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A toi, sans qui tout cela ne vaudrait rien.



- Would you tell me please, which way I ought to go from here ?

- That depends a good deal on where you want to get to, said the Cat.

- I don’t much care where..., said Alice.

- Then it doesn’t matter which way you go, said the Cat.

- ...50 long as I get somewhere... Alice added as an explanation.

- Oh, you’re sure to do that, said the Cat, if only you walk long enough.

Lewis Carroll, Alice’s Adventures in Wonderland.
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Introduction

As for most mathematical texts, the organization of this thesis does not reflect the
fundamentally anarchic process of research. It is written in such a way that one can read
it from the beginning to the end, with all the arguments and details coming up at the
suitable logical moment for the reader to be convinced. This approach though coherent
and rigorous is not always the best way to help the reader in his understanding.

In this introduction, I would like to present the main results of this work as they
showed up all along the last three years, with emphasis on motivations and informal
logical links. I hope that will provide a good entrance point into the thesis.

Take an abstract smooth compact manifold M, which admits a hyperbolic structure My, that is, a
metric of constant sectional curvature —1. My can be seen as the quotient H/Ty in the Beltrami
model of the hyperbolic space: the space H is the unit ball 25 in R™ C RP" with the distance
between two distinct points x and y being defined by

1
d(z,y) = 3 logla, b, z, y], (1)

where a and b are the two intersection points of the line (xy) with the boundary Qg of Qg (see
figure 1); the full group of isometries of H is the group PO(n, 1) and Ty is a discrete subgroup of
it. The geodesics on M, are just the projections of the lines intersecting €.

It is sometimes possible to deform continuously and in a non-trivial way the group I'g into discrete
groups I'y < PGL(n + 1,R). In other words the representation I'g of the fundamental group of M
in PO(n,1) is deformed into representations I'y in PGL(n + 1,R); continuity is considered with
respect to the compact-open topology, and by non-trivial one means that I'; is not a subgroup of
some conjugate of PO(n,1). A theorem of Koszul [46] affirms that, at least for small ¢, there exist
corresponding deformations of the ball 2y into bounded convex sets €2; C R™ such that I'; still acts
on €; the quotient My = Q;/T'; is a convex projective structure on M.

In full generality, a convex projective structure is a pair (2,T") consisting of a convex proper open
subset Q) of RP™ and a representation of 71 (M) as a discrete group I' < PGL(n + 1,R), such that
I acts on Q and Q/T is diffeomorphic to M. Two such structures /T and '/T” are equivalent
if the quotients are equivalent as projective manifolds: there is a projective transformation v such
that v.Q = Q' and I" = ATy~ L.

The deformation that was just considered is thus a deformation of the hyperbolic structure M
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Figure 1: The Beltrami-Hilbert distance

into non-equivalent convex projective ones M;. Formula (1) defines a metric on each €2, called the
Hilbert metric of £2;, whose geodesics are still the lines; since the metric is defined by a cross-ratio,
it is projectively invariant and thus gives a metric on each M;. The non-triviality of the deformation
implies that the manifold M; is not isometric to M.

The existence of such deformations was a long standing question. The first examples of non-
hyperbolic strictly convex projective manifolds were given by Kac and Vinberg in 1967 [41], and
explicit deformations of hyperbolic structures were constructed in any dimension in 1984 by John-
son and Millson [40]. A major paper in this story is certainly [33]. Goldman provides there an acute
study of convex projective compact surfaces. Among other things, he shows that the set G(3,) of
all convex projective structures on the surface ¥, of genus g > 2, considered up to equivalence,
is a smooth manifold diffeomorphic to R'%9=16, The space G (¥4) contains the Teichmiiller space
T (34) of non-equivalent hyperbolic structures as a submanifold of dimension 6g — 6, hence proving
that convex projective structures are much more general than hyperbolic ones. In fact, Choi and
Goldman [20] went further: they showed that G(X,) was exactly the connected component of 7(3,)
in the set of faithful and discrete representations of the fundamental group m1(X,) in PGL(3,R),
up to conjugation. This study was extended by the same authors to 2-orbifolds [21].

The general question about these convex projective deformations of hyperbolic structures is: which
properties of hyperbolic manifolds stay true after deformation, which ones are lost 7 In particular,
do some of them characterize hyperbolic structures among convex projective ones ? These could
be metric properties, geometric properties, group properties... For example, after deformation,
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the Hilbert metric is not a Riemannian metric anymore, it is only Finslerian: instead of having
a scalar product on each tangent space T,{), we have a norm F(z,.). On the other side, the
following fundamental result implies in particular that some amount of hyperbolicity remains after
deformation of a hyperbolic manifold.

Theorem (Benoist, [7]). Let M = Q/T be a convex projective compact manifold. The following
propositions are equivalent:

o O is strictly convex;
o the boundary 0 of Q is C1;
e the space (2, dq) is Gromov-hyperbolic;

e I' is Gromov-hyperbolic.

In this thesis, I am interested in dynamical properties of the geodesic flow of the Hilbert metric,
whose study was initiated by Yves Benoist in [7]. The geodesic flow ¢! of the Hilbert metric on a
convex projective manifold M is defined on the homogeneous tangent bundle HM = TM ~ {0} /R.:
given a pair w = (z, [£]) consisting of a point € M and a direction [£] € H, M, follow the geodesic
leaving x in the direction [§] during the time ¢. On HS), the picture is easy to see: one follows the
lines at unit speed...

Then how does the dynamics of the geodesic flow of the metric change when the structure My is
deformed into M; ? Yves Benoist proved in [7] that it is still an Anosov flow, and the question I
was first asked to answer was: does its topological entropy change ?

Topological entropy is a major invariant in the theory of dynamical systems which roughly speaking
measures how the system separates the points, how much it is chaotic. (See section 1.6 for the formal
definition.) An answer is provided by the following

Theorem 1. Let M = Q/T be a strictly convex projective compact manifold of dimension n. Its
topological entropy hiop satisfies the inequality

htop < (n - 1)7
with equality if and only if M is Riemannian hyperbolic.

n—1 is the topological entropy of the hyperbolic geodesic flow, so this theorem asserts in particular
that a non-trivial deformation of a hyperbolic structure makes the topological entropy decrease.
This is a surprising fact when one thinks of the famous result of Besson, Courtois and Gallot
([12, 13]) which says that, if one makes vary the curvature of My without changing the volume, the
topological entropy has to increase. I did not find any satisfying explanation for this phenomenon :
is there some volume involved that would increase during the deformation ? is there a renormal-
ization of the geometries that would make the entropy stay constant, or increase ?

I then turned to look at how the entropy could vary: given the hyperbolic structure My, can
we make the topological entropy decrease as much as we want by deforming M, into the convex
projective world 7 For instance, consider the space G(X,) defined above, of all convex projective
structures on the surface X, up to equivalence. It is not difficult to see that the entropy function
hiop : G(24) — (0,1] is a continuous map (section 5.4); its image is then a sub-interval of (0, 1],
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and the question is: is it surjective ? I first hoped to understand compactifications of G(2,) and
to interpretate boundary points, with the assumption that the infimum should be attained on the
boundary of G(3,). I did not dig deep enough to know if it was a good intuition. Very recently, Xin
Nie [57] showed how to make the entropy decrease to 0 in the Kac-Vinberg examples, in dimension
2, 3 and 4.

At the very moment I was wandering within these considerations, Ludovic Marquis was beginning
the study of convex projective manifolds of finite volume ([55, 53]). I thus thought about extending
theorem 1 to finite volume manifolds.

I then had to look back at the proof of theorem 1. The fundamental tools I used for the inequality
can be summarized by the formula

htOP = h,uBM < / X+ dppnr. (2)
HM

Explaining this formula will shed some light on the problems I had to face with.

Given an invariant probability measure p of a dynamical system, one can define the entropy h,, of
this measure. As topological entropy, this is an indicator of the complexity of the system, but from
a measure point of view: “sizes” are considered with respect to p and not with respect to a certain
distance d. (See section 4.1.2 for formal definitions.)

The variational principle makes a link between measure-theoretic and topological entropies: it as-
serts that topological entropy is the supremum of the entropies of all invariant probability measures
of the system: hyop = sup, hy,. A natural question is to know if there exists some measure that
achieves this maximum.

The measure ppyr appearing in equation (2) is the unique measure of maximal entropy of the
geodesic flow on HM. BM stands for Bowen and Margulis who gave two independent construc-
tions of it ([15, 16], [50, 51]), which is now known as the Bowen-Margulis measure. It is defined
for geodesic flows of compact Riemannian manifolds of negative curvature, or more generally for
topologically mixing Anosov flows [45], and is in any case the unique measure of maximal entropy.

The inequality
hy < / x* dp
w

is the general Ruelle inequality [68], which is valid for any invariant probability measure p of a C*
flow on a compact manifold W. In this formula, xT is the sum of positive Lyapunov exponents,
which is equal p-almost everywhere to the asymptotic expansion by ¢! of volumes in unstable
manifolds: )
+_ t
X" = tilgrnoc n log | det de*|.

Pesin [63] proved that equality occurs if p is absolutely continuous, and Ledrappier and Young
[47] proved that equality occurs if and only if 1 has absolutely continuous conditional measures on
unstable manifolds. This last statement is used to prove the equality case in theorem 1: indeed,
Benoist had already observed in [7] that there could not be an absolutely continuous invariant
measure unless the structure was hyperbolic.



The main task was then to write down such an equation for some noncompact convex projective
manifolds.

Topological entropy has a natural generalization to dynamical systems in noncompact spaces, pro-
posed by Bowen [17], and for which Handel and Kitchens [37] proved a variational principle under
very general assumptions.

The Bowen-Margulis measure has also a generalization for noncompact negatively curved Rieman-
nian manifolds, which is based on Sullivan’s construction [70] for hyperbolic spaces. It makes use of
Patterson-Sullivan measures, which are measures defined geometrically on the boundary at infinity
of the universal cover. A lot of attention has been paid to these measures, that provide bridges
between geometry and dynamics. Roblin’s version of Hopf-Tsuji-Sullivan theorem (theorem 1.7 in
[65]) is the most achieved version of what is known about them (see theorem 4.2.4).

All of this makes sense in the context of Hilbert geometries, at least when the geometry exhibits
some hyperbolic behaviour. In this thesis, this means the Hilbert geometry is defined by a strictly
convex set with C! boundary; for example, it includes all the Hilbert geometries which are Gromov-
hyperbolic (see sections 1.1.3 and 1.1.4).

If the Bowen-Margulis measure can always be defined on H M, its behaviour and properties are not
always easy to determine. In [65], Roblin showed that lots of dynamical results could be derived
from the only fact that the Bowen-Margulis measure is finite. Obviously, equation (2) could not
make sense in the case )/ is not finite. In the context of pinched negatively curved manifolds, Otal
and Peigné [59] proved that, under this finiteness hypothesis, upys was indeed the only measure of
maximal entropy, hence generalizing what was known for compact quotients. In fact, they proved
an even stronger result:

Theorem (Otal-Peigné [59]). Let X be a simply connected Riemannian manifold of pinched nega-
tive curvature, and M = X /T any quotient manifold, where T is a discrete subgroup of isometries
of X. Then

o the topological entropy hiop of the geodesic flow on HM satisfies hyop = Or;

e if there is some probability Bowen-Margulis measure ppys, then it is the unique measure of
mazimal entropy; otherwise, there is no measure of mazimal entropy.

Here dr denotes the critical exponent of the group I' acting on X, which is closely related to
Patterson-Sullivan measures : 1
or = limsup — log Nr (o, R),
R—+o0 R
where Nr(o, R) is the number of points of the orbit I'.o of a point 0 in X under T in the metric ball
of radius R in X. The equality hso, = or was already known by Manning [49] for compact quotients.

In chapter 5, I prove the following version of this theorem for quotients of Hilbert geometries :

Theorem 2 (Section 5.1). Let M = Q/T be the quotient manifold of a strictly conver set 2 with C*
boundary. Assume there exists a probability Bowen-Margulis measure pupp on HM. If the geodesic
flow has no zero Lyapunov exponent on the nonwandering set, then upyr is the unique measure of
maximal entropy and

htop = h’MBM = or.
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The proof of this result is inspired though simplified from the one of [59], which is itself based
on technics developed around 1980 in the study of non-uniformly hyperbolic systems; the already
mentioned paper [47] of Ledrappier and Young is one of the most famous illustrations of these
technics. By adapting them to Hilbert geometries, Pesin-Ruelle inequality and its case of equality
appeared then as (almost) direct consequences in the case of Gromov-hyperbolic Hilbert geometries :

Theorem 3 (Section 5.2). Let (Q,dq) be a Gromouv-hyperbolic Hilbert geometry and M = Q/I" a
quotient manifold. For any !-invariant probability measure m, we have

hy </X+ dm,

with equality if and only if m has absolutely continuous conditional measures on unstable manifolds.

Here is time to make a break to reveal the point of view, kept hidden until now, that allowed me to
prove theorem 1 and to extend the above mentioned technics. This point of view is the one Patrick
Foulon developed in [31] to study second-order differential equations. Geodesic flows of usual regular
Finsler metrics are special cases where Foulon’s dynamical formalism can be applied. In section
2.1, T extend this formalism in the context of Hilbert geometries defined by (strictly) convex sets
with C! boundary; the flatness of the geometries is crucial here to deal with less regular metrics.
In particular, it allows me to define a parallel transport along geodesics that indeed contains all
the informations about the asymptotic dynamics along this geodesic. For example, the Anosov
property for the geodesic flow on compact quotients, proved by Benoist, can be seen as a direct
consequence of this observation.

A striking and crucial fact is that this parallel transport is in general not an isometry, and that is
what makes the geodesic flow have a different behaviour than in Riemannian spaces. In particular,
the sum x* of positive Lyapunov exponents can be expressed (along a regular orbit) as

xT=n-1)+n,

where !
— N - t
n= ti}glm . log | det T"|
represents the effect of the parallel transport 7% on volumes. Theorem 1 now becomes an easy
corollary of this and equation (2): we get

htopg(n_l)‘f'/ nd/lBMv
HM

and / 1 duppy = 0 for simple reasons of symmetry (see the proof of proposition 5.3.1).
HM

While working on theorem 1, I had noticed that one could read the Lyapunov exponents of a given
geodesic on the shape of the boundary 92 of Q at the endpoint of the geodesic (see proposition
5.4 in [25]). Chapter 3 is dedicated to generalize this remark to any Hilbert geometry defined by
a strictly convex set with C!' boundary. It relates Lyapunov exponents, parallel transport and the
shape of the boundary 0f2.

As a consequence of that, I show in section 3.5 how Lyapunov manifolds tangent to the various
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subspaces in Lyapunov-Osedelets decomposition can be easily defined. The flatness of the geometry
appears to be essential in this construction, so I do not know if a similar thing could be expected
in the case of Riemannian manifolds of negative curvature, or for general Anosov flows.

At the same time I was considering these general questions, I was also looking for some specific
quotients theorem 2 could be applied to.

The only examples that were available then were the finite volume surfaces studied by Ludovic
Marquis in [55]. For what I was concerned with, the important fact was that such a surface
could be decomposed into a compact part and a finite number of cusps, whose geometry was well
understood. In fact, one can easily see from [55] that the Hilbert metric in a cusp is bi-Lipschitz
equivalent to a Riemannian hyperbolic metric. This simple observation suffices to prove that the
geodesic flow is uniformly hyperbolic, hence has no zero Lyapunov exponent, and to adapt proofs
used in hyperbolic geometry to get the finiteness of the Bowen-Margulis measure. The proof of

upn = 0 just comes from the symmetry

theorem 1 then readily applies to this situation: / nd

of the Bowen-Margulis measure, which is a very general fact; as for the equality case, Benoist’s
argument in [7] still gives that there is no invariant absolutely continuous measure, unless the
structure is hyperbolic. Then we get

Theorem 4 (Theorem 5.3.6). Let M = Q/T" be a surface of finite volume. Then
htop < 13
with equality if and only if M is Riemannian hyperbolic.

The last arguments convinced me that the crucial property was the decomposition of the manifold
into a compact part and a controllable part, which was enough to extend the methods used in hy-
perbolic geometry. Since essentially nothing more than Marquis’ results was known yet about the
geometry of noncompact quotients, I turned my mind to hyperbolic geometry, looking for possible
extensions to higher dimensions and more general quotients.

In hyperbolic geometry, there is a natural generalization of finite volume manifolds, which are
geometrically finite manifolds. In those manifolds, the convex core, which is known to carry the
essential part of the dynamics, has finite volume. Then, together with Ludovic Marquis [26], we
began to investigate the notion of geometrically finite quotients of Hilbert geometries.

Let us remark that, if this notion of geometrical finiteness has become classical now, it was not
the case until Bowditch [14] clearly stated several equivalent definitions of it. In the context of a
strictly convex set with C! boundary, the characterization by the limit set seemed to be a good
point of departure, and we adopted it; see definition 1.4.3. The study of such quotients is still on
progress. The only general result we were able to prove at the moment is the following

Theorem 5 ([26] and theorem 1.4.8). Let M = Q/T" be a geometrically finite manifold. Then the
convex core of M can be decomposed as a compact part and o finite number of cusps.

But this is not enough to make all the things work, especially about the dynamics, because some
of the technics failed without any geometric control in the cuspidal parts of the manifolds. We
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Figure 2: A geometrically finite surface

thought at some moment to have proved that cusps had essentially the same geometry as in hyper-
bolic manifolds, but there was an important mistake in our approach. In this thesis, I provide a
description of what occurs in dimension 2, which is based on Marquis’ work [55]. The main results
about dynamics on geometrically finite surfaces are summarized in the following

Theorem 6. Let M = Q/T" be a geometrically finite surface. Then

e the geodesic flow of the Hilbert metric is uniformly hyperbolic on the nonwandering set (the-
orem 2.5.2); in particular, it has no zero Lyapunov exponent;

e there exists a finite Bowen-Margulis measure (Section 4.3).

This shows that geometrically finite surfaces satisfy the hypotheses of theorem 2. The technics I
use to study these noncompact surfaces are classical and only depend on the understanding of the
asymptotic geometry of the cusps. For example, these technics work automatically for the only
available examples of finite volume manifolds of higher dimensions that were constructed by Mar-
quis in [54].

In fact, this control of the geometry in the cusps was already shown to be important in the context
of negatively-curved Riemannian manifolds. [27] is a good example of what can happen: in this
article, Dal’bo, Otal and Peigné are able, among other things, to construct geometrically finite
manifolds of pinched negative curvature whose Bowen-Margulis measure is infinite, and even not
ergodic. In [28], Dal’bo, Peigné, Picaud and Sambusetti show that this asymptotic geometry also
has a significant effect on volume entropy. The volume entropy h,, of a Riemannian manifold
(M, g) measures the asymptotic exponential growth of volume of metric balls in the universal cover

M:

hyot = limsup log volyB(o, R),
R—+o00
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where B(o, R) is the metric ball of radius R in M about an arbitrary point o.

If M is compact and negatively-curved, Manning [49] proved volume and topological entropies
coincide; its proof extends without difficulty to Hilbert geometry (proposition 1.6.2). But this
becomes false for finite volume manifolds, and depends heavily on the geometry of the cusps:

Theorem (Dal’bo, Peigné, Picaud, Sambusetti [28]).

o Let M be a negatively-curved Riemannian manifold of finite volume. If M is asymptotically
1/4-pinched, then hyor = hiop.

e For any € > 0, there exists a finite volume (1/4 + €)-pinched manifold such that hiop < Ryl

In Hilbert geometry, I guess we cannot build such counter-examples. Once again, this depends on
our understanding of the cusps. As it could be expected, nothing like this can happen for surfaces:

Theorem 7 (Section 4.4). Let M = Q/T" be a surface of finite volume. Then
hvol = htop = 5I‘-
All of this admits the following corollaries about volume entropy of some Hilbert geometries.

Corollary 8 (Corollary 5.3.5). Let Q C RP™ be a strictly convex proper open set which admits a
compact quotient. Then its volume entropy h,o satisfies

hyot <1 —1,
with equality if and only if Q is an ellipsoid.

Corollary 9 (Corollary 5.3.7). Consider the Hilbert geometry defined by a strictly convex proper
open subset 0 of RP? with C! boundary which admits a quotient of finite volume. Then its volume
entropy hyo satisfies

hvol < L

with equality if and only if Q0 is an ellipse.

It is conjectured that the volume entropy of an arbitrary Hilbert geometry is always smaller than
n — 1. This conjecture was shown to be true in dimension 2 by Berck, Bernig and Vernicos [10],
who also proved that h,o = n — 1 if the convex set had C™!' boundary. The last two corollaries
confirm this conjecture for some specific classes of Hilbert geometries, providing also an infinite
class of examples whose volume entropy is strictly between 0 and n — 1.

Let me end this introduction by describing the contents of each chapter.

Chapter 1 first provides a short introduction to Hilbert geometries and recalls some already known
notions and results. Quotients of Hilbert geometries are studied in sections 1.3 and 1.4. Some of
the new geometrical results inspired from [26] are given here: section 1.3 describes the parabolic
subgroups and the geometry of cusps; section 1.4.3 defines geometrically finite manifolds and their
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convex core is decomposed in theorem 1.4.8; we focus on surfaces in section 1.4.4.

Chapter 2 begins the study of the geodesic flow of Hilbert metrics. The first thing is to extend
Foulon’s dynamical formalism. We then show that it provides a good tool in Hilbert geometries; the
fundamental results are propositions 2.4.1 and 2.4.5. Section 2.5 ends this chapter by proving the
uniform hyperbolicity of the geodesic flow on compact quotients and on geometrically finite surfaces.

In chapter 3, we get interested in Lyapunov exponents of the geodesic flow. We show in particular
that Oseledets’ theorem can be applied to any quotient manifold. In section 3.4, we explain the
links between parallel transport, Lyapunov exponents and the shape of the boundary at infinity.
For this, we need to introduce a new regularity property of convex functions. Some time is spent
on this property, that we especially show to be projectively invariant and thus adapted to our
setting. As a consequence, we can easily define in section 3.5 Lyapunov manifolds tangent to the
Lyapunov-Oseledets filtrations.

Chapter 4 studies the properties of Patterson-Sullivan and Bowen-Margulis measures. We first ex-
plain why some general theorems known for Riemannian manifolds of negative curvature, especially
theorem 4.2.4 remain true in our context. Section 4.3 proves that any Bowen-Margulis measure of a
geometrically finite surface is finite. In the last section, we show that critical exponent and volume
entropy coincide on a surface of finite volume.

In the last chapter, we first recall how to construct measurable partitions which allow to effectively
compute entropies and one applies it to get theorem 2. Ruelle inequality and its case of equality
are then extended to some noncompact quotients. As a consequence, one gets theorems 1 and 4
and their corollaries about volume entropy.



Présentation

Comme c’est le cas pour la plupart des textes mathématiques, l'organisation de cette
these ne reflete pas le processus fondamentalement anarchique de la recherche. Elle est
pensée de telle facon qu’on puisse la lire linéairement d’un bout a l'autre, les divers
arguments étant donnés aux moments les plus “logiques”. Cette approche, bien que
cohérente et rigoureuse, n’est cependant pas toujours la plus adaptée a la compréhension
du lecteur.

Dans cette introduction, j’aimerais présenter les résultats de mon travail tels qu’ils sont
apparus au cours de ces trois ans, en insistant sur les motivations et les liens informels
qui les unissent. J’espere que cela permettra d’entrer plus facilement dans la these.

Soit M une variété lisse abstraite, supposée compacte, qui admet une structure hyperbolique My,
c’est-a-dire une métrique a courbure négative constante égale a —1. My peut étre vue comme le
quotient H/T'y dans le modele de Beltrami de 'espace hyperbolique: 1'espace H est la boule unité
Qo de R™ C RP" et la distance entre deux points x et y de )y est définie par

1
d(z,y) = B log[a, b, z, ], (3)

ou les points a et b sont les points d’intersection de la droite (xy) avec le bord 9y de Qg (c.f.
figure 3); le groupe d’isométries de H est le groupe PO(n, 1) et 'y en est un sous-groupe discret,
isomorphe au groupe fondamental de M. Les géodésiques de M, sont exactement les projections
sur My des droites qui intersectent ).

Il est parfois possible de déformer de fagon continue et non triviale le groupe I'y en des groupes
discrets T'y < PGL(n + 1,R). Autrement dit, la représentation I’y du groupe fondamental de M
dans PO(n, 1) est deformée en représentations I'y dans PGL(n + 1,R); la continuité est entendue
au sens de la topologie compacte-ouverte, et non triviale signifie que I'y n’est pas conjugué & un
sous-groupe de PO(n,1). Un théoréeme de Koszul [46] affirme, au moins pour ¢ petit, qu’il existe
des déformations correspondantes de la boule €y en convexe borné Q; C R™ sur lequel I'; agit; le
quotient M; = Q; /T est une structure projective convexe sur M.

En toute généralité, une structure projective convexe est une paire (2,T") constituée d’un ouvert
convexe propre {2 de RP" et d’une représentation du groupe fondamental 71 (M) en un groupe dis-
cret I' < PGL(n+1,R) agissant sur ) avec quotient 2/I" difféomorphe & M. Deux telles structures
Q/T et /T’ sont dites équivalentes si les quotients sont équivalents en tant que variétés projec-
tives: il existe une transformation projective v telle que 7.2 = Q' et IV = 4Ty~ L.

xi
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Figure 3: La distance de Beltrami-Hilbert

La déformation considérée ci-dessus apparailt ainsi comme la déformation d’une structure hyper-
bolique My en structures projective convexes M; non équivalentes. La formule (3) définit une
métrique sur chaque €, appelée métrique de Hilbert de €, dont les géodésiques sont encore les
droites; comme cette métrique est définie par un birapport, elle est projectivement invariante et
donne donc une métrique sur chaque variété quotient M;. La déformation étant non triviale, M,
n’est pas isométrique a M.

L’existence de telles déformations est longtemps restée une question ouverte. Les premiers exem-
ples de variétés projectives strictement convexes furent ceux de Kac et Vinberg en 1967 [41], et un
procédé explicite de déformation de structures hyperboliques a été proposé en toute dimension par
Johnson et Millson en 1984 [40]. L’article [33] de Goldman constitue une étape fondamentale dans
cette histoire. On y trouve une étude approfondie des structures projectives convexes sur les sur-
faces: entre autres choses, Goldman prouve que I’ensemble G(2,) de toutes les structures projectives
convexes sur la surface X, de genre g > 2, a équivalence pres, forme une variété lisse difféomorphe
4 R169-16 T ’espace de Teichmiiller T (X4) des structures hyperboliques sur X, & équivalence pres,
apparait comme une sous-variété de dimension 6g — 6 de l'espace G(X,), prouvant que les struc-
tures projectives convexes sont bien plus souples que les structures hyperboliques. En fait, Choi et
Goldman [20] sont allés plus loin en prouvant que G(X,) était exactement la composante connexe
de T(X,) dans I’espace des représentations fideles et discréetes du groupe fondamental 71 (2,) dans
PGL(3,R) & conjugaison preés. Les mémes auteurs ont étendu cette étude au cas des orbifolds de
dimension 2 dans [21].
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La question générale concernant ces déformations de structures hyperboliques en structures projec-
tives convexes est la suivante: quelles propriétés des variétés hyperboliques sont conservées apres
déformations, lesquelles sont perdues ? En particulier, certaines d’entre elles permettent-elles de
caractériser les structures hyperboliques parmi les structures projectives convexes 7 Il peut s’agir,
selon les intéréts, de propriétés métriques ou géométriques, de propriétés des groupes en jeu...
Par exemple, apres déformation, la métrique de Hilbert n’est plus une métrique de Riemann mais
seulement une métrique de Finsler: au lieu d’avoir un produit scalaire sur chaque espace tangent
T.Q, on a une norme F(x,.). D’un autre c6té, le résultat fondamental ci-aprés entraine en parti-
culier que certaines propriétés de type hyperbolique sont préservées lorsqu’on déforme une variété
hyperbolique.

Théoréme (Benoist, [7]). Soit M = Q/T" une variété projective convere compacte. Les propositions
suivantes sont équivalentes:

o () est strictement convexe;
o le bord O de Q est C*;
o lespace (Q,dq) est Gromov-hyperbolique;

o ' est Gromov-hyperbolique.

Dans cette these, je me suis intéressé aux propriétés dynamiques du flot géodésique de la métrique
de Hilbert, dont 1’étude a débuté avec les travaux d’Yves Benoist [7]. Le flot géodésique (' de la
métrique de Hilbert d’une variété projective convexe M est défini sur le fibré tangent homogene
HM = TM ~ {0}/R: étant donné un couple w = (z,[§]) formé d'un point z € M et d’une
direction [¢] € H, M, il s’agit de suivre la géodésique partant de x dans le direction [¢] pendant le
temps t. Sur H(Q, ceci est tres facile a voir: il s’agit de suivre les droites a vitesse 1...

Comment la dynamique du flot géodésique change t-elle lorsque la variété hyperbolique My est
déformée en M; ? Yves Benoist a montré dans [7] que le flot reste un flot d’Anosov, et la premiere
question a laquelle j’ai cherché a répondre était la suivante: ’entropie topologique varie t-elle ?
L’entropie topologique est un invariant essentiel dans la théorie des systémes dynamiques qui mesure
comment le systéme “sépare les points”, & quel point il est chaotique. (Voir section 1.6 pour une
définition formelle.) Le théoréme suivant répond & la question:

Théoreme 1. Soit M = Q/T une variété projective strictement convexe, compacte, de dimension
n. L’entropie topologique hiop du flot géodésique de la métrique de Hilbert de M satisfait a l'inégalité

htop < (TL - 1)a
avec éqalité si et seulement st M est riemannienne hyperbolique.

n — 1 est U'entropie topologique du flot géodésique hyperbolique. Ce théoreme montre donc en par-
ticulier quune déformation non triviale d’une structure hyperbolique fait diminuer ’entropie. C’est
un fait assez surprenant lorsqu’on pense au résultat obtenu par Besson, Courtois et Gallot ([12, 13])
qui affirme que, si I'on fait varier la courbure de M sans changer le volume, I’entropie topologique
doit augmenter. Je n’ai pas trouvé d’explication raisonnable a cette apparente contradiction: y a
t-il un certain volume en jeu qui augmenterait lors de la déformation ? dans ce cas, quel est-il ?
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existe t-il une ”"renormalisation” naturelle qui ferait que ’entropie augmente, ou reste constante 7
J’ai aussi essayé de comprendre les variations de I'entropie: étant donné une structure hyperbolique
My, peut-on faire tendre ’entropie vers 0 en déformant M, dans le monde convexe projectif 7 Par
exemple, considérons l'espace G(3,), défini ci-dessus, de toutes les structures projectives convexes
sur la surface £, & équivalence pres. Il n’est pas difficile de voir que I'entropie hop : G(E4) — (0, 1]
est une fonction continue (voir section 5.4); son image est donc un sous-intervalle de (0, 1], et on
peut donc se demander si elle est surjective, ou si elle est propre. J’ai d’abord espéré comprendre
les différentes compactifications de G(3,) dans l'idée d’interpréter les points du bord en termes de
dynamique, en supposant que l'infimum serait atteint sur le bord de G(X,). Je n’ai pas cherché
assez loin pour savoir si cette intuition était bonne. Tres récemment, Xin Nie [57] a montré qu’on
pouvait faire diminuer ’entropie jusqu’a 0 dans certains exemples de Kac-Vinberg, en dimensions
2, 3 et 4.

Au moment méme ou j’étais plongé dans ces considérations, Ludovic Marquis commencait & tra-
vailler sur les variétés projectives convexes de volume fini ([55, 53]). Je pensais alors étendre le
théoreme 1 au contexte des variétés de volume fini.

1l fallait regarder de plus pres la preuve du théoreme 1. Les outils fondamentaux que j’avais utilisés
pour prouver l'inégalité se résument essentiellement & la formule:

htOP = huBM < / X+ d:U’BM' (4)
HM

Expliquer cette formule va nous aider a comprendre les problemes auxquels j’étais alors confronté.
Etant donné une probabilité invariante g d’un systéeme dynamique, on peut définir son entropie
de Kolmogorov h,. Tout comme I'entropie topologique, c’est un indicateur de la complexité du
systeme, observé cette fois avec un point de vue mesurable: les “volumes” sont mesurés par la
mesure p et n'ont pas de rapport avec une quelconque distance d. (Voir section 4.1.2 pour des
définitions formelles.)

Le principe variationnel fait le lien entre ’entropie topologique et ’entropie de Kolmogorov: ce
principe affirme que ’entropie topologique est le supremum des entropies de toutes les probabilités
invariantes du systeme: hyop = sup,, hy,. Un probleme naturel est alors de chercher une mesure qui
réalise ce supremum.

La mesure ppps qui apparait dans 'équation (4) est 'unique mesure d’entropie maximale du flot
géodésique sur HM. Les lettres BM font référence & Bowen et Margulis qui ont donné deux con-
structions indépendantes de cette mesure ([15, 16], [50, 51]), que l'on connait maintenant sous le
nom de mesure de Bowen-Margulis. Elle est définie pour les flots géodésiques de variétés rieman-
niennes a courbure négative, ou de facon plus générale, pour les flots d’Anosov topologiquement
mélangeants; c’est, dans tous les cas, ["unique mesure d’entropie maximale.

L’inégalité
hy, </ Xt du
w

est 'inégalité de Ruelle [68], qui est vérifiée pour toute probabilité invariante p d’un flot de classe
C! sur une variété compacte W. Dans cette formule, Y est la somme des exposants de Lyapunov
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positifs, qui mesure, pu-presque partout, 'effet de ¢! sur les volumes des variétés instables:

1
e P t
X" = tilgrnoo ; log | det de*|.

Pesin [63] a montré que 1’égalité a lieu lorsque p est absolument continue, et Ledrappier et Young
[47] ont montré qu'il y avait égalité si et seulement si la mesure p avait ses mesures conditionnelles
instables absolument continues. Ce dernier résultat est utilisé pour étudier le cas d’égalité dans
le théoréme 1: en fait, Benoist avait déja remarqué dans [7] qu’il ne pouvait y avoir de mesure
invariante absolument continue, sauf dans le cas d’une structure hyperbolique.

La tache principale consistait donc & obtenir une telle (in)équation pour des variétés projectives
convexes non compactes.

L’entropie topologique a une généralisation naturelle aux systémes dynamiques définis sur des es-
paces non compacts, proposée par Bowen [17], et pour laquelle Handel et Kitchens [37] ont prouvé
un principe variationnel sous des hypotheses tres souples.

La mesure de Bowen-Margulis peut aussi étre définie pour les variétés non compactes de courbure
négative, a partir de la construction de Sullivan [70], & origine dans I’espace hyperbolique. Cette
construction est basée sur les mesures de Patterson-Sullivan, qui sont définies de fagon géométrique
sur le bord a l'infini du revétement universel. Ces mesures ont fait ’objet de beaucoup d’attention
et ont permis de faire de nombreux liens entre géométrie et dynamique. La version de Roblin du
théoreme de Hopf-Tsuji-Sullivan (théoreme 1.7 de [65]) est certainement la version la plus aboutie
de ce que 'on peut dire en général a leur propos (voir théoréeme 4.2.4).

Tout cela a aussi un sens dans le contexte des géométries de Hilbert, au moins pour celles qui
présente un certain comportement hyperbolique. Dans cette these, on entend par la une géométrie
de Hilbert définie par un ouvert strictement convexe & bord de classe C'; par exemple, cela inclut
toutes les géométries de Hilbert qui sont hyperboliques au sens de Gromov (voir sections 1.1.3 et
1.1.4).

Si la mesure de Bowen-Margulis peut toujours étre définie sur HM, son comportement et ses
propriétés ne sont pas toujours faciles & déterminer. Dans [65], Roblin a montré que de nombreux
résultats dynamiques pouvaient étre déduits du seul fait que la mesure de Bowen-Margulis était
de masse totale finie. Bien str, le formule (4) n’aurait pas de sens dans le cas ou ppgy n’était
pas finie. Dans le contexte des variétés a courbure strictement négative pincée, Otal et Peigné [59]
ont montré que, sous cette hypothese de finitude, ugys était en fait 'unique mesure d’entropie
maximale, généralisant ainsi ce qui était connu pour les quotients compacts. En fait, leur résultat
est plus fort que cela puisqu’il clarifie aussi le cas ou la mesure est infinie:

Théoreme (Otal-Peigné [59]). Soient X une variété riemannienne simplement connexe, de cour-
bure strictement négative pincée et M = X /T une variété quotient, ot I' est un sous-groupe discret
d’isométries de X, sans torsion. Alors

o l’entropie topologique hiop du flot géodésique sur HM satisfait hiop = Or;

e s’il existe une mesure de Bowen-Margulis ugys de masse 1, alors c’est l'unique mesure
d’entropie mazimale; sinon, il n’existe pas de mesure d’entropie maximale.
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Ici, o1 est 'exposant critique du groupe I', qui est étroitement lié aux mesures de Patterson-Sullivan:

1
or = limsup — log Nr(o, R),
R—+o0 R

ot Nr(o, R) est le nombre de point de 'orbite I'.o du point 0 € X sous I" dans la boule métrique
de centre o et rayon R dans X. L’égalité hy,, = or était déja connu par Manning [49] dans le cas
des quotients compacts.

Dans le chapitre 5, je prouve la version suivante de ce théoreme pour les quotients de géométries
de Hilbert :

Théoréme 2 (Section 5.1). Soit M = Q/T une variété quotient d’un ouvert ) strictement conveze &
bord C. Supposons qu’il existe une mesure de Bowen-Margulis ugn sur HM qui soit de probabilité.
Si le flot géodésique n’a pas d’exposant de Lyapunov nul sur ’ensemble non errant, alors la mesure
upnm est Uunique mesure d’entropie mazimale et

htOP = h’uBM = Jr.

La preuve de ce résultat s’inspire de celle de [59], qui est elle-méme basée sur des techniques
développées dans les années 70-80 dans 1’étude des systemes non uniformément hyperboliques;
Particle déja mentionné [47] de Ledrappier et Young est l'une des illustrations les plus parlantes
de ces techniques. En les adaptant a notre contexte, 1'inégalité de Ruelle et son cas d’égalité
apparaissent alors comme des conséquences directes, au moins dans le cas des géométries de Hilbert
Gromov-hyperboliques:

Théoreéme 3 (Section 5.2). Soit (2, dq) une géométrie de Hilbert Gromouv-hyperbolique et M = /T
une variété quotient. Pour toute mesure de probabilité o' -invariante m, on a

hy </X+ dm,

avec éqalité si et seulement si m a ses mesures conditionnelles instables absolument continues.

Il est temps de faire une pause pour expliquer le point de vue adopté pour prouver le théoréme 1 et
étendre les techniques dont j’ai parlé avant. Il s’agit du point de vue développé par Patrick Foulon
[31] pour étudier les équations différentielles du second ordre. Les flots géodésiques des métriques de
Finsler classiques, qui sont régulieres, sont des cas importants dans lesquels le formalisme dynamique
de Foulon peut étre utilisé. Dans la section 2.1, j’étends ce formalisme au contexte des géométries
de Hilbert définies par un ouvert (strictement) convexe & bord de classe C!; c’est essentiellement
le fait que ces géomeétries soient plates qui permet ici de s’en sortir, malgré le manque de régularité
des métriques considérées. En particulier, cela permet de définir un transport parallele le long
des géodésiques qui s’avere contenir toute 'information concernant la dynamique le long de cette
géodésique. Par exemple, la propriété d’Anosov du flot géodésique sur un quotient compact, prouvée
par Benoist, peut étre comprise en termes de transport parallele.

La remarque cruciale, et un peu déroutante, est que ce transport parallele n’est en général pas
une isométrie. Les différences de comportement du flot géodésique sont essentiellement contenues
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dans cette observation. En particulier, la somme x* des exposants de Lyapunov positifs peut étre
exprimée (le long d’une orbite réguliere) sous la forme

Xt =(-1)+n,
formule dans laquelle
. 1 ¢
n= t_l)l_%moO glog|detT |

mesure leffet du transport parallele 7% sur les volumes. Le théoréme 1 est alors une conséquence
facile de cette égalité et de la formule (4): on obtient

heop < (n—1>+/ 0 dusar,
HM

et / 7 dupy = 0 pour de simples raisons de symétrie (voir la preuve de la proposition 5.3.1).
HM

Alors que je travaillais sur la preuve du théoreme 1, j’avais remarqué qu’on pouvait lire les ex-
posants de Lyapunov d’une géodésique donnée sur la forme du bord 92 de 2 au point extrémal
de la géodésique (voir la proposition 5.4 de [25]). Le chapitre 3 généralise cette remarque a toute
géométrie de Hilbert définie par un ouvert strictement convexe & bord de classe C'. On relie ainsi les
exposants de Lyapunov, le transport parallele et la forme du bord 9€2. Comme conséquence de tout
cela, j'explique dans la section 3.5 comment les variétés de Lyapunov, tangentes aux sous-espaces
apparaissant dans la décomposition de Lyapunov-Osedelets, peuvent étre facilement construites.
Encore une fois, le fait que la géométrie soit plate est essentiel dans cette construction, et je ne
sais donc pas si une telle approche pourrait étre envisagée dans le cas des variétés riemanniennes
de courbure négative, ou pour des flots d’Anosov plus généraux.

Toutes ces questions n’auraient que peu de sens s’il n’existait pas de quotients pour lesquels se les
poser. Une autre partie de mon travail était donc de chercher de tels quotients, en particulier des
quotients auxquels le théoreme 2 pourrait étre appliqué.

Les seuls exemples alors connus étaient les surfaces de volume fini étudiées par Ludovic Marquis
dans [55]. Pour ce qui m’intéressait, c’était la décomposition d’une telle surface en une partie
compacte et un nombre fini de cusps, dont la géométrie était bien comprise, qui était cruciale.
En fait, il est facile de déduire des résultats de [55] que la métrique de Hilbert dans un cusp est
bi-Lipschitz équivalente a une métrique riemannienne hyperbolique. Cette simple observation suffit
a prouver que le flot géodésique est uniformément hyperbolique, donc sans exposant de Lyapunov
nul, et permet d’adapter des approches utilisées en géométrie hyperbolique pour prouver que la
mesure de Bowen-Margulis est finie. La preuve du théoreme 1 s’applique alors sans modification

a cette situation: l'égalité / N dug, = 0 est une conséquence de la symétrie de la mesure de

Bowen-Margulis, qui est un fait trées général; quant au cas d’égalité, I’argument donné par Benoist
dans [7] prouve qu’il n’y a pas de mesure invariante absolument continue, sauf si la structure est
hyperbolique. On obtient ainsi le

Théoréme 4 (Théoreme 5.3.6). Soit M = Q/I' une surface de volume fini. Alors

htop < 1a
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avec éqalité si et seulement st M est riemannienne hyperbolique.

Les arguments ci-dessous me convinrent que la propriété essentielle était la décomposition de la
variété en une partie compacte et une partie "maitrisable”, qui permette d’utiliser les méthodes
connues en géométrie hyperbolique. Ce sont de tels quotients qu’il fallait donc rechercher, et ce que
nous avons commencé a faire avec Ludovic Marquis.

Figure 4: Une surface géométriquement finie

En géométrie hyperbolique, il existe une extension naturelle des variétés de volume fini: les variétés
géométriquement finies. Dans ces variétés, le coeur convexe, support de I’ensemble non errant du flot
géodésique, est de volume fini. Nous avons donc essayé avec Ludovic Marquis [26] de comprendre
cette notion de finitude géométrique en géométrie de Hilbert.

Remarquons que cette notion, qui est aujourd’hui devenue classique, n’était pas vraiment claire
avant les travaux de Bowditch [14], qui en a donné diverses définitions équivalentes. Dans le contexte
d’une géométrie de Hilbert définie par un ouvert strictement convexe & bord C?, la définition en
termes de points limites est un bon point de départ; c.f. définition 1.4.3. L’étude de tels quotients
est encore en cours. Le seul résultat général que nous avons prouvé jusqu’ici est le suivant.

Théoréme 5 ([26] et théoreme 1.4.8). Soit M = Q/I" une variété géométriquement finie. Alors le
ceeur convere de M peut étre décomposée en une partie compacte et un nombre fini de cusps.

Mais cela n’est pas suffisant pour faire marcher la stratégie précédente. En effet, certaines techniques
ne fonctionnent plus sans controle géométrique des parties cuspidales de la variété. Nous pensions
avoir prouvé, a un certain moment, que les cusps avaient essentiellement la méme géométrie que
ceux des variétés hyperboliques, mais il y avait une erreur importante dans notre approche. Dans
cette these, je décris ce qu’il se passe en dimension 2, en me basant sur le travail de Marquis [55]. Les
principaux résultats concernant le flot géodésique des surfaces géométriquement finies sont donnés
dans le
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Théoréme 6. Soit M = Q/I" une surface géométriquement finie. Alors

e [e flot géodésique de la métrique de Hilbert est uniformément hyperbolique sur son ensemble
non errant (théoréme 2.5.2); en particulier, il n’a pas d’exposant de Lyapunov nul;

o il existe une mesure de Bowen-Margulis finie (section 4.3).

Cela montre que les surfaces géométriquement finies satisfont les hypotheses du théoreme 2. Les
techniques utilisées pour étudier ces surfaces non compactes sont classiques et dépendent unique-
ment de la bonne compréhension de la géométrie asymptotique des cusps. Par exemple, ces tech-
niques s’appliquent telles quelles aux seuls exemples de variétés de volume fini connus en dimension
supérieure, construits par Marquis dans [54].

En fait, ce controle de la géométrie des cusps a déja montré son importance dans 1’étude des variétés
riemanniennes & courbure négative. L’article [27] en est une bonne illustration: dans celui-ci,
Dal’bo, Otal et Peigné parviennent, entre autres choses, a construire des variétés géométriquement
finies de courbure négative pincée dont la mesure de Bowen-Margulis est infinie, et pas méme
ergodique. Dans [28], Dal’bo, Peigné, Picaud et Sambusetti montre que la géométrie asymptotique
des cusps a aussi un effet important sur I'’entropie volumique. L’entropie volumique h,, d’une
variété riemannienne (M,g) mesure la croissance exponentielle du volume des boules métriques
dans le revétement universel M:

hyot = limsup log voly B(o, R),
R—4o0

ot B(o, R) est la boule métrique de centre arbitraire o et rayon R dans M.

Si M est compacte et de courbure négative, Manning [49] a prouvé que entropies volumique et
topologique sont égales; sa preuve s’étend sans difficulté aux géométries de Hilbert (proposition
1.6.2). Mais cela devient faux en général pour les variétés de volume fini, et dépend de fagon
essentielle de la géométrie des cusps:

Théoréeme (Dal’bo, Peigné, Picaud, Sambusetti [28]).

o Soit M une variété riemannienne a courbure strictement négative, de volume fini. Si M est
asymptotiquement 1/4-pincée, alors hyor = hiop-

o Pour tout € > 0, il existe une variété riemannienne de volume fini et de courbure strictement
négative (1/4 + €)-pincée telle que hiop < hyor-

En géométrie de Hilbert, je pense que de tels contre-exemples n’existent pas. La encore, cela dépend
de notre compréhension des cusps. En tout cas, pour les surfaces, rien de tel ne peut arriver:

Théoréme 7 (Section 4.4). Soit M = Q/T une surface de volume fini. Alors
hvol = htop = 5I‘-

Tout cela admet les corollaires suivant concernant I’entropie volumique de certaines géométries de
Hilbert:
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Corollaire 10 (Corollaire 5.3.5). Soit & C RP™ un ouvert proprement conveze et strictement
conveze qui admet un quotient compact. Alors son entropie volumique hyop satisfait a l’inégalité

hvol <n-— 17
avec €galité si et seulement si ) est un ellipsoide.

Corollaire 11 (Corollaire 5.3.7). Soit Q C RP? un ouvert proprement conveve qui admet un
quotient de volume fini. Alors son entropie volumique h,o; satisfait a linégalité

hvol < ]-7
avec €galité si et seulement si ) est une ellipse.

On conjecture que l'entropie volumique d’une géométrie de Hilbert de dimension n est toujours
inférieure & n — 1. Cette conjecture a été prouvée en dimension 2 par Berck, Bernig et Vernicos [10],
qui ont aussi prouvé I'égalité h,, = n— 1 pour un convexe dont le bord est de classe C1'!. Les deux
derniers corollaires confirment cette conjecture pour une certaine classe de géométries de Hilbert, et
fournissent aussi une infinité d’exemples pour lesquels ’entropie volumique est strictement comprise
entre 0 et n — 1.

Finissons cette introduction par une description rapide de ce que ’on trouvera dans les différents
chapitres de cette these.

La chapitre 1 fait d’abord une courte introduction aux géométries de Hilbert et rappelle des notions
et résultats déja connus. Les quotients des géométries de Hilbert sont étudiés dans les sections 1.3
et 1.4. On trouve la certains des nouveaux résultats géométriques de [26]: la section 1.3 décrit
les groupes paraboliques et la géométrie des cusps; la section 1.4.3 introduit la notion de quotient
géométriquement fini et leur coeur convexe est décomposé par le théoreme 1.4.8; le cas des surfaces
est plus précisément considéré dans la section 1.4.4.

Le chapitre 2 commence 'étude du flot géodésique des métriques de Hilbert. On étend d’abord le
formalisme dynamique de Foulon et on montre son utilité en géométrie de Hilbert: les résultats
fondamentaux sont les propositions 2.4.1 and 2.4.5. La section 2.5 termine ce chapitre en prouvant
I'uniforme hyperbolicité du flot géodésique sur les quotients compacts et les surfaces géométriquement
finies.

Dans le chapitre 3, on s’intéresse aux exposants de Lyapunov du flot géodésique. On montre en
particulier que le théoreme d’Oseledets peut étre appliqué a toute variété quotient. Dans la section
3.4, on explique les liens entre transport parallele, exposant de Lyapunov et la forme du bord a
I'infini. Pour cela, on a besoin d’introduire une nouvelle propriété de régularité des fonctions con-
vexes, qu’en particulier on prouve étre projectivement invariante, et donc adaptée a notre probleme.
Comme conséquence, on explique dans la section 3.5 comment on peut facilement définir les variétés
de Lyapunov.
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Le chapitre 4 étudie les propriétés des mesures de Patterson-Sullivan et de Bowen-Margulis. On
explique d’abord pourquoi certains théorémes connus pour les variétés riemanniennes de courbure
négative, entre autres le théoreme 4.2.4, restent valables dans notre contexte. La section 4.3 prouve
que toute mesure de Bowen-Margulis d'une surface géométriquement finie est finie. Dans la derniere
section, on montre qu’exposant critique et entropie volumique coincident pour une surface de vol-
ume fini.

Dans le dernier chapitre, on rappelle d’abord comment construire des partitions mesurables qui
permettent de calculer efficacement des entropies, et on applique ces techniques pour obtenir le
théoreme 2. L’inégalité de Ruelle et son cas d’égalité sont alors étendues a certains quotients
non compacts. Comme conséquence, on obtient les théoremes 1 et 4 ainsi que leurs équivalents
volumiques.



xxii PRESENTATION



Chapter 1

Hilbert geometries and its
quotients

This chapter consists of preliminaries. We define Hilbert geometries, describe some
of its general properties, as well as some tools we will use all along the text. We
study isometries of Hilbert geometries. We describe compact quotients, introduce the
notion of geometrically finite manifolds, and give a complete presentation of the 2-
dimensional case. We end this chapter by introducing the concepts of topological and
volume entropies.

1.1 General metric properties

1.1.1 Definition
Take the open unit ball B in the Euclidean space (R™,| . |), and define a metric on B by setting
1
dB (I7 y) = 5 log[a’a b7 xz, y}?

for any two distinct points x, y € B, a and b being the two intersection points of the line (zy) and
the boundary 9B of B (see figure 1.1); [a, b, z,y] denotes the cross-ratio of the four points:

lazx|/|bx|
[a7 b’ ‘T7y:| = *
lay|/|by|

(B, dp) is the Beltrami model of the hyperbolic space H". In this model, the geodesics are the lines.

At the end of the nineteenth century, Hilbert [38] generalized this construction by replacing the
unit ball B by any bounded convex subset €2 of R™, the distance being given by the same formula:

1
dﬂ(aja y) = 5 log[a, b,.]?, y]

It leads to a well-defined complete metric space (2, dg), and the topology induced by the metric is
the same as the one induced by R™ on Q (See [3]). Hilbert’s main remark was that lines are still

1
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a

Figure 1.1: The Hilbert distance

geodesics, that is, the length of the segment [zy] is equal to the distance dg(x,y). The length of a
curve ¢ : [0,1] — Q is here defined as

sup {Z da(c(ti), C(ti+1))} ;

where the supremum is taken over all finite partitions 0 =tg < t; < --+ < ¢, = 1 of [0,1]. In par-
ticular, that implies that (2, dq) is a geodesic space. Such a space (2, dg) will be called a Hilbert
geometry.

Historically, these spaces are examples that Hilbert gave for his fourth problem [39]:

We are asking, then, for a geometry in which all the axioms of ordinary Euclidean geom-
etry hold, and in particular all the congruence axioms except the one of the congruence
of triangles (or all except the theorem of the equality of the base angles in the isosceles
triangle), and in which, besides, the proposition that in every triangle the sum of two
sides is greater than the third is assumed as a particular axiom.

Stated in this form, the problem was too vague to say it has been solved so far. For more details
about this, we refer to [1].

Consider a bounded open convex set 2 of R™, and a projective transformation g € PGL(n + 1,R)
such that g€ is still bounded. Since cross-ratios are preserved by projective transformations, the
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space (g€, dgn) is obviously isometric to (2,dq). Also we see that a projective transformation
preserving ) is an isometry of (€, dq). Thus, it seems more coherent to see ) as a subset of the
projective space RP™ and not of R". For example, the Beltrami model of H" is defined more gen-
erally on an ellipsoid, which is projectively equivalent to the unit ball in R™. In all this text, an
ellipsoid has to be understood as the hyperbolic space, and conversely...

We will say that a subset €2 of RP" is convex if the intersection of {2 with any projective line in
RP"™ is connected. A convex subset {2 of RP™ is proper if there exists a projective hyperspace that
does not intersect £2; equivalently, €2 is proper if there exists an affine chart in which 2 appears as
a relatively compact set.

Let p : R"*1 {0} — RP™ be the natural projection. If  is a convex proper open subset of RP",
then p~1(Q) consists of two disjoint open cones. It is sometimes useful to think of © as one of these
cones.

The Hilbert distance dg on a convex proper open subset 2 C RP” is defined by considering any
affine chart that makes () appear as a relatively compact subset of R”. We can also define it directly
on one of the cones of p~1(Q).

We will say that a proper convex set 2 is strictly convex if there is an affine chart in which it
appears as a relatively compact strictly convex set.

It is often clever to look at the dual geometry defined by the dual convex set Q*. If C' is one of the
cones of p~1(Q) in R"*1, the dual convex cone C* in (R"*1)* is

C*={f e ®R"H* vz eC, f(z)>0},

and Q* = p(C*) is its trace. Of course, duality is an involution: (*)* = Q.

The boundary of Q* consists of those linear forms whose kernel is an hyperplane tangent to the
boundary 99 of 2. We will often think of 9Q* as the set of spaces tangent to 9Q. If 9 is not C! at
some point z (x is a “corner”), then there are several tangent spaces to d2 at x, and this “creates”
a flat part in 90Q*; and conversely. Intuitively, duality transforms corners into flats. In particular,
0Q is C! if and only if Q* is strictly convex. When 2 is strictly convex with C'! boundary, there is
then a natural identification between the boundaries 92 and 02*.

1.1.2 The Finsler metric

Among all Hilbert geometries, defined by different convex sets, only the one defined by an ellipsoid
is Riemannian, that is, there is a Riemannian metric which generates the Hilbert metric. In all
the other cases, the metric is not Riemannian but is still Finslerian. That means that, instead of
having a scalar product on each tangent space 7,2, we have a norm F(z,.).

Take a convex proper open subset 2 C RP", that we see as a bounded convex set in an affine chart

R™ equipped with any Euclidean metric | . |. For x € Q, the Finsler norm on 7, is defined for
£ e T, by
&1 1
F = 1.1

where 27, ™ are the intersections of the line {x + A\{}acr with the boundary 9 (see figure 1.2).
The Hilbert length of a C! curve c: [0,1] — € can now be computed as the integral

te) = [ Plete) at,
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Figure 1.2: The Finsler metric

and the distance dg is induced by the Finsler norm in the sense that
do(z,y) = infl(c),
where the infimum is taken with respect to all C'! curves from x to y, that is, ¢(0) = z, ¢(1) = .

We say that the Hilbert metric is of class CP, p € N, if F' : TQ ~\ {0} — R is a C? function.
From the formula (1.1), we see that the Hilbert metric has indeed at least the same regularity as
the boundary 0.

1.1.3 Intuitive considerations and restrictions

Consider the Hilbert geometry defined by a convex proper open subset 2 C RP™.

If lines are always geodesics, there might be geodesics which are not lines, as illustrated by figure 1.3.
On this figure, the path in blue and the path in red! are geodesics: projections are homographies,

hence ) )
da(z,2) = 5 logla,b,z,2] = 5 logla', V', z, 2] = da(x, 2"),

2
and similarly, do(z,y) = da(Z',y).

The situation on this figure is essentially the only one where there can be other geodesics. In
particular, that does not occur if 2 is strictly convex: the Hilbert geometry defined by a strictly

Lif printed in color...
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b//

b/

Figure 1.3: A geodesic which is not a line

convex set is uniquely geodesic.

It is important here to say that geodesics are defined in metric terms: a continuous curve joining
Z to y is a geodesic segment if its length is equal to dg(z,y). In particular, there are no geodesics
equations involved in this context, that would arise from a variational problem. Anyway, that would
not make sense in the case 92 is not C2.

Nevertheless, if 9Q is C? with definite positive Hessian, then we get geodesic equations as usual,
and the solutions are the lines. This assumption is the one which usually appears in the general
definition of a Finsler metric; but as proved by Socié-Méthou [69], such an assumption is too much
restrictive if we want to consider quotient manifolds modeled on Hilbert geometries:

Theorem 1.1.1 ([69]). Let Q@ C RP™ be a convex proper open set. Assume the boundary OS2 is
C? with definite positive Hessian. Then the group of isometries Isom(S2,dq) of (9, dq) is compact,
unless 2 is an ellipsoid.

There are lots of differences between the strictly convex and non strictly convex cases, or between
convex sets with C' boundary or not, especially about asymptotic geometry. I will try to give an
intuitive feeling about these differences in the 2-dimensional case.
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About strict convexity

Consider a bounded open convex set @ C R?, and pick two distinct points p and ¢ in €2, which
are not contained in a segment of 9. Then, for any two sequences of points (p,) and (g,) in
converging to p and ¢ in Q = QU IN C R", the distance dq(pn, gn) tends to +0o when n — +oo.
Assume now that p and ¢ are are contained in a segment [ab] in 9, which we assume is maximal,
that is, it is not contained in a larger segment of 9. Consider two lines ¢, ¢, : [0, +00) — Q of
Q) ending at p and ¢, that is,

i 0) = T _eg(t) =
in Q. These two geodesics are asymptotic: the function ¢t — dq(7,(t),74(t)) is bounded. For
example, in figure 1.4, we can parametrize the geodesics ¢,(t) and c4(t), that is, we can choose
¢p(0) and ¢4(0), in such a way that

. 1
lim do(cp(t), cq(t)) = 3 log[a, b, p, q].

t——+oo

Figure 1.4: Asymptotic geodesics that do not converge to the same point

This can be stated more precisely in the following way. If p is contained in the maximal nontrivial
segment [ab] of 9, and (py) is any sequence in €2 converging to p in Q, then the closed Hilbert ball
of radius 1 centered at py, converges in R™ to the segment [¢q'] C [ab], where ¢ and ¢’ are the points
of [ab] such that

1 1
§log[a,b,p, q] = §1Og[a7b7 q/ap] =1
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On the contrary, if p is not contained in a nontrivial segment of 92, then the same sequence of balls
converges in € to the point p.

That means that the boundary at infinity defined by equivalence classes of asymptotic geodesics is
not given by 99 when  is not strictly convex.

About C! regularity of the boundary

Another problem occurs at a point where the boundary of Q is not C'. Take for example the
vertex p of a triangle Q, and consider two distinct lines v and 4’ ending at p. Then the distance
d((t),7(t)) does not tend to 0 when ¢ goes to +0o. The same works at a non-C'! point of the
boundary of any convex set.

This does not occur if 9Q is C! at p: for two lines 7,7 : R — Q ending at p, there exists a time
to € R such that

lim do(y(t),' (t+to)) = 0. (1.2)

t—+o0

Indeed, one has to choose ty = +1im;_, o da(v(¢),~'(t)), with the appropriate sign.
This property (1.2) is of crucial use when working on the universal cover of a manifold of pinched
negative curvature, and fails when the curvature is allowed to be zero.

In this work, we are interested in those Hilbert geometries which exhibit some hyperbolic behaviour,
and more especially in what regards the geodesic flow. The last remarks explain why we restrict
ourselves to the geometries which are defined by a strictly convex set with C' boundary. Another
reason is the following: all the tools that we will use require the C*-regularity...

Let us emphasize that strict convexity and C'-regularity tend to appear by pair when we consider
quotient manifolds. For example, theorem 1.4.2 tells us that if 2 admits a compact quotient, then
either Q is strictly convex with C' boundary, or it is not strictly convex and the boundary is not
C'. This can be seen as a consequence of duality: if Q admits a compact quotient by a group of
projective transformations, then its dual 2* also. A similar result is expected for geometrically
finite quotients; that is one of the goals of an article I am working on with Ludovic Marquis [26].

1.1.4 Global results about Hilbert geometries

We review here some results about the global properties of Hilbert geometries. For more insights
about it, have a look at the very clear and complete exposition in [69].

What is globally expected is that Hilbert geometries are geometries in between Euclidean and hy-
perbolic ones. As already remarked in the preceding section, a hyperbolic behaviour implies strict
convexity and C'-regularity of the boundary.

It is important to remark that Hilbert geometries cannot be classified by their local behaviour: for
example, a Hilbert geometry is not CAT (k) for any k € R, except in the case of the ellipsoid. Large
scale properties are more appropriate.

The two following results are a good example of what can be said.

Theorem 1.1.2. o [22] If OS) is C* with definite positive Hessian, then the metric space (€2, dg)
is bi-Lipschitz equivalent to the hyperbolic space H™.
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o [25] [11] [71] (Q,dq) is bi-Lipschitz equivalent to the Euclidean space if and only if Q is a
convez polytope, that is, the convexr hull of a finite number of points.

The case where 9 is C? with definite positive Hessian is exactly this case where the Finsler geom-
etry is of a classical type, with strongly convex unit balls.

Except for the case of polytopes and without further assumptions, not a lot is known about the
geometries defined by convex sets whose boundary is not C2. Nevertheless, Yves Benoist gave a
beautiful characterization of Hilbert geometries that are Gromov-hyperbolic:

Theorem 1.1.3 ([6]). A Hilbert geometry (2, dq) is Gromouv-hyperbolic if and only if Q is quasi-
symmetrically convex.

The notion of quasi-symmetric convexity was introduced by Benoist in the same paper. It is not
essential here, so we refer to his article for more details. Just notice the significant fact that quasi-
symmetric convexity implies strict convexity and C'*¢-regularity of the boundary, for some € > 0.

Let us recall instead the definition of Gromov-hyperbolic spaces. Let (X, d) be a metric space, and
fix an arbitrary point of reference o € X. The Gromov-product based at o of two points = and y in
X is defined as

(ely)o = 5 (d(z,0) +d(o,y) — d(z,9)).

The space (X, d) is then said to be Gromov-hyperbolic if there exists some § > 0 such that for
any x,y,z € X,
(z2)o 2 min{(x[y)o, (y|2)o)} — 6.

The space is also said to be é-hyperbolic.

A more intuitive definition can be given for proper? geodesic metric spaces (see figure 1.5): (X, d) is
Gromov-hyperbolic if there is some d > 0 such that any three points x,y, z € X, there is a geodesic
triangle xyz C X which is 0-thin, that is, there are geodesic segments [zy], [zz] and [yz] such that,
for any point p on the side [2z],

min{d(p, [y). d(x, [y2))} < 0.

Obviously, the hyperbolic space H" is a Gromov-hyperbolic space. The extremal case is the one
given by trees: equipped with the word metric, trees are indeed 0-hyperbolic, since the triangles
have no interior.

Using Cayley graphs, Gromov introduced in [35] the now classical notion of hyperbolic group: a
finitely generated group G is Gromov-hyperbolic if its Cayley graph equipped with the word metric
is a Gromov-hyperbolic metric space. The property does not depend on the chosen set of genera-
tors, but the constant § of hyperbolicity may depend on it. For example, the fundamental groups
of compact surfaces of genus g > 2 are Gromov-hyperbolic. More generally, if a compact manifold
carries a metric of negative curvature, then its fundamental group is Gromov-hyperbolic.

It is important to notice that Gromov-hyperbolicity is not a local property. One just wants the
geometry at large scale to be “like in the hyperbolic space”. In particular, the notion of Gromov-
hyperbolicity is invariant by quasi-isometry: if (X, d) and (X’,d’) are two metric spaces, a quasi-
isometry between X and X’ is a map f : X — X’ such that

2 A metric space is proper if metric balls are compact.
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Figure 1.5: A Gromov-hyperbolic triangle

e for any z,y € X,
1
Ed(mvy) -b< dl(f(x)’f(y)) < (J,d((I},y) + b7
for some constants a > 0,b > 0;

e there is a constant ¢ > 0 such that, for any 2’ € X', there is some z € X satisfying
d'(f(z),2") <ec.

For example, if I is a cocompact subgroup of isometries of a metric space (X, d), then (the Cayley
graph of) T' and X are quasi-isometric, and X is Gromov-hyperbolic if and only if T' is Gromov-
hyperbolic.

Gromov-hyperbolicity is the kind of coarse properties that can be expected for Hilbert geometries.
In fact, as we will see in the next section, lots of tools that are defined and used in Gromov-
hyperbolic spaces can be also considered in the Hilbert geometry defined by a strictly convex set
with C* boundary.

From now on, unless it is explicitly mentioned, we consider only

Hilbert geometries defined by strictly convex proper open sets () C RP”
with C! boundary.
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1.2 The boundary of Hilbert geometries

Let Q C RP" be a strictly convex proper open set with C! boundary. As already remarked, the
geometric boundary 02 corresponds to the geodesic boundary at infinity. We now define some
classical tools that are used to study Hadamard manifolds or Gromov-hyperbolic spaces.

Let  and y be in Q. The shadow of the ball B(y,r) of radius r > 0 about y as seen from =z is
denoted by O,(x,y): it is the subset of 99 consisting of points £ such that the geodesic ray [z€)
intersects B(y,r). The light cone F,.(z,y) from z and of base B(y,r) is the set of points p in
such that the ray [zp) intersects B(y,r); in other words, F,(z,y) is the union of all rays [z€) for
& € Op(x,y). See figure 1.6.

Or(z,y)

Figure 1.6: Shadows and lightcones

The Gromov-product based at o of two points z and y in 2 was already defined as
1
(zly)o = 5 (da(z, 0) + dalo,y) — da(z,y)).
When (2 is strictly convex with C' ! boundary, the Gromov product can be extended continuously to
Q x QN A, where A = {(z,z), © € 0Q} is the diagonal: that is lemma 5.2 in [8]. We can anyway
extend the Gromov product to the whole of Q x Q by saying that (x|z), = o0 if z € 9Q.

The Busemann function based at £ € 99 is defined by
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which, in some sense, measures the (signed) distance from z to y in  as seen from the point £ € 99.
A particular expression for b is given by

be(x,y) = i da(z,~(t)) —t,

where 7 is the geodesic leaving y at ¢ = 0 to £&. When ¢ is fixed, then b¢ is a surjective map from
QxQ onto R. When z and y are fixed, then b (x,y) : 92 — R is bounded by a constant C = C(z,y).
The following lemma will be used many times in chapter 4:

Lemma 1.2.1. 1. For any x,y € Q such that y € F,(x,0), we have (z|y), < .

2. For any & € O,(z,y), we have

do(z,y) —2r < be(z,y) < da(z,y).

Proof. 1. Assume z,y € Q. The line (zy) intersects B(o, ) and we can pick z in this intersection.
We have
dQ(-T, 0) < dQ(1‘7 Z) + dQ(Z, O) < dQ(xv Z) +r

and

dQ(Z/, O) < dQ(ya Z) + r,
so that 2(z|y), = da(z,0) + da(y,0) — da(x,y) < 2r. By continuity of the Gromov product,
this also holds if z,y € 9.

2. From the triangular inequality, we have |b¢(z,y)| < do(z
lower one, let z be any point in B(y,r) N [z€], and [z€) :
from x to £&. We have

be(e.y) = lim_do(, [+)(t)) — day, [€)(1)

,v), hence the upper bound. For the
[0,4+00) — Q) be the geodesic ray

= doe,2) + lim_da(z, [2)(1)) — da(y, [2)(1)

=do(x,2) + be(z,y).

But since z € B(y,r), do(z,2) > do(z,y) — r and |be(z,y)| < r, hence the result.

The horosphere passing through = € 2 and based at £ € 91 is the set

He(z) = {y € Q, be(w,y) = 0}.

He(x) is also the limit when p tends to & of the metric spheres B(p,do(p,z)) about p passing
through x. In some sense, the points on H¢(x) are those which are as far from & as x is.

The (open) horoball He(z) defined by = € € and based at { € 99 is the “interior” of the horosphere
He(z), that is, the set

He(z) = {y € Q, be(x,y) > 0}.

It is easy to see that horospheres have the same kind of regularity as the boundary of €.



12 CHAPTER 1. HILBERT GEOMETRIES AND ITS QUOTIENTS

1.3 Isometries of Hilbert geometries

1.3.1 The group of isometries of a Hilbert geometry

Let (Q2,dq) be any Hilbert geometry. Its group of isometries Isom(2,dq) contains the subgroup
consisting of projective transformations preserving €

Aut(Q) = {g € PGL(n +1,R), g(Q) = Q}.

If Q is strictly convex, all the geodesics are lines and this implies, as remarked by Pierre de la Harpe
in [29], that Aut(2) = Isom(Q,dq). In the same paper, de la Harpe constructed the essentially
unique nonprojective isometry of the triangle: he proved that if 2 is a triangle, then Aut(€2) has
index 2 in I'som(£2,dq). In general, it is not known when the two groups coincide.

What follows now is an important part of the article in preparation [26], where the notion of
geometrically finite quotients of Hilbert geometries is investigated. We omit some of the proofs and
only indicate the results that we will use in the rest of the text. More will appear in [26].

1.3.2 Classification of isometries

Let (Q,dq) be any Hilbert geometry. For g € Isom(f,dg), we denote by
7(9) = inf da(z, gz),
the displacement of g and we say that g is
e elliptic if 7(g) = 0 and the infimum is attained, i.e. g fixes a point in €;
e parabolic if 7(g) = 0 and the infimum is not attained;
e hyperbolic if 7(g) > 0 and the infimum is attained;
e quasi-hyperbolic if 7(g) > 0 and the infimum is not attained.

As in the hyperbolic space, there are no quasi-hyperbolic isometries if € is strictly convex. The more
precise result of the following theorem can be seen as a consequence of the intuitive considerations
that we made in section 1.1.3.

Theorem 1.3.1 ([26]). Let Q C RP™ be a strictly convex proper open set with C* boundary. An
isometry g of (Q,dq) is of one of the following types:

e g is elliptic;
e g is parabolic; g fizes exactly one point p € O and for any = € Q,

lim ¢"xz = p;
n—too

e g is hyperbolic: it fizes exactly two points g* and g~ in OQ and for any x € Q,

lim ¢"z = g*.
n—=+oo
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Let g be a hyperbolic isometry of (Q,dqg). If we see g as an element of SL(n + 1,R), then the
last theorem says that g is biprozimal: associated to the stable lines gt and ¢g—, are their two real
eigenvalues A}, which is the largest eigenvalue (in modulus), and A, which is the smallest one;
these two eigenvalues are isolated: their eigenspaces are exactly the lines g7 and g~. g acts on the
segment [¢g~gT] C Q as a translation of length

L1og 2 — r(g) = da(a, go)
2Og)\g__7_g = anl\r,gr),

for any z € (g~ g™).

1.3.3 Parabolic subgroups

A parabolic subgroup of isometries is a nontrivial subgroup of I'som(f2,dn) whose elements but
the identity are all parabolic isometries which fix the same point at infinity. If I' is a given subgroup
of Isom(2,dq), a maximal parabolic subgroup is a parabolic subgroup containing all the parabolic
isometries of I' fixing a given point.

In hyperbolic geometry, a parabolic subgroup fixing the point p at infinity acts on OH™ \ {p} by
Euclidean transformations, and discrete parabolic subgroups are thus well understood thanks to
Bieberbach theorems. In Hilbert geometry, we do not know if it stays true but we hope so (or
maybe not). Here are some partial results in this direction.

Lemma 1.3.2 ([26]). Let Q C RP™ be a strictly convex proper open set with C1 boundary, and
g € Isom(Q,dq) a parabolic isometry fizing p € 0. Then g preserves every horosphere based at p.

Proof. Busemann functions based at p are invariant by g: for any o,z € €,
by(go, gz) = lim dq(go, ¢)—da(gz, ¢) = lim dq(go, gc)—da(gz, gc) = lim dg(o, ¢)—da(z, ¢) = by(0, z),
c—p c—p c—p

since, if ¢ tends to p, gc also. Hence, for any = € (,

Hp(gx) = {y € Q, by(ga,y) =0} ={y € Q, by(z,g 'y) = 0} = gH,(x),

that is, g preserves the set of horospheres based at p. Now, for any =,y € 2, we have

bp(, g2) = by(z,y) + bp(y, 9y) + bp(gy, 97) = byp(y, gy) == a € R.

Since |by(z, gz)| < dao(z, gz), this implies that, for any = € €, do(x, gx) > |a|. Since 7(g) = 0, we
get a = 0, that is, gz € H,(x). O

By a cusp, defined by a discrete parabolic subgroup P fixing p, we will mean the quotient of some
horoball based at p by P.

Proposition 1.3.3 ([26]). Let Q C RP" be a strictly convex proper open set with C* boundary,
and P a parabolic subgroup of Isom(§2,dq) fixing the point p € IQ. Then, for any horosphere H
based at p, H ~ {p}, as well as O\ {p}, carries an affine structure preserved by P.

Proof. The set of lines passing through p is the projective space P, = P(R"™!/(p)), of dimension
n — 1. P acts projectively on this space, and preserves the projective hyperspace T}, consisting of
lines tangent to 0 at p. Thus, P acts affinely on the affine space P, \ T}, that one can identify
with 9Q \ {p} or H ~\ {p} for any horosphere H based at p. In this way, we see that each H \ {p},
as well as 9Q ~\ {p}, carries an affine structure preserved by P. O
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1.3.4 Isometries of plane Hilbert geometries

We describe here what occurs in the easy case of plane Hilbert geometries. In dimension 2, isometries
of a general Hilbert geometry (2, dq) are well classified, see for example [19] or [55]. In particular,
if Q is strictly convex,

e any hyperbolic isometry v can be represented as a matrix

A 0 0
0 A O
0 0 X

with A\g > A1 > Ay > 0.

e any parabolic isometry v can be represented by the matrix

1 0
0 1
0 1

O~

This implies in particular that the orbit of any point # € RP? under + lies on a conic which
contains the fixed point p of 7. Indeed, if the basis is chosen so that v has the preceding
matrix form, then it preserves the family of conics

Exp= {2+ pu(y® - 2(y+22))}, A peR.

The degenerated case p = 0 is the line z = 0, which corresponds to the tangent line to 0f2 at
p. ffz=[a:b:1] € RP?2 \ {z = 0}, we denote by E, = Ej 2, 32, the conic preserved by p
and containing x (and its orbit).

Let p € 0Q. 09 ~\ {p} carries an affine structure preserved by any parabolic isometry fixing p.
Such an isometry has no fixed point on 99 ~\ {p}, hence it acts as a translation on 09 \ {p}. In
particular, the group of parabolic isometries fixing a common point p is isomorphic to a subgroup of
R, and any discrete parabolic group is thus isomorphic to Z, generated by some parabolic isometry ~.

So, any discrete parabolic group fixing p acts cocompactly on 9Q \ {p}. Thus, we can find points
z € Qand y € Q such that the ellipses E, and E, define two convex sets &£, and &, such that
E,CQCé and E;NE, =E,N0N=E,NIQY={p}. Hence the following

Lemma 1.3.4. Let Q C RP? be a strictly convex proper open set with C' boundary. Let P be
a discrete parabolic group of Isom(Q,dq) fizing p. Then P is isomorphic to Z and preserves two
ellipses E and E" such that ENE' = ENQ =E NIQ = {p} and £ C Q C &', where & and &’
are the convexr hulls of E and E'.

An important consequence of this is that, given a sufficiently small horoball based at p, £ and &’
define two hyperbolic metrics h and h’ on the cusp H/P, such that h’ < F < h.

Proposition 1.3.5. Let Q C RP? be a strictly convex proper open set with C* boundary. Let P be a
discrete parabolic subgroup of Isom(Q,dq) fizing p € 9Q. Choose any C > 1. Then any sufficiently
small horoball H based at p carries two P-invariant hyperbolic metrics h and h' such that, on H,
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e ', h and h' have the same geodesics, up to parametrization;
1
. 6h<h’<F<h<Ch’

Proof. Choose £ and &’ as in the last lemma. Any sufficiently small horoball Hy based at p is
inside £. £ and &’ then define two P-invariant hyperbolic metrics on Hy, such that b’ < F < h.
Furthermore, £ is a horoball based at p of the hyperbolic space £’. Now this is obvious in the upper
half-space model of H? that, for any C' > 1, we can choose a sufficiently small horoball H' of £ on
which h/h’ < C. For any horoball H (of ) inside this H’, we will still have h/h’ < C hence the
result. O

1.4 Manifolds modeled on Hilbert geometries

We want to consider manifolds modeled on Hilbert geometries (€2, dg) defined by a strictly convex
proper open set Q with C'! boundary. Such a manifold M appears as a quotient M = Q/T" of by
a discrete subgroup I' of isometries without torsion, that is, I' does not contain elliptic elements.
Since (2 is strictly convex, I' is a discrete subgroup of the projective group.

Those manifolds are called (strictly) convex projective manifolds. On an abstract smooth manifold
of dimension n, a projective structure is an atlas (U;, ¢;) with coordinate charts with values in
the projective space RP™, such that changes of coordinates are projective maps. Associated to a
projective structure are a developing map from the universal cover M to RP"™ and a representation
I' = p(m(M)) < PGL(n+1,R) of the fundamental group of M. We say that the projective struc-
ture is convex if the developing map is a diffeomorphism onto an convex proper open subset § of
RP™, in which case M = Q/T.

For a discrete group I' < PGL(n + 1,R) acting on €2, we can always find a locally finite convex
fundamental domain, as claimed by the following theorem, due to Lee [48]. A simple proof can be
found in [55].

By a fundamental domain for I, we mean a subset K of  such that I''K = Q and for any two
distinct v,7 € T, v.K N+ .K = (). Locally finite means that for any compact subset C of Q, the
number of translates v.K of K that intersect C' is finite.

Theorem 1.4.1 (Lee, [48]). Let I' < PGL(n+ 1,R) be a discrete group acting on a convex proper
open set Q C RP™. There exists a locally finite convex fundamental domain for the action of I' on
Q.

1.4.1 The limit set

If T is a discrete group of isometries of (€, dg), its limit set Ar is the set of accumulation points
of an orbit I'.o in 912, defined by o
Ar =T.o~T.o.

This definition does not depend on the point o that we consider, thanks to our assumptions on Q:
strict convexity and C' boundary.

Ar is the minimal invariant closed subset of 92 which is invariant under I': any other nonempty
T-invariant closed subset contains Ar. In particular, the action of I on Ar is minimal, that is, every
orbit is dense.
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Obviously, Ar contains the set of all the fixed points F of the elements of I" in Q. The closure F'
of F being I'-invariant, we conclude that F' = Ar.

We say that a discrete group I' of isometries is elementary if its limit set is finite. It can then
consist of 0, 1 or 2 points, which correspond respectively to the following cases: I is elliptic?, I is
parabolic, I' = (h) is the cyclic group generated by a hyperbolic isometry.

When T is neither an elliptic or a parabolic elementary group, Ar is indeed the closure of the set
of fixed points of hyperbolic isometries. This is just the fact that a nonelementary group contains
necessarily a hyperbolic isometry.

The same group I' < PGL(n + 1,R) can act on various convex sets €. For example, it acts on
the convex hull C(Ar) of its limit set. In fact, C(Ar) is the smallest convex set on which I" can
act. Remark that C'(Ar) is not necessarily open in RP": for instance, the limit set of a parabolic
subgroup is reduced to one point, hence C(Ar) also. These remarks, though naive, are crucial when
we consider the problem of understanding the properties of an eventual quotient /T, when the
discrete subgroup I' of PGL(n + 1,R) is given, and not the convex set .

1.4.2 Compact quotients

We say that a convex proper open set (2 is divisible if it admits a compact quotient by some dis-
crete projective group. The ellipsoid is the only divisible strictly convex set which is homogeneous,
that is, with a transitive group of isometries. The existence of other divisible strictly convex sets is
nontrivial. The first example was given by Kac and Vinberg [41] in 1967, using Coxeter groups.
In 1984, Johnson and Millson [40] constructed examples of hyperbolic manifolds in all dimensions,
whose fundamental group T'y C I'som(H™) could be deformed continuously into Zariski-dense sub-
groups I'; of SL(n+1,R). The work of Koszul [46] implies that such little deformations still divide
some convex sets (Y; since (2, dq, ) is quasi-isometric to the Gromov-hyperbolic group I', (£, dq, )
is itself Gromov-hyperbolic, so in particular strictly convex (see Benoist’s theorem below).

In dimension 2, a very precise description has been given by Goldman [33]. He proved in particular
that the deformation space of convex projective structures on the surface X, of genus g > 2 is a
manifold diffeomorphic to R'69716; it contains the Teichmiiller space of ¥, as a submanifold of
dimension 6g — 6. Such a description is not available in higher dimensions, except for Marquis’
work [52].

The main general result about the geometry of divisible convex sets is the following theorem of
Benoist. It divides the set of divisible convex sets into two families and only one of them, which
includes ellipsoids, is studied in this thesis,. The last property, which is an intrinsic property of the
abstract fundamental group of the quotient manifold, implies that a manifold M cannot carry a
strictly convex projective structure and a nonstrictly convex one.

Theorem 1.4.2 ([7]). Let  C RP™ be a convex proper open set, which can be divided by some
discrete group I' < PGL(n + 1,R). The following statements are equivalent:

o Q is strictly convex;

o the boundary 0 of Q) is C1;

o the space (Q,dq) is Gromov-hyperbolic;

3T is said to be elliptic if all its elements but the identity are elliptic isometries fixing the same point.
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e the group I' is Gromov-hyperbolic.

If all these results show that strictly convex projective structures are far more general than hyper-
bolic ones, the examples that were given above are all deformations of hyperbolic structures. That
is always the case in dimensions 2 and 3, but quite surprisingly, in dimension higher than 4, there
exist compact manifolds which admit strictly convex projective structures but no hyperbolic one.
Such examples were first constructed by Benoist [8] in dimension 4, 5 and 6, using Coxeter groups;
Kapovich [44] then proved that some of the manifolds constructed by Gromov and Thurston in [36]
were providing other examples, in all dimensions.

1.4.3 Geometrically finite quotients

We extend here the notion of geometrical finiteness to our context, as well as some results which
are essential for studying the dynamics.

Definitions 1.4.3. Let T' be a discrete group of isometries of (Q2,dq). A point p € Ar is said to be

e radial or conical if there exist a point o € 2 and a sequence of isometries (gn) in T, such
that the sequence (gno0) converges to p in Q and

sup da(gno, [op]) < +o0;
n

e a bounded parabolic point if p is the fived point of a parabolic subgroup P of I' which acts
cocompactly on Ar ~ {p}.

The following geometrical characterization of conical points will be often used:

Remark 1.4.4. A point p € Ar is conical if and only if, for any point x € Q) the projection on the
quotient M = QJT of the ray [xp) ending at p stays in a compact part K of M an infinite period
of time.

Definition 1.4.5. Let M = Q/T" be the quotient manifold of a strictly convex set Q with C*
boundary. M is said to be geometrically finite if Ar consists only of radial and bounded parabolic
points.

The goal of what follows is to prove theorem 1.4.8, which describes the convex core of a geometrically
finite manifold. The convex core C(M) of M is defined as the closure (in M) of the quotient
C(Ar)/T € M =Q/T, where C(Ar) C RP™ denotes the (open) convex hull of the limit set Ap. The
description provided by theorem 1.4.8 is fundamental because the recurrent part of the dynamics
occurs in the convex core (see section 2.5).

Lemma 1.4.6. Let T be a discrete group of isometries of (,dq). A parabolic point of Ar is not
conical.

Proof. Let p be a parabolic point fixed by the parabolic isometry . If p is conical, from remark 1.4.4,
we can find some z € Q such that the ray [zp) gives on the quotient a geodesic ray that stays in a
compact part K of M an infinite period of time. Consider the function ¢t — dq([xp)(t), [v(z)p)(t))
that represents in  the distance between the ray ¢ — [xp) and its image by «. Since 9Q is C?,
this function decreases to 0. But the injectivity radius of the compact part K is > 0, hence a
contradiction. O
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Lemma 1.4.7. Let M = Q/T be a geometrically finite manifold and D a closed convex fundamental
domain for T' on C(Ar). Then any connected component of D N Ar consists of a single parabolic
point.

Proof. Let p be a point in D N Ap. If x is any point in D, the projection on M of the ray [zp)
leaves any compact set, hence p is not conical, by remark 1.4.4. Since I' is geometrically finite, p
is necessarily parabolic. Let v be a parabolic element fixing p. + acts bijectively on the connected
component C of p in Ar. Now, we know from theorem 1.3.1 that, for any point ¢ € €, the sequence
(v™q) tends to p, which implies that C = {p}. O

We can now prove the main

Theorem 1.4.8 ([26]). Let M = Q/I' be a geometrically finite manifold. Then the number of
conjugacy classes of maximal parabolic subgroups of T is finite and the convex core of M can be
decomposed as the disjoint union

K |_| uﬁclek

of a compact part K and a finite number of cusps Cy, each cusp corresponding to a conjugacy class
of mazximal parabolic subgroups.

Proof. For any parabolic point p € Ar, let P, = Stabr(p) be the maximal parabolic subgroup fixing
it. Let D be a locally finite convex closed fundamental domain for I on C(Ar) and pick a parabolic
point p € DN Ar. We can find a closed fundamental domain C for P, on C(Ar) that contains
D; since p is bounded, C' N Ar \ {p} is compact in Ap ~ {p}. The set DN Ar ~\ {p} consisting of
parabolic points is contained in the compact C N Ar ~\ {p}, so DN Ar is discrete in Ar, hence finite.
Choose parabolic points p1, - - -, p; in D, such that any two Pp,, ¢ =1,--- ,[, are not conjugated. We
can then put disjoint horoballs Hy,,,--- , Hp, based at these points, and the set I'{H,,, 1 < i<}

consists of disjoint horoballs based at parabolic points. Let

Ci= HI%/P P F'Hpi/r’ ﬁl = Hpi U {pl}/P P F'(Hm U {pi})/F7

for 1 <i <, and o
K= C(AF)/F N Uile’i.

Each Cj is open in the compact C(Ar)/T’, so K is closed in C(Ar)/T’, hence compact. This yields
the decomposition.

Now, let p be any parabolic point in Ar and pick a geodesic ray (zp) inside C(Ar), that is, such that
x € C(Ar). Since p is not conical, the corresponding geodesic ray on the quotient M = Q/I" leaves

any compact subset, hence is ultimately contained in a cusp C;. Thus there are some ¢ € {1,--- 1}
and v € I such that v.p = p;, that is P, is conjugated to P,,. The number of conjugacy classes of
maximal parabolic subgroups is thus finite, equal to the number of cusps of M. O

1.4.4 The case of surfaces
Geometrically finite surfaces

For surfaces, we can easily go further because we are able to describe parabolic subgroups, hence
the Hilbert geometry of a cusp. We set the results in the following corollary, which is a direct
consequence of proposition 1.3.5 and theorem 1.4.8.
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Corollary 1.4.9. Let M = Q/T" be a geometrically finite surface. Then, for any C > 1, there
exists a decomposition of C(M) into

M:KU%ﬂQ

consisting of a compact part K and a finite number of cusps C;, on which there exist hyperbolic
metrics h; and b} such that

e F'  h; and bl have the same geodesics on C;, up to parametrization;

1
.6m<hggF<m<cmg

Finite volume surfaces
Marquis’ description of finite volume surfaces can go as follow.

Theorem 1.4.10 (Marquis, [55]). Let Q C RP? be a convex proper open set. A surface M = Q /T
has finite volume if and only if M is geometrically finite and Ar = OS.

To understand this statement, we have to explain what we mean by volume. Indeed, a Finsler
geometry has no canonical volume as a Riemannian one. The volume that we use here is the so
called Busemann volume, which corresponds to the Hausdorff measure of the metric dg (see
[18]). This volume vol is defined by renormalizing any volume on 2 in such a way that each tangent
unit ball has volume one. More precisely, let A be any Lebesgue measure on 2. We define

d\(x)
dvol(x) = ———+—,
A(By(1))
where B,(1) = {v € T,Q, F(x,v) = 1} is the tangent unit ball for F(z,.). This construction
provides a volume on any quotient manifold of 2. Finite volume manifolds are considered with
respect to this volume.

The construction of the Busemann volume can be made for any Finsler manifold. In particular,
we can define a volume on any C' submanifold of 2. This remark will be used in the proof of the
Ruelle inequality, in section 5.2.1.

Remark that, if Q@ C Q' are two convex proper open subsets of RP™, then the Busemann volumes
vol and vol” on © and Q' satisfy vol > vol’ on Q. That yields the following

Lemma 1.4.11. Let Q C RP? be a strictly convex proper open set with C' boundary. Let P be a
discrete parabolic subgroup fizing p € 0Q and H be any horoball based at p. Then H/P has finite
volume.

Proof. Consider two P-invariant convex sets £ and £’ as in lemma 1.3.4. Let H be any horoball
based at p. Since P acts cocompactly on dH ~ {p}, we can assume that H C £. From hyperbolic
geometry, we know that vol® (H/P) is finite, where vol® denotes the hyperbolic volume defined by
the hyperbolic space £. Since vol < vol®, we get the result. O

As a corollary, we get that the convex core of a geometrically finite surface has finite volume. Hence
we get the if part of theorem 1.4.10. For more details, we refer to [55].
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1.5 Volume entropy

The volume entropy of a Riemannian metric g on a manifold M measures the asymptotic exponential
growth of the volume of balls in the universal cover M it is defined by

1
hwot(g) = limsup — log voly(B(z, R)), (1.3)
R—+oco T

where vol, denotes the Riemannian volume corresponding to g. We define the volume entropy of a
Hilbert geometry (2, dq) by the same formula, with respect the Busemann volume.

It is not clear when the limit in (1.3) exists, but some results are already known: as a consequence
of theorem 1.1.2, if Q is a polytope then h, (€2, dq) = 0; at the opposite, we have the

Theorem 1.5.1 ([10]). Let Q C RP™ be a convex proper open set. If the boundary 9Q of  is O,
that is, has Lipschitz derivative, then h,o(Q,dg) =n — 1.

The global feeling is that any Hilbert geometry is in between the two extremal cases of the ellipsoid
and the simplex. In particular, the following conjecture is still open.

Conjecture 1.5.2. For any Q) C RP",
hvol(QadQ) <n-—1

In [10] the conjecture is proved in dimension n = 2 and an example is explicitly constructed where
0 < hyor < 1.

Remark that in the case of a convex set ) divided by I', we can choose any volume on the quotient
manifold Q/T", or even any probability measure and lift it to Q. The volume entropy does not
depend on the choice of such a measure. In particular, by choosing a Dirac measure, it is the same
as looking at the exponential growth rate of the orbit of a point o € 2 under I'. This number is
the critical exponent of I':

1
or = limsup — log Nr(o, R),
R—4o0 R

where
NF(O? R) = ﬁ{’)/a dQ(Oa ,70) < R}

denotes the number of points of the orbit I'.o in the ball of radius R about o. This quantity is the
main character of the last two chapters.

For a nonnecessarily cocompact group, the volume entropy is in general bigger than the critical
exponent:
hvol = 6F-

For example, in the hyperbolic space, h,o; = n — 1, but dr clearly depends on the group. Take for
example a punctured torus. The loop v around the puncture can be represented by a parabolic or a
hyperbolic element of Isom(H?). In the first case, the surface has finite volume and h, = dr = 1;
in the second one, it is convex cocompact, and we can change the length of the geodesic loop
representing v so that ér can take any value in (0, 1).
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1.6 Topological entropy

1.6.1 The compact case

A major invariant in the theory of dynamical systems is the topological entropy, which roughly
speaking measures how the system separates the points, how much it is chaotic.

Given a flow ¢! : X — X on a compact metric space (X, d), we define the distances d;, t > 0, on
X by di(z,y) = maxogs<t d(@*(2),9°(y)), =,y € X. The topological entropy of ¢ is then the well
defined quantity
1
hiop(p) = lim [limsup Zlog N((p,t,e)} € [0, +o0],

=0 L 5400

where N(¢,t,€) denotes the minimal number of balls of radius e for d; needed to cover X.

In [49], Anthony Manning proved the following result:

Theorem 1.6.1. Let (M, g) be a compact Riemannian manifold of volume entropy hyor. Let hiop
be the topological entropy of the geodesic flow of g on HM. We always have

htop = h'uol~
Furthermore, if the sectional curvature of M is negative then
htop = hyol-

In his PhD thesis, Daniel Egloff [30] extended this result for some regular Finsler manifolds. In
fact, Manning’s proof still works in the special case we are dealing with here to get the

Proposition 1.6.2. Let Q C RP" be a strictly convex proper open set, and M = Q/T a compact
manifold modeled on Q. Then

htop = hyot = 5F~

We do not reproduce the proof here, see [49]. The only point we have to check is the following
technical lemma that Manning proved using negative curvature. Here we can compute it directly.

Lemma 1.6.3. The distance between corresponding points of two geodesics o, 7 : [0,r] — § is at
most do(a(0),7(0)) + da(o(r),7(r)).

Proof. There are two cases: either o and 7 meet each other or not. Anyway, by joining the point
o(0) and 7(r) with a third geodesic, we see we only have to prove that the distance between two
different lines going away from the same point (but not necessary with the same speed) increases.
So suppose ¢, : R — Q are two lines beginning at the same point m = ¢(0) = ¢/(0). Take two
pairs of corresponding points (a,a’) = (c(t1),c (t1)), (b,V) = (c(t2), (t2)) with t2 >t > 0. We
want to prove that dg(a,a’) < dq(b,b’). As it is obvious if ¢; = 0, assume #; > 0 and note x, 2z’ and
1,7y’ the points on the boundary 9 of Q such that z,a,a’, 2’ and y,b,b’, 1y’ are on the same line,
in this order. Note also Y = (mz) N (bd') and Y = (maz’) N (b'), so that by convexity of 2, the
six points Y, y, b, b, y', Y’ are different and on the same line, in this order. The two lines (aa’) and
(bb') meet at a certain point that we can send at infinity by an homography. So we can assume the
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nY/

)

Y

Figure 1.7: To follow the proof of lemma 1.6.3

two lines are parallel (c.f. figure 1.7).
Then it follows from Thales’ theorem that

1> [.I‘,a7a,/73?] = [K ba blvyl] > [y7b7 bl7y/]a

so that
dao(a,a’) = |log([z,a,d’,x])| < |log([y,b,b",y'])| = da(b,b).

1.6.2 The noncompact case

Consider the system defined by a flow ¢! : X — X of a nonnecessarily compact metric space
(X,d). Bowen [17] extended the definition of topological entropy to this setting. It consists in
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exhausting the space by compact subsets, compute the entropy of each such set and take the supre-
mum.

More precisely, if K is any compact subset of X, we can look at the spaces (K, d;) for t > 0, where
the distances d; are defined as in the last section. The topological entropy of ¢ on (K, d) is defined
by

1
hiop(p, d) = lim | limsup —log Nk q)(¢,t,€)| € [0, 400],
=0l 5400 ’
where Nx q4y(¢,t, €) denotes the minimal number of balls of radius € for d; needed to cover K. The
topological entropy of ¢ on (X,d) is then
htOP(@’ d) = Sl;;p htop(Ka d)7

where the supremum is taken over all compact subsets of X.

In the case of a noncompact space, this quantity may depend on the distance d, since all the
distances defining the same topology on X are not equivalent. To make it independant on the
distance, we then take the infimum on all the distances which define the same topology. In formula,
the topological entropy of ¢ on X is defined as

htop(QO) = lgf htop((p7 d)
As shown by Handel and Kitchens in [37], this generalization seems to be the good one.
In the context of this thesis, we will see that the topological entropy of the geodesic flow on a

noncompact quotient 2/I' is actually equal to the critical exponent dr of the group I'. This is the
goal of section 5.1.
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Chapter 2

Dynamics of the geodesic flow

We describe here the main tool that we will use to study the geodesic flow of Hilbert
metrics. The last section proves the uniform hyperbolicity of the geodesic flow on a
compact quotient and a geometrically finite surface.

2.1 Foulon’s dynamical formalism

Here we explain how to extend to the context of this work the dynamical objects introduced by
Patrick Foulon in [31] to study second-order differential equations: they provide analogues of Rie-
mannian objects such as covariant differentiation, parallel transport and curvature for any such
equation which is regular enough.

We want to apply that formalism to our Hilbert geometries, which are more irregular. Here we
carefully check that these objects are still well defined, and even smooth in some sense, under some
specific assumptions. For more details about this, we refer the reader to [31] and to the appendix
of [32] for an English version.

This part is also introducing some notations that will be used all along the text.

2.1.1 Directional smoothness

Assume a smooth vector field X is given on a smooth manifold W. We denote by
e Cxo(W) (or simply Cxo) the set of functions f on W such that, for any n > 0, L%, f exists;

o C%(W) (or simply C%,) the set of functions f € Cxo such that, for any n > 0, L%, f €
Cr(W).

A Cxo (respectively C%,) vector field Z will be a section of W — TW which is smooth in the
direction X©, that is, the Lie derivative L%, Z exists (respectively exists and is CP) for any n > 0.
Equivalently, Z can be locally written as Z = Y f;Z; where the Z; are smooth vector fields on W,
and f; € C'xo (respectively f; € Ch).

When X? is a complete vector field, f being in Cyo means that f is smooth all along the orbits of
the flow generated by X°.

25
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Lemma 2.1.1. Let m € C}(O and X = mX°. For any Cxo vector field Z,
(Z) Lzm € Cxo;
(i) for any n >0, the Lie derivative L% Z = [X[---[X, Z]---] is a Cxo vector field.

In some sense, if X = mX? with m € C5,,this lemma means that to be smooth with respect to
X is equivalent to being smooth with respect to X°. The proof will make use of the following
improved version of Schwartz’ theorem.

Lemma 2.1.2. Let f: R” — R be a C' map. If 6328];‘ exists and is continuous then so is %
0T iOTi

8%f _  8%f

and we have 5,007 = Dwidw;

Proof of lemma 2.1.1. (i) Let w € W. Since X° is smooth, we can find smooth coordinates

(xo,21, -+ ,x,) on a neighbourhood V,, of w such that X0 = 8%0 and Z = ZziXi, where
zi € Cx (V) and X' = L.

Let f € Cyo. Then on V,,, we formally have

LyoLzf =Y Lxo(zLxif) =Y LxozLx:f+ Y zLxo(Lx:f).

In fact, this expression makes sense. The first term is well defined and in C'xo. The second one
exists from lemma 2.1.2; we even have LyoLxif = LxiLxof, so that

LxoLzf=LzLxof + ZLXOZiLXif- (2.1)
We now prove that L%, Lzm exists by induction on n. Assume that for some n > 0, we know that
L%oLzm =my, + LzL%om
for some function m,, € Cxo. Then
L' Lym = Lxom, + LxoLz(L%om).

But L%,m € Ci, so that we can apply the preceding result (equation (2.1)) with f = L%,m to
get
LyoLz(L%m) = LzL%5'm+g

for some function g € C'xo. We thus have
Lt Lzm = mu 1 + LzLYG ' m
with m,41 = Lxom, + g € Cxo. That proves the first point.

(ii) The Lie derivative Z2 := LyoZ exists for any n > 0. Let Zy := Z and (formally) Z,, :== L% Z
for n > 1. Assume that for some n > 0, Z,, exists and can be written

Ty = m"Zg + zn
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where z,, is some Cxo vector field. Then
Zniw = [X,Z,) = m[X°m"Z0 +2,]— Lz m X°
= m[X% 2] +m" 20+ nm"Lxom Z3, — Lz, m X°,

so that
1,0
Z’n+1 = m"+ Zn+1 + Zn+1

with 2,41 € Cxo. That proves the second point. O

2.1.2 Second-order differential equations
Let M be a smooth manifold. The homogeneous tangent bundle
7 HM =TM ~ {0}/R} — M
of M consists of pairs (x, [£]) with x € M and [{] = R’ &, £ € T, M ~ {0}. Call

r: TM~{0} — HM
(z,6)  — (%,[¢])

the projection from TM ~\ {0} to HM.

Definition 2.1.3 (Foulon, [31]). A second-order differential equation on M is a vector field X :
HM — THM on the homogeneous tangent bundle such that

rodmoX = Idg.

In what follows, M is a smooth manifold and X a complete C' second-order differential equation
on M. We make the assumption that X = mX? where

e X0 is a smooth second-order differential equation on M:;
e m e Cyo(HM).

Lemma 2.1.1 claims that to be smooth with respect to either X or X is equivalent, so we will not
make any difference between Cx and Cxo functions or vector fields.

We denote by (¢)icr the flow generated by X. If w € HM, ¢.w denotes the orbit of w under
the flow ¢!, that is, p.w = {¢*(w), t € R}. Remark that X and X° have the same orbits, up to
parametrization. We follow the presentation made in [31].

2.1.3 The vertical distribution and operator

The vertical distribution is the smooth distribution VHM = kerdmr where # : HM — M is
the bundle projection. The letter Y will always denote a Cx vertical vector field, and we write
Y € VHM. The following lemma is proved in [31]:
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Lemma 2.1.4. Letwyg € HM, Y1,---,Y,_1 be vertical vector fields along w.wq such that, for any
w € pawy, Yi(w), -, Yo 1(w) is a basis of Vi, HM. Then for any w € p.wy, the family

X(w),Yi(w), -, Y1 (w), [X,V1](w), -, [X, Yn_1](w)
is a basis of Ty, HM .
This lemma allows us to define the vertical operator as the C'x-linear operator such that
vx(X) =vx(Y) =0 vx([X,Y]) =Y.
By Cx-linear, we mean that, for any function f € Cy,
vx(f2) = fux(Z2).
From the very definition, we can check that
vx = muxo. (2.2)

2.1.4 The horizontal operator and distribution

The horizontal operator Hx : VHM — THM is the Cx-linear operator defined by
1
Hx(Y) = ~[X, Y] = Sox (IX, [X, Y]]).
Lemma 2.1.1 assures us that this definition makes sense. More precisely, we have
[X,Y] =m[X° Y] — LymX°

and
[Xa [Xa Y]] = mQ[XOa [X07Y]] + LXm[XO7 Y] - (LXLYm - mL[X,Y]m)XO'

Since vx = muvxo, we thus get
1
Hx(Y)=mHxo(Y) + LymX°® + 5 LxomY. (2.3)

The horizontal distribution hX HM is defined by
RXHM = Hx(VHM).
The verticality lemma 2.1.4 implies that Hx is injective, so that we get the continuous decomposi-

tion

THM =R.X @ VHM & h™* HM.
By a horizontal vector field h € hX HM, we will mean a Cx section h of HM — hX HM.

The operators vx and Hy exchange VHM and hX HM in the following sense: lemma 2.1.1 allows
us to consider the compositions vx o Hx and Hx ovx, and see that forany Y € VHM, h € hXHM ,

vx o Hx(Y) =Y, Hx ovx(h) = h. (2.4)
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In particular, remark that any horizontal vector field h can be written h = Hx (Y), for a unique
Y eVHM.

Finally, we can define a pseudo-complex structure
J¥ hXHM ® VHM — h"HM ©® VHM
by setting JX =vx on RXHM and JX = —Hy on VHM. Equation (2.4) gives

JX OJX = 7Id|VHM€BhXHM'

2.1.5 Projections

We associate to the decomposition
THM =R.X ®VHM ®h*HM
the corresponding decomposition of the identity:
Id=p~ @ p; @ py.

We immediately have that

Moreover,

Lemma 2.1.5. For any Cx wvector field Z, we have

0
pX(2) =~ (Z) = (Ly o (2)logm) X’
1
P (2) =) (2) = 5(Lxo logm)vxo(2);

0 1
i (Z)=py (Z)+ (Lv o (2) logm)X° + §(LX0 logm)vxo(Z).
In particular, every projection of Z is still a C'x wvector field.
Proof. Let Z = aX +Y +h = a®X% + Y% 4+ h0 be the two decompositions of the vector field Z
along .w. If we let y = vyxo(h®) = vxo(Z), we have, using (2.3),

1 1 1
h= Hx(vx(Z)) = EHx(y) = Hxo(y) + %onm Y+ ELym X0,
Thus 1

h=h"+ §LX0 (logm)y + L, (logm)X°,

and
1
Z = (aX + Ly(logm)X°) + (Y + §LX0 (logm)y) + h° = a® X% + Y 4 n°.

Identifying gives the result. O
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2.1.6 Dynamical derivation and parallel transport

We define an analog of the covariant derivation along X that we call the dynamical derivation and
denote by DX. It is the C'x-differential operator of order 1 defined by

DX(X) =0, DX(¥) = —ox (X, [X,Y])), [D¥, Hx] =0.

In our context, being a Cx-differential operator of order 1 means that for any f € Cx,
DX(fZ) = fDX(Z) + (Lx f)Z.
Remark that, on VHM, we can write
DX(Y) = Hx(Y) +[X,Y]. (2.6)
We can also check that
¥ o 1
D* =mD* + i(onm)Id. (2.7)

A vector field Z is said to be parallel along X, or along any orbit, if DX(Z) = 0. This allows us
to consider the parallel transport of a C'x vector field along an orbit: given Z(w) € T, HM, the
parallel transport of Z(w) along y.w is the parallel vector field Z along p.w whose value at w is
Z(w); the parallel transport of Z(w) at ¢!(w) is the vector Z (¢t (w)) = T*(Z(w)) € T\ HM . Since
DX commutes with J¥, the parallel transport also commutes with JX. If X is the generator of
a Riemannian geodesic flow, the projection on the base of this transport coincides with the usual
parallel transport along geodesics.

We can relate the parallel transports with respect to X% and X, as stated in the next lemma. This
lemma is essential in this work and will be used in many different parts.

Lemma 2.1.6. Let w € HM and pick a vertical vector Y (w) € V,HM. Denote by Y and Y° its
parallel transports with respect to X and X° along p.w. Let h = JX(Y) and h° = JXD(YO) be the
corresponding parallel transports of h(w) = JX(Y (w)) and h(w) = JXO(YO(w)) along ¢.w. Then

-

m

and
h = —Lym X°+ (m(w)ym)/2 B9 — ") [ om v,
m

Proof. We look for the unique vector field Y along ¢.w such that DX(Y) = 0 and which takes the
value Y (w) at the point w. Equation (2.7) gives

1
DX(Y) = mDX'(Y) + 5Lx (logm)Y.
Assume we can write Y = fY° along ¢.w. Then f is the solution of the equation

1
Lx(log f) + §LX(logm) =0,
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which, with f(w) = 1, gives

tw B mw) 1/2
s @) = ()
Finally, )
tw) — m(w) 1z 0(ptw
Vi) = (i) Yot (2.8

Now, using (2.6), we have
h= Hx(Y) = —[X,Y] + DX(V) = —[X,Y]
along p.w. Hence, from (2.8), we have

h=—[X,Y] = —Lym X°—m [X°Y]

—Lym X° —m [X0, ™)y 0]
= —Lym X% — (m(w)m)"/? [X° Y°) + m(w)m Lxo(m~1) Y

= —Lym X%+ (m(w)m)/2 h0 — 28 [ om YO

m

2.1.7 Jacobi endomorphism and curvature

The Jacobi operator RX is the C'x-linear operator defined by
RY(X) =0, R*(Y) = py (X, Hx(Y))), [R*, Hx] =0.

RX is well defined thanks to lemma 2.1.1 and from lemma 2.1.5, we get that for any Cx vector
field Z, R*(Z) is also a C'x vector field. Remark that R commutes with JX. On VHM, we have

1 1
RY =m?RX + (gmLiom — 4 (Lxom)?)Id. (2.9)

In the case X is the geodesic flow of a Riemannian metric g on M, the Jacobi operator allows to
recover the curvature tensor R, of g: for u,v € T, M ~ {0}, we have

dr(RXV (z, [u
R = V),

where V (z, [u]) is the unique vector in R.X (x, [u]) © hX HM (z, [u]) such that dr(V (x, [u])) = v.

2.2 Dynamical formalism applied to Hilbert geometry

2.2.1 Construction

Let Q be a strictly convex subset of RP" with C! boundary. The geodesic flow ¢! of the Hilbert
metric dg is defined on the homogeneous tangent bundle HQ) = TQ \ {0}/R,: given a point z in
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2 and a direction [¢] € H,Q, follow the line leaving « in the direction [§] during the time ¢.
Denote by X the generator of ¢f, that is, the second-order differential equation X : HQ — THQ

such that p
t
el =X

dt |t:0<p

Choose an affine chart and a Euclidean metric on it, such that 2 appears as a bounded subset of R™.
Let X¢: HQQ — TH() be the smooth second-order differential equation generating the Euclidean
geodesic flow on HS). Of course, this flow is not complete on H(2, that is, it is not defined for all
t € R, but it is locally defined at least for small ¢. Since X and X¢ have the same geodesics, we
have X = mX¢ for some nonnegative function m, and we can check that

) Jwa | Jza|

m(w) =2 B w = (z,[£]) € HQ.

A direct computation gives that, for any w = (z,[¢]) € HS,

4
L%om (w)=———, L%m =0, n>3,

|[zzT| — |xz™|
Era)

L e - 2
xem (w) |xta—|

so that m € Ck.. Thus the formalism introduced in the last section is relevant in this situation,
X°¢ playing the role of X°.

We immediately check that RX" = 0. Moreover, we have

Proposition 2.2.1. Let Q be a strictly convex subset of RP™ with C! boundary and X be the
generator of the Hilbert metric on Q). Then

X —
R |VHQEBhXHQ - 7Id‘VHQ€ahXHQ-

This proposition means that, in some sense, such Hilbert geometries have constant strictly negative
curvature.

Proof. We have

1 1 1 _ |zat||lzz~| -4 1 lwzt| — |zz— |\
—mL%.m — —(Lxem)? ==.2 . -2 —
g MExem 4( xem) 2 |zta—| “|zta—] 4 xtz—
4 |zt |lwa”| + (jeat| — |za~|)?
[ztz|?
Using equation (2.9), we then get RX |y yogenx ma = —Id|v gasnx Ha- O

2.2.2 Hilbert’s 1-form

The vertical derivative of a C! Finsler metric F on a manifold W is the 1-form on TW ~ {0} defined
for 2 € T(TW ~{0}) by:
F dp(Z)) — F
dT’F(I7§)(Z):11m (x’§+€ p( )) (IZ?,E),

e—0 €
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where p : TW — W is the bundle projection. This form depends only on the direction [£]: it is
invariant under the Liouville flow generated by the Liouville field D = > @aii. As a consequence,
d, F' descends by homogeneity on HW to get a 1-form A called the Hilbert form of F'.

Let X be the infinitesimal generator of the geodesic flow of F' on HW. Since [dm(X (z,[¢]))] = [£],
we can define A for any Z € THW by

A(Z)  tim P+ eZ) — 1

e—0 €

Remark that A(X) =1 and that A(Y") = 0 for any vertical vector field.

When X is smooth, the 2-form dA is well defined and we have
1xdA =0 kerA=VHW & h*HW.

The following proposition extends this result to our less regular Hilbert geometries.

Proposition 2.2.2. Let Q be a strictly convex subset of RP™ with C! boundary and A the Hilbert
form of the Hilbert metric F on ). Then

(i) ker A=VHQ ®hXHQ;
(i) A is invariant under the geodesic flow of the Hilbert metric.

To prove the proposition, we have to make some computations on HS2, and to make them easier,
we will use some special charts, that we introduce now. Choose a point w = (z, [§]) € HQ with
orbit p.w. A chart adapted to this orbit is an affine chart where the intersection T,+092 N T, -9
is contained in the hyperplane at infinity, and a Euclidean structure on it so that the line (zz™) is
orthogonal to T,+9Q and T,- 0.

T, 00 T, 90

Figure 2.1: A good chart at w = (z, [{])

All along this work, when we talk about a good chart at or a chart adapted to w € HQ or its
orbit w.w, we mean such a chart.
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In a good chart at w, we clearly have Lym = 0 along ¢.w for any Y € VHQ.

Remark 2.2.3. As a corollary of the following proof, we will get that, in a good chart at w =
(z,[¢]) € HQ, |

dr(Vu HQ @ hyy HQ) = (xx) ™,
where orthogonality is taken with respect to the Euclidean metric of the chart. More generally, this
implies that dm(hX HQ) is the tangent space to the unit ball of F(z,.) in the direction [£].

Proof of proposition 2.2.2. (i) We only have to prove that h*X HQ C ker A. Let wg = (z0, [£0]) be
any point in HQ) and fix a chart for 2 in R™ which is adapted to wp, and where xy = 0 is the
origin. Choose a small open neighbourhood U of wg in HQ. If U is small enough, we can choose
coordinates (21, ,&n, &2, - ,&,) on U such that:

e wy = 0 is the origin;

o for w = (z,[{]) € U, the coordinates (z1,---,z,) of x are the Euclidean coordinates in R”
and [¢] is identified with the vector

7] ~ 0

—w) = -+ Y G- €T,
§=¢(w) =g+ ;g 700 €
where the & vary in a neighbourhood of 0. In other words, [¢] = [1: & : -+ : &,], where we

make use of homogeneous coordinates on H,R".

1%} 9

We use the associated basis (%’ 7 on the tangent space TU C THS2. Remark that
i J

)1<i<n72<‘7‘<n

all along p.wy NU, we have £ = 321-

In this chart, we introduce a new second-order differential equation X° on U by
0 " 0
XO%w) = X° = — i
() =X [6) = 5o+ Db
In particular, we have X%(w) = 6%1 along p.wo N U, and dr(X°(x,[£])) = € on U. Moreover, X

can be written as X = kX°, where k is the Cx function defined on U by

_ Fdr(X°(w))) [€(w)]

k(w) = W = F(z,{(w)) = m7 w = (z,[£]);

Along p.wg, we clearly have Ly k = 0.

The vertical distribution on U is given by

VU = vect { 0 } .
9&; i€{2,---,n}

Since Ly k = 0 on ¢.wy, the pseudo-complex structure along ¢.wg given by X° on VU @ XU is
very simple: we have

0 0 0
v':27"'7n7 Xoa:| = 5 |:X07 |:X07:|:| 207
’ [ 9¢; Dz 3
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. 0 0 0 0
=2 (50) = g6 e (56 ) = 50

WU = veet { 2 . (2.10)
Ox; i€{2, n}

Equation (2.3) can be applied with k instead of m. Any horizontal vector field h € hXU along p.wy
can thus be written

hence

so that

1
for a certain vector field Y € VU. Since A(Y) = 0, we have A(h) = kA(Hxo(Y)); so, with (2.10)
we only have to prove that for any i € {2,--- ,n} and w € p.wg, A(w (827:) = 0. But
B Fdr(X +ez2)) —1 F(dr(X° + e52-)) — F(dr(X?))
A <> = lim = = lim 4
ox; e—0 € e—0 €

so that, for w € p.wy,

X Gi - X
A(w)< 9 > i Tt eps)) — P, D iy F <a>’

ox; e—0 € ox;
where we see F as a real valued function on QxR"™ C R?" with coordinates (x1, -+ , Tp, 8—‘21, cee 65; ).
Now, in our chart, from the formula giving F', we clearly have % € ker DF for any i € {2,--- ,n},

which proves that hX HQ C ker A along p.wg N U. This can be made for any point wg, so that
hXHQ C ker A on HS.

(ii) Since A(X) = 1, to prove that A is invariant under the flow, we only have to prove that its
kernel is invariant, which from the first result is equivalent to proving that

pX([X,Y]) = p™([X,h]) =0
for any vertical and horizontal vector fields Y and h.

e Since [X,Y] = —Hx(Y) + DX(Y), we clearly have p* ([X,Y]) = 0.

e Now let wy € HS) and consider the neighbourhood U of Wo that we have considered before,
with the same coordinates. Along ¢.wp, we have pX = pX | hence

0 0
p~([X, h)) = p* (K[X°,h] — LykX0) = kp™ ([X°,h]) — Lik.
But, in our chart, we also have Lpk = 0 along @.wq: this can be seen directly or using equation

(2.11). Then, if h = Hx(Y) and h® = Hxo(Y'), we have, with (2.11),

P (X0, h]) = X" (X0, k00 + S (Lxoh)¥]) = kp™ (X%, %)) = 0
on Y. wop.

Finally, pX ([X, h]) = 0 on ¢.wp, and thus on HQ. O
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2.3 Metrics on HM

Dynamical flows are usually studied on Riemannian manifolds, and most of the definitions or
theorems are stated in this context: the definition of an Anosov system or a Lyapunov exponent,
Oseledets’ theorem...

Moreover, the manifold is often compact: in this case, all Riemannian metrics, and more generally
all metrics defining the same topology, are equivalent; thus the choice of a specific metric is not
important. When the manifold is not compact anymore, this choice has some importance: the
behaviour of the flow has to be understood with respect to the chosen metric; it is not difficult to
see that we can change a stable vector into an unstable one by changing the asymptotics of the
metric.

In the case of geodesic flows on complete Riemannian open manifolds M, HM inherits a natural
Riemannian metric from the base metric. In our case, we define a Finsler metric F on HS, using
the decomposition THQ = R.X ®hXHQ S VHQ: if Z = aX + h+ Y is some vector of THQ, we
set

B 1 1/2
F(Z)= <|a|2 +5 ((F(drh))? + (F(dﬂJX(Y)))2)> . (2.12)

Since the last decomposition is only continuous in general, F is also only continuous. It allows us
to define the length of a C! curve c: [0,1] — HQ as

l(c):/o F(é(t)) dt.

It induces a continuous metric d on HS: the distance between two points v, w € H is the minimal
length of a C'! curve joining v and w.

Remark that, if Q C RP?, then F is actually a continuous Riemannian metric on H). In any case,
it is obviously JX-invariant on hX HQ © VHS).

Most of the theorems in hyperbolic dynamics are stated on a Riemannian manifold. But the
Riemannian metric is just a way of measuring length of vectors, so it is not a problem to work
with a Finsler metric instead. However, as in the definition of Lyapunov regular points in the next
chapter, determinants or angles are used, which are defined with respect to the Riemannian metric.
This difficulty can be overpassed here by remarking that, using John’s ellipsoid, it is always possible
to define a Riemannian metric || . || on HQ which is bi-Lipschitz equivalent to F: for any Z € THS

1 _
— 2| < F(2) < va| 2|,
\/ﬁll | <F(Z) <Vnl|Z|

where n is the dimension of Q. Of course, there is no reason for this metric || . || to be even
continuous but it will not be important, as we will see later.
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2.4 Stable and unstable manifolds

2.4.1 Parallel transport and action of the flow

We pick a tangent vector Z(w) € T,,HQ. We want to study the behavior of the vector field
Z(pH(w)) = dp*(Z(w)) defined along the orbit p.w. Assume

Z(w) =Y (w) + h(w) € Vo, HQ @ kX HA.

Since VHQ®hX HS) is invariant under the flow, we can write Z = Y + h. To find the expressions of
Y and h, we write that, since Z is invariant under the flow, the Lie bracket [X, Z] is 0 everywhere
on Y.w.

For that, let (hy, -+ ,h,_1) be a basis of hX HQ of DX-parallel vectors along ¢.w, that is, hl =
hi(¢t(w)) = Tt(h;(w)), where T* denotes the parallel transport for DX and (h;(w)); is a basis of
hXHQ. Since DX and vy commute, the family {Y;} = {vx(h;)} is a basis of VHQ of DX-parallel
vectors along p.w. We immediately have h; = Hx(Y;) and

Indeed, since Y; is parallel,
[X,Y] = D¥(Y;) — Hx(Y;) = —hi.

To see the second equality, we write
[X, ha] = oy ([, hal) + P ([ i]) + px ([X i)
But since h; is parallel, we have
i (X, hil) = Hx ovx ([X, hi]) = —Hx o vx ([X, [X, Y]]) = 2D¥ (h;) = 0,
and from the preceding proposition, px ([X, h;]) = 0; hence
[X, h] = pif (X, h]) = py ([X, Hx (Y3)]) = R¥ (Vi) = i

Then, in this basis, Z can be written as

Z = Zaihi +b;Y;,

where a; and b; are smooth real functions along p.w, and the formulas (2.13) give

n—1
[X, Z} =0 <= Z(ani — bz)hz + (Lxlh — aZ)Y; =0
i=1

!

bl:LXal, al:LXb“ 'L:1,77’L—1

bi:LXai; ai:Lg(ai, iZl,-n,TL—l.

!

From that we get the solution

Z(¢"(w)) = dp"(Z(w)) = Y Ase! (hf + Y{) + Bie 7" (h} = Y)), (2.14)
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where
1 1
A; = §(ai(w) + bi(w)), Bi = 5(‘“(“’) — bi(w))

depend on the initial coordinates of Z at w.

It is then natural to define the distributions
E'={Y +JX(Y), Y € VHQ}, E* ={Y — JX(Y), Y ¢ VHQ}.
Obviously, we have
Proposition 2.4.1. E* and E* are invariant under the flow, and if Z° € E*, Z* € E“, then
do'(Z") = e'TH(Z"), dp'(Z°) = e 'TY(Z%).
The operator JX exhanges E* and E° and
dpt JX(2°) = 2 JX (dp' Z°).

Proof. The first equalities come directly from equations (2.14). For the second one, it is just the
fact that JX commutes with the parallel transport:

ngtJX(ZS) _ etTtJX(Zs) _ etJXTt(Zs) _ 62tJX(d(ptZS).

The decomposition TH2 = R.X & E° & E* will now be called the Anosov decomposition.

2.4.2 Stable and unstable manifolds

For w = (x,[¢]) € HQ, let us denote by H,, = H,+ () the horosphere based at 27 = ¢ (w) and
passing through z. The horosphere Hy., where o : (x,[€]) € HQ — (x,[—£]), is the horosphere
‘H,- (x) the horosphere based at = = ¢~ °°(w) and passing through z.

The stable and unstable manifolds at wg = (zo, [£0]) € HQ are the C! submanifolds of HQ defined
as
W (wo) = {w = (, [zwy]) € HQ, z € Hy},

W (wo) = {w = (z,[wy x]) € HQ, © € Hyy}-
We can check (see [7]) that

W*(wo) = {w € HQ,  lim_da(m¢" (w), 7o' (wo)) = 0} = {w € HQ, lim d(" (w), ¢'(wo)) = 0},

W (wo) = {w € HQ, lim_do(rg!(w), 7' (wo)) = 0} = {w € HQ, lim_d(p"(w), ¢ (wo)) = 0}.
(Recall that m : HQ — Q denotes the bundle projection)

Proposition 2.4.2. The distributions E* and E° are the tangent spaces to W* and W™.
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Figure 2.2: Stable and unstable manifolds

That will be a corollary of proposition 2.4.5. The image of a point w = (z,£) € H) under the flow
is denoted by ¢t (w) = (2¢,&;), for t € R. We first need a

Lemma 2.4.3. We have
lzex™| gy |za|

| ¢ Jaat|

In particular the following asymptotic expansion holds:

zxt|?
lzixt| = |m(w|) e 2 4+ O(e™).

Proof. We have dq(x, ;) = t, which implies

or _ |wa” | Jeia”]

x| x|
and yields the result. O

Lemma 2.4.4. In a good chart at w = (z,[£]) there exists a constant C(w) such that, for any
Z(w) € E*(w) U E*(w),

F(T'Z(w)) = C(w)(jwa* ||z ]) < - 1—),
|33tyt | |$tyt |

where y” and y; denote the points of intersection of the line {x + \dm(Z(w))}rer with 0Q (see
figure 2.3).

Proof. Assume for example that Z(w) € E*(w). Then Z(w) = h(w)+J%X (h(w)), for some horizontal
vector h(w). Let h denote the parallel transport of h(w), which is defined on the orbit p.w. We
have T'Z = h + JX(h) on p.w. In a good chart at w, lemma 2.1.6 gives

dr(h) = (m(w)m)*/? dr(h°);
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y
dr(Z(w)) dr(T*Z(w))
x~ T Lt d
Y

Figure 2.3: Parallel transport on Hf2

in this case, since the chart is adapted, h° is just the Euclidean parallel transport of h(w) along
.w. In particular, |dr(h°)| = |dr(h°(w))| = |dr(h(w))|. Hence

F(T'Z(w)) = F(dr(h(p'w))) = wm@t(w”w <|xt2+| * xiﬂ) '

O

Proposition 2.4.5. Let Z* € E°, Z" € E". Thent — F(dptZ®) is a strictly decreasing bijection
from R onto (0,+00), and t — F(dp!ZY) is a strictly increasing bijection from R onto (0, +00).
Proof. Choose a stable vector Z°(w) € E*(w) and a chart adapted to w = (z,[¢]). In that chart,

the vector dm(T"Z*%(w)) is orthogonal to x¢x" with respect to the Euclidean structure on the chart;
hence so are xty:r and x¢y; . We have from lemma 2.4.1,

F(de'Z%(w)) = e ' F(T" Z5(w)).
Lemma 2.4.3 gives

‘.’tt{E—| _ 62t|(£t$+‘|mx |

|zat]’

hence from lemma 2.4.4, there is a constant C’(w) such that

_ + +
F(d(ptzs(w)) —_ O/(’LU) (|l‘t$+| |$t$_|)
lzeyy | |zeyy |
The strict convexity of € implies that the function h : ¢t — % + % is strictly decreas-
tY¢ tY¢

ing on R, the C! regularity of 9 that lim; , . h(t) = 0 and the strict convexity of Q that

The same computation holds for t +— F(dp~t(Z%)) for Z* € E".



2.5. UNIFORM HYPERBOLICITY OF THE GEODESIC FLOW 41

2.5 Uniform hyperbolicity of the geodesic flow

We want to consider now the geodesic flow ¢ of the Hilbert metric on the homogeneous bundle
HM of a quotient manifold M = Q/T'. The interesting part of the dynamics lies on the nonwan-
dering set N C HM of the flow. This is the closed (t-invariant set consisting of points w € HM
such that for any neighbourhood V' C HM of w, the set of ¢ € R such that @*(V) NV # 0 is
unbounded, neither from above nor from below. Intuitively, this set consists of the points that
come back close to their original positions infinitely often. We can thus expect some interesting
dynamical properties on this set. On the contrary, a point w ¢ N will after some time leave forever
to an unbounded part of the manifold.

Take for example a torus with a point removed, with a hyperbolic structure where the loop around
the point is represented by a hyperbolic element . This manifold can be decomposed into a com-
pact part, containing the “torus part” until the minimal geodesic ¢ corresponding to v, and an
unbounded part, that we can picture as a trumpet, whose base would be the minimal geodesic c.
Any geodesic entering the trumpet will never be able to come back into the compact part and will
leave to infinity in the trumpet. The nonwandering set consists of these points that never enter the
trumpet.

As can be expected, the nonwandering set is related to the limit set in the following way: if N ¢ HQ
is the lift of NV to HQ) under the covering map, then

N = {w=(z,[¢]), 7,2~ € Ar}.

In particular, we have that N C HC(Ar), that is, the projection of N on M is contained in the
convex core of M.

All the things that were defined or proved on €2 in the last sections also make sense on the quotient
manifold M, by using the covering map. We will keep using the same notations on M and HM
since no confusion is possible. In particular, we still denote by X the second-order differential
equation generating the geodesic flow ¢! on HM.

The next theorem is due to Yves Benoist in [7], but our study sheds a different light on the problem.

Theorem 2.5.1. Assume M = Q/T is compact. Then the geodesic flow ¢ is Anosov with invariant
decomposition,
THM =R.X ® E° ® E*;

that is, there exist constants C,a, 8 > 0 such that for any t > 0,
F(dp'(Z%)) < Ce™*'F(Z*), Z*® € E¥,
F(dp=t(Z2") < Ce P'F(Z%), Z%(w) € E*.
Proof. The argument we give here is Benoist’s final argument in [7]. Choose 0 < a < 1 and let
E; ={Z° € E*(w), F(Z°) =1} Cc THM.

From lemma 2.4.5, for any Z* € E3, there is a unique time T, (Z*) such that F(d¢'(Z*)) = a. That
defines a continuous function T, : Ef — R. Since Ef is compact and t — F(dp'Z®) is strictly
decreasing to 0, this function is bounded by some t, > 0, such that

Vt > t,, Yo € Ef, F(dp'(Z%)) < a.
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Thus we get, for ¢ large enough and any Z° € Ef(w),
F(dp'(2%) < aF(dg'™"(2%)) < -+ < alt /I F(dgt1t/telte (2%)) < Memo",

with M, = max{F (dp'(Z*)), 0 <t < t4, Z° € Ej} < +00 and o = —log(a)/t, > 0.
That means that for any Z° € E*,

F(dp'(Z*)) < C*Mue “"F(Z°).
O

In fact, one can prove that the same uniform property holds on the nonwandering set of a geomet-
rically finite surface. That is the following

Theorem 2.5.2. Let M = QT be a geometrically finite surface. Then the geodesic flow ' is
uniformly hyperbolic on the nonwandering set N with invariant decomposition

THM =R.X ¢ E° @ EY;
that is, there exist constants C,a, 8 > 0 such that for any t > 0,
F(dp'(Z%) < Ce™*"F(Z%), Z* € E®,
F(de='(Z%) < Ce P'F(2v), Z* € E“.

In this case, we have to understand the behaviour of the flow in a cusp. But we know that far
enough in the cusp, the geometry is almost hyperbolic, and we can hope the same for the flow.
This hope is realized by lemma 2.5.3.

Let P be a maximal parabolic subgroup of I' fixing p € 9. Recall proposition 1.3.5 and pick
a small horoball H based at p such that there exist hyperbolic metrics h and h’ on the quotient
C = H/P that satisty

—h<h<F<h<Cr
for some C' > 1.

Lemma 2.5.3. Let w € HC and t > 0. If ¢*(w) € HC for all s € [0,t] then, for any stable vector
Z(w) € E*(w), we have B o
F(dp'Z(w)) < Ke™"F(Z(w)),

for some constant K > 0.

Proof. We are going to compare the geodesic flows of F' and h on HC to prove the proposition.
Let X® be the generator of the geodesic flow ¢! of h on HC. We have

F=g"h X=gX"
for some C! function g : HC — [1,C].

The tangent space THC can be decomposed in two ways, with respect to X or X%:
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THM =R.X & VHC®hXHC =R.X*@ VHC & hX HC.

We have the endomorphlsm JX on VHC @ hX HC, that exhanges vertical and horizontal subspaces;
the same for JX" on VHC & hX" HC. We define the two metrics F and b on HC as in (2.12). F
is a continuous Finsler metric and h a smooth Riemannian metric, which is just the usual Sasaki
metric.

Stable and unstable distributions of X and X® are given by

v={Y +JX(Y), Y e VHAM}, ES={Y —JX(Y), Y e VHM};

EY={Y +JX(Y), Y e VHM)}, Es ={Y — JX'(Y), Y € VHM}.

Let Z(w) = h(w) — Y(w) € E*(w) be a X-stable vector, and denote by Z = h — Y its parallel
transport along ¢.w. Then
do' Z(w) = e ' Z(p'w).

Hence
F(dy'Z(w)) = eT"F(Z(¢' (w)) = e F(dn(h(¢'w))),

so we just have to understand the behaviour of F(dn(h)) which is smaller than h(dn(h)).

Denote by Z*(w) = h*(w) — Y (w) € Ef(w) the XP-stable vector whose vertical part is the same
than Z(w), and by Z® = h® — Y™ its XP-parallel transport along p.w. Lemma 2.1.6 gives

h=—Lyg X"+ (g(w)g)"/? h* + g(w)g L (g7 ") Y™ (2.15)

Lemma 2.5.4. There exists 0 < 0 < 7/2 independant of w so that the angle (for h) between dm(h)
and dr(h®) is smaller than 6.

Proof. From remark 2.2.3, the space dm,,(hX HM) is nothing else than the tangent space to the
1
unit ball of F' in the direction [¢], if w = (z,[£]). The inequality 611 < F < h and the convexity

of the balls allows us to conclude. (Just make a picture: the unit ball of h is a sphere and the unit
ball of F' is then between two spheres.) O

As a consequence of this lemma, we have

F(dn(h)) < n(dr(h)) < v/1+ tan? 0 h(proj,, e yar,dr(h).

where proj dr (hX" FEAM) denotes the h-orthogonal projection on dﬂ(hXhH M). Equation (2.15) gives
that

projdfr(hXhHM)dTr(h) = (g(w)g)1/2 dﬂ—(hh)
Thus, we get

F(dr(h)) < V1+tan?0 (g(w)g)**n(dr(h?)) < Kh(Z*) = Kh(Z%(w)),

where K = Cv/1 + tan? 6; the last equality comes from the fact that Z® is parallel for X® which is
the flow of a Riemannian metric: the parallel transport is then an isometry.
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We conclude, with the help of equation (2.15), that

h(Z"(w)) = h(dr(h"(w))) =g~ (w)h(dr(gh"(w)))
= 971(w)h(PTOjdﬂ(hXhHN[)(dﬂ'(h(w))))

< g~ H(w)h(dm (h(w)))

Finally,

F(dp'Z(w)) < Ke"F(Z(w)).
O

Proof of theorem 2.5.2. We can decompose N into a compact part Ny and a finite number of parts
Ci, 1 < i < k, corresponding to the cusps. In the case where there are no cusps, the proof in the
compact case works. In the general case, from the proof in the compact case, we know there exist
0 <a<1and D > 0, such that, for any w € N such that ¢*(w) € Ny for all s € [0,¢], and any
stable vector Z(w) € E*(w),

F(de'Z(w)) < De” " F(Z(w)).

Lemma 2.5.3 tells us that the cusps can be chosen so that there exists K > 0 such that, for any
w € N such that ¢°(w) stays in some C; for all s € [0, t], and any stable vector Z(w) € E*(w)

F(dp'Z(w)) < Ke 'F(Z(w)).
Thus, for any w € N and any stable vector Z(w) € E*(w), we have

F(de'Z(w)) < max{D, K}e “""F(Z(w)).
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Lyapunov exponents

We study Lyapunov exponents of the geodesic flow. We see that the parallel transport
contains all the information about them. Then we make a link between Lyapunov
exponents, Oseledets’ decomposition and the shape of the boundary. This link allows
to define in a very simple way the Lyapunov manifolds, which are tangent to the spaces
appearing in Oseledets’ filtration.

3.1 Lyapunov regular points

Let » = (¢') be a C! flow on a Riemannian manifold (W, || . ||). We want to describe the behaviour
of dyp? when t is large. For example, if W is compact and ¢ is an Anosov flow, then for any stable
vector Z, the function t — ||dp®Z|| is exponentially decreasing; on the contrary, if Z is an unstable
vector, then it is exponentially increasing.

With this example in mind, the first idea is thus for a given general flow to look for some stable
or unstable vectors, whose norm would decrease or increase exponentially fast. This behaviour is
captured by looking at the limit

o1 ¢
Jlim~log lde! (2)] = x(2)
This limit does not exist in general but we can always look at the inferior and superior limits if
needed. If it exists, then for any € > 0, there exists some C, > 0 such that, whenever ¢ > 0,
O 1M=L o' (Z)]| < CeeXDF,

More generally, call X(Z) and x(Z) the superior and inferior limits. Then for any e > 0, there exists
some C, > 0 such that, whenever ¢t > 0,
C1eX(D =9t < dpt(Z)|| < C.eXA Tt

€

The numbers X(Z) and x(Z) are called the upper and lower forward Lyapunov exponents of Z.
When x(Z) > 0 or X(Z) < 0, that means that ||de'Z|| has exponential behaviour.

Let us state clearly the definitions.

45
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Definitions 3.1.1. Let ¢ = (¢') be a C' flow on a Riemannian manifold (W, || . ||). The forward
and backward upper Lyapunov exponents X, (Z) and X_(Z) of a vector Z € TW are defined by

_ . 1
X+ (Z) = limsup -~ log [|de" (Z)||.
t—too

The forward and backward lower Lyapunov exponents XJF(Z) and x_(Z) of a vector Z € TW are
defined by

| ¢
X, (2) = limnf = log [|d¢"(Z)].

It is not difficult to see that these numbers can take only a finite number of values when Z varies
in T,,W for a given w € W. Namely there exists a filtration

{0} = Fo(w) & Fi(w) & -+ & Fy(w) =T, W

and real numbers
Y1,+(w) < < Xp,+(w)a
such that, for any vector Z; € F;(w) \ Fi_1(w), 1 <i < p,

. 1 -
lim sup n log [|de* (Z:)|| = X; 4 (w).

t—+4o00

The same occurs for backward and lower Lyapunov exponents.

We will be interested in the case where all these numbers coincide:

Definitions 3.1.2. Let ¢ = (') be a C! flow on a Riemannian manifold W. A point w € W is
said to be regular if there exist a p'-invariant decomposition

TW =E & & E,

along w.w and real numbers
x1(w) < - < xp(w),
such that, for any vector Z; € E; \ {0},

o1 "
Jim o g (20)] = xa(uw), (31)
and
1 oSN
t_lggloo n log | det dp'| = Zdlm E; xi(w). (3.2)

i=1
The point w is said to be forward or backward regular if this behaviour occurs only when t goes
respectively to +00 or —oo.

The numbers x;(w) associated to a regular point w are called the Lyapunov exponents of the flow
at w. Let F;" = @i _  E; for 1 <i <p. Then

{0}=F CF ¢ - CFf =TW
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is a l-invariant filtration of TW along w.w such that, for any vector Z; € F;r ~ Fitl, 1 <1< p,
lim_+ log |4 (Z)]| =
t;gloo n og jlap (4;)|| = Xi-

Similarly, if F;” = &}_,E; for 1 < i < p then
TW:Ff 2 "'QFp_ QF;;H :{O}

is a t-invariant filtration of TW along ¢.w such that, for any vector Z; € F; ~ F. ., 1 <i <
® gy , y i i+10 b,

.1 ¢
t_lgnoo ; log ||de*(Z:)|| = xi-

We will call the decomposition
TW=E&---®kE,

and the filtrations
Ffre - CFf Fr 2 2F,

the Lyapunov or Oseledets decomposition and filtrations.

In our case, we do not have a smooth Riemannian metric on H(2 as in the last definition; instead,
we have a (noncontinuous) Riemannian metric || . || and a continuous Finsler metric F' which are
bi-Lipschitz equivalent. Then equation (3.1) will be replaced by

lim_~ Tog F(de'(Z0)) = xi(uw). (3.3)

t—+oo

In equation (3.2), the quantity | det dy'| represents the effect of the flow on the Riemannian volume
vol: if A is some Borel subset of T,,/W' >~ R™ with non-zero volume, then

et dypt] = e (@2 4)

00l (A)
When we deal with the geodesic flow of some Riemannian manifold M, this volume is preserved pro-
vided we chose the usual Riemannian metric on H M, inherited from the basis, whose volume is just
the Liouville measure. Here, | det d,,!| has to be understood with respect to the (noncontinuous)
Riemannian metric || . || or as

volwt(w)(dth(w, 1)),

where vol denotes the Busemann volume of F and B(w, 1) is the F-unit ball in T,, HQ. We recall
that the Busemann volume of F is the volume form such that vol,,(B(w,1)) = 1. In what follows,
we will still use the notation det.
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3.2 Lyapunov exponents in Hilbert geometry

3.2.1 Lyapunov exponents and Oseledets decomposition

A regular point w € HQ has always 0 as Lyapunov exponent since F'(X) = 1. We will say that w
has no zero Lyapunov exponent if X is the only vector to have non exponential behaviour; that is,
the subspace Ey corresponding to the exponent 0 along ¢.w has dimension 1.

Proposition 2.4.5 implies that if w is a regular point, then x(Z°%) < 0 and x(Z*) > 0 for any
Z% € E*(w), Z* € E*(w). Furthermore, if Z* € E*(w), then Z* = JX Z% € E*(w) and proposition
2.4.1 gives

F(Z%) = e 2 F(ZY),

so that
W(Z") = 24+ x(27).
Now, choose a tangent vector Z at a regular point w whose Lyapunov exponent is 0. Z can be

written as Z = aX + Z% 4+ Z° for some a € R, Z° € E*, Z" € E". Since

1 _
lim n log F(de'(Z)) = 0,

t—+oo

we conclude that x(Z%) = x(Z°) = 0. Thus, the subspace E; corresponding to the exponent 0 can
be decomposed as
Ec=RX@E @ ET,

where E- C E*, ET C E“.
At a regular point, the Oseledets decomposition can thus be written in the following way:
THQ = E;® (®]_E}) 0 E,,, DRX © Ef © (B]_, E}') ® E}yq, (3.4)

with the relations
Ef = JX(EY), 0<i<p.

The subspaces Ej and Eg, or Ej,; and E; ;, might be {0}; w has no zero Lyapunov exponent if
and only if all of them are actually {0}. The corresponding Lyapunov exponents are

—2=Xg <XT < <X <X =0=x§ <XF < <X <X =2
with
X;r:Xi—+2,0<igp.

If w has no zero Lyapunov exponent then all the Lyapunov exponents at w are strictly between —2
and 2. That will be the case in most of our applications.

We can simplify a bit this exposition by going down to the base manifold 2. Indeed, we see that
some informations, namely those given by stable and unstable parts, are redundant and we can get
rid of that.
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Choose Z!" € E}* corresponding to the Lyapunov exponent Xj- Then, from proposition 2.4.1,
dot(Z1) = e'T*(Z}"), hence

1 — 1 —
+ . - t u — . - t u
X; = him , log F(de*(Z)) =1+ t_l:inrloo , log F(T*(Z}")).

v t—Too

For the corresponding stable vector ZF = JX(Z%), we have dp'(Z$) = e 'T*(Z¢) so that
- . 1 St sy . 1 Tt 7X (7u\)) ; 1 F(Tt(Z¥
X7 = -1t lim Mo F(T(20) = ~1+ lim Log F(T'(75(20))) = L+, im_ L log F(T'(2))

because JX commutes with 7% and F is JX-invariant. The Lyapunov exponents of the parallel
transport are defined as

I I .
L= - )y = - b <1< ,
m; := lim —log F(T"(Z)) = lim - log F(T*(Z7)), 0<i<p+1
and the corresponding Oseledets decomposition is given by
THQ=R.X o (o) (B © BY)) .
The Lyapunov exponents are then given by

Xf=1+4n, x; =-1+n,. (3.5)

3.2.2 Parallel transport on )

To eliminate the redundance of stable and unstable parts, we can define the parallel transport di-
rectly on Q. Take a point z € Q and choose a geodesic z(t) = 7 o ¢! (z, [¢]) leaving in the direction
[€]. If v € T,Q2, we define its parallel transport T(tr g)v along this geodesic as dr(Tth(v)) where

h(v) is the only vector in R.X (z, [£]) @ hfg,[ﬂ)HQ such that dr(h(v)) = v.
Remark that, if w = (z,[¢]) € HQ is regular, then
oM (Ef @ EY) = E* @ EY = WX HQ® VHQ,
and the projection of this subspace on T is T, ’H,,. We have
dn(TtZ(w)) = T dr(Z(w),
for any vector Z(w) € T, HQ). Furthermore,
dn(E3 & EY) = dr(E?) = dr(EY),

and the Oseledets decomposition at w thus induces a decomposition of T, H.,, which we call the
Oseledets decomposition at x of the parallel transport along the geodesic p.w, or in the direction
[<].
The parallel Lyapunov exponent of v € T, along ¢.(z,[£]), or in the direction [¢], if it exists, is
given by
. 1
n((w,[g])v) = lim _—log F(T*(v)).

t——+oo
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These exponents are related to those of the parallel transport on HS) by
n(w, Z(w)) = n(w,dr(Z(w))), Z(w) € T, H.
We can in the same way define upper, lower, forward and backward parallel Lyapunov exponents.
We then have the following description of regular points:
Proposition 3.2.1. A point w = (x, [§]) € HQ is regular if and only if there exist a decomposition
T,Q = RESD Eo(w) © (B, Ei(w)) © Epp1(w),
with possibly Eo(w) = {0} or E,t11(w) = {0}, and numbers
—1L=no(w) <m(w) <--- <mp(w) <npy1(w) =1

such that, for any v; € E; \ {0},

. 1
him n log F(T},(v;)) = mi(w),

t—+oco
and
L p+1
o1 t , : , o
t_];gloo : log |det T0,| = ;nz(w) dim E;(w) := n(w).

Now if Z® and Z“ are any stable and unstable vectors in Ty, H{2, their Lyapunov exponents are
given by
x(2°) = =1+ n(w,dn(2%)), x(Z*) =1+ n(w,dr(Z")).

Obviously, the same can be done on a quotient manifold M = Q/T', where we now have a parallel
transport 1" along geodesics. This parallel transport is really different from the Riemannian one,
even if they coincide when the metric is actually Riemannian. Here it is only possible to transport
vectors along geodesics, and this transport is not an isometry for the Finsler metric F'. In particular,
if we transport a vector along a closed geodesic, then, after one loop, the transported vector will
not necessarily coincide with the original one. This remark will be useful later in section 5.3.

3.2.3 The flip map

We already understood the symmetry that exists between stable and unstable distributions of the
flow, which is a consequence of the fact it is a geodesic flow. We now investigate another symmetry,
that exists thanks to the reversibility of the Finsler metric we are considering. The flip map is the
C* involutive diffeomorphism o defined by

o: HQ — HQ
w=(z,[{]) — (z,[=¢]).

The reversiblity of the metric implies that o conjugates the flows ¢* and ¢~

<p7tzoogptoa.
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We say that a subset A of HS) is symmetric if it is o-invariant, that is, 0(A) = A. A function
f: HQ — R is symmetric (resp. antisymmetric) if f oo = f (resp. foo = —f).

The main results about the flip map are summarized in the following lemma. The last point is the
key argument for proving theorems 5.3.3 and 5.3.6.
Lemma 3.2.2. Let Q be a strictly convex proper open set Q C RP™ with C' boundary. Then

(i) The differential do anticommutes with JX and preserves the decomposition THQ = R.X @
hWXHQ @ VHQ; o is an F-isometry and exchanges the stable and unstable foliations.

(ii) The set A of regular points is a symmetric set and do preserves the Osedelets decomposition
(3.4) by sending Ef(w) to E¥(o(w)), for anyw € A, 0 <i<p+ 1.
(iii) The function n: A — R is antisymmetric.

Proof. (i) Clearly, do(X) = —X and do preserves VHS). Now, just recall how vx is defined: for
any Y € VHQ, we have vx(X) = vx(Y) =0, and vx([X,Y]) = -V, so
(X

dovx (X) =vx(do(X)) =0 =dovx(Y) = vx(do(Y)),
and
vxdo([X,Y]) = vx([do(X),do(Y)]) = vx([-X,do(Y)] = do(Y) = —dovx ([X,Y]).
So doovy = —vx odo. As for Hx (see section 2.1.4):
Ao Hx (V) = do(~[X,Y] ~ gox[X, [X, Y1) = ~[do(X),do(V)] + gox[do(X), [do(X), do(¥)]

X, do (V)] + %vx X, [X, do (V)]

— —Hx(do(Y)).

Finally, we get that do and J% anticommute, which implies the o-invariance of F. It also gives
that, if Z =Y + JX(Y) € E%, then do(Z) = do(Y) — J¥do(Y) € E*, hence do(E*) = E*, and
conversely; so o exchanges stable and unstable foliations.

(ii) If w € A, then from the very definition 3.1.2 of a regular point,

1 — 1 _
lim - log F(dup (7)) = — lim_—logFldy'(2)) = —x(w, 2),

t—+o0 t——+oo

for Z € T, HQ). Since ¢~ = 0 o ¢! o o, we thus have

b YT N = T L 1ae T ¢ _
—x(w,Z) = im log F(dwyp™(2)) = lim ; log F(dg(uw)¢' (dwo(2))) = x(o(w), dwo(2)),

which proves that o(w) is also regular, hence A is symmetric. We also get the decomposition

=0

p+1
To(wyHQ = R.X(0(w)) @ (EB(Ef(U(UJ)) o EZ-‘(U(@U))))
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with
E;(o(w)) = do(E}(w)), Ef(o(w)) = do(E} (w)).
(iii) We then have

Xi (0(w) = =xp1_i(w), (3.6)
that is (recall (3.5)),

1+ni(o(w)) = =(=1 4 mpr1-i(w)).

This implies

ni(o(w)) = =1py1-i(w),

and

n(o(w)) =Y dim Ei(o(w)) ni(o(w)) = —n(w).
i=1

3.3 Oseledets’ theorem

The essential result about regular points is the following theorem of Oseledets:

Theorem 3.3.1 (Osedelets’ ergodic multiplicative theorem, [58]). Let ¢ = (') be a C' flow on a
Riemannian manifold (W, || . ||) and u a ¢'-invariant probability measure. If

d
Jle=olog ldo™!|| € L' (W, o), (3.7)

then the set A of reqular points has full measure.

Assumption (3.7) means that the flow does not expand or contract locally too fast. This essentially
allows us to use Birkhoff’s ergodic theorem to prove the theorem.

This condition is always satisfied on a compact manifold, since the functions in (3.7) are actually
bounded. Thus, on a compact manifold, the set of regular points has full measure for any invariant
probability measure.

If m is a finite measure on a nonnecessarily compact manifold, then it is sufficient to prove such a
condition of boundedness. That is what is done by the next lemma for our geodesic flow. Remark
that in this case, we do not have C'' metrics, so condition (3.7) has to be replaced by

1 1
limsup ~ log ||d¢?||, liminf ~ log ||d¢?|| € L*(W, p).
t—0 t t—0 ¢

Lemma 3.3.2. Let Q) C RP" be a strictly convex proper open set with C' boundary. For any
Z%e k5, Z% € E™,
o S 1 nl trzs : 1 nl trzs
—2 < liminf —log F(dp*Z*) < limsup — log F'(de'Z*) <0
t—0 ¢t tso

and
1 — 1 —
0 < liminf = log F(dyp'Z") < limsup - log F(dp'Z") < 2.
t—=0 ¢t t>0 ¢t
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In particular, for anyt € R and Z € THSQ,
e F(Z) < F(de'(2)) < 2MF(Z).

This lemma clearly implies the already known fact (coming from proposition 2.4.5) that Lyapunov
exponents at a regular point are all between —2 and 2. But it is more precise: it gives that the
rate of expansion/contraction is at any time between —2 and 2, not only asymptotically, and that
is what is essential to apply Oseledets’ theorem.

Proof. It is a direct corollary of proposition 2.4.5: we know that ¢ — F(dy'Z*) is decreasing, hence

1 —
lim sup n log F(dp'Z*) < 0.

t—0

But we also know from proposition 2.4.1 that
F(dp'Z®) = e 2 F(dp' J*(Z?)).
Since JX(Z*) € E*, proposition 2.4.5 tells us that ¢ — F(dp'JX(Z*)) is increasing, hence

P S
- N >
lutnlglf ; log F(de'J* (Z%)) 2 0

and ]
.. - = t s > _9.
h?i}lglf ; log F(d¢'Z®) > —2
Using JX, we get the second inequality, and by integrating, we get the last one. O

3.4 Lyapunov structure of the boundary

In this part, we give a link between Lyapunov exponents and the shape of the boundary at the
endpoint of a regular orbit.

3.4.1 Motivation

We first give the idea in dimension 2. Let w € € be a regular point and choose a vector v tangent
to H.,, with parallel Lyapunov exponent 7. In a good chart at w, lemma 2.4.4 gives

1 1
F(T'0) = C(w)(|eia* i) ( S ) .
|15t3/t | |$tyt ‘

Assume that |zsy; | < |7y, |. Then

1. F(T
lim L og LMY

=—1 11 lz1y; |
e T g|xtx+\1/2 = Am oS loslTyy s

hence, dividing by log |z,2|'/2,

log F(T") . log |1y, |

t—+oo log |zyxt|1/2 I A log @,z t|1/2”
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Since |r;27| < e, that yields

g loglmey | _ 14
t—+oo log |z x| 2

Let f: T+ 0Q — R™ be the graph of dQ at o7, so that |z,2| = f(|z4y;7|). We thus obtain

. log f(s) 2
lim ————— = ——
s—0 logs 1+7n

that is, for any € > 0, there exists C' > 0 such that
ClsThte f(s) < CsThne. (3.8)

This link was first established in [25] for divisible convex sets, where the condition |zy; | < |z¢y; |
is always satisfied. In order to generalize it, we must introduce new definitions. It may be a bit
fastidious so you could prefer going directly to proposition 3.4.9, and have a look to the part in
between when it is needed.

3.4.2 Locally convex submanifolds of RP"

Definition 3.4.1. A codimension 1 C° submanifold N of R™ is locally (strictly) convex if for
any x € N, there is a neighbourhood V. of x in R™ such that V, ~ N consists of two connected
components, one of them being (strictly) convez.

A codimension 1 C° submanifold N of RP" is locally (strictly) convex if its trace in any affine
chart is locally (strictly) convez.

Obviously, to check if N C RP" is convex around =z, it is enough to look at the trace of N in one
affine chart at x. Choose a point z € N in a locally convex submanifold N and an affine chart
centered at . We can find a tangent space T, of N at x such that V,, N N is entirely contained in
one of the closed half-spaces defined by T,.. We can then endow the chart with a suitable Euclidean
structure, so that, around x, N appears as the graph of a convex function f : U C T, — [0, +00)
defined on an open neighbourhood U of 0 € T,. This function is (at least) as regular as N, is
positive, f(0) = 0 and f/(0) = 0 if N is C* at . When N is strictly locally convex, then f is
strictly convex, in particular f(v) > 0 for v # 0.

In what follows, we are interested in the shape of the boundary 9 of Q at some specific point,
or, more generally, in the local shape of locally strictly convex C! submanifolds of RP™. De-
note by Cvx(n) the set of strictly convex C! functions f : B = B(0,1) C R® — R such that
f(0) = f(0) = 0, where B denotes the closed unit ball in R™. We look for properties of such
functions which are invariant by projective transformations.

3.4.3 Approximate a-regularity

We introduce here the main notion of approximate a-regularity, describe its meaning and prove
some useful lemmas.
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Definitions 3.4.2. A function f € Cvx(1) is said to be approximately a-regular, a € [1,+0o0],

if
g [0+ 51
lim——— 2 —q.
t—0 log |¢|

This property is clearly invariant by affine transformations, and in particular by change of Euclidean
structure. It is in fact invariant by projective ones, but we do not need to prove it directly, since it
will be a consequence of proposition 3.4.9.

Obviously, the function ¢ € R — [t|*, o > 1 is approximately a-regular. To be a-regular, with
1 < a < 400, means that we roughly behave like ¢ — |¢]|®.

The case @ = oo is a particular one: f is oo-regular means that for any a > 1, f(t) < [¢|* for
small |t|. An easy example of such a function is provided by f : t — e~/ t*. On the other side,
f is l-regular means that for any oo > 1, f(¢) > |t|*. An example of function which is 1-regular is
provided by the Legendre transform of the last one.

In the case where 1 < a < 400, we can state the following equivalent definitions. The proof is
straightforward.

Lemma 3.4.3. Let f € Cvx(1) and 1 < a < +00. The following propositions are equivalent:
e f is approximately a-regular;

e for any ¢ > 0 and small |t|,

|t|a+5 < f(t) +2f(7t) g |t|o¢75;

e the function t — is C*~¢ and o + e-convez at 0 for any € > 0.

ft) + f(=1)
2

To understand the last proposition, we recall the following
Definitions 3.4.4. Let a, 8 > 1 We say that a function f € Cvx(n) is

o C% if for small |t|, t € R™, there is some C > 0 such that
ft) <l

o B-convex if for small |t|, t € R™, there is some C > 0 such that
1) = Clef’.

We now give another equivalent definition of approximate regularity, that shows the relation with
the motivation above. Proposition 3.4.9 is the most important consequence of it.

Let f € Cvx(1). Denote by f+ = f‘;ll] and f~ = —fl[ill o These functions are both nonnegative, in-

creasing and concave and their value at 0 is 0; they are C* on (0, 1] and their tangent at 0 is vertical.
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The harmonic mean of two numbers a,b > 0 is defined as

2
H(a,b) = ————.
(a7 ) a_l + b_l
The harmonic mean of two functions f, g : X — (0, +00) defined on the same set X is the function
H(f,qg) defined for z € X by

HUf0)(&) = H(f2), o0) =
f@) ' g(x)

Proposition 3.4.5. A function f € Cvx(1) is approzimately a-regular, o € [1,+00] if and only if

+ —
o OBAUT SO _
t—0+ logt

with the convention that +%.o =0.

Proof. As we will see, it is enough to take f continuous, so by replacing f+ and f~ by min(f*, f7)
and max(fT, f7), we can assume that f* < f~, that is f(¢) > f(—t) for ¢ > 0. Now, assuming
that the limit exists,

R AL
g AU W (Fa*ro) _ ot 1+ f(t))_

0+ log t -0+ logt ~isot logt -0+ log t

Since fT < f, the second limit is 0, and the first one is

log f1(t) B log u

t—o+ logt S0+ log f(u)’

But, since f(u) > f(—u) for u > 0, we get

. logu . logu ) logu
lim lim =1

_—— = im ————,
u=07 Jog %ﬂ_“) u—0+ logf(u) +log (1 + %) u—0+ log f(u>

hence the result. ]

The last construction can be generalized in a way that will be useful later, for proving proposition
3.4.9. Let f € Cvx(1) and pick a > 0. We define two new “inverse functions” f.,F(s) and f, (s) for
s € [0, €], € > 0 small enough, depending on a; these are positive functions defined by the equations

FUL () =5 = sf(s): f(—fa (5)) = 5+ 54 (s).

Geometrically, for s € [0, €] on the vertical axis, the line (as) cuts the graph of f at two points a™
and a—, with s between a* and a~; f;(s) and f, (s) are the abscissae of a* and a~ (c.f. figure
3.4.3). f* and f~ can be considered as fi‘oo and fi .
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Af(t)

fa (s) 0 faf (s)

Figure 3.1: Construction of new inverses

+ —
Lemma 3.4.6. Let f € Cvx(1) and a > 0. The functions % and f% can be extended by continuity
at 0 by
fa fa
Z7(0)===(0) = 1.

AR

In particular, for s > 0 small enough,
)= fa(s), f7(s) = fa ().

;{(8) < 1. Since f is convex and f(0) = 0, we

Proof. We prove it for f* and fF. Clearly, we have o)

A0 [HON

get
+(s
s=sfr o) = 10N = £ (0 0)) < 2o - 220
Hence, for 0 < s <e< 1
Tl o1 s =1 ).

£F £F
The function f% can even be extended at 0 by f%(O) =1

The result to remember is the following consequence of lemmas 3.4.6 and 3.4.5:
Corollary 3.4.7. Picka > 0. A function f € Cvx(1) is approximately a-regular if and only if

+ —
lim IOgH(fa 7fa )(t) :a—l.
logt

t—0+
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We end this section by extending the definitions in higher dimensions:

Definitions 3.4.8. A function f € Cvx(n) is said to be Lyapunov-regular at x if it is approz-
imately regular in any direction, that is, for any v € R™ ~\ {0}, there exists a(v) € [1,00] such

that
g 105 110
1 log [¢| = a(v)-

Let f € Cvx(n) . The upper and lower Lyapunov exponents @(v) and a(v) of v € R™ are defined by

g L1+ F-0)

_ . 2
a(v) = limsu ,
( ) t—0 P log |t|
o 112 F(=10)
a(v) = liminf 2
50 log ||

The function is then Lyapunov-regular if and only if the preceding limits are indeed limits in
[1,400], that is, for any v € R™, @(v) = a(v). Obviously, lemma 3.4.5 and corollary 3.4.7 have
their counterpart in higher dimensions.

3.4.4 Lyapunov-regularity of the boundary

If © is a bounded convex set in the Euclidean space R” with C! boundary, the graph of 9Q at x is
the function
f: UcCcT,00 — R"
u — {u+ In(z)}rer NOQ,

where n(x) denotes a normal vector to 02 at x, and U is a sufficiently small open neighbourhood
of x € 0N for the function to be defined.

The following innocent-like proposition, whose proof is now straightforward, allows us to understand
a lot about the asymptotic dynamics of the flow. Also, it gives an important tool for intuition.

Proposition 3.4.9. Let Q) be a strictly convex proper open set of RP™ with C' boundary. Pick
xT € 99Q, choose any affine chart containing x+ and a Euclidean metric on it.
Then for any v € Ty+0Q, any w € HQ ending at z+, we have

2 2

71 (w, v(w)) = -1, (w,v(w) = Tt

azt,v)
where v(w) is any vector in TyH, N (R ®R.E) C R™ and a(z™,v) and a(x™,v) are the lower and
upper Lyapunov exponents of O at ™ in the direction v, as defined at the very end of the last
section.

Proof. Let w = (z,[¢]) be a point ending at =, and (x4, [&]) = ¢'(z, [£]) its image by ¢!. The
vector T?v(w) is at any time contained in the plane generated by ¢ and v, thus, by working in
restriction to this plane, we can assume that n = 2.

We cannot choose a good chart at w, since the chart is already fixed. But, by affine invariance,
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Figure 3.2: For proposition 3.4.9

we can choose the Euclidean metric | . | and & so that £LT,+0Q = R.w and |v| = |&| = 1. Let a
be the point of intersection of T+ 0 and T,- 0. The vector T v(w) always points to a, that is,
Ttv(w) € R.xia. Thus,

F(T%(w))—'TtU(w”( L 1t >

2 lzeylt | |y |

where y;~ and y; are the intersection points of (ax;) and OQ. If f : U C T,+ 9 — R denotes the
function whose graph is a neighbourhood of z in 9, then

1 ( 1 N 1 ) B 1
2 \Jeey' | oy |) H(f fa)(Jeeat )
where fF and f; are defined as in corollary 3.4.7. This corollary tells us that

: 1 1 : log |zx™| log H(fg", fo ) (Jzez ™))
lim sup — log — = limsup —
t—s4oo t H(fd, fa)(|zezt|) t—s 400 t log |xizt|

. log |z .. log H(fs, fa )(s)
= limsup ——————— lim sup
t—4oo t s—0 logs

2
a(zt,v)

2t). Hence

(recall that |xx™| =< e

1 2 1
limsup - log F(T" = lim sup - log |T"v(w)|.
im sup - log (T"v(w)) (et o) sy og [T v(w)|
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From our choice of Euclidean metric, we have |T*v(w)| < (T*v(w), v). Lemma 2.1.6 gives
T'v(w) = —Lym(p'w)& + (m(w)m(@'w))'*dr(JX"(Y)),

where Y € VHQ is such that dr(JX(Y)) = v(w); dr(JX (Y
Euclidean norm, which implies that

(Tto(w),v) = (m(w)m(etw))*/? < et

- —

) is collinear to v and has constant

Hence 1 5
Ny (w,v(w)) = lglfgop EF(Ttv(w)) “al@to) L.
Obviously, the same holds for lower and backward exponents.

O

The last proposition tells us that the notions of Lyapunov regularity and exponents are projectively
invariant, that is, it makes sense for codimension 1 submanifolds of RP™. It also implies the following

Corollary 3.4.10. Let f € Cvx(n). Then the numbers a(v), v € R™ N\ {0}, can take only a finite
numbers of values +00 > a1 > -+ >, =2 1, 1 < p < n. The same holds for a. Moreover, the
following propositions are equivalent:

e f is Lyapunov-regular;

e there exist a decomposition R™ = &¥_ G; and numbers +oo > a3 > -+ > «a, > 1 such that
the restriction f|g,nB(o,1) i Lyapunov-reqular with exponent cv;;

e there exist a filtration
{0} =Hy G H1 & & H,=R"
and numbers +00 > a1 > -+ > ap, = 1 such that, for any v; € H; \ H;_1, the restriction
JIRvinB(0,1) %5 Lyapunov-regular with exponent c;.

When f is Lyapunov-regular, we call the numbers «; the Lyapunov exponents of f.

Proof. The graph of f can always be considered as the boundary of a strictly convex set 2 C R*+!
with C! boundary. We can then apply the last proposition to this €. O

Finally, we can state the definition of Lyapunov regularity for submanifolds of RP™:

Definition 3.4.11. A locally strictly convex C' submanifold N of RP™ is said to be Lyapunov-
regular at © € N if its trace in some (or, equivalently, any) affine chart at x is locally the graph
of a Lyapunov regular function. The numbers aqi(x) > -+ > ap(x) attached to = are called the
Lyapunov exponents of z.

The next proposition summarizes the results that will be useful later.

Proposition 3.4.12. Let w = (z,[¢]) € HQ be a forward reqular point ending at x™, with parallel
Lyapunov exponents —1 <y < --- < np < 1. Then xt € 0Q is Lyapunov-reqular with exponents

2 .1
o =——,19=1--D.
S p

The Lyapunov decomposition of T,+0S) is the projection of the Lyapunov decomposition of T, H.,

along zx™T.
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3.5 Lyapunov manifolds

Proposition 3.4.12 allows us to define Lyapunov manifolds, that is, submanifolds tangent to the
subspaces appearing in the Oseledets’ filtration. In the classical theory of nonuniformly hyperbolic
systems, the local existence of these manifolds is achieved with the help of Hadamard-Perron the-
orem (see [2]).

Choose an affine chart and a Euclidean metric on it such that Q appears as a bounded subset of
R™. Pick a Lyapunov regular point z7 € 9 with at least one Lyapunov exponent > 1. Consider
the (maybe noncomplete) Lyapunov filtration

{0} =HoC H\ &G H, CT, 09,

corresponding to the Lyapunov exponents oo > a; > --- > a, > 1 which are strictly bigger than
1 (see corollary 3.4.10). This filtration is complete, that is, H, = T,+0%, if and only if 1 is not a
Lyapunov exponent.

It induces the Lyapunov filtration

{0} = Fo(w) & Fi(w) & -+ & Fp(w) C ToHu,
of T, H,,, for any w = (x,[¢]) in the weak stable manifold
W (zh) = {w = (x, [z2]), © € Q}

corresponding to zt: if v; € F;(w) \ F;_1(w), we have

.1 " 2
tllgloo glogvai =n = o 1<1.
This filtration (F;(w)) is nothing else than the projection on the basis © of the (noncomplete)
Lyapunov filtration

{0} = 5 (w) & Fy(w) & -+ & F(w) C E*(w)

of the stable subspace E*(w); here we have F(w) = @}_, Ef (w), and F$(w) denotes the subspace
of E*(w) consisting of vectors whose Lyapunov exponents are strictly negative (see section 3.2.1).
In particular, any point w € W (zT) has the same negative forward Lyapunov exponents, which

are given by
_ 2
Xi :—14‘771‘:07—2-

Pick such a wg = (2, [£o]) € W (x). The horosphere H,,, also admits a (noncomplete) filtration
{0} & Huy &+ & Hiy © Huo,s

into C! submanifolds tangent to the Fj(w), for w € W*(wp). These submanifolds are just defined
by
Hepy = Huo N (R.E & Hy),

and it is easy to see that

. 1
Hoyy = {2 € Q, limsup . log do (7" (wo), mo" (z, [z2T])) < X; }

t—+4o00
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They are the projections on £ of the stable Lyapunov manifolds

, 1 _
Wi (wo) == {w = (x,[z2™]), x € Moo} = {w € HQ, limsup; log d(¢" (wo), ' (w)) < x5 },
t—+o0

which are tangent to the corresponding subspaces of the Lyapunov filtration of the stable distribu-

tion. In particular,

1. _
W (wo) = {w € HQ, limsup - log d(¢" (wo), 9" (w)) < 0}

t——+o0

Obviously, the same can be done for unstable distributions and manifolds: we get C'* submanifolds

{wo} & Wii(wo) & -+ & Wi (wo) € W*(wo),
of W*(wy), where

1 _
Wi (wo) = {w € HQ, limsup —log d(¢" (wo), " (w)) > x;"}.

t——o0

So, in particular,

1
Wi (wg) = {w € HQ, limsup; log d(¢"(wp), p'(w)) > 0}.

t——o0

3.6 Lyapunov exponents of a periodic orbit

We now consider a quotient manifold M = /I" and are interested in the Lyapunov exponents of
a periodic orbit on HM. Every periodic orbit corresponds to a conjugacy class [y] of a hyperbolic
element « in the group I'. Every such element is biproximal, that is: if (\;)1<i<n are its (non-
necessary distinct) eigenvalues ordered as |A1| = |Az| -+ = [Anq1], then [A1] > |A2] and |Apq1]| <
|An|. The attractive fixed point of v on 9 is an eigenvector for the eigenvalue A;, and the repulsive
one is an eigenvector for the eigenvalue \,,. The length of the corresponding periodic orbit on M
is given by

1
I(y) = §(log [A1] = log | Ant1])-

Let us do the study in dimension 2. Take an element v € I' conjugated to the matrix

A 00
0 X 0 |eSLyR),
0 0 A

with \; € R, || > [A2] > |A3]. The line (y~1) is its axis and 4 its third fixed point. We look
at the picture in the chart given by the plane {z; + 23 = 0} C R?, with the following coordinates:

v =[0:0:1], vt =[1:0:0], v°=[0:1:0].
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This is a good chart for the periodic orbit from v~ to 4T we are looking at. Choose a point
x € (v~ ") with coordinates [ag : 0 : 1 — ag] where ag € (0,1) and let w = (z, [xy*]). The point
Ty, =~ ".x is given by
Tp = [an : 0:1—ay],
with
)\lan
)\10% —+ )\2(1 — an) '

Ap4+1 =

Now, we look at a vector v = xm € 7_’y+l with m = [ag : by : 1 — ag], bp € R. Let m,, =4™.m =
[an : by 1 1 — ay], vy = XpMmy, so that |v,| = |b,|. Then (b,) is given by

Aan o &anJrl
A1an + AQ(I - an) B )\1 anp

b, = 22 nb—oa
n — )\1 a0 n-

bn+1 = bna

which leads to
Since lim, o a, = 1, we get
Since « is an isometry for F', we have, with the notations of lemma 2.4.4,

T ('m+|1/2 |m*1/2)
e 12\ Jewgt | Joug]

A2
A1

)¢

1= F(z,v) = F(xy,vy)

n

A2 e ) F (T (v)),

1

¢

by using lemma 2.4.3. Thus

F(Tnl(v) (v)) = ’)‘1 e~ M)
A2
and
1 . 1 log [A1/ Ao
lim =log F(T!(v)) = lim —— log F(T™M (v)) = -1+ 2 —= 21221
dim = log F(T"(v)) A STy o8 ( (v)) 2 el

All this can be generalized to any dimension by sectioning the convex set, so that we get the
following result.

Proposition 3.6.1. Let v be a periodic orbit of the flow, corresponding to a hyperbolic element
v €T'. Denote by Ao > A1 > -+ > Ay > A\py1 the moduli of the eigenvalues of vv. Then

e v is reqular and has no zero Lyapunov exponent;
o the Lyapunov exponents (n;(y)) of the parallel transport along v are given by

log Ao — log \;

mi(y) =-1+2 i=1-p;

log Ao —log A\ps1’
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e the sum of the parallel Lyapunov exponents is given by

log Ag + log Ap11
log Ao —log Ayt

n(v) = (n+1)

Proof. Only the last point remains to be proved. For that, we change the notation of the eigenvalues
into A\g > A\1 = --- > A\, where they are now counted with multiplicity. Then

n—1

log A\g —log Ay Z log A\g +log A, —2log A;

n—1
log Ag + log A\, 7210g (Hi:l )‘i)
log Ao — log A\, — log Ao — log A\,

log Ao —log A, “log g —log A,

n(y) = 2 —1+42 (n—1)
i=1

Since v € SL(n + 1,R), that gives

log A\g + log A\,

= 1 .
n(y) = (n+ )1og/\0—log/\n



Chapter 4

Invariant measures

The preceding parts were approaching the geodesic flow of Hilbert metrics from a topo-
logical or differential point of view. We now turn to the measure or ergodic point of
view, that is, we look at our dynamical system endowed with an invariant probabil-
ity measure. We are especially interested in the classical theory of Patterson-Sullivan
measures and we extend here various results from hyperbolic geometry.

4.1 Generalities

Ergodic theory looks at dynamical systems from a measure point of view. It considers the measur-
able action of a group G on a measure space (X, A, 1), which preserves the Radon measure u: for
any g € G, g * j1 = u, that is, for any A € A, u(g~*A) = u(A). The measure is often assumed to
have total mass 1; this assumption can be seen as a measurable counterpart of the compactness of
the space, which is often assumed when studying dynamical systems from a topological point of view.

In this chapter, we use this approach to study our geodesic flow. It is not defined on a compact
space, but we can still hope to find invariant probability measures, which would turn the space
into a finite one, from this new point of view. Of course, any invariant measure does not give an
interesting information on the system. For example, the uniform Lebesgue measure carried by a
periodic orbit is not in itself very interesting, for it sees only what occurs on the periodic orbit,
where the dynamic is trivial.

4.1.1 The Kaimanovich correspondence

Let M = Q/T be the quotient manifold of a strictly convex proper open set Q with C'! boundary
by a nonelementary group I' C Isom(f2, dg). Consider the geodesic flow ¢! of the Hilbert metric on
HM. ¢! is continuous and thus Borel-measurable, the Borel g-algebra B being the one generated
by open subsets of HM.

Let M denote the set of Borel ¢!-invariant probability measures on HM. M is a convex set, and
is nonempty: since I' is nonelementary, it contains a hyperbolic element, hence there exist periodic
orbits, and M contains all the Lebesgue measures carried by these periodic orbits; M even contains
the convex hull of such measures.

65
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We endow M with the topology of weak convergence of measures: a sequence (u,) of measures
converges to p if, for any continuous function f: HM — R,

lim /fd,un:/fdu.
n—-+00

For this topology, M is compact.

The extremal set of M consists in ergodic measures. Ergodic measures are those measures for
which any invariant Borel set has either full or zero measure. The measures carried by periodic or-
bits are ergodic, hence lie on the extremal set of M. Under certain hypotheses, the set of measures
carried by periodic orbits is dense inside the set of ergodic measures. A theorem of Coudéne and
Schapira [24] says it suffices to prove an Anosov closing lemma, which is easy to prove in our context.

The interest in ergodic measures lies in the following theorem, known as Birkhoff ergodic theorem:

Theorem 4.1.1. Let p be an invariant probability measure for the flow @' on X. Then, for any
function f € LY (X, ), the limit

. 1
F(.’E) = T1—1>1}-100 T

T
| @y ar

0

exists for p-almost every point x € X and moreover, [ F dp = [ f du. In particular, if p is ergodic
then

tim o [ = [ 1 (4.1)

T—+oo

w-almost everywhere.

This result means that if u is ergodic, then the space averages with respect to p describe the asymp-
totical time averages. Note the following important fact: let p be an ergodic measure for a flow ¢! on
a space X; if f is a p!-invariant measurable function on X, then it is constant u-almost everywhere.

The first thing we will see is that there is a natural correspondence between the dynamics of ¢! on
HM and the dynamics of the action of I" by coordinates on the double boundary 920 = 9Q x OO\ A,
where A = {(x,2), x € 00} denotes the diagonal. This correspondence is easy and relies on the
fact that 92Q is nothing else than the space of oriented geodesics of §2: to each oriented geodesic
v : R — Q, we can associate the pair (x%,27) consisting ot its two endpoints T = (+00) and
x~ = y(—00); then, the action of ¢! on a geodesic v : R — Q is just a translation, and, when we
forget about it, we get the double boundary 8%Q. Clearly, this construction does not work anymore
when the convex set is not strictly convex.

The main results are the following theorem and its corollary, which establish the expected corre-
spondence about invariant Radon measures under the action of ¢* on HM and of the group I'" on
92Q by coordinates. It was proved by Kaimanovich in [42] and his proof clearly works in the present
case. Basically, it relies on the observation we just made.

Theorem 4.1.2 (Kaimanovich [42]). Let Q2 be a strictly convex proper open set with Ct boundary.
There is a convex isomorphism between the cone of Radon measures on 0?Q and the cone of Radon
measures on HS) invariant under the geodesic flow.
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Proof. Let us just recall, without justification, how we pass from a measure A on 9%2Q to A on HS)
and conversely:

o If A is given, we define A by setting, for any Borel subset A C H(),
M) = [ ieenna anee),

where [((§7¢7) N A) denotes the Hilbert length of the intersection of the line (€~¢1) with A.

e If \is given and K is a compact Borel subset of 92€), we decompose its preimage p~!(K) C HS)
by p:w € HQ — (z7,27) = (7 (w),¢~>°(w)), as a union U,ez¢™(Kg) of (mod 0)
disjoint compact subsets “of length 17, and set A(K) = A(Kp).

O

Corollary 4.1.3 (Kaimanovich [42]). Let M = Q/T be the quotient manifold of a strictly convex
proper open set 0 with C* boundary by a nonelementary group I' C Isom(Q,dq). Then there is
a convex isomorphism between the cone of I'-invariant Radon measures on 0°Q and the cone of
Radon measures on HM invariant under the geodesic flow. This isomorphism preserves ergodicity.

The flip map at infinity is the involution do of 9?Q defined by da(&,71) = (n,£). It is a straightfor-
ward observation that the correspondence of theorem 4.1.2 is flip invariant: if A on HS) corresponds
to A on 022, then o * A corresponds to Jo * A.

4.1.2 Measure-theoretic entropy

The topological entropy is a measure of the topological complexity of a transformation @ : X — X
of a metric space (X,d). The measure-theoretic entropy plays the same role for a tranformation
& : X — X of a probability space (X, A, ). By a transformation (or a morphism), we mean
a measurable map which preserves the measure y. Measure-theoretic entropy was defined before
topological entropy by Kolmogorov and then revisited by Sinai. We refer to the classical books [72],
[60] or [45] for more details.

A countable partition P of a probability space (X, A, ) is a collection (P;);cn of measurable subsets
of X such that

w(PNP) =0, uw(X \UenP;)=0.
An element P; of P is called an atom of P. To almost any « € X can be associated the atom P(z)
of P containing z; the function x — P(z) is measurable.

The entropy of such a partition is defined as
H(P) == u(P)log pu(P,). (4.2)
i€N

It represents the information given by the partition P on (X, u): it gives a measure of how precise
in average is the information that a point x is in the atom P; of P. For example, if P is the partition
in one atom consisting of X, then H(P) = 0: we do not know more on the position of a point z € X
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if we know that z is in X...

Now consider a transformation @ : (X, u) — (X, ). Given a partition P, we want to see how @
transforms this partition; this is measured by the average entropy of P under T'. @ transforms the
partition P in a new partition ®P whose atoms are the ®~1(P;). Let P™ be the joint partition

n—1
rr=\/ o'P;
=0

P Vv @ denotes the joint partition
PvQ={ANB, A€ P,Be€Q}.
The atom @ P(z) containing x is @~ (P(Pz)). The atom P"(z) containing x is the intersection
P(z) = P(x)N® Y (P(®z))N--- NI H(P(P" 12)).

For example, if @ is an Anosov diffeomorphism, this intersection tends to consist of little pieces of
stable manifolds. This remark will be crucial in the next chapter.

The average entropy h(P,®) of P under the T is defined by

h(P,®) = lim ~H(P"). (4.3)

n—oo N

The measure-theoretic entropy of @ is then the supremum

h(®) = sup h(P, ),

which is taken with respect to all finite, or countable partitions with finite entropy. A partition
which would achieve this supremum is in some sense well adapted to describe the action of &.
Kolmogorov and later Sinai showed that generating partitions are such adapted partitions. By a
generating partition, we mean a partition P such that

+oo
\/ " P

is the partition by points. However, the existence of generating partition was not clear until Rokhlin
proved

Theorem 4.1.4 (Rokhlin, [67]). Let @ be a transformation of a probability space (X, i), with finite
entropy. If @ is aperiodic, that is, the measure of periodic points is 0, then @ admits a countable
generating partition of finite entropy.

For a flow ¢ = (') on some probability space (X, ) which preserves p, the measure-theoretic en-
tropy is defined as the entropy of the time-one map: h(p) := h(p!). The identity h(p®) = |s|h(p!)
for s # 0 justifies this definition.
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A general Borel map @ : X — X have lots of invariant probability measures, and we can consider
the entropy of each of these measures. In this case, we index all the entropies by the measure u:
hy (@), hu(P,®)... The essential result is the following theorem, known as variational principle,
which asserts that topological entropy is the supremum of measure-theoretic entropies. It was first
proved by Goodman [34] for the classical definition on compact spaces; Misiurewicz [56] then gave
a simplified proof. The generalization to more general spaces is due to Handel and Kitchens [37]
and uses the result in the compact case.

Theorem 4.1.5 (Variational Principle). Let @ : X — X be a homeomorphism of a locally compact
metric space X and M be the set of @-invariant probability measures. Then

hiop(P) = sup h, (D).
nemM

A measure which achieves the supremum in the variational principle is called a measure of maximal
entropy.

4.2 Conformal densities and Bowen-Margulis measures

We get now interested in the most popular invariant measures on negatively curved manifolds: the
family () of Patterson-Sullivan measures on the boundary at infinity, whose double u, ® p,
renormalized by a factor to make it I' invariant, is associated to the Bowen-Margulis measure on
HM. Nothing new appears in our context, so we mainly recall the already known results and
constructions made for pinched negatively curved manifolds or CAT(—1) spaces.

4.2.1 Conformal densities

A conformal density of dimension § is a family of measures (v;)zcq on 99 all in the same class,

and such that

dvy (&) = e 00c(@y),

dvy

The family (v;)zecq is said to be I'-invariant if vy, = g * v;,.
The Poincaré series of I" is the series defined by

ors,) = 3 e Hinta70)

yel’

where o denotes some fixed base point. dp denotes the critical exponent of this series: for s < dr,
the series diverges, and for s > dr, it converges; at s = dr, both are possible and we will see that
this plays a crucial role in the theory. We say that I' is divergent if the Poincaré series diverges
at the critical exponent, and convergent otherwise.

For ¢t > 0, let

Nr(o, R) = t#{~, da(o,v0) < R}.
Then we have

1
or = limsup — log Nr(o, R).
R—+o00 R
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Theorem 4.2.1 (Patterson, Sullivan). Let I' be a nonelementary discrete subgroup of Isom(§2,dq)
and dr be its critical exponent. Then there exists a conformal density (piz)zecq of dimension dr.

Proof. We make a sketch of the proof given by Patterson for convenience, and also because we will
need some technical details later. Fix o € €. Consider the measures ) for z € Q and s > ér,

defined by
s 1 —sdq(x,v0)
pe = Ze alzro)g .
gr (S, 0) ~er

These are finite measures supported on I'.o; the family (ug), is I-invariant: for any Borel subset
ACQandany g €T,

1 —sdq(z,v0) -1 _
w2 8(g7 ) =
el

u(g~tA) =

ar(

1 d
§ :e—s a(gz,970) § o(A) = u2, (A);
gF( S,O) = g7 ( ) lu’g ( )

and for two different points z and y, we have

dL:(VO) — e—s(da(z,70)=da(y,70)) . o=8byo(2,y)

If we consider these measures uf, x € £, s > Jdr as measures on 2, then we can write, for any z € €,

Ay b (w.y)
L(z) = e *=\"Y): 4.4
d@() (4.4)

The function z € Q + b, (z,y) is continuous on {2 and coincide with the Busemann function when
z € 00. For some x € , let p, be a weak limit of u when s decreases to dr, following some
subsequence (sp)nen. Equation (4.4) implies that the corresponding limits i, = lim,, o py" are
well defined. All these measures are supported on I'.o, the family (u;)seq is T-invariant, and for
& €09,

dtg — 6be (1)
&) = e %Y,
duy( )

So we are almost done. In fact, we are done if we assume that the Poincaré series diverges at dp:
in this case, the measures are supported on Ar = I'.o \. I'.o. When the Poincaré series converges
at dp, Patterson explained that we can make it diverge using an auxiliary function that does not
change the critical exponent. That is, we replace the Poincaré series by

g’F(s, x) = Z h(dQ(aj, 70))@75d(I7W0)7

yel’

where h : Ry — R, is some increasing function whose growth is subexponential, that is, for any
1 > 0, there exists ¢, > 0, such that for ¢ > ¢,,

h(t+s) < h(t)e™.
O

From now on, a I'-invariant conformal density (u;)zeq of dimension dr will also be called a
Patterson-Sullivan density, and one individual measure p, a Patterson-Sullivan measure.
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Lemma 4.2.2 (Sullivan’s shadow lemma). Let (i) be a conformal T'-invariant density of dimen-
sion 6. For any © € Q and r large enough, there exists Cy . > 0 such that for any vy € T’

1

Ciefédg(w,vz) < Nz(or(x77x)) < Cvmmefédg(m,'yw)

Proof. Here comes Roblin’s proof in [65]. We have
—1
1 (O (2, 72)) = e (YO, (v "2, 2)) = py 14 (Or(y ', ) = /O ( )e"”’m P dpg (€).
r(y 1o,z

From lemma 1.2.1, we have that

675d§z(’\/71w,$) < efébg('\/*lw,z) < e*ts(alg(’yfla:;v)f%“)7

hence

e~ 0@ 1 (O, (v e, 7)) < e (O (2, y2)) < e 1, (0, (v e, 1)),
Now, just remark that i, (O, (v tx,z)) < 1 (09Q) to get the result. O
This lemma admits the following

Corollary 4.2.3 (Sullivan). Let T be a nonelementary discrete subgroup of Isom(Q,dg) and ér be
its critical exponent.

o [f there exists a conformal I'-invariant density of dimension &, then § > or.

e For each o € Q, there exists some C, > 0 such that

Nr(o,R) < C,erk,

4.2.2 Bowen-Margulis measures

The Bowen-Margulis measure of a topologically mixing Anosov flow (or diffeomorphism) is the
unique measure of maximal entropy, that is, the unique measure which achieves the supremum in
the variational principle of theorem 4.1.5. It was first constructed by Margulis in his PhD thesis
for the geodesic flow of negatively curved manifolds (c.f. [50, 51]). In [15, 16], Bowen proved that,
on a closed hyperbolic manifold, closed geodesics were uniformly distributed with respect to the
Liouville measure. Bowen’s construction extends to the case of a topologically mixing Anosov flow,
and finally, one finds that closed orbits are uniformly distributed with respect to a specific measure,
which indeed coincides with the measure constructed by Margulis. So the name of the measure.

A striking consequence of Margulis’s construction is the precise asymptotic expansion of the number
N(t) of primitive closed orbits of length at most ¢, which was given by Margulis (see [51] or [45]):

N(t) ~

where h denotes the topological entropy of the topologically mixing Anosov flow under consideration.
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A general construction

To each I'-invariant conformal density on 9, one can construct a @!-invariant measure on HM
by a process that we now describe. It can be found in Sullivan [70]. When M is compact, this
construction allows to recover the Bowen-Margulis measure from the Patterson-Sullivan measures.

Let (i) be a conformal density of dimension §. Consider the product measure p2 = j, ® pi, on
9?Q. We have

d(gu) (€4, €7) = dp2, (6,67) = e Per (0mm o (0mD g2 (¢ ¢-)
= e 20((€T1€ )aa—(€T1E ) g2 (£F, £7).

Thus letting
dA,(€7,67) = XKD g2 (et ),

we get a I'-invariant measure on 0%2(Q). In fact, this measure A, does not depend on z:

_ +1e— — +le— — x —(x —
dAa(67,67) = XTI dp (£4,67) = 0TIt b (b e, )

and
2(£+|£_)E _bE+('r7y) —bg—(ﬂ?,y) = hmziﬁfi dQ(x7Z+)+dQ(J;’Z—) _d9(2+72_)
_dQ(z7 Z+) + d(ya Z+) - dQ(Ia Zﬁ) + dQ(ya Zﬁ)
= 2(£M€7)y,
so that

dAg(§7,€7) = dAy(£7,€7)

Theorem 4.1.2 tells us that to A, is associated an invariant measure p of the geodesic flow on HM.
This measure p inherits strong properties:

e 1 is flip invariant since by construction, A, is flip-invariant;

e 1 has a local product structure, that is p is locally the product p = p° ® pu* ® dt, where p*
and p® denote the stable and unstable conditional measures of y;

e 1 and pu" are naturally related to the measures p,. In fact, any stable or unstable leaf can
be identified with some H ~ {p}, where H is a horosphere based at p, and by projection, u*
and p* can be seen as measures on 92 \ {p}, which are in the same Lebesgue class as pi.
From this, we get the important transition property of the conditional measures: for all ¢ € R
and w € HM,

Phx sy = € )y 01 il = € )

Hopf-Tsuji-Sullivan theorem

The main result about conformal densities and the associated measures is the following theorem,
known as Hopf-Tsuji-Sullivan theorem. It has a long history and I am certainly not aware of all the
steps. The most achieved version, that we state here, is due to Roblin in the beautiful [65]: he proved
it in the context of C AT (—1) spaces, and his proof works without any change in our context. The
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main reason for this adaptation to be possible is that he never uses angle considerations; instead,
he essentially works with shadows of balls at infinity. In [43], Kaimanovich had already given a
part of the result for some non-Riemannian spaces, but also for more general families of measures.
Sullivan was the first to be really involved in this kind of questions, but he was essentially working
in the hyperbolic space, where it is possible to go deeper; in particular, Sullivan always made links
with spectral theory, which is a priori not relevant in the case of non-Riemannian spaces.

Theorem 4.2.4 (Hopf, Tsuji, Sullivan, Kaimanovich, Roblin...). Let (u,) be a T-invariant confor-
mal density of dimension 6, A and p the associated measures on 8*°Q and HM . Denote by A, the
set of radial limit points. Fiz any x € Q. Then either

1) el = yoo;
yell

2. A, has full p,-measure;
3. A is ergodic for the action of T on 92Q;

4. w is ergodic for the geodesic flow on HM;

or
1. Zefﬁdg(z,'yz) < +00;
yel’
2. /”'w(Ar) =0;

3. A is completely dissipative for the action of T' on 0%Q);
4. w is completely dissipative for the geodesic flow on HM.

To understand the theorem, we have to recall the definitions of a conservative and dissipative mea-
sures. Consider the p-preserving action of a group G (I" of R in the last theorem) on some measure
space (X, p). A wandering set A is a measurable set such that all its translates by G are disjoint
mod 0, that is, for two distinct elements g,¢" € G, u(gA N g’A) = 0. The measure p is then called
conservative if every non-trivial measurable set A is nonwandering, and completely dissipative
if it admits a wandering set A such that I".A has full measure.

Poincaré recurrence theorem states that any finite measure is conservative. Unless the space consists
of a unique dissipative orbit, ergodicity always implies conservativity but the converse is not true
for general dynamical systems. A crucial part in the proof of theorem 4.2.4 is the following

Lemma 4.2.5. The measure u is conservative if and only if it is ergodic.

Bowen-Margulis measures

A measure p on HM associated to a Patterson-Sullivan density (u,) will be called a Bowen-
Margulis measure. It is straightforward from the construction that two Patterson-Sullivan den-
sities are in the same Lebesgue class if and only if the Bowen-Margulis are so.

Corollary 4.2.6. If T is divergent, then all Bowen-Margulis measures are proportional.
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Proof. Let (v,) and (u,) be two I-invariant conformal densities of dimension dr. Since T is diver-
gent, that is the Poincaré series diverges at dr, we are in the first alternative of theorem 4.2.4. The
family (A\;) = (5(va + 1)) is also a Patterson-Sullivan measure, hence theorem 4.2.4 says that the
action of I' on 9% is ergodic with respect to some measure in the class of A\, ® \,. But this is a
contradiction since A, ® A, is the middle of p, ® p, and v, ® v,; unless p, and v, are in the same
class.

From the observation above, this implies that all Bowen-Margulis measures are in the same class.
Since they are ergodic, they are indeed all proportional. O

In the case M is compact, the group is always divergent and we recover in this way the measure of
maximal entropy constructed by Bowen and Margulis. So the name... The conditional measures p*
and p* along stable and unstable manifolds will be called the Margulis measures, because these were
central in Margulis construction of the measure. Let us recall their essential transition property:

Vw e HM, Vt € R, @' i, = e 1y, @8 % g1l = €70 e -

To check that T" is divergent is often not an easy thing to do. The second point of theorem 4.2.4,
about the mass of the radial limit set A,, is easier to check as we will see in the next section. A
special case is given by the following

Corollary 4.2.7. Let I' be a nonelementary group. If some Bowen-Margulis measure p is finite,
then I' is divergent.

Proof. If p is finite, then it is conservative and we are thus in the first part of theorem 4.2.4. [

Nevertheless, remark that there exist pinched negatively curved manifolds M = M /T with T
divergent, but whose Bowen-Margulis measures are all infinite. Some examples were given by
Pollicott and Sharp [64], and geometrically finite ones have been recently constructed by Peigné
[62].

4.3 Geometrically finite surfaces

The goal of this section is to prove the following

Theorem 4.3.1. Let M = Q/T be a geometrically finite surface. Then there is a finite Bowen-
Margulis measure on HM .

The proof of the theorem will take some time, and we will prove some intermediate results which are
of interest. This development is very classic, and can be already found in [70]. The proofs provided
here are largely inspired by an unpublished paper of M. Peigné [61], available on his webpage.

We begin by an obvious observation.

Lemma 4.3.2. Let I' act on Q and Q' with Q C Q. Denote by gr.a(s,z) and grao(s,x) the
Poincaré series for the action of T on Q and ', and or(Q) and ér(QV) theire critical exponent.
Then, for any s > or(Y'), gr.a(s,z) < gr.o/(s,x). In particular, 5p () < op ().

Proof. If z,y € Q then do/ (z,y) < do(z,y). So, if z € Q@ and s > op(Q'), we have gr o(s,z) <
gr,o (s, z). In particular, the convergence of gr o/(s,x) implies the convergence of gr o(s, ), hence
the result. O
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Lemma 4.3.3. Let Q C RP?. The critical exponent of a discrete parabolic subgroup P is 6p = %
and the Poincaré series of P diverges at dp.

Proof. Call p the fixed point of P. As remarked in lemma 1.3.4, we can find two P-invariant
ellipses £ and £%*! containing p in their boundary such that £ c Q C £°**. Now we know
from hyperbolic geometry that 6p(£1") = §p(£°%1) = % and that the Poincaré series diverges at
the critical exponent. From lemma 4.3.2, the same holds for P acting on ). O

Lemma 4.3.4. If a nonelementary group I' acting on Q contains a parabolic subgroup, then ép > %

Proof. From lemma 4.3.3, we get dr > %, so we just have to prove that the inequality is strict.
Let & be the fixed point of P. Since I' is nonelementary, we can find a hyperbolic element h € T’
such that T' contains the group H % P where H = (h): this is a classical ping-pong argument. In
particular, G contains all the distinct elements g = h™py ---h™p, for I > 1, n; > 1, p; € P~ {Id}.
So,

gr(s,z) = Zefsdn(x,gz) > Z Z o~ sda(@.h™ py-h" )

g€er 1>1

Ny, N,
P15 P1
> E E efsdﬂ(wahnla:)efsdﬂ (z,p12) , ., e*SdQ(w,h"lI) B*Sdg(aj,pla;)
>1
~ ny,---nyg,
D1, 5Pl

— Z <Z e—sdg(m,h”f)) Z e—sdg(m,pm)

>1 neL peP~{Id}

= Z(QH(S,I)(QP(S,:E) — 1)k

1>1

But gp(s,z) converges for any s > 0 and gp(s, ) converges for s > 3 and diverges for s =

So there exists so > 1 for which gp(s,z)(gp(s,z) — 1) > 1, so that gr(so,z) diverges. Hence
or = sg > % O

N [—=

Proposition 4.3.5. Let M = Q/T be a geometrically finite surface. Then any Patterson-Sullivan
measure has no atom.

Proof. Let o € Q and let (u,) be a family of Patterson-Sullivan measures: p, is obtained as a weak
limit of the family (u)sss. where

1 —sd(z,yo
W= e 3 (o, 70))e 5,
er

G (5,0) -

and

g{"(sa 0) = Z h(dQ (07 fyo)>e—sds2(07’¥0).

~el
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Since all these measures p are in the same class, we just have to prove the result for p, = lim pJ,
so we abbreviate by p = p, and p® = pd.

First of all, remark that Sullivan’s shadow lemma 4.2.2 implies that p has no atom on the radial
limit set A,.. Since A \. A, contains only a countable number of bounded parabolic points, we just
have to prove that for such a point £, we have p({£}) = 0.

Let £ be the fixed point of some maximal parabolic subgroup P = {pr, k € N} of T, with pg = id.
For any Borel set V' C ) containing an open neighbourhood of ¢ in 92, we have

n({€}) <p(v) < liriisgfus(V)-

So we just have to find a family of sets (V,),en such that the right hand side goes to 0 when n goes
to +o0.

Choose an open fundamental domain C € 2 containing o. We let Vi, = U5, Pk (C), such that each
V,, contains an open neighbourhood of £ in 02. We have, for s > ér,

s 1 —sdq(0,7v0)
H Vi) = —— § d 0,70 1y, (o).
( ) /(8, :) - h’( Q( Y ))6 n( )

Let IV = {g € ', go € C} be the subset of elements of I" that do not move o outside C. Then

(V) = s 3 > hlda(o, pryo))e” 2 (m10),

1
/
9r(s,0) k>n ~yeEL

Now remark that
da (0, pry0) = da(o,70) + da(o, pro) — 2(volp;; '0)o.

Nothing depends on the choice of o, and we can take it inside C(Ar). Theorem 1.4.8 implies that
the horoball Hy = {y € Q, b¢(0,y) < 0} contains only a finite number of translates of €, so we can
assume that Hy only contains o, which actually would lie on the boundary of Hy. All other vo’s,
~v €IV, lie at a distance at least d > 0 from Hy. Thus, we can find some r > 0 such that for n > ng
large enough, V;, is contained in every lightcone F.,.(y0,0) based at vo, for v € IV. Lemma 1.2.1
now implies that (go|p, '0), < r. From that and the fact that h is increasing, we get

e?sr

(Vo) = ———= > e 0m) 3 " h(dg (o, pro) + da(o, y0))e (7).

gr(s,0) k>n yer”

Let > 0 and ¢, > 0 such that 6p —n > 1, and for ¢ > t,, h(t+ s) < h(t)e"*. Only a finite number
of v € I are such that d(o,v0) < t,; call G the set of such elements. Thus,

err

(Vo) < s Y e (3 7 h(dg (0, pro) + dg(o,70))e ()
gF(s,o) k>n yeG

+ Z h(dﬂ(@»70))6—8(19(07’70)endg(o,pko)).
yeI'\NG
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The sum over G is obviously bounded by some constant C' independent of s, so that

p*(Va) < O errialomd 4| 3 enmmblonal | 3 h(da(o, o))

gF k>n k>n geT’

Since or —n > %, the sum
3 ¢ or-miCono) (4.5)
k>0

converges. By letting s \, or, we get

w(Vy) < e20r Z e~ (Or—n)da(o.pxo) 1(89).

k>n

The convergence in (4.5) implies that the right hand side goes to 0 when n goes to 400, proving

that
n({&}) = 0.

Before completing the proof of theorem 4.3, note that this already implies the
Corollary 4.3.6. Let M = Q/T be a geometrically finite surface. Then T is divergent.

Proof. The last proposition implies that A, has full y,-measure, for any Patterson-Sullivan measure
to- Theorem 4.2.4 now gives that I" is divergent. O

Proof of theorem 4.3. Let upp be a Bowen-Margulis measure on HM. Call jigys its lift to H) and
 the associated I'-invariant measure on 92€Q). upys is supported on the nonwandering set, which is
contained in the homogeneous bundle HC'(M) over C(M). Theorem 1.4.8 provides a decomposition
of C(M) into a compact part and a finite number of cusps C;, 1 < ¢ < p. Each C; is a quotient
C(Ar)NT.H/T, where H is a horoball based at a fixed point of a corresponding maximal parabolic
subgroup of I'. So, we just have to prove that uga (HC;) is finite.

So, let P be a maximal parabolic subgroup of I' and C' be an open fundamental domain for P on
Q. We want to prove that fipy (H(C N H)) is finite. The intersection D = dC N Ar ~\ {p} is a
compact fundamental domain for the action of P on Ar \ {p} and we have, from the description
made in the proof of theorem 4.1.2,

fn(H(COH) = /8 L HEE) N (€ ) du(e ")

/ H(E€5) N (C N H)) du(e, €)
pDxqD

p,q€P

/D (€ €7 Np~ (C N H)) dp(€, %)

p,q€P

=> /D e nm) e 2r €TI0 g2 (6= £ ).
Xp

peEP
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Since D is compact, we can find » > 0 such that any geodesic emanating from D and passing
through H intersects B(o,r). Now if (§7&T) is such a geodesic with £€T € pD then (£7¢T) also
intersects pB(o,r) = B(po,r). From that we deduce that

U(E €)M H) < da(0,p0) + 7.
Furthermore, pD C O, (0, po) and Sullivan’s shadow lemma 4.2.2 implies
11o(pD) < Copeordalowo),

Thus

fipr (H(C N H)) < Co Y (da(o, po) 4 r)erdeloro),
pEP

Since dp < Ir, this series converges. O

4.4 Volume entropy and critical exponent for finite volume
surfaces

The aim of this section is to prove that, on a surface of finite volume, volume entropy and critical
exponent coincide, generalizing what is a trivial observation for a compact manifold.

Theorem 4.4.1. Let M = Q/T be a surface of finite volume. Then hyo = dr.

The proof of this result is the one given in [28], where the authors study manifolds of pinched nega-
tive curvature. They prove that the equality h,.; = dr always holds if the manifold is asymptotically
1/4-pinched, that is, the curvature in the cusps tend to be 1/4-pinched. They also construct exam-
ples whose curvature is arbitrarily close to being 1/4-pinched, but where equality fails.

Once again, the essential problem is to understand the behaviour of parabolic groups. In our case,
some parts of the proof of the equality are really simplified by the transparence of the geometry.
However, we also need specific results to overpass the non-Riemannian nature of the metric: these
are contained in lemmas 4.4.3 and 4.4.4. But first, we need to recall the

Proposition 4.4.2 (L. Marquis, lemme 7.10 in [54]). IfQ C RP? admits a quotient of finite volume,
then (2, dq) is Gromov-hyperbolic.

Recall that for a discrete subgroup G of Isom(2,dg),
Ng(z,R) =t{g € G, da(z,gx) < R}
denotes the number of elements g of G such that gz € B(z, R).

Lemma 4.4.3. Let C' > 1 be arbitrarily close to 1 and P a discrete parabolic subgroup of Isom(Q, dgq)
fizing p € OQ. Then, for any sufficiently small horoball H based at p and any x € OH, there exists

D > 1 such that

1
5 E) < wol(B(x,R)N H) < DNp(z,CR).

N
P(l’, C
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Proof. Tt is known (see [28] for example), that in the hyperbolic space, we have, for any maximal
parabolic subgroup P, any horoball H fixed by P and any point x € 0H,

vol(B(z,R) N H) < Np(z, R). (4.6)

Now, we know from corollary 1.4.9 that, on any sufficiently small horoball H based at the fixed
point p of P, we can find two P-invariant hyperbolic metrics h and h’ such that

%h’gthgh’gCh.

So take such a small horoball H and pick z € 0H. We have for any R > 0,

Byugg)clﬂ@;R)Cl%xJﬂ(:By@gR)Cfﬁ@;CRL

where By and By denote metric balls for h and h’. If we denote by voly and voly the Riemannian
volumes associated to h and h’, we have

voly < vol < voly.
Hence R
voly (By (z, 6) N H) < vol(B(x, R) N H) < voly(By(xz,CR) N H).
Now equation (4.6) provides a real D > 1 such that

1 /
BN% (z, g) <wol(B(z,R) N H) < DNp(z,CR),

where N} (z, R) is the number of points of the orbit P.z in the ball of radius R for h; the same for
h'.

Well, of course, the horoballs involved in equation (4.6) are the hyperbolic horoballs, and not those
for F', so we have to be a bit more cautious. But if Hy, is the horosphere for h based at p and passing
through z, then the maximal h-distance between H and Hj, is finite, because P acts cocompactly
on H ~ {p} and Hy ~ {p}. Hence, there exists some D’ > 0 such that, for any R > 0,

|’UOlh(Bh(ZB,R) N H) — UOlh(Bh(I’,R) n Hh)| < D/NP(I’,R),

where Hy is the horoball defined by Hy. Hence the claim that such a D exists.

We can conclude by remarking that, since h < F < h’, we have
O

Proof of theorem 4.4.1. We already know that or < hyer, SO we only have to prove the converse.

Fix C' > 1 arbitrarily close to 1, and pick o € §2. Choose a fundamental domain for the action of T"
on {2, that contains o, and decompose it into

Co| Uiz, Cs,
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where Cj is compact and the C;, 1 < i <[, are cusps, based at & € 9). Each C; is the fundamental
domain for the action of a maximal parabolic subgroup P; on the horoball H¢, based at &;. We
assume that the C; are chosen small enough so that the horoballs H¢, satisfy lemma 4.4.3, with the
constant C that was chosen.

The ball B(o, R) of radius R > 0 can then be decomposed into
B(o,R) = (I.Co N B(o,R)) U (U, T.He, N B(o, R)),

so that l

vol(B(o, R)) = vol(I'.Coy N B(o, R)) + Z vol(T.He, N B(o, R)).

For the first term we have vol(I'.Cp N B(o, R)) < Nr(o, R)vol(Cp). Let us study the second one.

For each horoball H.,;, = vHg,, denote by x.; the intersection of (0v¢;) with OH.¢,, that is the
projection of 0 on H,¢,. For any v € I', we denote by ¥ € I' one of the elements g € I' such that
2, € g.C;, whose number is finite; it is the “first element for which H.¢, intersects B(o, R)”. Let
T be the set of such elements.

The main remark is the following lemma, which is a classical one in pinched negative curvature: for
each 6 € (0,7), there exists a constant C(0) such that, for any geodesic triangle zyz whose angle
at y is at least @, the path x — y — z on the triangle is a quasi-geodesic between x and z with an
error at most C(6).

Lemma 4.4.4. There exists v > 0 such that, for any vy € I', 1 < i <1 and z € H,¢,, the path
consisting of the segments [ox~ ;] and [z, ;2] is a quasi-geodesic with an error of at most r, that is,

da(o,2) = do(o,z+ ;) + da(xy,i, 2) — T
Proof. Takey €T, 1 <i < land z € Hyg,. Since (£2,dq) is Gromov-hyperbolic (proposition 4.4.2),
there is some d > 0 such that every triangle is d-thin. So there exists p € [0z], such that
da(p; [2+,:2]) <6, da(p, [ox,]) < 6.
Hence, we can find points o’ € [0z, ;] and 2’ € [z, 2], such that
do(0',p) + da(p, 2") < 26.

By the triangular inequality, the distance between o’ and 2’ is then less than 2§. By convexity of
the metric balls and the horospheres, we get that z,; € B(0',20), so that

do (0, ;) + do(xy,:,2") < 46.
That gives
dQ(Oa x’y,i) + dQ('x’Y,ia Z) < dﬂ(07 O/) + dQ(O/a x’y,i) + dﬂ(x’y,h Zl) + dQ(ZI7 Z)
< 40 + dQ(Oap) + dQ(pa O/) + dQ(zlap) + dQ(pa Z)

< 60 + dq(o, 2).
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&

Figure 4.1: Quasi-geodesics

Now, if z is a point in v.H, N B(o, R), for some v € ', 1 <4 < [ and R > 0, this lemma implies
that
do(o,xy,:) + da(Ty,, 2) < dalo,2) + 7 < R+

But there exists ¢ > 0, so that do(o,z4,;) = da(0,70) — c: take for ¢ the maximal distance between
o and the boundary 9C; N 0He, ~ {&}. Then

do(zy,:,2) < R4+ 1 —dgo(o,70) + c.
Let K=r+c Forany vy €T, 1<i<I, and R > 0, we thus have
v.He, N B(o,R) C v.He, N B(x,;, R — d(0,70) + K).
This gives an efficient way to evaluate vol(I'.He, N B(o, R)). Indeed,
vol(T.He, N B(o,R)) =Y _wvol(y.He, N B(o, R))

FeT

<> vol(¥.He, N B(y,i, R — d(0,70) + K))

FeT
< Z Z vol(¥.He, N B(2,, R—n — 1+ K))
0<ng[R] 5 ceT
n < dg(o,70) <n+1

< > Nplo,k k+ 1)vol(He, N B(zi, R~k + K)),
0<k<([R]



82 CHAPTER 4. INVARIANT MEASURES

where z; = x4, and, for any subset S of ' and 0 < r < R,
Ng(o,m, R) =t{y € S, r < dqa(o,70) < R}.
Lemma 4.4.3 gives

vol(I.He, N B(o,R) <D Y Ng(xi, k, k +1)Np,(2:,C(R — k)) (4.7)
0<k<IR]

for some D > 1 that can be chosen independent of i. Furthermore, since the critical exponent of
each P; is %, there exists M > 1, independent of 7 but depending on C, such that

%e 5-(C-DIF < N, (2, R)) < MR,

(There is no need of a corrective term for the upper bound from the second point of corollary 4.2.3.)
Hence,

NPi(-fL'i,CR) < Me%CR < Me(%—(C—l))CR eC(C—l)R < MQBC(C_l)RNpi(xi,R)).

With (4.7), that implies

vol(I.He, N B(o, R)) < DM?e®©~VR N Ne(w;, k, k + 1)Np, (2, R — k). (4.8)
0<K<(R]

Finally, remark that any v € T such that dg(z;,vx;) < R can be written in a unique way as
v = ipi, with do(z;,7ixz;) < R and p; € P; so that

d(z, piz;) + do(zi, %) > R.
Hence

Nr(zi,R) > Y Np(ai, k,k+1)Np, (i, R — k). (4.9)
0<k<[R]

(4.8) and (4.9) together yield
vol(T.He, N B(o, R)) < DM?eCC~VENL (24, R),
so that, putting everything together,
vol(B(o, R)) < Ne®C~VENL (0, R),
for some constant N > 1. That gives
hyot < 6p + C(C —1).
Since C' can be chosen arbitrarily close to 1, that yields

hvol < 5F .



Chapter 5

Entropies

This last chapter proves the existence and uniqueness of a measure of maximal entropy
for some specific quotients. It extends Ruelle inequality and its case of equality to
noncompact quotients of Gromov-hyperbolic Hilbert geometries. An entropy rigidity
theorem is then proved in the case of compact quotients and finite volume surfaces.

5.1 The measure of maximal entropy

The goal of this part is to prove the following theorem.

Theorem 5.1.1. Let M = Q/T be the quotient manifold of a strictly convex proper open set
Q C RP™ with C' boundary by a nonelementary group I' C Isom(Q,dq). Assume there exists a
finite Bowen-Margulis measure and denote by pupp; the probability one. If the geodesic flow has
no zero Lyapunov exponent on the nonwandering set, then ugps is the unique measure of maximal
entropy and

htop = h’MBM = dr.

Since the geodesic flow on a geometrically finite surface has been proved to be uniformly hyperbolic
on the nonwandering set (theorem 2.5.2), it has no zero Lyapunov exponent. Furthermore, theorem
4.3.1 claims that there exists a finite Bowen-Margulis measure, and the theorem admits the following

Corollary 5.1.2. Let M = Q/T’ be a geometrically finite surface and ppns its probability Bowen-
Margulis measure. Then ppns is the unique measure of mazimal entropy and

htop = hMBM = dr.

A more general version of this theorem, including the cases for which there is no finite Bowen-
Margulis measure, was proved for quotients of Hadamard manifolds of pinched negative curvature
by Otal and Peigné [59]. They actually proved that, if there is no finite Bowen-Margulis measure,
then we still have hyo, = dr but there is no measure of maximal entropy. Obviously, the assumption
of no zero Lyapunov exponent is useless in pinched negative curvature.

Such a version is probably true in our setting. Nevertheless, no example of such more exotic quo-
tient is known so far for Hilbert geometry, and we decided to restrict ourselves to the currently
more relevant cases. The assumption of no zero Lyapunov exponent can be seen as a counterpart of

83
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pinched negative curvature. Anyway, I have no idea if there can exist a quotient with zero Lyapunov
exponent on the nonwandering set.

The proof of the theorem follows the one given by Otal and Peigné, but it is simplified. I had the
opportunity to follow a mini-course given by Frangois Ledrappier about this result; it was really
helpful to understand the whole strategy and most of the simplifications come from what I learnt
either from this lecture or from Francois himself.

The idea is a classical one and comes from the pioneering works of Ledrappier, Pesin, Strelcyn and
Young. This is based on Rokhlin theory of measurable partitions. Let us explain here the strategy.
There are three things to prove (see section 5.1.4):

e for any invariant probability measure p, by < hpg,,;

e the equality h, = h implies that = pupas;

KB M

o h = 0r.

HBM

To prove these three points, given a measure u, we construct a well-adapted partition which allows
us to compute the entropy of p. These are measurable partitions, as introduced by Rokhlin, which
are subordinate to the unstable foliation, that is, its atoms are open pieces of unstable manifolds.
Section 5.1.2 explains how to construct such partitions, while the next one proves that such a par-
tition « gives all the entropy, that is hy, = h,(c, ). The proof that it gives all the entropy relies on
a construction of Mané and lemma 5.1.5, that was indicated by Francois Ledrappier in his lecture.
The use of this lemma really simplifies the proof given by Otal and Peigné, who instead had used
a more general and complicated argument that would also work in the presence of zero Lyapunov
exponents.

Since the partition consists of open pieces of unstable manifolds, it gives an efficient way of com-
puting the entropy of ppas, because we know how the flow acts on the Margulis measures. It also
allows us to compare the entropy of pupys with the entropy of another measure p, and prove the
first two points.

Note that most of the tools should work in the case there would be some zero Lyapunov exponent. It
is still possible to construct a measurable partition that gives all the entropy. This partition would
be subordinate to the Wi{*-manifold, corresponding to the smallest positive Lyapunov exponent,
and to prove it gives all the entropy, we should use the more complicated argument given by
Otal and Peigné. The problem would arrive later: the Wi*-manifolds are submanifolds of positive
codimension of the unstable manifolds, and we do not know how the flow acts on the conditional
measures of pupp on Wi-manifolds. Thus, it is not clear this partition can help to compute the
entropy. However, since we do not know if there exist quotients with zero Lyapunov exponents,
trying to prove something in this case is not currently relevant.

5.1.1 Measurable partitions

We know from Rokhlin theorem 4.1.4 that, given an invariant probability measure, there always
exists a countable partition, which gives all the entropy. But we dot know how this partition looks
like, and it does not help to effectively compute the entropy of the measure. For this, we will use
more general partitions that were introduced by Rokhlin in [66] (see also [67] and [60] for more
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modern presentations). We recall here the most important facts about these partitions.

A partition « of a probability space (X, .4, u) is a collection («;);er of measurable subsets of X
such that
ula; Ney) =0, p(X N Uiera;) =0.

We say that a partition « is finer than 3, and write a > 8 or 5 < «, if any atom «; is a subset of
some atom f3;. If & and 8 are two partitions, the joint partition a Vv 3 is defined as

aVp={ANB, Aca, Be g}

The joint partition a V § refines a and 5. If a = (3, then oV § = «. The finest partition is the
partition by points € such that e(z) = {x}, and the least fine one is the trivial partition with one
atom: X. To a partition a, we associate the quotient space X/a which consists of atoms of «. The
projection 7, : X — X/« is defined almost everywhere on X and is measurable since the atoms
of the partition are measurable. We denote by i the measure 7,z on X/a.

A partition « is a measurable partition if there exists a family (A, )nen of measurable subsets
such that A = UpenAy has full measure and, for any two atoms «; and ¢, there exists some n
such that ANa; C A,, ANao; C AN A,. Rokhlin proved that conditional measures with respect
to a measurable partition can be defined, that is:

Theorem 5.1.3 (Rokhlin [66]). Let o be a measurable partition. Then, to Ti-almost every atom
a € «a, is associated a probability measure p, on X such that

® (i, is supported on a;
o the application T — fin(y) 15 measurable;
o for any measurable set A, u(A) = fX/a ta(A)dp(a).
The measure fio(y) 5 called the conditional measure at x with respect to a.

The entropy of a measurable partition is defined by

H(a) = — /X log u(a(z)) dyu(z),

which generalizes definition 4.2. This definition is not interesting for those partitions whose atoms
have measure zero, since their entropy is zero.

Consider an invertible transformation @ : (X, u) — (X, p). The inversibility is not necessary for
the definitions, but the tools and results are really different in the case of a noninvertible transfor-
mation. Since we want to apply it to our geodesic flow, there is no need of considering noninvertible
transformations.

We want to define the entropy of a measurable partition o under @. Definition 4.3 would give zero
for all those partitions whose atoms are negligible, thus another one is needed to take them into
account.

@ transforms the partition a in a new partition o whose atoms are the @~ *(a;), i € I. We say
that a partition is increasing if @« is finer than «, that is, @a > a. That means that each atom «;
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is the union of atoms of @«a. Thus it makes sense to consider the conditional entropy of ¢« with
respect to a given by

1@al0) = [ to(o(@a(w)) dufa).
We then define the entropy of an increasing measurable partition by
h(P,a) = H(Pa|a)

(see section 4.1.2). If P is countable and increasing, then this definition coincide with the one given

by (4.3).
Remark that, for any countable partition P, the partition P~ = V)___ &'P is increasing, and we
have

h(P,®) = h(P~, d).

We thus have
h(@) = sup h(a, D),

where the supremum is taken with respect to all measurable increasing partitions with finite entropy.

Of course, we can also do the same for decreasing partitions such that a > ®a; these are just
increasing partitions for !, that has the same entropy as .

We say that a partition « is generating if

1=+00

\/ P =e

1=—00

is the partition into points.

5.1.2 Leaf subordinated partitions

Let M = Q/T be the quotient manifold of a strictly convex proper open set  C RP" with C*
boundary by a nonelementary group I' C Tsom(Q),dq). An ergodic measure is always supported
on the nonwandering set. A general invariant probability measure can always be decomposed into
a conservative and a dissipative part; the dissipative part does not change the entropy and the
conservative part is supported on the nonwandering set. By decomposing the space into ergodic
components, we can always assume that the measure is ergodic.

In what follows, we fix an ergodic probability measure m for the geodesic flow ¢! on HM, and we
choose T > 0 such that @ = 7 is ergodic with respect to m. This is always possible, as claimed
by lemma 7 in [59].

By Oseledets’ theorem, m-almost every point in H M is regular with the same Lyapunov exponents.
Assume m has no zero Lyapunov exponent, and call A,, the set of regular points with positive
Lyapunov exponents 0 < x1 < - -+ < Xp, which is of full m-measure. At any point w € A,,, for any
vector Z € E*(w) \ {0},

1 _
lim —log F(de'(2)) 2 xa.

t—too
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We fix 0 < epsilon < g55. For any w € A, there exists C(w) > 0 such that, for any Z € E*(w)
and t > 0, - -
F(dp™"(Z)) < C(w)e” 1 =9'F(Z).

In fact, we can choose

F(de™'(2))

C(w) = sup {6_(X1_E)tF(Z)

>0, ZeE“(w)},

so that the function C : A,,, — (0, +00) is measurable and C(p~t(w)) = O(1), t — +o0.

Let Ay (c) = C71((0,¢)) for ¢ > 0. If ¢ > ¢, then Ay, (¢) D Ap(c), and since Ay, = U5 Am(c),
there exists some ¢g > 0 such that, for any ¢ > ¢o, m(Ap(c)) > 0.

Theorem 5.1.4. Let M = Q/T be the quotient manifold of a strictly convex set Q with C* boundary.
Let m be an ergodic invariant measure on HM with no zero positive Lyapunov exponent. Then

there exists a measurable, generating and decreasing partition « subordinate to the unstable foliation
we.

Such a partition will be called a W*-partition with respect to m. By subordinate to W, we mean
that m-almost any atom of the partition « is an open subset of W*.

We will need the concept of a flow box. For w € HM and r > 0, we denote by W*(w,r)
(resp. W¥(w,r)) the r-neighbourhood of w in the stable manifold W#*(w) (resp. unstable manifold
W(w)), where distances are considered with respect to the metrics induced by the Finsler metric
F. The (closed) flow box B,.(wg) of size r > 0 (small enough) and origin wy € HM is

B.(wo) = |J ¢'(B"(wo,r)),

otsr

where
B*(wg) = {v e W*w,r), we W (wg,r)}.

Obviously, r has to be chosen small enough so that all the images ¢'(B%*(wq,r)) are disjoint for
0 < t < r. By construction, B,.(wy) is foliated by the ¢f(B“*(wq,r)),0 < t < r, but also by pieces
of unstable manifolds of diameter 2r.

Proof of proposition 5.1.4. Take a ¢ > c¢g such that m(A,,(c)) > 0. Consider a flow box B, :=
B, (wp) of size r > 0, with origin wg € A, (c) N supp(m), so that in particular m(B, N A, (c)) > 0.
Define the partition o/ of HM by B, foliated by W"-leaves, and (B,): if w € B,, the atom o’ (w)
is the connected component of w in W*(w) N B,; if w € B, then o/ (w) = (B,)¢. Let

+oo
o= \/ & *a.
k=0

This partition « is measurable, generating and decreasing.
We have to prove that for almost every w € HM, the atom a(w) is an open neighbourhood of w
in W*(w). For k € N, we have

ool (w) = 27F (o (2" (w))),
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hence

a(w) = () 27" (o/ (2" (w))).

keN

The interesting terms in this intersection are those when ®*(w) € B, since #*(w) is then a piece of
W*-manifold. Since m is ergodic, almost any point w € HM will go through B, infinitely often,
so a(w) will be m-almost surely a piece of W*(w). Such a piece will be an open neighbourhood if
every time w goes through B, it stays far enough from the boundary of B,. More precisely, a(w)
will be an open neighbourhood of w in W*(w) if there is no strictly increasing sequence of positive
times ny, k € N, such that
lim d“(@~"*(w),0B,) =0,
k——+o00

where d* denotes the metric generated by F' on W¥(w). (Remark that this metric is nothing else
than the metric generated by the Hilbert metric F' on the projection of W*(w) on M.)

But a classical Borel-Cantelli argument proves that this is true almost everywhere on any A,,(c)
for Lebesgue almost any r > 0 (see [2] p.285-288). Since A,, = Upen+Asn(n), the same holds on
A, O

Lemma 5.1.5. Let a be an increasing and generating m-measurable partition. If there exists some
countable partition Q@ such that Q~ = «, then

h(on®) > h(Q, @)
Proof. We have

hQ.8) = H@QIQ™) < H(®Pla) = lim ~H(P~"|a)

n—o00 N,

1
lim —H(P™"V P a|a)

n—oo N

N

1
lim —(H(P™"|®"aV a)+ H(P"a|a))

n—o00 N,

= h(a, D),

since "o — €. O

5.1.3 Mané partitions

We here explain a construction of Mané. This construction gives a finite partition P such that P~
is finer than the W*-partition of theorem 5.1.4, that allows to apply lemma 5.1.5; see corollary 5.1.9.

We still assume that we have fixed an ergodic probability measure m for the geodesic flow ¢! on
HM, and a time T > 0 such that & = ¢ is ergodic with respect to m.

For a relatively compact measurable subset B of positive m measure, the Mané partition Pg induced
by B will be the partition

Pp = B° |_| Un>1Bnp,
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where B, = {w € B, ®"w € B, ®#w & B, 0 <i < n} for n > 1.

Lemma 5.1.6 (Kéc’s lemma). If Pg = B¢| |U,>1B,, is the Manié partition induced by B then
an(Bn) =1

Proof. Since m is ergodic, we have

HM = I_l UOgign—l Qy’Bn mod O7
n>1

1=Y" Y m@B,)=> nm(B).

n 0<is<n—1

and by invariance of m,

The next lemma tells us that Pg has then finite entropy. O

Lemma 5.1.7. If (z,) € [0,1]N is such that 3", nx, < +oo, then

—anlogxn < 400
Proof. This is lemma 10.5.3 in [2], p.316. O

We keep using the notations of the preceding section. We choose a ¢ > 0 such that m(A,,(c)) > 0.
Consider a closed flow box BJ. := Bl.(wg) of size r > 0, with origin wg € A, (c)N supp(m). Consider
B, = Uyenina,, (W*(w) N By.) and the Maifié partition

B = Pp, = B{| |Un>1Bn,
induced by B,..

We refine this partition in the following way: cut B,, into K,, pieces (B r)i<k<k, such that each
@"(B,, ;) is exactly one connected component of ¢"(B,,) N B,. The number K, of pieces can be
chosen smaller than Ce(X119” for some C' > 0. Now refine the partition B into B’ by cutting B,

into
B.=|| || Bunx

n 1<k<Kn

Finally, recall from the construction of the flow box that B“*(wq) denotes “the basis of the box”.
Let
G= U #B“w)

r/2itt<tLr /20

for ¢ > 0, and consider the partition C' whose atoms are the C;, i > 0 and (U;»0C;)¢ = (B..)¢. Each
C; has positive measure, since wy € supp(m) and C has clearly finite entropy: if M = m(Cp) then
m(C;) = 2 and
M 21
(©) ; o log 77 < +00

Let Q =CV B'.
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Proposition 5.1.8. Assume m has no zero Lyapunov exponent. Then for Lebesgue-almost all r
small enough, Q is generating and P = Q™ is a subpartition of the W"-partition « induced by B,..

Proof. First check that @ has finite entropy: we have
H(Q) < H(C)+ H(B') + H(Q|B')

and

HQE) < =% Xm0t )

m(B
n 1<k<K, n)

1 1
< -YmB) Y ol
n 1<k< Ky, Ky K
< Dan(Bn)
n
= D
< oo,

from Kac’s lemma.

Now, we prove that for almost all w, P(w) C W%(w,r) and thus P is generating.
For two points v and w, we have v € P(w) if for any n > 0, &~ "v € Q(® "w). In particular, the
preimages of v and w are in C; at the same moment. Let 0 < ny(v) < -+ < n;(v) < --- be the
times for which &~"*v € C;; since m(C;) > 0, the set N(v) = {ni(v)} C N is infinite for almost
every point v € HM, and

P(v) C ﬂ P (C;) € W*(v).

i1

Thus there exists a smallest N > 0 such that ®~Nv € B, and, forany n > N, ®~"v € W*(® "w, 7).
But @ Vv and &~ Nw are both in some B, j, so that = N*Pw and &~N+Py are in

W@ NTPw) N & NTP(B, ) € WS NPy, ).
Since N is the smallest positive number for which this may occur, we have —N + p > 0, hence

forany —N <i < —N+p, d~v € W¥(w,r). In particular, v € W¥(w,r), that is P(w) C W¥(w,r).

It is clear from the construction that P~ > «.
O

Corollary 5.1.9. Let M = Q/T be the quotient manifold of a strictly convex proper open set §2
with C' boundary. If an invariant ergodic measure m on HM has no zero Lyapunov exponent and
« is the W -partition induced by B,., then

() = h(P, ).

Proof. Last proposition tells us that there exists a generating countable partition ) such that
Q™ > «a. Kolmogorov-Sinai theorem gives h(®) = h(®, Q) and lemma 5.1.5 yields h(P, o) > h(PD, Q).
O
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5.1.4 Proof of theorem 5.1.1

The following lemma is general and will be used a couple of times. This is lemma 8 in [59] and we
omit the proof.

Lemma 5.1.10. Let f: HM —— R be a measurable function such that f o® — f has its negative
part in L'(m). Then

/ fo®—fdm=0.
Let us first prove an intermediate

Proposition 5.1.11. Let M = Q/I'. Assume there exists a finite Bowen-Margulis measure and
denote by pupnr the probability one. If ppy has no zero Lyapunov exponent, then

Py = Or.

Proof. Let us abbreviate ugays by pu. Let o be a W*-partition for u as in theorem 5.1.4. We have
from corollary 5.1.9,

(@) = @,0) = = [ 108 19100 2(w) du(w)

and
oty - EA@O@) g (o)
ﬂ@*la(w)(a(w)) = Ha(dw) (@( ( ))) ’u/u(a(@w)) u“(a(fﬁw))
Hence
_ " ((w)) _
h () = orT — /log (o (@0)) du(w) = orT,
from lemma 5.1.10. Since @ = p*, we get h,(p) = dr. O

We can now proceed with the

Proof of theorem 5.1.1. Let us abbreviate upp by p, and assume the geodesic flow has no zero
Lyapunov exponent on the nonwandering set. Since u is supported on the nonwandering set, u has
no zero Lyapunov exponent and the last proposition gives h,, = dr.

Now we prove that, for any invariant probability measure m, h,, (o) < dr. We can assume that m
is ergodic, and so it is supported on the nonwandering set. Let o be a W"-partition as in theorem
5.1.4, but this time, with respect to the measure m. « is not necessarily pu-measurable, but m-
almost every atom «(w) is an open neighbourhood of w in W*(w), hence is Borelian, u-measurable
and has nonzero p“-measure. So we can set, for any p-measurable set A,

p (AN a(w))
Ha(w) (A) 1= ==
p (a(w))
In this way, a becomes “u-measurable” and the same computation as before in proposition 5.1.11
gives

~ [ 108 1810w a0)) dmw) = T5r.
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By Jensen inequality we get

Hia—1a(w) (@(w))
Mg-1a(w)(a(w))

Tor — hpp () = — /log

Finally, remark that

M@*la(w)(a(w)) mlw _ u@fla(w)(a(v)) M1 v m(w
mqf'*loz(w)(a(w ) dm{w) /(/QSla(w) Me—1q(w) (& v)) dima- a(w)( )> dm{w)
=/< Y te-raw)(A) | dm(w)
Aed—1a(w)
<1,

so that dr = hy, (D).

That proves that p is a measure of maximal entropy. To prove uniqueness, we have to show that
equality in the last inequality gives m = u. But this is the case if and only if there is equality in
Jensen’s inequality, that is,
N@*la(w)(a(w))
Me—10(w)((w))
Since « is generating, this implies that for m-almost any w, fiq(w) = Ma(w)- Let f be a continuous
function with bounded support on HM, and denote by A, the set of w € HM such that

tim LS 7@ ) = [ £ dw
k=0

n—+oco n

=1, m—a.e. (5.1)

The ergodic theorem tells us that p(A,) = 1. Furthermore, if w € A, then by uniform continuity
of f, the entire central stable manifold W (w) is contained in A,. Both facts and the local product
structure of p imply that A, has full p};-measure for all w. Thus, for m-almost every w (those such
that a(w) is an open neighbourhood of w in W*(w)), we have fiq () (A,) = 1, so that

m(A,) = / Mgy (Ay) dm(w) = / ooy (A,) dm(w) = 1.

The ergodic theorem applied to m gives finally a set of full m-measure A,,, such that for all w € A,,,

n—1
A3 k) = [ 1 am.

A N A, has now full m-measure, which implies [ f du = [ f dm. Since f is arbitrary, we conclude
that m = p. O

5.2 Ruelle inequality
We give a proof in our context of the famous Ruelle inequality and explicit the conditions under

which it is actually an equality, following Ledrappier and Young [47]. It gives and efficient way to
estimate entropies and will be essential to get the rigidity results of the next section.



5.2. RUELLE INEQUALITY 93

5.2.1 A proof of Ruelle inequality

Theorem 5.2.1 (Ruelle inequality). Let (2,dq) be a Gromouv-hyperbolic Hilbert geometry and
M =Q/T a quotient manifold. Let m be an invariant probability measure on HM. Then

() < / X+ dm,

where x* =Y dim E; x;* denotes the sum of positive Lyapunov exponents.

Proof. This proof is inspired by the one appearing in [2] in the compact case. We can assume that
m is ergodic. Recall that, since (2, dg) is Gromov-hyperbolic, §2 is strictly convex and 9 is C1+¢
for some € > 0. In particular, m has no zero Lyapunov exponent.

Let x1 be the smallest positive Lyapunov exponent and fix € < g55. Let a be the leaf parti-
tion of theorem 5.1.4 induced by B,.. We endow each W*"-manifold with the metric d“, generated
by the restriction of the Finsler metric F' on the W%manifold. For d > 0, define Uy = {w €
HM, diam"o(w) > d}, where diam" denotes the diameter with respect to d*. Since a(w) is an

open neighbourhood of w in W*(w), we have limg_,o m(Ug) = 1. Choose d such that m(Ug) > 1—5.

Now, recall from section 5.1.2 the construction of the set A,,(c), ¢ > 0. Let
A (c,r) = {w, W*(w,r) C An(c)}.

Choose ¢ > 0 large enough to have m(A,(c,7)) > 1 — 5. Call Ay = Ag(d,c) = D7*(Ay(c,7) NUyL),
so that m(Ag) > 1 —e.

We have, for k > 1,

B (P%) = /—logma(w)ﬁﬁka(w) dm(w)

:/ —log M () PFa(w) dm(w) —|—/ —log M ()P a(w) dm(w).
Ay HM~ Ay,

The second term is less than h,,(®*)e. For the first one, we have

/ — 108 My () B r(w) dim(w) :/

Ak Ak

</( )flog Mo () D (V) dma(w)(v)> dm(w)

< / log #{A € B a, AC a(w), AN Ay £ 0} dm(w).
Ag

The set
{Ae Fa, AC alw), AN Ay # 0}

consists of subsets A = &~F(a(®*v)) for some v € a(w) N Ay. For such a v, we have #¥v € Uy, so
that diam*(a(®*v)) > d; furthermore, since ®*v € A,,(c), we have

1

vol“(A) = vol(&~ (W™ (dFv, d))) > Ee_k(x++€)vol“(W“(d5kv, d)),
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where vol" denotes the Busemann volume associated to the metric d* (see section 1.4.4). Now
recall that a(w) C W*(w, ), so that vol*(a(w)) < vol*(W"(w,r)). Hence

UOlu(Wu(wv ’I")) k(xt
tH{Aedra, ACa(w), ANA, #0} < — cePO o)
mlnvéa(w){UOlu(Wu (¢kv7 d))} (52)
< eDekX+e),
for some constant D := D(r,d), as claimed by lemma 5.2.4 below. Finally,
1 1
hon() = 2l () < £ 108(cD) + (¢ + ) + el (8).
Let k go to 400 to get
hm(ds) < X+ + 6(1 + hm(@))

Since € is arbitrarily small, we have the result. O

To prove the claim about volumes in inequality (5.2), we have to recall two results about the set
X, of convex proper open subsets of RP". For § > 0, we let

Xﬁ ={Q e X,, (Q,dq) is é-hyperbolic}

and
Xno={(Qz), Qe X, 2€Q}, XJ,={(Q2), Qe X, z€Q}.
The projective group PGL(n 4+ 1,R) acts on each of these sets.

Theorem 5.2.2 (Benzécri, [9]). The action of PGL(n + 1,R) on X,, o is proper and cocompact,
that is, X, 0/PGL(n + 1,R) is compact.

Proposition 5.2.3 (Benoist, [6]). Let § > 0. The set X2 is a PGL(n + 1,R)-invariant closed
subset of X,,.

Both results imply that the quotient XJ ,/PGL(n + 1,R) is compact, hence the expected

Lemma 5.2.4. Let 6 > 0 and r > 0. There exist constants v = v(r,6) > 0 and V =V (r,0) > 0
such that, for any 6-hyperbolic Hilbert geometry (2, dq) and w € HS,

v < vol*(W*(w,r)) < V.
Proof. Consider the function

f: tho — (0, +00)
(Q,2) +— max{vol*(W*(w,r)), w € H,Q}.

This function is continuous and PGL(n + 1, R)-invariant. Since X3 ;/PGL(n+ 1,R) is compact, f
is bounded: there exists V > 0 such that, for any Q € X2 , and w € HQ, vol*(W*(w,7)) < V.

The same can be done with the function g : (2, z) — mi’n{vol“(VV“(w7 r)), w € H,Q} to get the
lower bound. O

I guess Ruelle inequality should be true for all Hilbert geometries but the proof would be a bit more
involved. Anyway, we do not really need it for the applications.
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5.2.2 Sinai measures and the equality case

An invariant measure that achieves the equality in Ruelle inequality is called a Sinai measure.
This is named under the name of Sinai because Sinai proved that equality occurs when the measure
is a smooth measure. More generally, the theorem is the following:

Theorem 5.2.5 (Ledrappier-Young [47]). Let (Q,dq) be a Gromov-hyperbolic Hilbert geometry and
M = Q/T a quotient manifold. Let m be a @'-invariant probability measure on HM. Then m is a
Sinai measure if and only if it has absolutely continuous conditional measures on W*-manifolds.

Proof of theorem 5.2.5. We just give an idea of the proof, details can be found in [2] or [47]. It can

be reduced to the case when m is ergodic. So let vol be the volume defined on HM by F and m
be an ergodic invariant measure of the flow. Take a W"-partition « as in theorem 5.1.4, such that

B = /—logmgp_la(w)(a(w)) dm(w). (5.3)

If m has absolutely continuous unstable measures, then we can write dmq () = f dvoly(w). Now,
we can see that f must be proportional for v € a(w) to the infinite product

+oo 1y —ny,
0= 11 Jeigmay (5.4

with J%(v) = det d,®!|gu, which is well defined thanks to the C'*¢ regularity of the boundary,
which implies C17¢ regularity of the flow. Equation (5.4) now gives the equality.

For the converse, the argument is similar to the one used to prove theorem 5.1.1. Assume m is a
Sinai measure, that is h,,, = [ xT dm. Let f be as in (5.4) and define a new Borel measure v by
setting dvg(w)y = f dvoly(w). In this way, v = vol on the subalgebra B, of B which contains all
unions of elements of «; for a Borelian B, the measure v(B) is well defined by

v(B) = / Vot (B) dv(a(w)).

Then we can prove that m = v. We first check that

Do = /—log Vo—1a(w)(a(w)) dm(w).
By Jensen inequality and the fact that « is generating, we get that for m-almost every w,

Va(w) = Ma(w)>

which gives dmg () = f dvoly(w)- O

5.3 Entropy rigidities

5.3.1 Compact quotients

A pragmatic goal of this thesis was to distinguish Riemannian hyperbolic structures from non-
Riemannian strictly convex projective ones by their entropies. For compact manifolds, a complete
answer is given by theorem 5.3.3, which is the main result of the article [25].

The first step in the proof of this theorem is the following general rigidity result:
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Proposition 5.3.1. Let (Q,dq) be a Gromov-hyperbolic Hilbert geometry and M = Q/T a quotient
manifold. Assume there is a finite Bowen-Margulis measure on HM and denote by uppy the
probability one. Then

or<n—1,

with equality if and only if ppar s absolutely continuous.

Proof. Proposition 5.1.11 gives h = dr. Ruelle inequality implies that

HBM

hMBM S/XJr dUBM:n_1+/7] dppn,

where 7 corresponds to the parallel transport, as in proposition 3.2.1.

As we saw from the Patterson-Sullivan construction (section 4.2.2), the Bowen-Margulis measure
is flip-invariant, that is o x upy = ppa- We could also use the unicity of the measure of maximal
entropy to prove it. Recall now from lemma 3.2.2 that n is antisymmetric to get

/nd/u'BM :Oa

and
51‘ < n — 1.

From theorem 5.2.5, equality occurs if and only if upys has absolutely continuous unstable condi-
tional measures. But this is equivalent to the absolute continuity of the Patterson-Sullivan measures,
that is, to the absolute continuity of the whole measure pgy;. O

The next lemma gives a criterion to apply proposition 5.3.1.

Lemma 5.3.2. Let (Q,dq) be a Gromov-hyperbolic Hilbert geometry and M = Q/T' a quotient
manifold. Assume there exists a probability Bowen-Margulis measure pugyr- If T is Zariski-dense
in SL(n+ 1,R), then ppar is not absolutely continuous.

Proof. Assume p := pupps is absolutely continuous with respect to the volume vol defined by the
metric F. Call vol® and vol" the volumes defined by F on the stable and unstable manifolds. Take
a W"-partition « as in theorem 5.1.4. As in theorem 5.2.5, we can see that, on p-almost every
a(w), p* = fUvol*, where f“(v), for v € a(w), is proportional to the infinite product

iT’J“(@‘"v) 55)
oot Ju(Pw)’ '
What is important is that f* is continuous and f* > 0. In the same way, we see that pu® = fvol®
with f*® positive and continuous. This implies that p itself satisfies u = fvol, with f positive and
continuous on the support of . But the support of p is the whole nonwandering set, so f is positive
and continuous on the nonwandering set.

Now, consider the periodic orbit v of length () associated to the hyperbolic element v € I'. Pick
w € 7. Since f is positive on the orbit =, it implies that d,,¢'(") is a linear automorphism of T,, H M
such that

| det dy'] = 1.
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Together with proposition 3.6.1, that implies
log Ao(7) +log Ap+1(7)
log Ao(7) —log Ap+1(7)’

where Ag(y) and Ap1+1(7y) denote the biggest and smallest eingenvalues of . Thus, for any v € T,
we have

1
0= lim n log | det d "] = 2n(7) = 2(n + 1)

t——+oo

log Ao(7) +log Ap11(7) =0,
or
Ao(M)Ap+1(y) = 1.
But, from theorem 1.2.a.3 of [4], such an equation cannot occur for all hyperbolic elements v € T’
if I is Zariski-dense. O

We can now state the
Theorem 5.3.3. Assume M = Q/T is compact. Then ér = hyop < n— 1, with equality if and only
any of the following equivalent propositions is satisfied:

o M is Riemannian hyperbolic;

e the parallel transport on M is an isometry;

e the Bowen-Margulis measure is absolutely continuous.

The last result which is useful to get the theorem is the following. It was shown by Benoist for
cocompact groups, but his proof readily extends to get the

Theorem 5.3.4 (Y. Benoist, [5]). Let I' C Isom(Q,dq) such that Ap = 0Q. Then the Zariski-
closure of T is either conjugated to SO(n, 1) or it is all of SL(n + 1,R).

Proof of theorem 5.3.3. In this case of a compact manifold, ppz,; is exactly the measure of maximal
of maximal entropy constructed by Bowen and Margulis, so hiop = hyy,,. The equality or = hyop
is Manning’s theorem 1.6.2. Of course, this is also a special case of theorem 5.1.1.

Now, recall that (€2, dq) is necessarily Gromov-hyperbolic, from Benoist’s theorem 1.4.2. Proposi-
tion 5.3.1 gives

or <n-—1,
with equality if and only if ppas is absolutely continuous. If the case M is Riemannian hyperbolic,
wpa is actually the Liouville measure and there is equality. Otherwise, theorem 5.3.4 together
with lemma 5.3.2 say that pupas cannot be absolutely continuous. The proposition about parallel

transport is just what was proved in the course of the proof of lemma 5.3.2.
O

Together with proposition 1.6.1, we get the following

Corollary 5.3.5. Let S be a divisible strictly convex set. Then
hoot(2) <n —1,

with equality if and only if Q) is an ellipsoid.

The existence of divisible sets in all dimensions gives a lot of Hilbert geometries whose volume
entropy is strictly between 0 and n — 1. This statement is then a more precise answer to the
conjecture 1.5.2 for divisible strictly convex sets.
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5.3.2 Finite volume surfaces

I hoped to extend the last rigidity results to noncompact quotients and the last two chapters were
the first steps to such extensions. General results are not available yet but, in the particular case of
surfaces where we can understand the possible quotients, we get the following extension of theorem
5.3.3, whose proof is exactly the same (recall that (£2,dq) is Gromov-hyperbolic from Marquis’
proposition 4.4.2):

Theorem 5.3.6. Let M = Q/T be a surface of finite volume. Then ér < 1, with equality if and
only if any of the following equivalent propositions is satisfied:

e M is Riemannian hyperbolic;

e the parallel transport on M is an isometry;

e the Bowen-Margulis measure is absolutely continuous.
Together with theorem 4.4.1, this implies the following

Corollary 5.3.7. Assume Q C RP? admits a quotient of finite volume. Then
hvol(Q) g n— 17
with equality if and only if Q0 is an ellipsoid.

Let me end this part with some remarks.

First of all, T thought it was possible to go further and to prove that, for any geometrically finite
surface M = Q/T', we had ér < 1, and that equality occurred if and only if M was Riemannian
hyperbolic with finite volume. Indeed, it is known that if M = H"/T" is a geometrically finite
manifold with infinite volume, then ér < n — 1, and so we could expect the same in our case. I still
guess it is true, but it is not so easy, as we now see.

In SL(3,R), the only infinite Zariski-closed subgroups are, up to conjugation, SO(3), SO(2,1)
and SL(3,R). Since SO(3) is compact, the Zariski-closure ' of an infinite discrete subgroup I' of
Isom(Q),dq) can be either a conjugate of SO(3,1) or SL(3,R).

o If I' = SL(3,R), lemma 5.3.4 applies and as before we get dr < 1;

e If T is conjugated to SO(2,1), then, that means I' acts on some ellipsoid. In particular,
the limit set lies on an ellipsoid. Nevertheless, that does not imply that the geometry is
Riemannian hyperbolic, because the limit set is in general not the whole of 9. So 2 has a
lot of points in common with an ellipsoid but that is all we know.

Let us recall that, when M = Q/T is compact, the critical exponent is exactly the exponential
growth rate of numbers of closed geodesics of length at most ¢:

1
or = lim —log#{y € T, v hyperbolic and I() < t}.
t—+oo ¢

If the same were true for geometrically finite surfaces, then ér would depend only on the group I"
and not on , hence we could conclude from the fact that I' acts on some H?. But I do not know
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if this remains true...

Second, we could also want to distinguish Riemannian hyperbolic structures and non-Riemannian
ones on surfaces of infinite volume by some dynamical invariant. But in this case, topological en-
tropy is clearly not what we have to look at. Take for example a convex cocompact hyperbolic
surface. It is known that its topological entropy depends on the hyperbolic structure and can take
all the values which are strictly between 0 and 1. Thus, we cannot expect a result like theorem 5.3.6:
there would be some non-Riemannian structures whose topological entropy would be bigger than
the topological entropy of some hyperbolic structure. So a new rigidity result has to be formulated
in this context.

5.4 Continuity of entropy

We finish this section, chapter and thesis by the following proposition, which asserts that the
entropy of a compact manifold or a finite volume surface varies continuously with the structure.
By varying the structure, we mean the following. Take an abstract smooth compact manifold
M, which admits a strictly convex projective structure My = Qp/To. This means we are given a
developing map devy : M — €, which is a diffeomorphism from the universal cover of M to Qo,
and a representation I'g = po(m1(M)) of the fundamental group of M as a faithful and discrete
subgroup of PGL(n + 1,R). Remark that the convex set g itself is indeed determined by this
representation, since the limit set Ar is the whole of 92. Endow the set Hom(m (M), PGL(n+1,R))
of representations with the compact-open topology, and the set of maps M —s RP" with the
topology of uniform convergence. A continuous deformation of the structure is a path (devy, py)
of convex projective structures which is continuous with respect to these topologies. The same can
be done for deformations of finite volume convex projective structures on a surface M.

Proposition 5.4.1. Assume My = Qo/Ly is compact (resp. a surface of finite volume). Let
My = Qy/Tx, A € [-1,1] be a continuous deformation of M into compact manifolds (resp. finite
volume surfaces). Then the function A — dr, is continuous.

Proof. Let us do the proof in the compact case. Let (px,devy) A € [—1,1] be the considered
deformation of (pg, A\p). These structures provide Finsler metrics F on the abstract manifold M.
These metrics vary continuously with A in the following sense:

. Fy
lim sup — =1.
A=07rfoy Fo

For let T*M the unit tangent bundle for Fy. Since T'M is compact! and A — devy is continuous,

lim sup |F)\ — Fy| = 0.
>\—>0T1]\4

Moreover mingi s Fo > 0, hence

Fy
li — — 1| =0.
Jim, sup 7= =1

1In the case of a finite volume surface, one has to use the fact that the geometry is controlled in the cusps.
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Homogeneity gives the result, that is there exist reals C\ > 1 such that limy_.o Cy = 1 and

F
C;l < sup A < Chy.
Tm~{o} Fo

Denote by d;,\ the associated distances on M Let ,y € M, and ¢y be the geodesic from z to y for
the metric dy, such that [ F\(c}(t)) dt = da(z,y). Then

o1 < I B dt
NS TR(AG®) dt S do(ay) [ Folch(t)) dt

Thus for any z,y € M,

ot < D@y o
do(l’,y)

From that we clearly get By (z, R) C Bo(z, CxR). Hence

1 ~ 1 -
or, = limsup =#{g € m (M), gz € Bx(z,R)} < limsup =#{g € m (M), gz € Bo(z,CxR)} = C\r,.
R—o0 R R—o0 R

Similarly, 0;1(51"0 < Or,. That gives the continuity. O



Postface et remerciements

Si ¢a ne tenait qu’a moi, il n’y aurait rien de définitif. Cette these se termine la, mais
elle est inachevée; il y a certainement des erreurs de mathématiques et I’anglais, soyons
indulgent, n’y est pas tres bon. J’aurais pu faire beaucoup plus de figures, mais c’est
tres long de faire des figures alors il n’y a que celles qui sont indispensables ou que j’ai
réussi a faire.

Dans cette partie, on peut parler de tout. Du temps, des choses et des gens. C’est la
partie qui est la plus difficile & commencer. On ne sait pas trop ou elle nous mene, mais
on sait qu’il y a des passages obligés. Remercier mes parents par exemple?.

Je vais essayer de m’en tenir & ma these, aux mathématiques, a I'université. C’est déja
bien trop en fait, cela fait beaucoup de choses, de temps, de gens.

En faisant des mathématiques avec d’autres mathématicienNEs, je suis entré dans la communauté
mathématique. Elle ne se limite pas du tout aux mathématicienNEs, mais les mathématiques en
sont bien le nceud. Son but est de faire progresser les mathématiques, de découvrir de nouvelles
choses en mathématiques. En fait, je préfere penser que son but est juste de faire des mathématiques,
mais c¢’est ma fagon de voir. Qu’il n’y ait pas de notion de progres, ¢ca me rassure...

D’un point de vue institutionnel, c’est mon appartenance a une université qui compte, et je suis
ainsi membre de la communauté universitaire. Je 1’étais avant en tant qu’étudiant, mais j’y ai
changé de statut (tout en gardant les avantages de celui d’étudiantE aupres de la société civile).
En changeant de statut, j’ai eu droit a tout plein de choses, stirement parce que je suis devenu
plus important pour/dans la communauté. J’ai eu droit & un bureau, & une clé du batiment de
mathématiques, de la bibliotheque et du garage a vélos, a imprimer et photocopier par milliers, a
rendre mes livres avec 3 mois de retard; je n’ai pas usé de ce dernier droit mais par contre, j’ai usé
de celui d’étaler sur un livre de la bibliotheque du coulis de fruits de houx: Myriam Pepino m’a
méme dit que c’était la premiere fois que quelqu'unkE faisait ¢a et du coup, grace a moi, elle connait
Peffet du fruit de houx sur les pages d’un livre.

Encore une fois, j'aime croire que 'université est 1a juste pour penser, pour faire des sciences, au
sens large: dures, molles, salées, demi-sel, avec des cristaux de sel. Bien sir, je sais que c’est faux,
que la science et le savoir sont une industrie depuis belle lurette, et qu’ils servent un idéal de vie,
bourgeois et capitaliste. C’est aussi pour ¢a que je n’aime pas le progres.

2C’est fait...
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Que j’entre dans ces communautés, ca veut dire qu’on me reconnait & un moment y prendre une
part active. C’est moins le cas quand on est un vrai étudiant, & mon sens ¢a ne devrait pas mais
c’est ainsi.
Pour évoluer dans ces communautés, il y a des regles, des regles claires, écrites, dites de droit, et
puis d’autres, implicites. J’ai passé beaucoup de temps a apprendre des regles depuis... le début.
C’est que j’ai di faire partie de plein de communautés. L’Etat, la famille, I’école, le sport, 'extréme-
gauche, la consommation... A chaque fois, il y a des individus pour vous montrer les regles du jeu
de la communauté, et pour en décoder les coutumes.

b
C’est d’abord pour avoir joué ce role pendant ma thése que je remercie Patrick. Je le remercie
d’avoir pu discuter d’un peu tout et n’importe quoi, de m’avoir dit la ou il fallait faire attention,
de m’avoir conseillé sans m’obliger & suivre ses conseils, de m’avoir dit sa facon de voir et faire les
choses et d’avoir accepté que j’ai la mienne. C’est appréciable de pouvoir discuter sans devoir étre
d’accord. Par exemple, c’est lui qui m’a conseillé de parler de tout, du temps, des choses et des
gens seulement a la fin de cette these; sinon, je n’aurais pas résisté a en cacher des morceaux dans
I'introduction.
Je le remercie aussi d’avoir pu étirer ses journées jusqu’a 26 ou 27 heures pour pouvoir faire des
maths. C’est d’abord lui qui m’a fait découvrir ce dont on parle dans cette these, et c¢’est lui qui

)

m’a lancé sur les bonnes pistes au début. En ¢a je crois que j’ai eu de la chance.

J’étais partagé pendant cette these. Entre Strasbourg et Bochum. A Bochum, j’ai appris beaucoup
de choses en discutant avec Gerhard. Le sujet de cette these est plus éloigné de son travail, mais
sa connaissance du monde riemannien courbé négativement m’a permis de prendre de nouvelles
directions, de comprendre de nouveaux outils. Au final, il y a plein de choses dans cette these qui
ne sont que des adaptations du riemannien...J’en profite qu’on est & Bochum pour remercier Ursula
Dzwigoll, qui m’a bien aidé lorsque j’étais la-bas.

Pendant un doctorat de mathématiques, on travaille souvent toutE seulE. C’est normal, je crois,
qu’il y ait du temps pour penser toutE seulE dans la recherche. Bien entendu, on n’est en fait
jamais seulE; encore moins aujourd’hui qu’on a internet et des bibliotheques géantes. Et au fond,
il n’est pas si facile de dire qui a joué quel role dans I’élaboration d’une idée.

Malgré tout, je peux affirmer que les discussions mathématiques avec Thomas, Camille et Aurélien
n’ont pas été pour rien dans mon travail. C’est principalement avec eux que j’ai partagé mes idées
souvent foireuses, et c’est un peu comme ¢a qu’elles sont devenues meilleures. La partie “dans le
flou” de mon travail, c’est beaucoup a eux que je la dois. Je remercie en particulier Aurélien pour
les petits calculs et dessins avec des fonctions convexes...

Ludovic, c’est la personne avec qui j’ai fait le plus de maths pour de vrai, ce qui est possible parce
qu’on travaille sur la méme chose... J’ai bien aimé travailler avec lui, j’aime toujours bien et c’est
tant mieux parce qu’on n’a pas fini. On ne sait toujours pas si 'on découvre ou si l'on invente les
mathématiques, mais peu importe.

Sur un plan plus rigoureux, je dois beaucoup a Francois Ledrappier, et pas seulement parce qu’il a
relu ma these. La partie 5, je n’aurais jamais réussi a ’écrire sans lui, sans son cours a Tours, et
sans tous les mails qu’on s’est échangés; a chaque mail, il me mettait en garde contre un piege dans
lequel je m’étais précipité de tomber... Je tiens donc a le remercier pour son aide, sa disponibilité
et sa gentillesse.

Mon autre rapporteur, c’est Francoise Dal’bo, et elle aussi, ce n’est pas que pour cette raison que
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je tiens a la remercier. J’aime sa facon de voir la recherche, sa facon de faire des mathématiques et
d’en parler. Les rencontres du G.D.R Platon, dont elle est une des organisatrices, ont toujours été
de tres bons moments, tant humains que mathématiques; et je ne crois pas me tromper en affirmant
que si les jeunEs y sont si bienvenuEs, Francgoise n’y est pas pour rien. Je la remercie pour tout ca,
pour l'intérét qu’elle porte a mon travail et a celui des autres.

Frangoise m’a expliqué qu’elle avait choisi que le G.D.R. s’appellerait Platon parce qu’elle aime
bien Platon. Parce que pour Platon, il n’y avait pas de séparation entre la vie et la science, la
philosophie, I’art, que cela ne formait qu'un tout. C’est le bon endroit, je crois, pour traduire le
célebre poeme d’Antonio Machado qui a longtemps trainé en espagnol a la fin du manuscrit de ma
these, comme seul occupant de cette derniere partie.

Caminante, son tus huellas Marcheur, ce sont tes traces
el camino, y nada mas; le chemin, et rien de plus;
caminante, no hay camino, marcheur, il n’y a pas de chemin,
se hace camino al andar. le chemin se fait en marchant.
Al andar se hace camino, En marchant se fait le chemin,
y al volver la vista atras et lorsqu’on regarde derriére soi
se ve la senda que nunca on voit le sentier que jamais plus
se ha de volver a pisar. on ne foulera.
Caminante, no hay camino, Marcheur, il n’y a pas de chemin,
sino estelas en la mar. mais seulement des sillons laissés dans la mer.

J’ai eu la chance pendant mon doctorat de participer a divers événements mathématiques, au cours
desquels j’ai pu rencontrer et discuter avec de nombreuSES mathématicienNEs.

Constantin Vernicos est le premier & qui je pense alors. Il s’est intéressé a mon travail des qu’il
en a pris connaissance et m’a souvent été d’une aide précieuse, que ce soit en live ou par mail. Je
le remercie en particulier, ainsi que Anne, Zoé, Léo et Kurt Falk, de leur accueil & Maynooth; j'y
avais méme eu droit & des week-end ensoleillés...

C’est aussi grace a lui (et puis & Gerhard, et aux finances allemandes) qu’on a pu, avec Aurélien,
profiter d’une école d’été a Samos. A cette occasion, j’avais pu revoir Gérard Besson et Gilles Cour-
tois, qui ont toujours eu un intérét remarquable et des remarques intéressantes concernant mon
travail. C’est d’ailleurs en croisant, pour la premiere fois a Ziirich, le trio Besson-Courtois-Sylvain
Gallot que j’ai pensé étre tombé dans une branche sympa des mathématiques. Leur bonne humeur
et leur gentillesse sont toujours tres appréciables. Tous les gens sympas que j’ai rencontréEs ensuite,
au G.D.R Platon en particulier, n’ont fait que confirmer cet a priori. C’est un bon endroit pour
remercier Marc Peigné.

Ce que j’aimerais souligner ici, ¢’est encore une fois I'intérét que ces personnes-la manifestent quant
aux travaux des “jeunkEs”, alors que d’autres, ici ou ailleurs, ne savent souvent que les dénigrer,
voire les mépriser.

Je remercie Athanase Papadopoulos d’avoir accepté d’étre membre du jury, et d’avoir tout fait pour
décaler son séjour en Turquie pour pouvoir assister a la soutenance. Je ne tenais pas vraiment a
visioconférencer. Je le remercie aussi pour les discussions que 1’on a pu avoir, et pour sa franchise.
Yves Benoist est un membre particulier du jury car c’est un de ses articles qui est a ’origine de mon
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travail. Je suis trés honoré qu’il fasse partie de mon jury, et je tiens a le remercier pour la longue
série d’articles qu’il a écrits sur la géométrie des convexes projectifs et qui font toujours référence
dans mon travail.

Je remercie enfin Tilmann Wurzbacher d’avoir accepté de représenter Bochum aux cotés de Gerhard
dans le jury.

Je m’étais dit que je ne parlerais pas de qu’il y avait autour de la these, alors je ne le ferai pas.
Sinon, il faudrait 136 pages de plus pour expliquer en quoi, dans les autres “communautés” dans
lesquelles je suis passé, j’ai existé, je passe ou j’existe, telLE ou telLE amiE est importantE. Mais
comme je peux parler de ma these, alors je peux remercier au moins Vincent Pit, et puis les autres
doctorantEs, en particulier Ambroise et Philippe avec qui j’ai partagé des bureaux et Antoine qui
se cachait bien. Et Sofiane qui n’est pas doctorant, ni doctorantE.

Il y a aussi un tres grand merci que je voudrais faire aux étudiants de licence avec qui j’ai travaillé
pendant mes trois ans de monitorat. La recherche, c’est parfois prise de téte et heureusement que
j’avais parfois d’autres mathématiquesa fouetter. Une pensée particuliere va pour les étudiants des
“Compléments d’analyse” de troisieme année, grace auxquels j’ai appris énormément.

Cette these sera (aura été) soutenue au College Doctoral Européen de Strasbourg. Je remercie
Céline, Christine et Jean-Paul qui y font un travail admirable, pour leur disponibilité, leur im-
mense gentillesse et support pendant tout ce temps. C’est une chance de soutenir ici, et c’est le
bon moment pour remercier Adrien et son groupe de bien avoir voulu fanfaronner pour le pot de
these. Et puisqu’on parle du pot, je peux remercier les gens qui participeront (auront participé) &
sa préparation: Maman, Mamie parce que sans elle on ne saurait pas faire des tortillas, Ludovick,
Marie, Camille, Adrien, Sabrina.

Cette soutenance aura (aura eu) lieu le 18 mars 2011. C’est peu avant mon anniversaire, mais c’est
surtout 140 ans tout pile apres le début de la Commune de Paris. C’est marrant et ¢a tombe bien.
Dédions-lui ce travail acharné. Euh... anarchique.

“Le peuple n’a que ce qu’il prend”
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flow, 41 divisible convex set, 16
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derivation, 30

p-convexity, 55 dynamical formalism, 25
Beltrami model of hyperbolic space, 1 in Hilbert geometry, 31

bounded parabolic point, 17

Bowen-Margulis measure, 71, 73 elementary group, 16

Busemang elliptic isometry, 12
function, 10 entropy
volume, 19

measure-theoretic, 67
of a measurable partition, 85
of a partition, 67
rigidity, 97
topological, 21
volume, 20
ergodic measure, 66

CX function, vector field, 25
C“-regularity, 55
conditional measures, 85
conformal density, 69
conical point, 17
conservative, 73

continuity of entropy, 99

convergent, 69 finite volume surfaces, 19

convex Finsler
core. 17 metric, 3
divisible set, 16 ~ volume, 19
hull of the limit set, 16 flip map, 50
locally, 54 at infinity, 67
projective manifold, 15 flow bow, 87
quasi-symmetrically, 8 Foulon’s dynamical formalism, 25
set, 3 fundamental domain, 15
critical exponent, 20
curvature, 31 generating partition, 68, 86
of Hilbert geometries, 32 geodesic flow, 31
cusp, 13 geometrically finite, 17
surfaces, 18
decomposition of the convex core, 18 Gromov product, 8
decreasing partition, 86 in Hilbert geometry, 10
d-hyperbolicity, 8 Gromov-hyperbolic, 8
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Hilbert

1-form, 32

distance, 1

geometry, 2
Hilbert’s fourth problem, 2
Hopf-Tsuji-Sullivan theorem, 73
horizontal distribution, operator, 28
horospheres, 11
hyperbolic group, 8
hyperbolic isometry, 12

increasing partition, 86
isometries
classification, 12
elliptic, 12
hyperbolic, 12
in dimension 2, 14
parabolic, 12

Jacobi operator, 31
John’s ellipsoid, 36

Kaimanovich correspondence, 65
Kolmogorov-Sinai entropy, 67

light cone, 10
limit set, 15
locally convex, 54
Lyapunov
decomposition, 47
filtration, 47
manifolds, 61
regular point, 46
Lyapunov exponents, 46
of a periodic orbit, 62

Manning’s theorem, 21
maximal parabolic subgroup, 13
measurable partition, 84
measure
Bowen-Margulis, 71, 73
conditional, 85
conservative, 73
dissipative, 73
ergodic, 66
of maximal entropy, 69
Patterson-Sullivan, 70

Sinai, 95
measure-theoretic entropy, 67
minimal action, 15

nonwandering set, 41

Oseledets
decomposition, 47
filtration, 47

multiplicative ergodic theorem, 52

parabolic
bounded point, 17
group, 13
isometry, 12
in dimension 2, 14
maximal subgroup, 13
parallel transport, 30
on €, 49
partition
decreasing, 86
generating, 68, 86
increasing, 86
measurable, 84
of a measure space, 67
Patterson-Sullivan measures, 70
Poincaré series, 69
proper convex set, 3
pseudo-complex structure, 29

quasi-isometry, 8
quasi-symmetrically convex, 8

radial point, 17

regular
forward,backward, 46
orbit, 46
point, 46

Ruelle inequality, 93

shadow, 10
lemma, 71
Sinai measure, 95
stable
distribution, 38
manifold, 38
symmetric set, function, 51
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topological entropy, 21
for noncompact spaces, 22

unstable
distribution, 38
manifold, 38

variational principle, 69

vertical distribution, operator, 27
verticality lemma, 27

volume, 19

volume entropy, 20

wandering, 73
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