Méthodes asymptotico-numériques pour des problèmes issus de la physique des plasmas et de la modélisation des interactions sociales

Laurent Navoret

Soutenance de thèse

Institut de Mathématiques de Toulouse, Université de Toulouse 3 - Paul Sabatier Mercredi 30 juin 2010

Plan

1 Introduction

Problèmes asymptotiques Limite quasi-neutre dans les plasmas Limite hydrodynamique avec contrainte géométrique Limite de congestion

2 Limite quasi-neutre dans les plasmas

Reformulation du système Vlasov-Poisson Méthode PICAP Résultats numériques

3 Limite de congestion

Etude de la transition congestionnée/non-congestionnée Simulations numériques

4 Conclusion

Introduction

Problèmes asymptotiques :

$$P^{arepsilon} \xrightarrow[arepsilon o 0]{} P^{0}$$

- $\Rightarrow \varepsilon$ paramètre du problème = **échelle** spatiale et temporelle du phénomène physique par rapport à l'observateur
- \Rightarrow Intérêt de P_0 : "simplification" du problème, seule l'information pertinente est conservée

Exemples :

- Physique des plasmas (gaz de particules chargées, ions et électrons)
 → rapides oscillations des électrons
- 2 Mouvement collectif dans les populations animales
 - \rightarrow description macroscopique d'un banc de poissons

Introduction

Problèmes asymptotiques :

$$P^{arepsilon} \xrightarrow[arepsilon o 0]{} P^{0}$$

- $\Rightarrow \varepsilon$ paramètre du problème = **échelle** spatiale et temporelle du phénomène physique par rapport à l'observateur
- \Rightarrow Intérêt de P_0 : "simplification" du problème, seule l'information pertinente est conservée

Difficultés :

- limite singulière : P^{ε} et P^{0} ont des natures mathématiques disctinctes \rightarrow analyses asymptotiques délicates
- Connaissance de *P*⁰ partielle
 - \rightarrow méthodes numériques préservant l'asymptotique

Introduction

Problèmes asymptotiques :

$$P^{arepsilon} \xrightarrow[arepsilon o 0]{} P^{0}$$

- $\Rightarrow \varepsilon$ paramètre du problème = **échelle** spatiale et temporelle du phénomène physique par rapport à l'observateur
- \Rightarrow Intérêt de P_0 : "simplification" du problème, seule l'information pertinente est conservée

Méthodes numériques préservant l'asymptotique [Jin] :

• Consistance et stabilité asymptotique

 \rightarrow ingrédients : reformulation du problème + implicitation

• Schémas numériques valides pour $P^arepsilon$ et P^0

 \rightarrow Pas de décomposition de domaine à effectuer

Exemple 1 : Limite quasi-neutre dans les plasmas

Plasma = gaz composé de particules chargées, ions et éléctrons

• Particules interagissent via leur propre champ électrostatique

Quasi-neutralité :

• Longueur de Debye λ_D : échelle des déséquilibres de charges

$$\lambda_D = \sqrt{\frac{k_B T_0 \varepsilon_0}{e^2 n_0}}$$

→ Non neutralité électrique observable à des longueurs $\leq \lambda_D$

- L longueur caractéristique du problème
- $\lambda_D \ll L$: le plasma est quasi-neutre

Limite quasi-neutre dans les plasmas

Echelle temporelle :

Fréquence plasma ω_p : fréquence des oscillations dûes aux déséquilibres de charges

$$\omega_p = \sqrt{\frac{n_0 e^2}{\varepsilon_0 m_e}}$$

Difficultés numériques : Contraintes de stabilité pour un schéma numérique explicite sont

$$\Delta x \leqslant \lambda_D, \quad \Delta t \leqslant (\omega_p)^1$$

Méthode préservant l'asymptotique quasi-neutre¹ : consistance et stabilité avec $\Delta x \ge \lambda_D, \Delta t \ge (\omega_p)^1$

^{1. [}Degond, Deluzet, LN, Sun, Vignal, JCP, 2010]

Exemple 2 : Limite hydrodynamique avec contrainte géométrique

• Contexte : modélisation du mouvement collectif dans les populations animales

Banc de poissons en moulin

Modèle de Vicsek [Vicsek,95][Degond,Motsch,07] → modèle d'alignement

Modèle de Vicsek

N particules : positions $X_k \in \mathbb{R}^2$, vitesses $V_k \in \mathbb{R}^2$, avec $|V_k| = 1$

$$\frac{dXk}{dt} = V_k$$
$$dVk = (Id - V_k \otimes V_k) \left(\nu \bar{V}_k dt + \sqrt{2d} dB_t^k\right)$$
$$Vk = \text{Direction moyenne dans le disque de rayon } R$$
$$dB_t^k = \text{Bruit blanc}$$

• $|V_k|^2 = 1 \quad \Rightarrow \quad \frac{dV_k}{dt} \perp V_k$

 $\Rightarrow (\mathsf{Id} - V_k \otimes V_k) = \mathsf{matrice} \ \mathsf{de}$ projection orthogonale sur la droite orthogonale à V_k .

- contrainte géométrique
- Quantité de mouvement non conservée

Modèle de Vicsek

N particules : positions $X_k \in \mathbb{R}^2$, vitesses $V_k \in \mathbb{R}^2$, avec $|V_k| = 1$

$$\frac{dXk}{dt} = V_k$$
$$dVk = (Id - V_k \otimes V_k) \left(\nu \bar{V}_k dt + \sqrt{2d} dB_t^k\right)$$
$$Vk = \text{Direction moyenne dans le disque de rayon } R$$
$$dB_t^k = \text{Bruit blanc}$$

•
$$|V_k|^2 = 1 \quad \Rightarrow \quad \frac{dV_k}{dt} \perp V_k$$

 $\Rightarrow (\mathsf{Id} - V_k \otimes V_k) = \mathsf{matrice} \ \mathsf{de}$ projection orthogonale sur la droite orthogonale à V_k .

- contrainte géométrique
- Quantité de mouvement non conservée

Modèle macroscopique de Vicsek

Dynamique à grande échelle?

Difficulté : manque des lois de conservation Modèle macroscopique de Vicsek obtenu par **limite hydrodynamique** [Degond,Motsch,07], à l'aide des invariants collisionnels généralisés

$$\partial_t \rho + \nabla_x \cdot (c_1 \rho u) = 0$$

$$\partial_t u + c_2 u \cdot \nabla_x u = \frac{d}{\nu} (Id - u \otimes u) \frac{\nabla_x \rho}{\rho}$$

$$|u| = 1$$

 \rightarrow dynamique des quantités macroscopiques : densité $\rho(x, t)$, direction moyenne u(x, t).

Extension du modèle

- Objectif : modéliser le déplacement des moutons
- Deux populations : particules immobiles $\eta_k=0$
 - particules mobiles $\eta_k = 1$

1- Modèle de Vicsek au sein des deux populations

2- Passages de l'état immobile à l'état mobile : η_k processus de saut markovien avec un taux de transition dépendant de l'alignement local avec la population cible

 \rightarrow Dérivation de la dynamique macroscopique lorsque les interactions de Vicsek prédominent sur les changement d'état :

• Equilibres :
$$ho =
ho_0 +
ho_1 = k(
ho_1)$$
 et $\Omega_0 = \pm \Omega_1$

Modèle macroscopique non conservatif

Analyse numérique du modèle macroscopique de Vicsek²

Système hyperbolique non-conservatif

$$\partial_t \rho + \nabla_x \cdot (c_1 \rho u) = 0$$

$$\partial_t u + c_2 u \cdot \nabla_x u = \frac{d}{\nu} (Id - u \otimes u) \frac{\nabla_x \rho}{\rho}, \quad |u| = 1$$

- Multitude de solution : non-unicité des solutions (discontinues)
 - ightarrow problème asymptotique **incomplet**
 - \rightarrow quelle solution sélectionner?

Méthode : Utilisation du schéma numérique pour sélectionner la "bonne" solution : celle qui correspond au système particulaire

2. Travail effectué en collaboration avec S. Motsch, soumis à SIAM

Exemple 3 : Limite de congestion ³

Contexte : mouvement collectif dans les populations animales

- congestion : contrainte de non-chevauchement des particules
 - \rightarrow existence d'une **densité maximale** ρ^*
 - \rightarrow transition entre les zones congestionnées et les zones non-congestionnées

^{3. [}Degond,LN,Bon,Sanchez,JSP,10]

Force de répulsion singulière

Modèle macroscopique : système hyperbolique non-conservatif

Modèle asymptotique : transition entre des régions compressibles et des régions incompressibles

→ Dynamique de cette transition?

Modèle asymptotique incomplet : analyse plus fine pour le compléter analyse numérique

Force de répulsion singulière

Modèle macroscopique : système hyperbolique non-conservatif

Modèle asymptotique : transition entre des régions compressibles et des régions incompressibles

→ Dynamique de cette transition?

Modèle asymptotique incomplet : analyse plus fine pour le compléter analyse numérique

Plan

1 Introduction

Problèmes asymptotiques Limite quasi-neutre dans les plasmas Limite hydrodynamique avec contrainte géométrique Limite de congestion

2 Limite quasi-neutre dans les plasmas Reformulation du système Vlasov-Poisson Méthode PICAP Résultats numériques

3 Limite de congestion

Etude de la transition congestionnée/non-congestionnée Simulations numériques

Système Vlasov-Poisson

But : Méthode préservant l'asymptotique quasi-neutre

Hypothèse : ions immobiles, de densité n_0

- f(x, v, t) densité d'électrons pour des temps $t \ge 0$ dans l'espace des phases : positions $x \in \mathbb{R}^d$, vitesses $v \in \mathbb{R}^d$.
- Système Vlasov-Poisson

 $\partial_t f + v \cdot \nabla_x f + \nabla_x \phi \cdot \nabla_v f = 0$ (équation de Vlasov)

 $\lambda \Delta_x \phi = n_0 - n$ (équation de Poisson)

• $\lambda = \lambda_D / L$: longueur de Debye adimensionnée densité des électrons : $n = \int f \, dv$

- → Lorsque $\lambda \rightarrow 0$, équation de Poisson dégénère : $n_0 n = 0$
- \rightarrow on perd numériquement la possibilité de calculer le potentiel
- → Reformulation de l'équation de Poisson

Equation de Poisson de reformulée Equation sur les moments : densité $n(x, t) = \int f(x, v, t) dv$

quantité de mouvement $nu(x, t) = \int f(x, v, t) v dv$

$$\partial_t n + \nabla_x \cdot nu = 0$$

$$\partial_t(nu) + \nabla_x \cdot S = n \nabla_x \cdot \phi, \quad S = \int f(x, v, t)(v \otimes v) dv$$

Reformulation de l'équation de Poisson

Dériver en temps l'éq. densité

$$\partial_t^2 n + \partial_t \nabla_x \cdot nu = 0$$

2 Dériver en espace l'éq. quantité de mouvement

$$\partial_t \nabla_x (nu) + \nabla_x^2 \cdot S = \nabla_x \cdot (n \nabla_x \cdot \phi)$$

3 Soustraire les deux équations obtenues et utiliser l'équation de Poisson $\lambda^2 \Delta_x \phi = n_0 - n$

On obtient l'équation de Poisson reformulée :

$$\nabla_{\mathbf{x}} \cdot \left(\left(\lambda^2 \partial_t t^2 + \mathbf{n} \right) \nabla_{\mathbf{x}} \cdot \boldsymbol{\phi} \right) = -\nabla_{\mathbf{x}}^2 : S$$

ightarrow Ne dégénère pas quand $\lambda
ightarrow 0$

Principe de la méthode PIC

Méthode Particle-In-Cell (PIC)

• On approche la distribution initiale par des particules numériques

$$f_0(x,v) = \sum_i \omega_i \delta(x - x_i(0)) \otimes \delta(v - v_i(0))$$

• La solution associée est alors

$$f(x, v, t) = \sum_{i} \omega_i \delta(x - X_i(t)) \otimes \delta(v - V_i(t))$$

$$\frac{dX_i}{dt}(t) = V(t) \qquad \qquad \frac{dV_i}{dt}(t) = \nabla_x \phi(X_i(t), t)$$
$$X_i(0) = x_i(0) \qquad \qquad V_i(0) = v_i(0)$$

- → Discrétisation des équations de Newton
- \rightarrow Calcul du potentiel ϕ sur un maillage spatial grâce une discrétisation de l'équation de Poisson

PIC classique et PIC AP

Méthode PIC classique :

1 méthode explicite

$$\frac{X_i^{m+1}-X_i^m}{\Delta t}=V_i^{m+1}\quad \frac{V_i^{m+1}-V_i^m}{\Delta t}=\nabla_x\phi^m(X_i)$$

2 Discrétisation (diff. finies) de l'équation de Poisson :

$$\lambda^2 \Delta_x \phi^m = n_0 - n^m$$

Méthode PIC AP :

① méthode **semi-implicite** → Stabilité

$$\frac{X_i^{m+1}-X_i^m}{\Delta t}=V_i^{m+1}\quad \frac{V_i^{m+1}-V_i^m}{\Delta t}=\nabla_x\phi^{m+1}(X_i)$$

2 Discrétisation (diff. finies) de l'équation de Poisson reformulée :

$$\lambda^2 \frac{\Delta_x \phi^{m+1} - 2\Delta_x \phi^m + \Delta_x \phi^{m-1}}{\Delta t^2} - \nabla_x \cdot \left(n^m \nabla_x \phi^{m+1} \right) = -\nabla_x^2 : S^m$$

Schémas PIC AP

Deux stratégies :

• **PICAP 1** : utiliser l'équation de Poisson $\lambda^2 \Delta_x \phi^m = n_0 - n^m$ $\lambda^2 \Delta_x \phi^{m-1} = n_0 - n^{m-1}$

$$\lambda^{2} \frac{\Delta_{x} \phi^{m+1} - 2(n_{0} - n^{m}) + \Delta_{x}(n_{0} - n^{m-1})}{\Delta t^{2}} - \nabla_{x} \cdot (n^{m} \nabla_{x} \phi^{m+1}) = -\nabla_{x}^{2} : S^{m}$$

 \rightarrow pour calculer ϕ^1 , valeur de n^1 ?

• **PICAP 2** : utiliser l'éq. densité $n^m - n^{m1} = (\Delta t) \Delta_x \cdot (nu)^m$

$$\lambda^{2} \frac{\Delta_{x} \phi^{m+1} - (n_{0} - n^{m}) + (\Delta t) \Delta_{x} \cdot (nu)^{m}}{\Delta t^{2}} - \nabla_{x} \cdot (n^{m} \nabla_{x} \phi^{m+1}) = -\nabla_{x}^{2} : S^{m}$$

Remarque : 1) Consistance $\lambda \to 0$ avec l'équation de Poisson reformulée 2) même coût que la méthode classique

- Comparaison avec la méthode Direct-Implicit [Langdon,83] (méthode de prédiction correction)
- Cas test d'expansion de plasma : électrons + ions (5 $\times\,10^6$ particules)

lons :

$$f_{i0}(x,v) = n_{i0}(x)M_i(v), \quad n_{i0} = \begin{cases} n_0 & \text{pour } 0 \leq 20\lambda \\ 0 & \text{pour } x \geq 20\lambda \end{cases}$$

Electrons :

$$f_{e0}(x, v) = n_{e0}(x)M_e(v), \quad n_{e0} = n_0 \exp(\phi)$$

 M_i, M_e : maxwelliennes

- Comparaison avec la méthode Direct-Implicit [Langdon,83] (méthode de prédiction correction)
- Cas test d'expansion de plasma : électrons + ions (5×10^6 particules)

Cas résolu,
$$\Delta t = 0.05\omega^1$$
, $\Delta x = 0.2\lambda$

- Comparaison avec la méthode Direct-Implicit [Langdon,83] (méthode de prédiction correction)
- Cas test d'expansion de plasma : électrons + ions (5×10^6 particules)

Cas sous-résolu, $\Delta t = 3\omega^1$, $\Delta x = 4\lambda$

- Comparaison avec la méthode Direct-Implicit [Langdon,83] (méthode de prédiction correction)
- Cas test d'expansion de plasma : électrons + ions (5×10^6 particules)

Cas sous-résolu, $\Delta t = 3\omega^1$, $\Delta x = 4\lambda$

Plan

1 Introduction

Problèmes asymptotiques Limite quasi-neutre dans les plasmas Limite hydrodynamique avec contrainte géométrique Limite de congestion

2 Limite quasi-neutre dans les plasmas

Reformulation du système Vlasov-Poisson Méthode PICAP Résultats numériques

3 Limite de congestion

Etude de la transition congestionnée/non-congestionnée Simulations numériques

4 Conclusion

Dérivation du modèle macroscopique

Contexte : mouvement collectif dans les populations animales

• modèle d'attraction-répulsion (sans alignement)

• N particules : positions
$$X_k \in \mathbb{R}^2$$

vitesses $V_k \in \mathbb{R}^2$, avec $|V_k| = 1$

Dérivation du modèle macroscopique

Force de répulsion singulière :

•
$$F_k^r = \nu_k^r \xi_k^r$$

- ξ_k = barycentre de la distribution de masse dans $D(X_k, R_r)$
- l'intensité ν_k dépend de la densité de particules présentes dans le disque de répulsion

$$\boldsymbol{\nu_k^r} = \nu^r \left(\frac{\pi d^2 \sum_{j,|\boldsymbol{X_j} - \boldsymbol{X_k}| \leqslant R_r} 1}{\pi R_r^2} \right)$$

 $\nu_{\rm r}$ tend vers $+\infty$ quand la densité locale tend vers la densité maximale

Dérivation de la dynamique à grande échelle :

• Limite hydrodynamique : changement d'échelle de description

$$\tilde{x} = \eta x, \quad \tilde{t} = \eta t$$

 $R_r = O(\eta) \rightarrow$ force de répulsion locale $R_a = O(1) \rightarrow$ force d'attraction non locale

• Fermeture monocinétique

Modèle macroscopique et congestion

Modèle pour la densité ho(x,t), direction $u(x,t) \in \mathbb{S}^1$

$$\begin{aligned} \partial_t \rho + \nabla_x \cdot \rho u &= 0, \\ \partial_t u + u \cdot \nabla_x u + (Id - u \otimes u) \nabla_x p(\rho) &= (Id - u \otimes u) \mathcal{F}_a \\ |u| &= 1 \end{aligned}$$

Pression singulière : $p(\rho) \xrightarrow[\rho \to \rho^*]{} +\infty$

Apparition de deux dynamiques : Pour $\rho < \rho^* \rightarrow$ faible répulsion Pour $\rho \sim \rho^* \rightarrow$ congestion

Pour accentuer cette différence : $p \rightarrow \varepsilon p$

• pour
$$\rho < \rho^*$$
, $\varepsilon p(\rho^{\varepsilon}) = O(\varepsilon)$
• $\varepsilon p(\rho^{\varepsilon}(x,t)) \xrightarrow[\varepsilon \to 0]{} \begin{cases} 0 & \text{si } \rho^{\varepsilon}(x,t) \to \rho < \rho^* \\ \overline{\rho}(x,t) \in [0, +\infty[& \text{si } \rho^{\varepsilon}(x,t) \to \rho^* \end{cases}$

 $\Rightarrow \bar{p}$ nouvelle inconnue du problème dans les zones congestionnées

Modèle macroscopique et congestion

Modèle pour la densité ho(x,t), direction $u(x,t) \in \mathbb{S}^1$

$$\partial_t \rho + \nabla_x \cdot \rho u = 0,$$

$$\partial_t u + u \cdot \nabla_x u + (Id - u \otimes u) \nabla_x \rho(\rho) = 0$$

$$|u| = 1$$

Pression singulière : $p(\rho) \xrightarrow[\rho \to \rho^*]{} +\infty$ Apparition de deux dynamiques : Pour $\rho < \rho^* \rightarrow$ faible répulsion

Pour $\rho \sim \rho^* \rightarrow \text{congestion}$

Pour accentuer cette différence : $p \rightarrow \varepsilon p$

• pour
$$\rho < \rho^*$$
, $\varepsilon p(\rho^{\varepsilon}) = O(\varepsilon)$
• $\varepsilon p(\rho^{\varepsilon}(x,t)) \xrightarrow[\varepsilon \to 0]{} \begin{cases} 0 & \text{si } \rho^{\varepsilon}(x,t) \to \rho < \rho^* \\ \overline{\rho}(x,t) \in [0, +\infty[& \text{si } \rho^{\varepsilon}(x,t) \to \rho^* \end{cases}$

 $\Rightarrow \bar{p}$ nouvelle inconnue du problème dans les zones congestionnées

Modèle macroscopique et congestion

Modèle pour la densité ho(x,t), direction $u(x,t) \in \mathbb{S}^1$

$$\partial_t \rho + \nabla_x \cdot \rho u = 0,$$

$$\partial_t u + u \cdot \nabla_x u + (Id - u \otimes u) \nabla_x \rho(\rho) = 0$$

$$|u| = 1$$

Pression singulière : $p(\rho) \xrightarrow[\rho \to \rho^*]{} +\infty$ Apparition de deux dynamiques : Pour $\rho < \rho^* \rightarrow$ faible répulsion Pour $\rho \sim \rho^* \rightarrow$ congestion

Pour accentuer cette différence : $p \rightarrow \varepsilon p$

• pour
$$\rho < \rho^*$$
, $\varepsilon p(\rho^{\varepsilon}) = O(\varepsilon)$
• $\varepsilon p(\rho^{\varepsilon}(x,t)) \xrightarrow[\varepsilon \to 0]{} \begin{cases} 0 & \text{si } \rho^{\varepsilon}(x,t) \to \rho < \rho^* \\ \overline{\rho}(x,t) \in [0, +\infty[& \text{si } \rho^{\varepsilon}(x,t) \to \rho^* \end{cases}$

 $\Rightarrow \bar{p}$ nouvelle inconnue du problème dans les zones congestionnées

Modèle biphasique

Modèle macroscopique :

$$\partial_t \rho^{\varepsilon} + \nabla_x \cdot \rho^{\varepsilon} u^{\varepsilon} = 0$$

$$\partial_t u^{\varepsilon} + u^{\varepsilon} \cdot \nabla_x u^{\varepsilon} + (Id - u^{\varepsilon} \otimes u^{\varepsilon}) \varepsilon \nabla_x p(\rho^{\varepsilon}) = 0$$

$$|u^{\varepsilon}| = 1$$

•
$$\varepsilon p(\rho^{\varepsilon}(x,t)) \underset{\varepsilon \to 0}{\longrightarrow} \begin{cases} 0 & \text{si } \rho^{\varepsilon}(x,t) \to \rho < \rho^{*} \\ \overline{p}(x,t) \in [0,+\infty[& \text{si } \rho^{\varepsilon}(x,t) \to \rho^{*} \end{cases}$$

• Dans la limite $\varepsilon \to 0$, deux phases :

Dans la phase diluée $\rho < \rho^*$,

$$\begin{aligned} |u| &= 1\\ \partial_t \rho + \nabla_x \cdot \rho \, u &= 0\\ \partial_t u + u \cdot \nabla_x \, u &= 0\\ \bar{\rho} &= 0 \end{aligned}$$

Dans la phase congestionnée $\rho = \rho^*$

$$\begin{split} |u| &= 1\\ \rho &= \rho^*, \quad \nabla_x \cdot u = 0\\ \partial_t u + u \cdot \nabla_x u\\ &+ (Id - u \otimes u) \nabla_x \bar{p} = 0 \end{split}$$

Dynamique des gaz sans pression

Euler incompressible

La phase congestionnée

• Euler incompressible avec contrainte sur le module de la vitesse

•
$$\nabla_x \cdot u = 0$$
 et $|u| = 1$

- \rightarrow *u* constant sur les droites orthogonales à *u*
- $\rightarrow u$ est constant

• équation elliptique satisfaite par \bar{p} sur chaque droite

$$-
abla_{x} \cdot ((Id - u \otimes u)
abla_{x} \overline{p}) =
abla_{x}^{2} : (u \otimes u)$$

 \rightarrow conditions aux limites ? Non fournies par l'analyse asymptotique formelle

→ modèle asymptotique incomplet

Conditions à l'interface

• Résolution du problème de Riemann 1D à travers l'interface entre les régions congestionnées $C_t = \{x, \rho(x) = \rho^*\}$ et les régions diluées

$$\cos \theta = u \cdot n$$

$$\frac{u_{\ell}}{\rho_{\ell}} \frac{u_{r}}{\rho_{r}} \frac{u_{r}}{\rho_{r}} \frac{u_{r}}{\rho_{r}} \rho_{r} = \rho^{*}$$

Le système 1D avec ε > 0 est non conservatif
 → il existe une forme conservative

$$\partial_t \rho + \partial_x (\rho \cos \theta) = 0$$

$$\partial_t \Psi(\cos \theta) + \partial_x \left(\Phi(\cos \theta) + \varepsilon p(\rho) \right) = 0$$

$$\Psi(u) = \frac{1}{2} \log \left((1+u)/(1-u) \right), \quad \Phi(u) = -\log \left(1/\sqrt{1-u^2} \right)$$

→ non unicité de la forme conservative mais des caractéristiques communes

Conditions à l'interface

- Limite $\varepsilon \to 0$ des solutions des problèmes de Riemann (analyse du comportement géométrique de courbes de raréfaction et de choc)
- interface Congestionnée (ρ = ρ*) / diluée (0 < ρ < ρ*)
 → les conditions de Rankine-Hugoniot donnent le saut de pression et la vitesse à l'interface

$$\bar{p}_{|\partial C_t} = \frac{[\Psi(u \cdot n)][\rho(u \cdot n)]}{[\rho]} - [\Phi(u \cdot n)]$$
$$\sigma = \frac{[\rho(u \cdot n)]}{[\rho]}$$

• interface Congestionnée ($ho=
ho^*$) / Vide (ho=0)

$$\bar{p}_{|\partial C_t} = 0$$
$$\sigma = u \cdot n$$

Conditions à l'interface

Collision entre deux régions congestionnée

ightarrow problème de Riemann ne fournit pas de solution : $ar{p}=\infty$

 \rightarrow en 1D, collision entre deux domaines congestionnés de taille finis avec un Dirac en temps sur la pression

$$\bar{p} = \pi(x)\delta(t - t_c), t_c \text{ instant de collision}$$

$$C_L \quad C_R \quad C_L \cup C_R$$

$$u_L \quad u_R \quad u_R \quad x_c \quad x_R$$

• u déterminée par

 $(\Psi(u) - \Psi(u_L))(x_c - x_L) + (\Psi(u) - \Psi(u_R))(x_R - x_c) = 0$

analogie avec les modèles biphasiques [Bouchut et al.]
 → en 2D, géométrie de la collision plus compliquée...
 → analyse asymptotique incomplète

Simulations numériques⁴

- Simulations numériques
- Sans contrainte sur la vitesse : système d'Euler avec pression singulière

$$u \in \mathbb{R}^{2}$$

$$\partial_{t}\rho + \nabla_{x} \cdot (\rho u) = 0$$

$$\partial_{t}(\rho u) + \nabla_{x} \cdot (\rho u \otimes u) + \varepsilon \nabla_{x} p(\rho) = 0$$

- Schémas préservant l'asymptotique arepsilon
 ightarrow 0
 - → grande vitesse d'onde dans les domaines incompressibles : limite bas-Mach dans les domaines congestionnés
 - → la stabilité requiert de l'implicitation
 - → capturer numériquement la dynamique de l'interface

^{4.} Travail en cours avec Pierre Degond et Jiale Hua

Méthodes

Méthode semi-implicite :

1 Implicite pour la densité ρ :

$$\frac{\rho^{n+1}-\rho^n}{\Delta t}+\nabla_x\cdot(\rho u)^{n+1}=0$$

2 semi-implicite pour la quantité de mouvement ho u :

$$\frac{(\rho u)^{n+1}-(\rho u)^n}{\Delta t}+\nabla_x\cdot\left(\frac{(\rho u)^n\otimes(\rho u)^n}{\rho^n}\right)+\varepsilon\nabla_x\rho(\rho^{n+1})=0,$$

En injectant l'éq. sur ho u dans l'éq. sur ho, on obtient l'équation suivante :

$$\rho^{n+1} - (\Delta t^2) \varepsilon \Delta_x \rho(\rho^{n+1}) = \rho^n - (\Delta t) \nabla_x \cdot (\rho u)^n + (\Delta t^2) \nabla_x^2 : \left(\frac{(\rho u)^n \otimes (\rho u)^n}{\rho^n}\right)$$

 \rightarrow résolution en la variable p, inverser $p(\rho)$

→ contrainte sur la densité maximale satisfaite

Simulations numériques

Méthode directe

- adaptation de la méthode [Degond,Min]
- splitting : pression explicite $p_0(
 ho^n)$ et pression implicite $p_1(
 ho^{n+1})$

Méthode de jauge

• méthode directe + décomposition de Hodge [Degond,Liu]

Simulations numériques

• Condition initiale : $\rho_0(x) = 0.7$

• Collision

Plan

1 Introduction

Problèmes asymptotiques Limite quasi-neutre dans les plasmas Limite hydrodynamique avec contrainte géométrique Limite de congestion

2 Limite quasi-neutre dans les plasmas

Reformulation du système Vlasov-Poisson Méthode PICAP Résultats numériques

3 Limite de congestion

Etude de la transition congestionnée/non-congestionnée Simulations numériques

Conclusion

- Analyse asymptotique : modèle de Vicsek, limite de congestion
- Méthodes numériques préservant les asymptotiques

Perspectives :

- Dissipation de l'énergie cinétique → amélioration de la méthode PICAP
- Analyse de paramètres du modèle d'attraction-répulsion microscopique
- Ajouter la congestion dans le modèle de Vicsek

Remerciements

Mes directeurs de thèse : Pierre Degond & David Sanchez

Les membres de mon jury :

Naoufel Ben AbdallahFrédéric PascalDidier BreschOlivier PironneauBertrand MauryGuy Theraulaz

Tous mes collaborateurs (IMT,CRCA)