ̂b,Lb+1 − γb,Lb+1)

2 + γ2
b,Lb+1. (6.28)

This last result can be used directly in place of the numerator in (6.24) to define

the block selection expression:

G((ab,Lb+1, γb,Lb+1)) =
(γ̂b,Lb+1 − γb,Lb+1)

2 + γ2
b,Lb+1

R ((ab,Lb+1, γ̂b,Lb+1))
, (6.29)

On the left-hand column of Fig. 6.4 we illustrate the performance of the pro-

posed rate-distortion based global sparsity criterion above described by plotting,

from top to bottom, (i) a reconstructed image and its (ii) atom-distribution map

and (iii) RMSE per-block map.On the right-hand column of the same figure we

show the same three graphics obtained when using a common sparsity-selection

approach based on an RMSE threshold:

argmin
L

L s.t. |y − ŷL|2 ≤ d · ε2. (6.30)

Note that the proposed sparsity criterion distributes atoms more uniformly than

the scheme based on (6.30), while the resulting RMSE per block of the proposed

scheme is less uniform. For the same coding rate (0.5 bpp), the proposed scheme

offers an advantage of 0.63 dB.

6.3.5 Bit-stream format

In Fig. 6.5 we propose a simple bit-stream format for the ITAD codec discussed

above. The structuring of the bit-stream is carried out using a one-bit end-of-block

(EOB) flag. Thus we include this flag when calculating the rate of an (abi, γ̂bi) pair

to compute the block selection criterion in (6.29),

R ((abi, γ̂bi)) = R (abi) + R (γ̂bi) + R (EOB) , (6.31)

Reconstructed Image

Atom distribution map

RMSE of AC component

Reconstructed Image

Atom distribution map

0

5

10

15

RMSE of AC component

1

2

3

4

5

6

7

Figure 6.4: An example of (top) the reconstructed image (middle) the encoder distribu-

tion of atoms-per-block and (bottom) the RMSE of the AC component of each block when

using sparsity-selection criteria based on (left) a global rate-distortion scheme as illustrated

in Fig. 6.3 or (right) a constant RMSE threshold ε as in (6.30). Both setups correspond to

0.5 bpp; the resulting PSNR and mean block-sparsity are: (left) 36.40 dB and 2.07 atoms;

(right) 35.77 dB and 1.92 atoms. The original image used is shown in the second row of

Fig. 6.9.

6.4. Results 143

µ̃|EOB a1|γ̂1|EOB . . . aL|γ̂L|EOB

Figure 6.5: The bit-stream used to represent the set Y of (ai, γ̂i) pairs defining the

approximation ỹ of an image block and the DPCM coded DC component µ̃.

0.25 0.3 0.35 0.4 0.45

31

32

33

34

35

Rate (bpp)

P
S
N

R
(d

B
)

ε∆ = 1.45
ε∆ = 0.91
ε∆ = 0.65
ε∆ = 0.31

Figure 6.6: Experimental rate-distortion curves for the ITAD-codec as a function of

the quantization step. The values displayed are averaged over all 100 test images.

where R (abi) is given in (6.20), R (γ̂bi) is the length in bits of the codeword repre-

senting γ̂bi (we assume non-adaptive codebooks that are pre-computed and fixed),

and R (EOB) = 1. The corresponding rate for the AC component of an image block

b is given by R (Y) =
∑Lb

i=1 R ((abi, γ̂bi)).

6.4 Results

In the current section we evaluate the proposed image codec in compression of the

class of facial images, comparing it against the state-of-the art in image compres-

sion. Our evaluations show that our codec can offer an advantage that can be as

high as several dBs for certain coding rates.

6.4.1 Experimental setup

We use an image dataset consisting of frontal pose images of 764 different subjects:

664 of these images are used to train the image codec while the remaining (mutu-

ally exclusive) 100 images are used as a test set. The images are high-resolution

uncompressed images taken from the FERET image dataset [Phillips 2000], man-

144 Chapter 6. Image Compression Using ITAD

0.25 0.3 0.35 0.4 0.45

31

32

33

34

35

Rate (bpp)

P
S
N

R
(d

B
)

N = 512

N = 256

N = 128

N = 64

Figure 6.7: Experimental rate-distortion curves for the ITAD-codec as a function of

the ITAD prototype dictionary size N (constant for all layers). The values displayed are

averaged over all 100 test images.

ually cropped to focus on the face and re-sized to a uniform size of 192 × 144

pixels.

As a comparison reference we use the state-of-the-art JPEG2000 [Adams 2005]

image encoder and its widely used predecessor, the JPEG encoder.

6.4.2 ITAD codec construction

To construct the ITAD codec above described, we begin by first extracting non-

overlapping image blocks z from all 664 training images using a regular grid. To

test the influence of the block size on the results, we build codecs using three

different block sizes: 8 × 8, 12 × 12 and 16 × 16. This produces, respectively,

training sets containing 2.9× 105, 1.27× 105 and 0.71× 105 vectors.

For each of these training sets, we first extract all the means µ and quantize

them using a uniform quantizer with unit quantization step and dynamic range

between 0 and 255. The resulting streams {µ̃b}Bb=1 are used to form DPCM symbols

subsequently used to train the DC entropy encoder (cf. Fig. 6.1). The mean-

removed version y of the training set is then used to construct the ITAD transform

required for AC encoding.

For simplicity, the AC coefficients γbi are quantized using a single uniform

quantizer that is common across all layers. The AC quantization step ∆ is defined

6.4. Results 145

0.15 0.2 0.25 0.3 0.35 0.4 0.45
22

24

26

28

30

32

34

Rate (bpp)

P
S
N

R
(d

B
)

JPEG2000

JPEG

ITAD 8× 8

ITAD 12× 12

ITAD 16× 16

Figure 6.8: Experimental rate-distortion curves for the ITAD-codec using various block

sizes versus JPEG2000 and JPEG. The values displayed are averaged over all 100 test images.

in terms of the per-pixel RMSE

ε∆ =

(

1

b2

∫ ∆/2

−∆/2

x2p(x) dx

) 1
2

resulting when the quantization error is uniformly distributed (i.e., p(x) = 1/∆):

∆ = ε∆ · b ·
√

12, (6.32)

where the block is assumed to be b × b. While we use an AC quantizer that is

common to all layers, the subsequent entropy encoder is layer dependent. We use

the same set of per-layer encoders i for all test images; each encoder i is trained

using the quantization symbols γ̂bi of the training set at the corresponding layer i.

We use Huffman codes [Huffman 1952] for entropy encoding of both AC and

DC symbols.

6.4.3 Quantitative experiments

We carry out three different quantitative experiments: In the first two experi-

ments we evaluate, respectively, the influence of (i) the quantization step and of

(ii) the number of prototype dictionary atoms N (kept constant for all ITAD lay-

ers). In the third experiment we compare our image codec to the state-of-the-art

JPEG2000 image encoder and its predecessor the JPEG image encoder. For all

three experiments we plot the average PSNR as a function of the coding rate,

146 Chapter 6. Image Compression Using ITAD

where the average is taken over all 100 test images. From Fig. 6.5 and (6.31) the

total rate for a given image is given by

B∑

b=1

(

R (µ̃b) + R (EOB) +

Lb∑

i=1

R ((abi, γ̂bi))

)

. (6.33)

The rate plotted is the corresponding value expressed in bits-per-pixel (bpp).

In the Fig. 6.6 we carry out the first experiment evaluating the quantization

step-size (expressed in terms of the per-pixel RMSE ε∆). We use an ITAD struc-

ture having N = 128 atoms per layer. Note that the curves for ε∆ values of 1.45

and 0.91 appear truncated in the figure. The reason for this is that it is not

possible to achieve all rates for step sizes that are too large since, for sufficiently

large i, all coefficients γbi are quantized to zero. This problem can be addressed

by decreasing the quantizer step size along with increasing layer index, but we do

not pursue this approach in the present work.

In Fig. 6.7 we carry out the second experiment which evaluates performance of

the ITAD codec as a function of the total number of atoms N in all layers. Note

that larger dictionaries result in improved performance even though the atom

index coding penalty log2(N) increases with N . The increased sparsity of the

representation indeed succeeds in overcoming the related atom-index penalty.

In Fig. 6.8 we compare our proposed ITAD codec against the JPEG and

JPEG2000 image encoders. The three different curves shown for the ITAD codec

correspond to three different block sizes (8 × 8, 12 × 12 and 16 × 16 where, re-

spectively, we use ε∆ = 0.91, 0.8 and 0.72). Note that different ITAD codecs are

capable of outperforming the two reference codecs at all plotted rates by a wide

margin. The 8× 8 ITAD codec, for example, outperforms JPEG2000 for all rates

above 0.23 bpp by at least 0.5 dB. At 0.4 bpp, the ITAD Codec gain is 0.9 dB.

The ITAD codecs based on the two larger block sizes offer gains of several dB for

lower bit-rates. For example, at 0.3 bpp, the 12× 12 codec offers a gain of 1.5 dB.

6.4.4 Qualitative experiments

We now carry out a qualitative comparison of the ITAD codec and the JPEG2000

and JPEG codecs on four images chosen from our test set. The results are il-

lustrated in Fig. 6.9 and Fig. 6.10. As indicated in the figures, each of the four

columns of either figure corresponds, respectively, to (i) the original image, (ii) the

JPEG2000 decoded image, (iii) the JPEG decoded image and (iv) the ITAD de-

coded image. The difference between the two figures is in the nominal rate used

for all encoders: In Fig. 6.9 we use a nominal rate of 0.3 bpp and in Fig. 6.10 we

use a nominal rate of 0.4 bpp. Using Fig. 6.8, we choose an ITAD block size of

12× 12 for the 0.3 bpp rate and of 8× 8 for the 0.4 bpp.

6.5. Conclusion 147

JPEG2000 JPEG ITAD

bpp dB bpp dB bpp dB

0.31 30.73 0.32 28.93 0.31 33.99

0.31 31.46 0.33 29.15 0.31 33.90

0.32 35.58 0.32 31.20 0.32 36.59

0.31 31.71 0.32 29.78 0.31 32.91

Table 6.1: Rate (bpp) and distortion (dB) for the images in Fig. 6.9.

JPEG2000 JPEG ITAD

bpp dB bpp dB bpp dB

0.40 33.26 0.40 31.09 0.40 36.49

0.40 33.48 0.40 31.18 0.40 35.10

0.39 37.33 0.40 33.75 0.40 38.45

0.39 32.99 0.40 31.35 0.39 33.79

Table 6.2: Rate (bpp) and distortion (dB) for the images in Fig. 6.10.

From the illustrations, one can observe that the images at the output of the

ITAD codec indeed display an improved visual quality relative to either of the

reference codecs. The JPEG encoder suffers from a very pronounced blocking

artifact, particularly in the low-rate figure. The JPEG2000 images, on the other

hand, suffer from blurring of the facial features. This is especially noticeable

(in all images) around the eyes and nose, which are a lot sharper in the ITAD

decoded images. For completeness, we provide the exact rates and PSNRs for

both qualitative comparisons in Table 6.1 and Table 6.2, with each row of the

table corresponding, respectively, to a row of Fig. 6.9 and Fig. 6.10.

6.5 Conclusion

In this chapter we have shown how the superior sparse approximation capability

of the ITAD dictionary can be leveraged to construct an image codec capable of

outperforming state-of-the art algorithms such as JPEG2000. The codec selects

the sparsity of the various blocks using a rate-distortion criterion. Coding of the

ITAD coefficients is then carried out using a standard quantizer / entropy encoder

148 Chapter 6. Image Compression Using ITAD

combination. The evaluations we carried out show that our proposed codec can

outperform the state of the art by at least 0.5 dB over a large range of rates. We

further showed that the reconstructed image is more clear and better preserves

details.

Original JPEG2000 JPEG ITAD

Figure 6.9: Qualitative evaluation of the ITAD codec at a nominal rate of 0.3 bpp. The exact rate

and distortion for the rows of the last three columns are given in the respective cells of Table 6.1.

Original JPEG2000 JPEG ITAD

Figure 6.10: Qualitative evaluation of the ITAD codec at a nominal rate of 0.4 bpp. The exact rate

and distortion for the rows of the last three columns are given in the respective cells of Table 6.2.

Chapter 7

Approximate Nearest Neighbors

Using Sparse Representations

7.1 Introduction

Local descriptors computed on affine normalized image regions have proven suc-

cessful in various computer vision applications under realistic perturbations such

as partial occlusion or background changes [Jia 2008]. The local image description

process consists of first selecting local regions from an image (the affine covariant

regions) and then geometrically normalizing them to thus achieve some level of

invariance to camera perspective changes. Different descriptors y have been devel-

oped to describe the resulting normalized image regions. At query time, a nearest

neighbors (NN) search is carried out between the query descriptor v and the de-

scriptor vectors yb computed on the database images. Yet since local descriptors

are high-dimensional, they are subject to the curse of dimensionality [Jia 2008],

meaning that the NN search complexity is very high.

Approximate Nearest-Neighbor (ANN) searches based on various sparse rep-

resentation schemes have been recently proposed to address the high computa-

tional complexity in local descriptor query systems [Zepeda 2009, Philbin 2008,

Jégou 2008, Sivic 2003]. Given some sparse representation xb of each yb, the

search index will be the sparse matrix with columns xb. This sparse-matrix index

is stored in compact row-major format by grouping all non-zero coefficients of any

given row (and their column indices) to form a contiguous memory bin. This re-

sults in an implicit complexity-reducing pruning mechanism when using similarity

measures based on the inner-product qT xb, as only the bins corresponding to the

non-zero positions of q need to be processed.

The work carried out in the present chapter uses sparse representation algo-

rithms that are based on overcomplete dictionaries D.1 As discussed previously

(cf. Chapter 2), the resulting sparse representation x of y satisfies y = Dx + r,

where r is the approximation error. The selection of x is done to minimize |r|
(i.e., the distortion) under a constraint on the number of non-zero positions of x

1For ease of analysis, in this chapter we will consider fixed-dictionary schemes instead of the

iteration-tuned dictionary structures introduced in previous chapters.

152 Chapter 7. Approximate Nearest Neighbors

(a measure of rate). While this approach makes sense in various applications (eg.,

compression and denoising), it poses a problem for the ANN search application:

Since the geometrical normalization of an image’s affine covariant regions is not

perfect, the normalization errors will result in representations x that have an un-

stable support (the positions of non-zero coefficients). This instability adversely

impacts the similarity score between realizations (eg., in different images) of the

same region and therefore affects the performance of the ANN search task.

In this chapter, we address the problem of instabilities in the support of x

by first modelling these instabilities and then constructing, from x, a new vector,

called the reduced vector, that mitigates the effects of these instabilities in the ANN

task. The construction of the reduced vector is formulated as a minimization of

the reference distance approximation error subject to a sparsity constraint as, for

sparse matrix indices, sparsity is related to both memory and computational com-

plexity. Computational complexity is further minimized for a uniform distribution

of non-zero positions in x, which is in turn favored by a uniform distribution of y

on the unit sphere. Thus we further introduce a data conditioning method which

succeeds in approximately preserving the relative position of data points y on the

unit sphere while making their distribution more uniform.

One possible application of our proposed method is that of enhancing the

performance/complexity tradeoff of bag-of-features (BOF) indices [Sivic 2003] (cf.

Section 3.3.1). BOFs make use of vector quantization (VQ), which is a specific

case of the more general sparse representation framework. Thus VQ again uses a

rate-distortion criterion that does not favor a stable support of the resulting x, an

issue addressed by our proposed method.

A second possible application involves using x the case when the normalized

image regions are used directly as descriptors y. In that scenario, the descriptors y

can be exploited as side information to design a compact image / local descriptors

package: Transmitting the descriptors x thus obtained yields an initial image

estimate at no extra rate penalty. Since the receiver requires x rather than y for

querying or indexing, including x in the transmitted package further exempts the

receiver from descriptor extraction and processing.

The rest of this chapter is organized as follows: In Section 7.2 we first describe

the system setup considered in this chapter. We then present the proposed re-

duced vector construction strategy in Section 7.3. Our algorithm makes use of an

adaptive sparse correlation matrix, and we explain how to obtain it in Section 7.4.

Our proposed data conditioning method is then presented in Section 7.5, and

evaluated along with our main approach in Section 7.6. We provide concluding

remarks in the last section.

7.2. Background 153

7.2 Background

Let us assume that we are given a d-dimensional query signal v and a set of

d-dimensional vectors {yb}Bb=1 representing the database. The Nearest-Neighbor

(NN) search process can be defined as producing a ranking of the database vectors

according to a descending order of some similarity measure d(v,yb). Practical dif-

ficulties will arise when carrying out the NN search task in large databases and

particularly those consisting of large dimensional vectors (i.e., d ≥ 30). It is well

known [Jia 2008] that, for large dimensional signals, one is better off carrying out

an exhaustive brute-force search than trying to otherwise order the database (eg.,

as is done for 1-D signals by simply sorting the data) to thus decrease the com-

putational burden. This bottleneck, known as the curse of dimensionality has led

researchers to instead consider the Approximate Nearest-Neighbor (ANN) search

scheme, where the resulting ranking of the database vectors is approximately cor-

rct, preferably more lower-ranked database vectors. As an aside we point out that

for content based search schemes, the descriptor vectors used are only an approx-

imation of the described content (eg., visual characteristics of an image patch),

and thus exact or approximate rankings are both adequate.

In this work, we will be concerned particularly by ANN searches based on the

normalized inner-product or correlation similarity measure

〈v,yb〉 =
1

|v| · |yb|
vT .yb (7.1a)

Indeed a more common approach instead uses the Euclidean distance |v − yb|.
We use (7.1) nonethless as it lends itself more easily to the analysis we carry out.

In practice, using correlations or Euclidean distances will not necessarily alter

the results. We illustrate this experimentally for the case when signal vectors q

and yb consist of image patches. This is also the case for the widely used SIFT

descriptor [Lowe 2004] given the particular normalization scheme used in that

description algorithm.

7.2.1 Sparse representations

In our work we will be concerned with carrying out approximate searches based

on sparse representations of the query vector v and database vectors yb. A sparse

representation x ∈ RN of a signal vector y is based on an overcomplete dictionary

matrix D ∈ Rd×N . The representation x aims to produce the smallest approxima-

tion error based on a linear combination of only L columns of D:

argmin
x∈RN

|y −Dx| s.t. |x|0 ≤ L, (7.2)

154 Chapter 7. Approximate Nearest Neighbors

where the l-0 norm | · |0 counts the number of non-zero coefficients of a vector.

We will solve the above problem using a relaxation of the constraint wherein

the l-0 norm is substituted by the l-1 norm. Doing so allows the problem to

be cast into a more familiar linear programming problem, solved using existing

mathematical tools [Boyd 2004]. The resulting algorithm is known as Basis Pursuit

(BP) [Chen 2001].

7.2.2 The sparse-matrix index

Let xb denote the spare representations of the database vectors yb and q denote

the sparse representations of the query vector v. We organize the sparse repre-

sentations of the database vectors into a matrix X = (xb)
B
b=1 with columns xb.

To enjoy complexity and memory benefits, the sparse-matrix index X is stored in

row-major format consisting of N memory bins j = 1, . . . , N such that the j-th

bin contains the non-zero coefficients and column identifiers of row X[j, ∗], i.e.,

{(X[j, b], b) : b ∈ {1, . . . , B} ∧X[j, b] 6= 0}. (7.3)

Using this index, one could attempt an approximation of 〈v,yb〉 using either of

d1(q,xb) = qT xb or (7.4a)

d2(q,xb) =
qT xb

|q||xb|
. (7.4b)

This approach or variants thereof has in fact been used in several contextual image

search algorithms [Sivic 2003, Nister 2006, Philbin 2008, Jégou 2008, Zepeda 2009]

due to the low computational and memory complexity it enjoys: If we assume

that q consists of L non-zero coefficients and that each bin (7.3) of the sparse-

matrix index consists of αB/N non-zero coefficients (this is the case when xb has

uniformly distributed support, cf. Section 7.B) the query complexity incurred by

(7.4) involves

L
α ·B
N

(7.5)

multiplications. This calculation will be efficient for high N (large dictionaries)

and comparably low sparsities L (i.e., for compressible data). Note that the values

α, B and N do not depend on the query vector q, and thus the query complexity

incurred by q can be summarized by its l-0 norm L. Note further that the query

operation (7.4) will need to access L row-bins from the sparse matrix index, each

stored contiguously in memory. Hence L is also an adequate measure of memory

complexity.

7.3. Sparse support selection 155

7.3 Formulating Sparse Support Selection as an

Optimization Problem

The aim of the work presented in this chapter is to develop a similarity measure

that enjoys the complexity and memory benefits of the approach in (7.4), while

at the same time more closely approximating the ground truth distance in (7.1).

Thus our approach is based on products between sparse vectors, but instead of

using the sparse approximation vectors q and xb, we derive a new sparse vector

that we call the reduced vector. As we will see, inner-products between reduced

vectors can better approximate the ground-truth distance.

In this section we explain the method used to build the proposed reduced vector

q̂ from the sparse representation q of the query vector. Note that the same process

described below can be applied to instead construct the reduced vectors x̂b of the

database signals xb by setting q = xb.

7.3.1 The reduced vector

Let us assume that the signal vectors v and yb are unit norm and that their sparse

approximations produce negligible residual error, i.e.,

v ≃ Dq and yb ≃ Dxb. (7.6a)

Using this assumptions, we can expand the ground-truth distance in (7.1) as fol-

lows:

〈v,yb〉 = qT DT Dxb (7.7)

= qT CDxb (7.8)

= (CDq)T xb (7.9)

where CD = DT D is the Gram matrix of dictionary D. Since computational and

memory complexity are related to sparsity, we will build the reduced vector q̂ by

retaining from vector CDq only L = |q|0 coefficients at select positions p ∈ P;

q̂ will be zero elsewhere. We select the positions P that minimize the distance

approximation error. Let the notation a|S denote the vector with entries

a|S [j] =

{

a[j] if j ∈ S,

0 if j /∈ S,
(7.10)

and let C denote all possible selections of L positions from

C = {{p1, . . . , pl} : pj ∈ {1, . . . , N} and ∀j 6= i, pj 6= pi}.

156 Chapter 7. Approximate Nearest Neighbors

The selection of the positions P can be expressed as follows:

P = argmin
P ′∈C

∣
∣
∣

(
CDq− (CDq)|P ′

)T

xb

∣
∣
∣

2

s.t. |P ′| = L (7.11)

Using the P thus chosen, the reduced vector q̂ is given by

q̂ , (CDq)|P . (7.12)

In searching for a solution to (7.11) we will find it more convenient to write ex-

pression (7.11) in terms of the set of complementary positions P̄ ′ = {p = 1, . . . , N :

p /∈ P ′} as follows

argmin
P∈C

|(CDq)T

P̄ xb|2 s.t. |P| = L, (7.13)

where we have used the fact that CDq− (CDq)P = (CDq)P̄ .

7.3.2 Relation to reference sparse distances

Recall that the assumption of compressibility of the sparse vector allows us to

write v ≃ CDq; we can express the reduced vector q̂ in a similar manner as

follows:

q̂ = CD|Pq,

where matrix CD|P has the same size as CD and rows given by

CD|P [j, ∗] =

{

CD[j, ∗] if j ∈ P
0T if j /∈ P.

(7.14)

Using this notation, the approximation of the ground-truth similarity measure

qT Cxb based on q̂ can be written as

q̂T xb = qT CD|P xb. (7.15)

Thus the approximate distance based on q̂ is seen to have a general form related

to that of the reference system qT xb in (7.4a): both can be generalized by

qT C′ xb

where qT xb neglects the cross-atom correlations with C′ = I, while (7.15) consid-

ers to some extent these cross-atom correlations with C′ = CD|P . Hence we expect

and indeed observe in the results section that the proposed distances consistently

outperform qT xb.

7.3. Sparse support selection 157

7.3.3 Exact solution for certain xb

In searching a solution to (7.13) we will first consider an approach wherein P is

set equal to the sparse support of q. This approach has the interesting property

that the approximation q̂T xb will in fact equal 〈v,yb〉 for all yb = Dxb having xb

with support contained in P . We formalize this in the following proposition.

Proposition 7.3.1. Let Po be given by the sparse support of q, i.e.,

Po = {p = 1, . . . , N : q[p] 6= 0}, (7.18) (7.16)

and let B = {b = 1, . . . , B : ∀p /∈ Po,xb[p] = 0}. Then it follows that

∀b ∈ B, q̂T xb = 〈v,yb〉. (7.17)

For latter reference, we will let

q̂o = (CDq)|Po . (7.18)

denote the reduced vector built using the above position selection method.

7.3.4 Minimizing upper bound

The position selection scheme specified in (7.18) disregards the original problem

formulation (7.13). We present now an approach that consists of substituting the

cost function |(CDq)T

P̄ xb|2 by the upper bound |(CDq)P̄ |2|xb|2. Noting that the

term |xb|2 is constant with P and can hence be dropped, we write the resulting

cost function as

|(CDq)P̄ |2 =
∑

k/∈P ′

|(CDq)[k]|2,

exposing the optimal P ′ as that excluding the L coefficients of CDq with the

strongest magnitude:

Pu = {p = 1, . . . , N : ∀k /∈ Pu, |(CDq)[p]| ≥ |(CDq)[k]|} . (7.19)

We will denote the reduced vector using the above method of selection of non-zero

positions using a superscript u:

q̂u = (CDq)|Pu (7.20)

158 Chapter 7. Approximate Nearest Neighbors

7.3.5 Probabilistic approach

The solutions obtained in (7.18) and (7.19) disregard the index vectors xb ap-

pearing in the original problem (7.13). We would prefer to build reduced vectors

q̂ better suited to finding nearest neighbors from within a particular database

{xb}Bb=1. To this end, let us treat the database vectors as random vectors with re-

alizations given by {xb}Bb=1. Taking the expectation over xb of the target function

(7.13) produces

argmin
P ′

(CDq)T

P̄ B(CDq)P̄ s.t. |P ′| = L, (7.21)

with B = E
[
xbx

T

b

]
. Unlike (7.18) and (7.19), a solution to (7.21) is not straight-

forward and could in general require a combinatorial approach wherein all
(

L
N

)

possible values for P are tried.

7.3.5.1 Hybrid upper bound using first singular vector

We thus consider a simplification of (7.21) that aims to enjoy the simplicity in

computing P of (7.19) while considering at the same time the statistics of the

database vectors. To this end we substitute the cost function |(CDq)P̄ |2 used to

obtain (7.19) by |diag(v1)(CDq)P̄ |2, where diag(v1) is the diagonal matrix with v1

along its main diagonal. The resulting set of selected positions is likewise simple

to obtain and follows directly from the discussion related to (7.19):

P1 =
{
p = 1, . . . , N : ∀k /∈ P1, |v1[p](CDq)P̄ [p]|2 ≥ |v1[k](CDq)P̄ [k]|2

}
, (7.22)

where, accordingly,

q̂1 = (CDq)|P1 . (7.23)

The vector v1 needs to be a model for vectors xb obtained from signal vectors yb

that are similar (i.e., under (7.1)) to the query v, as we are searching for nearest

neighbors. We note in particular that nulls v1[k] will force the corresponding

positions k to be excluded from P1. We propose here using v1 corresponding to

the first singular vector of B. Later we will show how to build an estimate of B

that adapts to q and thus yields a v1 that is a good model of correct responses

xb.

7.3.5.2 Approximate solution

The solution in (7.23) does not address the formulation (7.21) directly. Thus,

we now present an iterative approximation of (7.21) that consists in selecting, at

iteration l, the single position pl yielding the greatest decrease in magnitude of

the cost function when all previous positions

Pl−1 = {p1, . . . , pl−1}

7.4. Construction of CB 159

are nulled out. The selected position pl can be expressed as follows, where we let

P0 denote the empty set:

pl = argmin
p∈{1,...,N}/Pl−1

|(CDq)T

|Q̄B| where Q = Pl−1 ∪ p (7.24)

Accordingly, we denote the reduced vector obtained with the positions PL at the

L-th iteration as

q̂h = (CDq)|PL
. (7.25)

7.4 Construction of CB

The sparse correlation matrix B is needed in (7.23) and (7.25) to build the reduced

vectors q̂1 and q̂h and we now consider its construction. We will use an unbiased

estimate of B, where the realizations used to build the estimate are chosen as a

function of the query signal vector v or its sparse representation q in one of two

manners specified shortly. This adaptive approach is meant to result in better

distance approximations q̂T xb for stored vectors yb = Dxb that are more similar

(i.e., under (7.1)) to v. The estimate of B thus built can be seen as a model for

the instabilities in the sparse support P of q.

We propose two methods to obtain the select the realizations xb s.t. b ∈ N ,

(i) a two-stage method and (ii) an episode method.

The two-stage approach consists of first carrying out an initialization query

using a sparse-matrix index X = (xb)
B
b=1 and a query vector q̂o built as in (7.19).

What is important in the choise of q̂o is that it does not require B, and hence

either q or q̂u could likewise be used in this first stage. The indices b of the first

several realizations xb thus obtained will define a set N , and the estimate of B

can then be built using
1

|N | − 1

∑

b∈N
xbx

t
b. (7.26)

The second method of obtaining B relies on an assumed prior distribution

of the data vectors v that can be used to obtain a set of similar vectors {ve}Ee=1

referred to as the episode of v. The related sparse decompositions qe of the episode

vectors ve provide the realizations used to build the unbiased estimate of B as

follows:
1

E − 1

E∑

e=1

qeq
t
e. (7.27)

An example of a possible assumed prior distribution would be the case where

the yq are noisy measurements; the episode could then be obtained by applying

multiple realizations of the noise model to yq.

160 Chapter 7. Approximate Nearest Neighbors

Figure 7.1: Illustration of data conditioning process in (7.30). The unconditioned

data y is denoted by the dots on the unit circle. Following anisotropic scaling (i.e.,

D
−1/2
y Uyy) , these data-points are found on the ellipse. Following re-normalization (i.e.,

D
−1/2
y Uyy/|D−1/2

y Uyy|) the position of these points is illustrated by the diamond shaped

markers.

7.5 Data conditioning

We now present a data conditioning method that better adapts the vectors y to

the calculation of approximate distance using sparse-matrix indices built from the

reduced vectors described above. The method aims to achieve two properties for

the conditioned data:

1. A more uniform distribution over the unit sphere and

2. preservation of the relative positions of the original data vectors.

The motivation for this data-conditioning is twofold: Firstly, a uniform distribu-

tion is desirable because it maximizes the average minimum pairwise correlation

mina 6=b〈ya,yb〉 of the database vectors, thus allowing for a larger distance approx-

imation error without affecting data ranking. Secondly, a uniform distribution

better distributes the coefficients of all xb amongst sparse-matrix index row bins.

Query complexity is related to bin size and thus reducing the largest bin size is a

good complexity reduction strategy. As we show in Appendix 7.B query complex-

ity is in fact minimized for a uniform distribution of the sparse support.

Let y denote an arbitrary signal vector (eg., a database signal vector yb or the

query signal vector v). The two desired properties of the data conditioning scheme

7.6. Results 161

(uniform distribution and distance preservation) can be expressed as follows:

yc ∼
{

1/V1 if |yc| = 1

0 otherwise
and (7.28a)

〈y,y1〉 ≤ 〈y,y2〉 ⇐⇒ 〈yc,yc
1〉 ≤ 〈yc,yc

2〉 (7.28b)

where V1 denotes the surface area of the unit sphere.

The approach we use to approximate the above conditions (7.28) relies on the

singular value decomposition of the data correlation matrix

Y = E
[
y yT

]
= UT

Y DYUY, (7.29)

where we note that, in practice, the expectation above is computed experimentally

using the database vectors {yb}Bb=1. Using the above, the conditioned data vectors

are given by the following expression:

yc =
D

−1/2
Y UYy

|D−1/2
Y UYy|

. (7.30)

The proposed approach is justified by noting that, since the y are normalized,

the singular vectors in UY are determined by concentrations of points on the unit

sphere, with singular values measuring the corresponding point density. Hence the

vectors D
−1/2
Y UYy have undergone anisotropic scaling along principal directions in

a manner inversely proportional to the point density; re-normalizing subsequently

spreads high density concentrations, thus addressing condition (7.28a). Regarding

the second condition (7.28b), we consider the 2-D case (illustrated in Fig. 7.1),

where it is easy to see that anisotropic scaling and re-normalization preserves the

relative neighbors of a given point along either of two angular directions.

7.6 Results

We construct query and index vectors v and yb by extracting up to 150 MSER

regions [Matas 2002] from images of the Holidays dataset [Jégou 2008]. This

results in 60, 909 MSER regions of arbitrary size that are affine normalized to

size 11 × 11 and vectorized to obtain the query vectors v ∈ R121. To obtain the

database vectors yb, we need to model residual normalization errors as they cause

instabilities in the sparse support of the sparse representations q and x. We do

this by applying random affine transformations of small magnitude to the original

normalized query patches v. As illustrated in Fig. 7.2, these transformations are

defined as mapping the equilateral triangle with vertices ai on the unit circle to

one with vertices ai + ni, where ni is a random vector taken uniformly over the

162 Chapter 7. Approximate Nearest Neighbors

a1

a2 a3

b1

b2

b3

1

Figure 7.2: The affine normalization errors are modeled using the transformation that

maps the triangle with vertices ai on the unit sphere, to that with vertices bi = ai + ni,

where the ni are independent and uniform over the disk of radius 0.3.

circle of radius 0.3. For each query signal v, we build 10 such realizations (see

Fig. 7.3 for a visual example), for a total of 609, 090 database vectors yb. Since

we employ inner-product distances, both v and yb are re-centered using the mean

vector calculated on the database set {yb}Bb=1. Given the query and database

sets thus constructed, we further build the conditioned vectors vc and yc
b using

(7.30). All sparse decompositions q / xb are built using basis pursuit and the

DCT dictionary of size 121× 1024 [Chen 2001].

We use |N | = 200 when building the reduced vector based on two-stage method,

denoted q̂i to differentiate it from other q̂ built using the episode method; episodes

are obtained assuming a prior distribution given by the residual affine normaliza-

tion model described above and illustrated in Fig. 7.2.

System performance will be measured by recall, i.e., the number of correct yb

(up to 10) retrieved for a given v. Complexity will be measured by the total num-

ber of non-zero coefficients in all index bins accessed by the query. This measure

neglects pre-processing overhead (eg., sparse decomposition of yq and query-side

reduced vector construction) yet this is valid since 1) query complexity is much

larger than pre-processing overhead for sufficiently large databases; 2) the applica-

tion (discussed in the introduction) involving a compact image/local descriptors

package provides pre-computed sparse representations; and 3) for compressible

signals, q̂ (cf. (7.13)) can be obtained directly from v with no need of xq since

q̂ = DT Dxq ≃ DT v . We will compare our proposed systems relative to the

7.6. Results 163

Figure 7.3: An example of several distorted image patches obtained with the model in

Fig. 7.2.

reference distances (7.4)

7.6.1 Evaluation of data conditioning

In Fig. 7.4 we evaluate how well (7.30) satisfies the uniform distribution condi-

tion (7.28a) by comparing the distribution of projections of yb or yc
b unto their

respective first two principal vectors u1 and u2. Projections along the first two

principal vectors deviated the most from the projection of the ideal distribution,

given by 1
α
(
√

1− p2)119 (we derive this equation in Appendix 7.A) with projection

p ∈ [−1, 1] and α a normalization constant. It is evident from the graph that the

conditioning scheme succeeds in better distributing the data.

164 Chapter 7. Approximate Nearest Neighbors

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

Projection on uk

D
is

tr
ib

u
ti

o
n

yT

b u1

yT

b u2

(yc
b)

T u1

(yc
b)

T u2

Ideal Unif.

Figure 7.4: Distribution of projections of yb and yc
b on their first two principal vectors

u1 and u2 versus ideal distribution (uniform on the unit sphere).

100 101 102

2

4

6

8

10

Rank

R
ec

al
l

Ground truth

|v − yb|2
〈v,yb〉
〈vc,yc

b〉

Figure 7.5: Recall of systems based on various distances: 〈v,yb〉 and 〈vc,yc
b〉 using

normalized data vectors and l-2 distance using un-normalized data vectors. The solid line is

the ground truth response.

7.6. Results 165

100 101 102 103 104 105

0

10

20

30

40

50

Rank

R
ec

a
ll

(%
g
a
in

)
q T x̂h

b

q T x̂1
b

q T x̂i
b

q T x̂o
b

0.7 1.3 2.2 3.8

Reference recall value

Figure 7.6: Percent gain of x̂h
b in (7.25), x̂1

b in (7.23), x̂o
b in (7.18) and the two-stage

x̂i
b. The reference recall values (indicated in the top abscissa labels) are the best recall per

rank of either system corresponding to the reference distances (7.4).

To evaluate the distance preserving condition (7.28b) we compare average recall

produced by a ranking based on 〈v,yb〉, one based on 〈qc,yc
b〉 and the ground truth

recall given from the database construction process. Results are shown in figure

Fig. 7.5, along with the recall under the Euclidean distance (with un-normalized

v and yb) used elsewhere [Mikolajczyk 2005b]. Data conditioning degrades the

response relative to the unconditioned data, but the response is still of sufficient

quality to yield an advantage for yc in a subsequent test.

7.6.2 Improvement over reference systems

We compare the various methods used to construct index-side reduced vectors x̂b

from conditioned data vectors yc
b in Fig. 7.6. As a reference we take the maximum

recall (at each rank) obtained under either reference system in (7.4) and plot the

percent gain obtained with reduced vectors over this maximum reference. Note

that all systems based on reduced vectors display a performance advantage.

In Fig. 7.7, qT x̂h
b (the best system of Fig. 7.6) and its query-side version q̂h T xb

are compared against the reference systems (7.4). Both conditioned and uncondi-

166 Chapter 7. Approximate Nearest Neighbors

103 104 105

0.5

1

1.5

2

2.5

3

3.5

Complexity

R
ec

a
ll

a
t

5
0
0

(q̂h)T xb

xT

q x̂h
b

〈xq, xb〉
xT

q xb

y

yc

Figure 7.7: Recall at rank 500 versus query complexity when using the proposed

distances q̂h T xb and xT
q x̂h

b based respectively on query-side and index-side reduced vectors

(built as in (7.25)) and the reference distances in (7.4). Solid (respectively dashed) lines are

obtained using the conditioned (unconditioned) datasets y (yc).

tioned data are used to obtain the sparse representations xb and q. We first note

that the unconditioned data results in a wide spread in performance between both

reference systems. The systems based on reduced vectors consistently outperform

the related reference system (7.4a), yet the reference system (7.4b) outperforms

all.

The unconditioned dataset yc results in comparable performance for both ref-

erence systems, indicating a more uniform balancing of the sparse-matrix index

bins. The systems based on q̂hxb or xT

q x̂h
b improve upon (7.4a) and thus also

(7.4b). At a complexity of 105, xT

q x̂h
b performs at a recall of 3.3 that is 50%

better than that of the best reference system, 2.2. Our data conditioning scheme

offers a clear advantage: for a fixed recall, the reduced-vector systems built us-

ing the conditioned data display a complexity improvement of 0.5 to 3 orders of

magnitude relative to any system built using the unconditioned data.

7.7 Conclusion

We introduced a method that succeeded in improving the performance / complex-

ity tradeoff when approximating the normalized inner-product distance between

7.A. Distribution of sphere-uniform data projections 167

1

p

r

Rd

S

Figure 7.8: The distribution at p of points on the unit hyper-sphere of dimension d

projected unto the horizontal axis is proportional to the surface area of the hyper-sphere of

dimension d − 1 obtained by slicing Rd with a plane orthogonal to the horizontal axis and

intersecting it at p.

compressible signals relative to approximations that use the sparse representa-

tions directly. The proposed approach included a method for data conditioning

that succeeds in approximately preserving the relative positions of the original

data points while making their distribution more uniform over the unit sphere.

The conditioning method is verified experimentally, and its application to the dis-

tance approximation scheme proposed yields complexity improvements as high as

3 orders of magnitude for the same performance.

Appendix 7.A Distribution of the projection of

data uniformly distributed on the

unit hyper-sphere

We now derive the distribution of data uniformly distributed on the unit hyper-

sphere in Rd when projected unto an arbitrary line. Given the symmetry of the

problem, the orientation of the line is arbitrary, and thus we use the line along the

horizontal axis (see Fig. 7.8). From the figure it is evident that the projection p

will be in [−1, 1]. The density of the projections at a value p will be proportional

to the surface area of the hyper-sphere of dimension d− 1 obtained by slicing Rd

with a plane perpendicular to the horizontal axis and intersecting it at p. We let

S denote this lower-dimensional hyper-sphere in the figure, and note that it has a

168 Chapter 7. Approximate Nearest Neighbors

radius given by

r =
√

1− p2. (7.31)

Hence the surface are of this lower-dimensional hyper-sphere at a given p (and

accordingly the distribution of projections at p) will be given by

α(
√

1− p2)d−2, (7.32)

where α is an adequate normalization constant.

Appendix 7.B Optimal distribution of sparse sup-

port

We now show that the query complexity of a sparse-matrix index is minimized

when the support of the sparse representation (either χ or x) has constant mean

across all vector entries.

Without loss of generality, we assume that we are dealing with sparse vectors

x. We wish to obtain the distribution of the sparse support of x that minimizes

the mean complexity of the inner-product xT

q xb, where complexity is measures

by the total number of multiplications (between non-zero coefficients) carried out.

Letting vector ω ∈ {0, 1}N denote the sparse support of x ∈ RN , this complexity

is given by

E
(
ω T

q ωb

)
= µT µ, (7.33)

where µ denotes the mean of ω and we have assumed that the supports of two

different sparse vectors are uncorrelated (entry-wise). We wish to minimize the

complexity (7.33) subject to a constraint

E
(
ω T 1

)
= µT 1 = l (7.34)

on the mean sparsity of the data, where 1 denotes the all-ones vector. We express

the Lagrangian of this problem as follows:

L(µ, λ) = µT µ− λ(µT 1− l). (7.35)

The corresponding conditions for optimality are

dL(µ, λ)

dλ
= µT 1− l = 0, and (7.36)

dL(µ, λ)

dµ
= 2µ− λ1 = 0. (7.37)

(7.38)

7.B. Optimal distribution of sparse support 169

These two expressions can be solved to show that the complexity of the sparse

inner-product is minimized when the sparse support has a mean that is constant

across all entries given by

µ =
l

N
1. (7.39)

Chapter 8

Conclusion

In this manuscript we have introduced a new dictionary structure which we call

the Iteration-Tuned Dictionary (ITD). ITDs are layered structures containing a

set of candidate dictionaries in each layer. An ITD-based iterative pursuit de-

composition can then be carried out using, at each iteration i, one of the can-

didates from the i-th layer. We proposed a general ITD framework and three

different ITD variants (Chapter 4 and Chapter 5): the Basic Iteration-Tuned Dic-

tionary (BITD), the Tree-Structured Iteration-Tuned Dictionary (TSITD) and the

Iteration-Tuned and Aligned Dictionary (ITAD). These structures were shown to

outperform various state-of-the-art reference algorithms in their ability to render a

dataset compressible, as well as in image denoising and compression applications.

An important question that remains is whether ITDs can produce good results

in the many other applications where learned dictionaries have succeeded. Some

of these applications not considered herein include source and texture separation,

inpainting or prediction, classification, representation of color images, and online

processing techniques. Much work has been carried out in these directions and to

some extent it is just a question of adapting the existing formulations to the ITD

case.

Another promising perspective is that of ITDs that can select multiple atom /

coefficient pairs in each layer. The ODSAR algorithm developed in this work no

longer provides the optimal candidates for this scenario, yet the many dictionary

training methods available in the literature provide suitable alternatives. One

simple way of addressing the distribution of the layers in this new setup is to

allow selection of multiple atom / coefficient pairs in only the last layer LM , thus

gaining some control on the storage footprint of ITDs. Another important open

question is that of the candidate selection law. The one we have used to derive

TSITD and its variants offers several advantages, notably its simplicity and low

complexity. Extensions of this same approach are possible that retain, nonetheless,

these same advantages.

The ITAD image codec presented in Chapter 6 could also be improved in

many ways. For example, the quantization scheme used is too simple and should

be better adapted to the layered structure of the setup. The block size used by the

codec also proved to be an important paramater and should thus be considered

more carefully. Since the optimal block size is a function of the rate, one could

172 Chapter 8. Conclusion

instead consider a scheme that employs an adapive block size. One potential

approach to achieve this is to use a multi-scale ITD variant following an approach

similar to that used for the multi-scale K-SVD variant. Other more promising

approaches exist and are currently being tested.

The new approximate vector search method explored in Chapter 7 considered a

new application of sparse representations aimed at exploiting the low complexity

of computations using sparse data in the computationally demanding nearest-

neighbor search application. We successfully addressed problems arising in this

scenario related to the instability of the sparse support under residual affine-

normalization errors. In developing this new approach we also developed a new

data conditioning scheme that succeeds in better distributing data on the unit

sphere while preserving the relative angles. The applicability of both of these

tools in currently existing search schemes is an effort that we believe is worth

pursuing.

Appendix A

Review of Selected Topics

In this appendix we review various selected topics coverins important tools used

in work presented in this manuscript.

A.1 Matrix algebra

Let us consider a set of column vectors {m} from Rd or their equivalent represen-

tation as a matrix M with columns m,

M = cols({m}). (A.1)

The vectors m are said to be linearly independent if it is impossible to express

any of them as a linear combination of the others,

mi /∈ {cols({mj|j 6= i})a|∀a}. (A.2)

If the m are not linearly independent, then it is always possible to drop one or

more of them to obtain a subset that is linearly independent. The rank

rank (r) ≤ d (A.3)

of M is the size of the largest such subset.

The rank of M is closely related to its span, denoted span(M) or span({m})
and comprised of all linear combinations of the vectors m:

span(M) = {a|a = Mb} ⊆ Rd (A.4)

with set equality only if r = d. The rank r in fact specifies the dimensionality of

the subspace span(M). A dimensionality r strictly less than d implies that it is

possible to apply a rotation to all a ∈ span({m}) to obtain an equivalent reduced

representation a′ ∈ Rr. This can be done given any r orthonormal basis vectors

ρ of span(M) by means of the rotation matrix φ = cols({ρ}) ∈ Rd×r:

a′ = φT a, (A.5)

where the (·)T operator denotes the vector or matrix transpose.

174 Appendix A. Review of Selected Topics

The left-null space of M or, equivalently, the orthogonal-complement space of

span(M), denoted span⊥(M) or span⊥({m}), is defined as the set of all vectors a

orthogonal to all columns of M:

span⊥(M) = {a|aT M = 0}. (A.6)

It follows that the dimensionality of span⊥(M) is d− r.

A.2 The Singular Value Decomposition

Given a matrix M of arbitrary size m×n, its singular value decomposition (SVD)

is given by

Mm×n = Um×r∆r×r(Vn×r)
T , (A.7)

where r is the rank of M; U and V are orthonormal matrices containing columns

known, respectively, as the left singular vectors (otherwise known as the principal

vectors) and right singular vectors; and the matrix

∆ = diag(σ1, . . . , σr)

is a diagonal matrix with non-negative diagonal entries σl known as the singular

values [Klema 1980].

Without loss of generality, throught this manuscript it is assumed that singular

values are ordered in decreasing order of magnitude:

σ1 ≥ σ2 ≥ . . . ≥ σr. (A.8)

Note that this further implies that the left and right singular vectors are ordered

accordingly and thus the i-th such vector contained along the i-th column (of

either U or V) corresponds to the singular value σi of i-th strongest magnitude.

We summarize some important properties of the singular value decomposition

M = U∆VT below. To simplify the presentation, we assume throughout that

the singular values σ1, . . . , σr are unique (σ1 > σ2 > . . . > σr), which is indeed the

case for practical data sets.

Property A.2.1 (Uniqueness). The matrices U, V and ∆ in (A.7) are uniquely

defined.

Property A.2.2 (Best K-rank approximation). The first K ≤ r left-singular

vectors produce the optimal, K-rank approximation of M, i.e.,

[
u1 . . . uK

] ([
u1 . . . uK

]T

M
)

= argmin
B

|M−B|2F , (A.9)

where the squared Frobenius norm |·|2F sums the square of all the matrix’s elements

and ul denotes the l-th column of U.

A.3. Information theory 175

Property A.2.3 (Principal components). The left singular vectors U of M are

known as the principal components of the data set.

Property A.2.4 (Rotation to trivial basis). The left singular vectors U define

a rotation of M that aligns its principal components with the elementary basis

cols({e1, . . . , em}) = I (where I is the identity matrix):

UT J = I∆VT . (A.10)

Property A.2.5 (Preservation of principal components). Removing the contribu-

tion of a set of principal components {ul|l /∈ L} preserves as principal components

the complementary set {ul|l ∈ L}. Thus the data matrix

M− cols({ul|l /∈ L}) cols({ul|l /∈ L})T M (A.11)

will have {ul|l ∈ L} as its principal components.

A.3 Information theory [Mallat 2008, Cover 1991]

A.3.1 Entropy coding

Entropy is an important concept in compression that provides a bound on the rate

required to store or transmit a realization of a random data source. Consider a

random variable x taking realizations in a finite alphabet of N symbols. Letting

pi denote the probability of occurrence of the i-th such symbol, the entropy of x

is defined as

H (x) = −
∑

i

pi log2(pi). (A.12)

If R(x) denotes the number of bits required to transmit x, then it is possible to

show that

E (R(x)) ≤ H (x) . (A.13)

Various Variable Length Codes (VLCs) have been proposed that can come

arbitrarily close to the entropy bound (A.13). VLCs encode each symbol i of the

finite alphabet of x using a codeword ci =
[
bi
1 . . . bi

N i
]T

of varying bit-length

Ni. In order for the decoder to be able to extract codewords from the received

bit-stream, it is necessary that the codewords define a prefix code, meaning that a

given codeword ci of length Ni is not equal to the first Ni bits of any of the longer

codewords cj, Nj > Ni:

∀ci : ∄cj, Nj > Ni, s.t. cj =
[

ci | bj
Ni+1 . . . bj

Nj

]

. (A.14)

176 Appendix A. Review of Selected Topics

1

0.45

0.2

0

0.25

0.12

1

0.13

1

1

0

0.55

0.27

0

0.28

0.13

0

0.15

1

1

1

Figure A.1: An example of the Huffman prefix-code tree. The node labels denote the

cumulative probabilities of all symbols associated to the descendant leafs. A codeword ci is

built by traversing the path to the leaf i and concatenating the bits of each branch.

As illustrated in Fig. A.1 prefix codes (A.14) can be organized into a tree-structure

with each path i from the root to each i-th leaf defining codeword ci. It can

be shown that there exists a prefix code that yields a mean transmission rate

E (R(x)) ≤ H (x) + 1 The Huffman code is an example of one such code. Its

construction proceeds from the bottom up by first arbitrarily assigning a symbol

probability pi to each tree-leaf. Then the two leafs with the lowest probabilities p0

and p1 are grouped to form one parent node with related probability p0 + p1, and

the process is repeated each time replacing the two grouped children nodes by the

new parent. Fig. A.1 illustrates the result for {pi} = {0.12, 0.13, 0.13, 0.15, 0.2}.

A.3.2 Scalar quantization

In order to transmit or store infinite precission coefficients γ ∈ G ⊆ R it is neces-

sary to quantize them into a finite set of possible values. The resulting quantized

representation γ̂ is obtained using the quantization function

Q(γ) = li s.t. γ ∈ Gi

defined by a partition of the range G of γ into N intervals Gi = (gi, gi+1] of

length ∆i and their corresponding reconstruction levels li ∈ Gi. This quantization

operation is lossy and incurs an average error

E
(
|γ − γ̂|2

)
=

∫

G
|γ − γ̂|2p(γ) dγ (A.15)

=
∑

i

∫

Gi

|γ − li|2p(γ) dγ . (A.16)

A.3. Information theory 177

Hence the selection of the Gi and their reconstruction levels li needs to be done

wisely.

To reduce the burden of the quantizer design it is common to adopt the high

resolution quantization assumption (see [Mallat 1998] for an analysis of the low

bit-rate case) which states that γ is uniformly distributed over each quantization

bin Gi:

p(γ) = pi/∆i, (A.17)

where pi =
∫

Gi
p(γ) dγ is the probability that γ falls in Gi. By substituting (A.17)

into (A.16) it follows that the quantization levels li minimizing (A.16) are given

by

li =
1

2
· (gi+1 − gi) (A.18)

and the resulting distortion is

X =
∑

i

1

12
· pi ·∆i. (A.19)

This result along with the high-resolution assumption (A.17) leads to the following

important rate-distortion relationship for high-resolution quantizers:

H (γ̂) ≥ Hd (γ)− 1

2
log2(12 ·X2), (A.20)

where the differential entropy Hd (γ) of the continous valued variable γ is defined

as

Hd (γ) = −
∫

G
γ log2 (p(γ)) dγ . (A.21)

The lower bound is attained when the quantizer is uniform, meaning that ∆i =

∆∀i.

Appendix B

Notational Conventions and

Acronyms

Notational conventions

Symbol Definition

General

v,M,S Typeface denotes, respectively, vectors, matrices and sets

v[k],M[k, l],M[∗, l]Respectively, entry k of vector v, entry (k, l) of matrix

M, and column l of matrix M

vT ,MT Vector and matrix transpose

M+ The Moore-Penrose pseudo-inverse

0, I, ek Respectively, the zero vector or matrix, the identity ma-

trix, and the k-th column of I

, Symbol definition

Norms

|S| Cardinality of set S; counts the number of elements

|v| Euclidean norm of vector v

|v|0 l-0 norm of vector v; counts non-zero entries

|M|F Frobenius norm of matrix M given by the square root of

the sum of squared entries

Matrix con-

structions

diag(σ1, . . . , σN) The diagonal matrix with σ1, . . . , σN along its main diag-

onal

cols({vi}) For vi ∈ Rd ∀i and |{vi}| = N , the d × N matrix
[
v1 . . . vN

]

180 Appendix B. Notational Conventions and Acronyms

span({vi}),
span(M)

Column span of M = cols({vi}) (i.e., {v|∃x s.t. v =

Mx})
span⊥({vi}),
span⊥(M)

Orthogonal complement of the column span of M =

cols({vi}) (i.e., the left null space of M given by

{v|vT M = 0})
Sets

R The real numbers

\ The set difference operator; eg., S1 = {1, 2, . . . , 10}, S2 =

{3, 4, . . . , 10}, S1 \ S2 = {1, 2}
Probability

theory

E (x) Expectation of the random vector x with distritubtion

p(x), x ∈ Rd, given by
∫

Rd xp(x) dx

H (x) Entropy of a random variable x ∈ {xi} with probability

mass function pi, given by −∑i pi log2(pi)

Hd (x) Differential Entropy of a continous random variable x ∈ R
with distribution x, given by −

∫

G x log2 (p(x)) dx .

Table B.1: List of notational conventions.

181

Acronyms

Accronym Definition

SVD Singular Value Decomposition

PCA Principal Component Analysis

ANN Approximate Nearest Neighbors

MSER Maximally-Stable Extremal Region

ITD Iteration-Tuned and Aligned Dictionary

BITD Basic Iteration-Tuned Dictionary

TSITD Tree-Structured Iteration-Tuned Dictionary

rTSITD reduced Tree-Structured Iteration-Tuned Dictionary

SD Sparse Dictionary, refers to the method presented in [Ru-

binstein 2010a]

ONLD Online Learned Dictionary, refers to the method pre-

sented in [Mairal 2010a]

Table B.2: List of acronyms.

Appendix C

Article submissions

The work carried out in this thesis has led to various article submissions, some of

which are still under review process at the time of final printing. These are the

following:

From Chapter 4, [Zepeda 2010d] (accepted) and [Zepeda 2010c] (under review).

From Chapter 5, [Zepeda 2010b] (under review). From Chapter 6, [Zepeda 2011]

(accepted) and [Zepeda 2010a] (under review). From Chapter 7, [Zepeda 2009]

(accepted) and [Zepeda 2010e] (accepted).

Bibliography

[Adams 2005] Michael D. Adams. The JPEG-2000 Still Image Compression Stan-

dard. Rapport technique, Dept. of Electrical and Computer Engineering,

University of Victoria, 2005.

[Aharon 2006a] Michal Aharon, Michael Elad and Alfred Bruckstein. K-SVD

toolbox, 2006.

[Aharon 2006b] Michal Aharon, Michael Elad and Alfred Bruckstein. K-SVD: An

Algorithm for Designing Overcomplete Dictionaries for Sparse Represen-

tation. IEEE Transactions on Signal Processing, vol. 54, pages 4311–4322,

2006.

[Aharon 2008] Michal Aharon and Michael Elad. Sparse and redundant modeling

of image content using an image-signature-dictionary. SIAM J. IMAGING

SCIENCES, vol. 1, no. 3, pages 228–247, 2008.

[Bay 2008] Herbert Bay, Andreas Ess, Tinne Tuytelaars and Luc Van Gool.

SURF: Speeded Up Robust Features. Computer Vision and Image Under-

standing, vol. 110, no. 3, pages 346–359, 2008.

[Boyd 2004] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cam-

bridge University Press, March 2004.

[Bryt 2008] Ori Bryt and Michael Elad. Compression of facial images using the

K-SVD algorithm. J. Vis. Comun. Image Represent., vol. 19, no. 4, pages

270–282, 2008.

[Chatterjee 2010] Priyam Chatterjee and Peyman Milanfar. Fundamental limits of

image denoising: Are we there yet? In 2010 IEEE International Conference

on Acoustics Speech and Signal Processing (ICASSP),, pages 1358–1361,

2010.

[Chen 2001] Scott Shaobing Chen, David L. Donoho and Michael A. Saunders.

Atomic Decomposition by Basis Pursuit. SIAM Rev., vol. 43, no. 1, pages

129–159, 2001.

[Cotter 1999] S.F. Cotter, R. Adler, R.D. Rao and K. Kreutz-Delgado. Forward

sequential algorithms for best basis selection. In Vision, Image and Signal

Processing, IEE Proceedings -, volume 14, 1999.

186 Bibliography

[Cover 1991] Thomas M. Cover and Joy A. Thomas. Elements of information

theory. Wiley-Interscience, New York, NY, USA, 1991.

[Elad 2005] M. Elad, J.-L. Starck, P. Querre and D.L. Donoho. Simultaneous Car-

toon and Texture Image Inpainting using Morphological Component Analy-

sis (MCA). Applied and Computational Harmonic Analysis, vol. 19, no. 3,

pages 340–358, November 2005.

[Elad 2006a] M. Elad and M. Aharon. Image denoising via learned dictionaries

and sparse representation. In CVPR, 2006.

[Elad 2006b] M. Elad and M. Aharon. Image Denoising Via Sparse and Redun-

dant representations over Learned Dictionaries. IEEE Trans. on Image

Processing, vol. 15, no. 12, pages 3736–3745, December 2006.

[Engan 1999] K. Engan, S.O. Aase and J.H. Hakon-Husoy. Method of optimal

directions for frame design. IEEE International Conference on Acoustics,

Speech, and Signal Processing., vol. 5, pages 2443–2446, 1999.

[Goyal 1997] Vivek K Goyal and Martin Vetterli. Dependent coding in quantized

matching pursuit. In in Proceedings of the SPIE - Visual Communication

and Image Processing, pages 2–12, 1997.

[Guleryuz 2006] O.G. Guleryuz. Nonlinear approximation based image recovery

using adaptive sparse reconstructions and iterated denoising-part I: theory.

IEEE Transactions on Image Processing, vol. 15, pages 539–554, March

2006.

[Harris 1998] C. Harris and M. Stephens. A combined corner and edge detector.

In Proceedings of the 4th Alvey Vision Conference, pages 147–151, 1998.

[Huffman 1952] D.A. Huffman. A Method for the Construction of Minimum-

Redundancy Codes. In Proceedings of the I.R.E., pages 1098–1102, 1952.

[Jégou 2008] Hervé Jégou, Matthijs Douze and Cordelia Schmid. Hamming em-

bedding and weak geometric consistency for large scale image search. In

ECCV, volume I, pages 304–317, 2008.

[Jenatton 2009] R. Jenatton, J. Mairal, G. Obozinski and F. Bach. Proximal

Methods for Sparse Hierarchical Dictionary Learning. In Proceedings of

the International Conference on Machine Learning (ICML), 2009.

[Jia 2008] Zhen Jia, Laurent Amsaleg and Patrick Gros. Content-based image

retrieval from a large image database. Pattern Recogn., vol. 41, no. 5,

pages 1479–1495, 2008.

Bibliography 187

[Jost 2006] P. Jost, P. Vandergheynst and P. Frossard. Tree-Based Pursuit: Al-

gorithm and Properties. Signal Processing, IEEE Transactions on, vol. 54,

no. 12, pages 4685–4697, Dec. 2006.

[Jost 2008] Philippe Jost and Pierre Vandergheynst. On finding approximate near-

est neighbours in a set of compressible signals. In EUSIPCO’08, 2008.

[Ke 2004] Yan Ke and R. Sukthankar. PCA-SIFT: a more distinctive representa-

tion for local image descriptors. In Computer Vision and Pattern Recogni-

tion, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society

Conference on, volume 2, pages II–506–II–513 Vol.2, 2004.

[Klema 1980] Virginia C. Klema and Alan J. Laub. The Singular Value Decom-

position: Its Computation and Some Applications. IEEE Transactions on

Automatic Control, vol. AC-25, no. 2, pages 164–176, April 1980.

[Kokiopoulou 2008] Effrosyni Kokiopoulou and Pascal Frossard. Minimum dis-

tance between pattern transformation manifolds: Algorithm and Applica-

tions. IEEE Transactions on Pattern Analysis and Machine Intelligence,

2008.

[Lesage 2005] S. Lesage, R. Gribonval, F. Bimbot and L. Benaroya. Learning

unions of orthonormal bases with thresholded singular value decomposition.

In Proceedings of the IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP), volume 5, 2005.

[Lowe 2004] David G. Lowe. Distinctive Image Features from Scale-Invariant Key-

points. Int. J. Comput. Vision, vol. 60, no. 2, pages 91–110, 2004.

[Mairal 2008a] Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro and

Andrew Zisserman. Discriminative Learned Dictionaries for Local Image

Analysis. In Proc. of the IEEE Conference on Computer Vision and Pattern

Recognition, 2008.

[Mairal 2008b] Julien Mairal, Michael Elad and Guillermo Sapiro. Sparse Repre-

sentation for Color Image Restoration. IEEE Trans. on Image Processing,

vol. 17, no. 1, pages 53–69, January 2008.

[Mairal 2008c] Julien Mairal, Guillermo Sapiro and Michael Elad. Learning Multi-

scale Sparse Representations for Image and Video Restoration. Multiscale

Modeling & Simulation, vol. 7, no. 1, pages 214–241, 2008.

188 Bibliography

[Mairal 2009] J. Mairal, F. Bach, J. Ponce and G. Sapiro. Online dictionary learn-

ing for sparse coding. In International Conference on Machine Learning

(ICML), 2009.

[Mairal 2010a] J. Mairal, F. Bach, J. Ponce and G. Sapiro. Online Learning for

Matrix Factorization and Sparse Coding. Journal of Machine Learning

Research, vol. 11, pages 10–60, 2010.

[Mairal 2010b] Julien Mairal. SPArse Modeling Software (SPAMS), 2010.

[Mallat 1993] S.G. Mallat and Zhifeng Zhang. Matching pursuits with time-

frequency dictionaries. Signal Processing, IEEE Transactions on, vol. 41,

no. 12, pages 3397–3415, Dec 1993.

[Mallat 1998] S. Mallat and F. Falzon. Analysis of low bit rate image transform

coding. Signal Processing, IEEE Transactions on, vol. 46, no. 4, pages 1027

–1042, apr 1998.

[Mallat 2008] Stephane Mallat. A wavelet tour of signal processing, 3rd ed., third

edition: The sparse way. Academic Press, 3 édition, December 2008.

[Matas 2002] J. Matas, O. Chum, M. Urban and T. Pajdla. Robust wide baseline

stereo from maximally stable extremal regions. In In British Machine Vision

Conference, pages 384–393, 2002.

[Mikolajczyk 2005a] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,

J. Matas, F. Schaffalitzky, T. Kadir and L. Van Gool. A Comparison

of Affine Region Detectors. IJCV, vol. 65, no. 1-2, pages 43–72, 2005.

[Mikolajczyk 2005b] Krystian Mikolajczyk and Cordelia Schmid. A Performance

Evaluation of Local Descriptors. IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 27, no. 10, pages 1615–1630, 2005.

[Muja 2009] Marius Muja and David G. Lowe. Fast approximate nearest neighbors

with automatic algorithm configuration. In International Conference on

Computer Vision Theory and Applications (VISAPP), 2009.

[Nister 2006] David Nister and Henrik Stewenius. Scalable recognition with a vo-

cabulary tree. In CVPR, 2006.

[Olshausen 1996] B. A. Olshausen and B. J. Field. Natural image statistics and

efficient coding. Network Comp. Neural Syst., vol. 7, no. 2, pages 333–339,

1996.

Bibliography 189

[Pati 1993] Y. C. Pati, R. Rezaiifar and P. S. Krishnaprasad. Orthogonal match-

ing pursuit: Recursive function approximation with applications to wavelet

decomposition. In A. Singh, editeur, Proc. 27th Asilomar Conference on

Signals, Systems and Computers. IEEE Comput. Soc. Press, Los Alamitos,

CA, 1993.

[Peyré 2010] Peyré, Gabriel, Fadili, Jalal, Starck and Jean Luc. Learning the

Morphological Diversity. SIAM Journal on Imaging Sciences, 7 2010.

[Philbin 2008] J. Philbin, O. Chum, M. Isard, J. Sivic and A. Zisserman. Lost in

Quantization: Improving Particular Object Retrieval in Large Scale Image

Databases. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2008.

[Phillips 2000] P. J. Phillips, H. Moon, P. J. Rauss and S. Rizvi. The FERET

evaluation methodology for face recognition algorithms. IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 22, no. 10, October

2000.

[Protter 2009] M. Protter and Michael Elad. Image Sequence Denoising Via

Sparse and Redundant Representations. IEEE Trans. on Image Process-

ing, vol. 18, no. 1, pages 27–36, January 2009.

[Rath 2004] G. Rath and C. Guillemot. Subspace-Based Error and Erasure Cor-

rection with DFT Codes for Wireless Channels. IEEE Trans on Signal

Processing, vol. 52, no. 11, nov 2004.

[Rebollo-Neira 2002] Laura Rebollo-Neira and David Lowe. Optimized Orthogonal

Matching Pursuit Approach. IEEE Signal Processing Letters, vol. 9, no. 4,

pages 137–140, April 2002.

[Ripley 1996] Brian D. Ripley. Pattern recognition and neural networks. Cam-

bridge University Press, January 1996.

[Rubinstein 2010a] Rubinstein, Ron, Zibulevsky, Michael, Elad and Michael. Dou-

ble sparsity: learning sparse dictionaries for sparse signal approximation.

Trans. Sig. Proc., vol. 58, no. 3, pages 1553–1564, 2010.

[Rubinstein 2010b] R. Rubinstein, A.M. Bruckstein, and M. Elad. Dictionaries

for Sparse Representation Modeling. IEEE Proceedings - Special Issue

on Applications of Compressive Sensing & Sparse Representation, 2010.

(Accepted).

[Rubinstein 2010c] Ron Rubinstein. Sparse K-SVD toolbox, 2010.

190 Bibliography

[Sezer 2008] Osman G. Sezer, Oztan Harmanci and Onur G. Guleryuz. Sparse

Orthonormal Transforms for Image Compression. In Proc. IEEE Int’l Conf.

on Image Proc., 2008.

[Sivic 2003] J. Sivic and A. Zisserman. Video Google: A Text Retrieval Approach

to Object Matching in Videos. In Proceedings of the ICCV, volume 2, pages

1470–1477, October 2003.

[Starck 2004a] J.-L. Starck, M. Elad and D.L. Donoho. Image Decomposition via

the Combination of Sparse Representations and a Variational Approach.

IEEE Transactions on Image Processing, vol. 14, pages 1570–1582, 2004.

[Starck 2004b] J.-L. Starck, M. Elad and D.L. Donoho. Redundant multiscale

transforms and their application for morphological component analysis. Ad-

vances in Imaging and Electron Physics, vol. 132, 2004.

[Sullivan 2005] Gary J. Sullivan and Thomas Wiegand. Video Compression - From

Concepts to the H.264/AVC Standard. PROCEEDINGS OF THE IEEE,

vol. 93, no. 1, pages 18–31, January 2005.

[Tropp 2004] J. A. Tropp. Greed is good: algorithmic results for sparse approxi-

mation. Information Theory, IEEE Transactions on, vol. 50, no. 10, pages

2231–2242, 2004.

[Wallace 1991] Gregory K. Wallace. The JPEG still picture compression standard.

Commun. ACM, vol. 34, no. 4, pages 30–44, 1991.

[Yu 2010] Guoshen Yu, Guillermo Sapiro and Stéphane Mallat. Solving Inverse

Problems with Piecewise Linear Estimators: From Gaussian Mixture Mod-

els to Structured Sparsity. IEEE Trans. on Image Processing, 2010. (Sub-

mitted).

[Zepeda 2006] Joaquin Zepeda and Fabrice Labeau. Tandem Filter Bank-DFT

Code for Bursty Erasure Correction. In Proc. IEEE Vehicular Technology

Conference, 2006.

[Zepeda 2009] Joaquin Zepeda, Ewa Kijak and Christine Guillemot. SIFT-Based

Local Image Description using Sparse Representations. In Proceedings of

the IEEE International Workshop on MMSP, 2009.

[Zepeda 2010a] Joaquin Zepeda, Christine Guillemot and Ewa Kijak. Image Com-

pression Using Sparse Representations and the Iteration-Tuned and Aligned

Dictionary. IEEE Journal of Selected Topics in Signal Processing, 2010.

(Submitted).

Bibliography 191

[Zepeda 2010b] Joaquin Zepeda, Christine Guillemot and Ewa Kijak. The

Iteration-Tuned and Aligned Dictionary and its Application in Image Com-

pression and Denoising. IEEE Transactions on Image Processing, 2010.

(Submitted).

[Zepeda 2010c] Joaquin Zepeda, Christine Guillemot and Ewa Kijak. Iteration-

Tuned Dictionaries for Sparse Representations and their Tree-Structured

Variant. IEEE Trans. on Signal Processing, 2010. (Submitted).

[Zepeda 2010d] Joaquin Zepeda, Christine Guillemot and Ewa Kijak. The

Iteration-Tuned Dictionary for Sparse Representations. In Proc. of the

IEEE International Workshop on MMSP, 2010.

[Zepeda 2010e] Joaquin Zepeda, Ewa Kijak and Christine Guillemot. Approx-

imate nearest neighbors using sparse representations. In Proceedings of

the International Conference on Acoustics, Speech, and Signal Processing,

2010.

[Zepeda 2011] Joaquin Zepeda, Christine Guillemot and Ewa Kijak. Image Com-

pression using the Iteration-Tuned and Aligned Dictionary. In Proceedings

of ICASSP, 2011. (Submitted).

[Zezula 2006] Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal and Michael

Batko. Similarity search: the metric space approach. New York : Springer,

1 édition, 2006.

[Zhao 2009] Peng Zhao, Guilherme Rocha and Bin Yu. The composite absolute

penalties family for grouped and hierarchical variable selection. Annals of

Statistics, vol. 37, no. 6A, pages 3468–3497, 2009.

[Zobel 2006] Justin Zobel and Alistair Moffat. Inverted files for text search en-

gines. ACM Comput. Surv., vol. 38, no. 2, page 6, 2006.

Nouvelles méthodes de représentations parcimonieuses ;
Application à la compression et l’indexation d’images

Résumé : Une nouvelle structure de dictionnaire adaptés aux décompositions

itératives de type poursuite, appelée un Iteration-Tuned Dictionary (ITD), est présentée.

Les ITDs sont structurés en couche, chaque couche se composant d’un ensemble de dic-

tionnaires candidats. Les décompositions itératives basées ITD sont alors réalisées en

sélectionnant, à chaque itération i, l’un des dictionnaires de la i-ème couche. Une structure

générale des ITDs est proposée, ainsi qu’une variante structurée en arbre appelée Tree-

Structured Iteration-Tuned Dictionary(TSITD) et une version contrainte de cette dernière,

appelée Iteration-Tuned and Aligned Dictionary (ITAD). Ces structures sont comparées

à plusieurs méthodes de l’état de l’art et évaluées dans des applications de débruitage et

de compression d’images. Un codec basé sur le schéma ITAD est également présenté et

comparé à JPEG2000 dans des évaluations qualitatives et quantitatives.

Dans le contexte de l’indexation d’images, un nouveau système de recherche approxi-

mative des plus proches voisins est également introduit, qui utilise les représentations

parcimonieuses pour réduire la complexité de la recherche. La méthode traite l’instabi-

lité dans la sélection des atomes lorsque l’image est soumise à de faibles transformations

affines. Un nouveau système de conditionnement des données est également introduit,

permettant de mieux distribuer les données sur la sphère unitaire tout en préservant leurs

distances angulaires relatives. Il est montré que cette méthode améliore le compromis com-

plexité/performance de la recherche approximative basée décompositions parcimonieuses.

Mots-clés : Apprentissage de dictionnaires, représentations parcimonieuses, Mat-

ching Pursuit, réduction de la dimension, décomposition en valeurs singulières, parcimonie

structurée, compression d’images, débruitage d’images, recherche d’images, recherche ap-

proximative des plus proches voisins, conditionnement de données

Novel Sparse Representation Methods and their
Application in Image Indexing and Compression

Abstract: A new dictionary structure is introduced called an Iteration-Tuned Dic-

tionary (ITD). ITDs are layered structures containing a set of candidate dictionaries in

each layer. ITD-based iterative pursuit decompositions are carried out using, at each it-

eration i, one of the candidates from the i-th layer. A general ITD framework is proposed

as well as a tree-structured variant called the Tree-Structured Iteration-Tuned Dictionary

(TSITD) and a constrained tree-structured variant called the Iteration-Tuned and Aligned

Dictionary (ITAD). These structures are shown to outperform various state-of-the-art ref-

erence algorithms in their ability to approximate a dataset sparsely, and in the applications

of image denoising and image compression. The ITAD scheme, in particular, is used to

develop an image codec that outperforms JPEG2000.

An approximate vector search method is also introduced which uses sparse represen-

tations to carry out low-complexity approximate nearest-neighbor image searches. The

approach addresses the related instability of the sparse support when the image patch

is subject to weak affine transformations. In developing this new approach, a new data

conditioning scheme is introduced that succeeds in better distributing data on the unit

sphere while preserving relative angles. It is shown that this new approach improves the

complexity/performance tradeoff of approximate searches based on sparse representations.

Keywords: Dictionary learning, sparse representations, pursuit methods, dimen-

sionality reduction, singular-value decomposition, structured sparsity, image compression,

image denoising, image search, approximate-nearest neighbors, data conditioning

	Introduction
	Structure du manuscrit
	Partie I: Etat de l'art
	Chapitre 2: Représentations parcimonieuses
	Chapitre 3: Description et indexation d'images

	Partie II: Contributions
	Chapitre 4: Iteration-Tuned Dictionaries (ITD)
	Chapitre 5: Tree-Structured Iteration-Tuned Dictionaries
	Chapitre 6: Compression d'images utilisant ITAD
	Chapitre 7: Recherche approximative avec les représentations parcimonieuses

	I Literature Review and Summary of Contributions
	Sparse Representations
	Problem formulation
	Sparse decomposition algorithms
	The matching pursuit family
	Basis Pursuit

	Dictionary Training Methods
	The method of optimal directions
	Unions of orthogonal matrices
	The K-SVD dictionary
	Learning schemes based on atom dependencies
	Online dictionary learning

	Applications in image processing
	Inpainting
	Denoising
	Texture separation and classification
	Image compression

	Contributions (1 of 2)
	Iteration-Tuned Dictionaries (ITDs): A new overcomplete dictionary framework
	The Iteration-Tuned and Aligned Dictionary (ITAD)
	Rate-distortion analysis for overcomplete dictionaries
	New ITD-based image codec

	Image Description and Indexing
	Local image description
	Transformation-covariant region detectors
	Region Normalization
	Region Description

	Image searches using local descriptor
	Local descriptor voting mechanisms
	Approximate searches with the sparse-matrix index

	Sparse representations in image description and search
	Semi-local searches using Bag-of-Features (BOF)
	Exact and approximate searches
	A manifold descriptor and similarity measure

	Contributions (2 of 2)
	New formulation for sparse representations
	Data conditioning for sparse-matrix indices

	II Contributions
	Iteration-Tuned Dictionaries
	Introduction
	Background
	Sparse representations using overcomplete dictionaries
	Matching pursuit
	Complexity

	The Iteration-Tuned Dictionary
	ITD structure
	Signal decomposition using ITDs
	Advantages of the ITD approach

	Construction of Iteration Tuned Dictionaries
	Problem formulation
	Layer update process
	Convergence
	Example of ITD structure

	Results
	Experimental setup
	Experiment 1: Sparsity vs. PSNR
	Experiment 2: Rate-distortion performance

	Conclusion

	Tree-Structured Iteration Tuned Dictionaries
	Introduction
	Notation
	Background
	Sparse representations using overcomplete dictionaries
	The matching pursuit family
	The iteration-tuned dictionary

	Tree-structured ITD (TSITD)
	A more general ITD framework
	The TSITD candidate selection law
	Signal decomposition using TSITD
	TSITD training
	Orthogonality of selected-atoms matrices and consequences

	Reduced TSITD (rTSITD)
	Reduced candidate dictionaries and their path reduction matrices
	Branch reduction matrices
	The rTSITD tree structure
	Signal decomposition using rTSITD
	Signal reconstruction using rTSITD
	Complexity
	Practicality for large tree-structures

	The Iteration-Tuned and Aligned Dictionary (ITAD)
	Geometrical motivation for the ITAD alignment operation
	The ITAD structure as a particular case of (r)TSITD
	Training the ITAD structure

	Results
	Summary of results
	Dictionary training
	Datasets
	Experiment 1: PSNR vs. sparsity
	Experiment 2: Image compression
	Experiment 3: Denoising

	Conclusion
	Appendix Parameter selection for reference dictionaries
	Selection of K-SVD parameter
	Selection of SD parameters La and
	Selection of ONLD parameter

	Appendix Rate-distortion analysis for codecs based on overcomplete dictionaries
	Distortion as a function of quantization noise variance
	Estimate of the rate

	Image Compression Using ITAD
	Introduction
	Notation
	The proposed image codec
	Block slicer and AC / DC splitter
	DPCM coding of DC components
	ITAD-based transform coding of AC components
	Global rate-distortion criterion for block sparsity selection
	Bit-stream format

	Results
	Experimental setup
	ITAD codec construction
	Quantitative experiments
	Qualitative experiments

	Conclusion

	Approximate Nearest Neighbors
	Introduction
	Background
	Sparse representations
	The sparse-matrix index

	Sparse support selection
	The reduced vector
	Relation to reference sparse distances
	Exact solution for certain xb
	Minimizing upper bound
	Probabilistic approach

	Construction of CB
	Data conditioning
	Results
	Evaluation of data conditioning
	Improvement over reference systems

	Conclusion
	Appendix Distribution of sphere-uniform data projections
	Appendix Optimal distribution of sparse support

	Conclusion
	Appendix Review of Selected Topics
	Matrix algebra
	The Singular Value Decomposition
	Information theory
	Entropy coding
	Scalar quantization

	Appendix Notational Conventions and Acronyms
	Appendix Article submissions
	Bibliography

