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À toi, sans qui tout cela ne vaudrait rien.



- Would you tell me please, which way I ought to go from here ?
- That depends a good deal on where you want to get to, said the Cat.
- I don’t much care where..., said Alice.
- Then it doesn’t matter which way you go, said the Cat.
- ...so long as I get somewhere... Alice added as an explanation.
- Oh, you’re sure to do that, said the Cat, if only you walk long enough.

Lewis Carroll, Alice’s Adventures in Wonderland.
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Introduction

As for most mathematical texts, the organization of this thesis does not reflect the
fundamentally anarchic process of research. It is written in such a way that one can read
it from the beginning to the end, with all the arguments and details coming up at the
suitable logical moment for the reader to be convinced. This approach though coherent
and rigorous is not always the best way to help the reader in his understanding.

In this introduction, I would like to present the main results of this work as they
showed up all along the last three years, with emphasis on motivations and informal
logical links. I hope that will provide a good entrance point into the thesis.

Take an abstract smooth compact manifold M , which admits a hyperbolic structure M0, that is, a
metric of constant sectional curvature −1. M0 can be seen as the quotient H/Γ0 in the Beltrami
model of the hyperbolic space: the space H is the unit ball Ω0 in Rn ⊂ RPn with the distance
between two distinct points x and y being defined by

d(x, y) =
1

2
log[a, b, x, y], (1)

where a and b are the two intersection points of the line (xy) with the boundary ∂Ω0 of Ω0 (see
figure 1); the full group of isometries of H is the group PO(n, 1) and Γ0 is a discrete subgroup of
it. The geodesics on M0 are just the projections of the lines intersecting Ω0.

It is sometimes possible to deform continuously and in a non-trivial way the group Γ0 into discrete
groups Γt < PGL(n + 1,R). In other words the representation Γ0 of the fundamental group of M
in PO(n, 1) is deformed into representations Γt in PGL(n + 1,R); continuity is considered with
respect to the compact-open topology, and by non-trivial one means that Γt is not a subgroup of
some conjugate of PO(n, 1). A theorem of Koszul [46] affirms that, at least for small t, there exist
corresponding deformations of the ball Ω0 into bounded convex sets Ωt ⊂ Rn such that Γt still acts
on Ωt; the quotient Mt = Ωt/Γt is a convex projective structure on M .
In full generality, a convex projective structure is a pair (Ω, Γ) consisting of a convex proper open
subset Ω of RPn and a representation of π1(M) as a discrete group Γ < PGL(n + 1,R), such that
Γ acts on Ω and Ω/Γ is diffeomorphic to M . Two such structures Ω/Γ and Ω′/Γ′ are equivalent
if the quotients are equivalent as projective manifolds: there is a projective transformation γ such
that γ.Ω = Ω′ and Γ′ = γΓγ−1.
The deformation that was just considered is thus a deformation of the hyperbolic structure M0

i
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Figure 1: The Beltrami-Hilbert distance

into non-equivalent convex projective ones Mt. Formula (1) defines a metric on each Ωt, called the
Hilbert metric of Ωt, whose geodesics are still the lines; since the metric is defined by a cross-ratio,
it is projectively invariant and thus gives a metric on each Mt. The non-triviality of the deformation
implies that the manifold Mt is not isometric to M0.

The existence of such deformations was a long standing question. The first examples of non-
hyperbolic strictly convex projective manifolds were given by Kac and Vinberg in 1967 [41], and
explicit deformations of hyperbolic structures were constructed in any dimension in 1984 by John-
son and Millson [40]. A major paper in this story is certainly [33]. Goldman provides there an acute
study of convex projective compact surfaces. Among other things, he shows that the set G(Σg) of
all convex projective structures on the surface Σg of genus g > 2, considered up to equivalence,
is a smooth manifold diffeomorphic to R16g−16. The space G(Σg) contains the Teichmüller space
T (Σg) of non-equivalent hyperbolic structures as a submanifold of dimension 6g− 6, hence proving
that convex projective structures are much more general than hyperbolic ones. In fact, Choi and
Goldman [20] went further: they showed that G(Σg) was exactly the connected component of T (Σg)
in the set of faithful and discrete representations of the fundamental group π1(Σg) in PGL(3,R),
up to conjugation. This study was extended by the same authors to 2-orbifolds [21].

The general question about these convex projective deformations of hyperbolic structures is: which
properties of hyperbolic manifolds stay true after deformation, which ones are lost ? In particular,
do some of them characterize hyperbolic structures among convex projective ones ? These could
be metric properties, geometric properties, group properties... For example, after deformation,
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the Hilbert metric is not a Riemannian metric anymore, it is only Finslerian: instead of having
a scalar product on each tangent space TxΩ, we have a norm F (x, .). On the other side, the
following fundamental result implies in particular that some amount of hyperbolicity remains after
deformation of a hyperbolic manifold.

Theorem (Benoist, [7]). Let M = Ω/Γ be a convex projective compact manifold. The following
propositions are equivalent:

• Ω is strictly convex;

• the boundary ∂Ω of Ω is C1;

• the space (Ω, dΩ) is Gromov-hyperbolic;

• Γ is Gromov-hyperbolic.

In this thesis, I am interested in dynamical properties of the geodesic flow of the Hilbert metric,
whose study was initiated by Yves Benoist in [7]. The geodesic flow ϕt of the Hilbert metric on a
convex projective manifold M is defined on the homogeneous tangent bundle HM = TMr{0}/R+:
given a pair w = (x, [ξ]) consisting of a point x ∈ M and a direction [ξ] ∈ HxM , follow the geodesic
leaving x in the direction [ξ] during the time t. On HΩ, the picture is easy to see: one follows the
lines at unit speed...

Then how does the dynamics of the geodesic flow of the metric change when the structure M0 is
deformed into Mt ? Yves Benoist proved in [7] that it is still an Anosov flow, and the question I
was first asked to answer was: does its topological entropy change ?
Topological entropy is a major invariant in the theory of dynamical systems which roughly speaking
measures how the system separates the points, how much it is chaotic. (See section 1.6 for the formal
definition.) An answer is provided by the following

Theorem 1. Let M = Ω/Γ be a strictly convex projective compact manifold of dimension n. Its
topological entropy htop satisfies the inequality

htop 6 (n − 1),

with equality if and only if M is Riemannian hyperbolic.

n−1 is the topological entropy of the hyperbolic geodesic flow, so this theorem asserts in particular
that a non-trivial deformation of a hyperbolic structure makes the topological entropy decrease.
This is a surprising fact when one thinks of the famous result of Besson, Courtois and Gallot
([12, 13]) which says that, if one makes vary the curvature of M0 without changing the volume, the
topological entropy has to increase. I did not find any satisfying explanation for this phenomenon :
is there some volume involved that would increase during the deformation ? is there a renormal-
ization of the geometries that would make the entropy stay constant, or increase ?
I then turned to look at how the entropy could vary: given the hyperbolic structure M0, can
we make the topological entropy decrease as much as we want by deforming M0 into the convex
projective world ? For instance, consider the space G(Σg) defined above, of all convex projective
structures on the surface Σg, up to equivalence. It is not difficult to see that the entropy function
htop : G(Σg) −→ (0, 1] is a continuous map (section 5.4); its image is then a sub-interval of (0, 1],
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and the question is: is it surjective ? I first hoped to understand compactifications of G(Σg) and
to interpretate boundary points, with the assumption that the infimum should be attained on the
boundary of G(Σg). I did not dig deep enough to know if it was a good intuition. Very recently, Xin
Nie [57] showed how to make the entropy decrease to 0 in the Kac-Vinberg examples, in dimension
2, 3 and 4.

At the very moment I was wandering within these considerations, Ludovic Marquis was beginning
the study of convex projective manifolds of finite volume ([55, 53]). I thus thought about extending
theorem 1 to finite volume manifolds.
I then had to look back at the proof of theorem 1. The fundamental tools I used for the inequality
can be summarized by the formula

htop = hµBM
6

∫

HM

χ+ dµBM . (2)

Explaining this formula will shed some light on the problems I had to face with.
Given an invariant probability measure µ of a dynamical system, one can define the entropy hµ of
this measure. As topological entropy, this is an indicator of the complexity of the system, but from
a measure point of view: “sizes” are considered with respect to µ and not with respect to a certain
distance d. (See section 4.1.2 for formal definitions.)
The variational principle makes a link between measure-theoretic and topological entropies: it as-
serts that topological entropy is the supremum of the entropies of all invariant probability measures
of the system: htop = supµ hµ. A natural question is to know if there exists some measure that
achieves this maximum.
The measure µBM appearing in equation (2) is the unique measure of maximal entropy of the
geodesic flow on HM . BM stands for Bowen and Margulis who gave two independent construc-
tions of it ([15, 16], [50, 51]), which is now known as the Bowen-Margulis measure. It is defined
for geodesic flows of compact Riemannian manifolds of negative curvature, or more generally for
topologically mixing Anosov flows [45], and is in any case the unique measure of maximal entropy.

The inequality

hµ 6

∫

W

χ+ dµ

is the general Ruelle inequality [68], which is valid for any invariant probability measure µ of a C1

flow on a compact manifold W . In this formula, χ+ is the sum of positive Lyapunov exponents,
which is equal µ-almost everywhere to the asymptotic expansion by ϕt of volumes in unstable
manifolds:

χ+ = lim
t→+∞

1

t
log | det dϕt|.

Pesin [63] proved that equality occurs if µ is absolutely continuous, and Ledrappier and Young
[47] proved that equality occurs if and only if µ has absolutely continuous conditional measures on
unstable manifolds. This last statement is used to prove the equality case in theorem 1: indeed,
Benoist had already observed in [7] that there could not be an absolutely continuous invariant
measure unless the structure was hyperbolic.
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The main task was then to write down such an equation for some noncompact convex projective
manifolds.

Topological entropy has a natural generalization to dynamical systems in noncompact spaces, pro-
posed by Bowen [17], and for which Handel and Kitchens [37] proved a variational principle under
very general assumptions.
The Bowen-Margulis measure has also a generalization for noncompact negatively curved Rieman-
nian manifolds, which is based on Sullivan’s construction [70] for hyperbolic spaces. It makes use of
Patterson-Sullivan measures, which are measures defined geometrically on the boundary at infinity
of the universal cover. A lot of attention has been paid to these measures, that provide bridges
between geometry and dynamics. Roblin’s version of Hopf-Tsuji-Sullivan theorem (theorem 1.7 in
[65]) is the most achieved version of what is known about them (see theorem 4.2.4).
All of this makes sense in the context of Hilbert geometries, at least when the geometry exhibits
some hyperbolic behaviour. In this thesis, this means the Hilbert geometry is defined by a strictly
convex set with C1 boundary; for example, it includes all the Hilbert geometries which are Gromov-
hyperbolic (see sections 1.1.3 and 1.1.4).

If the Bowen-Margulis measure can always be defined on HM , its behaviour and properties are not
always easy to determine. In [65], Roblin showed that lots of dynamical results could be derived
from the only fact that the Bowen-Margulis measure is finite. Obviously, equation (2) could not
make sense in the case µBM is not finite. In the context of pinched negatively curved manifolds, Otal
and Peigné [59] proved that, under this finiteness hypothesis, µBM was indeed the only measure of
maximal entropy, hence generalizing what was known for compact quotients. In fact, they proved
an even stronger result:

Theorem (Otal-Peigné [59]). Let X be a simply connected Riemannian manifold of pinched nega-
tive curvature, and M = X/Γ any quotient manifold, where Γ is a discrete subgroup of isometries
of X. Then

• the topological entropy htop of the geodesic flow on HM satisfies htop = δΓ;

• if there is some probability Bowen-Margulis measure µBM , then it is the unique measure of
maximal entropy; otherwise, there is no measure of maximal entropy.

Here δΓ denotes the critical exponent of the group Γ acting on X , which is closely related to
Patterson-Sullivan measures :

δΓ = lim sup
R→+∞

1

R
log NΓ(o, R),

where NΓ(o, R) is the number of points of the orbit Γ.o of a point o in X under Γ in the metric ball
of radius R in X . The equality htop = δΓ was already known by Manning [49] for compact quotients.

In chapter 5, I prove the following version of this theorem for quotients of Hilbert geometries :

Theorem 2 (Section 5.1). Let M = Ω/Γ be the quotient manifold of a strictly convex set Ω with C1

boundary. Assume there exists a probability Bowen-Margulis measure µBM on HM . If the geodesic
flow has no zero Lyapunov exponent on the nonwandering set, then µBM is the unique measure of
maximal entropy and

htop = hµBM
= δΓ.
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The proof of this result is inspired though simplified from the one of [59], which is itself based
on technics developed around 1980 in the study of non-uniformly hyperbolic systems; the already
mentioned paper [47] of Ledrappier and Young is one of the most famous illustrations of these
technics. By adapting them to Hilbert geometries, Pesin-Ruelle inequality and its case of equality
appeared then as (almost) direct consequences in the case of Gromov-hyperbolic Hilbert geometries :

Theorem 3 (Section 5.2). Let (Ω, dΩ) be a Gromov-hyperbolic Hilbert geometry and M = Ω/Γ a
quotient manifold. For any ϕt-invariant probability measure m, we have

hµ 6

∫

χ+ dm,

with equality if and only if m has absolutely continuous conditional measures on unstable manifolds.

Here is time to make a break to reveal the point of view, kept hidden until now, that allowed me to
prove theorem 1 and to extend the above mentioned technics. This point of view is the one Patrick
Foulon developed in [31] to study second-order differential equations. Geodesic flows of usual regular
Finsler metrics are special cases where Foulon’s dynamical formalism can be applied. In section
2.1, I extend this formalism in the context of Hilbert geometries defined by (strictly) convex sets
with C1 boundary; the flatness of the geometries is crucial here to deal with less regular metrics.
In particular, it allows me to define a parallel transport along geodesics that indeed contains all
the informations about the asymptotic dynamics along this geodesic. For example, the Anosov
property for the geodesic flow on compact quotients, proved by Benoist, can be seen as a direct
consequence of this observation.
A striking and crucial fact is that this parallel transport is in general not an isometry, and that is
what makes the geodesic flow have a different behaviour than in Riemannian spaces. In particular,
the sum χ+ of positive Lyapunov exponents can be expressed (along a regular orbit) as

χ+ = (n − 1) + η,

where

η = lim
t→+∞

1

t
log | detT t|

represents the effect of the parallel transport T t on volumes. Theorem 1 now becomes an easy
corollary of this and equation (2): we get

htop 6 (n − 1) +

∫

HM

η dµBM ,

and

∫

HM

η dµBM = 0 for simple reasons of symmetry (see the proof of proposition 5.3.1).

While working on theorem 1, I had noticed that one could read the Lyapunov exponents of a given
geodesic on the shape of the boundary ∂Ω of Ω at the endpoint of the geodesic (see proposition
5.4 in [25]). Chapter 3 is dedicated to generalize this remark to any Hilbert geometry defined by
a strictly convex set with C1 boundary. It relates Lyapunov exponents, parallel transport and the
shape of the boundary ∂Ω.
As a consequence of that, I show in section 3.5 how Lyapunov manifolds tangent to the various
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subspaces in Lyapunov-Osedelets decomposition can be easily defined. The flatness of the geometry
appears to be essential in this construction, so I do not know if a similar thing could be expected
in the case of Riemannian manifolds of negative curvature, or for general Anosov flows.

At the same time I was considering these general questions, I was also looking for some specific
quotients theorem 2 could be applied to.
The only examples that were available then were the finite volume surfaces studied by Ludovic
Marquis in [55]. For what I was concerned with, the important fact was that such a surface
could be decomposed into a compact part and a finite number of cusps, whose geometry was well
understood. In fact, one can easily see from [55] that the Hilbert metric in a cusp is bi-Lipschitz
equivalent to a Riemannian hyperbolic metric. This simple observation suffices to prove that the
geodesic flow is uniformly hyperbolic, hence has no zero Lyapunov exponent, and to adapt proofs
used in hyperbolic geometry to get the finiteness of the Bowen-Margulis measure. The proof of

theorem 1 then readily applies to this situation:

∫

η dµBM
= 0 just comes from the symmetry

of the Bowen-Margulis measure, which is a very general fact; as for the equality case, Benoist’s
argument in [7] still gives that there is no invariant absolutely continuous measure, unless the
structure is hyperbolic. Then we get

Theorem 4 (Theorem 5.3.6). Let M = Ω/Γ be a surface of finite volume. Then

htop 6 1,

with equality if and only if M is Riemannian hyperbolic.

The last arguments convinced me that the crucial property was the decomposition of the manifold
into a compact part and a controllable part, which was enough to extend the methods used in hy-
perbolic geometry. Since essentially nothing more than Marquis’ results was known yet about the
geometry of noncompact quotients, I turned my mind to hyperbolic geometry, looking for possible
extensions to higher dimensions and more general quotients.

In hyperbolic geometry, there is a natural generalization of finite volume manifolds, which are
geometrically finite manifolds. In those manifolds, the convex core, which is known to carry the
essential part of the dynamics, has finite volume. Then, together with Ludovic Marquis [26], we
began to investigate the notion of geometrically finite quotients of Hilbert geometries.
Let us remark that, if this notion of geometrical finiteness has become classical now, it was not
the case until Bowditch [14] clearly stated several equivalent definitions of it. In the context of a
strictly convex set with C1 boundary, the characterization by the limit set seemed to be a good
point of departure, and we adopted it; see definition 1.4.3. The study of such quotients is still on
progress. The only general result we were able to prove at the moment is the following

Theorem 5 ([26] and theorem 1.4.8). Let M = Ω/Γ be a geometrically finite manifold. Then the
convex core of M can be decomposed as a compact part and a finite number of cusps.

But this is not enough to make all the things work, especially about the dynamics, because some
of the technics failed without any geometric control in the cuspidal parts of the manifolds. We
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Figure 2: A geometrically finite surface

thought at some moment to have proved that cusps had essentially the same geometry as in hyper-
bolic manifolds, but there was an important mistake in our approach. In this thesis, I provide a
description of what occurs in dimension 2, which is based on Marquis’ work [55]. The main results
about dynamics on geometrically finite surfaces are summarized in the following

Theorem 6. Let M = Ω/Γ be a geometrically finite surface. Then

• the geodesic flow of the Hilbert metric is uniformly hyperbolic on the nonwandering set (the-
orem 2.5.2); in particular, it has no zero Lyapunov exponent;

• there exists a finite Bowen-Margulis measure (Section 4.3).

This shows that geometrically finite surfaces satisfy the hypotheses of theorem 2. The technics I
use to study these noncompact surfaces are classical and only depend on the understanding of the
asymptotic geometry of the cusps. For example, these technics work automatically for the only
available examples of finite volume manifolds of higher dimensions that were constructed by Mar-
quis in [54].

In fact, this control of the geometry in the cusps was already shown to be important in the context
of negatively-curved Riemannian manifolds. [27] is a good example of what can happen: in this
article, Dal’bo, Otal and Peigné are able, among other things, to construct geometrically finite
manifolds of pinched negative curvature whose Bowen-Margulis measure is infinite, and even not
ergodic. In [28], Dal’bo, Peigné, Picaud and Sambusetti show that this asymptotic geometry also
has a significant effect on volume entropy. The volume entropy hvol of a Riemannian manifold
(M, g) measures the asymptotic exponential growth of volume of metric balls in the universal cover
M̃ :

hvol = lim sup
R→+∞

log volgB(o, R),
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where B(o, R) is the metric ball of radius R in M̃ about an arbitrary point o.
If M is compact and negatively-curved, Manning [49] proved volume and topological entropies
coincide; its proof extends without difficulty to Hilbert geometry (proposition 1.6.2). But this
becomes false for finite volume manifolds, and depends heavily on the geometry of the cusps:

Theorem (Dal’bo, Peigné, Picaud, Sambusetti [28]).

• Let M be a negatively-curved Riemannian manifold of finite volume. If M is asymptotically
1/4-pinched, then hvol = htop.

• For any ǫ > 0, there exists a finite volume (1/4 + ǫ)-pinched manifold such that htop < hvol.

In Hilbert geometry, I guess we cannot build such counter-examples. Once again, this depends on
our understanding of the cusps. As it could be expected, nothing like this can happen for surfaces:

Theorem 7 (Section 4.4). Let M = Ω/Γ be a surface of finite volume. Then

hvol = htop = δΓ.

All of this admits the following corollaries about volume entropy of some Hilbert geometries.

Corollary 8 (Corollary 5.3.5). Let Ω ⊂ RPn be a strictly convex proper open set which admits a
compact quotient. Then its volume entropy hvol satisfies

hvol 6 n − 1,

with equality if and only if Ω is an ellipsoid.

Corollary 9 (Corollary 5.3.7). Consider the Hilbert geometry defined by a strictly convex proper
open subset Ω of RP2 with C1 boundary which admits a quotient of finite volume. Then its volume
entropy hvol satisfies

hvol 6 1,

with equality if and only if Ω is an ellipse.

It is conjectured that the volume entropy of an arbitrary Hilbert geometry is always smaller than
n − 1. This conjecture was shown to be true in dimension 2 by Berck, Bernig and Vernicos [10],
who also proved that hvol = n − 1 if the convex set had C1,1 boundary. The last two corollaries
confirm this conjecture for some specific classes of Hilbert geometries, providing also an infinite
class of examples whose volume entropy is strictly between 0 and n − 1.

Let me end this introduction by describing the contents of each chapter.

Chapter 1 first provides a short introduction to Hilbert geometries and recalls some already known
notions and results. Quotients of Hilbert geometries are studied in sections 1.3 and 1.4. Some of
the new geometrical results inspired from [26] are given here: section 1.3 describes the parabolic
subgroups and the geometry of cusps; section 1.4.3 defines geometrically finite manifolds and their
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convex core is decomposed in theorem 1.4.8; we focus on surfaces in section 1.4.4.

Chapter 2 begins the study of the geodesic flow of Hilbert metrics. The first thing is to extend
Foulon’s dynamical formalism. We then show that it provides a good tool in Hilbert geometries; the
fundamental results are propositions 2.4.1 and 2.4.5. Section 2.5 ends this chapter by proving the
uniform hyperbolicity of the geodesic flow on compact quotients and on geometrically finite surfaces.

In chapter 3, we get interested in Lyapunov exponents of the geodesic flow. We show in particular
that Oseledets’ theorem can be applied to any quotient manifold. In section 3.4, we explain the
links between parallel transport, Lyapunov exponents and the shape of the boundary at infinity.
For this, we need to introduce a new regularity property of convex functions. Some time is spent
on this property, that we especially show to be projectively invariant and thus adapted to our
setting. As a consequence, we can easily define in section 3.5 Lyapunov manifolds tangent to the
Lyapunov-Oseledets filtrations.

Chapter 4 studies the properties of Patterson-Sullivan and Bowen-Margulis measures. We first ex-
plain why some general theorems known for Riemannian manifolds of negative curvature, especially
theorem 4.2.4 remain true in our context. Section 4.3 proves that any Bowen-Margulis measure of a
geometrically finite surface is finite. In the last section, we show that critical exponent and volume
entropy coincide on a surface of finite volume.

In the last chapter, we first recall how to construct measurable partitions which allow to effectively
compute entropies and one applies it to get theorem 2. Ruelle inequality and its case of equality
are then extended to some noncompact quotients. As a consequence, one gets theorems 1 and 4
and their corollaries about volume entropy.



Présentation

Comme c’est le cas pour la plupart des textes mathématiques, l’organisation de cette
thèse ne reflète pas le processus fondamentalement anarchique de la recherche. Elle est
pensée de telle façon qu’on puisse la lire linéairement d’un bout à l’autre, les divers
arguments étant donnés aux moments les plus “logiques”. Cette approche, bien que
cohérente et rigoureuse, n’est cependant pas toujours la plus adaptée à la compréhension
du lecteur.
Dans cette introduction, j’aimerais présenter les résultats de mon travail tels qu’ils sont
apparus au cours de ces trois ans, en insistant sur les motivations et les liens informels
qui les unissent. J’espère que cela permettra d’entrer plus facilement dans la thèse.

Soit M une variété lisse abstraite, supposée compacte, qui admet une structure hyperbolique M0,
c’est-à-dire une métrique à courbure négative constante égale à −1. M0 peut être vue comme le
quotient H/Γ0 dans le modèle de Beltrami de l’espace hyperbolique: l’espace H est la boule unité
Ω0 de Rn ⊂ RPn et la distance entre deux points x et y de Ω0 est définie par

d(x, y) =
1

2
log[a, b, x, y], (3)

où les points a et b sont les points d’intersection de la droite (xy) avec le bord ∂Ω0 de Ω0 (c.f.
figure 3); le groupe d’isométries de H est le groupe PO(n, 1) et Γ0 en est un sous-groupe discret,
isomorphe au groupe fondamental de M . Les géodésiques de M0 sont exactement les projections
sur M0 des droites qui intersectent Ω0.

Il est parfois possible de déformer de façon continue et non triviale le groupe Γ0 en des groupes
discrets Γt < PGL(n + 1,R). Autrement dit, la représentation Γ0 du groupe fondamental de M
dans PO(n, 1) est deformée en représentations Γt dans PGL(n + 1,R); la continuité est entendue
au sens de la topologie compacte-ouverte, et non triviale signifie que Γt n’est pas conjugué à un
sous-groupe de PO(n, 1). Un théorème de Koszul [46] affirme, au moins pour t petit, qu’il existe
des déformations correspondantes de la boule Ω0 en convexe borné Ωt ⊂ Rn sur lequel Γt agit; le
quotient Mt = Ωt/Γt est une structure projective convexe sur M .
En toute généralité, une structure projective convexe est une paire (Ω, Γ) constituée d’un ouvert
convexe propre Ω de RPn et d’une représentation du groupe fondamental π1(M) en un groupe dis-
cret Γ < PGL(n+1,R) agissant sur Ω avec quotient Ω/Γ difféomorphe à M . Deux telles structures
Ω/Γ et Ω′/Γ′ sont dites équivalentes si les quotients sont équivalents en tant que variétés projec-
tives: il existe une transformation projective γ telle que γ.Ω = Ω′ et Γ′ = γΓγ−1.

xi
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Figure 3: La distance de Beltrami-Hilbert

La déformation considérée ci-dessus apparâıt ainsi comme la déformation d’une structure hyper-
bolique M0 en structures projective convexes Mt non équivalentes. La formule (3) définit une
métrique sur chaque Ωt, appelée métrique de Hilbert de Ωt, dont les géodésiques sont encore les
droites; comme cette métrique est définie par un birapport, elle est projectivement invariante et
donne donc une métrique sur chaque variété quotient Mt. La déformation étant non triviale, Mt

n’est pas isométrique à M0.

L’existence de telles déformations est longtemps restée une question ouverte. Les premiers exem-
ples de variétés projectives strictement convexes furent ceux de Kac et Vinberg en 1967 [41], et un
procédé explicite de déformation de structures hyperboliques a été proposé en toute dimension par
Johnson et Millson en 1984 [40]. L’article [33] de Goldman constitue une étape fondamentale dans
cette histoire. On y trouve une étude approfondie des structures projectives convexes sur les sur-
faces: entre autres choses, Goldman prouve que l’ensemble G(Σg) de toutes les structures projectives
convexes sur la surface Σg de genre g > 2, à équivalence près, forme une variété lisse difféomorphe
à R16g−16. L’espace de Teichmüller T (Σg) des structures hyperboliques sur Σg à équivalence près,
apparâıt comme une sous-variété de dimension 6g − 6 de l’espace G(Σg), prouvant que les struc-
tures projectives convexes sont bien plus souples que les structures hyperboliques. En fait, Choi et
Goldman [20] sont allés plus loin en prouvant que G(Σg) était exactement la composante connexe
de T (Σg) dans l’espace des représentations fidèles et discrètes du groupe fondamental π1(Σg) dans
PGL(3,R) à conjugaison près. Les mêmes auteurs ont étendu cette étude au cas des orbifolds de
dimension 2 dans [21].
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La question générale concernant ces déformations de structures hyperboliques en structures projec-
tives convexes est la suivante: quelles propriétés des variétés hyperboliques sont conservées après
déformations, lesquelles sont perdues ? En particulier, certaines d’entre elles permettent-elles de
caractériser les structures hyperboliques parmi les structures projectives convexes ? Il peut s’agir,
selon les intérêts, de propriétés métriques ou géométriques, de propriétés des groupes en jeu...
Par exemple, après déformation, la métrique de Hilbert n’est plus une métrique de Riemann mais
seulement une métrique de Finsler: au lieu d’avoir un produit scalaire sur chaque espace tangent
TxΩ, on a une norme F (x, .). D’un autre côté, le résultat fondamental ci-après entrâıne en parti-
culier que certaines propriétés de type hyperbolique sont préservées lorsqu’on déforme une variété
hyperbolique.

Théorème (Benoist, [7]). Soit M = Ω/Γ une variété projective convexe compacte. Les propositions
suivantes sont équivalentes:

• Ω est strictement convexe;

• le bord ∂Ω de Ω est C1;

• l’espace (Ω, dΩ) est Gromov-hyperbolique;

• Γ est Gromov-hyperbolique.

Dans cette thèse, je me suis intéressé aux propriétés dynamiques du flot géodésique de la métrique
de Hilbert, dont l’étude a débuté avec les travaux d’Yves Benoist [7]. Le flot géodésique ϕt de la
métrique de Hilbert d’une variété projective convexe M est défini sur le fibré tangent homogène
HM = TM r {0}/R+: étant donné un couple w = (x, [ξ]) formé d’un point x ∈ M et d’une
direction [ξ] ∈ HxM , il s’agit de suivre la géodésique partant de x dans le direction [ξ] pendant le
temps t. Sur HΩ, ceci est très facile à voir: il s’agit de suivre les droites à vitesse 1...

Comment la dynamique du flot géodésique change t-elle lorsque la variété hyperbolique M0 est
déformée en Mt ? Yves Benoist a montré dans [7] que le flot reste un flot d’Anosov, et la première
question à laquelle j’ai cherché à répondre était la suivante: l’entropie topologique varie t-elle ?
L’entropie topologique est un invariant essentiel dans la théorie des systèmes dynamiques qui mesure
comment le système “sépare les points”, à quel point il est chaotique. (Voir section 1.6 pour une
définition formelle.) Le théorème suivant répond à la question:

Théorème 1. Soit M = Ω/Γ une variété projective strictement convexe, compacte, de dimension
n. L’entropie topologique htop du flot géodésique de la métrique de Hilbert de M satisfait à l’inégalité

htop 6 (n − 1),

avec égalité si et seulement si M est riemannienne hyperbolique.

n− 1 est l’entropie topologique du flot géodésique hyperbolique. Ce théorème montre donc en par-
ticulier qu’une déformation non triviale d’une structure hyperbolique fait diminuer l’entropie. C’est
un fait assez surprenant lorsqu’on pense au résultat obtenu par Besson, Courtois et Gallot ([12, 13])
qui affirme que, si l’on fait varier la courbure de M0 sans changer le volume, l’entropie topologique
doit augmenter. Je n’ai pas trouvé d’explication raisonnable à cette apparente contradiction: y a
t-il un certain volume en jeu qui augmenterait lors de la déformation ? dans ce cas, quel est-il ?
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existe t-il une ”renormalisation” naturelle qui ferait que l’entropie augmente, ou reste constante ?
J’ai aussi essayé de comprendre les variations de l’entropie: étant donné une structure hyperbolique
M0, peut-on faire tendre l’entropie vers 0 en déformant M0 dans le monde convexe projectif ? Par
exemple, considérons l’espace G(Σg), défini ci-dessus, de toutes les structures projectives convexes
sur la surface Σg, à équivalence près. Il n’est pas difficile de voir que l’entropie htop : G(Σg) −→ (0, 1]
est une fonction continue (voir section 5.4); son image est donc un sous-intervalle de (0, 1], et on
peut donc se demander si elle est surjective, ou si elle est propre. J’ai d’abord espéré comprendre
les différentes compactifications de G(Σg) dans l’idée d’interpréter les points du bord en termes de
dynamique, en supposant que l’infimum serait atteint sur le bord de G(Σg). Je n’ai pas cherché
assez loin pour savoir si cette intuition était bonne. Très récemment, Xin Nie [57] a montré qu’on
pouvait faire diminuer l’entropie jusqu’à 0 dans certains exemples de Kac-Vinberg, en dimensions
2, 3 et 4.

Au moment même où j’étais plongé dans ces considérations, Ludovic Marquis commençait à tra-
vailler sur les variétés projectives convexes de volume fini ([55, 53]). Je pensais alors étendre le
théorème 1 au contexte des variétés de volume fini.
Il fallait regarder de plus près la preuve du théorème 1. Les outils fondamentaux que j’avais utilisés
pour prouver l’inégalité se résument essentiellement à la formule:

htop = hµBM
6

∫

HM

χ+ dµBM . (4)

Expliquer cette formule va nous aider à comprendre les problèmes auxquels j’étais alors confronté.
Étant donné une probabilité invariante µ d’un système dynamique, on peut définir son entropie
de Kolmogorov hµ. Tout comme l’entropie topologique, c’est un indicateur de la complexité du
système, observé cette fois avec un point de vue mesurable: les “volumes” sont mesurés par la
mesure µ et n’ont pas de rapport avec une quelconque distance d. (Voir section 4.1.2 pour des
définitions formelles.)
Le principe variationnel fait le lien entre l’entropie topologique et l’entropie de Kolmogorov: ce
principe affirme que l’entropie topologique est le supremum des entropies de toutes les probabilités
invariantes du système: htop = supµ hµ. Un problème naturel est alors de chercher une mesure qui
réalise ce supremum.
La mesure µBM qui apparâıt dans l’équation (4) est l’unique mesure d’entropie maximale du flot
géodésique sur HM . Les lettres BM font référence à Bowen et Margulis qui ont donné deux con-
structions indépendantes de cette mesure ([15, 16], [50, 51]), que l’on connâıt maintenant sous le
nom de mesure de Bowen-Margulis. Elle est définie pour les flots géodésiques de variétés rieman-
niennes à courbure négative, ou de façon plus générale, pour les flots d’Anosov topologiquement
mélangeants; c’est, dans tous les cas, l’unique mesure d’entropie maximale.

L’inégalité

hµ 6

∫

W

χ+ dµ

est l’inégalité de Ruelle [68], qui est vérifiée pour toute probabilité invariante µ d’un flot de classe
C1 sur une variété compacte W . Dans cette formule, χ+ est la somme des exposants de Lyapunov
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positifs, qui mesure, µ-presque partout, l’effet de ϕt sur les volumes des variétés instables:

χ+ = lim
t→+∞

1

t
log | det dϕt|.

Pesin [63] a montré que l’égalité a lieu lorsque µ est absolument continue, et Ledrappier et Young
[47] ont montré qu’il y avait égalité si et seulement si la mesure µ avait ses mesures conditionnelles
instables absolument continues. Ce dernier résultat est utilisé pour étudier le cas d’égalité dans
le théorème 1: en fait, Benoist avait déjà remarqué dans [7] qu’il ne pouvait y avoir de mesure
invariante absolument continue, sauf dans le cas d’une structure hyperbolique.

La tâche principale consistait donc à obtenir une telle (in)équation pour des variétés projectives
convexes non compactes.

L’entropie topologique a une généralisation naturelle aux systèmes dynamiques définis sur des es-
paces non compacts, proposée par Bowen [17], et pour laquelle Handel et Kitchens [37] ont prouvé
un principe variationnel sous des hypothèses très souples.
La mesure de Bowen-Margulis peut aussi être définie pour les variétés non compactes de courbure
négative, à partir de la construction de Sullivan [70], à l’origine dans l’espace hyperbolique. Cette
construction est basée sur les mesures de Patterson-Sullivan, qui sont définies de façon géométrique
sur le bord à l’infini du revêtement universel. Ces mesures ont fait l’objet de beaucoup d’attention
et ont permis de faire de nombreux liens entre géométrie et dynamique. La version de Roblin du
théorème de Hopf-Tsuji-Sullivan (théorème 1.7 de [65]) est certainement la version la plus aboutie
de ce que l’on peut dire en général à leur propos (voir théorème 4.2.4).
Tout cela a aussi un sens dans le contexte des géométries de Hilbert, au moins pour celles qui
présente un certain comportement hyperbolique. Dans cette thèse, on entend par là une géométrie
de Hilbert définie par un ouvert strictement convexe à bord de classe C1; par exemple, cela inclut
toutes les géométries de Hilbert qui sont hyperboliques au sens de Gromov (voir sections 1.1.3 et
1.1.4).

Si la mesure de Bowen-Margulis peut toujours être définie sur HM , son comportement et ses
propriétés ne sont pas toujours faciles à déterminer. Dans [65], Roblin a montré que de nombreux
résultats dynamiques pouvaient être déduits du seul fait que la mesure de Bowen-Margulis était
de masse totale finie. Bien sûr, le formule (4) n’aurait pas de sens dans le cas où µBM n’était
pas finie. Dans le contexte des variétés à courbure strictement négative pincée, Otal et Peigné [59]
ont montré que, sous cette hypothèse de finitude, µBM était en fait l’unique mesure d’entropie
maximale, généralisant ainsi ce qui était connu pour les quotients compacts. En fait, leur résultat
est plus fort que cela puisqu’il clarifie aussi le cas où la mesure est infinie:

Théorème (Otal-Peigné [59]). Soient X une variété riemannienne simplement connexe, de cour-
bure strictement négative pincée et M = X/Γ une variété quotient, où Γ est un sous-groupe discret
d’isométries de X, sans torsion. Alors

• l’entropie topologique htop du flot géodésique sur HM satisfait htop = δΓ;

• s’il existe une mesure de Bowen-Margulis µBM de masse 1, alors c’est l’unique mesure
d’entropie maximale; sinon, il n’existe pas de mesure d’entropie maximale.
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Ici, δΓ est l’exposant critique du groupe Γ, qui est étroitement lié aux mesures de Patterson-Sullivan:

δΓ = lim sup
R→+∞

1

R
log NΓ(o, R),

où NΓ(o, R) est le nombre de point de l’orbite Γ.o du point o ∈ X sous Γ dans la boule métrique
de centre o et rayon R dans X . L’égalité htop = δΓ était déjà connu par Manning [49] dans le cas
des quotients compacts.

Dans le chapitre 5, je prouve la version suivante de ce théorème pour les quotients de géométries
de Hilbert :

Théorème 2 (Section 5.1). Soit M = Ω/Γ une variété quotient d’un ouvert Ω strictement convexe à
bord C1. Supposons qu’il existe une mesure de Bowen-Margulis µBM sur HM qui soit de probabilité.
Si le flot géodésique n’a pas d’exposant de Lyapunov nul sur l’ensemble non errant, alors la mesure
µBM est l’unique mesure d’entropie maximale et

htop = hµBM
= δΓ.

La preuve de ce résultat s’inspire de celle de [59], qui est elle-même basée sur des techniques
développées dans les années 70-80 dans l’étude des systèmes non uniformément hyperboliques;
l’article déjà mentionné [47] de Ledrappier et Young est l’une des illustrations les plus parlantes
de ces techniques. En les adaptant à notre contexte, l’inégalité de Ruelle et son cas d’égalité
apparaissent alors comme des conséquences directes, au moins dans le cas des géométries de Hilbert
Gromov-hyperboliques:

Théorème 3 (Section 5.2). Soit (Ω, dΩ) une géométrie de Hilbert Gromov-hyperbolique et M = Ω/Γ
une variété quotient. Pour toute mesure de probabilité ϕt-invariante m, on a

hµ 6

∫

χ+ dm,

avec égalité si et seulement si m a ses mesures conditionnelles instables absolument continues.

Il est temps de faire une pause pour expliquer le point de vue adopté pour prouver le théorème 1 et
étendre les techniques dont j’ai parlé avant. Il s’agit du point de vue développé par Patrick Foulon
[31] pour étudier les équations différentielles du second ordre. Les flots géodésiques des métriques de
Finsler classiques, qui sont régulières, sont des cas importants dans lesquels le formalisme dynamique
de Foulon peut être utilisé. Dans la section 2.1, j’étends ce formalisme au contexte des géométries
de Hilbert définies par un ouvert (strictement) convexe à bord de classe C1; c’est essentiellement
le fait que ces géométries soient plates qui permet ici de s’en sortir, malgré le manque de régularité
des métriques considérées. En particulier, cela permet de définir un transport parallèle le long
des géodésiques qui s’avère contenir toute l’information concernant la dynamique le long de cette
géodésique. Par exemple, la propriété d’Anosov du flot géodésique sur un quotient compact, prouvée
par Benoist, peut être comprise en termes de transport parallèle.
La remarque cruciale, et un peu déroutante, est que ce transport parallèle n’est en général pas
une isométrie. Les différences de comportement du flot géodésique sont essentiellement contenues
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dans cette observation. En particulier, la somme χ+ des exposants de Lyapunov positifs peut être
exprimée (le long d’une orbite régulière) sous la forme

χ+ = (n − 1) + η,

formule dans laquelle

η = lim
t→+∞

1

t
log | detT t|

mesure l’effet du transport parallèle T t sur les volumes. Le théorème 1 est alors une conséquence
facile de cette égalité et de la formule (4): on obtient

htop 6 (n − 1) +

∫

HM

η dµBM ,

et

∫

HM

η dµBM = 0 pour de simples raisons de symétrie (voir la preuve de la proposition 5.3.1).

Alors que je travaillais sur la preuve du théorème 1, j’avais remarqué qu’on pouvait lire les ex-
posants de Lyapunov d’une géodésique donnée sur la forme du bord ∂Ω de Ω au point extrémal
de la géodésique (voir la proposition 5.4 de [25]). Le chapitre 3 généralise cette remarque à toute
géométrie de Hilbert définie par un ouvert strictement convexe à bord de classe C1. On relie ainsi les
exposants de Lyapunov, le transport parallèle et la forme du bord ∂Ω. Comme conséquence de tout
cela, j’explique dans la section 3.5 comment les variétés de Lyapunov, tangentes aux sous-espaces
apparaissant dans la décomposition de Lyapunov-Osedelets, peuvent être facilement construites.
Encore une fois, le fait que la géométrie soit plate est essentiel dans cette construction, et je ne
sais donc pas si une telle approche pourrait être envisagée dans le cas des variétés riemanniennes
de courbure négative, ou pour des flots d’Anosov plus généraux.

Toutes ces questions n’auraient que peu de sens s’il n’existait pas de quotients pour lesquels se les
poser. Une autre partie de mon travail était donc de chercher de tels quotients, en particulier des
quotients auxquels le théorème 2 pourrait être appliqué.
Les seuls exemples alors connus étaient les surfaces de volume fini étudiées par Ludovic Marquis
dans [55]. Pour ce qui m’intéressait, c’était la décomposition d’une telle surface en une partie
compacte et un nombre fini de cusps, dont la géométrie était bien comprise, qui était cruciale.
En fait, il est facile de déduire des résultats de [55] que la métrique de Hilbert dans un cusp est
bi-Lipschitz équivalente à une métrique riemannienne hyperbolique. Cette simple observation suffit
à prouver que le flot géodésique est uniformément hyperbolique, donc sans exposant de Lyapunov
nul, et permet d’adapter des approches utilisées en géométrie hyperbolique pour prouver que la
mesure de Bowen-Margulis est finie. La preuve du théorème 1 s’applique alors sans modification

à cette situation: l’égalité

∫

η dµBM
= 0 est une conséquence de la symétrie de la mesure de

Bowen-Margulis, qui est un fait très général; quant au cas d’égalité, l’argument donné par Benoist
dans [7] prouve qu’il n’y a pas de mesure invariante absolument continue, sauf si la structure est
hyperbolique. On obtient ainsi le

Théorème 4 (Théorème 5.3.6). Soit M = Ω/Γ une surface de volume fini. Alors

htop 6 1,
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avec égalité si et seulement si M est riemannienne hyperbolique.

Les arguments ci-dessous me convinrent que la propriété essentielle était la décomposition de la
variété en une partie compacte et une partie ”mâıtrisable”, qui permette d’utiliser les méthodes
connues en géométrie hyperbolique. Ce sont de tels quotients qu’il fallait donc rechercher, et ce que
nous avons commencé à faire avec Ludovic Marquis.

Figure 4: Une surface géométriquement finie

En géométrie hyperbolique, il existe une extension naturelle des variétés de volume fini: les variétés
géométriquement finies. Dans ces variétés, le cœur convexe, support de l’ensemble non errant du flot
géodésique, est de volume fini. Nous avons donc essayé avec Ludovic Marquis [26] de comprendre
cette notion de finitude géométrique en géométrie de Hilbert.
Remarquons que cette notion, qui est aujourd’hui devenue classique, n’était pas vraiment claire
avant les travaux de Bowditch [14], qui en a donné diverses définitions équivalentes. Dans le contexte
d’une géométrie de Hilbert définie par un ouvert strictement convexe à bord C1, la définition en
termes de points limites est un bon point de départ; c.f. définition 1.4.3. L’étude de tels quotients
est encore en cours. Le seul résultat général que nous avons prouvé jusqu’ici est le suivant.

Théorème 5 ([26] et théorème 1.4.8). Soit M = Ω/Γ une variété géométriquement finie. Alors le
cœur convexe de M peut être décomposée en une partie compacte et un nombre fini de cusps.

Mais cela n’est pas suffisant pour faire marcher la stratégie précédente. En effet, certaines techniques
ne fonctionnent plus sans contrôle géométrique des parties cuspidales de la variété. Nous pensions
avoir prouvé, à un certain moment, que les cusps avaient essentiellement la même géométrie que
ceux des variétés hyperboliques, mais il y avait une erreur importante dans notre approche. Dans
cette thèse, je décris ce qu’il se passe en dimension 2, en me basant sur le travail de Marquis [55]. Les
principaux résultats concernant le flot géodésique des surfaces géométriquement finies sont donnés
dans le
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Théorème 6. Soit M = Ω/Γ une surface géométriquement finie. Alors

• le flot géodésique de la métrique de Hilbert est uniformément hyperbolique sur son ensemble
non errant (théorème 2.5.2); en particulier, il n’a pas d’exposant de Lyapunov nul;

• il existe une mesure de Bowen-Margulis finie (section 4.3).

Cela montre que les surfaces géométriquement finies satisfont les hypothèses du théorème 2. Les
techniques utilisées pour étudier ces surfaces non compactes sont classiques et dépendent unique-
ment de la bonne compréhension de la géométrie asymptotique des cusps. Par exemple, ces tech-
niques s’appliquent telles quelles aux seuls exemples de variétés de volume fini connus en dimension
supérieure, construits par Marquis dans [54].

En fait, ce contrôle de la géométrie des cusps a déjà montré son importance dans l’étude des variétés
riemanniennes à courbure négative. L’article [27] en est une bonne illustration: dans celui-ci,
Dal’bo, Otal et Peigné parviennent, entre autres choses, à construire des variétés géométriquement
finies de courbure négative pincée dont la mesure de Bowen-Margulis est infinie, et pas même
ergodique. Dans [28], Dal’bo, Peigné, Picaud et Sambusetti montre que la géométrie asymptotique
des cusps a aussi un effet important sur l’entropie volumique. L’entropie volumique hvol d’une
variété riemannienne (M, g) mesure la croissance exponentielle du volume des boules métriques
dans le revêtement universel M̃ :

hvol = lim sup
R→+∞

log volgB(o, R),

où B(o, R) est la boule métrique de centre arbitraire o et rayon R dans M̃ .
Si M est compacte et de courbure négative, Manning [49] a prouvé que entropies volumique et
topologique sont égales; sa preuve s’étend sans difficulté aux géométries de Hilbert (proposition
1.6.2). Mais cela devient faux en général pour les variétés de volume fini, et dépend de façon
essentielle de la géométrie des cusps:

Théorème (Dal’bo, Peigné, Picaud, Sambusetti [28]).

• Soit M une variété riemannienne à courbure strictement négative, de volume fini. Si M est
asymptotiquement 1/4-pincée, alors hvol = htop.

• Pour tout ǫ > 0, il existe une variété riemannienne de volume fini et de courbure strictement
négative (1/4 + ǫ)-pincée telle que htop < hvol.

En géométrie de Hilbert, je pense que de tels contre-exemples n’existent pas. Là encore, cela dépend
de notre compréhension des cusps. En tout cas, pour les surfaces, rien de tel ne peut arriver:

Théorème 7 (Section 4.4). Soit M = Ω/Γ une surface de volume fini. Alors

hvol = htop = δΓ.

Tout cela admet les corollaires suivant concernant l’entropie volumique de certaines géométries de
Hilbert:
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Corollaire 10 (Corollaire 5.3.5). Soit Ω ⊂ RPn un ouvert proprement convexe et strictement
convexe qui admet un quotient compact. Alors son entropie volumique hvol satisfait à l’inégalité

hvol 6 n − 1,

avec égalité si et seulement si Ω est un ellipsöıde.

Corollaire 11 (Corollaire 5.3.7). Soit Ω ⊂ RP2 un ouvert proprement convexe qui admet un
quotient de volume fini. Alors son entropie volumique hvol satisfait à l’inégalité

hvol 6 1,

avec égalité si et seulement si Ω est une ellipse.

On conjecture que l’entropie volumique d’une géométrie de Hilbert de dimension n est toujours
inférieure à n−1. Cette conjecture a été prouvée en dimension 2 par Berck, Bernig et Vernicos [10],
qui ont aussi prouvé l’égalité hvol = n−1 pour un convexe dont le bord est de classe C1,1. Les deux
derniers corollaires confirment cette conjecture pour une certaine classe de géométries de Hilbert, et
fournissent aussi une infinité d’exemples pour lesquels l’entropie volumique est strictement comprise
entre 0 et n − 1.

Finissons cette introduction par une description rapide de ce que l’on trouvera dans les différents
chapitres de cette thèse.

La chapitre 1 fait d’abord une courte introduction aux géométries de Hilbert et rappelle des notions
et résultats déjà connus. Les quotients des géométries de Hilbert sont étudiés dans les sections 1.3
et 1.4. On trouve là certains des nouveaux résultats géométriques de [26]: la section 1.3 décrit
les groupes paraboliques et la géométrie des cusps; la section 1.4.3 introduit la notion de quotient
géométriquement fini et leur cœur convexe est décomposé par le théorème 1.4.8; le cas des surfaces
est plus précisément considéré dans la section 1.4.4.

Le chapitre 2 commence l’étude du flot géodésique des métriques de Hilbert. On étend d’abord le
formalisme dynamique de Foulon et on montre son utilité en géométrie de Hilbert: les résultats
fondamentaux sont les propositions 2.4.1 and 2.4.5. La section 2.5 termine ce chapitre en prouvant
l’uniforme hyperbolicité du flot géodésique sur les quotients compacts et les surfaces géométriquement
finies.

Dans le chapitre 3, on s’intéresse aux exposants de Lyapunov du flot géodésique. On montre en
particulier que le théorème d’Oseledets peut être appliqué à toute variété quotient. Dans la section
3.4, on explique les liens entre transport parallèle, exposant de Lyapunov et la forme du bord à
l’infini. Pour cela, on a besoin d’introduire une nouvelle propriété de régularité des fonctions con-
vexes, qu’en particulier on prouve être projectivement invariante, et donc adaptée à notre problème.
Comme conséquence, on explique dans la section 3.5 comment on peut facilement définir les variétés
de Lyapunov.
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Le chapitre 4 étudie les propriétés des mesures de Patterson-Sullivan et de Bowen-Margulis. On
explique d’abord pourquoi certains théorèmes connus pour les variétés riemanniennes de courbure
négative, entre autres le théorème 4.2.4, restent valables dans notre contexte. La section 4.3 prouve
que toute mesure de Bowen-Margulis d’une surface géométriquement finie est finie. Dans la dernière
section, on montre qu’exposant critique et entropie volumique cöıncident pour une surface de vol-
ume fini.

Dans le dernier chapitre, on rappelle d’abord comment construire des partitions mesurables qui
permettent de calculer efficacement des entropies, et on applique ces techniques pour obtenir le
théorème 2. L’inégalité de Ruelle et son cas d’égalité sont alors étendues à certains quotients
non compacts. Comme conséquence, on obtient les théorèmes 1 et 4 ainsi que leurs équivalents
volumiques.
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Chapter 1

Hilbert geometries and its

quotients

This chapter consists of preliminaries. We define Hilbert geometries, describe some
of its general properties, as well as some tools we will use all along the text. We
study isometries of Hilbert geometries. We describe compact quotients, introduce the
notion of geometrically finite manifolds, and give a complete presentation of the 2-
dimensional case. We end this chapter by introducing the concepts of topological and
volume entropies.

1.1 General metric properties

1.1.1 Definition

Take the open unit ball B in the Euclidean space (Rn, | . |), and define a metric on B by setting

dB(x, y) =
1

2
log[a, b, x, y],

for any two distinct points x, y ∈ B, a and b being the two intersection points of the line (xy) and
the boundary ∂B of B (see figure 1.1); [a, b, x, y] denotes the cross-ratio of the four points:

[a, b, x, y] =
|ax|/|bx|
|ay|/|by| .

(B, dB) is the Beltrami model of the hyperbolic space Hn. In this model, the geodesics are the lines.

At the end of the nineteenth century, Hilbert [38] generalized this construction by replacing the
unit ball B by any bounded convex subset Ω of Rn, the distance being given by the same formula:

dΩ(x, y) =
1

2
log[a, b, x, y].

It leads to a well-defined complete metric space (Ω, dΩ), and the topology induced by the metric is
the same as the one induced by Rn on Ω (See [3]). Hilbert’s main remark was that lines are still

1
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x

y

b

a

Figure 1.1: The Hilbert distance

geodesics, that is, the length of the segment [xy] is equal to the distance dΩ(x, y). The length of a
curve c : [0, 1] −→ Ω is here defined as

sup

{

n−1
∑

i=0

dΩ(c(ti), c(ti+1))

}

,

where the supremum is taken over all finite partitions 0 = t0 < t1 < · · · < tn = 1 of [0, 1]. In par-
ticular, that implies that (Ω, dΩ) is a geodesic space. Such a space (Ω, dΩ) will be called a Hilbert
geometry.

Historically, these spaces are examples that Hilbert gave for his fourth problem [39]:

We are asking, then, for a geometry in which all the axioms of ordinary Euclidean geom-
etry hold, and in particular all the congruence axioms except the one of the congruence
of triangles (or all except the theorem of the equality of the base angles in the isosceles
triangle), and in which, besides, the proposition that in every triangle the sum of two
sides is greater than the third is assumed as a particular axiom.

Stated in this form, the problem was too vague to say it has been solved so far. For more details
about this, we refer to [1].

Consider a bounded open convex set Ω of Rn, and a projective transformation g ∈ PGL(n + 1,R)
such that gΩ is still bounded. Since cross-ratios are preserved by projective transformations, the
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space (gΩ, dgΩ) is obviously isometric to (Ω, dΩ). Also we see that a projective transformation
preserving Ω is an isometry of (Ω, dΩ). Thus, it seems more coherent to see Ω as a subset of the
projective space RPn and not of Rn. For example, the Beltrami model of Hn is defined more gen-
erally on an ellipsoid, which is projectively equivalent to the unit ball in Rn. In all this text, an
ellipsoid has to be understood as the hyperbolic space, and conversely...

We will say that a subset Ω of RPn is convex if the intersection of Ω with any projective line in
RPn is connected. A convex subset Ω of RPn is proper if there exists a projective hyperspace that
does not intersect Ω; equivalently, Ω is proper if there exists an affine chart in which Ω appears as
a relatively compact set.
Let p : Rn+1r {0} −→ RPn be the natural projection. If Ω is a convex proper open subset of RPn,
then p−1(Ω) consists of two disjoint open cones. It is sometimes useful to think of Ω as one of these
cones.
The Hilbert distance dΩ on a convex proper open subset Ω ⊂ RPn is defined by considering any
affine chart that makes Ω appear as a relatively compact subset of Rn. We can also define it directly
on one of the cones of p−1(Ω).
We will say that a proper convex set Ω is strictly convex if there is an affine chart in which it
appears as a relatively compact strictly convex set.

It is often clever to look at the dual geometry defined by the dual convex set Ω∗. If C is one of the
cones of p−1(Ω) in Rn+1, the dual convex cone C∗ in (Rn+1)∗ is

C∗ = {f ∈ (Rn+1)∗, ∀x ∈ C, f(x) > 0},
and Ω∗ = p(C∗) is its trace. Of course, duality is an involution: (Ω∗)∗ = Ω.
The boundary of Ω∗ consists of those linear forms whose kernel is an hyperplane tangent to the
boundary ∂Ω of Ω. We will often think of ∂Ω∗ as the set of spaces tangent to ∂Ω. If ∂Ω is not C1 at
some point x (x is a “corner”), then there are several tangent spaces to ∂Ω at x, and this “creates”
a flat part in ∂Ω∗; and conversely. Intuitively, duality transforms corners into flats. In particular,
∂Ω is C1 if and only if Ω∗ is strictly convex. When Ω is strictly convex with C1 boundary, there is
then a natural identification between the boundaries ∂Ω and ∂Ω∗.

1.1.2 The Finsler metric

Among all Hilbert geometries, defined by different convex sets, only the one defined by an ellipsoid
is Riemannian, that is, there is a Riemannian metric which generates the Hilbert metric. In all
the other cases, the metric is not Riemannian but is still Finslerian. That means that, instead of
having a scalar product on each tangent space TxΩ, we have a norm F (x, .).
Take a convex proper open subset Ω ⊂ RPn, that we see as a bounded convex set in an affine chart
Rn equipped with any Euclidean metric | . |. For x ∈ Ω, the Finsler norm on TxΩ is defined for
ξ ∈ TxΩ by

F (x, ξ) =
|ξ|
2

(

1

|xx+| +
1

|xx−|

)

, (1.1)

where x+, x− are the intersections of the line {x + λξ}λ∈R with the boundary ∂Ω (see figure 1.2).
The Hilbert length of a C1 curve c : [0, 1] −→ Ω can now be computed as the integral

l(c) =

∫ 1

0

F (ċ(t)) dt,
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xx−

x+

ξ

Figure 1.2: The Finsler metric

and the distance dΩ is induced by the Finsler norm in the sense that

dΩ(x, y) = inf l(c),

where the infimum is taken with respect to all C1 curves from x to y, that is, c(0) = x, c(1) = y.

We say that the Hilbert metric is of class Cp, p ∈ N, if F : TΩ r {0} −→ R is a Cp function.
From the formula (1.1), we see that the Hilbert metric has indeed at least the same regularity as
the boundary ∂Ω.

1.1.3 Intuitive considerations and restrictions

Consider the Hilbert geometry defined by a convex proper open subset Ω ⊂ RPn.

If lines are always geodesics, there might be geodesics which are not lines, as illustrated by figure 1.3.
On this figure, the path in blue and the path in red1 are geodesics: projections are homographies,
hence

dΩ(x, z) =
1

2
log[a, b, x, z] =

1

2
log[a′, b′, x, z′] = dΩ(x, z′),

and similarly, dΩ(z, y) = dΩ(z′, y).

The situation on this figure is essentially the only one where there can be other geodesics. In
particular, that does not occur if Ω is strictly convex: the Hilbert geometry defined by a strictly

1if printed in color...
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x yz

z′

b a

b′

a′

b′′

a′′

Figure 1.3: A geodesic which is not a line

convex set is uniquely geodesic.
It is important here to say that geodesics are defined in metric terms: a continuous curve joining
x to y is a geodesic segment if its length is equal to dΩ(x, y). In particular, there are no geodesics
equations involved in this context, that would arise from a variational problem. Anyway, that would
not make sense in the case ∂Ω is not C2.
Nevertheless, if ∂Ω is C2 with definite positive Hessian, then we get geodesic equations as usual,
and the solutions are the lines. This assumption is the one which usually appears in the general
definition of a Finsler metric; but as proved by Socié-Méthou [69], such an assumption is too much
restrictive if we want to consider quotient manifolds modeled on Hilbert geometries:

Theorem 1.1.1 ([69]). Let Ω ⊂ RPn be a convex proper open set. Assume the boundary ∂Ω is
C2 with definite positive Hessian. Then the group of isometries Isom(Ω, dΩ) of (Ω, dΩ) is compact,
unless Ω is an ellipsoid.

There are lots of differences between the strictly convex and non strictly convex cases, or between
convex sets with C1 boundary or not, especially about asymptotic geometry. I will try to give an
intuitive feeling about these differences in the 2-dimensional case.
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About strict convexity

Consider a bounded open convex set Ω ⊂ R2, and pick two distinct points p and q in ∂Ω, which
are not contained in a segment of ∂Ω. Then, for any two sequences of points (pn) and (qn) in Ω
converging to p and q in Ω = Ω ∪ ∂Ω ⊂ Rn, the distance dΩ(pn, qn) tends to +∞ when n → +∞.
Assume now that p and q are are contained in a segment [ab] in ∂Ω, which we assume is maximal,
that is, it is not contained in a larger segment of ∂Ω. Consider two lines cp, cq : [0, +∞) −→ Ω of
Ω ending at p and q, that is,

lim
t→+∞

cp(t) = p, lim
t→+∞

cq(t) = q,

in Ω. These two geodesics are asymptotic: the function t 7−→ dΩ(γp(t), γq(t)) is bounded. For
example, in figure 1.4, we can parametrize the geodesics cp(t) and cq(t), that is, we can choose
cp(0) and cq(0), in such a way that

lim
t→+∞

dΩ(cp(t), cq(t)) =
1

2
log[a, b, p, q].

p

q

a

b

cp(t)

cq(t)

Figure 1.4: Asymptotic geodesics that do not converge to the same point

This can be stated more precisely in the following way. If p is contained in the maximal nontrivial
segment [ab] of ∂Ω, and (pk) is any sequence in Ω converging to p in Ω, then the closed Hilbert ball
of radius 1 centered at pk converges in Rn to the segment [qq′] ⊂ [ab], where q and q′ are the points
of [ab] such that

1

2
log[a, b, p, q] =

1

2
log[a, b, q′, p] = 1.
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On the contrary, if p is not contained in a nontrivial segment of ∂Ω, then the same sequence of balls
converges in Ω to the point p.
That means that the boundary at infinity defined by equivalence classes of asymptotic geodesics is
not given by ∂Ω when Ω is not strictly convex.

About C1 regularity of the boundary

Another problem occurs at a point where the boundary of Ω is not C1. Take for example the
vertex p of a triangle Ω, and consider two distinct lines γ and γ′ ending at p. Then the distance
d(γ(t), γ′(t)) does not tend to 0 when t goes to +∞. The same works at a non-C1 point of the
boundary of any convex set.
This does not occur if ∂Ω is C1 at p: for two lines γ, γ′ : R −→ Ω ending at p, there exists a time
t0 ∈ R such that

lim
t→+∞

dΩ(γ(t), γ′(t + t0)) = 0. (1.2)

Indeed, one has to choose t0 = ± limt→+∞ dΩ(γ(t), γ′(t)), with the appropriate sign.
This property (1.2) is of crucial use when working on the universal cover of a manifold of pinched
negative curvature, and fails when the curvature is allowed to be zero.

In this work, we are interested in those Hilbert geometries which exhibit some hyperbolic behaviour,
and more especially in what regards the geodesic flow. The last remarks explain why we restrict
ourselves to the geometries which are defined by a strictly convex set with C1 boundary. Another
reason is the following: all the tools that we will use require the C1-regularity...

Let us emphasize that strict convexity and C1-regularity tend to appear by pair when we consider
quotient manifolds. For example, theorem 1.4.2 tells us that if Ω admits a compact quotient, then
either Ω is strictly convex with C1 boundary, or it is not strictly convex and the boundary is not
C1. This can be seen as a consequence of duality: if Ω admits a compact quotient by a group of
projective transformations, then its dual Ω∗ also. A similar result is expected for geometrically
finite quotients; that is one of the goals of an article I am working on with Ludovic Marquis [26].

1.1.4 Global results about Hilbert geometries

We review here some results about the global properties of Hilbert geometries. For more insights
about it, have a look at the very clear and complete exposition in [69].

What is globally expected is that Hilbert geometries are geometries in between Euclidean and hy-
perbolic ones. As already remarked in the preceding section, a hyperbolic behaviour implies strict
convexity and C1-regularity of the boundary.
It is important to remark that Hilbert geometries cannot be classified by their local behaviour: for
example, a Hilbert geometry is not CAT(k) for any k ∈ R, except in the case of the ellipsoid. Large
scale properties are more appropriate.

The two following results are a good example of what can be said.

Theorem 1.1.2. • [22] If ∂Ω is C2 with definite positive Hessian, then the metric space (Ω, dΩ)
is bi-Lipschitz equivalent to the hyperbolic space Hn.
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• [23] [11] [71] (Ω, dΩ) is bi-Lipschitz equivalent to the Euclidean space if and only if Ω is a
convex polytope, that is, the convex hull of a finite number of points.

The case where ∂Ω is C2 with definite positive Hessian is exactly this case where the Finsler geom-
etry is of a classical type, with strongly convex unit balls.

Except for the case of polytopes and without further assumptions, not a lot is known about the
geometries defined by convex sets whose boundary is not C2. Nevertheless, Yves Benoist gave a
beautiful characterization of Hilbert geometries that are Gromov-hyperbolic:

Theorem 1.1.3 ([6]). A Hilbert geometry (Ω, dΩ) is Gromov-hyperbolic if and only if Ω is quasi-
symmetrically convex.

The notion of quasi-symmetric convexity was introduced by Benoist in the same paper. It is not
essential here, so we refer to his article for more details. Just notice the significant fact that quasi-
symmetric convexity implies strict convexity and C1+ǫ-regularity of the boundary, for some ǫ > 0.

Let us recall instead the definition of Gromov-hyperbolic spaces. Let (X, d) be a metric space, and
fix an arbitrary point of reference o ∈ X . The Gromov-product based at o of two points x and y in
X is defined as

(x|y)o =
1

2
(d(x, o) + d(o, y) − d(x, y)).

The space (X, d) is then said to be Gromov-hyperbolic if there exists some δ > 0 such that for
any x, y, z ∈ X ,

(x|z)o > min{(x|y)o, (y|z)o)} − δ.

The space is also said to be δ-hyperbolic.

A more intuitive definition can be given for proper2 geodesic metric spaces (see figure 1.5): (X, d) is
Gromov-hyperbolic if there is some δ > 0 such that any three points x, y, z ∈ X , there is a geodesic
triangle xyz ⊂ X which is δ-thin, that is, there are geodesic segments [xy], [xz] and [yz] such that,
for any point p on the side [xz],

min{d(p, [xy]), d(x, [yz])} 6 δ.

Obviously, the hyperbolic space Hn is a Gromov-hyperbolic space. The extremal case is the one
given by trees: equipped with the word metric, trees are indeed 0-hyperbolic, since the triangles
have no interior.
Using Cayley graphs, Gromov introduced in [35] the now classical notion of hyperbolic group: a
finitely generated group G is Gromov-hyperbolic if its Cayley graph equipped with the word metric
is a Gromov-hyperbolic metric space. The property does not depend on the chosen set of genera-
tors, but the constant δ of hyperbolicity may depend on it. For example, the fundamental groups
of compact surfaces of genus g > 2 are Gromov-hyperbolic. More generally, if a compact manifold
carries a metric of negative curvature, then its fundamental group is Gromov-hyperbolic.

It is important to notice that Gromov-hyperbolicity is not a local property. One just wants the
geometry at large scale to be “like in the hyperbolic space”. In particular, the notion of Gromov-
hyperbolicity is invariant by quasi-isometry: if (X, d) and (X ′, d′) are two metric spaces, a quasi-
isometry between X and X ′ is a map f : X −→ X ′ such that

2A metric space is proper if metric balls are compact.
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x

y

z

p

Figure 1.5: A Gromov-hyperbolic triangle

• for any x, y ∈ X ,
1

a
d(x, y) − b 6 d′(f(x), f(y)) 6 ad(x, y) + b,

for some constants a > 0, b > 0;

• there is a constant c ≥ 0 such that, for any x′ ∈ X ′, there is some x ∈ X satisfying
d′(f(x), x′) 6 c.

For example, if Γ is a cocompact subgroup of isometries of a metric space (X, d), then (the Cayley
graph of) Γ and X are quasi-isometric, and X is Gromov-hyperbolic if and only if Γ is Gromov-
hyperbolic.

Gromov-hyperbolicity is the kind of coarse properties that can be expected for Hilbert geometries.
In fact, as we will see in the next section, lots of tools that are defined and used in Gromov-
hyperbolic spaces can be also considered in the Hilbert geometry defined by a strictly convex set
with C1 boundary.

From now on, unless it is explicitly mentioned, we consider only

Hilbert geometries defined by strictly convex proper open sets Ω ⊂ RPn

with C
1 boundary.
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1.2 The boundary of Hilbert geometries

Let Ω ⊂ RPn be a strictly convex proper open set with C1 boundary. As already remarked, the
geometric boundary ∂Ω corresponds to the geodesic boundary at infinity. We now define some
classical tools that are used to study Hadamard manifolds or Gromov-hyperbolic spaces.

Let x and y be in Ω. The shadow of the ball B(y, r) of radius r > 0 about y as seen from x is
denoted by Or(x, y): it is the subset of ∂Ω consisting of points ξ such that the geodesic ray [xξ)
intersects B(y, r). The light cone Fr(x, y) from x and of base B(y, r) is the set of points p in Ω
such that the ray [xp) intersects B(y, r); in other words, Fr(x, y) is the union of all rays [xξ) for
ξ ∈ Or(x, y). See figure 1.6.

x

r y

Or(x, y)

Fr(x, y)

Figure 1.6: Shadows and lightcones

The Gromov-product based at o of two points x and y in Ω was already defined as

(x|y)o =
1

2
(dΩ(x, o) + dΩ(o, y) − dΩ(x, y)).

When Ω is strictly convex with C1 boundary, the Gromov product can be extended continuously to
Ω × Ωr∆, where ∆ = {(x, x), x ∈ ∂Ω} is the diagonal: that is lemma 5.2 in [8]. We can anyway
extend the Gromov product to the whole of Ω × Ω by saying that (x|x)o = +∞ if x ∈ ∂Ω.

The Busemann function based at ξ ∈ ∂Ω is defined by

bξ(x, y) = lim
p→ξ

dΩ(x, p) − dΩ(y, p) = (ξ|y)x − (ξ|x)y ,
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which, in some sense, measures the (signed) distance from x to y in Ω as seen from the point ξ ∈ ∂Ω.
A particular expression for b is given by

bξ(x, y) = lim
t→+∞

dΩ(x, γ(t)) − t,

where γ is the geodesic leaving y at t = 0 to ξ. When ξ is fixed, then bξ is a surjective map from
Ω×Ω onto R. When x and y are fixed, then b.(x, y) : ∂Ω → R is bounded by a constant C = C(x, y).

The following lemma will be used many times in chapter 4:

Lemma 1.2.1. 1. For any x, y ∈ Ω such that y ∈ Fr(x, o), we have (x|y)o 6 r.

2. For any ξ ∈ Or(x, y), we have

dΩ(x, y) − 2r 6 bξ(x, y) 6 dΩ(x, y).

Proof. 1. Assume x, y ∈ Ω. The line (xy) intersects B(o, r) and we can pick z in this intersection.
We have

dΩ(x, o) 6 dΩ(x, z) + dΩ(z, o) 6 dΩ(x, z) + r

and
dΩ(y, o) 6 dΩ(y, z) + r,

so that 2(x|y)o = dΩ(x, o) + dΩ(y, o) − dΩ(x, y) 6 2r. By continuity of the Gromov product,
this also holds if x, y ∈ ∂Ω.

2. From the triangular inequality, we have |bξ(x, y)| 6 dΩ(x, y), hence the upper bound. For the
lower one, let z be any point in B(y, r) ∩ [xξ], and [xξ) : [0, +∞) −→ Ω be the geodesic ray
from x to ξ. We have

bξ(x, y) = lim
t→+∞

dΩ(x, [xξ)(t)) − dΩ(y, [xξ)(t))

= dΩ(x, z) + lim
t→+∞

dΩ(z, [xξ)(t)) − dΩ(y, [xξ)(t))

= dΩ(x, z) + bξ(z, y).

But since z ∈ B(y, r), dΩ(x, z) > dΩ(x, y) − r and |bξ(z, y)| 6 r, hence the result.

The horosphere passing through x ∈ Ω and based at ξ ∈ ∂Ω is the set

Hξ(x) = {y ∈ Ω, bξ(x, y) = 0}.

Hξ(x) is also the limit when p tends to ξ of the metric spheres B(p, dΩ(p, x)) about p passing
through x. In some sense, the points on Hξ(x) are those which are as far from ξ as x is.
The (open) horoball Hξ(x) defined by x ∈ Ω and based at ξ ∈ ∂Ω is the “interior” of the horosphere
Hξ(x), that is, the set

Hξ(x) = {y ∈ Ω, bξ(x, y) > 0}.
It is easy to see that horospheres have the same kind of regularity as the boundary of Ω.
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1.3 Isometries of Hilbert geometries

1.3.1 The group of isometries of a Hilbert geometry

Let (Ω, dΩ) be any Hilbert geometry. Its group of isometries Isom(Ω, dΩ) contains the subgroup
consisting of projective transformations preserving Ω:

Aut(Ω) = {g ∈ PGL(n + 1,R), g(Ω) = Ω}.

If Ω is strictly convex, all the geodesics are lines and this implies, as remarked by Pierre de la Harpe
in [29], that Aut(Ω) = Isom(Ω, dΩ). In the same paper, de la Harpe constructed the essentially
unique nonprojective isometry of the triangle: he proved that if Ω is a triangle, then Aut(Ω) has
index 2 in Isom(Ω, dΩ). In general, it is not known when the two groups coincide.

What follows now is an important part of the article in preparation [26], where the notion of
geometrically finite quotients of Hilbert geometries is investigated. We omit some of the proofs and
only indicate the results that we will use in the rest of the text. More will appear in [26].

1.3.2 Classification of isometries

Let (Ω, dΩ) be any Hilbert geometry. For g ∈ Isom(Ω, dΩ), we denote by

τ(g) = inf
x∈Ω

dΩ(x, gx),

the displacement of g and we say that g is

• elliptic if τ(g) = 0 and the infimum is attained, i.e. g fixes a point in Ω;

• parabolic if τ(g) = 0 and the infimum is not attained;

• hyperbolic if τ(g) > 0 and the infimum is attained;

• quasi-hyperbolic if τ(g) > 0 and the infimum is not attained.

As in the hyperbolic space, there are no quasi-hyperbolic isometries if Ω is strictly convex. The more
precise result of the following theorem can be seen as a consequence of the intuitive considerations
that we made in section 1.1.3.

Theorem 1.3.1 ([26]). Let Ω ⊂ RPn be a strictly convex proper open set with C1 boundary. An
isometry g of (Ω, dΩ) is of one of the following types:

• g is elliptic;

• g is parabolic; g fixes exactly one point p ∈ ∂Ω and for any x ∈ Ω,

lim
n→±∞

gnx = p;

• g is hyperbolic: it fixes exactly two points g+ and g− in ∂Ω and for any x ∈ Ω,

lim
n→±∞

gnx = g±.
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Let g be a hyperbolic isometry of (Ω, dΩ). If we see g as an element of SL(n + 1,R), then the
last theorem says that g is biproximal: associated to the stable lines g+ and g−, are their two real
eigenvalues λ+

g , which is the largest eigenvalue (in modulus), and λ−
g , which is the smallest one;

these two eigenvalues are isolated: their eigenspaces are exactly the lines g+ and g−. g acts on the
segment [g−g+] ⊂ Ω as a translation of length

1

2
log

λ+
g

λ−
g

= τ(g) = dΩ(x, gx),

for any x ∈ (g−g+).

1.3.3 Parabolic subgroups

A parabolic subgroup of isometries is a nontrivial subgroup of Isom(Ω, dΩ) whose elements but
the identity are all parabolic isometries which fix the same point at infinity. If Γ is a given subgroup
of Isom(Ω, dΩ), a maximal parabolic subgroup is a parabolic subgroup containing all the parabolic
isometries of Γ fixing a given point.

In hyperbolic geometry, a parabolic subgroup fixing the point p at infinity acts on ∂Hn r {p} by
Euclidean transformations, and discrete parabolic subgroups are thus well understood thanks to
Bieberbach theorems. In Hilbert geometry, we do not know if it stays true but we hope so (or
maybe not). Here are some partial results in this direction.

Lemma 1.3.2 ([26]). Let Ω ⊂ RPn be a strictly convex proper open set with C1 boundary, and
g ∈ Isom(Ω, dΩ) a parabolic isometry fixing p ∈ ∂Ω. Then g preserves every horosphere based at p.

Proof. Busemann functions based at p are invariant by g: for any o, x ∈ Ω,

bp(go, gx) = lim
c→p

dΩ(go, c)−dΩ(gx, c) = lim
c→p

dΩ(go, gc)−dΩ(gx, gc) = lim
c→p

dΩ(o, c)−dΩ(x, c) = bp(o, x),

since, if c tends to p, gc also. Hence, for any x ∈ Ω,

Hp(gx) = {y ∈ Ω, bp(gx, y) = 0} = {y ∈ Ω, bp(x, g−1y) = 0} = gHp(x),

that is, g preserves the set of horospheres based at p. Now, for any x, y ∈ Ω, we have

bp(x, gx) = bp(x, y) + bp(y, gy) + bp(gy, gx) = bp(y, gy) := a ∈ R.

Since |bp(x, gx)| 6 dΩ(x, gx), this implies that, for any x ∈ Ω, dΩ(x, gx) > |a|. Since τ(g) = 0, we
get a = 0, that is, gx ∈ Hp(x).

By a cusp, defined by a discrete parabolic subgroup P fixing p, we will mean the quotient of some
horoball based at p by P .

Proposition 1.3.3 ([26]). Let Ω ⊂ RPn be a strictly convex proper open set with C1 boundary,
and P a parabolic subgroup of Isom(Ω, dΩ) fixing the point p ∈ ∂Ω. Then, for any horosphere H
based at p, Hr {p}, as well as ∂Ωr {p}, carries an affine structure preserved by P.

Proof. The set of lines passing through p is the projective space Pp = P(Rn+1/〈p〉), of dimension
n − 1. P acts projectively on this space, and preserves the projective hyperspace Tp consisting of
lines tangent to ∂Ω at p. Thus, P acts affinely on the affine space Pp r Tp, that one can identify
with ∂Ωr {p} or Hr {p} for any horosphere H based at p. In this way, we see that each Hr {p},
as well as ∂Ωr {p}, carries an affine structure preserved by P .
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1.3.4 Isometries of plane Hilbert geometries

We describe here what occurs in the easy case of plane Hilbert geometries. In dimension 2, isometries
of a general Hilbert geometry (Ω, dΩ) are well classified, see for example [19] or [55]. In particular,
if Ω is strictly convex,

• any hyperbolic isometry γ can be represented as a matrix





λ0 0 0
0 λ1 0
0 0 λ2





with λ0 > λ1 > λ2 > 0.

• any parabolic isometry γ can be represented by the matrix





1 1 0
0 1 1
0 0 1



 .

This implies in particular that the orbit of any point x ∈ RP2 under γ lies on a conic which
contains the fixed point p of γ. Indeed, if the basis is chosen so that γ has the preceding
matrix form, then it preserves the family of conics

Eλ,µ = {λz2 + µ(y2 − z(y + 2x))}, λ, µ ∈ R.

The degenerated case µ = 0 is the line z = 0, which corresponds to the tangent line to ∂Ω at
p. If x = [a : b : 1] ∈ RP2 r {z = 0}, we denote by Ex = Eb+2a−b2,1 the conic preserved by p
and containing x (and its orbit).

Let p ∈ ∂Ω. ∂Ω r {p} carries an affine structure preserved by any parabolic isometry fixing p.
Such an isometry has no fixed point on ∂Ω r {p}, hence it acts as a translation on ∂Ω r {p}. In
particular, the group of parabolic isometries fixing a common point p is isomorphic to a subgroup of
R, and any discrete parabolic group is thus isomorphic to Z, generated by some parabolic isometry γ.

So, any discrete parabolic group fixing p acts cocompactly on ∂Ωr {p}. Thus, we can find points
x ∈ Ω and y 6∈ Ω such that the ellipses Ex and Ey define two convex sets Ex and Ey such that
Ex ⊂ Ω ⊂ Ey and Ex ∩ Ey = Ex ∩ ∂Ω = Ey ∩ ∂Ω = {p}. Hence the following

Lemma 1.3.4. Let Ω ⊂ RP2 be a strictly convex proper open set with C1 boundary. Let P be
a discrete parabolic group of Isom(Ω, dΩ) fixing p. Then P is isomorphic to Z and preserves two
ellipses E and E′ such that E ∩ E′ = E ∩ ∂Ω = E′ ∩ ∂Ω = {p} and E ⊂ Ω ⊂ E ′, where E and E ′

are the convex hulls of E and E′.

An important consequence of this is that, given a sufficiently small horoball based at p, E and E ′

define two hyperbolic metrics h and h
′ on the cusp H/P , such that h′ 6 F 6 h.

Proposition 1.3.5. Let Ω ⊂ RP2 be a strictly convex proper open set with C1 boundary. Let P be a
discrete parabolic subgroup of Isom(Ω, dΩ) fixing p ∈ ∂Ω. Choose any C > 1. Then any sufficiently
small horoball H based at p carries two P-invariant hyperbolic metrics h and h

′ such that, on H,
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• F , h and h
′ have the same geodesics, up to parametrization;

• 1

C
h 6 h

′
6 F 6 h 6 Ch

′

Proof. Choose E and E ′ as in the last lemma. Any sufficiently small horoball H0 based at p is
inside E . E and E ′ then define two P-invariant hyperbolic metrics on H0, such that h

′ 6 F 6 h.
Furthermore, E is a horoball based at p of the hyperbolic space E ′. Now this is obvious in the upper
half-space model of H2 that, for any C > 1, we can choose a sufficiently small horoball H ′ of E ′ on
which h/h′ 6 C. For any horoball H (of Ω) inside this H ′, we will still have h/h′ 6 C hence the
result.

1.4 Manifolds modeled on Hilbert geometries

We want to consider manifolds modeled on Hilbert geometries (Ω, dΩ) defined by a strictly convex
proper open set Ω with C1 boundary. Such a manifold M appears as a quotient M = Ω/Γ of Ω by
a discrete subgroup Γ of isometries without torsion, that is, Γ does not contain elliptic elements.
Since Ω is strictly convex, Γ is a discrete subgroup of the projective group.
Those manifolds are called (strictly) convex projective manifolds. On an abstract smooth manifold
of dimension n, a projective structure is an atlas (Ui, ϕi) with coordinate charts with values in
the projective space RPn, such that changes of coordinates are projective maps. Associated to a
projective structure are a developing map from the universal cover M̃ to RPn and a representation
Γ = ρ(π1(M)) < PGL(n + 1,R) of the fundamental group of M . We say that the projective struc-
ture is convex if the developing map is a diffeomorphism onto an convex proper open subset Ω of
RPn, in which case M = Ω/Γ.

For a discrete group Γ < PGL(n + 1,R) acting on Ω, we can always find a locally finite convex
fundamental domain, as claimed by the following theorem, due to Lee [48]. A simple proof can be
found in [55].
By a fundamental domain for Γ, we mean a subset K of Ω such that Γ.K = Ω and for any two
distinct γ, γ′ ∈ Γ, γ.K ∩ γ′.K = ∅. Locally finite means that for any compact subset C of Ω, the
number of translates γ.K of K that intersect C is finite.

Theorem 1.4.1 (Lee, [48]). Let Γ < PGL(n + 1,R) be a discrete group acting on a convex proper
open set Ω ⊂ RPn. There exists a locally finite convex fundamental domain for the action of Γ on
Ω.

1.4.1 The limit set

If Γ is a discrete group of isometries of (Ω, dΩ), its limit set ΛΓ is the set of accumulation points
of an orbit Γ.o in ∂Ω, defined by

ΛΓ = Γ.or Γ.o.

This definition does not depend on the point o that we consider, thanks to our assumptions on Ω:
strict convexity and C1 boundary.
ΛΓ is the minimal invariant closed subset of ∂Ω which is invariant under Γ: any other nonempty
Γ-invariant closed subset contains ΛΓ. In particular, the action of Γ on ΛΓ is minimal, that is, every
orbit is dense.
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Obviously, ΛΓ contains the set of all the fixed points F of the elements of Γ in ∂Ω. The closure F
of F being Γ-invariant, we conclude that F = ΛΓ.
We say that a discrete group Γ of isometries is elementary if its limit set is finite. It can then
consist of 0, 1 or 2 points, which correspond respectively to the following cases: Γ is elliptic3, Γ is
parabolic, Γ = 〈h〉 is the cyclic group generated by a hyperbolic isometry.
When Γ is neither an elliptic or a parabolic elementary group, ΛΓ is indeed the closure of the set
of fixed points of hyperbolic isometries. This is just the fact that a nonelementary group contains
necessarily a hyperbolic isometry.

The same group Γ < PGL(n + 1,R) can act on various convex sets Ω. For example, it acts on
the convex hull C(ΛΓ) of its limit set. In fact, C(ΛΓ) is the smallest convex set on which Γ can
act. Remark that C(ΛΓ) is not necessarily open in RPn: for instance, the limit set of a parabolic
subgroup is reduced to one point, hence C(ΛΓ) also. These remarks, though naive, are crucial when
we consider the problem of understanding the properties of an eventual quotient Ω/Γ, when the
discrete subgroup Γ of PGL(n + 1,R) is given, and not the convex set Ω.

1.4.2 Compact quotients

We say that a convex proper open set Ω is divisible if it admits a compact quotient by some dis-
crete projective group. The ellipsoid is the only divisible strictly convex set which is homogeneous,
that is, with a transitive group of isometries. The existence of other divisible strictly convex sets is
nontrivial. The first example was given by Kac and Vinberg [41] in 1967, using Coxeter groups.
In 1984, Johnson and Millson [40] constructed examples of hyperbolic manifolds in all dimensions,
whose fundamental group Γ0 ⊂ Isom(Hn) could be deformed continuously into Zariski-dense sub-
groups Γt of SL(n+1,R). The work of Koszul [46] implies that such little deformations still divide
some convex sets Ωt; since (Ωt, dΩt

) is quasi-isometric to the Gromov-hyperbolic group Γt, (Ωt, dΩt
)

is itself Gromov-hyperbolic, so in particular strictly convex (see Benoist’s theorem below).
In dimension 2, a very precise description has been given by Goldman [33]. He proved in particular
that the deformation space of convex projective structures on the surface Σg of genus g > 2 is a
manifold diffeomorphic to R16g−16; it contains the Teichmüller space of Σg as a submanifold of
dimension 6g − 6. Such a description is not available in higher dimensions, except for Marquis’
work [52].

The main general result about the geometry of divisible convex sets is the following theorem of
Benoist. It divides the set of divisible convex sets into two families and only one of them, which
includes ellipsoids, is studied in this thesis,. The last property, which is an intrinsic property of the
abstract fundamental group of the quotient manifold, implies that a manifold M cannot carry a
strictly convex projective structure and a nonstrictly convex one.

Theorem 1.4.2 ([7]). Let Ω ⊂ RPn be a convex proper open set, which can be divided by some
discrete group Γ < PGL(n + 1,R). The following statements are equivalent:

• Ω is strictly convex;

• the boundary ∂Ω of Ω is C1;

• the space (Ω, dΩ) is Gromov-hyperbolic;

3Γ is said to be elliptic if all its elements but the identity are elliptic isometries fixing the same point.
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• the group Γ is Gromov-hyperbolic.

If all these results show that strictly convex projective structures are far more general than hyper-
bolic ones, the examples that were given above are all deformations of hyperbolic structures. That
is always the case in dimensions 2 and 3, but quite surprisingly, in dimension higher than 4, there
exist compact manifolds which admit strictly convex projective structures but no hyperbolic one.
Such examples were first constructed by Benoist [8] in dimension 4, 5 and 6, using Coxeter groups;
Kapovich [44] then proved that some of the manifolds constructed by Gromov and Thurston in [36]
were providing other examples, in all dimensions.

1.4.3 Geometrically finite quotients

We extend here the notion of geometrical finiteness to our context, as well as some results which
are essential for studying the dynamics.

Definitions 1.4.3. Let Γ be a discrete group of isometries of (Ω, dΩ). A point p ∈ ΛΓ is said to be

• radial or conical if there exist a point o ∈ Ω and a sequence of isometries (gn) in Γ, such
that the sequence (gno) converges to p in Ω and

sup
n

dΩ(gno, [op]) < +∞;

• a bounded parabolic point if p is the fixed point of a parabolic subgroup P of Γ which acts
cocompactly on ΛΓ r {p}.

The following geometrical characterization of conical points will be often used:

Remark 1.4.4. A point p ∈ ΛΓ is conical if and only if, for any point x ∈ Ω, the projection on the
quotient M = Ω/Γ of the ray [xp) ending at p stays in a compact part K of M an infinite period
of time.

Definition 1.4.5. Let M = Ω/Γ be the quotient manifold of a strictly convex set Ω with C1

boundary. M is said to be geometrically finite if ΛΓ consists only of radial and bounded parabolic
points.

The goal of what follows is to prove theorem 1.4.8, which describes the convex core of a geometrically
finite manifold. The convex core C(M) of M is defined as the closure (in M) of the quotient
C(ΛΓ)/Γ ⊂ M = Ω/Γ, where C(ΛΓ) ⊂ RPn denotes the (open) convex hull of the limit set ΛΓ. The
description provided by theorem 1.4.8 is fundamental because the recurrent part of the dynamics
occurs in the convex core (see section 2.5).

Lemma 1.4.6. Let Γ be a discrete group of isometries of (Ω, dΩ). A parabolic point of ΛΓ is not
conical.

Proof. Let p be a parabolic point fixed by the parabolic isometry γ. If p is conical, from remark 1.4.4,
we can find some x ∈ Ω such that the ray [xp) gives on the quotient a geodesic ray that stays in a
compact part K of M an infinite period of time. Consider the function t 7−→ dΩ([xp)(t), [γ(x)p)(t))
that represents in Ω the distance between the ray t 7→ [xp) and its image by γ. Since ∂Ω is C1,
this function decreases to 0. But the injectivity radius of the compact part K is > 0, hence a
contradiction.
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Lemma 1.4.7. Let M = Ω/Γ be a geometrically finite manifold and D a closed convex fundamental
domain for Γ on C(ΛΓ). Then any connected component of D ∩ ΛΓ consists of a single parabolic
point.

Proof. Let p be a point in D ∩ ΛΓ. If x is any point in D, the projection on M of the ray [xp)
leaves any compact set, hence p is not conical, by remark 1.4.4. Since Γ is geometrically finite, p
is necessarily parabolic. Let γ be a parabolic element fixing p. γ acts bijectively on the connected
component C of p in ΛΓ. Now, we know from theorem 1.3.1 that, for any point q ∈ Ω, the sequence
(γnq) tends to p, which implies that C = {p}.

We can now prove the main

Theorem 1.4.8 ([26]). Let M = Ω/Γ be a geometrically finite manifold. Then the number of
conjugacy classes of maximal parabolic subgroups of Γ is finite and the convex core of M can be
decomposed as the disjoint union

K
⊔

⊔l
k=1Ck

of a compact part K and a finite number of cusps Ck, each cusp corresponding to a conjugacy class
of maximal parabolic subgroups.

Proof. For any parabolic point p ∈ ΛΓ, let Pp = StabΓ(p) be the maximal parabolic subgroup fixing

it. Let D be a locally finite convex closed fundamental domain for Γ on C(ΛΓ) and pick a parabolic
point p ∈ D ∩ ΛΓ. We can find a closed fundamental domain C for Pp on C(ΛΓ) that contains
D; since p is bounded, C ∩ ΛΓ r {p} is compact in ΛΓ r {p}. The set D ∩ ΛΓ r {p} consisting of
parabolic points is contained in the compact C ∩ΛΓr{p}, so D∩ΛΓ is discrete in ΛΓ, hence finite.
Choose parabolic points p1, · · · , pl in D, such that any two Ppi

, i = 1, · · · , l, are not conjugated. We
can then put disjoint horoballs Hp1 , · · · , Hpl

based at these points, and the set Γ{Hpi
, 1 6 i 6 l}

consists of disjoint horoballs based at parabolic points. Let

Ci = Hpi
/Ppi

= Γ.Hpi
/Γ, Ci = Hpi

∪ {pi}/Ppi
= Γ.(Hpi

∪ {pi})/Γ,

for 1 6 i 6 l, and
K = C(ΛΓ)/Γr ∪l

i=1Ci.

Each Ci is open in the compact C(ΛΓ)/Γ, so K is closed in C(ΛΓ)/Γ, hence compact. This yields
the decomposition.
Now, let p be any parabolic point in ΛΓ and pick a geodesic ray (xp) inside C(ΛΓ), that is, such that
x ∈ C(ΛΓ). Since p is not conical, the corresponding geodesic ray on the quotient M = Ω/Γ leaves
any compact subset, hence is ultimately contained in a cusp Ci. Thus there are some i ∈ {1, · · · , l}
and γ ∈ Γ such that γ.p = pi, that is Pp is conjugated to Ppi

. The number of conjugacy classes of
maximal parabolic subgroups is thus finite, equal to the number of cusps of M .

1.4.4 The case of surfaces

Geometrically finite surfaces

For surfaces, we can easily go further because we are able to describe parabolic subgroups, hence
the Hilbert geometry of a cusp. We set the results in the following corollary, which is a direct
consequence of proposition 1.3.5 and theorem 1.4.8.
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Corollary 1.4.9. Let M = Ω/Γ be a geometrically finite surface. Then, for any C > 1, there
exists a decomposition of C(M) into

M = K
⊔

⊔l
i=1Ci

consisting of a compact part K and a finite number of cusps Ci, on which there exist hyperbolic
metrics hi and h

′
i such that

• F , hi and h
′
i have the same geodesics on Ci, up to parametrization;

• 1

C
hi 6 h

′
i 6 F 6 hi 6 Ch

′
i.

Finite volume surfaces

Marquis’ description of finite volume surfaces can go as follow.

Theorem 1.4.10 (Marquis, [55]). Let Ω ⊂ RP2 be a convex proper open set. A surface M = Ω/Γ
has finite volume if and only if M is geometrically finite and ΛΓ = ∂Ω.

To understand this statement, we have to explain what we mean by volume. Indeed, a Finsler
geometry has no canonical volume as a Riemannian one. The volume that we use here is the so
called Busemann volume, which corresponds to the Hausdorff measure of the metric dΩ (see
[18]). This volume vol is defined by renormalizing any volume on Ω in such a way that each tangent
unit ball has volume one. More precisely, let λ be any Lebesgue measure on Ω. We define

dvol(x) =
dλ(x)

λ(Bx(1))
,

where Bx(1) = {v ∈ TxΩ, F (x, v) = 1} is the tangent unit ball for F (x, .). This construction
provides a volume on any quotient manifold of Ω. Finite volume manifolds are considered with
respect to this volume.

The construction of the Busemann volume can be made for any Finsler manifold. In particular,
we can define a volume on any C1 submanifold of Ω. This remark will be used in the proof of the
Ruelle inequality, in section 5.2.1.

Remark that, if Ω ⊂ Ω′ are two convex proper open subsets of RPn, then the Busemann volumes
vol and vol′ on Ω and Ω′ satisfy vol > vol′ on Ω. That yields the following

Lemma 1.4.11. Let Ω ⊂ RP2 be a strictly convex proper open set with C1 boundary. Let P be a
discrete parabolic subgroup fixing p ∈ ∂Ω and H be any horoball based at p. Then H/P has finite
volume.

Proof. Consider two P-invariant convex sets E and E ′ as in lemma 1.3.4. Let H be any horoball
based at p. Since P acts cocompactly on ∂H r {p}, we can assume that H ⊂ E . From hyperbolic
geometry, we know that volE(H/P) is finite, where volE denotes the hyperbolic volume defined by
the hyperbolic space E . Since vol 6 volE , we get the result.

As a corollary, we get that the convex core of a geometrically finite surface has finite volume. Hence
we get the if part of theorem 1.4.10. For more details, we refer to [55].
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1.5 Volume entropy

The volume entropy of a Riemannian metric g on a manifold M measures the asymptotic exponential
growth of the volume of balls in the universal cover M̃ ; it is defined by

hvol(g) = lim sup
R→+∞

1

r
log volg(B(x, R)), (1.3)

where volg denotes the Riemannian volume corresponding to g. We define the volume entropy of a
Hilbert geometry (Ω, dΩ) by the same formula, with respect the Busemann volume.

It is not clear when the limit in (1.3) exists, but some results are already known: as a consequence
of theorem 1.1.2, if Ω is a polytope then hvol(Ω, dΩ) = 0; at the opposite, we have the

Theorem 1.5.1 ([10]). Let Ω ⊂ RPn be a convex proper open set. If the boundary ∂Ω of Ω is C1,1,
that is, has Lipschitz derivative, then hvol(Ω, dΩ) = n − 1.

The global feeling is that any Hilbert geometry is in between the two extremal cases of the ellipsoid
and the simplex. In particular, the following conjecture is still open.

Conjecture 1.5.2. For any Ω ⊂ RPn,

hvol(Ω, dΩ) 6 n − 1.

In [10] the conjecture is proved in dimension n = 2 and an example is explicitly constructed where
0 < hvol < 1.

Remark that in the case of a convex set Ω divided by Γ, we can choose any volume on the quotient
manifold Ω/Γ, or even any probability measure and lift it to Ω. The volume entropy does not
depend on the choice of such a measure. In particular, by choosing a Dirac measure, it is the same
as looking at the exponential growth rate of the orbit of a point o ∈ Ω under Γ. This number is
the critical exponent of Γ:

δΓ = lim sup
R→+∞

1

R
log NΓ(o, R),

where
NΓ(o, R) = ♯{γ, dΩ(o, γo) < R}

denotes the number of points of the orbit Γ.o in the ball of radius R about o. This quantity is the
main character of the last two chapters.

For a nonnecessarily cocompact group, the volume entropy is in general bigger than the critical
exponent:

hvol > δΓ.

For example, in the hyperbolic space, hvol = n − 1, but δΓ clearly depends on the group. Take for
example a punctured torus. The loop γ around the puncture can be represented by a parabolic or a
hyperbolic element of Isom(H2). In the first case, the surface has finite volume and hvol = δΓ = 1;
in the second one, it is convex cocompact, and we can change the length of the geodesic loop
representing γ so that δΓ can take any value in (0, 1).



1.6. TOPOLOGICAL ENTROPY 21

1.6 Topological entropy

1.6.1 The compact case

A major invariant in the theory of dynamical systems is the topological entropy, which roughly
speaking measures how the system separates the points, how much it is chaotic.

Given a flow ϕt : X −→ X on a compact metric space (X, d), we define the distances dt, t > 0, on
X by dt(x, y) = max06s6t d(ϕs(x), ϕs(y)), x, y ∈ X. The topological entropy of ϕ is then the well
defined quantity

htop(ϕ) = lim
ǫ→0

[

lim sup
t→+∞

1

t
log N(ϕ, t, ǫ)

]

∈ [0, +∞],

where N(ϕ, t, ǫ) denotes the minimal number of balls of radius ǫ for dt needed to cover X .

In [49], Anthony Manning proved the following result:

Theorem 1.6.1. Let (M, g) be a compact Riemannian manifold of volume entropy hvol. Let htop

be the topological entropy of the geodesic flow of g on HM . We always have

htop > hvol.

Furthermore, if the sectional curvature of M is negative then

htop = hvol.

In his PhD thesis, Daniel Egloff [30] extended this result for some regular Finsler manifolds. In
fact, Manning’s proof still works in the special case we are dealing with here to get the

Proposition 1.6.2. Let Ω ⊂ RPn be a strictly convex proper open set, and M = Ω/Γ a compact
manifold modeled on Ω. Then

htop = hvol = δΓ.

We do not reproduce the proof here, see [49]. The only point we have to check is the following
technical lemma that Manning proved using negative curvature. Here we can compute it directly.

Lemma 1.6.3. The distance between corresponding points of two geodesics σ, τ : [0, r] → Ω is at
most dΩ(σ(0), τ(0)) + dΩ(σ(r), τ(r)).

Proof. There are two cases: either σ and τ meet each other or not. Anyway, by joining the point
σ(0) and τ(r) with a third geodesic, we see we only have to prove that the distance between two
different lines going away from the same point (but not necessary with the same speed) increases.
So suppose c, c′ : R → Ω are two lines beginning at the same point m = c(0) = c′(0). Take two
pairs of corresponding points (a, a′) = (c(t1), c

′(t1)), (b, b
′) = (c(t2), c

′(t2)) with t2 > t1 > 0. We
want to prove that dΩ(a, a′) < dΩ(b, b′). As it is obvious if t1 = 0, assume t1 > 0 and note x, x′ and
y, y′ the points on the boundary ∂Ω of Ω such that x, a, a′, x′ and y, b, b′, y′ are on the same line,
in this order. Note also Y = (mx) ∩ (bb′) and Y = (mx′) ∩ (bb′), so that by convexity of Ω, the
six points Y, y, b, b′, y′, Y ′ are different and on the same line, in this order. The two lines (aa′) and
(bb′) meet at a certain point that we can send at infinity by an homography. So we can assume the
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Figure 1.7: To follow the proof of lemma 1.6.3

two lines are parallel (c.f. figure 1.7).
Then it follows from Thales’ theorem that

1 > [x, a, a′, x] = [Y, b, b′, Y ′] > [y, b, b′, y′],

so that
dΩ(a, a′) = | log([x, a, a′, x])| < | log([y, b, b′, y′])| = dΩ(b, b′).

1.6.2 The noncompact case

Consider the system defined by a flow ϕt : X −→ X of a nonnecessarily compact metric space
(X, d). Bowen [17] extended the definition of topological entropy to this setting. It consists in
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exhausting the space by compact subsets, compute the entropy of each such set and take the supre-
mum.

More precisely, if K is any compact subset of X , we can look at the spaces (K, dt) for t > 0, where
the distances dt are defined as in the last section. The topological entropy of ϕ on (K, d) is defined
by

htop(ϕ, d) = lim
ǫ→0

[

lim sup
t→+∞

1

t
log N(K,d)(ϕ, t, ǫ)

]

∈ [0, +∞],

where N(K,d)(ϕ, t, ǫ) denotes the minimal number of balls of radius ǫ for dt needed to cover K. The
topological entropy of ϕ on (X, d) is then

htop(ϕ, d) = sup
K

htop(K, d),

where the supremum is taken over all compact subsets of X .

In the case of a noncompact space, this quantity may depend on the distance d, since all the
distances defining the same topology on X are not equivalent. To make it independant on the
distance, we then take the infimum on all the distances which define the same topology. In formula,
the topological entropy of ϕ on X is defined as

htop(ϕ) = inf
d

htop(ϕ, d).

As shown by Handel and Kitchens in [37], this generalization seems to be the good one.

In the context of this thesis, we will see that the topological entropy of the geodesic flow on a
noncompact quotient Ω/Γ is actually equal to the critical exponent δΓ of the group Γ. This is the
goal of section 5.1.
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Chapter 2

Dynamics of the geodesic flow

We describe here the main tool that we will use to study the geodesic flow of Hilbert
metrics. The last section proves the uniform hyperbolicity of the geodesic flow on a
compact quotient and a geometrically finite surface.

2.1 Foulon’s dynamical formalism

Here we explain how to extend to the context of this work the dynamical objects introduced by
Patrick Foulon in [31] to study second-order differential equations: they provide analogues of Rie-
mannian objects such as covariant differentiation, parallel transport and curvature for any such
equation which is regular enough.
We want to apply that formalism to our Hilbert geometries, which are more irregular. Here we
carefully check that these objects are still well defined, and even smooth in some sense, under some
specific assumptions. For more details about this, we refer the reader to [31] and to the appendix
of [32] for an English version.

This part is also introducing some notations that will be used all along the text.

2.1.1 Directional smoothness

Assume a smooth vector field X0 is given on a smooth manifold W . We denote by

• CX0(W ) (or simply CX0) the set of functions f on W such that, for any n > 0, Ln
X0f exists;

• Cp
X0(W ) (or simply Cp

X0) the set of functions f ∈ CX0 such that, for any n > 0, Ln
X0f ∈

Cp(W ).

A CX0 (respectively Cp
X0) vector field Z will be a section of W −→ TW which is smooth in the

direction X0, that is, the Lie derivative Ln
X0Z exists (respectively exists and is Cp) for any n > 0.

Equivalently, Z can be locally written as Z =
∑

fiZi where the Zi are smooth vector fields on W ,
and fi ∈ CX0 (respectively fi ∈ Cp

X0).
When X0 is a complete vector field, f being in CX0 means that f is smooth all along the orbits of
the flow generated by X0.

25
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Lemma 2.1.1. Let m ∈ C1
X0 and X = mX0. For any CX0 vector field Z,

(i) LZm ∈ CX0 ;

(ii) for any n > 0, the Lie derivative Ln
XZ = [X [· · · [X, Z] · · · ] is a CX0 vector field.

In some sense, if X = mX0 with m ∈ C1
X0 ,this lemma means that to be smooth with respect to

X is equivalent to being smooth with respect to X0. The proof will make use of the following
improved version of Schwartz’ theorem.

Lemma 2.1.2. Let f : Rn −→ R be a C1 map. If ∂2f
∂xi∂xj

exists and is continuous then so is ∂2f
∂xj∂xi

and we have ∂2f
∂xj∂xi

= ∂2f
∂xi∂xj

.

Proof of lemma 2.1.1. (i) Let w ∈ W . Since X0 is smooth, we can find smooth coordinates
(x0, x1, · · · , xn) on a neighbourhood Vw of w such that X0 = ∂

∂x0
and Z =

∑

ziX
i, where

zi ∈ CX(Vw) and X i = ∂
∂xi

.

Let f ∈ C1
X0 . Then on Vw, we formally have

LX0LZf =
∑

LX0(ziLXif) =
∑

LX0ziLXif +
∑

ziLX0(LXif).

In fact, this expression makes sense. The first term is well defined and in CX0 . The second one
exists from lemma 2.1.2; we even have LX0LXif = LXiLX0f , so that

LX0LZf = LZLX0f +
∑

LX0ziLXif. (2.1)

We now prove that Ln
X0LZm exists by induction on n. Assume that for some n > 0, we know that

Ln
X0LZm = mn + LZLn

X0m

for some function mn ∈ CX0 . Then

Ln+1
X0 LZm = LX0mn + LX0LZ(Ln

X0m).

But Ln
X0m ∈ C1

X0 , so that we can apply the preceding result (equation (2.1)) with f = Ln
X0m to

get

LX0LZ(Ln
X0m) = LZLn+1

X0 m + g

for some function g ∈ CX0 . We thus have

Ln+1
X0 LZm = mn+1 + LZLn+1

X0 m

with mn+1 = LX0mn + g ∈ CX0 . That proves the first point.

(ii) The Lie derivative Z0
n := LX0Z exists for any n > 0. Let Z0 := Z and (formally) Zn := Ln

XZ
for n > 1. Assume that for some n > 0, Zn exists and can be written

Zn = mnZ0
n + zn
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where zn is some CX0 vector field. Then

Zn+1 = [X, Zn] = m[X0, mnZ0
n + zn] − LZn

m X0

= m[X0, zn] + mn+1Z0
n+1 + nmnLX0m Z0

n+1 − LZn
m X0,

so that

Zn+1 = mn+1Z0
n+1 + zn+1

with zn+1 ∈ CX0 . That proves the second point.

2.1.2 Second-order differential equations

Let M be a smooth manifold. The homogeneous tangent bundle

π : HM = TM r {0}/R∗
+ −→ M

of M consists of pairs (x, [ξ]) with x ∈ M and [ξ] = R∗
+.ξ, ξ ∈ TxM r {0}. Call

r : TM r {0} −→ HM
(x, ξ) 7−→ (x, [ξ])

the projection from TM r {0} to HM .

Definition 2.1.3 (Foulon, [31]). A second-order differential equation on M is a vector field X :
HM −→ THM on the homogeneous tangent bundle such that

r ◦ dπ ◦ X = IdHM .

In what follows, M is a smooth manifold and X a complete C1 second-order differential equation
on M . We make the assumption that X = mX0 where

• X0 is a smooth second-order differential equation on M ;

• m ∈ C1
X0(HM).

Lemma 2.1.1 claims that to be smooth with respect to either X or X0 is equivalent, so we will not
make any difference between CX and CX0 functions or vector fields.
We denote by (ϕt)t∈R the flow generated by X . If w ∈ HM , ϕ.w denotes the orbit of w under
the flow ϕt, that is, ϕ.w = {ϕt(w), t ∈ R}. Remark that X and X0 have the same orbits, up to
parametrization. We follow the presentation made in [31].

2.1.3 The vertical distribution and operator

The vertical distribution is the smooth distribution V HM = kerdπ where π : HM −→ M is
the bundle projection. The letter Y will always denote a CX vertical vector field, and we write
Y ∈ V HM . The following lemma is proved in [31]:
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Lemma 2.1.4. Let w0 ∈ HM , Y1, · · · , Yn−1 be vertical vector fields along ϕ.w0 such that, for any
w ∈ ϕ.w0, Y1(w), · · · , Yn−1(w) is a basis of VwHM . Then for any w ∈ ϕ.w0, the family

X(w), Y1(w), · · · , Yn−1(w), [X, Y1](w), · · · , [X, Yn−1](w)

is a basis of TwHM .

This lemma allows us to define the vertical operator as the CX -linear operator such that

vX(X) = vX(Y ) = 0 vX([X, Y ]) = −Y.

By CX -linear, we mean that, for any function f ∈ CX ,

vX(fZ) = fvX(Z).

From the very definition, we can check that

vX = mvX0 . (2.2)

2.1.4 The horizontal operator and distribution

The horizontal operator HX : V HM −→ THM is the CX -linear operator defined by

HX(Y ) = −[X, Y ] − 1

2
vX([X, [X, Y ]]).

Lemma 2.1.1 assures us that this definition makes sense. More precisely, we have

[X, Y ] = m[X0, Y ] − LY mX0

and
[X, [X, Y ]] = m2[X0, [X0, Y ]] + LXm[X0, Y ] − (LXLY m − mL[X,Y ]m)X0.

Since vX = mvX0 , we thus get

HX(Y ) = mHX0(Y ) + LY mX0 +
1

2
LX0mY. (2.3)

The horizontal distribution hXHM is defined by

hXHM = HX(V HM).

The verticality lemma 2.1.4 implies that HX is injective, so that we get the continuous decomposi-
tion

THM = R.X ⊕ V HM ⊕ hXHM.

By a horizontal vector field h ∈ hXHM , we will mean a CX section h of HM −→ hXHM .

The operators vX and HX exchange V HM and hXHM in the following sense: lemma 2.1.1 allows
us to consider the compositions vX ◦HX and HX ◦vX , and see that for any Y ∈ V HM, h ∈ hXHM ,

vX ◦ HX(Y ) = Y, HX ◦ vX(h) = h. (2.4)
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In particular, remark that any horizontal vector field h can be written h = HX(Y ), for a unique
Y ∈ V HM .

Finally, we can define a pseudo-complex structure

JX : hXHM ⊕ V HM −→ hXHM ⊕ V HM

by setting JX = vX on hXHM and JX = −HX on V HM . Equation (2.4) gives

JX ◦ JX = −Id|V HM⊕hX HM .

2.1.5 Projections

We associate to the decomposition

THM = R.X ⊕ V HM ⊕ hXHM

the corresponding decomposition of the identity:

Id = pX ⊕ pX
v ⊕ pX

h .

We immediately have that
pX

h = HX ◦ vX . (2.5)

Moreover,

Lemma 2.1.5. For any CX vector field Z, we have

pX(Z) = pX0

(Z) − (LvX0 (Z) log m)X0;

pX
v (Z) = pX0

v (Z) − 1

2
(LX0 log m)vX0(Z);

pX
h (Z) = pX0

h (Z) + (LvX0 (Z) log m)X0 +
1

2
(LX0 log m)vX0(Z).

In particular, every projection of Z is still a CX vector field.

Proof. Let Z = aX + Y + h = a0X0 + Y 0 + h0 be the two decompositions of the vector field Z
along ϕ.w. If we let y = vX0(h0) = vX0(Z), we have, using (2.3),

h = HX(vX(Z)) =
1

m
HX(y) = HX0(y) +

1

2m
LX0m y +

1

m
Lym X0.

Thus

h = h0 +
1

2
LX0(log m)y + Ly(log m)X0,

and

Z = (aX + Ly(log m)X0) + (Y +
1

2
LX0(log m)y) + h0 = a0X0 + Y 0 + h0.

Identifying gives the result.
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2.1.6 Dynamical derivation and parallel transport

We define an analog of the covariant derivation along X that we call the dynamical derivation and
denote by DX . It is the CX -differential operator of order 1 defined by

DX(X) = 0, DX(Y ) = −1

2
vX([X, [X, Y ]]), [DX , HX ] = 0.

In our context, being a CX -differential operator of order 1 means that for any f ∈ CX ,

DX(fZ) = fDX(Z) + (LXf)Z.

Remark that, on V HM , we can write

DX(Y ) = HX(Y ) + [X, Y ]. (2.6)

We can also check that

DX = mDX0

+
1

2
(LX0m)Id. (2.7)

A vector field Z is said to be parallel along X , or along any orbit, if DX(Z) = 0. This allows us
to consider the parallel transport of a CX vector field along an orbit: given Z(w) ∈ TwHM , the
parallel transport of Z(w) along ϕ.w is the parallel vector field Z along ϕ.w whose value at w is
Z(w); the parallel transport of Z(w) at ϕt(w) is the vector Z(ϕt(w)) = T t(Z(w)) ∈ TwHM . Since
DX commutes with JX , the parallel transport also commutes with JX . If X is the generator of
a Riemannian geodesic flow, the projection on the base of this transport coincides with the usual
parallel transport along geodesics.

We can relate the parallel transports with respect to X0 and X , as stated in the next lemma. This
lemma is essential in this work and will be used in many different parts.

Lemma 2.1.6. Let w ∈ HM and pick a vertical vector Y (w) ∈ VwHM . Denote by Y and Y 0 its

parallel transports with respect to X and X0 along ϕ.w. Let h = JX(Y ) and h0 = JX0

(Y 0) be the

corresponding parallel transports of h(w) = JX(Y (w)) and h0(w) = JX0

(Y 0(w)) along ϕ.w. Then

Y =

(

m(w)

m

)1/2

Y 0

and

h = −LY m X0 + (m(w)m)1/2 h0 − m(w)

m
LX0m Y 0.

Proof. We look for the unique vector field Y along ϕ.w such that DX(Y ) = 0 and which takes the
value Y (w) at the point w. Equation (2.7) gives

DX(Y ) = mDX0

(Y ) +
1

2
LX(log m)Y.

Assume we can write Y = fY 0 along ϕ.w. Then f is the solution of the equation

LX(log f) +
1

2
LX(log m) = 0,
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which, with f(w) = 1, gives

f(ϕt(w)) =

(

m(w)

m(ϕt(w))

)1/2

.

Finally,

Y (ϕtw) =

(

m(w)

m(ϕt(w))

)1/2

Y 0(ϕtw). (2.8)

Now, using (2.6), we have

h = HX(Y ) = −[X, Y ] + DX(Y ) = −[X, Y ]

along ϕ.w. Hence, from (2.8), we have

h = −[X, Y ] = −LY m X0 − m [X0, Y ]

= −LY m X0 − m [X0, m(w)
m Y 0]

= −LY m X0 − (m(w)m)1/2 [X0, Y 0] + m(w)m LX0(m−1) Y 0

= −LY m X0 + (m(w)m)1/2 h0 − m(w)
m LX0m Y 0.

2.1.7 Jacobi endomorphism and curvature

The Jacobi operator RX is the CX -linear operator defined by

RX(X) = 0, RX(Y ) = pX
v ([X, HX(Y )]), [RX , HX ] = 0.

RX is well defined thanks to lemma 2.1.1 and from lemma 2.1.5, we get that for any CX vector
field Z, RX(Z) is also a CX vector field. Remark that RX commutes with JX . On V HM , we have

RX = m2RX0

+
(1

2
mL2

X0m − 1

4
(LX0m)2

)

Id. (2.9)

In the case X is the geodesic flow of a Riemannian metric g on M , the Jacobi operator allows to
recover the curvature tensor Rg of g: for u, v ∈ TxM r {0}, we have

Rg(u, v)u =
dπ(RXV (x, [u]))

‖u‖2
,

where V (x, [u]) is the unique vector in R.X(x, [u]) ⊕ hXHM(x, [u]) such that dπ(V (x, [u])) = v.

2.2 Dynamical formalism applied to Hilbert geometry

2.2.1 Construction

Let Ω be a strictly convex subset of RPn with C1 boundary. The geodesic flow ϕt of the Hilbert
metric dΩ is defined on the homogeneous tangent bundle HΩ = TΩr {0}/R+: given a point x in
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Ω and a direction [ξ] ∈ HxΩ, follow the line leaving x in the direction [ξ] during the time t.
Denote by X the generator of ϕt, that is, the second-order differential equation X : HΩ −→ THΩ
such that

d

dt |t=0

ϕt = X.

Choose an affine chart and a Euclidean metric on it, such that Ω appears as a bounded subset of Rn.
Let Xe : HΩ −→ THΩ be the smooth second-order differential equation generating the Euclidean
geodesic flow on HΩ. Of course, this flow is not complete on HΩ, that is, it is not defined for all
t ∈ R, but it is locally defined at least for small t. Since X and Xe have the same geodesics, we
have X = mXe for some nonnegative function m, and we can check that

m(w) = 2
|xx+| |xx−|

|x+x−| , w = (x, [ξ]) ∈ HΩ.

A direct computation gives that, for any w = (x, [ξ]) ∈ HΩ,

LXem (w) = 2
|xx+| − |xx−|

|x+x−| L2
Xem (w) = − 4

|x+x−| , Ln
Xem = 0, n > 3,

so that m ∈ C1
Xe . Thus the formalism introduced in the last section is relevant in this situation,

Xe playing the role of X0.

We immediately check that RXe

= 0. Moreover, we have

Proposition 2.2.1. Let Ω be a strictly convex subset of RPn with C1 boundary and X be the
generator of the Hilbert metric on Ω. Then

RX |V HΩ⊕hX HΩ = −Id|V HΩ⊕hX HΩ.

This proposition means that, in some sense, such Hilbert geometries have constant strictly negative
curvature.

Proof. We have

1

2
mL2

Xem − 1

4
(LXem)2 =

1

2
. 2

|xx+||xx−|
|x+x−| .

−4

|x+x−| −
1

4
.

(

2
|xx+| − |xx−|

x+x−

)2

= −4 |xx+||xx−| + (|xx+| − |xx−|)2
|x+x−|2 = −1.

Using equation (2.9), we then get RX |V HΩ⊕hXHΩ = −Id|V HΩ⊕hXHΩ.

2.2.2 Hilbert’s 1-form

The vertical derivative of a C1 Finsler metric F on a manifold W is the 1-form on TWr{0} defined
for Z ∈ T (TW r {0}) by:

dvF (x, ξ)(Z) = lim
ǫ→0

F (x, ξ + ǫdp(Z)) − F (x, ξ)

ǫ
,
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where p : TW −→ W is the bundle projection. This form depends only on the direction [ξ]: it is
invariant under the Liouville flow generated by the Liouville field D =

∑

ξi
∂

∂ξi
. As a consequence,

dvF descends by homogeneity on HW to get a 1-form A called the Hilbert form of F .
Let X be the infinitesimal generator of the geodesic flow of F on HW . Since [dπ(X(x, [ξ]))] = [ξ],
we can define A for any Z ∈ THW by

A(Z) = lim
ǫ→0

F (dπ(X + ǫZ)) − 1

ǫ
.

Remark that A(X) = 1 and that A(Y ) = 0 for any vertical vector field.

When X is smooth, the 2-form dA is well defined and we have

ıXdA = 0 kerA = V HW ⊕ hXHW.

The following proposition extends this result to our less regular Hilbert geometries.

Proposition 2.2.2. Let Ω be a strictly convex subset of RPn with C1 boundary and A the Hilbert
form of the Hilbert metric F on Ω. Then

(i) kerA = V HΩ ⊕ hXHΩ;

(ii) A is invariant under the geodesic flow of the Hilbert metric.

To prove the proposition, we have to make some computations on HΩ, and to make them easier,
we will use some special charts, that we introduce now. Choose a point w = (x, [ξ]) ∈ HΩ with
orbit ϕ.w. A chart adapted to this orbit is an affine chart where the intersection Tx+∂Ω ∩ Tx−∂Ω
is contained in the hyperplane at infinity, and a Euclidean structure on it so that the line (xx+) is
orthogonal to Tx+∂Ω and Tx−∂Ω.

x
x− x+

y+

t

y−

t

xtξ

Figure 2.1: A good chart at w = (x, [ξ])
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All along this work, when we talk about a good chart at or a chart adapted to w ∈ HΩ or its
orbit ϕ.w, we mean such a chart.

In a good chart at w, we clearly have LY m = 0 along ϕ.w for any Y ∈ V HΩ.

Remark 2.2.3. As a corollary of the following proof, we will get that, in a good chart at w =
(x, [ξ]) ∈ HΩ,

dπ(VwHΩ ⊕ hX
w HΩ) =

(

xx+
)⊥

,

where orthogonality is taken with respect to the Euclidean metric of the chart. More generally, this
implies that dπ(hX

w HΩ) is the tangent space to the unit ball of F (x, .) in the direction [ξ].

Proof of proposition 2.2.2. (i) We only have to prove that hXHΩ ⊂ kerA. Let w0 = (x0, [ξ0]) be
any point in HΩ and fix a chart for Ω in Rn which is adapted to w0, and where x0 = 0 is the
origin. Choose a small open neighbourhood U of w0 in HΩ. If U is small enough, we can choose
coordinates (x1, · · · , xn, ξ2, · · · , ξn) on U such that:

• w0 = 0 is the origin;

• for w = (x, [ξ]) ∈ U , the coordinates (x1, · · · , xn) of x are the Euclidean coordinates in Rn

and [ξ] is identified with the vector

ξ = ξ(w) =
∂

∂x1
+

n
∑

i=2

ξi
∂

∂xi
∈ TxΩ,

where the ξi vary in a neighbourhood of 0. In other words, [ξ] = [1 : ξ2 : · · · : ξn], where we
make use of homogeneous coordinates on HxR

n.

We use the associated basis
(

∂
∂xi

, ∂
∂ξj

)

16i6n,26j6n
on the tangent space TU ⊂ THΩ. Remark that

all along ϕ.w0 ∩ U , we have ξ = ∂
∂x1

.

In this chart, we introduce a new second-order differential equation X0 on U by

X0(w) = X0(x, [ξ]) =
∂

∂x1
+

n
∑

i=2

ξi
∂

∂xi
.

In particular, we have X0(w) = ∂
∂x1

along ϕ.w0 ∩ U , and dπ(X0(x, [ξ])) = ξ on U . Moreover, X

can be written as X = kX0, where k is the CX function defined on U by

k(w) =
F (dπ(X0(w)))

F (dπ(X(w)))
= F (x, ξ(w)) =

|ξ(w)|
m(x, [ξ])

, w = (x, [ξ]);

Along ϕ.w0, we clearly have LY k = 0.

The vertical distribution on U is given by

V U = vect

{

∂

∂ξi

}

i∈{2,··· ,n}

.
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Since LY k = 0 on ϕ.w0, the pseudo-complex structure along ϕ.w0 given by X0 on V U ⊕ hX0

U is
very simple: we have

∀j = 2, · · · , n,

[

X0,
∂

∂ξj

]

= − ∂

∂xj
,

[

X0,

[

X0,
∂

∂ξj

]]

= 0,

hence

∀j = 2, · · · , n, vX0

(

∂

∂xj

)

=
∂

∂ξj
, HX0

(

∂

∂ξj

)

=
∂

∂xj
,

so that

hX0

U = vect

{

∂

∂xi

}

i∈{2,··· ,n}

. (2.10)

Equation (2.3) can be applied with k instead of m. Any horizontal vector field h ∈ hXU along ϕ.w0

can thus be written

h = kHX0(Y ) +
1

2
(LX0k)Y, (2.11)

for a certain vector field Y ∈ V U . Since A(Y ) = 0, we have A(h) = kA(HX0(Y )); so, with (2.10)
we only have to prove that for any i ∈ {2, · · · , n} and w ∈ ϕ.w0, A(w)( ∂

∂xi
) = 0. But

A

(

∂

∂xi

)

= lim
ǫ→0

F (dπ(X + ǫ ∂
∂xi

)) − 1

ǫ
= lim

ǫ→0

F (dπ(X0 + ǫ ∂
∂xi

)) − F (dπ(X0))

ǫ

so that, for w ∈ ϕ.w0,

A(w)

(

∂

∂xi

)

= lim
ǫ→0

F (x, ξ + ǫ ∂
∂xi

)) − F (x, ξ)

ǫ
= D(x,ξ(w))F

(

∂

∂xi

)

,

where we see F as a real valued function on Ω×Rn ⊂ R2n with coordinates (x1, · · · , xn, ∂
∂x1

, · · · , ∂
∂xn

).

Now, in our chart, from the formula giving F , we clearly have ∂
∂xi

∈ kerDF for any i ∈ {2, · · · , n},
which proves that hXHΩ ⊂ kerA along ϕ.w0 ∩ U . This can be made for any point w0, so that
hXHΩ ⊂ kerA on HΩ.

(ii) Since A(X) = 1, to prove that A is invariant under the flow, we only have to prove that its
kernel is invariant, which from the first result is equivalent to proving that

pX([X, Y ]) = pX([X, h]) = 0

for any vertical and horizontal vector fields Y and h.

• Since [X, Y ] = −HX(Y ) + DX(Y ), we clearly have pX([X, Y ]) = 0.

• Now let w0 ∈ HΩ and consider the neighbourhood U of w0 that we have considered before,
with the same coordinates. Along ϕ.w0, we have pX = pX0

, hence

pX([X, h]) = pX0

(k[X0, h] − LhkX0) = kpX0

([X0, h]) − Lhk.
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But, in our chart, we also have Lhk = 0 along ϕ.w0: this can be seen directly or using equation
(2.11). Then, if h = HX(Y ) and h0 = HX0(Y ), we have, with (2.11),

pX0

([X0, h]) = pX0

([X0, kh0 +
1

2
(LX0k)Y ]) = kpX0

([X0, h0]) = 0

on ϕ.w0.

Finally, pX([X, h]) = 0 on ϕ.w0, and thus on HΩ.

2.3 Metrics on HM

Dynamical flows are usually studied on Riemannian manifolds, and most of the definitions or
theorems are stated in this context: the definition of an Anosov system or a Lyapunov exponent,
Oseledets’ theorem...
Moreover, the manifold is often compact: in this case, all Riemannian metrics, and more generally
all metrics defining the same topology, are equivalent; thus the choice of a specific metric is not
important. When the manifold is not compact anymore, this choice has some importance: the
behaviour of the flow has to be understood with respect to the chosen metric; it is not difficult to
see that we can change a stable vector into an unstable one by changing the asymptotics of the
metric.
In the case of geodesic flows on complete Riemannian open manifolds M , HM inherits a natural
Riemannian metric from the base metric. In our case, we define a Finsler metric F on HΩ, using
the decomposition THΩ = R.X ⊕ hXHΩ ⊕ V HΩ: if Z = aX + h + Y is some vector of THΩ, we
set

F (Z) =

(

|a|2 +
1

2

(

(F (dπh))2 + (F (dπJX(Y )))2
)

)1/2

. (2.12)

Since the last decomposition is only continuous in general, F is also only continuous. It allows us
to define the length of a C1 curve c : [0, 1] → HΩ as

l(c) =

∫ 1

0

F (ċ(t)) dt.

It induces a continuous metric d on HΩ: the distance between two points v, w ∈ HΩ is the minimal
length of a C1 curve joining v and w.

Remark that, if Ω ⊂ RP2, then F is actually a continuous Riemannian metric on HΩ. In any case,
it is obviously JX -invariant on hXHΩ ⊕ V HΩ.

Most of the theorems in hyperbolic dynamics are stated on a Riemannian manifold. But the
Riemannian metric is just a way of measuring length of vectors, so it is not a problem to work
with a Finsler metric instead. However, as in the definition of Lyapunov regular points in the next
chapter, determinants or angles are used, which are defined with respect to the Riemannian metric.
This difficulty can be overpassed here by remarking that, using John’s ellipsoid, it is always possible
to define a Riemannian metric ‖ . ‖ on HΩ which is bi-Lipschitz equivalent to F : for any Z ∈ THΩ

1√
n
‖Z‖ 6 F (Z) 6

√
n‖Z‖,
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where n is the dimension of Ω. Of course, there is no reason for this metric ‖ . ‖ to be even
continuous but it will not be important, as we will see later.

2.4 Stable and unstable manifolds

2.4.1 Parallel transport and action of the flow

We pick a tangent vector Z(w) ∈ TwHΩ. We want to study the behavior of the vector field
Z(ϕt(w)) = dϕt(Z(w)) defined along the orbit ϕ.w. Assume

Z(w) = Y (w) + h(w) ∈ VwHΩ ⊕ hX
w HΩ.

Since V HΩ⊕hXHΩ is invariant under the flow, we can write Z = Y +h. To find the expressions of
Y and h, we write that, since Z is invariant under the flow, the Lie bracket [X, Z] is 0 everywhere
on ϕ.w.
For that, let (h1, · · · , hn−1) be a basis of hXHΩ of DX -parallel vectors along ϕ.w, that is, ht

i =
hi(ϕ

t(w)) = T t(hi(w)), where T t denotes the parallel transport for DX and (hi(w))i is a basis of
hX

w HΩ. Since DX and vX commute, the family {Yi} = {vX(hi)} is a basis of V HΩ of DX -parallel
vectors along ϕ.w. We immediately have hi = HX(Yi) and

[X, Yi] = −hi; [X, hi] = −Yi. (2.13)

Indeed, since Yi is parallel,
[X, Yi] = DX(Yi) − HX(Yi) = −hi.

To see the second equality, we write

[X, hi] = pX
h ([X, hi]) + pX

v ([X, hi]) + pX([X, hi]).

But since hi is parallel, we have

pX
h ([X, hi]) = HX ◦ vX([X, hi]) = −HX ◦ vX([X, [X, Yi]]) = 2DX(hi) = 0,

and from the preceding proposition, pX([X, hi]) = 0; hence

[X, hi] = pX
v ([X, h]) = pX

v ([X, HX(Yi)]) = RX(Yi) = −Yi.

Then, in this basis, Z can be written as

Z =
∑

aihi + biYi,

where ai and bi are smooth real functions along ϕ.w, and the formulas (2.13) give

[X, Z] = 0 ⇐⇒
n−1
∑

i=1

(LXai − bi)hi + (LXbi − ai)Yi = 0

⇐⇒ bi = LXai; ai = LXbi, i = 1, · · · , n − 1

⇐⇒ bi = LXai; ai = L2
Xai, i = 1, · · · , n − 1.
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From that we get the solution

Z(ϕt(w)) = dϕt(Z(w)) =
∑

Aie
t(ht

i + Y t
i ) + Bie

−t(ht
i − Y t

i ), (2.14)

where

Ai =
1

2
(ai(w) + bi(w)), Bi =

1

2
(ai(w) − bi(w))

depend on the initial coordinates of Z at w.

It is then natural to define the distributions

Eu = {Y + JX(Y ), Y ∈ V HΩ}, Es = {Y − JX(Y ), Y ∈ V HΩ}.

Obviously, we have

Proposition 2.4.1. Eu and Es are invariant under the flow, and if Zs ∈ Es, Zu ∈ Eu, then

dϕt(Zu) = etT t(Zu), dϕt(Zs) = e−tT t(Zs).

The operator JX exhanges Eu and Es and

dϕtJX(Zs) = e2tJX(dϕtZs).

Proof. The first equalities come directly from equations (2.14). For the second one, it is just the
fact that JX commutes with the parallel transport:

dϕtJX(Zs) = etT tJX(Zs) = etJXT t(Zs) = e2tJX(dϕtZs).

The decomposition THΩ = R.X ⊕ Es ⊕ Eu will now be called the Anosov decomposition.

2.4.2 Stable and unstable manifolds

For w = (x, [ξ]) ∈ HΩ, let us denote by Hw = Hx+(x) the horosphere based at x+ = ϕ+∞(w) and
passing through x. The horosphere Hσw, where σ : (x, [ξ]) ∈ HΩ 7−→ (x, [−ξ]), is the horosphere
Hx−(x) the horosphere based at x− = ϕ−∞(w) and passing through x.

The stable and unstable manifolds at w0 = (x0, [ξ0]) ∈ HΩ are the C1 submanifolds of HΩ defined
as

W s(w0) = {w = (x, [xw+
0 ]) ∈ HΩ, x ∈ Hw},

Wu(w0) = {w = (x, [w−
0 x]) ∈ HΩ, x ∈ Hσw}.

We can check (see [7]) that

W s(w0) = {w ∈ HΩ, lim
t→+∞

dΩ(πϕt(w), πϕt(w0)) = 0} = {w ∈ HΩ, lim
t→+∞

d(ϕt(w), ϕt(w0)) = 0},

Wu(w0) = {w ∈ HΩ, lim
t→−∞

dΩ(πϕt(w), πϕt(w0)) = 0} = {w ∈ HΩ, lim
t→−∞

d(ϕt(w), ϕt(w0)) = 0}.

(Recall that π : HΩ −→ Ω denotes the bundle projection)
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x− x+

W s(x, ξ)

Wu(x, ξ)

x ξ

Figure 2.2: Stable and unstable manifolds

Proposition 2.4.2. The distributions Eu and Es are the tangent spaces to W s and Wu.

That will be a corollary of proposition 2.4.5. The image of a point w = (x, ξ) ∈ HΩ under the flow
is denoted by ϕt(w) = (xt, ξt), for t ∈ R. We first need a

Lemma 2.4.3. We have
|xtx

−|
|xtx+| = e2t |xx−|

|xx+| .

In particular the following asymptotic expansion holds:

|xtx
+| =

|xx+|2
m(w)

e−2t + O(e−4t).

Proof. We have dΩ(x, xt) = t, which implies

e2t =
|xx−|
|xx+|

|xtx
−|

|xtx+| ,

and yields the result.

Lemma 2.4.4. In a good chart at w = (x, [ξ]) there exists a constant C(w) such that, for any
Z(w) ∈ Es(w) ∪ Eu(w),

F (T tZ(w)) = C(w)(|xtx
+||xtx

−|)1/2

(

1

|xty
+
t | +

1

|xty
−
t |

)

,

where y+
t and y−

t denote the points of intersection of the line {x + λdπ(Z(w))}λ∈R with ∂Ω (see
figure 2.3).

Proof. Assume for example that Z(w) ∈ Eu(w). Then Z(w) = h(w)+JX(h(w)), for some horizontal
vector h(w). Let h denote the parallel transport of h(w), which is defined on the orbit ϕ.w. We
have T tZ = h + JX(h) on ϕ.w. In a good chart at w, lemma 2.1.6 gives

dπ(h) = (m(w)m)1/2 dπ(h0);
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xx− x+

y+

t

y−

t

xt

dπ(Z(w)) dπ(T̃ tZ(w))

Figure 2.3: Parallel transport on HΩ

in this case, since the chart is adapted, h0 is just the Euclidean parallel transport of h(w) along
ϕ.w. In particular, |dπ(h0)| = |dπ(h0(w))| = |dπ(h(w))|. Hence

F (T tZ(w)) = F (dπ(h(ϕtw))) =
|dπ(h(w))|m(w)

2
m(ϕt(w))1/2

(

1

|xty
+
t | +

1

|xty
−
t |

)

.

Proposition 2.4.5. Let Zs ∈ Es, Zu ∈ Eu. Then t 7−→ F (dϕtZs) is a strictly decreasing bijection
from R onto (0, +∞), and t 7−→ F (dϕtZu) is a strictly increasing bijection from R onto (0, +∞).

Proof. Choose a stable vector Zs(w) ∈ Es(w) and a chart adapted to w = (x, [ξ]). In that chart,
the vector dπ(T tZs(w)) is orthogonal to xtx

+ with respect to the Euclidean structure on the chart;
hence so are xty

+
t

and xty
−
t

. We have from lemma 2.4.1,

F (dϕtZs(w)) = e−tF (T tZs(w)).

Lemma 2.4.3 gives

|xtx
−| = e2t|xtx

+| |xx−|
|xx+| ,

hence from lemma 2.4.4, there is a constant C′(w) such that

F (dϕtZs(w)) = C′(w)

( |xtx
+|

|xty
+
t | +

|xtx
+|

|xty
−
t |

)

The strict convexity of Ω implies that the function h : t 7→ |xtx
+|

|xty
+
t |

+ |xtx
+|

|xty
−

t |
is strictly decreas-

ing on R, the C1 regularity of ∂Ω that limt→+∞ h(t) = 0 and the strict convexity of Ω that
limt→+∞ h(t) = +∞.

The same computation holds for t 7→ F (dϕ−t(Zu)) for Zu ∈ Eu.
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2.5 Uniform hyperbolicity of the geodesic flow

We want to consider now the geodesic flow ϕt of the Hilbert metric on the homogeneous bundle
HM of a quotient manifold M = Ω/Γ. The interesting part of the dynamics lies on the nonwan-
dering set N ⊂ HM of the flow. This is the closed ϕt-invariant set consisting of points w ∈ HM
such that for any neighbourhood V ⊂ HM of w, the set of t ∈ R such that ϕt(V ) ∩ V 6= ∅ is
unbounded, neither from above nor from below. Intuitively, this set consists of the points that
come back close to their original positions infinitely often. We can thus expect some interesting
dynamical properties on this set. On the contrary, a point w 6∈ N will after some time leave forever
to an unbounded part of the manifold.
Take for example a torus with a point removed, with a hyperbolic structure where the loop around
the point is represented by a hyperbolic element γ. This manifold can be decomposed into a com-
pact part, containing the “torus part” until the minimal geodesic c corresponding to γ, and an
unbounded part, that we can picture as a trumpet, whose base would be the minimal geodesic c.
Any geodesic entering the trumpet will never be able to come back into the compact part and will
leave to infinity in the trumpet. The nonwandering set consists of these points that never enter the
trumpet.

As can be expected, the nonwandering set is related to the limit set in the following way: if Ñ ⊂ HΩ
is the lift of N to HΩ under the covering map, then

Ñ = {w = (x, [ξ]), x+, x− ∈ ΛΓ}.
In particular, we have that Ñ ⊂ HC(ΛΓ), that is, the projection of N on M is contained in the
convex core of M .

All the things that were defined or proved on Ω in the last sections also make sense on the quotient
manifold M , by using the covering map. We will keep using the same notations on M and HM
since no confusion is possible. In particular, we still denote by X the second-order differential
equation generating the geodesic flow ϕt on HM .

The next theorem is due to Yves Benoist in [7], but our study sheds a different light on the problem.

Theorem 2.5.1. Assume M = Ω/Γ is compact. Then the geodesic flow ϕt is Anosov with invariant
decomposition

THM = R.X ⊕ Es ⊕ Eu;

that is, there exist constants C, α, β > 0 such that for any t > 0,

F (dϕt(Zs)) 6 Ce−αtF (Zs), Zs ∈ Es,

F (dϕ−t(Zu)) 6 Ce−βtF (Zu), Zu(w) ∈ Eu.

Proof. The argument we give here is Benoist’s final argument in [7]. Choose 0 < a < 1 and let

Es
1 = {Zs ∈ Es(w), F (Zs) = 1} ⊂ THM.

From lemma 2.4.5, for any Zs ∈ Es
1 , there is a unique time Ta(Zs) such that F (dϕt(Zs)) = a. That

defines a continuous function Ta : Es
1 → R. Since Es

1 is compact and t 7−→ F (dϕtZs) is strictly
decreasing to 0, this function is bounded by some ta > 0, such that

∀t > ta, ∀v ∈ Es
1 , F (dϕt(Zs)) 6 a.
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Thus we get, for t large enough and any Zs ∈ Es
1(w),

F (dϕt(Zs)) 6 aF (dϕt−ta(Zs)) 6 · · · 6 a[t/ta]F (dϕt−[t/ta]ta(Zs)) 6 Mae−αt,

with Ma = max{F (dϕt(Zs)), 0 6 t 6 ta, Zs ∈ Es
1} < +∞ and α = − log(a)/ta > 0.

That means that for any Zs ∈ Es,

F (dϕt(Zs)) 6 C2Mae−αtF (Zs).

In fact, one can prove that the same uniform property holds on the nonwandering set of a geomet-
rically finite surface. That is the following

Theorem 2.5.2. Let M = Ω/Γ be a geometrically finite surface. Then the geodesic flow ϕt is
uniformly hyperbolic on the nonwandering set N with invariant decomposition

THM = R.X ⊕ Es ⊕ Eu;

that is, there exist constants C, α, β > 0 such that for any t > 0,

F (dϕt(Zs)) 6 Ce−αtF (Zs), Zs ∈ Es,

F (dϕ−t(Zu)) 6 Ce−βtF (Zu), Zu ∈ Eu.

In this case, we have to understand the behaviour of the flow in a cusp. But we know that far
enough in the cusp, the geometry is almost hyperbolic, and we can hope the same for the flow.
This hope is realized by lemma 2.5.3.

Let P be a maximal parabolic subgroup of Γ fixing p ∈ ∂Ω. Recall proposition 1.3.5 and pick
a small horoball H based at p such that there exist hyperbolic metrics h and h

′ on the quotient
C = H/P that satisfy

1

C
h 6 h

′
6 F 6 h 6 Ch

′

for some C > 1.

Lemma 2.5.3. Let w ∈ HC and t > 0. If ϕs(w) ∈ HC for all s ∈ [0, t] then, for any stable vector
Z(w) ∈ Es(w), we have

F (dϕtZ(w)) 6 Ke−tF (Z(w)),

for some constant K > 0.

Proof. We are going to compare the geodesic flows of F and h on HC to prove the proposition.

Let Xh be the generator of the geodesic flow ϕt
h

of h on HC. We have

F = g−1
h, X = gXh,

for some C1 function g : HC −→ [1, C].

The tangent space THC can be decomposed in two ways, with respect to X or Xh:
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THM = R.X ⊕ V HC ⊕ hXHC = R.Xh ⊕ V HC ⊕ hXh

HC.

We have the endomorphism JX on V HC ⊕hXHC, that exhanges vertical and horizontal subspaces;
the same for JXh

on V HC ⊕ hXh

HC. We define the two metrics F and h on HC as in (2.12). F
is a continuous Finsler metric and h a smooth Riemannian metric, which is just the usual Sasaki
metric.
Stable and unstable distributions of X and Xh are given by

Eu = {Y + JX(Y ), Y ∈ V HM}, Es = {Y − JX(Y ), Y ∈ V HM};

Eu
h

= {Y + JXh

(Y ), Y ∈ V HM}, Es
h

= {Y − JXh

(Y ), Y ∈ V HM}.
Let Z(w) = h(w) − Y (w) ∈ Es(w) be a X-stable vector, and denote by Z = h − Y its parallel
transport along ϕ.w. Then

dϕtZ(w) = e−tZ(ϕtw).

Hence
F (dϕtZ(w)) = e−tF (Z(ϕt(w)) = e−tF (dπ(h(ϕtw))),

so we just have to understand the behaviour of F (dπ(h)) which is smaller than h(dπ(h)).

Denote by Zh(w) = hh(w) − Y (w) ∈ Es
h
(w) the Xh-stable vector whose vertical part is the same

than Z(w), and by Zh = hh − Y h its Xh-parallel transport along ϕ.w. Lemma 2.1.6 gives

h = −LY g Xh + (g(w)g)1/2 hh + g(w)g LXh(g−1) Y h. (2.15)

Lemma 2.5.4. There exists 0 6 θ < π/2 independant of w so that the angle (for h) between dπ(h)
and dπ(hh) is smaller than θ.

Proof. From remark 2.2.3, the space dπw(hXHM) is nothing else than the tangent space to the

unit ball of F in the direction [ξ], if w = (x, [ξ]). The inequality
1

C
h 6 F 6 h and the convexity

of the balls allows us to conclude. (Just make a picture: the unit ball of h is a sphere and the unit
ball of F is then between two spheres.)

As a consequence of this lemma, we have

F (dπ(h)) 6 h(dπ(h)) 6

√

1 + tan2 θ h(projdπ(hXhHM)dπ(h)),

where projdπ(hXhHM) denotes the h-orthogonal projection on dπ(hXh

HM). Equation (2.15) gives
that

projdπ(hXhHM)dπ(h) = (g(w)g)1/2 dπ(hh).

Thus, we get

F (dπ(h)) 6

√

1 + tan2 θ (g(w)g)1/2
h(dπ(hh)) 6 Kh(Zh) = Kh(Zh(w)),

where K = C
√

1 + tan2 θ; the last equality comes from the fact that Zh is parallel for Xh which is
the flow of a Riemannian metric: the parallel transport is then an isometry.



44 CHAPTER 2. DYNAMICS OF THE GEODESIC FLOW

We conclude, with the help of equation (2.15), that

h(Zh(w)) = h(dπ(hh(w))) = g−1(w)h(dπ(ghh(w)))

= g−1(w)h(projdπ(hXhHM)(dπ(h(w))))

6 g−1(w)h(dπ(h(w)))

= F (dπ(h(w)))

= F (Z(w)).

Finally,

F (dϕtZ(w)) 6 Ke−tF (Z(w)).

Proof of theorem 2.5.2. We can decompose N into a compact part N0 and a finite number of parts
Ci, 1 6 i 6 k, corresponding to the cusps. In the case where there are no cusps, the proof in the
compact case works. In the general case, from the proof in the compact case, we know there exist
0 < a 6 1 and D > 0, such that, for any w ∈ N such that ϕs(w) ∈ N0 for all s ∈ [0, t], and any
stable vector Z(w) ∈ Es(w),

F (dϕtZ(w)) 6 De−atF (Z(w)).

Lemma 2.5.3 tells us that the cusps can be chosen so that there exists K > 0 such that, for any
w ∈ N such that ϕs(w) stays in some Ci for all s ∈ [0, t], and any stable vector Z(w) ∈ Es(w)

F (dϕtZ(w)) 6 Ke−tF (Z(w)).

Thus, for any w ∈ N and any stable vector Z(w) ∈ Es(w), we have

F (dϕtZ(w)) 6 max{D, K}e−atF (Z(w)).



Chapter 3

Lyapunov exponents

We study Lyapunov exponents of the geodesic flow. We see that the parallel transport
contains all the information about them. Then we make a link between Lyapunov
exponents, Oseledets’ decomposition and the shape of the boundary. This link allows
to define in a very simple way the Lyapunov manifolds, which are tangent to the spaces
appearing in Oseledets’ filtration.

3.1 Lyapunov regular points

Let ϕ = (ϕt) be a C1 flow on a Riemannian manifold (W, ‖ . ‖). We want to describe the behaviour
of dϕt when t is large. For example, if W is compact and ϕ is an Anosov flow, then for any stable
vector Z, the function t 7→ ‖dϕtZ‖ is exponentially decreasing; on the contrary, if Z is an unstable
vector, then it is exponentially increasing.

With this example in mind, the first idea is thus for a given general flow to look for some stable
or unstable vectors, whose norm would decrease or increase exponentially fast. This behaviour is
captured by looking at the limit

lim
t→+∞

1

t
log ‖dϕt(Z)‖ = χ(Z).

This limit does not exist in general but we can always look at the inferior and superior limits if
needed. If it exists, then for any ǫ > 0, there exists some Cǫ > 0 such that, whenever t > 0,

C−1
ǫ e(χ(Z)−ǫ)t

6 ‖dϕt(Z)‖ 6 Cǫe
(χ(Z)+ǫ)t.

More generally, call χ(Z) and χ(Z) the superior and inferior limits. Then for any ǫ > 0, there exists
some Cǫ > 0 such that, whenever t > 0,

C−1
ǫ e(χ(Z)−ǫ)t

6 ‖dϕt(Z)‖ 6 Cǫe
(χ(Z)+ǫ)t.

The numbers χ(Z) and χ(Z) are called the upper and lower forward Lyapunov exponents of Z.
When χ(Z) > 0 or χ(Z) < 0, that means that ‖dϕtZ‖ has exponential behaviour.

Let us state clearly the definitions.

45
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Definitions 3.1.1. Let ϕ = (ϕt) be a C1 flow on a Riemannian manifold (W, ‖ . ‖). The forward
and backward upper Lyapunov exponents χ+(Z) and χ−(Z) of a vector Z ∈ TW are defined by

χ±(Z) = lim sup
t→±∞

1

t
log ‖dϕt(Z)‖.

The forward and backward lower Lyapunov exponents χ
+
(Z) and χ

−
(Z) of a vector Z ∈ TW are

defined by

χ
±

(Z) = lim inf
t→±∞

1

t
log ‖dϕt(Z)‖.

It is not difficult to see that these numbers can take only a finite number of values when Z varies
in TwW for a given w ∈ W . Namely there exists a filtration

{0} = F0(w)  F1(w)  · · ·  Fp(w) = TwW

and real numbers
χ1,+(w) < · · · < χp,+(w),

such that, for any vector Zi ∈ Fi(w) r Fi−1(w), 1 6 i 6 p,

lim sup
t→+∞

1

t
log ‖dϕt(Zi)‖ = χi,+(w).

The same occurs for backward and lower Lyapunov exponents.

We will be interested in the case where all these numbers coincide:

Definitions 3.1.2. Let ϕ = (ϕt) be a C1 flow on a Riemannian manifold W . A point w ∈ W is
said to be regular if there exist a ϕt-invariant decomposition

TW = E1 ⊕ · · · ⊕ Ep

along ϕ.w and real numbers
χ1(w) < · · · < χp(w),

such that, for any vector Zi ∈ Ei r {0},

lim
t→±∞

1

t
log ‖dϕt(Zi)‖ = χi(w), (3.1)

and

lim
t→±∞

1

t
log | det dϕt| =

p
∑

i=1

dimEi χi(w). (3.2)

The point w is said to be forward or backward regular if this behaviour occurs only when t goes
respectively to +∞ or −∞.

The numbers χi(w) associated to a regular point w are called the Lyapunov exponents of the flow
at w. Let F+

i = ⊕i
k=1Ei for 1 6 i 6 p. Then

{0} = F+
0  F+

1  · · ·  F+
p = TW
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is a ϕt-invariant filtration of TW along ϕ.w such that, for any vector Zi ∈ F+
i r F+

i−1, 1 6 i 6 p,

lim
t→+∞

1

t
log ‖dϕt(Zi)‖ = χi.

Similarly, if F−
i = ⊕p

k=iEi for 1 6 i 6 p then

TW = F−
1 ! · · · ! F−

p ! F−
p+1 = {0}

is a ϕt-invariant filtration of TW along ϕ.w such that, for any vector Zi ∈ F−
i r F−

i+1, 1 6 i 6 p,

lim
t→−∞

1

t
log ‖dϕt(Zi)‖ = χi.

We will call the decomposition

TW = E1 ⊕ · · · ⊕ Ep

and the filtrations

F+
1  · · ·  F+

p , F−
1 ! · · · ! F−

p ,

the Lyapunov or Oseledets decomposition and filtrations.

In our case, we do not have a smooth Riemannian metric on HΩ as in the last definition; instead,
we have a (noncontinuous) Riemannian metric ‖ . ‖ and a continuous Finsler metric F which are
bi-Lipschitz equivalent. Then equation (3.1) will be replaced by

lim
t→±∞

1

t
log F (dϕt(Zi)) = χi(w). (3.3)

In equation (3.2), the quantity | det dϕt| represents the effect of the flow on the Riemannian volume
vol: if A is some Borel subset of TwW ≃ Rn with non-zero volume, then

| det dwϕt| =
volϕt(w)(dϕtA)

volw(A)
.

When we deal with the geodesic flow of some Riemannian manifold M , this volume is preserved pro-
vided we chose the usual Riemannian metric on HM , inherited from the basis, whose volume is just
the Liouville measure. Here, | det dwϕt| has to be understood with respect to the (noncontinuous)
Riemannian metric ‖ . ‖ or as

volϕt(w)(dϕtB(w, 1)),

where vol denotes the Busemann volume of F and B(w, 1) is the F -unit ball in TwHΩ. We recall
that the Busemann volume of F is the volume form such that volw(B(w, 1)) = 1. In what follows,
we will still use the notation det.
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3.2 Lyapunov exponents in Hilbert geometry

3.2.1 Lyapunov exponents and Oseledets decomposition

A regular point w ∈ HΩ has always 0 as Lyapunov exponent since F (X) = 1. We will say that w
has no zero Lyapunov exponent if X is the only vector to have non exponential behaviour; that is,
the subspace E0 corresponding to the exponent 0 along ϕ.w has dimension 1.

Proposition 2.4.5 implies that if w is a regular point, then χ(Zs) 6 0 and χ(Zu) > 0 for any
Zs ∈ Es(w), Zu ∈ Eu(w). Furthermore, if Zs ∈ Es(w), then Zu = JXZs ∈ Eu(w) and proposition
2.4.1 gives

F (Zs) = e−2tF (Zu),

so that

χ(Zu) = 2 + χ(Zs).

Now, choose a tangent vector Z at a regular point w whose Lyapunov exponent is 0. Z can be
written as Z = aX + Zu + Zs for some a ∈ R, Zs ∈ Es, Zu ∈ Eu. Since

lim
t→±∞

1

t
log F (dϕt(Z)) = 0,

we conclude that χ(Zu) = χ(Zs) = 0. Thus, the subspace E0 corresponding to the exponent 0 can
be decomposed as

E0 = R.X ⊕ E− ⊕ E+,

where E− ⊂ Es, E+ ⊂ Eu.

At a regular point, the Oseledets decomposition can thus be written in the following way:

THΩ = Es
0 ⊕ (⊕p

i=1E
s
i ) ⊕ Es

p+1 ⊕ R.X ⊕ Eu
0 ⊕ (⊕p

i=1E
u
i ) ⊕ Eu

p+1, (3.4)

with the relations

Es
i = JX(Eu

i ), 0 6 i 6 p.

The subspaces Es
0 and Eu

0 , or Es
p+1 and Es

p+1, might be {0}; w has no zero Lyapunov exponent if
and only if all of them are actually {0}. The corresponding Lyapunov exponents are

−2 = χ−
0 < χ−

1 < · · · < χ−
p < χ−

p+1 = 0 = χ+
0 < χ+

1 < · · · < χ+
p < χ+

p+1 = 2,

with

χ+
i = χ−

i + 2, 0 6 i 6 p.

If w has no zero Lyapunov exponent then all the Lyapunov exponents at w are strictly between −2
and 2. That will be the case in most of our applications.

We can simplify a bit this exposition by going down to the base manifold Ω. Indeed, we see that
some informations, namely those given by stable and unstable parts, are redundant and we can get
rid of that.
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Choose Zu
i ∈ Eu

i corresponding to the Lyapunov exponent χ+
i . Then, from proposition 2.4.1,

dϕt(Zu
i ) = etT t(Zu

i ), hence

χ+
i = lim

t→±∞

1

t
log F (dϕt(Zu

i )) = 1 + lim
t→±∞

1

t
log F (T t(Zu

i )).

For the corresponding stable vector Zs
i = JX(Zu

i ), we have dϕt(Zs
i ) = e−tT t(Zs

i ) so that

χ−
i = −1+ lim

t→±∞

1

t
log F (T t(Zs

i )) = −1+ lim
t→±∞

1

t
log F (T t(JX(Zu

i ))) = −1+ lim
t→±∞

1

t
log F (T t(Zu

i )),

because JX commutes with T t and F is JX -invariant. The Lyapunov exponents of the parallel
transport are defined as

ηi := lim
t→∞

1

t
log F (T t(Zu

i )) = lim
t→∞

1

t
log F (T t(Zs

i )), 0 6 i 6 p + 1,

and the corresponding Oseledets decomposition is given by

THΩ = R.X ⊕
(

⊕p+1
i=0 (Es

i ⊕ Eu
i )
)

.

The Lyapunov exponents are then given by

χ+
i = 1 + ηi, χ−

i = −1 + ηi. (3.5)

3.2.2 Parallel transport on Ω

To eliminate the redundance of stable and unstable parts, we can define the parallel transport di-
rectly on Ω. Take a point x ∈ Ω and choose a geodesic x(t) = π ◦ ϕt(x, [ξ]) leaving in the direction
[ξ]. If v ∈ TxΩ, we define its parallel transport T t

(x,[ξ])v along this geodesic as dπ(T th(v)) where

h(v) is the only vector in R.X(x, [ξ]) ⊕ hX
(x,[ξ])HΩ such that dπ(h(v)) = v.

Remark that, if w = (x, [ξ]) ∈ HΩ is regular, then

⊕p+1
i=0 (Es

i ⊕ Eu
i ) = Es ⊕ Eu = hXHΩ ⊕ V HΩ,

and the projection of this subspace on TΩ is TxHw. We have

dπ(T tZ(w)) = T t
wdπ(Z(w)),

for any vector Z(w) ∈ TwHΩ. Furthermore,

dπ(Es
i ⊕ Eu

i ) = dπ(Es
i ) = dπ(Eu

i ),

and the Oseledets decomposition at w thus induces a decomposition of TxHw, which we call the
Oseledets decomposition at x of the parallel transport along the geodesic ϕ.w, or in the direction
[ξ].
The parallel Lyapunov exponent of v ∈ TxΩ along ϕ.(x, [ξ]), or in the direction [ξ], if it exists, is
given by

η((x, [ξ]), v) = lim
t→+∞

1

t
log F (T t(v)).
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These exponents are related to those of the parallel transport on HΩ by

η(w, Z(w)) = η(w, dπ(Z(w))), Z(w) ∈ TwHΩ.

We can in the same way define upper, lower, forward and backward parallel Lyapunov exponents.

We then have the following description of regular points:

Proposition 3.2.1. A point w = (x, [ξ]) ∈ HΩ is regular if and only if there exist a decomposition

TxΩ = R.ξ ⊕ E0(w) ⊕ (⊕p
i=1Ei(w)) ⊕ Ep+1(w),

with possibly E0(w) = {0} or Ep+1(w) = {0}, and numbers

−1 = η0(w) < η1(w) < · · · < ηp(w) < ηp+1(w) = 1

such that, for any vi ∈ Ei r {0},

lim
t→±∞

1

t
log F (T t

w(vi)) = ηi(w),

and

lim
t→±∞

1

t
log | detT t

w| =

p+1
∑

i=0

ηi(w) dim Ei(w) := η(w).

Now if Zs and Zu are any stable and unstable vectors in TwHΩ, their Lyapunov exponents are
given by

χ(Zs) = −1 + η(w, dπ(Zs)), χ(Zu) = 1 + η(w, dπ(Zu)).

Obviously, the same can be done on a quotient manifold M = Ω/Γ, where we now have a parallel
transport T t along geodesics. This parallel transport is really different from the Riemannian one,
even if they coincide when the metric is actually Riemannian. Here it is only possible to transport
vectors along geodesics, and this transport is not an isometry for the Finsler metric F . In particular,
if we transport a vector along a closed geodesic, then, after one loop, the transported vector will
not necessarily coincide with the original one. This remark will be useful later in section 5.3.

3.2.3 The flip map

We already understood the symmetry that exists between stable and unstable distributions of the
flow, which is a consequence of the fact it is a geodesic flow. We now investigate another symmetry,
that exists thanks to the reversibility of the Finsler metric we are considering. The flip map is the
C∞ involutive diffeomorphism σ defined by

σ : HΩ −→ HΩ
w = (x, [ξ]) 7−→ (x, [−ξ]).

The reversiblity of the metric implies that σ conjugates the flows ϕt and ϕ−t:

ϕ−t = σ ◦ ϕt ◦ σ.
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We say that a subset A of HΩ is symmetric if it is σ-invariant, that is, σ(A) = A. A function
f : HΩ → R is symmetric (resp. antisymmetric) if f ◦ σ = f (resp. f ◦ σ = −f).

The main results about the flip map are summarized in the following lemma. The last point is the
key argument for proving theorems 5.3.3 and 5.3.6.

Lemma 3.2.2. Let Ω be a strictly convex proper open set Ω ⊂ RPn with C1 boundary. Then

(i) The differential dσ anticommutes with JX and preserves the decomposition THΩ = R.X ⊕
hXHΩ ⊕ V HΩ; σ is an F -isometry and exchanges the stable and unstable foliations.

(ii) The set Λ of regular points is a symmetric set and dσ preserves the Osedelets decomposition
(3.4) by sending Es

i (w) to Eu
i (σ(w)), for any w ∈ Λ, 0 6 i 6 p + 1.

(iii) The function η : Λ −→ R is antisymmetric.

Proof. (i) Clearly, dσ(X) = −X and dσ preserves V HΩ. Now, just recall how vX is defined: for
any Y ∈ V HΩ, we have vX(X) = vX(Y ) = 0, and vX([X, Y ]) = −Y , so

dσvX(X) = vX(dσ(X)) = 0 = dσvX(Y ) = vX(dσ(Y )),

and

vXdσ([X, Y ]) = vX([dσ(X), dσ(Y )]) = vX([−X, dσ(Y )] = dσ(Y ) = −dσvX([X, Y ]).

So dσ ◦ vX = −vX ◦ dσ. As for HX (see section 2.1.4):

dσHX(Y ) = dσ(−[X, Y ] − 1

2
vX [X, [X, Y ]]) = −[dσ(X), dσ(Y )] +

1

2
vX [dσ(X), [dσ(X), dσ(Y )]]

= [X, dσ(Y )] +
1

2
vX [X, [X, dσ(Y )]]

= −HX(dσ(Y )).

Finally, we get that dσ and JX anticommute, which implies the σ-invariance of F . It also gives
that, if Z = Y + JX(Y ) ∈ Eu, then dσ(Z) = dσ(Y ) − JXdσ(Y ) ∈ Es, hence dσ(Eu) = Es, and
conversely; so σ exchanges stable and unstable foliations.

(ii) If w ∈ Λ, then from the very definition 3.1.2 of a regular point,

lim
t→+∞

1

t
log F (dwϕ−t(Z)) = − lim

t→+∞

1

t
log F (dwϕt(Z)) = −χ(w, Z),

for Z ∈ TwHΩ. Since ϕ−t = σ ◦ ϕt ◦ σ, we thus have

−χ(w, Z) = lim
t→+∞

1

t
log F (dwϕ−t(Z)) = lim

t→+∞

1

t
log F (dσ(w)ϕ

t(dwσ(Z))) = χ(σ(w), dwσ(Z)),

which proves that σ(w) is also regular, hence Λ is symmetric. We also get the decomposition

Tσ(w)HΩ = R.X(σ(w)) ⊕
(

p+1
⊕

i=0

(Es
i (σ(w)) ⊕ Eu

i (σ(w)))

)
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with
Es

i (σ(w)) = dσ(Eu
i (w)), Eu

i (σ(w)) = dσ(Es
i (w)).

(iii) We then have
χ+

i (σ(w)) = −χ−
p+1−i(w), (3.6)

that is (recall (3.5)),
1 + ηi(σ(w)) = −(−1 + ηp+1−i(w)).

This implies
ηi(σ(w)) = −ηp+1−i(w),

and

η(σ(w)) =

p
∑

i=1

dim Ei(σ(w)) ηi(σ(w)) = −η(w).

3.3 Oseledets’ theorem

The essential result about regular points is the following theorem of Oseledets:

Theorem 3.3.1 (Osedelets’ ergodic multiplicative theorem, [58]). Let ϕ = (ϕt) be a C1 flow on a
Riemannian manifold (W, ‖ . ‖) and µ a ϕt-invariant probability measure. If

d

dt
|t=0 log ‖dϕ±t‖ ∈ L1(W, µ), (3.7)

then the set Λ of regular points has full measure.

Assumption (3.7) means that the flow does not expand or contract locally too fast. This essentially
allows us to use Birkhoff’s ergodic theorem to prove the theorem.
This condition is always satisfied on a compact manifold, since the functions in (3.7) are actually
bounded. Thus, on a compact manifold, the set of regular points has full measure for any invariant
probability measure.

If m is a finite measure on a nonnecessarily compact manifold, then it is sufficient to prove such a
condition of boundedness. That is what is done by the next lemma for our geodesic flow. Remark
that in this case, we do not have C1 metrics, so condition (3.7) has to be replaced by

lim sup
t→0

1

t
log ‖dϕt‖, lim inf

t→0

1

t
log ‖dϕt‖ ∈ L1(W, µ).

Lemma 3.3.2. Let Ω ⊂ RPn be a strictly convex proper open set with C1 boundary. For any
Zs ∈ Es, Zu ∈ Eu,

−2 6 lim inf
t→0

1

t
log F (dϕtZs) 6 lim sup

t→0

1

t
log F (dϕtZs) 6 0

and

0 6 lim inf
t→0

1

t
log F (dϕtZu) 6 lim sup

t→0

1

t
log F (dϕtZu) 6 2.
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In particular, for any t ∈ R and Z ∈ THΩ,

e−2|t|F (Z) 6 F (dϕt(Z)) 6 e2|t|F (Z).

This lemma clearly implies the already known fact (coming from proposition 2.4.5) that Lyapunov
exponents at a regular point are all between −2 and 2. But it is more precise: it gives that the
rate of expansion/contraction is at any time between −2 and 2, not only asymptotically, and that
is what is essential to apply Oseledets’ theorem.

Proof. It is a direct corollary of proposition 2.4.5: we know that t 7→ F (dϕtZs) is decreasing, hence

lim sup
t→0

1

t
log F (dϕtZs) 6 0.

But we also know from proposition 2.4.1 that

F (dϕtZs) = e−2tF (dϕtJX(Zs)).

Since JX(Zs) ∈ Eu, proposition 2.4.5 tells us that t 7→ F (dϕtJX(Zs)) is increasing, hence

lim inf
t→0

1

t
log F (dϕtJX(Zs)) > 0

and

lim inf
t→0

1

t
log F (dϕtZs) > −2.

Using JX , we get the second inequality, and by integrating, we get the last one.

3.4 Lyapunov structure of the boundary

In this part, we give a link between Lyapunov exponents and the shape of the boundary at the
endpoint of a regular orbit.

3.4.1 Motivation

We first give the idea in dimension 2. Let w ∈ Ω be a regular point and choose a vector v tangent
to Hw, with parallel Lyapunov exponent η. In a good chart at w, lemma 2.4.4 gives

F (T tv) = C(w)(|xtx
+||xtx

−|)1/2

(

1

|xty
+
t | +

1

|xty
−
t |

)

.

Assume that |xty
−
t | ≍ |xty

+
t |. Then

lim
t→+∞

1

t
log

F (T tv)

|xtx+|1/2
= − lim

t→+∞

1

t
log |xty

+
t |,

hence, dividing by log |xtx
+|1/2,

lim
t→+∞

log F (T t)

log |xtx+|1/2
− 1 = − lim

t→+∞

log |xty
+
t |

log |xtx+|1/2
.
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Since |xtx
+| ≍ e−2t, that yields

lim
t→+∞

log |xty
+
t |

log |xtx+| =
1 + η

2
.

Let f : Tx+∂Ω −→ Rn be the graph of ∂Ω at x+, so that |xtx
+| = f(|xty

+
t |). We thus obtain

lim
s→0

log f(s)

log s
=

2

1 + η
,

that is, for any ǫ > 0, there exists C > 0 such that

C−1s
2

1+η
+ǫ

6 f(s) 6 Cs
2

1+η
−ǫ. (3.8)

This link was first established in [25] for divisible convex sets, where the condition |xty
−
t | ≍ |xty

+
t |

is always satisfied. In order to generalize it, we must introduce new definitions. It may be a bit
fastidious so you could prefer going directly to proposition 3.4.9, and have a look to the part in
between when it is needed.

3.4.2 Locally convex submanifolds of RPn

Definition 3.4.1. A codimension 1 C0 submanifold N of Rn is locally (strictly) convex if for
any x ∈ N , there is a neighbourhood Vx of x in Rn such that Vx r N consists of two connected
components, one of them being (strictly) convex.

A codimension 1 C0 submanifold N of RPn is locally (strictly) convex if its trace in any affine
chart is locally (strictly) convex.

Obviously, to check if N ⊂ RPn is convex around x, it is enough to look at the trace of N in one
affine chart at x. Choose a point x ∈ N in a locally convex submanifold N and an affine chart
centered at x. We can find a tangent space Tx of N at x such that Vx ∩ N is entirely contained in
one of the closed half-spaces defined by Tx. We can then endow the chart with a suitable Euclidean
structure, so that, around x, N appears as the graph of a convex function f : U ⊂ Tx −→ [0, +∞)
defined on an open neighbourhood U of 0 ∈ Tx. This function is (at least) as regular as N , is
positive, f(0) = 0 and f ′(0) = 0 if N is C1 at x. When N is strictly locally convex, then f is
strictly convex, in particular f(v) > 0 for v 6= 0.

In what follows, we are interested in the shape of the boundary ∂Ω of Ω at some specific point,
or, more generally, in the local shape of locally strictly convex C1 submanifolds of RPn. De-
note by Cvx(n) the set of strictly convex C1 functions f : B = B(0, 1) ⊂ Rn −→ R such that
f(0) = f ′(0) = 0, where B denotes the closed unit ball in Rn. We look for properties of such
functions which are invariant by projective transformations.

3.4.3 Approximate α-regularity

We introduce here the main notion of approximate α-regularity, describe its meaning and prove
some useful lemmas.
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Definitions 3.4.2. A function f ∈ Cvx(1) is said to be approximately α-regular, α ∈ [1, +∞],
if

lim
t→0

log
f(t) + f(−t)

2
log |t| = α.

This property is clearly invariant by affine transformations, and in particular by change of Euclidean
structure. It is in fact invariant by projective ones, but we do not need to prove it directly, since it
will be a consequence of proposition 3.4.9.
Obviously, the function t ∈ R 7→ |t|α, α > 1 is approximately α-regular. To be α-regular, with
1 < α < +∞, means that we roughly behave like t 7→ |t|α.
The case α = ∞ is a particular one: f is ∞-regular means that for any α > 1, f(t) ≪ |t|α for

small |t|. An easy example of such a function is provided by f : t 7−→ e−1/t2 . On the other side,
f is 1-regular means that for any α > 1, f(t) ≫ |t|α. An example of function which is 1-regular is
provided by the Legendre transform of the last one.

In the case where 1 < α < +∞, we can state the following equivalent definitions. The proof is
straightforward.

Lemma 3.4.3. Let f ∈ Cvx(1) and 1 < α < +∞. The following propositions are equivalent:

• f is approximately α-regular;

• for any ǫ > 0 and small |t|,

|t|α+ǫ
6

f(t) + f(−t)

2
6 |t|α−ǫ;

• the function t 7−→ f(t) + f(−t)

2
is Cα−ǫ and α + ǫ-convex at 0 for any ǫ > 0.

To understand the last proposition, we recall the following

Definitions 3.4.4. Let α, β > 1 We say that a function f ∈ Cvx(n) is

• Cα if for small |t|, t ∈ Rn, there is some C > 0 such that

f(t) 6 C|t|α;

• β-convex if for small |t|, t ∈ Rn, there is some C > 0 such that

f(t) > C|t|β .

We now give another equivalent definition of approximate regularity, that shows the relation with
the motivation above. Proposition 3.4.9 is the most important consequence of it.

Let f ∈ Cvx(1). Denote by f+ = f−1
|[0,1]

and f− = −f−1
|[−1,0]

. These functions are both nonnegative, in-

creasing and concave and their value at 0 is 0; they are C1 on (0, 1] and their tangent at 0 is vertical.
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The harmonic mean of two numbers a, b > 0 is defined as

H(a, b) =
2

a−1 + b−1
.

The harmonic mean of two functions f, g : X → (0, +∞) defined on the same set X is the function
H(f, g) defined for x ∈ X by

H(f, g)(x) = H(f(x), g(x)) =
2

1
f(x) + 1

g(x)

.

Proposition 3.4.5. A function f ∈ Cvx(1) is approximately α-regular, α ∈ [1, +∞] if and only if

lim
t→0+

log H(f+, f−)(t)

log t
= α−1,

with the convention that 1
+∞ = 0.

Proof. As we will see, it is enough to take f continuous, so by replacing f+ and f− by min(f+, f−)
and max(f+, f−), we can assume that f+ 6 f−, that is f(t) > f(−t) for t > 0. Now, assuming
that the limit exists,

lim
t→0+

log H(f+, f−)(t)

log t
= − lim

t→0+

log

(

1

f+(t)
+

1

f−(t)

)

log t
= lim

t→0+

log f+(t)

log t
− lim

t→0+

log

(

1 +
f+(t)

f−(t)

)

log t
.

Since f+ 6 f−, the second limit is 0, and the first one is

lim
t→0+

log f+(t)

log t
= lim

u→0+

log u

log f(u)
.

But, since f(u) > f(−u) for u > 0, we get

lim
u→0+

log u

log f(u)+f(−u)
2

= lim
u→0+

log u

log f(u) + log
(

1 + f(−u)
f(u)

) = lim
u→0+

log u

log f(u)
,

hence the result.

The last construction can be generalized in a way that will be useful later, for proving proposition
3.4.9. Let f ∈ Cvx(1) and pick a > 0. We define two new “inverse functions” f+

a (s) and f−
a (s) for

s ∈ [0, ǫ], ǫ > 0 small enough, depending on a; these are positive functions defined by the equations

f(f+
a (s)) = s − sf+

a (s); f(−f−
a (s)) = s + sf−

a (s).

Geometrically, for s ∈ [0, ǫ] on the vertical axis, the line (as) cuts the graph of f at two points a+

and a−, with s between a+ and a−; f+
a (s) and f−

a (s) are the abscissae of a+ and a− (c.f. figure
3.4.3). f+ and f− can be considered as f+

+∞ and f−
+∞.
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0

a−

a+

a

s

f+
a

(s)f−

a
(s)

f(t)

t

Figure 3.1: Construction of new inverses

Lemma 3.4.6. Let f ∈ Cvx(1) and a > 0. The functions
f+

a

f+
and

f−
a

f−
can be extended by continuity

at 0 by
f+

a

f+
(0) =

f−
a

f−
(0) = 1.

In particular, for s > 0 small enough,

f+(s) ≍ f+
a (s), f−(s) ≍ f−

a (s).

Proof. We prove it for f+ and f+
a . Clearly, we have

f+
a (s)

f+(s) 6 1. Since f is convex and f(0) = 0, we
get

s − sf+
a (s) = f(f+

a (s)) = f

(

f+
a (s)

f+(s)
f+(s)

)

6
f+

a (s)

f+(s)
f(f+(s)) =

f+
a (s)

f+(s)
s.

Hence, for 0 < s 6 ǫ < 1
f+

a (s)

f+(s)
> 1 − f+

a (s) > 1 − f+
a (ǫ).

The function
f+

a

f+
can even be extended at 0 by

f+
a

f+
(0) = 1

The result to remember is the following consequence of lemmas 3.4.6 and 3.4.5:

Corollary 3.4.7. Pick a > 0. A function f ∈ Cvx(1) is approximately α-regular if and only if

lim
t→0+

log H(f+
a , f−

a )(t)

log t
= α−1.
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We end this section by extending the definitions in higher dimensions:

Definitions 3.4.8. A function f ∈ Cvx(n) is said to be Lyapunov-regular at x if it is approx-
imately regular in any direction, that is, for any v ∈ Rn r {0}, there exists α(v) ∈ [1,∞] such
that

lim
t→0

log
f(tv) + f(−tv)

2
log |t| = α(v).

Let f ∈ Cvx(n) . The upper and lower Lyapunov exponents α(v) and α(v) of v ∈ Rn are defined by

α(v) = lim sup
t→0

log
f(tv) + f(−tv)

2
log |t| ,

α(v) = lim inf
t→0

log
f(tv) + f(−tv)

2
log |t| .

The function is then Lyapunov-regular if and only if the preceding limits are indeed limits in
[1, +∞], that is, for any v ∈ Rn, α(v) = α(v). Obviously, lemma 3.4.5 and corollary 3.4.7 have
their counterpart in higher dimensions.

3.4.4 Lyapunov-regularity of the boundary

If Ω is a bounded convex set in the Euclidean space Rn with C1 boundary, the graph of ∂Ω at x is
the function

f : U ⊂ Tx∂Ω −→ Rn

u 7−→ {u + λn(x)}λ∈R ∩ ∂Ω,

where n(x) denotes a normal vector to ∂Ω at x, and U is a sufficiently small open neighbourhood
of x ∈ ∂Ω for the function to be defined.
The following innocent-like proposition, whose proof is now straightforward, allows us to understand
a lot about the asymptotic dynamics of the flow. Also, it gives an important tool for intuition.

Proposition 3.4.9. Let Ω be a strictly convex proper open set of RPn with C1 boundary. Pick
x+ ∈ ∂Ω, choose any affine chart containing x+ and a Euclidean metric on it.
Then for any v ∈ Tx+∂Ω, any w ∈ HΩ ending at x+, we have

η+(w, v(w)) =
2

α(x+, v)
− 1, η

+
(w, v(w)) =

2

α(x+, v)
− 1,

where v(w) is any vector in TxHw ∩ (R.v ⊕R.ξ) ⊂ Rn and α(x+, v) and α(x+, v) are the lower and
upper Lyapunov exponents of ∂Ω at x+ in the direction v, as defined at the very end of the last
section.

Proof. Let w = (x, [ξ]) be a point ending at x+, and (xt, [ξt]) = ϕt(x, [ξ]) its image by ϕt. The
vector T tv(w) is at any time contained in the plane generated by ξ and v, thus, by working in
restriction to this plane, we can assume that n = 2.
We cannot choose a good chart at w, since the chart is already fixed. But, by affine invariance,
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x+

y+

t

y−

t

xt

x−

T tv(w)

ξt

av

Figure 3.2: For proposition 3.4.9

we can choose the Euclidean metric | . | and ξt so that ξ⊥Tx+∂Ω = R.v and |v| = |ξt| = 1. Let a
be the point of intersection of Tx+∂Ω and Tx−∂Ω. The vector T tv(w) always points to a, that is,
T tv(w) ∈ R.xta. Thus,

F (T tv(w)) =
|T tv(w)|

2

(

1

|xty
+
t | +

1

|xty
−
t |

)

,

where y+
t and y−

t are the intersection points of (axt) and ∂Ω. If f : U ⊂ Tx+∂Ω −→ R denotes the
function whose graph is a neighbourhood of x+ in ∂Ω, then

1

2

(

1

|xty
+
t | +

1

|xty
−
t |

)

=
1

H(f+
a , f−

a )(|xtx+|) ,

where f+
a and f−

a are defined as in corollary 3.4.7. This corollary tells us that

lim sup
t→+∞

1

t
log

1

H(f+
a , f−

a )(|xtx+|) = lim sup
t→+∞

− log |xtx
+|

t

log H(f+
a , f−

a )(|xtx
+|)

log |xtx+|

= lim sup
t→+∞

− log |xtx
+|

t
lim sup

s→0

log H(f+
a , f−

a )(s)

log s

=
2

α(x+, v)

(recall that |xtx
+| ≍ e−2t). Hence

lim sup
t→+∞

1

t
log F (T tv(w)) =

2

α(x+, v)
+ lim sup

t→+∞

1

t
log |T tv(w)|.
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From our choice of Euclidean metric, we have |T tv(w)| ≍ 〈T tv(w), v〉. Lemma 2.1.6 gives

T tv(w) = −LY m(ϕtw)ξt + (m(w)m(ϕtw))1/2dπ(JXe

(Y )),

where Y ∈ V HΩ is such that dπ(JX(Y )) = v(w); dπ(JXe

(Y )) is collinear to v and has constant
Euclidean norm, which implies that

〈T tv(w), v〉 = (m(w)m(ϕtw))1/2 ≍ e−t.

Hence

η+(w, v(w)) = lim sup
t→+∞

1

t
F (T tv(w)) =

2

α(x+, v)
− 1.

Obviously, the same holds for lower and backward exponents.

The last proposition tells us that the notions of Lyapunov regularity and exponents are projectively
invariant, that is, it makes sense for codimension 1 submanifolds of RPn. It also implies the following

Corollary 3.4.10. Let f ∈ Cvx(n). Then the numbers α(v), v ∈ Rn r {0}, can take only a finite
numbers of values +∞ > α1 > · · · > αp > 1, 1 6 p 6 n. The same holds for α. Moreover, the
following propositions are equivalent:

• f is Lyapunov-regular;

• there exist a decomposition Rn = ⊕p
i=1Gi and numbers +∞ > α1 > · · · > αp > 1 such that

the restriction f |Gi∩B(0,1) is Lyapunov-regular with exponent αi;

• there exist a filtration
{0} = H0  H1  · · ·  Hp = Rn

and numbers +∞ > α1 > · · · > αp > 1 such that, for any vi ∈ Hi r Hi−1, the restriction
f |R.vi∩B(0,1) is Lyapunov-regular with exponent αi.

When f is Lyapunov-regular, we call the numbers αi the Lyapunov exponents of f .

Proof. The graph of f can always be considered as the boundary of a strictly convex set Ω ⊂ Rn+1

with C1 boundary. We can then apply the last proposition to this Ω.

Finally, we can state the definition of Lyapunov regularity for submanifolds of RPn:

Definition 3.4.11. A locally strictly convex C1 submanifold N of RPn is said to be Lyapunov-
regular at x ∈ N if its trace in some (or, equivalently, any) affine chart at x is locally the graph
of a Lyapunov regular function. The numbers α1(x) > · · · > αp(x) attached to x are called the
Lyapunov exponents of x.

The next proposition summarizes the results that will be useful later.

Proposition 3.4.12. Let w = (x, [ξ]) ∈ HΩ be a forward regular point ending at x+, with parallel
Lyapunov exponents −1 6 η1 < · · · 6 ηp < 1. Then x+ ∈ ∂Ω is Lyapunov-regular with exponents

αi =
2

ηi + 1
, i = 1 · · · p.

The Lyapunov decomposition of Tx+∂Ω is the projection of the Lyapunov decomposition of TxHw

along xx+.
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3.5 Lyapunov manifolds

Proposition 3.4.12 allows us to define Lyapunov manifolds, that is, submanifolds tangent to the
subspaces appearing in the Oseledets’ filtration. In the classical theory of nonuniformly hyperbolic
systems, the local existence of these manifolds is achieved with the help of Hadamard-Perron the-
orem (see [2]).

Choose an affine chart and a Euclidean metric on it such that Ω appears as a bounded subset of
Rn. Pick a Lyapunov regular point x+ ∈ ∂Ω with at least one Lyapunov exponent > 1. Consider
the (maybe noncomplete) Lyapunov filtration

{0} = H0  H1  · · ·  Hp ⊂ Tx+∂Ω,

corresponding to the Lyapunov exponents ∞ > α1 > · · · > αp > 1 which are strictly bigger than
1 (see corollary 3.4.10). This filtration is complete, that is, Hp = Tx+∂Ω, if and only if 1 is not a
Lyapunov exponent.
It induces the Lyapunov filtration

{0} = F0(w)  F1(w)  · · ·  Fp(w) ⊂ TxHw,

of TxHw, for any w = (x, [ξ]) in the weak stable manifold

W cs(x+) = {w = (x, [xx+]), x ∈ Ω}

corresponding to x+: if vi ∈ Fi(w) r Fi−1(w), we have

lim
t→+∞

1

t
log T t

wvi = ηi =
2

αi
− 1 < 1.

This filtration (Fi(w)) is nothing else than the projection on the basis Ω of the (noncomplete)
Lyapunov filtration

{0} = F s
0 (w)  F s

1 (w)  · · ·  F s
p (w) ⊂ Es(w)

of the stable subspace Es(w); here we have F s
i (w) = ⊕i

k=1E
s
i (w), and F s

p (w) denotes the subspace
of Es(w) consisting of vectors whose Lyapunov exponents are strictly negative (see section 3.2.1).
In particular, any point w ∈ W cs(x+) has the same negative forward Lyapunov exponents, which
are given by

χ−
i = −1 + ηi =

2

αi
− 2.

Pick such a w0 = (x0, [ξ0]) ∈ W cs(x+). The horosphere Hw0 also admits a (noncomplete) filtration

{x0}  H1
w0
 · · ·  Hp

w0
⊂ Hw0 ,

into C1 submanifolds tangent to the Fi(w), for w ∈ W s(w0). These submanifolds are just defined
by

Hi
w0

= Hw0 ∩ (R.ξ0 ⊕ Hi),

and it is easy to see that

Hi
w0

= {x ∈ Ω, lim sup
t→+∞

1

t
log dΩ(πϕt(w0), πϕt(x, [xx+])) 6 χ−

i }.
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They are the projections on Ω of the stable Lyapunov manifolds

W s
i (w0) := {w = (x, [xx+]), x ∈ Hi

w0
} = {w ∈ HΩ, lim sup

t→+∞

1

t
log d(ϕt(w0), ϕ

t(w)) 6 χ−
i },

which are tangent to the corresponding subspaces of the Lyapunov filtration of the stable distribu-
tion. In particular,

W s
p (w0) = {w ∈ HΩ, lim sup

t→+∞

1

t
log d(ϕt(w0), ϕ

t(w)) < 0}

Obviously, the same can be done for unstable distributions and manifolds: we get C1 submanifolds

{w0}  Wu
p (w0)  · · ·  Wu

1 (w0) ⊂ Wu(w0),

of Wu(w0), where

Wu
i (w0) = {w ∈ HΩ, lim sup

t→−∞

1

t
log d(ϕt(w0), ϕ

t(w)) > χ+
i }.

So, in particular,

Wu
1 (w0) = {w ∈ HΩ, lim sup

t→−∞

1

t
log d(ϕt(w0), ϕ

t(w)) > 0}.

3.6 Lyapunov exponents of a periodic orbit

We now consider a quotient manifold M = Ω/Γ and are interested in the Lyapunov exponents of
a periodic orbit on HM . Every periodic orbit corresponds to a conjugacy class [γ] of a hyperbolic
element γ in the group Γ. Every such element is biproximal, that is: if (λi)16i6n are its (non-
necessary distinct) eigenvalues ordered as |λ1| > |λ2| · · · > |λn+1|, then |λ1| > |λ2| and |λn+1| <
|λn|. The attractive fixed point of γ on ∂Ω is an eigenvector for the eigenvalue λ1, and the repulsive
one is an eigenvector for the eigenvalue λn. The length of the corresponding periodic orbit on M
is given by

l(γ) =
1

2
(log |λ1| − log |λn+1|).

Let us do the study in dimension 2. Take an element γ ∈ Γ conjugated to the matrix





λ1 0 0
0 λ2 0
0 0 λ3



 ∈ SL3(R),

with λi ∈ R, |λ1| > |λ2| > |λ3|. The line (γ−γ+) is its axis and γ0 its third fixed point. We look
at the picture in the chart given by the plane {x1 + x3 = 0} ⊂ R3, with the following coordinates:

γ− = [0 : 0 : 1], γ+ = [1 : 0 : 0], γ0 = [0 : 1 : 0].
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This is a good chart for the periodic orbit from γ− to γ+ we are looking at. Choose a point
x ∈ (γ−γ+) with coordinates [a0 : 0 : 1 − a0] where a0 ∈ (0, 1) and let w = (x, [xγ+]). The point
xn = γn.x is given by

xn = [an : 0 : 1 − an],

with

an+1 =
λ1an

λ1an + λ2(1 − an)
.

Now, we look at a vector v = xm ∈ γ−γ+⊥
with m = [a0 : b0 : 1 − a0], b0 ∈ R. Let mn = γn.m =

[an : bn : 1 − an], vn = xnmn, so that |vn| = |bn|. Then (bn) is given by

bn+1 =
λ2bn

λ1an + λ2(1 − an)
=

λ2

λ1

an+1

an
bn,

which leads to

bn =

(

λ2

λ1

)n
b0

a0
an.

Since limn→∞ an = 1, we get

bn ≍
(

λ2

λ1

)n

.

Since γ is an isometry for F , we have, with the notations of lemma 2.4.4,

1 ≍ F (x, v) = F (xn, vn) ≍
∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

n
1

|xnγ+|1/2

( |xnγ+|1/2

|xny+
n | +

|xnγ+|1/2

|xny−
n |

)

≍
∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

n

enl(γ)F (T nl(γ)(v)),

by using lemma 2.4.3. Thus

F (T nl(γ)(v)) ≍
∣

∣

∣

∣

λ1

λ2

∣

∣

∣

∣

n

e−nl(γ)

and

lim
t→+∞

1

t
log F (T t(v)) = lim

n→∞

1

nl(γ)
log F (T nl(γ)(v)) = −1 + 2

log |λ1/λ2|
log |λ1/λ3|

.

All this can be generalized to any dimension by sectioning the convex set, so that we get the
following result.

Proposition 3.6.1. Let γ be a periodic orbit of the flow, corresponding to a hyperbolic element
γ ∈ Γ. Denote by λ0 > λ1 > · · · > λp > λp+1 the moduli of the eigenvalues of γ. Then

• γ is regular and has no zero Lyapunov exponent;

• the Lyapunov exponents (ηi(γ)) of the parallel transport along γ are given by

ηi(γ) = −1 + 2
log λ0 − log λi

log λ0 − log λp+1
, i = 1 · · · p;
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• the sum of the parallel Lyapunov exponents is given by

η(γ) = (n + 1)
logλ0 + log λp+1

log λ0 − log λp+1
.

Proof. Only the last point remains to be proved. For that, we change the notation of the eigenvalues
into λ0 > λ1 > · · · > λn, where they are now counted with multiplicity. Then

η(γ) =

n−1
∑

i=1

−1+2
log λ0 − log λi

log λ0 − log λn
=

n−1
∑

i=1

log λ0 + log λn − 2 log λi

log λ0 − log λn
= (n−1)

log λ0 + log λn

log λ0 − log λn
−2

log
(

∏n−1
i=1 λi

)

logλ0 − log λn
.

Since γ ∈ SL(n + 1,R), that gives

η(γ) = (n + 1)
log λ0 + log λn

log λ0 − log λn
.



Chapter 4

Invariant measures

The preceding parts were approaching the geodesic flow of Hilbert metrics from a topo-
logical or differential point of view. We now turn to the measure or ergodic point of
view, that is, we look at our dynamical system endowed with an invariant probabil-
ity measure. We are especially interested in the classical theory of Patterson-Sullivan
measures and we extend here various results from hyperbolic geometry.

4.1 Generalities

Ergodic theory looks at dynamical systems from a measure point of view. It considers the measur-
able action of a group G on a measure space (X,A, µ), which preserves the Radon measure µ: for
any g ∈ G, g ∗ µ = µ, that is, for any A ∈ A, µ(g−1A) = µ(A). The measure is often assumed to
have total mass 1; this assumption can be seen as a measurable counterpart of the compactness of
the space, which is often assumed when studying dynamical systems from a topological point of view.

In this chapter, we use this approach to study our geodesic flow. It is not defined on a compact
space, but we can still hope to find invariant probability measures, which would turn the space
into a finite one, from this new point of view. Of course, any invariant measure does not give an
interesting information on the system. For example, the uniform Lebesgue measure carried by a
periodic orbit is not in itself very interesting, for it sees only what occurs on the periodic orbit,
where the dynamic is trivial.

4.1.1 The Kaimanovich correspondence

Let M = Ω/Γ be the quotient manifold of a strictly convex proper open set Ω with C1 boundary
by a nonelementary group Γ ⊂ Isom(Ω, dΩ). Consider the geodesic flow ϕt of the Hilbert metric on
HM . ϕt is continuous and thus Borel-measurable, the Borel σ-algebra B being the one generated
by open subsets of HM .
Let M denote the set of Borel ϕt-invariant probability measures on HM . M is a convex set, and
is nonempty: since Γ is nonelementary, it contains a hyperbolic element, hence there exist periodic
orbits, and M contains all the Lebesgue measures carried by these periodic orbits; M even contains
the convex hull of such measures.

65
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We endow M with the topology of weak convergence of measures: a sequence (µn) of measures
converges to µ if, for any continuous function f : HM −→ R,

lim
n→+∞

∫

f dµn =

∫

f dµ.

For this topology, M is compact.
The extremal set of M consists in ergodic measures. Ergodic measures are those measures for
which any invariant Borel set has either full or zero measure. The measures carried by periodic or-
bits are ergodic, hence lie on the extremal set of M. Under certain hypotheses, the set of measures
carried by periodic orbits is dense inside the set of ergodic measures. A theorem of Coudène and
Schapira [24] says it suffices to prove an Anosov closing lemma, which is easy to prove in our context.

The interest in ergodic measures lies in the following theorem, known as Birkhoff ergodic theorem:

Theorem 4.1.1. Let µ be an invariant probability measure for the flow ϕt on X. Then, for any
function f ∈ L1(X, µ), the limit

F (x) := lim
T→+∞

1

T

∫ T

0

f(ϕt(x)) dt

exists for µ-almost every point x ∈ X and moreover,
∫

F dµ =
∫

f dµ. In particular, if µ is ergodic
then

lim
T→+∞

1

T

∫ T

0

f(ϕt(x)) dt =

∫

f dµ (4.1)

µ-almost everywhere.

This result means that if µ is ergodic, then the space averages with respect to µ describe the asymp-
totical time averages. Note the following important fact: let µ be an ergodic measure for a flow ϕt on
a space X ; if f is a ϕt-invariant measurable function on X , then it is constant µ-almost everywhere.

The first thing we will see is that there is a natural correspondence between the dynamics of ϕt on
HM and the dynamics of the action of Γ by coordinates on the double boundary ∂2Ω = ∂Ω×∂Ωr∆,
where ∆ = {(x, x), x ∈ ∂Ω} denotes the diagonal. This correspondence is easy and relies on the
fact that ∂2Ω is nothing else than the space of oriented geodesics of Ω: to each oriented geodesic
γ : R −→ Ω, we can associate the pair (x+, x−) consisting ot its two endpoints x+ = γ(+∞) and
x− = γ(−∞); then, the action of ϕt on a geodesic γ : R −→ Ω is just a translation, and, when we
forget about it, we get the double boundary ∂2Ω. Clearly, this construction does not work anymore
when the convex set is not strictly convex.

The main results are the following theorem and its corollary, which establish the expected corre-
spondence about invariant Radon measures under the action of ϕt on HM and of the group Γ on
∂2Ω by coordinates. It was proved by Kaimanovich in [42] and his proof clearly works in the present
case. Basically, it relies on the observation we just made.

Theorem 4.1.2 (Kaimanovich [42]). Let Ω be a strictly convex proper open set with C1 boundary.
There is a convex isomorphism between the cone of Radon measures on ∂2Ω and the cone of Radon
measures on HΩ invariant under the geodesic flow.
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Proof. Let us just recall, without justification, how we pass from a measure Λ on ∂2Ω to λ on HΩ
and conversely:

• If Λ is given, we define λ by setting, for any Borel subset A ⊂ HΩ,

λ(A) =

∫

∂2Ω

l((ξ−ξ+) ∩ A) dΛ(ξ−, ξ+),

where l((ξ−ξ+)∩A) denotes the Hilbert length of the intersection of the line (ξ−ξ+) with A.

• If λ is given and K is a compact Borel subset of ∂2Ω, we decompose its preimage p−1(K) ⊂ HΩ
by p : w ∈ HΩ 7−→ (x+, x−) = (ϕ+∞(w), ϕ−∞(w)), as a union ∪n∈Zϕn(K0) of (mod 0)
disjoint compact subsets “of length 1”, and set Λ(K) = λ(K0).

Corollary 4.1.3 (Kaimanovich [42]). Let M = Ω/Γ be the quotient manifold of a strictly convex
proper open set Ω with C1 boundary by a nonelementary group Γ ⊂ Isom(Ω, dΩ). Then there is
a convex isomorphism between the cone of Γ-invariant Radon measures on ∂2Ω and the cone of
Radon measures on HM invariant under the geodesic flow. This isomorphism preserves ergodicity.

The flip map at infinity is the involution ∂σ of ∂2Ω defined by ∂σ(ξ, η) = (η, ξ). It is a straightfor-
ward observation that the correspondence of theorem 4.1.2 is flip invariant: if λ on HΩ corresponds
to Λ on ∂2Ω, then σ ∗ λ corresponds to ∂σ ∗ Λ.

4.1.2 Measure-theoretic entropy

The topological entropy is a measure of the topological complexity of a transformation Φ : X −→ X
of a metric space (X, d). The measure-theoretic entropy plays the same role for a tranformation
Φ : X −→ X of a probability space (X,A, µ). By a transformation (or a morphism), we mean
a measurable map which preserves the measure µ. Measure-theoretic entropy was defined before
topological entropy by Kolmogorov and then revisited by Sinai. We refer to the classical books [72],
[60] or [45] for more details.

A countable partition P of a probability space (X,A, µ) is a collection (Pi)i∈N of measurable subsets
of X such that

µ(Pi ∩ Pj) = 0, µ(X r ∪i∈NPi) = 0.

An element Pi of P is called an atom of P . To almost any x ∈ X can be associated the atom P (x)
of P containing x; the function x 7−→ P (x) is measurable.

The entropy of such a partition is defined as

H(P ) = −
∑

i∈N

µ(Pi) log µ(Pi). (4.2)

It represents the information given by the partition P on (X, µ): it gives a measure of how precise
in average is the information that a point x is in the atom Pi of P . For example, if P is the partition
in one atom consisting of X , then H(P ) = 0: we do not know more on the position of a point x ∈ X
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if we know that x is in X ...

Now consider a transformation Φ : (X, µ) 7−→ (X, µ). Given a partition P , we want to see how Φ
transforms this partition; this is measured by the average entropy of P under T . Φ transforms the
partition P in a new partition ΦP whose atoms are the Φ−1(Pi). Let Pn be the joint partition

Pn =

n−1
∨

i=0

ΦiP ;

P ∨ Q denotes the joint partition

P ∨ Q = {A ∩ B, A ∈ P, B ∈ Q}.

The atom ΦP (x) containing x is Φ−1(P (Φx)). The atom Pn(x) containing x is the intersection

Pn(x) = P (x) ∩ Φ−1(P (Φx)) ∩ · · · ∩ Φn−1(P (Φn−1x)).

For example, if Φ is an Anosov diffeomorphism, this intersection tends to consist of little pieces of
stable manifolds. This remark will be crucial in the next chapter.

The average entropy h(P, Φ) of P under the T is defined by

h(P, Φ) = lim
n→∞

1

n
H(Pn). (4.3)

The measure-theoretic entropy of Φ is then the supremum

h(Φ) = sup
P

h(P, Φ),

which is taken with respect to all finite, or countable partitions with finite entropy. A partition
which would achieve this supremum is in some sense well adapted to describe the action of Φ.
Kolmogorov and later Sinai showed that generating partitions are such adapted partitions. By a
generating partition, we mean a partition P such that

+∞
∨

n=−∞

ΦnP

is the partition by points. However, the existence of generating partition was not clear until Rokhlin
proved

Theorem 4.1.4 (Rokhlin, [67]). Let Φ be a transformation of a probability space (X, µ), with finite
entropy. If Φ is aperiodic, that is, the measure of periodic points is 0, then Φ admits a countable
generating partition of finite entropy.

For a flow ϕ = (ϕt) on some probability space (X, µ) which preserves µ, the measure-theoretic en-
tropy is defined as the entropy of the time-one map: h(ϕ) := h(ϕ1). The identity h(ϕs) = |s|h(ϕ1)
for s 6= 0 justifies this definition.
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A general Borel map Φ : X −→ X have lots of invariant probability measures, and we can consider
the entropy of each of these measures. In this case, we index all the entropies by the measure µ:
hµ(Φ), hµ(P, Φ)... The essential result is the following theorem, known as variational principle,
which asserts that topological entropy is the supremum of measure-theoretic entropies. It was first
proved by Goodman [34] for the classical definition on compact spaces; Misiurewicz [56] then gave
a simplified proof. The generalization to more general spaces is due to Handel and Kitchens [37]
and uses the result in the compact case.

Theorem 4.1.5 (Variational Principle). Let Φ : X −→ X be a homeomorphism of a locally compact
metric space X and M be the set of Φ-invariant probability measures. Then

htop(Φ) = sup
µ∈M

hµ(Φ).

A measure which achieves the supremum in the variational principle is called a measure of maximal
entropy.

4.2 Conformal densities and Bowen-Margulis measures

We get now interested in the most popular invariant measures on negatively curved manifolds: the
family (µx) of Patterson-Sullivan measures on the boundary at infinity, whose double µx ⊗ µx,
renormalized by a factor to make it Γ invariant, is associated to the Bowen-Margulis measure on
HM . Nothing new appears in our context, so we mainly recall the already known results and
constructions made for pinched negatively curved manifolds or CAT(−1) spaces.

4.2.1 Conformal densities

A conformal density of dimension δ is a family of measures (νx)x∈Ω on ∂Ω all in the same class,
and such that

dνx

dνy
(ξ) = e−δbξ(x,y).

The family (νx)x∈Ω is said to be Γ-invariant if νgx = g ∗ νx.
The Poincaré series of Γ is the series defined by

gΓ(s, x) =
∑

γ∈Γ

e−sdΩ(x,γo),

where o denotes some fixed base point. δΓ denotes the critical exponent of this series: for s < δΓ,
the series diverges, and for s > δΓ, it converges; at s = δΓ, both are possible and we will see that
this plays a crucial role in the theory. We say that Γ is divergent if the Poincaré series diverges
at the critical exponent, and convergent otherwise.
For t > 0, let

NΓ(o, R) = ♯{γ, dΩ(o, γo) < R}.
Then we have

δΓ = lim sup
R→+∞

1

R
log NΓ(o, R).
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Theorem 4.2.1 (Patterson, Sullivan). Let Γ be a nonelementary discrete subgroup of Isom(Ω, dΩ)
and δΓ be its critical exponent. Then there exists a conformal density (µx)x∈Ω of dimension δΓ.

Proof. We make a sketch of the proof given by Patterson for convenience, and also because we will
need some technical details later. Fix o ∈ Ω. Consider the measures µs

x for x ∈ Ω and s > δΓ,
defined by

µs
x =

1

gΓ(s, o)

∑

γ∈Γ

e−sdΩ(x,γo)δγo.

These are finite measures supported on Γ.o; the family (µs
x)x is Γ-invariant: for any Borel subset

A ⊂ Ω and any g ∈ Γ,

µs
x(g−1A) =

1

gΓ(s, o)

∑

γ∈Γ

e−sdΩ(x,γo)δγo(g
−1A) =

1

gΓ(s, o)

∑

γ∈Γ

e−sdΩ(gx,gγo)δgγo(A) = µs
gx(A);

and for two different points x and y, we have

dµs
x

dµs
y

(γo) = e−s(dΩ(x,γo)−dΩ(y,γo)) := e−sbγo(x,y).

If we consider these measures µs
x, x ∈ Ω, s > δΓ as measures on Ω, then we can write, for any z ∈ Ω,

dµs
x

dµs
y

(z) = e−sbz(x,y); (4.4)

The function z ∈ Ω 7→ bz(x, y) is continuous on Ω and coincide with the Busemann function when
z ∈ ∂Ω. For some x ∈ Ω, let µx be a weak limit of µs

x when s decreases to δΓ, following some
subsequence (sn)n∈N. Equation (4.4) implies that the corresponding limits µy = limn→∞ µsn

y are

well defined. All these measures are supported on Γ.o, the family (µx)s∈Ω is Γ-invariant, and for
ξ ∈ ∂Ω,

dµx

dµy
(ξ) = e−δbξ(x,y).

So we are almost done. In fact, we are done if we assume that the Poincaré series diverges at δΓ:
in this case, the measures are supported on ΛΓ = Γ.o r Γ.o. When the Poincaré series converges
at δΓ, Patterson explained that we can make it diverge using an auxiliary function that does not
change the critical exponent. That is, we replace the Poincaré series by

g′Γ(s, x) =
∑

γ∈Γ

h(dΩ(x, γo))e−sd(x,γo),

where h : R+ → R+ is some increasing function whose growth is subexponential, that is, for any
η > 0, there exists tη > 0, such that for t > tη,

h(t + s) 6 h(t)eηs.

From now on, a Γ-invariant conformal density (µx)x∈Ω of dimension δΓ will also be called a
Patterson-Sullivan density, and one individual measure µx a Patterson-Sullivan measure.
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Lemma 4.2.2 (Sullivan’s shadow lemma). Let (µx) be a conformal Γ-invariant density of dimen-
sion δ. For any x ∈ Ω and r large enough, there exists Cx,r > 0 such that for any γ ∈ Γ

1

Cx,r
e−δdΩ(x,γx)

6 µx(Or(x, γx)) 6 Cx,re
−δdΩ(x,γx)

Proof. Here comes Roblin’s proof in [65]. We have

µx(Or(x, γx)) = µx(γOr(γ
−1x, x)) = µγ−1x(Or(γ

−1x, x)) =

∫

Or(γ−1x,x)

e−δbξ(γ−1x,x) dµx(ξ).

From lemma 1.2.1, we have that

e−δdΩ(γ−1x,x)
6 e−δbξ(γ−1x,x)

6 e−δ(dΩ(γ−1x,x)−2r),

hence

e−δdΩ(x,γx)µx(Or(γ
−1x, x)) 6 µx(Or(x, γx)) 6 e2δre−δdΩ(x,γx)µx(Or(γ

−1x, x)).

Now, just remark that µx(Or(γ
−1x, x)) 6 µx(∂Ω) to get the result.

This lemma admits the following

Corollary 4.2.3 (Sullivan). Let Γ be a nonelementary discrete subgroup of Isom(Ω, dΩ) and δΓ be
its critical exponent.

• If there exists a conformal Γ-invariant density of dimension δ, then δ > δΓ.

• For each o ∈ Ω, there exists some Co > 0 such that

NΓ(o, R) 6 Coe
δΓR.

4.2.2 Bowen-Margulis measures

The Bowen-Margulis measure of a topologically mixing Anosov flow (or diffeomorphism) is the
unique measure of maximal entropy, that is, the unique measure which achieves the supremum in
the variational principle of theorem 4.1.5. It was first constructed by Margulis in his PhD thesis
for the geodesic flow of negatively curved manifolds (c.f. [50, 51]). In [15, 16], Bowen proved that,
on a closed hyperbolic manifold, closed geodesics were uniformly distributed with respect to the
Liouville measure. Bowen’s construction extends to the case of a topologically mixing Anosov flow,
and finally, one finds that closed orbits are uniformly distributed with respect to a specific measure,
which indeed coincides with the measure constructed by Margulis. So the name of the measure.
A striking consequence of Margulis’s construction is the precise asymptotic expansion of the number
N(t) of primitive closed orbits of length at most t, which was given by Margulis (see [51] or [45]):

N(t) ∼ e−ht

ht
,

where h denotes the topological entropy of the topologically mixing Anosov flow under consideration.
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A general construction

To each Γ-invariant conformal density on ∂Ω, one can construct a ϕt-invariant measure on HM
by a process that we now describe. It can be found in Sullivan [70]. When M is compact, this
construction allows to recover the Bowen-Margulis measure from the Patterson-Sullivan measures.

Let (µx) be a conformal density of dimension δ. Consider the product measure µ2
x = µx ⊗ µx on

∂2Ω. We have

d(gµ2
x)(ξ+, ξ−) = dµ2

gx(ξ+, ξ−) = e−δ(b
ξ+(gx,x)+b

ξ−
(gx,x))dµ2

x(ξ+, ξ−)

= e−2δ((ξ+|ξ−)gx−(ξ+|ξ−)x)dµ2
x(ξ+, ξ−).

Thus letting

dΛx(ξ+, ξ−) = e2δ(ξ+|ξ−)xdµ2
x(ξ+, ξ−),

we get a Γ-invariant measure on ∂2Ω. In fact, this measure Λx does not depend on x:

dΛx(ξ+, ξ−) = e2δ(ξ+|ξ−)xdµ2
x(ξ+, ξ−) = e2δ(ξ+|ξ−)xe−δ(b

ξ+(x,y)+b
ξ−

(x,y))dµ2
y(ξ+, ξ−)

and

2(ξ+|ξ−)x − bξ+(x, y) − bξ−(x, y) = limz±→ξ± dΩ(x, z+) + dΩ(x, z−) − dΩ(z+, z−)
−dΩ(x, z+) + d(y, z+) − dΩ(x, z−) + dΩ(y, z−)

= 2(ξ+|ξ−)y,

so that
dΛx(ξ+, ξ−) = dΛy(ξ+, ξ−)

Theorem 4.1.2 tells us that to Λx is associated an invariant measure µ of the geodesic flow on HM .
This measure µ inherits strong properties:

• µ is flip invariant since by construction, Λx is flip-invariant;

• µ has a local product structure, that is µ is locally the product µ = µs ⊗ µu ⊗ dt, where µu

and µs denote the stable and unstable conditional measures of µ;

• µs and µu are naturally related to the measures µx. In fact, any stable or unstable leaf can
be identified with some H r {p}, where H is a horosphere based at p, and by projection, µs

and µu can be seen as measures on ∂Ω r {p}, which are in the same Lebesgue class as µx.
From this, we get the important transition property of the conditional measures: for all t ∈ R
and w ∈ HM ,

ϕt ∗ µs
w = e−δtµs

ϕt(w), ϕt ∗ µu
w = eδtµu

ϕt(w).

Hopf-Tsuji-Sullivan theorem

The main result about conformal densities and the associated measures is the following theorem,
known as Hopf-Tsuji-Sullivan theorem. It has a long history and I am certainly not aware of all the
steps. The most achieved version, that we state here, is due to Roblin in the beautiful [65]: he proved
it in the context of CAT (−1) spaces, and his proof works without any change in our context. The
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main reason for this adaptation to be possible is that he never uses angle considerations; instead,
he essentially works with shadows of balls at infinity. In [43], Kaimanovich had already given a
part of the result for some non-Riemannian spaces, but also for more general families of measures.
Sullivan was the first to be really involved in this kind of questions, but he was essentially working
in the hyperbolic space, where it is possible to go deeper; in particular, Sullivan always made links
with spectral theory, which is a priori not relevant in the case of non-Riemannian spaces.

Theorem 4.2.4 (Hopf, Tsuji, Sullivan, Kaimanovich, Roblin...). Let (µx) be a Γ-invariant confor-
mal density of dimension δ, Λ and µ the associated measures on ∂2Ω and HM . Denote by Λr the
set of radial limit points. Fix any x ∈ Ω. Then either

1.
∑

γ∈Γ

e−δdΩ(x,γx) = +∞;

2. Λr has full µx-measure;

3. Λ is ergodic for the action of Γ on ∂2Ω;

4. µ is ergodic for the geodesic flow on HM ;

or

1.
∑

γ∈Γ

e−δdΩ(x,γx) < +∞;

2. µx(Λr) = 0;

3. Λ is completely dissipative for the action of Γ on ∂2Ω;

4. µ is completely dissipative for the geodesic flow on HM .

To understand the theorem, we have to recall the definitions of a conservative and dissipative mea-
sures. Consider the µ-preserving action of a group G (Γ of R in the last theorem) on some measure
space (X, µ). A wandering set A is a measurable set such that all its translates by G are disjoint
mod 0, that is, for two distinct elements g, g′ ∈ G, µ(gA ∩ g′A) = 0. The measure µ is then called
conservative if every non-trivial measurable set A is nonwandering, and completely dissipative
if it admits a wandering set A such that Γ.A has full measure.

Poincaré recurrence theorem states that any finite measure is conservative. Unless the space consists
of a unique dissipative orbit, ergodicity always implies conservativity but the converse is not true
for general dynamical systems. A crucial part in the proof of theorem 4.2.4 is the following

Lemma 4.2.5. The measure µ is conservative if and only if it is ergodic.

Bowen-Margulis measures

A measure µ on HM associated to a Patterson-Sullivan density (µx) will be called a Bowen-
Margulis measure. It is straightforward from the construction that two Patterson-Sullivan den-
sities are in the same Lebesgue class if and only if the Bowen-Margulis are so.

Corollary 4.2.6. If Γ is divergent, then all Bowen-Margulis measures are proportional.
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Proof. Let (νx) and (µx) be two Γ-invariant conformal densities of dimension δΓ. Since Γ is diver-
gent, that is the Poincaré series diverges at δΓ, we are in the first alternative of theorem 4.2.4. The
family (λx) = (1

2 (νx + µx)) is also a Patterson-Sullivan measure, hence theorem 4.2.4 says that the
action of Γ on ∂2Ω is ergodic with respect to some measure in the class of λx ⊗ λx. But this is a
contradiction since λx ⊗ λx is the middle of µx ⊗ µx and νx ⊗ νx; unless µx and νx are in the same
class.
From the observation above, this implies that all Bowen-Margulis measures are in the same class.
Since they are ergodic, they are indeed all proportional.

In the case M is compact, the group is always divergent and we recover in this way the measure of
maximal entropy constructed by Bowen and Margulis. So the name... The conditional measures µs

and µu along stable and unstable manifolds will be called the Margulis measures, because these were
central in Margulis construction of the measure. Let us recall their essential transition property:

∀w ∈ HM, ∀t ∈ R, ϕt ∗ µs
w = e−δΓtµs

ϕt(w), ϕt ∗ µu
w = eδΓtµu

ϕt(w).

To check that Γ is divergent is often not an easy thing to do. The second point of theorem 4.2.4,
about the mass of the radial limit set Λr, is easier to check as we will see in the next section. A
special case is given by the following

Corollary 4.2.7. Let Γ be a nonelementary group. If some Bowen-Margulis measure µ is finite,
then Γ is divergent.

Proof. If µ is finite, then it is conservative and we are thus in the first part of theorem 4.2.4.

Nevertheless, remark that there exist pinched negatively curved manifolds M = M̃/Γ with Γ
divergent, but whose Bowen-Margulis measures are all infinite. Some examples were given by
Pollicott and Sharp [64], and geometrically finite ones have been recently constructed by Peigné
[62].

4.3 Geometrically finite surfaces

The goal of this section is to prove the following

Theorem 4.3.1. Let M = Ω/Γ be a geometrically finite surface. Then there is a finite Bowen-
Margulis measure on HM .

The proof of the theorem will take some time, and we will prove some intermediate results which are
of interest. This development is very classic, and can be already found in [70]. The proofs provided
here are largely inspired by an unpublished paper of M. Peigné [61], available on his webpage.

We begin by an obvious observation.

Lemma 4.3.2. Let Γ act on Ω and Ω′ with Ω ⊂ Ω′. Denote by gΓ,Ω(s, x) and gΓ,Ω′(s, x) the
Poincaré series for the action of Γ on Ω and Ω′, and δΓ(Ω) and δΓ(Ω′) theire critical exponent.
Then, for any s > δΓ(Ω′), gΓ,Ω(s, x) 6 gΓ,Ω′(s, x). In particular, δΓ(Ω) 6 δΓ(Ω′).

Proof. If x, y ∈ Ω then dΩ′(x, y) 6 dΩ(x, y). So, if x ∈ Ω and s > δΓ(Ω′), we have gΓ,Ω(s, x) 6

gΓ,Ω′(s, x). In particular, the convergence of gΓ,Ω′(s, x) implies the convergence of gΓ,Ω(s, x), hence
the result.
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Lemma 4.3.3. Let Ω ⊂ RP2. The critical exponent of a discrete parabolic subgroup P is δP = 1
2

and the Poincaré series of P diverges at δP .

Proof. Call p the fixed point of P . As remarked in lemma 1.3.4, we can find two P-invariant
ellipses E int and Eext containing p in their boundary such that E int ⊂ Ω ⊂ Eext. Now we know
from hyperbolic geometry that δP(E int) = δP(Eext) = 1

2 and that the Poincaré series diverges at
the critical exponent. From lemma 4.3.2, the same holds for P acting on Ω.

Lemma 4.3.4. If a nonelementary group Γ acting on Ω contains a parabolic subgroup, then δΓ > 1
2 .

Proof. From lemma 4.3.3, we get δΓ >
1
2 , so we just have to prove that the inequality is strict.

Let ξ be the fixed point of P . Since Γ is nonelementary, we can find a hyperbolic element h ∈ Γ
such that Γ contains the group H ∗ P where H = 〈h〉: this is a classical ping-pong argument. In
particular, G contains all the distinct elements g = hn1p1 · · ·hnlpl for l > 1, ni > 1, pi ∈ Pr {Id}.
So,

gΓ(s, x) =
∑

g∈Γ

e−sdΩ(x,gx)
>

∑

l>1

∑

n1, · · ·nl,
p1, · · · , pl

e−sdΩ(x,hn1p1···h
nlplx)

>
∑

l>1

∑

n1, · · ·nl,
p1, · · · , pl

e−sdΩ(x,hn1x)e−sdΩ(x,p1x) · · · e−sdΩ(x,hnlx)e−sdΩ(x,plx)

=
∑

l>1





(

∑

n∈Z

e−sdΩ(x,hnx)

)





∑

p∈Pr{Id}

e−sdΩ(x,px)









l

=
∑

l>1

(gH(s, x)(gP (s, x) − 1))l.

But gH(s, x) converges for any s > 0 and gP(s, x) converges for s > 1
2 and diverges for s = 1

2 .
So there exists s0 > 1

2 for which gH(s, x)(gP(s, x) − 1) > 1, so that gΓ(s0, x) diverges. Hence
δΓ > s0 > 1

2 .

Proposition 4.3.5. Let M = Ω/Γ be a geometrically finite surface. Then any Patterson-Sullivan
measure has no atom.

Proof. Let o ∈ Ω and let (µx) be a family of Patterson-Sullivan measures: µx is obtained as a weak
limit of the family (µs

x)s>δΓ where

µs
x =

1

g′Γ(s, o)

∑

γ∈Γ

h(d(o, γo))e−sd(x,γo)δγo,

and
g′Γ(s, o) =

∑

γ∈Γ

h(dΩ(o, γo))e−sdΩ(o,γo).
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Since all these measures µs
x are in the same class, we just have to prove the result for µo = limµs

o,
so we abbreviate by µ := µo and µs = µs

o.

First of all, remark that Sullivan’s shadow lemma 4.2.2 implies that µ has no atom on the radial
limit set Λr. Since Λr Λr contains only a countable number of bounded parabolic points, we just
have to prove that for such a point ξ, we have µ({ξ}) = 0.

Let ξ be the fixed point of some maximal parabolic subgroup P = {pk, k ∈ N} of Γ, with p0 = id.
For any Borel set V ⊂ Ω containing an open neighbourhood of ξ in ∂Ω, we have

µ({ξ}) 6 µ(V ) 6 lim inf
s→δ+

Γ

µs(V ).

So we just have to find a family of sets (Vn)n∈N such that the right hand side goes to 0 when n goes
to +∞.
Choose an open fundamental domain C ∈ Ω containing o. We let Vn =

⋃

k>n pk(C), such that each
Vn contains an open neighbourhood of ξ in ∂Ω. We have, for s > δΓ,

µs(Vn) =
1

g′Γ(s, o)

∑

γ∈Γ

h(dΩ(o, γo))e−sdΩ(o,γo)1Vn
(γo).

Let Γ′ = {g ∈ Γ, go ∈ C} be the subset of elements of Γ that do not move o outside C. Then

µs(Vn) =
1

g′Γ(s, o)

∑

k>n

∑

γ∈Γ′

h(dΩ(o, pkγo))e−sdΩ(o,pkγo).

Now remark that

dΩ(o, pkγo) = dΩ(o, γo) + dΩ(o, pko) − 2(γo|p−1
k o)o.

Nothing depends on the choice of o, and we can take it inside C(ΛΓ). Theorem 1.4.8 implies that
the horoball H0 = {y ∈ Ω, bξ(o, y) 6 0} contains only a finite number of translates of Ω, so we can
assume that H0 only contains o, which actually would lie on the boundary of H0. All other γo’s,
γ ∈ Γ′, lie at a distance at least d > 0 from H0. Thus, we can find some r > 0 such that for n > n0

large enough, Vn is contained in every lightcone Fr(γo, o) based at γo, for γ ∈ Γ′. Lemma 1.2.1
now implies that (go|p−1

k o)o 6 r. From that and the fact that h is increasing, we get

µs(Vn) =
e2sr

g′Γ(s, o)

∑

k>n

e−sdΩ(o,pko)
∑

γ∈Γ′

h(dΩ(o, pko) + dΩ(o, γo))e−sdΩ(o,γo).

Let η > 0 and tη > 0 such that δΓ − η > 1
2 , and for t > tη, h(t + s) 6 h(t)eηs. Only a finite number

of γ ∈ Γ′ are such that d(o, γo) 6 tη; call G the set of such elements. Thus,

µs(Vn) 6
e2sr

g′Γ(s, o)

∑

k>n

e−sdΩ(o,pko)
(

∑

γ∈G

h(dΩ(o, pko) + dΩ(o, γo))e−sdΩ(o,γo)

+
∑

γ∈Γ′rG

h(dΩ(o, γo))e−sdΩ(o,γo)eηdΩ(o,pko)
)

.
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The sum over G is obviously bounded by some constant C independent of s, so that

µs(Vn) 6
e2sr

g′Γ(s, o)



C
∑

k>n

e−sdΩ(o,pko) +





∑

k>n

e−(s−η)dΩ(o,pko)









∑

g∈Γ′

h(dΩ(o, go))e−sdΩ(o,go)









Since δΓ − η > 1
2 , the sum

∑

k>0

e−(δΓ−η)d(o,pko) (4.5)

converges. By letting s ց δΓ, we get

µ(Vn) 6 e2δr





∑

k>n

e−(δΓ−η)dΩ(o,pko)



µ(∂Ω).

The convergence in (4.5) implies that the right hand side goes to 0 when n goes to +∞, proving
that

µ({ξ}) = 0.

Before completing the proof of theorem 4.3, note that this already implies the

Corollary 4.3.6. Let M = Ω/Γ be a geometrically finite surface. Then Γ is divergent.

Proof. The last proposition implies that Λr has full µx-measure, for any Patterson-Sullivan measure
µx. Theorem 4.2.4 now gives that Γ is divergent.

Proof of theorem 4.3. Let µBM be a Bowen-Margulis measure on HM . Call µ̃BM its lift to HΩ and
µ the associated Γ-invariant measure on ∂2Ω. µBM is supported on the nonwandering set, which is
contained in the homogeneous bundle HC(M) over C(M). Theorem 1.4.8 provides a decomposition
of C(M) into a compact part and a finite number of cusps Ci, 1 6 i 6 p. Each Ci is a quotient
C(ΛΓ)∩Γ.H/Γ, where H is a horoball based at a fixed point of a corresponding maximal parabolic
subgroup of Γ. So, we just have to prove that µBM (HCi) is finite.
So, let P be a maximal parabolic subgroup of Γ and C be an open fundamental domain for P on
Ω. We want to prove that µ̃BM (H(C ∩ H)) is finite. The intersection D = ∂C ∩ ΛΓ r {p} is a
compact fundamental domain for the action of P on ΛΓ r {p} and we have, from the description
made in the proof of theorem 4.1.2,

µ̃BM (H(C ∩ H)) =

∫

∂2Ω

l((ξ−ξ+) ∩ (C ∩ H)) dµ(ξ−, ξ+)

=
∑

p,q∈P

∫

pD×qD

l((ξ−ξ+) ∩ (C ∩ H)) dµ(ξ−, ξ+)

=
∑

p,q∈P

∫

D×p−1qD

l((ξ−ξ+) ∩ p−1(C ∩ H)) dµ(ξ−, ξ+)

=
∑

p∈P

∫

D×pD

l((ξ−ξ+) ∩ H) e−2δΓ(ξ+|ξ−)odµ2
o(ξ

−, ξ+).
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Since D is compact, we can find r > 0 such that any geodesic emanating from D and passing
through H intersects B(o, r). Now if (ξ−ξ+) is such a geodesic with ξ+ ∈ pD then (ξ−ξ+) also
intersects pB(o, r) = B(po, r). From that we deduce that

l((ξ−ξ+) ∩ H) 6 dΩ(o, po) + r.

Furthermore, pD ⊂ Or(o, po) and Sullivan’s shadow lemma 4.2.2 implies

µo(pD) 6 Coe
−δΓdΩ(o,po).

Thus

µ̃BM (H(C ∩ H)) 6 Co

∑

p∈P

(dΩ(o, po) + r)e−δΓdΩ(o,po).

Since δP < δΓ, this series converges.

4.4 Volume entropy and critical exponent for finite volume

surfaces

The aim of this section is to prove that, on a surface of finite volume, volume entropy and critical
exponent coincide, generalizing what is a trivial observation for a compact manifold.

Theorem 4.4.1. Let M = Ω/Γ be a surface of finite volume. Then hvol = δΓ.

The proof of this result is the one given in [28], where the authors study manifolds of pinched nega-
tive curvature. They prove that the equality hvol = δΓ always holds if the manifold is asymptotically
1/4-pinched, that is, the curvature in the cusps tend to be 1/4-pinched. They also construct exam-
ples whose curvature is arbitrarily close to being 1/4-pinched, but where equality fails.
Once again, the essential problem is to understand the behaviour of parabolic groups. In our case,
some parts of the proof of the equality are really simplified by the transparence of the geometry.
However, we also need specific results to overpass the non-Riemannian nature of the metric: these
are contained in lemmas 4.4.3 and 4.4.4. But first, we need to recall the

Proposition 4.4.2 (L. Marquis, lemme 7.10 in [54]). If Ω ⊂ RP2 admits a quotient of finite volume,
then (Ω, dΩ) is Gromov-hyperbolic.

Recall that for a discrete subgroup G of Isom(Ω, dΩ),

NG(x, R) = ♯{g ∈ G, dΩ(x, gx) 6 R}

denotes the number of elements g of G such that gx ∈ B(x, R).

Lemma 4.4.3. Let C > 1 be arbitrarily close to 1 and P a discrete parabolic subgroup of Isom(Ω, dΩ)
fixing p ∈ ∂Ω. Then, for any sufficiently small horoball H based at p and any x ∈ ∂H, there exists
D > 1 such that

1

D
NP(x,

R

C
) 6 vol(B(x, R) ∩ H) 6 DNP(x, CR).
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Proof. It is known (see [28] for example), that in the hyperbolic space, we have, for any maximal
parabolic subgroup P , any horoball H fixed by P and any point x ∈ ∂H ,

vol(B(x, R) ∩ H) ≍ NP(x, R). (4.6)

Now, we know from corollary 1.4.9 that, on any sufficiently small horoball H based at the fixed
point p of P , we can find two P-invariant hyperbolic metrics h and h

′ such that

1

C
h
′
6 h 6 F 6 h

′
6 Ch.

So take such a small horoball H and pick x ∈ ∂H . We have for any R > 0,

Bh′(x,
R

C
) ⊂ Bh(x, R) ⊂ B(x, R) ⊂ Bh′(x, R) ⊂ Bh(x, CR),

where Bh and Bh′ denote metric balls for h and h
′. If we denote by volh and volh′ the Riemannian

volumes associated to h and h
′, we have

volh′ 6 vol 6 volh.

Hence

volh′(Bh′(x,
R

C
) ∩ H) 6 vol(B(x, R) ∩ H) 6 volh(Bh(x, CR) ∩ H).

Now equation (4.6) provides a real D > 1 such that

1

D
N h

′

P (x,
R

C
) 6 vol(B(x, R) ∩ H) 6 DN h

P(x, CR),

where N h

P(x, R) is the number of points of the orbit P .x in the ball of radius R for h; the same for
h
′.

Well, of course, the horoballs involved in equation (4.6) are the hyperbolic horoballs, and not those
for F , so we have to be a bit more cautious. But if Hh is the horosphere for h based at p and passing
through x, then the maximal h-distance between H and Hh is finite, because P acts cocompactly
on H r {p} and Hh r {p}. Hence, there exists some D′ > 0 such that, for any R > 0,

|volh(Bh(x, R) ∩ H) − volh(Bh(x, R) ∩ Hh)| 6 D′NP(x, R),

where Hh is the horoball defined by Hh. Hence the claim that such a D exists.

We can conclude by remarking that, since h 6 F 6 h
′, we have

N h

P(x, R) 6 NP(x, R) 6 N h
′

P (x, C).

Proof of theorem 4.4.1. We already know that δΓ 6 hvol, so we only have to prove the converse.

Fix C > 1 arbitrarily close to 1, and pick o ∈ Ω. Choose a fundamental domain for the action of Γ
on Ω, that contains o, and decompose it into

C0

⊔

⊔l
i=1Ci,
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where C0 is compact and the Ci, 1 6 i 6 l, are cusps, based at ξi ∈ ∂Ω. Each Ci is the fundamental
domain for the action of a maximal parabolic subgroup Pi on the horoball Hξi

based at ξi. We
assume that the Ci are chosen small enough so that the horoballs Hξi

satisfy lemma 4.4.3, with the
constant C that was chosen.

The ball B(o, R) of radius R > 0 can then be decomposed into

B(o, R) = (Γ.C0 ∩ B(o, R)) ⊔
(

⊔l
i=1Γ.Hξi

∩ B(o, R)
)

,

so that

vol(B(o, R)) = vol(Γ.C0 ∩ B(o, R)) +

l
∑

i=1

vol(Γ.Hξi
∩ B(o, R)).

For the first term we have vol(Γ.C0 ∩ B(o, R)) 6 NΓ(o, R)vol(C0). Let us study the second one.

For each horoball Hγξi
= γHξi

, denote by xγ,i the intersection of (oγξi) with ∂Hγξi
, that is the

projection of o on Hγξi
. For any γ ∈ Γ, we denote by γ ∈ Γ one of the elements g ∈ Γ such that

xγ,i ∈ g.Ci, whose number is finite; it is the “first element for which Hγξi
intersects B(o, R)”. Let

Γ be the set of such elements.

The main remark is the following lemma, which is a classical one in pinched negative curvature: for
each θ ∈ (0, π), there exists a constant C(θ) such that, for any geodesic triangle xyz whose angle
at y is at least θ, the path x → y → z on the triangle is a quasi-geodesic between x and z with an
error at most C(θ).

Lemma 4.4.4. There exists r > 0 such that, for any γ ∈ Γ, 1 6 i 6 l and z ∈ Hγξi
, the path

consisting of the segments [oxγ,i] and [xγ,iz] is a quasi-geodesic with an error of at most r, that is,

dΩ(o, z) > dΩ(o, xγ,i) + dΩ(xγ,i, z) − r.

Proof. Take γ ∈ Γ, 1 6 i 6 l and z ∈ Hγξi
. Since (Ω, dΩ) is Gromov-hyperbolic (proposition 4.4.2),

there is some δ > 0 such that every triangle is δ-thin. So there exists p ∈ [oz], such that

dΩ(p, [xγ,iz]) 6 δ, dΩ(p, [oxγ,i]) 6 δ.

Hence, we can find points o′ ∈ [oxγ,i] and z′ ∈ [xγ,iz], such that

dΩ(o′, p) + dΩ(p, z′) 6 2δ.

By the triangular inequality, the distance between o′ and z′ is then less than 2δ. By convexity of
the metric balls and the horospheres, we get that xγ,i ∈ B(o′, 2δ), so that

dΩ(o′, xγ,i) + dΩ(xγ,i, z
′) 6 4δ.

That gives

dΩ(o, xγ,i) + dΩ(xγ,i, z) 6 dΩ(o, o′) + dΩ(o′, xγ,i) + dΩ(xγ,i, z
′) + dΩ(z′, z)

6 4δ + dΩ(o, p) + dΩ(p, o′) + dΩ(z′, p) + dΩ(p, z)

6 6δ + dΩ(o, z).
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γξi

o

z

o′

z′

p

xγ,i

Figure 4.1: Quasi-geodesics

Now, if z is a point in γ.Hξi
∩ B(o, R), for some γ ∈ Γ, 1 6 i 6 l and R > 0, this lemma implies

that
dΩ(o, xγ,i) + dΩ(xγ,i, z) 6 dΩ(o, z) + r 6 R + r.

But there exists c > 0, so that dΩ(o, xγ,i) > dΩ(o, γo)− c: take for c the maximal distance between
o and the boundary ∂Ci ∩ ∂Hξi

r {ξi}. Then

dΩ(xγ,i, z) 6 R + r − dΩ(o, γo) + c.

Let K = r + c. For any γ ∈ Γ, 1 6 i 6 l, and R > 0, we thus have

γ.Hξi
∩ B(o, R) ⊂ γ.Hξi

∩ B(xγ,i, R − d(o, γo) + K).

This gives an efficient way to evaluate vol(Γ.Hξi
∩ B(o, R)). Indeed,

vol(Γ.Hξi
∩ B(o, R)) =

∑

γ∈Γ

vol(γ.Hξi
∩ B(o, R))

6
∑

γ∈Γ

vol(γ.Hξi
∩ B(xγ,i, R − d(o, γo) + K))

6
∑

06n6[R]

∑

γ ∈ Γ
n 6 dΩ(o, γo) 6 n + 1

vol(γ.Hξi
∩ B(xγ,i, R − n − 1 + K))

6
∑

06k6[R]

NΓ(o, k, k + 1)vol(Hξi
∩ B(xi, R − k + K)),
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where xi = xId,i and, for any subset S of Γ and 0 6 r < R,

NS(o, r, R) = ♯{γ ∈ S, r 6 dΩ(o, γo) < R}.

Lemma 4.4.3 gives

vol(Γ.Hξi
∩ B(o, R)) 6 D

∑

06k6[R]

NΓ(xi, k, k + 1)NPi
(xi, C(R − k)) (4.7)

for some D > 1 that can be chosen independent of i. Furthermore, since the critical exponent of
each Pi is 1

2 , there exists M > 1, independent of i but depending on C, such that

1

M
e( 1

2−(C−1))R
6 NPi

(xi, R)) 6 Me
1
2R.

(There is no need of a corrective term for the upper bound from the second point of corollary 4.2.3.)
Hence,

NPi
(xi, CR) 6 Me

1
2 CR

6 Me( 1
2−(C−1))CR eC(C−1)R

6 M2eC(C−1)RNPi
(xi, R)).

With (4.7), that implies

vol(Γ.Hξi
∩ B(o, R)) 6 DM2eC(C−1)R

∑

06k6[R]

NΓ(xi, k, k + 1)NPi
(xi, R − k). (4.8)

Finally, remark that any γ ∈ Γ such that dΩ(xi, γxi) < R can be written in a unique way as
γ = γipi, with dΩ(xi, γixi) < R and pi ∈ Pi so that

d(xi, pixi) + dΩ(xi, γixi) > R.

Hence
NΓ(xi, R) >

∑

06k6[R]

NΓ(xi, k, k + 1)NPi
(xi, R − k). (4.9)

(4.8) and (4.9) together yield

vol(Γ.Hξi
∩ B(o, R)) 6 DM2eC(C−1)RNΓ(xi, R),

so that, putting everything together,

vol(B(o, R)) 6 NeC(C−1)RNΓ(o, R),

for some constant N > 1. That gives

hvol 6 δΓ + C(C − 1).

Since C can be chosen arbitrarily close to 1, that yields

hvol 6 δΓ.



Chapter 5

Entropies

This last chapter proves the existence and uniqueness of a measure of maximal entropy
for some specific quotients. It extends Ruelle inequality and its case of equality to
noncompact quotients of Gromov-hyperbolic Hilbert geometries. An entropy rigidity
theorem is then proved in the case of compact quotients and finite volume surfaces.

5.1 The measure of maximal entropy

The goal of this part is to prove the following theorem.

Theorem 5.1.1. Let M = Ω/Γ be the quotient manifold of a strictly convex proper open set
Ω ⊂ RPn with C1 boundary by a nonelementary group Γ ⊂ Isom(Ω, dΩ). Assume there exists a
finite Bowen-Margulis measure and denote by µBM the probability one. If the geodesic flow has
no zero Lyapunov exponent on the nonwandering set, then µBM is the unique measure of maximal
entropy and

htop = hµBM
= δΓ.

Since the geodesic flow on a geometrically finite surface has been proved to be uniformly hyperbolic
on the nonwandering set (theorem 2.5.2), it has no zero Lyapunov exponent. Furthermore, theorem
4.3.1 claims that there exists a finite Bowen-Margulis measure, and the theorem admits the following

Corollary 5.1.2. Let M = Ω/Γ be a geometrically finite surface and µBM its probability Bowen-
Margulis measure. Then µBM is the unique measure of maximal entropy and

htop = hµBM
= δΓ.

A more general version of this theorem, including the cases for which there is no finite Bowen-
Margulis measure, was proved for quotients of Hadamard manifolds of pinched negative curvature
by Otal and Peigné [59]. They actually proved that, if there is no finite Bowen-Margulis measure,
then we still have htop = δΓ but there is no measure of maximal entropy. Obviously, the assumption
of no zero Lyapunov exponent is useless in pinched negative curvature.
Such a version is probably true in our setting. Nevertheless, no example of such more exotic quo-
tient is known so far for Hilbert geometry, and we decided to restrict ourselves to the currently
more relevant cases. The assumption of no zero Lyapunov exponent can be seen as a counterpart of

83
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pinched negative curvature. Anyway, I have no idea if there can exist a quotient with zero Lyapunov
exponent on the nonwandering set.

The proof of the theorem follows the one given by Otal and Peigné, but it is simplified. I had the
opportunity to follow a mini-course given by François Ledrappier about this result; it was really
helpful to understand the whole strategy and most of the simplifications come from what I learnt
either from this lecture or from François himself.

The idea is a classical one and comes from the pioneering works of Ledrappier, Pesin, Strelcyn and
Young. This is based on Rokhlin theory of measurable partitions. Let us explain here the strategy.
There are three things to prove (see section 5.1.4):

• for any invariant probability measure µ, hµ 6 hµBM
;

• the equality hµ = hµBM
implies that µ = µBM ;

• hµBM
= δΓ.

To prove these three points, given a measure µ, we construct a well-adapted partition which allows
us to compute the entropy of µ. These are measurable partitions, as introduced by Rokhlin, which
are subordinate to the unstable foliation, that is, its atoms are open pieces of unstable manifolds.
Section 5.1.2 explains how to construct such partitions, while the next one proves that such a par-
tition α gives all the entropy, that is hµ = hµ(α, ϕ). The proof that it gives all the entropy relies on
a construction of Mañé and lemma 5.1.5, that was indicated by François Ledrappier in his lecture.
The use of this lemma really simplifies the proof given by Otal and Peigné, who instead had used
a more general and complicated argument that would also work in the presence of zero Lyapunov
exponents.
Since the partition consists of open pieces of unstable manifolds, it gives an efficient way of com-
puting the entropy of µBM , because we know how the flow acts on the Margulis measures. It also
allows us to compare the entropy of µBM with the entropy of another measure µ, and prove the
first two points.

Note that most of the tools should work in the case there would be some zero Lyapunov exponent. It
is still possible to construct a measurable partition that gives all the entropy. This partition would
be subordinate to the Wu

1 -manifold, corresponding to the smallest positive Lyapunov exponent,
and to prove it gives all the entropy, we should use the more complicated argument given by
Otal and Peigné. The problem would arrive later: the Wu

1 -manifolds are submanifolds of positive
codimension of the unstable manifolds, and we do not know how the flow acts on the conditional
measures of µBM on Wu

1 -manifolds. Thus, it is not clear this partition can help to compute the
entropy. However, since we do not know if there exist quotients with zero Lyapunov exponents,
trying to prove something in this case is not currently relevant.

5.1.1 Measurable partitions

We know from Rokhlin theorem 4.1.4 that, given an invariant probability measure, there always
exists a countable partition, which gives all the entropy. But we dot know how this partition looks
like, and it does not help to effectively compute the entropy of the measure. For this, we will use
more general partitions that were introduced by Rokhlin in [66] (see also [67] and [60] for more
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modern presentations). We recall here the most important facts about these partitions.

A partition α of a probability space (X,A, µ) is a collection (αi)i∈I of measurable subsets of X
such that

µ(αi ∩ αj) = 0, µ(X r ∪i∈Iαi) = 0.

We say that a partition α is finer than β, and write α ≻ β or β ≺ α, if any atom αi is a subset of
some atom βj . If α and β are two partitions, the joint partition α ∨ β is defined as

α ∨ β = {A ∩ B, A ∈ α, B ∈ β}.

The joint partition α ∨ β refines α and β. If α ≻ β, then α ∨ β = α. The finest partition is the
partition by points ǫ such that ǫ(x) = {x}, and the least fine one is the trivial partition with one
atom: X . To a partition α, we associate the quotient space X/α which consists of atoms of α. The
projection πα : X −→ X/α is defined almost everywhere on X and is measurable since the atoms
of the partition are measurable. We denote by µ the measure παµ on X/α.
A partition α is a measurable partition if there exists a family (An)n∈N of measurable subsets
such that A = ∪n∈NAn has full measure and, for any two atoms αi and αj , there exists some n
such that A ∩ αi ⊂ An, A ∩ αj ⊂ Ar An. Rokhlin proved that conditional measures with respect
to a measurable partition can be defined, that is:

Theorem 5.1.3 (Rokhlin [66]). Let α be a measurable partition. Then, to µ-almost every atom
a ∈ α, is associated a probability measure µa on X such that

• µa is supported on a;

• the application x 7−→ µα(x) is measurable;

• for any measurable set A, µ(A) =
∫

X/α
µa(A)dµ(a).

The measure µα(x) is called the conditional measure at x with respect to α.

The entropy of a measurable partition is defined by

H(α) = −
∫

X

log µ(α(x)) dµ(x),

which generalizes definition 4.2. This definition is not interesting for those partitions whose atoms
have measure zero, since their entropy is zero.

Consider an invertible transformation Φ : (X, µ) −→ (X, µ). The inversibility is not necessary for
the definitions, but the tools and results are really different in the case of a noninvertible transfor-
mation. Since we want to apply it to our geodesic flow, there is no need of considering noninvertible
transformations.

We want to define the entropy of a measurable partition α under Φ. Definition 4.3 would give zero
for all those partitions whose atoms are negligible, thus another one is needed to take them into
account.
Φ transforms the partition α in a new partition Φα whose atoms are the Φ−1(αi), i ∈ I. We say
that a partition is increasing if Φα is finer than α, that is, Φα ≻ α. That means that each atom αi
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is the union of atoms of Φα. Thus it makes sense to consider the conditional entropy of Φα with
respect to α given by

H(Φα|α) =

∫

X

µα(x)(Φα(x)) dµ(x).

We then define the entropy of an increasing measurable partition by

h(Φ, α) = H(Φα|α)

(see section 4.1.2). If P is countable and increasing, then this definition coincide with the one given
by (4.3).
Remark that, for any countable partition P , the partition P− = ∨0

i=−∞ΦiP is increasing, and we
have

h(P, Φ) = h(P−, Φ).

We thus have
h(Φ) = sup

α
h(α, Φ),

where the supremum is taken with respect to all measurable increasing partitions with finite entropy.

Of course, we can also do the same for decreasing partitions such that α ≻ Φα; these are just
increasing partitions for Φ−1, that has the same entropy as Φ.

We say that a partition α is generating if

i=+∞
∨

i=−∞

Φiα = ǫ

is the partition into points.

5.1.2 Leaf subordinated partitions

Let M = Ω/Γ be the quotient manifold of a strictly convex proper open set Ω ⊂ RPn with C1

boundary by a nonelementary group Γ ⊂ Isom(Ω, dΩ). An ergodic measure is always supported
on the nonwandering set. A general invariant probability measure can always be decomposed into
a conservative and a dissipative part; the dissipative part does not change the entropy and the
conservative part is supported on the nonwandering set. By decomposing the space into ergodic
components, we can always assume that the measure is ergodic.

In what follows, we fix an ergodic probability measure m for the geodesic flow ϕt on HM , and we
choose T > 0 such that Φ = ϕT is ergodic with respect to m. This is always possible, as claimed
by lemma 7 in [59].

By Oseledets’ theorem, m-almost every point in HM is regular with the same Lyapunov exponents.
Assume m has no zero Lyapunov exponent, and call Λm the set of regular points with positive
Lyapunov exponents 0 < χ1 < · · · < χp, which is of full m-measure. At any point w ∈ Λm, for any
vector Z ∈ Eu(w) r {0},

lim
t→±∞

1

t
log F (dϕt(Z)) > χ1.
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We fix 0 < epsilon < χ1

923 . For any w ∈ Λm, there exists C(w) > 0 such that, for any Z ∈ Eu(w)
and t > 0,

F (dϕ−t(Z)) 6 C(w)e−(χ1−ǫ)tF (Z).

In fact, we can choose

C(w) = sup

{

F (dϕ−t(Z))

e−(χ1−ǫ)tF (Z)
, t > 0, Z ∈ Eu(w)

}

,

so that the function C : Λm −→ (0, +∞) is measurable and C(ϕ−t(w)) = O(1), t → +∞.

Let Λm(c) = C−1((0, c)) for c > 0. If c′ > c, then Λm(c′) ⊃ Λm(c), and since Λm =
⋃

c>0 Λm(c),
there exists some c0 > 0 such that, for any c > c0, m(Λm(c)) > 0.

Theorem 5.1.4. Let M = Ω/Γ be the quotient manifold of a strictly convex set Ω with C1 boundary.
Let m be an ergodic invariant measure on HM with no zero positive Lyapunov exponent. Then
there exists a measurable, generating and decreasing partition α subordinate to the unstable foliation
Wu.

Such a partition will be called a Wu-partition with respect to m. By subordinate to Wu, we mean
that m-almost any atom of the partition α is an open subset of Wu.

We will need the concept of a flow box. For w ∈ HM and r > 0, we denote by W s(w, r)
(resp. Wu(w, r)) the r-neighbourhood of w in the stable manifold W s(w) (resp. unstable manifold
Wu(w)), where distances are considered with respect to the metrics induced by the Finsler metric
F . The (closed) flow box Br(w0) of size r > 0 (small enough) and origin w0 ∈ HM is

Br(w0) =
⋃

06t6r

ϕt(Bus(w0, r)),

where
Bus(w0) = {v ∈ Wu(w, r), w ∈ W s(w0, r)}.

Obviously, r has to be chosen small enough so that all the images ϕt(Bus(w0, r)) are disjoint for
0 6 t 6 r. By construction, Br(w0) is foliated by the ϕt(Bus(w0, r)), 0 6 t 6 r, but also by pieces
of unstable manifolds of diameter 2r.

Proof of proposition 5.1.4. Take a c > c0 such that m(Λm(c)) > 0. Consider a flow box Br :=
Br(w0) of size r > 0, with origin w0 ∈ Λm(c) ∩ supp(m), so that in particular m(Br ∩Λm(c)) > 0.
Define the partition α′ of HM by Br foliated by Wu-leaves, and (Br)

c: if w ∈ Br, the atom α′(w)
is the connected component of w in Wu(w) ∩ Br; if w 6∈ Br, then α′(w) = (Br)

c. Let

α =

+∞
∨

k=0

Φ−kα′.

This partition α is measurable, generating and decreasing.
We have to prove that for almost every w ∈ HM , the atom α(w) is an open neighbourhood of w
in Wu(w). For k ∈ N, we have

Φkα′(w) = Φ−k(α′(Φk(w))),
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hence
α(w) =

⋂

k∈N

Φ−k(α′(Φk(w))).

The interesting terms in this intersection are those when Φk(w) ∈ Br since Φk(w) is then a piece of
Wu-manifold. Since m is ergodic, almost any point w ∈ HM will go through Br infinitely often,
so α(w) will be m-almost surely a piece of Wu(w). Such a piece will be an open neighbourhood if
every time w goes through Br, it stays far enough from the boundary of Br. More precisely, α(w)
will be an open neighbourhood of w in Wu(w) if there is no strictly increasing sequence of positive
times nk, k ∈ N, such that

lim
k→+∞

du(Φ−nk(w), ∂Br) = 0,

where du denotes the metric generated by F on Wu(w). (Remark that this metric is nothing else
than the metric generated by the Hilbert metric F on the projection of Wu(w) on M .)

But a classical Borel-Cantelli argument proves that this is true almost everywhere on any Λm(c)
for Lebesgue almost any r > 0 (see [2] p.285-288). Since Λm = ∪n∈N∗Λm(n), the same holds on
Λm.

Lemma 5.1.5. Let α be an increasing and generating m-measurable partition. If there exists some
countable partition Q such that Q− ≻ α, then

h(α, Φ) > h(Q, Φ)

Proof. We have

h(Q, Φ) = H(ΦQ|Q−) 6 H(ΦP |α) = lim
n→∞

1

n
H(P−n|α)

6 lim
n→∞

1

n
H(P−n ∨ Φnα|α)

= lim
n→∞

1

n
(H(P−n|Φnα ∨ α) + H(Φnα|α))

= h(α, Φ),

since Φnα → ǫ.

5.1.3 Mañé partitions

We here explain a construction of Mañé. This construction gives a finite partition P such that P−

is finer than the Wu-partition of theorem 5.1.4, that allows to apply lemma 5.1.5; see corollary 5.1.9.

We still assume that we have fixed an ergodic probability measure m for the geodesic flow ϕt on
HM , and a time T > 0 such that Φ = ϕT is ergodic with respect to m.

For a relatively compact measurable subset B of positive m measure, the Mañé partition PB induced
by B will be the partition

PB = Bc
⊔

⊔n>1Bn,
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where Bn = {w ∈ B, Φnw ∈ B, Φiw 6∈ B, 0 < i < n} for n > 1.

Lemma 5.1.6 (Kăc’s lemma). If PB = Bc
⊔⊔n>1Bn is the Mañé partition induced by B then

∑

nm(Bn) = 1.

Proof. Since m is ergodic, we have

HM =
⊔

n>1

⊔06i6n−1 ΦiBn mod 0,

and by invariance of m,

1 =
∑

n

∑

06i6n−1

m(ΦiBn) =
∑

nm(Bn).

The next lemma tells us that PB has then finite entropy.

Lemma 5.1.7. If (xn) ∈ [0, 1]N is such that
∑

n nxn < +∞, then

−
∑

xn log xn < +∞

Proof. This is lemma 10.5.3 in [2], p.316.

We keep using the notations of the preceding section. We choose a c > 0 such that m(Λm(c)) > 0.
Consider a closed flow box B′

r := B′
r(w0) of size r > 0, with origin w0 ∈ Λm(c)∩ supp(m). Consider

Br = ∪w∈B′
r∩Λm

(Wu(w) ∩ B′
r) and the Mañé partition

B = PBr
= Bc

r

⊔

⊔n>1Bn

induced by Br.

We refine this partition in the following way: cut Bn into Kn pieces (Bn,k)16k6Kn
such that each

Φn(Bn,k) is exactly one connected component of Φn(Bn) ∩ Br. The number Kn of pieces can be
chosen smaller than Ce(χ1+ǫ)n for some C > 0. Now refine the partition B into B′ by cutting Br

into
Br =

⊔

n

⊔

16k6Kn

Bn,k.

Finally, recall from the construction of the flow box that Bus(w0) denotes “the basis of the box”.
Let

Ci =
⋃

r/2i+1<t6r/2i

ϕt(Bus(w0))

for i > 0, and consider the partition C whose atoms are the Ci, i > 0 and (∪i>0Ci)
c = (B′

r)
c. Each

Ci has positive measure, since w0 ∈ supp(m) and C has clearly finite entropy: if M = m(C0) then
m(Ci) = M

2i and

H(C) =
∑

i>0

M

2i
log

2i

M
< +∞.

Let Q = C ∨ B′.
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Proposition 5.1.8. Assume m has no zero Lyapunov exponent. Then for Lebesgue-almost all r
small enough, Q is generating and P = Q− is a subpartition of the Wu-partition α induced by Br.

Proof. First check that Q has finite entropy: we have

H(Q) 6 H(C) + H(B′) + H(Q|B′)

and

H(Q|B′) 6 −
∑

n

∑

16k6Kn

m(Bn,k) log
m(Bn,k)

m(Bn)

6 −
∑

n

m(Bn)
∑

16k6Kn

1

Kn
log

1

Kn

6 D
∑

n

nm(Bn)

= D

< +∞,

from Kăc’s lemma.

Now, we prove that for almost all w, P (w) ⊂ Wu(w, r) and thus P is generating.
For two points v and w, we have v ∈ P (w) if for any n > 0, Φ−nv ∈ Q(Φ−nw). In particular, the
preimages of v and w are in Ci at the same moment. Let 0 < n1(v) < · · · < ni(v) < · · · be the
times for which Φ−nkv ∈ Ci; since m(Ci) > 0, the set N(v) = {nk(v)} ⊂ N is infinite for almost
every point v ∈ HM , and

P (v) ⊂
⋂

i>1

Φni(Ci) ⊂ Wu(v).

Thus there exists a smallest N > 0 such that Φ−Nv ∈ Br and, for any n > N , Φ−nv ∈ Wu(Φ−nw, r).
But Φ−Nv and Φ−Nw are both in some Bp,k, so that Φ−N+pw and Φ−N+pv are in

Wu(Φ−N+pw) ∩ Φ−N+p(Bp,k) ⊂ Wu(Φ−N+pw, r).

Since N is the smallest positive number for which this may occur, we have −N + p > 0, hence
for any −N 6 i 6 −N +p, Φ−iv ∈ Wu(w, r). In particular, v ∈ Wu(w, r), that is P (w) ⊂ Wu(w, r).

It is clear from the construction that P− ≻ α.

Corollary 5.1.9. Let M = Ω/Γ be the quotient manifold of a strictly convex proper open set Ω
with C1 boundary. If an invariant ergodic measure m on HM has no zero Lyapunov exponent and
α is the Wu-partition induced by Br, then

h(Φ) = h(Φ, α).

Proof. Last proposition tells us that there exists a generating countable partition Q such that
Q− ≻ α. Kolmogorov-Sinai theorem gives h(Φ) = h(Φ, Q) and lemma 5.1.5 yields h(Φ, α) > h(Φ, Q).
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5.1.4 Proof of theorem 5.1.1

The following lemma is general and will be used a couple of times. This is lemma 8 in [59] and we
omit the proof.

Lemma 5.1.10. Let f : HM 7−→ R be a measurable function such that f ◦ Φ − f has its negative
part in L1(m). Then

∫

f ◦ Φ − f dm = 0.

Let us first prove an intermediate

Proposition 5.1.11. Let M = Ω/Γ. Assume there exists a finite Bowen-Margulis measure and
denote by µBM the probability one. If µBM has no zero Lyapunov exponent, then

hµBM
= δΓ.

Proof. Let us abbreviate µBM by µ. Let α be a Wu-partition for µ as in theorem 5.1.4. We have
from corollary 5.1.9,

hµ(Φ) = hµ(Φ, α) = −
∫

log µΦ−1α(w)(α(w)) dµ(w),

and

µΦ−1α(w)(α(w)) = µα(Φw)(Φ(α(w))) =
µu(Φ(α(w)))

µu(α(Φw))
= e−δΓT µu(α(w))

µu(α(Φw))
.

Hence

hµ(Φ) = δΓT −
∫

log
µu(α(w))

µu(α(Φw))
dµ(w) = δΓT,

from lemma 5.1.10. Since Φ = ϕT , we get hµ(ϕ) = δΓ.

We can now proceed with the

Proof of theorem 5.1.1. Let us abbreviate µBM by µ, and assume the geodesic flow has no zero
Lyapunov exponent on the nonwandering set. Since µ is supported on the nonwandering set, µ has
no zero Lyapunov exponent and the last proposition gives hµ = δΓ.

Now we prove that, for any invariant probability measure m, hm(ϕt) 6 δΓ. We can assume that m
is ergodic, and so it is supported on the nonwandering set. Let α be a Wu-partition as in theorem
5.1.4, but this time, with respect to the measure m. α is not necessarily µ-measurable, but m-
almost every atom α(w) is an open neighbourhood of w in Wu(w), hence is Borelian, µ-measurable
and has nonzero µu-measure. So we can set, for any µ-measurable set A,

µα(w)(A) :=
µu(A ∩ α(w))

µu(α(w))
.

In this way, α becomes “µ-measurable” and the same computation as before in proposition 5.1.11
gives

−
∫

log µΦ−1α(w)(α(v)) dm(w) = TδΓ.
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By Jensen inequality we get

TδΓ − hm(Φ) = −
∫

log
µΦ−1α(w)(α(w))

mΦ−1α(w)(α(w))
dm(w) > − log

(∫

µΦ−1α(w)(α(w))

mΦ−1α(w)(α(w))
dm(w)

)

.

Finally, remark that

∫

µΦ−1α(w)(α(w))

mΦ−1α(w)(α(w))
dm(w) =

∫

(

∫

Φ−1α(w)

µΦ−1α(w)(α(v))

mΦ−1α(w)(α(v))
dmΦ−1α(w)(v)

)

dm(w)

=

∫





∑

A∈Φ−1α(w)

µΦ−1α(w)(A)



 dm(w)

6 1,

so that δΓ > hm(Φ).

That proves that µ is a measure of maximal entropy. To prove uniqueness, we have to show that
equality in the last inequality gives m = µ. But this is the case if and only if there is equality in
Jensen’s inequality, that is,

µΦ−1α(w)(α(w))

mΦ−1α(w)(α(w))
= 1, m − a.e. (5.1)

Since α is generating, this implies that for m-almost any w, µα(w) = mα(w). Let f be a continuous
function with bounded support on HM , and denote by Aµ the set of w ∈ HM such that

lim
n→+∞

1

n

n−1
∑

k=0

f(Φk(w)) =

∫

f dµ.

The ergodic theorem tells us that µ(Aµ) = 1. Furthermore, if w ∈ Aµ, then by uniform continuity
of f , the entire central stable manifold W cs(w) is contained in Aµ. Both facts and the local product
structure of µ imply that Aµ has full µu

w-measure for all w. Thus, for m-almost every w (those such
that α(w) is an open neighbourhood of w in Wu(w)), we have µα(w)(Aµ) = 1, so that

m(Aµ) =

∫

mα(w)(Aµ) dm(w) =

∫

µα(w)(Aµ) dm(w) = 1.

The ergodic theorem applied to m gives finally a set of full m-measure Am, such that for all w ∈ Am,

lim
n→+∞

1

n

n−1
∑

k=0

f(Φk(w)) =

∫

f dm.

Am∩Aµ has now full m-measure, which implies
∫

f dµ =
∫

f dm. Since f is arbitrary, we conclude
that m = µ.

5.2 Ruelle inequality

We give a proof in our context of the famous Ruelle inequality and explicit the conditions under
which it is actually an equality, following Ledrappier and Young [47]. It gives and efficient way to
estimate entropies and will be essential to get the rigidity results of the next section.
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5.2.1 A proof of Ruelle inequality

Theorem 5.2.1 (Ruelle inequality). Let (Ω, dΩ) be a Gromov-hyperbolic Hilbert geometry and
M = Ω/Γ a quotient manifold. Let m be an invariant probability measure on HM . Then

hm(ϕ) 6

∫

χ+ dm,

where χ+ =
∑

dimEi χ+
i denotes the sum of positive Lyapunov exponents.

Proof. This proof is inspired by the one appearing in [2] in the compact case. We can assume that
m is ergodic. Recall that, since (Ω, dΩ) is Gromov-hyperbolic, Ω is strictly convex and ∂Ω is C1+ǫ

for some ǫ > 0. In particular, m has no zero Lyapunov exponent.
Let χ1 be the smallest positive Lyapunov exponent and fix ǫ < χ1

923 . Let α be the leaf parti-
tion of theorem 5.1.4 induced by Br. We endow each Wu-manifold with the metric du, generated
by the restriction of the Finsler metric F on the Wu-manifold. For d > 0, define Ud = {w ∈
HM, diamuα(w) > d}, where diamu denotes the diameter with respect to du. Since α(w) is an
open neighbourhood of w in Wu(w), we have limd→0 m(Ud) = 1. Choose d such that m(Ud) > 1− ǫ

2 .

Now, recall from section 5.1.2 the construction of the set Λm(c), c > 0. Let

Λm(c, r) = {w, Wu(w, r) ⊂ Λm(c)}.

Choose c > 0 large enough to have m(Λm(c, r)) > 1− ǫ
2 . Call Ak = Ak(d, c) = Φ−k(Λm(c, r)∩Ud),

so that m(Ak) > 1 − ǫ.

We have, for k > 1,

hm(Φk) =

∫

− log mα(w)Φ
kα(w) dm(w)

=

∫

Ak

− logmα(w)Φ
kα(w) dm(w) +

∫

HMrAk

− logmα(w)Φ
kα(w) dm(w).

The second term is less than hm(Φk)ǫ. For the first one, we have

∫

Ak

− logmα(w)Φ
kα(w) dm(w) =

∫

Ak

(

∫

α(w)

− log mα(w)Φ
kα(v) dmα(w)(v)

)

dm(w)

6

∫

Ak

log ♯{A ∈ Φkα, A ⊂ α(w), A ∩ Ak 6= ∅} dm(w).

The set
{A ∈ Φkα, A ⊂ α(w), A ∩ Ak 6= ∅}

consists of subsets A = Φ−k(α(Φkv)) for some v ∈ α(w) ∩ Ak. For such a v, we have Φkv ∈ Ud, so
that diamu(α(Φkv)) > d; furthermore, since Φkv ∈ Λm(c), we have

volu(A) > vol(Φ−k(Wu(Φkv, d))) >
1

c
e−k(χ++ǫ)volu(Wu(Φkv, d)),
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where volu denotes the Busemann volume associated to the metric du (see section 1.4.4). Now
recall that α(w) ⊂ Wu(w, r), so that volu(α(w)) 6 volu(Wu(w, r)). Hence

♯{A ∈ Φkα, A ⊂ α(w), A ∩ Ak 6= ∅} 6
volu(Wu(w, r))

minv∈α(w){volu(Wu(Φkv, d))} cek(χ++ǫ)

6 cDek(χ++ǫ),

(5.2)

for some constant D := D(r, d), as claimed by lemma 5.2.4 below. Finally,

hm(Φ) =
1

k
hm(Φk) 6

1

k
log(cD) + (χ+ + ǫ) + ǫhm(Φ).

Let k go to +∞ to get
hm(Φ) 6 χ+ + ǫ(1 + hm(Φ)).

Since ǫ is arbitrarily small, we have the result.

To prove the claim about volumes in inequality (5.2), we have to recall two results about the set
Xn of convex proper open subsets of RPn. For δ > 0, we let

Xδ
n = {Ω ∈ Xn, (Ω, dΩ) is δ-hyperbolic}

and
Xn,0 = {(Ω, x), Ω ∈ Xn, x ∈ Ω}, Xδ

n,0 = {(Ω, x), Ω ∈ Xδ
n, x ∈ Ω}.

The projective group PGL(n + 1,R) acts on each of these sets.

Theorem 5.2.2 (Benzécri, [9]). The action of PGL(n + 1,R) on Xn,0 is proper and cocompact,
that is, Xn,0/PGL(n + 1,R) is compact.

Proposition 5.2.3 (Benoist, [6]). Let δ > 0. The set Xδ
n is a PGL(n + 1,R)-invariant closed

subset of Xn.

Both results imply that the quotient Xδ
n,0/PGL(n + 1,R) is compact, hence the expected

Lemma 5.2.4. Let δ > 0 and r > 0. There exist constants v = v(r, δ) > 0 and V = V (r, δ) > 0
such that, for any δ-hyperbolic Hilbert geometry (Ω, dΩ) and w ∈ HΩ,

v < volu(Wu(w, r)) 6 V.

Proof. Consider the function

f : Xδ
n,0 −→ (0, +∞)

(Ω, x) 7−→ max{volu(Wu(w, r)), w ∈ HxΩ}.

This function is continuous and PGL(n +1,R)-invariant. Since Xδ
n,0/PGL(n +1,R) is compact, f

is bounded: there exists V > 0 such that, for any Ω ∈ Xδ
n,0 and w ∈ HΩ, volu(Wu(w, r)) 6 V .

The same can be done with the function g : (Ω, x) 7−→ min{volu(Wu(w, r)), w ∈ HxΩ} to get the
lower bound.

I guess Ruelle inequality should be true for all Hilbert geometries but the proof would be a bit more
involved. Anyway, we do not really need it for the applications.
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5.2.2 Sinai measures and the equality case

An invariant measure that achieves the equality in Ruelle inequality is called a Sinai measure.
This is named under the name of Sinai because Sinai proved that equality occurs when the measure
is a smooth measure. More generally, the theorem is the following:

Theorem 5.2.5 (Ledrappier-Young [47]). Let (Ω, dΩ) be a Gromov-hyperbolic Hilbert geometry and
M = Ω/Γ a quotient manifold. Let m be a ϕt-invariant probability measure on HM . Then m is a
Sinai measure if and only if it has absolutely continuous conditional measures on Wu-manifolds.

Proof of theorem 5.2.5. We just give an idea of the proof, details can be found in [2] or [47]. It can
be reduced to the case when m is ergodic. So let vol be the volume defined on HM by F and m
be an ergodic invariant measure of the flow. Take a Wu-partition α as in theorem 5.1.4, such that

hm =

∫

− logmΦ−1α(w)(α(w)) dm(w). (5.3)

If m has absolutely continuous unstable measures, then we can write dmα(w) = f dvolα(w). Now,
we can see that f must be proportional for v ∈ α(w) to the infinite product

f(v) =

+∞
∏

n=1

Ju(Φ−nv)

Ju(Φ−nw)
, (5.4)

with Ju(v) = det dvΦ−1|Eu , which is well defined thanks to the C1+ǫ regularity of the boundary,
which implies C1+ǫ regularity of the flow. Equation (5.4) now gives the equality.

For the converse, the argument is similar to the one used to prove theorem 5.1.1. Assume m is a
Sinai measure, that is hm =

∫

χ+ dm. Let f be as in (5.4) and define a new Borel measure ν by
setting dνα(w) = f dvolα(w). In this way, ν = vol on the subalgebra Bα of B which contains all
unions of elements of α; for a Borelian B, the measure ν(B) is well defined by

ν(B) =

∫

να(w)(B) dν(α(w)).

Then we can prove that m = ν. We first check that

hm =

∫

− log νΦ−1α(w)(α(w)) dm(w).

By Jensen inequality and the fact that α is generating, we get that for m-almost every w,

να(w) = mα(w),

which gives dmα(w) = f dvolα(w).

5.3 Entropy rigidities

5.3.1 Compact quotients

A pragmatic goal of this thesis was to distinguish Riemannian hyperbolic structures from non-
Riemannian strictly convex projective ones by their entropies. For compact manifolds, a complete
answer is given by theorem 5.3.3, which is the main result of the article [25].
The first step in the proof of this theorem is the following general rigidity result:
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Proposition 5.3.1. Let (Ω, dΩ) be a Gromov-hyperbolic Hilbert geometry and M = Ω/Γ a quotient
manifold. Assume there is a finite Bowen-Margulis measure on HM and denote by µBM the
probability one. Then

δΓ 6 n − 1,

with equality if and only if µBM is absolutely continuous.

Proof. Proposition 5.1.11 gives hµBM
= δΓ. Ruelle inequality implies that

hµBM
6

∫

χ+ dµBM = n − 1 +

∫

η dµBM ,

where η corresponds to the parallel transport, as in proposition 3.2.1.
As we saw from the Patterson-Sullivan construction (section 4.2.2), the Bowen-Margulis measure
is flip-invariant, that is σ ∗ µBM = µBM . We could also use the unicity of the measure of maximal
entropy to prove it. Recall now from lemma 3.2.2 that η is antisymmetric to get

∫

η dµBM = 0,

and
δΓ 6 n − 1.

From theorem 5.2.5, equality occurs if and only if µBM has absolutely continuous unstable condi-
tional measures. But this is equivalent to the absolute continuity of the Patterson-Sullivan measures,
that is, to the absolute continuity of the whole measure µBM .

The next lemma gives a criterion to apply proposition 5.3.1.

Lemma 5.3.2. Let (Ω, dΩ) be a Gromov-hyperbolic Hilbert geometry and M = Ω/Γ a quotient
manifold. Assume there exists a probability Bowen-Margulis measure µBM . If Γ is Zariski-dense
in SL(n + 1,R), then µBM is not absolutely continuous.

Proof. Assume µ := µBM is absolutely continuous with respect to the volume vol defined by the
metric F . Call vols and volu the volumes defined by F on the stable and unstable manifolds. Take
a Wu-partition α as in theorem 5.1.4. As in theorem 5.2.5, we can see that, on µ-almost every
α(w), µu = fuvolu, where fu(v), for v ∈ α(w), is proportional to the infinite product

+∞
∏

n=1

Ju(Φ−nv)

Ju(Φ−nw)
. (5.5)

What is important is that fu is continuous and fu > 0. In the same way, we see that µs = fsvols

with fs positive and continuous. This implies that µ itself satisfies µ = fvol, with f positive and
continuous on the support of µ. But the support of µ is the whole nonwandering set, so f is positive
and continuous on the nonwandering set.

Now, consider the periodic orbit γ of length l(γ) associated to the hyperbolic element γ ∈ Γ. Pick
w ∈ γ. Since f is positive on the orbit γ, it implies that dwϕl(γ) is a linear automorphism of TwHM
such that

| det dwϕl(γ)| = 1.
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Together with proposition 3.6.1, that implies

0 = lim
t→+∞

1

t
log | det dwϕt| = 2η(γ) = 2(n + 1)

log λ0(γ) + log λp+1(γ)

log λ0(γ) − log λp+1(γ)
,

where λ0(γ) and λp+1(γ) denote the biggest and smallest eingenvalues of γ. Thus, for any γ ∈ Γ,
we have

log λ0(γ) + log λp+1(γ) = 0,

or
λ0(γ)λp+1(γ) = 1.

But, from theorem 1.2.a.β of [4], such an equation cannot occur for all hyperbolic elements γ ∈ Γ
if Γ is Zariski-dense.

We can now state the

Theorem 5.3.3. Assume M = Ω/Γ is compact. Then δΓ = htop 6 n− 1, with equality if and only
any of the following equivalent propositions is satisfied:

• M is Riemannian hyperbolic;

• the parallel transport on M is an isometry;

• the Bowen-Margulis measure is absolutely continuous.

The last result which is useful to get the theorem is the following. It was shown by Benoist for
cocompact groups, but his proof readily extends to get the

Theorem 5.3.4 (Y. Benoist, [5]). Let Γ ⊂ Isom(Ω, dΩ) such that ΛΓ = ∂Ω. Then the Zariski-
closure of Γ is either conjugated to SO(n, 1) or it is all of SL(n + 1,R).

Proof of theorem 5.3.3. In this case of a compact manifold, µBM is exactly the measure of maximal
of maximal entropy constructed by Bowen and Margulis, so htop = hµBM

. The equality δΓ = htop

is Manning’s theorem 1.6.2. Of course, this is also a special case of theorem 5.1.1.

Now, recall that (Ω, dΩ) is necessarily Gromov-hyperbolic, from Benoist’s theorem 1.4.2. Proposi-
tion 5.3.1 gives

δΓ 6 n − 1,

with equality if and only if µBM is absolutely continuous. If the case M is Riemannian hyperbolic,
µBM is actually the Liouville measure and there is equality. Otherwise, theorem 5.3.4 together
with lemma 5.3.2 say that µBM cannot be absolutely continuous. The proposition about parallel
transport is just what was proved in the course of the proof of lemma 5.3.2.

Together with proposition 1.6.1, we get the following

Corollary 5.3.5. Let Ω be a divisible strictly convex set. Then

hvol(Ω) 6 n − 1,

with equality if and only if Ω is an ellipsoid.

The existence of divisible sets in all dimensions gives a lot of Hilbert geometries whose volume
entropy is strictly between 0 and n − 1. This statement is then a more precise answer to the
conjecture 1.5.2 for divisible strictly convex sets.
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5.3.2 Finite volume surfaces

I hoped to extend the last rigidity results to noncompact quotients and the last two chapters were
the first steps to such extensions. General results are not available yet but, in the particular case of
surfaces where we can understand the possible quotients, we get the following extension of theorem
5.3.3, whose proof is exactly the same (recall that (Ω, dΩ) is Gromov-hyperbolic from Marquis’
proposition 4.4.2):

Theorem 5.3.6. Let M = Ω/Γ be a surface of finite volume. Then δΓ 6 1, with equality if and
only if any of the following equivalent propositions is satisfied:

• M is Riemannian hyperbolic;

• the parallel transport on M is an isometry;

• the Bowen-Margulis measure is absolutely continuous.

Together with theorem 4.4.1, this implies the following

Corollary 5.3.7. Assume Ω ⊂ RP2 admits a quotient of finite volume. Then

hvol(Ω) 6 n − 1,

with equality if and only if Ω is an ellipsoid.

Let me end this part with some remarks.

First of all, I thought it was possible to go further and to prove that, for any geometrically finite
surface M = Ω/Γ, we had δΓ 6 1, and that equality occurred if and only if M was Riemannian
hyperbolic with finite volume. Indeed, it is known that if M = Hn/Γ is a geometrically finite
manifold with infinite volume, then δΓ < n− 1, and so we could expect the same in our case. I still
guess it is true, but it is not so easy, as we now see.
In SL(3,R), the only infinite Zariski-closed subgroups are, up to conjugation, SO(3), SO(2, 1)
and SL(3,R). Since SO(3) is compact, the Zariski-closure Γ of an infinite discrete subgroup Γ of
Isom(Ω, dΩ) can be either a conjugate of SO(3, 1) or SL(3,R).

• If Γ = SL(3,R), lemma 5.3.4 applies and as before we get δΓ < 1;

• If Γ is conjugated to SO(2, 1), then, that means Γ acts on some ellipsoid. In particular,
the limit set lies on an ellipsoid. Nevertheless, that does not imply that the geometry is
Riemannian hyperbolic, because the limit set is in general not the whole of ∂Ω. So Ω has a
lot of points in common with an ellipsoid but that is all we know.

Let us recall that, when M = Ω/Γ is compact, the critical exponent is exactly the exponential
growth rate of numbers of closed geodesics of length at most t:

δΓ = lim
t→+∞

1

t
log ♯{γ ∈ Γ, γ hyperbolic and l(γ) 6 t}.

If the same were true for geometrically finite surfaces, then δΓ would depend only on the group Γ
and not on Ω, hence we could conclude from the fact that Γ acts on some H2. But I do not know
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if this remains true...

Second, we could also want to distinguish Riemannian hyperbolic structures and non-Riemannian
ones on surfaces of infinite volume by some dynamical invariant. But in this case, topological en-
tropy is clearly not what we have to look at. Take for example a convex cocompact hyperbolic
surface. It is known that its topological entropy depends on the hyperbolic structure and can take
all the values which are strictly between 0 and 1. Thus, we cannot expect a result like theorem 5.3.6:
there would be some non-Riemannian structures whose topological entropy would be bigger than
the topological entropy of some hyperbolic structure. So a new rigidity result has to be formulated
in this context.

5.4 Continuity of entropy

We finish this section, chapter and thesis by the following proposition, which asserts that the
entropy of a compact manifold or a finite volume surface varies continuously with the structure.
By varying the structure, we mean the following. Take an abstract smooth compact manifold
M , which admits a strictly convex projective structure M0 = Ω0/Γ0. This means we are given a
developing map dev0 : M̃ −→ Ω0, which is a diffeomorphism from the universal cover of M to Ω0,
and a representation Γ0 = ρ0(π1(M)) of the fundamental group of M as a faithful and discrete
subgroup of PGL(n + 1,R). Remark that the convex set Ω0 itself is indeed determined by this
representation, since the limit set ΛΓ is the whole of ∂Ω. Endow the set Hom(π1(M), PGL(n+1,R))
of representations with the compact-open topology, and the set of maps M̃ −→ RPn with the
topology of uniform convergence. A continuous deformation of the structure is a path (devλ, ρλ)
of convex projective structures which is continuous with respect to these topologies. The same can
be done for deformations of finite volume convex projective structures on a surface M .

Proposition 5.4.1. Assume M0 = Ω0/Γ0 is compact (resp. a surface of finite volume). Let
Mλ = Ωλ/Γλ, λ ∈ [−1, 1] be a continuous deformation of M into compact manifolds (resp. finite
volume surfaces). Then the function λ 7−→ δΓλ

is continuous.

Proof. Let us do the proof in the compact case. Let (ρλ, devλ) λ ∈ [−1, 1] be the considered
deformation of (ρ0, λ0). These structures provide Finsler metrics Fλ on the abstract manifold M .
These metrics vary continuously with λ in the following sense:

lim
λ→0

sup
TMr{0}

Fλ

F0
= 1.

For let T 1M the unit tangent bundle for F0. Since T 1M is compact1 and λ 7→ devλ is continuous,

lim
λ→0

sup
T 1M

|Fλ − F0| = 0.

Moreover minT 1M F0 > 0, hence

lim
λ→0

sup
T 1M

|Fλ

F0
− 1| = 0.

1In the case of a finite volume surface, one has to use the fact that the geometry is controlled in the cusps.
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Homogeneity gives the result, that is there exist reals Cλ > 1 such that limλ→0 Cλ = 1 and

C−1
λ 6 sup

TMr{0}

Fλ

F0
6 Cλ.

Denote by d̃λ the associated distances on M̃ . Let x, y ∈ M̃ , and cλ be the geodesic from x to y for
the metric d̃λ, such that

∫

F̃λ(c′λ(t)) dt = d̃λ(x, y). Then

C−1
λ 6

∫

F̃λ(c′λ(t)) dt
∫

F̃0(c′λ(t)) dt
6

d̃λ(x, y)

d̃0(x, y)
6

∫

F̃λ(c′0(t)) dt
∫

F̃0(c′0(t)) dt
6 Cλ.

Thus for any x, y ∈ M̃ ,

C−1
λ 6

d̃λ(x, y)

d̃0(x, y)
6 Cλ.

From that we clearly get B̃λ(x, R) ⊂ B̃0(x, CλR). Hence

δΓλ
= lim sup

R→∞

1

R
♯{g ∈ π1(M), gx ∈ B̃λ(x, R)} 6 lim sup

R→∞

1

R
♯{g ∈ π1(M), gx ∈ B̃0(x, CλR)} = CλδΓ0 .

Similarly, C−1
λ δΓ0 6 δΓλ

. That gives the continuity.
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indulgent, n’y est pas très bon. J’aurais pu faire beaucoup plus de figures, mais c’est
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rendre mes livres avec 3 mois de retard; je n’ai pas usé de ce dernier droit mais par contre, j’ai usé
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sa connaissance du monde riemannien courbé négativement m’a permis de prendre de nouvelles
directions, de comprendre de nouveaux outils. Au final, il y a plein de choses dans cette thèse qui
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philosophie, l’art, que cela ne formait qu’un tout. C’est le bon endroit, je crois, pour traduire le
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Birkhäuser Boston, 1987.
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