
HAL Id: tel-00573291
https://theses.hal.science/tel-00573291v1

Submitted on 3 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Component-based systems : from design to
implementation
Imane Ben Hafaiedh

To cite this version:
Imane Ben Hafaiedh. Component-based systems : from design to implementation. Other [cs.OH].
Université de Grenoble, 2011. English. �NNT : 2011GRENM005�. �tel-00573291�

https://theses.hal.science/tel-00573291v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministériel : 7 août 2006

Présentée par

« Imene BEN HAFAIEDH »

Thèse dirigée par « Susanne GRAF »

préparée au sein du Laboratoire VERIMAG
dans l'École Doctorale MSTII

Systèmes à base de
Composants: du Design à
l'Implémentation

Thèse soutenue publiquement le « 03/02/2011 »,
devant le jury composé de :

Mr. Jean-Claude FERNANDEZ
Professeur , Université de Grenoble I (Président)
Mr. Elie NAJM
Professeur, Telecom ParisTech (Rapporteur)
Mr. Iulian OBER
Maître de conférence HDR, Université de Toulouse (Rapporteur)
Mr. Gerardo SCHNEIDER
Professeur, Université de Gothenburg (Membre)
Mme. Susanne GRAF
Directeur de recherche au CNRS (Membre)

Abstract

The goal of the thesis is to provide theory, methods and tools for the design and imple-
mentation of component-based systems.

To master the complexity of systems of components, we first propose a contract-based
design and verification approach which is both compositional and incremental. Then we
provide a distributed implementation of these systems allowing to preserve some global
properties.

The proposed verification approach uses contracts as a means to constrain, refine
and implement systems. It is based on a generic contract framework that we instantiate
for a component framework allowing to express progress properties. We also extend the
approach to reason about systems of arbitrary size and we show its usefulness for proving
safety and progress properties in networked systems.

In the context of distributed settings, these systems must later be executed in a
distributed fashion. We also propose in this thesis a protocol that allows executing sys-
tems in a distributed way while preserving some global requirements namely priorities
and synchronizations and where components interact by message exchange. Then, we
provide an implementation of this protocol in a particular platform.

Key words: Component-based design, contract, compositional verification, dis-
tributed control, synchronization, priority.

1

Résumé

Dans cette thèse, nous nous sommes intéressés aux design, vérification et implémen-
tation des systèmes à base de composants.

Nous proposons d’abord une méthodologie de design et de vérification composi-
tionelle et incrémentale à base de contrats pour les systèmes de composants. Nous pro-
posons ensuite une implémentation distribuée qui permet de préserver certaines proper-
iétés globales de ces systèmes.

La méthodologie de design proposée utilise les contrats comme un moyen de con-
traindre, raffiner et d’implémenter les systèmes. Elle est basée sur un formalisme de
contracts générique, que nous instancions pour un formalisme de composants permettant
la description des propriétés de progrés.

Nous étendons cette méthodologie pour raisonner sur des systémes de taille arbitraire
et nous prouvons son utilité pour vérifier des propriétés de sûreté et de progrés d’un
réseau de noeuds distribués.

Dans le contexte des systèmes distribués, les systèmes doivent être implémenter de
manière distribuée. Nous proposons dans cette thèse un protocole qui permet l’exécution
distribuée des systèmes tout en préservant certaines propriétés globales à savoir des
synchronisations et des priorités et où les composants interagissent par échange de
messages. Nous proposons également une implémentation du protocole pour une
plateforme particulière.

Mots clés: Design à base de composants, contrat, vérification compositionelle, con-
trôle distribué, synchronisation, priorité.

2

Table of contents

Table of contents 3

List of Figures 7

I Context 9

1 Introduction 11
1.1 Problems and needs . 11
1.2 Design and verification of complex systems . 13

1.2.1 Compositional reasoning . 13
1.2.2 Using contracts . 14
1.2.3 Property verification . 15
1.2.4 Our contribution . 16

1.3 Distributed systems with rich interaction models . 18
1.3.1 Distributed control . 18
1.3.2 Our contribution . 19

1.4 Organization of the thesis . 21

2 Preliminaries 23
2.1 The BIP modeling framework . 23

2.1.1 Labeled Transition Systems . 23
2.1.2 Component-based design with BIP . 25
2.1.3 Basic concepts of BIP . 27
2.1.4 Glues in BIP: Interaction models . 29
2.1.5 Composition of components in BIP . 32
2.1.6 Priorities in BIP . 34

2.2 Contract framework concepts . 36
2.2.1 Contract frameworks . 38
2.2.2 Dominance . 40

3

TABLE OF CONTENTS

II A Contract Framework for Reasoning about Safety and Progress 43

3 Contract-Based Verification Approach 45
3.1 Design and verification methodology . 46

3.1.1 Methodology . 46
3.1.2 Extension to recursively defined systems 50

3.2 Soundness of the methodology . 51
3.2.1 Soundness . 52
3.2.2 Compatibility of glues . 52

3.3 Proving dominance . 53
3.3.1 Circular reasoning . 53

4 A Contract Framework for Components with Data 59
4.1 Components with data . 59

4.1.1 Semantics . 61
4.2 Glues: Rich interaction model . 64

4.2.1 Connectors . 64
4.2.2 Composition . 66
4.2.3 Composition of interaction models . 69

4.3 Progress description . 71
4.3.1 Progress in components . 71
4.3.2 Progress of a composition . 74

4.4 Relations of the contract framework . 76
4.4.1 Refinement . 76
4.4.2 Conformance . 80

4.5 Proofs . 81
4.5.1 Well-definedness of the contract framework 81

5 An Application: Resource Sharing in a Networked System 87
5.1 Sharing resource system . 87

5.1.1 The top-level requirement ϕ. 90
5.1.2 Methodology . 90
5.1.3 Interaction models and contracts . 91

5.2 Implementation and experimental results . 96
5.2.1 Refinement checker module. 96
5.2.2 Composition module. 98
5.2.3 Results. 99

III Building Distributed Controllers for Systems with Priorities 101

6 Controllers for Systems with Priorities 103
6.1 Systems and controlled systems . 104

4

TABLE OF CONTENTS

6.1.1 Components, interaction models and systems 104
6.1.2 Controllers defined by properties . 107

6.2 Synthesis of priorities for avoiding deadlocks . 111

7 Distributed Controllers for Systems with Priorities 119
7.1 Distributing systems and controllers . 119

7.1.1 Concurrency and confusion . 121
7.2 Implementation of a distributed controller as a protocol 124

7.2.1 Description of the protocol . 125
7.2.2 Avoiding deadlocks due to potential decision cycles 131

7.3 Correctness of the protocol . 134

8 Implementation and Experimental Results 141
8.1 Sensitivity of the prototype . 141

8.1.1 Sensitivity to prioritized conflicts . 142
8.1.2 Sensitivity to structural conflicts . 145

8.2 The dining philosophers example . 147

IV Conclusions and Perspectives 149

9 Conclusion and Perspectives 151
9.1 Conclusions . 151
9.2 Perspectives . 152

Bibliography 155

5

TABLE OF CONTENTS

6

List of Figures

1.1 Approach to the Design of Contract Frameworks. 17
1.2 Distributed Controllers. 20

2.1 BIP Layers. 25
2.2 Component Composition. 26
2.3 Hierarchical Components. 26
2.4 Structuring. 26
2.5 Flattening. 27
2.6 Atomic Component. 28
2.7 Example of Connectors. 29
2.8 Structured Connector. 31
2.9 Semantics of a composition. 32
2.10 Composition of Components. 33
2.11 Semantics of Composite Component with Priorities. 35
2.12 Example: Priorities to enforce Mutual Exclusion. 36
2.13 A hierarchical component and its equivalent flattened form. 38
2.14 K v4

A,gl G for conformance defined as simulation. 40

3.1 Step 2: Conformance. 47
3.2 Step 3: K defined as a composition of {Ki}ni=1 using gl I 48
3.3 Step 3: Dominance ({C1, C2, C3} dominates C w.r.t. gl I). 49
3.4 Step 4: Satisfaction. 49
3.5 Methodology steps ensuring that gl{A, gl I{I1, I2, I3}} 4 ϕ. 50
3.6 glE1

allows relating the glue gl1 provided in C1 to the actual environment for K1. . . 53
3.7 A counterexample to circular reasoning due to non-determinism. 55
3.8 A counterexample to circular reasoning due to strong synchronization. 55

4.1 Example: Component with data. 62
4.2 Consistent version of a component with data. 63
4.3 Composition of components. 68
4.4 Composite component. 68
4.5 Merge of Connectors. 69
4.6 I ◦ I ′ = {γ • γ′1, γ′2} . 70

7

LIST OF FIGURES

4.7 I ◦ I ′ = {(γ • γ′1) • γ′2} . 70
4.8 Inferring Progress Conditions. 73
4.9 Refinement: Kc vKE ,I K

a. 80

5.1 The overall structure of the application. 88
5.2 (a) Node Structure. (b) Node Behavior. 89
5.3 Top-level requirement ϕ . 90
5.4 Assumption of the network and the node contract. 92
5.5 Guarantee of the Node Contract. 92
5.6 Guarantee of the Network Contract . 93
5.7 INet for contract CNet. 94
5.8 Inner structure of a network component. 95
5.9 Refinement Checker Structure. 97
5.10 Composition Module Structure. 98

6.1 An example where reducing non-determinism eliminates a deadlock. 112
6.2 A simple system not controllable with priorities. 113
6.3 A solution to the dining philosophers problem. 114

7.1 Symmetric and asymmetric confusion. 123
7.2 Prioritized confusion. 123
7.3 Structure of the protocol for Ci. 126
7.4 An example with global priorities c < b. 131
7.5 Scenario of possible executions of interactions a, b and c. 132
7.6 An example with cycle and independence. 134
7.7 State diagram of the algorithm. 136

8.1 Implementation layers . 142
8.2 System pattern for experiments . 143
8.3 Sensitivity to the degree of prioritized conflict . 144
8.4 System pattern for experiments (Tk) . 145
8.5 Sensitivity to the degree of structural conflict . 146
8.6 The dining philosophers problem with priorities. 147

8

Part I

Context

9

Chapter 1

Introduction

1.1 Problems and needs

With the growing of the demand about scalability and complexity of systems, it becomes more
and more difficult to design correctly their models. In particular, when the major goal is to build
a system which ensures a set of desired properties during its execution, such important scale and
complexity not only increases potential violations of these properties but also makes them harder to
detect and to handle. Some of these violations may cause loss of money, time or even human life.
The construction of a system that operates reliably despite of complexity is highly needed but also
not always feasible. Therefore the check of the correctness of the system is essential and important
to ensure that all requirements and desired properties are respected.

Designing concurrent and distributed systems with such a complex architecture while preserving
a set of high-level requirements through all design steps is not a trivial task. An approach which is both
compositional and incremental is mandatory to master this complexity. Such approaches generally
rely on building complex systems using components. In deed, a central idea in system engineering
is that complex systems are built by assembling components defining building blocks. Components
are usually characterized by abstractions that ignore implementation details and describe properties
relevant to their composition, e,g., transfer functions, interfaces. This allows to split the complex
system under study into a set of subsystems which are in general less complex. It is also possible to
build larger components by gluing together simpler ones. Gluing or composition can be formalized
as an operation that takes in components and their integration constraints, then from these, it provides
a description of a new, more complex composite component.

System designers deal with a large variety of components, each having different behaviors and
each highlighting different viewpoints of a system. A central problem is the meaningful composition
of these components so as to ensure some global properties.

There are two main approaches for detecting property violations of a system: formal testing and
formal verification. Consider a model of a system, an environment in which the system interacts,
and some properties that the designed system is expected to guarantee, one can choose one of the
following approaches depending on their goal.

11

1.1. PROBLEMS AND NEEDS

Formal testing [Bei90, Tre90, Mye04, FFMR07] is a method used to find defects on a system
implementation, either during the development or after the complete construction of the system. To do
that, testing generates some inputs from environment (test cases) and executes the system to determine
whether it produces the required results. It is a quick and direct way to detect bugs or violations in
the system. However, testing is not capable of covering all the possibilities that may happen while
running the system in reality. The number of possible situations is usually so large that we can test a
tiny proportion of them. The absence of property violations provided by testing can not conclude the
correctness of the system.

Formal verification [UP83, BM79, QS82a] can both search for input patterns which violate the
desired properties or prove the correctness of the system if such input patterns do not exist. In contrast
to formal testing, formal verification covers all the possibilities that the system can behave. Hence it
proves the correctness of the system in the case of the absence of property violation.

It relies on the use of mathematical techniques to prove or disprove the correctness of a design
with respect to a certain formal specification. Formal verification has been successfully applied to
verify both software and hardware systems. The verification of these systems is done by providing a
formal proof on an abstract mathematic model of the system. The mathematic objects that are often
used to model these systems are: labeled transition systems, petri nets, finite state machines, boolean
formula, etc.

The goal of this thesis is to provide theory, methods and tools for the design, verification and
implementation of component-based systems of arbitrary size with complex architectures preserving
a set of high-level requirements through all design steps. Our approach is based on formal verification
as it allows to achieve the satisfaction of properties by systems.

As mentioned above, when reasoning about complex systems, decomposing such systems into a
set of simpler sub-systems may improve considerably the results of their verification. For this reason,
different developments in component-based frameworks have been performed. For example, Ptolemy
II [DII+99, EJL+03a] allows simulation of models but not their verification; Software framework
component models based on classical concepts of Component-Based Software Engineering (CBSE)
like FRACTAL [Fra] with its implementations, e.g., THINK [FSLM02] which also does not provide
tools or analysis techniques, whether for simulation or verification; Metropolis [BWH+03] which
provides a frontend which produces an internal representation from the meta-model which can be
used for simulation or generation model used with the SPIN model-checker [Hol97]. There are also
different theoretical frameworks based for example on process algebras e.g., the Pi-Calculus [Mil98]
or based on automata e.g., [RC03].

When using a component-framework to model systems for verification checks afterwards, differ-
ent properties have to be ensure by this framework. Indeed, this requires the framework to be founded
on rigorous semantics and provide concepts supporting separation of concerns, e.g., decoupling be-
havior from interaction. This is particularly absent in the case of modeling, as well as for middleware
and software development standards, like CORBA. They use ad hoc mechanisms for building systems
from components and offer syntax level concepts only.

Moreover, such frameworks need to encompass heterogeneous descriptions, as most of the plat-
forms and languages, support specific interaction mechanisms and computation models. For instance,
software design frameworks are based on interaction by method call and do not allow direct model-

12

CHAPTER 1. INTRODUCTION

ing of atomic interaction mechanisms. On the contrary, other frameworks such as SystemC and
Matlab/Simulink have built in mechanisms for synchronous execution, and are not adequate for de-
scribing asynchronous systems. Thus a component framework which provides rich and complex
interaction models – where glues are used for different purposes such as data transfer, synchroniza-
tions, etc, may allow large scale description possibilities. Such frameworks describing such rich glues
are for example the Kell calculus [BS03] or the glue calculus Reo [Arb04]. Kell is, however, mainly
concerned with obtaining correctly typed glues, and Reo supposes independence amongst glues and
does not take into account constraints imposed by components. Among such frameworks, we are
particularly interested in the BIP framework [BS08a, BS07a, BS07b, BBS06a, BBS06b] developed
at Verimag. Glues in BIP are interaction models (composition operators) built by a set of connectors
describing different interaction modes such as rendez-vous and broadcast. Furthermore, it is possible
to define hierarchical connectors, which are connectors defined as a composition of other connectors.
Thus BIP also addresses the problem of composition of operators and of their properties, which can
be exploited for structural verification [BS07a].

BIP is related to process algebras such as CCS [Mil80] or CSP [Hoa84, Mil83] by its rendez-
vous-like interaction mechanism and the restriction to a strictly local notion of state. In this thesis we
focus in a first time on the design and verification of these complex systems. Then, in a second time,
we study the implementation of such systems. Thus, this thesis is organized mainly in two parts. First,
in Part II, we propose a design and verification approach based on contracts. This approach allows
to verify top-level properties of component-based systems of arbitrarly size. Second, in Part III, we
focus on properties of systems specified by their glues namely synchronizations and priorities. We
transform the satisfaction of these properties into a problem of control where properties defined by
the glues are seen as memoryless controllers. Then, we propose a distributed implementation of these
controlled systems such that the additional properties induced by their glues hold.

1.2 Design and verification of complex systems

As we are interested in formal verification to reason about complex systems, model check-
ing [QS82a, CE, CGP99] is one of the most well-known fully automated verification approaches.
However, model checking is not always scalable, in particular for systems becoming nowadays more
and more complex. Indeed, model checking techniques examine all possible paths through the sys-
tem’s model to determine whether or not the property being verified is violated. However, to check
all possible executions of a model, model-checking has to deal with the well-known problem of state
space explosion. A lot of work has been done to overcome this problem. The major goal is to make
the formal verification scalable in order to increase the size of the systems that can be handled. They
can in general be categorized into two approaches: optimization/improvement of model-checking’s
algorithms [McM93, BCM+90] and compositional reasoning.

1.2.1 Compositional reasoning

Compositional reasoning [CLM89, CMP94, Lon93, dRdBH+01a, dRdBH+01b] allows to verify
each component of the system in isolation and allows global properties to be inferred about the entire

13

1.2. DESIGN AND VERIFICATION OF COMPLEX SYSTEMS

system. The basic idea is that the system is decomposed into subsystems and these subsystems are
analyzed individually. Since subsystems are smaller than the whole system, the individual analysis
of the subsystems reduce the effects of the state space explosion problem. The guarantee of global
property is then determined by composing the results of these individual analysis. Since through
this thesis, we propose a compositional method for the verification of component-based systems, we
present below several existing compositional methods.

Abstraction [CC77, Lon93, CGL94, DF95, LGS+95a] is a popular technique which verifies prop-
erties on a system by first simplifying it. The simplification is often based on the conservative ag-
gregation of states. The simplified system, which is called abstract system, is usually smaller than
the original system (concrete system), so the state space is reduced. For a system obtained from the
parallel composition of a set of components, i.e S = K1 ‖ · · · ‖ Kn, the compositional abstraction
first computes, for each component Ki, an abstract component Ka

i , then it composes the abstract
components Sa = Ka

1 ‖ · · · ‖ Ka
n to obtain an abstract system Sa of S. The abstraction is required to

be exact, i.e. the properties that hold on the abstract system also hold on the concrete system. How-
ever, the abstraction is often not complete, i.e. not all true properties of the concrete system are also
true on the abstract system so that a process of abstraction refinement may be necessary to guarantee
property preservation throughout the abstraction process.

Assume-Guarantee [Pnu85a, Jon83a, HQR98, GPB02, CGP03] is a compositional approach that
decomposes properties into two parts. One is an assumption about the global behavior of the en-
vironment and the other is a property guaranteed by the component when the assumption about its
environment holds. The assumption is needed since when a subsystem is verified it may be neces-
sary to assume that the environment behaves in a certain manner. Often the behavior of a subsystem
depends on the subsystems with which it interacts, thus we need to provide an assumption about its
environment to verify properties of that subsystem. Consider a system S which is decomposed into
two subsystems S1 and S2. P is a property to be verified on the parallel composition of S1 and
S2, denoted by S1 ‖ S2. The basic assume-guarantee rule is: if under assumption A, subsystem S1

satisfies property P and A is satisfied by subsystem S2, then the system resulting from the paral-
lel composition S1 ‖ S2 satisfies the property P . Despite of being largely advertised, many issues
make the application of assume-guarantee rules difficult. They are discussed in detail in a recent
paper [CAC08a]. The paper provides an evaluation of automated assume-guarantee techniques. The
main difficulty is finding decompositions into sub-systems in the case of many parallel sub-systems
S1 ‖ · · · ‖ Sn. The verification performance depends on the way of decomposition but finding a
good decomposition is not always feasible. Another problem is choosing adequate assumptions for a
particular decomposition. The assumption should be weak enough to be satisfied by a sub-system but
also be strong enough to prove the global property.

1.2.2 Using contracts

Contract-based design is an expressive paradigm for a modular and compositional specification of
systems. The use of contracts has been advocated for a long time in computer science[Hoa69, AL93]

14

CHAPTER 1. INTRODUCTION

and, more recently, has been successfully applied in object-oriented software engineering [Mey97].
Like in contract-based design [Mey92, NMO09, LMS07], in our approach we use contracts to

constrain, reuse and replace implementations.
The basic idea of design-by-contract is to consider the service or the property provided by a

component as a contract between this component and its environment. Thus a contract is usually
expressed as a pair of an assumption, or a property that the environment must satisfy, and a guar-
antee, the properties that must be satisfied by each particular component. As in Assume/Guarantee
reasoning [GGTG10] and in [GQ07], such a separation between assumptions and guarantees allows
more flexibility in finding compatibility relations between components. Moreover, defining multiple
contracts, thus multiple views, of a given system allows better isolation between systems and hence
better compositionality.

In the theory of interfaces [dAH01a, LNW06a, GLS96], they offer a notion of contracts to check
interface compatibility between reactive systems. In that context, it is irrelevant to separate the as-
sumptions from guarantees and only one contract needs to be and is associated with a given system.
Separation and multiple contracts become of importance in a more general-purpose software engi-
neering context.

In [MM04b, BM09], a notion of synchronous contracts is proposed. The contracts described are
executable specifications (synchronous observers). Such an approach is satisfactory to verify safety
properties of individual modules (synchronous) but can hardly be applied to the modeling of globally
asynchronous architectures.

In the context of software engineering, this notion of assertion-based contract has been adapted for
a wide variety of languages and formalisms but the notion of rich exogenous composition operators
and interaction models needed to represent abstractions of protocols, middleware components and
orchestrations is not always taken into account. In [QG08a], a first framework generalizing interface
theories by adding a structural part to contracts is proposed.

In interface theories [LNW07], then in [QG08a], authors use modal specifications [Lar89, LX90]
to enrich their contract frameworks. Modal specification are interesting to deal with loose specifica-
tions and properties implying some progress insurance in absence of input enabledness: in a modal
transition system, a must-transition represents a progress guarantee of all its implementations while
may-transitions define safety properties as in usual transition systems.

1.2.3 Property verification

In this thesis, we use contracts to reason about safety and progress properties. We are interested
in the description of progress properties. During the last decade an important progress in the ability of
tools to verify properties of hardware and software systems has taken place [CGJ+03, Hol97]. This
success has in a great part concerned safety properties such as absence of run-time errors, deadlocks
etc. However, the progress in verification of progress properties has been less prominent as they are
harder to verify than safety properties. Indeed, in [MCMM08], authors prove that deciding liveness
of a set of components is NP-hard.

Progress properties are also called liveness properties. A component is considered to be live if it
will repeatedly participate in some step of the system, independently of how the global system evolves

15

1.2. DESIGN AND VERIFICATION OF COMPLEX SYSTEMS

and of the point of time we considered.
Among the methods dealing with this kind of properties, we mention invisible invariant [FMPZ06,

FPPZ04], counter abstraction [AFK88, FK84, FMPZ06, FPPZ04] which are based on a set of fair-
ness requirements (weak or strong) that enable proofs of liveness properties of a parameterized sys-
tems [PPR]. Invariant generation [CS02] which handles termination of sequential programs and Back-
wards Reachability [AJRS06] presents complement to other methods for proving termination, in that
it transforms a termination problem into a simpler one with a larger set of terminated states.

1.2.4 Our contribution

A first contribution of this thesis is providing a scalable methodology for design and verification
of component-based complex systems. We focus on systems of arbitrary size and we preserve a set of
high-level properties (requirements) through all design steps. Like in contract-based design [Mey92],
we use contracts to constrain, reuse and replace implementations. As described above, one of the
shortcomings of such reasoning is that it does not take into account the interaction model between
components and how they are composed.

Thus our notion of contract has a structural part, which makes this definition very general by
encompassing any composition model, in particular rendez-vous like composition. A more practical
advantage is related to system design: it allows separating the architecture and the properties (require-
ments) of the system under construction, which evolve separately during the development process. In
particular, in frameworks where interaction is rich, refinement can be ensured by relying heavily on
the structure of the system and less importantly on the behavioral properties of the environment.

This structural part of our contracts encode rich exogenous composition operators which allow to
represent abstractions of protocols, middleware components and orchestrations whereas assumptions
and guarantees should constrain peers at the same or at an upper layer.

Interfaces [dAH01b] as described previously cannot encode such rich composition operators as
they are based on a fixed rather than a generic model of composition — usually synchronous In-
put/Output (I/O) composition. In this work we are more expressive than the previously described
approaches.

Other formalisms for describing such rich composition operators abstractly have been proposed,
e.g., the Kell calculus [BS03] or the connector calculus Reo [Arb04]. Kell is, however, mainly
concerned with obtaining correctly typed connectors, and Reo supposes independence amongst con-
nectors and does not take into account constraints imposed by components. Thus we choose in this
thesis to use a subset of the rich composition operators of the BIP component framework [BBS06a]
as they provide the required expressiveness, define interaction with component behaviors and han-
dle conflicting connectors. Using a formalism like BIP for wide area systems allows using layered
specifications where different layers can be analyzed separately by abstracting complex lower layer
protocols by an atomic multi-party interaction. Using connectors as abstractions of lower level proto-
col stacks leads to clearly structured models.

In our contracts, we also keep assumptions and guarantees separate and moreover we describe
them on different alphabets which allows improving reusability.

To apply our verification methodology, we formalize and extend the framework introduced

16

CHAPTER 1. INTRODUCTION

in [QG08a] to distributed component systems of arbitrary size and we show its usefulness for proving
safety and progress properties in networked systems.

Verification Methodology (VM)

Grants

Application 2

Application 1

Component Framework

Based On

Contract Framework 1

Component Framework 1

Contract Framework 2

Component Framework 2

Contract Framework

Figure 1.1: Approach to the Design of Contract Frameworks.

In this thesis, in addition to a compositional verification methodology using a contract framewok,
we provide a design approach that uses the results of this methodology to verify new properties of
different applications with no further proofs. More precisely, this generic design approach consists in
two phases:

1. define a general notion of contract framework stating the necessary ingredients to apply our
verification methodology. Then rules for establishing validity conditions for these relations are
provided.

2. for any particular application, one only has to define instantiations of these generic notions and
check the validity conditions. Once the concrete framework has been defined, the rules and the
verification methodology can be applied without any further proofs (see Figure 1.1).

The generic contract framework, we use, is based on some notion of refinement, which allows to
define the following relations: conformance which is refinement with respect to a given specifica-
tion, dominance which is refinement between contracts and satisfaction which is refinement of an
implementation with respect to a contract. To prove the validity conditions for these realtions we use
circular reasoning which allows to derive an interesting rule to prove dominance, with no need to
compose contracts.

We apply the proposed design and verification methodology to an application, where we have
focused on progress properties. To reason about progress, we propose a formalism similar to symbolic
transition systems as introduced in [MP91], which we extend in several ways. We define progress
constraints close to the usual strong and weak fairness [AFK88, FK84, FMPZ06, FPPZ04] and we
decorate control states with invariants on state variables.

17

1.3. DISTRIBUTED SYSTEMS WITH RICH INTERACTION MODELS

We also consider an explicit interaction model (glue) represented by sets of connectors. Each
connector defines a set of interactions and a transformation on (non persistent) port variables, where
ports name transitions of the local components involved in the interaction.

For achieving scalability, we base verification on an abstract semantics in which explicit values
of state variables are abstracted by the defined state invariants. Given the complexity of the specifica-
tions, not having to prove the correctness of the proof rules in this concrete setting is very helpful.

We apply the methodology to a resource sharing algorithm in a networked system of arbitrary
size. The different verification steps and proofs are automated in a tool developed for this purpose.

Although this is not presented in this thesis, we have also addressed the problem model-based
design and validation [PBHG+09, IBHR09]. We have applied in [IBHR09] a design approach using
the OMEGA-RT profile [OGO03, GOO05] for a design phase and the IF toolset [OGY06, BGO+04a]
for a validation phase.

1.3 Distributed systems with rich interaction models

In Part III, we are interested in giving a distributed implementation of component-based systems.
These systems represent rich interaction models defining a set of properties. We propose a distributed
implementation with respect to these properties, which are seen as controllers. The satisfaction of
these properties defined by the interaction model, can be generalized to the problem of control-
ling an existing system in order to force it to satisfy some additional safety constraints [RW92b].
Component-based systems are likely to be implemented in a distributed fashion, as each component
can be hosted by a different site. When the constraints added by the interaction model are global, dis-
tributing the controlled system is not a trivial task. Indeed, this is proven in [PR90] to be undecidable
for concurrent systems. We focus on two types of properties namely synchronization and prior-
ity. Typical frameworks used to express synchronization-based specifications are (prioritized) Petri
nets, process algebras [Mil80, Hoa84, BB87] or their UML incarnation, namely activity diagrams.
BIP [GS05, BBS06a] generalizes the basic concepts of these formalisms (see [BS08b]). Interaction
by synchronization is an expressive modeling paradigm as it encompasses all commonly used commu-
nication and interaction primitives. Specifying priorities amongst a set of alternative synchronizations
is interesting in many contexts. For example, it is likely that amongst a set of enabled synchronizations
amongst subsets of components, one will prefer those involving larger subsets. Another typical exam-
ple of the use of priorities are components which for different activities require one or more resources
amongst a shared pool of resources. There exist several abstract frameworks allowing to represent
priorities such as process algebras with priorities or prioritized Petrinets [BBBS08, BBPS, GS04].

1.3.1 Distributed control

At the implementation level, a distributed system is defined by a set of components that interact
using the communication mechanisms provided by a distributed platform. Typically, such a platform
allows communication via message passing and the level of abstraction that is provided determines
the properties that can be guaranteed by the message passing mechanism. The platforms defined by

18

CHAPTER 1. INTRODUCTION

component frameworks such as Corba, JavaBeans or .NET aim at making transparent their distributed
nature to a designer using standard (sequential) programming languages, where interaction is through
method call. In this context, one generally distinguishes between active components — threads or
processes — driving the computation and passive ones which get activated temporarily when needed.
A requirement (i.e., a property to be ensured) is in general a property of complete executions of some
thread. In service-oriented systems, different processes (initiated for example by different clients)
are often considered to be functionally independent: they may share resources (data and platform
capacities), however the problems resulting from this are often ignored at early design stages and
the primitives provided for specifying systems consisting of several interacting threads (or ongoing
activities) are often low-level mechanisms such as semaphores or time-based scheduling.

Different algorithms have been proposed to describe message passing distributed protocols. For
instance, in [Bag89b, Hoa78] a first algorithm ensuring binary synchronization between compo-
nents has been described. Then algorithms handling multiparty synchronizations have been proposed
in [PCT04, Bag89a, FF96]. Distributed implementations preserving some global properties are not
trivial to achieve as, we cannot determine the exact global state of a distributed system, we can only
approximate it (see [CL85, Tri04, Thi05]). Some approaches propose the use of statically computed
knowledge about the possible global states to decide about the satisfaction of some global constraints
in a distributed system [BBPS, GPQ10, RR00a, RW92a].

1.3.2 Our contribution

We study the design and implementation of systems in which correct interaction between com-
ponents is essential in order to achieve functional properties defining the services to be provided by
the system and/or non-functional properties specifying some constraints on their quality. For this
purpose, we view a system as a set of active components which interact by synchronizing certain ac-
tivities. A synchronization between a set of components is the abstraction of a sequence of messages
between these components that results in the atomic execution of some local transition in each of
these components. The motivation for specifying interaction using synchronizations is that these may
represent some global activity that is in fact distributed over several components. Thus, it is possible
to abstract away the detailed specification of a particular order in which the local activities have to be
executed or how atomicity is achieved on some actual platform — which may offer message-based
communication, but which might as well be a CAN-bus or a multi-core processor where communica-
tion is by shared memory. We introduce an abstract representation of components and systems where
components are identified with an abstraction of their behavior and represented by transition systems
labeled by actions (which are also called ports). In a first phase, we totally abstract from how such a
synchronization is realized; then, we provide a distributed implementation for it as a message-passing
protocol. We define synchronizations between components and priorities defined on the set of their
interactions as memoryless controllers.

We propose also to use controllers defined by priorities to avoid deadlocks in a given specifica-
tion. More precisely, we propose that instead of systematically asking the user to rework a given
specification when a reachable deadlock is detected, we propose to restrict the possible executions to
those avoiding deadlock by means of a priority order. Why do we choose priorities as a means for

19

1.3. DISTRIBUTED SYSTEMS WITH RICH INTERACTION MODELS

avoiding deadlocks? One reason is that we suppose that specifications explicitly specify a (close to)
maximal degree of concurrency and may therefore have a high degree of non-determinism. Adding
buffers and reordering messages as proposed in [SB09] has the inconvenient of being tied to a lower
level of abstraction — at which state explosion is a big issue for verification — and moreover, it is not
adequate when interaction is by synchronization and each component already exhibits its maximal
potential of concurrency. But restricting non determinism may be very useful, and priorities are an
interesting means for doing so.

Another reason is that, when it is guaranteed that prioritized executions are deadlock free, a set
of priority rules is a memoryless controller, that is, deciding which next transition is possible requires
neither history nor look-ahead. In fact, the construction of the priority rules does eliminate statically
the look-ahead required to avoid deadlocks without additional memory, thus keeping the specification
small at that level of abstraction.

Our problem is that of synthesizing a distributed memoryless controller, where we define what
it means to distribute a controller, and what a correct implementation should be. Furthermore, this
general presentation shows that our approach applies not only to interaction models and priorities, but
to all memoryless properties. We distribute these memoryless controllers by proposing a protocol that
transforms a (global) system specification into a distributed implementation consisting of a set of com-
ponents communicating through message passing where we suppose that the underlying communica-
tion platform ensures reliable and order-preserving transmission of messages. As already described,
there exist several protocols achieving such implementations. However, specifications requiring in
addition global priorities to be respected have rarely been considered. [BBPS, GPQ10] address the
problem of distributing prioritized Petri nets, but for an underlying platform on which synchronization
is provided as a primitive, whereas we try here to improve the efficiency of the resulting implementa-
tion by means of a combined algorithm. In [BBPS, GPQ10] they consider the same problem but with
a different progress property, namely deadlock freedom, whereas our protocol ensures what we call
maximal progress, which is also the progress criterion adopted in [RW92a, RR00a, PCT04]. Given
a system S of components, we propose to build, from a global memoryless controller defined by an
interaction model (I) and a priority order (<), a set of local controllers (denoted Ci) associated to
each component so as to ensure the constraints defined by I< in a completely ditributed way (see
Figure 1.2).

C2

K2

Cn

Kn

C1

K1

System S

K1 K2 Kn

I<

(S, I<)

Figure 1.2: Distributed Controllers.

20

CHAPTER 1. INTRODUCTION

We give an implementation of this protocol using the Message Passing Interfaces (MPIs) [GLS99,
SOHL+96], and we give an evaluation of different performance metrics. We also compare our algo-
rithm to the existing α-core algorithm presented in [PCT04].

1.4 Organization of the thesis

The thesis is split into four parts, Part I presents the context and the needed concepts (Chapter 2).
Part II describes the proposed design and verification methodology [IBHQ10c, IBHQ10b], the frame-
work used to apply it (Chapter 3 and 4) and its application to a case study using a tool developed
for this purpose (Chapter 5). Part III proposes a distributed implementation of systems with priori-
ties [IBHQ10a, QBHG09, IBH10] (Chapter 6, 7 and 8). The last Part IV draws the conclusions and
future work (Chapter 9). The details of all chapters are as follows:

• Chapter 2 presents preliminaries and concepts used in the sequel of this thesis. It describes the
basic notions about component-based frameworks, in particular the version we use of the BIP
component framework, its interaction models based on connectors and how it allows to express
priorities. This chapter also provides the different basic notions of the contract-framework that
we need in our approach.

• Chapter 3 presents a formal description of the different design steps of our verification approach
based on a generic notion of contract framework. In particular, it discusses relations and prop-
erties that contract frameworks have to provide so that our approach could be applied. We also
detail how this methodology can be applied in the case of systems of arbitrary size once these
systems can be built using a grammar of components.

• In Chapter 4, we formalize the different ingredients of the contract framework used to apply
the methodology described in Chapter 3. We focus on progress properties, thus we provide rich
specification that allows expressing such kind of properties. Progress properties are described
by progress conditions which adapt the usual weak and strong fairness conditions to compo-
nent systems. The proposed contract-framework handles variables and data exchange between
components. We give proofs that such contract-framework allows indeed to apply the proposed
methodology.

• In Chapter 5, We apply our methodology to a networked system for sharing resources. We
verify a top-level progress requirement of this case-study and we detail the different verification
phases applied. We also provide a tool that implements the main verification checks of our
methodology and we use this tool to validate the case-study results.

• Chapter 6 focuses on the properties defined by the interaction models of component-based sys-
tems, where these properties are seen as memoryless controllers. It also discusses the synthesis
of such controllers.

• In Chapter 7, we present the protocol that transforms a system (with binary synchronizations)
and its memoryless controller into a distributed implementation based on message-passing. We

21

1.4. ORGANIZATION OF THE THESIS

give proofs of its correctness with respect to the usual properties of distributed algorithms and
we describe through an example how we deal with deadlocks due to circular configurations.

• Chapter 9 concludes the thesis and hints at worthwile future developments.

22

Chapter 2

Preliminaries

In this chapter, we first recall some basic definitions about labeled transition systems and their
usual refinement relations, which are used to describe behaviors of components throughout this thesis.
Then, we present the BIP framework [GS05, BBS06a, BS07a], which is one of the motivations for
our work. We briefly discuss BIP in its generality. Then we present a variant of this framework that
we use in this thesis. Finally, we review the basic notions of the generic contract framework proposed
in [QG08a], from which our work on contract frameworks is inspired. In particular, we emphasize the
properties of such a framework allowing to reason about contracts in a component framework with
rich interaction models such as BIP.

2.1 The BIP modeling framework

2.1.1 Labeled Transition Systems

Labeled transition systems are used to describe abstractly the behavior of systems. They define
how these systems can evolve from one state to another by firing a transition associated with a label
that names the operation performed during the transition.

Definition 2.1.1 (Labeled Transition System (LTS)) A labeled transition system is a tuple TS =
(Q, q0,P,−→), where: Q is a set of states, q0 ∈ Q is the initial state, P is a set of labels (actions).
−→⊆ Q× P ×Q is a set of transitions each labeled by an action.

As usual, for any pair of states q, q′ ∈ Q and an action p ∈ P , we write q
p−→ q′, iff t =

(q, p, q′) ∈−→. The state q is called the start state of t and q′ its target state. If such q′ does not exist,
we write q 6 p−→. These labeled transition systems could be enriched with variables for example, and
thus called extended labeled transition systems which we denote ELTS.

Definition 2.1.2 (Extended Labeled Transition System (ELTS)) An extended labeled transition
system is a tuple (TS , X, g, f) where:

23

2.1. THE BIP MODELING FRAMEWORK

• TS = (Q, q0,P,−→) is a labeled transition system: Q is a set of control states, q0 ∈ Q is the
initial state, P is a set of labels. −→⊆ Q × P × Q is a set of transitions each labeled by an
element of P . Elements of P are ports;

• X is a set of variables. Some variables are associated with a (unique) port;

• g associates with every transition t a guard gt, i.e. a predicate on X;

• f associates with every transition t a function ft defined onX and corresponding to local state
transformations.

If t = (q, p, q′) ∈−→, gt is a pre-condition for interaction through p, and ft is a computation step
consisting of local state transformations. gt is also known as the guard of the transition and the
transition can be executed if the guard is true.

Definition 2.1.3 (Execution, Extended prefix, Reachable states, Deadlocks) Let be TS =
(Q, q0,P,−→) an LTS, Then:

• an execution σ is a (possibly infinite) maximal (i.e. cannot be extended) sequence q0 · p0 · q1 ·
p1 · . . . starting in the initial state q0 and such that for any i ≥ 0 such that qi and qi+1 ∈ σ, it
holds that qi

pi−→ qi+1. Thus σ could be also written a sequence of states and transitions, that
is σ = q0 · t0 · q1 · t1 · . . ., where ti = qi

pi−→ qi+1.
We suppose without loss of generality, that executions are infinite, that is always extended by
some ε transitions. We denote by exec(TS) the set of infinite executions of TS .

• a prefix on P and Q which we denote β is a finite sequence q0 · p0 · q1 · . . . · qβ with qi ∈ Q and
pi ∈ P;

• an extended prefix on P and Q is a pair (β, A) where: β is a prefix on P and Q and A is a set
of labels in P which we call an acceptance set.

• A state q ∈ Q is reachable if there exists an execution σ containing q

• q ⊆ Q is a deadlock if @(q′, p) ∈ Q× P, q p−→ q′

TS is called deadlock free if it has no reachable deadlock state.

We now introduce simulation [Mil89] which is a preorder on LTS and allowing to compare them.

Definition 2.1.4 (Simulation) Let S1 and S2 be two LTS. A relation R ⊆ Q1 × Q2 is a simulation
relation of S2 by S1 iff q0

1Rq0
2 and for any pair (q1, q2) ∈ Q1 ×Q2 and any q′1 ∈ Q1:

q1Rq2 and q1
a−→1 q

′
1 implies that there exists q′2 ∈ Q2 such that q2

a−→2 q
′
2 and q′1Rq′2

S1 simulates S2 if and only if there exists such a relation.

24

CHAPTER 2. PRELIMINARIES

Intuitively, an LTS S1 simulates S2 if any reachable state q1 of S1 can be mapped to a state q2 in S2

such that all labels enabled in q1 (w.r.t S1) are also enabled in q2 (w.r.t. S2).
We now define an equivalence relation between LTS called bisimulation.

Definition 2.1.5 (Bisimulation) Let K1 and K2 be two LTS. A relationR ⊆ Q1 ×Q2 is a bisimula-
tion if it is a simulation and furthermoreR−1 is a simulation of K1 by K2.

2.1.2 Component-based design with BIP

BIP [BS08a, BBS06a, BJS09a, BBS06b] is a component framework for designing component-
based systems with complex interactions. Its main principle is that there should be a clear separation
between the behavioral and the architectural parts of systems. Indeed, such a separation allows effi-
cient structural verification techniques.

BIP framework supports a component construction methodology based on the thesis that com-
ponents are obtained as the superposition of three layers (see Figure 2.1). The lower layer contains
atomic components described by their behavior. The intermediate layer includes glues which are
represented by interaction models built as a set of connectors linking ports of different components.
The upper layer is a set of priority rules describing scheduling policies and preferences between
interactions.

Priorities (conflict resolution)

Interactions (collaborations)

Behavior

Figure 2.1: BIP Layers.

In BIP, hierarchical components are defined inductively from atomic ones:

• atomic components defined as basic element that only represents behavior which means an LTS
or an extended LTS.

• composite or compound defined as a composition of a set of components using glues. A com-
posite component could be flat or hierarchical. A composite component is flat if it is a compo-
sition of only atomic components and it is hierarchical if it is not flat.

A component is denoted graphically by a box with a well defined interface allowing to interact
with its environment. Interfaces are defined as a set of ports. The box of an atomic component
contains behavior inside and the box of a composite component contains other components and glues.

Given a set of atomic components {K1,K2, . . .Kn} and a glue GL. The composition of
{K1,K2, . . .Kn} using GL produces a composite component K, as shown in Figure 2.2, where

K = GL(K1,K2, . . .Kn)

25

2.1. THE BIP MODELING FRAMEWORK

K2 . . .

GL

K1 Kn

K

Figure 2.2: Component Composition.

Hierarchical components are obtained as composition of such composite components. This is
allowed by the fact that glues in BIP could be also composed. For example, in Figure 2.3, components
K1 and K ′1 are composed with glue GL1, and the resulting composite component is integrated with
K2 by GL12 to produce a hierarchical component. In BIP, glues and their composition operators

K1 K ′
1

GL1

GL12

K2

Figure 2.3: Hierarchical Components.

provide a set of properties, namely incrementality, compositional reasoning and composability.

Incrementality. means that composite systems can be considered as the composition of smaller
parts. Incrementality provides flexibility in building systems by simply adding or removing
components and the result of construction is independent of the order of integration. It is nec-
essary for progressive analysis and the application of compositionality rules. Incrementality
allows coping with the complexity of the heterogeneous and large-scale systems in both con-
struction and verification phases.

.

GL GL2

GL1

K1 K2 Kn

K1

K2 Kn

Figure 2.4: Structuring.

Incrementality means the two following properties:

– Flattening: means that any given structure can be flattened to a component which is the
composition of its atomic components by using a single glue operator.

GL1 (K1,GL2 (K2, . . .)) = GL (K1, . . . ,Kn)

26

CHAPTER 2. PRELIMINARIES

GL2

GL1 GL

K2 K2

K4
K1

K3
K1 K3 K4

Figure 2.5: Flattening.

An example is shown in Figure 2.5. Flattening allows to avoid reasoning on hierarchical
components by only reasoning on their flattened version. Note that flattening is a weak
property that is in general satisfied by component frameworks.

– Structuring: means that an n-ary glue operator could be obtained by successive applica-
tion of a binary glue operator, as shown in Figure 2.4. In general, we should be able to
write

GL (K1, . . . ,Kn) = GL1 (K1,GL2 (K2, . . . ,Kn))

That is, any composite component can be obtained by successive composition of its atomic
components. This property is useful when one wants to build the glue that relates some
particular component to the rest of the composite component (the system). Notice that
structuring is a very strong property. For the definition of contract frameworks which we
will propose, we will require a weaker condition, inspired by this one which is easier to
satisfy and sufficient for contract-based reasoning.

By the above two mechanisms, a given system of behavior can be partitioned into any required
structure.

Compositional reasoning. Compositional reasoning rules allow inferring global system prop-
erties from the local properties of the sub-systems. (e.g inferring global deadlock-freedom
from the deadlock-freedom of the individual components). Compositional reasoning is neces-
sary for obtaining correctness-by-construction. This is interesting when applying incremental
verification approaches.

Composability. Composability rules guarantee that, under some conditions, essential prop-
erties of a component will be preserved after integration. Composability means stability of
previously established component properties across integration, e. g. a deadlock-free compo-
nent will remain deadlock-free after gluing together with other components. Composability is
essential for incremental construction as it allows building large systems without disturbing the
behavior of their components.

2.1.3 Basic concepts of BIP

In this section as well as in the sequel of this thesis, components are denoted K1, K2, etc and
given a set of ports Ports, the interface of an atomic component K is defined by a set of ports

27

2.1. THE BIP MODELING FRAMEWORK

denoted P ⊆ Ports defining what can be observed from the component by its environment and then
used for synchronization with other components. We describe now the variant of BIP that we use
in this thesis. As mentionned previously, several semantics could be provided to BIP components.
In this thesis, in particular in Part II, the syntactic description of a component is represented by an
extended labeled transition system (see Definition 2.1.2), and its semantics is described as an LTS
(see Definition 2.1.7).

Definition 2.1.6 (Atomic component) An atomic component K on an interface P is an extended
labeled transition system (TS , X, g, f), where TS = (Q, q0,P,−→).

Note that some variables of X are associated to the ports P of K. We now define the semantics of an
atomic component.

Definition 2.1.7 (Semantics of atomic component) The semantics of K = (TS , X, g, f), where
TS = (Q, q0,P,−→), is a labeled transition system ((Q× VX), (q0 × vX),P, ↪→) such that:

• (Q× VX) is a set of states, where VX denotes the set of valuations of variables X .

• ↪→ is the set including transitions (q, vx)
p
↪→ (q′, vx′) where, vx, vx′ ∈ Vx such that gt(x) ∧

(x′ = ft(x)) holds for some t = (q, p, q′) ∈−→.

At the semantic level some transitions of the ELTS may disappear in the computed labeled tran-
sition system and thus some control states of the ELTS may become unreachable. This is due to the
fact that the semantics is computed taking into account the possible valuations of the variables and
the soundness of the guards associated to transitions.

To distinguish the syntactic and the semantic level of a given component, in the rest of this thesis,
we denote by control states, the states of the extended labeled transition systems and by−→ its set of
transitions. Then we denote by only states the states of the corresponding computed labeled transition
system and by ↪→ the set of its transitions.

Figure 2.6 shows an example of an atomic component, with an interface consisting of two ports
in with x as associated variable and the port out with y as associated variable. The behavior of the
component represents two control states s1 and s2. The transition labeled by the port in takes place
if the component is in state s1 and if x > 0. Then the variable y is computed from x according to the
function f .

s1

s2

in out

out

y = f(x)
[x > 0]
in

[true]

x y

Figure 2.6: Atomic Component.

28

CHAPTER 2. PRELIMINARIES

2.1.4 Glues in BIP: Interaction models

In BIP, the interaction layer is defined by a set of possibily hierarchical connectors [BS07a,
BS08b]. Connectors are used to specify possible interaction patterns between the ports of compo-
nents. Interactions in BIP are used to allow synchronization and communication between compo-
nents.

Connectors

Composition of components allow to build a system as a set of components that interact by re-
specting constraints of an interaction model. In BIP interactions are structured by connectors. A
connector is a macro notation for representing sets of related interactions in a compact manner. To
specify the interactions of a connector, two types of synchronizations are defined:

• strong synchronization or rendez-vous, when the only interaction of a connector is the maximal
one, i.e., it contains all the ports of the connector.

• weak synchronization or broadcast, when interactions are all those containing a complete port
which initiate the broadcast.

To characterize these two types of synchronizations, a connector may associate to the ports it connects
two types. A trigger port of a connector is a complete port which can initiate an interaction without
synchronizing with other ports of the connector. It is represented graphically by a triangle. The
second type is synchron port of a connector which is an incomplete port, hence needs synchronization
with other ports, and is denoted by a circle.

(a) (b)

p1 p2

pγa

p1 p2

pγb

Figure 2.7: Example of Connectors.

Let γ be a connector connecting a set of ports {pi}ni=1, then γ is defined as follows:

Definition 2.1.8 (Connector) A connector γ is defined as a tuple (pγ [x],Pγ , δγ) where:

• pγ [x] is a port called the exported port of γ with x as associated variable,

• Pγ = {pi[xi]}ni=1 is the set of connected ports called the support set of γ. These ports are typed
by the information whether they are trigger or synchron. xi is a variables associated to pi.

• δγ = (G,U,D) where,

29

2.1. THE BIP MODELING FRAMEWORK

– G is a guard of γ, an arbitrary predicate G({xi}i∈I),

– U is an upward update function of γ of the form, x := F u({xi}i∈I),

– D is a downward update function of γ of the form, ∪pi{xi := F dxi(x)}.

The intuition behind the notion of exported port, as illustrated in Figure 2.7, is that a connector allows
to relate a set of inner ports (of connected components) to a new port (the exported port) which allows
to provide a notion of encapsulation by defining the interface of the obtained composite component.
Besides, the notion of the exported port, allows the connector to be used as a port by other connectors,
and thus create hierarchical components. The exported port represents set of interactions rather than
a single interaction.

Note that the support set defines ports of distinct components, which means that a connector
connects at most one port of each component. The variables associated to ports of a connector γ as
well as its upward and downward functions defined on these variables allow the exchange of data
between components connected by γ. Local variables of γ can be associated with its exported port
pγ .

The interactions of a connector are all the subsets of its ports which contain at least one trigger,
and in addition the set of all its ports, representing the maximal interaction of the connector, taking
into account the soundness of the guard associated to the connector and the guards associated to
transitions of the connected components.

Definition 2.1.9 (Interaction of a connector) Given a set of components {Ki}ni=1, where Ki =
(Qi, q0

i ,Pi,−→i, Xi, gi, fi). A connector γ = (pγ [x],Pγ , δγ), δγ = (G,U,D) connecting these
components, such that Pγ ∩ Pi = {pi}. An interaction a defined on a set of ports {pj}Jj=1 ⊆ Pγ is
an interaction of γ if one of the following conditions holds:

• ∃ j ∈ J such that pj is trigger;

• ∀ j ∈ [1, J], pj is sychron and {pj}Jj=1 = Pγ .

In both cases the interaction a has a guard, an upward and a downward functions denoted
(Ga, Ua, Da), where we suppose that they are respectively obtained by a projection of G, U and
D on the variables of the ports involved in a.
We denote by I(γ) the set of interactions of γ.

Thus like a connector, an interaction a is of the form (pa,Pa, (Ga, Ua, Da)), where pa is the exported
port of a, Pa the set of ports involved in a. In this thesis to simplify notation, an interaction a defined
on the set of ports {p1, . . . , pJ} is denoted by the expression a = p1, . . . , pJ , where we abstract away
its guard and function if we do not need to explicit them.

Example 2.1.10 Example of connectors is depicted in Figure 2.7. In (a), the connector γa relates the
ports p1 and p2, which it defines as synchron, to an exported port pγa . In this connector, if we suppose
that there is no variables, then the only feasible interaction is p1p2 which is also the interaction
represented by the exported port pγa . In (b), the interaction between p1 and p2 is asymmetric as p1 is
a trigger and can occur alone, even if p2 is not possible. Nevertheless, the occurrence of p2 requires

30

CHAPTER 2. PRELIMINARIES

the occurrence of p1. Thus, if no variables are defined, the interactions defined by γb are p1 and
p1p2. Thus pγb represents both interactions.

A connector, as well as a set of connectors, define a structural description of a possible set of inter-
actions. As interaction models are defined as a set of interactions, then a structural description of
interaction models could be given as a set of connectors.

Definition 2.1.11 (Interaction model) A set of disjoint connectors with distinct exported ports and
disjoint interfaces {Pi}ni=1 defines an interaction model I that is defined on

⋃n
i=1 Pi which we call

the support set of I and we denote SI and which defines an interface PI = {pγ |γ ∈ I}.

The interface of the component resulting from a composition using I is defined by PI . The variables
associated to an interaction model, denoted XI , are the set of variables associated with the ports PI
of the interface of I. The interactions of I, denoted I(I), is the set of interactions defined by the set
of its connectors, i.e., I(I) =

⋃
γ∈I I(γ).

Note that connectors in an interaction model are not required to have pairwise disjoint support
sets, this means that a port may be connected by several connectors.

Structured connectors

So far we have seen a notation for connectors, which are essentially flat, i.e., having types (triggers
and synchrons) associated to the individual ports (support set) only. However, connectors sometimes
need to be structured, i.e., having types associated to groups of ports. This is necessary to represent
some interactions, which otherwise cannot be represented by a flat connector. Structured connec-
tors are created by the combined mechanism of exporting port from a connector and instantiating
connectors, where a port of the connector is an exported port of another instantiated connector. Fig-
ure 2.8 shows an example of a structured connector. The connector γ0 relates the port p0 (trigger)

γ1

p2

p

p1

p3

p0

Sender Receiver1

Receiver2

γ0

Figure 2.8: Structured Connector.

of the Sender component with the port p1 (synchron) of the Receiver1 component, and exports the
port p2. It represents a set of interactions involving respectively the port sets {{p0}, {p0p1}}. γ1

is a structured connector joining the port p2 (trigger) of connector γ0 with the port p3 (synchron)

31

2.1. THE BIP MODELING FRAMEWORK

of the Receiver2 component and exports the port p. It represents the set of interactions involving
respectively the port sets {{p0}, {p0, p1}, {p0, p3}, {p0, p1, p3}}.

2.1.5 Composition of components in BIP

Composition of components in BIP is performed using interaction models.

Definition 2.1.12 (Composite component) A composite component consists of a composition of a
set of components {Ki}ni=1 with disjoint interfaces {Pi}ni=1 using an interaction model I on

⋃n
i=1 Pi.

Such a component is denoted I{Ki}ni=1.

Note that the interface of the composite component is defined by the interface of the used inter-
action model PI .

Definition 2.1.13 (Flat and Hierarchical component) A component is called flat if it is atomic or
of the form I{Ki}ni=1, where all Ki are atomic components. A component is called hierarchical if it
is not flat.

To compose a set of components {Ki}ni=1, it is assumed that their respective interfaces are pair-
wise disjoint, i.e., for any two i 6= j from 1..n we have Pi ∩ Pj = ∅.

I

Semantics

ELTS2

I

ELTSn. . .

. . .

ELTS

LTS

Semantics

LTS1 LTS2 LTSn

Syntactic
Composition

ELTS1

∼= ?

Figure 2.9: Semantics of a composition.

We now provide how to compute the semantics of a composite component. First, we propose in
Definition 2.1.14 a syntactic composition, allowing to transform a composite component I{Ki}ni=1,
given by a set of atomic components defined by extended labeled transition systems, into a new
atomic component K defined also as an extended labeled transition system. Then, the semantics
of the composition is computed as the semantics of the atomic component K. In this thesis, as we
are interested in describing the behavior of components as extended labeled transition systems and
our interaction models, in particular in Part II, are defined on ELTS, thus we choose to compute the
semantics only at the level of atomic components (ELTS) (see Figure 2.9).

Definition 2.1.14 (Syntactic composition) The syntactic composition of n components {Ki}ni=1,
where Ki = (TS i, Xi, gi, fi), with respect to an interaction model I with an interface PI and a
set of variables XI , is an ELTS K = (TS , X, g, f) where:

32

CHAPTER 2. PRELIMINARIES

• TS = (Q, q0,P,−→) is an LTS where:

– Q is set of control states, which is the cartesian product of the sets of control states of the
composed components Q =

∏n
i=1Qi,

– q0 = (q0
1, q

0
2, . . . , q

0
n),

– P , the interface of K, defined by the interface of the interaction model, P = PI
– −→ a set of transitions of the form t = (q, pγ , q′), where:

∗ q = (q1, . . . , qn), q′ = (q′1, . . . , q
′
n), qi and q′i being control states of the ith compo-

nent.
∗ pγ ∈ PI is an exported port of a connector γ ∈ I, corresponding to an interaction
α of γ, such that there exists a subset J ⊆ {1, . . . , n} of components with transitions
{(qj , pj , q′j)}j∈J and α = {pj}j∈J .
∗ if j 6∈ J , q′j = qj . That is, the control states from which there are no transitions

labeled with ports in α, remain unchanged.

• X =
⋃n
i Xi ∪ XI the union of the sets of variables of the composed components and the

interaction model,

• g associates with every transition t = (q, pγ , q′), corresponding to an interaction α = {pj}j∈J
of a connector γ ∈ I, a guard defined by g = (

∧
j∈J gj) ∧ Gα. Intuitively, the guard of the

new obtained transition takes into account the guards of the composed transitions as well as
the guard of the connector used to compose them.

• f associates with every transition t = (q, pγ , q′), corresponding to an interaction α = {pj}j∈J
of a connector γ ∈ I, a function f = Uα; Dα; [fj]j∈J . That is, the computation starts with the
execution of Uα then Dα followed by the execution of all the functions fj in some arbitrary
order. The result is independent of this order as components have disjoint sets of variables.

Note that components which are not involved in an interaction do not move when it is fired.

· · ·p1
g1
f1

p2
g2
f2

pk
gk
fk

p

γ = (p, {p1, p2, . . . , pk}, G, U , D)
α ∈ γ ∧ α = p1p2 . . . pk

p

Gα ∧ g1 · · · ∧ gk
Uα; Dα; [fi]

k
{i=1}

p1 p2 pk

Figure 2.10: Composition of Components.

33

2.1. THE BIP MODELING FRAMEWORK

Figure 2.11 depicts an example of composition of BIP components. The connector γ connects
the set of ports {pi}ki=1. The example depicts the transition resulting from an interaction α of γ. α
corresponds to a rendez-vous between all ports of γ. The obtained transition is then labeled by p the
exported port of γ, its guard is then computed from the guard Gα and the guards of the transitions
labeled by the ports involved in α. Similarly, the function of transition labeled by p is computed
by applying first the upward function of γ, then its downward function and finally the functions
corresponding to the synchronized transitions.

2.1.6 Priorities in BIP

Previously, we have focused on the first two layers of the BIP framework, namely behavior and
interaction. Now let us focus on priority.

Priorities are a powerful tool for restricting nondeterminism. They allow straightforward model-
ing of urgency and scheduling policies for distributed systems. For example, execution constraints
like run to completion and synchronous execution can be modeled by priority models on threads.

Definition 2.1.15 (Priority) A priority order ≺ on a set of interactions is a strict partial order on
these interactions.

A priority order ≺ on an interaction model I is a strict partial order on the interactions of I.

We define now the notion of composite component taking into account priority.

Definition 2.1.16 (Composite component) A composite component consists of a composition of a
set of components {Ki}ni=1 with disjoint interfaces {Pi}ni=1 using an interaction model I on

⋃n
i=1 Pi

and a priority order ≺ on I(I). Such a component is denoted I≺{Ki}ni=1.

The pair (I,≺) is denoted I≺ and it is a glue as it describes how to compose a set of components so
as to make them interact.

In this thesis, we only use priorities in Part III where components are defined as simple labeled
transition systems with neither variables nor guards. Thus the semantics of an atomic component is
itself. Similarly the semantics of a composite component built as a composition of a set of LTS using
an interaction model I≺ is also an LTS obtained by applying first I then≺ to the obtained component.

Definition 2.1.17 (Semantics of a priority order) A priority order < defines an operator that asso-
ciates with an LTS TS = (Q, q0,P,−→) on an LTS TS ′ = (Q, q0,P,−→<) where−→< is the least
transition relation satisfying the following rule:

q1 a−→ q2 @b ∈ P, (a < b ∧ q1 b−→)

q1 a−→< q2

Figure 2.11 depicts an example of composition of BIP components with priorities. Two interac-
tions between the set of k components are defined. In this example to simplify notation we suppose

34

CHAPTER 2. PRELIMINARIES

· · ·

α2 ≺ α1

p1 p2 pk
α1

α2

α1 = p1p2 . . . pk α2 = p1p2

p1 p2 pk

Figure 2.11: Semantics of Composite Component with Priorities.

that transitions are labeled by interactions, and not by the exported port of the corresponding connec-
tor. In the semantics of the composition and with respect to priorities, stating that α2 ≺ α1, only the
transition corresponding to the interaction with higher priority appears.

Note that the priorities we use in this thesis are called static. In BIP another type of priorities
called dynamic is also defined [BBBS08, GS04], where priorities between interactions of a given
component K, depend on its state.

We now provide an example showing the application of priorities to enforce execution constraints
on a composite component.

Example 2.1.18 (Mutual Exclusion)

In this example, we show the enforcement of mutual exclusion, a very common execution constraint,
needed when we have multiple components (tasks) sharing a single resource similar to the famous
example of the dining philosophers. In the example shown in Figure 2.12, we have two identical
tasks, T1 and T2, modeled as BIP components. The control states of the i-th task are Ii (Idle), Ri
(Ready) and Ei (Executing). The actions (ports) are ai (activate), bi (begin) and fi (finish). Each task
is initialized to state Ii, from where it can activate through the action ai and become ready (Ri) for
execution. The start of execution is marked by the action bi, by which the task acquires the resource
and moves to the execution state (Ei).

The interaction model allows every action to be activated independently. Under mutual exclusion,
a task cannot acquire the resource if the other task is already in the execution state. As in this simple
example we suppose that only unitary actions can occur, violation of mutual exclusion would mean
that after the occurrence of b1, b2 occurs before f1. Then we can enforce mutual exclusion by the
priority model, which assigns the actions to obtain the resource, lower priority than the actions to
release the resource, i.e., b1 ≺ f2 and b2 ≺ f1. For T1, the priority b1 ≺ f2 prevents it from obtaining
the resource, unless T2 releases it (by the action f2). Similarly, T2 is restricted by b2 ≺ f1 as long we
suppose that fi is always enabled after bi.

35

2.2. CONTRACT FRAMEWORK CONCEPTS

f1

T1 T2

a1 b1

a1

b1

R1

E1

b2

a2

R2

E2

I2

f1 f2

Prioritiess: b1 ≺ f2, b2 ≺ f1

Interactions: a1, b1, f1, a2, b2, f2

b2

f2

a2I1

Figure 2.12: Example: Priorities to enforce Mutual Exclusion.

When both tasks are at state Ri, either of them can acquire the resource in a non-deterministic
fashion. However, static priority rules can be used to prioritize the tasks in any desired order. For
example, b2 ≺ b1 sets a higher priority for T1 to acquire the resource, compared to T2.

We can also define mutual exclusion in the case where we suppose that actions of different pro-
cesses may occur independently. This can be expressed by an interaction model that allows any pairs
of actions involving the two processes except the pairs b1b2 of course. The same priority rules can be
used. If we suppose that fi may be disabled for a while after the occurrence of bi, priorities are not
sufficient anymore. We need the so-called timed priorities as they have been proposed in [BS00].

Maximal Progress Priority in Connectors A particular priority rule, that favors, among the en-
abled interactions of a connector, the maximal one, i.e., the one with maximum number of ports, is
known as maximal progress priority. This can be explicitly represented through priority rules amongst
the interactions, of the form p1 ≺ p1p2, where p1 and p1p2 are interactions of the same connector.
As an example, maximal progress is necessary to model a broadcast. Maximal progress is implicitly
assumed in connectors for their compact and natural representation.

2.2 Contract framework concepts

A main part of this thesis aims at the definition of a scalable design and verification methodology
for systems of components based on contracts. Contracts are design constraints for implementations
which are maintained throughout the development and life cycle of the system. We describe in this
section the basic concepts about contracts. In particular, we introduce a formal definition of the
generic contract framework presented in [QG08a] and a description of the component framework on
which it is based. We also provide key relations and properties required to reason about contracts
namely satisfaction and dominance.

The generic notion of contract framework, described in [QG08a], relies on a notion of component
framework supporting hierarchical components as well as some powerful mechanisms to reason about

36

CHAPTER 2. PRELIMINARIES

composition. We therefore introduce next the notions a component framework must define.

Definition 2.2.1 (Component framework) A component framework is a structure of the form
(K,GL, ◦,∼=) where:

• K is a set of components — describing their behavior or properties.
Each component K ∈ K has as its interface a set of ports, denoted PK .

• ∼=⊆ K×K is an equivalence relation. In general, this equivalence is derived from equality or
equivalence of semantic sets.

• GL is a set of glue (composition) operators.
Operators gl ∈ GL are partial functions 2K −→ K transforming a set of components into
a new component. Each gl is defined on a set of ports Sgl — of the original set of com-
ponents, called its support set — and defines a new interface Pgl — on the new component,
called its exported interface (see Definition 2.1.11) . Thus, K = gl{K1, ... ,Kn} is defined if
K1, ... ,Kn ∈ K have disjoint interfaces, Sgl =

⋃n
i=1 PKi and the interface of K is Pgl , the

exported interface of gl .

• ◦ is an operation on GL allowing to compose glues. It is such that (GL, ◦) is a commutative
monoid. Formally, gl ◦ gl ′ is defined on (Sgl ∩ Sgl ′) ∪ (Sgl\Pgl ′) ∪ (Sgl ′\Pgl) and defines
as interface (Pgl ∪ Pgl ′)\Sgl◦gl ′ . Note that gl ◦ gl ′ must be defined even if (Sgl ∩ Sgl ′) 6= ∅.
Furthermore, this operation must be consistent with ∼= in the sense that gl{gl ′{K1},K2} ∼=
(gl ◦ gl ′){K1 ∪ K2} for any sets of components Ki such that all terms are defined.

To simplify the notation, we write gl{K1, . . . ,Kn} instead of gl({K1, . . . ,Kn}).
Note that the operation ◦ over glues is commutative not in the order of applying composed glues

but in the sense that the resulted glue of their composition is the same. In this definition of component
framework, the notion of component is intentially kept abstract to encompass different frameworks.
It may be for example a labeled transition system or an extended labeled transition system as defined
previously. For example, components are defined in the framework defined in [QG08a] as Modal
Transition Systems (MTS) and they could be also defined as BIP components which include a struc-
tural layer. Note that in this definition, there is no explicit distinction between atomic and hierarchical
components, if there is a way to represent an hierarchical component as an atomic one. In many
frameworks that work at the semantic level, they are the same.

Figure 2.13 shows how hierarchical components (the colored ones) are built from atomic ones
(the white components). It also illustrates the flattening property the composition model. Note that
the representation of glues is just one among other possible sets of glues. Dashed lines show how the
exported interface is defined based on inner ports and glues.

Note that BIP framework as defined previously represents such a component framework with its
definition of components and glues. In this thesis, we are interested in a variant of BIP defining such
a component framework.

37

2.2. CONTRACT FRAMEWORK CONCEPTS

K1

Sgl◦gl ′Sgl ′Sgl

gl ′{K1,K2}

K2 K3 K4
∼=

K2K1 K3 K4

(gl ◦ gl ′){K1,K2,K3,K4}gl{gl ′{K1,K2},K3,K4}

Figure 2.13: A hierarchical component and its equivalent flattened form.

2.2.1 Contract frameworks

We give in this section the different notions presented in [QG08a] allowing to use contracts to
reason about components and their properties. In particular, how to build a contract framework which
provides basic rules to reason about systems of components.

Before giving the formal definition of contract framework, we introduce the notion of context, to
describe how a component may be connected to the rest of the system and to express a property of
the environment. Thus, a context limits the way in which a component may be further composed.

Definition 2.2.2 (Context) A context for an interface P is a pair (E, gl) where E ∈ K a component
defined on PE , and where we suppose P ∩ PE = ∅ and gl is defined on P ∪ PE .

Definition 2.2.3 (Contract framework) A contract framework is a tuple (K,GL, ◦,∼=, {vE,gl},4)
where:

• (K,GL, ◦,∼=) is a component framework.

• 4⊆ K × K is a conformance relation relating components with the same interface. Given
K1,K2 ∈ K, for K1 4 K2 we may say K1 conforms to K2.

• {vE,gl} is a refinement under context relation parameterized by a context. Given a context
(E, gl) for an interface P , vE,gl is a preorder over the set of components on P which is
expected to be compositional. It is a preorder such that for any K1, K2 on the same interface
P and for any context (E, gl) for P , K1 vE,gl K2 =⇒ gl{K1, E} 4 gl{K2, E}.

The notion of refinement and substitutability is recognized as being a fundamental require-
ment [DHJP08] in the context of component and contract-based approaches. Conformance is a kind
of refinement with respect to a given specification and it relates properties of closed systems, where
a closed system is a component that we cannot or do not want to further compose. Open systems are
components that may be composed with an unknown environment. Even though a closed system is
not intended to be composed anymore, it has an interface allowing not to observe its behavior and
thus to define properties of a closed system on ports of this interface.

38

CHAPTER 2. PRELIMINARIES

Refinement under context is usually considered as a derived relation and chosen as the weakest
relation implying conformance.

Example 2.2.4 Typical notions of conformance 4 are trace inclusion and simulation. For these no-
tions of conformance, refinement under context (denoted v4) is usually defined as the weakest pre-
order included in 4 that is compositional:

K1 v4
E,gl K2 , gl{K1, E} 4 gl{K2, E}

Note that there are cases where a stronger notion of refinement under context allows more powerful
reasoning.

Example 2.2.5 Conformance itself is another candidate for refinement under context if it is preserved
by composition, that is, if: K1 4 K2 implies gl{K1, E} 4 gl{K2, E} for any E.

However, defining refinement under context as K1 vE,gl K2 , K1 4 K2 means in fact not
taking the environment into account, thus it is of limited interest. In some cases, as the frameworks
presented in [QG08a], conformance actually corresponds to refinement in any context. In the contract
framework we propose in Chapter 4, our definition of conformance is defined as refinement in a
particular context.

Now we can define the notion of contract which allows to describe properties that a component
should offer in a given context.

Definition 2.2.6 (Contract) A contract C for an interface P consists of:

• a context E = (A, gl) for P where A is called the assumption

• a component G on P called the guarantee

We write C = (A, gl , G) rather than C = ((A, gl), G). gl implicitly defines the interface of the
environment while A expresses a constraint on it and G a constraint on the refinements of K. The
“mirror” contract C−1 of C is (G, gl , A).

A contract C = (A, gl , G) defines a closed system namely gl{A,G} as a composition of its
assumption and guarantee using its glue. The exported interface of gl defines the interface of the
closed system on which properties are expressed.

Definition 2.2.7 (Satisfaction of contract) A component K satisfies a contract C = (A, gl , G), de-
noted K |= C, if and only if K vA,gl G. K is called a possible implementation of C.

Intuitively, a component K satisfies a contract C = (A, gl , G), if K and its environment are
composed by the glue gl and K behaves according to G provided that the environment behaves
according to A.

39

2.2. CONTRACT FRAMEWORK CONCEPTS

c

a

c

a

b

b b

b

a

b a

K A G

Figure 2.14: K v4
A,gl G for conformance defined as simulation.

Example 2.2.8 Suppose that components are LTS, conformance is simulation and refinement under
context is the usual derived notion defined in Example 2.2.4. Suppose also that composition gl is
defined as the synchronization between actions with the same letter and interleaving of others. Then
Figure 2.14 shows K, A and G such that K satisfies the contract (A, gl , G). Indeed, even though K
does not simulate G (after b is fired it offers c instead of a), it still behaves like G in the context of
(A, gl), which prevents b from taking place.

2.2.2 Dominance

To reason about contracts, in the proposed contract framework, an additional relation called dom-
inance is introduced. Dominance means for contracts what refinement means for components. Con-
tract C is said to dominate contract C′ if every implementation of C— i.e., every component satisfying
C — is also an implementation of C′. Intuitively, this is achieved by a C that has a stronger promise
or a weaker assumption than C′.

Let us start with a first definition of dominance for two contracts with the same glue part.

Definition 2.2.9 (Binary dominance) Let C and C′ be two contracts for the same interface P and
the same glue gl , with C = (A, gl , G) and C′ = (A′, gl , G′). C dominates C′ iff:

for any K on P , if K |= C then K |= C′

A component which satisfies the concrete contract C does also satisfy the more abstract contract
C′.

There are several ways to “refine” a contract C′. A typical way consists in strengthening the
guarantee G. Another typical situation is the one of a hierarchical component. Then C′ would be
contract associated with the higher level of hierarchy and C is defined implicitly by a set of contracts
and the glue gl defining their composition.

In this case, we have two options: define for each glue gl a composition of contracts g̃l or define
dominance explicitly for such a situation. Here we choose the second option, as composition of
contracts is not possible in all cases of interest for us, and moreover not even desirable for achieving
efficient verification. We thus need a broader notion of dominance than the binary version, that is

40

CHAPTER 2. PRELIMINARIES

dominance defined directly for a set of contracts {Ci}ni=1 and a contract C to be dominated w.r.t a
composition operator gl I .

In order to hide ports of the lower-level contracts which do not appear at the interface of the top-
level contract, the constraints on the composition operators are relaxed by only requiring that they
agree on their common ports. For this, a notion of projection of a component K onto a subset P ′
of its interface is needed, denoted ΠP ′(K), which is quite natural and must preserve the following
properties.

Definition 2.2.10 (Projection) If Π is a projection, then for any components Ki and A on disjoint
interfaces P and PA, and any composition operator gl on P ∪ PA:

1. for P ′ ⊆ P and for any gl1, gl2 with Sgl1 = P ′ ∪ PA, Sgl2 = P\P ′ s.t. gl = gl1 ◦ gl2:

(K1 vA,gl K2 ∧ΠP ′(K2) vA,gl1 G) =⇒ ΠP ′(K1) vA,gl1 G

Note that G is defined on P ′.

2. ∀ P ′A ⊆ PA and for any gl1, gl2 on Pgl1 = P ∪ P ′A, Pgl2 = PA\P ′A s.t. gl = gl1 ◦ gl2:

(K vΠP′
A

(A),gl1
G) =⇒ K vA,gl G

Note that G is defined on P .

These properties state that ports of the component (and symmetrically of the environment) which
do not appear in interactions with the environment (resp. the component) may be abstracted away
when checking refinement.

We now provide the definition of dominance relating a set of contracts.

Definition 2.2.11 (Dominance) Let C be a contract for P , {Ci}ni=1 a set of contracts defined on
disjoint interfaces {Pi}ni=1 and gl I a glue defined on

⋃n
i=1 Pi. Then {Ci}ni=1 dominates C w.r.t. gl I

iff for any set of components {Ki}ni=1:

(if for every i ∈ [1, n],Ki |= Ci, then ΠP(gl I{K1, ... ,Kn}) |= C

Intuitively, a set of contracts {Ci}ni=1 dominates a contract C w.r.t. a glue gl I if and only if any set
of components satisfying the contracts Ci, when composed using gl I , makes a component satisfying
C.

The definition we have given is semantic, and concretely one does not want to manipulate im-
plementations in order to establish dominance. More generally, what are the additional proof rules
and properties that one needs in order to reason within contract frameworks? The following chapter
answers those questions.

41

2.2. CONTRACT FRAMEWORK CONCEPTS

42

Part II

A Contract Framework for Reasoning
about Safety and Progress

43

Chapter 3

Contract-Based Verification Approach

It is a well-known fact that formal verification based on model-checking suffers from the state
space explosion problem. Compositional design and verification are mandatory for making verifi-
cation feasible. One possibility is to infer global properties of a system from properties of its sub-
systems. Instead of verifying globally the entire system, compositional approach first decomposes it
into small subsystems and verifies each of them individually. The size of a subsystem is often quite
smaller compared to the size of the whole system, hence there is less risk of explosion of state space.
Then, properties of the global system are inferred from the verified properties of its subsystems.

In this chapter, we present a compositional design and verification methodology. In particular, we
focus on an approach allowing to verify some top level requirement of a given system represented by
a composition of a set of components (subsystems). We propose to infer this global property to a set
of “sub-properties” associated to each of the components.

The idea is to deduce the satisfaction of this global property from the satisfaction of the “sub-
properties” at the level of each component. Such an approach is in general possible if the set of
subsystems are independent. However, if it is not the case, when building their “sub-properties”, one
would take into account the interference of this subsystem with the rest of the system. Thus, we have
chosen to use contracts, so as one could describe properties of the subsystems and also properties of
their environment that is the rest of the system.

Moreover, to describe how each subsystem interacts with the rest of the system, and as mentioned
previously, we rely on a notion of contract allowing to describe the glues used to compose compo-
nents. Thus, the proposed approach does not only encompass properties of systems but also how they
interact and how they are composed to their environment.

This chapter is organized as follows: Section 3.1 describes the different steps of our methodol-
ogy. In particular how we use the notion of contract framework and it relations. Then, we describe
how to extend our methodology to verify recursively defined systems, that is systems which can be
built according to a grammar of components. This allows to encompass systems of arbitrary size.
Section 3.2 details first how we can establish the soundeness of our methodology. Then, properties
that the component framework has to ensure so that we can apply the methodology. In Section 3.3,
we describe the property that we use to prove dominance which is a key notion in our methodology as

45

3.1. DESIGN AND VERIFICATION METHODOLOGY

it allows to infer properties of some top-level contract from the properties of a set of inner contracts
with respect to some glue operator.

3.1 Design and verification methodology

In this section we propose first a design methodology which is compositional and incremental and
defined for the generic contract framework described in Section 2.2.1. In particular, it uses its notion
of contracts and its relations of conformance, dominance and satisfaction.

Then, we describe how we extend this methodology to verify properties of systems with arbitrary
size. The idea is to describe these systems by a grammar of components, allowing to describe the
system by a set of rules, then we adapt the steps of the methodology to these rules.

3.1.1 Methodology

We present now our compositional and incremental design and verification methodology defined
for any contract framework that is an instance of the generic notion of contract framework as intro-
duced in Section 2.2.

We present the methodology in a top-down fashion. However, it could be also applied in a bottom-
up fashion to achieve the same verification purposes but in a different order by using the same rea-
soning and relations. Note that in general design approaches allow both top-down and bottom-up
reasoning.

We consider here the simple case of a unique top-level requirement – that will be denoted ϕ
throughout this section – that is pushed progressively from the overall system into atomic components
which we call implementations.

In the entire section we use the notions introduced in Section 2.2, in particular, the notion of
contract and the relations conformance, satisfaction and dominance. We first present an overview of
the methodology steps, then we detail the different steps separately. Our methodology is given by the
following steps:

1. We first provide the property ϕ, which we want that the system K satisfies in a given context.
That is a property of the closed system obtained by the composition of K through its interface
P to its environment E.

2. Then, we define a contract C for P which conforms to the property ϕ. That is defining the
following:

• the glue gl connecting K to its environment which allows to define the interface of the
environment denoted PA;

• a property A on the environment E of K defined on PA;

• a property G on P which K has to satisfy in the context (A, gl).

46

CHAPTER 3. CONTRACT-BASED VERIFICATION APPROACH

3. We define K as a structural composition of a set of subcomponents {Ki} using a glue gl I (see
Figure 3.2). Then we associate a contract Ci for each subcomponent Ki and we prove that
any set of implementations (components) for Ki satisfying these contracts Ci, when composed
using gl I , satisfies the top-level contract C and thus guarantees ϕ. This corresponds to the
verification of the relation of dominance between contracts (see Figure 5.8). This step can
possibly be iterated if needed by similarly decomposing each Ki;

4. Finally, for components Ki, which we do not want to further decompose because for example
they are sufficiently simple, we provide implementations Ii and we prove that these implemen-
tations satisfy the contracts Ci.

��������

���
���
���
���

���
���
���
���

������

����
����
����
����

������

ϕ

K
4 (conformance)

G A PA
P
Pϕ

C

gl

Figure 3.1: Step 2: Conformance.

The first step provides a description of the property ϕ, which the designer wants to verify. The
designer has to precise in which context, the systemK under study has to ensure this property. Indeed,
ϕ has to be ensured byK together with its environment and thus the description of ϕ has to be defined
on the interface of the closed system defined by the composition of K and its environment.

For this purpose, the next step is based on the conformance relation (see Definition 2.2.3) which
is a relation defined on closed systems with the same interface.

In [Qui11], closed systems do not have interfaces as they are not supposed to be connected and
their properties are described on the set of internal interactions. Here we propose to define an interface
for closed systems in which we export the set of interactions and possibly variables that one wants
to use to describe the desired property. Thus, if one wants to describe a property on the set of all
internal interactions of a closed system, it has to export by means of an “exported interface” all these
interactions. For example, in the Input/Output (I/O) contract framework proposed in [Qui11], input
completeness is verified by checking that whenever an output o occurs, a corresponding input i occurs
as well, that is only interaction o.i occurs. This is possible by exporting to the interface of the closed
system the interaction involving only an output o and verifying that this interaction will never take
place.

As previously described, a contract allows to define a closed system built by the composition ofK
and its environment. A contract on the interface P of K, defines a gl describing how K is connected

47

3.1. DESIGN AND VERIFICATION METHODOLOGY

to it environment, and thus defines the interface of this environment PA. The contract, describes
then a property of the environment A defined on PA and a property G on the interface P that K
has to provide in the context (A, gl). In Figure 3.1, ϕ and the closed system defined by the contract
(A, gl , G) are defined on the same interface Pϕ. This relation has to be reflexive and transitive. In the
frameworks presented in [QG08a] for example, the relation of conformance is defined as inclusion of
traces between MTS.

������

���
���
���
���

���
���
���
��� gl I

A G K3K2K1

PA
Pi

P gl
C

Figure 3.2: Step 3: K defined as a composition of {Ki}ni=1 using gl I .

The third step of our methodology uses the characteristics of the component framework used
to build the system in particular its set of glues. In the first part of this step, see Figure 3.2, the
designer provides a description of the system K as a composition of a set of components {Ki} with
respect of a given glue gl I . {Ki} are also called subsystems of K. If the component framework
provides the so-called property of flattening, then it is possible to build from the glues gl and gl I , a
glue glflat relating directly the components {Ki} to the environment of K. That is glflat{A,K} ∼=
gl{A, gl I{K1, . . . ,Kn}}. In the second part of third step, we define for each subsystemKi a contract
Ci = (Ai, gl i, Gi) describing a property of its environment Ai and a property Gi that it is supposed to
guarantee in the context of such an environment. Thus, to define such contracts for each subsystem,
the designer has to provide a property of the environment of this subsystem, that is the rest of the
system, and in particular how it is composed to this environment that is the glue gl i. These glues {gl i}
must provide a property called structural compatibility with the glue glflat obtained by flattening.
This property is needed to relate the glue gl i provided in each Ci to the actual environment of the
componentKi. For example, as illustrated in Figure 5.8, the actual environment of the subcomponent
K1 consists of components K2, K3 and A, the top-level assumption. However, the glue gl1 provided
in the contract for K1 has been defined for an abstract environment A1, hence the need for a glue
representing the environment of K1 as a single component with the same interface as A1. More
details about this property are provided in Section 3.2.

The preservation of the top level requirement ϕ by the set of contracts {Ci} is guaranteed by the
properties of the relation of dominance that must hold between these contracts {Ci} and the global
contract C.

Thus a key issue of the third step of the proposed approach is dominance relation (see Defini-
tion 2.2.11), as shown in Figure 5.8, once we define a contract, for each subsystem, a dominance

48

CHAPTER 3. CONTRACT-BASED VERIFICATION APPROACH

���
���
���

���
���
���

��������

���
���
���

���
���
���

������

����
����
����
����

������

���
���
���

���
���
���

������

gl I

C1 gl1

C2 gl2 C3

G3

gl3

G1

G2
A1

A2 A3

K1 K2 K3

Figure 3.3: Step 3: Dominance ({C1, C2, C3} dominates C w.r.t. gl I).

relation has to be checked between these contracts {C1, C2, C3} and the top-level Contract C. Intu-
itively, dominance means for contracts what refinement means for components as the goal of contract
frameworks in general is to reason about contracts and dominance rather than about components and
refinement.

The last step of our methodology, is to provide implementations that satisfy contracts of compo-
nents which are not further refined, at least at the current stage of design (see Figure 3.4. This means,
giving a concrete specification of the different subsystems of the global system. As our methodology
is incremental, this step can be pushed as far as possible to lower levels. Indeed, for a given subsystem
Ki we can either provide an implementation, which can be described using the same formalism as
properties or using any language if the implementation is provided as a program, or it can be further
described as a composition of a set of components and for which we apply again the third step of our
methodology.

��
��
��

��
��
��

����
����
����
����

��
��
��

��
��
��

��������

���
���
���
���

����
����
����
����

��
��
��

��
��
��

���
���
���
���

C1 gl1

C2 gl2 C3

G3

gl3

G1

G2

|=

I1

|=

I2

|=

I3

(satisfaction)

Figure 3.4: Step 4: Satisfaction.

Figure 3.5 summarizes the overall description of the different steps of our methodology. The global
property ϕ appears at the top, while the implementations Ii are at the bottom.

Given a set of implementations {Ii} satisfying the contracts {Ci}, then if the different steps of our
approach have been applied successfully, means that conformance, dominance and satisfaction have
been successfully checked, then the system obtained as a composition of these implementations, that
is glflat{A, I1, . . . , In}, guarantees the property ϕ. The soundness of these results rely on the prop-
erties of the relations of the contract framework we use to apply this methodology. These properties
will be detailed in the next section.

49

3.1. DESIGN AND VERIFICATION METHODOLOGY

An additional step is represented on the right hand side: it allows the integration of the system K
in an actual environment E while preserving ϕ. For this purpose, E must satisfy the mirror contract
of C or any contract dominating this mirror contract. This step can be added if the contract framework
allows a property called circular reasoning, which intuitively allows to infer that if K conforms to ϕ
in an environmentA, than it also conforms to ϕ in any environment refining this environment. Details
about this property and its usefulness are described in Section 3.3.1.

��
��
��

��
��
��

��������

��
��
��

��
��
��

���
���
���
���

������

����
����
����
����

��������

������

���
���
���
���

���
���
���
���

������

������

��
��
��

��
��
��

����
����
����
����

ϕ

gl I

{C1, C2, C3}

w.r.t. glI

dominates C

4 (conformance)

C

|=

I1

C1 gl1

|=

I2

C2 gl2 C3

Step (1): conformance

C−1

|=

E
Step (2): decomposition

G3

|=

I3

gl3

(satisfaction) Step (4): satisfaction

Step (3):

PAi

PA
Pi

P

G A

gl

A G

gl

G1

G2

Figure 3.5: Methodology steps ensuring that gl{A, gl I{I1, I2, I3}} 4 ϕ.

3.1.2 Extension to recursively defined systems

In this Section, we extend our design and verification methodology to hierarchically structured
and recursively defined systems so that we can handle systems representing component networks of
arbitrary size. We propose to apply our methodology to systems that can be defined by a component
grammar as follows:

• a set of terminal symbols {A, I1, ... , Ik} representing implementations;

• a set of nonterminal symbols {S,K0,K1, ... ,Kn} representing hierarchical components; S,
which defines the top-level closed system, is the axiom;

• a set of rules corresponding to design steps which define each non-terminal either as a compo-
sition of subsystems or as an implementation:

50

CHAPTER 3. CONTRACT-BASED VERIFICATION APPROACH

– S −→ gl{A,K0}.
– For i ∈ [0, n], at least one rule either of the form Ki −→ Ij (j ∈ [1, k]) or Ki −→

glΣi{Kj}j∈Σi , where Σi a set of indices and glΣi a composition operator on the union of
the interfaces of the Kj .

Where S is a hierarchical component (a system) and {Ki}{1,..,k} are either hierarchical or leaf com-
ponents for which an implementation is to be given.

Terminal symbols correspond to actual implementations, nonterminal symbols to hierarchical
components and rules to design steps. In particular, K0 represents the global system under design, A
is a property of its real environment. Thus, S stands for the system along with its environment. Note
that a decomposition rule of some non-terminal Ki may also contain a set of the same non-terminal.
Thus, to ensure the unicity of ports, we suppose that the name of each port is prefixed by its path from
the root symbol and indexed if the rule contains a set of the same non terminals. Unlike classical
network grammars, we use rich composition operators and are not limited to flat regular networks, as
for example in [SG89].

We now instantiate the methodology of Figure 3.5 for such component networks. We choose
again a top-down presentation. To do so,

The same four steps are presented, namely conformance, decomposition, dominance and satisfac-
tion.

1. formulate a top-level requirement ϕ characterizing the closed system S defined by the system
K0 and a property A of its environment;

2. define a contract C = (A, gl , G) associated with K0 and prove that gl{A,G} 4 ϕ;

3. define for every non terminal Ki a contract CKi = (AKi , glKi , GKi) such that for every rule
Kl −→ glΣl

{Kj}j∈Σl having an occurrence ofKi on the right hand side, there exists glAi such
that glKl ◦ glΣl

= glKi ◦ glAi . Then, for each Ki −→ glΣi{Kj}j∈Σi , show that {CKj}j∈Σi

dominates CKi w.r.t glΣi

4. prove that implementations satisfy their contracts: Ki −→ Ij =⇒ Ij |= CKi .

The steps 3 and 4 can be combined, by proving for each non terminal Ki either satisfaction if it
is described by an implementation, or dominance, if it is described by a composition rule.

In the next section we provide a proof that, given an grammar of components, for which all the
methodology steps have been successfully applied to verify a property ϕ, then any component system
built as a derivation tree accepted by this grammar satisfies also ϕ.

3.2 Soundness of the methodology

In Section 2.2, we have described the definitions of the different relations used in our methodol-
ogy, namely conformance, dominance and satisfaction. In this section, we describe how we prove
soundness of this methodology using the definitions of these relations provided in the definition of

51

3.2. SOUNDNESS OF THE METHODOLOGY

contract framework. We then, describe a condition a designer has to ensure on glues when defining
the contracts for dominance.

3.2.1 Soundness

To prove the soundness of the methodology described in Section 3.1.1, we rely on the properties
of the contract framework defined in Section 2.2.

Theorem 3.2.1 Suppose for a system K, a top level property ϕ, and a contract C = (A, gl , G)
defined on K together with its environment such that C conforms to ϕ. Suppose a decomposition of
K into gl I{K1, . . . ,Kn}, where for each Ki we associate a contract Ci = (Ai, gl i, Gi) such that
the contracts {Ci} dominate C w.r.t gl I and we provide an implementation Ii satisfying Ci. Then, we
have:

gl{A, gl I{I1, . . . , In}} conforms to ϕ

Proof According to the definition of dominance (see Definition 2.2.11), {Ci} dominate C w.r.t gl I
implies that any components satisfying the contracts {Ci} when composed together using gl I satisfies
C. As the implementations {Ii} satisfy their corresponding contracts, we obtain gl I{I1, . . . , In}
satisfies C, that is, gl I{I1, . . . , In} vA,gl G (according to the Definition 2.2.7 of satisfaction).
As we have that refinement implies conformance in our contract framework, this implies that
gl{A, gl I{I1, . . . , In}} conforms to gl{A,G}. Then as gl{A,G} conforms to ϕ and as conformance
is transitive, we obtain gl{A, gl I{I1, . . . , In}} conforms to ϕ. 2

We can now based on this Theorem 3.2.1, prove the soundness of the extended methodology.

Theorem 3.2.2 Let G be a grammar such that all methodology steps have been completed to guar-
antee a requirement ϕ. Any component system corresponding to a word accepted by G satisfies ϕ.

Proof By induction on the number of steps required for deriving the accepted word from S, we
can prove that the system represented by K0 satisfies its contract (A, gl , G), that is, K0 vA,gl G.
This implies, as one of the conditions of our contract framework, that gl{A,K0} 4 gl{A,G}. As
conformance is transitive, we have gl{A,K0} 4 ϕ. 2

3.2.2 Compatibility of glues

As previously described, the soundness of our methodology relies on the definition of dominance.
However, before using dominance, we need first to associate contracts {Ci} for subsystems {Ki}
of K, which requires to define the glues {gl i} allowing to compose each subsystem to the rest of
the system. As already mentionned in the methodology, these glues have to provide a property of
structural compatibility with the glue gl ◦ gl I .

Definition 3.2.3 (Structural compatibility of glues) Consider two glues gl and gl2. Now suppose
P ⊆ Sgl. gl and gl2 are called compatible if there exists gl1 with Pgl = Pgl1 and Sgl = P ∪ Pgl2

52

CHAPTER 3. CONTRACT-BASED VERIFICATION APPROACH

such that gl1 ◦ gl2
∼= gl where by abuse of notation, this equivalence between glues means that

gl1 ◦ gl2{K1} ∼= gl{K1} for any set of components K1 such that all terms are defined.

In the context of the dominance problem, the goal is to relate the glue gl i provided in each Ci to
the actual environment of component Ki, as illustrated in Figure 3.6: gl is the glue defined in the
top-level contract and gl I defines how subcomponents are composed. Thus, the actual environment
of subcomponent K1 consists of components K2 to K4 and A, the top-level assumption. However,
the glue gl1 provided in the contract for K1 has been defined for an abstract environment A1, hence
the need for a glue glE1

representing the environment of K1 as a single component with the same
interface as A1.

∼=
K2K1 K3 K4

K3 K4K2

K1

gl1

glE1

gl ◦ gl I

A
A

Figure 3.6: glE1
allows relating the glue gl1 provided in C1 to the actual environment for K1.

3.3 Proving dominance

The steps of the methodology described in Section 3.1 consists in proving basically three relations,
namely conformance, dominance and satisfaction. In general, proving conformance and satisfaction
uses analytical methods. For example, when components are LTS and conformance is inclusion of
traces, then to prove conformance it is sufficient to prove simulation.

However, to prove dominance, according to the Definition 2.2.11, one has to manipulate concrete
implementations of contracts. To avoid this, we propose to use a particular property called circular
reasoning in order to prove dominance. Thus, in this section, we first discuss this property and we
provide examples for which circular reasoning is not sound. Then, we describe how this property
allows to deduce a sufficient condition to prove dominance.

3.3.1 Circular reasoning

Circular reasoning is a powerful property which allows to derive the property of independent
implementability. Which means that we do not need to prove that an implementation refines its
specification in the actual context in which it is used. This is highly undesirable for at least two
reasons: one is that implementations are expected to be very complex, thus manipulating them is
likely to be intractable; the other is that whenever a small change occurs in the implementation of
a part of the system, all the proofs have to be started all over again. This is why, we have already

53

3.3. PROVING DOMINANCE

mentionned this property of circular reasoning in the additional step of our methodology related to the
refinement of the environment (see the top right-hand side of Figure 3.5). Using circular reasoning,
we can prove that a set of given implementations conforms to a given property in any context refining
the mirror contract of the top level contract.

To avoid this situation, circular reasoning allows proving refinement using the abstract environ-
ment provided by the specifications rather than the concrete one provided by the implementations.
Thus, circular reasoning is a property provided by the relation of refinement under context and it is
defined as follows:

Definition 3.3.1 (Circular Reasoning) If a component K refines G in an abstract context (A, gl)
and if E refines A in the abstract context (G, gl), then K refines G in the concrete context (E, gl).

K vA,gl G E vG,gl A

K vE,gl G

This property can be proved in a given framework by an induction based on the semantics of
composition and refinement [McM99a, Mai03c].

However, circular reasoning is not sound in general. In particular, it is unsound when composition
is based on synchronizations (as they exist in e.g. Petri nets or process algebras) or instantaneous
mutual dependencies between inputs and outputs (as they exist in synchronous formalisms). For
example, in the framework based on Input/Output automata defined in [QG08a], circular reasoning is
sound because exactly one behavior has control over each interaction.

Example 3.3.2 explains two reasons for the non validity of circular reasoning for v4 which are
illustrated in Figures 3.7 and 3.8.

Example 3.3.2 Suppose, as in the previous examples, that components are LTS and composition
gl is defined as the synchronization between actions with the same letter and interleaving of others.
Suppose also that conformance is simulation and refinement under context is the usual derived notion:

K1 v4
E,gl K2 , gl{K1, E} 4 gl{K2, E}

The examples in Figures 3.7 and 3.8 are both counterexamples to the circular rule, that is: K v4
A,gl G

and E v4
G,gl A but K 6v4

E,gl G. Figure 3.7 shows that non-determinism of the abstract environment
is a problem. In Figure 3.8, both the assumption A and the guarantee G forbid b to occur. This
allows their respective refinements according to v4, E and K, to offer b — since they can rely
on G respectively A to forbid its actual occurrence. However obviously, the composition of the
implementations gl{E,K} now allows b.

Because circular reasoning is not sound for all refinements under context, it may be useful to use
a stronger (more restrictive) definition of refinement under context in order to make circular reasoning
sound which is the case of the refinement under context relation proposed in the contract framework
that will be provided in Chapter 4.

54

CHAPTER 3. CONTRACT-BASED VERIFICATION APPROACH

a2 a1a1

K

c1b1c2 c2b2

E

b2c1b1

a2 a1

A G

a2

Figure 3.7: A counterexample to circular reasoning due to non-determinism.

b2 a2

K

b1 a1

A

a2

G

a1

E

Figure 3.8: A counterexample to circular reasoning due to strong synchronization.

We first, provide the sufficient condition to prove dominance when circular reasoning is sound in
the case of binary dominance, we extend this condition to the more general case for a set of contracts.

Theorem 3.3.3 (Binary dominance) Let C and C′ be two contracts for the same interface P and the
same glue gl , with C = (A, gl , G) and C′ = (A′, gl , G′). If circular reasoning is sound, then to prove
that C dominates C′ it is sufficient to prove that:

G |= C′ ∧A′ |= C−1

Theorem 3.3.4 (Sufficient Condition for Dominance) If circular reasoning is sound and
∀i. ∃glEi . gl ◦ gl I = gl i ◦ glEi , then to prove that the set {Ci}i=1..n dominates C w.r.t. gl , it
is sufficient to prove that:{

ΠP (gl I{G1, ... , Gn}) |= C
∀i,ΠPAi (glEi{A,G1, ... , Gi−1, Gi+1, ... , Gn}) |= C−1

i

Proof For every i ∈ [1, n], let Ki be a component on Pi. Suppose the following:

1. ∀i, ∃glEi , gl ◦ gl I = gl i ◦ glEi

2. gl I{G1, . . . , Gn} vA,gl G

3. ∀i, glEi{A,G1, . . . , Gi−1, Gi+1, . . . , Gn} vGi,gli Ai

55

3.3. PROVING DOMINANCE

4. ∀i, Ki vAi,gli Gi

We aim at proving gl I{K1, . . . ,Kn} |= C, that is: gl I{K1, . . . ,Kn} vA,gl G. For this, we show by
induction that for any l in [0, n], for any partition {J,K} of [1, n] such that |J | = l:{

gl I{KJ ∪ GK} vA,gl G
∀i ∈ K, glEi{A, E

J,K
i } vGi,gli Ai

with KJ = {Kj}j∈J , GK = {Gk}k∈K and with EJ,Ki = KJ ∪ (GK\{Gi}).

• l = 0. By (2) and (3) the property holds.

• 0 ≤ l < n. We suppose that our property holds for l. Let {J ′,K ′} be a partition of [1, n] such
that |J ′| = l + 1. Let q be an element of J ′. We fix J = J ′\{q} and K = K ′ ∪ {q}.

Step 1 We first prove that gl I{KJ
′ ∪ GK′} vA,gl G.{
Kq vAq ,glq Gq from (4)
glEq{A, E

J,K
q } vGq ,glq Aq

The second property is our recurrence hypothesis, as q ∈ K. Thus, by circular reasoning:

Kq vglEq{A,E
J,K
q },glq

Gq

As refinement under context is preserved by composition, we obtain :

gl I{Kq, EJ,Kq } vA,gl gl I{Gq, EJ,Kq }

This is equivalent to gl I{KJ
′ ∪ GK′} vA,gl gl I{KJ ∪ GK}.

Finally, by using the recurrence hypothesis: gl I{KJ
′ ∪ GK′} vA,gl G.

Step 2 We now have to prove that:

∀i ∈ K ′, glEi{A, E
J ′,K′

i } vGi,gli Ai

We fix i ∈ K ′. We have proved in step 1 that:

Kq vglEq{A,E
J,K
q },gl Gq

K = K ′ ∪ {q}, so i ∈ K. Thus, by compositionality, we obtain:

glEi{Kq, A, EJ,K\{i}q } vGi,gli glEi{Gq, A, E
J,K\{i}
q }

This boils down to glEi{A, E
J ′,K′

i } vGi,gli glEi{A, E
J,K
i }.

Hence, using the recurrence hypothesis: glEi{A, E
J ′,K′

i } vGi,gli Ai.

56

CHAPTER 3. CONTRACT-BASED VERIFICATION APPROACH

Conclusion By applying our property to l = n, we get:

gl I{K1, . . . ,Kn} vA,gl G

2

Theorem 3.3.4 shows that the proof of a dominance relation boils down to a set of refinement
checks, one for proving refinement between the guarantees, the second for discharging individual
assumptions. This result is particularly useful as it allows to check dominance without having to
compose neither implementations nor contracts.

The proof of Theorem 3.3.4 relies, in addition to the circular reasoning, on a second property of
the relation of refinement, that is compositionality, and which means preservation of refinement by
composition. Compositionality is usually based on the rule that: if an implementation I conforms to
its specification S, then whenever composed with any component E it still conforms to S. However,
for refinement in a given context we cannot compose with any component as the context is already
fixed by the relation. Thus we suppose a composite context and we integrate a part of this context in I
and S to obtain refinement in the remaining part of the composite context. This property is in general
easily satisfied by refinement relations in contract frameworks, where its always relevant to choose a
refinement relation which can be preserved by composition.

Definition 3.3.5 (Compositionality) A set of refinement under context relations {vω}ω∈Ω is said to
be preserved by composition if and only if the following rule applies whenever all terms are defined:

I vE,gl S E = glE{E1, E2} gl ◦ glE = gl2 ◦ gl1

gl1{I, E1} vE2,gl2 gl1{S,E1}

In the next chapter, we propose a component framework as well as a contract framework, allow-
ing to apply the proposed methodology, with a refinement relation ensuring circular reasoning and
compositionality.

57

3.3. PROVING DOMINANCE

58

Chapter 4

A Contract Framework for Components
with Data

In this Chapter, we first define a component framework. That is a notion of component enriched
with variables, and a set of glue operators describing how to compose these components so as to
obtain systems of components. We choose to use and extend the set of composition operators of the
BIP interaction model [Sif05, BS07a, BJS09b], defined in Section 2.1.2. In particular, we define a
notion of observation connectors useful for our verification purposes. Second, we propose, based
on this component framework, a contract framework, that is, we define conformance and a notion
of refinement under context and show that they have the required properties. In particular, that the
relation of refinement under context allows the property of circular reasoning. To allow to encompass
progress, our definition of components is extended with a notion of progress conditions.

In this chapter, we detail in Section 4.1 our definition of components and its semantics. Then
we define in Section 4.2 how to compose components using our rich interaction model and how
hierarchical components are obtained by the composition of these glues. In Section 4.3, we focus
on progress description and how we deal with their composition. Finally, in Section 4.4, we provide
relations of the proposed contract framework and the proofs of the conditions it has to ensure.

4.1 Components with data

Let us first recall the ingredients required to define a component framework as described in Def-
inition 2.2.1, that is, a notion of atomic component, representing abstract behavior or properties of
the components we want to design, an equivalence relation ∼= on components and a set of glues GL
defining composition operators which can be composed by an associative operation ◦.

In this section, we first focus on the two first ingredients, that is the definition of components and
the equivalence relation between them.

We first provide the syntactic definition of components (see Definition 4.1.1), then their semantics.
In the variant of BIP component framework described in Section 2.1.2, components are defined as
extended labeled transition system (ELTS). Here, we also define atomic components as extended

59

4.1. COMPONENTS WITH DATA

labeled transition systems but we yield a more abstract notion of components that we want to use for
the expression of properties, not only implementations.

• We consider control states with an attribute Inv, a predicate on the set of state variablesXst of
the component. This predicate is guaranteed to hold in that control state. The variables which
are not state variables are transientX tr . Their values are calculated twice during the execution
of a step of the system that involves this component: first their values are assigned depending
on Xst (we use a relation R for expressing their possible values), then they may be assigned
again by the interaction between the involved components (such a function will be defined
by the glues) and then be used in the data transformations operated by individual components
(which we represent by predicates Fu on X = Xst ∪X tr). Also data transformations of state
variables (which may depend on the values of transient variables) are not given as a function
but more abstractly by a predicate.

• We explicitly distinguish internal actions which we denote by τ . As usually, they cannot par-
ticipate in interactions with other components and they are used to define weaker notions of
equivalence and refinement. Modeling internal actions is very useful when we need to model
“uncontrollable” actions. This is in general the case when a component has some local ac-
tions for which it does not need to synchronize or to exchange data with other components (see
Example 4.1.2).

As in BIP, we may consider that the transient variables are associated to ports through which they
are exported and imported and in that case we may write p[x1, ... , xn] to express that x1, ... , xn are
transient variables only meaningful in steps involving an interaction on p. Without loss of generality,
we suppose in the following that a port is associated with exactly one variable. We suppose given a
set of predicates that is closed by ∧ and ∨.

Definition 4.1.1 (Component) A component is an ELTS defined by a tuple
(TS , X, Inv, g,Fu,Prog) and an interface defined by a set of ports P:

• TS = (Q, q0,P ∪ {τ},−→) is a labeled transition system: Q is a set of control states, q0 ∈ Q
is the initial state, P ∪ {τ} is a set of labels. −→⊆ Q × P ∪ {τ} × Q is a set of control
transitions. Elements of P are ports and τ labels internal transitions;

• X = Xst ∪X tr is a set of variables. Xst contains state variables and X tr contains transient
variables. A boolean expression R on X defines the possible values of transient variables
before the execution of a step depending on the current values of the state variables in the
current state;

• Inv associates with every q ∈ Q a state invariant Invq that is a predicate on Xst ;

• g associates with every transition t a guard gt, i.e. a predicate on Xst ;

60

CHAPTER 4. A CONTRACT FRAMEWORK FOR COMPONENTS WITH DATA

• Fu associates with every transition t an action Fut defined as a predicate on Xst ∪xγ ∪Xst
next ,

where as usually, we introduce the auxiliary variables Xnext to represent the values of the state
variables after the transition and the original variables Xst for representing the values before
the transition and which are also used in the guard. xγ is the transient variable associated with
the port labeling t;

• Prog a set of progress conditions (more details are given in Section 4.3).

If a given transition t is not labeled by a port but by τ , then, the function associated is a predicate
Fut defined on variablesXst∪Xst

next . Indeed, when no interaction with the environment is performed,
there is no need to transient variables which allow to import or export values, and thus the predicate
Fut is completely local and it only depends on state variables.

Note, however, that we do not require that a port must have an associated variable. Indeed, a
synchronization of a component with the environment may do not involve data transfer. Moreover, in
the next section we propose a variant of connectors connecting ports without variables, which we use
only to detect that some action is performed. These connectors are called observation connectors.

Invariants associated with states, represents the knowledge that the component has on its state
variables in this state.

Example 4.1.2 Figure 4.1 shows a component K with an interface consisting of P = {in, out}.
The ports in and out label the transitions of K, which has also an internal transition labeled by τ
and which corresponds to an internal computation performed by K and which does not synchronize
with the environment to be performed. The invariants of the two states of K are defined on the state
variable y. Similarly, guards on transitions are also defined on state variables y1 and y2. However
to exchange data with its environment, K uses the transient variables x1 and x2 associated to its
ports. In fact, the transfer of data is performed within the functions predicates associated to the
transitions labeled by these ports. The overall behavior of K is getting a value from the environment
(other components), making some local computations using these values, then giving the resulting
new values back to the environment through the port out.

Our syntactic definition of components provides a description of some progress conditions which
we denote Prog . For the sake of clarity, and as the description of these properties depends of the
semantics of our definition of components, we propose next to give the semantics of a component,
then to detail our notion of progress in Section 4.3.

4.1.1 Semantics

We define the semantics of components, that is extended labeled transition system (ELTS) K, as
usually as a simple labeled transition system (LTS), where states are control states of K extended
by valuations of state variables of K and transitions are labeled by ports extended by valuations of
transient variables.

Moreover, we also have variables associated with ports and which can be interpreted differently
depending on the semantics we are interested in.

61

4.1. COMPONENTS WITH DATA

in

x1

out

x2

Fu1:(ynext==x1)
in

Xst={y}

S1: y≥0

S2: y>0

[true]

[y>1]
out

Fu3:
(ynext==y+x2)

R:(y==x1)∧(y==x2)

[y>0]
τ

Fu2:(ynext==y+1)

Figure 4.1: Example: Component with data.

Definition 4.1.3 (Safety Semantics of atomic component) The semantics of K =
(TS , X, Inv, g,Fu,Prog), where TS = (Q, q0,P ∪ {τ},−→), is a labeled transition system
((Q× VXst), (q0 × vXst),P ∪ {τ}, ↪→) such that:

• (Q× VXst) is a set of states, where VXst denotes the set of valuations of state variables Xst ;

• ↪→ is the set including transitions (q, vxst)
l
↪→ (q′, vxst

next
) where:

– l ∈ ((P ∪ {τ})× VXtr);

– ∃vxtr ∈ VXtr such that Invq(vxst) ∧ gt(vxst) ∧ R(vxst , vxtr) ∧ Fut(vxst , vxtr , xst
next) ∧

Inv′q(vxst
next

) holds for some t = (q, l, q′) ∈−→.

We denote by SemK , the LTS defining the semantics of K.

In this thesis, we opt for a safety semantics.
We suppose that K needs not to synchronize on any of its ports which means that all states

in which a transition on port p is enabled in K have indeed this transition. On the other hand, we
consider value of the port variables, which will be determined by the downward function of connectors
when K is composed, as unknown that is any possible value. In other words, the set of transitions
we obtain is the maximal set of transitions that a component could fire in a given environment which
means that when composed to its environment, the component could only have any set that is equal
or a subset of these transitions.

Once we have defined the semantics of our description of components, we now provide the second
ingredient to the definition of the component framework that is the equivalence relation between
components.

Definition 4.1.4 (Equivalence relation) Equivalence on components is bisimulation. That is, two
components K1 and K2 are equivalent, denoted K1

∼= K2, whenever their associated semantic
transition systems are bisimilar.

62

CHAPTER 4. A CONTRACT FRAMEWORK FOR COMPONENTS WITH DATA

Consistency

p1

x1

p3

x3

S1: y=0

S2: y>0

Xst = {y, z}

p1

x1

p3

x3

[y>1]
p3

S1: y=0

S2: y>0

[true]

Fu1:(ynext==x1+1)
p1

[y=0]

x4

x2

p4

[y>0]
p4

Fu4:(ynext==0)

p2

Xst = {y, z} ∧(znext==x4)

[y=0]
p2

Fu2:(ynext==x2+1)
Fu3:(ynext==0)

[y>1]
p3 Fu2:

Fu3:(ynext==0) (ynext==x2+1)

p2

x2

p2

x4

p4

Figure 4.2: Consistent version of a component with data.

The relation of equivalence that we concretely use in the application we propose in the next
chapter, is stronger than such equivalence of semantics. We use a syntactic equivalence, that is the
equality between the extended labeled transition systems possibly after renaming of control states and
variables and after proving equivalence of expressions corresponding to predicates.

Some transitions of a component description may be unfeasible. Usually, detecting unfeasible
transitions requires taking into account the dynamics of the system, at least when we suppose that
no guard is trivially equivalent to false. Here we have declared invariants which are enforced, that
is, for a given transition t = (q

p−→ q′) whenever it is not possible to satisfy jointly the invariant of
q, the guard of t the transition predicate of t and the invariant in q′, the transition is infeasible and
thus called inconsistent. This notion of consistency is particularly relevant in the case of composite
components where their syntactic composition may lead to several inconsistent transitions.

Definition 4.1.5 (Inconsistent transition) Let K = (TS , X, Inv, g,Fu,Prog) be a component
where TS = (Q, q0,P ∪ {τ},−→). A transition t = (q

p−→ q′) ∈−→, p ∈ P ∪ {τ} is said to
be inconsistent iff the predicate: Invq ∧ gt ∧ Fut ∧ Invnextq′ is not Satisfiable, where Invnextq′ is ap-
plied on the next new version of variables. Satisfiable means that it exists a concrete valuation of the
variables of K for which this predicate holds.

We call a component consistent if it has no inconsistent transitions. Note that any component could
be made consistent by removing all its inconsistent transitions.

Example 4.1.6 Figure 4.2, gives a small example of how one can simplify the definition of component
according to the proposed condition of consistency. If we suppose that all the component variables
are natural numbers, then then transition labeled by the port p1 is not consistent with the invariant
of its target state S1. Indeed, for any possible value of x1, the corresponding function predicate Fu1

63

4.2. GLUES: RICH INTERACTION MODEL

implies y > 0 which is inconsistent with the invariant of S1 namely y = 0. Similarly this is the case
of the transition labeled by the port p4.

4.2 Glues: Rich interaction model

As mentioned previously, the purpose of this chapter is the definition of a contract framework,
and the first ingredient of its definition is a component framework. As in the previous section we have
defined atomic components and a notion of equivalence. Now we focus in this section, on the two
last ingredients, namely, the set of glues GL and their composition operators ◦.

Like in BIP we define composition by means of a set of connectors defining an interaction-model
used as a parameter of the composition operator. Indeed, we define composition by means of a set
of specific connectors, namely rendez-vous, extended with data, and abstract observation connectors.
We have made this choice, because the notion of component we have proposed handles variables, and
thus what we need is an interaction model rich enough to handle data exchange between components.
In this section, we first describe the variant of BIP glues we are using. Second, we describe how
we use these glues to compose components and thus to build composite components from atomic
ones. Then, we defined the composition of interaction models using the operator ◦ allowing to flatten
hierarchical components.

4.2.1 Connectors

Interaction models are defined by a set of connectors. Here, we propose a variant of BIP connec-
tors that have mainly two differences w.r.t the previously defined BIP connectors:

• First, we limit connectors to only two types. of synchronizations and The first one is the usual
BIP rendez-vous connector requiring all ports to be activated in order for the interaction to take
place. The second type of connectors called observation connector connects only trigger ports
and an interaction of this connector can take place as soon as any port is activated.

• The second difference concerns the upward and downward update functions of connectors. BIP
connectors have concrete update functions which manipulate valuations of variables, however,
in our connectors, these functions are simply predicates on these variables. We choose this
abstract representation of connectors, because it allows like for components to provide abstract
descriptions that can be instantiated in different ways. For us this is in particular important as
in systems obtained as instances of a grammar, the actual concrete connectors depend on the
actual instance whereas proofs are made at the level of the grammar using abstract connectors.

We now provide the syntax of rendez-vous and observation connectors.

Definition 4.2.1 (Rendez-vous connector) A rendez-vous connector is of the form γ =
(pγ [x],Pγ , δγ) where:

64

CHAPTER 4. A CONTRACT FRAMEWORK FOR COMPONENTS WITH DATA

• pγ , the exported port and Pγ = {p1, ... , pk}, the support set of ports, where x is the transient
variable associated with pγ and we denote by {x1, ... , xk} the transient variables associated
with the ports of the support set;

• δγ = (G, U , D) where:

– G is the guard, that is, a predicate on {x1, ... , xk}
– U is the upward update function defined from {x1, ... , xk} into x, and we choose to

represent it as a predicate on {x1, ... , xk} ∪ {x}
– D is a set {Dxi} downward update functions for each xi ∈ {x1, ... , xk} allowing to

define xi using x, and which we define as a predicate on {x} ∪ {xi}

The definition of observation connectors does not involve data transformations, they have neither
guard nor U nor D predicates.

Definition 4.2.2 (Observation connector) An observation connector γ = (pγ ,Pγ) is defined by an
exported port pγ and a support set Pγ = {p1, ... , pk}.

Note that this type of connectors allow to detect when a given transition is fired, which is particularly
useful if one wants to prove some properties related to the occurrence of a given transition. This is
relevant when dealing with safety and progress properties where to prove that a property is valid one
has to detect that an interaction occurs.

To avoid cyclic connectors, we require also that pγ /∈ Pγ .

Definition 4.2.3 (Disjoint connectors) Given two connectors γ1 = (p1,P1, δ1) and γ2 =
(p2,P2, δ2), γ1 and γ2 are said to be disjoint if p1 6= p2, p1 /∈ P2 and p2 /∈ P1. Note that P1

and P2 may have ports in common, as a port may be connected to several connectors.

Note that each connector defines a set of interactions.

Definition 4.2.4 (Interactions of connectors) A rendez-vous connector γrdv = (pγ [x],Pγ , δγ), de-
fines a unique interaction α = (pγ ,Pγ , δα) defined by the synchronization of all ports of Pγ with
δα = δγ .
An observation connector γobs = (pγ ,Pγ) defines as interactions any non-empty subset of Pγ .

An interaction model is defined by a set of interactions which are structured using connectors. Thus
connector represent a syntactic description of interaction models. As in Section 2.1.2 we define an
interaction model for a set of connectors as follows:

Definition 4.2.5 (Interaction models) An interaction model I is defined by a set of disjoint connec-
tors {γi = (pi[x],Pi, δi)}ni=1 where its support set SI =

⋃n
i=1 Pi and its associated interface is

defined by PI = {pi|γi ∈ I} consisting of the set of the exported ports of its connectors.
We denote by Irdv the set of rendez-vous connectors of I and Iobs the set of its observation

connectors.

The interface of an interaction model allows to define the interface of the component resulting
from a composition using I. The set XI denotes the set of variables associated with the ports of PI
and which defines the set of variables of I.

65

4.2. GLUES: RICH INTERACTION MODEL

4.2.2 Composition

We now define how to compose a set of components, by means of an interaction model, that
is how to build composite components from atomic ones. Similarly as in the definition of the BIP
component framework (Section 2.1.2),

To define the semantics of a composition, we first define a syntactic composition associating with
the composite component an atomic component defined on the product of control states. Then to
compute semantics of composition as the semantics of this atomic component.

The definition of composition proposed here differs from the one of BIP in that; first, our set of
transitions can be labeled by a port or by τ . Second, we use two particular types of connectors that
we have to precise how components synchronize and exchange data for each type.

In our definition of component (see Definition 4.1.1) we do not allow sets of ports as labels of
transitions. Thus we require that connectors of the interaction model I have at most one port of the
same component in their support set.

Definition 4.2.6 (Syntactic composition) Let K1, ... ,Kn be a set of components defined on pair-
wise disjoint interfaces, such that Ki = (TS i, Xi, Invi, gi,Fui,Prog i) where, TS i = (Qi, q0

i ,Pi ∪
{τ}i,−→i). Let I be an interaction model defined on

⋃n
i=1 Pi, and which defines an interface PI

with the set of variables XI . Then, the syntactic composition of K1, ... ,Kn using I is a component
(TS , X, Inv, g,Fu,Prog) such that:

• TS = (Q, q0,PI ∪ {τ},−→) with Q =
∏n
i=1Qi, q

0 = (q0
1, ... , q

0
n) and where −→ a set of

transitions of the form t = (q, pγ , q′), where:

– q = (q1, . . . , qn), q′ = (q′1, . . . , q
′
n), qi and q′i being control states of the ith component.

– pγ ∈ PI is an exported port of a connector γ ∈ I, corresponding to an interaction
α of γ, such that there exists a subset J ⊆ {1, . . . , n} of components with transitions
{(qj , pj , q′j)}j∈J and α = {pj}j∈J .

– if j 6∈ J , q′j = qj . That is, the control states from which there are no transitions labeled
with ports in α, remain unchanged.

– Xst =
⋃n
i=1X

st
i , X tr =

⋃n
i=1X

tr
i ∪XI and thus X = Xst ∪X tr

The relation R between variables in Xst and X tr ∈ XI is defined as:
xtr ∈ XI , then xtr is associated with an exported port pγ of a rendez-vous connector
γ = (pγ ,Pγ , δ) ∈ Irdv . Let I = |Pγ |. Uγ is a predicate on {x1, ... , xI} ∪ {xtr}, where
every xi is associated with a port of Pγ . Without loss of generality, we suppose each xi is
a variable of component Ki.
Then R(xtr , Xst) is defined iff:

∃x1, ... , xI . (∀i ∈ [1, I]. Ri(xi, Xi
st)) ∧ Uγ(x1, ... , xI)

– Inv associates with every state q ∈ Q an invariant Invq defined by Invq =∧n
{i=1} Invqi;

66

CHAPTER 4. A CONTRACT FRAMEWORK FOR COMPONENTS WITH DATA

– g associates with every transition t = (q, pγ , q′), corresponding to an interaction α =
{pj}j∈J of a connector γ ∈ I, a guard defined by gt = (

∧
j∈J gj ∧Ri)∧Gγ . Intuitively,

the guard of the new obtained transition takes into account the guards of the composed
transitions as well as the guard of the connector used to compose them. Note that if α
corresponds to an interaction of an observation connector, then gt =

∨I
i=1 gti .

– Fu associates with every transition t = (q, pγ , q′), corresponding to an interaction α =
{pj}j∈J of a connector γ ∈ I, a predicate Fut = U ∧ D ∧

∧I
i=1 Futi . if α corresponds

to an interaction of an observation connector, then Fut =
∨I
i=1 Futi .

• The set Prog of progress conditions of the composition will be discussed separately in Sec-
tion 4.3.2.

Our composition of components is rather technical but not surprising. It does not involve hiding
of ports. Indeed the interaction model I has to be defined on the set of all ports of the composed
components.

Note that a rendez-vous connector leads to a new control transition, in the composed component,
labeled by its exported port. This transition is enabled if all local transitions are enabled and the con-
nector guard holds, that is the guard of a transition corresponding to a rendez-vous is the conjunction
of all these guards.

For an observation connector, an observation transition is enabled if at least one of the corre-
sponding local transitions is enabled, thus the corresponding guard is the disjunction of local guards.
Remember that an observation connector has an interaction (a transition in the syntactic product) for
each subset of local transitions which each one has its own guard. Note that there is no maximal
progress for observations: even if all local transitions are enabled, any subset may go for an observa-
tion. This is why we call it an observation transition: we can observe at the higher level of hierarchy
whether at least one of the local transitions has been executed but the execution of a transition in a
connected component does not influence the behavior of any other component.

Note that this syntactic composition may lead to the appearance of inconsistent transitions, thus
it could be interesting to apply the consistency condition, described in Section 4.1.5, to the obtained
component.

Example 4.2.7 Figure 4.3 depicts a set of two components K1 and K2 (each component represents
an instance of the component given in Example 4.1.2 and an interaction model I represented by two
connectors γ1, γ2. The composite component I(K1,K2) obtained as a composition of K1 and K2

using I is given in Figure 4.4. As described in Definition 4.2.6, the new transitions of the composite
component obtained as a synchronization between ports of K1 and K2 are now labeled by the ex-
ported ports 1to2 and 2to1 of the connectors. Guards and local functions of these new transitions are
computed as given in Figure 4.4. Variables of I(K1,K2) are given byXI ∪X1∪X2.The transitions
labeled by τ represent internal transitions which still possible locally but not exported to the interface
of the new composite component.

Note, in this composition as well as in the definition of components, we did not discuss how we

67

4.2. GLUES: RICH INTERACTION MODEL

G1 : [x2
2 + x1

1 = 0]

U1 : (v1 == x2
2)

D1 : (x1
1 == v1) ∧ (x2

2 == 0)

G2 : [x2
1 + x1

2 = 0]

U2 : (v2 == x1
2)

D2 : (x2
1 == v2) ∧ (x1

2 == 0)

in2

x2
1

out2

x2
2

τ

S2
1:y2 ≥0

S2
2:y2>0

g2
3:[y2>0]

out1

in1

x1
2

S1
2: y1>0

S1
1: y1 ≥0

γ1(G1, U1, D1)

(2to1, v1)

(1to2, v2)

γ2(G2, U2, D2)

K2g1
2:[y1=0]
out1
Fu1

2:(y1
next==x1

2)
K1

Fu1
1:(y1

next==y1+x1
1)

in1

g1
1:[y1>0] g1

3:[y1>0]
τ

Fu1
3:(y1

next==y1+1)

Xst={y1}
R1:(y1==x1

1)∧(y1==x1
2) R2:(y2==x2

1)∧(y2==x2
2)

x1
1

g2
1:[y2=0]
in2

Fu2
1:(y2

next==x2
1)

g2
2:[y2>0]

out2

Fu2
2:(y2

next==y2+x2
2)
Fu2

3:(y2
next==y2+1)

Xst={y2}

Figure 4.3: Composition of components.

1to2

v1

2to1

v2

I(K1,K2)

S1
1S2

1

S2
1S1

2 S2
2S1

1

S1
2S1

2

[G2∧ g2
1∧ g1

2]
1to2
D2 ∧ Fu2

1 ∧ Fu1
2

D1 ∧ Fu1
1 ∧ Fu1

2

2to1
[G1∧ g1

1∧ g2
2]

[g1
3]

τ
Fu1

3

Fu1
3

τ

[g2
3]

Fu2
3

τ
[g2

3]

[g2
3]
τ
Fu2

3

Figure 4.4: Composite component.

68

CHAPTER 4. A CONTRACT FRAMEWORK FOR COMPONENTS WITH DATA

describe progress conditions associated with each component and how to compose them. This will
be detailed in Section 4.3.

4.2.3 Composition of interaction models

As already explained, we want to be able to define components and connectors hierarchically, and
we want to be able to flatten a hierarchical component. This means that we must be able to compose
connectors and transform a hierachically defined connector into a single "flat" connector. We call this
"merge" of connectors.

The merge of connectors is only defined on connectors of the same type. It is the operation that
takes two connectors defining together a hierarchical connector and returns a connector of a basic
type (see Figure 4.5). More precisely, the merge of two rendez-vous connectors defines a new rendez-
vous connector and similarly, the merge of two observation connectors defines a new observation
connector. The merge for rendez-vous connectors is already defined in [BJS09b], where it is called
flattening. Here we restrict this definition so as to preserve associativity of the upward and downward
functions.

=⇒
K3K2 K4

K2 K3 K4

K1
K1

γ1 γ2

γ
γ1,2

Figure 4.5: Merge of Connectors.

Definition 4.2.8 (Merge of rendez-vous connectors) Let γ1 = (p1[x1],P1, δ1) and γ2 =
(p2[x2],P2, δ2) be two rendez-vous connectors such that P1 ∩ P2 = ∅ and p1 6= p2. The merge
of γ1 and γ2, denoted γ1 • γ2, is defined as follows:

• if (p1 6∈ P2 and p2 ∈ P1) then γ1 • γ2 = (p[x],P, δ) with:

– p[x] = p1[x1]

– P = P1 ∪ P2 \ {p2}
– δ = (G, U , D) is defined as follows:

∗ G = G2 ∧ ∃v2. G1[v2/x2] ∧ U2[v2/x2]
∗ U = ∃v2. U2[v2/x2] ∧ U1[v2/x2]

∗ Dxk =
{
D1,xk if xk ∈ P1\{x2}
∃v2. D1,x2 [v2/x2] ∧ D2,xk [v2/x2] if xk ∈ P2

• if (p1 ∈ P2 and p2 6∈ P1) then γ1 • γ2 = γ2 • γ1.

69

4.2. GLUES: RICH INTERACTION MODEL

Definition 4.2.9 (Merge of observation connectors) Let γ1 = (p1,P1) and γ2 = (p1,P1 be two
observation connectors such that P1∩P2 = ∅ and p1 6= p2. The merge of γ1 and γ2, denoted γ1 •γ2,
is defined in the following situations:

• if (p1 6∈ P2 and p2 ∈ P1) then γ1 • γ2 = (p,P, δ) with:

– p = p1

– P = P1 ∪ P2 \ {p2}

• if (p1 ∈ P2 and p2 6∈ P1) then γ1 • γ2 = γ2 • γ1.

If (p1 ∈ P2 and p2 ∈ P1), then γ1 • γ2 is not defined because this would result in a cyclic connector.
Besides, if (p1 6∈ P2 and p2 6∈ P1), then γ1 and γ2 are disjoint, thus they cannot be merged.

(p′1, x
′
1)

γ(G,U,D) (p, x)

γ′1(G′1, U
′
1, D

′
1) (p′2, x

′
2)γ′2(G′2, U

′
2, D

′
2)

Figure 4.6: I ◦ I ′ = {γ • γ′1, γ′2}

We can now define the composition of interaction models as the union of the set of disjoint
connectors of each interaction model, and the connectors obtained by a merge for connectors that
are not disjoint. Note that merge of connectors and thus composition of interaction models are by
definition commutative and allows flattening according to the definition of merge. They are also
associative because ∧ operator on update predicates of connectors is associative.

Definition 4.2.10 (Composition of interaction models) The merge of connectors • is extended to
interaction models as follows. The composition ◦ of two interaction models I1 and I2 is obtained
from I1 ∪ I2 by inductively composing all connectors which are not disjoint.

Examples of composition of interaction models are depicted in Figures 4.6 and 4.7.

(p, x)

(p′1, x
′
1)γ′1(G′1, U

′
1, D

′
1) (p′2, x

′
2)γ′2(G′2, U

′
2, D

′
2)

γ(G,U,D)

Figure 4.7: I ◦ I ′ = {(γ • γ′1) • γ′2}

70

CHAPTER 4. A CONTRACT FRAMEWORK FOR COMPONENTS WITH DATA

4.3 Progress description

In this section, we provide a description of progress conditions associated to the syntactic defini-
tion of components. Then, we give rules allowing to derive some progress conditions of a composi-
tion.

4.3.1 Progress in components

Progress conditions are useful to exclude behaviors staying forever in some particular states or
loops. We adapt usual weak and strong fairness conditions [AFK88, FK84] to component by defining
a set of progress conditions Prog . In this section, we provide first the syntax of progress condi-
tions. Then, their semantics defined as a constraint on infinite executions of the semantics of our
components, that is a labeled transition system. As usually, we consider progress conditions as an
assumption which will have to be satisfied later on by an implementation.

Definition 4.3.1 (Progress Condition) Let be K = (TS , X, Inv, g,Fu,Prog) a component. A
progress condition pr ∈ Prog is a pair (Tc, Tp), where:

• Tc is either a set of transitions of TS or the symbol >. Tc is called the condition;

• Tp is a set of transitions called promise.

The set of start control states of transitions of Tp are denoted start(Tp) and called progress states.

We now define the semantics of a progress condition on a component K as a constraint on the set of
executions exec(SemK) of the LTS defining its semantics according to the Definition 4.1.3. We recall
here that according to the semantics of a component it is supposed that its ports are not connected and
that the variables of these ports could take any value meaning that they are used like inputs. When a
component K guarantees progress by a transition t in a state qK , it ensures the same progress in any
environment E which from some point on permanently allows the transition t. The environment E
allows a transition t ofK in a state qE if either t is a transition ofK that does not need to synchronize
with E or if E has a transition synchronizing with t that is enabled in qE .

Definition 4.3.2 (Semantics of a progress condition) Let be a component K where its semantics is
given by the LTS SemK = (Q, q0,P ∪ {τ}, ↪→) and σ an infinite execution in SemK . Then, σ
respects the progress condition (Tc, Tp) if the following holds:

• If Tc = >, σ contains infinitely many states in start(Tp) implies that it also contains infinitely
many transitions in Tp.

• If Tc = {ti}ki=1, ti ∈↪→, σ contains infinitely many ti transitions implies that it also contains
infinitely many transitions in Tp.

• If Tc = ∅, then the progress condition is trivially satisfied.

71

4.3. PROGRESS DESCRIPTION

σ is called to be a legal execution of SemK if it respects all progress condition in Prog . We denote
by exec(K) the set of legal executions of SemK .

Intuitively, the set Tc defines the set of prefixes for which progress has to be ensured. No prefixes
satisfy ∅, thus if Tc = ∅ there is no progress to guarantee. On the other hand, all prefixes satisfy >,
which means that if Tc = > any execution of the component containing infinitely many a state of
start(Tp) must guarantee progress. This is what we call unconditional progress.

Our notion of progress is close to the notion of strong fairness described in [AFK88, FK84, PPR,
PXZ02] and where fairness is defined on states and not transitions. Here, the choice of expressing
progress using transitions is highly motivated by the properties we want to verify on our application,
described in Chapter 5, and where the progress is guaranteed by the occurrence of some transitions.
We now define what it means to guarantee a progress condition by a component.

Definition 4.3.3 Let be K = (TS , X, Inv, g,Fu,Prog) and (Tc, Tp) be a pair of sets of transitions
of TS . K guarantees (Tc, Tp), denoted K (Tc, Tp), if one the following conditions holds:

• (Tc, Tp) ∈ Prog .

• ∀ σ ∈ exec(K), σ respects (Tc, Tp).

Intuitively, this means that a component guarantees a progress condition if it is indeed one of its
progress conditions in Prog or if it is implied by its progress conditions. A few rules guaranteeing
such implication between progress conditions are given below.

Note also that a progress condition pr = (Tc, Tp) of K is trivially satisfied if no Tc transition can
be fired infinitely often or when Tc = > there is no executions containing infinitely many states in
start(Tp). A progress condition that cannot be satisfied by a component is called inconsistent and it
is defined as follows:

Definition 4.3.4 A progress condition (Tc, Tp) is called inconsistent with a component K, if there
exist finite prefixes of exec(SemK) that cannot be extended to legal executions.

We suppose that all progress conditions in Prog of K are consistent with K. Note that a progress
condition (Tc, Tp) with a set Tp which is empty or not reachable from any sequence of transitions
containing Tc-transitions is inconsistent with K.

We now provide some rules, that allow reasoning about progress conditions. In particular, these
rules allows to deduce new progress conditions from a set of progress conditions. These rules are
of particular interest, when one wants to compare components (such as to establish refinement) and
thus needs to define some implication between their progress conditions. In the following, let be a
component K = (TS , X, Inv, g,Fu,Prog).

Rule 4.3.5 (monotonicity) K (Tc, Tp) implies that K (Tc, Tp ∪ {t}), where t is a transition of
K.

72

CHAPTER 4. A CONTRACT FRAMEWORK FOR COMPONENTS WITH DATA

S1

c

b

S1

a
c

b

S2

S3

S2

a

K ({S1
a−→ S1}, {S1

b−→ ∗})

K ({S1
a−→ S1}, {S1

b−→ ∗, S1
c−→ ∗})

K ({S1
a−→ S1, S1

b−→ ∗}, {S1
c−→ ∗})

K ({S1
a−→ S1}, {S1

c−→ ∗})

Figure 4.8: Inferring Progress Conditions.

Proof Suppose that K (Tc, Tp). Then according to Definition 4.3.3, this means that either
(Tc, Tp) ∈ Prog or ∀ σ ∈ exec(K), σ respects (Tc, Tp).
If (Tc, Tp) ∈ Prog , then ∀ σ ∈ exec(K), σ contains infinitely many Tc-transitions implies that it
also contains infinitely many transitions in Tp which means also that it also contains infinitely many
transitions in Tp ∪ {t}, for any transition t of K. Similarly if ∀ σ ∈ exec(K), σ respects (Tc, Tp)
then it also respects (Tc, Tp ∪ {t}). Thus we obtain that ∀ σ ∈ exec(K), σ respects (Tc, Tp ∪ {t}),
that is K (Tc, Tp ∪ {t}). 2

The Rule 4.3.5 means that the smaller the set Tp, the stronger the progress constraint. Indeed,
when the set Tp is larger, more possibilities are given to guarantee the progress condition, as it is
sufficient to fire one of the Tp transitions to ensure the condition. However, the opposite implication
does not hold in general. It is only guaranteed when either Tp or {t} is not enabled in K when it is
possible to fire infinitely many transitions in Tc.

Rule 4.3.6 K (Tc ∪ T ′c, Tp) implies that K (Tc, Tp); that is, the larger the set Tc, the stronger
the progress constraint.

Proof Suppose that K (Tc ∪ T ′c, Tp), Then according to Definition 4.3.3, this means that either
(Tc ∪ T ′c, Tp) ∈ Prog or ∀ σ ∈ exec(K), σ respects (Tc ∪ T ′c, Tp).
Both cases means that ∀ σ ∈ exec(K), σ contains infinitely many Tc ∪ T ′c-transitions implies that it
also contains infinitely many transitions in Tp. Thus if σ contains infinitely many Tc transitions it has
also to contain infinitely many transitions in Tp, that is σ respects (Tc, Tp). 2

The opposite implication of Rule 4.3.6 is only guaranteed if exec(SemK) has no executions with
loops containing transitions in T ′c or if (T ′c, Tp) is also guaranteed by K.

73

4.3. PROGRESS DESCRIPTION

Example 4.3.7 Figure 4.8 illustrates the Rules 4.3.5 and 4.3.6 for simples examples of progress con-
ditions. In the left of the figure, there is a representation of the LTS describing the semantics of two
components. The set of transitions Tc is presented by blue transitions, and Tp by red ones.

Example 4.3.8 Suppose a component K whose description is given by the Figure 4.1 which we sup-
pose has no variables and thus no guards or invariants. We may define for K the progress condition
pr = ({S1

in−→ S1}, {S2
out−→ S1}) which means that K cannot perform the transition labeled by the

port in infinitely often, without firing the out transition. Now consider the component in Figure 4.1
with variables, guards and invariants as a possible implementation of K which indeed guarantees
pr. In this description whenever the transition in takes place, the associated function f1 will update
the new value of the state variable y using the value of the port variable x1. As x1 > 0, y will take a
positive value (y > 0) and then the guard of in will be set to false and the transition could not be fired
again. However, the guard corresponding to the internal τ transition will be equal to true and thus
performed if we suppose that this implementation guarantees progress by their enabled transitions.
This forbids in transition to be fired again, before out transition takes place.

4.3.2 Progress of a composition

The methodology of Chapter 3 requires proving properties of compositions of components. More
precisely, in step 3 of the methodology, the dominance of a set of contracts over a global contract
requires a set of refinement proofs showing that a composition refines a property in some context.
Concerning progress, this means that one has to show, that the finer, composed property guarantees
at least the progress required by the looser global property, and therefore we do not need to compute
the strongest but only a sufficient progress condition for products.

Thus, we only provide some rules which allow to derive some progress conditions of a composite
component from progress conditions of its sub-components. The idea is based, first, on defining a
projection of this property of K on the set of properties corresponding to {Ki}. Then providing
conditions on these projections so as to guarantee to global property of the composition.

To define such a projection, we provide first a notion of projection of a transition of K into a
set of local transitions corresponding each one to a transition in Ki. This projection, as well as the
condition provided in Definition 4.3.10, are defined on the syntax of components. Thus it takes into
account how this transition is obtained and it is computed w.r.t the interaction model used to build
this composite component.
In the following, we suppose {K1, ... ,Kn} a set of components such that Ki =
(TS i, Xi, Invi, gi,Fui,Prog i) where, TS i = (Qi, q0

i ,Pi,−→i). I an interaction model defined
on
⋃n
i=1 Pi and defining an interface PI . K = I(K1, ..., Kn) a composite component obtained as

described in Definition 4.2.6. K = (TS , X, Inv, g,Fu,Prog) where TS = (Q, q0,PI ,−→).

Definition 4.3.9 (Projection of a transition) Let t = (q1, ... , qn)
p−→ (q′1, ... , q

′
n) be a transition of

K (t ∈−→) where p is the exported port of a connector γ with a support set Pγ . Then the projection
of t on the component Ki denoted πi(t) ∈−→i is defined as follows:

• if Pi ∩ Pγ = {pi} then, πi(t) = qi
pi−→i q

′
i

74

CHAPTER 4. A CONTRACT FRAMEWORK FOR COMPONENTS WITH DATA

• if Pi ∩ Pγ = ∅ then, πi(t) = ∅

The projection of a set of transitions T ⊆−→ is πi(T) = {πi(t)|t ∈ T}.

Control transitions and control states of the composite component K are called global, and their
corresponding projections are called local.

Note here, that we do not treat the case of τ transitions as they are not relevant in a composition,
however we will discuss progress by τ -transitions when defining refinement in Section 4.4.

We now provide sufficient conditions allowing to deduce that a given progress condition is guar-
anteed by a composition of components using progress condition guaranteed by these components.
For the sake of clarity and w.l.o.g , in the following definition, we treat the case of K obtained as
a composition of two components K1, K2 as it can be naturally extended to a composition of n
components.

Theorem 4.3.10 (Progress condition of a composition) Let pr = (Tc, Tp) be a pair of sets of tran-
sitions of K. Let be the set Tci defined by Tci ⊆ πi(Tc) if πi(Tc) 6= ∅ and Tci = > otherwise. If one
of the following conditions holds then we have K pr = (Tc, Tp) :

1. If Tp is a set of transitions labeled by ports representing observation connectors, then to guar-
antee pr it is sufficient that ∃ i ∈ [1, 2], such that Ki (Tci , πi(Tp)); This means that to
guarantee pr it is sufficient to guarantee a looser progress implying pr, that is the progress by
any transitions which do not require synchronization.

2. If Tp is of the form T obs
p ∪ T rdv

p where T obs
p a set of transitions labeled by ports of observation

connectors and T rdv
p a set of transitions for rendez-vous connectors. Then to guarantee pr, it

is sufficient to guarantee either the progress condition (Tc, T obs
p) as described above, or one

the following conditions:

• It exists a set T ⊆ T rdv
p of transitions labeled by the same port p and at least one of two

components, let it be K1, guarantees (Tc1 , π1(T)) and the other, that is K2, guarantees
that in any situation compatible with Tc2 some transitions in π2(T) will eventually be
enabled forever unless no Tc-transitions are infinitely taken or one of the transitions in
T is taken. A situation is compatible with Tc2 if it exists executions containing infinitely
many Tc2-transitions. Note that in the case of n components, the second condition has to
be ensured by (n-1) components.

• It exists a set T ⊆ T rdv
p of transitions labeled by the same port p and in any state q =

(q1, q2) ∈ Q a global state of K in which a infinite sequence of transitions containing
Tc-transitions is possible and for at least one of the two components (K1) we have q1 ∈
start(π1(T)) and for the other (K2) we have q2 6∈ start(π2(T)) then K2 must also
guarantee that a transition labeled by p will eventually be enabled in q2. This guarantees
that whenever a component guarantees a transition for synchronization in a given global
state, the rest of components involved in the synchronization will offer this transition in
the same global state.
In both cases K satisfies the much stronger progress condition (Tc, T).

75

4.4. RELATIONS OF THE CONTRACT FRAMEWORK

Note that we can weaken these conditions to guarantee (Tc, T obs
p ∪ T) by requiring that K1

guarantees (π1(Tc), π1(T obs
p) ∪ π1(T)) and that K2 guarantees (π2(Tc), π2(T obs

p)) or the ad-
ditional condition required to guarantee T .

Note that the additional condition that K2 has to guarantee in case 2 is semantic and a syntactic
approximation of this condition is possible using the syntactic description of components.

This definition distinguishes two cases related to the type of connectors used to compose com-
ponents. When the promise of the progress condition involves transitions of observation connectors,
then to guarantee this progress, it is sufficient that at least one component guarantees this progress
locally. However, as shown in Definition 4.3.10, it is much complicated when the promise of the
progress condition involves transitions corresponding to strong synchronizations between the {Ki}.

Note that these conditions are sufficient means that if they are not satisfied by the set of com-
ponents {Ki}, they do not help us to decide whether pr is indeed a progress condition of K or not.
New weaker conditions could also be defined, however in the application described in Chapter 5, the
conditions provided here are sufficient to deduce progress of the built compositions.

Example 4.3.11 Let be the composite component I(K1,K2) described in the Example 4.2.7 built
as a composition of components K1 and K2 (see Figure 4.3). We have already explained in Exam-

ple 4.3.8 how K1 ({S1
1
out1−→ S1

1}, {S1
2

in1

−→ S1
1}), as in addition K2 guarantees that the transition

S2
2
out2−→ S2

1 is always enabled in S2
2 , then we can deduce, according to the second condition of Def-

inition 4.3.10, that I(K1,K2) guarantees the progress condition ({S1
1S

2
1

1to2−→ S1
1S

2
1}, {S1

2S
2
2

2to1−→
S1

1S
2
1}).

4.4 Relations of the contract framework

In this Section, we provide the remaining ingredients to the definition of the contract framework.
For this purpose, let us first recall that a contract framework is defined by (1) a component framework,
(2) a conformance relation 4 that is transitive and (3) a refinement under context relation {v(E,I)}
parameterized by a context and implying conformance.

In the previous sections we have provided a component framework enriched with variables and
data transfer. We now provide a description of conformance and refinement under context relations.

Usually, conformance relation is given first and refinement is a preorder implying conformance,
where very often it is chosen to be the weakest such relation that is compositional. In order to be able
to use the property of circular reasoning, we may need stronger refinement relations. Here we inverse
the presentation for presentational reasons only. In fact, it turned out easier to define conformance in
terms of refinement under context rather than the other way round.

4.4.1 Refinement

We provide here, the relation of refinement under context we have chosen for the al-
ready described component framework. Remember that refinement relates two components

76

CHAPTER 4. A CONTRACT FRAMEWORK FOR COMPONENTS WITH DATA

with respect to a given context. In this section, a context is denoted (E, I), where E =
(TSE , XE , InvE , gE ,FuE ,ProgE) with TSE = (QE , q0

E ,PE ,−→E) and I is an interaction model
given by a set of connectors defined on the set of ports SI . I defines an interface PI that is the
exported ports of its connectors.

Let be two components Kabs and Kconc where Kabs is called the abstract component and Kconc

the concrete component and we want to define a refinement of Kabs by Kconc in the context (E, I).
Kabs and Kconc are given as follows: Kabs = (TSabs , Xabs , Invabs , gabs ,Fuabs ,Progabs) and

Kconc = (TS conc , Xconc , Invconc , gconc ,Fuconc ,Progconc) where TSabs = (Qabs , q
0
a,P,−→a) and

TS conc = (Qconc , q
0
c ,P ∪ {τ},−→c).

Note that the interaction model I connects Kabs and Kconc to their environment E, thus it is
defined on SI = P ∪ PE and it contains structured connectors of the form γ = (pγ ,Pγ) where
card(Pγ) ≤ 2. Indeed, as connectors do not connect more than one port of the same component, Pγ
contains either two ports one of PE and the other of P or only one port that is of PE or of P .

We denote also by SemI(Ki,E) the LTS defining the semantics of the ELTS given by I(Ki, E)
according to the Definition 4.1.3 and by SemTr

I(Ki,E) the set of its transitions.
For the sake of clarity of our definition of refinement, we suppose the following:

1. Kabs has no internal (τ) transitions;

2. E has no no internal (τ) transitions;

These assumptions imply no loss of generality as internal transitions do not involve any interaction
with the environment.

The refinement we propose is defined by the means of two relations:

• α is a boolean expression on variables of Kconc and Kabs representing a relation between
abstract and concrete valuations.

• R relates the control states of Kconc and its environment E to the control states of Kabs and
thus defines which concrete states refine the abstract ones.

It is a well-known fact that any property expressed by a Buchi automaton can be written as an inter-
section of a safety and a progress property [AS87], and this holds also for our properties. Thus our
definition of refinement consists of two parts. The safety part allows to describe that any transition
that is offered in Kconc is also allowed by Kabs . This guarantees that in the concrete component
Kconc , we do not have executions that are non permitted by the abstract component Kabs . Note that
to preserve safety, we have to take into account the context. Indeed, a given transition of Kconc that
is structurally forbidden by the context, does not have to be allowed by Kabs . Safety preservation is
defined by the relationR defined on control states of components.

The progress part of our refinement relation takes into account the set of progress properties
of components Kconc and Kabs . To preserve progress by refinement, we propose to define some
particular relation of projection with respect to the relation R of the refinement relation (see Defi-
nition 4.4.1). This projection allows to infer from the set of progress properties of Kabs , a new set
of progress properties that Kconc has to provide. More precisely, we use the relation R obtained by

77

4.4. RELATIONS OF THE CONTRACT FRAMEWORK

the safety preservation of the refinement relation, to compute the inverse image, by R, of transitions
Kabs that is a set of transitions of Kconc . Thus we provide now this definition of the projection of a
transition with respect to a given relation between control states of components Kconc , Kabs and E.

Definition 4.4.1 (Projection of a relation) Let R be a relation on (Qconc × QE) × Qabs . We say
R ⊆ Qconc ×Qabs is the projection ofR and qcR qa iff ∃qE s.t. (qc, qE)R qa.

For Qa ⊆ Qabs , let be R−1(Qa) = {qc ∈ Qconc |∃qa ∈ Qa ∧ qcR qa} the inverse image of Qa
underR. Thus we haveR−1(Qa) ⊆ Qconc .

Similarly, we denote by R−1
T the inverse image of a transition t ∈−→a defined as follows:

R−1
T ({qa

p−→a q
′
a}) = {(qc

p−→c q
′
c) ∈−→c such that qc ∈ R

−1({qa}) ∧ q′c ∈ R
−1({q′a})}

which denotes the set of p-transitions of Kconc between states in R−1({qa}) and in R−1({q′a}). If
such transitions do not exist thenR−1

T ({qa
p−→a q

′
a}) = ∅. This notation extends naturally to transi-

tion sets.

Definition 4.4.2 (Refinement under context) Kconc refines Kabs in the context of (E, I), denoted
Kconc vE,I Kabs , iff:

• Safety part: ∃α a relation in Xconc ∪Xabs and ∃R ⊆ (Qconc ×QE)×Qabs s.t. (q0
c , q

0
E)R q0

a

and s.t. (qc, qE)R qa implies:

1. Invqc ∧ α(Xconc , Xabs) =⇒ Invqa

2. ∀p[x] ∈ P , ∃γ = (pγ ,Pγ) ∈ I such that p ∈ Pγ , then the following holds:
tc = (qc, qE)

pγ−→ (q′c, q
′
E) ∈ SemTr

I(Kconc ,E) implies ∃q′a such that ta = (qa, qE)
pγ−→

(q′a, q
′
E) ∈ SemTr

I(Kabs ,E) and (q′c, q
′
E)R q′a. If tc is independent of the context, i.e., if

Pγ = {p}, then q′E = qE .

3. qc
τ−→c q

′
c=⇒(q′c, qE)R qa: states related by τ -transitions refine the same state

• Progress part:

∀ (Tc, Tp) ∈ Progabs , Kconc (R−1
T (Tc),R

−1
T (Tp)).

Note that if (R−1
T (Tc) 6= ∅) then the progress condition (R−1

T (Tc),R
−1
T (Tp)) is trivially satisfied by

Kconc . However, if (R−1
T (Tp) 6= ∅) then the progress condition (R−1

T (Tc),R
−1
T (Tp)) is inconsistent

with Kconc and thus that Kconc does not guarantee this progress.
Our relation of refinement preserves safety as it is based on the usual notion of simulation and it

also preserves progress from the abstract component to the concrete one. Note that the progress part
of our definition of refinement takes into account the context, as the progress conditions that Kconc

has to satisfy are computed using the inverse image ofR that is a relation involving the context. Note
that for a given transition t in Tp, the projection of its abstract start state byR−1 may correspond to a
set of concrete states due to the presence of τ transitions in Kconc . Thus proving the progress by t is
then transformed into proving the progress between the states refining start(t) to a state guaranteeing

78

CHAPTER 4. A CONTRACT FRAMEWORK FOR COMPONENTS WITH DATA

t. This is detailed in the following rule where we suppose that (Tc, Tp) a pair of sets of transitions
of Kabs , where Tp = {tp = q

p−→ q′}, Kabs (Tc, tp) and Kconc vE,I Kabs according to the
Definition 4.4.2 of refinement. We also suppose thatR−1

T (Tc) 6= ∅ andR−1
T (tp) 6= ∅.

Rule 4.4.3 (Progress with τ -transitions) Let R−1(q) = Qc be the set of states of Kconc refining
q the start state of tp. Then to prove that Kconc (R−1

T (Tc),R
−1
T (tp)) it is sufficient to prove the

following:
∀ qc ∈ Qc eitherKconc (R−1

T (Tc), qc
p−→) or all finite sequences of τ transitions t1t2, . . . , tn start-

ing from qc, relating states in Qc, lead to a state qconc ∈ Qc such that Kconc (R−1
T (Tc), qconc

p−→)
and ∀ i ∈ [1, n], Kconc (R−1

T (Tc), ti).

Proof Suppose that ∀ qc ∈ Qc either Kconc (R−1
T (Tc), qc

p−→) or all finite sequences of τ -
transitions t1t2, . . . , tn starting from qc, relating states in Qc, lead to a state qconc ∈ Qc such that
Kconc (R−1

T (Tc), qconc
p−→) and ∀ i ∈ [1, n],Kconc (R−1

T (Tc), ti). What we have to prove is that
it does not exist an execution σ of exec(SemKconc) such that σ contains infinitely many transitions
in R−1

T (Tc) and visiting infinitely often states in Qc without guaranteeing a transition labeled by p.
Suppose that such execution exists, then visiting infinitely often states in Q′c ⊆ Qc without firing
a transition p means that all states in Q′c do not guarantee p and no finite sequence to such state
is guaranteed from these states, which is in contradiction with our assumption. In addition, a state
qconc ∈ Qc such that qconc

p−→ indeed exists as it is guaranteed by the fact that R−1
T (tp) 6= ∅ (see

Definition 4.4.1).
2

The choice of refinement under context is one among other possible relations, however this choice
is highly motivated by the fact that this relation allows the property of circular reasoning. A proof is
given in Section 4.5.1.

Example 4.4.4 Figure 4.9 gives an example of an abstract componentKa and a concrete component
Kc such that Kc vKE ,I K

a. The relation between variables is given by α denoting that the variable
y of Ka is computed as the sum of two variables x1 and x2 of Kc. The interaction model I specifies
how each component interact with the environmentKE . Note that labels which are not ports and thus
are not connected by I represent internal transitions of components (τ -transitions).

To check if the componentKc refinesKa in the context (KE , I) and according to Definition 4.4.2,
we start by the initial states of these components and check if they are related byR. For this purpose
we have first to prove that, given the relation α between concrete and abstract variables, we have an
implication from the concrete invariant to the abstract one. This is verified for the initial states as
(x1 = x2 = 0) ∧ (y = x1 + x2) =⇒ (y = 0). Second we have to check that all (non internal)
outgoing transitions of Sc1, which are allowed by the environment KE and by the interaction model
I, are also outgoing transitions of Sa1 , which is the case of the transition labeled by get. Similarly,
we have to prove now that the target states of this transition (get) are also related byR.

79

4.4. RELATIONS OF THE CONTRACT FRAMEWORK

The different refinement conditions are successfully applied to the different states of these com-
ponents and the obtained states in relations are: (Sc1, SE)RSa1 , (Sc2, SE)RSa2 and (Sc3, SE)RSa2 .
τ -Transitions are internal transitions, thus they may not be offered by Ka. Note that the abstract
state Sa2 is refined by two concrete states. This is in general the case when one wants to give more
details about the concrete variables of a component or to explicit some (implicit) actions that have
been hidden in the abstract description of some states. Figure 4.9 describes only the safety part of

wait wait

get
give

get

Sc1

give give get

Y >0

Y =0

Sa2

Sa1

X2=0∧X1 >0

Sc2 Sc3

X1=X2=0

X2

X1 Y

wait

give get wait

I

Y = X1 +X2

α:

KaKc

X1=0∧X2 >0

KE
waitE

τ

τ

give get wait

SE

giveEgetE

Figure 4.9: Refinement: Kc vKE ,I K
a.

Kb and Kc.
To illustrate the progress refinement part, let suppose that Pra = (Sa2

wait−→ ∗, Sa2
give−→ ∗) ∈ ProgKa .

There are several ways to guarantee this progress by Kc. We have R−1({Sa2}) = {Sc2, Sc3},
R−1
T ({Sa2

wait−→ ∗}) = {Sc2
wait−→ ∗, Sc3

wait−→ ∗} and R−1
T ({Sa2

give−→ ∗}) = {Sc2
give−→ ∗, Sc3

give−→ ∗}.
Then to guarantee Pra it is sufficient that Kc guarantees one of the following conditions:

(1) ({Sc2
wait−→ ∗}, {Sc2

give−→ ∗}) and ({Sc3
wait−→ ∗}, {Sc3

give−→ ∗}).

(2) ({Sc2
wait−→ ∗}, {Sc2

give−→ ∗}) and ({Sc3
wait−→ ∗}, {Sc3

τ−→ Sc2}).

(3) ({Sc3
wait−→ ∗}, {Sc3

give−→ ∗}) and ({Sc2
wait−→ ∗}, {Sc2

τ−→ Sc3}).

4.4.2 Conformance

To define conformance we first introduce the notion of empty context for an interface of a compo-
nent.

80

CHAPTER 4. A CONTRACT FRAMEWORK FOR COMPONENTS WITH DATA

Definition 4.4.5 (Empty context) An empty context for an interface P is a pair (E, I) where, E
defines any component and I is the interaction model defined by the set of observation connectors
{γi = (pi, {pi}) ∀pi ∈ P} and thus PI = P .

Intuitively, an empty context (E, I) for an interface P of a component K means a context that does
not connect K to E and an I that exports only ports of K which means that the behavior of E is
irrelevant. We now define conformance as a refinement in an empty context.

Definition 4.4.6 (Conformance) Let be K2 and K2 two components defined on the same interface
P . Let (E, I) be an empty context on P .

K1 4 K2 iff K1 v(E,I) K2

Intuitively, this relation of conformance is a simulation of the safety part of K1 to K2 and an
inclusion of infinite executions of the progress description of K2 into those of K1.

Example 4.4.7 Figure 4.9 represents the component Kc which refines the component Ka in the con-
text (KE , I). This allows to deduce that the closed system obtained as I(Kc,KE) conforms to the
closed system I(Ka,KE).

We now have all the necessary ingredients that define a contract framework.

Theorem 4.4.8 We have defined a contract framework. Furthermore, if assumptions are determinis-
tic, then circular reasoning is sound for the refinement under context of Definition 4.4.2.

We now have to prove that such a framework is well formed to support the methodology, described
in Chapter 3, that is its a well-defined contract framework with a refinement under context ensuring
the property of circular reasoning. See Proof 4.5.1.

4.5 Proofs

In this section we detail the proof of the Theorem 4.4.8 and the proofs of all related properties.

4.5.1 Well-definedness of the contract framework

We detail here the proof steps required to show that we have first a component framework as
required in Definition 2.2.1. Second, we prove that this component framework together with the rela-
tions of refinement under context and conformace, described in Section 4.4, define indeed a contract
framework in which circular reasoning is sound.

81

4.5. PROOFS

Well-defined Component framework. In the proposed component framework, we are using a vari-
ant of BIP component framework. GL is the set of interactions models given as connectors described
in Section 4.2, Their compostion operator ◦ defined in Section 4.2.3 allows flattening as the merge
of two connectors, that is a hierarchical connector, allows to build a new flat connector. Composi-
tion of interaction models is thus defined as a union of a set of disjoint connectors, which allows
to deduce that (GL, ◦) is a commutative monoid, i.e. it ensures associativity, identity and of course
commutativity (see [BS08a]):

1. ∀I1, I2, I3 ∈ GL. (I1 ◦ I2) ◦ I3 = I1 ◦ (I2 ◦ I3)

2. ∃Ie ∈ GL. ∀I ∈ GL. Ie ◦ I = I ◦ Ie = I

3. ∀I1, I2 ∈ GL. I1 ◦ I2 = I2 ◦ I1

We have also to prove that I1{I2{K1},K2}} ∼= (I1 ◦ I2){K1 ∪ K2}, where K1 and K2 are
set of components. In other words, composition of components is consistent with composition of
composition operators. Here, the equivalence is defined as the syntactic equality.
Proof We write the proof for K1 = {K1,K2} and K2 = {K3} and. The generalization should
be clear. We also suppose w.l.o.g that each interaction model consists into only one connector. This
equivalence is trivial if the two connectors of each interaction model are disjoint as in this case ◦ is
defined by the union operator which guarantees this equivalence. Thus we can reduce the proof to a
merge of two connectors. Let be I1 = γ1 and I2 = γ2, where the exported port of γ2, pγ2 ∈ Pγ1 ,
Pγ1 = {pγ2 , p3}with p3 ∈ PK3 andPγ2 = {p1, p2}. For the sake of clarity and w.l.g we also suppose
that each component Ki has only {pi} as interface that is PKi = {pi}.
I1{I2{K1,K2},K3} = (TS , X, Inv, g,Fu,Prog), where:

• TS = (Q, q0,P ∪ {τ},−→)

• Q = ((Q1 ×Q2)×Q3)

• q0 = ((q0
1, q

0
2), q0

3)

• P = pγ1

• Xst = (Xst
1 ∪Xst

2) ∪Xst
3 , X tr = (X tr

1 ∪X tr
2 ∪XI2) ∪X tr

2 ∪X tr
3 ∪XI1

• Invq = ((Invq1 ∧ Invq2) ∧ Invq3)

• for q = ((q1, q2), q3) ∈ Q and q′ = ((q′1, q
′
2), q′3) ∈ Q, the transition t = q

p−→ q′ ∈−→
iff p = pγ1 and it exists local transitions t12 = (q1, q2)

pγ2−→ (q′1, q
′
2) ∈−→I2{K1,K2} and

t3 = q3
p3−→ q′3) ∈−→K3 with gt = gt12 ∧ gt3 ∧ R12 ∧ R3 ∧Gγ1 . Besides t12 = (q1, q2)

pγ2−→
(q′1, q

′
2) ∈−→I2{K1,K2} means that it exists t1 = q1

p1−→ q′1) ∈−→K1 and t2 = q2
p2−→

q′2) ∈−→K2 with gt12 = gt1 ∧ gt2 ∧R1 ∧R2 ∧Gγ2 .

(I1 ◦ I2){K1,K2,K3} = (TS , X, Inv, g,Fu,Prog), where:

82

CHAPTER 4. A CONTRACT FRAMEWORK FOR COMPONENTS WITH DATA

• TS = (Q, q0,PI ∪ {τ},−→)

• Q = (Q1 ×Q2 ×Q3)

• q0 = (q0
1, q

0
2, q

0
3)

• P = pγ1 (according to the definition of merge of connectors).

• Xst = (Xst
1 ∪Xst

2) ∪Xst
3 , X tr = (X tr

1 ∪X tr
2 ∪X tr

3) ∪ (XI2 ∪XI1 according to the Defi-
nition 4.2.8 of merge of connectors. Note that if the two connectors are observation connectors
then, not variables are associated to them.

• Invq = Invq1 ∧ Invq2 ∧ Invq3

• for q = (q1×q2×q3) ∈ Q and q′ = (q′1×q′2×q′3) ∈ Q, the transition q
p−→ q′ ∈−→ iff p = pγ1

according to the definition of merge of connectors and it exists local transitions as follows:
t1 = q1

p1−→ q′1) ∈−→K1 and t2 = q2
p2−→ q′2) ∈−→K2 and t3 = q3

p3−→ q′3) ∈−→K3 . such
that gt = gt1 ∧ gt2 ∧R1 ∧R2 ∧ gt3 ∧R3 ∧ (Gγ2 ∧Gγ1)

Thus after renaming of states of I1{I2{K1,K2},K3} which are ((q1, q2), q3) become of the form
(q1, q2, q3) and if we extend as below to deal with observation connectors, we can obtain easily the
syntactic equality between both of the composite components. 2

Well-defined Contract framework. Here, we prove that conformance is transitive, then that re-
finement implies conformance and finally that our relation of refinement is preserved by composition
and it allows circular reasoning.

• The transitivity of conformance is trivially deduced from the transitivity of the relation of re-
finement.

• Preservation of refinement by composition: K1 vIE{E1,E2},I K2 =⇒ I1{K1, E1} vE2,I2
I1{K2, E1} where I1 and I2 are the composition operators obtained from I and IE using
flattening and decomposition.
Proof Let suppose that K1 vIE{E1,E2},I K2 and that Ki = (TS i, Xi, Invi, gi,Fui,Prog i),
Ei = (TSEi , XEi , InvEi , gEi ,FuEi ,ProgEi) where TS i = (Qi, q0

i ,Pi,−→i) This means
according to Definition 4.4.2 of refinement that it exists a relation R ⊆ (Q1× (QE1 ×QE2))×
Q2 with the stated properties. We define the relation R′ ⊆ ((Q1×QE1)×QE2)× (Q2×QE1)
by

((q1, qE1), qE2)R′(q2, qE1) , (q1, (qE1 , qE2))Rq2

Let us prove that R′ has the expected properties:
- (q0

1, q
0
E1

), q0
E2

)R′(q0
2, q

0
E1

holds by definition.
- We have that Invq1∧α(X1, X2) =⇒ Invq2 , we have to prove that ∃α′(X1∪XE1 , X2∪XE1)
(Invq1 ∧ InvqE1

) ∧ α′(X1 ∪XE1 , X2 ∪XE1) =⇒ (Invq2 ∧ InvqE1
). For it is sufficient to

83

4.5. PROOFS

choose α′ such that α′ =⇒ α.
- Suppose now that ((q1, qE1), qE2)R′(q2, qE1) and that t1 = ((q1, qE1), qE2)

pI2−→
((q′1, q

′
E1

), qE2) ∈ SemTr
I2{I1{K1,E1},E2} we have to prove that ∃(q′2, q′E1

) such that t2 =

((q2, qE1), qE2)
pI2−→ ((q′2, q

′
E1

), qE2) ∈ SemTr
I2{I1{K2,E1},E2} and ((q′1, q

′
E1

), q′E2
)R′(q′2, q

′
E1

).

t1 = ((q1, qE1), qE2)
pI2−→ ((q′1, q

′
E1

), qE2) ∈ SemTr
I2{I1{K1,E1},E2} implies w.l.o.g that

pI1 , pE2 ∈ PI2 such that t2 corresponds to the synchronization of the two transitions la-
beled by these ports. Note that here we suppose w.l.o.g that I2 and I2 have only rendez-
vous connectors as the case of observation connector can be then easily deduced. We sup-
pose that I2 has only the connector γ2 connecting pI1 and pE2 , similarly I1 has only the

connector γ1 connecting p and pE1 where p is a port of Ki. This implies that (q1, qE1)
pI1−→

(q′1, q
′
E1

) ∈−→I1{K1,E1} and qE2

pE1−→ q′E2
∈−→E1 . Moreover, t ∈ SemTr

I2{I1{K1,E1},E2}
implies that it exists a valuations of the variables X1, XE1 , XE2 for which the following pred-
icate holds: (Invq1 ∧ InvqE1

∧ InvqE2
) ∧ (Gγ1 ∧ Gγ2 ∧ (Invq′1 ∧ Invq′E1

∧ Invq′E2
) which

implies that (Invq1 ∧ InvqE1
) ∧ (Gγ1) ∧ (Invq′1 ∧ Invq′E1

). Which means that (q1, qE1)
pI1−→

(q′1, q
′
E1

) ∈ SemTr
I1{K1,E1} and as (q1, (qE1 , qE2))Rq2 we obtain that it exists q′2 such that

(q2, (qE1 , qE2))
pI1−→ (q′2, (q

′
E1
, q′E2

)) ∈ SemTr
I{K2,IE{K2,E1}} and (q′1, (q

′
E1
, q′E2

))Rq′2 which
implies by definition that ((q′1, q

′
E1

), q′E2
))R′(q′2, q

′
E1

).
- τ transitions of I1(K1, E1) are τ transitions of K1 as we suppose that the environment does
not have τ transitions. Then we use R to establish the needed relation.
- for the progress part, we have that K1 vIE{E1,E2},I K2 this means that progress that K2 can
guarantee in IE{E1, E2}, K1 also will guarantee in the same environment IE{E1, E2}. As
refinement implies conformance we obtain that I{K1, IE{E1, E2}} 4 I{K1, IE{E1, E2}},
besides we have that I{Ki, IE{E1, E2}} ∼= I2{I1{Ki, E1}, E2} this allows to deduce that
I2{I1{K1, E1}, E2} 4 I2{I1{K2, E1}, E2} which means that preservation of progress con-
ditions.

2

• Conformance is consistent with refinement under context:
K1 vE,I K2 =⇒ I{K1, E} 4 I{K2, E}. Proof Suppose that K1 vE,I K2 to prove
conformance we have to prove that I{K1, E} v(E,IPI) I{K2, E} which is deduced from the
preservation of refinement by composition. 2

Circular reasoning.

• Circular reasoning is sound: K vA,I G ∧ E vG,I A =⇒ K vE,I G.

84

CHAPTER 4. A CONTRACT FRAMEWORK FOR COMPONENTS WITH DATA

Proof LetK be a component on an interface P , (E, I) a context for P and C = (A, I, G) a contract
for P . We suppose that K vA,I G ∧ E vG,I A. We have to prove that K vE,I G.

Given two relations α1(XK , XG) and α2(XE , XA) and as K vA,I G and E vG,I A, there exist
two relations R1 and R2 on respectively (QK × QA) × QG and (QE × QG) × QA verifying the
conditions of Definition 4.4.2.

We define R ⊆ (QK × QE) × QG as follows: for qK ∈ QK , qE ∈ QE , qG ∈ QG, we
define (qK , qE)R qG iff there exists qA such that (qK , qA)R1 qG and (qE , qG)R2 qA. (Vi denotes a
valuation of Xi)

Safety part. We have (q0
K , q

0
A)R1 q

0
G and for all qK ∈ QK , qG ∈ QG, qA ∈ QA, (qK , qA)R1 qG

implies:

1. IqK (XK) ∧ α1(XK , XG) =⇒ IqG(XG)

2. ∀p[x] ∈ P , the following holds :

(a) for any value v of x: ∃tK = qK
p−→K q′K and VK ,Vnew

K satisfying SemtK implies
∃q′G, tG = qG

p−→G q
′
G and VG,Vnew

G consistent with α1 and satisfying SemtG .

(b) ∃γ. Pγ = {p, pA} ∧ (qK , qA)
pγ
↪→ (q′K , q

′
A) =⇒ (q′K , q

′
A)R1 q

′
G with q′G as above.

3. qK
τ
↪→K q′K =⇒ (q′K , qA)R1 qG

Besides, we have (q0
E , q

0
G)R2 q

0
A and for all qE ∈ QE , qA ∈ QA, qG ∈ QG, (qE , qG)R2 qA

implies:

1. IqE (XE) ∧ α2(XE , XA) =⇒ IqA(XA)

2. ∀p[x] ∈ P , the following holds :

(a) for any value v of x: ∃tE = qE
p−→E q′E and VE ,Vnew

E satisfying SemtE implies
∃q′A, tA = qA

p−→A q
′
A and VA,Vnew

A consistent with α2 and satisfying SemtA .

(b) ∃γ. Pγ = {p, pG} ∧ (qE , qG)
pγ
↪→ (q′E , q

′
G) =⇒ (q′E , q

′
G)R2 q

′
A with q′A as above.

3. qE
τ
↪→E q

′
E =⇒ (q′E , qG)R2 qA

We prove now that R is the relation we are looking for. Let qK ∈ QK , qE ∈ QE , qG ∈ QG be such
that (qK , qE)R qG. Let qA be such that (qK , qA)R1 qG and (qE , qG)R2 qA. We have to prove that:

1. IqK (XK) ∧ α′(XK , XG) =⇒ IqG(XG)

2. ∀p[x] ∈ P , the following holds :

(a) for any value v of x: ∃tK = qK
p−→K q′K and VK ,Vnew

K satisfying SemtK implies
∃q′G, tG = qG

p−→G q
′
G and VG,Vnew

G consistent with α and satisfying SemtG .

85

4.5. PROOFS

(b) ∃γ. Pγ = {p, pE} ∧ (qK , qE)
pγ
↪→ (q′K , q

′
E) =⇒ (q′K , q

′
E)R q′G with q′G as above.

3. qK
τ
↪→K q′K =⇒ (q′K , qE)R qG

• Condition 1. Given α′ = α1, condition 1 is the same as condition 1 ofR1

• Condition 2.
Part (a): Deducted from condition 2, part (a) forR1.

Part (b): Let us suppose that qK
p
↪→K q′K ∧ qE

pE
↪→E q

′
E ∧ (∃γ s.t. Pγ = {p, pE}). Condition

2 forR2 implies that ∃q′A ∈ QA s.t. qA
pE
↪→A q

′
A.

Hence: qK
p
↪→K q′K ∧ qA

pE
↪→A q

′
A ∧ (∃γ s.t. Pγ = {p, pE}).

Thus Condition 2 for R1 implies that there exists a q′′G s.t. (qG
p
↪→G q′′G) and ∀q′A, qA

pE
↪→A

q′A =⇒ (q′K , q
′
A)R1 q

′′
G. We now want to prove that ∀q′E , qE

pE
↪→E q′E =⇒ (q′K , q

′
E)R q′′G.

Let us fix q′E such that qE
pE
↪→E q

′
E . So we have :

– qE
pE
↪→E q

′
E

– (∃γ s.t. Pγ = {p, pE}) and qK
p
↪→K q′K ,

Thus condition 2 part (2) forR1 implies that ∃q′′G ∈ QG s.t. qG
p
↪→G q

′′
G So condition 2 forR2

implies that it exists a q′′A such that qA
p
↪→A q′′A and ∀q′G, qG

p
↪→G q′G =⇒ (q′E , q

′
G)R2 q

′′
A.

We apply this relation to q′′G and Similarly we apply ∀q′A, qA
pE
↪→A q

′
A =⇒ (q′K , q

′
A)R1 q

′′
G to

q′′A, Thus we get:

– (q′E , q
′′
G)R2 q

′′
A

– (q′K , q
′′
A)R1 q

′′
G

Hence (q′K , q
′
E)R q′′G.

• Condition 3. Let us suppose that qK
τ
↪→K q′K . Thus condition 3 of R1 implies that

(q′K , qA)R1 qG. Besides we have (qE , qG)R2 qA. Hence (q′K , qE)R qG

Progress part. As the progress part does not involve the context, the progress part forR is deduced
from the progress properties forR1. 2

86

Chapter 5

An Application: Resource Sharing in a
Networked System

In this Chapter we apply our approach to a case-study “Sharing resource system” to verify some
global requirement. We choose this system because it can be defined recursively, thus we can apply
the extension of our methodology proposed to verify recursively defined systems. We also apply
our methodology to verify a top-level progress requirement of this system using the rich contract
framework proposed in the previous chapter. In addition, we report experimentations of the different
verification steps using a tool we have developed for this purpose.

5.1 Sharing resource system

We apply the proposed methodology to a variant of an algorithm for sharing resources in a net-
work presented in [DDHL08]. The overall structure of the application is given in Figure 5.1, where
the system structured as binary trees of nodes defining a token ring. We may also consider more real-
istically, trees with arbitrary branching, but We restrict ourselves to binary branching for simplifying
the presentation.

Resources shared between nodes are represented by tokens circulating in packets containing one
or more tokens along the token ring. Red arrows in Figure 5.1 gives how these resources circulate in
the network. The value of a packet is the number of tokens it contains. Nodes are trying to collect
tokens so that they can perform some computation. There is a particular unique token in the network
called the privilege and denoted P . This privilege allows nodes to accumulate tokens. A node without
this (unique) privilege may either use the tokens of the just received packet or, if it needs no or more
resources, it must keep the tokens circulating and wait until it receives a larger packet or the privilege.
According this resource sharing algorithm, a node in the network behaves as follow (see Figure 5.2):

• A node may request tokens and a variable Req indicates the numbers of tokens requested;

• When it has enough tokens for satisfying its request, it is expected to use them, and relax the
privilege P if it has it;

87

5.1. SHARING RESOURCE SYSTEM

3 4

1

6

2 5

7

Node

Node

Node

Node Node Node

Node Node

Node

Network

Figure 5.1: The overall structure of the application.

• When it has resources (tokens) in use, it cannot request additional ones; it may later free them
or keep them forever;

• A node can rise a request only when it has no resource in use and no pending request means
when Req = 0 .

The number of tokens circulating in the network (and not in use) are denoted by the variable Tk.
We assume that connectivity of the network is guaranteed and tokens are never lost. Here, this

assumption is encoded in the composition operator. This allows separating completely design and
correctness proofs from the resource sharing algorithm and the algorithm guaranteeing connectivity,
which is typically implemented in a lower layer of the overall network protocol.

We represent networks of arbitrary size by a grammar and associating a contract with each node,
such that the correctness proof boils down to a set of small verification steps as proposed by the
methodology steps detailed in Section 3.1.

As described in Figure 5.1, a network can be built as just one node, or as a node connected to
two networks. Thus the system can be defined by the following grammar G, where {E,Node} are
terminals and {Sys,Net} nonterminals with axiom Sys . The rules are:

1. Sys −→ INet(E,Net)

2. Net −→ Node

3. Net −→ I(Node,Net ,Net)

4. Node −→ INode

Note here that Sys defines a closed system built as a composition of the network and its environ-
ment. The goal is to use our methodology to verify that the described system ensures some top-level
requirement. The starting point is both a high-level requirement and an abstract description of the
behavior of an individual node

The described algorithm ensures, under weak assumptions, a safety, a progress and a fairness
property. The safety property expresses that the global number of tokens in the system is constant.

88

CHAPTER 5. AN APPLICATION: RESOURCE SHARING IN A NETWORKED
SYSTEM

req

get give

free

Node

use

getT
req

getT

getP

use

{getT ,getP }

free

[tk>0]
[P] giveP

S1

Req>Tk∧P
S4

S2

0<Req≤Tk

S3

giveT

Req=0

giveT

Req>Tk∧¬P

Figure 5.2: (a) Node Structure. (b) Node Behavior.

The progress property is that, as long as there are tokens available, some node will be served. Fairness
ensures that if there are tokens available for long enough, every node making a request will get into
a privileged position where it is served with some priority. In this chapter we focus on the progress
property.

We use components given by the Definition 4.1.1 to model the behaviors and the interfaces of
nodes and networks. The node interface is given in Figure 5.2, where tokens (and the privilege)
are exchanged through ports getT (getP) and giveT (giveP). The port req models the action of
requesting some resources by the node. The port use represents the action of using some resources
by the node. When the resources are no more in use by the node, it liberates them by an action labeled
by the port free.

The Node has state variables indicating whether it has the privilege (P), the number of tokens
it has (Tk), the number of token it requests (Req). It has also some port variables used during
interactions. In the initial state of the node, see Figure 5.2 (b), the node has no request which means
that Req = 0 (State S1). Once it makes a request, then 3 cases are possible. The first case (State S2)
corresponds to a request that is smaller than the number of token in the node (0 < Req < Tk), in this
state, the node has enough token to perform the action use. The second case corresponds to state S3,
where the node does not have enough tokens (Req > Tk) and the node does not have the privilege
(¬P). Thus the node has to keep circulating packets of tokens until it gets a packet with a sufficient
number of tokens or it gets the privilege token and thus goes to state S4 which corresponds to the third
case. This means that the node does not have enough tokens but it has the privilege (Req > Tk ∧ P)
which allows it to accumulate tokens until it reaches the requested number.

Note that in the interface of the node, depicted in Figure 5.2 (a), ports getT (getP) and giveT
(giveP) are synchron ports, as a node has to synchronize with the rest of the network when it has to
give or to get a token (similarly for the privilege). However, ports use, req and free are trigger ports
as the node can perform these actions locally with no synchronization.

In this application what we have is the given description of a node and some top-level require-
ments that a network built as a composition of these nodes has to ensure. Here we choose to verify a
progress top-level requirement.

89

5.1. SHARING RESOURCE SYSTEM

5.1.1 The top-level requirement ϕ.

We consider here one of the top-level requirements of the algorithm, a progress requirement ϕ.
This requirement has to be ensured by the closed system Sys defined by a network, built by a set of
nodes according to the structure depicted in Figure 5.1, and an environment (see the first rule of the
grammar G given previously in Section5.1).

To specify the network and its requirement, we define a variableRx denoting the maximal request
among the set of requests of the nodes of the closed system and we denote by Tk the number of tokens
circulating in this system.

The top-level requirement ϕ states that “as long as the requests of nodes are reasonable, some of
the nodes will be served.” Let be Reasonable requests means that there is no request made by a node
that is bigger than the number of tokens in the system 0 < Rx ≤ Tk. According to the description
given in Figure 5.2, a node is served means that it performs the transition labeled by the port use.
Thus ϕ means that whenever 0 < Rx ≤ Tk, some use action will occur.

pr1 = (>, S2
use
↪→ ∗)

pr2 = ({S1

free
↪→ S2, S2

req
↪→ S1}, S2

use
↪→ ∗)

any Rx=0∨Tk<Rx
S1

0<Rx ≤Tk
S2

use req

{any\use}

{req,free}

Figure 5.3: Top-level requirement ϕ

Figure 5.3, gives a description of ϕ in our formalism. This progress requirement is particularly
specified by the two progress properties pr1 and pr2. The first property pr1 says that “it is not possible
to stay forever in state S2, without performing a use-transition”. The progress property pr2 says that
“it is not possible to switch infinitely often between states S1 and S2 (that is, free occurs infinitely
often) without that a use occurs infinitely often as well” (progress transitions use are represented by
red arrows). When the system has no request pending or when there are not enough tokens to serve
the maximal request (state S1), the system has not to guarantee any progress.

5.1.2 Methodology

Now we apply the previously described verification methodology to the system described by the
given grammar G so as to verify if it ensures the top-level progress requirement ϕ. For this purpose,

90

CHAPTER 5. AN APPLICATION: RESOURCE SHARING IN A NETWORKED
SYSTEM

we instantiate the different methodology steps detailed in Section 3.1.2, to a network built according
to grammar G, together with an actual environment E:

1. We formulate a contract CNet = (ANet, INet, GNet) associated with Net (which plays here the
role of K0) and we show that INet(ANet, GNet) 4 ϕ.

2. We define CNode = (ANode, INode, GNode) a contract for Node (note that we already have a
contract for Net).

3. We show that CNode dominates CNet and that {CNode, CNet, CNet} dominates CNet w.r.t. I.

4. We prove that INode satisfies CNode and that E satisfies C−1
Net = (GNet, INet, ANet).

Note that this proof implies that all networks that can be built according to this grammar satisfy
ϕ. The first step consists in defining a top-level contract of of the closed system Sys and check
conformance between the description of the system given by this contract and the already given
specification of the top-level requirement ϕ. Here we rely on the already given description of ϕ (see
Figure 5.3). To define the top-level contract, we have to give a description of the network GNet, of a
property of its environment ANet and how they are connected INet (glues). Then we have to a define
a contract for each subsystem consisting the network Net that is contracts: CNet for a network and
CNode for a node. Note that the different rules of the grammar G are transformed into a dominance
check between contracts.

If we want to further refine the Node component, we may start by a contract CNode =
(ANet, INet, GNode). Indeed, we can always refine terminal symbols by iteratively applying the
same approach to this symbol. This means that we can either give an implementation of the node or
any abstract description that can be refined later.

5.1.3 Interaction models and contracts

Now we detail the steps 1 and 2 of the proposed methodology, where we have to define contracts
for each subsystem. Our system can be either a node or a composition of a node with two networks,
this is detailed by the rules 2 and 3 of the grammar G. Thus the contracts that we have to define
are Node and Network contracts. To define these contracts we have to give a description of the
properties that the Node and the Network have to ensure, a description of their environments and
how they are connected to these environments. We recall that these subsystems Node and Network
are modeled as components according to the definition of component given in the previous section.

Network and node contracts

To define the contracts CNet = (ANet, INet, GNet) and CNode = (ANode, INode, GNode), we first
give a description of their assumptions namely ANet and ANode.

Here we choose to give the same assumption to both contractsANet = ANode, as the environments
of both the node and the network are supposed to ensure the same properties. This assumption is
described in Figure 5.4. ANet represents the environment of an arbitrary network component, and it

91

5.1. SHARING RESOURCE SYSTEM

giveT

[P]
giveP

req
use
free

getT

true
SA

[Tk>0]

getP

prA3 = (>, [¬P]
giveT
↪→)

prA2 = (>, {use↪→ ,
getT
↪→ ,

getP
↪→ })

prA1 = (
use
↪→ ,

giveP
↪→)

Figure 5.4: Assumption of the network and the node contract.

giveT

prN5 = (>, S2
use
↪→ S1)

prN6 = (S4
getT
↪→ S4, S4

getT
↪→ S2)

prN1 = (>, Si
giveT

↪→ ∗)i∈{1,3}
prN2 = (>, Si

getT
↪→ ∗)i∈{1,3,4}

prN3 = (>, Si
getP
↪→ ∗)i∈{1,3}

getT
req

getT

getP

use

{getT ,getP }

free

[tk>0]
[P]

S1

Req>Tk∧P
S4

S2

0<Req≤Tk

S3

Req>Tk∧¬P

giveT

Req=0

giveP

prN4 = (>, S1
giveP

↪→ S1)

Figure 5.5: Guarantee of the Node Contract.

has just one state, from which it can perform all its actions. The progress properties given in the right
hand side of Figure 5.4 describes the following:

• prA1 : ANet cannot perform infinitely many use, without giving back tokens or P , this ensures
that the assumption cannot keep always the tokens and P ;

• prA2 : the assumption has to always offer the interaction use, and also the interactions getP and
getT so that we guarantee that it cannot refuse tokens given by the network or the node.

• prA3 : this property ensures that the assumption has to give back tokens if it does not have the
privilege P .

The guarantee GNet of the contract CNet is described in Figure 5.6 and the guarantee GNode of
the contract CNode is given in Figure 5.5. Their transitions giveT and getT decrease, respectively
increase, the local state variable Tk of the network and the node as they allow exchange tokens
with their environment. Similarly, transitions giveP and getP determine when they release and take

92

CHAPTER 5. AN APPLICATION: RESOURCE SHARING IN A NETWORKED
SYSTEM

prNet7 = ({S3
getT
↪→ S3} \ {S3

giveT
↪→ S3}, S3

use
↪→ S3)

req,freegetT

getP
[¬P]

req

use

getT
use

giveT
giveP

giveT
[(tk-Atk)>0]free

{getT ,getP ,giveP }
giveT Rx=0

S4

GReq∧(Rx>Atk)

¬GReq
S3

[(tk-Atk)>0]

[(tk-Atk)>0] S1

S2
GReq∧(Rx ≤Atk)

use

giveT
[(tk-Atk)>0]

getT

prNet1 = (>, Si
giveT
↪→ ∗)i={1,3}

prNet2 = (>, Si
getT
↪→ ∗)i∈{1,3,4}

prNet3 = (>, Si
getP
↪→)i∈{1,3}

prNet4 = (>, S2
use
↪→ ∗)

prNet5 = (>, Si
giveP
↪→ ∗)i∈{1,3}

prNet8 = ({Si
use
↪→ ∗}i∈{2,4}, {Si

giveP
↪→ ∗}i∈{1,3})

prNet6 = (S4
getT
↪→ S4, S4

getT
↪→ S2)

Figure 5.6: Guarantee of the Network Contract

the privilege from their environment. Some Transitions of the guarantee of the node perform local
functions on variables: fgiveT : (Tk := Tk − tk; tk := 0), fgetT : (Tk := Tk + tk), fgiveP : (¬P),
fgetP : (P), fuse : Req = 0.

The guarantee of the node is similar to the behavior of node already described in Figure 5.2,
however to reason about progress, some progress properties are added in the guarantee of the node.
Colored transitions represents the transitions of the promise set of the progress properties. The first
4 progress properties of the GNode (prN1 , prN2 , prN3 , prN4), which represent unconditional progress,
guarantee that the node has to always circulate tokens and P and it cannot keep them forever. The
property prN5 , ensures that the node cannot stay forever in state S2 without performing use. prN6
provides that the node cannot do infinitely many getT transitions in state S4, without performing a
getT allowing the node to go to state S2.

Note that transition giveT has a guard to make sure that Tk is never negative, and transition giveP
has also a guard to make sure that they have P .

The guarantee of the network contract is slightly more nondeterministic and more complex than
the node guarantee. In particular, additional variables are added comparing to the node guarantee.
Variable Rx, as defined for the description of ϕ denotes the maximal request among the set of requests
of the nodes of the network. Moreover, it is not enough that a network has the privilege for being able
to collect tokens. Indeed, the network may have the privilege, but it may be located in a node with no
request. Thus this node cannot collect token and so does the network.

This ability of a network to collect tokens is indicated by the boolean state variable GReq (see
Figure 5.6). For example, in states with Rx=0, all that the network has to guarantee is that it circulates
the tokens and the privilege. When Rx 6= 0, the request could be a good or a bad request denoted

93

5.1. SHARING RESOURCE SYSTEM

get give

free
GNet

use

giveAgetA

useAreqA
ANet

freeA req

Figure 5.7: INet for contract CNet.

also by the boolean variable GReq. A request is good if the network has P and P will be catched
by a node with a pending request or when there is a packet with enough tokens for some node of the
network. With a good request and enough tokens, the network ensures progress with the transition
use. The guarantee GNet describes also a set of progress properties (see Figure 5.6) which are similar
for the first 6 properties of the node. The additional progress properties of the network are due to the
fact that its behavior is less deterministic than the node behavior. For example, in state S2 of the node,
it cannot perform infinitely often use without going to state S1 where it will give back P . However,
in state S2 of the network a loop labeled by use is possible, as this use may be performed by any
node of the network, thus prNet8 guarantees that the network cannot keep always P when staying in
S2 or S4.

Interaction models To define contracts, we need to provide the interaction model used to compose
guarantees and assumptions. For both contracts CNet and CNode the interaction models are the same
that is INet = INode depicted in Figure 5.7. Interaction models are defined by a set of connectors,
as already described in the framework presented in Chapter 4. In the description of our application
we do not use the proposed an abstract description of connectors presented in the Definitions of Sec-
tion 4.2, where functions on data are represented as predicates. Here, concrete upward and downward
functions on data are used in connectors. We use a concrete description of connectors, because we do
not propose to refine them.

Figure 5.7 describes the interaction model INet relating a network — and therefore also a node
— to the rest of the system. We represent by get and give respectively port sets {getT , getP }
and {giveT , giveP } for token and privilege exchange. For example, connector {giveT [tk] |
getTA[tkA], δG : [tk > 0], tkA := tk} pushes a positive number of tokens from the Network to
the environment. Connectors relating ports use, req and free allows to observe when a network or
its environment fires a transition labeled by one these ports by exporting the corresponding ports of
terminals.

The dominance problem

Once the different contracts are defined, the third step of the methodology is to prove dominance
for each rule defined by the grammar G. That is CNode dominates CNet and that {CNode, CNet, CNet}

94

CHAPTER 5. AN APPLICATION: RESOURCE SHARING IN A NETWORKED
SYSTEM

use

req use free req usereq use free

get give

get give

req free

Net

get give get

free

Net .Node
give

Net .Net2Net .Net1

Figure 5.8: Inner structure of a network component.

dominates CNet w.r.t. I.
Figure 5.8 shows the inner structure of a network component Net. The interaction model I builds

a tree from a (root) node and two networks Net1, Net2. Interactions performed by the connectors
depicted here are similar to those of Figure 5.7, except that they also ensure that tokens circulate in the
correct order. Tokens are exchanged by the node and its connected networks through the following
connectors:

• {getNet.Node[({tki}i∈{0,1,2})] |giveNet.Neti [tkn]}:

δ:[tkn>0]

TkNet.Node := TkNet.Node + tkn;
tk(i+1)MOD3 := tk

TkNet.Neti := TkNet.Neti − tkn; tkn := 0

• {getNet.Neti[tkn] |giveNet.Node[tk, tki]}:

δ:[tki>0]

tk := tki
TkNet.Node := TkNet.Node − tki;
tki := 0

The set of n-ary connectors γuse, γreq and γfree are used to verification goals, Indeed they help
updating the values of variables and allow to detect at a higher level some actions performed locally.
To prove dominance, we use the sufficient condition of circular reasoning. Thus to prove that CNode

dominates CNet, we need that INode = INet, which is already true and to prove that:

• GNode vANet,INet
GNet

• ANet vGNode,INode
ANet

Then, to prove that {CNode, CNet, CNet} dominates CNet w.r.t. I, we have to prove the following:

1. ΠPNet
(I(GNode, GNet, GNet)) |= CNet

2. ΠPNode
(I1(ANet, GNet, GNet)) |= C−1

Node

95

5.2. IMPLEMENTATION AND EXPERIMENTAL RESULTS

3. ΠPNet
(I2(ANet, GNode, GNet)) |= C−1

Net

These different relations are checked automatically using our prototype tools described in the next
section.

5.2 Implementation and experimental results

As described previously, dominance, conformance and satisfaction problems are reduced to re-
finement under context. We have implemented a prototype tool, so that refinement under context
is checked and discharged automatically by a Java tool. In this Section, we presentation a descrip-
tion of this tool with its main features. We also give some results about the application described in
Section 5.1. Our tool consists basically in two modules:

• Refinement Checker Module: given two components Kabs , Kconc and a context (E, I), this
module checks if Kconc vE,I Kabs , according the our defined refinement relation (see Defini-
tion 4.4.2).

• Composition Module: to prove dominance, we have to perform composition of components
w.r.t. a given interaction model (see the sufficient condition for dominance given in Theo-
rem 3.3.4). Thus, this module allow to compute the composition of a set of components ac-
cording to Definition 4.2.6.

The front-end of our implementation takes as input a description of a component given in Defi-
nition 4.1.3. This description written in a simple markup language (xml) and allows to describe the
different parameters of a component (ports, variables, states ...). Each input file is then parsed to build
an instance of a Java class called Behavior.

5.2.1 Refinement checker module.

Figure 5.9 shows the overall structure of this module. xml input files of this module describes three
components representing Kconc , (E, I) and Kabs . A parser allows to build a model of a component
from each xml file. Then, the checker performs the refinement test by testing the safety part then the
progress part of the refinement relation. Indeed, both parts (safety and progress) are independent so
they can be checked separately.

1. Safety Test: this part of our implementation has to ensure the conditions given in the safety part
of the refinement relation (Definition 4.4.2). To check the first condition, we have to manipulate
invariants of states and prove implication (Iqc ∧ α(Xconc , Xabs) =⇒ Iqa). For this purpose,
we use the Sat-Solver tool Yices [DdM06] to prove implication of invariants of states variables.
If the safety part is not satisfied, our tool precise that it is due to safety conditions.

2. Progress Test: progress properties of each component are specified in the xml file by a dedicated
element denoted progressP. We have implemented a computation of the inverse image of the
projection given in Definition 4.4.1 to check the progress condition. If progress conditions

96

CHAPTER 5. AN APPLICATION: RESOURCE SHARING IN A NETWORKED
SYSTEM

Progress Test

Safety Test

Parser

Model

Refinement Module

Model Generation

Test Results

Kabs (E, I) Kconc Components (xml files)

Figure 5.9: Refinement Checker Structure.

97

5.2. IMPLEMENTATION AND EXPERIMENTAL RESULTS

are not satisfied, our implementation report that the refinement is not sound due to progress
conditions.

When the refinement relation is verified between Kconc and Kabs in the context (E, I), our imple-
mentation provides the different states in relation.

Composition

Parser

Model

Components (xml files)Kn

Composition Module

Model Generation

K1

K = I(K1, ..., Kn)

Semantics

Figure 5.10: Composition Module Structure.

5.2.2 Composition module.

Figure 5.10 describes the overall structure of the composition module of our implementation. This
module allows to build the composition of a set of input components w.r.t. a given interaction model.
The output of this module is an instance of the Java class “Behavior” denoting the composition. The
interaction model I of a composition, which corresponds to the set of connectors connecting the
input components, is given within the components input files. Thus each component gives the set its
connected ports and how they are connected.

To obtain the composition of the set of n components we are performinf two main operations:

1. Syntactic composition: in this step we only perform the composition described in Defini-
tion 4.2.6. We build all possible transitions, states and we compute invariants as given in the
composition rules.

2. Semantics: Once the syntactic composition is built, a semantic computation is needed as some

98

CHAPTER 5. AN APPLICATION: RESOURCE SHARING IN A NETWORKED
SYSTEM

States SNode1 SNode2 SNode3 SNode4

SNet1 R
SNet2 R
SNet3 R
SNet4 R

Table 5.1: CNode dominates CNet: Related States.

states and transitions may not be reachable. The semantics computation is performed according
to the abstract semantics given in Definition 4.1.3.

5.2.3 Results.

The implementation of our prototype tool has been performed using 20 Java class and approx-
mately Java functions of about 4820 l.o.c.

We have discharged the different dominance and conformance problems using our tool and we
have proved the needed conditions given by the methodology steps detailed in Section 5.1.2. Table 5.2
gives the different states related by the refinement relation given by the fact that CNode dominates CNet

(generated by our tool). Note that here we do not have to precise with which state of the assumption
Node andNetwork states are related because the given assumption has just one state (see Figure 5.4).
The next relation to prove is that {CNode, CNet, CNet} dominates CNet w.r.t. I and which boils down
to the following conditions:

• Relation 1: ΠPNet
(I(GNode, GNet, GNet)) |= CNet

• Relation 2: ΠPNode
(I1(ANet, GNet, GNet)) |= C−1

Node

• Relation 3: ΠPNet
(I2(ANet, GNode, GNet)) |= C−1

Net

To compute the product of Relation 1, we use the composition module, which generates a
component with 64 states and 1276 transitions. The composition needed to check Relation 2
generates a component with 16 states and 394 transitions. Relation 3 needs the composition
I2(ANet, GNode, GNet) which leads to a component with 16 states and 262 transitions.

99

5.2. IMPLEMENTATION AND EXPERIMENTAL RESULTS

States (Node, Net1, Net1) SNet1 SNet2 SNet3 SNet4

(s1,s1,s1) R
(s2,s1,s1) R
(s2,s2,s1) R
(s2,s1,s1) R
(s2,s2,s1) R
(s4,s2,s1) R
(s1,s4,s1) R
(s2,s1,s1) R
(s2,s1,s3) R
(s1,s2,s2) R
(s4,s4,s2) R
(s1,s2,s1) R
(s4,s2,s1) R

...
...

...
...

...

Table 5.2: Relation1: Related States.

100

Part III

Building Distributed Controllers for
Systems with Priorities

101

Chapter 6

Controllers for Systems with Priorities

We have proposed in Part II, a compositional design methodology for systems of components
so as to verify some global property. We have shown that component frameworks in particular their
interaction models provide a powerful mechanism for design and verification of large scale systems
because they allow enforcing several properties structurally. In this part we study these interaction
models and the question of how they can be implemented in a distributed setting. In particular, we
focus here on interaction models defined by interactions and priorities on these interactions. We
propose to model them as properties which have to be enforced in the system and which thus define
controllers of this system.

Interactions are here simple synchronizations between components where we abstract away their
guards and functions.Indeed, in Part II, interactions are structured using connectors. This structural
aspect is relevant in the previous chapters, because our purpose have been to define a compositional
design methodology based on the structure of the system. However, to study interactions and to
implement them we abstract away their structural aspect.

In this chapter, we also abstract away the details about how these interactions are actually per-
formed and which will be described at the implementation issue in Chapter 7.

We use in the following chapters, a formalism that is similar but more abstract than the one
proposed in Part II as components are described by simple labeled transition systems rather than
extended labeled transition systems.

In this chapter, we first present, in Section 6.1, a notion of component that is simpler than those
already defined in the previous chapters. Indeed the components we consider here are just labeled
transition system as the data transfer issue is not interesting for our purpose here. We also define a
notion system corresponding to the notion of closed systems already defined. Then, we discuss how
interaction models can be described as properties defining controllers of these systems. In Section 6.2,
we provide a lightweight method for imposing the property of deadlock freedom, using a controller
defined by priorities.

103

6.1. SYSTEMS AND CONTROLLED SYSTEMS

6.1 Systems and controlled systems

We introduce here an abstract representation of components and systems which is simpler than
the description already used in Part II (see Definition 2.1.2). Indeed, here components are identified
with an abstraction of their behavior and represented by transition systems labeled by ports without
variables, guards or functions.

An interaction between these components is simply defined as sets of ports from different com-
ponents where the transition corresponding to such an interaction is the synchronization of the cor-
responding local transitions labeled by the ports of this interaction. We consider here two types of
interaction models: a first type that is interaction models defined by a set of interactions synchroniz-
ing transitions of different components and a second type that is interaction models defined by a set
of interactions and a set of priorities between these interactions.

6.1.1 Components, interaction models and systems

We suppose given a set of ports Ports .

Definition 6.1.1 (Component) A component K on a set of ports P ⊆ Ports is a labeled transition
system (LTS) where transitions are labeled by P .

We also define for a given component the notion of executions, deadlock and reachable states as
previously described in Definition 2.1.3.

Interaction models and parallel composition

A set of components {Ki}ni=1 for some n > 0 may be composed by means of an interaction
model I which defines the set of allowed global interactions corresponding to a joint execution of
actions of a (non empty) subset of {Ki}ni=1.

Here, we do not use connectors to structure interactions as previously defined in the previous
chapters. Note, however, that an interaction can always be described as a rendez-vous connector
without data exchange. In the sequel of this thesis, we only focus on the notion of interactions as
simple synchronizations and on the semantics of interaction models as a set of interactions. Thus we
provide the following simple definition.

Definition 6.1.2 (Interaction, Interaction model) Consider a set {Pi} of disjoint interfaces Pi ⊆
Ports . An interaction a on {Pi} is a pair (p, α) where p ∈ Ports is called the exported port of a and
α is a non empty subset of

⋃
i Pi which contains at most one action in each interface Pi.

An interaction model I on {Pi} is a non empty set of interactions with distinct exported ports denoted
I(I). The exported ports of these interactions define the interface PI of I.

In the sequel, we adopt the convention that exported ports have the same name as their corre-
sponding interaction, which we both denote by a, b, Also, for an interaction (a, α) ∈ I(I), α,
which we denote αa, is given in the form {ai}i∈Ia where Ia ⊆ [1, n] is a subset of indices such that
ai ∈ Pi for i ∈ Ia.

104

CHAPTER 6. CONTROLLERS FOR SYSTEMS WITH PRIORITIES

We recall here the semantics of a composite component I{Ki} obtained as a composition of a set
of components {Ki}, using the interaction model I defined as a set of interactions I(I). That is, the
interactions in I define the possible transitions of the composition both as they appear at the interface
of the composite component and at the level of the constituting components, which may be required
to synchronize.

Definition 6.1.3 (Composition) Let be I an interaction model on {Pi} where ∀i, Pi ⊆ Ports and
{Ki} a set of components on {Pi} as above with Ki = (Qi, q0

i ,Pi,−→i). We denote by I{Ki} the
component (Q, q0,P,−→) on PI , where:

• Q =
∏n
i=1Qi with q0 = (q0

1, . . . , q
0
n)

• P = PI

• −→ is the least set of transitions satisfying the rule:

a ∈ I(I) ∀i ∈ Ia, q1
i

ai−→ q2
i ∀i ∈ [1, n]\Ia, q1

i = q2
i

(q1
1, . . . , q

1
n) a−→ (q2

1, . . . , q
2
n)

As usually, this means that the component I{Ki} has a transition with label a in state q =
(q1

1, . . . , q
1
n) iff a is in interactions of I and for each i ∈ Ia, the correspondingKi has a transition with

label ai ∈ αa in qi. Firing this transition in I{Ki} consists in synchronously firing the corresponding
transitions in the Ki such that i ∈ Ia while letting unchanged the states of the components not
involved in a (i.e., the Ki with i /∈ Ia).

Note that an interaction model I may “compose” a single component by allowing only a subset
of its ports to be executed. In this case, I defines a restriction operator as in CCS [Mil80].

Notation 6.1.4 Given an interaction (a, αa). Without loss of generality, if a port can be part of at
most one interaction, we simplify further the notation of interaction by renaming also the ai ∈ αa
into a. Thus given a set of disjoint interfaces {Pi}, we can deduce by a simple name matching of their
ports, the set of interactions defined on these interfaces. Such an interaction model is denoted ‖. ‖ is
defined by the maximal interaction model which allows arbitrary interactions while still containing
at most one port of each component to be composed.

Priorities

Components are called non-deterministic if they have a state in which there is a choice of several
outgoing transitions. Those transitions may have different labels, in which case non-determinism is
called controllable because the environment is able to choose a label and thus decide which interaction
should take place, or they may have the same label (uncontrollable non-determinism).

We allow reducing controllable non-determinism by means of priorities which allow specifying
that an interaction should be preferred over another whenever both are possible in a state.

105

6.1. SYSTEMS AND CONTROLLED SYSTEMS

A detailed description of how priorities are defined and how they can define a composite com-
ponent is given in Definitions 2.1.15 and 2.1.16 of Section 2.1.6 where priorities on an interaction
model I define a new interaction model denoted I≺.

The semantics of the composition of a set of components using I≺ is obtained by first applying
I according to Definition 6.1.3, then by applying < according to the semantics detailed in 2.1.17.
Definition 6.1.3, where in any state of the composite component K, the transitions that can be exe-
cuted according to I< are those executable according to K that are not inhibited by an interaction
with higher priority. Thus I<(K) has generally fewer executions and fewer reachable states than K,
and thus defines a restriction of K which nevertheless preserves deadlock freedom, as expressed later
in Lemma 6.1.8. The interest of priorities over a restriction operator as in CCS is that priorities do
not introduce new deadlocks.

Systems

Now, we introduce the notion of system which corresponds to the previously notion of composite
component but which cannot be further composed, that is a closed system. Indeed, in Part II, compos-
ite components can be further composed to built hierarchical components and which is a key notion
on which rely the previously defined methodology. However, in this part, we only reason about closed
systems defined as a composition of components. This structured representation is needed to distin-
guish between local and global information below, and also to define a distributed implementation in
Chapter 7.

Definition 6.1.5 (System) A system Sys is a pair ({Ki}, I<), where the Ki are components on dis-
joint interfaces {Pi}, I is an interaction model on {Pi} and < is a priority order on PI .

We distinguish between the system Sys = ({Ki}, I<) and the component KSys representing the
behavior of Sys by an explicit global transition system, defined by I≺{Ki}. That is, KSys is obtained
by applying first I to {Ki}, then≺ on the resulting component. All notations defined for components
extend to systems by identifying Sys = ({Ki}, I<) with KSys .

As the main motivation of the work presented in this part is to provide a distributed implemen-
tation of systems with respect to the properties defined by the interaction models used to build these
systems, we provide now some definitions allowing to distinguish between global and local notions.

Definition 6.1.6 (Global and local states, Global and local priorities) Consider a system Sys of
the form ({Ki}, I<), where Ki = (Qi, q0

i ,Pi,−→i). Then:

• a tuple (q1, . . . , qn) with qi ∈ Qi is called a global state of Sys (note that it is a state of KSys)
and qi ∈ Qi a local state of Ki. A local state qi is compatible with a global state q if the ith
element of the tuple q is qi.

• a priority a < b is called local if the interactions a and b have a common component, i.e.,
αa ∩ αb 6= ∅. Otherwise, we call this priority global.

106

CHAPTER 6. CONTROLLERS FOR SYSTEMS WITH PRIORITIES

Definition 6.1.7 (Locally ready interaction, Globally ready interaction, Enabled interaction)
Let be Sys as above. Consider a global state q = (q1, . . . , qn) ∈ Q, where Q is the set of states of
KSys , and an interaction a ∈ I.

• a is locally ready in qi iff qi
a−→i

• a is globally ready in q iff ∀i ∈ Ia, qi
ai−→i

• a is enabled in q iff a is globally ready in q and no interaction with higher priority is also
globally ready in q.

If a is globally ready in q, we denote indqa the set of indexes of the components which must participate
in a, that is, indqa = {i1, . . . ik} such that {Kj | j ∈ [1, k]} is exactly the set of components involved
in a (and therefore in which a is locally ready in q).

The distinction between an interaction that is locally ready, globally ready or enabled can be used
to characterize the phases of the algorithm presented in Chapter 7 and which describes how a given
interaction could be fired with respect to a given interaction model.

Lemma 6.1.8 Consider a system Sys = ({Ki}, I<). If there exists in some (global) state q an
interaction a that is globally ready, then there exists in q some interaction b (possibly equal to a) that
is enabled.

This means that the application of priority rules cannot introduce any new deadlock (for a proof,
see e.g. [GS04]). This is a motivation for using priorities to control a system.

6.1.2 Controllers defined by properties

The practical motivation for the work presented in this part of the thesis is to propose a distributed
implementation of systems with respect to their interaction models. For this purpose, we propose, first
to define the interaction models described in the previous section as properties and second to enforce
these properties. In other words, our aim is controlling systems using properties defined by their
interaction models. We now describe in this section different notions related to the control problem.
In particular, we define what it means to control a system by some property, and to implement or
refine a controller. We show that our systems can be seen as particular instances of a control problem.
We are interested in controlling systems so as to enforce some given properties. Intuitively, given an
interface P ⊆ Ports and a property ϕ on this interface, a controller for ϕ transforms a system KSys

on P into a component K ′Sys on the same interface such as:

• K ′Sys ensures the property ϕ

• K ′Sys has only executions that are also executions of KSys .

107

6.1. SYSTEMS AND CONTROLLED SYSTEMS

To achieve this, a controller may forbid some transitions while allowing the rest of them to be fired.
Generally, in control theory, one distinguishes between the property that must be enforced by

restricting the behavior of a given component, and the controller realizing such a restriction, where
the property may be specified in a declarative manner as it is the case in Part II, but the controller
must be a (deterministic) operational specification, for example an algorithm or a program. In this
chapter, we are not interested in the technical means of forbidding transitions in a system. Thus
we do not formalize this distinction here. However, a concrete controller described by an algorithm
will be provided in the next chapter. Rather, we focus on how to define that (1) a system satisfies
a property, (2) a system is controlled to enforce a property, and later (3) a property is distributed so
that controlling locally its components is sufficient to control globally a system. Thus, we consider
properties as (possibly non-deterministic) controllers, and we define a refinement or implementation
relation between properties/controllers.

Typical properties ϕ to be enforced are safety properties such as invariants (allowing executions to
visit some subset of global states), transition invariants (allowing in a given global state only a subset
of its outgoing transitions), or more general temporal logic properties. However, the controller forbid-
ding all transitions trivially refines any controller defined by an arbitrary safety property. Therefore,
controllers also make progress requirements.

As a result, a property ϕ representing a controller is generally given in the form ϕS ∩ ϕpr where
ϕS is a safety property and ϕpr defines a progress property.

Typical progress properties ϕpr are for example absence of new deadlocks. New deadlocks are
deadlock states that are not already specified in the system as final states. Fairness is also a progress
property as it defines progress of all individual components of a system. Maximal progress with
respect to a property ϕ, is an example of progress property which states that the controller may forbid
a transition only if it leads to an unavoidable violation of ϕ.

Providing an executable controller refining a controller defined by both progress and an arbitrary
safety property is of high complexity, and it does not always exist. This is due to the presence of
so-called uncontrollable transitions or choices in the behavior of the system KSys to be controlled. It
is possible that allowing in state q some transitions, may lead to a violation of ϕ many steps later if
beyond that transition, the transitions or choices in KSys cannot be controlled. Thus, in this work, we
are interested in controllers represented by a particular class of properties:

• Among safety properties, we consider only those which are not sensitive to the fact that some
transitions cannot be controlled. Such properties only use their current state to forbid some
transitions (based on their label). In other words, they are memoryless. Note that interaction
models and priority orders as presented in the previous section define such properties.

• We consider deadlock freedom. This progress property is meaningful for example if non-
determinism in the specification represents possible design choices which can be exploited
to optimize an actual implementation. In Section 6.2, we propose a step towards “correctness
by construction” and exploit this freedom in an algorithm generating (whenever possible) a
priority order avoiding existing deadlocks in a given specification.

• We also consider maximal progress. This progress property is typical for the case where non-

108

CHAPTER 6. CONTROLLERS FOR SYSTEMS WITH PRIORITIES

determinism represents choices of the environment, in which case one would like to constrain
the environment only as much as necessary to guarantee safety. In Chapter 7, we propose a
message-based protocol for controlling a system by an interaction model and a priority order in
a distributed setting. Here also, the idea is to achieve “correctness by construction”, this time by
proposing an algorithm generating a distributed implementation from a set of local components
and a global safety and progress constraint.

We now formalize the notions needed for discussing controllers and controlled systems which we
have used informally so far. As already mentioned, we do not formally distinguish a controller and
a property to be enforced. Properties are represented semantically, by sets of extended prefixes with
certain closure properties, an extended prefix being a pair consisting of a finite history (state-action
sequence) and the set of actions possible after that history. Satisfaction (of a property by a component)
and refinement (between properties) are defined by comparing sets of extended prefixes.

Definition 6.1.9 (Property) Let P be an interface and Q a set of states.
a property ϕ on P and Q is a set of extended prefixes that is prefix- and suffix-closed, i.e.:

• if (σ, A) ∈ ϕ then ∀a ∈ A, ∃q, ∃A’, (σ · a · q, A’) ∈ ϕ

• if ∃a ∈ A, ∃q, ∃A’, (σ · a · q, A’) ∈ ϕ then (σ, A) ∈ ϕ

Definition 6.1.10 (Systems as properties, Conformance, Refinement)

• a component K on P with state set Q defines a property AccK as the set of extended prefixes
(σ, A) such that σ is a prefix of an execution ofK, and A is a subset of the set of outgoing labels
from qσ with the constraint that A may only be ∅ if qσ is a final state (in F) or a deadlock.

• a system Sys defined a component KSys on P with state set Q defines a property AccSys as the
set of extended prefixes (σ, A) such that σ is a prefix of an execution of KSys , and A is the set
of outgoing labels from qσ with the constraint that A may only be ∅ if qσ is a deadlock.

• KSys conforms ϕ (denoted KSys 4 ϕ) iff AccK ⊆ ϕ. Moreover, ϕ refines (also called imple-
ments) ϕ′ iff ϕ ⊆ ϕ′.

Note that the notion of conformance defined here is consistent with the notion of conformance
defined in the previous chapters, as it defines a relation between closed systems.

Note the difference between AccK of a component K and AccSys of a system Sys is due to the
fact that the first represents an open system and the second a closed one. Thus AccK represents what
is usually called an acceptance semantics of a component K in any context. AccSys represents an
acceptance semantics of Sys in an empty context, that is the context used to define conformance in
Section 4.4. Note AccK is indeed a property, as it is prefix- and suffix-closed.

Definition 6.1.11 (Memoryless property, Safety property, Progress property)

• ϕ is memoryless (history independent) iff (σ, A) ∈ ϕ implies that (σ′, A) ∈ ϕ for any σ′ such
that qσ′ = qσ, that is, A does only depend on qσ, not on the history expressed by σ.

109

6.1. SYSTEMS AND CONTROLLED SYSTEMS

• ϕ is a safety property iff for a given prefix σ, the corresponding set of acceptance sets is subset
closed, that is, (σ, A) ∈ ϕ implies that for all A’ included in A, (σ, A’) ∈ ϕ.

• Symmetrically, ϕ is a progress property iff it is superset closed, that is, it defines which execu-
tions a component satisfying it should have at least.

Note that the propertyAccK defined by a componentK is a memoryless property on P andQK .It
is almost a safety property, as it specifies an overapproximation of the behavior of K. It is not fully
a safety property though, because only final states and deadlocks may have an empty acceptance set.
Thus, for a given prefix σ, the set of acceptance sets is not subset closed. Note that this definition is
consistent with the set of executions of K defined in Section 6.1. As a result, K represents a very
weak progress property, and we need an additional controller if we want to enforce stronger ones.
Hence the following properties.

• Deadlock freedom is defined by a property ϕ defined by: iff (σ, A) ∈ ϕ implies that A 6= ∅.

• Maximal progress, denoted ϕmp , is defined with respect to a given component K and safety
constraint ϕS . It consists in determinizing AccK ∩ ϕS by choosing for each prefix σ only the
acceptance sets A which are maximal with respect to set inclusion.

Now, interestingly, the notions of interaction model and priority order that have already been
introduced also define properties.

Definition 6.1.12 (Property of an interaction model) An interaction model I, with the set of inter-
actions I(I), defines the memoryless property ϕI consisting of all pairs (σ, A) where A⊆ I(I): in
any state, the corresponding acceptance sets contain only interactions allowed by I.

Definition 6.1.13 (Property of a priority order) A priority order < defines the memoryless prop-
erty ϕ< consisting of all pairs (σ, A) such that for all a, b ∈ A, a and b are not related by <. That is,
in any state, any enabled transition disables all those with lower priority.

Now, we still have to define what it means to control a system by a property.

Definition 6.1.14 (Controlled system) Let KSys be a component on P . Then:

• Any property ϕ on P and the set of states QSys may be used as a controller for KSys .

• The controlled system defined by KSys and ϕ, denoted (KSys , ϕ), is the property AccSys ∩ ϕ.

• An implementation of (KSys , ϕ) is a system K ′Sys confroming to AccSys ∩ ϕ.

Similarly, we can define what it means to control a component by a property, using the acceptance
semantics of a component that is AccK as define above.

Note that if ϕ is memoryless, then AccK ∩ ϕ is also memoryless. Note that we are interested
here only in memoryless controllers. And we can now establish very easily the fact that an interaction
model I< as defined in Section 2.1.6 defines a memoryless controller for a system of the form ‖{Ki}.

110

CHAPTER 6. CONTROLLERS FOR SYSTEMS WITH PRIORITIES

Lemma 6.1.15 (Interaction models and priority orders as memoryless controllers) Consider a
system Sys of the form ({Ki}, I<) with I an interaction model and < a priority order defining,
according to Definition 2.1.16, a component KSys = I<{Ki}. Then I and < define a memoryless
controller for the component ‖{Ki} in the sense that I<{Ki} is an implementation of the controlled
component (‖{Ki}, ϕI ∩ ϕ<).

Proof Interaction models and priority orders define memoryless properties as they define the
set of allowed interactions independently of the history, in fact, they do even not depend on the
current state. The combined effect of an interaction model and a priority order is represented by the
intersection of these properties, which is memoryless as well. The executions of I<{Ki} are also
executions of ‖{Ki}. Moreover, after a prefix σ, the corresponding acceptance sets in AccI<{Ki}
are exactly the same as those in Acc ‖{Ki} ∩ ϕI ∩ ϕ<. Hence: AccI<{Ki} ⊆ Acc ‖{Ki} ∩ ϕI ∩ ϕ<.
That is, I<{Ki} |= Acc ‖{Ki} ∩ ϕI ∩ ϕ<, which means by definition that I<{Ki} implements
(‖{Ki}, ϕI ∩ ϕ<). 2

6.2 Synthesis of priorities for avoiding deadlocks

In this section, we propose a small algorithm allowing to enforce the property of deadlock freedom
using the property defined by priorities. More precisely, we propose an algorithm that generates for
a system which has some deadlocks a controller in the form of a priority order < in order to avoid
these deadlocks. Later, in Chapter 7, we propose a generic algorithm that generates a distributed
implementation for a distributed system controlled by an interaction model and a priority order.

In terms of the notations introduced earlier, the problem we want to solve is the following: given
a system of the form Sys = ({Ki}, I∅) which has deadlocks, determine a priority order < such that
({Ki}, I<) is deadlock-free if such a < exists. Otherwise, report that no appropriate priority order <
exists.

Given a systemKSys and a set Tr of transitions to be avoided, the algorithm computes, if possible,
a set of priority rules which make these deadlocks unreachable by either inhibiting the transitions in
Tr or making them unreachable by inhibiting earlier transitions.

Before presenting the full algorithm, we illustrate how it works — or fails — on simple examples.

111

6.2. SYNTHESIS OF PRIORITIES FOR AVOIDING DEADLOCKS

0
0

1
1

2
2

3
3

4

00

11 22

33

a bba

b b b

ba

K1 = K2 =

c

I{K1, K2} =

Figure 6.1: An example where reducing non-determinism eliminates a deadlock.

A simple system controllable with priorities Consider two components K1 and K2 defined on
{a, b, c} and depicted in Figure 6.1 and which are composed by the already mentioned interaction
model I requiring that transitions with the same name must interact. The obtained system has a
deadlock which is reached if initially the two components choose b, as after that, K1 expects an
interaction on c while K2 has already terminated.

This deadlock is avoided if in the initial state 00, a is chosen instead. We can achieve this by
choosing the priority order defined by {b < a}. It forbids the b-interaction in the initial state where
also an a-interaction is enabled, and it allows a b-interaction after the execution of the a-interaction,
(in state 11), where it is the only enabled interaction

A simple system not controllable with priorities Figure 6.2 shows a slightly different system
defined by two components K ′1 and K ′2 composed using the same convention as before. For this
system, there exists no priority order that avoids deadlocks. We sketch below how this is detected by
our algorithm:

1. The composed component K ′ = I{K ′1,K ′2} is (partly) computed and transitions leading to
deadlocks are marked as error transitions, as shown in Figure 6.2.

2. In the initial state (1), b must be preferred to a in order to prevent a deadlock, and we conclude
that any priority order making K ′ deadlock free includes the rule a < b.

3. In state 2, there are two possibilities to forbid the b-transition leading to a deadlock: either b has
lower priority than a or state 2 is made unreachable. The first option is impossible as it would
mean that a < b and b < a which violates the requirement that a priority is a strict partial
order. The second option implies that the transition from 1 to 2 labeled by b should be inhibited
by a transition with higher priority enabled in the initial state which leads to exactly the same
contradiction.

We conclude that no priority order can control the given example to guarantee deadlock freedom.
Note that dynamic priorities can deal with this example, as it is sufficient to define as priorities, a < b
in state 1 and then b < a in state 2.

112

CHAPTER 6. CONTROLLERS FOR SYSTEMS WITH PRIORITIES

d

b

bac

a a b

ad b

dcd

K ′
2 =K ′

1 =

ba

a
b

d

I{K ′1,K ′2} =

3

2

1

Figure 6.2: A simple system not controllable with priorities.

Note that we only consider static priorities which do not depend on the state of the system. Obvi-
ously, dynamic priorities defined in [BBBS08, GS04] — which are allowed to be different in different
states of the system — are more powerful in the sense that they allow to always eliminate all dead-
locks. But this can be generally done at the price of drastically reducing — or even eliminating —
concurrency. Indeed, dealing with dynamic priorities requires generally a precise knowledge about
the current global state in order to decide whether a given transition has highest priority or not and
“precise knowledge about the global state” can generally be only achieved by adding more commu-
nications, that is, reducing the degree of concurrency.

The general algorithm is given below, and it is quite easy to see how it could be extended for
generating dynamic priorities — if needed.

The dining philosophers We consider a variant of the dining philosophers problem inspired from
[Pad]. Philosophers are components providing thoughts if they have got two forks. These forks
represent shared resources given in form of a unique component providing forks and expecting to get
thoughts in return. Figure 8.6 shows a configuration with two philosophers and a resource with two
forks. A deadlock arises if both philosophers have each one a fork and wait forever for a second one.

This deadlock can be avoided by always giving the highest priority to the request closest to com-
pletion. This is a classical method for managing resources. The priority order that is needed here is
{forkα1 < forkβ2 , forkβ1 < forkα2 }. For readability reasons, we simplify in Figure 8.6, the names
of the interactions of the composed behavior in a straightforward manner. forkα,β1,2 in the behavior

of the component Forks corresponds to the interactions {forkα1 , forkα2 , forkβ1 , forkβ2} of the two
philosophers.

Note that in this example priorities are local as there exists a unique pool of forks involved in
all interactions. If instead of a resource pool, we define a set of resource components, each one
administrating one fork that is shared by two neighbors, then the corresponding priorities,which are
still useful, are global.

113

6.2. SYNTHESIS OF PRIORITIES FOR AVOIDING DEADLOCKS

Algorithm 1 Priority4Tr(K = (Q, q0,Σ, δ, F),Tr , π): priorityOrder or ⊥
if Tr = ∅ then

return π � there are no error transitions, so π is a solution
else

Pot ←− ∅
Initialize(K,Tr , π,Pot) � initialize sets π, Pot; simplify K, Tr accordingly
if Tr = ∅ then

return π
else if Pot = ∅ then

return ⊥ � error transitions cannot be avoided, so there is no solution
end if
O ←− PotentialOrders(Tr , π,Pot) � calculate the set of potential priority orders
return FindOrRefine(K,Tr ,Pot ,O) � find O of O being a solution or refine it

end if

return∗
fork∗1 fork∗2 return∗thought∗

The behavior of Philo∗

return

forkα,β1,2 forkα,β1,2 thought return

The behavior of Forks

forkα1

forkβ2
forkα2

returnα

thoughtα

returnβreturnα

returnβ

thoughtβ

forkα1

forkβ1

forkβ1

Figure 6.3: A solution to the dining philosophers problem.

Algorithm for inferring priorities For simplicity, we suppose that the following are precalculated
before calling the main algorithm which is Priority4Tr:

1. the global behavior of the component or system of interest, that is K if it is a component and
KSys if it is a system Sys .

2. the set Tr of error transitions, namely those leading into a deadlock state.

The set π is initialized as the empty set. Then, at any step of the algorithm, Tr holds the set of error
transitions which are not yet forbidden by some priority in π. π contains at any time a valid priority
order< forbidding the error transitions not inhibited by forbidding transitions in Tr , and at successful
termination it contains a desired solution.

114

CHAPTER 6. CONTROLLERS FOR SYSTEMS WITH PRIORITIES

Algorithm 2 Initialize(K,Tr , π,Pot)
for all t = (s, a, s′) ∈ Tr do

if q0 −→∗! s and s b−→∈ δ implies (b < a ∈ π ∨ b = a) then
Pot ←− ∅ break

else if q0 −→∗! s and ∃b ∈ Σ s.t. {b} = {l| s l−→ ∧ l 6= a ∧ (l < a 6∈ π)} then
if b < a ∈ π then

Pot ←− ∅ break
end if
add(π, a < b) � add a < b to Prio and normalize by adding induced priorities

Tr ′ ←− {t} ∪ {(q, a, q′) ∈ δ | q b−→} � remove from δ transitions inhibited by a < b
simplify(Q, δ) � simplify δ and Q by removing unreachable transitions and states
Tr ←− Tr ∩ δ � simplify Tr in accordance with the new δ

else
Pot t ←− {a < b | s b−→ ∧ b 6= a ∧ (b < a 6∈ π)}
if Pot t = ∅ then
δ ←− δ\{t} � since t cannot be inhibited, its origin state must be made unreachable
simplify(Q, δ) � simplify δ and Q
Tr ←− (Tr ∪ {(q, l, s) ∈ δ}) ∩ δ � simplify Tr according to δ

end if
end if

end for

The Priority4Tr algorithm successively calls the algorithms Initialize, PotentialOrders and Find-
OrRefine, which play the following roles:

1. Initialize computes the priority rules Prio that are necessary to avoid all deadlocks from any
reachable state of K. If Prio contains a contradiction the overall algorithm terminates with
failure.

2. PotentialOrders computes a set of alternative priority rules Pot which may be used to control
the execution,

3. FindOrRefine picks one such priority order and explores it. If it fails, then another alternative
in Pot is explored until success or failure — if none of them works.

Note that a priority order is represented explicitly by a set of rules a < bwhere for simplicity, also
those rules which can be deduced by transitivity are explicitly represented. We also do not detail here
the basic straightforward algorithms for manipulating priorities (adding or deleting rules, building the
union of priority order, . . .) in this normal form and maintaining them in this form.

Moreover, we use the following notations:

• For any transition t ∈ Tr , Pot t represents the set of potential priority rules that can inhibit t.
Pot\{r} denotes that rule r is removed from pot and thus from all sets Pot t.

115

6.2. SYNTHESIS OF PRIORITIES FOR AVOIDING DEADLOCKS

Algorithm 3 PotentialOrders(Tr , π,Pot): Set of priorityOrders
choose t ∈ Tr
O ←− {r ∈ Pot t | add(Prio, r) is defined} � some priorities in Pot t may contradict π
for all r ∈ O do

Tr rok ←− {t′ | r ∈ Pot t′} � transitions in Tr inhibited by r
end for
Unreachablet ←− PotentialOrders(Tr\{t}, π,Pot) � suppose t needs not be inhibited
Inhibited t ←−

⋃
r∈O PotentialOrders(Tr\({t} ∪ Tr rok), add(π, r),Pot\{r}) � t is inhibited

by r
return Unreachablet ∪ Inhibited t

• q0 −→∗! s denotes that s is reachable from q0 by a (possibly empty) sequence of transitions for
which there exists no alternative, that is, transitions of the form (s1, α, s2) such that δ has no
other transition with s1 as origin.

Theorem 6.2.1 Given a component K, the algorithm terminates, and at termination, π defines a
priority order < such that 〈<〉(K) is deadlock free or the algorithm terminates with failure if no such
priority order exists.

Proof The correctness of the algorithm is guaranteed by the following facts:

1. if Prio does not define strict partial order, the algorithm terminates unsuccessfully, and Prio
contains only rules which must be used to inhibit some error transitions.

2. at any point of time, Prio together with avoiding Tr guarantees avoidance of deadlocks be-
cause initially avoiding Tr obviously guarantees deadlock freedom, and a transition t is only
eliminated from Tr if there is a rule in Prio forbidding it or if t is replaced by some transition
(set) leading to the start state of t. On termination, Tr is empty, thus Prio— which is a priority
order — is able to prevent all deadlocks.

3. The fact that the algorithm terminates unsuccessfully implies that indeed there is no appropriate
priority order is guaranteed by the fact that the algorithm systematically explores transition sets
allowing to block the access to a deadlock state without introducing a new deadlock, and such
a set is rejected only if avoiding requires contradictory priorities.

4. the algorithm does indeed terminate as (1) the main algorithm is called each time with a set Tr
of error transitions that decreases or contains transitions closer to the initial state and (2) the
other algorithms explore a finite set of alternative orders, pick one of them or abandon if none
of them works.

2

For readability, the parameters of Initialize are call-by-reference, while those of Priority4Tr, Poten-
tialOrders and FindOrRefine are call-by-value.

116

CHAPTER 6. CONTROLLERS FOR SYSTEMS WITH PRIORITIES

Algorithm 4 FindOrRefine(K,Tr ,Pot ,O)
if ∃O ∈ O s.t. ∀t, Pot t ∩O 6= ∅ then

return O �O inhibits all error transitions, thus O is a solution
else

while O 6= ∅ do
choose O ∈ O
O ←− O\{O}
Tr bad ←− {t | Pot t ∩O = ∅} � transitions not inhibited by O
δ ←− δ\(Tr\Tr bad) � remove inhibited transitions from δ
simplify(Q, δ) � simplify δ and Q
Tr ←− (Tr ∪ pre(Tr bad)) � add predecessors of transitions not inhibited to Tr
Tr ←− Tr ∩ δ � simplify Tr according to δ
Result ←− Priority4Tr(B, Tr , O)
if Result 6=⊥ then

return Result
end if

end while
return ⊥

end if

117

6.2. SYNTHESIS OF PRIORITIES FOR AVOIDING DEADLOCKS

118

Chapter 7

Distributed Controllers for Systems with
Priorities

The practical motivation of the work presented in this part of the thesis, is to provide a distributed
implementation of systems controlled by properties of their interaction models. In particular, our pur-
pose is enforcing the properties of the interaction models with priorities which, as already described,
define a memoryless controller. The obtained controlled system correspond actually to a simple BIP
system with priorities. In this chapter, we propose such a distributed implementation by synthesizing
a distributed memoryless controller.

Distributed characterization of a system consists of a set of components communicating through
message passing where we suppose that the underlying communication platform ensures reliable and
order-preserving transmission of messages.

We have adopted previously a very abstract view of a controller as a property. Thus, in this
chapter, we first define, in Section 7.1, what it means to distribute a controller, and what a correct
implementation should be. Then, in Section 7.2, we propose a protocol allowing to implement such a
distributed controller based on message-passing.

7.1 Distributing systems and controllers

We suppose from now on that we work with systems Sys = ({Ki}, I<) in which a port is part of
at most one interaction. Thus, local properties (defined on Pi and Qi) and global properties (on the
interface P and the set Q of states of KSys) share their interfaces. This can be done without loss of
generality, and does drastically simplify the presentation.

For a system Sys of the form ({Ki}, ‖) on which a global property ϕ, typically ϕI ∩ ϕ< ∩ ϕmp,
must be enforced, we are now interested in defining a distributed controller. Such a controller consists
of a set of local controllers i.e., local properties ϕi, taking decisions about the next transitions that can
be executed. Those decisions are based on the local information of the corresponding component Ki

in such a way that the union of local decisions is a decision allowed by the global property ϕ, which
means that we are yielding a disjunctive controller.

119

7.1. DISTRIBUTING SYSTEMS AND CONTROLLERS

In Section 7.2, we implement such a distributed controller for the specific case where the global
property to be enforced is of the form ϕI∩ϕ<∩ϕmp, that is, for systems in which a set of components
are constrained by an interaction model and a priority order, and for which we want a controller
achieving maximal progress. Note that:

• ϕI∩ϕ< is a safety property that it is union closed: indeed, for every state q the set of acceptance
sets has a maximal element (π, A) where A is the set of interactions that are enabled with
maximal priority in q. Remember that ϕI and ϕ< are memoryless, thus ϕI∩ϕ< is memoryless
too.

• Maximal progress, i.e. property ϕmp, consists in allowing for each prefix only the set of ac-
ceptance sets which are maximal with respect to set inclusion. Thus, in our special case, there
exists in every state exactly one element of the form (π, A), namely the maximal element men-
tioned in the previous item meaning that every allowed interaction is also required.

More generally, the properties we want to distribute are characterized for each prefix by (1) a set of
allowed interactions and (2) a set of required interactions, the two sets are identical for deterministic
specifications when maximal progress is required. This means that if local properties are correct
in the sense that they allow only globally enabled interactions, and complete in the sense that for
every interaction allowed by ϕ at least one component allows it, then the union of the locally allowed
interactions is exactly the set of globally allowed interactions. On the other hand, if each of the local
properties ensures maximal progress, then the union of the locally required interactions is exactly the
set of globally required interactions. Note that other progress requirements, in particular fairness and
deadlock freedom can be also achieved in that way.

Moreover, note that the properties that we consider are memoryless. We will see in Section 7.2
that this greatly simplifies the construction of the local controllers.

We now formally define the notion of distributed controller as a composition of local controllers.

Definition 7.1.1 (Composition of local properties) Consider a set of properties {ϕi} on {Qi} and
{Pi} and the interaction model I‖ defining the set of all possible interactions inP =

⋃
i Pi. We define

the composition of the ϕi, denoted ⊕i{ϕi}, as the set of extended prefixes {(π,
⋃
iAi) | ∀i, (πi, Ai) ∈

ϕi} where π is an alternating sequence of states in Q =
∏
iQi and actions in I‖, and πi can be

obtained from π by replacing states in π by their i-th component.

The property ⊕i{ϕi} defined by the set of properties {ϕi} can be seen as a controller and it imple-
ments a controller ϕ when ⊕i{ϕi} ⊆ ϕ. Before we give a formal definition of distributed controller,
we first extend the composition of properties to properties on extended local states.

This means that we must either extend local properties also to the global interface P or we must
restrict the set of properties which we want to distribute. We make the second choice as we are mainly
interested in controllers which are memoryless and where ϕ is of the form ϕS ∩ ϕpr for ϕS a safety
property and ϕpr a progress property. We have seen that safety properties are subset and union closed
which means that indeed in a given situation, the union of locally identified next interaction is a valid
global set of next interactions.

120

CHAPTER 7. DISTRIBUTED CONTROLLERS FOR SYSTEMS WITH
PRIORITIES

In general, none of the individual components is able to decide locally whether in a state an
interaction a is enabled. Some minimal knowledge about the current global state is then necessary
to take a decision locally. In [BBPS, GPQ10], it is proposed to use statically computed knowledge
derived from the set of reachable states. A more classical solution — which we adopt here — consists
in letting local controllers compute dynamically the knowledge required to take a correct decision
locally. On a platform where communication is by message passing, this is achieved via messages
as well, and this requires a minimal degree of stability of the information transmitted by messages.
Here, we also follow this approach.

As a consequence, we consider properties ϕi which are not defined on the set of local statesQi but
on a set of extended local states Qext

i of the form Qi ×Qkn
i where in a state (qi, qkni), qkni represents

a set of global states which are compatible with qi, the intention being that in (qi, qkni), ϕi knows that
the current global state is in qkni , which helps deciding for a sufficient subset of interactions whether
they are enabled. Concretely, we do not formalize here how these ϕi are built, only how we check
that they implement indeed a correct distributed controller. We can now adapt composition of local
properties to these properties defined on extended local states. This only requires, in addition to the
previous definition, to check that each global state q of an execution is compatible with the extended
local state (qi, qkni) of the corresponding executions, i.e., qi is the i-th component of q and q ∈ qkni .

Definition 7.1.2 (Composition of local properties defined on extended local states) ⊕i{ϕi} for a
set of properties on extended local states is the set of extended prefixes {(π,

⋃
iAi) | ∀i, (πi, Ai) ∈ ϕi}

where π is an alternating sequence of states in Q =
∏
iQi and actions in I‖, and πi is obtained from

π by replacing each state q in π by a pair consisting of its i-th component and a set of global states
including q.

Definition 7.1.3 (Distributed controller) Let be Sys = ({Ki}, ‖) and ϕ as above. A distributed
controller for (Sys, ϕ) is a set of properties {ϕi} such that ⊕i{AccKi ∩ ϕi} ⊆ AccKSys

∩ ϕ, where
KSys = ‖{Ki}.

In the case that we consider the property of maximal progress, AccKSys
∩ ϕ contains for every

prefix exactly one set A, the set of globally enabled interactions, and therefore, inclusion means indeed
equality. Note also that such a distributed controller always exists for memoryless properties as those
considered. Indeed, a set of local controllers defined on the global state space can clearly decide for
every interaction whether it is enabled or not.

7.1.1 Concurrency and confusion

We aim at distributed executions, thus interactions which are independent, denoted concurrent in
Definition 7.1.4 below, can be executed concurrently, however, interactions which are not concurrent,
that is in conflict, cannot. Throughout this section, consider a system Sys = ({Ki}, I<). We can now
define the usual notions of concurrency and conflict of interactions, where in a distributed setting we
want to allow the independent execution of concurrent interactions, so as to avoid global sequencing.
We distinguish explicitly between the usual notion of conflict which we call structural conflict, and a
conflict due to priorities.

121

7.1. DISTRIBUTING SYSTEMS AND CONTROLLERS

Definition 7.1.4 (Concurrent interactions, Conflicting interactions) Let a, b be interactions of P
and q ∈ Q a global state in which a and b are globally ready.

• a and b are called concurrent in q iff indqa ∩ indqb = ∅ (see Definition 6.1.7). That is, when
a is executed then b is still globally ready afterwards, and vice versa, and if executed, both
interleavings lead to the same global state.

• a and b are called in structural conflict in q iff they are not concurrent in q, that is a and b are
alternatives disabling each other.

• a and b are in prioritized conflict in q iff a and b are concurrent in q but a < b or b < a holds.

Note that in case of prioritized conflict, it is known which interaction cannot be executed, whereas
in case of structural conflict, the situation is symmetric. We use the notations Concurrentq(a),
Conflictq(a), PrioConflictq(a) to denote the set of interactions that in state q are concurrent to a,
respectively in structural or prioritized conflict to a.

Our local controllers are defined on extended local states, and an implementation of the distributed
controller has to collect the required knowledge for being able to take a decision. However, collecting
this information may take time and some concurrent transition t may be executed concurrently. Thus,
the notion of concurrency chosen must provide sufficient stability of the collected information for it
to be useful: indeed, after receiving this information, the local controller does not know whether t has
taken place, and thus its extended local state contains both source states and target states of t. Thus,
the usual notion of concurrency is not sufficient to detect such situations which are called Confusion.

Confusion is a situation where concurrency and conflict are mixed. More precisely, confusion
arises in a state where two interactions a1 and a2 may fire concurrently, but firing one modifies the
set of interactions in conflict with the other. It is a situation occurring in distributed systems [Bol07,
Bol05]. Typically, detecting those situations is important for designing correct algorithms for partial
order reduction. In presence of priorities, confusion situations may compromise correctness of a
distributed implementation of a specification. We first define some preliminary notions which allow
us to characterize different situations of confusion.

Figure 7.1 illustrates a situation of structural conflict: interactions a1 and a3 are in structural
conflict as they both involve component K1 (respectively K2). Figure 7.2 illustrates a prioritized
conflict of a1 with a3 as these interactions are concurrent but a1 < a3 holds.

A symmetric (left) and an asymmetric (right) situation of confusion are shown in Figure 7.1: in
the symmetric case, interactions a1 and a2 of K1 and K ′1 are concurrent but are both in conflict with
a3 and the execution of a1 (resp. a2) changes the set of interactions in conflict with a2 (resp. a1).
In the asymmetric case, the interactions a1 and a2 of K2 and K ′2 are concurrent but a1 will enter in
conflict with a3 if a2 fires before a1.

Definition 7.1.5 (Confusion) Let a1 and a2 be interactions, and q a global state of Sys . We suppose
that a1 and a2 are concurrent — and thus globally ready — in q.

• a1 is in structural confusion with a2 iff ∃q′ ∈ Q, q
a2−→ q′ implies Conflictq(a1) 6=

Conflictq′(a1)

122

CHAPTER 7. DISTRIBUTED CONTROLLERS FOR SYSTEMS WITH
PRIORITIES

• a1 is in prioritized confusion with a2 iff ∃q′ ∈ Q, q
a2−→ q′ implies PrioConflictq(a1) 6=

PrioConflictq′(a1)

a3

K ′1 =K1 =

a3 a2a1

a3

a2

K2 =

a3a1

K ′2 =

Figure 7.1: Symmetric and asymmetric confusion.

Figure 7.2(left) illustrates a situation of prioritized confusion: a1 and a2 of components K1 and
K ′1 are concurrent, however firing a2 enables a3 which has higher priority than a1 which means that
a1 is no more enabled after the execution of a2.

The classical notion of confusion is what we call structural confusion. Note that all situations of
confusion are important for designing partial order reductions which are very important for making
the verification of global properties of Sys = ({Ki}, I<) feasible. The reason is that eliminating
arbitrarily one of the two interleavings of a1 and a2 may change the set of reachable states, and thus
lead to different verification results.

For designing a distributed implementation of Sys , only the situation of Figure 7.2, where exe-
cuting a2 disables a1 due to a new priority conflict, is problematic. The reason is that in this case a1

and a2 are not really “concurrent”, whereas in all other cases, it does still hold that a1 and a2 can be
executed in any order and both orders lead to the same global state.

a2

K ′1 =

a3

a1

K1 =
1 1

2

a1 < a3

a2

K ′2 =

a3

1

2
a1

K2 =
1

a1 < a3

a1 < a2

Figure 7.2: Prioritized confusion.

In Section 7.2, we propose a distributed implementations of systems Sys = ({Ki}, I<) in which
concurrent interactions are executed independently, based on the notion of concurrency of defini-
tion 7.1.4. This means that our algorithm does not support systems Sys with such prioritized conflict
situations.

123

7.2. IMPLEMENTATION OF A DISTRIBUTED CONTROLLER AS A
PROTOCOL

In order to deal with this kind of confusion, we could use a more appropriate notion of concur-
rency which however would lead to inefficient implementations. We rather propose to eliminate such
confusions statically by adding a priority a1 < a3 or a2 < a1 (see Figure 7.2(right)) such that either
a1 and a2 are not anymore considered concurrent or at least it is guaranteed that executing concurrent
interactions does not introduce priority conflicts which destroy this concurrency. Note that adding
priorities between concurrent interactions in a given system does not add new deadlocks.

7.2 Implementation of a distributed controller as a protocol

Given a system Sys = ({Ki}, I<) defined by a set of components {Ki}, an interaction model I
and a priority order < to be enforced, our goal is to define a distributed implementation for Sys . In
this section, we define an algorithm which constructs such a distributed implementation by defining
for each component a local controller Ci ensuring a property ϕi such that the joint execution of all
components Ki and their corresponding controllers guarantees the following:

1. all executions are executions of Sys , that is executions of KSys = I≺{Ki})

2. if Sys is deadlock free, then no deadlock will ever occur

This means according to Definition 7.1.3 that the properties ϕi of Ci have to ensure the following:

⊕i{AccKi ∩ ϕi} ⊆ Acc‖{Ki} ∧ ϕI ∧ ϕ< ∧ ϕmp

As presented in Section 7.1, local controllers use messages to accumulate the knowledge required
to extend their local state. For simplification, we do not formally represent knowledge as sets of
global states. Instead, we use, as an abstract representation of this sets, a set of properties with respect
to interactions, e.g. that interaction a is globally possible etc. Absence of confusion ensures that
this knowledge is sufficient. Based on this knowledge, for every enabled interaction, at least one
local controller in any global state can determine that it is enabled. A local controller in a local state
in which a transition labeled by a is locally possible exchanges messages with the local controllers
of other components involved in a (to determine whether a is globally possible) and with the local
controllers of other components involved in an interaction b with higher priority than a to determine
whether a is enabled. In the latter case, it is sufficient to communicate with one component involved
in b.

Here we represent local controllers φi as protocols interacting with the controlled component Ki

and with other controllers by exchanging messages.
Besides, we rely on Sys to guarantee deadlock-freedom and fairness. That is, any distributed

implementation of Sys that does not introduce new deadlocks, not defined by Sys , is considered
correct. Indeed, we suppose that, if needed, Sys has been obtained using the algorithm of Section 6.2
that eliminates deadlocks. For this reason, we suppose in the following that Sys has no deadlock.

124

CHAPTER 7. DISTRIBUTED CONTROLLERS FOR SYSTEMS WITH
PRIORITIES

7.2.1 Description of the protocol

The system is supposed to have a fixed number of components, although it may be arbitrarily
large. In order to simplify the presentation of the algorithm, we suppose here only binary interac-
tions; an extension to arbitrary multi-party interactions is discussed at the end of this chapter. We also
assume that the internal activities of components are terminating and that there exists no prioritized
confusion (see Section 7.1.1), that is, the notion of concurrency used by the algorithm is correct.
Without this last condition, we may observe global executions which are witnesses of a priority viola-
tion. As quite usually in distributed protocols [Bag89b, Bag89a, PCT04], we assume that the message
passing mechanism ensures the following basic properties:

1. any message is received at its destination within a finite delay;

2. messages sent from location L1 to L2 are received in the order in which they have been sent;

3. there is no duplication nor spontaneous creation of messages.

For each interaction a involved in at least one priority rule, one of the involved components Ki place
the role of the negotiator for a. If there exists at least one interaction with higher priority, the role
of the negotiator is to check for the enabledness of a, and if there exists at least one interaction with
lower priority, its role is to answer readiness requests. This notion of negotiator, is introduced to deal
with priority, thus no similar notion exist in related algorithms. The choice of negotiators is discussed
later.

We now describe the controllers of individual components which enforce correct executions, and
in particular adherence to the global priority order. It is understood that what is called component Ki

is in fact controlled by a local controller Ci.

The controller associated with each component, maintains a set of data structures shared and
maintained by the different subtasks of the controller: readySet (resp. enabledSet) contains the
set of interactions which are known to be globally ready (resp. enabled) in the current local state
q, and involved and possibleSet maintains the set of interactions that are locally ready. Note that
possibleSet contains purely local information which can be calculated immediately when entering a
new local state. The other two sets are calculated by a series of message exchanges, and the complete
information is generally not calculated but as soon as an interaction is known to be enabled, its
triggering will be initiated.

The general structure of the controller for each individual component Ci is shown in Figure 7.3.
The overall controller — and the component to be controlled — are represented as a set of concurrent
activities (which we call threads, and which in our implementation are realized as Java threads) with
a shared memory and shared message buffers.

125

7.2. IMPLEMENTATION OF A DISTRIBUTED CONTROLLER AS A
PROTOCOL

WaitingForCommit Main
Negotiate Negotiate

TryToCommit

BUSY

NOTPOSSIBLE
REFUSE

POSSIBLE

READY
NOTREADY

READY

COMMIT

Figure 7.3: Structure of the protocol for Ci.

Indeed, incoming messages are stored until one of the activities is ready to handle them. We
use several FIFO buffers which are chosen such that the order amongst messages stored in dif-
ferent buffers does not influence the algorithm; in particular, they are used by concurrent threads.
A buffer, which is read only by the thread Main, stores messages of the form POSSIBLE (a),
NOTPOSSIBLE (a), READY (a), NOTREADY (a), and REFUSE (a). A second buffer stores
messages of the form COMMIT (a), this buffer is read first by thread WaitingForCommit, then
by TryToCommit. The role of each message is described in Table 7.1. Given that we are handling
binary interactions, we do not explicit the recipient or the sender.

Note that the message READY denotes a question and a response at the same time. More
precisely, when a negotiator of a sendsREADY (a), it informs another negotiator about the readiness
of a. However, when a negotiator which is not the negotiator of a sends READY (a), then, it asks
about its readiness.

Ci is either in state READY or in state BUSY . In state BUSY , Ci waits for Ki to execute the
local action of the interaction that has been chosen. Incoming messages are stored and will not be
handled until the controller moves to state READY . In state READY , the controller Ci looks for a
next interaction to fire, proceeding as follows:

126

CHAPTER 7. DISTRIBUTED CONTROLLERS FOR SYSTEMS WITH
PRIORITIES

Algorithm 5 Main
Require: toNegotiate = {a ∈ possibleSet | negotiator(a) = K}

� The set of interactions for which K is a negotiator Input: set of interactions possibleSet 6=
∅
Output: interaction i
prioFree = {a ∈ possibleSet | 6 ∃b, . b < a}
waitingSet←− ∅
checking global readiness:
notReadySet←− ∅
readySet←− ∅
lessPrio(a) = {b ∈ readySet| b < a}}
for all a ∈ possibleSet do

send POSSIBLE (a)
end for
create WaitingForCommit(possibleSet)
if receive POSSIBLE (a) and a ∈ toNegotiate then

create Negotiate(a) and readySet←− readySet ∪ {a} and
for all b ∈ lessPrio(a) do

kill Negotiate(b)
end for

end if
WHEN ∃a, s.t. Negotiate(a)= OK or (receive POSSIBLE (a) and a ∈ prioFree)
call TryToCommit(a) and kill WaitingForCommit(possibleSet) and ∀b ∈ readySet kill
Negotiate(b)
if TryToCommit(a)= OK then

return a
else

goto checking global readiness
end if
if ∀a ∈ readySet Negotiate(a)= NOK then

goto checking global readiness
end if
if receive REFUSE (b) and b ∈ readySet then

kill Negotiate(b) and readySet←− readySet\{b}
end if
if receive POSSIBLE (b) and b ∈ possibleSet\{toNegotiate ∪ prioFree} then

send POSSIBLE (b) and readySet←− readySet ∪ {b}
end if
if receive NOTPOSSIBLE (b) and b ∈ possibleSet\prioFree then
notReadySet←− notReadySet ∪ {b}

end if
if receive POSSIBLE (b) and b 6∈ possibleSet then

send NOTPOSSIBLE (b)
end if 127

7.2. IMPLEMENTATION OF A DISTRIBUTED CONTROLLER AS A
PROTOCOL

Message Description
POSSIBLE Offer an interaction (which is locally ready)
NOTPOSSIBLE respond that an interaction is not locally ready
READY Ask about the global readiness of an interaction
NOTREADY Respond that an interaction is not globally ready
COMMIT Commit to an interaction (cannot be undone by Ki)
REFUSE Inform that a component cannot commit to an interaction

Table 7.1: Messages used by the algorithm.

• TheMain thread starts by checking its locally ready interactions (possibleSet) for interactions
that are globally ready (see Algorithm 5). To check the global readiness of an interaction
a, messages of the form POSSIBLE (a) are exchanged, and peers in which a is currently
not locally enabled respond with NOTPOSSIBLE (a) after which the requesting component
“abandons” a until it changes state or the peer enters a state in which a is locally enabled and
sends a POSSIBLE (a).

Whenever it is detected that an interaction a for which it plays the role of a negotiator is globally
ready, a threadNegotiate(a) is created which checks whether a is enabled (which corresponds
to transition 1 of Figure 7.7 and Figure 7.3). If an interaction with maximal priority is globally
ready, it is immediately known to be enabled.

• Negotiate(a) checks the enabledness of an interaction a (see Algorithm 6). It asks all negotia-
tors of interactions with higher priority than a, in the set higherPrio(a), if their interactions
are globally ready by sending a READY (b) message to all negotiators of these interactions.

In turn the negotiators of these interactions, if not BUSY , respond positively or negatively as
soon as they have the information available.

• Main handles local priorities locally. Whenever an interaction b is known to be globally ready,
Main kills all threads Negotiate(a) with a < b because the readiness of b inhibits a.

• Concurrently to Main, WaitingForCommit handles incoming COMMIT messages (see
Algorithm 7). Whenever a COMMIT (a) is received — which implies that a is enabled. In-
deed, if a is involved in a priority rule, then the message COMMIT (a) is first sent by its
negotiator. Otherwise,the first controller finding a globally ready will commit to it (transition 5
in Figure 7.7). As our goal is firing an interaction as fast as possible, theWaitingForCommit
activity is added concurrently to allow detecting such COMMIT messages and thus to termi-
nate all other negotiation activities and to response back by a COMMIT (which corresponds
to transition 11 in Figure 7.7).

• Main tries to commit to the first interaction found enabled (as a way to handle local conflicts)
by activating TryToCommit (transitions 4, 5 and 6 in Figure 7.7). WaitingForCommit

128

CHAPTER 7. DISTRIBUTED CONTROLLERS FOR SYSTEMS WITH
PRIORITIES

Algorithm 6 Negotiate
Require: higherPrio(a) = {c | a < c}

Input: interaction a Output: OK or NOK
toCheck ←− higherPrio(a)
for all b ∈ toCheck do

send READY (b)
end for
while toCheck 6= ∅ do

if receive READY (b) then
return NOK

else if receive NOTREADY (b) then
toCheck ←− toCheck\{b}

end if
end while
return OK

Algorithm 7 WaitingForCommit
Require: set of interactions waitingSet

Input: set of interactions possibleSet Output: interaction a
if waitingSet 6= ∅ then

choose a ∈ waitingSet and kill main and send COMMIT (a) and send REFUSE (b) for all
b in possibleSet and goto BUSY (a)

else if waitingSet = ∅ and receive COMMIT (a) and a ∈ possibleSet\toNegotiate then
kill main and send COMMIT (a) and send REFUSE (b) for all b in possibleSet and goto
BUSY (a)

end if
if receive COMMIT (a) and a 6∈ possibleSet then

send REFUSE (a)
end if

129

7.2. IMPLEMENTATION OF A DISTRIBUTED CONTROLLER AS A
PROTOCOL

is terminated once TryToCommit is activated, in order to avoid multiple commits at the
same time. Note that the incoming COMMIT messages that are used to be handled by
WaitingForCommit, will be stored in the variable waitingSet and will be treated if
TryToCommit returns NOK.

• TryToCommit(a) sends a COMMIT (a) message to the corresponding peer and waits for a
response (see Algorithm 8). Note that if TryToCommit fails committing to a because it re-
ceives a REFUSE message — in that case the peer has committed to a conflicting interaction
— the controller starts again by checking the global readiness of its locally ready interactions.
Indeed, as the peer has committed to another action its state may have changed. For the interac-
tions a for which there exists at least one interaction with higher priority, the commit procedure
is always initiated by the negotiator of a who is the first one to know about a’s enabledness.

Algorithm 8 TryToCommit
Require: Input: interaction a Output: OK or NOK

send COMMIT (a)
if receive COMMIT (a) then

return OK and send ∀b ∈ readySet\{a} REFUSE (b)
else if receive COMMIT (b), b 6= a and ((a, b) 6∈ cyclesof(K) or (a, b) ∈ notRefuse(K))
then
waitingSet←− waitingSet ∪ {b}

else if receive COMMIT (b), b 6= a and ((a, b) ∈ cyclesof(K) and (a, b) 6∈ notRefuse(K))
then

send REFUSE (b) and readySet←− readySet\{b}
else if receive REFUSE (a) then

return NOK
end if

• Finally, AnswerNegotiators is a simple thread which is always active if the component Ki

is the negotiator for at least one interaction that dominates some other interaction. It receives
messages of the form READY (a) for interactions a for which Ki is the negotiator. It re-
turns READY (a) if a is currently in the readySet of Ki, NOTREADY (a) if it is in the
notReadySet or if it is not in its possibleSet, and otherwise defers the answer until the status
of a is known.

Example 7.2.1 Now we propose to illustrate how the proposed algorithm works in a small example,
where global priorities are defined. In Figure 7.4, we give a system consisting in a set of 4 com-
ponents. As previously, interaction between components is represented sunchronization on common
labels. The system modeled in Figure 7.4 represents 4 components K1, K2, K3 and K4. Components
K1 and K3 synchronize on a. K1 synchronizes with K2 on b and K3 with K4 on c. This system
represents a priority rule stating that c < b. Thus we have to assign a negotiator for each of these

130

CHAPTER 7. DISTRIBUTED CONTROLLERS FOR SYSTEMS WITH
PRIORITIES

S2
b S4

c

b

a

S1

S′1
a

c
S3

S′3

K1 K2 K3 K4

Figure 7.4: An example with global priorities c < b.

two interactions. Note that this priority is global as b and c do not have any component in com-
mon, so we assign negotiators arbitrary. Here we choose K1 as the negotiator of b and K3 as the
negotiator of c. Figure 7.5 gives a possible scenario of leading to the execution of the interactions
in the system. In the initial state, each component proposes its possible interactions by sending a
POSSIBLE message to the corresponding peer. As the interaction a is possible for both compo-
nents K1 and K3, they will both send and receive POSSIBLE(a) which means that a is globally
ready. a is not involved in any priority rule, thus once it is globally read, it is also enabled and both
components exchange COMMIT (a) message to execute a. Components K2 and K4 cannot execute
any interaction because they are waiting for their peers to synchronize.

When interaction a is performed by K1 and K3 (they enter in BUSY (a) in Figure 7.5), both
components change their State. However components K2 and K4 are still asking about the readiness
of their interactions (resp. b and c) by sending POSSIBLE messages. When K3 changes its state
the interaction c becomes possible, and then globally ready once K3 receives POSSIBLE(c) from
K4. K3 is the negotiator of c and c < b, thus K3 has to ask about the enabledness of c, means that
it has to ask the negotiator of b (K1) about the readiness of b. Therefore K3 sends READY (b) to
K1 and waits for response. In the scenario depicted in Figure 7.5, when K1 receives this message,
it does not yet know if b is ready, so, it waits for a message from K2 so that it can answer. When
POSSIBLE(b) is received, K1 answers K3 with READY (b) which inhibits the enabledness of
c. c has maximal priority, thus no negotiation is needed. K1 and K2 can commit for it once it
becomes ready. As K3 has only the interaction c in his possibleSet, it still negotiating c by sending
READY (b) until it receives NOTREADY (b).

7.2.2 Avoiding deadlocks due to potential decision cycles

In order to avoid deadlocks due to decision cycles amongst interactions in conflict, we introduce
the notion of cycle.

Definition 7.2.2 A cycle is a set of interactions A = {ai}ni=1 involving a set of components {Ki}ni=1

for which the following holds: For all i ∈ [1, n], ai is an interaction involving the two components Ki
and K{i+1modn} and there exists at least one global state in which all these interactions are enabled.
We denote the fact A is a cycle by Cycle(A) Note that, in such global state, each Ki has at least two
enabled interactions, in the corresponding local state, one interaction with its right neighbor and the
other with its left neighbor.

131

7.2. IMPLEMENTATION OF A DISTRIBUTED CONTROLLER AS A
PROTOCOL

BUSY(a)BUSY(a)

BUSY(b)
BUSY(b)

BUSY(c)
BUSY(c)

NOTPOSSIBLE(a)

K1

POSSIBLE(c)

POSSIBLE(a)
POSSIBLE(b)

NOTPOSSIBLE(b)

COMMIT(a)

COMMIT(a)

POSSIBLE(b)

NOTPOSSIBLE(c)

POSSIBLE(c)

POSSIBLE(c)

POSSIBLE(c)

K2 K3 K4

POSSIBLE(b)

POSSIBLE(b)

POSSIBLE(a)

READY(b)

COMMIT(b)

COMMIT(b)

POSSIBLE(b) NOTREADY(b)

POSSIBLE(a)

READY(b)
POSSIBLE(c)

POSSIBLE(c)

READY(b)

COMMIT(c)

COMMIT(c)

Figure 7.5: Scenario of possible executions of interactions a, b and c.

132

CHAPTER 7. DISTRIBUTED CONTROLLERS FOR SYSTEMS WITH
PRIORITIES

A cycle A bears a risk of deadlock or livelock in a state in which all interactions of A are enabled.
Indeed, it represents a symmetric situation for all involved components, where a component could
wait forever for all others (deadlock) or propose a different choice than all others, reject it and start
all over forever. In [Bag89b] for example, to deal with this problem, a total order over the system
interactions is defined, which allows to avoid deadlock by executing the interaction with higher order.
In [PCT04], a similar solution is proposed by imposing a total order over all components, which
breaks the cycle by executing the interaction proposed by the component with higher order.

The solution we propose is to detect statically the set of (minimal) cycles of the system. Then, in a
second step, we define for each cycle statically a Cyclebreaker, which is one of the components of the
cycle. This particular component will arbitrate when a blocking situation actually occurs. This means
that whenever a potential deadlock may occur, the interaction that is committed by the Cyclebreaker,
will be fired. This approach avoid to a define a total order of all interactions or components which is
useless if there is no cycle.

Thus to avoid deadlocks due to cycles and as given in Algorithm 8, if a given controller sends a
COMMIT message, then it receives another COMMIT message to a different interaction, then either
there is no cycle involving these two interactions or it exists at least one. In the second case, if the
received COMMIT concerns the interaction committed by a Cyclebreaker, then the controller cannot
send back a REFUSE . However, if this interaction is not the one committed by the Cyclebreaker, in
this case the controller can send back a REFUSE which breaks the cycle (more details are given in
the following illustrative example).

Notation 7.2.3 We denote by cyclesof(K), the set of pairs of interactions of K involved in some
cycles. (a, b) ∈ cyclesof(K) implies that a and b are interactions ofK and ∃A such thatCycle(A)∧
{a, b} ⊆ A.
We denote byCyclebreaker(A,K) the predicate which holds if the componentK is the Cyclebreaker
of Cycle(A).
We denote also by notRefuse(K) the set of pairs of interactions of the form (a, b) such that (a, b) ∈
notRefuse(K) implies:

1. (a, b) ∈ cyclesof(K)

2. ∀ Cycle(A) such that {a, b} ⊆ A, Cyclebreaker(A,Ka) holds, where Ka is the peer of K
in the interaction a. This means that whenever K sends COMMIT (b) message, and then it
receives COMMIT (a), it cannot send back REFUSE (a).

Note that the order of interactions of a pair in notRefuse(K) is relevant as the first interaction is the
one that cannot be refused by K. Note that a pair of interactions (a, b) 6∈ notRefuse(K) means that
either there is no cycles involving these two interactions ((a, b) 6∈ cyclesof(K)) or that there exist
such cycles ((a, b) ∈ cyclesof(K)) but if K commit for b and receives a COMMIT message for a
then it can send back a REFUSE (a) to its peer Ka because the latter is not the Cyclebreaker of these
cycles. Theorem 7.3.5 proves that this way to deal with cycles allows indeed to avoid deadlocks.

Example 7.2.4 Figure 7.6 depicts an example representing a feasable cycle. The system consists of
4 components: 3 components {K1,K2,K3} forming with their set of interactions A = {a, b, c} a

133

7.3. CORRECTNESS OF THE PROTOCOL

a

S1

b

K1

S4

d

K4c

S2

b

K2

a

S3

c

K3

BUSY(c)
BUSY(d)

BUSY(d)

COMMIT(d)

COMMIT(d)

BUSY(c)

COMMIT(a)

K3

REFUSE(b)
REFUSE(a)

COMMIT(c)

COMMIT(c)

K2 K4

COMMIT(b)

K1

Figure 7.6: An example with cycle and independence.

cycle. The component K4 represents a completely independent component. The existence of a cycle
can be concluded from the structure and the behaviors of the components (the interactions a, b, c
are always enabled). If no priority rules are defined on the set of interactions A, then the cycle A
may lead to a deadlock. A possible deadlock scenario is depicted on the right side of Figure 7.6.
This occurs when Ki sends a COMMIT message to Ki+1 and waits for it. Which means that each
component is waiting its peer who has made another choice. According to the proposed solution, let
suppose that K2 is chosen as the Cyclebreaker of A.

According to Algorithm 8 (as described in Figure 7.6), whenever component Ki which is already
engaged in committing an interaction and which receives a COMMIT for a different interaction, will
send back a REFUSE message if this COMMIT is about an interaction which does not form with
the already committed interaction a pair in notRefuse(Ki). However, if it is the case no REFUSE
message will be sent back. Thus only the interaction committed by the Cyclebreaker of A will not be
refused and will be indeed fired. Note that cyclesof(K1) = {(a, b)}, notRefuse(K1) = {(b, a)},
cyclesof(K2) = {(b, c)}, notRefuse(K2) = ∅, cyclesof(K3) = {(c, a)} and notRefuse(K3) =
{(c, a)}. Independently, the component K4 can perform whenever it is possible the interaction d.

7.3 Correctness of the protocol

In this section we prove that our protocol defined by the proposed algorithms guarantees the
following properties:

1. Exclusion, i.e., interactions in conflict cannot be committed simultaneously.

2. Safety, i.e., if an interaction is fired then it is enabled.

3. Liveness (progress), i.e., if an interaction is enabled, it will eventually become disabled either
because it is executed or because a component offering it commits to another interaction.

134

CHAPTER 7. DISTRIBUTED CONTROLLERS FOR SYSTEMS WITH
PRIORITIES

To provide a proof check, we use the state transition diagram of Figure 7.7 where for a local con-
troller, transitions represent steps of the algorithm and states represent the modes of the algorithm.
Transitions may have a guard and an action and are depicted in Table 7.2.

Definition 7.3.1 We denote by waits(K1, a, K2), the global predicate which holds when the compo-
nent K1 has sent a COMMIT(a) message to its peer K2 involved in the interaction a but has not yet
received an answer in a global state in which a is enabled.

Lemma 7.3.2 If waits(K1, a, K2), then K1 will receive a REFUSE (a) or a COMMIT (a) message
within a finite delay.

Proof As we assume that the actual execution of an action a as well as all the basic functions
used in our algorithm terminate and every message reaches its recipient within a finite delay. If
K1 waits for an answer, after sending a COMMIT (a) message to K2, this means that it exists a
global state of the system in which a is enabled and that K2 is in Committing(a1) in the diagram
of Figure 7.7. Indeed in the rest of states of this diagram Waiting, Active and Negotiating, the
activitywaitingForCommit depicted in Algorithm 7 catches this COMMIT (a) message and sends
back a COMMIT (a) to K1. Similarly, K2 is in Committing(a1) means that it exists a global state
of the system where a1 is enabled and one of the following cases holds:
1- (a, a1) ∈ cyclesof(K2) and (a, a1) 6∈ notRefuse(K1) (according to the guard of transition 10
of Table 7.2), in this case K2 sends back a REFUSE (a) to K1 within a finite delay.
2- (a, a1) 6∈ cyclesof(K2)∨(a, a1) ∈ notRefuse(K2), in this caseK2 is also waiting for an answer
from K3 about a1. Similarly, if K3 does not answer with a REFUSE (a1, then it exists an interaction
a2 such that (a1, a2) 6∈ cyclesof(K3) ∨ (a1, a2) ∈ notRefuse(K3). As there exists a finite number
n of components in the system, this means that there exists some cycle of size k of the form: waits(K1,
a, K2)∧waits(K2, a1, K3)∧ . . . ∧waits(Kk, ak−1, K1) and where the following holds:

(a, a1) 6∈ cyclesof(K2) ∨ (a, a1) ∈ notRefuse(K2)
(a1, a2) 6∈ cyclesof(K3) ∨ (a1, a2) ∈ notRefuse(K3)

. . .

(ak−2, ak−1) 6∈ cyclesof(Kk) ∨ (ak−2, ak−1) ∈ notRefuse(Kk)

This is a contradiction. Indeed, the first part of each property means that there is no cycle containing
these interactions, which is not true as we have a circular sequence which means a cycle. The second
part does not hold as we assume that each cycle has just one Cyclebreaker which can try to commit
to only one interaction. 2

135

7.3. CORRECTNESS OF THE PROTOCOL

3

7

10 9

5

8

11

1

6

12

2

4

13

13

Negotiating

READY

Committing(a)

BUSY

Active Waiting

Figure 7.7: State diagram of the algorithm.

Theorem 7.3.3 (Safety property) Let be q a state, then an interaction a is fired in q implies that a is
enabled in q.

Proof Let suppose given a global state q, that a is fired and that a is not enabled in q. An interaction
a is fired if each component involved in a enters state BUSY (a) and thus it sent and received a
COMMIT (a). Let suppose that K1 and K2 are the components involved in a in respectively the
local states q1 and q2 of q. a is not enabled in q means two cases: either a is not globally ready in q,
or that a is globally ready in q but not enabled.
1- Let suppose the first case that is a is not globally ready in q, this means that a is not locally
ready for at least one of the involved components, that we suppose w.l.o.g K1. This means that
a 6∈ possibleSet of K1 in q1 and thus according to transition 11 of Table 7.2, K1 will never send
a COMMIT (a) to K2 even if the latter sends a COMMIT (a) to K1. Indeed, K2 may send a
COMMIT to K1, if it receives for example an old POSSIBLE message from K1 before the latter
sends the NOTPOSSIBLE according to transition 13 of the Table 7.2. Thus if a is not globally
ready, a cannot be fired.
2- The second case is that a is globally ready but not enabled. First a is globally ready means that
both components have exchanged a POSSIBLE message as described in transition 1 of Table 7.2.
Once a is found globally ready, than a is not enabled means that a 6∈ prioFree which means that
the transitions 4 and 5 of Table 7.2 cannot be fired and thus that the state committing(a) in the state
diagram of Figure 7.7 is not reached. This means that to fire a each component has to fire either the
transition 11 or the sequence of two transitions 4 then 7.

a 6∈ prioFree means that a is involved in at least one priority rule. Let suppose w.l.o.g that
K1 is the negotiator of a, which means that to fire a, K2 cannot commit for a before receiving the
COMMIT from K1. To send a commit K1 has to fire the transition 4 which has as guard that
Negotiate(a)=ok which means that a is enabled and which is in contradiction with our assumption
that a is not enabled. Thus we conclude that if a is fired than it is enabled. Note that this is guaranteed
by the fact that we suppose that there is no confusion. Indeed, if a situation of confusion occurs
there is no guarantee that the algorithm negotiate will get a consistent information about the global

136

CHAPTER 7. DISTRIBUTED CONTROLLERS FOR SYSTEMS WITH
PRIORITIES

readiness of interactions with higher priority. 2

Theorem 7.3.4 (Exclusion property) Let be q a state, a an interaction and denote A = {ai}ni=1 the
set Conflictq(a)∪PrioConflictq(a) of interactions that are in conflict with a in state q. Our algorithm
guarantees that if a is fired in state q, no interaction in A is fired in q.

Proof What we have to prove is that if in state q a component commits to interaction a, by executing
one of the transitions 4, 5 or 6 of Figure 7.7, no interaction inA can be committed before the execution
of a is terminated.

Suppose that a ∈ Pi. For all b ∈ A we have either b ∈ Pi, which means in structural conflict
with a, or b ∈ prioConflictq(a) that is in prioritized conflict, this holds because two interactions can
only be in structural conflict if they share a common component. We prove the theorem separately
for these two cases:
1- First case: b ∈ Pi, that is a and b share the same component Ki. First of all, only interactions
committed by both peers are executed. Then, if Ki has sent a COMMIT(a) message executing one
of the transitions 4, 5 or 6 of Figure 7.7, then according to the same table it is impossible to send a
COMMIT (b) message before either a REFUSE(a) is received or the BUSY state is entered, then
exited and the next state reached.

2- Second case b ∈prioConflictq(a) holds, that is a and b are concurrent (and thus belong to
different components) and either a < b or b < a. Suppose that Kj is the negotiator for b.

If b < a, then b should not be executed before the execution of a — which has started — has been
completed and Ki enters READY for the successor state of q. We have now to prove that from that
moment on Kj cannot “believe that a is not ready” which is the condition for committing to b.

Indeed, if Kj does not yet know about the readiness of a, before committing b, it will send a
READY (a) message toKi, but as a is already engaged for execution, Ki will not send any response
before the execution of a is terminated the next state reached, and the readiness of a evaluated in the
new state; and Kj remains blocked for b during this time.

Now, we must prove that Kj cannot have old, depreciated knowledge that a is not ready. This can
only be the case, if at some point a was not ready and Ki has sent NOTREADY (a) to Kj , and then
transitions concurrent to b have been executed leading to the current state q in which a is ready and
executed, and Kj may use incorrect knowledge and execute b. This corresponds exactly to a situation
of confusion, which we have excluded.

If a < b, the situation is almost symmetric. We must prove that in this case b is not ready. If Ki

is the negotiator for a, asks the negotiator of b whether b is ready, and only if the answer is negative,
it will consider a to be enabled and may initiate the commitment of a. Again, only if confusions
exist Ki may use old knowledge. If the negotiator of a is the peer, then Pi will only commit to a on
reception of a COMMIT (a) from its peer which uses the same procedure for deciding to commit to
a.

2

137

7.3. CORRECTNESS OF THE PROTOCOL

Theorem 7.3.5 (Liveness property) Let a be a enabled interaction. Our algorithm guarantees that
a will eventually become disabled either because it is executed or because a component offering it
commits to another interaction..

Proof An enabled interaction a may become disabled because it is executed or because a
component offering it commits to another interaction. When a is enabled for a component Ki, a
COMMIT(a) message is sent to the corresponding peer and Ki goes to state committing(a). a
becomes disabled when Ki leaves this state. In other words what we have to prove is that Ki cannot
stay in this state eternally. When Ki is in state committing(a), there must exists a component
Kj such that waits(Ki, a, Kj). Thus the proof follows directly from Lemma 7.3.2. In fact,
when receiving message COMMIT(a) or REFUSE(a), Ki will leave state committing(a) through
transition 7 or 8. 2

Choosing the negotiators For each interaction a involved in at least one priority rule, we choose
one of the components involved in a as its negotiator. This negotiator will send requests to nego-
tiators of interactions with higher priority and answer requests from negotiators for lower priority
interactions. Thid means that whenever a is globally ready, the negotiator communicates with the
negotiators for interactions with higher priority to find out whether a is enabled or not. A component
may be the negotiator for several interactions. Various strategies may be proposed to allocate nego-
tiators to components. The criterion we use is to minimize for each interaction the maximal number
of distinct components to which its negotiator has to send requests. This is meant to minimize the
number of communications added due to priorities.

As already explained, local priorities — that means when a < b and a and b have negotiators
hosted by the same component Ki — are decided locally. In the dining philosophers example (see
figure 8.6), all the priority rules involve the component Forks, which will thus be designated as
negotiator and it will enforce priorities locally. In some systems, priorities may include interactions
which do not necessarily have a common component. In this case, for each interaction we choose
as negotiator the component that is involved in the largest set of interactions, as it may have more
knowledge about readiness of more interactions.

Extension to multiparty interactions Given a system Sys = ({Ki}ni=1, I<) defined by a set of
components {Ki}ni=1 and a memoryless controller defined by I and <, we have proposed in the
previous section a distributed implementation of Sys by defining to each component a local controller
allowing to guarantee ϕI and ϕ<. The interaction model I of the algorithm previously proposed
allows to define only binary interactions. Extending this algorithm to an interaction model with n-ary
interactions does not affect the way priorities are checked. This extension to multiparty interactions
can be done as in α-core algorithm [PCT04], where a particular component called coordinator is
associated to each interaction. Similarly, we define for each interaction a negotiator. This negotiator
has previously the task of checking only the enabledness of the interaction, now it will have also to
check its readiness. The criterion to assign negotiators could still be the same as proposed previously.

138

CHAPTER 7. DISTRIBUTED CONTROLLERS FOR SYSTEMS WITH
PRIORITIES

Algorithm Negotiate is unchanged as each negotiator has to ask other negotiators about the
readiness of a given interaction, this does not depend on the number of components involved in the
interaction. The rest of algorithms proposed have to be slightly modified to deal with multiparty
interactions. For this purpose we propose that, for each interaction a, the corresponding negotiator
collects the responses of all the components involved in a and checks that all of them are ready to
execute the interaction. This is done using the exchange of messages POSSIBLE. We propose to
add two new messages:

• START (a) message sent by the negotiator of a to inform all other components involved that a
could be fired;

• CANCEL(a) message sent by the negotiator of a to the participants to inform them that the
interaction cannot be fired.

In the Algorithm 7, WaitingForCommit, whenever a component K receives a COMMIT ,
it kills thread Main, sends back a COMMIT and waits for START . If it receives the START
message, it executes the interaction. If it receives a CANCEL message, it restarts the Main thread
again. Note that the operations performed in this algorithm concerns only interactions for which P is
not the negotiator.

In the Algorithm 8, TryToCommit, the component sends a COMMIT message to all partici-
pants involved in the interaction and waits for a COMMIT answer from all of them. If it receives
at least one REFUSE message, it sends back CANCEL message to all participants. If it receives
COMMIT from all participants, it sends back START to all of them and goes to state Busy to exe-
cute the corresponding interaction. Note that all the operations performed in this algorithm concerns
only interactions for which P is the negotiator.

In this chapter, we have proposed a protocol allowing to implement a controller enforcing some
priority order in a distributed way. In the next chapter, we present a concrete implementation of this
protocol and we present some performance analysis results.

139

7.3. CORRECTNESS OF THE PROTOCOL

Transition Guard Action
1 possibleSet6= ∅ ∀a ∈ possibleSet, send(POSSIBLE(a))

2
receive(POSSIBLE(a))∧
a ∈possibleSet∩toNegotiate

call(Negotiate(a)∧readySet:=readySet∪{a}

3
receive(POSSIBLE(a))∧
a ∈possibleSet∩toNegotiate

call(Negotiate(a)∧readySet:=readySet∪{a}∧
∀b ∈lessPrio(a), kill(Negotiate(b))

4 Negotiate(a)=ok
send(COMMIT(a))∧
kill(WaitingForCommit)∧ ∀b
kill(Negotiate(b))

5
receive(POSSIBLE(a))∧
a ∈prioFree

send(COMMIT(a))∧
kill(WaitingForCommit)∧ ∀b
kill(Negotiate(b))

6
receive(POSSIBLE(a))∧
a ∈prioFree

send(COMMIT(a))∧
kill(WaitingForCommit)

7 receive(COMMIT(a))∧Committing(a)
goto(BUSY(a))∧ ∀b ∈readySet,
send(REFUSE(b))

8 receive(REFUSE(a))∧Committing(a)
goto(Active)∧reset(readySet)∧
keep(possibleSet)

9
receive(COMMIT(b))∧Committing(a)
∧(a 6= b) (a, b) 6∈ cyclesof(K) or
(a, b) ∈ notRefuse(K)

waitingSet:=waitingSet∪{b}

10
receive(COMMIT(b))∧Committing(a)
∧(a 6= b)∧ ((a, b) ∈ cyclesof(K)
and (a, b) 6∈ notRefuse(K))

send(REFUSE(b))∧readySet:=readySet\{b}

11
receive(COMMIT(a))∧a ∈
possibleSet\toNegotiate

send(COMMIT(a))∧ ∀b ∈possibleSet and
b 6= a, send(REFUSE(b))

12 true set(possibleSet)

13
receive(POSSIBLE(a))∧
a 6∈possibleSet

send(NOTPOSSIBLE(a))

Table 7.2: Transitions of the protocol state diagram.

140

Chapter 8

Implementation and Experimental
Results

This chapter presents an implementation of the protocol described as algorithms in the previous
chapter. In particular, we describe how we evaluate the performance of our protocol on hand of the
implemented prototype. We have implemented the proposed protocol, using Java 1.6 and Message
Passing Interfaces (MPI) and we experiment its efficiency on different examples. We have used the
MPI library [SOHL+96] to perform the communication layer of our algorithm because of its good
performance, usage facility and its portability [GLS99]. In this chapter, we analyze the performance
of the algorithm on hand of a number of experiments and we measure three different metrics, namely
message count, synchronization time and selection time.

8.1 Sensitivity of the prototype

In our prototype, the exchange of messages between components is performed at the MPI layer
and all computations of our protocol are performed at the Java program level (see Figure 8.1). Tests
have been run on a set of 2.2 GHz Intel machines with 2 GB RAM, in a configuration where each
physical machine hosts only one component.

Our experiments evaluated essentially two metrics which are comparable to those used also
in [PCT04]: the first is a metric called message count which measures the (average) number of mes-
sages required to schedule an interaction for execution, starting from the moment on that it is ready
in one of the involved components. The second one is called response time and is defined as the sum
of two other metrics sync time and selection time:
sync time (synchronization time) measures the (mean) time taken by the algorithm to ensure that a
given interaction is globally ready, again starting from the moment where it is locally ready in at
least one of the peers. An alternative option would be to measure only from the moment on where
the interaction is already enabled, that is only the time required to "detect" this enabledness; this is
however quite difficult to evaluate in a distributed setting.
selection time measures the (mean) time taken by the algorithm to select an interaction for execution

141

8.1. SENSITIVITY OF THE PROTOTYPE

once it has been found globally ready.

All metrics are measured for a given system by experimenting with different choices of parame-
ters. We then analyze how variations of parameters affect the considered metrics and compare them
to theoretical analysis on the algorithm.

We also compare for an example without priorities the message count metric obtained for our
algorithm and for an implementation of the α-core algorithm. We could not compare execution times
because the implementation of α-core we have at hand cannot be run in the same setting and the data
provided in [PCT04] are obtained in a incomparable setting as well.

K2

Java-Instance1

MPI-rank1

Java-Instance2

MPI-rank2

Java-Instance0

MPI-rank0

K0 K1

Figure 8.1: Implementation layers

In this Section, we study the sensitivity of our algorithm to the degree of conflict in a given
system. The degree of conflict (d) is measured by the number of interactions that may be in actual
conflict with any (or a particular) interaction. Remember that we distinguish between structural and
prioritized conflict (see Definition 7.1.4).Thus in this section, we study first the sensitivity of our
prototype to the prioritized conflicts, then to the structural one.

8.1.1 Sensitivity to prioritized conflicts

The purpose of the algorithm that we implement is to ensure correct synchronization between
components by respecting global priorities. We first show some results concerning prioritized con-
flicts.

142

CHAPTER 8. IMPLEMENTATION AND EXPERIMENTAL RESULTS

a2

S2

a1

S1 Sn

an
a1

an−1
an

KnK2K1

Figure 8.2: System pattern for experiments

An evaluation has been undertaken using the example depicted in Figure 8.2 with a single global
state. For each considered configration, the system has been executed several times, and each exe-
cution has been terminated at the execution of the first interaction. The system consists of a set of n
components, and a set of n interactions building a circular chain. This pattern is flexible and it allows
as to observe how our algorithm performs in different situations. In fact, we can easily add both local
and global priorities.

Considering a given system, that is a composition {K1, ...,Kn}, the degree of conflict d can be
increased by adding priority constraints. Here, we simply count the maximal number of priorities
in which a single component is involved, in order to obtain the degree d, but as the discussion will
reveal, finer measures could also be considered. If there are no priorities in the system, then d = 0.
The degree of conflict of (S,<1) is greater than the one of (S,<2), if <1 involves more interactions
of different components of S than <2.

As already explained, our experiments are performed on a system as depicted in Figure 8.2, for
n = 4 and using the following priorities to achieve different degrees of conflict, where component
K2 — which is chosen as the negotiator of a1 — is the component which in all cases is involved in
all the priorities, whereas other components are involved in at most two of them: d = 0: no priorities,
d = 1: a2 < a1, d = 2: a2 < a1 ∧ a3 < a1, d = 3: a2 < a1 ∧ a3 < a1 ∧ a4 < a1, d = 4:
a2 < a1 ∧ a3 < a1 ∧ a4 < a1 ∧ a3 < a2. We have measured the average message count, response
time, sync time and the selection time for all cases.

Variation of metric message count Figure 8.3 shows that, as expected, the number of messages
exchanged in order to execute the first (and unique) interaction increases with the degree d of the
system. Increasing d means that more interactions are involved in priority rules, and thus more
messages of type READY are exchanged, and globally less interactions can be executed. In the
case chosen for d = 1, the priority is defined by the rule a2 < a1 which is a local priority involving
only component K2. Thus, no negotiations and no READY messages are needed which makes in
principle, the same message count as for d = 0. This is confirmed by Figure 8.3 showing a non
significant difference between d = 0 and d = 1. For the case d = 2, the selected priorities are
a2 < a1 and a3 < a1. This means that the negotiator of a3 (K3) has to send a READY message
to the negotiator of a1 (K2) and the latter has to send back as a response a READY message which

143

8.1. SENSITIVITY OF THE PROTOTYPE

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

M
e

s
s
a

g
e

-c
o

u
n

t
a

n
d

 r
e

s
p

o
n

s
e

-t
im

e

Degree of prioritized conflict

Message-count (10)
Response Time (10ms)

 0

 5

 10

 15

 20

 0 1 2 3 4 5

S
e

le
c
ti
o

n
 a

n
d

 S
y
n

c
 T

im
e

 (
m

s
)

Degree of prioritized conflict

Sync Time
Selection Time

Figure 8.3: Sensitivity to the degree of prioritized conflict

makes 2 extra messages added comparing to the case of d = 0. This is confirmed by the experimental
results.

Variation of metric response time As expected, also the time required to execute the first interac-
tion increases with the degree d of the system, which can also be seen in Figure 8.3. Again, adding
a local conflict (as in the step from d = 0 to d = 1) leads only to a small increase of the response
time as the situation is handled locally. The increase is larger when a global priority is added. Note
also that the increase in response time is more important than the increase of the number of messages:
up to 20% for adding a (first) local priority and up to 50% for adding a (first) global priority. This
may look surprising. but indeed, adding a priority requires adding some explicit threads for negoti-
ation, and on the system configuration we use, the time is mainly spent for execution, whereas the
communication time is relatively small. Figure 8.3 shows also the sensitivity of the sync time and
the selection time of our prototype to the variation of d. Theoretically, the average synchronization
time is independent of the number of conflicting interactions in our system. Indeed, to decide the
global readiness of a given interaction, a component has to send and receive a POSSIBLE message
for this interaction, which is completely independent of whether this interaction is involved or not in
a priority rule. This is confirmed by the results of sync time for d = 0, d = 1 and d = 2 (given
in Figure 8.3), for which the synchronization time is almost the same.The synchronization times are
slightly greater in case d = 3 and d = 4. This is due to the order in which messages are received.
More precisely, for d = 2 priorities are a2 < a1 and a3 < a1 which implies that the component
negotiating a3 will send a READY message to the negotiator of a1 to check its readiness. Thus, the
negotiator of a1 may receive and treat this READY message before reacting to the POSSIBLE
messages for the other interaction. We can observe however that for increasing d, the time required
to actually choose an enabled interaction, increases considerably. This is not surprising. The fact that

144

CHAPTER 8. IMPLEMENTATION AND EXPERIMENTAL RESULTS

the selection time remains relatively small with respect to the synchronization time allows the overall
response time increase to remain moderate.

8.1.2 Sensitivity to structural conflicts

Now we provide experimental results about the sensitivity of our prototype to the variation of the
structural conflict of a system. Structural conflict arises between interactions when they are all in
the possibleSet of a common component. To study how our algorithm performs with an increasing
number of structural conflicts, we have carried out a series of experiments on a system as depicted in
Figure 8.4. We use a set of systems T1, T2, ..., Tn where each Tk has k binary interactions, referred
to as ai (i = 1, 2, ..., k), and k + 1 components, referred to as Ki (i = 1, 2, ..., k + 1). Components
Ki participate in interaction ai, and Kk+1 participates in any interaction. Therefore, all interactions
are in structural conflict, and the degree of the structural conflict can be measured by the number of
components in the system.

S2

K2 a2

S1

K1 a1

Sk

Kk ak

a1

a2

ak
Sk+1

Kk+1

Figure 8.4: System pattern for experiments (Tk)

Each experiment consisted in executing 100 interactions, and we have evaluated our metrics for up
to 5 conflicting interactions (a system with six components) for several executions of this experiment
for each degree of structural conflict.

Variation of message count We can see in the left side of Figure 8.5 that our algorithm requires
considerably less messages than α-core, where we compare with the results provided in [PCT04]
for this same example. This is due to the fact that α-core is connector-centric, that is, it creates
an additional component for each interaction whereas our algorithm is component centric, that is
all negotiations are hosted by some component and share the same memory space. This means that
our algorithm can exploit more local knowledge to execute interactions which reduces the number
of messages exchanged. When there is no conflict at all (in T1) both algorithms exchange the same
number of messages, then when the degree of conflict increases, our algorithm performs better. The
system T1 has no conflict, and to execute a1, 3 messages are exchanged (one POSSIBLE and two
COMMIT), thus 300 messages are transmitted during the experiment. When there are conflicts,

145

8.1. SENSITIVITY OF THE PROTOTYPE

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6

M
e

s
s
a

g
e

-c
o

u
n

t

Degree of structural conflict Tk (k=1..5)

Message-count (1000)
Message-count alpha-core (1000)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 1 2 3 4 5 6

S
e

le
c
ti
o

n
 a

n
d

 e
la

p
s
e

d
 t

im
e

Degree of structural conflict Tk (k=1..5)

Response Time (10 ms)
Selection Time (ms)

Figure 8.5: Sensitivity to the degree of structural conflict

for T2 for example, again 3 messages are needed to execute an interaction in the best case, but every
time an interaction is refused, at the worst case, a penalty of 3 messages is added (one POSSIBLE,
one COMMIT and one REFUSE). To execute 100 interactions, 300 messages are needed in the
best case, and 212 extra messages have been added for the situations where an interaction has been
refused.

Variation of response time Figure 8.5 shows also the selection and the response time. Again, the
average selection time is in principle independent of the number of interactions in structural conflict.
Because, when no priorities are added and when an interaction becomes ready, only two COMMIT
messages are exchanged to execute an interaction. Thus the average selection time should be of about
2 ∗ λ, where λ is the average message transmission time which in our experimental architecture is
λ = 0.2 ms.

Figure 8.5 shows that the measured response time is higher. The reason for this is that our im-
plementation is written in Java, and the loop used to send k POSSIBLE messages by the com-
ponent Kk+1 leads to computational overhead. More precisely, when Kk+1 enters the loop to send
k POSSIBLE messages to the different peers, the component Ki which will get the first mes-
sage sent, will set the interaction i to ready and send back a COMMIT . However, Kk+1 will not
treat this message before the termination of this loop. As the actual communication time is low, the
possibleSet of Kk+1 may contain many interactions, which increases the selection time (only one
interaction is committed, all others must be refused).

146

CHAPTER 8. IMPLEMENTATION AND EXPERIMENTAL RESULTS

forkα,β1,2

The behavior of Forks

fork∗l

forkα,β1,2 return

return

return∗

The behavior of Philo∗

return∗fork∗r

Figure 8.6: The dining philosophers problem with priorities.

8.2 The dining philosophers example

In this section, we focus on the well-known Dining philosophers problem, for which we have car-
ried out a series of tests. We consider a variant of the dining philosophers problem inspired from [Pad]
and we propose here to deal with this problem using priorities. Philosophers are seen as components
who provide thoughts if they are given two forks. These forks represent a shared resource. A problem
may arise if each philosopher grabs the fork on its right, and then waits for the fork on its left to be
released. In this case a deadlock occurs and all philosophers starve.

This deadlock can be avoided by giving higher priority to requests closer to completion. The pri-
ority order that is needed here is {forkα1 < forkβ2 , forkβ1 < forkα2 }. For readability reasons, in
Figure 8.6, the interaction forkα,β1,2 in the behavior of the component Forks corresponds to the inter-

actions {forkα1 , forkα2 , forkβ1 , forkβ2} of the two philosophers. As the component Forks participates
in all interactions involved in these priorities, Forks is designated negotiator for involved interactions
and can ensure locally that priorities are respected.

Experiments have been carried out for the system with the mentioned priorities (depicted in Fig-
ure 8.6); then we have also considered a system with two philosophers and separate components for
each fork, where deadlock is avoided by the fact that both philosophers first request Fork1, and then
Fork2.

Dining philosophers message count execution time(ms) execution timePhilo∗(ms)
With priorities 6 8 30
Without priorities 6 11 45

Table 8.1: Message count for the dining philosophers.

147

8.2. THE DINING PHILOSOPHERS EXAMPLE

Table 8.1 shows our measurements for the message count and the response time metrics for both
systems. We have also measured the average time required for one philosopher to execute a complete
cycle (take forks, think and release forks) which we denote by execution timePhilo∗ .

We observe that the number of messages exchanged is identical in these two systems. Indeed,
priorities are local thus do not induce additional messages. However, using priorities leads to a slight
increase of the execution time, as we have already observed in our first example, and the explanation
remains unchanged. An additional reason is that the system with priorities has only one component
to handle both forks, this making the system less concurrent than the system without priorities. This
effect of concurrency is particularly visible in the results for execution timePhilo∗ .

148

Part IV

Conclusions and Perspectives

149

Chapter 9

Conclusion and Perspectives

In this chapter, we conclude the thesis describing the main objectives of the work, the goals we
have achieved, the future work directions and its perspectives.

9.1 Conclusions

In this thesis, we have focused on three aspect to reason about complex systems namely design,
verification and implementation. We have proposed in a first time (Part II) a contract-based design
and verification methodology where systems are modeled as component-based systems. Then, in a
second time (Part III) we have focused in their implementation in particular in a distributed setting.

The proposed methodology have been extended to reason about arbitrary sized systems by build-
ing systems according to a given grammar of components and where the verification steps of a top
level property are reduced to the verification of a dominance problem for each grammar rule.

In this methodology we have used contracts as a means to constrain, refine and implement sys-
tems. The notion of contract we use, makes a clear separation between the assumption, that is property
of the environment, and the guarantee, that is the property that the system under study has to ensure.
Such a separation improves reusability, which is useful in particular when dealing with a system acting
in different possible environments. In addition, the contracts we use take into account the structural
aspect of the system under study. In fact, glues (interaction models) used to compose components are
explicitly represented in our contracts. This allows us to easily model, refine and implement these
glues which represent in general low level protocols used for communication between the parts of the
system.

We have based our work on a generic contract-framework, that we have instantiated for a compo-
nent framework allowing the expression of progress properties. This instantiation handles variables
and data transfer between components using a rich description of glues.

We have also successfully applied our extended design and verification approach to a case study
which consists of an algorithm of sharing resources in a networked system of arbitrarily size for
which a progress property has been checked. Then a prototype tool have been developed to perform
the different design and verification steps automatically.

151

9.2. PERSPECTIVES

In the second part of this thesis, we have focused the problem of synthesis of controllers, to
provide an implementation of these controllers in a distributed setting. In particular, we have focused
in controllers defined by interactions and priorities by proposing a protocol for their distribution. This
protocol defines a transformation of controlled systems into a distributed implementation in which
every component is composed with a local controller exchanging messages with its peers in order to
realize interactions exclusively by message exchange. We have also implemented a version of this
algorithm handling binary interactions and we have analyzed its performance.

9.2 Perspectives

In this section, we discuss about interesting work directions which are either currently being
undertaken, or will be planned for future work.

There are several interesting directions to be explored concerning the proposed contract-based
design methodology. First, we have excluded the use of contracts for assume/guarantee reasoning:
we use contracts as design constraints for implementations which are maintained throughout the de-
velopment and life cycle of the system. On the other hand, in assume/guarantee based compositional
verification, assumptions are used to deduce global properties (see [dRdBH+01a]). We could inte-
grate this into our methodology: as an example, in our network application, it would be enough to
ensure that assumptions express sufficient progress to show conformance of a node contract to node
progress. We would like also to use our methodology to verify multiple requirements, possibly by
using multiple contracts and multiple hierarchical decomposition of the system. A second interest-
ing direction could be to focus on non-functional properties which are in general properties of the
glues by applying the same approach, that is defining contracts for these glues and thus refining them
later by protocols for example. In the second part of this thesis, we have proposed a protocol to
distribute a global controller into a set of local controllers ensuring given properties. The proposed
protocol handles binary interactions between these controllers, an extension of this protocol to multi-
party interactions as well as an implementation are actually under work. Another improvement on our
protocol would be to combine it with the knowledge approaches [RR00a, RW92a, GPQ10]. Indeed,
improving the algorithm by adding a first phase of knowledge computation to find out when a locally
enabled interaction is guaranteed to be (not) enabled might in some cases significantly reduce the
number of message exchanges without reducing the potential degree of concurrency. The reasoning
about interaction models and properties as controllers in Part III could be applied to web service ap-
plications, when interactions between services and resources play an important role. In this context,
our notion of global memoryless controller could be seen as an orchestrator and the distribution of
such a controller as a choreography.

We think that this may lead to different challenges for achieving distribution than those consid-
ered generally in the domain of web services. In [CHY07, MH05, NCS04], for example, efficient
distributions of web service orchestrators have been proposed, where the system description is based
on WS-CDL and WS-BPEL. The use of our concepts of interaction models may lead to more concise
specifications of webservices which can be more adequate to provide an understanding of the global
behavior, and which are also more adequate for the verification of global properties of web services

152

CHAPTER 9. CONCLUSION AND PERSPECTIVES

applications. Similar formal and abstract specification has been proposed in [QZCY07] with a simple
process language for describing behaviors of services from a local viewpoint with formal syntax and
semantics.

We can provide some new emerging service through the composition of a set of existing services
which may execute a set of tasks on their local memory and may impose constraints on the order in
which these tasks can be executed. The new service is then defined by set of service components,
and a set of interactions and priorities. If such a service specification contains a component that is
involved in all interactions and that imposes order constraints on them, this component corresponds
then typically to what is called an orchestrator in the domain of web services. This component would
then also interact with the client(s) In absence of such a centralizing component, the emerging service
is given in the form of a choreography.

High-level functional and non-functional properties have to be verified on this kind of systems.
This is the reason why we propose to keep them as concise and readable as possible, and whenever
appropriate, describe interactions amongst several services that should be executed in an atomic fash-
ion by a rendez-vous rather than describing them in the form of some protocol. In this respect, our
approach could be more efficient as it allows writing more concise specifications. On the other hand,
an obvious drawback is that a generic protocol implementing systems with arbitrary multi-party in-
teractions and global priorities is likely to be less efficient than a hand-crafted protocol for a given
purpose and a given set of components.

153

9.2. PERSPECTIVES

154

Bibliography

[AAA06a] Pascal André, Gilles Ardourel, and Christian Attiogbé. Spécification d’architectures
en kmelia : hiérarchie de connexion et composition. In CAL, pages 101–118, 2006.

[AAA06b] Christian Attiogbé, Pascal André, and Gilles Ardourel. Checking component com-
posability. In Software Composition, pages 18–33, 2006.

[AB03] Alessandro Aldini and Marco Bernardo. A general approach to deadlock freedom
verification for software architectures. In FME, pages 658–677, 2003.

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theor. Comput. Sci., 138:3–34, 1995.

[AE98] Paul C. Attie and E. Allen Emerson. Synthesis of concurrent systems with many
similar processes. ACM Trans. Program. Lang. Syst., 20(1):51–115, 1998.

[AFI+06] Marco Autili, Michele Flammini, Paola Inverardi, Alfredo Navarra, and Massimo
Tivoli. Synthesis of concurrent and distributed adaptors for component-based sys-
tems. In EWSA, volume 4344, pages 17–32, 2006.

[AFK88] Krzysztof R. Apt, Nissim Francez, and Shmuel Katz. Appraising fairness in lan-
guages for distributed programming. Distributed Computing, 2(4):226–241, 1988.

[AH99] Rajeev Alur and Thomas A. Henzinger. Reactive modules. Formal Methods in System
Design, 15(1):7–48, 1999.

[AHJ+09] Matthieu Anne, Ruan He, Tahar Jarboui, Marc Lacoste, Olivier Lobry, Guirec Lorant,
Maxime Louvel, Juan Navas, Vincent Olive, Juraj Polakovic, Marc Poulhies, Jacques
Pulou, Stephane Seyvoz, Julien Tous, and Thomas Watteyne. Think: View-based
support of non-functional properties in embedded systems. Embedded Software and
Systems, Second International Conference on, 0:147–156, 2009.

[AHKV98] Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y. Vardi. Alternat-
ing refinement relations. In CONCUR, pages 163–178, 1998.

155

BIBLIOGRAPHY

[AHL+08] Adam Antonik, Michael Huth, Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej
Wasowski. Complexity of decision problems for mixed and modal specifications. In
FoSSaCS, pages 112–126, 2008.

[AJRS06] Parosh Aziz Abdulla, Bengt Jonsson, Ahmed Rezine, and Mayank Saksena. Proving
liveness by backwards reachability. In In CONCUR, LNCS, pages 95–109. Springer
Verlag, 2006.

[AL93] Martín Abadi and Leslie Lamport. Composing specifications. ACM Trans. Program.
Lang. Syst., 15(1):73–132, 1993.

[Arb04] F. Arbab. Reo: a channel-based coordination model for component composition.
Mathematical Strucutres in Computer Science, 14(3), 2004.

[Arb05] Farhad Arbab. Abstract behavior types: a foundation model for components and their
composition. 55(1-3), 2005.

[Arn94] André Arnold. Finite transition systems. Semantics of communicating sytems.
Prentice-Hall, 1994.

[Arn98] André Arnold. Synchronized products of transition systems and their analysis. In
ICATPN, pages 26–27, 1998.

[AS87] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. Distributed
Computing, 2(3):117–126, 1987.

[Att08] Paul C. Attie. Finite-state concurrent programs can be expressed pairwise. CoRR,
abs/0801.0677, 2008.

[Bag87] Rajive Bagrodia. A distributed algorithm to implement n-party rendevouz. In
FSTTCS, volume 287 of Lecture Notes in Computer Science, pages 138–152.
Springer, 1987.

[Bag89a] Rajive Bagrodia. Process synchronization: Design and performance evaluation of
distributed algorithms. IEEE Trans. Software Eng., 15(9):1053–1065, 1989.

[Bag89b] Rajive Bagrodia. Synchronization of asynchronous processes in CSP. ACM Trans.
Program. Lang. Syst., 11(4):585–597, 1989.

[BB87] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO specification language
LOTOS. Computer Networks, 14:25–59, 1987.

[BBB+07] E. Badouel, A. Benveniste, M. Bozga, B. Caillaud, O. Constant, B. Josko, Q. Ma,
, R. Passerone, and M. Skipper. SPEEDS meta-model syntax and draft semantics.
SPEEDS deliverable D2.1c, February 2007.

156

BIBLIOGRAPHY

[BBBS08] Ananda Basu, Philippe Bidinger, Marius Bozga, and Joseph Sifakis. Distributed se-
mantics and implementation for systems with interaction and priority. In Proc. of
FORTE’08, volume 5048 of LNCS, pages 116–133, 2008.

[BBNS08] Saddek Bensalem, Marius Bozga, Thanh-Hung Nguyen, and Joseph Sifakis. Compo-
sitional deadlock detection and verification for component-based systems. Research
report TR-2008-5, VERIMAG, April 2008. submitted for publication.

[BBPS] Ananda Basu, Saddek Bensalem, Doron Peled, and Joseph Sifakis. Priority schedul-
ing of distributed systems based on model checking. In CAV’09, LNCS, pages 79–93.

[BBS06a] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heterogeneous real-time
components in BIP. In SEFM, pages 3–12. IEEE Computer Society, 2006.

[BBS06b] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heterogeneous real-time
components in bip. In SEFM, pages 3–12, 2006.

[BBSN08] Saddek Bensalem, Marius Bozga, Joseph Sifakis, and Thanh-Hung Nguyen. Com-
positional verification for component-based systems and application. In Proc. of
ATVA’08, volume 5311 of LNCS, pages 64–79, 2008.

[BCF+08] Albert Benveniste, Benoît Caillaud, Alberto Ferrari, Leonardo Mangeruca, Roberto
Passerone, and Christos Sofronis. Multiple viewpoint contract-based specification
and design. In Proc. of FMCO’07, volume 5382 of LNCS, pages 200–225, 2008.

[BCH05] Dirk Beyer, Arindam Chakrabarti, and Thomas A. Henzinger. Web service interfaces.
In WWW, pages 148–159, 2005.

[BCHS07] Dirk Beyer, Arindam Chakrabarti, Thomas A. Henzinger, and Sanjit A. Seshia. An
application of web-service interfaces. In ICWS, pages 831–838, 2007.

[BCM+90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model
checking: 1020 states and beyond. In Proceedings of the 5th Syposium on Logic in
Computer science, pages 428–439, 1990.

[BCP07a] Albert Benveniste, Benoît Caillaud, and Roberto Passerone. A generic model of
contracts for embedded systems. CoRR, abs/0706.1456, 2007.

[BCP07b] Albert Benveniste, Benoît Caillaud, and Roberto Passerone. A generic model of
contracts for embedded systems. CoRR, abs/0706.1456, 2007.

[BCP+07c] Albert Benveniste, Benoit Caillaud, Roberto Passerone, Eric Badouel, Bernhard
Josko, and al. Heterogeneous rich component definition: Hrc behavioural core, math-
ematical semantics. Speeds project deliverable d2.1.a, December 2007.

[Bei90] Boris Beizer. Software testing techniques (2nd ed.). Van Nostrand Reinhold Co., New
York, NY, USA, 1990.

157

BIBLIOGRAPHY

[BFHS03] Tevfik Bultan, Xiang Fu, Richard Hull, and Jianwen Su. Conversation specification:
a new approach to design and analysis of e-service composition. In WWW, pages
403–410, 2003.

[BGI+09] Saddek Bensalem, Matthieu Gallien, Flix Ingrand, Imen Kahloul, and Thanh-Hung
Nguyen. Toward a more dependable software architecture for autonomous robots.
Special issue on Software Engineering for Robotics of the IEEE Robotics and Au-
tomation Magazine, 16(1), 2009.

[BGK+02] Johan Bengtsson, W. O. David Griffioen, Kåre J. Kristoffersen, Kim Guldstrand
Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Automated verification of
an audio-control protocol using uppaal. J. Log. Algebr. Program., 52-53:163–181,
2002.

[BGL03] Saddek Bensalem, Susanne Graf, and Yassine Lakhnech. Abstraction as the key for
invariant verification. In Verification: Theory and Practice, pages 67–99, 2003.

[BGO+04a] Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, and Joseph Sifakis. The if
toolset. In SFM, pages 237–267, 2004.

[BGO+04b] Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, and Joseph Sifakis. The if
toolset. In SFM, pages 237–267, 2004.

[BH08] Michel Bidoit and Rolf Hennicker. An algebraic semantics for contract-based soft-
ware components. In AMAST, volume 5140 of Lecture Notes in Computer Science,
pages 216–231. Springer, 2008.

[BHM05] Tomás Barros, Ludovic Henrio, and Eric Madelaine. Behavioural models for hierar-
chical components. In SPIN, pages 154–168, 2005.

[BHS07] Dirk Beyer, Thomas A. Henzinger, and Vasu Singh. Algorithms for interface synthe-
sis. In CAV, pages 4–19, 2007.

[BJNT00] Ahmed Bouajjani, Bengt Jonsson, Marcus Nilsson, and Tayssir Touili. Regular model
checking. In CAV, pages 403–418, 2000.

[BJS09a] Marius Bozga, Mohamad Jaber, and Joseph Sifakis. Source-to-source architecture
transformation for performance optimization in bip. In SIES, pages 152–160. IEEE,
2009.

[BJS09b] Marius Bozga, Mohamad Jaber, and Joseph Sifakis. Source-to-source architecture
transformation for performance optimization in BIP. In Proc. of SIES’09, pages 152–
160, 2009.

[Blo93] Bard Bloom. Ready Simulation, Bisimulation, and the Semantics of CCS-Like Lan-
guages. PhD thesis, MIT, 1993.

158

BIBLIOGRAPHY

[BLO98] Saddek Bensalem, Yassine Lakhnech, and Sam Owre. Computing abstractions of
infinite state systems compositionally and automatically. In CAV, pages 319–331,
1998.

[BLS96] Saddek Bensalem, Yassine Lakhnech, and Hassen Saïdi. Powerful techniques for the
automatic generation of invariants. In Proc. of CAV’96, LNCS, pages 323–335, 1996.

[BM79] Robert S. Boyer and J. Strother Moore. A computational logic. Academic Press, New
York, 1979.

[BM09] Tayeb Bouhadiba and Florence Maraninchi. Contract-based coordination of hardware
components for the development of embedded software. In COORDINATION, pages
204–224, 2009.

[BMW07] Pontus Boström, Lionel Morel, and Marina A. Waldén. Stepwise development of
simulink models using the refinement calculus framework. In ICTAC, pages 79–93,
2007.

[Bol05] Christie Bolton. Adding conflict and confusion to CSP. In Proc. of FM’05, pages
205–220, 2005.

[Bol07] Christie Marrne Bolton. Capturing conflict and confusion in CSP. In Proc. of IFM’07,
pages 413–438, Berlin, Heidelberg, 2007. Springer-Verlag.

[BPR01] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean and cartesian
abstraction for model checking c programs. In TACAS, volume 2031 of Lecture Notes
in Computer Science, pages 268–283. Springer, 2001.

[BS83] Gael N. Buckley and Abraham Silberschatz. An effective implementation for the gen-
eralized input-output construct of csp. ACM Trans. Program. Lang. Syst., 5(2):223–
235, 1983.

[BS00] S. Bornot and J. Sifakis. An algebraic framework for urgency. Inf. Comput., 163:172–
202, 2000.

[BS03] Ph. Bidinger and J.-B. Stefani. The Kell calculus: operational semantics and type
systems. In Proc. of FMOODS, volume 2884 of LNCS, 2003.

[BS07a] Simon Bliudze and Joseph Sifakis. The algebra of connectors: structuring interaction
in BIP. In Proc. of EMSOFT’07, pages 11–20. ACM Press, 2007.

[BS07b] Simon Bliudze and Joseph Sifakis. Algebraic semantics of hierarchical connectors in
the BIP framework. Techreport, verimag, February 2007.

[BS08a] Simon Bliudze and Joseph Sifakis. The algebra of connectors - structuring interaction
in BIP. IEEE Trans. Computers, 57(10):1315–1330, 2008.

159

BIBLIOGRAPHY

[BS08b] Simon Bliudze and Joseph Sifakis. A notion of glue expressiveness for component-
based systems. In Proc. of CONCUR’08, volume 5201 of LNCS, pages 508–522,
2008.

[BST98] S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgency in timed systems. In Proc.
of COMPOS’98, volume 1536 of LNCS, pages 103–129, 1998.

[BWH+03] Felice Balarin, Yosinori Watanabe, Harry Hsieh, Luciano Lavagno, Claudio
Passerone, and Alberto L. Sangiovanni-Vincentelli. Metropolis: An integrated elec-
tronic system design environment. IEEE Computer, 36(4):45–52, 2003.

[BZ07a] Mario Bravetti and Gianluigi Zavattaro. Contract based multi-party service composi-
tion. In Proc. of FSEN’07, volume 4767 of LNCS, pages 207–222, 2007.

[BZ07b] Mario Bravetti and Gianluigi Zavattaro. A theory for strong service compliance. In
Proc. of COORDINATION’07, volume 4467 of LNCS, pages 96–112, 2007.

[BZ07c] Mario Bravetti and Gianluigi Zavattaro. Towards a unifying theory for choreography
conformance and contract compliance. In SC’07, volume 4829 of LNCS, pages 34–
50, 2007.

[CAC08a] J. M. Cobleigh, G. S. Avrunin, and L. A. Clarke. Breaking up is hard to do: An
evaluation of automated assume-guarantee reasoning. ACM Transactions on Software
Engineering and Methodology, 17(2):1–52, 2008.

[CAC08b] Jamieson M. Cobleigh, George S. Avrunin, and Lori A. Clarke. Breaking up is hard
to do: An evaluation of automated assume-guarantee reasoning. ACM Trans. Softw.
Eng. Methodol., 17(2), 2008.

[Cas01] Paul Caspi. Embedded control: From asynchrony to synchrony and back. In EM-
SOFT, pages 80–96, 2001.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In 4th ACM symp.
of Prog. Lang., pages 238–252. ACM Press, 1977.

[CCST05] Sagar Chaki, Edmund M. Clarke, Nishant Sinha, and Prasanna Thati. Automated
assume-guarantee reasoning for simulation conformance. In CAV, pages 534–547,
2005.

[CdAHS03] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Mariëlle Stoelinga.
Resource interfaces. In EMSOFT, pages 117–133, 2003.

[CE] E. M. Clarke and E. A. Emerson. Synthesis of synchronisation skeletons for branch-
ing time temporal logic.

160

BIBLIOGRAPHY

[CFN03] Cyril Carrez, Alessandro Fantechi, and Elie Najm. Behavioural contracts for a sound
assembly of components. In FORTE, pages 111–126, 2003.

[CGJ95] Edmund M. Clarke, Orna Grumberg, and Somesh Jha. Veryfying parameterized net-
works using abstraction and regular languages. In CONCUR, pages 395–407, 1995.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In CAV, pages 154–169, 2000.

[CGJ+03] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. J.
ACM, 50(5):752–794, 2003.

[CGK97] Shing-Chi Cheung, Dimitra Giannakopoulou, and Jeff Kramer. Verification of live-
ness properties using compositional reachability analysis. In Proc. of ESEC/FSE ’97,
volume 1301 of LNCS, pages 227–243, 1997.

[CGL92] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and ab-
straction. In POPL, pages 342–354, 1992.

[CGL94] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, 16(5):1512 – 1542, 1994.

[CGP99] Edmund M. Clarke, Orna Grumberg, , and Doron A. Peled. Model checking. The
MIT Press, 1999.

[CGP03] Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Pasareanu. Learning
assumptions for compositional verification. In TACAS, pages 331–346, 2003.

[CGP08] Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of contracts for web
services. In Proc. of POPL’08, pages 261–272. ACM Press, 2008.

[CH07] Krishnendu Chatterjee and Thomas A. Henzinger. Assume-guarantee synthesis. In
TACAS, pages 261–275, 2007.

[CHY07] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-
centred programming for web services. In ESOP, volume 4421, pages 2–17, 2007.

[CL85] K. Mani Chandy and Leslie Lamport. Distributed snapshots: determining global
states of distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, 1985.

[CLM89] E.M. Clarke, D.E. Long, and K.L. McMillan. Compositional model checking. In
Proceedings of the 4th Annual Symposium on LICS, pages 353–362. IEEE Computer
Society Press, 1989.

[CM07] Pablo F. Castro and T. S. E. Maibaum. A complete and compact propositional deontic
logic. In ICTAC, pages 109–123, 2007.

161

BIBLIOGRAPHY

[CMP94] E. Chang, Z. Manna, and A. Pnueli. Compositional verification of real-time systems.
In Symposium on Logic in Computer Science. IEEE, 1994.

[CMS+09] Javier Cámara, José Antonio Martín, Gwen Salaün, Javier Cubo, Meriem Ouederni,
Carlos Canal, and Ernesto Pimentel. Itaca: An integrated toolbox for the automatic
composition and adaptation of web services. In ICSE, pages 627–630, 2009.

[CS02] Michael Colón and Henny Sipma. Practical methods for proving program termina-
tion. In CAV ’02: Proceedings of the 14th International Conference on Computer
Aided Verification, pages 442–454, London, UK, 2002. Springer-Verlag.

[CS06] Sagar Chaki and Nishant Sinha. Assume-guarantee reasoning for deadlock. Technical
report, CMU, 2006.

[CVZ07] Ivana Cerná, Pavlína Vareková, and Barbora Zimmerova. Component substitutability
via equivalencies of component-interaction automata. Electr. Notes Theor. Comput.
Sci., 182:39–55, 2007.

[dAH] Luca de Alfaro and Thomas Henzinger. Interface-based design. In Engineering The-
ories of Software-intensive Systems.

[dAH01a] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In ESEC / SIGSOFT
FSE, pages 109–120, 2001.

[dAH01b] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In Proc. of ESEC/SIG-
SOFT FSE’01, pages 109–120. ACM Press, 2001.

[dAHM00] Luca de Alfaro, Thomas A. Henzinger, and Freddy Y. C. Mang. Detecting errors
before reaching them. In CAV, pages 186–201, 2000.

[dAHS02] Luca de Alfaro, Thomas A. Henzinger, and Mariëlle Stoelinga. Timed interfaces. In
EMSOFT, pages 108–122, 2002.

[DC08] Benoît Delahaye and Benoît Caillaud. A model for probabilistic reasoning on as-
sume/guarantee contracts. CoRR, abs/0811.1151, 2008.

[DDHL08] Ajoy Kumar Datta, Stéphane Devismes, Florian Horn, and Lawrence L. Larmore.
Self-stabilizing k-out-of-l exclusion on tree network. CoRR, abs/0812.1093, 2008.

[DdM06] Bruno Dutertre and Leonardo Mendonça de Moura. A fast linear-arithmetic solver
for dpll(t). In CAV, pages 81–94, 2006.

[DF95] J. Dingel and Th. Filkorn. Model checking for infinite state systems using data ab-
straction. In P. Wolper, editor, Computer Aided Verification, volume 939, pages 54–
69, 1995.

162

BIBLIOGRAPHY

[DGG97a] Dennis Dams, Rob Gerth, and Orna Grumberg. Abstract interpretation of reactive
systems. ACM Trans. Program. Lang. Syst., 19(2):253–291, 1997.

[DGG97b] Dennis Dams, Rob Gerth, and Orna Grumberg. Abstract interpretation of reactive
systems. ACM Trans. Program. Lang. Syst., 19(2):253–291, 1997.

[DHJP08] Laurent Doyen, Thomas A. Henzinger, Barbara Jobstmann, and Tatjana Petrov. In-
terface theories with component reuse. In EMSOFT, pages 79–88. ACM, 2008.

[DHLP06] Alexandre David, John Håkansson, Kim Guldstrand Larsen, and Paul Pettersson.
Model checking timed automata with priorities using dbm subtraction. In FORMATS,
pages 128–142, 2006.

[DII+99] John Davis, II, John Davis Ii, Mudit Goel, Christopher Hylands, Bart Kienhuis, Ed-
ward A. Lee, Jie Liu, Xiaojun Liu, Lukito Muliadi, Steve Neuendorffer, John Reekie,
Neil Smyth, Jeff Tsay, and Yuhong Xiong. Ptolemy ii: Heterogeneous concurrent
modeling and design in java, 1999.

[DMK+06] Frederic Doucet, Massimiliano Menarini, Ingolf H. Krüger, Rajesh K. Gupta, and
Jean-Pierre Talpin. A verification approach for gals integration of synchronous com-
ponents. Electr. Notes Theor. Comput. Sci., 146(2):105–131, 2006.

[DN05] Dennis Dams and Kedar S. Namjoshi. Automata as abstractions. In VMCAI, pages
216–232, 2005.

[dRdBH+01a] Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine
Lakhnech, Mannes Poel, and Job Zwiers. Concurrency Verification: Introduction to
Compositional and Noncompositional Methods. Number 54. Cambridge University
Press, 2001.

[dRdBH+01b] Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine
Lakhnech, Mannes Poel, and Job Zwiers. Concurrency Verification: Introduction to
Compositional and Noncompositional Methods. Number 54. Cambridge University
Press, 2001.

[DS98] Jörg Desel and Manuel Silva, editors. Application and Theory of Petri Nets 1998,
19th International Conference, ICATPN ’98, Lisbon, Portugal, June 22-26, 1998,
Proceedings, volume 1420 of Lecture Notes in Computer Science. Springer, 1998.

[EC80] E. Allen Emerson and Edmund M. Clarke. Characterizing correctness properties of
parallel programs using fixpoints. In ICALP, volume 85 of Lecture Notes in Computer
Science, pages 169–181. Springer, 1980.

[EJL+03a] Johan Eker, Jörn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, J. Ludvig, Stephen
Neuendorffer, S. Sachs, and Yuhong Xiong. Taming heterogeneity - the ptolemy
approach. Proceedings of the IEEE, 91(1):127–144, 2003.

163

BIBLIOGRAPHY

[EJL+03b] Johan Eker, Jörn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, J. Ludvig, Stephen
Neuendorffer, S. Sachs, and Yuhong Xiong. Taming heterogeneity - the ptolemy
approach. Proceedings of the IEEE, 91(1):127–144, 2003.

[FF96] Nissim Francez and Ira R. Forman. Interacting processes: a multiparty approach to
coordinated distributed programming. ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 1996.

[FF04] Cormac Flanagan and Stephen N. Freund. Atomizer: A dynamic atomicity checker
for multithreaded programs (summary). In IPDPS, 2004.

[FFMR07] Yliès Falcone, Jean-Claude Fernandez, Laurent Mounier, and Jean-Luc Richier. A
compositional testing framework driven by partial specifications. In TestCom/FATES,
pages 107–122, 2007.

[FG05] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for model
checking software. In POPL, pages 110–121, 2005.

[FH06] Harald Fecher and Michael Huth. Ranked predicate abstraction for branching time:
Complete, incremental, and precise. In ATVA, pages 322–336, 2006.

[FHRR04] Cédric Fournet, Tony Hoare, Sriram K. Rajamani, and Jakob Rehof. Stuck-free con-
formance theory for ccs. Technical report, Microsoft Research, 2004.

[FHVM95] Ronald Fagin, Joseph Y. Halpern, Moshe Y. Vardi, and Yoram Moses. Reasoning
about knowledge. MIT Press, Cambridge, MA, USA, 1995.

[FJJV96] Jean-Claude Fernandez, Claude Jard, Thierry Jéron, and César Viho. Using on-the-fly
verification techniques for the generation of test suites. In Proc. of CAV ’96, volume
1102 of LNCS, pages 348–359, 1996.

[FK84] Nissim Francez and Dexter Kozen. Generalized fair termination. In POPL, pages
46–53, 1984.

[FMPZ06] Yi Fang, Kenneth L. McMillan, Amir Pnueli, and Lenore D. Zuck. Liveness by
invisible invariants. In FORTE, pages 356–371, 2006.

[FPPZ04] Yi Fang, Nir Piterman, Amir Pnueli, and Lenore D. Zuck. Liveness with incompre-
hensible ranking. In TACAS, pages 482–496, 2004.

[Fra] Fractal. http://fractal.objectweb.org/

[Fri03] Carsten Fritz. Constructing büchi automata from linear temporal logic using simula-
tion relations for alternating büchi automata. In CIAA, volume 2759 of Lecture Notes
in Computer Science, pages 35–48. Springer, 2003.

164

BIBLIOGRAPHY

[FS08] Harald Fecher and Heiko Schmidt. Comparing disjunctive modal transition systems
with an one-selecting variant. Journal of Logic and Algebraic Programming, 77:20–
39, 2008. Preliminary version: FecherS07.ps.

[FSLM02] Jean-Philippe Fassino, Jean-Bernard Stefani, Julia Lawall, and Gilles Muller. Think:
A software framework for component-based operating system kernels, 2002.

[GDHH98] Shankar G. Govindaraju, David L. Dill, Alan J. Hu, and Mark Horowitz. Approximate
reachability with bdds using overlapping projections. In DAC, pages 451–456, 1998.

[GGMC+06] Gregor Gößler, Susanne Graf, Mila E. Majster-Cederbaum, Moritz Martens, and
Joseph Sifakis. Ensuring properties of interaction systems. In Program Analysis
and Compilation, pages 201–224, 2006.

[GGMC+07] Gregor Gssler, Susanne Graf, Mila Majster-Cederbaum, M. Martens, and Joseph
Sifakis. An approach to modeling and verification of component based systems. In
Proc. of SOFSEM’07, volume 4362 of LNCS, pages 295–308, 2007.

[GGTG10] Yann Glouche, Paul Le Guernic, Jean-Pierre Talpin, and Thierry Gautier. A boolean
algebra of contracts for assume-guarantee reasoning. Electr. Notes Theor. Comput.
Sci., 263:111–127, 2010.

[GHS03] Orna Grumberg, Tamir Heyman, and Assaf Schuster. A work-efficient distributed
algorithm for reachability analysis. In CAV, pages 54–66, 2003.

[GK00] Thomas Genet and Francis Klay. Rewriting for cryptographic protocol verification.
In CADE, pages 271–290, 2000.

[GL81] Hartmann J. Genrich and Kurt Lautenbach. System modelling with high-level petri
nets. Theor. Comput. Sci., 13:109–136, 1981.

[GL91] Orna Grumberg and David E. Long. Model checking and modular verification. In
CONCUR, pages 250–265, 1991.

[GLL99] Alain Girault, Bilung Lee, and Edward A. Lee. Hierarchical finite state machines
with multiple concurrency models. IEEE Trans. on CAD of Integrated Circuits and
Systems, 18(6):742–760, 1999.

[GLS96] S. Graf, G. Lttgen, and B. Steffen. Compositional minimisation of finite state systems
using interface specifications. Formal Asp. Comput., 8:607–616, 1996.

[GLS99] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI (2nd ed.): portable
parallel programming with the message-passing interface. MIT Press, Cambridge,
MA, USA, 1999.

165

BIBLIOGRAPHY

[GMF07] Anubhav Gupta, Kenneth L. McMillan, and Zhaohui Fu. Automated assumption
generation for compositional verification. In CAV, volume 4590 of Lecture Notes in
Computer Science, pages 420–432. Springer, 2007.

[GOO05] Susanne Graf, Ileana Ober, and Iulian Ober. Timed annotations in UML. STTT, Int.
Journal on Software Tools for Technology Transfer, 2005. under press.

[GPB02] Dimitra Giannakopoulou, Corina S. P"s"reanu, and Howard Barringer. Assumption
generation for software component verification. In ASE ’02: Proceedings of the 17th
IEEE international conference on Automated software engineering, page 3, Washing-
ton, DC, USA, 2002. IEEE Computer Society.

[GPB05] Dimitra Giannakopoulou, Corina S. Pasareanu, and Howard Barringer. Compo-
nent verification with automatically generated assumptions. Autom. Softw. Eng.,
12(3):297–320, 2005.

[GPC04] Dimitra Giannakopoulou, Corina S. Pasareanu, and Jamieson M. Cobleigh. Assume-
guarantee verification of source code with design-level assumptions. In ICSE, pages
211–220, 2004.

[GPQ10] Susanne Graf, Doron Peled, and Sophie Quinton. Achieving distributed control
through model checking. In Proc. of CAV’10, volume 6174 of LNCS, pages 396–
409. Springer, 2010.

[GQ07] Susanne Graf and Sophie Quinton. Contracts for BIP: hierarchical interaction models
for compositional verification. In Proc. of FORTE’07, volume 4574 of LNCS, pages
1–18, 2007.

[Gra07] Susanne Graf. A constructive and incremental framework for assume/guarantee rea-
soning. Techreport, verimag, January 2007.

[Gru05] Orna Grumberg. Abstraction and refinement in model checking. In FMCO, pages
219–242, 2005.

[GS97] Susanne Graf and Hassen Saïdi. Construction of abstract state graphs with pvs. In
CAV, pages 72–83, 1997.

[GS02] Gregor Gößler and Joseph Sifakis. Composition for component-based modeling. In
FMCO, pages 443–466, 2002.

[GS03a] Gregor Gößler and Joseph Sifakis. Component-based construction of deadlock-free
systems: Extended abstract. In FSTTCS, pages 420–433, 2003.

[GS03b] Gregor Gößler and Joseph Sifakis. Priority systems. In FMCO, volume 3188 of
LNCS, pages 314–329. Springer, 2003.

[GS03c] Gregor Gößler and Joseph Sifakis. Priority systems. In FMCO, pages 314–329, 2003.

166

BIBLIOGRAPHY

[GS03d] Gregor Gßler and Joseph Sifakis. Component-based construction of deadlock-free
systems. In Proc. of FSTTCS’03, volume 2914 of LNCS, pages 420–433, 2003.

[GS03e] Gregor Gßler and Joseph Sifakis. Composition for component-based modeling. In
Proc. of FMCO’03, volume 2852 of LNCS, 2003.

[GS04] Gregor Gßler and Joseph Sifakis. Priority systems. In Proc. of FMCO’03, volume
3188 of LNCS, pages 314–329, 2004.

[GS05] Gregor Gößler and Joseph Sifakis. Composition for component-based modeling. Sci.
Comput. Program., 55(1-3):161–183, 2005.

[GSL96] Susanne Graf, Bernhard Steffen, and Gerald Lüttgen. Compositional minimisation of
finite state systems using interface specifications. Formal Asp. Comput., 8(5):607–
616, 1996.

[HJS01] Michael Huth, Radha Jagadeesan, and David A. Schmidt. Modal transition systems:
A foundation for three-valued program analysis. In ESOP, pages 155–169, 2001.

[HM92] Joseph Y. Halpern and Yoram Moses. A guide to completeness and complexity for
modal logics of knowledge and belief. Artificial Intelligence, 54(2):319–379, 1992.

[HM06] Nicolas Halbwachs and Louis Mandel. Simulation and verification of asynchronous
systems by means of a synchronous model. In ACSD, pages 3–14, 2006.

[HO02] J. Hoenicke and E.-R. Olderog. Combining Specification Techniques for Processes
Data and Time. In Integrated Formal Methods, LNCS, pages 245–266, 2002.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, 1969.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–
677, 1978.

[Hoa84] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1984.

[Hol97] Gerard J. Holzmann. The model checker SPIN. IEEE Trans. Softw. Eng., 23(5):279–
295, 1997.

[Hol00] Leszek Holenderski. Compositional verification of synchronous networks. In
FTRTFT, pages 214–227, 2000.

[HQR98] Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani. You assume, we guar-
antee: Methodology and case studies. In CAV ’98: Proceedings of the 10th Inter-
national Conference on Computer Aided Verification, pages 440–451, London, UK,
1998. Springer-Verlag.

167

BIBLIOGRAPHY

[HQR00] Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani. Decomposing refine-
ment proofs using assume-guarantee reasoning. In ICCAD, pages 245–252, 2000.

[HQRT98] Thomas A. Henzinger, Shaz Qadeer, Sriram K. Rajamani, and Serdar Tasiran. An
assume-guarantee rule for checking simulation. In FMCAD, pages 421–432, 1998.

[HS07] Thomas A. Henzinger and Joseph Sifakis. The discipline of embedded systems de-
sign. IEEE Computer, 40(10):32–40, 2007.

[HZ92] Joseph Y. Halpern and Lenore D. Zuck. A little knowledge goes a long way:
Knowledge-based derivations and correctness proofs for a family of protocols. J.
ACM, 39(3):449–478, 1992.

[IBH10] Hammadi Khairallah Imene Ben-Hafaiedh, Susanne Graf. Implementing distributed
controllers for systems with priorities. In FOCLASA, pages 31–46, 2010.

[IBHQ10a] Susanne Graf Imene Ben-Hafaiedh and Sophie Quinton. Building distributed con-
trollers for systems with priorities. Journal of Logic and Algebraic Programming,
2010.

[IBHQ10b] Susanne Graf Imene Ben-Hafaiedh and Sophie Quinton. Contract-based reasoning
about progress: Application to resource sharing in a network. In Proc. of FLACOS’10,
2010.

[IBHQ10c] Susanne Graf Imene Ben Hafaiedh and Sophie Quinton. Reasoning about safety and
progress using contracts. In Proc. of ICFEM’10, 2010.

[IBHR09] Susanne Graf Imene Ben-Hafaiedh, Olivier Constant and Riadh Robbana. A model-
based design and validation approach with omega-uml profile and the if toolset. In
Proc. of CISA’09, 2009.

[JJ05] Claude Jard and Thierry Jéron. Tgv: theory, principles and algorithms. STTT, 7:297–
315, 2005.

[Jon83a] Cliff B. Jones. Specification and design of (parallel) programs. In IFIP Congress,
pages 321–332, 1983.

[Jon83b] Cliff B. Jones. Tentative steps toward a development method for interfering programs.
ACM Trans. Program. Lang. Syst., 5(4):596–619, 1983.

[KBH07] Frank Alexander Kraemer, Rolv Bræk, and Peter Herrmann. Synthesizing compo-
nents with sessions from collaboration-oriented service specifications. In SDL Forum,
volume 4745 of Lecture Notes in Computer Science, pages 166–185. Springer, 2007.

[KGS06] Vineet Kahlon, Aarti Gupta, and Nishant Sinha. Symbolic model checking of con-
current programs using partial orders and on-the-fly transactions. In CAV, pages 286–
299, 2006.

168

BIBLIOGRAPHY

[KP10] Gal Katz and Doron Peled. Code mutation in verification and automatic code gener-
ation. In TACAS 2010, volume to appear of LNCS. Springer, 2010.

[KSKH04] Zurab Khasidashvili, Marcelo Skaba, Daher Kaiss, and Ziyad Hanna. Theoretical
framework for compositional sequential hardware equivalence verification in pres-
ence of design constraints. In ICCAD, pages 58–65, 2004.

[Lar89] Kim Guldstrand Larsen. Modal specifications. In Automatic Verification Methods for
Finite State Systems, volume 407 of LNCS, pages 232–246, 1989.

[LGS+95a] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design, 6(1):11 – 44, 1995.

[LGS+95b] Claire Loiseaux, Susanne Graf, Joseph Sifakis, Ahmed Bouajjani, and Saddek Ben-
salem. Property preserving abstractions for the verification of concurrent systems.
Formal Methods in System Design, 6(1):11–44, 1995.

[LHR97] David Lesens, Nicolas Halbwachs, and Pascal Raymond. Automatic verification of
parameterized linear networks of processes. In POPL ’97: Proceedings of the 24th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
346–357, New York, USA, 1997. ACM.

[LL98] Bilung Lee and Edward A. Lee. Hierarchical concurrent finite state machines in
ptolemy. In ACSD, pages 34–40, 1998.

[LL00] Jie Liu and Edward A. Lee. Component-based hierarchical modeling of systems with
continuous and discrete dynamics. In CCA/CACSD, pages 95–100, 2000.

[LMS07] Lisa (Ling) Liu, Bertrand Meyer, and Bernd Schoeller. Using contracts and boolean
queries to improve the quality of automatic test generation. In TAP, pages 114–130,
2007.

[LN05] Edward A. Lee and Stephen Neuendorffer. Concurrent models of computation for
embedded software. In Computers and Digital Techniques, pages 239–250, 2005.

[LNW06a] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wasowski. Interface input/output
automata. In Proc. of FM’06, volume 4085 of LNCS, pages 82–97, 2006.

[LNW06b] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wasowski. Interface input/output
automata. Technical report, BRICS, 2006.

[LNW07] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wasowski. Modal i/o automata
for interface and product line theories. In Proc. of ESOP’07, volume 4421 of LNCS,
pages 64–79, 2007.

169

BIBLIOGRAPHY

[Lon93] D. E. Long. Model Checking, Abstraction, and Compositional Reasoning. PhD thesis,
Carnegie Mellon, 1993.

[LP07] Cosimo Laneve and Luca Padovani. The Must preorder revisited. In Proc. of CON-
CUR’07, volume 4703 of LNCS, pages 212–225, 2007.

[LSW95] Kim Guldstrand Larsen, Bernhard Steffen, and Carsten Weise. A constraint oriented
proof methodology based on modal transition systems. In TACAS, pages 17–40, 1995.

[LT88a] K. G. Larsen and B. Thomsen. Compositional proofs by partial specification of pro-
cesses. In MFCS’88, volume 324 of LNCS, pages 414–423, 1988.

[LT88b] N.A. Lynch and M.R. Tuttle. An introduction to Input/Output automata. Report
MIT/LCS/TM 373, MIT, Cambridge, Massachussetts, November 1988.

[LX90] Kim Guldstrand Larsen and Liu Xinxin. Equation solving using modal transition
systems. In Proc. of LICS’90, pages 108–117. IEEE Computer Society, 1990.

[LZDB08] Nikolaos D. Liveris, Hai Zhou, Robert P. Dick, and Prithviraj Banerjee. State space
abstraction for parameterized self-stabilizing embedded systems. In EMSOFT, pages
11–20. ACM, 2008.

[LZZ05] Edward A. Lee, Haiyang Zheng, and Ye Zhou. Causality interfaces and compositional
causality analysis. In FIT, 2005.

[Mai01] Patrick Maier. A set-theoretic framework for assume-guarantee reasoning. In ICALP,
pages 821–834, 2001.

[Mai03a] Patrick Maier. Compositional circular assume-guarantee rules cannot be sound and
complete. In Proc. of FoSSaCS’03, volume 2620 of LNCS, pages 343–357, 2003.

[Mai03b] Patrick Maier. Compositional circular assume-guarantee rules cannot be sound and
complete. In FoSSaCS, pages 343–357, 2003.

[Mai03c] Patrick Maier. A Lattice-Theoretic Framework for Circular Assume-Guarantee Rea-
soning. PhD thesis, Universität des Saarlandes, 2003.

[Man88] Paul R. Manson. Petri net theory: a survey. Technical report, University of Cambridge
Computer Laboratory, 1988.

[MB04] José Meseguer and Christiano Braga. Modular rewriting semantics of programming
languages. In AMAST, pages 364–378, 2004.

[MB07] Florence Maraninchi and Tayeb Bouhadiba. 42: programmable models of computa-
tion for a component-based approach to heterogeneous embedded systems. In GPCE,
pages 53–62. ACM, 2007.

170

BIBLIOGRAPHY

[MC81] Jayadev Misra and K. Mani Chandy. Proofs of networks of processes. IEEE Trans.
Software Eng., 7(4):417–426, 1981.

[McM93] K.L. McMillan. Symbolic model checking. Kluwer Academic Publishers, Boston,
1993.

[McM97] Kenneth L. McMillan. A compositional rule for hardware design refinement. In Proc.
of CAV ’97, volume 1254 of LNCS, pages 24–35, 1997.

[McM98] Kenneth L. McMillan. Proof rules for model checking systems with data. In Proc. of
FSTTCS’98, volume 1530 of LNCS, page 270, 1998.

[McM99a] Kenneth L. McMillan. Circular compositional reasoning about liveness. In CHARME,
pages 342–345, 1999.

[McM99b] Kenneth L. McMillan. Verification of infinite state systems by compositional model
checking. In Proc. of IFIP WG 10.5, CHARME ’99, volume 1703 of LNCS, pages
219–234, 1999.

[MCM08] Mila E. Majster-Cederbaum and Moritz Martens. Compositional analysis of
deadlock-freedom for tree-like component architectures. In EMSOFT, pages 199–
206. ACM, 2008.

[MCMM07] Mila E. Majster-Cederbaum, Moritz Martens, and Christoph Minnameier. A
polynomial-time checkable sufficient condition for deadlock-freedom of component-
based systems. In SOFSEM (1), volume 4362 of Lecture Notes in Computer Science,
pages 888–899. Springer, 2007.

[MCMM08] Mila Majster-Cederbaum, Moritz Martens, and Christoph Minnameier. Liveness in
interaction systems. Electron. Notes Theor. Comput. Sci., 215:57–74, 2008.

[Mes98] Jose Meseguer. Research directions in rewriting logic. In Pro. of the NATO ASI’97,
volume 165, pages 347–398, 1998.

[Mey92] Bertrand Meyer. Applying "design by contract". IEEE Computer, 25(10):40–51,
1992.

[Mey97] Bertrand Meyer. Object-Oriented Software Construction, 2nd Edition. Prentice-Hall,
1997.

[Mey01] B. Meyer. At the edge of design by contract. Technology of Object-Oriented Lan-
guages, page 3, 2001.

[MH05] Jan Mendling and Michael Hafner. From inter-organizational workflows to process
execution: Generating bpel from ws-cdl. In OTM Workshops, volume 3762 of Lecture
Notes in Computer Science, pages 506–515. Springer, 2005.

171

BIBLIOGRAPHY

[Mil80] R. Milner. A calculus of communication systems. In LNCS 92, LNCS. 1980.

[Mil83] Robin Milner. Calculi for synchrony and asynchrony. Theor. Comput. Sci., 25:267–
310, 1983.

[Mil85] George J. Milne. Circal and the representation of communication, concurrency, and
time. ACM Trans. Program. Lang. Syst., 7(2):270–298, 1985.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[Mil98] Robin Milner. The pi calculus and its applications. In JICSLP’98: Proceedings of
the 1998 joint international conference and symposium on Logic programming, pages
3–4, Cambridge, MA, USA, 1998. MIT Press.

[Min07] Christoph Minnameier. Local and global deadlock-detection in component-based
systems are np-hard. Inf. Process. Lett., 103(3):105–111, 2007.

[MM04a] Florence Maraninchi and Lionel Morel. Arrays and contracts for the specification and
analysis of regular systems. In ACSD, pages 57–66, 2004.

[MM04b] Florence Maraninchi and Lionel Morel. Logical-time contracts for reactive embedded
components. In EUROMICRO, pages 48–55, 2004.

[MM04c] Florence Maraninchi and Lionel Morel. Logical-time contracts for reactive embedded
components. In EUROMICRO, pages 48–55, 2004.

[MP83] Zohar Manna and Amir Pnueli. How to cook a temporal proof system for your pet
language. In POPL, pages 141–154, 1983.

[MP91] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems
Vol. 1: Specification. Springer, 1991.

[MPS08] Fabio Massacci, Frank Piessens, and Ida Siahaan. Security-by-contract for the future
internet. In FIS, volume 5468 of Lecture Notes in Computer Science, pages 29–43.
Springer, 2008.

[MRD+08] Swarup Mohalik, A. C. Rajeev, Manoj G. Dixit, S. Ramesh, P. Vijay Suman, Pari-
tosh K. Pandya, and Shengbing Jiang. Model checking based analysis of end-to-end
latency in embedded, real-time systems with clock drifts. In DAC, pages 296–299.
ACM, 2008.

[Mur89] Tadao Murata. Petri nets: Properties, analysis and applications. IEEE, 77(4), 1989.

[Mye04] Glenford J. Myers. The Art of Software Testing, Second Edition. Wiley, 2 edition,
June 2004.

[NCS04] Mangala Gowri Nanda, Satish Chandra, and Vivek Sarkar. Decentralizing execution
of composite web services. In OOPSLA, pages 170–187, 2004.

172

BIBLIOGRAPHY

[NH87] Rocco De Nicola and Matthew Hennessy. Ccs without τ ’s. In Proc. of TAPSOFT,
volume 249 of LNCS, pages 138–152, 1987.

[NMO09] Piotr Nienaltowski, Bertrand Meyer, and Jonathan S. Ostroff. Contracts for concur-
rency. Formal Asp. Comput., 21(4):305–318, 2009.

[NPW81] Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri nets, event structures
and domains, part i. Theor. Comput. Sci., 13:85–108, 1981.

[OGL06] Iulian Ober, Susanne Graf, and David Lesens. Modeling and validation of a software
architecture for the ariane-5 launcher. In FMOODS, pages 48–62, 2006.

[OGO03] Iulian Ober, Susanne Graf, and Ileana Ober. Validating timed UML models by simu-
lation and verification. In Workshop on Specification and Validation of UML models
for Real Time and Embedded Systems (SVERTS 2003), a satellite event of UML 2003,
San Francisco, October 2003, October 2003.

[OGY06] Iulian Ober, Susanne Graf, and Yuri Yushtein. Using an uml profile for timing analy-
sis with the if validation tool-set. In MBEES, pages 75–84, 2006.

[OR00] E.-R. Olderog and A.P. Ravn. Documenting design refinement. In M.P.E. Heimdahl,
editor, Proc. of FMSP’2000, pages 89–100. ACM, 2000.

[Orl77] James B. Orlin. Contentment in graph theory: covering graphs with cliques. Indaga-
tiones Mathematicae, 80(5):406–424, 1977.

[Pad] Luca Padovani. Contract-directed synthesis of simple orchestrators. In Proc. of CON-
CUR’08, pages 131–146.

[PBHG+09] Roberto Passerone, Imene Ben-Hafaiedh, Susanne Graf, Albert Benveniste, Daniela
Cancila, Arnaud Cuccuru, Sebastien Gerard, François Terrier, Werner Damm, Alberto
Ferrari, Leonardo Mangeruca, Bernhard Josko, Thomas Peikenkamp, and Alberto L.
Sangiovanni-Vincentelli. Metamodels in europe: Languages, tools, and applications.
IEEE Design & Test of Computers, 26(3):38–53, 2009.

[PCT04] José Antonio Pérez, Rafael Corchuelo, and Miguel Toro. An order-based algorithm
for implementing multiparty synchronization. Concurrency - Practice and Experi-
ence, 16:1173–1206, 2004.

[Pnu85a] A. Pnueli. In transition from global to modular temporal reasoning about programs.
Logics and models of concurrent systems, F13:123–144, 1985.

[Pnu85b] A. Pnueli. In transition from global to modular temporal reasoning about programs.
In Logics and Models for Concurrent Systems, LNCS, pages 123–144. NATO, ASI
Series F, Vol. 13, 1985.

173

BIBLIOGRAPHY

[PPR] Amir Pnueli, Andreas Podelski, and Andrey Rybalchenko. Separating fairness and
well-foundedness for the analysis of fair discrete systems. In Proc. of TACAS’05,
LNCS, pages 124–139.

[PPRS06] Marc Poulhiès, Jacques Pulou, Christophe Rippert, and Joseph Sifakis. A method-
ology and supporting tools for the development of component-based embedded sys-
tems. In Monterey Workshop, volume 4888 of Lecture Notes in Computer Science,
pages 75–96. Springer, 2006.

[PPS07] Gordon J. Pace, Cristian Prisacariu, and Gerardo Schneider. Model checking con-
tracts - a case study. In ATVA, pages 82–97, 2007.

[PR89] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In POPL, pages
179–190, 1989.

[PR90] Amir Pnueli and Roni Rosner. Distributed reactive systems are hard to synthesize. In
FOCS, volume II, pages 746–757. IEEE, 1990.

[PS07] Cristian Prisacariu and Gerardo Schneider. A formal language for electronic con-
tracts. In FMOODS, pages 174–189, 2007.

[PXZ02] Amir Pnueli, Jessie Xu, and Lenore D. Zuck. Liveness with (0, 1, infty)-counter
abstraction. In CAV, pages 107–122, 2002.

[QBHG09] Sophie Quinton, Imene Ben-Hafaiedh, and Susanne Graf. From orchestration to
choreography: Memoryless and distributed orchestrators. In Proc. of FLACOS’09,
2009.

[QG08a] Sophie Quinton and Susanne Graf. Contract-based verification of hierarchical sys-
tems of components. In Proc. of SEFM’08, pages 377–381. IEEE Computer Society,
2008.

[QG08b] Sophie Quinton and Susanne Graf. A framework for contract-based reasoning: Mo-
tivation and application. In Proc. of FLACOS’08, pages 77–84, 2008.

[QS82a] J. P. Queille and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In Proc. 5th Int. Sym. on Programming, volume 137 of Lecture Notes in
Computer Science, pages 337–351. Springer-Verlag, 1982.

[QS82b] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent
systems in cesar. In Symposium on Programming, volume 137 of LNCS, pages 337–
351. Springer, 1982.

[Qui11] Sophie Quinton. Design, vérification et implémentation de systèmes à composants.
PhD thesis, Grenoble University, 2011.

174

BIBLIOGRAPHY

[QZCY07] Zongyan Qiu, Xiangpeng Zhao, Chao Cai, and Hongli Yang. Towards the theoretical
foundation of choreography. In WWW, pages 973–982, 2007.

[Rac07a] J.-B. Raclet. Residual for component specifications. Research Report 6196, INRIA,
2007.

[Rac07b] J.-B. Raclet. Residual for component specifications. In Proc. of FACS’07, 2007.

[Ram06] Sylvain Rampacek. Smantique, interactions et langages de description des services
web complexes. PhD thesis, Universit de Reims Champagne-Ardenne, 2006.

[RC03] Arnab Ray and Rance Cleaveland. Architectural interaction diagrams: Aids for sys-
tem modeling. In ICSE ’03: Proceedings of the 25th International Conference on
Software Engineering, pages 396–406, Washington, DC, USA, 2003. IEEE Computer
Society.

[Rei84] John H. Reif. The complexity of two-player games of incomplete information. J.
Comput. Syst. Sci., 29(2):274–301, 1984.

[RR00a] S. L. Ricker and K. Rudie. Know means no: Incorporating knowledge into discrete-
event control systems. IEEE Transactions on Automatic Control, 45:1656–1668,
2000.

[RR00b] Karen Rudie and S. Laurie Ricker. Know means no: Incorporating knowledge
into discrete-event control systems. IEEE Transactions on Automatic Control,
45(9):1656–1668, 2000.

[RSW04] Thomas W. Reps, Shmuel Sagiv, and Reinhard Wilhelm. Static program analysis via
3-valued logic. In CAV, pages 15–30, 2004.

[RW87] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event
processes. SIAM J. Control Optim., 25(1):206–230, 1987.

[RW92a] K. Rudie and W.M. Wonham. Think globally, act locally: Decentralized supervisory
control. IEEE Transactions on Automatic Control, 37:1692–1708, 1992.

[RW92b] Karen Rudie and W. Murray Wonham. Think globally, act locally: decentralized
supervisory control. IEEE Transactions on Automatic Control, 37(11):1692–1708,
1992.

[Sai99] Hassen Saidi. Modular and incremental analysis of concurrent software systems. In
ASE, pages 92–101, 1999.

[Sai00] Hassen Saidi. Model checking guided abstraction and analysis. In SAS, pages 377–
396, 2000.

175

BIBLIOGRAPHY

[SB09] Gwen Salaün and Tevfik Bultan. Realizability of choreographies using process alge-
bra encodings. In Proc. of IFM’09, volume 5423 of LNCS, pages 167–182, 2009.

[SG89] Z. Stadler and O. Grumberg. Network grammars, communication behaviours and
automatic verification. In Proc. of AVMFSS, volume 407 of LNCS, 1989.

[Sif82] Joseph Sifakis. A unified approach for studying the properties of transition systems.
TCS, 18:227–258, 1982.

[Sif05] Joseph Sifakis. A framework for component-based construction. In Proc. of
SEFM’05, pages 293–300. IEEE Computer Society, 2005.

[Sin07] Nishant Sinha. Automated Compositional Analysis for Checking Component Substi-
tutability. PhD thesis, CMU, 2007.

[SLNM04] Frank Singhoff, Jérôme Legrand, Laurent Nana, and Lionel Marcé. Cheddar: a flexi-
ble real time scheduling framework. In SIGAda, pages 1–8, 2004.

[SOHL+96] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J Dongarra. MPI: The
complete reference. MIT Press, Cambridge, MA, 1996.

[SPH08] Ina Schaefer and Arnd Poetzsch-Heffter. Compositional reasoning in model-based
verification of adaptive embedded systems. In SEFM, pages 95–104. IEEE Computer
Society, 2008.

[SRK05] Christian Stahl, Wolfgang Reisig, and Milos Krstic. Hazard detection in a gals wrap-
per: A case study. In ACSD, pages 234–243, 2005.

[SS99] Hassen Saïdi and Natarajan Shankar. Abstract and model check while you prove. In
CAV, pages 443–454, 1999.

[Stø96] Ketil Stølen. Assumption/commitment rules for dataflow networks - with an emphasis
on completeness. In ESOP, volume 1058 of Lecture Notes in Computer Science,
pages 356–372. Springer, 1996.

[TA06] Massimo Tivoli and Marco Autili. Synthesis, a tool for synthesizing correct and
protocol-enhanced adaptors. OBJET, 12(1):77–103, 2006.

[Thi05] John G. Thistle. Undecidability in decentralized supervision. System and Control
Letters, 54:503–509, 2005.

[Tho95] W. Thomas. On the synthesis of strategies in infinite games. In Proc. 12th An-
nual Symposium on Theoretical Aspects of Computer Science, pages 1–13. Springer-
Verlag, 1995. LNCS 900.

[TLHL09] Stavros Tripakis, Ben Lickly, Tom Henzinger, and Ed Lee. On relational interfaces.
Technical report, University of California at Berkeley, 2009.

176

BIBLIOGRAPHY

[Tre90] Jan Tretmans. Test case derivation from lotos specifications. In FORTE ’89: Proceed-
ings of the IFIP TC/WG6.1 Second International Conference on Formal Description
Techniques for Distributed Systems and Communication Protocols, pages 345 – 359,
Amsterdam, The Netherlands, 1990. North-Holland Publishing Co.

[Tri04] Stavros Tripakis. Undecidable problems of decentralized observation and control on
regular languages. Inf. Process. Lett., 90(1):21–28, 2004.

[UP83] Zerksis D. Umrigar and Vijay Pitchumani. Formal verification of a real-time hardware
design. In DAC ’83: Proceedings of the 20th Design Automation Conference, pages
221–227, Piscataway, NJ, USA, 1983. IEEE Press.

[vdM98] Ron van der Meyden. Common knowledge and update in finite environment. Infor-
mation and Computation, 140(2):115–157, 1998.

[WN95] G. Winskel and M. Nielsen. Models for concurrency. Vol. 4, Oxford Univ. Press,
1995.

[YEFvBH07] Hirozumi Yamaguchi, Khaled El-Fakih, Gregor von Bochmann, and Teruo Hi-
gashino. Deriving protocol specifications from service specifications written as
predicate/transition-nets. Computer Networks, 51(1):258–284, 2007.

[YL02] Tae-Sic Yoo and Stéphane Lafortune. A general architecture for decentralized
supervisory control of discrete-event systems. Discrete Event Dynamic Systems,
12(3):335–377, 2002.

177

	Table of contents
	List of Figures
	I Context
	Introduction
	Problems and needs
	Design and verification of complex systems
	Compositional reasoning
	Using contracts
	Property verification
	Our contribution

	Distributed systems with rich interaction models
	Distributed control
	Our contribution

	Organization of the thesis

	Preliminaries
	The BIP modeling framework
	Labeled Transition Systems
	Component-based design with BIP
	Basic concepts of BIP
	Glues in BIP: Interaction models
	Composition of components in BIP
	Priorities in BIP

	Contract framework concepts
	Contract frameworks
	Dominance

	II A Contract Framework for Reasoning about Safety and Progress
	Contract-Based Verification Approach
	Design and verification methodology
	Methodology
	Extension to recursively defined systems

	Soundness of the methodology
	Soundness
	Compatibility of glues

	Proving dominance
	Circular reasoning

	A Contract Framework for Components with Data
	Components with data
	Semantics

	Glues: Rich interaction model
	Connectors
	Composition
	Composition of interaction models

	Progress description
	Progress in components
	Progress of a composition

	Relations of the contract framework
	Refinement
	Conformance

	Proofs
	Well-definedness of the contract framework

	An Application: Resource Sharing in a Networked System
	Sharing resource system
	The top-level requirement .
	Methodology
	Interaction models and contracts

	Implementation and experimental results
	Refinement checker module.
	Composition module.
	Results.

	III Building Distributed Controllers for Systems with Priorities
	Controllers for Systems with Priorities
	Systems and controlled systems
	Components, interaction models and systems
	Controllers defined by properties

	Synthesis of priorities for avoiding deadlocks

	Distributed Controllers for Systems with Priorities
	Distributing systems and controllers
	Concurrency and confusion

	Implementation of a distributed controller as a protocol
	Description of the protocol
	Avoiding deadlocks due to potential decision cycles

	Correctness of the protocol

	Implementation and Experimental Results
	Sensitivity of the prototype
	Sensitivity to prioritized conflicts
	Sensitivity to structural conflicts

	The dining philosophers example

	IV Conclusions and Perspectives
	Conclusion and Perspectives
	Conclusions
	Perspectives

	Bibliography

