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Je tiens aussi à remercier Florence et Jean-Louis de m’avoir accueillie si chaleureuse-

ment au sein du bâtiment 211 pendant mes séjours à l’INRA. Merci à tous les deux
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ABSTRACT

Rau, Andrea Ph.D., Purdue University, August 2010. Reverse Engineering Gene
Networks Using Genomic Time-Course Data. Major Professor: R. W. Doerge.

Gene regulatory networks are collections of genes that interact, whether directly

or indirectly, with each other and with other substances in the cell. Such gene-to-

gene interactions play an important role in a variety of biological processes, as they

regulate the rate and degree to which genes are transcribed and proteins are created.

By measuring gene expression over time, it may be possible to reverse engineer, or

infer, the structure of the gene network involved in a particular cellular process.

With the development of microarray and next-generation sequencing technologies, it

has become possible to conduct longitudinal experiments to measure the expression of

thousands of genes simultaneously over time. However, due to the high dimensionality

of gene expression data, the limited number of biological replicates and time points

typically measured, and the complexity of biological systems themselves, the problem

of reverse engineering networks from transcriptomic data demands a specialized suite

of appropriate statistical tools and methodologies.

Two methods are proposed that use directed graphical models of stochastic pro-

cesses, known as dynamic Bayesian networks, and first-order linear models to repre-

sent gene regulatory networks. In the first method, an algorithm is developed based

on a hierarchical Bayesian framework for a Gaussian state space model. Hyperpa-

rameters are estimated using an empirical Bayes procedure, and parameter posterior

distributions determine the presence or absence of gene-to-gene interactions. In the

second method, a simulation-based approach known as Approximate Bayesian Com-

puting based on Markov Chain Monte Carlo sampling is modified to the context of

gene regulatory networks. Because no likelihood calculation is required, this method
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permits inference even for networks where no distributional assumptions are made.

The performance of the proposed approaches is investigated via simulations, and both

methods are applied to real longitudinal expression data. The two methods, while not

comparable, are complementary, and help illustrate the need for a variety of network

inference methods adapted for different contexts.
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1. INTRODUCTION

The discovery of the molecular structure of deoxyribonucleic acid (DNA) in 1953 by

Watson and Crick (1953) was a pivotal moment in the history of molecular biology

and modern biotechnology. Since that time, an extraordinary amount of progress has

been made in discovering the information encoded by these molecules and how this

genetic code relates to phenotypic traits, such as physical characteristics and disease

status. In particular, the development of “high-throughput” technologies over the

past twenty years has led to an explosive growth of wide-scale studies done with an aim

to examine the complete genetic information (the genome) of a variety of organisms.

For instance, the introduction of microarrays in the 1990’s (Schena et al., 1995, 1996;

Lipschutz et al., 1999) enabled scientists to simultaneously assay the expression level

of thousands of genes. Sequence-based methods, including serial analysis of gene

expression (SAGE) (Velculescu et al., 1995, 1997) and next-generation sequencing

(NGS) (Mardis, 2008), have opened the door to sequencing entire genomes, complete

sets of transcripts (the transcriptome), and the mineral nutrient composition of an

organism (the ionome).

High-throughput platforms are often used to study the behavior of genes during

specific biological processes, such as the cell cycle or a response to an external input.

However, in spite of the abundance of data output from these technologies, it can be

very difficult to unravel the complexity of the chemical dynamics that occur within

a cell. One reason for this is that cell development is regulated by well-orchestrated

patterns of expression among groups of genes, often referred to as gene regulatory

networks (Friedman, 2004; Wilkinson, 2009). These networks are generally believed

to govern the rate at which genes in the network are expressed, and often play a critical

role in the control of complicated cellular functions. Identifying and understanding
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the components of gene regulatory networks is essential to improving our knowledge

of how complex biological systems work.

In studies of gene expression, the number of samples (e.g., biological replicates or

time points) collected is typically far outweighed by the number of genes observed.

For this reason, standard statistical techniques cannot be used to infer gene regulatory

networks from transcriptomic data, and a specialized suite of appropriate statistical

tools and methodologies is required. In this dissertation, two algorithmic approaches

are proposed. They are based in approximate Bayesian methodology (Carlin and

Louis, 2000; Beaumont et al., 2002) to infer gene regulatory networks from longitudi-

nal expression data. Because both methods incorporate the joint behavior of a set of

genes over time, rather than examining each time point independently, the correla-

tion structure of gene expression between two adjacent time points is maintained and

elucidates important information about the network. The first approach develops a

method to conduct larger, exploratory analyses of gene regulatory networks where

no a priori biological information is known (Rau et al., 2010). The second approach

focuses on the analysis of small, well-characterized pathways. The methods, while not

comparable, are complementary, and help illustrate the need for a variety of methods

adapted for different contexts.

1.1 Basics of Genetics: DNA and RNA

DNA is a nucleic acid that acts as the blueprint for the development and func-

tioning of living organisms, and serves as the foundation from which other cellular

components are constructed. DNA consists of two long polymers made up of smaller

units called nucleotides, and are stored in bundles of varying lengths, known as chro-

mosomes, which vary in number between different organisms. Each DNA molecule

has a double-stranded structure in the form of a double helix (Watson and Crick,

1953), where the polymers run anti-parallel to one another. Specifically, the “head”

of one strand, known as the 3’ end, binds to the “tail”, or 5’ end, of the other. The
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Figure 1.1. The double-stranded structure of a DNA molecule in the form
of a double helix. Each strand is made up of a sugar phosphate backbone,
where one of four nucleotides (adenine, cytosine, guanine, and thymine)
are attached to each sugar. Similar image shown at the National Human
Genome Research Institute (2010).

nucleotides forming a DNA strand are made up of a backbone of sugar and phos-

phate groups joined by ester bonds (Figure 1.1). One of four bases are attached to

each sugar: the purines adenine (A) and cytosine (C), and the pyrimidines guanine

(G) and thymine (T). Adenine pairs with thymine, and cytosine pairs with guanine.

Thus, the two types of possible base pairings are A with T (two hydrogen bonds) and

G with C (three hydrogen bonds).

One of the most important functions of DNA is to encode genes that in turn

produce proteins, which are compounds of chains of amino acids. Proteins are essen-

tial elements in the majority of cellular functions, including biochemical reactions,

metabolism, cell signalling, immune responses, and the cell cycle. There are twenty
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Figure 1.2. The central dogma of molecular biology. Biological infor-
mation contained in a double-stranded DNA molecule is transcribed into
single-stranded RNA by a polymerase, and subsequently translated into
proteins by ribosomes.

naturally occurring amino acids (Griffiths et al., 2008) that are encoded by triplets of

nucleotides, or codons, in a DNA strand. The transfer of biological information from

DNA to proteins is described by the central dogma of molecular biology (Crick, 1970).

First, the information encoded in DNA is transcribed by a polymerase into ribonu-

cleic acid (RNA), which in turn is translated into proteins by ribosomes (Figure 1.2).

The molecular structure of RNA is similar to that of DNA, with three exceptions: (1)

RNA strands are generally single-stranded, and much shorter than DNA, (2) RNA

nucleotides contain ribose rather than deoxyribose, and (3) the thymine base present

in DNA is replaced by the base uracil (U) in RNA. In total, RNA is comprised of a

cap, a start codon to initiate translation, a coding sequence made up of nucleotides

arranged into codons, a stop codon to terminate translation, and a trail sequence.

Several types of RNA molecules are active during the process of transcription.

After the double strand of DNA is split by the RNA polymerase in the transcription

step, a complementary strand of RNA called messenger RNA (mRNA) is formed
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to copy information from the DNA and carry it out of the nucleus. The mRNA

chain is read by ribosomes made up of proteins and ribosomal RNA (rRNA), which

form the machine that can read the information carried in the mRNA and translate

it into amino acids. As codons are read off, transfer RNA (tRNA) transfers the

corresponding amino acids to a growing polypeptide chain. Once the stop codon is

read and a protein has been fully assembled, the mRNA detaches from the ribosome

and remains in the cell until it degrades.

1.2 Measuring Gene Expression

A gene is a region of the genome that contains both “coding” sequences that

determine function, as well as “non-coding” regions that determine when the gene is

active, or expressed. Gene expression refers to the transcription of genes to mRNA,

and eventually translation into functional products. Overlooking factors such as RNA

degradation and post-translational modifications, the mRNA content of a cell roughly

corresponds to the amount of gene expression. As such, the abundance of mRNA is

often used as a proxy for a measure of gene expression.

1.2.1 Microarrays

Microarrays are a multiplex technology based on the affinity of single-stranded

DNA sequences to bind to complementary sequences of nucleotides. Thousands of

“spots”, known as features, made up of specific probe sequences are attached to a

physical surface, such as a slide, which allows for a genome-wide assay of gene expres-

sion. For many organisms and technologies, these probes can be created artificially,

based on known gene sequences. Depending on cost, number of genes being studied,

and the specific research question, there are a variety of ways that microarrays can

be fabricated. In addition to custom-made microarrays prepared and designed by

the user, several companies also produce and sell microarrays commerically, includ-

ing Affymetrix (2010), Illumina (2010), NimbleGen (2010), and Agilent Technologies
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Figure 1.3. Examples of commercially-produced microarrays. Clockwise,
starting from top left: Affymetrix GeneChip, NimbleGen array, Agi-
lent array, Illumina Microarray Core. In order, images courtesy of the
JIC Genome Laboratory (2010), the Leiden Genome Technology Center
(2010), the Agilent Technologies Newsroom (2010), and the Microarray
Core Facility (2010).

(2010) (see Figure 1.3). Typically, the most substantial distinction among these mi-

croarrays lies in the process by which probes are created and affixed to the slide.

Although the fabrication of commercially-produced microarrays varies by com-

pany, the basic production steps are fairly standard. First, a glass or silicone slide is

prepared, and genetic material, known as probes, is attached in an array of spots to

the slide. Because one slide can potentially hold many thousands of spots, a single

microarray has the potential to represent the coding regions of an entire genome. Af-

ter obtaining a tissue sample under the experimental condition of interest, the mRNA

in a sample of biological material is extracted and prepared. Complementary DNA

(cDNA) is produced from the extracted mRNA through reverse-transcription, and

the cDNA is subsequently amplified using a technique known as polymerase chain

reaction (PCR) (Mullis et al., 1994). After cleaning the PCR products, the amplified

cDNA, known as targets, is marked with fluorescent dye and allowed to bind to its

partner on the array via complementation of the previously explained base pairing.
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Figure 1.4. An Affymetrix GeneChip probe array. Image courtesy of
Giessen Research Center in Infectious Diseases (2010).

The unattached genetic material is then washed off, and the slide is dried. Finally, a

laser is used to excite the fluorescent dye attached to the targets, and the fluorescence

level of a spot is used as a measure of relative transcript abundance (see Figure 1.4

for an example from an Affymetrix GeneChip).

Once the fluorescence levels of the spots on a microarray have been quantified, an

image analysis is used to scan the microarray, recognize spots, remove poor-quality

probes, and quantify spot intensities. The raw data must typically undergo several

pre-processing steps prior to analysis, including background correction, normalization,

and log-transformation. These steps are largely dependent on the type of microarray

and the particular experimental design. For instance, each gene on an Affymetrix

chip is typically represented by a unique combination of 11 target sequences made

up of 25 base pairs, known as a probe set (Affymetrix, 2010). This means that the

fluorescence level of probes in a probe set must be combined in a statistically sound

way to obtain meaningful estimates of gene expression levels. There is a vast body of

literature available on the subject of pre-processing and analyzing microarray data;
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see, for example, Kerr and Churchill (2001), Yang et al. (2001), Shaw and Tollett

(2001), Kerr (2003), Bolstad et al. (2003), and Smyth and Speed (2003).

Other statistical issues arise when biological or technical replication is included

in an experiment. The former refers to the case when tissue samples from different

individuals in the same treatment group are hybridized to identical arrays, and gives

a measure of the biological variation present in gene expression. The latter refers to

the case when identical samples (from the same individual) are hybridized to identical

probes several times, whether on the same slide or on different identical slides. This

helps measure the technical variation present in a particular experiment, which could

arise from the physical preparation of the microarray or the samples.

1.2.2 Serial Analysis of Gene Expression

At roughly the same time that microarrays were introduced, a sequencing-based

method for measuring gene expression, known as serial analysis of gene expression

(SAGE), was developed (Velculescu et al., 1995, 1997). Although it also measures

mRNA abundance, the SAGE protocols and resulting data are quite different from

that used to produce microarrays (Serial Analysis of Gene Expression, 2010). The

premise of SAGE is that a short transcript fragment (on the order of 10 to 14 base

pairs), known as a sequence tag, contains sufficient information to uniquely identify

the transcript, given that the tag is from a unique position in the genome. By linking

several short sequence tags together to form long molecules, known as concatamers,

sequencing machines that can read the nucleotides in DNA may be used to sequence

the tags.

SAGE data consist of a list of observed short sequence tags and the number of

times each is observed (see Figure 1.5). Typically, sequence databases (e.g., EMBL

Nucleotide Sequence Database (2010); Saccharomyces Genome Database (2010); Na-

tional Center for Biotechnology Information Entrez Genome (2010)), are then used

to align the tag to a reference genome, i.e., determine the genomic location for each
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Figure 1.5. Schematic of Serial Analysis of Gene Expression (SAGE)
method. After reverse-transcribing a population of mRNA molecules into
cDNA, enzymes are used to cut off short segments, known as sequence
tags. By isolating the tags and linking them together into long molecules,
the tags may be sequenced by machines that can read the nucelotides in
DNA. By counting the number of tags that come from a given gene, gene
expression is quantified in terms of digital values (counts). Similar image
found at the Serial Analysis of Gene Expression (2010) website.

tag. In addition, because the method is sequence-based, mRNA does not need to

be known a priori, so unknown genes may be studied. SAGE yields digital values

(counts) for gene expression, which typically exhibit less background noise than mi-

croarray intensity values (which often occur due to the effects of PCR and non-optimal
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hybridization). Because the SAGE protocol measures gene expression as counts, and

not continuous measurements as with microarray data, these data require an alterna-

tive set of statistical methods (Man et al., 2000; Romualdi et al., 2001; Ruijter et al.,

2002) based on discrete distributions. For example, Baggerly et al. (2004) suggest an

overdispersed logistic regression for SAGE data, and Ťino (2009) suggests using an

Audic-Claverie statistic based on an underlying Poisson distribution.

1.2.3 Next-Generation Sequencing

In the past two years, the rise of next-generation sequencing (NGS) (Mardis, 2008)

has revolutionized the fields of genetics, genomics, and epigenomics. One application

of NGS, known as RNA sequencing (RNA-Seq) offers an unprecedented improvement

in throughput and relative cost compared to the technologies of the previous decade

(Cloonan et al., 2008). Like SAGE, the RNA-Seq methodology uses sequencing tech-

nology to quantify and map a population of transcripts from entire transcriptomes.

However, RNA-Seq is capable of doing so with far greater coverage than SAGE (Mo-

rozova et al., 2009; Mortazavi et al., 2008).

The three leading commercially available NGS platforms for RNA-Seq are the

Genome Analyzer of Illumina (2010), SOLiD of Applied Biosystems (2010), and the

Genome Sequencer FLX of 454 Life Sciences (2010). Although there are differences

in how each system works, the basic approach is the same. First, mRNA is isolated

from a biological sample, fragmented at random positions, and reverse-transcribed

into cDNA. Only fragments within a specified range (e.g., 200-500 bases long for

the Genome Analyzer) are retained for PCR amplification. The amplified cDNA

is then sequenced using NGS technology, and the reads are mapped back (aligned)

to a reference genome. Like SAGE, the data obtained via RNA-Seq is made up of

gene counts, or digital gene expression (DGE) measurements. However, RNA-Seq

generates data several orders of magnitude larger than SAGE, typically with millions

of short reads from a single library of sequences.
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As the cost of sequencing continues to fall, the RNA-Seq methodology is expected

to replace microarrays for many applications, including measuring gene expression.

Because they share similar sampling schemes, methods developed for SAGE data can

be adapted for RNA-Seq data when analyzing differential expression (Man et al., 2000;

Romualdi et al., 2001; Ruijter et al., 2002; Ťino, 2009). However, the experimental

design and subsequent analysis of RNA-Seq data remains an active area of research

(Auer and Doerge, 2010).

1.2.4 Time-Course Gene Expression

It has become increasingly feasible to study gene expression profiles by collecting

tissue samples over several time points. In this work, the terms longitudinal, time-

course, and time series are used interchangeably to refer to data collected in this

fashion. All three of the NGS technologies have potential to assay time-course ex-

pression data, even though microarrays are presently the most prominent (and least

expensive) platform for such studies. The decreasing cost and refinement of NGS

technology suggests that longitudinal expression profiles will likely be studied using

RNA-Seq methodology in the near future.

For time-course gene expression data, researchers often study the log-transformed

ratio of gene expression at a given time point to that measured at a zero-time point,

known as a log-fold change. In typical studies of differential expression, each time

point is tested individually, thus losing any information about correlation between

time points. However, some analyses do attempt to model the longitudinal nature

of such data by examining differentially expressed genes over time (Park et al., 2003;

Bar-Joseph et al., 2003), patterns of co-expression among genes (Spellman et al.,

1998), clusters of expression profiles (Eisen et al., 1998), or the underlying networks

of gene activity over time (Friedman, 2004).
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Figure 1.6. A simple gene regulatory network made up of four genes.
Each gene is transcribed and translated into a transcription factor protein,
which in turn regulates the expression of other genes in the network by
binding to their respective promoter regions. The gene regulatory network
may be represented using the graph in lower right corner, made up of four
nodes (genes) and five edges (interactions among the genes). A similar
figure is shown in Schlitt and Brazma (2007).

1.3 Gene Regulatory Networks

Just as gene expression affects the amount of protein in a cell, proteins can in turn

regulate gene expression. The proteins that regulate gene expression are known as

transcription factors (TF). By binding to the promoter regions of genes, TF control

the transfer of information from DNA to mRNA by promoting (activating) or blocking

(repressing) RNA polymerase during transcription, which in turn affects the level of

gene expression (Figure 1.6). TF are key players in the complex relationships that

occur among genes and other cellular products. However, because the abundance

of TF in a cell can be difficult to measure experimentally, the expression levels of

their corresponding genes are often used as a proxy measure. In this context, a gene

regulatory network can thus be described as the interactions that occur (indirectly

through mRNA and TF) among a collection of interconnected genes. Gene regulatory
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networks are known to be crucial components in cell development, cell maintenance,

and cell response for a variety of organisms, including Saccharomyces cervisae (yeast)

(Spellman et al., 1998), humans (Rangel et al., 2004), and mice (Yaragatti et al.,

2009).

Graphs are often used as an abstraction to visualize these networks, where nodes

represent genes and edges represent interactions among the genes (Figure 1.6, bottom

right). Edges may be directed (Figure 1.6) or undirected. In the former case, an

edge from gene A to gene B indicates that A is a regulator of B (that is, that a

protein encoded by gene A binds to a promoter region of gene B, thus regulating its

expression level). In the latter case, an edge from gene A to gene B is the same as

that from gene B to gene A, representing an interaction of a more ambiguous nature.

Structurally, gene regulatory networks tend to have several properties in common

(Figure 1.7). First, most genes are regulated just one step away from their regulator

in a spoke-and-hub type structure, and long regulatory cascades are rare (Alon, 2007).

In addition, gene networks tend to be sparse, where genes are regulated by a limited

number of other genes (Leclerc, 2008). This characteristic is referred to as the fan-in

or in-degree of a particular gene (i.e., the number of regulators for that gene). Finally,

sophisticated regulatory circuits, such as positive and negative feedback loops (self-

regulating processes) are common motifs in the structure of gene regulatory networks

(Brandman and Meyer, 2008).

Identifying the gene-to-gene interactions that are present during a particular bio-

logical process can lead to a better understanding of the topology of gene regulatory

networks and, ultimately, of the molecular function of each gene. These improved

descriptions of the regulatory mechanisms in a cellular system can in turn lead to

targeted in silico experiments to investigate and predict the behavior of the system

under different conditions. As such, understanding how genes interact with one an-

other, and how these genetic interactions affect changes at the phenotypic level, is

currently a major goal in the systems biology community. Two basic types of ap-

proaches are often used to this end (Tegnér et al., 2003). At one end of the spectrum
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Figure 1.7. Illustration of characteristics of gene regulatory networks.
(Top) A spoke-and-hub type structure is displayed on the left, with gene
A acting as a central regulator gene. On the right, the fan-in (number
of regulators) for gene A is 3. (Bottom) Feedback loops among genes
are common motifs in real biological networks. On the left is a positive
feedback loop, where gene A activates gene B (represented by an edge
with an arrowhead), and gene B in turn activates gene A. On the right,
a negative feedback loop exists, as gene A activates gene B while gene B
represses gene A (represented by an edge ending in a bar).

is the forward engineering approach, which aims to quantify fundamental equations

of gene regulation based on the underlying principles of biochemistry. At the other

end of the spectrum is the reverse engineering approach, which attempts to discover

the architecture (i.e., the connectivity) of a gene regulatory network from a massive

set of gene expression data. For this purpose, gene expression is typically measured

in one of two ways: after a specific perturbation (e.g., stress conditions, temperature

shifts, and chemical treatments) or within the same organism across time.

Reverse engineering (also referred to as inferring or reconstructing) gene regulatory

networks makes use of statistical methods to deduce the architecture of the network
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Figure 1.8. An illustration of the process of reverse engineering a gene
regulatory network from longitudinal data. High throughput technologies
(e.g., microarrays) are used to measure the gene expression in biological
samples taken across several time points. Statistical methods may attempt
to infer a network adjacency matrix (bottom left), where ones and zeroes
indicate the presence or absence of an edge in the graph (i.e., gene-to-gene
interaction in the network), respectively. Alternatively, other approaches
also include more detailed descriptions of network structure through a pa-
rameter matrix (bottom right), where non-zeroes indicate the magnitude
and type (activation or repression) of interactions present in the network,
and zeroes represent the absence of an interaction. In this representation,
thick edges in the graph represent stronger effects, arrowheads activations,
and barred lines repressions.
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from expression data, whether in terms of an adjacency matrix or a parameter matrix

(Figure 1.8). The former consists of a matrix where ones and zeroes indicate the

presence or absence of a gene-to-gene interaction in the network (i.e., the presence or

absence of an edge between two nodes in the graph). The latter contains additional

detailed information about the degree and type (i.e., activation or repression) of each

gene-to-gene interaction, based on the magnitude and sign of non-zero elements. That

is, the larger the magnitude of a particular element of the parameter matrix, the larger

the regulatory effect of a gene-to-gene interaction (and consequently, the thicker the

edge in the graph).

Generally, studies of gene expression using high-throughput technologies (microar-

rays, SAGE, and RNA-Seq) measure information on hundreds or thousands of genes

simultaneously over a very limited number of time points and biological replicates.

As such, longitudinal studies of gene expression actually amplify the “large p small

n” paradigm typical of genomic studies, which renders even more challenging the

task of reverse engineering networks from such data. In addition, because genes are

interacting with one another as well as reacting to the cellular environment in very

sophisticated ways, the structure of a gene regulatory network can inherently be very

complex itself. A direct consequence of this network structure is that the resulting

expression data often exhibit high multicollinearity. To deal with these challenges,

specialized statistical tools and methodologies have been developed to extract relevant

information about the relationships among genes from longitudinal gene expression

data.
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2. METHODS FOR INFERRING GENE REGULATORY

NETWORKS

As high-throughput technologies have become increasingly accessible and affordable,

the goal of understanding gene regulatory networks has received growing interest in

the systems biology community. Forward engineering approaches have made wide

use of ordinary differential equations (Zak et al., 2003; Quach et al., 2007; Cao and

Zhao, 2008) to estimate the parameters of dynamic models from gene expression data

for very small, known networks. Much attention has also been directed to develop-

ing methods to reverse engineer network structure from transcriptome data. These

methods can be broadly grouped into four classes (Basso et al., 2005): regression tech-

niques, integrative bioinformatics approaches, statistical methods, and optimization

methods.

2.1 Current State of Network Inference Methods

2.1.1 Regression Techniques

Several authors (Yeung et al., 2002; Gardner et al., 2003; Rogers and Girolami,

2005) have adapted regression techniques, which have the benefit of allowing rapid,

easily scalable calculations, to the task of inferring gene regulatory networks. These

methods often make use of data arising from steady-state transcriptional perturba-

tions, such as gene knock-out experiments, rather than time-course expression data

(Gardner et al., 2003). Due to both the high dimensionality and multicollinearity of

the data, specialized algorithms have been developed to enable parameter estimation

and to take advantage of the fact that biological networks are known to be sparse.

One such approach (Yeung et al., 2002) applied the singular value decomposition
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(SVD) (Eckart and Young, 1936) to approximate the matrix of gene expression mea-

surements by another matrix of lower rank. After producing a condensed description

of the data in this way, Yeung et al. (2002) applied a robust regression to identify

the sparsest network structure. Rogers and Girolami (2005) proposed a Bayesian re-

gression approach that is naturally sparse, which circumvents the need to pre-define

thresholds to determine inclusion of an edge in the graph (i.e., a gene-to-gene interac-

tion in the network). In contrast to these methods, which use a linear model to define

the dynamics of particular network Imoto et al. (2002) made use of nonparametric

regression to capture nonlinear relationships among genes. Although this approach

can more realistically approximate the dynamics of biological systems, it relies on a

restrictive assumption of Gaussian distributions, and can be very sensitive to outliers

in the data.

Most regression-based methods have been developed for perturbation data, al-

though a few do exist to analyze time-series expression measurements. Opgen-Rhein

and Strimmer (2007) estimated the coefficients of a vector autoregressive (VAR)

model using an analytic shrinkage approach, and model selection was performed by

testing the partial correlations of each gene-to-gene interaction. This approach is very

computationally efficient and well-suited to the small sample sizes typical of genomic

data, but in practice, it tends to be overly strict in terms of edge selection. More

recently Ahmed and Xing (2009) proposed a method to infer time-varying networks

based on decoupled regularized regressions for each node in the graph, using a lasso

penalty to ensure sparsity and a fused lasso penalty to enforce smoothly changing

graphs over time. Both of these proposed approaches lack a characterization of un-

certainty in selected edges and overall network structure.

2.1.2 Integrative Bioinformatics Approaches

To gain additional insight into regulatory mechanisms, computational integrated

approaches have been suggested to simultaneously assimilate diverse data types into
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a single biological model. For example, Niida et al. (2008) proposed an analysis

which integrated regulatory sequences, known transcription factor binding motifs, and

expression profiles in a study of breast tumor progression. Although such integrative

approaches are able to simultaneously make use of a wide range of data types, they are

typically implemented using a multi-step process, rather than as a single, statistical

model. In addition, this type of approach often relies on mining known information

about well-characterized pathways from biological literature or curated databases,

both of which may suffer from publishing biases. The result of this is that uncertainty

surrounding published gene interactions is not quantified as a measure of confidence

in a particular network. Finally, such approaches are limited to biological systems in

organisms for which large amounts of data are available.

2.1.3 Statistical Methods

Early statistical approaches for inferring gene regulatory networks from transcrip-

tome data typically relied on exploratory analyses to group together similar genes

based on measures of pairwise gene co-expression or correlation (D’haeseleer et al.,

2000). Clustering algorithms, which assume the existence of pre-defined groups of

genes, were among the first techniques applied to gene expression data. Clustering

methods assume that genes sharing similar expression patterns are likely to be in-

volved in the same regulatory network (Fuhrman et al., 2000; Spellman et al., 1998).

A further supposition often made is that genes with similar expression profiles share

a common biological function. Most clustering algorithms use a matrix of pairwise

distance measures as inputs based on correlation (Pan, 2006; Huang and Pan, 2006;

Tseng, 2007), mutual information (also referred to as relevance networks) (Butte and

Kohane, 2000; Luo et al., 2008) or entropy (Basso et al., 2005; Meyer et al., 2008).

Based on these distance measures, genes are categorized into groups such that the

distances between observations within a group are small compared to those between

observations in different groups.
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Clustering methods suffer from several shortcomings. First, distance measures

for high-dimensional, highly correlated longitudinal datasets can be difficult to de-

fine and are sensitive to pre-processing procedures like normalization and background

correction. In addition, random noise in the gene expression measurements is ignored

in clustering procedures. Perhaps most importantly, genes that share similar expres-

sion profiles over time cannot always be assumed to share biological function, and

conversely, genes that share biological function cannot be assumed to share similar

expression profiles (Lockhart and Winzeler, 2000). Because such co-expression meth-

ods identify pairs of genes with similar profiles rather than those involved in physical

interactions, they often exhibit high rates of false positives.

More recently, a simple class of undirected graphical models known as Graphical

Gaussian models (GGM) (Schäfer and Strimmer, 2005; Keller et al., 2008; Chiquet

et al., 2009), also referred to as gene association networks, have been used to detect

conditionally dependent genes. A GGM is defined as follows: the observed data

matrix Y with P rows (genes) and N columns (samples) is assumed to be drawn from

a multivariate Normal distribution, NG(µ,Σ) with mean vector µ = (µ1, . . . , µP )T

and positive definite covariance matrix Σ = (σij), where 1 ≤ i, j ≤ P . As σij =

ρijσiσj , the covariance matrix can be decomposed into the variance components and

Bravais-Pearson correlation matrix P = (ρij). Under the GGM framework, the inverse

of P yields the partial correlation matrix, which characterizes the direct pairwise

correlations between genes.

To reconstruct a GGM network the partial correlation matrix is computed by

inverting the correlation matrix P , which is typically estimated using the unbiased

sample covariance matrix. However, when the sample covariance matrix is not posi-

tive definite (which occurs when the number of samples is smaller than the number

of variables, as is the case with gene expression data), the standard GGM algo-

rithm is not applicable. In this case, GGM approaches must implement regularized,

small-sample estimates of partial correlation and specialized edge inclusion tests, as

proposed by Schäfer and Strimmer (2005). Although GGM are conceptually simple,
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their applicability in the inference of gene regulatory networks is limited by the fact

that the edges in the graph are assumed to follow a Gaussian distribution and are

undirected. In addition, GGM assume samples to be independent over time, rather

than as a series of correlated data.

2.1.4 Optimization Methods

Over the past ten years, Bayesian networks (BN) (Pearl, 1988) have become a

popular statistical tool used for the inference of gene regulatory networks, due in

part to their flexibility and intuitive interpretation. The seminal works of Murphy

and Mian (1999) and Friedman (2000) motivated a large body of work dedicated to

using Bayesian networks for biological network inference. BN fall in the intersection

of graph theory and probability theory, as they use directed graphical models to

represent the conditional probabilistic relationships among a set of random variables.

More formally, BN are defined by a graphical structure G = {V,E} made up of a

set of random variables (referred to as nodes or vertices) and edges, and a family of

conditional probability distributions F parameterized by Θ (Husmeier et al., 2005).

If an edge exists pointing from node V1 to node V2 in G, then V1 is referred to as a

parent (or ancestor) of V2, and V2 is referred to as a child (or descendent) of V1 (see

Figure 2.1). In a graph with n vertices, let PaG(Vi) denote the set of parents of node

Vi in G, for i = 1, . . . , n. The graph G encodes the Markov assumption, i.e., each node

is independent of its non-descendents, given its parents in G. The joint distribution of

the graph G can be written as the product of the conditional distributions as follows:

P (V1, . . . , Vn) =

n
∏

i=1

P (Vi|PaG(Vi)). (2.1)

In a BN, each of the conditional distributions P (Vi|PaG(Vi)), or local probability

models, must also be defined. The two classes of models typically used for this

purpose are a multinomial model or a linear Gaussian model. In the former model,

variables must be discretized (e.g., under-expressed, no change, and over-expressed

as compared to a control) and the probability of each possible state of the child
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P(A,B,C,D,E) =P(A)P(B|A)P(C|A)P(D|B,C)P(E|D) 

Figure 2.1. Example of a Bayesian network G with five vertices (A, B,
C, D, and E) and five edges. The parents of a given vertex V are the
set of vertices pointing directly to V via a single edge (e.g., A is a parent
of vertices B and C). The descendents of a given vertex V are the set
of vertices pointed to by a single edge emanating from V (e.g., B and C
are descendents of A). Edges represent conditional relationships among
the vertices. For example, the edge from A to B indicates that B is con-
ditionally independent of its non-descendents, given the value of A. The
full joint distribution of the graph G can be written as the product of the
independent conditional distributions. Similar image shown in (Husmeier
et al., 2005).

variable is calculated, given the state of its parents (Friedman, 2000). Although this

model can be quite flexible and can effectively capture non-linear dependencies, the

discretization procedure often incurs a substantial loss of information. In the latter

model, continuous measurements are used, and linear regression models are learned

for each child, given its parents. However, in some cases, the assumption of Gaussian

distributions can be overly restrictive for gene expression measurements.

Regardless of the pre-defined local probability model, reverse engineering a BN

from data Y generally consists of finding a network B = 〈G,Θ〉 that best corresponds

to the data. One common approach is to use a score function to search for an optimal

network. Friedman (2000) proposed a local heuristic search based on a greedy, hill-

climbing algorithm and Hartemink et al. (2001) used a Bayesian scoring metric to

compare proposed structures. As the number of genes (and in turn, the number of
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possible interactions) in a particular network increases, these search algorithms are

encumbered by the exponential increase in the search space of the model. In addition,

artificially choosing a single “optimal” network structure may not be straightforward

if several network structures yield similarly high scores.

2.2 Dynamic Bayesian Networks

Although BN are a powerful and flexible tool for inferring network structure, there

are three major issues that limit their applicability to inferring networks from time-

course data. First, continuous gene expression data must typically be discretized,

which incurs a substantial loss of information. In addition, defining threshold levels

to use for discretizing data is not straightforward and may penalize genes with nat-

urally small ranges of variation (Friedman, 2000). Second, because a BN must be a

directed acyclic graph (DAG), the graphical structure cannot contain any directed

cycles (Husmeier et al., 2005). In other words, the network cannot include cycles

where all edges point in the same direction (as in the loop on node 3 in Figure 2.3).

This is problematic, as sophisticated regulatory circuits, such as feedback loops, are

common motifs in biological networks (Brandman and Meyer, 2008). Third, it is

possible that expanding the joint probability of two different BN can yield the same

factorization if they show alternative ways of describing the same set of independence

relationships (Husmeier et al., 2005). This is referred to as equivalence classes (Hus-

meier et al., 2005), and occurs only if two graphs share the same skeleton (i.e., two

different networks differ only in the the direction of an edge) as shown in Figure 2.2.

To deal with these issues, we focus on an extension of BN known as Dynamic

Bayesian Networks (DBN) that have been widely applied in the context of gene

regulatory networks, e.g., Beal et al. (2005), Husmeier (2003), Ong et al. (2002), Perrin

et al. (2003), Rangel et al. (2004), and Zou and Conzen (2005). A DBN uses time-

series measurements on a set of random variables to unfold a BN over time, as shown

in Figure 2.3, which implies that interactions among random variables occur with a
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Figure 2.2. The top row shows three distinct Bayesian networks that be-
long to the same equivalence class, as the expanded probabilities all lead
to the same factorization. All three graphs share the same skeleton (rep-
resented by the undirected graph in the bottom row) as they differ only
in the directions of edges in the network. As before, directed edges rep-
resent the conditional relationships among vertices. Similar image shown
in Husmeier et al. (2005).
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Figure 2.3. (Left) A network with three nodes and three edges, including
one feedback loop for node 3. Due to the presence of this feedback loop,
this network does not meet the acyclicity constraint of Bayesian networks.
(Right) The same network, unrolled over time as a dynamic Bayesian
network. By directing arrows with respect to the flow of time, the network
shown on the left can be fully represented without violating the acyclicity
constraint, despite the presence of a feedback loop (Husmeier et al., 2005).
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time delay. To avoid an explosion in model complexity in this setting, the parameters

are typically set such that the transition probabilities between time points t−1 and t

are the same for all t (i.e., a homogeneous Markov model) (Husmeier et al., 2005). As

such, gene-to-gene interactions are assumed to be constant across time. In addition,

this assumption either implies that biological samples are taken at equidistant time

points, or that the dynamics of a biological system are equal across differing time

intervals (e.g., the intensity of a biological reaction may decrease over time and be

measured over increasing intervals of time). Because edges are directed with respect

to the flow of time, the acyclicity graph constraint can be met without eliminating

feedback loops, and any ambiguity in the direction of the arrows (i.e., equivalence

classes) is resolved (Figure 2.3). In addition, continuous observations may be used in

a DBN without the need for discretization. In this work, we focus on the application

of two subclasses of DBN for the inference of gene regulatory networks: state space

models and autoregressive models.

2.2.1 State Space Models

One special case of DBN is the linear Gaussian state space model (SSM), also

referred to as a linear dynamical system (LDS). In some cases, SSM have proven to

be well-suited for dealing with time-course gene expression data, as they are able

to handle continuous, noisy data and can model the effect of hidden variables (e.g.,

unmeasured epigenetic factors or genes) on the network dynamics (Rangel et al.,

2004; Beal et al., 2005; Rau et al., 2010). Under the SSM framework, a pair of linear

equations, known as the state and dynamic equations, is used to relate the expression

of genes and a set of hidden states from one time point to the next. In general, these

equations can be time-variant (Liang and Kelemen, 2007) or nonlinear (Quach et al.,

2007), but we restrict our attention to the linear, time-invariant model.

For time-course gene expression data with P genes, K hidden states, M potential

inputs (e.g., known transcription factors), T time points, and R biological replicates,
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let ytr, xtr, and utr represent the expression of the sets of genes, hidden states, and

inputs, respectively, in replicate r at time t. The state and dynamic equations for the

classic input SSM are

xtr = Axt−1,r +Butr + wtr (2.2)

ytr = Cxtr + Θutr + ztr

where wtr ∼ N(0, I) and ztr ∼ N(0, V −1 = diag(v−1)), with v being a P -dimensional

vector of gene precisions, for t = 1, ..., T and r = 1, ..., R. Alternatively, to investigate

the role of feedback loops in a gene regulatory network, the expression level of genes

from a previous time point (i.e., feedback) can be explicitly incorporated as inputs

by setting u1r = 0 and utr = yt−1,r for t = 2, . . . , T (Figure 2.4). In this case, the

state and dynamic equations for the feedback SSM are

xtr = Axt−1,r +Byt−1,r + wtr (2.3)

ytr = Cxtr + Θyt−1,r + ztr.

For both the input SSM (Equation (2.2)) and the feedback SSM (Equation (2.3)),

the primary parameter set of interest in the context of gene regulatory networks is

typically contained in the matrix Θ, which encodes the direct TF-to-gene interactions

at a given time point (Equation 2.2) or the gene-to-gene interactions from one time to

the next (Equation 2.3). Note that in general, state space models are unidentifiable,

as the hidden state can be re-scaled and the matrices of the state and dynamic

equations adapted accordingly. This implies that two different representations can

have equivalent matrices Θ, but different values for the hidden states and matrices A,

B, and C. However, since the matrices Θ and CB + Θ are sub-identifiable (Rangel

et al., 2004), inference on the structure of the network based on these matrices is

possible. When the matrices of the state and dynamic equations and hidden state

dimension K are known, the Kalman filter and smoother (Kalman, 1960) may be

used to estimate the values of the hidden states (Bremer and Doerge, 2009). The

Kalman filter and smoother are essentially a set of recursive calculations, where the
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Figure 2.4. A visual representation of the linear feedback state space
model, with the observed expression of a set of genes (light blue nodes)
and the unobserved expression of a set of hidden states (dark blue nodes)
at two time points, T = 1 and T = 2, where A, B, C, and Θ correspond to
the matrices in Equation (2.3). The solid arrows, representing the nonzero
elements of Θ, correspond to the direct gene-gene interactions that make
up the gene regulatory network.

former consists of a prediction and update step, and the latter smooths the filtered

estimations using the full dataset. See Bremer (2006) for additional details about the

use of the Kalman filter and smoother in the context of gene expression data.

Because the number of time points and biological replicates in gene expression

data are typically much smaller than the number of genes, estimation of model pa-

rameters in the SSM requires some care. In addition, choosing the dimension of the

state space remains a difficult statistical problem with ramifications to the applicabil-

ity of state space models in gene regulatory networks. In recent years, several authors

have proposed approaches using state space models to reverse-engineer gene regula-

tory networks. Perrin et al. (2003) applied a generalized Expectation-Maximization

(EM) algorithm with a parsimony constraint on network connections to penalize the

model likelihood, but limited the choice of the hidden state dimension to 0, 1, or 2.

Wu et al. (2004) used a factor analysis and Bayesian Information Criterion (BIC)
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penalization for model selection. More recently, Bremer and Doerge (2009) used a

SSM model with Kalman smoothing and maximum likelihood estimation techniques

to identify regulated genes in time-course gene expression data. Beal et al. (2005)

considered a SSM with feedback in a hierarchical Bayesian framework, using a vari-

ational Bayes procedure to calculate a bound on the marginal likelihood in order to

learn the network structure and the dimensionality of the hidden state. The hierar-

chical nature of this prior structure is particularly appealing, as its structure allows

a shrinkage of the network parameters towards zero, corresponding to the biological

assumption of network sparsity.

2.2.2 Auto-Regressive Models

Linear autoregressive (AR) models are another special case of DBN that have

proved to be a useful approximation to the complicated network dynamics underly-

ing time-series expression data (Beal et al., 2005; Opgen-Rhein and Strimmer, 2007;

Wilkinson, 2009). AR models are finite-order parametric models commonly used in

time series analysis. Let yt denote a set of observations measured on a single variable

at time t, t = 1, . . . , T . For notational simplicity we consider only the case with R = 1

replicate, but the extension to multiple replicates is straightforward. The notation

AR(p) refers to an autoregressive model of order p, which is defined by

yt = θ1yt−1 + θ2yt−2 + . . .+ θpyt−p + zt (2.4)

where zt is white noise such that E(zt) = 0, E(z2
t ) = σ2, and E(ztzs) = 0 for t 6= s.

The model parameters are thus θ1, . . . , θp, and σ2. See Shumway and Stoffer (2000)

for a more detailed description of AR models.

In the context of biological networks, expression data represents a multivariate

time series yt = [y1t, . . . , yPt]
T for P genes rather than a univariate time series yt

as in Equation (2.4). A natural extension to the univariate autoregressive model

is known as a vector autoregressive (VAR) model, which has received a great deal

of attention in the econometrics community (Enders, 2004) to describe the dynamic
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behavior of economic and financial time series. The notation VAR(p) refers to a VAR

model of order p, defined by

yt = Θ1yt−1 + Θ2yt−2 + . . .+ Θpyt−p + zt (2.5)

where zt is a vector of white noise as before, and each Θi is a P × P coefficient

matrix. In this work, we focus on the inference of gene regulatory networks using

VAR(1) models:

yt = Θyt−1 + zt. (2.6)

Let θij represent the element of Θ in the ith row and the jth column (that is, the

element encoding the relationship between gene j at time t − 1 and gene i at time

t). In order to infer a network from multivariate time series data, the objective is

to determine the i and j for which θij = 0 (the null, or non-existent, edges) and for

which θij 6= 0 (the true edges), as well as estimates, θ̂ij , for true edges. This combined

information yields both the structure of the underlying network, as well as the type of

effect (activation versus repression) and magnitude of each gene-to-gene interaction.

Note that the VAR(1) model is a simplification of the SSM in Equations 2.2 and 2.3,

where A = B = C = 0 and the distributional assumption on zt is removed.

Although VAR models are popular in econometric analyses, they have seen lim-

ited application in the systems biology community for modeling genetic networks,

which is likely due, in part, to the difficulty in estimating the model parameters for

sparse, high-dimensional data. To deal with this issue, Opgen-Rhein and Strimmer

(2007) made use of a VAR model to learn causal networks by implementing a regular-

ized estimation procedure for the coefficients using an analytic shrinkage approach.

Fujita et al. (2007) proposed a sparse VAR model which implemented a penalized

regression for variable selection. More recently, Shimamura et al. (2009) incorpo-

rated the relative importance of VAR coefficients into a regularization method that

minimized a penalized loss function with `1- and `2-penalties of the coefficients. In

a similar approach, Charbonnier et al. (2010) proposed a weighted method based
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on an `1-regularization approach to infer VAR parameters while incorporating prior

knowledge about network topology. However, all of these approaches infer a single

network structure from gene expression data, without any measure or characteriza-

tion of inherent variability in estimates of gene-to-gene interactions or overall network

architecture.

2.3 Approximate Bayesian Methods for Reverse Engineering Gene Reg-

ulatory Networks

Due to the high dimensionality of gene expression data, the limited number of bio-

logical replicates and time points typically measured, and the complexity of biological

systems themselves, the problem of reverse-engineering networks from transcriptome

data demands a specialized suite of appropriate statistical tools and methodologies.

We focus on two models that are able to handle continuous, noisy time-course ex-

pression data: state space models (Equations 2.2 and 2.3) and vector autoregressive

models (Equation 2.6). Both are simple, yet powerful models that make use of linear

relationships and first-order Markovian dynamics to describe the patterns of gene

expression measurements over time.

In this context, the Bayesian paradigm is particularly well-suited to the infer-

ence of gene regulatory networks. First, the number of possible network structures

G increases super-exponentially as the number of genes increases (Husmeier et al.,

2005). Because a large number of network structures may yield similarly high like-

lihoods (due in part to the sparsity of expression data), attempting to infer a single

globally optimal structure may be meaningless. Instead, examining the posterior dis-

tribution of network structures may be more informative about whether edges in the

network can be inferred to have significantly positive or negative values. In addition,

a Bayesian framework allows a priori knowledge to be encoded in the prior distribu-

tion structure. This knowledge can refer to certain features of the network topology

(e.g., sparsity in biological networks or the maximum number of regulators per gene)
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and to prior biological information about well-characterized pathways gleaned from

bioinformatics databases.

The two proposed approaches infer the edges of gene regulatory networks from

time-course gene expression data, based on approximate Bayesian methodology (Car-

lin and Louis, 2000; Beaumont et al., 2002). Both methods incorporate the joint

behavior of a set of genes over time, rather than examining each time point inde-

pendently. This ensures that the correlation structure of gene expression between

adjacent time points is maintained and elucidates important information about the

network. In the first approach, we develop an empirical Bayes estimation procedure

to perform inference (Rau et al., 2010). This method was motivated by that of Beal

et al. (2005), based on variational Bayesian learning of state space models. Due to

its restrictive distributional assumptions, it is best suited to exploratory analyses of

gene regulatory networks where little a priori biological information is known. In the

second approach, we apply a simulation-based Bayesian method to conduct a detailed

analysis of small, well-characterized pathways under fewer model assumptions. By ex-

ploiting the capabilities of modern computing, this method makes possible inference

on the posterior distribution of gene networks, even in cases where the likelihood

is intractable or difficult to calculate. The two approaches, while not comparable,

are complementary, and help illustrate the need for a variety of network inference

methods adapted for different contexts. Both approaches are discussed in the context

of Bayesian inference and rely on approximate Bayesian methodologies, known as

empirical Bayes and approximate Bayesian computing.
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3. APPROXIMATE BAYESIAN METHODOLOGY

Bayesian inference refers to fitting a probability model f(Y |Θ) to observed data Y

and quantifying uncertainty in the result using probability distributions on the model

parameters Θ (Gelman et al., 2004). In this framework, the model parameters are

themselves considered to be random variables, following a prior distribution π(Θ).

Typically, the model likelihood and prior distributions on the parameters are used

to compute the conditional distribution of the parameters given the observed data,

known as the posterior distribution. This is done using Bayes’ Theorem, proposed by

the Reverend Thomas Bayes in the mid-18th century (Bayes, 1763):

π(Θ|Y ) =
f(Y |Θ)π(Θ)

f(Y )
∝ f(Y |Θ)π(Θ). (3.1)

Two types of approximate Bayesian inference will be discussed, empirical Bayes meth-

ods (Carlin and Louis, 2000) and approximate Bayesian computation (ABC) methods

(Beaumont et al., 2002).

3.1 Empirical Bayes Methods

In applications where multiple parameters are related due to the nature of the

problem, the model structure can often be better represented by a hierarchical Bayes

model via sampling parameters from a common population distribution. In such

cases, if the prior distribution of Θ itself depends on other parameters ψ, known

as hyperparameters, the prior can be written as π(Θ|ψ). The resulting posterior

probability given observed data Y is

π(Θ|Y, ψ) =
f(Y |Θ)π(Θ|ψ)π(ψ)

f(Y |ψ)
∝ f(Y |Θ)π(Θ|ψ)π(ψ) (3.2)

where π(ψ) is the hyperprior on the hyperparameters ψ. This process may be repeated

for additional levels of prior distributions and hyperparameters, if required.
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Empirical Bayes (EB) methods refer to analyses that use the observed data Y to

estimate the hyperparameters ψ of the prior distributions. These approaches can be

viewed as an approximation to a complete hierarchical Bayesian analysis (Gelman

et al., 2004), since point estimates are used for ψ rather than the whole distribution.

EB methods have been in use for nearly 60 years, with the first major work in the

area attributed to Robbins (1955). Although this early work defined nonparametric

EB methods, we focus this discussion on parametric EB analysis (Efron and Morris,

1972, 1973, 1975). The major difference between the two is that the former approach

leaves the prior unspecified, while the latter specifies a parametric family of prior

distributions.

Some of the most common parametric EB methods include the Poisson-Gamma

model, the Beta-Binomial model, the multinomial-Dirichlet model, and the Gaussian-

Gaussian model (Gelman et al., 2004; Carlin and Louis, 2000). To illustrate the

application of parametric EB methods, we briefly present the Gaussian-Gaussian

model as an example (Casella, 1985; Carlin and Louis, 2000). Suppose we observe P

random variables X = {X1, . . . , XP} such that each comes from a Gaussian distri-

bution with different means but a common known variance, i.e., Xi ∼ N(θi, σ
2) for

i = 1, . . . , P . Assuming the means θi follow a common Gaussian distribution, such

that θi ∼ N(µ, τ 2) for i = 1, . . . , P , it can be shown that the Bayes estimate δB(Xi)

for θi is a weighted average of the prior estimate µ and the sample estimate Xi:

δB(Xi) =
[

σ2/(σ2 + τ 2)
]

µ+
[

τ 2/(τ 2 + σ2)
]

Xi. (3.3)

Rather than pre-specifying values for µ and τ 2, an EB approach estimates these

parameters from the data. To do so, first consider the marginal distribution of the

data, f(Xi), which is given by

f(Xi) ∼ N(µ, σ2 + τ 2). (3.4)

Following from this marginal distribution, it is straightforward to show

E(X̄) = µ and E

[

(P − 3)σ2

∑

(Xi − X̄)2

]

=
σ2

σ2 + τ 2
. (3.5)
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These unbiased estimators can be substituted into Equation 3.3 to find δEi (X), the

EB estimator of θi:

δEi (X) =

[

(P − 3)σ2

∑

(Xi − X̄)2

]

X̄ +

[

1 −
(P − 3)σ2

∑

(Xi − X̄)2

]

Xi. (3.6)

Because each δEi (X) uses information from the full set of observed data, the EB

approach takes advantage of the so-called Stein effect (Stein, 1981), which asserts that

using combined information can improve estimates for each individual parameter.

EB methods have become a popular choice for the analysis of genomic data,

particularly for microarray data (Efron, 2003). EB methods can improve power by

borrowing information from the ensemble of genes to assist inference for individual

genes (Stein, 1981). Efron et al. (2001) proposed a simple nonparametric EB model to

make simultaneous inferences on the differential expression between treatment groups

of seven thousand human genes. Lönnstedt and Speed (2002) instead considered a

parametric EB approach for the differential analysis of replicated two-color microar-

rays, based on a mixture of normal models with a conjugate prior. Smyth (2004)

further generalized this model to experiments with arbitrary numbers of treatments

and RNA samples. In the context of inferring gene regulatory networks, Schäfer and

Strimmer (2005) developed an EB estimation procedure for the network topology of a

GGM, similar in spirit to that of Efron et al. (2001) for differential expression. Rogers

and Girolami (2005) used a sparse Bayesian regression based on a Gaussian linear

model for each gene in the network, where point estimates of model hyperparameters

based on observed data were obtained and substituted into the model.

3.2 Approximate Bayesian Computation

In cases where the likelihood L(Θ|Y ) = f(Y |Θ) (Equation 3.1) cannot be cal-

culated, sampling-based approximate Bayesian computation (ABC) methods, also

referred to as likelihood-free (LF) methods, can enable Bayesian inference. ABC

methods have become increasingly popular in recent years to infer approximate pos-

terior distributions in situations where the likelihood of the model is computationally
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Algorithm 3.1 The Rejection Sampler.

0. Set i = 0.

1. Sample a candidate parameter vector Θ? from some proposal distribution

π(Θ), e.g., a prior distribution.

2. Simulate data Y ? from the model described by conditional probability distri-

bution f(·|Θ?).

3. If Y ? = Y , accept Θ? and set i = i+ 1. Otherwise, reject Θ?.

4. If i < N (a pre-set number of acceptances), return to 1.

intractable or difficult to evaluate (Beaumont et al., 2002; Marjoram et al., 2003;

Ratmann et al., 2007). The power and simplicity of these approaches arise from the

exploitation of a simulation-based procedure which takes advantage of the capabili-

ties of modern computing. Although rejection-type techniques, which are explained

next, can sometimes enable direct sampling from the posterior distribution, as noted

by Rubin (1984), a naive application of these methods can be time-consuming and

inefficient. Toward this end, some of the recent adaptations to ABC methods are also

discussed. A more detailed summary of these adaptations may be found in Chapter

2 of Grelaud (2009).

3.2.1 Approximate Sampling from the Posterior

At their core, all ABC methods follow the same general form, known as the rejec-

tion sampler (Pritchard et al., 1999), shown in Algorithm 3.1. This simple algorithm

is based on the idea that rejection techniques can be used to sample exactly from the

posterior distribution (Rubin, 1984). The end result of Algorithm 3.1 is not approx-

imate, as it is simulated from the true posterior, π(Θ|Y ) ∝ f(Y |Θ)π(Θ). However,

particularly in cases where data are continuous rather than discrete, it may be inef-

ficient or impossible to generate simulated data such that Y ? = Y . In these cases,

Algorithm 3.1 can be modified to include a distance function ρ and tolerance ε to
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Algorithm 3.2 The ε-Tolerance Rejection Sampler.

0. Set i = 0.

1. Sample a candidate parameter vector Θ? from some proposal distribution

π(Θ), e.g., a prior distribution.

2. Simulate data Y ? from the model described by conditional probability distri-

bution f(·|Θ?).

3. Compare simulated data Y ? to the observed data Y using a distance function

ρ and tolerance ε. If ρ(Y ?, Y ) ≤ ε, accept Θ?, otherwise reject.

4. If i < N (a pre-set number of acceptances), return to 1.

determine whether simulated and observed data are “close” to one another, as shown

in Algorithm 3.2 (Beaumont et al., 2002). This ε-tolerance rejection algorithm is

approximate when ε > 0, and its output amounts to simulating from the prior when

ε → ∞. For 0 < ε < ∞, the algorithm results in a sample of parameters from the

distribution π(Θ|ρ(Y ?, Y ) ≤ ε). If ε is sufficiently small, then this distribution will

be a good approximation to the posterior distribution π(θ|Y ). However, a balance

must be achieved between a small enough tolerance to obtain a good approximation

to the posterior and a large enough tolerance to allow for feasible computation time.

Typically, the algorithm must be repeated a large number of times (on the order of

N = 1 × 106 or more), and only parameter values corresponding to the smallest α%

(e.g., 1%) of ε are used for inference (Beaumont et al., 2002).

A further improvement (Beaumont et al., 2002) to the ε-tolerance rejection sam-

pler (Algorithm 3.2) for high-dimensional data involves replacing the data Y with

lower-dimensional quantities (e.g., summary statistics) calculated on the data, de-

noted S(Y ). The distance ρ(Y ?, Y ) in step 3 of Algorithm 3.2 is replaced with a

corresponding distance ρ(S(Y ?), S(Y )) between summary statistics computed on the

simulated and observed data, respectively, as shown in Algorithm 3.3. The resulting

output is a sample of parameters from π(Θ|ρ(S(Y ?), S(Y )) ≤ ε. If summary statistics
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Algorithm 3.3 The ε-Tolerance Rejection Sampler with Summary Statistics.

0. Set i = 0.

1. Sample a candidate parameter vector Θ? from some proposal distribution

π(Θ), e.g., a prior distribution.

2. Simulate data Y ? from the model described by conditional probability distri-

bution f(·|Θ?).

3. Calculate summary statistics S(Y ?) and S(Y ) on the simulated and ob-

served data, respectively. Using distance function ρ and tolerance ε, if

ρ(S(Y ?), S(Y )) ≤ ε, accept Θ?, otherwise reject.

4. If i < N (a pre-set number of acceptances), return to 1.

S are chosen judiciously (e.g., sufficient or nearly sufficient statistics), reduction of

the data can be achieved without negatively impacting the approximation.

3.2.2 Post-Adjustment Techniques

Data simulated using samples (Θ1, . . . ,ΘN) from the approximate posterior dis-

tribution correspond to varying distances from the observed data. To account for this

fact, several post-adjustment techniques have been developed to give higher weights

to parameters associated with lower discrepancies from the observed data. One ap-

proach is to obtain a pointwise estimation of the posterior distribution using kernel

density estimation (Parzen, 1962):

π̂(Θ|Y ) =

∑N
i=1Kδ(Θ

i − Θ)Kε(||S(Y ?) − S(Y )||)
∑N

i=1Kε(||S(Y ?) − S(Y )||)
(3.7)

where Kδ(·) and Kε(·) are kernel functions with bandwidths δ and ε, and || · || denotes

the `2-norm. If a uniform kernel is used, all samples are given the same weight and

the results are equal to those of the ε-tolerance rejection sampler (Algorithm 3.2).
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Another post-hoc method to adjust the output from an ABC algorithm is through

regression techniques. Beaumont et al. (2002) suggested the use of a local linear

regression, which applies the following model:

Θi = α + (S(Y i) − S(Y ))′β + ξi (3.8)

where Θi is the ith sample, S(Y i) is a set of summary statistics calculated on sim-

ulated data Y i, ξi ∼ N(0, σ2), and i = 1, . . . , N . The regression parameters (α, β)

are estimated by minimizing the least squares weighted by an Epanechnikov ker-

nel, and kernel density estimation of the posterior is based on the corrected sample

(Θ̃1, . . . , Θ̃N):

Θ̃i = Θi − (S(Y i) − S(Y ))′β̂ (3.9)

for i = 1, . . . , N . One issue with kernel density estimation is that the support of the

posterior distribution in Equation 3.7 can be larger than that of the prior, since the

adjustment potentially allows parameters to be shifted outside of the prior support.

To account for this, as well as the strong correlation that may be present among

components of summary statistics, Leuenberger and Wegmann (2009) instead ap-

proached the issue of post-adjustment using a general linear model (GLM) based on

a Gaussian multivariate kernel and ordinary least squares estimates. A more general

approach was proposed by Blum and François (2010) using a nonlinear conditional

heteroscedastic model and feed-forward neural networks regression models.

3.2.3 Monte Carlo Techniques

In practice, the rejection sampler (Algorithm 3.1) is often very inefficient, as the

acceptance rate can be very low when the prior distribution is very different from the

posterior distribution. To avoid this issue, several adaptations have been proposed

based on Monte Carlo techniques. One class of ABC algorithms based on Monte Carlo

methods makes use of importance sampling (Robert and Casella, 2004) to produce

weighted samples from the approximate posterior distribution. Beaumont et al. (2009)
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Algorithm 3.4 The Metropolis-Hastings Algorithm.

0. Initialize Θi, i = 0.

1. Propose Θ? according to a proposal distribution q(Θ|Θi).

2. Set Θi+1 = Θ? with probability α = min{1, π(Θ?|Y )q(Θi|Θ?)
π(Θi|Y )q(Θ?|Θi)

} and Θi+1 = Θi with

probability 1 − α.

3. Set i = i+ 1. If i < N (a pre-set number of iterations), return to 1.

applied an adaptive sequential technique known as Population Monte Carlo (PMC)

(Cappé et al., 2004) to the general ABC method in Algorithm 3.1 to improve its effi-

ciency. This approach, known as the ABC-PMC algorithm, uses iterated importance

sampling to obtain weighted draws from progressively better proposal distributions.

In related work, Sisson et al. (2007) used a Sequential Monte Carlo (Robert and

Casella, 2004) technique to improve the efficiency of ABC algorithms (ABC-SMC).

This approach simulates a sample of weighted particles from a sequence of target

distributions {πt}t=1,...,T using a sequence of decreasing tolerances ε0 > . . . > εT = ε.

In this way, a population of parameters is propagated through a sequence of inter-

mediary distributions, until it ultimately represents a sample from the approximate

posterior distribution.

Another adaptation to the basic framework of Algorithm 3.1 combines the prin-

ciples of ABC techniques with Markov chain Monte Carlo (MCMC) methods (Gilks

et al., 1996). In this context, the goal is to construct a Markov chain that has as its tar-

get (stationary) distribution the approximate posterior distribution, π(Θ|ρ(Y ?, Y ) ≤

ε). One of the most widely used algorithms for this purpose is known as the Metropolis-

Hastings algorithm (Metropolis et al., 1953; Hastings, 1970), shown in Algorithm 3.4.

The Metropolis-Hastings algorithm is typically used to sample directly from the pos-

terior distribution π(Θ|Y ). However, even in cases where the posterior is not known,

the acceptance ratio α in step 2 of Algorithm 3.4 can still be calculated, since

π(Θ?|Y )

π(Θ|Y )
=
f(Y |Θ?)π(Θ?)

f(Y |Θ)π(Θ)
. (3.10)
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Algorithm 3.5 ABC-Markov Chain Monte Carlo (ABC-MCMC).

0. Initialize Θi, i = 0.

1. Propose Θ? according to a proposal distribution q(Θ|Θi).

2. Simulate data Y ? from f(·|Θ?).

3. If ρ(Y ?, Y ) ≤ ε, go to 4, otherwise set Θi+1 = Θi and go to 5.

4. Set Θi+1 = Θ? with probability α = min{1, π(Θ?)q(Θi|Θ?)
π(Θi)q(Θ?|Θi)

} and Θi+1 = Θi with

probability 1 − α.

5. Set i = i+ 1. If i < N (a pre-set number of iterations), return to 1.

Under certain regularity conditions, the output of MCMC algorithms such as the

Metropolis-Hastings algorithm consists of a Markov chain (Θ1, . . . ,ΘN) that is ap-

proximately sampled from the posterior distribution, π(Θ|Y ). For additional details

about MCMC methods, see Gilks et al. (1996) and Robert and Casella (2004).

In some cases, the calculation of the likelihood f(Y |Θ) in Equation (3.10) is not

feasible. To deal with this, Marjoram et al. (2003) proposed a method applying

the standard Metropolis-Hastings scheme (Algorithm 3.4) in the context of approx-

imate Bayesian computation, known as ABC-MCMC (Algorithm 3.5). Note that

the ABC-MCMC algorithm does not require the calculation of the likelihood for the

Metropolis-Hastings ratio (step 4 of Algorithm 3.5). Under suitable regularity condi-

tions (Marjoram et al., 2003), it can be shown that the stationary distribution of the

chain is indeed the approximate posterior distribution, π(Θ|ρ(Y ?, Y ) ≤ ε):

Theorem 3.2.1 The stationary distribution of the chain produced by the ABC-MCMC

algorithm (Algorithm 3.5) is π(Θ|ρ(Y ?, Y ) ≤ ε).

Proof Let r(Θ → Θ?) be the transition mechanism of the chain. We must check

whether f(Θ|ρ(Y ?, Y ) ≤ ε)r(Θ → Θ?) = f(Θ?|ρ(Y ?, Y ) ≤ ε)r(Θ? → Θ), known as

the detailed balance equation. Without loss of generality, choose Θ? 6= Θ such that

π(Θ?)q(Θ|Θ?)

π(Θ)q(Θ?|Θ)
≤ 1. (3.11)
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Then, using the detailed balance equation,

f(Θ|ρ(Y ?, Y ) ≤ ε)r(Θ → Θ?) =

= f(Θ|ρ(Y ?, Y ) ≤ ε)q(Θ?|Θ)P [ρ(Y ?, Y ) ≤ ε|Θ?]α(Θ,Θ?)

=
P [ρ(Y ?, Y ) ≤ ε|Θ] π(Θ)

P [ρ(Y ?, Y ) ≤ ε]

{

q(Θ?|Θ)P [ρ(Y ?, Y ) ≤ ε|Θ?] ×
π(Θ?)q(Θ|Θ?)

π(Θ)q(Θ?|Θ)

}

=
P [ρ(Y ?, Y ) ≤ ε|Θ?] π(Θ?)

P [ρ(Y ?, Y ) ≤ ε]
{q(Θ|Θ?)P [ρ(Y ?, Y ) ≤ ε|Θ]}

= f(Θ?|ρ(Y ?, Y ) ≤ ε)q(Θ|Θ?)P [ρ(Y ?, Y ) ≤ ε|Θ]α(Θ?,Θ)

= f(Θ?|ρ(Y ?, Y ) ≤ ε)r(Θ? → Θ) (3.12)

Bortot et al. (2007) proposed a further adaptation of ABC-MCMC (Algorithm 3.5)

to improve its mixing properties using data augmentation techniques, known as the

ABC-MCMC augmented algorithm. Specifically, the parameter space is augmented

with the tolerance ε, which is treated as a model parameter with its own pseudo-prior

distribution. Although this algorithm alleviates the problem of insufficient mixing,

since larger values of ε may be accepted, it typically requires a much larger number

of iterations than the ABC-MCMC algorithm.

3.3 Summary

Approximate Bayesian methods, such as empirical Bayes and approximate Bayesian

computation methods, have potential to enable inference even in problems where a

full Bayesian analysis is not possible. As previously described, the parametric empir-

ical Bayes method fits a hierarchical Bayes model to the data, and allows parameters

of the prior distributions to be estimated directly from the observations. For cases

where the likelihood cannot easily be computed, the approximate Bayesian compu-

tation methods that were introduced enable sampling from an approximate posterior

distribution by exploiting the advantages of modern computing. Both of these approx-

imate Bayesian methods are implemented for the purpose of reverse engineering gene
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regulatory networks in two different contexts. First, an empirical Bayes estimation

procedure for Gaussian state space models (Section 2.2.1) is presented. Second, we

develop an alternative approach to inferring networks, based on vector autoregressive

models (Section 2.2.2) using the ABC-MCMC algorithm.
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4. THE EMPIRICAL BAYES DYNAMIC BAYESIAN NETWORK

ALGORITHM

The Empirical Bayes Dynamic Bayesian Network (EBDBN) algorithm is an ex-

ploratory approach to reverse engineer the structure of gene regulatory networks from

longitudinal gene expression data. The method is motivated by the related work of

Beal et al. (2005), in which a variational Bayes procedure was implemented to obtain

estimates of the hyperparameters in a feedback state space model under a hierarchical

Bayes framework. The novelty of the EBDBN algorithm lies in a computationally ef-

ficient estimation procedure for the model hyperparameters, based in empirical Bayes

methodology. This approach is best adapted to inferring the structure of moderately

sized (e.g., 50-100 genes) networks in the absence of prior biological information about

specific edges in the pathway. The method presented here is described in Rau et al.

(2010) and has been implemented in the R package ebdbNet, publicly available on

CRAN (R Development Core Team, 2009).

The EBDBN algorithm makes use of a linear state space model (Equations (2.2)

and (2.3)) to describe the interactions among a set of genes, a set of hidden states (e.g.,

unmeasured epigenetic factors or genes), and a set of inputs (e.g., known transcription

factors) from one time point to the next. First, we define Y = {ytr}, X = {xtr}, and

U = {utr}, where 1 ≤ r ≤ R and 1 ≤ t ≤ T . Let the vectors ytr = [y1tr, . . . , yPtr]
T ,

xtr = [x1tr, . . . , xKtr]
T , and utr = [u1tr, . . . , uMtr]

T represent the expression data of

P genes, K hidden states, and M inputs, respectively, in replicate r at time t. The

EBDBN algorithm is composed of three principal parts: model selection (choice of

the hidden state dimension K), estimation of the hidden states X, and calculation

of network posterior distributions. The focus here is on the input state space model
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of Equation (2.2), but similar results may be obtained for the feedback state space

model of Equation (2.3) by setting M = P , u1r = 0, and utr = yt−1,r for t = 2, . . . , T .

4.1 Model Selection

The first step of the EBDBN algorithm involves the choice of the optimal dimen-

sion K of the hidden states. Although this is a difficult problem, it is crucial to the

application of state space models for network structure recovery. Commonly used

criteria for model selection include Akaike’s Information Criterion (AIC) (Akaike,

1969) and the Bayesian Information Criterion (BIC) (Schwarz, 1978). Unfortunately,

both of these criteria tend to perform poorly for expression data due to the large

number of observations and model parameters. Following Bremer (2006) and Aoki

and Havenner (1991), we apply a time series method for model selection, based on

the autocovariances between observations. This technique shortens computation time

considerably, as the algorithm does not run over a wide range of values for K.

Specifically, for each replicate we construct a block-Hankel matrix of autocovari-

ances of the time series gene expression observations

Hr =

















Γ̂1r Γ̂2r · · · Γ̂mr

Γ̂2r Γ̂3r · · · Γ̂m+1,r

...
...

. . .
...

Γ̂mr Γ̂m+1,r · · · Γ̂2m−1,r

















(4.1)

where Γ̂ir = 1
T

∑T−i
t=1 ytry

′
t+i,r is the autocovariance matrix of the observations ytr at

time t in replicate r for lag i, and m represents the maximum relevant biological time

lag between a gene and its regulators. In other words, m is the number of forward

time units that a gene is able to influence the expression of other genes. This value

must be pre-specified depending on the data under consideration, but in microarray

experiments this value is typically small (m = 1, 2, or 3), and depends on both the

biological process being studied and the time lag between consecutive measurements.
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In the absence of error, the rank of Hr equals the number of hidden states K

needed to characterize the time series (Aoki and Havenner, 1991). However, gene

expression data (e.g., from microarrays) contain both biological and technical errors,

meaning the rank of Hr is not exactly equal to K. As such, after finding the singular

value decomposition (Eckart and Young, 1936) of Hr, there will be K singular values

of “large” amplitude (as discussed below), provided the signal-to-noise ratio (SNR)

is also large (SNR � 1). The SVD for Hr is Hr = USV ′, where S is a diagonal

matrix with diagonal entries λ1, ..., λmP ordered by size, such that λ1 > ... > λmP .

We scale these singular values by the value of the largest singular value, such that

1 > λ2

λ1
> ... > λmP

λ1
. Note that if there are T time points in a particular microarray

experiment, only the first T − 1 singular values will be non-zero.

When plotting the scaled singular values of the block-Hankel matrix, we typically

note a rapidly decreasing value for the first singular values, followed by a more mod-

erate decrease. As an illustration, we simulate a small dataset based on the feedback

SSM in Equation (2.3) for P = 10 genes, K = 2 hidden states, T = 10 time points,

and a single replicate. We set x0 = y0 = 0, take x1 ∼ N(0, 1), and sample all ele-

ments of the matrices A, B, C, and Θ uniformly from (-1,1). Based on these values,

we use Equation (2.3) to simulate data forward in a recursive manner for Y and X.

Using these data, we construct the block-Hankel matrix H and apply the SVD as

previously described. In examining the plot of singular values (Figure 4.1), it can be

seen that the “elbow” of the plot falls at the true value of the hidden state dimension,

K = 2. Intuitively, the SVD reduces H to a small set of singular values which still

contain a large fraction of the original variability.

Choosing the number of large singular values results in finding the point at which

the inclusion of an additional singular value does not increase the amount of explained

variation enough to justify its inclusion (this is similar to choosing the number of com-

ponents in a Principal Components Analysis). Several “rule of thumb” criteria have

been proposed to choose the optimal value of K (Mardia et al., 1980). Some of the

best-known criteria to choose K include finding the “elbow” of a plot of the singular
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Figure 4.1. The scaled singular values of the block-Hankel matrix H ,
based on simulated data for P = 10 genes with a single replicate, T =
10 time points, and a true hidden state dimension of K = 2. A dramatic
decrease is seen between the first and second singular values of H , followed
by a more moderate decrease thereafter. The “elbow” of the graph thus
occurs at the true value of K = 2.

values as in Figure 4.1, using the Eigenvalue-One criterion of Kaiser (1960), or fixing

a cutoff based on percent of total variance explained by the singular values. In this

work, we choose the latter criterion, with the cutoff for K chosen to be the smallest

number of singular values needed to explain 90% of the total variance. Although

some attempts have been made in the literature to formally justify this rather ad-hoc

criterion, the justification for such a cutoff rests in its intuitive interpretation and its

applicability in practice (Jolliffe, 2002).

4.2 Estimation of Hidden States

The second major component of the EBDBN algorithm is the estimation of the

hidden states X. When the matrices A, B, C, Θ, and V in Equations (2.2) and (2.3)

are known, a set of recursive calculations known as the Kalman filter and smoother
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(Kalman, 1960) may be used to estimate the hidden states (Bremer and Doerge,

2009). The Kalman filter consists of a prediction and update step, and the smoother

stabilizes filtered estimates using the full dataset. Specifically, for the input state

space model in Equation (2.2), the filter step is

x̂−
tr = Ax̂t−1,r +Butr (4.2)

x̂tr = x̂−
tr + K(ytr − Cx̂−

tr − Θutr)

where ytr, xtr, utr, A, B, C, and Θ are as before, x̂tr represents the filtered estimate

of xtr, x̂−
tr represents the a priori estimate of xtr based on the previous time step,

and K is the Kalman gain matrix defined in Kalman (1960). Then, in the smoothing

step,

x̂Ttr = x̂tr + J(x̂Tt+1,r − Ax̂tr − Butr) (4.3)

where x̂Ttr represents the smoothed estimate of xtr, J is the Kalman smoothing matrix

defined in Kalman (1960), and all other variables are as before. Both the Kalman

gain matrix K and smoothing matrix J are calculated using the standard formulas

(Kalman, 1960).

4.3 Calculation of Posterior Distributions

The final major component of the EBDBN is the estimation of posterior distri-

butions for the model parameters A, B, C, and Θ. To this end, we implement the

same hierarchical Bayesian structure as Beal et al. (2005). Let a(j), b(j), c(j), and

θ(j) denote vectors made up of the jth rows of matrices A, B, C, and Θ, respectively.

Then

a(j)|α ∼ N(0, diag(α)−1) (4.4)

b(j)|β ∼ N(0, diag(β)−1)

c(i)|γ, vi ∼ N(0, v−1
i diag(γ)−1)

θ(i)|δ, vi ∼ N(0, v−1
i diag(δ)−1)
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where α = [α1, . . . , αK ]T , β = [β1, . . . , βM ]T , γ = [γ1, . . . , γK ]T , δ = [δ1, . . . , δM ]T , vi

is the ith component of vector v, j = 1, . . . , K and i = 1, . . . ,M . Thus, we have

a set of parameters {A,B,C,Θ,v} and a set of hyperparameters ψ = {α,β,γ, δ}

describing the a priori precisions of the parameter set.

As Gaussian distributions are assumed throughout in the SSM in Equations (2.2)

and (2.3) and its corresponding prior structure in Equation (4.4), the joint likelihood

may be explicitly written as

p(A,B,C,Θ,v, Y,X, U) = P (A|α)P (B|β)P (v)P (C|v,γ)P (Θ|v, δ)× (4.5)

×
T

∏

t=1

R
∏

r=1

P (xtr|xt−1,r,utr, A,B)P (ytr|xtr,utr, C,Θ,v).

Let Z = (Y,X, U,A,B, C,Θ,v) represent the “complete data” and W = (A,B,C,Θ)

represent the “missing data.” Because the SSM is in the exponential family, we can

write the complete data Z in the form

f(Z;ψ) = h(Z)exp

{

2M+2K
∑

i=1

ηi(ψ)ti(Z) − A(ψ)

}

(4.6)

where h(·), η(·), and A(·) are known functions, and t(·) denotes the sufficient statistics

from the complete-data likelihood. In this case, the Expectation-Maximization (EM)

algorithm (Dempster et al., 1977; Bilmes, 1997) can be applied in a straightforward

manner to find point estimates ψ̂ of the hyperparameters, conditioned on the current

estimates X̂ and v̂ of the hidden states and gene precisions, respectively.

Specifically, to implement the EM algorithm, we first define the following notation:

M = diag(α) +
∑T

t=2

∑R
r=1 xt−1,rx

′
t−1,r N =

∑T
t=2

∑R
r=1 utrx

′
t−1,r

L = diag(β) +
∑T

t=2

∑R

r=1 utru
′
tr Hj =

∑T

t=2

∑R

r=1 xt−1,rxjtr

Sj =
∑T

t=2

∑R
r=1 utrxjtr Ji = diag(viγ) +

∑T
t=1

∑R
r=1 xtrvix

′
tr

Gi =
∑T

t=2

∑R

r=1 xtrviu
′
tr Fi = diag(viδ) +

∑T

t=2

∑R

r=1 utrviu
′
tr

Ei =
∑T

t=1

∑R
r=1 xtrviyitr Qi =

∑T
t=2

∑R
r=1 utrviyitr

ẏi =
∑R

r=1

∑T

t=1 y
2
itr

Ωi = Q′
iF

−1Qi + (Ei −GF−1Qi)
′(J −G′F−1G)−1(Ei −GF−1Qi)
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where j = 1, . . . , K and i = 1, . . . , P . Using this notation, the posterior distributions

of A, B, C, and Θ, given observed gene expression values Y , hyperparameters ψ,

hidden states X, inputs U , and gene precisions v, are as follows:

a(j)|Y,X, U,v, ψ ∼ N(µa

j ,Σ
a) (4.7)

b(j)|Y,X, U,v, ψ ∼ N(µb

j ,Σ
b)

c(i)|Y,X, U,v, ψ ∼ N(µc

i ,Σ
c

i )

θ(i)|Y,X, U,v, ψ ∼ N(µθi ,Σ
θ
i )

where

µa

j = Σa(Hj −N ′L−1Sj) Σa = (M −N ′L−1N)−1

µb

j = Σb(Sj −NM−1Hj) Σb = (L−NM−1N ′)−1

µc

i = Σc

i (Ei −G′
iF

−1
i Qi) Σc

i = (Ji −GiF
−1
i G′

i)
−1

µθi = Σθ
i (Qi −G′

iJ
−1
i Ei) Σθ

i = (Fi −G′
iJ

−1
i Gi)

−1.

The E-step of the EM algorithm corresponds to finding t(k) = Eψ(k){t|Y,X, U,v},

as follows:

E
α

(t)
j

{A′
·jA·j |Y,X, U,v} = K(M̂ −N ′L̂−1N)−1

j,j+ (4.8)

+

K
∑

l=1

((M̂ −N ′L̂−1N)−1
j· (Hl −N ′L̂−1Sl))

2

E
β

(t)
m
{B′

·mB·m|Y,X, U,v} = K(L̂−NM̂−1N ′)−1
m,m+ (4.9)

+
K

∑

l=1

((L̂−NM̂−1N ′)−1
m· (Sl −NM̂−1Hl))

2

E
γ
(t)
j

{C ′
·jdiag(v)C·j|Y,X, U,v} = P (Ĵ −GF̂−1G′)−1

j,j+ (4.10)

+
P

∑

m=1

((Ĵ −GF̂−1G′)−1
j· (Em −GF̂−1Qm))2×

× (a−
P +K

2
) × (b+

1

2
ẏm − Ω̂m)
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E
δ
(t)
m
{Θ′

·mdiag(v)Θ·m|Y,X, U,v} = P (F̂ −G′Ĵ−1G)−1
m,m+ (4.11)

+
P

∑

i=1

((F̂ −G′F̂−1G)−1
m· (Qi −G′Ĵ−1Ei))

2×

× (a−
P +K

2
) × (b+

1

2
ẏi − Ω̂i)

where we use the convention for an arbitrary matrix U that Uj,j indicates the (j, j)th

entry of U , Uj· the jth row of matrix U , U·j the jth column of matrix U , and Û

indicates matrix U calculated using values ψ̂(t) and v̂
(t)
i in the place of ψ and vi.

For the M-step of the EM algorithm, we must find ψ(k+1) = argmaxψ{c
′(ψ)t(k) −

log(a(ψ))}. We maximize each term in the summand individually to find the follow-

ing:

α̂
(t+1)
j =

K

2

{

K(M̂ −N ′L̂−1N)−1
j,j + (4.12)

+
K

∑

l=1

((M̂ −N ′L̂−1N)−1
j· (Hl −N ′L̂−1Sl))

2

}−1

β̂(t+1)
m =

K

2

{

K(L̂−NM̂−1N ′)−1
m,m + (4.13)

+

K
∑

l=1

((L̂−NM̂−1N ′)−1
m· (Sl −NM̂−1Hl))

2

}−1

γ̂
(t+1)
j =

P

2

{

P (Ĵ −GF̂−1G′)−1
j,j + (4.14)

+
P

∑

i=1

((Ĵ −GF̂−1G′)−1
j· (Ei −GF̂−1Qi))

2×

×(a−
P +K

2
) × (b+

1

2
ẏi − Ω̂i)

}−1
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Algorithm 4.1 Two-Step EM-Like Estimation of Hyperparameters ψ.

0. At iteration i + 1, start with X(i) and v(i), the hidden state and precision

estimates from the previous iteration, respectively.

1. Run the EM algorithm with X(i), holding v(i) constant, until convergence

is reached (using a stopping criterion ∆1). Set the initial hyperparameter

estimates to be ψ̃(i+1).

2. Update v by calculating the innovation precisions:

v̂(i+1) =
(

∑R

r=1

∑T

t=1(ytr − Ĉx
(i)
tr − Θ̂utr)

2/(RT − 1)
)−1

, where Ĉ and Θ̂ are

the posterior means of C and Θ, given ψ̃(i+1), X(i), and v(i).

3. Re-run the EM algorithm with X(i), holding the updated precisions v̂(i+1)

constant, until convergence is reached (using a stopping criterion ∆2). Set the

final hyperparameter estimates to be ψ̂(i+1).

δ̂(t+1)
m =

P

2

{

P (F̂ −G′Ĵ−1G)−1
m,m + (4.15)

+
P

∑

i=1

((F̂ −G′Ĵ−1G)−1
m· (Qi −G′Ĵ−1Ei))

2×

×(a−
P +K

2
) × (b+

1

2
ẏi − Ω̂i)

}−1

.

4.3.1 Implementation of the EM Algorithm

In practice, we apply the EM Algorithm detailed in Section 4.3 in two steps within

the EBDBN approach, as shown in Algorithm 4.1. First, hyperparameter estimates

ψ̃ are stabilized in an initial run of the EM algorithm, based on the current values

of the hyperparameters, gene precisions, and hidden states at the end of iteration i.

This step is followed by an estimation of the gene precisions v and a subsequent fine-

tuning run of the EM algorithm to obtain final estimates ψ̂. We discuss the choice

of the stopping criteria ∆1 and ∆2 in greater detail later. Because of our unique use
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of the EM algorithm in this two-step fashion, we refer to this portion of the EBDBN

algorithm as an “EM-like algorithm.”

4.3.2 Initial Values

Once the dimension K of the hidden states has been pre-specified or determined

(Section 4.1) in the EBDBN algorithm, the hidden states X and hyperparameters

ψ must be initialized. For the hidden states, note that a coordinate transformation

of X with a nonsingular matrix can give rise to the same joint distribution over a

sequence of observed variables Y (Rangel et al., 2005). This identifiability problem

can be resolved by constraining the matrices A and C in Equations (2.2) and (2.3)

or by restricting interest to either Θ or CB + Θ (as is the case in our work). For

this reason, it is reasonable to initialize the hidden states by setting x
(0)
tr ∼ N(0, 1)

for t = 1, . . . , T and r = 1, . . . , R. For the hyperparameters, we sample each element

of ψ(0) = {α(0),β(0),γ(0), δ(0)} from U(0, 1). As the hyperparameters represent the

precisions of the matrices A, B, C, and Θ in Equations (2.2) and (2.3), these initial

values correspond to initial gene variances of 1 or greater.

4.4 EBDBN Algorithm Iterations

Given that the EBDBN method is composed of three principal parts, model selec-

tion (Section 4.1), estimation of the hidden states X (Section 4.2), and calculation of

network posterior distributions (Section 4.3), it proceeds as shown in Algorithm 4.2

and Figure 4.2. There are three convergence criteria used in the implementation of the

EBDBN algorithm. The first two, ∆1 and ∆2 (Algorithm 4.1), are used to determine

convergence of the initial and fine-tuning runs of the EM algorithm in the estimation

of ψ. The third, ∆3, is used to determine global convergence of the EBDBN method
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Algorithm 4.2 Empirical Bayes Dynamic Bayesian Network (EBDBN).

0. Specify or determine the dimension of the hidden state K (Section 4.1), and

initialize ψ and X (Section 4.3.2).

1. (a) Perform EM stabilizing run until convergence criterion ∆1 is attained.

(b) Perform EM fine-tuning run until convergence criterion ∆2 is attained

(Algorithm 4.1).

2. Calculate the posterior means of the matrices in the state and dynamic equa-

tions (Section 4.3).

3. Obtain estimates of the hidden states using the Kalman filter and smoother

(Section 4.2).

4. If global convergence has been attained (∆3), go to 5. Otherwise, return to 1.

5. Calculate final estimates of the posterior means of state space matrices, con-

ditioned on hyperparameters and hidden states.

(Algorithm 4.2). In general, for parameter values at the ith and (i + 1)th iteration,

these convergence criteria are a distance metric of the form

D = max
ψ={α,β,γ,δ}

√

∑

(ψ(i+1) − ψ(i))2

∑

(ψ(i))2
(4.16)

corresponding to the maximum of these distances for ψ = {α,β,γ, δ}. That is, when

all of the values ψ change very little from one iteration to the next (whether within

a run of the EM algorithm or in the larger loop of the full algorithm), approximate

convergence is declared and estimation is considered to be complete. Unfortunately,

determining the convergence properties of the algorithm is difficult since simulating

plausible data based on a state space model with arbitrary fixed hyperparameter

values (i.e., the precisions of the state space matrices A, B, C, and Θ) rather than fixed

parameter values (i.e., the state space matrices themselves) is difficult. In practice,

we assign the values of 0.15, 0.05, and 0.01 to ∆1, ∆2, and ∆3, respectively. Note that

the largest value among these three cutoffs is ∆1, as this criterion is used to terminate

the initial run of the EM-like estimation procedure (Algorithm 4.1). Criterion ∆2 is
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Figure 4.2. Visual representation of the typical workflow of the EBDBN
algorithm (Algorithm 4.2). After selecting the hidden state dimension K
as in 4.1, two sub-loops of the EM algorithm are used to update model
hyperparameters ψ (using convergence criteria ∆1 and ∆2). Posterior
means of the model parameters and Kalman filter estimates of the hidden
states are subsequently calculated as in Sections 4.2 and 4.3. When global
convergence is attained (based on convergence criterion ∆3), the posterior
distribution of matrix Θ may be obtained.

somewhat stricter, as it determines the cutoff of the fine-tuning run of the EM-like

algorithm, and thus determines the final estimates of the hyperparameters ψ̂(i) at each

iteration i. The smallest value is given to ∆3, as this criterion ultimately determines

whether the algorithm has stabilized enough for convergence to be declared. However,

the complexity of the state space equation and of the EBDBN algorithm itself make it

difficult to ascertain whether convergence can always be attained using these values.

Once the algorithm has converged as determined by the criterion ∆3, the posterior

distributions of the elements of Θ may be calculated. Because the posterior distribu-

tions are Gaussian, we can compute the standard z-statistic for normally distributed

variables for each edge. Edges whose distributions lie far above the zero point are

interpreted as activations, while those far below the zero point as repressions. Con-
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Example 4.1 Sample code for R package ebdbNet.

library(ebdbNet)

# Hidden state dimension

K <- hankel(y, ...)$dim

# Run EBDBN algorithm

net <- ebdbn(input = u, y, ...)

z <- zcutoff(net$DPost, net$DvarPost, ...)

sequently, to decide which edges are present in the network, we use the standard

thresholds (1.96, 2.58, 3.30) for (95, 99, 99.9)% confidences, respectively.

4.5 R package: ebdbNet

The EBDBN algorithm (Rau et al., 2010) described in Sections 4.1-4.4 is im-

plemented in the R package ebdbNet. The package is built around a core of neces-

sary functions, and interfaces R with C sub-routines. To run the EBDBN algorithm,

ebdbNet contains three principal functions: 1) The hidden state dimension described

in Section 4.1 is chosen using the hankel function. 2) Estimates of the hidden states

and posterior means are obtained via the ebdbn function. 3) The significance of edges

is determined using the zcutoff function, and the subsequent graph may be displayed

using the visualize function.

In practice, for observed longitudinal gene expression data y with known inputs u,

the user infers a networks with inputs and hidden states using R code similar to that

shown in Example 4.1, where ellipses designate additional user-supplied parameters.

Alternatively, the call of the function ebdbn may be modified to

net <- ebdbn(input = "feedback", y, ...)

for networks with feedback loops rather than inputs. If no hidden states are to es-

timated, the user may specify K <- 0, rather than using the hankel function to
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Figure 4.3. For unequally sampled time points t1, . . . , t5, the largest com-
mon time unit is ∆t = 1.

estimate this parameter. The final network structure may be visualized using the

open-source software application Cytoscape (Shannon et al., 2003) or the Biocon-

ductor package Rgraphviz (Carey et al., 2005). For both options, ebdbNet formats

the results accordingly using the function visualize, and in the latter case, calls

Rgraphviz directly to produce a graph in R.

4.6 Unequally Spaced Observations and Missing Data

The EBDBN algorithm makes use of the first-order linear SSM in Equations (2.2)

and (2.3), which operate under the assumption that time points are equidistant.

However, it is often the case in real data that observations are spaced unequally in

time. For some experiments, the dynamics of a biological system can be assumed to

be equal across different time intervals (e.g., the intensity of a biological reaction may

decrease over time and be measured over increasing intervals of time). In such cases,

it may be justifiable to use models with equally spaced intervals that are interpreted

as equal relative reaction rates.

In cases where longitudinal data are not uniformly sampled across time and re-

action rates between time points are not constant, it is possible to adapt Equations

(2.2) and (2.3) accordingly. Specifically, define ∆t to be the largest common time
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unit among the observed intervals (Figure 4.3). Equation (2.2) may be modified to

account for differing interval lengths (Wu et al., 2004; Bremer, 2006) as follows:

xtkr = Ajkxtk−1,r +Butkr + wtkr (4.17)

ytkr = Cxtkr + Θutkr + ztkr

where jk =
tk−tk−1

∆t
is an integer for k = 1, . . . , T . Similarly, Equation (2.3) may be

modified as follows:

xtkr = Ajkxtk−1,r + Bjkytk−1r + wtkr (4.18)

ytkr = Cxtkr + Θjkytk−1r + ztkr

where jk is as before. Subsequently, the EBDBN algorithm would proceed as before,

where the estimation of the hidden states (Section 4.2) would replace matrices A, B,

and Θ with Ajk , Bjk , and Θjk as appropriate.

Another issue that often arises with real data is the presence of missing data for

some gene expression measurements. One potential solution would be to replace miss-

ing log2 signal ratios with the mean gene expression value across time points, although

this ignores any correlation structure in the data across time points. Troyanskaya

et al. (2001) suggested two alternatives for missing value estimation in longitudinal

microarray data based on singular value decomposition and k -nearest neighbor av-

erages. The former approach has proven to yield satisfactory results for time-course

expression data, particularly when moderate to low noise is present and genes exhibit

strong patterns over time. Shumway and Stoffer (1982, 2000) developed a modi-

fied SSM that can account for missing values in the observed data by splitting ytr

into an observed part y
(1)
tr and a missing part y

(2)
tr , and partitioning the hidden state

covariance matrix accordingly. Once missing data have been appropriately acknowl-

edged, whether through imputation (Troyanskaya et al., 2001) or model modifications

(Shumway and Stoffer, 1982, 2000), the EBDBN algorithm may be implemented as

previously described.
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4.7 Simulations

Many authors of inference approaches for gene regulatory networks (Rangel et al.,

2004; Beal et al., 2005; Opgen-Rhein and Strimmer, 2007) assess the performance of

their methods by comparing results based on real expression data to known genetic

regulatory interactions from bioinformatics databases. This type of validation can

be problematic for two reasons (Husmeier, 2003). First, at present no real gold

standard gene regulatory network exists, and spurious gene-to-gene interactions may

be included in the biological literature. Second, the absence of a particular gene-to-

gene interaction in the literature does not necessarily indicate that such a relationship

is known to be absent. The consequence of this is that it can be very difficult to

determine whether a detected edge by a given method is truly a false positive, or

whether the absence of a given edge is a true negative.

For these reasons, the importance of using simulation studies for network inference

methods has been stressed by several authors (Husmeier, 2003; Rogers and Girolami,

2005; Rice et al., 2005). However, simulating expression data arising from a given

gene regulatory network is far from straightforward. Two standard approaches are

typically adopted to simulate such data. The first approach is to use the model

underlying a particular inference method to simulate data (i.e., in our case, a state

space or VAR(1) model). Although in some cases these “model-based simulations”

can lead to a good approximation of the general nature of complicated biological

systems, they often represent an over-simplified version of reality and lead to overly

optimistic results. The second approach uses ordinary differential equations based

on biochemical equations to simulate more realistic data. The drawback of such

“data-based simulations” is that they can only model well-known networks, and they

produce much smaller datasets than would typically be used for network inference.

In these simulations, we consider both model-based and data-based simulations.

For each, there are several characteristics of reverse engineering approaches that relate

to their success in modelling gene regulatory networks. It is important to consider
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a wide range of comparison criteria in such studies, as network inference methods

that perform well based on one often underperform in others (Wessels et al., 2001).

As such, the consequence of using a single criterion can lead to a biased view of the

performance of a given method. In order to thoroughly understand the advantages

and limitations of different inferences methods, a more global perspective on perfor-

mance is required. To this end, we consider a variety of comparison criteria, including

the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC)

curve, the sensitivity, specificity, and positive predictive value at a given threshold,

and the computational time. For these simulations, let TP denote the number of

true positives, FP represent the number of false positives, and FN and TN denote

the number of false and true negatives, respectively. We define the following three

criteria as follows: a) Sensitivity = TP/(TP + FN), b) Specificity = TN/(TN + FP),

and c) Positive Predictive Value (Precision) = TP/(TP + FP).

4.7.1 Methods for Comparison

In these simulations, the EBDBN method is compared to two other pre-established

methods developed to infer gene feedback networks from longitudinal gene expression

data: the Variational Bayes State Space Model (VBSSM) of Beal et al. (2005) and

the shrinkage model of Opgen-Rhein and Strimmer (2007). Like the EBDBN, the

VBSSM method of (Beal et al., 2005) describes the interactions among a set of genes

and hidden states using the linear feedback SSM of Equation (2.3) and the conju-

gate hierarchical prior structure of Equation (4.4). However, they use a variational

Bayes algorithm to estimate the posterior distribution of the network. This approach

exploits Jensen’s inequality to determine a lower bound for the marginal likelihood
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of the observed data Y for a model m with parameters Ψ, by introducing a free

distribution q(X,Ψ) as follows:

ln p(Y |m) = ln

∫

p(Y,X,Ψ|m)dXdΨ

= ln

∫

q(X,Ψ)
p(Y,X,Ψ|m)

q(X,Ψ)
dXdΨ

≤

∫

q(X,Ψ) ln
p(Y,X,Ψ|m)

q(X,Ψ)
dXdΨ. (4.19)

Because maximizing the lower bound with respect to q(X,Ψ) is computationally

intractable, Beal et al. (2005) instead maximize a simpler, factorized approximation

q(X,Ψ) = qX(X)qΨ(Ψ):

ln p(Y |m) ≤

∫

qX(X)qΨ(Ψ) ln
p(Y,X,Ψ|m)

qX(X)qΨ(Ψ)
dXdΨ

= Fm(qX(X), qΨ(Ψ), Y ). (4.20)

Then F is iteratively maximized with respect to qX(X) and qΨ(Ψ) using a Variational

Bayesian EM algorithm, and edges are chosen based on their standard z-statistics as

in Section 4.4.

The shrinkage model of Opgen-Rhein and Strimmer (2007) uses a simple first-order

vector autoregressive (VAR) model as in Equation (2.6) to characterize gene-gene in-

teractions over time. As such, no hidden states or driving inputs are incorporated.

Due to the high dimensionality of the data, the authors proposed a method to obtain

a regularized estimator of the covariance matrix ztz
′
t by shrinking the empirical corre-

lations towards zero and the empirical variances against their median. Edge selection

is subsequently performed by identifying significant partial correlations using a local

False Discovery Rate (FDR) approach (Efron, 2005).

Finally, in addition to the EBDBN, VBSSM, and VAR, we also consider the

EBDBN method where no hidden states are estimated, denoted EBDBN(-); this

amounts to a SSM model where A = B = C = 0, Θ is estimated using the EM-like

algorithm of Section 4.3, and no Kalman filter/smoother step is applied. This model

closely resembles the VAR model of Equation (2.6), with the added assumption of
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normally distributed error terms zt. We refer to the EBDBN method with hidden

states incorporated as EBDBN(x) in general, and EBDBN(K = k) for a particular

hidden state dimension k.

4.7.2 Model-Based Simulations

We first simulate gene expression data based on a first-order autoregressive model

(which is the same model for all of the methods under consideration). While this

model undoubtedly oversimplifies the dynamics of real microarray data, it is a use-

ful starting point that allows for straightforward simulation with a known network

structure. To simulate data, we choose P = 53 genes, and vary both the number of

replicates R and the number of time points T to be {5, 10, 15}. The P × P matrix

Θ, representing the direct gene-gene interaction matrix in the feedback network, is

simulated such that 10% of its elements follow either a U(−1,−0.2) or U(0.2, 1) dis-

tribution and 90% of its elements equal 0. We initialize the gene expression values at

time t = 1 to be yt ∼ N(0, 0.1) and simulate subsequent times t = 2, ..., T following a

VAR(1) model, such that yt ∼ N(Θyt−1, 0.1). We then remove the 3 genes with the

most outward connections, denoted {ỹ1, ỹ2, ỹ3}, from the dataset. This set of genes

play the role of the K = 3 hidden states. The goal in these simulations is to infer

the remaining structure of the gene network, Θ? = Θ \ {ỹ1, ỹ2, ỹ3} using only the 50

genes in the “observed” data y? = y \ {ỹ1, ỹ2, ỹ3}.

First, consider the results for the AUC of the ROC curve, which can be interpreted

as the average probability that a randomly chosen edge is correctly characterized as

present or not, assuming any given edge is equally likely to be present or not (Beal

et al., 2005). The simulation results are presented in Figure 4.4. Several trends are

apparent: first, for small datasets (that is, few replicates and time points), all methods

perform poorly. For the EBDBN(x), EBDBN(-), and VBSSM, increasing either R, T ,

or both improves performance; interestingly, for the VAR method this is true when

R is increased while the inverse holds for increasing T . Furthermore, the VBSSM
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Figure 4.4. Area Under the Curve (AUC) of the Receiver Operating Char-
acteristic (ROC) curve of model-based simulations, by number of repli-
cates and number of time points simulated in the data. Each row of the
graphical matrix corresponds to the number of replicates (R = 5, 10, 15)
and each column to the number of time points (T = 5, 10, 15), with 25
datasets simulated per evaluation. Within each individual plot, the meth-
ods represented (from left to right) are as follows: E(x) = Empirical Bayes
Dynamic Bayesian Network (EBDBN) method with hidden states (dark
blue), E(-) = EBDBN method without hidden states (light blue), VB =
Variational Bayes method (green), and VA = VAR method (yellow).
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Figure 4.5. Additional comparison criteria for model-based simulations,
for data with R = 10 replicates and T = 10 time points for all meth-
ods, using a cutoff for the z-scores of {95, 99, 99.9}% for the EBDBN(x),
EBDBN(-), and VBSSM. A cutoff of 80% is used for the local false discov-
ery rate in the VAR method, as suggested by Opgen-Rhein and Strimmer
(2007).

outperforms all methods considered here, although the margin of difference decreases

considerably for larger datasets. When comparing the EBDBN(x) and EBDBN(-)

methods, the results indicate that the latter outperforms the former only for data

with few time points (T = 5).

To obtain a more complete perspective on the performance of the models, we also

consider the sensitivity, specificity, and positive predictive value for given threshold

values for the z-score, as well as the computational time required (Figure 4.5). While

the EBDBN(x), EBDBN(-), and VBSSM all seem to be comparable in terms of sen-

sitivity and AUC, the VBSSM and VAR methods perform best in terms of specificity
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and positive predictive value. For the model-based simulations, the VBSSM and VAR

are more stringent in edge selection, resulting in a lower rate of false positives (al-

though in the case of the VAR, this also results in a much lower rate of true positives).

The calculation time for each method is also worth considering. The VBSSM required

about 12 minutes for algorithm convergence, while for the EBDBN(x), EBDBN(-),

and VAR this time was about 5 1/2 minutes, 2 seconds, and 1 second, respectively.

All simulations were run on a dual-processor Dell PowerEdge 1850 (quad-core 2.8

GHz Intel (R) Xeon (TM)) with 12GB RAM, running Red Hat Enterprise Linux 5.3

Server x86-64.

4.7.3 Data-Based Simulations

One of the challenges of relying on simulations to compare different methods for

network inference is that results based on data simulated under the same model as

used by a particular method (as is the case for all the methods under consideration)

are undoubtedly over-optimistic. For this reason, it is also important to consider

“realistic” simulations of well-known systems based on ordinary differential equations,

which more closely approximate real microarray datasets. One such set of simulations

by Zak et al. (2001, 2003) appears to be particularly promising, as it has already been

used for this purpose by several other authors (Husmeier, 2003; Beal et al., 2005).

The data in Zak et al. (2001, 2003) include 10 genes that interact with one another

via a set of transcription factor proteins, bound promoters, and a ligand input, orga-

nized into regulatory motifs taken from the biological literature (Figure 4.6). A set

of in silico simulations in Matlab, carried out by integrating the ordinary differential

equations describing the model, yields a dataset of 55 variables over 500 time points.

We follow Beal et al. (2005) and use only the observations for the 10 genes for net-

work inference (thus leaving 45 variables as “hidden states”). We construct datasets

of length T = {5, 12, 35, 50, 75, 120} by subsampling equally spaced time points, and

we artificially create replicates of size R = {1, 2, 4, 8, 16, 32} by adding Gaussian noise
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Figure 4.6. Simulated data from Zak et al. (2001, 2003) on 10 genes over
500 time points, based on the integration of a set of ordinary differential
equations describing the network dynamics. Data are shown as the log-
fold change of expression at each time point relative to the initial value.

at each time point to the log-ratios of the observed gene expression data. The VAR

method is not included in the results below, as the small number of genes (10) in the

dataset did not permit accurate edge selection.

The results of the median AUC for the EBDBN(x), EBDBN(-), and VBSSM are

shown in Figure 4.7. It can be seen that data simulated with only 5 time points yield

poor performance for all methods under consideration; this is alleviated by increasing

the number of time points, although the improvement seems to plateau at around

50 or 75 time points. This is likely due to the artificial nature of the time point

subsampling; that is, the same interval of time is covered by data sampled with 75

and 120 time points, albeit in greater detail in the latter case. The benefits of ever-
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Figure 4.7. Median Area Under the Curve (AUC) of the Receiver Op-
erating Characteristic (ROC) curve for the EBDBN(x), EBDBN(-), and
VBSSM, by number of replicates R and time points T . The horizontal
dotted line in each graph represents an AUC of 0.5, corresponding to a
random-guess classifier.

finer sampling are thus eventually overrun by the additional noise incurred by the

extra data points.

Not surprisingly, a similar phenomenon is observed with the number of replicates,

which were also artificially created by adding Gaussian noise. As with the subsampled

time points, the creation of additional artificial replicates tends to add noise to the

data without contributing additional information about the network dynamics. For

data with 4 or more replicates, the VBSSM appears to outperform the EBDBN, but

only for datasets with less than 35 time points; this relationship is reversed for a
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Figure 4.8. Additional comparison criteria of data-based simulations, for
data with R = 32 replicates and T = 50 time points, using a cutoff for the
z-scores of {95, 99, 99.9}% for the EBDBN(x), EBDBN(-), and VBSSM.

larger number of time points. Finally, note that the AUCROC values observed in

Figure 4.7, on the order of 45% to 70%, are much lower than those observed in Figure

4.4, which were on the order of 60% to 98%. This is undoubtedly due to the more

realistic, and thus more complicated, biological relationships simulated here.

We also consider the performance of the EBDBN and VBSSM on additional com-

parison criteria (Figure 4.8). Here, the EBDBN(x), EBDBN(-), and VBSSM perform

comparably in terms of sensitivity and positive predictive value, while the EBDBN(x)

and EBDBN(-) outperform the VBSSM in terms of specificity and AUC of the ROC

curve. There is also a considerable difference in computational time, as the VB-

SSM required about 26 minutes on average to converge, while the EBDBN(x) and

EBDBN(-) required only a little over 1 minute and 1 second, respectively.
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4.8 Summary

The EBDBN algorithm is based on a novel empirical Bayes estimation proce-

dure to reverse engineer the structure of gene regulatory networks from longitudinal

gene expression data. This approach serves as a complement to the VBSSM of Beal

et al. (2005), with the advantage of a straightforward, computationally efficient EM-

like estimation procedure. The proposed method performs comparably to previously

published methods on model-based data when a minimum number of replicates (≈ 10)

and time points (≈ 10) are measured.

In order to incorporate hidden variables and driving inputs into the dynamics

of complicated biological systems, the EBDBN relies on a hierarchical Bayes frame-

work with conjugate Gaussian distributions to enable straightforward computation.

Such distributional assumptions enable computationally efficient parameter estima-

tion, as posterior distributions can be determined explicitly. However, the Gaussian

distributions used in the EBDBN represent a simplification of the complicated dy-

namics inherent in biological systems. For this reason, the EBDBN is best suited

for exploratory analyses of moderately-sized networks, where little prior biological

information is known. However, for simple organisms that have small, well-known

networks, an alternative and less restrictive approach is necessary. To address the

need for diverse methods that are required in systems biology, in the next chapter we

present a sampling-based Bayesian approach that is adapted to small-scale, detailed

analyses of gene regulatory networks.
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5. ABC-MCMC NETWORK ALGORITHM

Although the EBDBN algorithm presented in Chapter 4 has the potential to identify

testable novel regulatory interactions from time-course microarray data, its estima-

tion procedure relies on the assumption of conjugate (Gaussian) distributions for

network edges. In many cases, this assumption may be unrealistic or unnecessarily

restrictive. However, without such distributional assumptions on edges, it may be

impossible or computationally prohibitive to compute the likelihood of a given net-

work. To address this issue, here we present a novel adaptation of a sampling-based

approximate Bayesian approach that avoids the need to use or calculate likelihoods.

This method, known as the ABC-MCMC Network (ABC-Net) algorithm, aims to

gain further insight into small, well-characterized biological processes. As before, let

yt = [y1t, . . . , yPt]
T represent the expression of a set of P genes at time t, where

t = 1, . . . , T . For clarity, we limit this discussion to data with a single biological

replicate, but the extension to multiple replicates is straightforward.

The ABC-Net algorithm is based on the ABC-MCMC algorithm (Algorithm 3.5)

of Marjoram et al. (2003), where draws from the posterior distribution are generated

using a Metropolis-Hastings scheme (Hastings, 1970) without the use of likelihoods.

However, adapting such an algorithm to the context of gene regulatory networks

requires several considerations to be taken into account. First, we must identify com-

putationally efficient methods for simulating data Y ? from a known gene regulatory

network Θ?. In addition, we must define a distance function ρ and threshold ε to com-

pare two multivariate time series (observed and simulated data). Finally, appropriate

prior and proposal distributions, π(·) and q(·|·), must be specified.
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5.1 Simulating Data for Gene Regulatory Networks

One of the most important considerations in adapting the ABC-MCMC algorithm

(Algorithm 3.5) to the inference of gene regulatory networks is identifying an efficient

simulator for a proposed network structure Θ?. Several authors (Beal et al., 2005;

Opgen-Rhein and Strimmer, 2007; Wilkinson, 2009) have found that simple, linear

models can in some cases yield good approximations of the dynamics occurring within

complicated biological systems. To this end, we use a first-order vector autoregressive

model, shown in Equation (2.6), to simulate longitudinal expression data for genes

involved in a given network. Specifically, after setting y?1 = y1, we exploit the Markov

property of the VAR(1) model to obtain one-step-ahead predictions (i.e., fitted values)

of gene expression at time points t = 2, . . . , T as follows:

y?t = Θ?yt−1 (5.1)

for t = 2, . . . , T . Note that the one-step-ahead predictions for yt are made using

the observed data yt−1, and not the simulated data y?t−1. That is, we simulate data

by calculating the expected value of gene expression at each time point given the

network structure and observed expression values at the previous time point, rather

than attempting to estimate and simulate the noise present in a particular set of

observed data.

The appropriateness of using a VAR(1) simulator as in Equation (5.1) is largely

dependent on the amount and the noise structure present in observed data, as well as

the adequacy of the assumption of time-invariant, first-order autoregressive dynamics

for complicated gene regulatory networks. In the absence of more detailed informa-

tion about the underlying network, it may be reasonable to use a simple model such as

the VAR(1) to generate simulated data, as shown here. However, the ABC-Net algo-

rithm has the flexibility to incorporate arbitrary models as data simulators, provided

they are computationally efficient. For instance, in some cases second-order mod-

els, nonlinear models, linear differential equations, draws from a Dirichlet process, or

Michaelis-Menten kinetics may more aptly describe the dynamics of a particular gene
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regulatory network; in these cases, the appropriate simulator model would be used

in place of Equation (5.1). In this way, it is straightforward to tailor the ABC-Net

algorithm to situations where an alternative model is known to better represent a

given dataset.

5.2 Distance Function

The choice of the distance function (ρ) and cutoff threshold (ε) both play an

important role in the applicability of ABC methods for inferring gene regulatory

networks. Rather than defining a set of summary statistics, we directly compare the

observed and simulated data over time using ρ. Several standard choices for this

function include the Canberra, Euclidean, and Manhattan distance functions (see

Table 5.1). In addition, we also apply a distance measure proposed by Lund and Li

(2009) tailored to multivariate longitudinal data that we refer to as the Multivariate

Time-Series (MVT) distance. For the MVT distance, we make the assumption that

two sets of gene expression data arising from the same underlying network would have

a smaller distance than two with differing networks. That is, under the null hypothesis

that simulated (Y ?) and observed (Y ) data have the same network dynamics, we

define

Θ̂Y = 1
T

∑T−1
t=1 yt+1y

′
t

Θ̂Y ? = 1
T

∑T−1
t=1 y?t+1y

?′
t

Θ̂ = Θ̂Y +Θ̂Y ?

2

ŷ?t = Θ̂y?t−1

ŷt = Θ̂yt−1

Σ̂ = 1
2T

∑T

t=1 {(y
?
t − ŷ?t )(y

?
t − ŷ?t )

′ + (yt − ŷt)(yt − ŷt)
′}

where yt and y?t are the observed and simulated time-course data, ŷt and ŷ?t are the

best one-step ahead linear predictors of yt and y?t , respectively, and Σ̂ is an estimate

of the common covariance matrix of the errors Σ. With these terms defined, the MVT
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Table 5.1
Distance functions to compare observed (Y ) and simulated (Y ?) data
in the ABC-Net algorithm, where T denotes the number of time points
collected and P represents the total number of genes.

Canberra: ρ(Y ?, Y ) =

T
∑

t=1

P
∑

i=1

|y?it − yit|

|y?it + yit|

Euclidean: ρ(Y ?, Y ) =

√

√

√

√

T
∑

t=1

P
∑

i=1

(y?it − yit)
2

Manhattan: ρ(Y ?, Y ) =

T
∑

t=1

P
∑

i=1

|y?it − yit|

MVT: ρ(Y ?, Y ) = 1
T

T
∑

t=1

[(yt − y?t ) − (ŷt − ŷ?t )]
′ Σ̂−1 [(yt − y?t ) − (ŷt − ŷ?t )]

distance may be calculated using the equation shown in Table 5.1. In practice, to

avoid the computationally expensive task of inverting the estimated covariance matrix

Σ, we standardize the two time series Y ? and Y and set Σ̂ equal to the identity matrix.

Regardless of the choice of distance function ρ, a threshold value ε is also required

to determine when simulated and observed data are “close enough.” The appropriate

value for ε is highly dependent on the choice of function ρ, the amount of noise in the

data, and the size of the data (i.e., number of genes in the network, number of time

points measured). To choose this threshold, we propose a heuristic method where

5000 randomly generated networks are used to simulate data as in Section 5.1, and

the corresponding distance (chosen from Table 5.1) between simulated and observed

data are calculated for each. We then set ε to the value of a given quantile (typically

1% or 5%) of these randomly generated distances. We examine the choice of both ρ

and ε in great detail later.
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5.3 Network Proposal Distributions

Another important aspect of the ABC-Net algorithm is the proposal distribution

q(·|·), which defines how to transition from the current state of a network to an up-

dated proposal. In the context of gene regulatory networks, we rely on two different

characterizations of the graph to propose updates, as previously described: the topol-

ogy of the network (i.e., the edges that are present in the graph) and the magnitude of

existing interactions (i.e., the strength of a particular activation or repression). The

former can be represented using a matrix G, where Gij = 1 if gene j regulates gene

i, and Gij = 0 otherwise. G is referred to as the adjacency matrix of the underlying

gene regulatory network. The latter is represented by a matrix Θ of parameter values

(see Equation (2.6)). Note that Gij = 0 implies Θij = 0, and Gij = 1 implies Θij 6= 0.

In the ABC-Net algorithm, a two-step proposal distribution (Figure 5.2) is used

to produce new samples G? and Θ? for the adjacency and parameter matrices, respec-

tively. In the first step, we apply one of three basic moves (Figure 5.1) to the current

adjacency matrix Gi: adding an edge, deleting an edge, or reversing the direction of

an edge (Husmeier et al., 2005). Let N (G) represent the neighborhood size of a graph

G, i.e., the number of other network structures that can be obtained by applying one

of the three basic moves. The transition probability is given by q(G?|Gi) = 1/N (Gi).

In the second step, the proposal distribution of Θ, given the current value Θi and the

updated adjacency matrix G?, is defined to be

q(Θij |Θ
i
ij, G

?
ij) ∼







0 if G?
ij = 0

N(Θi
ij , σΘ) if G?

ij 6= 0
(5.2)

where σΘ may be tuned to obtain an empirical acceptance rate between 15% and 50%,

as recommended in Gilks et al. (1996). A simple example of the two-step proposal

distribution for gene regulatory networks is shown in Figure 5.2.
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Delete Reverse Add 

Neighborhood B Neighborhood A 
Add Delete Reverse 

Probability = 1/11 

Probability = 1/10 

Figure 5.1. Proposal distribution for network adjacency matrix G through
application of three basic moves: adding, deleting, and reversing an edge.
Neighborhood A is made up of 11 graphs. The proposal probability for
moving from this graph to that shown on the top right is thus 1/11. As
Neighborhood B is made up of 10 graphs, the proposal probability of
moving back to the first graph is 1/10. Similar image shown in Husmeier
et al. (2005).

5.4 Network Prior Distributions

One final consideration for the ABC-Net algorithm is the choice of prior distri-

butions for the adjacency matrix G and parameter matrix Θ. In gene regulatory

networks, as the number of genes (P ) in a network increases, the number of possible

edges within the network quickly increases as well (P × P ). A large number of genes

may be interacting simultaneously with one another in very sophisticated regulatory

circuits, and the network topology itself may be quite complicated. Even so, certain

properties of biological networks can be useful in limiting the support of the prior

distribution to realistic network topologies. In particular, recall that most genes are
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Figure 5.2. Example of two-step proposal distribution for gene regulatory
networks. Top row: A network in iteration i of the ABC-Net algorithm
may be characterized both by its adjacency matrix Gi (left) and its pa-
rameter matrix Θi (right). The former encodes only the presence (1) or
absence (0) of an edge. The latter encodes additional information about
the magnitude of a particular interaction, where zeros indicate that an
edge is not present, positive values indicate an activation, and negative
values indicate a repression (edges with values further away from zero
correspond to stronger effects). Bottom row: An updated network is
proposed by adding, deleting, or reversing an edge in Gi to produce G?

(left). The parameter matrix Θi is updated using a Gaussian proposal
distribution for the nonzero edges of G? to produce Θ? (right).

regulated just one step away from their regulator (Alon, 2007), and gene networks

tend to be sparse with a limited number of regulator genes (Leclerc, 2008).

In keeping with these biological hypotheses, we elect to use uninformative prior

distributions with some restrictions for both π(G) and π(Θ|G). One such restriction

is on a graph attribute known as the fan-in for each node in the network, which

refers to the in-degree of each node. Because gene regulatory networks are known

to be sparse, we choose the prior on the adjacency matrix, π(G), to be uniform

over all possible structures, subject to a constraint on the maximum fan-in for each

node in the network (i.e., the number of regulators per gene), as has been suggested
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Algorithm 5.1 The ABC-MCMC Network (ABC-Net) Algorithm.

0. Initialize Θi, Gi, i = 0.

1. (a) Propose G? according to a proposal distribution q(G|Gi) by adding, delet-

ing, or reversing an edge as in Figure 5.1.

(b) Propose Θ? according to a proposal distribution q(Θ|Θi, G?).

2. Simulate data Y ? from f(·|Θ?, G?).

3. If ρ(Y ?, Y ) ≤ ε, go to 4, otherwise set Θi+1 = Θi, Gi+1 = Gi and go to 5.

4. Set {Gi+1,Θi+1} = {G?,Θ?} with probability

α = min{1, π(G?)π(Θ?|G?)q(Gi|G?)q(Θi|Θ?,Gi)
π(Gi)π(Θi|Gi)q(G?|Gi)q(Θ?|Θi,G?)

} and {Gi+1,Θi+1} = {Gi,Θi} with

probability 1 − α.

5. Set i = i+ 1. If i < n (a pre-set number of iterations), return to 1.

by several authors (Friedman, 2000; Husmeier, 2003; Werhli and Husmeier, 2007).

This restriction is supported by the biological literature, as genes do not tend to

be synchronously regulated by a large number of genes (Leclerc, 2008). For the

parameter prior π(Θ|G), we use a uniform distribution on the interval (−2, 2), where

the bounds are chosen to represent a realistic range of edge magnitudes in gene

regulatory networks. In addition, both priors can easily be adapted to incorporate

prior biological information (i.e., in the case of π(G) the presence/absence of an

edge, and in the case of π(Θ|G) the type and magnitude of a particular gene-to-gene

interaction).

5.5 ABC-Net Implementation

The proposed ABC-Net algorithm adapts the ABC-MCMC algorithm (Algorithm

3.5) to the context of gene regulatory networks by incorporating a specialized data

simulator, distance function, network proposal distribution, and prior distribution,

as detailed in Sections 5.1-5.4. The full ABC-Net algorithm is shown in Algorithm
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5.1. The output from the ABC-Net algorithm consists of dependent samples from

the stationary distribution of the chain, f(Θ, G|ρ(Y ?, Y ≤ ε). Because saving all

iterations from the MCMC run can take up a large amount of storage (particularly as

the size of the network increases) and consecutive draws tend to be highly correlated,

we typically save only every 50th iteration, which is referred to as thinning the chain

(Gilks et al., 1996). In practice, two additional considerations must be taken into

account when implementing the ABC-Net algorithm: a burn-in period and a measure

of chain convergence.

5.5.1 Burn-In Period

As with many MCMC methods, a burn-in period is implemented to reduce the

impact of initial values and to improve mixing for the chain. After a sufficiently

long burn-in period of b iterations, inference is based on the output from the Markov

chain {(Gi,Θi); i = b + 1, . . . , b + n}, which consists of dependent samples from the

approximate posterior distribution π(Θ|G, ρ(Y ?, Y ) ≤ ε) (Gilks et al., 1996). The

length b of the burn-in depends on the starting values of the chain, Θ0 and G0, the

rate of convergence of the chain, and the similarity of the transition mechanism of

the chain to the approximate posterior distribution. Geyer (1992) suggests that b

should be set to between 1% and 2% of the run length n, if extreme starting values

are avoided. In addition, several formal tools to determine b, known as convergence

diagnostics, have also been proposed; see Cowles and Carlin (1994) for a review.

We also implement a “cooling” procedure during the burn-in period similar to

that used in Ratmann et al. (2007), where acceptance of (G?,Θ?) is controlled by a

decreasing sequence of thresholds, until the minimum pre-set value ε is reached. Note

that tempering the acceptance threshold ε in this way reduces the number of accepted

parameters as the number of iterations increases. This cooling scheme also addresses

the poor mixing often observed in the ABC-Net algorithm, as larger tolerances in

the early iterations of the burn-in are associated with higher acceptance rates. A
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total of 200 iterations are run for each of ten cooled threshold values, and the burn-in

period is repeated if the empirical acceptance rate is less than 1%. This ensures a

minimum burn-in period of 2000 iterations, with additional iterations included for

chains affected by poor mixing.

5.5.2 Chain Convergence

Because the ABC-Net algorithm relies on a comparison between simulated and

observed data to avoid a likelihood calculation, long chains are required to ensure

the adequacy of the approximation. Although a single long chain could be run, it

is also possible to run multiple overdispersed chains. There is still much debate in

the statistical community concerning whether it is better to run a single, very long

chain or several long chains. The former approach maintains that a single chain has

the best chance of more fully exploring the target distribution and that comparisons

among chains cannot absolutely prove convergence. The latter approach holds that

comparing chains can reveal genuine differences if the individual chains have not yet

approached stationarity (Gilks et al., 1996). For this reason, we run 10 independent

chains of length 1 × 106 simultaneously (rather than a single chain of length 1 ×

107). This approach contributes a two-fold benefit, as calculations can be performed

in parallel to improve computational speed and a convergence assessment can be

conducted using the Gelman-Rubin statistic (Gelman and Rubin, 1992).

Specifically, to assess convergence among chains, consider the case where m par-

allel sequences of length n (after the burn-in period) have been run. For a single

parameter η, let (ηij) be the sample of η at the jth iteration of the ith chain for

j = 1, . . . , n and i = 1, . . . , m, and calculate the between-sequence variance B and

the within-sequence variance W as follows:

B =
n

m− 1

m
∑

i=1

(η̄i· − η̄··)
2

W =
1

m

m
∑

i=1

s2
i (5.3)
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where

η̄i· =
1

n

n
∑

j=1

ηij, η̄·· =
1

m

m
∑

i=1

η̄i·, and s2
i =

1

n− 1

n
∑

j=1

(ηij − η̄i·)
2.

The within-sequence variance W in Equation (5.3) is an underestimate of the variance

of η since individual sequences do not cover the entirety of the target distribution.

We also define an overestimate of the variance of η in the target distribution, based

on an assumption of overdispersed starting points:

V̂ar(η) =
n− 1

n
W +

1

n
B. (5.4)

The Gelman-Rubin statistic (Gelman and Rubin, 1992) monitors chain conver-

gence by estimating the ratio of V̂ar(η) and W (the upper and lower bounds, respec-

tively) of the standard deviation in η̂:

√

R̂ =

√

V̂ar(η)

W
. (5.5)

As the chains converge, the Gelman-Rubin statistic R̂ decreases towards 1 (which

indicates that the parallel Markov chains essentially overlap). Following the recom-

mendation in Gilks et al. (1996) we declare chain convergence if R̂ < 1.2 for all

parameters in Θ. After the chains have converged, draws corresponding to the small-

est 1% of the distance criterion are retained for inference.

5.6 Extension to RNA Sequencing Data

As the cost of NGS technology continues to drop, sequence-based longitudinal

studies of gene expression (e.g., RNA-Seq) will become increasingly popular. However,

data from NGS platforms differ substantially from microarray data, particularly as

they are made up of digital counts of transcripts rather than continuous intensity

measures. Because the VAR(1) model described in Section 5.1 generates continuous

expression measurements over time, an alternative simulator must be proposed to

deal with time series of integer counts.
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Specifically, let yt = [y1t, . . . , yPt] be the digital gene expression (DGE), or count,

of genes at time t, where t = 1, . . . , T . It has become standard practice (Mortazavi

et al., 2008; Marioni et al., 2008; Auer and Doerge, 2010) to model the level of gene

transcription with a Poisson distribution:

yit ∼ Poisson(λit) (5.6)

where λit = πit
∑P

i=1 yit and
∑P

i=1 πit = 1. In this way, the inclusion of the total

number of reads per time point, y·t =
∑P

i=1 yit, amounts to normalizing digital gene

counts by the total number of reads per time point. To define gene-to-gene interac-

tions across time, we incorporate the parameter matrix Θ (which defines the network

structure, as before) into an autoregressive model for the gene transcription rate πit

of the ith gene as follows:

πit =
λit
y·t

= exp

{

θi1
λ1,t−1

y·,t−1
+ . . .+ θiP

λP,t−1

y·,t−1

}

(5.7)

where θij represents the element of Θ in the ith row and jth column, as before. In

matrix form, this would be represented as

πt = exp

{

1

y·,t−1
Θλt−1

}

(5.8)

where πt = {πit}i=1,...,P and λt−1 = {λi,t−1}i=1,...,P for t = 1, . . . , T .

As in Section 5.1, to generate simulated data Y ? based on a given network Θ?, we

rely on one-step-ahead predictions. The difference in this case is that one-step-ahead

predictions are on the level of expression πit of each gene, and not on the observed

values yit themselves. Specifically, let y?1 = y1 and

π̃?
t = exp

{

1

y·,t−1

Θ?yt−1

}

(5.9)

π?
t =

1
∑P

i=1 π̃
?
it

π̃?
t

y?t ∼ Poisson(π?
t y·t)

for t = 2, . . . , T . In this way π? represents the level (or rate) of expression of gene

i at time t, which in turn is influenced by the observed digital gene expression mea-

sures at the previous time point, yt−1, as determined by the matrix of gene-to-gene
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interactions, Θ?. In contrast to the simulation procedure described in Section 5.1,

the Poisson simulator in Equation 5.9 incorporates an additional level of randomness

since DGE measures are sampled from a Poisson distribution. To account for this,

we suggest repeating the sampling procedure several (say, 10) times such that

y
(j)?
t ∼ Poisson(π?

ty·t)

where y
(j)?
1 = y1 and j = 1, . . . , 10. Subsequently, the distance ρ(Y ?, Y ) for a given

network Θ? would be set to equal to the mean distance across all simulated data

Y (j)?, that is

ρ(Y ?, Y ) = mean
{

ρ(Y (j)?, Y ) : j = 1, . . . , 10
}

.

The proposed extension of the ABC-Net algorithm to RNA-Seq data has the added

benefit of a more realistic interpretation for the network parameters Θ as compared

to the VAR(1) model in Section 5.1 or the EBDBN algorithm of Chapter 4. In

the VAR(1) representation based on continuous expression measurements (i.e., from

microarray data), Θ encodes how gene expression at one time point directly affects

gene expression at the next. In the Poisson model representation based on digital

gene expression measurements (i.e., from SAGE or RNA-Seq data), the elements of

Θ encode how digital gene expression measures from one time point affect the level (or

rate) of gene expression at the next. That is, in the continuous representation, if θij =

2, then the expression of gene i at time point t is strictly increased by twice the value

of expression of gene j at time point t − 1. However, in the Poisson representation,

θij = 2 implies that the rate of expression of gene i at time t is increased by twice

the digital gene expression of gene j at time point t − 1. Although the difference is

subtle, it is important to distinguish between these two interpretations.

One final consideration for the extension of the ABC-Net algorithm to longitudinal

RNA-Seq data is the possibility of over-dispersion. The Poisson model in Equation

5.6 relies on the assumption that Poisson sampling accounts for the variation that

occurs among observations in the same treatment group. That is, if R biological
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replicates are included in the data, we assume E(yitr) = Var(yitr) for r = 1, . . . , R.

However, RNA-Seq data often exhibit extra-Poisson variation (also referred to as

overdispersion) between biological replicates, and in such cases the approach must be

modified appropriately (Auer, 2010). For example, Auer and Doerge (2010) proposed

a random effects formulation with quasi-likelihood estimation to account for extra-

Poisson variability. However, in our current formulation no estimate of overdispersion

may be estimated, as only one biological replicate is included.

5.7 Simulations

The success of the ABC-Net method in inferring gene regulatory networks from

expression data depends on several critical factors. In particular, some important

considerations include the choice of distance function ρ and tolerance ε, the sensi-

tivity of the method to the bounds of the prior distribution, and the suitability of

the model used to generate simulated data (i.e., the VAR(1) simulator) when more

complicated dynamics are at play. In addition, we also examine the effect of increas-

ing the amount of noise present in the observed data and incorporating biological

knowledge into the prior distribution structure. In this context, we focus on the Area

Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve as

an indicator of performance, as well as qualitative examinations of the approximate

posterior distributions of edges in the network.

To calculate the AUC for the ABC-Net method (Algorithm 5.1), we retain only

the samples corresponding to the smallest 1% of distances ρ(Y ?, Y ) for inference.

Based on these samples, we calculate the bounds of the α% credible intervals for each

edge, where α = {1, . . . , 100}. If the α% credible interval for a particular edge does

not contain 0, the edge is declared to be present; otherwise, the edge is declared to be

absent. In this way, because the simulation setting determines which edges are truly

present and absent, true positives, false positives, true negatives, and false negatives

may be calculated for each α, and the AUC may subsequently be calculated. We also
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Figure 5.3. The currently accepted gold-standard Raf signalling pathway,
which describes the interactions of eleven phosphorylated proteins in pri-
mary human immune system cells (Sachs et al., 2005). Nodes represent
the proxy genes of each of the eleven proteins (i.e., the genes that are
transcribed and translated into the corresponding proteins), and arrows
indicate the direction of signal transduction. Similar figure given in Werhli
and Husmeier (2007).

include as a reference the average acceptance rates and computation time required

for each simulation.

For these simulations, rather than defining an arbitrary network Θ, we instead

use the structure of a real, well-characterized pathway in human immune system cells

involving the Raf signalling protein (Sachs et al., 2005). We generate “observed” data

based on 11 genes, where the adjacency matrix ΘRaf is defined using the structure of

the currently accepted Raf signalling network, shown in Figure 5.3. If an edge exists

from gene j to gene i, we sample ΘRaf
ij uniformly from the interval (−2,−0.25) ∪

(0.25, 2), and otherwise ΘRaf
ij = 0. The bounds for nonzero gene-to-gene interactions

were chosen to represent a range of moderate to strong interactions among genes. We

generate one replicate of expression data for each of the 11 genes over 20 time points,

using the first-order autoregressive model

yt = ΘRafyt−1 + zt (5.10)
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for t = 2, ..., T , where y1 ∼ N(0, I), zt ∼ N(0, σ). For each simulation, unless

otherwise noted, the noise standard deviation is set to σ = 1, the Gaussian proposal

standard deviation in Equation (5.2) is set to σΘ = 0.5, and the maximum fan-in

is constrained to 5 or less (i.e., each gene has a maximum of five regulators). In all

cases, we ran the ABC-Net algorithm for ten independent chains of length 1 × 106,

with a thinning interval of 50.

5.7.1 Choice of ρ and ε

The distance function ρ and threshold ε (Section 5.2) are essential components to

the ABC-Net algorithm, as they directly affect the probability that simulated data Y ?

generated by a network Θ? are accepted as being “close enough” to the observed data.

Although there are many potential options for this distance function, in this work we

focus on a comparison among the four options previously discussed: the Manhattan,

Euclidean, Canberra, and MVT distances (see Table 5.1). For each choice of ρ, we

set a threshold using the heuristic method described in Section 5.2, where ε is set to

be either the 1%, 5%, or 10% quantile of distances associated with 5000 randomly

generated networks. Data were generated using the structure of the Raf signalling

network as in Equation (5.10), and each combination of ρ and ε was repeated over

five independent datasets in order to include an assessment of their variability (Note:

only two datasets were simulated for the MVT distance due to its computational

burden). For all of these simulations, it is assumed that smaller distances correspond

to data generated from networks Θ? similar to the real network ΘRaf . In this section,

all simulations were associated with Gelman-Rubin statistics less than 1.2 for all

parameters, so it is assumed that samples from the ABC-Net algorithm were indeed

from the stationary distribution of the chain (see Theorem 3.2.1).

Each distance function under consideration calculates and penalizes differences

between simulated and observed data in a different way. As such, it is not surprising

that the scales and distributions of distances for each choice of ρ differ as well (Figure
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Figure 5.4. Densities of distances ρ(Y ?, Y ) for four choices of distance
functions in the ABC-Net algorithm: Manhattan, Canberra, Euclidean,
and MVT distances (see Table 5.1). Black, red, and blue solid lines indi-
cate the densities associated with thresholds ε chosen using the 1%, 5%,
and 10% quantiles from 5000 randomly generated networks (see Section
5.2). Black, red, and blue dashed lines indicate the cutoff to retain samples
inference for each of the three choices of ε (1%, 5%, and 10% quantiles,
respectively).

5.4). The Manhattan, Canberra, and Euclidean functions all result in bi-modal densi-

ties for the distances, while the MVT function appears to be strictly increasing as the

distance approaches the cutoff ε. In addition, because the Manhattan distance deals

directly with the absolute differences between simulated and observed data, it is on

a larger scale than the other distance functions. Figure 5.4 also includes dotted lines

corresponding to the cutoff for samples retained for final inference (i.e., the smallest

1% of distances calculated for each function). For the Canberra distance, these lines
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Figure 5.5. Area Under the Curve (AUC) of the Receiver Operating Char-
acteristic (ROC) curve for four choices of distance functions in the ABC-
Net algorithm: Manhattan, Canberra, Euclidean, and MVT distances
(see Table 5.1). Black dots represent the value of the AUC for each of
five independent datasets per threshold and distance function (with the
exception of the MVT distance, which was limited to two datasets due to
its computational burden). The threshold ε was set at the 1%, 5%, and
10% quantiles from 5000 randomly generated networks (see Section 5.2).
Blue lines represent loess curves (Cleveland, 1979).

essentially overlap, indicating that the distances associated with samples retained for

inference are the same whether the ABC-Net algorithm was run based on the 1%,

5%, or 10% quantiles for ε. For the other three distance functions, it appears that

these cutoffs are more spread out.

As it is difficult to determine the ramifications of each choice of ρ from Figure 5.4,

we also consider a plot of the AUC for each combination of ρ and ε (Figure 5.5). This

plot clearly shows a disconnect between the performance of the Canberra, Euclidean,

and Manhattan distances as compared to the MVT distance. The first three distance
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functions all appear to be on par with one another, particularly when ε is set at the 1%

quantile of distances. For larger threshold values (ε = 5% and 10%), the Euclidean

distance seems to suffer slightly when compared to the Canberra and Manhattan

distances, which display relatively constant performance regardless of the choice of ε.

The MVT distance clearly yields much lower values of AUC regardless of the choice of

ε. However, based on this criterion alone, there does not seem to be strong evidence

that favors one choice among the Canberra, Euclidean, and Manhattan distances,

particularly for a cutoff of ε = 1%.

We also conduct a qualitative examination of the approximate posterior distri-

butions for the edges in the Raf signalling pathway (Figure 5.6) in one simulated

dataset. The marginal approximate posterior distributions for each distance function

are superimposed over each edge in the diagram, with different colors corresponding

to different distance functions, as indicated in the figure legend. True values taken

on by each edge are indicated with dotted black lines in each plot. Note that each

plot has the same lower and upper bounds for the x-axis (-2 and 2, respectively) and

y-axis (0 and 1.2, respectively) to facilitate comparisons among plots.

We first note (Figure 5.6) that some edges have very similar posterior distributions

regardless of the distance function used (e.g., Pip3→Akt and Pka→P38), while others

seem to have very different densities for different choices of ρ (e.g., Pkc→Jnk and

Pka→Erk). It also seems that the Manhattan and Euclidean distance often yield

approximate posterior distributions that are very close to one another, while those of

the Canberra and MVT distances often deviate. Another notable feature of Figure

5.6 is that some edges have relatively flat (diffuse) approximate posterior distributions

(e.g., Pip3→Akt), while others are much more peaked (e.g., Erk→Akt). We refer to

edges with these two characteristics as “flexible” and “rigid” edges, respectively, and

we will return to this idea in greater detail in later simulations.
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Figure 5.6. Approximate posterior distributions from the ABC-Net method for the simulated Raf signalling
pathway, by distance function ρ. Each plot overlapping a given edge in the network corresponds to the marginal
approximate posterior distribution for that edge, where the x-axis represents the values taken on by the edge
over the interval (-2,2) and the y-axis is the density. Each color represents a different distance function, as shown
in the legend. Black dotted lines indicate the true value taken on by the edge in the true network ΘRaf .
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Table 5.2
Average time in hours and acceptance rates (5 datasets each, except for
MVT which has two) for different distance functions ρ and thresholds ε.
Numbers in parentheses indicate standard deviations. Simulations were
run on a dual-socket Dell PowerEdge 1950 (quad-core (8 effective CPUs)
Intel Xeon E5410) with 32GB RAM, running RedHat Enterprise Linux
5.4 Server x86-64.

Distance (ρ) Threshold (ε) Time (hours) Acceptance rates

Canberra

1 8.1 (0.6) 45.4 (2.7)

5 9.6 (0.4) 41.2 (2.2)

10 9.9 (0.6) 44.6 (1.5)

Euclidean

1 7.3 (0.4) 38.0 (7.1)

5 7.8 (0.4) 56.5 (3.4)

10 8.3 (0.6) 59.0 (1.9)

Manhattan

1 7.4 (0.5) 59.5 (3.4)

5 8.0 (0.5) 66.7 (2.1)

10 8.4 (0.5) 69.0 (7.1)

MVT

1 21.9 (1.4) 29.2 (2.5)

5 23.5 (0.4) 44.3 (4.4)

10 25.0 (1.3) 53.1 (3.3)

Based on these simulation results, we conclude that the MVT distance is a poor

choice of distance function within the ABC-Net algorithm. Regardless of the thresh-

old used, it displays considerably different behavior than the other functions (Figure

5.5) and largely worse performance in terms of AUC (Figure 5.5). In addition, the

computational burden for the MVT distance is much larger than the other methods

(see Table 5.2), requiring almost three times the number of hours for calculation as

compared to the other methods. However, choosing among the Canberra, Euclidean,

and Manhattan distance is not as straightforward. All have approximately the same

computational burden (Table 5.2), and seem to display similar performance in terms
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of AUC. Based on a qualitative examination of the approximate posterior distribu-

tions (Figure 5.6), the results of the Canberra distance often break away from those

of the Manhattan and Euclidean distances. However, no strong evidence exists in

favor of the Canberra distance. Between the remaining two distance functions, the

Euclidean distance enjoys a slight advantage over the Manhattan distance in terms

of computation time. For this reason, we elect to use the Euclidean distance with ε

set to the 1% threshold for the remainder of the simulations.

5.7.2 Sensitivity to prior distribution bounds

In the work presented here, we focus on uniform prior distributions for both π(G)

and π(Θ|G) (Section 5.4), subject to a constraint on the maximum fan-in (i.e., number

of regulators per gene) for the former. For the latter, we must decide on reasonable

bounds for the prior distribution, which affect, in turn, the bounds of the approximate

posterior distributions obtained from the ABC-Net method. When prior biological

information on specific gene-to-gene interactions is to be incorporated into the ABC-

Net method, it may be straightforward to fix the bounds of this prior distribution

(e.g., known activations would be limited to positive values and known repressions

would be limited to negative values). However, in most cases fixing an upper and

lower bound for π(Θ|G) requires some careful thought.

In the case of continuous time-course data using a VAR(1) simulator as shown in

Section 5.1, Θ encodes how gene expression at one time point directly affects gene

expression at the next. That is, if θij = 2, then the expression of gene i at time point

t is strictly increased by twice the value of expression of gene j at time point t−1. In

addition, this relationship is assumed to be constant across time (i.e., gene j regulates

gene i in the same manner from times t = 1 to t = 2, as well from times t = 9 to

t = 10). Because values of -2 and 2 for a given θij correspond to strong inhibitory and

activatory effects, respectively, they represent one set of reasonable bounds for the

uniform prior distribution on Θ. As a comparison, we also consider (-3,3), (-5,5), and
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Table 5.3
Average time and acceptance rates (5 datasets each) for different prior
distribution bounds. Prior distributions were all uniform, with bounds
ranging from (-2,2) to (-10,10). Numbers in parentheses indicate stan-
dard deviations. Simulations were run on a dual-socket Dell PowerEdge
1950 (quad-core (8 effective CPUs) Intel Xeon E5410) with 32GB RAM,
running RedHat Enterprise Linux 5.4 Server x86-64.

Prior bounds Time (in hours) Acceptance rates

(-2,2) 7.7 (0.3) 38.8 (9.2)

(-3,3) 7.7 (0.2) 35.2 (10.5)

(-5,5) 7.8 (0.4) 26.5 (9.0)

(-10,10) 9.5 (2.7) 23.6 (14.1)

(-10,10) as bounds for π(Θ|G); these intervals include somewhat “unrealistic” values

for Θ, but are more diffuse (and hence less informative).

As in the previous simulation, we run the ABC-Net method over five independent

datasets for each choice of prior bounds to obtain an assessment of the variability

in performance. We compare the results from the ABC-Net method based on the

four different prior bounds using the AUC (Figure 5.7). Although wider prior bounds

seem to be associated with slightly larger variability in terms of this criterion, the

differences in average AUC among the four bounds is negligible. However, when

comparing the distributions of the Gelman-Rubin statistics (R̂) over all potential

edges in the network for each setting (Figure 5.8), a noticeable difference can be seen.

Specifically, as the bounds of the prior are defined over wider intervals, a greater

number of edges in the network exhibit evidence of non-convergence (i.e., R̂ > 1.2)

across the ten independent chains of the ABC-Net method. This is most evident for

prior bounds of (-10,10), where a large number of edges exceed the cutoff of 1.2 by a

large amount. In addition, the computation time for the prior bounds of (-10,10) is

on the average about an hour and a half longer than other choices for these bounds

(Table 5.3), since the burn-in period was often extended significantly as a remedy to
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poor chain mixing. Consequently, although the ABC-Net algorithm does not appear

to be sensitive to most bounds of the prior distribution studied here, the widest

interval of (-10,10) leads to problems in chain mixing and convergence.

We also consider the effect of the choice of prior bounds on the approximate

posterior distributions in the network. In Figures 5.9 and 5.10, we present a graph-

ical matrix of the marginal approximate posterior distributions of each edge in the

network, for prior bounds (-2,2) and (-5,5). As may be expected, the posteriors in

Figure 5.10 are generally more diffuse than those of Figure 5.9 due to the wider prior

bounds. However, it seems that regardless of the choice of prior bound, some edges

consistently have very flat posterior distributions (e.g., the edges in the Pip3 column),

while others tend to be consistently peaked (e.g., the edges in the Erk column). This

brings us back once again to the idea of flexible and rigid edges, first mentioned in

the previous section.

Interestingly, in this network the most rigid edges appear to correspond to regu-

lators that are furthest downstream in the pathway (Mek, Erk, and Akt), while those

furthest upstream appear to be the most flexible. In the context of the ABC-Net

method, this suggests that rigid edges (e.g., Mek→Erk) in Θ? must take on values

within a tight interval in order to generate simulated data Y ? that are close (in terms

of ρ and ε) to the observed data Y . Conversely, flexible edges (e.g., Pip3→Pip3) can

take on values within a much wider interval without negatively affecting the proxim-

ity of simulated and observed data. It is thus likely that the model is most sensitive

to parameters with narrow credible intervals (rigid edges) and least sensitive to those

that cannot accurately be localized (flexible edges) by the approximate posterior dis-

tribution (Toni et al., 2009). That is, some edges may intrinsically be easy to infer

even with relatively wide prior bounds (e.g., (-5,5)), while others cannot be accurately

determined even with fairly narrow prior distribution bounds (e.g., (-2,2)).
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Figure 5.7. Area Under the Curve (AUC) of the Receiver Operating Char-
acteristic (ROC) curve for four choices of bounds on the prior distribution
π(Θ|G): (-2,2), (-3,3), (-5,5), and (-10,10). Black dots represent the value
of the AUC for each of five independent datasets per bound. Blue lines
represent loess curves (Cleveland, 1979).
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dicates a value of R̂ = 1.2, the cutoff at which convergence is declared
among ten independent chains in the ABC-Net algorithm.
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Figure 5.9. The structure of the true Raf signalling pathway, ΘRaf , and a
graphical matrix of the marginal approximate posterior distributions for
every edge in the network, with prior bounds (-2,2). Each element of the
graphical matrix corresponds to the same element of ΘRaf , i.e., the density
in the second row and first column corresponds to ΘRaf

21 (Pip3→Plcγ). The
x-axis of each plot represents the values of each parameter ΘRaf

ij , and the y-
axis represents the corresponding density. Black dotted lines are included
on plots where ΘRaf

ij 6= 0 at the true value.
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Figure 5.10. The structure of the true Raf signalling pathway, ΘRaf , and a
graphical matrix of the marginal approximate posterior distributions for
every edge in the network, with prior bounds (-5,5). Each element of the
graphical matrix corresponds to the same element of ΘRaf , i.e., the density
in the second row and first column corresponds to ΘRaf

21 (Pip3→Plcγ). The
x-axis of each plot represents the values of each parameter ΘRaf

ij , and the y-
axis represents the corresponding density. Black dotted lines are included
on plots where ΘRaf

ij 6= 0 at the true value.
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5.7.3 Suitability of VAR(1) simulator

The applicability of the ABC-Net method to real gene regulatory networks de-

pends heavily on its ability to accurately simulate data for a given network structure.

In the absence of more detailed information about the dynamics of a particular sys-

tem, we suggest using a VAR(1) simulator as described in Section 5.1. However,

it is likely that real biological systems do not follow a VAR(1) model, and in fact,

that they arise from very complicated, nonlinear relationships. In this set of simu-

lations, we attempt to assess how the ABC-Net method reacts when observed data

Y are actually generated from models other than the VAR(1) model. In particular,

we focus on four models (see Table 5.4): a first-order nonlinear VAR model (VAR-

NL(1)), a second-order VAR model (VAR(2)), a second-order nonlinear VAR model

(VAR-NL(2)), and an ordinary differential equation (ODE). For the VAR models,

ΘRaf
1 and ΘRaf

2 were each defined using the Raf signalling network (Figure 5.3), where

existing edges were sampled uniformly from the interval (−2,−0.25) ∪ (0.25, 2) and

otherwise set to 0. For the ODE model, coefficients were randomly drawn from a

U(−1, 1) distribution and initial values for all genes were set to 1. After solving the

ordinary differential equations for time points t = 1, . . . , 20, random noise sampled

from N(0, 1) was added to each measurement at each time point.

We apply the ABC-Net algorithm to data Y generated from the four alternative

models described in Table 5.4 and examine the AUC results for each (Figure 5.11).

In this comparison, we also include the VAR(1) model from Equation (5.10) as a ref-

erence. We note that the ABC-Net has the best performance in terms of AUC for the

VAR(1) model; this is unsurprising as the data Y are generated with the same model

that is used to simulate data Y ? (Section 5.1). For the other models, the performance

of the algorithm noticeably declines, with the lowest AUC values observed for the two

second-order models, VAR(2) and VAR-NL(2). The nonlinear first-order VAR model

shows wide variability in its results, ranging from an AUC of just over 0.40 to over

0.70. Of the alternative models, the ordinary differential equation appears to have
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Table 5.4
Alternative models used to generate observed data Y : an ordinary differ-
ential equation (ODE), a second-order VAR model (VAR(2)), a first-order
nonlinear VAR model (VAR-NL(1)), and a second-order nonlinear VAR
model (VAR-NL(2)).

Model Network Equations to Generate y

VAR-NL(1)
y1 = z1

yt = ΘRaf
1 y−1

t−1 + zt, for t = 2, . . . , T

zt ∼ N(0, 1) for t = 1, . . . , T

VAR(2)

y1 = z1

y2 = ΘRaf
1 y1 + z2

yt = ΘRaf
1 yt−1 + ΘRaf

2 yt−2 + zt, for t = 3, . . . , T

zt ∼ N(0, 1) for t = 1, . . . , T

VAR-NL(2)
y1 = z1

y2 = ΘRaf
1 y−1

t−1 + z2

yt = ΘRaf
1 y−1

t−1 + ΘRaf
2 yt−2 + zt, for t = 3, . . . , T

zt ∼ N(0, 1) for t = 1, . . . , T

ODE

y′Pkc = 0.18yPlcγ − 0.75yPip2

y′Raf = −0.28yPkc + 0.62yPka

y′Mek = 0.63yPkc − 0.97yRaf − 0.52yPka

y′Erk = 0.70yMek − 0.94yPka

y′Pka = 0.31yPkc

y′Akt = 0.28yErk + 0.60yPka + 0.92yPip3

y′P38 = −0.19yPkc − 0.32yPka

y′Jnk = 0.24yPkc + 0.98yPka

y′Plcγ = 0

y′Pip3 = −0.28yPlcγ

y′Pip2 = 0.83yPlcγ − 0.98yPip3
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Figure 5.11. Area Under the Curve (AUC) of the Receiver Operating
Characteristic (ROC) curve for five different model choices to generate
Y : VAR(1), VAR-NL(1), VAR(2), VAR-NL(2), and ODE. Black dots
represent the value of the AUC for each of five independent datasets per
bound.
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Figure 5.12. Gelman-Rubin statistics (R̂) for each replicate of the four
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dotted line indicates a value of R̂ = 1.2, the cutoff at which convergence
is declared among ten independent chains in the ABC-Net algorithm.
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the highest performance in terms of AUC. Although one of the datasets simulated

with the VAR-NL(1) displayed some evidence of non-convergence (Figure 5.12), all

other models displayed sufficiently small values for this statistic.

We also consider the approximate posterior distributions in the network for model

used to generate Y . In Figure 5.13, we present a graphical matrix of the marginal ap-

proximate posterior distributions of each edge in the simulated Raf signalling pathway,

for each choice of model. The shape of the densities for each model varies widely.

For instance, the VAR-NL(1) model tends to yield more peaked distributions (not

necessarily centered about the true value), while the ODE displays relatively flat

distributions for edges throughout the network. The two nonlinear models tend to

have similar posterior distributions, as do the VAR(2) model and ODE. Throughout

the network, it appears that different models are able to more easily identify differ-

ent edges. For example, the VAR-NL(1), VAR(2), VAR-NL(2), and ODE models

each seem to uniquely identify the Pka→Mek, Mek→Erk, Pip→Akt, and Pka→Jnk

edges, respectively. However, the presence or absence of flexible and rigid edges in

the inferred network clearly depends on the type of model used to generate the data

Y .

As a final note concerning the performance of the ABC-Net algorithm when alter-

native models are used to generate Y , recall that the simulator described in Section

5.1 has the flexibility to incorporate alternative models, provided they are computa-

tionally efficient. We recommend the use of a VAR(1) model as a simple and efficient

simulator in situations where such a simplification of the network dynamics would be

appropriate. However, in cases where other models are known to better fit a given

set of data (e.g., a second order or non-linear model), the ABC-Net method can be

adapted accordingly.
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Figure 5.13. Approximate posterior distributions from the ABC-Net method for the simulated Raf signalling
pathway, by model. Each plot overlapping a given edge in the network corresponds to the marginal approximate
posterior distribution for that edge, where the x-axis represents the values taken on by the edge over the interval
(-2,2) and the y-axis is the density. Each color represents a different model, as shown in the legend. Black dotted
lines indicate the true value taken on by the edge in the true network ΘRaf .
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Figure 5.14. Scatterplots of the Area Under the Curve (AUC) of the Re-
ceiver Operating Characteristic (ROC) curve for the ABC-Net algorithm,
with differing values of noise standard deviation σ (0, 0.1, 0.25, 0.5, 0.75,
1, 1.5, 2, 3, 5). Five datasets were generated for each value of noise stan-
dard deviation. The blue line represents a loess curve (Cleveland, 1979).

5.7.4 Effect of noise in observed data

We also examine the effect of increased variability in the random noise zt added

to each time point of the observed data (see Equation (5.10)), where zt ∼ N(0, σ).

We would expect that increasing amounts of noise lead to reduced performance for

the ABC-Net algorithm, particularly since the VAR(1) simulator described in Section

5.1 uses one-step ahead predictors to simulate data based on a given network Θ?. For

this purpose, we consider σ = {0, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 5}. For each value of

σ, we generate five independent datasets to assess the variability of results, and run

the ABC-Net algorithm as detailed in Algorithm 5.1. The Gelman-Rubin statistics

for all parameters were less than 1.2 in all simulation settings, and as such we may

assume that the output from the ABC-Net method is truly made up of samples drawn

from the stationary distribution of the chain.
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The results for the AUC (Figure 5.14) indicate that the presence of increasing

noise over the investigated range does seem to negatively affect the performance of

the ABC-Net algorithm, although only for relatively large values of σ (e.g., σ =

5). The mean AUC (averaged over 5 datsets per noise setting) ranges from 0.70 (at

σ = 0) to 0.79 (at σ = 0.5). Interestingly, the worst performance appears to fall at

the two extremes for σ (i.e, 0 and 5). As the noise standard deviation is increased,

it is not surprising that the performance of the algorithm deteriorates, since the one-

step-ahead predictors described in Section 5.1 would fall increasingly further from the

observed data (even when the true network is used). However, the result observed for

σ = 0 is somewhat less intuitive. To explain these findings, consider the toy problem

described in Example 5.1. For this example, because of the sparsity of the network

structure, the only time points that yield any information about the true “closeness”

of simulated and actual data are t = 1, 2, and 3, even when more time points are

simulated. That is, regardless of the proposed network Θ? in the ABC-Net method,

the one-step ahead predictors for times t ≥ 5 are always exactly equal to the observed

values, as all are exactly equal to 0. Because the Raf signalling network ΘRaf used

in the simulations is also very sparse (only 20 out of 121 possible edges are actually

present in the network), this helps justify the results observed for σ = 0 in Figure

5.14.

As a comparison, we also examine the approximate posterior distributions of the

network for two different values of noise standard deviation, σ = 0.5 and σ = 5

(Figure 5.15). For the most part, posterior distributions for both σ = 0.5 and σ =

5 seem to have the same general shape, with some occasional discrepancies (e.g.,

Akt→Akt and Akt→Erk). In addition, as in previous simulations, we note once

again the marked difference in posterior distributions between rigid edges (peaked

distributions) and flexible edges (diffuse distributions). Regardless of the amount

of noise incorporated into the simulated data for the Raf signalling pathway, the

approximate posterior distributions for the upstream and downstream portions of the

network are consistently flexible and rigid, respectively. This seems to indicate that
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Example 5.1 Sparse network of 3 genes, with no noise added (σ = 0).

Consider a simple network made up of 3 genes and 3 edges, where the parameter

matrix Θ is defined by

Θ =











0 0 0

−1 0 1

2 0 0











.

Assume the expression values for the three genes at the first time point are y1 =

(y11, y21, y31). Using the VAR(1) model of Equation 2.6, if no noise is present in the

data, the expression values at the second time point will be equal to

y2 = Θy1 = (0,−1y11 + y31, 2y11).

Following suit, the expression values at the third time point would be

y3 = Θy2 = (0, 2y11, 0)

and those at the fourth time point (and all following time points) would be

y4 = Θy3 = (0, 0, 0).

some edges are intrinsically easier to infer (even in the presence of increased noise),

while other cannot be accurately determined regardless of the amount of noise in the

data. As such, the flexibility and rigidity of edges in a given system likely plays an

important role in the global inferability of the network structure.

5.7.5 Including Prior Biological Information

One advantage of Bayesian approaches such as the ABC-Net method is that bi-

ological knowledge can easily be incorporated into the prior structure. To illustrate

this, we incorporate prior knowledge for an increasing number of edges (n = 0, 1, 2, 3,



106

 

Pip3 Plcγ Pip2 Pkc P38 Pka Jnk Raf Mek Erk Akt 

−2 0 2

Pkc

−2 0 2

Raf

−2 0 2

Mek

−2 0 2

Erk

−2 0 2

Pka

P
k

c
R

a
f

M
e

k
E

rk
P

k
a

−2 0 2

A
k

t
P

3
8

Jn
k

P
lc
γ

Akt

P
ip

3
P

ip
2

−2 0 2

P38

−2 0 2

Jnk

−2 0 2

Plc γ

0
1

.5
0

1
.5

0
1

.5
0

1
.5

0
1

.5

−2 0 2

0
1

.5
0

1
.5

0
1

.5
0

1
.5

0
1

.5

Pip3

0
1

.5

−2 0 2

Pip2

SD = 5 SD = 0.5 True

Parameter value

D
e

n
si

ty

Approximate Posterior Distributions

Figure 5.15. The structure of the true Raf signalling pathway, ΘRaf , and
a graphical matrix of the marginal approximate posterior distributions
for every edge in the network, for σ = 0.5 and 5. Each element of the
graphical matrix corresponds to the same element of ΘRaf , i.e., the density
in the second row and first column corresponds to ΘRaf

21 (Pip3→Plcγ). The
x-axis of each plot represents the values of each parameter ΘRaf

ij , and the
y-axis represents the corresponding density. Red and blue lines correspond
to results obtained with σ = 5 and σ = 0.5, respectively. Black dotted
lines are included on plots where ΘRaf

ij 6= 0 at the true value.
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ceiver Operating Characteristic (ROC) curve for the ABC-Net algorithm,
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generated for each number of known edges. The blue line represents loess
curves (Cleveland, 1979).

and 4) in the simulated Raf signalling pathway in the following way. If an edge in the

Raf network from gene j to gene i is randomly selected to be “known”, its prior distri-

bution is bounded to be π(θRaf
ij |G) ∼ U(0, 2) for activations and π(θRaf

ij |G) ∼ U(−2, 0)

for repressions. Not surprisingly, the performance of the ABC-Net algorithm improves

markedly when prior information is included in this manner (Figure 5.16). The aver-

age AUC increases from about 75% when no known edges are included in the model

to almost 82% when 4 known edges are included. These improvements are directly

linked to the fact that using accurate informative prior distributions is certain to

improve algorithm performance.

We also examine the effect of prior biological knowledge on the approximate

posterior distributions over the entire network (Figure 5.17). It turns out that in-

cluding prior biological information about a subset of four edges did not seem to

tighten credible intervals for the flexible edges in the network. This observation held
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whether known edges were defined at random or chosen among the edges supported

by the strongest evidence in the previous simulations (e.g., Pkc→Raf, Raf→Mek, and

Mek→Erk). The fact that these flexible edges cannot be inferred even in the presence

of partial network information highlights the difficulties in achieving accurate, com-

plete inference in the context of gene regulatory networks. Finally, we also stress that

incorporating prior biological information as shown here relies on the assumption that

such information is entirely accurate. If this is not the case, alternative modifications

to the prior structure must be made to account for uncertainty in known gene-to-gene

interactions.

5.8 Summary

Methods based in approximate Bayesian computation (ABC) are a valuable tool

that enable Bayesian inference in complex, high-dimensional problems for which the

likelihood is difficult to calculate. The ABC-Net algorithm presented here is a novel

framework for sampling from the approximate posterior distributions of gene-to-gene

interactions involved in gene regulatory networks. These approximate posterior dis-

tributions provide a wealth of information about the structure and inferability of

complicated biological systems, particularly with respect to the flexibility and rigid-

ity of network edges. For the time being, the computing time required for the ABC-

Net approach limits its application to small networks. For example, for the 11-gene

Raf signalling network used in the simulations, average computing time for 1 × 107

iterations was on the order of 7 hours (simulations were run on a dual-socket Dell

PowerEdge 1950 (quad-core (8 effective CPUs) Intel Xeon E5410) with 32GB RAM,

running RedHat Enterprise Linux 5.4 Server x86-64). However, as computing power

continues to improve in terms of speed and memory, it is anticipated that the method

will progressively be able to handle somewhat larger networks.
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Figure 5.17. The structure of the true Raf signalling pathway, ΘRaf , and a
graphical matrix of the marginal approximate posterior distributions for
every edge in the network, with four known edges. Each element of the
graphical matrix corresponds to the same element of ΘRaf , i.e., the density
in the second row and first column corresponds to ΘRaf

21 (Pip3→Plcγ). The
x-axis of each plot represents the values of each parameter ΘRaf

ij , and the
y-axis represents the corresponding density. Densities shaded in green and
blue correspond to edges considered to be “known” and “unknown” in the
simulation, respectively. Black dotted lines are included on plots where
ΘRaf
ij 6= 0 at the true value.
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6. APPLICATION TO REAL DATA

Wide-scale experiments designed to study gene expression in a variety of contexts

have become routine in the past decade due to the development of high-throughput

technologies such as microarrays, serial analysis of gene expression, and RNA Se-

quencing. As an example, one of the most well-known studies of time-course gene

expression, a study of the cell cycle in Saccharomyces cerevisiae based on microarray

technology (Spellman et al., 1998), is now over ten years old. To date, most lon-

gitudinal studies of gene expression have been conducted on microarrays, although

the decreasing cost of next generation sequencing technologies will likely lead to an

upsurge of longitudinal RNA-Seq experiments in the next few years. To illustrate the

utility of the two proposed approaches, the Empirical Bayes Dynamic Bayesian Net-

work (EBDBN) method (Chapter 4) and the ABC-MCMC for Networks (ABC-Net)

method (Chapter 5), we apply each to real longitudinal expression data.

6.1 T-Cell Activation Network in Humans

Although several time-series microarray datasets are publicly available in simple

organisms such as Saccharomyces cerevisiae (Spellman et al., 1998; Lee et al., 2004),

Escherichia coli (Ronen et al., 2002), and Drosophila melanogaster (Arbeitman et al.,

2002), few microarray experiments include the necessary level of replication and time

points to effectively infer network structure. One exception arises from a set of exper-

iments conducted by Rangel et al. (2004) to investigate the effect of two treatments (a

phorbal ester called PMA and a calcium ionophore called ionomicin) on human T-cell

response in a lymphoblast cell line. The data are made up of temporal gene expression

measurements using cDNA microarrays on 58 genes over 10 unequally spaced time

points (0, 2, 4, 6, 8, 18, 24, 32, 48, and 72 hours after treatment) on 34 biological repli-
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cates. A second related experiment under identical conditions added ten additional

biological replicates for the same set of genes and time points, yielding a total of 44

biological replicates between the two related experiments. Genes were pre-selected for

modulation following the T-cell activation, meaning that genes with weak expression

or low reproducibility across replicates were removed from the dataset. In addition,

the data were log-transformed and quantile normalized by Rangel et al. (2004). The

pre-processed expression measurements and gene descriptions may be found in the R

package GeneNet (Schäfer et al., 2006) on CRAN (R Development Core Team, 2009)

as well as on the authors’ website (http://public.kgi.edu/~wild/LDS/index.htm).

The longitudinal expression measurements for the first nine genes in the T-cell acti-

vation dataset are displayed in Figure 6.1.

Because the Rangel et al. (2004) data are longitudinal and highly replicated, they

have been used by several authors to assess the performance of inference methods

for gene regulatory networks (Rangel et al., 2004; Beal et al., 2005; Opgen-Rhein

and Strimmer, 2006). We follow suit, and use these data to compare the results of

our proposed Empirical Bayes Dynamic Bayesian Network (EBDBN) method from

Chapter 4 to those of previous established methods. Specifically, we compare the

EBDBN method with and without hidden states (denoted EBDBN(x) and EBDBN(-

), respectively), the Variational Bayes State Space Model (VBSSM) algorithm of Beal

et al. (2005), and the shrinkage-based Vector Autoregressive (VAR) method of Opgen-

Rhein and Strimmer (2007), all described in greater detail in Section 4.7.1. This set

of methods provides an interesting comparison, as the EBDBN(x) and VBSSM are

based on the same model (Equation (2.2)) with different estimation procedures, as are

the EBDBN(-) and VAR models. In this particular example, the ABC-Net method

of Chapter 5 is not included in the comparison. The reason for this is twofold. First,

a network of this size (58 genes, with a total of 582 = 3364 possible gene-to-gene

interactions) is best studied in an exploratory manner, rather than the more detailed

analysis provided by the ABC-Net method. Second, without detailed prior informa-
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Figure 6.1. Expression measurements after pre-processing for the first nine
genes in the T-cell activation data (Rangel et al., 2004): RB1, CCNG1,
TRAF5, CLU, MAPK9, SIVA, CD69, ZNFN1A1, and IL4R. Grey dots
represent the expression values at each time point for each of the 44 bio-
logical replicates, and blue lines are drawn at the median expression value
across replicates for each time point.

tion about specific network edges, these data would incur a substantial computational

burden in the context of the ABC-Net method, both in terms of time and memory.

Before the EBDBN method can be applied to the Rangel et al. (2004) data, we

must determine an appropriate value for the hidden state dimension K. In previous

work, this value was chosen to be K = 9 (Rangel et al., 2004) and K = 14 (Beal

et al., 2005). Recall that the maximum number of nonzero singular values taken from

the decomposition of the block-Hankel matrix H is T − 1, or in this case, 9 (see

Section 4.1). For each of the 44 replicates, we construct Hr, apply the singular value
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decomposition, and plot the singular values (see Figure 6.2). In doing so, we determine

the optimal value for the hidden state dimension to be K = 4. We subsequently apply

the EBDBN(K = 4) and EBDBN(-) methods for 10 different sets of initial values for

hyperparameters ψ, hidden states x1, and gene precisons v. A 99.9% cutoff is used

as a threshold for the z-scores of the edges, and only edges identified in 80% of the

runs are retained for the final network structure. For the VBSSM and VAR methods,

cutoff values of 99.9% for the z-scores and 80% for the local fdr correction are used,

respectively.

For all methods compared here, the effect of each gene-to-gene interaction is de-

termined by the sign of the significant elements of the Θ matrix (see Equations (2.2,

(2.3), and (2.6)). That is, activations are represented by positive elements of Θ, and

repressions by negative elements. The number of edges (positive, negative, and total)

found by each method in the T-cell activation data is displayed in Table 6.1. The

EBDBN method (both with and without hidden states) appears to identify more

edges than the VAR and VBSSM method, although all methods identify a greater

number of activations than repressions. Because the results of the methods under

comparison seem to vary, we also consider their overlap in the four-way Venn dia-

gram in Figure 6.3. We note that only 13 edges are selected by all four methods under

consideration, largely due to the small number (15) of edges identified by the VAR

method. There are 93 edges identified by at least three of the methods, and 371 by at

least two of the methods. Several edges are identified by only a single method; there

are 223, 210 and 185 such uniquely identified edges for the EBDBN(x), EBDBN(-),

and VBSSM, respectively.

It is somewhat surprising that the results of the four methods under comparison

differ so widely, particularly given that the approaches are all based on similar models.

For instance, although the EBDBN(x) and VBSSM methods resemble each other quite

closely with the exception of their respective estimation procedures, over 60% of the

interactions identified by one (64% for the former, 68% for the latter) are not identified

by the other in the T-cell activation data. Because these results differ by such a large
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Table 6.1
Positive, negative, and total edges (and percent of all possible edges)
found for T-cell activation data, by method: the Empirical Bayes Dynamic
Bayesian Network with hidden states (EBDBN(x)), the Empirical Bayes
Dynamic Bayesian Network method without hidden states (EBDBN(-)),
the Variational Bayes State Space Model (VBSSM) of Beal et al. (2005),
and the shrinkage Vector Autoregressive model (VAR) of Opgen-Rhein
and Strimmer (2007).

Method # Positive # Negative Total Edges (%)

EBDBN(x) 435 109 544 (16.2)

EBDBN(-) 338 214 552 (16.4)

VBSSM 233 122 355 (10.6)

VAR 9 6 15 (0.4)

Table 6.2
Description of seven most important regulator genes in the T-cell acti-
vation network, as determined by the consensus of the EBDBN(x) and
VBSSM methods. Genes listed correspond to those in yellow in Figure
6.4.

Number Gene Name Description

7 CD69 CD69 antigen (p60, early T-cell activation antigen)

17 SMN1 Survival of motor neuron 1, telomeric

21 CCNC Cyclin C

28 EGR1 Early growth response 1

38 CASP4 Caspase 4, apoptosis-related cysteine protease

41 GATA4 GATA-binding protein 3

46 IL2RG Interleukin 2 receptor, gamma (severe combined

immunodeficiency)

48 MPO Myeloperoxidase



117

5
22 12

52
13

2

20

43

39

44

8

56 3
54

16

57

40 11 1

30

50

15

33

29

25

18

21

45

42

48

6
37

58
27

38
35

7
46

923 41

28
17

55

31

53

24

32

47

10

34

Figure 6.4. Edges inferred by both the EBDBN(K = 4) and VBSSM
methods for the T-cell activation data (Rangel et al., 2004). Nodes repre-
sent genes, with numbers corresponding to those found in the R package
GeneNet of Schäfer et al. (2006). Blue solid lines represent inhibitory
regulations, red solid lines activatory regulations, and black dotted lines
edges with ambiguous regulation (i.e., disagreement between the EBDBN
and VBSSM methods). Yellow nodes have five or more regulatory in-
teractions with other genes, indicating important regulator genes in the
network topology.
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extent, we focus on the common sub-network identified by both the EBDBN(x) and

VBSSM methods, composed of a total of 120 edges among 51 genes (Figure 6.4).

Of these edges, 26 represent repressions, 84 represent activations, and 10 have an

ambiguous regulatory effect (i.e., the two methods do not agree with respect to the

type of interaction). The structure of this so-called “consensus network” is visualized

using the software application Cytoscape (Shannon et al., 2003), shown in Figure 6.4.

Further focusing on portions of the consensus network shown in Figure 6.4 can

yield additional pertinent information. For example, eight genes (numbered 7, 17,

21, 28, 38, 41, 46, and 48, and colored in yellow in the figure) have a high degree of

connectivity with other genes, with 5 or more outward-directed edges (see Table 6.2 for

descriptions). In other words, the VBSSM and EBDBN provide concurring evidence

that this set of eight genes are important regulator genes in the T-cell activation

network, and could potentially be avenues of interest for future research. In work by

Rangel et al. (2004), the gene FYB (gene 1) is found to occupy a crucial position in
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the T-cell activation network, since it is involved in the highest number of outward

connections. In the consensus network between the EBDBN and VBSSM methods

(Figure 6.4), although it does not figure as prominently, FYB is present and directly

connected to three other genes (genes 17, 33, and 38). In addition, an interleukin

receptor gene, IL-2Rγ (gene 7), is one of the most connected genes, with nine outward

connections and one feedback loop with itself.

A portion of the sub-network found by Beal et al. (2005) representing the inter-

action between two proto-oncogenes of the Jun protein family, Jun-B (gene 54) and

Jun-D (gene 11), is also found in this consensus network (see Figure 6.5). This path-

way is of particular interest, as Jun-B and Jun-D are thought to negatively regulate

cell growth and inhibit programmed cell death, and thus are at the center of mech-

anisms controlling apoptosis and proliferation. Both sub-networks seem to support

this hypothesis, as Jun-B appears to regulate the apopototic gene Caspase-4 (gene

38), and at least indirectly, Caspase-8 (gene 18). Despite their differences, both sub-

networks support a central pathway in which Jun-B activates Caspase-4, which in

turn activates Jun-D. These results agree with the current literature, and suggest an

important role for Jun-B in T-cell activation and tumor promotion (Gurzov et al.,

2008).

6.2 S.O.S. DNA Repair System in Escherichia coli

The S.O.S. DNA repair system in the Escherichia coli bacterium is a well-known

gene network that is responsible for repairing DNA after damage. The full network is

made up of about thirty genes working at the transcriptional level, and the behavior

of genes in the network in the presence of DNA damage has been well characterized

(Ronen et al., 2002). Specifically, under normal conditions a master repressor called

lexA represses the expression of the genes responsible for DNA repair (Figure 6.7).

However, when one of the S.O.S proteins (recA) senses DNA damage by binding to

single-stranded DNA, it becomes activated and provokes the autocleavage of lexA.
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Figure 6.6. The S.O.S. DNA repair system of E. coli. Under normal
conditions, the master repressor lexA represses the expression of the S.O.S.
genes (uvrD, umuD, uvrA, uvrY, ruvA, and polB) responsible for DNA
repair. When DNA damage is detected by the protein recA, it becomes
activated and provokes the autocleavage of lexA. This in turn provokes
the activation of the S.O.S. genes. After DNA damage is repaired, the
level of recA drops, lexA reaccumulates in the cell, and the S.O.S genes
return to their original state.

The subsequent drop in the levels of lexA suspends the repression of the S.O.S. genes,

and these genes become activated. Once DNA damage has been repaired, the level of

recA drops, which allows lexA to reaccumulate in the cell and subsequently repress

the S.O.S. genes. At this point, the cells return to their original state. Although

the network itself is quite small, its simple structure allows the cell to react in very

sophisticated ways to conditions within the cell.

The S.O.S. DNA repair system is a good example to illustrate the utility of the

ABC-Net algorithm, as it is a benchmark dataset in which specific regulatory inter-

actions are well-characterized. The EBDBN method would not typically be applied

to data from small, well-characterized networks such as the S.O.S. DNA repair sys-

tem, as the gene-to-gene interactions are well understood and finding novel testable



121

0 50 100 150 200 250 300

0
50

0
10

00
15

00
20

00

Time

E
xp

re
ss

io
n

SOS DNA Repair System in E. coli

uvrD
lexA
umuDC
recA
uvrA
uvrY
ruvA
polB

Figure 6.7. Data collected by Ronen et al. (2002) on eight genes in the
S.O.S. DNA repair system in Escherichia coli : uvrD, lexA, umuD, recA,
uvrA, uvrY, ruvA, and polB. The expression of these eight genes is mea-
sured at fifty equally spaced time points (every six minutes following ul-
traviolet irradiation of the cells to provoke DNA damage).

interactions is not of interest. However, applying both the EBDBN and the ABC-

Net methods in this context can help illustrate the benefit of using several different

methods in tandem. To this end, we draw on data collected by Ronen et al. (2002),

which focused on a sub-network within the S.O.S. DNA repair system made up of

eight genes: uvrD, lexA, umuD, recA, uvrA, uvrY, ruvA, and polB (Figure 6.7). Us-

ing green fluorescent protein (GFP) reporter plasmids, Ronen et al. (2002) measured

the expression of the eight genes at fifty time points (every six minutes following

ultraviolet irradiation of the cells to provoke DNA damage). The quantity of GFP is

proportional to the quantities of the corresponding S.O.S. proteins, which are in turn

proportional to the corresponding mRNA production rates (Perrin et al., 2003). As

such, it is reasonable to assume that the data of Ronen et al. (2002) directly indicate
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the expression levels of each of the S.O.S. genes. The data are directly available at

the authors’ website (http://www.weizmann.ac.il/mcb/UriAlon).

In addition, the study performed by Ronen et al. (2002) consisted of two different

experiments for each of two different intensities of ultraviolet light (Experiments 1

and 2 at 5 Jm−2, and Experiments 3 and 4 at 20 Jm−2). One recent study by

Charbonnier et al. (2010) found that Experiments 1 and 4 systematically led to poor

results for network inference methods, although nothing should distinguish them from

the other two experiments. As such, we focus the rest of our discussion on the data

collected in Experiment 3, which was measured with the higher level of ultraviolet

light.

Because the gene-to-gene interactions in the S.O.S. DNA repair system are well-

defined and no hidden states are believed to be involved in the network, we apply

the EBDBN method with a hidden state dimension of K = 0, where a 99.9% cutoff

is used as a threshold for the z-scores of the edges. We also apply the ABC-Net

method to these data. As before, we set the Gaussian proposal standard deviation

in Equation (5.2) to σΘ = 0.5, and we ran the algorithm for ten independent chains

of length 1 × 106, with a thinning interval of 50. The VAR(1) simulator (Section

5.1) is used to generate simulated data Y ?, and the prior bounds of π(Θ|G) are set to

(-2,2). We use the Euclidean distance function, where the threshold ε is selected using

the previously described heuristic method (Section 5.2), based on the 1% quantile of

distances based on 5000 random networks. Due to the small size of the network, the

maximum fan-in is constrained to 2 or less (i.e., each gene has a maximum of two

regulators).

The gene-to-gene interactions identified by the EBDBN(-) method are shown in

Figure 6.8, where blue and red solid edges represent “true positives” and “false pos-

tives”, according to the previously described behavior of the S.O.S. network. We use

these terms somewhat loosely, because even for well-understood networks such as the

S.O.S. DNA repair system, the absence of a particular gene-to-gene interaction in the

literature cannot indicate with absolute certainty that such a relationship is absent.
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Figure 6.8. Results for the S.O.S DNA repair system for the EBDBN(-)
and ABC-Net methods. Blue and red solid edges in the network represent
gene-to-gene interactions identified by the EBDBN(-) method that are
“true positives” and “false positives”, according to the known behavior
of genes in the S.O.S. network. Dotted gray lines represent gene-to-gene
interactions supported by the literature that are not identified by the
EBDBN(-) method. Blue-filled densities represent the marginal approx-
imate posterior distributions found through the ABC-Net method. The
feedback loops on the S.O.S. genes (uvrD, uvrY, ruvA, and polB) appear
to flexible edges, while other identified edges exhibit greater rigidity.

Gray dotted lines represent gene-to-gene interactions supported by the literature that

are not identified by the EBDBN(-) method. We also include the marginal approx-

imate posterior distributions for each of these edges, as obtained by the ABC-Net

method. As previously seen in the simulations of Section 5.7, these posterior distri-

butions seem to fall into two categories: flexible edges (the feedback loops on uvrD,

uvrY, ruvA, and polB) and rigid edges (the remaining edges). Edges identified by the



124

 

recA 

lexA 

uvrD umuD uvrA uvrY ruvA polB 

Figure 6.9. Edges exhibiting the highest rigidity in the S.O.S DNA repair
system for the ABC-Net method. Dotted gray lines represent gene-to-gene
interactions supported by the literature. Blue-filled densities represent the
marginal approximate posterior distributions found through the ABC-Net
method. The most rigid edges in the network connect the recA protein
directly to the S.O.S. genes, bypassing the lexA master regulator.

EBDBN(-) with rigid approximate posterior distributions appear to be supported by

substantial evidence, as those parameters are restricted to a smaller range of values

in their posterior distributions. On the other hand, edges associated with flexible

approximate posterior distributions may indeed represent false positives, since those

parameters take on a wider range of values without negatively impacting the prox-

imity of simulated and observed data in the ABC-Net algorithm. In this way, the

distinctive results of the EBDBN and ABC-Net methods yield complementary infor-

mation about specific gene-to-gene interactions, as well as the overall dynamics of a

given biological system.

In addition to comparing the results of the EBDBN(-) and ABC-Net methods, we

also examine the most rigid approximate posterior distributions, as identified by the
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latter method (Figure 6.9). Interestingly, all of the most rigid edges in the S.O.S. DNA

repair system are those directly connecting the recA protein to the other genes in the

network, bypassing the lexA master regulator. This result can be explained by the

one-step time delay inherent in the VAR(1) simulator of the ABC-Net method. More

specifically, when DNA damage in the cell is detected by recA, the abundance of lexA

decreases very rapidly and the remaining S.O.S. genes turn on almost immediately.

However, time-delay models (like the VAR(1) simulator) are only able to identify

gene-to-gene interactions that occur with a one-step time lag. The result of this is

that in the results of the ABC-Net method, a strong link appears to occur directly

between recA and the remaining genes in the network.

Finally, because the dynamics of the S.O.S. DNA repair system are constantly

reacting to conditions within the cell (and thus changing over time), we also use

the ABC-Net method to compare the approximate posterior distributions of gene-

to-gene interactions during the first ten time points and during the last half of the

experiment (Figure 6.10). The former subset makes up the portion of the data where

DNA damage is at its peak, while most of the damage within the cell is repaired

in the latter time interval. In examining the approximate posterior distributions,

we note that for both subsets of data, flexible edges tend to stay flexible, and rigid

edges tend to stay rigid. That is, in general the shape of the approximate posterior

distributions is roughly the same for all edges between the two subsets of time points.

There do appear to be slight differences in the approximate posterior distributions of

edges emanating from the recA protein (column 4 in Figure 6.10). For these edges,

densities associated with later time points appear to be slightly more peaked than

for the earlier time points. In other words, at later time points the edges emanating

from recA become increasingly rigid; biologically, this makes sense, since when DNA

damage is repaired, the level of the recA protein must drop (and stay low) in order

for lexA to reaccumulate and normal cell conditions to resume. After DNA damage

has been repaired within the cell, recA has very little flexibility to interact with the

other genes in the S.O.S. network.



126

0
.0

1
.0

uvrD
0

.0
1

.0
0

.0
1

.0
0

.0
1

.0
0

.0
1

.0
0

.0
1

.0
0

.0
1

.0

−2 0 1 2

0
.0

1
.0

lexA

−2 0 1 2

umuD

−2 0 1 2

recA

−2 0 1 2

uvrA

−2 0 1 2

uvrY

−2 0 1 2

ruvA

−2 0 1 2

polB

u
v
rD

le
x
A

u
m
u
D

re
c
A

u
v
rA

u
v
rY

ru
v
A

−2 0 1 2

p
o
lB

Edge value

E
d
g
e
 d
e
n
si
ty

Approximate Marginal Posterior Distributions

 
Time points 1-10 

 
Time points 26-50 

Figure 6.10. Graphical matrix of the marginal approximate posterior dis-
tributions from the ABC-Net algorithm for every edge in the S.O.S. DNA
repair network, with data split into the first ten time points (light blue
densities) and the last 25 time points (dark blue densities). Each ele-
ment of the graphical matrix corresponds to the same element of ΘSOS,
i.e., the density in the second row and first column corresponds to ΘSOS

21

(uvrD→lexA). The x-axis of each plot represents the values of each pa-
rameter ΘSOS

ij , and the y-axis represents the corresponding density. For
the most part, different portions of the network share similar approximate
posterior distributions, although those for recA are slightly more peaked
at later time points.
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6.3 Neurotrophin Signaling Pathway in Mouse

Although longitudinal studies of gene expression are not yet commonly performed

using sequencing-based technologies, the decreasing cost of next generation sequenc-

ing technology suggests that such studies will likely be undertaken using next genera-

tion sequencing technologies in the near future. To date, no true longitudinal studies

of gene expression based on sequencing technologies (e.g., SAGE and RNA-Seq) are

widely available. However, to illustrate the flexibility and utility of the ABC-Net

algorithm for longitudinal digital gene expression measures, we provide an example

analysis using a series of datasets from the Mouse Atlas of Gene Expression Project

(BC Cancer Agency, 2010).

The Mouse Atlas Project (BC Cancer Agency, 2010) is made up of 202 SAGE

libraries from 198 tissues and various developmental stages in the common house

mouse, mus musculus. We focus on a subset of eight SAGE libraries extracted from

the whole brain, each at a different developmental stage: Theiler stage 20, Theiler

stage 21, Theiler stage 23, Theiler stage 25, post-natal day 7, post-natal day 27, post-

natal day 35, and 12 weeks post-birth. This particular collection of SAGE libraries

was chosen as it represented the largest number of time points for a given tissue

within the Mouse Atlas Project. Note that these data do not represent a true time

series, as different mice were used at each time point, and the eight libraries are from

eight different experiments. Nonetheless, this series of experiments provides a useful

illustration of the extension of the ABC-Net algorithm to count data, and similar

techniques could be employed for true longitudinal sequence-based studies when they

become available.

The eight SAGE libraries under consideration all used wild-type, male mice of

the same strain (C57BL/6J), based on the same SAGE protocol. Each SAGE library

contained between 30,967 and 42,220 unique sequence tags. Data for the eight SAGE

libraries were downloaded from the BC Cancer Agency (2010) website, and the tag

counts at quality 0.95 cut-off were aligned to the annotated transcripts from the
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NCBI Reference Sequence Project (RefSeq) database (National Library of Medicine

and National Center for Biotechnology Information, 2010), found at ftp://ftp.ncbi.

nih.gov/genomes/M_musculus/RNA. Alignment for each of the eight SAGE libraries

was done using the SOAPaligner/soap2 algorithm with default settings in the Short

Oligonucleotide Analysis Project (SOAP) of Li et al. (2008). Counts for each of the

sequence tags were subsequently summed to form a digital expression measure for

each gene. The number of unique genes in each library ranged from 12,021 (Theiler

stage 21) to 14,449 (post-natal day 35) genes.

After summarizing counts at the gene level for each of the eight SAGE libraries,

the data were further filtered in the following manner. Using the Kyoto Encylopedia of

Genes and Genomes (KEGG) database (KEGG PATHWAY Database, 2010), which

consists of a set of manually-drawn pathway graphs representing organism-specific

networks of molecular interactions (Kanehisa et al., 2010, 2006; Kanehisa and Goto,

2000), we identified a smaller subset of genes for the task of network inference. In

particular, we focused our attention on a gene network in the nervous system of

the mouse involving the differentiation, development, and survival of neural cells,

known as the neurotrophin signalling pathway (network identifier: mmu04722, see

Figure 6.11). According to the KEGG PATHWAY Database (2010), the 144 genes

within the neurotrophin pathway play an important role in neural development and

higher-order activities like learning and memory. Because the eight SAGE libraries

under consideration were extracted from the whole brain, this particular network is

of interest as it plays an important role in the nervous system.

Only 16 of the 144 genes involved in the neurotrophin signalling pathway were

mapped to by at least one sequence tag in all eight of the SAGE libraries. For this

reason, we further focused on a sub-network of these 16 genes within the neurotrophin

signalling pathway (see Table 6.3). We subsequently applied the ABC-Net method to

these “longitudinal” counts using the extension described in Section 5.6. As before,

we set the Gaussian proposal standard deviation in Equation (5.2) to σΘ = 0.5 and the

prior bounds of π(Θ|G) to (-2,2). We ran the ABC-Net algorithm for ten independent
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Figure 6.11. The neurotrophin signalling pathway, as described in the
KEGG PATHWAY Database (2010). Boxes indicate gene products (e.g.,
proteins and RNA), small circles represent other molecules, arrows rep-
resent molecular interactions or relations, dotted lines indicate indirect
effects, and solid lines represent bindings or associations. Phosphory-
lation is represented by +p, and ubiquitination by u+. For additional
information, see the KEGG PATHWAY Database (2010).

chains of length 1× 106, using a thinning interval of 50, a maximum fan-in of 5 (i.e.,

each gene has a maximum of 5 regulators), and the Euclidean distance function. At

each iteration five independent datasets Y ?(1), . . . , Y ?(5) were simulated for a proposed

network, and the distances were averaged to yield a single distance for each Θ?. The

threshold ε was selected using the heuristic method of Section 5.2, based on the 1%
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Table 6.3
Names and descriptions of a sub-network of sixteen genes in the neu-
rotrophin signalling pathway (KEGG PATHWAY Database, 2010).

Gene Description

Sos1 Son of sevenless homolog 1

Nras Neuroblastoma ras oncogene

Raf1 V-raf-leukemia viral oncogene 1

Mapk3 Mitogen-activated protein kinase 3

Atf4 Activating transcription factor 4

Kidins220 Kinase D-interacting substrate 220

Calm1 Calmodulin 1

Calm3 Calmodulin 3

Rac1 RAS-related C3 botulinum substrate 1

Map3k1 Mitogen-activated protein kinase kinase kinase 1

Mapk10 Mitogen-activated protein kinase 10

Bax BCL2-associated X protein

Prdm4 PR domain containing 4

Maged1 Melanoma antigen, family D, 1

Ywhaq Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase acti-

vation protein, theta polypeptide

Sort1 Sortilin 1

quantile of averaged distances of five simulated datasets for each of 5000 random

networks. Note that the EBDBN algorithm could not be applied to this set of data,

as gene expression is measured by counts and not continuous values.

The results of the ABC-Net algorithm can be seen by examining the marginal

approximate posterior distributions shown in Figure 6.12. It can be seen that the

majority of the edges in the network display flexible (diffuse) posterior distributions.
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Figure 6.12. Graphical matrix of the marginal approximate posterior dis-
tributions for every potential edge in the neurotrophin signalling pathway.
Each element of the graphical matrix corresponds to the same element of
the adjacency matrix for the neurotrophin pathway, i.e., the density in
the second row and first column corresponds to Sos1→Nras. The x-axis
of each plot represents the values of each parameter, and the y-axis rep-
resents the corresponding density.

However, it appears that one gene, Calm1, plays a central role in the network, both

in terms of inward and outward pointing edges. In particular, Calm3, Bax, Maged1,

and Ywhaq all appear to be strong activators of Calm1 (with fairly rigid, predom-

inantly positive approximate posterior distributions), while Calm1 itself appears to

be a moderately strong repressor of the other genes in the sub-network. One of the

most prominent features of these results is the very strong, positive feedback loop in
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which Calm1 participates (Calm1→Calm1). This feedback loop displays a very rigid

edge that is concentrated at the upper bound of the prior distribution support.

The discrepancies between these results and the known structure of the neu-

rotrophin signalling pathway (Figure 6.11) may be explained by several factors. First,

although the data in this example were chosen to be as similar as possible (e.g., mouse

strain and SAGE protocol), they are in fact heterogeneous. Because the eight experi-

ments were conducted individually on different mice at different developmental stages,

the data are not truly longitudinal. In addition, the time points used in the analysis

are unevenly spaced, and represent a wide spectrum of developmental stages, where

some are collected at pre-natal stages (in embryos) and others after birth. This also

affects the assumption of time-invariant gene-to-gene interactions, since it is unlikely

that the behavior of the neurotrophin network remains constant through such a wide

spectrum of unevenly spaced developmental stages. Finally, one additional consid-

eration concerns the differences in magnitudes among the sixteen genes considered

(Table 6.3). Calm1 displays both the largest magnitude and range of digital expres-

sion measures over the eight time points (varying between a count of 131 to 633 over

the eight time points). For the most part, the other genes have counts of less than

100 over all time points, with 13 of the 16 genes displaying counts of 20 or less across

all time points. This large heterogeneity may explain in part the strong influence of

Calm1 on the remaining genes in the network (Figure 6.11), and may suggest that

some sort of normalization is required.
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7. SUMMARY AND FUTURE WORK

Reverse engineering the structure of gene regulatory networks from longitudinal ex-

pression data is an intrinsically difficult task, given the complexity of network archi-

tecture, the large number of potential gene-to-gene interactions in typical networks,

and the small number of replicates and time points available in real data. In this

dissertation, two different approaches are proposed that are based in approximate

Bayesian methodology. Both make use of directed, graphical models of stochastic

processes, known as dynamic Bayesian networks, to infer information about underly-

ing gene regulatory networks from time-series gene expression data. In addition, both

approaches explicitly model the joint behavior of a set of genes over time, thus main-

taining the correlation structure of gene expression between adjacent time points,

rather than examining time points independently. Although the two approaches are

not directly comparable, they are complementary to one another and illustrate the

need for a variety of network inference methods adapted for different contexts.

The first proposed approach, known as the Empirical Bayes Dynamic Bayesian

Network (EBDBN) method (Rau et al., 2010), is based on an empirical Bayes esti-

mation procedure using a linear Gaussian state space model. This approach was mo-

tivated by that of Beal et al. (2005), where variational Bayesian learning was used to

estimate model parameters. The novelty of the EBDBN method lies in its efficient em-

pirical Bayes estimation of hyperparameters within a hierarchial Bayesian framework

and the resulting improvement in computational time. Model selection is performed

using the singular value decomposition of the block-Hankel matrix, and hidden states

and hyperparameters are iteratively estimated until convergence is attained. Z-scores

based on the posterior distributions of network parameters are used to identify the

presence or absence of edges in moderately sized networks. Due to its restrictive dis-



134

tributional assumptions, the EBDBN method is best suited to exploratory analyses

of gene regulatory networks where little a priori biological information is known.

In the second approach, known as the ABC-MCMC for Networks (ABC-Net) ap-

proach, we apply a simulation-based Bayesian method to conduct a detailed analysis

of small, well-characterized pathways under fewer model assumptions. Using approx-

imate Bayesian computation and a first-order vector autoregressive model, the ABC-

Net approach enables Bayesian inference for complex, high-dimensional networks for

which the likelihood is difficult to calculate. By sampling from the approximate pos-

terior distributions of parameters involved in gene regulatory networks, this method

yields a wealth of information about the structure and inferability of complicated

biological systems, particularly with respect to the flexibility and rigidity of network

edges. In addition, the ABC-Net method has the flexibility to incorporate a priori

biological knowledge into the prior distribution structure, as well as to incorporate

longitudinal counts of gene expression (e.g., SAGE or RNA-Seq data). For the time

being, the computing time required for the ABC-Net limits its application to small

networks. However, as computing power continues to improve in terms of speed and

memory, it is anticipated that the method will progressively be able to handle larger

networks.

Throughout this work, we made use of extensive simulation studies to evalu-

ate the performance of our two proposed approaches under different settings and in

comparison to other published network inference methods. However, designing and

implementing simulated data in this context is not always straightforward. We sug-

gest the use of both “model-based” and “data-based’ simulations when comparing

the results of several methods. Model-based simulations, though an over-simplified

version of the complexities of gene regulatory networks, offer greater flexibility in the

choice of network parameters (e.g., number of genes, number of hidden states, per-

centage of edges present, amount of noise, etc.). More realistic data-based simulations

using ordinary differential equations may better represent the complicated dynamics

of gene regulatory networks. However, in general they are made up of much smaller
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datasets than would typically be used for network inference. The development of a

set of realistic, time-course benchmark datasets for comparisons among methods is a

necessary addition to the growing collection of network inference techniques.

Both approaches proposed in this work do share some limitations. In particular,

both techniques make the assumption of linear, time-invariant relationships among

genes in a network. In addition, to avoid an explosion in model complexity, both also

deal solely with first-order dynamics (i.e., the expression of genes at time t depends

only on those at time t−1). Although these simplifications can be a good approxima-

tion to the general nature of complicated biological systems, more realistic models of

gene regulatory interactions would undoubtedly capture complex relationships, such

as nonlinear, time-variant, or higher-order interactions, more effectively.

7.1 Future Work

One of the major stumbling blocks for reverse engineering gene regulatory net-

works is highlighted by the fact that different methods, even those that are very

similar to one another, often yield very different results for the same data. As one

example, in the analysis of the T-cell activation data in Section 6.1, in the results

of the EBDBN and VBSSM methods (which resemble each other quite closely), over

60% of the edges identified by each one are not identified by the other. In this work,

we introduced the concept of a “consensus network”, that is, one in which several dif-

ferent network inference methods are in agreement on the significance of a particular

edge. Although somewhat unorthodox from a frequentist statistical point of view, this

type of compromise (also referred to as “model averaging”) may be more meaningful

than applying a single method for network inference. However, more sophisticated

statistical methods for combining results from different methods are needed.

Further work is also required to fully examine the components of the ABC-Net

algorithm. In this work, we propose new network structures based on the applica-

tion of one of three basic moves (add, delete, or reverse an edge). However, more
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elaborate proposal schemes are possible, and may more effectively explore the ap-

proximate posterior distributions. Alternative data simulators must be proposed and

explored, in addition to appropriate techniques to identify the optimal data simulator

to be used for real data. Further work is also required on the interpretation of the

marginal approximate posterior distributions. For instance, rather than relying solely

on qualitative examinations of these posterior distributions, a hierarchical prior could

be defined on the network adjacency G, and a local Bayes factor could be used to ob-

tain a numerical assessment of the evidence for a particular gene-to-gene interaction.

Finally, due to its computational burden, the ABC-Net algorithm would benefit from

optimized and parallelized programs to best exploit computational resources.

The ability of the ABC-Net method to analyze time-series digital gene expression

measures (e.g., RNA-Seq data) is particularly promising, as illustrated by the analysis

in Section 6.3. In that example, we used an autoregressive simulator for Poisson dis-

tribution rates, and a Euclidean distance function to compare observed and simulated

data. Additional work is required to determine whether other techniques for simu-

lating time-series count data are better suited to gene expression data. In addition,

because the data are non-continuous, it is likely that other distance functions are bet-

ter adapted to compare simulated and observed data. Keeping these considerations

in mind, simulation studies are required to evaluate the performance of this exten-

sion of the ABC-Net algorithm under a variety of simulation settings. By adapting

the ABC-Net approach to forthcoming longitudinal sequence-based measures of gene

expression, it will be well-poised at the forefront of methods to reverse engineer gene

regulatory networks in the coming years.

7.2 Conclusions

This research demonstrates the applicability of an approximate Bayesian frame-

work to the task of reverse engineering gene regulatory networks. Specifically, there

are three major statistical and bioinformatic contributions from this work. First,
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a novel empirical Bayes estimation procedure for linear state space models, which

enables efficient identification of gene-to-gene interactions in moderately sized gene

regulatory networks, was proposed. Second, an R package to implement this approach

was made publicly available. Third, a novel application of approximate Bayesian com-

putation methods to the inference of gene regulatory networks was proposed. These

varied contributions highlight the advantage of developing a variety of network infer-

ence methods to provide greater insight into the complicated interactions occurring

among genes in real biological systems.
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