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Mr Jean-Christophe Burie, MCF, L3I, Uni. La Rochelle, France . . . . . . . . . Co-directeur de Thèse
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Abstract
This thesis details the conception, development and analysis of a novel color tex-
ture descriptor based on the luminance-chrominance complex linear prediction
models for perceptual color spaces. In this approach, two dimensional complex
multichannel versions of both causal and non-causal models are developed and
used to perform the simultaneous parametric power spectrum estimation of the
luminance and the combined chrominance channels of the proposed two chan-
nel complex color image. The accuracy and precision of these spectral estimates
along with the spectral distance measures ensure the robustness and pertinence of
the approach for color texture classification. A luminance-chrominance spectral
interference based quantitative measure for the color space comparison is also
introduced. The experimental results for different test data sets, in IHLS and
L*a*b* color spaces are presented and discussed. These results have shown that
the chrominance structure information of the color textured images could get bet-
ter characterized in L*a*b* color space and hence could provide the better color
texture classification results.

A Bayesian framework based on the multichannel linear prediction error is
also developed for the segmentation of textured color images. The main contri-
bution of this segmentation methodology resides in the robust parametric approx-
imations proposed for the multichannel linear prediction error distribution. These
comprised of a unimodal approximation based on the Wishart distribution and a
multimodal approximation based on the multivariate Gaussian mixture models.
Another novelty of this approach is the fusion of a region size energy term with
the conventional Potts model energy to develop a Gibbs random field model of the
class label field. This improved label field model is used for the spatial regulariza-
tion of the initial class label estimates computed through the proposed parametric
priors. Experimental results for the segmentation of synthetic color textures as
well as high resolution QuickBird and IKONOS satellite images validate the ap-
plication of this approach for highly textured images. Advantages of using these
priors instead of classical Gaussian approximation and improved label field model
are evident from these results. They also verify that the L*a*b* color space ex-
hibits better performance among the used color spaces, indicating its significance
for the characterization of complex textures through this approach.

Keywords:

Multichannel complex linear prediction models, Parametric spectrum estimation,
Color texture classification, Color texture segmentation, High resolution satellite
images, IKONOS, QuickBird.



Résumé
Cette thèse détaille la conception, le développement et l’analyse d’un nouvel outil de
caractérisation des textures exploitant les modèles de prédiction linéaire complexe sur
les espaces couleur perceptuels séparant l’intensité lumineuse de la partie chromatique.
Des modèles multicanaux 2-d causaux et non-causaux ont été utilisés pour l’estimation
simultanée des densités spectrales de puissance d’une image “bi-canal”, le premier con-
tenant les valeurs réelles de l’intensité et le deuxième les valeurs complexes de la partie
chromatique. Les bonnes performances en terme de biais et de variance de ces esti-
mations ainsi que l’usage d’une distance appropriée entre deux spectres assurent la ro-
bustesse et la pertinence de l’approche pour la classification de textures. Une mesure de
l’interférence existante entre l’intensité et la partie chromatique à partir de l’analyse spec-
trale est introduite afin de comparer les transformations associées aux espaces couleur.
Des résultats expérimentaux en classification de textures sur différents ensembles de tests,
dans différents espaces couleur (RGB, IHLS et L*a*b*) sont présentés et discutés. Ces
résultats montrent que la structure spatiale associée à la partie chromatique d’une texture
couleur est mieux caractérisée à l’aide de l’espace L*a*b* et de ce fait, cet espace per-
met d’obtenir les meilleurs résultats pour classifier les textures à l’aide de leur structure
spatiale et des modèles de prédiction linéaire.

Une méthode bayésienne de segmentation d’images texturées couleur a aussi été
développée à partir de l’erreur de prédiction linéaire multicanale. La contribution prin-
cipale de la méthode réside dans la proposition d’approximations paramétriques robustes
pour la distribution de l’erreur de prédiction linéaire multicanale : la distribution de
Wishart et une approximation multimodale exploitant les lois de mélanges gaussiennes
multivariées. Un autre aspect original de l’approche consiste en la fusion d’un terme
d’énergie sur la taille des régions avec l’énergie du modèle de Potts afin de modéliser
le champ des labels de classe à l’aide d’un modèle de champ aléatoire possédant une
distribution de Gibbs. Ce modèle de champ aléatoire est ainsi utilisé pour régulariser
spatialement un champ de labels initial obtenu à partir des différentes approximations
de la distribution de l’erreur de prédiction. Des résultats expérimentaux en segmen-
tation d’images texturées couleur synthétiques et d’images satellites hautes résolutions
QuickBird et IKONOS ont permis de valider l’application de la méthode aux images
fortement texturées. De plus les résultats montrent l’intérêt d’utiliser les approximations
de la distribution de l’erreur de prédiction proposées ainsi que le modèle de champ de
labels amélioré par le terme d’énergie qui pénalise les petites régions. Les segmenta-
tions réalisées dans l’espace L*a*b* sont meilleures que celles obtenues dans les autres
espaces couleur (RGB et IHLS) montrant à nouveau la pertinence de caractériser les
textures couleur par la prédiction linéaire multicanale complexe à l’aide de cet espace
couleur.

Mots clés:

Modèles de prédiction linaire 2-d multicanale complexe, Estimation paramtrique de spec-
tres, Classification de textures couleur, Segmentation d’images texturées couleur, Images
satellites hautes résolutions, IKONOS, QuickBird.
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ŜQP1 (ν) PSD estimate of x with the 1st quarter plane support . . . . . . . . . . . . . . . . . 33
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CHAPTER 1

INTRODUCTION

The main objective of this chapter is to introduce the motivation for the in-
vestigation of a new color texture descriptor that can be used for the color texture
characterization tasks, including color texture classification and/or segmentation.
The major objective of this thesis along with the main contributions that emerged
from this research study will be discussed. Finally a brief outline of the thesis
organization will be presented.

1.1 Problem Statement and Motivation
Color texture characterization is one of the most important areas of research in
the fields of image processing and pattern analysis and/or recognition. This is
motivated by the fact that the texture is an attribute of a color image that is com-
monly exploited in the high-level image analysis tasks such as scene understand-
ing, image or video retrieval and image segmentation. The approximation and
estimation accuracy of the texture descriptor has a decisive impact on the overall
performance of the developed vision system. Over the past few decades the field
of color texture analysis has developed extensively. Due to the improvements and
advances in the computer and photographic technologies, the research community
is capable of addressing real life problems including natural image understanding,
video and satellite image processing.

The pertinence of texture attribute for natural as well as satellite image analy-
sis is evident. In the former case, they are required to discern between objects or
the regions appearing in the image whereas in the later case, it is of importance to
discriminate between cultivated regions, barren lands, forests or man-made struc-
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tures. Researchers have proposed, presented and validated a large spectrum of
mathematical models and algorithms to exploit the local and global properties of
this essential image attribute.

A widely acceptable mathematical definition of the texture of a given color
image is still not known to the researchers worldwide. However, it can be re-
ferred to as, a function of the spatial structure variation of the pixel values i.e.
color or intensity values of the image. Therefore some rough categorization can
be defined for the texture content of the image including, coarse, fine, smooth,
granulated etc. For the texture content of an image, it is generally perceived that
small texture pattern units are periodic in a given image i.e. they appear in the
image periodically. Therefore, the aim of understanding the color texture of a
given image is to comprehend and develop the capability to model and estimate
the spatial structure variations of the image.

Although texture analysis in color images is one of the fundamental areas of
the research for many years now, it still represents a challenging topic for the
image processing and computer vision community. This difficulty arises from
the fact that the real world images often exhibit a high degree of complexity,
randomness and irregularity.

It is evident that the comprehensive mathematical understanding and model
based description of the texture content for the classification or segmentation of
color images leads to an improved and robust performance of computer vision
systems as compared to the algorithms and methods which are developed for par-
ticular applications. Exploitation of the pure color information of the image is
also very important while developing and proposing a robust, comprehensive and
composite color texture descriptor for natural as well as high resolution satel-
lite images, given the complex nature of the problem as stated before. Thus, the
development of a comprehensive and non-application specific texture descriptor
for color images and its utilization in the complex applications of texture classi-
fication and segmentation for both color and high resolution satellite images is
addressed in this research study.

1.2 Research Objectives
The core aim of this research study is to propose and develop a practical frame-
work based on theoretical basis for the computation of a model based compre-
hensive and robust color texture descriptor that can be used for the color texture
characterization in both color and multispectral aerial images. As indicated earlier
color texture analysis is an active topic of research and many existing approaches,
methods and algorithms have addressed this problem in a simplistic manner, most
of which consider and process color and texture as independent attributes (cf.



1.3. Contributions and Overview of the Thesis 3

Chapter 2). Often, these approaches consider the texture of a color image to be
limited to the luminance plane only and hence lack the characterization of the
spatial structure information of the chromatic plane of the image, which certainly
limits their performance.

Comprehensive description of the texture content of a given color image is
a complicated task which has to take into account the luminance as well as the
chrominance spatial structural variations along with the pure color distribution
information of the said image. Choice of a particular color space for color image
representation also affects the performance of the application. These challenges
lead us to the definition of the following major objectives of this research study:

• To develop a model based generic color texture descriptor capable of de-
scribing the spatial structure of color and high resolution satellite images.

• To develop a new color texture classification framework based on this color
texture descriptor.

• To develop a novel color texture segmentation algorithm based on the Bayesian
segmentation exploiting the same color texture descriptor for color as well
as satellite images.

• To study and compare different color spaces and their performance for the
proposed color texture classification and segmentation frameworks and for
the choice of the most pertinent color space for the task.

• To conduct a large number of experiments to produce quantitative and qual-
itative results when these algorithms are applied to the standard databases of
color textures. Also the proposed algorithms will have to be benchmarked
against state of the art approaches for color texture characterization.

1.3 Contributions and Overview of the Thesis
The major objectives stated in the previous section generated the major and minor
contributions of this research study. One of the major contribution of this thesis
is the development of a composite two dimensional multichannel complex image
observation model. This generic color image observation model is based on the
proposed luminance and combined chrominance channel complex color image
for perceptual color spaces.

Main novelty and another originality of this work resides in the exploitation
of this image observation model to develop a concurrent parametric spectral es-
timation framework for both luminance and combined chrominance channels of
the above stated two channel complex color image. The auto and cross spectra
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of these two channels characterize the spatial structure information of both these
channels. This 2D multichannel spectrum estimation through 2D multichannel
complex random fields lead us to the development of a model based approach for
color texture characterization and classification in perceptual color spaces. For
this, multichannel complex versions of linear prediction models including two
dimensional (2D) Non-Symmetric Half Plane Autoregressive (NSHP AR) model,
2D Quarter Plane Autoregressive (QP AR) model and Gauss Markov Random
Field (GMRF) model are derived and used to model the multichannel complex
image.

A quantitative criterion for the comparison and performance evaluation of dif-
ferent color spaces is also an important contribution of this thesis. This criterion
exploits inter-plane decorrelation of the color images to choose the best perform-
ing color space. For perceptual color spaces, this comparison is based on the de-
gree of decorrelation between luminance and chrominance information provided
by different color space transformations.

During the course of this thesis, a novel Bayesian framework of color texture
segmentation has also been developed. This framework exploits the various para-
metric approximations for multichannel complex linear prediction error. These
parametric approximations are used to improve the performance of the color tex-
ture segmentation algorithms. The linear prediction error of the proposed texture
models is classically approximated with Multivariate Gaussian probability dis-
tribution. We present two other parametric models using multivariate Gaussian
mixture models and Wishart distribution.

1.4 Thesis Organization
The organization of this thesis is a systematic and logical extension of the previous
section.

Chapter 2 reviews the existing approaches related to the color texture analysis.
It gives a brief overview of the main descriptors proposed in the recent years to
characterize color textures. In this chapter we would emphasize on model based
descriptors. A review of the research works done on color space comparison for
color texture description along with the texture segmentation in the high resolu-
tion satellite images is also discussed.

Then in the chapter 3, the mathematical basis of the parametric color spectral
analysis approach developed is detailed. The proposed two channel complex color
image representation and the derived multichannel complex and/or real valued
linear prediction models employed for the parametric color spectral estimation are
also discussed. Performance analysis of this color spectral analysis is presented
at the end of the chapter.
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Chapter 4 discusses the color texture classification framework developed on
the basis of the parametric color spectral analysis developed and presented in
the chapter 3. Spatial structure and pure color feature cues computation along
with their probabilistic fusion for color texture classification is illustrated. The
framework is analyzed in detail on various standard color texture databases. Ex-
perimental results and comparison to state of the art color texture classification
methods is presented.

In chapter 5, the multichannel linear prediction models developed in chapter 3
are used to sketch a model based color texture segmentation scheme for synthetic
as well as high resolution textured satellite images. This scheme involves different
parametric approximations for the distribution of multichannel linear prediction
error including MGMM and the Wishart distribution. The experimental results
are presented, analyzed and discussed. A comparative analysis with a state of the
art model based approach is also presented. Results on different high resolution
multispectral satellite images show the pertinence of the scheme for the land cover
classification through satellite image segmentation.

Finally, chapter 6 discusses the main conclusions drawn at the end of this
thesis. It also highlights a few perspectives for the follow up of this research
work.





CHAPTER 2

LITERATURE SURVEY

The core objective of this chapter is to present the research background of
color texture analysis. An overview of the concerned state of the art approaches in
the domain will be presented. Pros and cons of using different proposed color tex-
ture descriptors for classification and/or segmentation will be overviewed along
with a detailed discussion on the model based parametric approaches presented so
far for this purpose. A brief discussion on the different research works presented
on the color space comparison for color texture analysis is also a part of this chap-
ter. Finally, various existing approaches for the classification and segmentation of
multispectral satellite images are overviewed.

2.1 Color Texture Descriptors

Robust identification of texture content and primitives in both gray level and col-
ored digital images plays a very key role in various image processing applications.
This applications spread over the various domains of computer vision and pattern
recognition including, object recognition, scene classification, segmentation, re-
mote sensing and biomedical image analysis. This pertinence of the texture de-
scriptors has motivated the development of numerous color texture descriptors in
recent years. Each of these descriptors exploit any one or different mathematical
properties of spatial variations in an image and hence proposes a more or less
different working framework from the other.

These color texture descriptors can be roughly divided into two categories
[MP04]:
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• Methods which process color and texture information separately. These
methods assume that the spatial structure variations and color distribution
of the image are independent feature cues. Either of these two feature cues
independently or their fusion can better characterize color textures for a
specific application. Examples of such methods are presented in [PFJ06]
and [KP06].

• Methods which consider color and texture a joint phenomenon. These
methods mostly use the multichannel versions of gray level texture descrip-
tors. In these methods, normally no separate color feature is used. Example
of such methods is presented in [Pas98].

Various literature surveys have presented the categorization of these texture
attributes [CPW98, MS98]. The four main categories of texture characterization
methods presented in these reviews are :

• Structural

• Statistical

• Transform based

• Model based

It is to note that the boundaries of the categories are not very distinct and a given
method can lie in more than one of these categories. Most of the descriptors and
methods address the gray level texture analysis. However, logical extensions of
these methods for color images are either developed or can be conceived. We will
discuss each of these four categories one by one with a focal interest on color
texture description.

2.1.1 Structural Descriptors
Structural approaches like [Har79] represent textures as microtextures and macro-
textures. Microtextures are the well defined primitives and macrotextures are the
hierarchy of spatial arrangements of those primitives. According to [Har79], the
choice of a microtexture and the probability of the chosen microtexture to be
placed at a particular location can be a function of location or the microtextures
near the location. A good symbolic description of the image is a considerable
advantage of this approach which is useful for the analysis of synthetic textures.
Another approach based on the same idea for mathematical morphology in im-
ages is presented in [Ser83]. The main disadvantage of the approach lies in the
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poor discrimination of the microtextures and macrotextures in the case of the nat-
ural textures. This concept of the texture description is more useful for texture
synthesis rather than texture characterization.

In [JCR05], the authors proposed an image segmentation algorithm that is
based on spatially-adaptive texture features. The authors developed two types
of features: one describes the local color composition and the second exploits
the spatial characteristics of the gray scale component of the texture. The algo-
rithm first develops these features independently and then separates the image into
smooth and textured areas using the spatial texture features. It then combines the
color composition and spatial texture features to consolidate textured areas into
regions. The color texture features are combined using a region growing algo-
rithm which results in a coarse label set of the segmented image. This image is
then post-processed using a border refinement procedure.

In [dLGDAL08], the authors worked out a novel segmentation scheme for tex-
tured gray-level and color images based on the combined use of the local structure
tensor and the original image components. A combined segmentation approach
has been proposed that combines both elements within a common energy mini-
mization framework. Afterwards, a method is proposed to dynamically adapt the
relative weight of these two distinct information.

Another family of such texture descriptors, is based on the analysis of spatial
variations in spatial domain of the images. The descriptors based on the spatial
variation information, exploit the transitions per unit surface area in the given im-
age to characterize the texture content of the image [CPW98]. Fine textures tend
to have a strong density of the transitions per unit surface area as compared to the
coarse textures. These descriptors are best suited and have been used for the color
texture segmentation problem. One such method is suggested in [DZ86]. The
author has presented the use of tensor gradient of multichannel images regarded
as vector fields. In this work author explains the method for characterizing the
edge information of the multichannel images which is another indirect method to
study the spatial variations i.e. textural content of the image.

2.1.2 Statistical Descriptors

Statistical approaches are the ones which exploit the image statistics of any order
to represent the textures. These attributes are based on the relation between the
pixel intensity and/or color values and their distributions. Hence they base the
description of the texture content of the image on a non-deterministic description.
The histograms, autocorrelation function, local binary patterns (LBP), energy fea-
tures and different statistical features computed from chromatic co-occurrence
matrices are the salient texture descriptors from this category.
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The approaches based on the statistics of different order are the ones which
use mean, variance, skewness, kurtosis and histograms of the image to charac-
terize the underlying textures in the image. One of such approach is presented in
[LMVMPF08]. In this work, authors have presented soft color texture descriptors
method. The authors have used several statistical measures of the color images to
characterize the color texture content of the images. The set of factors includes
the number of neighbors in the k-NN classifier (several values of k parameter),
color space representation schemes (CIE Lab, CIE Luv, RGB, and gray scale),
and color texture features. The utility of different combinations of all of these
factors is evaluated in this work.

The histogram of an image gives an estimation of the probability distribution
of the image pixels values. Therefore, as a mathematical model it does not char-
acterize the spatial structure information of the image yet it can be useful as a
pure color descriptor, to discriminate a texture sample from another based on its
specific global probability distribution of pixel color values. For color images,
two different types of histograms can be computed. These include a combination
of three mono dimensional histograms for three color planes and three dimen-
sional (3D) color histograms in which bins are formed in a cubical shape in the
3D color space gamut. In [MTJ02] and [MP04] the authors showed the pertinence
of using both these attributes as pure color feature cues for the problem of color
texture classification. Another work based on these attributes for color texture
classification is given in [VMP03]. In this work authors used median, mode and
the dispersion characteristics of these histograms as the feature attributes. His-
tograms are also used as a color feature attribute for color texture classification in
[PP03]. He proposed to concatenate the mono dimensional color histograms and
then these bins are combined on one to one basis and resulting ratios are used for
the color texture classification.

As stated earlier, histograms are just a descriptor of the probability distribu-
tion of the image pixel intensity and/or color values and does not give informa-
tion about the underlying spatial structure information of the texture. Therefore,
certain statistical attributes based on the higher order statistics are used to com-
plement this short coming of the histogram attributes.

One of these attributes is the auto correlation function [CPW98]. The texture
characterization techniques based on this attribute estimate the rate of decay of
the auto correlation function with increasing spatial shift with respect to origin
of the image to be analyzed. It is evident from the stated methodology that the
coarse textures i.e. the textures with high degree of complexity would show a
slow variational increase in the said function [CPW98]. The technique performs
much better than other techniques in terms of computational cost. However there
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is a risk of its inability to model the detailed local spatial structures of the image
as the technique exploits the global structural characteristics of the image.

In [AZ07], the authors have proposed an approach which combines the region
and boundary information. This approach uses active contours to build a partition
of the image. The region information is based on mixture modeling of the com-
bined color and texture features, while the boundary information is modeled using
the polarity information. They use a combination of color and texture features to
calculate a mixture of the probability distribution functions (PDF) , that models
the distribution of these features. For texture, they use features calculated from
the correlogram of the pixel neighborhood. They compute four typical features,
including energy, entropy, inverse-difference-moment and correlation. Then they
average each feature over the number of orientations and displacements. To model
the distribution of these features, they use a mixture of generalized Gaussian dis-
tributions.

Another important statistical texture descriptor is co-occurrence matrices. The
basic idea was introduced by Haralick in [HSD73], to use these matrices for tex-
ture characterization for the gray level images. The work described some easily
computable textural features based on gray-tone spatial dependencies, and illus-
trated their application in category-identification tasks of three different kinds of
image data. The results from this study and later related works indicated that
these textural features have a general applicability for a wide variety of image-
classification applications.

The concept of co-occurrence matrices for color texture classification was
first introduced in [Pal04]. In this work, integrative co-occurrence matrices are
introduced as novel features for color texture characterization. The extended co-
occurrence notation allows the comparison between integrative and parallel color
texture concepts to be carried out. The parallel concept for color texture analysis
separates the processing of both color and texture while in integrative concept, the
information dependency between both image features is taken into account. The
method is applied to the RGB and the LUV color spaces in which the combined
color and intensity textures are studied and the existence of intensity independent
pure color patterns is demonstrated.

In recent years, several works based on co-occurrence matrices for color tex-
ture characterization have been proposed. One such work is presented in [FAA00].
The authors have used these matrices for the classification of weed species. This
work used the color co-occurrence matrices to determine whether traditional sta-
tistical discriminant analysis can be used to discriminate between different classes
of weed.

In another work [AML08], the authors used these matrices for characteriz-
ing the color textures in industrial products. A new extension of gray level co-
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occurrence matrix to color images is proposed in this work. The authors proposed
a methodology in which statistical features are computed from an isotropic color
co-occurrence matrix for classification.

In [ADB04], three different approaches to color texture analysis are tested on
the classification of images from the different color texture databases. The authors
present a multispectral extension since co-occurrence matrices are computed both
between and within the color bands. They also present a joint color-texture fea-
ture, in which color features are added to gray scale texture features in the entry
of the classifier.

Another recent color texture analysis work based on color co-occurrence ma-
trices is presented in [MALDTB05]. The method presented in this work, used for
the recognition of textures is based on the sum and difference histograms and is a
faster version of the co-occurrence matrices. This work uses an LVQ neural net-
work for the clustering and classification of marble slabs according to their texture
information characterized by the co-occurrence matrices. An LVQ network is a
method for training competitive layers in a supervised manner. It consists of two
weight layers. The first layer is a competitive layer, which learns to classify in-
put vectors forming subclasses, and the second layer transforms the competitive
layer’s subclasses into target classifications defined by the user. Another work
based on the sum and difference histograms is presented in [MVK+02]. In this
work authors compute intra- and inter-plane second order features to capture the
co-occurences between the color bands. A powerful set of features is obtained by
non-linear color space conversion to HSV color space and thresholding operation
to eliminate the influence of sensor noise on color information.

These co-occurrence matrices perform better than the autocorrelation func-
tion in general. This is motivated by the fact that co-occurrence matrices exploit
the local relationship between the pixels whereas, autocorrelation function tends
to estimate the global structure of the image. There are a number of approaches
for color texture analysis which use several Haralick features [HSD73] calcu-
lated from these matrices instead of directly using these matrices. Authors in
[PVM08b] have presented the same idea. They propose to study the influence of
the neighborhood used to process the color co-occurrence matrices on the quality
of texture analysis. They measure the discriminating power of each Haralick fea-
ture computed with one of the color co-occurrence matrices of the color images.
They compare the 28 considered color spaces and select the most discriminating
ones on the basis of this discriminating power.

The texture analysis related to the co-occurrence matrices is proved to be an
effective technique, especially for discriminating various data sets of natural and
synthetic textures. However, there are two main disadvantages of this approach.
First, the idea is based on an assumption that the textural patterns are repetitive
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and are uniformly distributed in the image. Secondly, these are computationally
expensive and require higher memory and computational resources than other
statistical texture features.

Another important texture descriptor frequently used to characterize the spa-
tial variations of images in recent research works is LBP. Initially LBP were pro-
posed for scalar i.e. gray level images in [OPH96]. Logical extensions of these
attributes for color texture characterization were developed and used in [MP04]
and [PMV02]. LBP are highly discriminative texture descriptors. Their main ad-
vantage is the invariance to any monotonic change in the gray level or color and
their computational simplicity [OPM02b].

The LBP are gray scale invariant texture primitive statistic. For each pixel
in an image, a binary code is produced by thresholding a circularly symmetric
neighborhood with the value of the center pixel. A histogram is created to collect
up the occurrences of different binary patterns. The basic version of the LBP
operator considers only the eight-neighbors of a pixel, but the definition can be
extended to include all circular neighborhoods with any number of pixels. By
extending the neighborhood one can collect larger-scale texture primitives but the
computational complexity increases significantly. However, the spatial support
of the LBP operator is much smaller than that of the Gabor filters (cf. section
2.1.3). The variations of the LBP operator are denoted by LBPP,R, where P is the
number of the neighboring pixels andR is the radius of the circular neighborhood
region.

In [PMV02], the authors used histograms of LBP patterns for texture de-
scription. For classification with LBP distributions, a log-likelihood dissimilarity
measure was chosen in this work. Simple variations of the basic LBP opera-
tor were also used. Instead of the traditional 3 × 3 rectangular neighborhood,
the authors sampled the neighborhood circularly with two different radii (1 and
3), produced a histogram out of the result of both of these operators, and con-
catenated the histograms. The resulting operators are denoted by LBP(8,1) and
LBP(8,1+8,3), where the subscripts tell the number of samples and the neighbor-
hood radii [PMV02] and [OPH96].

In [PVM08a], the authors have presented an approach for color texture classi-
fication by use of Haralick features extracted from co-occurrence matrices com-
puted from LBP images. They again used 28 different color spaces and computed
the most descriminating ones through an iterative procedure.

In this work authors also proposed a simple joint color texture LBP operator.
In the case of an RGB image, the local threshold (neighborhood center) is taken
from three different color channels. The neighborhood to be thresholded is also
taken from three channels, which makes up a total of nine different combinations.
The histograms were concatenated into a single distribution containing 256 ×
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9 = 2304 bins. This joint operator contains unichrome features computed within
spectral bands and opponent color features combining information across bands
[PMV02].

2.1.3 Transform based Descriptors
Texture information of an image can also be analyzed in the frequency domain.
Frequency domain texture attributes are often based on two very important trans-
forms i.e. Discrete Fourier Transform (DFT) and Discrete Cosine Transform
(DCT) . Different filter banks (multiple filters) tuned to particular frequencies
are used to characterize the color textures. To interpret the intra-component infor-
mation, all of these filters are applied to each component of a multi-component
image. Once we have filtered the image, different statistical measures can be
computed over these filtered images to characterize the color textures. Therefore
we obtain several attributes for each of these filters. In [DW01] a similar method
based on DCT to characterize color textures is presented. In this work different fil-
ter masks, each tuned to extract different information from the image are applied.
The authors used DCT on gray level images and its extension on color images
to characterize the color textures. They have also compared the performance of
these attributes to the other gray level and color texture attributes.

Another important work based on these transforms to analyze color textures
for the problem of color texture classification is presented in [PFJ06]. For the
structure features the authors used different kind of features in this work including
energies of DCT regions. They computed the energies of DCT coefficients in
regions of frequency space corresponding to a wavelet decomposition.

DFT and DCT are well adapted and suited to characterize the coarse textures
which show continuities between the pixel values of color images. For low fre-
quency variations of the color images, these transforms are efficient whereas for
high frequency variations these transforms do not give us much information. The
color texture descriptors computed from these transforms perform better than the
ones computed on the gray level information of the color images and the compu-
tational complexity required to compute these descriptors is moderate.

Besides the methods exploiting spatial characteristics in either one of the spa-
tial or spectral domain, there exist certain approaches which combine both these
information to characterize the color textures. The descriptors of this group which
are mostly used are the ones computed from Gabor transform and Wavelet trans-
form.

Fourier transform translates the information about the regular and periodic
variations of the spatial domain in spectral domain very well, yet it suffers from a
significant problem. It is incapable of providing the information about the spatial
location of these variations. The problem can be addressed using different variants
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of the Fourier transform like Short-Term Fourier transform (STFT) , a Fourier-
related transform used to determine the sinusoidal frequency and phase content
of local sections of an image along the spatial axis. In this case, the choice of
the windowing functions and their size can create problems. This analysis also
has the tendency to suffer from the artifacts at the boundaries of the windows. In
order to avoid these artifacts, overlapping window functions are used. Different
windowing functions are used to analyze the image spectrum including Hamming,
Hanning and Gaussian window functions. The Gabor transform is a special case
of the STFT when the windowing function used is a Gaussian function.

In [PKLS00], an idea for the characterization of color textures using these
Gabor filters is proposed. The authors proposed that the interpretation of hue and
saturation as polar coordinates allows direct use of the HSV color space for Ga-
bor feature extraction of color textures. An extension to this work using the basic
concept of complex chromatic Fourier transforms was presented when Gabor fil-
ters are again used for the color texture characterization in [PL02]. The authors
proposed a Gabor texture descriptor for the gray scale as well as the color domain.
This descriptor relies on local phase changes characterizing the homogeneity of
a texture in the spatial frequency domain. The authors presented two Gabor filter
bank variants, Gabor wavelet and Gabor log-polar filter banks in this work. Ac-
cording to the comparison of these variants, statistically, the differences do not
establish a trend towards one of the filter banks.

Another work based on the Gabor wavelets for the color texture character-
ization is presented in [LTR99]. The method comprises of a low-level Gabor
wavelets-based feature extraction algorithm and a high-level neural network-based
pattern recognition algorithm. In [HGS05], the authors proposed a framework for
the local measurement of texture in wavelength-Fourier space. They propose to
measure the spatial frequency by sampling the image with a shifted Gaussian
window function in the spatial frequency domain, and measure color by sampling
the signal with a Gaussian approximation in the wavelength domain. Therefore,
color texture measurement implies the sampling with a 3D Gaussian window in a
wavelength-Fourier space. This provides the basis for the integration of the Gabor
texture measurement with opponent color measurement.

Gabor filters and their variants are the most widely used color texture descrip-
tors specially for the color texture classification problems. This acceptance of
the method is because of its efficiency and near optimal results in the description
of the spatial variations. The main disadvantage of using this technique is the
choice of different filter parameters. This makes the descriptor less robust and
hence needs to be regulated before each experiment. For optimal results through
these descriptors one needs to have a larger window size which can increase the
computational complexity significantly.
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Gabor filter descriptors are based on fixed sized window functions which
proves to be a disadvantage in the case of color textures which present them-
selves on different scales. To resolve this problem, Wavelet transform is used
which characterizes the image with an analysis on different scales. This analysis
is carried out with the window functions of varying sizes.

Wavelet color texture descriptors compute different classical color texture de-
scriptors in the transform domain. These descriptors include features like wavelet
statistical features and wavelet co-occurrence features. In [WSLD99], authors
presented an extension of gray level wavelet techniques to color images. They in-
troduced wavelet energy-correlation signatures and derived the transformation of
these signatures upon linear color space transformations. Experiments reported in
[WSLD99] are conducted on a set of 30 natural colored texture images in which
color and gray level texture classification performances are compared. The au-
thors prove that the wavelet correlation features contain more information than
the intensity or the energy features of each color plane separately. Another work
based on a similar approach is presented in [Sen08]. This work investigates the
usage of wavelet transform and adaptive neuro-fuzzy inference system for color
texture classification problem. The proposed scheme composed of a wavelet do-
main feature extractor and an adaptive neuro-fuzzy inference system classifier.
The color texture descriptors consist of entropy and energy features computed in
wavelet domain.

Content based image retrieval (CBIR) is another major area of application for
color texture descriptors. In [PP06], the authors have studied wavelet based color
texture features for the same problem. The authors in this work, describe an al-
gorithm for texture feature extraction using wavelet decomposed coefficients of
an image and its complement. Different approaches to color texture analysis are
presented. The first one is a multispectral approach, in which texture features are
extracted from each channel of the RGB color space. The second method uses
HSV and YCbCr color spaces in which texture features are extracted from the lu-
minance channel and color features from the chromaticity channels. The last one
uses gray scale texture features computed for a color image. Another important
work of this family is presented in [IMK+04]. The authors proposed to exploit the
spectral information of the three color channels forming the endoscopic frames for
the description of the colonic mucosa. The suitability of different color models
for this application is also investigated in this work. The textural properties of the
colonic mucosal surface are measured using second order statistical descriptors
on the wavelet transform of the multichannel video signals.

Like in the case of other transform based color texture descriptors, the color
texture descriptors based on wavelet transform are also well adapted and suited
to characterize the coarse textures. The main advantage of these descriptors lie
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in the successful description of color textures on different scales. However, the
results obtained for different applications for example color texture classification
[IMK+04], through these descriptors are not optimal.

An emerging domain of research is the representation of color images through
hypercomplex numbers or Quaternions [ES00], [SE01], [ES07]. In one of these
works [DCFM07], authors discuss the various theoretical and practical conditions
on the spectrum coefficients needed to reconstruct a color image without loss
of information through the inverse quaternionic Fourier transform process. The
result is used to interpret the quaternionic spectrum coefficients of this specific
color Fourier transform. The authors used these results to apply for the spatial
filtering problem in color images, yet this color spectral analysis form the basis to
study the spatial variations i.e. the texture in an image.

In recent years some interesting works over the color texture characterization
problem, based on this approach are presented. In [SF07], the problem of color
texture segmentation is addressed with quaternionic point of view. the authors
propose a quaternion principal component analysis (QPCA) framework. A low
dimensional basis for the color textures found in a given image is derived via
QPCA of a training color texture. This color texture sample is then projected
onto this basis to obtain a concise description of the texture.

In another work [AMT+09], the authors propose a joint space-wavenumber
localized quaternion S transform (QS) for a simultaneous determination of the
local color image spectra. This transform is expressed as a convolution of the cir-
cularly symmetric Gaussian window and the product of the image with the kernel
of the quaternion Fourier transform (QFT) . The invertible and rotation invariant
QS transform allows local analysis of all color components simultaneously, as
compared to separate analysis of color components.

2.1.4 Model based Descriptors
Model based texture and/or color texture descriptors are the ones which tend to
model the probability distributions of the spatial information of the intensity or
color values [HS80]. For gray level images, spatial interaction models character-
ize statistical dependence by representing the intensity at each pixel as a combina-
tion of neighboring intensities and additive noise. For a given pixel, neighboring
pixels are defined by a finite neighbor set. If this finite neighborhood is defined in
such a manner that it only consists of the previous pixel values following a par-
ticular order of the pixels (e.g. lexicographical order), the model obtained will be
causal. Non-causal models which allow more general neighbor sets are supposed
to be more powerful for the modeling of images [PH95].

A model used for representing color textures should take into account not only
the spatial interaction within each of the three color planes, but also the interac-
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tion between different color planes. Thus, for color images each component of
the color vector at a given pixel location will be represented as a linear combi-
nation of the color components of the neighbors and additive noise. This can be
achieved by selecting a neighborhood structure that models both within-plane and
across-plane interactions. For example, the neighbor set defining spatial interac-
tion of a red measurement can be approximated with the red color components of
the neighborhood while another set defining its interaction with the green color
components of its neighbors could also be defined [PH95].

In the family of random field models, Markov Random Field (MRF) models
and Autoregressive (AR) models are often employed for texture analysis, both for
texture classification and segmentation problems. In the following we will discuss
the salient works presented on color texture analysis based on these two types of
models.

MRF models have been extensively used for characterizing the textures in
gray level images in the past years [CJ83], [CC85], [CFP91]. In these and many
other such works, these models have been successfully used to model the texture
content of the single channel intensity images for classification, segmentation and
retrieval problems.

In [PH95], the authors used MRF models for the problem of unsupervised
color texture segmentation. They illustrated an unsupervised segmentation al-
gorithm which uses Gaussian MRF models for color texture description. These
models are defined in each color plane with interactions between different color
planes. The model parameters are estimated through ML estimation and the seg-
mentation algorithm consists of two steps. The first step of the algorithm splits the
image into the square regions until a uniformity criterion is upheld. This step is
followed by a step of agglomerative hierarchical clustering which merges the re-
gions with similar characteristics in order to form the texture boundaries. At each
step of merging phase, the conditional likelihood of the image is maximized.

In [KBH06] the authors have also used two multispectral versions of MRF
models to characterize the color textures in RGB color space which were ini-
tially proposed in [BK98] and [BK99]. These include Multispectral Markov
random field (MMRF) model, Pseudo-Markov random field (PMRF) model and
multispectral AR models i.e. Multispectral simultaneous autoregressive (MSAR)
model. A multispectral image may be considered Markovian with respect to its
neighbor set if the conditional probability of an observation (pixel) given all other
observations is equal to the conditional probability of that observation given the
probability of a finite neighborhood observations. Model parameters for MMRF
are computed through a non-linear iterative approach of least squares (LS) esti-
mate. The last model discussed in this work is PMRF, which is same in structure
as MMRF. However, the parameters in the case of MSAR and PMRF models are
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estimated through a linear solution of LS estimate by restricting the correlation
structure of the stationary noise sequences in the case of PMRF model.

After the estimation of model parameters, the authors have defined the fea-
tures for color textures on the estimated parameters of the considered multispec-
tral model. The estimated parameters on each individual channel are used di-
rectly whereas ratios of the inter-channel parameters of different color planes are
utilized to make the features robust to illumination changes. The experimental re-
sults presented in [KBH06] demonstrate clearly the interest of using these models
for the problem of supervised color texture classification. These models capture
both inter-plane and intra-plane interactions of image pixels resulting in richer
characterization of the image compared to their gray level counterparts [KC83]
and [MJ92].

In [KPQ03], the authors have proposed a multi-layer MRF model to charac-
terize and segment the color texture information in the color images. They pro-
pose a new approach to texture characterization which aims at combining color
and texture features. They use different features at different layers which allows
the parameters of different models to be estimated and later on choosing the one
model which best describes the given feature data at a given layer. In addition,
they propose a special layer, called combined layer, which does not correspond to
any feature but provides a way to combine different features. Herein, to describe
texture content of the color texture images, on the texture layer, the observation
consists of a set of Gabor and multispectral versions of AR image features.

In [HM04], an unsupervised multispectral texture segmentation method is pre-
sented. Single decorrelated texture factors in each color plane are assumed to be
represented by a set of local GMRF models evaluated for each pixel centered im-
age window and for each color plane. The approach presented herein is an earlier
and somewhat similar version of the one presented in [HM06]. The visible dif-
ference is of the utilization of GMRF with a non-causal neighborhood support
region instead of CAR model with four causal neighborhood supports. In this
work also, the authors have based the segmentation framework on the parame-
ter space describing the multichannel textures. This method on the other hand
requires a contextual neighborhood selection and two additional thresholds.

In the case of AR models which are a special case of MRF models, the texture
attributes are computed through the model parameters for different textures. 2D
AR models have been used for gray level texture classification over the recent
years. Often these models are used for parametric spectrum estimation and hence
for the characterization of the texture content in the images [ABN97], [ACRN98],
[CHK83], [TES99]. In [AR05], segmentation of gray level images using 2D QP
AR model is discussed.
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The same idea of the spatial variation characterization in a color image through
2D AR models was used in [PFJ06]. In this work the authors have defined Gaus-
sian mixture models (GMM) of color textures on several feature spaces and com-
pared the performance of these models in various classification tasks. They con-
structed GMM over a variety of different color and texture feature spaces, with
a view to the retrieval of textured color images from databases. Here along with
other texture parameters, the authors analyzed the texture information of color
images with 2D single channel AR models. The structure features related to AR
model in this work are the coefficients estimated by a least squares LS estimator of
NSHP, directly from the image data. In addition to the AR coefficients the authors
also added the mean and the variance of the image block to these features. The
authors compared supervised classification results for different choices of color
and texture features and proposed the best set of features and the best GMM con-
figuration for this task. To our knowledge these classification results are the best
percentage color texture classification results for small image sizes i.e. 32 × 32.
Yet two main issues are not considered in this work. First, the chrominance struc-
ture information of the color images is not considered at all. Second, for AR
model, the AR coefficients have been modeled along with the mean of luminance
information. In this joint model, AR coefficients do not contain the pure structure
information but they are also somewhat influenced by the pure color information.
The DC component for DCT coefficients also carries the mean information of the
image. Therefore, the structure descriptor presented in the paper is contaminated
with the pure color information of the image.

A detailed overview and application of different variants of AR models to the
characterization of textures was first introduced in [KC83], [KCK82]. These vari-
ants included simultaneous autoregressive (SAR) models and conditional Markov
models (CMM) . In this early proposal of these models, the authors limited their
investigation to the estimation of the unknown parameters in both SAR and CM
models and the choice of an appropriate model from a class of such compet-
ing models. They proposed a maximum likelihood (ML) parameter estimation
method and avoided the heavy computation problems of nonlinear optimization
problem through an iterative scheme for SAR models, which gave approximate
ML estimates in the Gaussian case and reasonably good estimates in some non-
Gaussian situations as well. In [KCK82], a new feature extraction method for
classifying a texture image and the textured images were modeled through SAR
models. The introduction of these models for the characterization of textures in
intensity images provided the opportunity to the researchers for a detailed inves-
tigation of these models.

The MSAR models were explored along with the neural networks to address
the problem of color texture classification in [HCG+05] in RGB color space. In
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this work, the authors presented a neural network based classification framework
of color textures for a large heterogeneous database. All of these three multispec-
tral random field models are used to characterize the textures. The classifying
features are based on the estimated parameters of these models and functions de-
fined on them. The authors used two different types of neighborhood sets for
these models, a non-causal (8-connected) and a causal (4-connected) neighbor-
hood. The full neighborhood set consisted of the eight elements that surround the
pixel being observed, and the half neighborhood consisted of the four elements
of the surrounding eight in the vertical and horizontal directions. Promising color
texture classification results are presented in this work.

The same models are used for color texture segmentation and content based
image retrieval problems in [HCG+04] and [KH03] respectively. In [HCG+04],
the authors use ratios of sample color means to characterize the general color
content of the image. Then, the image is segmented into regions of homogeneous
color textures through an unsupervised histogram clustering approach based on
the combination of MSAR parameters and color features. These feature vectors
are computed through a sliding window operation. The image regions are ob-
tained by mapping back to the spatial domain of the image the significant clusters
obtained in the 22-dimensional feature space during the clustering process.

In [KH03], utility of these models for a color texture based color image re-
trieval problem is discussed. This retrieval process involves segmentation of
the image into regions of uniform color texture using the same approach as in
[HCG+04]. The color-texture content, location, area and shape of the segmented
regions are used to develop similarity measures describing the closeness of a
query image to database images. These attributes are derived from the maxi-
mum fitting square and best fitting ellipse to each of the segmented regions. The
authors discussed the effectiveness of the approach using two different databases
containing synthetic mosaics of natural textures and natural scenes.

Although in these works related to MSAR color texture features, the authors
have shown the advantages of using multispectral random field models for various
problems of color texture analysis, yet these models suffer from a disadvantage.
These models are proposed and estimated only in RGB color space which possess
high inter-channel correlation. If not exploited accordingly, this high correlation
could create a redundant information representation problem for these models.
The adaptation of these models for perceptual color spaces (which are considered
better for color texture characterization cf. section 2.2) having lower degree of
inter-channel correlation is still an open problem. Hence, these models in RGB
color space, produce a better characterization of color textures than the gray level
models yet they can not be declared as optimal and robust descriptors.
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In [HM06], a multispectral modeling approach for the unsupervised segmen-
tation of color textures is discussed. In this framework, color textures are locally
represented by four causal multispectral random field models recursively eval-
uated for each pixel. Each of these four models is a 3D simultaneous causal
autoregressive random field model (CAR) . These models have identical contex-
tual neighborhood with different movement directions i.e. top-down, bottom-up,
rightward and leftward. The authors have expressed this model as a stationary
causal uncorrelated noise driven 3D AR process. A recursive Bayesian approach
has been used for the estimation of the parameters of these models. Once this
parametric space is formed, the authors propose to model this space through a
GMM with diagonal covariance matrices due to the previous CAR parametric
space decorrelation. The parameters of this GMM are estimated through expec-
tation maximization (EM) algorithm. As this model uses recursive parameter
estimation, it risks to suffer from heavy computational costs.

In another work on model based segmentation of color texture images [HMP09],
the authors have proposed a multispectral, multi-resolution, multi-segmenter for
unsupervised color texture segmentation. This framework named as MW3AR,
is based on the weighted combination of segmented results computed at different
resolutions. In essence, the approach is a multi-resolution version of the approach
discussed and presented in [HM06]. In this approach, the segmentation results
from the framework proposed in [HM06] are computed at different resolutions
and then are combined through the modified sum rule.

For unsupervised image segmentation, the authors in [SHZ07], have presented
a hierarchical, discrete and region based probabilistic model for multichannel tex-
ture representation. The image to be segmented is first discretized and then a hi-
erarchical finite-state region-based model is automatically coupled with the data
by means of a sequential optimization scheme, namely the Texture Fragmentation
and Reconstruction (TFR) algorithm. TFR first estimates the states of the finest
level (fragmentation), and then relates them hierarchically (reconstruction) as to
provide the desired hierarchical segmentation.

Here we have discussed salient model based color texture descriptors used
in different applications including classification and segmentation. Besides these
descriptors, several model based algorithms and approaches for color texture seg-
mentation also exist which may not use model based descriptors. Some of these
approaches will be discussed in the chapter 5.

2.2 Color Space Comparison
Choice of the best performing color space for the color texture characterization
(classification and/or segmentation) has been an open question in recent years
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as using one space instead of another can bring considerable improvements in
certain applications of image processing.

The pertinence of carrying out the color texture analysis in different color
spaces is discussed in [CSF05]. The authors herein, propose the use of color
texture classifier combination schemes which utilize information from different
color spaces. They subsequently use suitable measures to investigate the diversity
of the information infused by the different color spaces. In this work they have
used other color spaces in addition to the RGB and its derivative, the normal-
ized RGB (nrgb), and explored their contribution to the classification of 2 sets of
different color texture classes, from two different databases. They also used the
CIEL*a*b and CIEL*u*v* developed to overcome the problem of non-perceptual
uniformity of the RGB color space. Experiments in this work are also carried out
using the HSV color model and two other color spaces, YIQ and YUV.

The results of this diversity based predictive model for color texture analy-
sis are interesting. The authors supported the use of different color spaces as a
diversity inducement method based on the investigated diversity measures. The
authors have also reported a strong correlation between the accuracy and the di-
versity measures in the majority of the ensemble cases investigated in this study.

Once the fact that the choice of a color space can affect the performance of
a given color texture descriptor to a certain degree (depending upon the under-
lying methodology of the descriptor), it becomes more important to search for a
pertinent and suitable color space for color texture analysis.

While comparing two color spaces one can state his particular choice based on
final results for a particular application of color texture analysis i.e. classification,
segmentation or retrieval, for example in [PFJ06], [OMTM02] and [VMP03].
Based on this principle, an empirical evaluation of perceptually uniform color
spaces for color texture classification is presented in [Pas01]. In this work the
author has compared perceptually uniform spaces, such as L*a*b*, as well as
approximately-uniform color spaces, such as HSV, in which measured color dif-
ferences are proportional to the human perception of such differences along with
RGB, a nonuniform color space, universally accepted by the image processing
community. These experimental results state a clear advantage of using percep-
tually uniform color spaces over the RGB color space for color texture classifica-
tion.

The presented color texture classification framework incorporates a family of
Gabor filters specially tuned to measure specific orientations and sizes within each
color texture. Effectiveness of a particular color space is measured by the classifi-
cation performance, as well as by classifier-independent measures. Experimental
results, obtained with a variety of color texture images have shown that incorpo-
rating color into a texture analysis and recognition scheme can be very important
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and beneficial. Overall, perceptually uniform spaces are shown to outperform
RGB in many cases.

A comparison of three perceptual color spaces including HLS, LCH and L*a*b*
for optic disc localization in retinal images is presented in [OMTM02]. An au-
tomatic initialization of the snake and the application of morphology in all color
spaces is proposed in this work. The authors demonstrate that their proposed Lab
color morphology method is particularly suitable for the characteristics of the
used optic disc images.

In [DW01], three gray level texture descriptors including local linear trans-
forms, Gabor filters and co-occurrence matrices are extended for the color texture
analysis. In this work, authors used RGB, HSI, CIE XYZ, CIE Lab and YIQ color
spaces. The reported results state no significant difference in the color space per-
formance. However, comparing only the color texture classification accuracy,
YIQ produces the better results. It is important to note that authors considered
only the classification accuracy as the comparison criterion in this work.

Similarly in [WSLD99], four color spaces including RGB, CIE UVW, YIQ
and K-L color space (based on Karhunen-Loeve transform) are used for wavelet
correlation signature based color texture classification. Here also, only on the ba-
sis of the classification accuracy, it is stated that K-L color space performs better
than other color spaces. In [IMK+04] too, authors have compared six different
color spaces for the identification of colon cancer precursors using color video
endoscopy measurements and Support Vector Machine (SVM) . They also prove
a slight improvement in classification measures in the case of K-L color space
which they attribute to the orthogonality of the space.

The experiments conducted and demonstrated by the researchers on the per-
formance analysis of soft color texture descriptors for surface grading in [LMVMPF08]
indicate the pertinence of using L*a*b* color space for this application using this
particular method. Contrarily authors in [AML08] propose that the color isotropic
co-occurrence matrix (CCM) performed the best for color texture discrimination
in RGB and HSL color spaces and in the La*b* color space, the method could
not effectively discriminate between close color texture samples. However, the
authors in [AML08] do not produce any statistical evidence of this observation.

In this section, we have reported the findings of different researchers with
various color texture analysis methods for diverse applications in numerous color
spaces. It is evident from these illustrations that perceptual color spaces perform
better than nonuniform and highly correlated RGB color space [Pas01], [PFJ06],
[LMVMPF08], [WSLD99] and [DW01]. Another important observation made is
that most of these comparisons are made only on the color texture discrimination
performance of different methods for specific applications. Not much of these
works exploit the a priori known mathematical characteristics of the color space
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transformations to state a hypothesis about the comparison criterion in advance
and to prove it through experimental results afterwards.

2.3 Texture in Satellite Images
Characterization and discrimination of regions and/or objects in satellite images
are the basis for many real world environmental and socioeconomic applications.
This motivation has long attracted the attention of the remote-sensing commu-
nity to carry out the research focusing on satellite image analysis. Scientists and
practitioners have made great efforts in developing advanced classification ap-
proaches and techniques for improving classification accuracy in these images
based on various features including statistical parameters [Aba08], Fourier trans-
form [CCF07], multifractal models [GTYH07], combination of different clas-
sifiers [GW07], pixel block based techniques [LM98], co-occurrence matrices
[MKC88] and model based approaches [SZ06]. A detailed survey of such ap-
proaches and techniques is presented in [LW07].

The different features which have been used in these methods include spectral
signatures, vegetation indices, transformed images, textural or contextual infor-
mation, multitemporal images, multisensor images, and ancillary data. Textu-
ral and contextual information become significant in high spatial resolution data
[SD98]. Hence, the feature of spectral response is the most important informa-
tion used for land-cover classification [LW07]. Several works presented in past
years have used gray level texture descriptors including first-, second-, and third-
order statistics in the spatial domain [NTA02], gray level co-occurrence matrices
[RSS+02] and Gabor filtering [AH03].

Random field models have also been used for the analysis of satellite and
aerial images [SRSD98]. Herein, the authors emphasize the success of the ap-
plication of GMRF models for the spatial information extraction from remote-
sensing images. The authors first extract information at one fixed scale. Then to
analyze the possibly present structures in remote-sensing images, such as agricul-
tural fields, valleys, and geological structures, they apply several Gibbs models at
multiple scales of the image. The authors proposed to use the maximum pseudo-
likelihood and the conditional least squares estimator for the GMRF parameter
estimation. These estimation methods are chosen for being computationally effi-
cient and faster than the conventional parameter estimation methods.

A multi-spectral texture characterization model, the Multi-spectral local dif-
ferences texem (MLDT) , based on Texem model is proposed in [PGGS+09]. This
model is an efficient approach to be used in multi-spectral images that may con-
tain large number of bands. It models the image as a generative process where
a set of image primitives generate the image by superposition of image patches
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from a number of texture exemplars, Texems [XM07]. These texems are com-
puted through a Gaussian mixture. In this case study this Gaussian mixture is con-
sidered to be an MGMM. The MLDT characterization represents the integrated
spatial and spectral information in a single representation through the difference
patterns within a multispectral image.

Another important work presented in [DJG00], discusses the fusion of color
and texture features for aerial image segmentation application. In this approach,
ML segmentation is applied to the image in each feature space (color and gray
level texture) separately. A final segmentation is obtained by combining the like-
lihoods in the two spaces using a certainty function. For texture feature compu-
tation in the intensity information of the image, the authors have made use of the
SAR model discussed in [MJ92]. The texture parameters at each pixel are com-
puted using LS estimation in a finite sized window centered around that pixel.
Then authors propose to compute the multiple resolution SAR models by fitting
these SAR models to down-sampled versions of the image. The color features
computed in this work consist of pixel values in RGB, Yuv, RGBuv, and C5 color
spaces. The C5 color space is a 5 dimensional space defined using the color com-
ponents from RGB color space. Maximum likelihood pixel classification is used
in this approach which is a common supervised image segmentation technique
in the remote sensing domain. In this work authors have assumed a multivari-
ate Gaussian probability distribution for the data and gave a hypothesis that the
reported results could be improved using multimodal probability distributions.

An overview of the methods presented in this section highlights the impor-
tance of spatial and spectral information utilization in the aerial image classifica-
tion and segmentation. Most of the methods proposed in these works are based on
the descriptors and algorithms developed for normal gray level and color images.

2.4 Conclusion
Certain important conclusions can be drawn from the literature survey presented
in this chapter. Comprehensive interpretation of the chromatic texture information
present in the color images is very important for color texture analysis. Although,
a lot of attempts have been made towards the development of the algorithms and
methods for the characterization of color texture images, yet a very few have
succeeded in exploring this information with an efficient and robust manner.

Thus this study of the state of art approaches reinforces the research objec-
tives stated in the previous chapter. Most of the research works discussed in this
survey rely either on the gray level texture information or on weakly established
color texture descriptors. Therefore, one of the main goals of this research study
was to define and develop a multichannel, comprehensive, robust and applica-
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tion independent color texture descriptor which can produce decent results on
different applications of color texture analysis and multispectral satellite image
segmentation. In the following chapters of this thesis report, the development and
computation of our parametric modeling based color texture descriptor is detailed
and then the results for different applications are analyzed and discussed.





CHAPTER 3

COLOR SPECTRAL ANALYSIS

In color image analysis, frequency domain measures are considered to be less
sensitive to noise processes as typical noise processes tend to affect local spatial
variation of the luminance levels but they present uniform distribution in spatial
frequency. The power spectrum information of the color images can be used to
obtain very useful knowledge regarding spatial feature variations as discussed in
[KTB04]. Given this reason, we base our approach for color texture description
on parametric 2D spectral analysis.

This chapter presents the mathematical basis of the parametric color spectral
analysis approach developed for the color texture analysis detailed later in this
thesis. Section 3.1 focuses on the research background of the spectral analysis
method developed during our research. Then, section 3.2 describes the various
color spaces used in this analysis along with the novel two channel complex color
image representation. The derived multichannel linear prediction models em-
ployed for the parametric color spectral estimation are detailed in the section 3.3.
Performance analysis of the color spectral analysis approach is done in the section
3.4. Finally, the section 3.5 concludes the chapter.

3.1 2D Spectral Analysis
In this section, we briefly overview the existing techniques for the spectral content
estimation of 2D signal or image data. In its very core 2D spectral analysis meth-
ods are the extension of classical 1-D methods developed in last three decades.
Classically, there exist two major types of spectral analysis algorithms which we
will overview in the following subsections.
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3.1.1 Non-Parametric Spectral Estimates
The traditional or non-parametric methods are called so because they do not rep-
resent any modeling of the underlying 2D process. These are the ones which are
derived from the definition of the Power Spectral Density (PSD) of a 2D pro-
cess. Two important methods belonging to this category are the periodogram and
correlogram.

The reason of the general acceptance and wide usage of periodogram as a
spectrum estimator is the simplicity of its implementation. This simplicity relies
on the algorithm resources of 2D Fast Fourier Transform (FFT) . In this technique,
the generalized form PSD ŜPX (ν1, ν2) estimated over a grid of discrete, normal-
ized frequency set (ν1, ν2), of the 2D sequence x = {x (n1, n2)}(n1,n2)∈Λ⊂Z2

where Λ is the finite 2-D image lattice region of size |Λ|, is given as:

ŜPx (ν1, ν2) = 1
N1N2

∣∣∣∣∣
N1−1∑
n1=0

N2−1∑
n2=0

w (n1, n2)x (n1, n2) exp (−j2π (ν1n1 + ν2n2))

∣∣∣∣∣
2

= 1
N1N2

|FT (w, x)|2
(3.1)

Here, the signal w (n1, n2), also defined on the same grid as of x (n1, n2) is a
deterministic function with respect to a rectangular window and is hence called
window function. Utilization of this signal reduces power of the side lobes but
often widens the main lobe itself, consequently reducing the resolution of the
PSD estimate considerably. These window functions are separable i.e. obtained
from their equivalent functions in 1-D. Some important window functions include
Hamming, Hanning, Bartlett and Parzen windows. In [Gar08], it is demonstrated
that this estimator is not consistent.

The second method in the family of non-parametric spectral estimators is the
correlogram technique which is also known as Blackman-Tukey spectral estima-
tor [BT59]. The 2D correlogram can be computed if we take the definition of the
PSD of a process and replace the autocorrelation function (ACF) theory by one of
the estimates observed by a window function. This estimate can be given as:

ŜCx (ν1, ν2) =

F1∑
f1=−F1

F2∑
f2=−F2

w (f1, f2) γ̂x (f1, f2) exp (−j2π (ν1f1 + ν2f2))

(3.2)
where γ̂x (f1, f2) is an ACF estimation resulting from an outcome of the process
x (n1, n2). A detailed overview on this estimation and the selection of window
function can be found in [Gar08].

Although these two are the classically used spectral estimation methods yet
they suffer from the same drawback. Same as due to FT in the 1-D domain, the
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spectral resolution of these methods is inversely proportional to the duration of
the signal. Thus, the use of traditional or non-parametric methods is justified only
in the cases where we have sufficient size of the observed wide sense stationary
(WSS) process [Gar08]. In fact, in most of the real world applications, this con-
dition is not met and hence the use of these methods as precise spectral analysis
methods is limited.

3.1.2 Parametric Spectral Estimates

In the case of parametric spectral analysis methods, the PSD is parametrized and
is generally a deterministic function of reduced, unknown parameters of the un-
derlying 2D single or multichannel data (gray level or color image in our case)
observation model. This comes through the fact that these parametric spectral
estimation methods are based on the PSD modeling of the random fields.

A 2D centered, random process represented by a sequence x = {xn}n∈Λ⊂Z2

where n = (n1, n2) ∈ Λ ⊂ Z2 in which Λ is the finite 2D lattice region of size
|Λ|, following a linear prediction model can be defined through the prediction
sequence:

x̂n = −
∑
m∈D

amxn−m. (3.3)

as
xn = x̂n + en. (3.4)

where m = (m1,m2) ∈ D ⊂ Z∗2 is a point inside the neighbor support region
defined by D, the prediction support. am, m ∈ D, are coefficient vectors and
e = {en}n∈Z2 is the prediction error sequence which is supposed to be a 2D
stationary process having a variance denoted by σ2

e and PSD denoted by Se,ν .
Prediction neighborhood support D may be of QP, NSHP, symmetric half plane
or non-causal type. In the case of GMRF i.e. non-causal neighborhood support
and e a Gaussian process, the hypothesis over the noise sequence is changed and
it is considered as a correlated noise sequence.

The PSD of x is computed using 2D linear prediction model coefficient vec-
tors am, m ∈ D, and may be given as:

Ŝ (ν) =
σ2
e

1 +
∑

(m1,m2)∈D

am1,m2 exp (−j2π (ν1m1 + ν2m2))
(3.5)

where ν = (ν1, ν2) is the normalized frequency. The error en is an outcome of a
centered 2D white noise e in a linear time invariant system with transfer function
given as:
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H (z1, z2) = σ2
e

1+

∑
(m1,m2)∈D

am1,m2z
−m1
1 z−m2

2

= 1
A(z1,z2)

(3.6)

It is to note that this is the frequency response of the filter defined by the Equation
(3.4). It is evident here that the PSD can be estimated as a deterministic function
of model parameters {am}m∈D and variance σ2

e of the error sequence.
Hence the problem of spectral estimation of 2D signals i.e. gray level images

in this case, by AR modeling has reduced to find an estimate {âm}m∈D of param-
eters with a finite neighborhood support region D and an estimate of the input
noise variance σ̂2

e .
Contrary to the 1-D processes, where the number of the model parameters is

the same as the number of ACF coefficients [Cas06], there is no corresponding
correlation matching property for 2D AR processes. As, estimation of parameters
requires more ACF coefficients than the parameters themselves [Gar08]. There-
fore, simpler and efficient parameter estimation techniques like partial correlation
or reflection coefficients have been developed for these models in 2D case in-
stead of developing the 2D extension of ACF estimation based 1-D Yule-Walker
equations. Some of these are extensions of their 1-D versions as well, yet are
computationally effective. The most frequently used techniques among these in-
clude the maximum likelihood estimation (MLE) , LS solution of the linear sys-
tem of equations, Levinson algorithm [Jus77], and the calculation of reflection
coefficients [Mar80].

Several research works presented in the literature have used these methods for
different applications for gray level images. In [CHK83], model based Spectrum
estimation of a 2D single channel real valued sequence i.e. gray level image is
proposed through 2D GMRF model has been discussed. This work gave a basic
idea to the domain but the method is not able to deal with 2D multichannel data,
neither real nor complex. Again in [ZL88], the authors analyzed the approach and
provided a synthesis of the performance of these methods for 2D single channel
complex valued data. In [TES99], the authors presented a 2D multichannel au-
toregressive model based method for the spectrum estimation of the real valued
multichannel data. The authors calculated the autospectra and the cross spectra
of the 2D multichannel data using forward and backward AR models. Since the
method is discussed for the real valued multichannel case, therefore the method
is not very well suited for the polar representations of color images (cf. section
3.2).

Thus, the main advantages of 2D spectral estimation by the means of 2D AR
models are:
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• Complexity of the problem is reduced as the problem of PSD estimation
is now reduced to the model parameter estimation which includes the AR
coefficients {âm}m∈D and the variance σ̂2

e .

• The spectral estimates computed through these methods are stable and less
noisy.

• These belong to a family of methods known as high resolution methods
as the resolution of these estimates is much better than those of the non-
parametric methods [Gar08]. This is one of the most important advantage
of these methods which makes them widely acceptable for the application
where high resolution spectral estimates are required e.g. radar signal pro-
cessing and radioastronomy.

Besides these advantages, these methods based on NSHP AR and QP AR mod-
els inherit some undesired properties also. One of which is the dissymetry of
the energy around the spectral peaks i.e. shape of the estimated frequency lobes
becomes dependent on the type of neighborhood D, used for the estimation of
model parameters [Gar08]. The phenomenon of spurious peaks also exhibit in
the case where the model order i.e. the size of the neighborhood D, is over esti-
mated [Cas06].

To resolve all these problems a parametric spectral estimator was proposed
in [JC79, KT81]. The authors named this estimator as the harmonic mean (HM)
estimator and is defined by the following relation [Gar08]:

1

ŜAR−HM (ν)
=

1

2

(
1

ŜQP1 (ν)
+

1

ŜQP2 (ν)

)
(3.7)

where ŜQP1 (ν) and ŜQP2 (ν) are the PSD values estimated using AR modeling
with respective neighborhood supports in the first and second QPs. As it is clear
that a stochastic AR model can not be computed over two mutually exclusive
neighborhood support regions, therefore this estimate rests as an empirical spec-
tral estimate. The advantageous properties of this estimator and its variants have
been used frequently in different research works [ZL88, ACRN98, Law85].

In this section we have very briefly discussed some of the salient and fre-
quently used approaches and methods for parametric and non-parametric spectral
analysis of the 2D data either signal or gray level image. A more detailed study
and analysis on all the existing methods can be found in [Gar08].
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3.2 Two Channel Complex Color Image

Since the spectral content of an image can be a very useful tool (if rightfully ex-
ploited) for characterizing the spatial variations in an image, hence we base our
proposed approach for the comprehensive and robust color texture description on
the multichannel real and complex valued extensions of random field theory based
precise 2D parametric spectral estimates of the color images. In order to develop
the approach we adopt the given real valued color image into a two channel com-
plex valued color image in perceptual color spaces. The details of the choice of
candidate color spaces for this study, the two channel complex color image for-
mation and the approach for parametric color spectral analysis will be presented
in this section.

3.2.1 The Candidate Color Spaces

A color space is a mathematical model which provides the data representation
of a digital color image as color components. As it provides the very prelimi-
nary mathematical interpretation of the underlying information in an image, hence
plays a very important role in all the domains of color image processing. Since the
advent of color images, large number of color spaces have been proposed by the
researchers based on the different mathematical characteristics of the information
representation, whether or not related to the perception of color in human vision.1

The two important objective functions around which these different color spaces
have revolved are device independence and uniformity in perception (in the case
of perceptual color spaces). Device independence means that the mathematical
representation of the color information offered by a color space should be inde-
pendent of the device used. Perceptual uniformity determines that the two colors
should have as much distance between them in a color space as they are distinct
in the human perception.

Similar to other color image processing application areas, for color texture
analysis too, the selection of a proper color space is of high importance and should
be given proper attention. Selection of the most suitable color space is highly
subjective to categorization of all the available color spaces. In [VMP03], authors
propose to group the most classical color spaces into four main families, namely:

• The primary color spaces, which are based on the trichromatic theory, as-
suming that it is possible to match any color by mixing appropriate amounts
of three primary colors. These include (RC ,GC ,BC), (RE ,GE ,BE), (RF ,GF ,BF )
and (X,Y,Z) etc.

1www.couleur.org
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• The Luminance-Chrominance color spaces (L*,a*,b*), (L*u*v*), where
one component represents the luminance and the two others the chromi-
nance including (Y ,U ,V ), (Y ,I ,Q) etc.

• The perceptual color spaces, which try to quantify the subjective human
color perception using the intensity, the hue and the saturation e.g. (H,S,I),
(L,C,H), (H,L,S) etc.

• The independent axis color spaces resulting from different statistical meth-
ods which provide as less correlated components as possible like (I1,I2,I3)
and K-L color space.

In [VMP03], the authors have also discussed the concept of an adapted hybrid
color space which is built by the means of a sequential feature selection scheme.
In another work [Pas01], the author discussed the role of perceptually uniform
color spaces for the characterization of color textures. In this evaluation, the
author indicated on the basis of his experimental results that the perceptually uni-
form color spaces perform better than the classical RGB color space for color
texture classification problem.

The categorization of the available color spaces discussed in [VMP03] and the
results of the study presented in [Pas01] have influenced our choice of the color
spaces. As discussed in [VMP03], the first three families of the color spaces i.e.
the primary, the Luminance-Chrominance and the perceptual color spaces are the
most widely used color space families in color image processing applications. We
have chosen one representative color space from each of these three families for
the color spectral analysis presented in this chapter and subsequently for the color
texture analysis detailed in this thesis. Other representatives of these families
might also be considered.

Red Green Blue Color Space

The RGB color space and its different variants belong to the first family and are
the most widely used color spaces in computer applications and image processing.
In this study we have used the standard RGB color space [SBS99]. It is defined
by the three chromaticities of the red, green, and blue additive primaries, and
can produce any chromaticity that is the triangle defined by those primary colors.
The RGB color space can be represented by a cube as shown in Figure 3.12.
This space is easier to use for color image analysis but all possible colors can
not be represented in this color space. Also, this color space is non-uniform as
the color distances computed in it are not correlated to the human perception. In

2http://www.couleur.org/
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Figure 3.1: RGB color space.

an RGB image whose colors are defined as vectors [R,G,B]T , each term R, G
and B of the vectors belongs to the interval [0, 255]. However the normalised
values of these color vectors belong to [0, 1]. Thereby all colors are included in
a cube [0, 1] × [0, 1] × [0, 1]. In this representation, luminance and chrominance
components are not explicitly defined and all the three color variables i.e. R, G
and B contain the combined information of luminance and chrominance.

Improved Hue Luminance and Saturation Color Space

Many color space conversion systems define a saturation coordinate which is de-
pendent on the brightness coordinate of the image and hence are not very suitable
for image analysis applications. To overcome this shortcoming of conversion sys-
tems, an improved saturation measurement is presented in [HS03]. This improved
saturation measurement has following two advantages :

1. It always has small values for achromatic colors.

2. It is independent of brightness values.

The 3D representation of RGB cube in IHLS color space is shown in Figure 3.2.
Let us consider an RGB color image defined by the RGB vector (cf. 3.2.1). For
this RGB image, Luminance, Saturation and Hue values in IHLS color space can
be computed as given in the appendix A.
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Figure 3.2: IHLS color space.

L*a*b* Color Space

L*a*b* is a uniform color space based on human perceptual system. It is defined
by CIE in [CIE86]. L*a*b* color gamut is shown in Figure 3.33. The transforma-

Figure 3.3: L*a*b* color space.

tion from the RGB color space to the L*a*b* color space is performed by the set
of equations given in appendix A.

The degree of decorrelation of luminance and overall chrominance informa-
tion offered by a given color space plays a very important role in the characteri-
zation of color textures. Therefore, we are interested in the individual analysis of
chrominance as well as luminance spatial structure information in color images.

3http://www.couleur.org/
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We use an adapted complex two channel color image representation. Details of
this image representation are given in the next section.

3.2.2 Complex Color Image
We use the color information obtained through RGB to IHLS and RGB to L*a*b*
transformations to build a two channel image that contains pure luminance values
in one channel and complex chrominance values in the other channel. We define
this chrominance value as a complex function depending upon two chrominance
variables H and S in the case of IHLS while a* and b* in case of L*a*b*. The
combined chrominance exponential for IHLS color space is defined as:

C = S × exp
(
j ×

( π

180

)
×H

)
(3.8)

where H is the hue and S is the saturation value obtained after the RGB to IHLS
transformation (cf. section 3.2.1). While in the case of L*a*b* this combined
chrominance function can be computed as:

C = a∗ + j × b∗ (3.9)

where a∗ and b∗ are two chroma variables obtained from RGB to L*a*b* trans-
formation (cf. section 3.2.1). We obtain a complex representation of chrominance
content of the image whose spectrum is interesting to analyze in order to charac-
terize the spatial variations of the chromatic part of the image. Now the image to
be analyzed consists of two 2D channels in which first channel contains the lu-
minance information and second is complex valued channel containing combined
chrominance information and is expressed as:

xn =

[
ln
cn

]
(3.10)

where ln ∈ R and cn ∈ C and n is a pixel location n = [n1, n2]T ∈ Λ ⊂ Z2 in
which Λ is the finite 2D image lattice region of size |Λ|.

As it is evident that the methods discussed in the section 3.1 are unable to
model this vectorial complex valued image, therefore we develop the complex
vectorial extensions of the parametric models discussed in the section 3.1.2.

3.3 Complex Vectorial Color Spectral Analysis
Given a 2D multichannel complex, stationary (each channel is assumed jointly
stationary) random process represented by a vector sequence X = {Xn}n∈Z2
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with dimension P representing the number of channels, following a linear predic-
tion model can be defined through the prediction sequence:

X̂n = −
∑
m∈D

Am (Xn−m − µ). (3.11)

as
Xn = X̂n + En + µ. (3.12)

where µ is the mean, and m = (m1,m2) ∈ D ⊂ Z∗2 is a point inside the
neighborhood support region defined by D. In this complex vectorial case, Am,
m ∈ D, are P × P complex coefficient matrices and E = {En}n∈Z2 is 2D
complex P channel prediction error sequence which is supposed to be a 2D P
channel stationary process having a P × P complex covariance matrix denoted
by Σe and PSD matrix denoted by Se,ν where ν = (ν1, ν2) is the normalized
frequency, ν ∈ [−0.5, 0.5]2.

The transfer function of the filter defined by the Equation 3.11 can be written
as:

Hν = (Aν)
−1 (3.13)

where Aν are P × P matrices computed using 2D multichannel complex linear
prediction model coefficient matrices Am, m ∈ D given by:

Aν = I +
∑
m∈D

Am exp (−j2π〈ν,m〉) (3.14)

In Equation (3.14), I is an identity matrix of dimensions P × P which repre-
sents the coefficients at origin (0, 0) and < ., . > represents scalar product. The
PSD matrix X is computed through these P × P dimensional matrices Aν in the
normalized frequency domain, and may be given as:

Sν = A−1
ν Se,ν

(
AHν
)−1

(3.15)

In Equation (3.15), Sν denotes the PSD matrix of the 2D vectorial random
process X at normalized frequency ν. AHν represents the hermitian transpose of
the matrix Aν .

For the color images defined by Equation (3.10), P = 2. The PSD for a 2D P
channel random process defined by Equations (3.11) and (3.12) is computed using
Equation (3.15) and Equation (3.14). The PSD matrix gives us the auto spectra
and the cross spectra of the luminance and the combined chrominance channels.
The structure of this PSD matrix is given as:

Sν =

[
SLL (ν) SLC (ν)
SCL (ν) SCC (ν)

]
(3.16)
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where SLL (ν) denotes the auto spectrum of real valued luminance channel and
SCC (ν) denotes the autospectrum of the complex valued chrominance channel,
while SCL (ν) = S∗LC (ν) are the cross spectra of the luminance and chrominance
channels respectively.

For RGB color space, basic approach remains the same. Since the model is
a 2D multichannel real linear prediction model with P = 3, therefore the PSD
matrix structure in this case is given as:

Sν =

 SRR (ν) SRG (ν) SRB (ν)
SGR (ν) SGG (ν) SGB (ν)
SBR (ν) SBG (ν) SBB (ν)

 (3.17)

where SRR (ν) , SGG (ν) and SBB (ν) , denote the auto spectra of real valued red,
green and blue channels respectively while rest are the cross spectra of these three
real valued channels.

In the following, the power spectrum estimation of two channel complex color
images is done using 2D multichannel complex versions of both causal and non-
causal prediction models. These include NSHP AR, 2D multichannel complex
QP AR via HM method and 2D multichannel complex GMRF prediction models.
Details of these models are given in the following subsections.

3.3.1 Causal Models
The notion of causality is defined very clearly for 1-D systems as: A system is
said to be causal if its output does not precede its input. However for dimensions
higher than 1-D i.e. Zn with n ≥ 2, it becomes very difficult to establish the
strict concept of causality as time (the support dimension of 1-D signals) which
makes it possible in 1-D case disappears. This past and future notion of 2D data
is established by making a hypothesis that there exist non-trivial relations of finite
partial order between data points. This hypothesis allows us to consider different
causal neighborhood supports for 2D multichannel linear prediction. Here we
consider the NSHP and QP neighborhood support based 2D multichannel linear
prediction models.

2D Multichannel Complex NSHP AR Model

A multichannel 2D NSHP AR process is defined by Equation (3.11) and Equation
(3.12) with a neighborhood support region D = DNSHP

M1,M2
such that:

DNSHP
M1,M2

= {(m1,m2) /1 ≤ m1 ≤M1 for m2 = 0,

−M1 ≤ m1 ≤M1 for 1 ≤ m2 ≤M2}
(3.18)
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Figure 3.4: NSHP neighborhood support region for model order (M1,M2) with M1 = 2 and
M2 = 2.

where (M1,M2) ∈ N2 is the model order and in the case of 2D NSHP AR
model, E = {En}n∈Z2 is supposed to be a multichannel white noise stationary
process having Se,ν = Σe which in the case of IHLS and L*a*b* color spaces is
a 2× 2 complex matrix as P = 2 and a 3× 3 real matrix in the case of RGB color
space, as P = 3. An example of such neighborhood support region is shown in
Figure 3.4.

We use least squares estimation method to estimate the model parameters by a
matrix solution of a system of normal equations using Moore-Penrose pseudoin-
verse matrix.

Then these multichannel 2D NSHP AR model coefficients denoted byANSHPm

are used to estimate the PSD matrix of the real valued luminance and the complex
valued chrominance channel. As E is supposed to be a multichannel white noise
therefore the estimate of PSD matrix for 2D multichannel complex NSHP AR
model takes the form:

ŜNSHPν = ÂNSHP
−1

ν Σ̂e

(
ÂNSHP

H

ν

)−1

(3.19)

where the matrix ÂNSHPν can be estimated using ANSHPm through the Equation
(3.14). The structure of this PSD matrix is the same as given in Equation (3.16).
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2D Multichannel Complex QP AR Model

2D multichannel complex QP AR model is defined by Equation (3.11) and (3.12)
for which the causal QP1 and QP2 neighborhood support regions are defined as
follows:

DQP1

M1,M2
= {(m1,m2) /0 ≤ m1 ≤M1,

0 ≤ m2 ≤M2, (m1,m2) 6= (0, 0)}
(3.20)

DQP2

M1,M2
= {(m1,m2) /0 ≥ m1 ≥ −M1,

0 ≤ m2 ≤M2, (m1,m2) 6= (0, 0)}
(3.21)

An example of QP 1 and QP 2 neighborhood support regions is shown in Figure
3.5. These 2D QP1 AR and 2D QP2 AR complex parameter matrices denoted by
AQP1
m and AQP2

m are again estimated by a matrix solution of a system of normal
equations through Moore-Penrose pseudoinverse matrix.
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Figure 3.5: QP 1 andQP 2 neighborhood support regions for model order (M1,M2) withM1 =
2 and M2 = 2.

For 2D multichannel complex QP AR model also, we have Se,ν = Σe which
consequently gives us two 2 × 2 complex matrices Σe,1 and Σe,2 for each of the
quarter planes as P = 2 for IHLS and L*a*b* color spaces and two 3 × 3 real
matrices in the case of RGB color space. The 2D PSD matrices estimated with 2D
AQP1
m and AQP2

m parameters have a general form same as expressed in Equation
(3.19) and can be written as:
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ŜQP1
ν = ÂQP1

−1

ν Σ̂e,1

(
ÂQP1

H

ν

)−1

(3.22)

and

ŜQP2
ν = ÂQP2

−1

ν Σ̂e,2

(
ÂQP2

H

ν

)−1

(3.23)

where the matrices ÂQP1
−1

ν and ÂQP2
−1

ν can be estimated using the complex co-
efficient matrices AQP1

m and AQP2
m through the Equation (3.14) with D = DQP1

M1,M2

and D = DQP2

M1,M2
respectively.

Besides the desired inherited characteristics presented by the parametric spec-
tral estimates computed through these multichannel complex causal models i.e.
both NSHP AR and QP AR, they also inherit the problems of their 2D scalar
versions. These include:

• Highly conditioned estimate of PSD, even at higher model orders.

• Optimal frequency localization is compromised.

• Dissymetry of energy due to the particular form of the neighborhood sup-
port region.

To resolve all these problems we propose the matrix version of the idea proposed
in [JC79, KT81, ACRN98]. We propose to use the HM estimate being computed
through the two causal neighborhood support regions. Mathematically this HM,
over the two estimated PSD matrices is calculated as:

ŜQPHMν =

[
1

2
×
(
ŜQP1

−1

ν + ŜQP2
−1

ν

)]−1

(3.24)

where ŜQP1
ν and ŜQP2

ν are the 2D PSD matrices estimated using Equations (3.22)
and (3.23) respectively. As stated in [Gar08] for 2D scalar version of this esti-
mate, the matrix version also is an empirical estimation yet it exhibits following
advantages (cf. section 3.4):

• PSD anisotropy shown by causal models is significantly reduced.

• Spurious lobes disappear.

• Spectral resolution of the estimate is increased.
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3.3.2 Non-Causal Models
It is possible that an observation in a 2D random field may depend on its neighbor-
ing observations in all directions unlike the case in NSHP or QP AR model and
thus making the model non-causal. There exist the possibilities for AR models to
have a non-causal supports, examples of which are 2D AR with non-causal neigh-
borhood support region [Gar08] and 2D SAR models [MJ92]. Here we consider
a special case of linear prediction models models with non-causal neighborhood
support region i.e. 2D GMRF model [Gar08].

2D Multichannel Complex GMRF Model

A multichannel 2D GMRF process is defined by the Equations (3.11) and (3.12).
For a model order M , D = DGMRF

M is a non-causal, symmetric neighborhood
excluding the origin (0, 0) such that if

{
m ∈ DGMRF

M

}
then

{
−m ∈ DGMRF

M

}
.

Such a support is defined as:

Ω1 =

{
m, argmin

m6=(0,0)

‖m‖2

}
(3.25a)

Ωk =

m, argmin
m/∈

⋃
1≤p≤k−1

Ωp

‖m‖2 ,m 6= (0, 0)

 , k > 1 (3.25b)

DGMRF
M =

⋃
1≤k≤M

Ωk (3.25c)

where ‖m‖2 =
√
m1

2 +m2
2. An example for such neighborhood support re-

gion is shown in Figure 3.6. In the case of 2D multichannel complex GMRF
E = {En}n∈Z2 is a 2D multichannel complex Gaussian correlated noise sequence
which has a P × P covariance matrix denoted by Σe. GMRF model parameter
matrices AGMRF

m are estimated again by solving a system of normal equations
using the least squares method. These GMRF model parameters are then used to
estimate the PSD matrix of the process X . It can be verified that the PSD matrix
for the 2D multichannel complex valued GMRF is given as:

ŜGMRF
ν = Σe ×

(
AHν
)−1

(3.26)

where Aν is given by Equation (3.14), leading to:

Se,ν = AνΣe (3.27)

This shows that E is a correlated noise sequence. As in the case of 2D NSHP AR
spectrum estimation, the PSD matrix contains both the auto and cross spectra of
the luminance and chrominance channels as given in Equation (3.16).
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Figure 3.6: GMRF neighborhood support region for model order M with M = 3.

3.4 Experiments and Results

To validate experimentally, the conceived theoretical approach of using two di-
mensional multichannel complex random field models as precise spectrum esti-
mators, large number of experiments were performed. These included simulations
for the estimation of model parameters and consequently the estimation of power
spectrum using multichannel complex versions (proposed in the section 3.3) of
2D NSHP AR, 2D QP AR model via HM method and 2D GMRF models. Exper-
imental procedures for these simulations and the obtained results are presented
in the next subsections. The approach is evaluated on the two notions of spectral
estimator comparison and the used color space comparison.

3.4.1 Sinusoidal Data - The Chroma Sinusoids

To have a preliminary evaluation of the color spectral estimation approach on the
proposed two channel complex color image (cf. section 3.2), two such images
were simulated through 2D two channel sinusoidal image data. These sinusoidal
images were generated supposedly being in the perceptual color space under con-
sideration i.e. IHLS or L*a*b* in the following manner:
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A 2D real sinusoid x1 = {x1,n}n∈Λ was generated to simulate the real valued
luminance channel of the two channel image expressed by the Equation 3.10:

x1,n = Ar cos (2π〈n, νr〉+ φr) (3.28)

where Ar, νr and φr are the amplitude, frequency and phase angle of the real
sinusoid respectively. Another complex sinusoid x2 = {x2,n}n∈Λ was generated
to simulate the complex valued chrominance channel as :

x2,n = Ac exp (jφc)× exp (j2π〈n, νc〉) (3.29)

where Ac, νc and φc are the amplitude, frequency and phase angle of the complex
sinusoid respectively. We term this complex 2D sinusoid as the Chroma Sinu-
soid. It contains the pure color information and forms the complex combined
chrominance channel of the two channel sinusoidal test images. These real and
complex 2D sinusoids are stacked together to simulate the two channel complex
color image.

One way for spectral analysis of such images could be to analyze these images
directly, but this would give us negligible information about the characteristics of
the color transformations. To avoid this we proceed in the following way:

1. Generate the two channel complex color image supposedly in one of the
perceptual color spaces i.e. IHLS or L*a*b* by generating 2D sinusoids
using Equations (3.28) and (3.29) and stacking them together.

2. Convert the two channel image to RGB color space using IHLS to RGB or
L*a*b* to RGB (whichever applicable) transformation.

3. Add RGB Gaussian noise to this RGB image in such a way that the final
noisy RGB image has a controlled signal to noise ratio (SNR) .

4. Convert this noisy RGB image to the perceptual color space in which it was
generated in step 1 using RGB to IHLS or RGB to L*a*b transformation.

5. Use the Equations (3.8) or (3.9) with the Equation (3.10) to form the final
two channel complex noisy sinusoidal color image.

Examples of such noisy sinusoidal images in RGB color space i.e. the ones
computed after the step 3 in IHLS and L*a*b* color spaces are shown in Figures
3.7a and 3.7b for which (Ar = 0.5 and Ac = 0.5), (φr = 30◦ and φc = 30◦) and
(νr = (0.3,−0.1) and νc = (0.1,−0.3)). The RGB converted chroma sinusoids
associated to these images in respective color spaces are shown in Figures 3.7c
and 3.7d for which luminance is kept constant. These images in Figure 3.7, i.e.
for both noisy sinusoids and chroma sinusoids, νc is reduced by a factor of 10
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(a) Noisy sinusoid in IHLS color space (b) Noisy sinusoid in L*a*b* color space

(c) Chroma sinusoid in IHLS color space (d) Chroma sinusoid in L*a*b* color space

Figure 3.7: RGB converted noisy Sinusoidal images and their respective chroma sinusoids
supposedly generated in IHLS and L*a*b* color spaces. For 3.7a and 3.7b, (Ar = 0.5 and
Ac = 0.5), (φr = 30◦ and φc = 30◦) and (νr = (0.3,−0.1) and νc = (0.01,−0.03)).

for better visualization of the chromatic spatial variations characterized by this
sinusoid.

In the next subsection we present the performance comparison and analysis
of the different parametric color spectral estimators proposed in the section 3.3.
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3.4.2 Spectral Estimator Performance Analysis
The comparison and performance analysis of the different 2D complex multichan-
nel parametric models for color spectral analysis can be carried out based on two
criteria:

• Visual analysis i.e. To analyze the symmetry of the energy in the estimated
spectra around the sinusoidal frequency peak, presence of spurious peaks
etc.

• Statistical analysis i.e. To generate sufficient number of sinusoidal image
samples and analyze the estimation accuracy by comparing different param-
eters for these estimates. These spectra are continuous in nature. Therefore
one has to use a method for multidimensional constrained/unconstrained
minimization to evaluate the accuracy of the spectral estimates in terms of
estimated amplitude as well as frequency localization. Here, we used a
widely known direct search method, named as the Nelder-Mead simplex
algorithm, stated in [LRWW98].

Visual Comparison

For the visual analysis, PSD estimates for the sinusoidal image generated through
the procedure stated in the section 3.4.1 are generated. The PSD estimates for this
image computed using different models discussed in the section 3.3, in IHLS and
L*a*b* color spaces are shown in Figures 3.8 and 3.9 respectively.

In Figures 3.8 and 3.9, the first row (3.8a and 3.9a) shows the sinusoidal test
image in IHLS and L*a*b* color spaces respectively. The second rows of both
these figures show the magnitude spectrum of the luminance (3.8b and 3.9b) and
the chrominance (3.8c and 3.9c) channels of the respective sinusoidal images.
These magnitude spectra are computed through 2D FFT applied on the luminance
and the chrominance channels of each image separately. Third rows show the auto
spectra estimates of the luminance (3.8d and 3.9d) and chrominance (3.8e and
3.9e) channels using 2D multichannel GMRF model of order 14 in the two color
spaces. Luminance (3.8f and 3.9f) and chrominance (3.8f and 3.9f) autospectra
estimated using 2D multichannel NSHP AR model of order (4, 4) are shown in
the row four of these figures. Row five shows the estimates for luminance (3.8h
and 3.9h) and chrominance (3.8i and 3.9i) channels using 2D multichannel QP
AR model via HM method of order (4, 4). The model orders for these models
are chosen in such a way that the number of free parameters remain the same and
hence to facilitate the comparison between the different models.

Analyzing the different spectral estimates certain observations regarding the
nature of the model used can be made. It is to note that, the parameters of both
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(a) Test image

2D FFT

Luminance Chrominance

(b) (c)

GMRF

(d) (e)

NSHP AR

(f) (g)

QP AR via HM

(h) (i)

Figure 3.8: The sinusoidal test image (3.8a) in IHLS color space and the magnitude spectrum
of the luminance 3.8b and the chrominance 3.8c channels computed through 2D FFT are shown.
Also, auto spectra estimates of these two channels using GMRF model of order 14 (3.8d and 3.8e
respectively),NSHP AR model of order (4, 4) (3.8f and 3.8g respectively), QP AR model via HM
method of order (4, 4) (3.8h and 3.8i respectively) are presented.

the causal models are estimated using the Least Squares Estimation (LSE) . For
these causal models we assume the process to be Gaussian, therefore the LSE of
model parameters is the same as the MLE. In the case of NSHP the estimates
of sinusoidal frequency peaks have elongated shape (Figures 3.8f, 3.8g, 3.9f and
3.9g). For QP AR model via HM method, the effect of harmonic mean being
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(a) Test image

2D FFT

Luminance Chrominance

(b) (c)

GMRF

(d) (e)

NSHP AR

(f) (g)

QP AR via HM

(h) (i)

Figure 3.9: The sinusoidal test image (3.9a) in L*a*b* color space and the magnitude spectrum
of the luminance 3.9b and the chrominance 3.9c channels computed through 2D FFT are shown.
Also, auto spectra estimates of these two channels using GMRF model of order 14 (3.9d and 3.9e
respectively),NSHP AR model of order (4, 4) (3.9f and 3.9g respectively), QP AR model via HM
method of order (4, 4) (3.9h and 3.9i respectively) are presented.

computed on two opposite quadrants of neighborhood support region gives us a
much precise frequency estimate of the frequency peak with a good circular shape
(Figures 3.8h, 3.8i, 3.9h and 3.9i). These behaviors of 2D multichannel complex
versions of these models are same as of their 2D scalar versions [Gar08].
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In the case of the GMRF model, symmetry of the neighborhood support re-
gion around a pixel gives us a well circular shape but rather in the form of a larger
lobe (Figures 3.8d, 3.8e, 3.9d and 3.9e). This larger lobe represents a less pre-
cisely estimated location of the frequency peak despite of a symmetric, non-causal
neighborhood support region having same number of free model parameters used
to predict each observation as compared to the causal AR models. This larger
lobe also depicts the low frequency resolution of the estimated spectra using the
LSE for GMRF model parameter estimation.

Statistical Comparison

To compare statistically, spectrum estimation given by the three models presented
above, a number of tests were carried out on multichannel sinusoidal images of
size n × n, where n ∈ {24, 32, 40, 48, 56, 64}. Use of different image sizes for
spectral analysis permits to study the effects of the total number of observations
on spectral estimates. The image size n, is limited to 64×64 to counter the heavy
computational loads of spectral estimates, yet these sizes give us a precise idea
about spectral estimates of the different image sizes. For each value of n, twenty
images of the same amplitude (Ar = 0.5 and Ac = 0.5), (φr = 30◦ and φc = 30◦)
and (νr = (0.3,−0.1) and νc = (0.1,−0.3)) were generated to serve as a test
set, using twenty different multichannel noise sequences. The spectral estimates
were computed for three different levels of the SNR i.e. SNR ∈ {−3, 0, 3} dB.
This configuration of parameters provided us a total of 720 images for the two
considered color spaces, for each model. These image sizes and test parameters
are the same as the ones used in [Gar08] for parametric spectral analysis through
2D single channel real linear prediction models.

The mean error plots for horizontal and vertical frequency estimates of both
luminance and chrominance channels of the generated sinusoidal images in IHLS
and L*a*b* color spaces are shown the Figures 3.10, 3.11, 3.12 and 3.13 respec-
tively. While the log variance of the estimation error for horizontal and vertical
frequency estimates of both luminance and chrominance channels of the gener-
ated sinusoidal images in IHLS and L*a*b* color spaces are shown in Figures
3.14, 3.15, 3.16 and 3.17 respectively.

It is important to note that the results obtained for both log variance and mean
error over such a large database of 2D complex multichannel sinusoidal images
correspond very well to the results obtained from the 2D single channel real linear
prediction models applied in [Gar08]. This coherence of both the results provides
an experimental validation to the theoretical basis of the approach being adopted
for multichannel complex versions of the discussed models.

We can see that for all of the models, as the number of observations i.e. im-
age size in our case, increases, the mean error of the spectral estimate decreases.
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SNR −3 dB

Horizontal Frequency Vertical Frequency

SNR 0 dB

SNR 3 dB

Figure 3.10: Mean Error plots of horizontal and vertical frequency estimates against the varying
image size n, for luminance channel in IHLS color space, for different values of SNR.

This proves the estimation method to be correct. This statistical comparison in-
dicates that QP AR model via HM method gives us the best results in terms of
the mean error of both horizontal and vertical frequency estimates. In the case of
2D complex multichannel NSHP model, non-symmetric neighborhood support
region along horizontal and vertical axis of the image gives us a scale shift in the
curve although the basic tendency of curve is preserved in both type of plots. For
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SNR −3 dB

Horizontal Frequency Vertical Frequency

SNR 0 dB

SNR 3 dB

Figure 3.11: Mean Error plots of horizontal and vertical frequency estimates against the varying
image size n, for chrominance channel in IHLS color space, for different values of SNR.

increasing values of SNR, the mean error decreases which shows another mathe-
matical conformance of the approach to the 2D scalar version of the same.

Same trends are observed for the log variance plots for horizontal and vertical
frequency estimates, computed through the three models against test images of
different sizes and different values of SNR in both IHLS and L*a*b* color spaces.
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SNR −3 dB

Horizontal Frequency Vertical Frequency

SNR 0 dB

SNR 3 dB

Figure 3.12: Mean Error plots of horizontal and vertical frequency estimates against the varying
image size n, for luminance channel in L*a*b* color space, for different values of SNR.

In these curves we again see an overall better performance of the QP AR model
via the HM method.

The performance shown by 2D multichannel complex GMRF model clearly
depicts the nature of the parameter estimation method used. The parameter es-
timation method in our approach is the same for all the models i.e. the LSE by
solving a system of normal equations (see Section 3.3.2). This is done so to facil-
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SNR −3 dB

Horizontal Frequency Vertical Frequency

SNR 0 dB

SNR 3 dB

Figure 3.13: Mean Error plots of horizontal and vertical frequency estimates against the varying
image size n, for chrominance channel in L*a*b* color space, for different values of SNR.

itate the comparison of the different models for this type of spectral estimation.
Unlike in causal AR models, in the case of GMRF with a Gaussian assumption,
the LSE method does not give the same parameter estimates as the MLE. In the
case of 2D multichannel complex GMRF model, the MLE of model parameters
may improve the results [BJC95]. We do not present the spectral analysis results
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SNR −3 dB

Horizontal Frequency Vertical Frequency

SNR 0 dB

SNR 3 dB

Figure 3.14: Log variance of estimation error of horizontal and vertical frequency estimates
against the varying image size n, for luminance channel in IHLS color space, for different values
of SNR.

of GMRF using MLE method to avoid heavy computational loads of the method
in the case of the 2D multichannel complex GMRF model.

If we compare these results obtained in the two color spaces, we observe that
there is a slight improvement in the spectral estimates computed in the L*a*b as
compared to the ones in the IHLS color space. This difference can be observed in
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SNR −3 dB

Horizontal Frequency Vertical Frequency

SNR 0 dB

SNR 3 dB

Figure 3.15: Log variance of estimation error of horizontal and vertical frequency estimates
against the varying image size n, for chrominance channel in IHLS color space, for different
values of SNR.

the plots of both the parameters i.e. mean error and the log variance for horizontal
as well as vertical frequencies.

In this section we have analyzed the performance of the different spectral es-
timators used for the parametric spectral estimation of the generated two channel
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SNR −3 dB

Horizontal Frequency Vertical Frequency

SNR 0 dB

SNR 3 dB

Figure 3.16: Log variance of estimation error of horizontal and vertical frequency estimates
against the varying image size n, for luminance channel in L*a*b* color space, for different
values of SNR.

sinusoidal images. Another important aspect is to compare the spectral estimation
achieved in the two used color spaces. This, we will discuss in the next section.
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SNR −3 dB

Horizontal Frequency Vertical Frequency

SNR 0 dB

SNR 3 dB

Figure 3.17: Log variance of estimation error of horizontal and vertical frequency estimates
against the varying image size n, for chrominance channel in L*a*b* color space, for different
values of SNR.

3.4.3 Color Space Comparison
If we observe closely, the images shown in Figures 3.8 and 3.9, it is clear from
the figures that we observe an extra frequency peak in the luminance channel auto
spectrum in the case of IHLS color space. This frequency peak is localized at the
normalized frequency position of the chrominance channel. However the spectral
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estimate of the image generated with same parameters in L*a*b* color space
shows negligible interference of this chrominance in the luminance channel.

Similarly we see extra peaks in the power spectrum of the chrominance chan-
nel in the case of L*a*b* color space. These peaks are localized at the normalized
frequency location of the luminance frequency i.e. νr. However, the same phe-
nomenon is not significantly visible in the case of the image generated in the IHLS
color space.

To observe these phenomenon clearly, spectral estimates for the luminance
and chrominance channels of the sinusoidal test image in Figures 3.8 and 3.9 are
computed again through 2D multichannel complex QP AR model via HM method
with a model order (5, 5) and are presented in Figure 3.18. The two channel com-

(a) Luminance spectrum (b) Chrominance spectrum

(c) Luminance spectrum (d) Chrominance spectrum

Figure 3.18: Estimated PSD of the luminance and the chrominance channels in IHLS (a,b) and
L*a*b* (c,d) with 2D multichannel complex QP AR model via HM method with a model order
(5, 5).

plex sinusoidal images used in these tests are generated in perceptual color spaces
i.e. IHLS or L*a*b*, transformed to RGB and again re-transformed to the per-
ceptual color spaces before spectrum estimation (cf. section 3.4.1). To observe
the inter-channel interference in the RGB color space, the image with the same
parameters are generated in the perceptual color spaces and transformed to the
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RGB color space. Then noise is added to this RGB image. The spectral estimates
of this noisy image (in RGB color space) computed through 2D multichannel
real QP AR model via HM method with a model order (5, 5) are presented in
Figure 3.19. As in the case of RGB color space the model is real, therefore we
observe the spectral symmetry for both the sinusoidal frequencies which appear
in all the three planes. As we base our approach of color texture characterization

(a) R channel spectrum (b) G channel spectrum (c) B channel spectrum

Figure 3.19: Estimated PSD of the Red, Green and Blue channels in RGB color space, with 2D
multichannel real QP AR model via HM method.

on the degree of decorrelation of the luminance and chrominance information of
a color image, therefore RGB having a significantly high degree of correlation
between all the three channels, is not the best candidate for such an approach.
However, this luminance-chrominance spectral interference, in the case of per-
ceptual color spaces needs to be analyzed and quantified as we present in the next
section.

Luminance-Chrominance Spectral Interference

To have a quantitative overview of this interference we generated twenty (20)
images, of size n×n where n ∈ {64, 96, 128, 160, 192, 224, 256}, and each color
space, of same amplitude (Ar = 0.25 and Ac = 0.25) and phase angle (φr = 30◦

and φc = 30◦), and with three different frequency sets. In these three frequency
sets, νr was kept the same i.e. (0.3, 0.3), whereas for complex channel of these
two channel sinusoidal images, νc ∈ {(−0.3, 0.3) , (0.3,−0.3) , (−0.3,−0.3)}.

It is to note that for all images, mean value for each channel is forced to zero.
The spectral estimates were computed for three different levels of the SNR i.e.
SNR∈ {−3, 0, 3} dB. Then for these two perceptual color spaces, we quantify the
level of the interference of the chrominance channel information in the luminance
channel spectra through an interference ratio IRCL defined as:

IRCL =
Acr
Ar

(3.30)
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where Acr is the mean value of estimated chrominance peak found in luminance
channel spectra of 20 image samples for a given image size n, a given frequency
set (νr, νc) and a given SNR. We also define a quantitative measure in the same
manner, to measure the interference of the luminance channel in the chrominance
channel through an interference ratio IRLC defined as:

IRLC =
Arc
Ac

(3.31)

where Arc is the mean value of estimated luminance peaks found in chrominance
channel spectra of 20 image samples for a given image size n, a given frequency
set (νr, νc) and a given SNR. The spectra are estimated using only 2D multichan-
nel complex QP AR model via HM method with a model order (2, 2). Graphical
representations of this ratio for different values of image size n, in both the color
spaces are shown in Figure 3.20. In this figure, the results for the frequency set
{(0.3, 0.3) , (0.3,−0.3)} are presented. The Figures 3.20a, 3.20c and 3.20e rep-
resent the comparison of the interference levels of the chrominance peak in the
autospectrum of the luminance channel for the two color spaces with SNR = −3
dB, SNR= 0 dB and SNR = 3 dB respectively. Similarly, the Figures 3.20b,
3.20d and 3.20f represent the comparison of the interference levels of the lumi-
nance peaks in the autospectrum of the chrominance channel for the two color
spaces with SNR = −3 dB, SNR= 0 dB and SNR = 3 dB respectively. These
plots are presented on a fixed scale for a better visual comparison and interpre-
tation. Following important observations can be made over the results shown in
Figure 3.20:

• Overall values of the interference ratio of the luminance spectral informa-
tion in the chrominance autospectrum i.e. IRLC are approximately one half
of the overall values of the interference ratio of the chrominance spectral in-
formation in the luminance autospectrum i.e. IRCL.

• For all the three values of SNR, if we analyze the plots of IRLC values
against varrying image sizes, it becomes clear that the difference between
the two color spaces is very marginal. Therefore, we can say that both
the color spaces show approximately the same interference of luminance
information in the chrominance channel.

• The interference ratio of chrominance in the auto spectrum of luminance
channel i.e. IRCL is more significant in the IHLS color space than that of
L*a*b* color space for all values of SNR.

• It is also clear that the value of the IRCL reduces by approximately 50%
with each 3dB increase in the SNR level. However, comparing the inter-
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(a) SNR -3 dB (b) SNR -3 dB

(c) SNR 0 dB (d) SNR 0 dB

(e) SNR 3 dB (f) SNR 3 dB

Figure 3.20: Comparison of the interference between luminance and chrominance information
i.e. IRCL (left) and IRLC(right) in the two color spaces.

ference levels in the two color spaces, L*a*b* continues to show lower
interference than IHLS for different SNR levels.
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• Interestingly at lower SNR values i.e. 0 and −3 dB, the difference between
the IRCL values in the two color spaces increases at IHLS shows a higher
interference than the L*a*b* color space.

3.5 Conclusion
The main observations made and conclusions drawn from this chapter are:

• We presented a new luminance and combined chrominance based complex
valued representation for color images in perceptual color spaces.

• In this chapter we have also theoretically adapted and successfully used the
2D multichannel complex linear prediction models for modeling of such
two channel complex color images in perceptual color space like IHLS and
L*a*b* which has not been reported so far.

• We have presented a new parametric approach for model based combined
power spectrum estimation for both luminance and combined chrominance
channels in IHLS and L*a*b* color spaces. Detailed analysis and perfor-
mance comparison of these models have shown that all of these models
exhibit satisfactory results for parametric color spectral estimation.

• A comparative analysis of luminance and chrominance information decor-
relation in both the considered perceptual color spaces is done. The anal-
ysis, under varying test conditions i.e. different image sizes, varied noise
levels and different frequency sets proved IHLS to exhibit more correlation
of luminance and chrominance information than that of L*a*b*.

This comparative analysis of perceptual color spaces is very important as we
base our color texture descriptor on the luminance as well as chrominance spectral
information characterization to an optimal level as well as the maximum decor-
relation of the two information. Thus, we establish the hypothesis that higher the
decorrelation of the channels, higher would be the performance of color texture
characterization scheme, provided this scheme exploits this independence in an
optimal way.



CHAPTER 4

COLOR TEXTURE
CLASSIFICATION

The general methodology of the solution of the color texture classification
or more specifically supervised color texture classification problem is to assign
a certain class to a test color texture sample based on some a priori knowledge
about that class of the color texture. This process, in practice can be divided in
two steps: Training and Test. The first step training, is an off line process in
which a certain number of color texture samples with known class affiliations
are acquired, and various feature descriptors on these samples are computed and
stored. The second step test, is an online process in which, for each new test
image, a set of same type of features (as in the training step) are computed. Then,
a decision on the class label assignment for this image, based on some similarity
measure computed between the training and test features is made.

As the final decision is based on them, these feature descriptors computed
from the training and test images, are of the critical importance in any color
texture classification method. In chapter 2, we have presented the state of the
art approaches of color texture description, for both classification and segmen-
tation problems. Since most of these approaches do not exhibit optimal results,
hence we propose to characterize the color texture content of both luminance and
chrominance channels in an image, through the spectral estimates computed using
the 2D multichannel complex linear prediction models (cf. chapter 3).

In this chapter we discuss the different color texture databases (section 4.1)
used for the experiments along with the spatial structure and pure color feature
cues (section 4.2) used for the description of color texture images. In section 4.3,
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we represent the similarity measures and a probabilistic method for the fusion of
these feature cues. Experiments for the comparison of different models and the
color spaces used are presented in the section 4.4. Finally, section 4.5 concludes
the chapter.

4.1 Color Texture Databases
We chose the test images for our experiments, from the two well known and
widely used color texture databases Vistex [PGM+] and Outex [OMP+02]. Vari-
ous research works addressing the color texture classification problem have used
both Vistex [HCG+05, KBH06, CSF05, Pal04, ADB04] and Outex [MP04, PMV02,
Sen08, ADB04].

In Vistex, unlike other texture collections, the images do not conform to rigid
frontal plane perspectives and studio lighting conditions. Vistex color texture im-
ages are representative of real world conditions. Images in Vistex are available in
different categories and sizes and contain both frontal and oblique type structures
[PGM+].

The Outex database contains a large collection of surface textures captured
under different specific and known conditions, which facilitates construction of
a wide range of texture analysis problems. Different test suites are prepared for
different texture analysis problems including classification, segmentation and re-
trieval. The images in Outex are taken with a fixed imaging geometry and with
specified illumination source (a 2856 K incandescent CIE A light source). So
differences between images are due only to a difference in medium.

We used three different data sets containing the images taken from these two
databases for experimental validation of the color texture classification approach
which we discuss in next sections.

4.1.1 Data Set 1
For the first data set which we denote as DS1 24, 512× 512 color texture images
from the Vistex database, shown in Figure 4.1 were chosen. In DS1, each 512×
512 image was considered as an individual class. For each textured color image
i.e. for each class, the image feature cues were computed on the sub image blocks
of size 32 × 32, hence forming 256 sub images for each image. Training data
set for each color texture consisted of 96 sub images, while the remaining 160
sub images were used as the test data set, for each textured color image. By this
configuration we had a total of 2304 training and 3840 test sub images in total. To
be able to have a comparative look on the results, color textures chosen as DS1,
sub image size i.e. 32 × 32 and number of sub images taken as training and test
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data sets correspond to the ones presented in [PFJ06]. With smaller test image
size and higher number of test sub images in DS1 we evaluated the ability of the
approach to recognize and classify the textures even in the cases when very little
spatial structure information is available.

Figure 4.1: The 24 textures of dimensions 512 × 512 forming DS1. From top left to bottom
right, in raster scan order: Bark0; Bark12; Brick0; Clouds0; Fabric0; Fabric4; Fabric7; Fabric8;
Fabric11; Fabric13; Fabric15; Fabric17; Fabric19; Flowers0; Food0; Grass1; Leaves12; Metal0;
Misc2; Sand0; Stone4; Tile7; Water0; Wood2.

4.1.2 Data Set 2

In the second data set DS2 , 54 images from Vistex database are used. The 54
original Vistex images of dimensions 512 × 512 were split into 16 samples of
128 × 128. DS2 is available on the Outex web site [Out] as test suite Con-
trib TC 00006. For each texture, half of the samples were used in the training
set and the other half served as testing data. The samples of the training set were
the white squares of a draughtboard (beginning in the upper left corner) in order
to consider a possible non uniformity of the original images.

4.1.3 Data Set 3

The third data set DS3 included 68 images of the Outex database [OMP+02].
From the 68 Outex images of size 746× 538 originally, 20 samples of size 128×
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(a) Barleyrice001 (b) Barleyrice005 (c) Canvas024 (d) Canvas026

(e) Carpet008 (f) Carpet010 (g) Foam002 (h) Foam003

(i) Granite007 (j) Granite008 (k) Tile006 (l) Tile007

Figure 4.2: Sample textures from Outex color texture data base.

128 were obtained. The training and test sets were chosen in the same way as
in DS2, thus giving a total of 680 samples in each of training and test set. At
the Outex site, this is the test suite Outex TC 00013. Some sample textures from
Outex database are shown in Figure 4.2.

4.2 Image Feature Cues

The spatial and spectral content of an image can be characterized and analyzed
using different image feature cues including color, texture, shape, edge etc. In
this thesis we have used color and spatial structure information of the image to
characterize the color textures. These feature cues are discussed in the following
sections.

4.2.1 Spatial Structure Cues

Comprehensive spatial structure information of a color image is an ensemble of
the spatial variations measured in the luminance as well as in the chrominance
channels of the image. Among large number of works on color texture analysis
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presented in recent years, there are a few which take into account the chromatic
spatial variations i.e. the texture content in the chrominance channels of the image
efficiently (cf. chapter 2). Herein, we use the PSD estimates computed through
the 2D multichannel complex linear prediction models (cf. chapter 3) for the two
channel complex color image as the spatial structure features of a color texture
image. These PSD estimates depict the global spatial variation information of the
luminance as well as the combined chrominance channels.

Figure 4.3: Sample texture from the Vistex database.

One of the color textures from Vistex database is shown in Figure 4.3. PSD
estimates for the color texture shown in Figure 4.3, using different models in
IHLS and L*a*b* color spaces are shown in Figures 4.4 and 4.5 respectively.

Another color texture, this time chosen from the Outex database is shown in
Figure 4.6. PSD estimates for this color texture, using different models in IHLS
and L*a*b* color spaces are shown in Figures 4.7 and 4.8 respectively. These
spectra for both of these sample textures, are computed in Cartesian coordinates
for normalized frequency range ν = (ν1, ν2) ∈ [−0.5, 0.5]2 and are computed
using 2D multichannel complex valued versions of QP AR and NSHP AR models
of order (4, 4) and GMRF model of order 14.

A comparison of the estimated PSD images of luminance and chrominance
channels with the magnitude spectra of the same channels using 2D FFT clearly
indicates that these models give a decent approximation of the channel spectrum.

4.2.2 Color Feature Cue

A color histogram is a standard statistical description of the color distribution in
terms of occurrence frequencies of different regions in color space. For 2D image,
a pixel location is n = (n1, n2) ∈ Λ ⊂ Z2 in which Λ is the finite 2D image lattice
region of size |Λ|. In this work, 3D histogram cubes are used as pure color feature
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2D FFT

Luminance Chrominance

GMRF

NSHP AR

QP AR via HM

Figure 4.4: Spectral estimates of the image shown in Figure 4.3 in IHLS color space.

cues, for all color spaces. We define a 3D histogram in the form of a 3D step
function as:

h (c1, c2, c3) =

B,B,B∑
i,j,k=(1,1,1)

Nijk

|Λ| × γ3
1Bijk

(c1, c2, c3) (4.1)
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2D FFT

Luminance Chrominance

GMRF

NSHP AR

QP AR via HM

Figure 4.5: Spectral estimates of the image shown in Figure 4.3 in L*a*b* color space.

where (c1, c2, c3) ∈ R3. B is the number of bins which is kept same for each color
channel. Nijk is the total number of pixels whose color values are included in the
cube Bijk = Bi × Bj × Bk, (i, j, k) ∈ J1, BK3 which are the regular intervals of
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Figure 4.6: Sample texture from the Outex database.

length γ for each color channel. For each color channel,
B⋃
i=1

Bi = I , the definition

interval of the values where Bi1 ∩Bi2 = ∅, ∀ (i1, i2) ∈ J1, BK2. The step function
1Bijk

is defined as:

1Bijk
=

{
1, if (c1, c2, c3) ∈ Bijk ⊂ R3

0, elsewhere
(4.2)

4.3 Similarity Measures and Cue Fusion

In this section we discuss the distance measures used to measure the similarity
between the test and training data sets using the information of each individual
feature cue. Afterwards a probabilistic framework of combining this information
is presented.

4.3.1 Distance Measures

To measure overall closeness of luminance and chrominance spectra at all fre-
quencies, spectral distance measures are used. In [Bas89], the author has pre-
sented a discretized symmetric extension of Kullback-Leibler (KL) divergence for
spectral distance between two spectra. We use the same distance to measure the
closeness of luminance and chrominance spectra. The spectral distance measure
is given as:

Kβ (S1,β, S2,β) =
1

2
×
∑
ν1,ν2

∣∣∣∣∣
√
S1,β (ν1, ν2)

S2,β (ν1, ν2)
−

√
S2,β (ν1, ν2)

S1,β (ν1, ν2)

∣∣∣∣∣
2

(4.3)
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2D FFT

Luminance Chrominance

GMRF

NSHP AR

QP AR via HM

Figure 4.7: Spectral estimates of the image shown in Figure 4.6 in IHLS color space.

where β ∈ {LL,CC} (cf. equation 3.16). The spectral distance measure given
in Equation 4.3 gives the closeness of each channel individually.
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2D FFT

Luminance Chrominance

GMRF

NSHP AR

QP AR via HM

Figure 4.8: Spectral estimates of the image shown in Figure 4.6 in L*a*b* color space.

In order to measure the closeness of 3D color histogram cubes, symmetrized
KL divergence, given in [JJS01] is used:

KH (H1,H2) =
KL(H1,H2) +KL(H2,H1)

2
(4.4)
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where KL (H1,H2) is KL divergence between two histogramsH1 andH2, given
as:

KL (H1,H2) =

B,B,B∑
i,j,k=(1,1,1)

N1,ijk

|Λ| × γ3
× log

N1,ijk

N2,ijk

(4.5)

where probabilities H1 and H2 represent the probability distribution of the pure
color information of the image computed through 3D color histograms (cf. sec-
tion 4.2.2).

4.3.2 Multiple Cue Fusion

The information coming from each of these three cues is combined in order to
get their combined effect on percentage classification of color textures. For this
purpose we developed two different approaches:

The Combination Coefficient

This is a basic and simple approach presented to combine the two spectral infor-
mation. In order to combine the luminance and the chrominance channel spectral
information and make it useful for improvement of color texture classification
results we define the following combined spectral distance measure:

KLC (ν1, ν2) = ηKLL (ν1, ν2) + (1− η)KCC (ν1, ν2) (4.6)

This distance combines the information from both spectra using a combination
coefficient η, where 0 ≤ η ≤ 1. The choice of optimal value for this combination
coefficient η is discussed in detail in the section 4.4. Although this approach is
simple and easy to use when the number of feature cues is less than 3, it becomes
significantly difficult to use if the number of feature cues increases.

The Probabilistic Cue Fusion

This approach is more robust, reliable cue fusion approach based on the proba-
bilistic fusion of the luminance structure, chrominance structure and pure color
feature cue fusion. In this approach, a posteriori class probabilities are computed
using each of these three feature cues independently. The different a posteriori
class probabilities obtained through each of these three cues are combined by
multiplying these individual a posteriori class probabilities. A pattern x is as-
signed the label ω̂ which maximizes the product of the a posteriori probabilities
provided by each of the independent feature cues (in our case, K = 3):
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ω̂ = arg max
ωi,i∈{1,...,n}

(
K∏
k=1

Pk (wi|x)

)
(4.7)

where n is the number of texture classes. In order to quantify these probabilities
we used a distance based normalized similarity measure which is given as:

Pk (wi|x) =

1
1+dk(x,xi)

n∑
j=1

1

1 + dk (x, xj)

(4.8)

where dk (x, xi) is the Kullback-Leibler distance measure for respective feature
cue. In Equation (4.7) we utilize the degree of independence between the different
feature cues to obtain a better result when the cues are fused together. More the
individual feature cues are decorrelated, better will be the results computed after
their fusion through Equation (4.7). This would eventually result in a better model
for spatial variations of the color images.

Now in the next section, we present the procedures and methodology for dif-
ferent experiments carried out for the validation of the approach, search of the
best performing model for spectral estimate and comparison of color spaces.

4.4 Experiments and Results
For the experimental validation of the color texture classification, we conducted
two main experiments. These experiments are presented in the next subsections.

4.4.1 Choice of a Pertinent Model
The main objective of this set of experiments was to validate the method along
with the performance analysis of the different parametric models discussed in this
thesis, for the problem of color texture classification. In this set of experiments
we used the DS1. The spatial structure cues were computed for both luminance
and chrominance channels using 2D multichannel complex versions of the lin-
ear prediction models using GMRF, NSHP AR and QP AR via HM method (cf.
section 3.3). In this initial set of experiments, the goal was to have an initial eval-
uation and comparison of these models. In these initial experiments, we used only
IHLS color space (cf. section 3.2.1) and did not use the pure color feature cues in
these experiments. We used the combination coefficient approach for the fusion
of luminance and chrominance feature cues along with the k-nearest neighbor al-
gorithm (cf. next subsection) for the class label decision. The results of these
experiments were published in [QABFM09, QABFM10].
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GMRF NSHP QP AR

k = 1 0.53 0.75 0.76
k = 3 0.72 0.82 0.83
k = 5 0.55 0.65 0.73
k = 7 0.55 0.53 0.66

Table 4.1: Optimal values of combination coefficient η, calculated individually for each model
and for all values of k in the k-nearest neighbor algorithm, where k ∈ {1,3,5,7}.

In this approach one of the points of interest is to find an optimal value for the
combination coefficient η (cf. section 4.3.2). This value was learned through the
classification of the training subimages using kNN. For this, the training database
was used as the test database. The combination coefficient η was calculated indi-
vidually for each model and for all values of k in the k-nearest neighbor algorithm,
where k ∈ {1, 3, 5, 7}. For each case, the value of η, which gave the maximum
classification percentage for these training subimages, was used during the clas-
sification of test subimages. These values are shown in the Table 4.1. From the
Table 4.1, it is observed clearly that the optimal values of η generally appear to
be in the range of 0.5 to 0.8, depending upon the specific model and number of
nearest neighbors considered for the color texture classification.

k-nearest Neighbor Algorithm

The k-nearest neighbor algorithm is amongst the most fundamental machine learn-
ing algorithms. An object is classified by a majority vote of its neighbors, with the
object being assigned to the class most common amongst its k-nearest neighbors.
k is a positive integer, typically small. If k = 1, then the object is simply assigned
to the class of its nearest neighbor.

Once the individual and combined spectral distances of both luminance and
chrominance channels are calculated, the k-nearest neighbor algorithm was used
to classify the color textures of the test database. Experiments were carried out
for k ∈ {1, 3, 5, 7}.

Classifier Performance Measures

Two criteria were employed to assess the performance of color texture classifica-
tion carried out by the proposed approach: percentage color texture classification
and positive predictivity or Positive Predictive Value (PPV) [RVAB06]. These
criteria are stated in the appendix B.
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Experimental results indicating the best average percentage color texture clas-
sification and PPV using the three models for 24 color textures were obtained for
the case where k = 3. These results are shown in Table 4.2 and Table 4.3 respec-
tively.

GMRF NSHP QP AR

L C LC L C LC L C LC

k = 1 72.47 66.98 86.93 82.11 83.18 93.18 87.37 85.76 94.74
k = 3 74.45 68.39 89.71 82.89 83.70 94.38 87.32 86.67 95.29
k = 5 73.75 67.94 89.22 82.16 83.26 93.65 86.20 85.44 94.48
k = 7 72.63 66.61 89.43 81.28 82.73 92.66 85.05 85.03 94.61

Table 4.2: Average percentage classification results of 24 color textures using 2D multichannel
complex NSHP AR, 2D multichannel complex QP AR model via HM method and 2D multichan-
nel complex GMRF for all values of k in the k-nearest neighbor algorithm, where k ∈ {1,3,5,7}.

In both these tables i.e. Table 4.2 and Table 4.3, for each of the three models,
there are three sub columns. First sub column L shows the percentage classifica-
tion of the respective color texture taking into account only the luminance infor-
mation of the image i.e. spectral distance based on the luminance power spectrum
information. Similarly second sub column C shows the percentage classification
of the color texture using only chrominance information i.e. the chrominance auto
spectra information of the respective texture. The third sub column LC indicates
the results obtained by using both luminance and chrominance informations i.e.
the power spectrum information obtained from both luminance and chrominance
auto spectra, combined through Equation (4.6) using the combination coefficient
η.

Analysis of the results presented in these tables depicts that all the three mod-
els have shown reliable results for the color texture classification of DS1 in the
IHLS color space. Moreover two very important observations could be made over
these results.

Firstly it is clear that the percentage classification of color textures increases
significantly if we use pure chrominance structure information as an additional
information with standard luminance structure information and which was the
primary purpose of this study. This fact can be seen for approximately all 24
color textures. Secondly, it is to note that increasing the number of considered
nearest-neighbors does not disturb the percentage classification results on a large
scale. This observation indicates the robustness of the approach.

Comparing the results obtained through the various models used in this ap-
proach, we clearly see that the 2D multichannel complex QP AR model via HM
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GMRF NSHP QP AR

L C LC L C LC L C LC

k = 1 0.73 0.70 0.87 0.82 0.84 0.93 0.87 0.86 0.94
k = 3 0.75 0.72 0.90 0.84 0.84 0.94 0.88 0.87 0.95
k = 5 0.73 0.71 0.90 0.83 0.84 0.93 0.86 0.85 0.94
k = 7 0.72 0.70 0.90 0.82 0.83 0.92 0.85 0.85 0.94

Table 4.3: Average positive predicted values of 24 color textures using 2D multichannel com-
plex NSHP AR, 2D multichannel complex QP AR via HM method and 2D multichannel complex
GMRF for all values of k in the k-nearest neighbor algorithm, where k ∈ {1,3,5,7}.

method performs best in terms of the color texture classification. This is as ex-
pected, keeping in view the better accuracy and precision of the model in paramet-
ric spectral analysis (cf. chapter 3). Results obtained from the 2D multichannel
complex NSHP AR model are also competitive. However, the percentage classi-
fication values obtained for 2D multichannel complex GMRF model are not that
high. The main reason for this is again the low resolution of the estimated spectra
using LSE for GMRF parameter estimation. It is clear from the PSD estimates of
the sample color textures (cf. Figures 4.4 to 4.8) that for the same number of free
model parameters, GMRF gives us a larger lobe like estimation of the frequency
content of both the channels. This consequently produces low color texture clas-
sification percentage. These results for GMRF may be improved using the MLE
method for model parameter estimation as is considered to be better than LSE
method. Again for the color texture classification also, the MLE method is not
presented for GMRF to overcome the computational complexity in this particular
application. The results in terms of percentage classification presented in this sec-
tion and [QABFM10] are better than the state of the art results presented for same
problem [PFJ06]. A detailed comparative analysis of our approach with state of
the art methods is presented later in the section 4.4.3.

The statistical comparison on the spectral estimates (cf. chapter 3) and the ex-
periments stated in this section gave us 2D multichannel complex QP AR model
via HM method as the better performing model than the other two models con-
sidered. Thus, we now will use this model to find the most pertinent color space
for such type of color texture analysis methodology.

4.4.2 Choice of a Pertinent Color Space
While comparing color spaces for color texture classification, it is necessary to
compare the performance of these for the characterization of spatial structure in-
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formation as well as for the description of the pure color information. Hence, we
base our comparison of the color spaces on both these criteria. In the experiment
set designed for this purpose, we used 2D multichannel complex QP AR model
via HM method (cf. section 3.3) for the characterization of the luminance and
chrominance spatial variations while 3D color histograms are used as pure color
feature cues (cf. section 4.2.2). As the decorrelation of the feature cues offered by
a color space is also a focal criteria, therefore we used the probabilistic cue fusion
for combining the information coming through different feature cues along with
the nearest neighbor algorithm (cf. sections 4.4.1 and 4.3.2). In these experiments
we used all the three test data sets i.e. DS1, DS2 and DS3.

In the following we will discuss the individual as well as the combined results
computed using these feature cues for color texture classification, in all the three
color space.

Color Feature Cue

We conducted experiments to evaluate the color texture characterization based on
the pure color distribution using 3D histogram information (cf. section 4.2.2).
For the three data sets, these 3D histograms were computed for different number
of bin cubes B × B × B. For DS1, B ∈ {4, 6, 9, 10} and for DS2 and DS3

B ∈ {8, 12, 16}. The choice of the number of bin cubes for the 3D color his-

L*a*b* IHLS RGB

B = 4 75.3 87.5 82.8
B = 6 89.3 93.4 95.1
B = 9 92.5 95.8 96.4
B = 10 91.8 96.4 96.6

Table 4.4: Average percentage classification of 24 color textures of DS1 in all the three color
spaces, using 3D color histograms for all values of bin cubes B, where B ∈ {4, 6, 9, 10}.

tograms was made keeping in view, the sizes of the test and training sub images
in each data set. For the small sub image sizes i.e. the color textures inDS1, small
bin sizes are chosen. Whereas, for the large sub image sizes i.e. the color tex-
tures in DS2 and DS3, larger bin sizes are chosen. For all the three color spaces
i.e. RGB, IHLS and L*a*b* the tests were performed on the three data sets. The
training and test data sets were taken as explained in Section 4.1. For each test
texture sub image, 3D histogram was computed. Then symmetrized Kullback-
Leibler divergence was computed using Equation (4.4). Finally a class label was
assigned to the test texture sub image using nearest neighbor method (cf. section
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4.4.1). Average percentage classification results obtained for DS1, DS2 and DS3

L*a*b* IHLS RGB

B = 8 97.0 98.1 99.3
B = 12 98.8 99.5 99.5
B = 16 99.1 100.0 99.5

Table 4.5: Average percentage classification of 54 color textures of DS2 in all the three color
spaces, using 3D color histograms for all values of bin cubes B, where B ∈ {8, 12, 16}.

are shown in Table 4.4, 4.5 and 4.6 respectively. For the data set DS1, maximum
percentage classification is achieved in the RGB color space with B = 10. While
for the data sets DS2 and DS3, maximum percentage classification achieved is
in IHLS color space with B = 16. As we have larger sub image sizes in DS2

and DS3, therefore we have higher percentage classification values in these data
sets than that of the values obtained for the DS1 data set. For a given data set and
fixed number of 3D histogram bins, percentage classification obtained in different
color spaces varies significantly. This indicates that all the color spaces does not
estimate the global distribution of the color content in the same manner and this
estimate depend upon the shape of the color space gamut. The bins considered for
3D histograms are of regular cubical shape. The color spaces with regular shaped
color gamut i.e. RGB and IHLS are more appropriate for this kind of bin shape
and therefore show slightly better results than those of the L*a*b* color space.
It is of significance important to note that L*a*b* color space has proven to give

L*a*b* IHLS RGB

B = 8 74.7 93.5 92.5
B = 12 90.0 93.1 94.4
B = 16 92.2 94.5 94.0

Table 4.6: Average percentage classification of 68 color textures of DS3 in all the three color
spaces, using 3D color histograms for all values of bin cubes B, where B ∈ {8, 12, 16}.

better results for the estimation of global distribution of pure color content of an
image when used with a parametric approximation with MGMM [AQ09]. This
parametric approximation is well suited to irregular gamut shape of the L*a*b*
color space and hence authors in [AQ09] have indicated L*a*b* as the better per-
forming color space for parametric multimodal color distribution approximation.
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Here we do not use such a parametric approximation for the spatial distribution
of color content in textured images as:

• Image size in the DS1 is 32× 32. For such small image size, it is probable
that one will have to face a significant problem of numerical instabilities
while calculating the model parameters for MGMM.

• Similarity metrics used for the distance measures between two MGMM
distributions are not very well suited to the problem and have a tendency to
produce suboptimal results.

Structure Feature Cues in the Perceptual Color Spaces

To compute luminance and chrominance spatial structure feature cues, auto spec-
tra were estimated using the approach given in the chapter 3. The auto spectra are
computed in Cartesian coordinates for normalized frequency range ν = (ν1, ν2) ∈
[−0.5, 0.5]2. Then in order to compute the overall closeness of luminance (L) and
chrominance (C) spectra at all frequencies, spectral distance measure, given in
Equation (4.3) is used. Again, a class label was assigned to the test texture sub

L C LC

DS1 87.4 85.8 95.4
DS2 91.4 87.5 97.4
DS3 75.1 73.2 84.1

Average 84.6 82.1 91.3

Table 4.7: Average percentage classification of DS1, DS2 and DS3 in the IHLS color space.

image using the nearest neighbor method, based on the information from both lu-
minance and chrominance structure feature cues individually. The individual and
independent information obtained through these two spatial structure cues is then
combined using Equations (4.7) and (4.8). This gives us the class label assign-
ment based on both the luminance and chrominance structure information. These
results for the two color spaces i.e. IHLS and L*a*b* are shown in Table 4.7 and
Table 4.8 respectively. In each of these two tables, for each of the three data sets,
there are three columns. First column L shows the percentage classification of
the respective color texture taking into account only the luminance information
of the image i.e. spectral distance based on the luminance power spectrum in-
formation. Similarly second column C shows the percentage classification of the
color texture using only chrominance information i.e. chrominance auto spectra
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L C LC

DS1 87.7 92.1 97.2
DS2 90.3 91.2 96.5
DS3 79.4 78.5 88.0

Average 85.8 87.3 93.9

Table 4.8: Average percentage classification of DS1, DS2 and DS3 in the L*a*b* color space.

information of the respective texture. The third column LC indicates the results
obtained by using both luminance and chrominance information i.e. the power
spectrum information obtained from both luminance and chrominance auto spec-
tra, combined using the Equations (4.7) and (4.8).

Analysis of these results shows a clear difference in the average percentage
classification results obtained in both the color spaces. While comparing the re-
sults, we see that for DS1, results obtained with L*a*b* color space are better
than the ones computed in IHLS color space for real world textures. The reason
for these improved results is a better decorrelation of luminance and chrominance
channel of DS1 in L*a*b* color space as is already stated in Section 3.4.3. This
better decorrelation of the two information leads to improved percentage classi-
fication results in the case of L*a*b* color space when only chrominance chan-
nel spatial structure information is used (compare column C of the Tables 4.7
and 4.8). Subsequently this better decorrelation results in an improved average
percentage classification of color textures in the case of L*a*b* color space as
compared to IHLS color space, when luminance and chrominance spatial struc-
ture information are combined using the Equations (4.7) and (4.8). For the other
two data setsDS2 andDS3, better characterization of chrominance channel exists
and it continues to give us better results than that of the luminance channel spatial
structure information.

Structure Feature Cues in the RGB Color Space

We validated the argument made over the choice of perceptual color spaces (see
Section 3.5) through experiment by comparing the results with RGB color space.
We used the same test data sets DS1, DS2 and DS3 under same test conditions
i.e. sub image sizes, number of training and test sub images as stated for the
perceptual color spaces.

For the RGB color space, simulations were carried out using the 2D multi-
channel QP AR model via HM method. Results for this method in RGB color
space are presented in Table 4.9. The first column R shows the average percent-
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R G B RGB

DS1 78.3 80.0 83.1 85.9
DS2 89.6 88.4 90.3 92.1
DS3 75.3 76.6 72.2 82.8

Average 81.1 81.7 81.9 86.9

Table 4.9: Average percentage classification of DS1, DS2 and DS3 in the RGB color space.

age classification of the three chosen data sets (DS1, DS2 and DS3) taking into
account only the information in the red channel of the RGB image i.e. spectral
distance based on the red channel power spectrum information. Similarly the sec-
ond column G and the third column B show the average percentage classification
of the three data sets using only the information from the green and the blue chan-
nels respectively. The fourth column RGB indicates the results obtained by using
the combined information of all the three channels i.e. the red, the green and the
blue channels. The three auto spectra information are combined using Equations
(4.7) and (4.8). It is clear from these results that the percentage classification re-
sults obtained by individual channels in RGB color space are inferior than those
obtained by the luminance and chrominance spectra using our approach in both
the perceptual color spaces. One can also see that for the same test conditions
and same information fusion approach with proposed method, combined overall
results in IHLS and L*a*b* color spaces are approximately 6% to 7% higher (for
the used data sets) than those computed in the RGB color space. This provides an
experimental evidence to the hypothesis given in the Section 3.5 over the choice
of a perceptual color space for color texture classification instead of the standard
RGB color space.

Structure-Color Cue Fusion

The three computed feature cues i.e. two structure (L and C) and a pure color
feature cue (3D histograms denoted by H) are then combined to have a better
color texture characterization. This multiple cue fusion is carried out again using
a posteriori probability fusion as in Equations (4.7) and (4.8). The structure fea-
ture cues computed through the discussed 2D multichannel QP AR model via HM
method in the three color spaces could be fused with color feature cues computed
through all color spaces. For DS1, as it is clear from the Table 4.4 that for IHLS
and RGB color spaces we obtain the best results when B = 10, while for L*a*b*
color space we obtain the best percentage classification with B = 9. For DS2

and DS3, we obtain the best classification results in the RGB color space when
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RGB IHLS L*a*b*

R G B L C L C

Hlab 95.2 98.4 98.9
Hihls 96.8 98.9 99.3
Hrgb 96.1 98.9 99.3

Table 4.10: Average percentage classification of DS1. Structure feature cues are computed
through 2D multichannel QP AR model via HM method with model order (2, 2). Columns RGB,
IHLS and L*a*b* show results of structure feature cues being computed in respective color spaces
combined with pure color feature cues in each color space. ForHlab, B = 9 whereas B = 10 for
Hihls andHrgb.

B = 16 and B = 12 respectively. Whereas, L*a*b* and IHLS color spaces give
the best classification results for both these data sets when B = 16. We combine
these best classification results for each data set in each color space using only
color feature cue results with the best achieved structure feature cue results in
each color space. For DS1, DS2 and DS3, the best classification results using

RGB IHLS L*a*b*

R G B L C L C

Hlab 94.9 98.4 98.8
Hihls 95.8 98.8 99.1
Hrgb 95.6 98.6 99.1

Table 4.11: Average percentage classification of DS2. Structure feature cues are computed
through 2D multichannel QP AR model via HM method with model order (2, 2). Columns RGB,
IHLS and L*a*b* show results of structure feature cues being computed in respective color spaces
combined with pure color feature cues in each color space. ForHlab,Hihls andHrgb, B = 16.

only spatial structure feature cues combined with the best results obtained by us-
ing only color feature cues in each color space, are presented in the Tables 4.10,
4.11 and 4.12 respectively. From the results presented in these tables, it is clear
that perceptually uniform color spaces perform better than RGB color space for
all three test data sets. Also, the two considered perceptual color spaces perform
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very close to each other when all the three feature cues are combined. However
the best value of average percentage classification of DS1 is 99.3%. This value is
achieved when structure feature cues are computed in L*a*b* color space while
pure color feature cue is computed in IHLS color space.

RGB IHLS L*a*b*

R G B L C L C

Hlab 86.2 87.5 86.3
Hihls 87.2 88.9 87.8
Hrgb 86.8 88.9 87.2

Table 4.12: Average percentage classification of DS3. Structure feature cues are computed
through 2D multichannel QP AR model via HM method with model order (2, 2). Columns RGB,
IHLS and L*a*b* show results of structure feature cues being computed in respective color spaces
combined with pure color feature cues in each color space. ForHlab,Hihls andHrgb, B = 16.

4.4.3 Comparative Analysis
Average percentage classification of color textures obtained in different color
spaces can easily be compared to the average percentage classification results of
color textures computed through other existing approaches. In the case of DS1,
best known results are presented in [PFJ06]. Comparison of the results achieved

Best results in [PFJ06] Our method

Only structure cue 91.2 97.2
Only pure color cue 90.8 96.6
Structure + Pure color 96.6 99.3

Table 4.13: Comparison of best average percentage classification results for DS1 with state of
the art results presented in [PFJ06]. Best results are indicated in bold faces.

by our approach with the results presented in [PFJ06] is given in Table 4.13. Best
value for average percentage classification achieved using only the structure infor-
mation in [PFJ06], is 91.2% which is obtained using wavelet like DCT coefficients
as structure descriptors. Compared to this value of average percentage classifica-
tion, we observe a significant increase in average percentage classification value
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of 24 color textures with our method. In our work, the best average percentage
classification achieved using only structure feature cues is 97.24%. In the case

Best results in [MP04] Our method

Only structure cue 100.0 (with LBP16,2 in L*a*b*) 96.5
Only pure color cue 100.0 (with 3D histograms in I1I2I3, B = 32) 100.0
Structure + Pure color 99.8 (with LBP u2

16,2 and 3D histograms in RGB, B = 16) 99.1

Table 4.14: Comparison of best average percentage classification results for DS2 with state of
the art results presented in [MP04].

of DS2 and DS3 test data sets, best average percentage classification results are
presented in [MP04]. The authors have compared the results of a large number of
existing texture descriptors for both DS2 and DS3 without concentrating on the
performance of a given algorithm. Comparison of results with our approach for
these two test data sets with best results presented in [MP04] are given in Table
4.14 and 4.15 respectively. In [MP04], the best reported results using different
feature cues for each case, are not obtained using the same descriptors.

For example, for DS2, the best results presented using only color feature cues
are obtained using 3D histograms in I1I2I3 with B = 32 and the best results pre-
sented for structure information are computed using LBP [OPM02a] i.e. LBP16,2

in L*a*b*. Then the best results by fusing both the feature cues are presented
for 3D histograms in RGB with B = 16 used as color feature cue and LBP u2

16,2

as structure feature cues. The decision rule used for fusion is the Borda count.
In [MP04], for DS3, the best results presented using only color feature cues are

Best results in [MP04] Our method

Only structure cue 87.8 (with LBP8,1 in RGB) 88.0
Only pure color cue 95.4 (with 3D histograms in HSV, B = 16) 94.5
Structure + Pure color 94.6 (with Gabor3,4 and 3D histograms in RGB, B = 16) 89.0

Table 4.15: Comparison of best average percentage classification results for DS3 with state of
the art results presented in [MP04].

obtained by 3D histograms in HSV color space with B = 16 and the best results
presented for structure information are computed through LBP8,1 in RGB color
space. Then the best results by fusing both the feature cues are presented for 3D
histograms in RGB with B = 16 used as color feature cue and Gabor3,4 as struc-
ture feature cues. The decision rule used for fusion is the maximum dissimilarity.

As we use the same color and texture features for all the data sets along with
the same fusion method, therefore the comparison of the results through our ap-
proach for the different data sets is more judicious. It can be noted that for the two
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test data sets DS1 and DS2, our method and the best results reported so far i.e. as
in [MP04] are approximately of the same order when individual color and texture
feature cues are considered. For DS2, the best results with our approach and the
ones in [MP04] are approximately the same even when the two feature cues are
fused. For DS3, authors in [MP04] report an average percentage classification of
94.6%. The corresponding percentage computed with our approach is 88.97%. It
is to note here that in [MP04], main objective was to produce maximum percent-
age classification using different combinations of color and texture features and
different fusion methods. Contrary in our work, the main goal is to analyse the
effect of luminance chrominance spectral decorrelation in the perceptual color
spaces and its implications on the color texture classification. Even under this
consideration, the presented approach outperforms the state of art in certain cases
while compete well in other cases in terms of average percentage classification
results.

4.4.4 Pixel Classification
The luminance and chrominance spatial structure feature cues used for color tex-
ture classification can also be used for color texture segmentation. To show their
pertinence, we conducted a few color texture pixel classification experiments us-
ing these feature cues in the three used color spaces. The ground truth data as-
sociated with complex natural images is difficult to estimate and its extraction is
highly influenced by the subjectivity of the human operator. Thus, the proposed
pixel classification algorithm was used to perform pixel classification of natu-
ral as well as synthetic color textures which possess unambiguous ground truth
data. Test images were taken from the color image database used in [IW08].
The database was constructed using color images from Vistex and Photoshop
databases.

In the proposed supervised pixel classification method, a small sub image was
used as the training image for each class. Image observation model parameters
and multichannel complex prediction error were computed for this sub image.
Then these parameters are used to compute the multichannel complex prediction
error of the complete image, for each of the four test color images shown in Fig-
ure 4.9. A normal practice for such parametric texture models, is to model the
prediction error through a parametric probability distribution [BS94]. Thus, the
distribution of this multichannel complex linear prediction error can be modeled
as a single multidimensional complex Gaussian distribution. However in real
world problems, this error sequence does not follow a Gaussian distribution in a
perfect manner i.e. it can follow some different distributions. In this case it is
difficult to have good classification results with a Gaussian hypothesis over mul-
tichannel linear prediction error sequence. In this work we have chosen different



4.4. Experiments and Results 89

(a) Color image 1 (b) RGB color space (c) IHLS color space (d) L*a*b* color space

(e) Color image 2 (f) RGB color space (g) IHLS color space (h) L*a*b* color space

(i) Color image 3 (j) RGB color space (k) IHLS color space (l) L*a*b* color space

(m) Color image 4 (n) RGB color space (o) IHLS color space (p) L*a*b* color space

Figure 4.9: Test color textured images and their pixel classification results in the three discussed
color spaces.

parametric (cf. chapter 5) and non-parametric approaches to estimate the distri-
bution function of this multichannel complex linear prediction error sequence.
Here, in this experiment, we present the non-parametric approach used to have a
final pixel level classification, which is the multidimensional version of classical
kNN algorithm presented in [PZLB93]. This algorithm is used here as a logical
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continuation of the color texture classification approach presented earlier in this
chapter.

When implementing the basic NN classifier, experiments have shown that the
results can be fairly improved if the pixels are assigned one by one to the clusters
in a specific order depending on their distances to the prototypes. Therefore in
[PZLB93], at each step authors consider the distances between all the unassigned
pixels and all the prototypes. The smallest among these distances indicates the
specific pixel that must be considered. This pixel is assigned to the cluster at-
tached to its NN and is integrated within the set of prototypes defining this cluster.
This updating rule is iterated until all the pixels are classified [MSP08]. Here we
use the multichannel complex error sequences computed for the small training
sub images for each color texture class as the prototypes. These prototypes are
used to classify the multichannel complex prediction error for each pixel of the
complete image.

RGB IHLS L*a*b*

Class 1 36.0 13.4 0.4
Color image 1 Class 2 0.8 16.1 0.9

Total 18.4 14.7 0.6

Class 1 27.9 6.1 7.7
Color image 2 Class 2 44.4 12.9 15.7

Total 34.4 8.8 10.8

Class 1 7.3 10.1 11.1
Color image 3 Class 2 22.2 14.7 18.5

Total 14.3 12.3 14.6

Class 1 50.6 13.1 15.7
Color image 4 Class 2 31.5 23.1 26.7

Total 47.1 14.9 17.8

Average 28.5 12.7 10.0

Table 4.16: Percentage classification error for pixel classification experiments, for each class in
each test color image. Average percentage error value for the 4 color textures in each color space
is given in the bold faces.

Our main goal in these experiments too, was to compare the considered color
spaces. The spatial regularization techniques like Potts model [Guy95] are known
to change these initial pixel label fields based on the neighborhood energies and
are often used as the final step of segmentation algorithms. Here, it is to note that
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RGB IHLS L*a*b*

Class 1 0.9 0.8 0.9
Color image 1 Class 2 0.7 0.8 0.9

Total 0.8 0.8 0.9

Class 1 0.7 0.9 0.9
Color image 2 Class 2 0.5 0.9 0.8

Total 0.7 0.9 0.9

Class 1 0.8 0.9 0.8
Color image 3 Class 2 0.9 0.8 0.8

Total 0.8 0.9 0.8

Class 1 0.8 0.9 0.9
Color image 4 Class 2 0.2 0.6 0.5

Total 0.5 0.8 0.8

Average 0.7 0.8 0.9

Table 4.17: Average PPV for pixel classification experiments, for each class in each test color
image. Average percentage PPV value for the 4 color textures in each color space is given in the
bold faces.

the results presented in Figure 4.9 are the direct output of KNN algorithm and no
spatial regularization technique has been applied to these results.

The pixel classification results on the used four color images, in Figure 4.9,
Table 4.16 and 4.17 depict the advantage of using perceptual color spaces instead
of RGB color space for this type of computations. However for certain cases,
RGB competes well with the perceptual color spaces. For color image 1, L*a*b*
gives better results as compared to the other considered color spaces. For the
other color texture images, IHLS and L*a*b* perform approximately the same.
However in terms of average percentage error and average PPV values, L*a*b*
perform slightly better than the other color spaces.

4.5 Conclusion

In this chapter we have discussed and analyzed a new color texture classification
methodology based upon the multichannel complex versions of the causal and
non-causal linear prediction models discussed in the previous chapter. The main
conclusions of this chapter can be summarized as follows:
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• A useful information of pure chrominance structure, considering a zero
mean case is computed and is combined with pure luminance structure
information to get better color texture classification results than state of
the art methods, like [PFJ06]. These results very effectively emphasizes
the pertinence of using the chromatic spatial variations into account, while
characterizing the color textures. This chrominance spatial structure adds
significantly to the performance of the color texture analysis algorithms
based on only gray level texture information. This enforces the hypothesis
inferred from the results of the experiments conducted in chapter 3 i.e. the
use of perceptual color spaces over RGB for color texture characterization
is found pertinent as already presented in [Pas01].

• From the experiments conducted on the comparison of different models, it
can be concluded that the causal models particularly 2D multichannel QP
AR model via HM method performed better in terms of average percentage
classification results than that of the non-causal ones with the used param-
eter estimation method and data sets.

• If we analyze the percentage classification results based on chrominance
spatial structure cue, L*a*b* is a better choice for chrominance structure
feature cues, for all three data sets. L*a*b* also shows the best results for
the characterization of the overall spatial structure information for all three
test data bases which is one of the very major and important findings of this
part of the thesis.

• For pure color feature cues, RGB and IHLS color spaces show slightly bet-
ter results than L*a*b* color space. The bins considered for 3D histograms
are of regular cubical shape. The color spaces with regular shaped color
gamut i.e. RGB and IHLS are more appropriate for this kind of bin shape
and therefore perform better in this case.

• The overall average percentage classification results if compared, when all
the three feature cues are combined, the L*a*b* color space is a better
choice for DS1 and DS2. It is to note that we have used the same set of
structure and color attributes with same number of model parameters for
all the three data sets. While in [MP04], the results computed with the
best performing attributes from a given set of attributes are presented. This
certainly shows the robustness of the approach developed in this thesis.

• In the results of pixel classification experiments, we see that the two per-
ceptual color spaces perform better than RGB color space in terms of per-
centage pixel classification error and PPV for the chosen four color images
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while using the proposed approach. Considering the over all average values
of these two indicators, L*a*b* gives an advantage over the other two color
spaces.





CHAPTER 5

COLOR TEXTURE SEGMENTATION

Texture segmentation is the process of splitting an observed image into finite
number of homogeneous textures. In the case of multichannel textures like color,
multispectral or hyperspectral satellite images the problem becomes complex be-
cause of the underlying interactions between the different channels of a textured
image. In supervised multichannel texture segmentation, a known texture sample
is used to identify and/or extract the regions having the same texture in a given
multichannel scene or image. A large number of algorithms have been proposed
to characterize the color textures for classification and/or segmentation, during
recent years making use of techniques JSEG [DM01], integrative co-occurrence
matrices [Pal04], fusion of different approaches [DW01], Quaternion representa-
tion of color images [SF07] and multidimensional random field models [PFJ06],
[KP06].

In this chapter we will discuss the model based texture segmentation of color
and satellite images. A contextual introduction of the approach is illustrated in
the section 5.1. An illustration of our model based segmentation approach with
an emphasis on the different parametric approximations of the multichannel linear
prediction error is given in the section 5.2. Experiments and results on the syn-
thetic color texture images as well as on the high resolution satellite images are
presented and discussed in the sections 5.3 and 5.4 respectively. Finally section
5.5 concludes the chapter.
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5.1 Model Based Texture Segmentation
Significance of model based color texture descriptors for color texture character-
ization problem was discussed in chapter 2. Here we would discuss main model
based approaches presented in the past for the segmentation of color textures.

In [CTB+99], the authors proposed an implementation of model based algo-
rithm for color texture segmentation which was termed as Blobworld. The focus
of this technique is the inclusion of anisotropy, polarity and contrast features in a
multi-scale texture model. First, the image is filtered with a Gaussian filter and
then pure color features are extracted in CIE Lab color space. For the joint prob-
ability distribution estimation of color, texture and position features, the authors
propose to use GMMs. The authors demonstrated the utility of the algorithm in
the context of CBIR problem. In [TZ02], data driven Markov chain Monte Carlo
method is illustrated for color image segmentation. In this work the authors did
not focus on the texture characterization in the color images yet have analyzed
and discussed the pertinence of using model based techniques for color image
analysis. The authors have formulated the problem in a Bayesian framework and
analyzed various prior and likelihood models.

In [KP06], an MRF image segmentation model, which combines the color and
texture features is proposed. The theoretical approach is based on Bayesian esti-
mation. This Bayesian estimation involves simulated annealing. The image pix-
els are classified in different classes to obtain the final segmented image. These
classes are represented by multi-variate Gaussian distributions over image fea-
tures (basically an additive Gaussian noise model). Here, the authors use the
perceptually uniform L*u*v* color values as color features and a set of Gabor fil-
ters as texture features on gray level images. It is to note that authors did not use
any optimal color texture features and state that the nature of the texture features
is not crucial to the algorithm from the segmentation point of view. In the model
presented here, they have primarily focused on the pertinence of Gaussian models
for describing the texture feature distributions. In this work, both supervised and
unsupervised frameworks for color texture segmentation are discussed. Gaussian
parameters are either computed using a training data set (supervised) or estimated
from the input image (unsupervised). The authors used the EM algorithm for
the Gaussian parameter estimation. The authors have presented the results over
synthetic and real images. They found that segmentation based purely on texture
gives fuzzy boundaries but usually homogeneous regions, whereas segmentation
based on color is more sensitive to local variations but provides sharp boundaries.
As for the combined features, they obtained sharp boundaries and homogeneous
regions.

Linear prediction models have also been extensively used to characterize the
textures. In [BS94], authors used the 2D single channel real valued linear pre-
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diction models for the multiple resolution segmentation of gray level textured
images. The initial class label field of the image was estimated by approximat-
ing the distribution of linear prediction error (LPE) with a Gaussian probability
distribution. Once the initial class label field of the image is estimated, this field
is modeled as a Markov random field. In this work, the authors did not discuss
the modeling and subsequently the segmentation of the color images using these
models. Another work [AR05] presented an improved version of the approach
discussed in [BS94], addressing the problem of model selection for texture seg-
mentation. This work also addresses the gray level textures and approximates the
LPE distribution with a Gaussian probability distribution. In [MJ92], the authors
introduced first time the concept of SAR models. These concepts were later stud-
ied and extended to MSAR models in [KH03, HCG+04, KBH06]. However, in
these SAR and MSAR extensions of classical 2D AR texture models, the label
field function is defined over the feature space defined by the model parameters.
As this parameter space has reduced dimensions and hence is not considered well
adopted to describe the underlying texture function comprehensively, it needs to
be analyzed with a more generic and robust method.

Generally in model based texture segmentation, the formulation of the seg-
mentation leads to a hierarchical model. Given a 2D multichannel random field
X with an observation field (a given multichannel image) x = {xn} , xn ∈ Ex
defined on a rectangular lattice Λ with size |Λ|, where n is a pixel location
n = [n1, n2]T ∈ Λ ⊂ Z2, then the labels ω may also be defined on the identi-
cal lattice. Thus for each n, there is a label ωn ∈ Ec specifying to which class
the observed pixel xn belongs, with Ec = {1, . . . , C} is the set of all possible
class/texture labels and C is the total number of texture classes in the image. It is
to note that in this work Ex = R×C for the images defined through the Equation
(3.10) and Ex = R3 for images in RGB color space. The relation between the
observation field x and the label field ω = {ωn}n∈Λ can be described using Bayes
theorem as:

p (ω|x) =
p (x|ω) p (ω)

p (x)
(5.1)

where p (x|ω) is the likelihood term, p (ω) is the regularization term and p (x)
is the constant of the problem. Thus if a single texture class is denoted by c
comprising of the label set {n : ωn = c}, then its likelihood function would be
defined by the probability distribution, p

(
{xn, n : ωn = c} |θc(X)

)
, where θc(X)

are the model parameters describing that texture class.
Now if we represent the different texture classes in an image with a model of

parameter set θ(X), then the problem of the texture segmentation can be expressed
as an optimization problem over the labels of the entire image as:
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ω̂MAP = argmax
ω∈Fc

p
(
ω|x, θ(X)

)
(5.2)

with Fc = Ec
Λ , is the set of all possible configurations of the labels over the

lattice Λ. Using equations (5.1) and (5.2), we can state:

p
(
ω|x, θ(X)

)
∝
∏
c∈Ec

p
(
{xn, n : ωn = c} |θ(X)

c

)
p (ω) (5.3)

where θ(X) =
{
θc

(X)
}
c∈Ec

.

The attribution of the pixel labels with the Equation 5.2, can be formulated
as supervised texture segmentation, if the number of textures and the underlying
texture model parameters are known a priori.

In the next section we will use this general definition of the problem to define
our problem of multichannel texture segmentation using the proposed parametric
framework. A more detailed overview of the model based texture segmentation
approaches is given in [Bar98].

5.2 Multichannel Texture Segmentation Model
In this section we will develop a 2D multichannel both real and complex valued
model based, parametric framework for the solution of the supervised texture
segmentation described by the Equation 5.2. For this, we will present the image
observation model, different parametric priors for the distribution of multichannel
LPE and the underlying class label field model used in this framework.

5.2.1 Image Observation Model
Our adopted image observation model to characterize the color textures is the 2D
multichannel complex linear prediction model described by the Equations 3.11
and 3.12. Since as we have seen in the chapter 3, the multichannel complex LPE
sequence is given by:

En = (Xn − µ)− X̂n. (5.4)

where X̂n = −
∑
m∈D

Am (Xn−m − µ) (cf. section 3.3), n = (n1, n2) ∈ Λ ⊂ Z2

in which Λ is the finite 2-D lattice region of size |Λ|. X̂n is the linear prediction
of the 2D multichannel complex image estimated through either of the discussed
causal and non-causal models in the two used perceptual color spaces. While in
the RGB color space, the three color planes are real and hence these models as
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well as the computed multichannel LPE are both real. In the developed super-
vised color texture segmentation approach, initial observation model parameters
are computed on small training sub images of each class. A generalized block
diagram for the estimation of image observation model parameters θM from the
training sub image is shown in Figure 5.1. Once we have the observation model
parameters, we use these parameters to estimate the test color image and subse-
quently compute the multichannel LPE sequence e for this test image.

Classically, the distribution of this multichannel LPE sequence E can be ap-
proximated using a multivariate Gaussian approximation [AR05, BS94]. Once
these approximations are estimated, initial class label field is computed with the
help of these approximations.

Training color texture

?

?

Model estimation,
{
µ̂,
{
Âm

}
m∈D

}

?

Prediction error calculation,
e = {en}n∈Λ

?

Estimation of Σe.

Estimated observation model parameters, θM =
{
µ̂,
{
Âm

}
m∈D

, Σ̂e

}
Figure 5.1: A generalized block diagram of the image observation model parameter
estimation from the training sub image.

5.2.2 Multivariate Gaussian probability distribution

For this approximation of the multichannel LPE distribution, we assume that the
multichannel LPE sequence follows a multivariate Gaussian distribution. This
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multivariate Gaussian approximation for the multichannel error sequence (cf.
Equations 3.11 and 3.12) may be written as :

p
(
en|θc(X)

)
=

(2π)−p/2√
det (Σe)

exp

[
−en

T (Σe)
−1 en

2

]
(5.5)

where Σe is the p× p covariance matrix. Thus the complete set of texture param-
eters in this case is θc(X) = θM =

{
µ̂,
{
Âm

}
m∈D

, Σ̂e

}
. Although this approxi-

mation is simple and mostly used, but it has two disadvantages:

• Segmentation results are not robust and stable.

• These results are not optimal.

To address these two problems of sub-optimal and unstable results, we propose
two other parametric models for approximation of the distribution of multichannel
LPE sequence E:

1. Wishart probability distribution.

2. MGMM probability distribution.

In the next subsections we will discuss both these approximations in detail.

5.2.3 Wishart distribution
The Wishart distribution is a generalization to multiple dimensions of the chi-
square distribution. To achieve robustness and stability of approximation, this
model takes into account multiple observations to define the probability of a given
observation instead of using a single observation (en in our case). Therefore, the
LPE vectors of a finite neighborhood are used along with the LPE vector of a
given pixel to define the probability of LPE for that pixel.

Given J , a matrix of ε LPE column vectors of dimension d taken into account
for the definition of p (en) with ε ≥ d, the Wishart distribution can be character-
ized by its probability density function as in the following equation:

p
(
en|θc(X)

)
=

|M |ε−d−1 exp
(
−1

2
Tr (Σ−1

e M)
)

2ε(d/2)πd(d−1)/4 |Σe|ε/2
d∏
i=1

Γ

(
1

2
(ε+ i− 1)

) (5.6)

whereM = JTJ is a positive semidefinite matrix of size d×d. Here we have con-
sidered the first order horizontal and vertical neighboring LPE vectors. Therefore
in our case ε = 5 and J is given as:

J = [en−1v , en−1h , en, en+1v , en+1h ]T (5.7)



5.2. Multichannel Texture Segmentation Model 101

with 1h = [1, ∅] and 1v = [∅, 1]. In the case of three channel complex LPE in
RGB color space d = 3 as P = 3. In the case of two channel complex LPE for
the images defined by the Equation (3.10) in IHLS and L*a*b* color spaces, we
have a zero imaginary component for the first (luminance) channel. Hence, in this
case too we have d = 3 although P = 2. Γ is the gamma function. The complete
set of texture parameters in this case too, is θc(X) = θM .

5.2.4 Multivariate Gaussian Mixture Model
In this section we present an MGMM model for the distribution of multichan-
nel LPE sequence E. The Gaussian mixture model for the multichannel error
sequence E is defined as:

p
(
en|θc(X)

)
=

K∑
k=1

αkp (en|θk) (5.8)

where α1, . . . , αK are the prior probabilities of each Gaussian component of the
mixture, and K > 1 is the number of components of MGMM. Each θk =
{µk,e,Σk,e}, k = 1, . . . , K, is the set of model parameters defining the kth com-
ponent of the mixture model, with µk,e is the mean and Σk,e is the covariance
matrix of kth component of the mixture . The prior probability values must sat-
isfy following conditions:

αk > 0, k = 1, . . . , K (5.9)

and
K∑
k=1

αk = 1 (5.10)

For the 2D complex error sequence E, MGMM can be conceived by considering
the real and imaginary parts of the complex error sequence as two variates of
the mixture model. For MGMM, each component density p(en|θk) is a normal
probability distribution with d = 3 in our case as we do not consider the imaginary
component of the luminance channel (cf. section 5.2.3):

p(en|θk) =
(2π)−p/2√
det (Σk,e)

exp

[
−1

2
(en − µk,e)T (Σk,e)

−1 (en − µk,e)
]

(5.11)

Thus the complete set of texture parameters is θc(X) = {θK , θM} with mixture
model parameter set denoted by θK is given as θK = {θ1, . . . , θK , α1, . . . , αK}
. It is important to note that in this case the observation model parameter set
computed through the training sub image is θM =

{
Âm

}
m∈D,µ̂

.
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The mixture model parameter set θK is also estimated from the training sub
image along with the training model parameter set θM . The most widely used
approach for the estimation of the MGMM parameter set θK , from a given dataset
is to use MLE:

θ̂K = argmax
θ

p (e|θ) (5.12)

where f (θ) = p (e|θ) is the likelihood function. The EM algorithm is a general
iterative technique for computing MLE when observed data can be considered as
incomplete. The algorithm consists of two steps: An E-step and an M-step. The
EM algorithm produces a sequence of estimates θK (t), t = 0, 1, 2, . . . by repeating
these two steps. If θK (t) denotes the estimated mixture model parameter set at
iteration t, then at iteration (t+ 1) the E-step computes the expected complete
data log-likelihood function:

Q
(
θK , θ

(t)
K

)
=
∑
n∈Λ

K∑
k=1

{logαkp (en|θk)}P
(
k|en; θ

(t)
K

)
(5.13)

where P
(
k|en; θ

(t)
K

)
is the a posteriori probability and is computed as:

P
(
k|en; θ

(t)
K

)
=

αk
(t)p
(
en|θk(t)

)
K∑
l=1

αl
(t)p
(
en|θl(t)

) (5.14)

The M-step finds the estimate of θK at iteration (t+ 1), by maximizing the hidden
variable Q

(
θK , θ

(t)
K

)
:

αk
(t+1) =

1

|Λ|
∑
n∈Λ

P
(
k|en; θ

(t)
K

)
(5.15)

µk,e
(t+1) =

∑
n∈Λ

enP
(
k|en; θ

(t)
K

)
∑
n∈Λ

P
(
k|en; θ

(t)
K

) (5.16)

Σk,e
(t+1) =

∑
n∈Λ

P
(
k|en; θ

(t)
K

) (
en − µk,e(t+1)

) (
en − µk,e(t+1)

)T
∑
n∈Λ

P
(
k|en; θ

(t)
K

) (5.17)
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EM algorithm is strongly dependent on initialization of parameter values. One
way is to start with a number of random starts and then assigning the final value
which gives the maximum-likelihood. This will increase the computation time,
as evident. In our approach we have used well known K-means algorithm to
compute the initial values of mixture model parameter set θK .

5.2.5 Label Field Estimation
In this section we present the maximum a posteriori (MAP) estimation of the
final class label field as in [BS94, AR05]. As discussed in the section 5.1, the
likelihood method defines the a posteriori law p(ω|x) as the probability of getting
one specific realization of the label field knowing the observation field. p(ω|x)
can be written in a general form according to the Gibbs distribution [Guy95]:

p (ω|x) ∝ exp(−UD (x, ω)− Ui (ω)) (5.18)

in which UD is an “energy function” depending on the given observation field x
and the label field ω, while Ui is the energy function depending only on the label
field and which will allow the regularization of the label field. Let’s now define
Ux (ω) = UD (x, ω)+Ui (ω) . Following the Equation (5.18), the MAP estimation
of ω can then be written in the terms of this energy function:

ω̂MAP = arg max
ω∈Fc

[p (ω|x)] = arg min
ω∈Fc

[Ux(ω)] (5.19)

Therefore, we have to optimize Ux : Fc → R to find ω̂MAP , the segmentation of
the textured image. We can write:

UD (x, ω) =
∑
n

(
− log

(
p
(
en|θωn

(X)
)))

(5.20)

where p
(
en|θωn

(X)
)

is the corresponding conditional probability of the LPE
given the respective model parameters of our parametric models of LPE (cf.
Equations (5.5), (5.6) and (5.8)).

Now we have to model the label field in order to obtain Ui (ω). Our choice
consists of two terms of energies associated to the label field, Ui (ω) = Ui,1 (ω) +
Ui,2 (ω) . This definition of Ui makes it different from the classical Potts model.
The term Ui,1 (ω) represents the Gibbs energy term associated to the Potts model
[BS94]:

Ui,1 (ω) = β

 ∑
〈n1,n2〉1

(1− δ (ωn1 , ωn2)) +
∑
〈n1,n2〉2

(1− δ (ωn1 , ωn2))

 (5.21)
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with δ the Kronecker symbol, β the weight term or hyperparameter of the Potts
model and 〈n1, n2〉p, p = 1, 2, signifying ‖n1 − n2‖2 =

√
p, (n1, n2) ∈ Λ2, n1 6=

n2. It is to note that the classical definition of the Potts model [BS94] contains a
factor of 1√

2
with the second term. this factor is omitted here as this new definition

does not affect the final results significantly. Potts model assumption corresponds
to a general hypothesis about the label field: the classes can be permuted without
any influence on the probability law. The hyperparameter β represents the global
cost function of region boundaries. As we increase the value of β, the total length
of the region boundaries in the estimated label field decreases.

As in [TZ02], we added an energy term Ui,2 (ω), which depends on the size of
the region. The size of a region R, A = |R| in label fields follows a probability
distribution which encourages the large regions to form. This prior is defined as

p (A) ∝ exp(−γA−φ) (5.22)

where φ is taken as a constant in [TZ02]. In this work we have studied the
influence of this coefficient on the segmentation results. γ is a scale factor which
controls the scale of segmentation. Therefore Ui,2 (ω) may be defined as

Ui,2 (ω) = γ

(
nR∑
i=1

|Ri|−φ
)

(5.23)

γ is proposed to be taken as a constant in [TZ02]. Herein, we also varied the
values of γ to study the effects of varrying scale factor on the final results. nR

is the total number of regions in ω such that Λ =

nR⋃
i=1

Ri, Ri ∩ Rj = ∅, (i, j) ∈

J1, nRK2.
To validate the theoretical approach developed in this section, different sets

of experiments were carried out. These used synthetic color textures as well as
high resolution satellite images. The experimental procedures, test conditions and
results of these experiments are presented in the next sections.

5.3 Synthetic Color Textures
As we discussed in the pixel classification experiments (cf. section 4.4.4), the
ground truth data associated with complex natural images is difficult to estimate
and its extraction is highly influenced by the subjectivity of the human operator.
Thus, the evaluation of the proposed parametric texture segmentation framework
was performed on natural as well as synthetic color textures which possess unam-
biguous ground truth data. Like in pixel classification experiments, for these tests
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too, the test images were taken from the color texture database used in [IW08].
The database in [IW08] was constructed using color textures from Vistex and
Photoshop databases.

Figure 5.2: Data base of ten color images used for simulations.

In the first phase of the proposed supervised color texture segmentation al-
gorithm (cf. section 5.2), a single sub image of size 32 × 32 was used as the
training image for each class. Image observation model parameters and mul-
tichannel prediction error were computed for this sub image. Then, using this
image observation model and the multichannel LPE sequence, parameter sets for
the used parametric approximations were calculated. Now these parameters were
used to compute the initial class label field for each of the ten test textured color
images shown in Figure 5.2. In the second phase of the algorithm, this coarse
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class label field is spatially regularized. For this second phase of the algorithm,
we conducted two sets of experiments.

5.3.1 Classical Potts Model

In the first set of experiments, we did not use the region size energy term Ui,2
discussed in Equation 5.23, therefore for this set of experiments we just had
Ui (l) = Ui,1 (l). We applied an iterative solution to the Potts model and it was
computed through conventional Iterative Condition Mode (ICM) . The hyperpa-
rameter, β was varied from 0.25 to 5.85 with a linear interval of 0.2. This resulted
in 29 different segmentations of each image for a given observation model, a given
color space and a given parametric model of the LPE distribution. Experiments
were conducted using all three (causal and non-causal) 2D multichannel real and
complex linear prediction models. The model orders for 2D QP AR model and
2D NSHP AR model were kept (2, 2), while for 2D GMRF model the order was
5. These model orders were chosen to establish a consistency with the choices
made in the chapter 4. These results can be analyzed to evaluate the performance
of the used multichannel real and complex image observation models, parametric
approximations of the LPE distribution and the used color spaces.

Figure 5.3: Comparison of the average percentage error of the segmentation results obtained
using three different parametric models of the LPE in RGB, IHLS and L*a*b* color spaces (from
left to right respectively). The observation model used is 2D multichannel QP AR model.

If we analyze these results, it is clear that the MGMM approximation of the
multichannel LPE distribution shows better results than the other two approaches
in the terms of mean percentage error for the ten color images used in these ex-
periments. This enforces the hypothesis that multichannel LPE may not be best
approximated using a simple Gaussian distribution.

These results may also be analyzed with reference to the comparison of the
used causal and non-causal multichannel image observation models, we see that
the causal models i.e. 2D multichannel NSHP AR model and 2D multichannel
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RGB (%/β) IHLS (%/β) L*a*b* (%/β)

GMRF 10.44/2.05 12.95/2.25 7.65/2.45
NSHP AR 3.45/4.05 5.90/2.85 3.98/3.85
QP AR 2.94/4.45 5.65/3.05 3.88/3.45

Table 5.1: Average percentage pixel classification error of 10 color textures with correspond-
ing values of β. The parametric model of the LPE used is the classical multivariate Gaussian
distribution. The best result is indicated in bold faces.

RGB (%/β) IHLS (%/β) L*a*b* (%/β)

GMRF 10.36/1.85 12.58/2.05 5.86/2.65
NSHP AR 2.93/4.05 4.21/2.85 2.91/5.25
QP AR 2.44/3.65 3.92/2.25 2.72/4.05

Table 5.2: Average percentage pixel classification error of 10 color textures with corresponding
values of β. The parametric model of the LPE distribution used is MGMM. The best result is
indicated in bold faces.

RGB (%/β) IHLS (%/β) L*a*b* (%/β)

GMRF 9.52/5.85 10.97/5.85 6.67/5.85
NSHP AR 4.47/5.85 5.43/5.85 4.57/5.85
QP AR 4.23/5.85 5.07/5.85 4.41/5.85

Table 5.3: Average percentage pixel classification error of 10 color textures with corresponding
values of β. The parametric model of the LPE distribution used is the Wishart distribution. The
best result is indicated in bold faces.

Figure 5.4: Comparison of the standard deviation of the average segmentation error in three
different color spaces using 2D multichannel GMRF, NSHP AR and QP AR models (from left to
right respectively). The parametric model used for LPE approximation is MGMM.

QP AR model perform better than the non-causal model i.e. 2D multichannel
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GMRF model. This better performance of causal models for characterizing color
textures, has already been observed and studied in detail in chapters 3 and 4.
The best results presented in this set of experiments are all in the cases when
2D multichannel QP AR model is used as the image observation model. The
percentage error scores obtained through 2D multichannel NSHP AR model are
also very closed to those obtained through 2D multichannel QP AR model. As the
2D multichannel QP AR model gives the best scores, graphical representation of
the results obtained using this image observation model are shown in Figure 5.3.
In these figures, average percentage pixel classification error of ten color images
using different parametric models of the LPE distribution against varying values
of β, the regularization parameter of the Potts model is plotted.

The initial value of the average percentage error in these plots is given for
β = 0, i.e. the percentage error value that is computed over the initial class la-
bel field estimated through the parametric approximations of the LPE distribution
without using any spatial regularization (cf. Equation 5.21). Analyzing these
plotted results (cf. Figure 5.3), two significant observations are made. First, the
overall performance of the MGMM approximation after the spatial regularization
is better than the other two approximations for all the three color spaces. Sec-
ondly, the Wishart distribution does not show the global minimum values of the
average percentage error, yet the initial value of the percentage error in this case
is much lower than the other two error models. This is attributed to the robust
and stable prior term computed in the case of Wishart distribution as it considers
multiple observations i.e. LPE vectors to compute the probability of a given ob-
servation (LPE vector). This observation makes the Wishart distribution a strong
candidate as an approximation for the LPE distributions in the applications where
no spatial regularization is needed.

Out of these segmentation results with different models, the ones which showed
the minimum average percentage pixel classification error of 10 color textures are
presented in Tables 5.1, 5.2 and 5.3.

For the comparison of results in different color spaces, only average percent-
age error values are not sufficient. Therefore we computed the standard deviation
values of these results for the color space comparison. The MGMM approxima-
tion of the multichannel LPE distribution has shown the stable and best results.
Therefore for the color space comparison, we used the results obtained through
this model. These results are presented in Figure 5.4. These are the plots of the
variance of percentage error results for the ten textures plotted against the differ-
ent values of β, the regularization parameter.

These results clearly indicate better and stable results in the case of RGB and
L*a*b* color spaces. However, L*a*b* color space shows an edge over RGB
color spaces in certain cases, for example in Figure 5.4. In the case of MGMM
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approximation, the results obtained in all the used color spaces are equally stable
and robust which makes it really very hard to pick one up as the better candidate
than the other.

5.3.2 Region Size Penalty
In this second set of experiments, we used the region size energy term Ui,2 dis-
cussed in Equation 5.23, therefore for this set of experiments we had Ui (l) =
Ui,1 (l) + Ui,2 (l). In these experiments we again applied an iterative solution
computed through the conventional ICM. In these experiments we used β i.e. the
hyperparameter of the Potts model, as a progressively varying parameter. We
used the regularized segmentation result obtained through one value of β as an
initial class label field for the next value of β. The value of the hyperparameter
β was varied from 0.1 to 5.0 with an exponential interval. For the region energy
term, we fixed the hyperparameter γ = 2 and the coefficient c = 0.9. Experiments
were conducted using only 2D multichannel QP AR model, as it performed best
in the first experiment set. The model order for 2D QP AR model was kept (2, 2).

Figure 5.5: Comparison of the average percentage error of the segmentation results obtained
with region penalty term, using three different parametric models of the LPE in RGB, IHLS
and L*a*b* color spaces (from left to right respectively). The observation model used is 2D
multichannel QP AR model.

This resulted in 13 different segmentations of each image for a given color
space and a given parametric model of the LPE distribution. Out of these seg-
mentations, the ones which showed the minimum average percentage pixel clas-
sification error of 10 color textures are presented in Table 5.4. These results can
be analyzed in the exact same manner as the results presented in the previous
sub section. These are analyzed to evaluate the performance of the used para-
metric approximations of the LPE distribution and the used color spaces. These
results show approximately the same observations and they reinforce the results
and observations made at the end of the previous experiment. In addition to these
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Figure 5.6: Comparison of the standard deviation of the average segmentation error in three
different color spaces with region penalty term, using 2D multichannel multivariate Gaussian,
MGMM and Wishart distribution models (from left to right respectively). The observation model
used is 2D multichannel QP AR model.

observations, these results (presented in Figure 5.5) depict another important ob-
servation on the spatial regularization step of the algorithm about the region size
penalty term used. It is evident from these results that penalizing very small re-
gion sizes (of around 5 to 10 pixels in our case) for disappearance and favoring
the large regions to form in the test images give us much improved segmentation
results. Using this region size penalty term in the spatial regularization step of the
proposed algorithm has not only improved the segmentation results in the terms
of percentage mean error. The algorithm also reaches to a fine and stable level of
segmentation at lower values of hyperparameter β.

RGB IHLS L*a*b*

Single Gauss 1.62 1.85 1.68
MGMM 1.40 1.58 1.52
Wishart 3.14 3.37 3.09

Table 5.4: Average percentage pixel classification error of 10 color textures. The image obser-
vation model is 2D multichannel QP AR model. The best results are indicated in bold faces.

In this experiment set, for the comparison of results in different color spaces,
same procedure as in previous one has been adopted. The 2D multichannel QP
AR model has shown the stable and best results. Therefore for the color space
comparison, we used the results obtained through this model. These results are
presented in Figure 5.6. These are the plots of the standard deviation of the per-
centage error results for the ten textures plotted against the different values of β,
the regularization parameter.
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These results clearly indicate better and more stable results in the case of
RGB and L*a*b* color spaces. However, L*a*b* color space shows an edge
in the stability of results over the RGB color space in the cases when classical
Gaussian approximation or Wishart approximation is used (cf. Figure 5.6). In the
case of MGMM approximation of the LPE distribution, the results obtained in all
the used color spaces are equally stable and hence it is really very hard to pick
one up as the better candidate.

For the test images 3, and 10, the final segmented results computed in RGB
and L*a*b* color spaces using different approximations are presented in Figures
5.7, 5.8, 5.9 and 5.10 respectively. These segmentation results are obtained using
2D multichannel QP AR model. In each figure, the first, second and the third
row present the segmentation results computed using classical single Gaussian
approximation, MGMM approximation and the Wishart distribution respectively.
The first column in these figures, show the segmented images without any spatial
regularization i.e. with β = 0. The second column presents the segmented images
using ICM with Potts model for spatial regularization. Finally the third column
shows the final segmented images using ICM with Potts model (with variable β)
and the added region size penalty term for the spatial regularization. The similar
image organization has been adopted in all these figures. These results reinforce
the observations made earlier in this section.

5.3.3 Comparative Analysis

The color texture segmentation performance of the color texture descriptor dis-
cussed in this chapter can be compared to the similar state of the art approaches
presented in the recent years. One such work is presented in [KP06]. The authors
represented the different classes in the image by Multivariate Gaussian Mixture
Model (MGMM) . They used Gabor filters as texture features whereas pixel values
in CIE L*u*v* color space are considered as color feature cue. In [KP06], authors
have used 4 color texture images prepared from Vistex color texture database.
First one of these 4 color texture images is of size 256×256, while the other three
are of size 128× 128. These four images are presented in Figure 5.11 (row 1). In
[KP06], authors have discussed both supervised and non-supervised frameworks
of color texture segmentation. Here we discuss only the supervised color texture
segmentation results computed through ICM.

To compare the results obtained through our method with the ones presented
in [KP06], we conducted experiments on these four images also. 2D QP AR
model was used as the image observation model, and MGMM was used as the
approximation method for LPE distribution. Final segmented images in RGB and
L*a*b* color spaces are presented in Figure 5.11 (row 2 and row 3 respectively).
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β = 0 Potts Potts + Region

Single Gauss

MGMM

Wishart

Figure 5.7: Segmentation results without spatial regularization (column β = 0), with spatial
regularization using only Potts model (column Potts) and with spatial regularization using Potts
model with varying β and region size penalty (column Potts + Region) for the color texture 3
using single Gaussian (row 2), MGMM (row 3) and Wishart approximation (row 4) in RGB color
space.

A quantitative comparison of the individual as well as average percentage error
results is presented in the Table 4.5.

In [KP06], color and texture are characterized using different descriptors. In
this work we have presented a pure texture descriptor which also characterizes
the chromatic spatial variations of the image (in the case of IHLS and L*a*b*
color spaces) and approximates the spatial distribution of the pure color content
of the image. Taking this consideration into account, it is clear that for three out
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β = 0 Potts Potts + Region

Single Gauss

MGMM

Wishart

Figure 5.8: Segmentation results without spatial regularization (column β = 0), with spatial
regularization using only Potts model (column Potts) and with spatial regularization using Potts
model with varying β and region size penalty (column Potts + Region) for the color texture 3
using single Gaussian (row 2), MGMM (row 3) and Wishart approximation (row 4) in L*a*b*
color space.

of four images, our method gives better results than the ones presented (using the
texture descriptor) in [KP06]. For these images, our method with only a texture
descriptor gives results which are approximately of the same order as the best
ones in [KP06] (using both color and texture descriptors).

For the first image, as stated in [KP06], three regions contain a wooden tex-
ture with nearly matching colors and a small difference in the direction (left and
lower part) or scale (middle part) in texture. The two other regions have similar
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β = 0 Potts Potts + Region

Single Gauss

MGMM

Wishart

Figure 5.9: Segmentation results without spatial regularization (column β = 0), with spatial
regularization using only Potts model (column Potts) and with spatial regularization using Potts
model with varying β and region size penalty (column Potts + Region) for the color texture 10
using single Gaussian (row 2), MGMM (row 3) and Wishart approximation (row 4) in RGB color
space.

texture but completely different color. This makes the segmentation of this image
an ill-posed problem demanding rotation and scale invariance from the texture
descriptor which is out of the scope of this work. For this image, our method per-
forms lower than that of the one presented in [KP06]. Comparison of the overall
average percentage error also shows that the presented method gives quite satis-
factory results.
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β = 0 Potts Potts + Region

Single Gauss

MGMM

Wishart

Figure 5.10: Segmentation results without spatial regularization (column β = 0), with spatial
regularization using only Potts model (column Potts) and with spatial regularization using Potts
model with varying β and region size penalty (column Potts + Region) for the color texture 10
using single Gaussian (row 2), MGMM (row 3) and Wishart approximation (row 4) in L*a*b*
color space.

5.4 High Resolution Satellite Images

Segmentation in high resolution satellite images has been a point of interest for re-
searchers over the past few years. Several approaches based on parametric and/or
non-parametric features of these images have been proposed [LW07, GTYH07].
A parametric approach to address the classification of aerial images presented
in [DJG00], discusses the fusion of color and texture features for aerial image
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Figure 5.11: The original images (row 1) and the final segmentation results using our method
in RGB (row 2) and (L*a*b*) color spaces for a comparative analysis with [KP06].

Method in [KP06] Our Method

Texture only Color only Combined RGB L*a*b*

Color Texture 1 20.6 23.1 11.4 29.3 27.1
Color Texture 2 23.3 1.8 0.45 3.2 3.2
Color Texture 3 18.3 2.0 1.0 3.0 3.5
Color Texture 4 25.6 7.5 3.9 2.4 2.4

Average 22.9 17.2 4.2 9.5 9.0

Table 5.5: Comparative analysis of the approach with the results presented in [KP06] with
respect to the percentage error.

segmentation application. In this approach, maximum likelihood segmentation
is applied to the image in each feature space (color and gray level texture) sepa-
rately. A final segmentation is obtained by combining the likelihoods in the two
spaces using a certainty function. For texture feature computation in the intensity
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information of the image, the authors have made use of the SAR model discussed
in [MJ92]. In this work authors have assumed a classical multivariate Gaussian
probability distribution for the data and gave a hypothesis that the reported results
could be improved using multimodal probability distributions.

Most of these approaches appear to give suboptimal results for high resolution
satellite images. This happens so, as:

• These do not have control over the fusion process of low resolution multi-
spectral images with high resolution monospectral images.

• The details in these images are difficult to model through conventional color
and texture descriptors and their utilization methodologies.

We developed a framework for the land cover classification in high resolu-
tion satellite images in which the fusion of these images can be addressed along
with the segmentation process while ensuring the coherence between the two. It
consists of two steps. In the first step we merge the multispectral images of low
spatial resolution with a monospectral image of higher spatial resolution in order
to improve the resolution of multispectral images. This image fusion is based on
the search of an optimal 3D hybrid color space (cf. section - The Fusion Ap-
proach). In the second step we apply our parametric segmentation discussed in
this chapter to obtain a land cover classification map of these high resolution satel-
lite images. We conducted the experiments on high resolution satellite images
using the proposed texture segmentation framework. These images are acquired
through IKONOS and QuickBird observation satellites.

5.4.1 The Fusion Approach
As presented in [Pet01], IKONOS acquires a panchromatic image (Pan) with a
resolution of 1m/pixel and a multispectral image comprising of B1, B2, B3 and
near Infra Red i.e. NIR (B4) bands with a resolution of 4m/pixel. Whereas,
QuickBird acquires a panchromatic image (Pan) with a resolution of 0.7m/pixel
and a multispectral image comprising of B1, B2, B3 and near Infra Red i.e. NIR
(B4) bands with a resolution of 2.8m/pixel. For the images from both these satel-
lites, the spectral bands B1, B2 and B3 correspond to the Blue, Green and Red
channels of a color image [Pet01]. As an example, the relative spectral response
of IKONOS imagery is shown in Figure 5.12, taken from [web].

The high resolution Pan images are highly textured and contain large amount
of useful data for land cover classification. In order to make use of this high reso-
lution information of the panchromatic image in a multispectral context, various
approaches for the fusion of high resolution Pan images with low resolution im-
ages in B1, B2 and B3 bands have been proposed. These techniques use the high
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Figure 5.12: The relative spectral response of IKONOS imagery [web].

resolution Pan images along with the low resolution B1, B2 and B3 to produce
high resolution versions of multispectral i.e. B1, B2, B3 images.

The approach of image fusion at different spatial and spectral resolutions,
used in this thesis generalizes the different nonlinear color space transformations
based on supervised training [AGK09]. This allows to consider the specificities
and the particularities of the satellite images, to generalize the existing methods
and to improve the fusion product. The approach employs hybrid color space
construction method [Aba08]. After application of this method, the appropriate
hybrid components denoted by I∗, S∗ and H∗ are estimated with I∗ component
containing the most spatial information and thus the closest to the high resolution
monospectral image. This allows to verify the identification constraint between
the high and the low frequencies and hence the detailed information is preserved.

The rest of the fusion procedure does not differ much from the classic pro-
cedure stated in [WJCK90]. The core advantage of the added step is to extract
the best combination of the three color variables from the multispectral images.
For further details on this approach, [AGK09, Aba08] can be consulted. The re-
sulting high resolution, real valued B1, B2, B3 images (represented by an RGB
vector) can be converted to our two channel complex image representation using
the discussed color spaces (cf. chapter 3).

We used a total of twenty (20) high resolution satellite images in these ex-
periments. The content of these high resolution images is very rich and different
classes are very similar. A brief description of these images is given in the Table
5.6. The area of study is the Island of Guadeloupe.
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Image Size (pixels) Nr. classes Land cover

Sat image QB1 512× 512 4 Forest, agricultural and herbaceous land
Sat image QB2 512× 512 5 -do-
Sat image QB3 512× 512 2 Forest and herbaceous land
Sat image IK4 468× 468 6 Forest and agricultural land
Sat image IK5 1008× 488 5 -do-
Sat image IK6 960× 640 4 Forest, agricultural land and sea
Sat image QB7 512× 512 2 Forest and herbaceous land
Sat image QB8 512× 512 2 -do-
Sat image QB9 512× 512 2 -do-
Sat image QB10 512× 512 2 -do-
Sat image QB11 512× 512 3 Forest, agricultural and herbaceous land
Sat image QB12 512× 512 3 -do-
Sat image QB13 512× 512 3 -do-
Sat image QB14 512× 512 4 Forest, agricultural, herbaceous land, empty field
Sat image QB15 512× 512 3 Forest, agricultural land and empty field
Sat image QB16 512× 512 3 Forest, herbaceous land and empty field
Sat image QB17 512× 512 2 Forest and agricultural land
Sat image QB18 512× 512 3 Forest, herbaceous land and empty field
Sat image QB19 512× 512 3 Forest, agricultural and herbaceous land
Sat image QB20 512× 512 3 -do-

Table 5.6: Brief description of the twenty high resolution satellite images.

Classification (%) Sensitivity (%) Global error (%)

Single Gauss MGMM Single Gauss MGMM Single Gauss MGMM

Sat image QB1 84.1 82.4 80.3 79.5 8.6 9.4
Sat image QB2 85.8 85.6 75.9 75.0 7.4 7.4
Sat image QB3 93.9 89.5 93.7 91.0 7.1 11.5
Sat image IK3 80.9 77.2 74.7 70.8 7.6 8.9

Average 86.2 83.7 81.2 79.1 7.7 9.3

Table 5.7: Land cover classification results in terms of classification, sensitivity and global error
in RGB color space.

Out of these twenty images, four high resolution satellite images (Figure
5.13), one of the size 468× 468 pixels from IKONOS (Figure 5.13d) and three of
the size 512 × 512 from QuickBird (Figures 5.13a, 5.13b and 5.13c) were used
in the initial set of experiments. A brief overview of the underlying land cover
details for these four images are given as follows:

• Sat imageQB1 contains a total of four classes in which there are two differ-
ent classes representing agricultural land, one representing a forest region
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(a) Sat Image QB1 (b) Sat Image QB2

(c) Sat Image QB3 (d) Sat Image IK3

Figure 5.13: Four multichannel Satellite images used for initial simulations.

and another of the herbaceous land (see mask in the row 1 of the Figures
5.14 and 5.15).

• Sat image QB2 contains five classes representing forest, herbaceous land
and three different classes of the agricultural fields (see mask in the row 2
of the Figures 5.14 and 5.15).
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Classification (%) Sensitivity (%) Global error (%)

Single Gauss MGMM Single Gauss MGMM Single Gauss MGMM

Sat image QB1 87.7 90.4 81.2 82.6 6.7 5.4
Sat image QB2 87.1 87.1 75.7 75.9 6.8 6.8
Sat image QB3 97.5 97.4 96.2 96.1 3.5 3.6
Sat image IK3 85.6 87.8 83.6 85.4 36.3 5.3

Average 89.5 90.7 84.2 85.0 6.0 5.3

Table 5.8: Land cover classification results in terms of classification, sensitivity and global error
in L*a*b* color space.

• Sat image QB3 contains only two classes representing forest and herba-
ceous regions (see mask in the row 3 of the Figures 5.14 and 5.15).

• Sat image IK3 contains six classes among which one is a representative of
a forest region while other five classes represent different agricultural fields
(see mask in the row 4 of the Figures 5.14 and 5.15).

For synthetic color texture segmentation experiments, MGMM approximation
produced the optimal and stable overall performance when used in L*a*b* color
space along with the region size penalty term for the spatial regularization. Hence,
we used the same configuration for these experiments too and also compared
the results for these images using the classical Gaussian approximation for the
distribution of the multichannel LPE in both RGB and L*a*b* color spaces. In
this set of experiments, the values of the hyper parameter β and the region size
parameters γ and φ are fixed as β = 2, γ = 5 and φ = 0.9. (cf. section 5.2.5).

The respective class masks of the land cover created by experts for these four
images and the segmentation results using 2D multichannel QP AR model of
order (3, 3) with both the approximations of the multichannel LPE in RGB and
L*a*b* color spaces are also shown in Figures 5.14 and 5.15 (columns 2 and 3
respectively). The results for the land cover classification experiments, in RGB
and L*a*b* color spaces are presented in Tables 5.7 and 5.8 respectively. From
these tables, the results in these two color spaces can be compared in terms of the
percentage classification, percentage sensitivity and the percentage global error
[Aba08]. The overall best results are indicated in boldfaces. It can be noticed
that both the approximations of the multichannel LPE distribution have shown
competitive results. However, the results are optimal and show increased stability
through MGMM approximation when used in the L*a*b* color space along with
the region size penalty term for the spatial regularization. It can also be observed
clearly from these results that the L*a*b* color space presents the better over all
results than RGB.
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Mask Single Gauss MGMM

Figure 5.14: Segmentation results of the four used satellite images in RGB color space.

From these results we can see that the final segmentation results of the high
resolution satellite images could be improved by a further fine tuning of the region
size parameters i.e. γ and φ. The effects of these parameters on the final results
are studied in the following subsection.
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Mask Single Gauss MGMM

Figure 5.15: Segmentation results of the four used satellite images in L*a*b* color space.

5.4.2 Effects of Varrying Region Parameters

To improve the land area classification results of the chosen high resolution satel-
lite images (cf. Figure 5.13), we carried out another set of experiments. In this
set of experiments we varied the region size energy parameters i.e. the region
size coefficient φ and the segmentation scale factor γ, to study the effects of these
parameters on the final segmentation results. The region size coefficient φ was
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Single Gauss MGMM

RGB

L*a*b*

Figure 5.16: Average percentage pixel classification of four satellite images in RGB (row 1) and
L*a*b* (row 2) color space using classical Gaussian (left) and MGMM (right) approximations for
the distribution of multichannel LPE.

varied from 0.5 to 0.95 with a linear interval of 0.15 and the segmentation scale
factor was varied from 5 to 35 with a linear interval of 10. these experiments
were (again like previous set of experiments on the four satellite images) con-
ducted in RGB and L*a*b* color spaces using classical Gaussian and MGMM
approximations of the multichannel LPE distribution.

These results computed in the terms of average percentage values of pixel
classification and sensitivity along with the global error are presented in Figures
5.16, 5.17 and 5.18. These results show that the overall effects of the region size
parameters can be viewed as a physical description of the Equation 5.22. From
these figures following important observations can be made:

• For the lower values of the region size coefficient φ, the small region for-
mation in the final label field is discouraged and hence better segmentation
results are observed at lower values of φ.

• If we analyze the effects of γ, in certain cases (e.g. when MGMM approx-
imation is used in L*a*b* color space), after a certain threshold value, the
increase in γ makes the region size penalty term significant as compared to
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Single Gauss MGMM

RGB

L*a*b*

Figure 5.17: Average percentage sensitivity of four satellite images in RGB (row 1) and L*a*b*
(row 2) color space using classical Gaussian (left) and MGMM (right) approximations for the
distribution of multichannel LPE.

the Potts energy term which leads to an over segmentation and the overall
results deteriorate.

The best results computed in terms of individual as well as average percentage
values of classification error and sensitivity along with the global error for these
four images are shown in the Tables 5.9 and 5.10 respectively. The best overall
results obtained in the two used color spaces are presented in bold faces.

These tables indicate that the segmentation results obtained for highly tex-
tured, high resolution satellite images, using MGMM approximation in L*a*b*
color space are better. It is also important to note that the variation of the re-
gion size parameters have given an overall 3% increase in the average percentage
classification and sensitivity results of the previous experiment on high resolution
satellite images (cf. Tables 5.7 and 5.8).

The final segmentation results for this first set of experiments, using both these
approximations in RGB and L*a*b* color spaces along with the respective class
masks of the land cover created by experts for these four images are shown in
Figures 5.19 and 5.20 (columns 2 and 3 respectively).
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Single Gauss MGMM

RGB

L*a*b*

Figure 5.18: Average percentage global error of four satellite images in RGB (row 1) and
L*a*b* (row 2) color space using classical Gaussian (left) and MGMM (right) approximations
for the distribution of multichannel LPE.

Classification (%) Sensitivity (%) Global error (%)

Single Gauss MGMM Single Gauss MGMM Single Gauss MGMM

Sat image QB1 84.3 82.7 81.3 81.3 8.4 9.2
Sat image QB2 89.5 88.5 79.1 79.4 5.9 6.2
Sat image QB3 95.3 88.7 95.0 90.8 5.6 12.3
Sat image IK3 82.9 81.4 73.2 78.6 6.9 7.4

Average 89.6 86.3 84.5 82.5 6.7 8.8

Table 5.9: Land cover classification results in terms of percentage values of pixel classification
and sensitivity along with global error in RGB color space.

The optimal values of the region size parameters γ and φ (computed from
the first set of experiments on four images) are used to segment the remaining
sixteen satellite images, in the second set of experiments. These images are shown
in Figures 5.21 and 5.22. The segmentation results for these images are again
computed using 2D multichannel QP AR model of order (3, 3), with classical
single Gaussian and MGMM approximations of the multichannel LPE in both the
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Classification (%) Sensitivity (%) Global error (%)

Single Gauss MGMM Single Gauss MGMM Single Gauss MGMM

Sat image QB1 90.5 94.5 83.5 87.2 5.3 3.3
Sat image QB2 90.0 89.9 79.8 80.0 5.6 5.7
Sat image QB3 97.8 97.8 96.5 96.5 3.2 3.2
Sat image IK3 88.4 91.0 85.8 88.8 5.1 4.2

Average 92.5 93.3 87.5 88.6 4.8 4.1

Table 5.10: Land cover classification results in terms of classification, sensitivity and global
error in L*a*b* color space.

color spaces i.e. RGB and L*a*b*. For this set of experiments, values of the
hyper parameter β and the region size parameters γ and φ are fixed as β = 2,
γ = 25 and φ = 0.5.

The final segmented images for this set of experiments are presented in the
Appendix C. The segmentation results in terms of percentage values of the clas-
sification error and sensitivity along with the global error, for these sixteen images
in RGB and L*a*b* color spaces are shown in the Tables 5.11 and 5.12 respec-
tively. The best overall results obtained in the two used color spaces are again
highlighted through bold faces.

Classification (%) Sensitivity (%) Global error (%)

Single Gauss MGMM Single Gauss MGMM Single Gauss MGMM

Sat image IK5 49.1 44.3 75.4 75.3 22.9 24.9
Sat image IK6 93.4 91.1 86.8 82.5 4.1 5.2
Sat image QB7 97.7 97.7 97.2 97.2 2.8 2.8
Sat image QB8 99.4 99.2 97.6 96.9 0.8 1.0
Sat image QB9 97.5 97.3 95.7 95.9 3.2 3.4
Sat image QB10 96.6 96.3 95.6 95.2 4.2 4.4
Sat image QB11 89.4 84.1 89.6 86.8 8.7 12.3
Sat image QB12 88.2 83.8 84.8 79.0 9.8 12.8
Sat image QB13 94.7 92.1 93.9 92.1 5.0 6.7
Sat image QB14 95.8 96.0 91.1 91.0 4.1 3.9
Sat image QB15 98.4 98.0 93.5 94.1 1.4 1.7
Sat image QB16 94.2 93.6 86.7 84.9 5.8 6.2
Sat image QB17 98.4 98.6 95.1 95.2 5.5 5.3
Sat image QB18 93.9 93.1 90.6 90.1 7.2 7.7
Sat image QB19 96.8 96.1 93.3 93.1 5.4 5.8
Sat image QB20 98.0 98.1 95.0 95.1 2.4 2.3

Average 92.6 91.2 91.4 90.3 5.8 6.7

Table 5.11: Land cover classification results in terms of classification, sensitivity and global
error in the RGB color space.
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Mask Single Gauss MGMM

Figure 5.19: Segmentation results of the four used satellite images in RGB color space.

From these results it can be stated that both the approximations of the mul-
tichannel LPE distribution have shown good overall segmentation results. How-
ever, the results are optimal and show increased stability through MGMM approx-
imation when used in the L*a*b* color space along with the region size penalty
term for the spatial regularization. It can also be observed clearly from these
results that the L*a*b* color space presents the better overall results than RGB.
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Mask Single Gauss MGMM

Figure 5.20: Segmentation results of the four used satellite images in L*a*b* color space.

5.5 Conclusion

In this chapter we have proposed and analyzed a parametric model based frame-
work of color texture segmentation based on different parametric approximations
for the real and/or complex valued LPE distribution. The main conclusions drawn
from this study could be stated as follows:
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Figure 5.21: High resolution IKONOS satellite images (Sat image IK5 (row 1) and Sat image
IK6 (row 2)) used in the second set of experiments.

• Among the three multichannel linear prediction models used as image ob-
servation models, 2D QP AR model has shown the best results, for both
real (in RGB color space) and complex valued images (in perceptual color
spaces). This is consistent with our previous findings for color texture char-
acterization and classification (cf. chapter 4).
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Figure 5.22: High resolution QuickBird satellite images (Sat image QB7 to Sat image QB20

in raster scan manner) used in the second set of experiments.

• Three different parametric models were used to approximate the probabil-
ity distribution of the multichannel LPE. These included classically used
multivariate Gaussian distribution, multivariate Gaussian mixture models
and the Wishart distribution. A comparison of these three approaches have
shown an overall advantage of using MGMM approximation for this ap-
proximation instead of a multivariate Gaussian distribution for synthetic
color textures as well as high resolution satellite images. It exhibited bet-
ter multichannel texture segmentation results in terms of mean percentage
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Classification (%) Sensitivity (%) Global error (%)

Single Gauss MGMM Single Gauss MGMM Single Gauss MGMM

Sat image IK5 84.8 82.8 76.5 74.8 8.7 9.5
Sat image IK6 96.7 96.9 94.8 95.8 2.4 2.3
Sat image QB7 97.1 97.1 96.7 96.6 3.4 3.5
Sat image QB8 99.6 99.5 98.9 99.0 0.6 0.7
Sat image QB9 97.2 97.5 94.6 95.4 3.5 3.2
Sat image QB10 96.5 96.8 95.4 95.8 4.3 3.9
Sat image QB11 95.6 96.1 93.1 93.7 4.6 4.2
Sat image QB12 86.4 86.7 86.9 87.0 11.1 10.9
Sat image QB13 94.0 94.2 93.2 93.9 5.5 5.3
Sat image QB14 95.6 96.3 90.1 91.1 4.2 3.8
Sat image QB15 96.8 96.8 89.7 89.7 2.4 2.5
Sat image QB16 94.5 94.7 87.7 89.2 5.6 5.4
Sat image QB17 97.5 97.8 94.3 94.5 6.4 6.2
Sat image QB18 92.9 93.2 89.8 89.9 7.8 7.7
Sat image QB19 96.2 96.2 92.0 92.1 5.8 5.8
Sat image QB20 97.3 97.2 95.0 95.0 2.8 2.9

Average 94.9 95.0 91.8 92.1 4.9 4.9

Table 5.12: Land cover classification results in terms of classification, sensitivity and global
error in the L*a*b* color space.

errors over the used synthetic color texture database as well as the satellite
images.

• The Wishart distribution also produced good initial class label fields with-
out any spatial regularization. However during spatial regularization through
Potts model, as the initially computed log likelihood term using this distri-
bution becomes very significant, therefore it is less affected by the spatial
regularization in general.

• The introduction of the region size based penalty term [TZ02] in the con-
ventional Potts energy model has shown improved results in terms of per-
centage errors of color texture segmentation. Moreover this term has also
shown an earlier optimal convergence (for lower values of the hyperparam-
eter β (cf. section 5.3.2)) as compared to the spatial regularization using
classical Potts model (cf. section 5.3.1).

• The comparison of results in the three used color spaces shows that the
RGB and the L*a*b* color spaces perform better than IHLS color space in
terms of the percentage errors as well as the stability of the results. However
RGB and L*a*b* color spaces have the same order of percentage errors, yet
L*a*b* color space shows a significant improvement in terms of stability
of the segmentation results in most of the presented cases.
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Figure 5.23: Segmentation results of the images Sat image IK5 in RGB color space using
classical Gaussian (row 2) and MGMM (row 2) approximationsfor the multichannel LPE.

• For the segmentation experiments performed on the high resolution satellite
images, L*a*b* color space has shown better results than RGB color space.
This difference is clear in terms of the various parameters computed over
the results on these images.
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Figure 5.24: Segmentation results of the images Sat image IK5 in L*a*b* color space using
classical Gaussian (row 2) and MGMM (row 2) approximationsfor the multichannel LPE.

• The results of the experiments performed on these high resolution satellite
images also prove the pertinence of the method for this application along
with the desired robustness and stability.

The better performance of the RGB color space in the case of synthetic color tex-
ture images, may appear as a contradiction to our prior findings on color texture
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Figure 5.25: Segmentation results of the images Sat image IK6 in RGB color space using
classical Gaussian (row 2) and MGMM (row 2) approximationsfor the multichannel LPE.

characterization in the chapter 4. However this is not the case. In the chapter 4,
the mathematical models used were based on the decorrelation of the different
channels in color images, therefore RGB (having a higher inter channel correla-
tion characteristic) showed inferior results than the two perceptual color spaces.
Whereas in this chapter, the parametric models used for the approximation of mul-
tichannel LPE distribution (for example MGMM) exploit the interchannel corre-
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Figure 5.26: Segmentation results of the images Sat image IK6 in L*a*b* color space using
classical Gaussian (row 2) and MGMM (row 2) approximationsfor the multichannel LPE.

lation of the color planes through modeling of the joint probability distributions
of the LPE.



CHAPTER 6

DISCUSSION

In this chapter we will discuss the novelties presented in this thesis and the
achievement of different research objectives of this research work.

6.1 Conclusion
In this thesis we have presented a new model based approach for the characteri-
zation of color textures. This methodology is validated for the classification and
segmentation of color textures as well as for the land cover classification in high
resolution multispectral satellite images.

The approach makes use of the chrominance as well as the luminance spatial
structure information in color texture images. The two channel complex color
image representation has shown satisfactory results for the applications demand-
ing independent analysis of both these information including classification and
segmentation. In this study we have theoretically adapted and successfully used
the two dimensional multichannel complex linear prediction models for model-
ing of these two channel color images in perceptual color spaces like IHLS and
L*a*b* which has not been used so far. We have also presented a new paramet-
ric approach for model based combined power spectrum estimation for both the
channels in perceptual color spaces. A useful information of pure chrominance
structure, is computed and is combined with the pure luminance structure infor-
mation to achieve better color texture characterization.

In this work, a comparison of the used color spaces i.e. RGB, IHLS and
L*a*b* based on the inter plane decorrelation characteristics of these color spaces
is presented. The study illustrates that the L*a*b* shows the minimum correlation
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between luminance and chrominance information and hence is better among the
used color spaces for the color texture classification using the stated approach.
This observation is supported by the outcomes of different sets of experiments
conducted during this work.

For this comparison, we introduced a novel quantitative measure (the inter-
ference ratio) of the luminance-chrominance spectral interference for both the
considered perceptual color spaces based on our parametric spectral estimation
technique. A comparison of the considered color spaces based on this measure,
under varying test conditions i.e. different image sizes, varied noise levels and
different frequency sets proved clearly that IHLS exhibits more correlation of lu-
minance and chrominance information than L*a*b* color space. Based on this
analysis, we developed the hypothesis that chrominance structure information of
color textured images could get better characterized in L*a*b* than in IHLS color
space and hence could provide better results.

In color texture classification experiments, conducted on three different data
sets, it is clearly observed that chrominance spatial structure adds significantly
to the performance of color texture classification algorithms. Also, the percent-
age classification results based on chrominance spatial structure cue depict that
L*a*b* is a better choice for chrominance structure characterization in all the
three data sets. L*a*b* also shows the best results for the characterization of the
overall spatial structure information for all three test data sets. This enforces the
hypothesis inferred from the results of the spectral analysis experiments. In the
results of pixel classification experiments too, we have observed that the L*a*b*
color space performs better than the other two color spaces in terms of the per-
centage pixel classification error and PPV for the chosen test color images while
using the proposed approach.

We have also presented a parametric Bayesian framework of color texture seg-
mentation based on the different parametric models. Among the three multichan-
nel linear prediction models used, 2D QP AR model has shown the best results
for color texture segmentation. This is consistent with our previous findings for
parametric spectral analysis and color texture classification.

The novelty of the color texture segmentation approach lies in the multimodal
approximation of the multichannel LPE distribution. In this framework, two dif-
ferent parametric approaches along with a classical monomodal approximation
were used for this purpose. These included classically used multivariate Gaussian
distribution, multivariate Gaussian mixture models and the Wishart distribution.
A comparison of these three approaches have shown an overall advantage of using
a multimodal distribution for this approximation instead of a multivariate Gaus-
sian distribution for synthetic color textures as well as high resolution multispec-
tral satellite images. The multivariate Gaussian mixture model approximation



6.1. Conclusion 139

has shown better color texture segmentation results in terms of mean percentage
errors over the used color texture database.

The Wishart distribution also produced good initial class label fields without
any spatial regularization. However during spatial regularization through Potts
model, as the initially computed log likelihood term using this distribution be-
comes very significant, therefore it is less affected by the spatial regularization in
general.

We introduced a region size based penalty term in the conventional Potts en-
ergy model. This has shown improved results in terms of percentage errors of
color texture segmentation. Moreover this term has also shown an earlier opti-
mal convergence in terms of increasing hyperparameter values as compared to
the classical spatial regularization using Potts model.

These experiments were conducted in three color spaces i.e. RGB, IHLS and
L*a*b*. The comparison of results in these color spaces show that the RGB and
the L*a*b* color spaces perform better than IHLS color space in terms of the per-
centage errors as well as the stability of the results. However RGB and L*a*b*
color spaces have the same order of percentage errors, yet L*a*b* color space
shows a significant improvement in terms of stability of the segmentation results
in most of the presented cases. The better performance of the RGB color space
may appear as a contradiction to our prior findings on color texture classification.
However this is not the case. In color texture classification experiments, the math-
ematical models used were based on the decorrelation of the different channels
in color images, therefore RGB (having a higher inter channel correlation char-
acteristic) showed inferior results than the two perceptual color spaces. Whereas
in this work, the parametric models used for the approximation of multichannel
LPE distribution (for example MGMM) make use of the joint probability distri-
butions of the multichannel LPE. Hence, in these experiments decorrelation of the
planes becomes less significant which is in complete accordance to our findings
in classification experiments.

The segmentation experiments conducted on the high resolution satellite im-
ages also confirm the pertinence of the method for both characterization and seg-
mentation of highly textured images. The L*a*b* color space along with the
MGMM approximation of the multichannel LPE sequence has shown the sta-
ble and robust results. Introduction of the region size energy term in the classical
Potts model improved the final segmentation results for these images significantly.



140 6 - DISCUSSION

6.2 Perspectives
The proposed color texture descriptor could be improved to take into account
the contextual information of highly structured and non-structured regions in an
image by using a Wold like decomposition method.

One of the future perspectives may include the development of a rotation and
scale invariant version of the color texture descriptor proposed in this thesis. The
PSD estimates computed through our approach could be used to compute the
rotation invariant descriptors belonging to the Fourier-Mellin transform family
[ACRN98].

The comparison of the used color spaces based on the luminance-chrominance
decorrelation in this work could be extended to other color spaces of the same
family. This could help the researchers to develop a final and certain choice for
the best performing color space for color texture analysis.

Another important development could be to test and compare the performance
of the proposed color texture segmentation framework with the non-parametric
approaches like the ones presented in [MSP08, PZLB93]. An unsupervised ver-
sion of the presented segmentation methodology could be developed on the basis
of [AR05].

The texture classification and segmentation approaches developed in this work
could also be extended to the multispectral satellite images of higher number of
spectral bands.
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APPENDIX A

COLOR SPACE TRANSFORMATIONS

RGB to IHLS Transformation
A color image defined by the RGB vector defined in the section 3.2.1 can be
converted to IHLS color space by following set of equations:

Y 1 = 0.2126R + 0.7152G + 0.0722B (A.1)

S = max (R,G,B) − min (R,G,B) (A.2)

H =

{
360◦ − H

′
if B > G

H
′

otherwise

}
(A.3)

where H ′ is given as:

H
′

= arccos

[
R − 1

2
G − 1

2
B

(R2 + G2 + B2 − RG − RB − BG)
1
2

]
(A.4)

It gives very small values of saturation which are also independent of Luminance
values. This makes feature extraction simpler for the achromatic images. The
inverse transform from IHLS to RGB is given as: R

G
B

 =

 1.0000 0.7875 0.3714
1.0000 -0.2125 -0.2059
1.0000 -0.2125 0.9488

 Y
C1

C2

 (A.5)

1Luminance term, it could also be denoted by L.
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where C1 and C2 are given as:

C1 = K × cos (H) (A.6)

C2 = −K × sin (H) (A.7)

and

K =

√
3S

2 sin (120◦ −H∗)
(A.8)

where H∗ = H − l × 60◦ for which l ∈ {0, 1, 2, 3, 4, 5} so that 0◦ ≤ H∗ ≤ 60◦.

RGB to L*a*b* Transformation
For an RGB color image defined as in the section 3.2.1, the transformation from
the RGB to the L*a*b* color space is based on an intermediate system, known
as the CIE XYZ space (ITU-Rec BT.709). The formulae for RGB to CIE XYZ
transformation are [WS00]:

X = 0.412453R + 0.357580G+ 0.180423B
Y = 0.212671R + 0.715160G+ 0.072169B
Z = 0.019334R + 0.119193G+ 0.950227B

(A.9)

L*a*b* color space is then defined on the CIE XYZ space based on XW , YW
and ZW representing a reference white which is a CIE standard illuminant, D65

in our case. Mathematical relations defining L*a*b* color space on CIE XYZ are
also given in [WS00].

L∗ = 116×
(

Y
YW

) 1
3 − 16 for Y

YW
> 0.008856

L∗ = 903.3× Y
YW

for Y
YW
≤ 0.008856

a∗ = 500×
(
f
(

X
XW

)
− f

(
Y
YW

))
b∗ = 200×

(
f
(

Y
YW

)
− f

(
Z
ZW

))
with f (µ) = µ( 1

3) for µ > 0.008856
f (µ) = 7.787× µ+ 16

116
for µ ≤ 0.008856

(A.10)

whereXW , YW and ZW are the CIE XYZ tristimulus values of the reference white
point D65.



APPENDIX B
PERFORMANCE MEASURES

Percentage color texture classification for each color texture is related to the
fraction of test textures or pixels (in the case of segmentation) correctly labeled:

Perclassification =
TP

n
× 100 (B.1)

where TP (True Positive) is the number of correctly classified test textures or
pixels (in the case of segmentation) and n is the number of total test textures or
pixels for that class.

PPV, defined in the following equation indicates the ability of a classifier to
detect true class membership.

PPV =
TP

TP + FP
(B.2)

where FP , (False Positive) for a given class membership, is the number of test
textures or pixels which are classified as class members while in fact they do not
belong to the given class i.e. the number of test subimages wrongly classified as
class members out of all the test textures or pixels for all other classes.

Sensitivity (in percent) of a classifier can be defined as:

Persensitivity =
TP

TP + FN
× 100 (B.3)

where FN (False Negative) is the number of test textures or pixels which were
not correctly classified.





APPENDIX C

SEGMENTATION RESULTS

In this appendix we present the segmentation results of the satellite images Sat
image QB7 to Sat image QB20 in RGB and L*a*b* color spaces using classical
single Gaussian and MGMM approximations for the multichannel LPE in the
Figures C.1 to C.7.
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Mask Single Gauss MGMM

Figure C.1: Segmentation results of the satellite images Sat image QB7 to Sat image QB10

(rows 1 to 4 respectively) in RGB color space.
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Mask Single Gauss MGMM

Figure C.2: Segmentation results of the satellite images Sat image QB7 to Sat image QB10

(rows 1 to 4 respectively) in L*a*b* color space.
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Mask Single Gauss MGMM

Figure C.3: Segmentation results of the satellite images Sat image QB11 to Sat image QB14

(rows 1 to 4 respectively) in RGB color space.



C. SEGMENTATION RESULTS 153

Mask Single Gauss MGMM

Figure C.4: Segmentation results of the satellite images Sat image QB11 to Sat image QB14

(rows 1 to 4 respectively) in L*a*b* color space.
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Mask Single Gauss MGMM

Figure C.5: Segmentation results of the satellite images Sat image QB15 to Sat image QB18

(rows 1 to 4 respectively) RGB color space.
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Mask Single Gauss MGMM

Figure C.6: Segmentation results of the satellite images Sat image QB15 to Sat image QB18

(rows 1 to 4 respectively) in L*a*b* color space.
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Mask Single Gauss MGMM

Figure C.7: Segmentation results of the satellite images Sat image QB19 and Sat image QB20

(rows 1 and 2 respectively) in RGB color space.

Mask Single Gauss MGMM

Figure C.8: Segmentation results of the satellite images Sat image QB19 and Sat image QB20

(rows 1 and 2 respectively) in L*a*b* color space.
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classification with color histograms and local binary patterns. In
Proceedings of 2nd International Workshop on Texture Analysis
and Synthesis, pages 109–112, Copenhagen, 2002.

[PP03] George Paschos and Maria Petrou. Histogram ratio features for
color texture classification. Pattern Recognition Letters, 24(1-
3):309–314, 2003.

[PP06] S. Shivashankar P.S.Hiremath and Jagadeesh Pujari. Wavelet
based features for color texture classification with application to
cbir. International Journal of Computer Science and Network Se-
curity, 6(9A):124 – 133, 2006.

[PVM08a] Alice Porebski, Nicolas Vandenbroucke, and Ludovic Macaire.
Haralick feature extraction from lbp images for color texture clas-
sification. In Proceedings of International Workshops on Image
Processing Theory, Tools and Applications, pages 1–8, Sousse,
Tunisia, November 2008.

[PVM08b] Alice Porebski, Nicolas Vandenbroucke, and Ludovic Macaire.
Neighborhood and haralick feature extraction for color texture
analysis. In Proceedings of European Conference on Colour
in Graphics, Image and Vision, pages 316–321, Terrassa, Spain,
June 2008.

[PZLB93] J.-G. Postaire, R. D. Zhang, and C. Lecocq-Botte. Cluster analy-
sis by binary morphology. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 15(2):170–180, 1993.

[QABFM09] I.-U.-H. Qazi, O. Alata, J.-C. Burie, and C. Fernandez-Maloigne.
Spatial structure characterization of textures in ihls colour space.



168 Bibliography

In IEEE International Conference on Acoustics, Speach and Sig-
nal Processing, pages 1069–1072, Taipei, Taiwan, Avril 2009.

[QABFM10] I.-U.-H. Qazi, O. Alata, J.-C. Burie, and C. Fernandez-Maloigne.
Color spectral analysis for spatial structure characterization of
textures in IHLS color space. Pattern Recognition, 43(3):663 –
675, 2010.

[RSS+02] P.V.N. Rao, M.V.R.S. Sai, K. Sreenivas, M.V.K. Rao, B.R.M.
Rao, R.S. Dwivedi, and L. Venkataratnam. Textural analysis of
irs-1d panchromatic data for land cover classification. Interna-
tional Journal of Remote Sensing, 23(17):3327–3345, September
2002.

[RVAB06] B. Dorizzi R. V. Andreao and J. Boudy. ECG signal analysis
through hidden Markov models. IEEE Transactions on Biomedi-
cal Engineering, 53(8):1541–1549, 2006.

[SBS99] Sabine Susstrunk, Robert Buckley, and Steve Swen. Standard
RGB Color Spaces. In IS T/SID 7th Color Imaging Conference,
volume 7, Scottsdale Arizona, 1999.

[SD98] Michael Schroder and Alex Dimai. Texture information in remote
sensing images: A case study, 1998.

[SE01] S.J. Sangwine and T.A. Ell. Hypercomplex fourier transforms of
color images. In Proceedings of IEEE International Conference
on Image Processing, pages I: 137–140, Thessaloniki, Greece,
2001.

[Sen08] Abdulkadir Sengur. Wavelet transform and adaptive neuro-fuzzy
inference system for color texture classification. Expert Systems
with Applications, 34(3):2120–2128, 2008.

[Ser83] Jean Serra. Image Analysis and Mathematical Morphology. Aca-
demic Press, Inc., Orlando, FL, USA, 1983.

[SF07] Lilong Shi and Brian Funt. Quaternion color texture segmenta-
tion. Computer Vision and Image Understanding, 107(1-2):88–
96, 2007.

[SHZ07] G. Scarpa, M. Haindl, and J. Zerubia. A hierarchical finite-state
model for texture segmentation. In proceedings of IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing,
pages I: 1209–1212, Honolulu, Hawaii, USA, 2007.



Bibliography 169

[SRSD98] M. Schroder, H. Rehrauer, K. Seidel, and M. Datcu. Spatial
information retrieval from remote-sensing images–part II:Gibbs-
Markov random fields. IEEE Transactions on Geoscience and
Remote Sensing, 36(5):1446, September 1998.

[SZ06] M. Scarpa, G. Haindl and J. Zerubia. Hierarchical finite state
modeling for texture segmentation with application to forest clas-
sification. Research Report 6066, INRIA, France, 2006.

[TES99] C. W. Therrien and H. T. El-Shaer. Multichannel 2-D AR spec-
trum estimation. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 37:1798 – 1800, 1999.

[TZ02] Z. Tu and S.-C. Zhu. Image segmentation by Data-Driven Markov
Chain Monte Carlo. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24:657–673, 2002.

[VMP03] Nicolas Vandenbroucke, Ludovic Macaire, and Jack-Gérard
Postaire. Color image segmentation by pixel classification in an
adapted hybrid color space: application to soccer image analy-
sis. Computer Vision and Image Understanding, 90(2):190–216,
2003.

[web] http://www.geoeye.com/CorpSite/assets/docs/
technical-papers/2008/IKONOS_Relative_
Spectral_Response.xls.

[WJCK90] T. M. Lillesand W. J. Carper and R. W. Kiefer. The
use of intensity-hue-saturation transformation for merging spot
panchromatic and multispectral image data. Photogrammetric
Engineering & Remote Sensing, 56(4):459467, 1990.

[WS00] G. W. Wyszecki and S. W. Stiles. Color science: Concepts and
methods, Quantitative data and formulae. Wiley, New York,
2000.

[WSLD99] G. Van De Wouwer, P. Scheunders, S. Livens, and D. Van Dyck.
Wavelet correlation signatures for color texture characterization.
Pattern Recognition, 32:443–451, 1999.

[XM07] Xianghua Xie and Majid Mirmehdi. Texems: Texture exemplars
for defect detection on random textured surfaces. IEEE Trans.
Pattern Anal. Mach. Intell., 29(8):1454–1464, 2007.



170 Bibliography

[ZL88] L. Zou and B. Liu. On resolving two-dimensional sinusoids in
white noise using different spectral estimates. IEEE Transactions
on Acoustics, Speech and Signal Processing, 36(8):1338 – 1350,
1988.



Résumé
Cette thèse détaille la conception, le développement et l’analyse d’un nouvel outil de
caractérisation des textures exploitant les modèles de prédiction linéaire complexe sur
les espaces couleur perceptuels séparant l’intensité lumineuse de la partie chromatique.
Des modèles multicanaux 2-d causaux et non-causaux ont été utilisés pour l’estimation
simultanée des densités spectrales de puissance d’une image “bi-canal”, le premier con-
tenant les valeurs réelles de l’intensité et le deuxième les valeurs complexes de la partie
chromatique. Les bonnes performances en terme de biais et de variance de ces esti-
mations ainsi que l’usage d’une distance appropriée entre deux spectres assurent la ro-
bustesse et la pertinence de l’approche pour la classification de textures. Une mesure de
l’interférence existante entre l’intensité et la partie chromatique à partir de l’analyse spec-
trale est introduite afin de comparer les transformations associées aux espaces couleur.
Des résultats expérimentaux en classification de textures sur différents ensembles de tests,
dans différents espaces couleur (RGB, IHLS et L*a*b*) sont présentés et discutés. Ces
résultats montrent que la structure spatiale associée à la partie chromatique d’une texture
couleur est mieux caractérisée à l’aide de l’espace L*a*b* et de ce fait, cet espace per-
met d’obtenir les meilleurs résultats pour classifier les textures à l’aide de leur structure
spatiale et des modèles de prédiction linéaire.

Une méthode bayésienne de segmentation d’images texturées couleur a aussi été
développée à partir de l’erreur de prédiction linéaire multicanale. La contribution prin-
cipale de la méthode réside dans la proposition d’approximations paramétriques robustes
pour la distribution de l’erreur de prédiction linéaire multicanale : la distribution de
Wishart et une approximation multimodale exploitant les lois de mélanges gaussiennes
multivariées. Un autre aspect original de l’approche consiste en la fusion d’un terme
d’énergie sur la taille des régions avec l’énergie du modèle de Potts afin de modéliser
le champ des labels de classe à l’aide d’un modèle de champ aléatoire possédant une
distribution de Gibbs. Ce modèle de champ aléatoire est ainsi utilisé pour régulariser
spatialement un champ de labels initial obtenu à partir des différentes approximations
de la distribution de l’erreur de prédiction. Des résultats expérimentaux en segmen-
tation d’images texturées couleur synthétiques et d’images satellites hautes résolutions
QuickBird et IKONOS ont permis de valider l’application de la méthode aux images
fortement texturées. De plus les résultats montrent l’intérêt d’utiliser les approximations
de la distribution de l’erreur de prédiction proposées ainsi que le modèle de champ de
labels amélioré par le terme d’énergie qui pénalise les petites régions. Les segmenta-
tions réalisées dans l’espace L*a*b* sont meilleures que celles obtenues dans les autres
espaces couleur (RGB et IHLS) montrant à nouveau la pertinence de caractériser les
textures couleur par la prédiction linéaire multicanale complexe à l’aide de cet espace
couleur.

Mots clés:

Modèles de prédiction linaire 2-d multicanale complexe, Estimation paramtrique de spec-
tres, Classification de textures couleur, Segmentation d’images texturées couleur, Images
satellites hautes résolutions, IKONOS, QuickBird.



Abstract
This thesis details the conception, development and analysis of a novel color tex-
ture descriptor based on the luminance-chrominance complex linear prediction
models for perceptual color spaces. In this approach, two dimensional complex
multichannel versions of both causal and non-causal models are developed and
used to perform the simultaneous parametric power spectrum estimation of the
luminance and the combined chrominance channels of the proposed two chan-
nel complex color image. The accuracy and precision of these spectral estimates
along with the spectral distance measures ensure the robustness and pertinence of
the approach for color texture classification. A luminance-chrominance spectral
interference based quantitative measure for the color space comparison is also
introduced. The experimental results for different test data sets, in IHLS and
L*a*b* color spaces are presented and discussed. These results have shown that
the chrominance structure information of the color textured images could get bet-
ter characterized in L*a*b* color space and hence could provide the better color
texture classification results.

A Bayesian framework based on the multichannel linear prediction error is
also developed for the segmentation of textured color images. The main contri-
bution of this segmentation methodology resides in the robust parametric approx-
imations proposed for the multichannel linear prediction error distribution. These
comprised of a unimodal approximation based on the Wishart distribution and a
multimodal approximation based on the multivariate Gaussian mixture models.
Another novelty of this approach is the fusion of a region size energy term with
the conventional Potts model energy to develop a Gibbs random field model of the
class label field. This improved label field model is used for the spatial regulariza-
tion of the initial class label estimates computed through the proposed parametric
priors. Experimental results for the segmentation of synthetic color textures as
well as high resolution QuickBird and IKONOS satellite images validate the ap-
plication of this approach for highly textured images. Advantages of using these
priors instead of classical Gaussian approximation and improved label field model
are evident from these results. They also verify that the L*a*b* color space ex-
hibits better performance among the used color spaces, indicating its significance
for the characterization of complex textures through this approach.

Keywords:

Multichannel complex linear prediction models, Parametric spectrum estimation,
Color texture classification, Color texture segmentation, High resolution satellite
images, IKONOS, QuickBird.


