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1.1 Basic concepts of intracontinental orogen 

The term “orogeny” appeared in the middle of the 19th century. It refers to forces 

and events leading to build mountains on continents. Its meaning and content have 

been developed with the whole geosciences, and constantly formed new hotspots and 

new arguments. During 1857-1960s, most geologists took the orogenesis as the results 

of the closure of geosynclines (Schuchert. 1925). After that, in early 1960s, it was 

considered as the results of subduction and collision at the margin of plates, 

associated with the development of the “Plate tectonics” (Dewey and Bird, 1970; 

Sengör，1991). The orogenesis is often related to the subduction and collision of 

plates in the marginal area to form the intercontinental orogeny. However, the rigid 

plate characteristic was challenged by extensive deformation in plates interior 

(Molnar, 1988). Simply stated, interaction at plate boundaries could produce 

deformation, magmatic activity, and metamorphism for a considerable distance from 

those boundaries (Molnar, 1975; Tapponnier, 1979). For example, the Atlas in 

Morocco, northern Africa, the Pyrenees between France and Spain, in southwest of 

Europe, Canadian Rocky mountain, located in the America. 

A wide variety of tectonic models have been suggested to explain the 

intracontinental orogeny. These models assume that much of the contemporary 

tectonic activity is controlled by pre-existing geological features. The crustal 

homogeneities serve to localize in a passive manner the deformation resulting from 

stresses generated by a variety of tectonic forces. These forces may be and probably 

are completely alien to those initially responsible for the features, and, therefore, these 

models are grouped under the general term “resurgent tectonics” (Hinze et al., 1990; 

Figure 1-1). 

(1) Crustal Rifting. Rifting of the continental crust and its commonly associated 

igneous events are a major source of large-scale crustal disturbance and are therefore 

particularly susceptible to resurgent tectonics. It has become increasingly clear that 

rifting of the crust has played a major role in the geological history of central North 
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America and the Pyrenees.  

 

Figure 1-1. Some possible mechanical models for the intraplate orogen (Hinze et al., 

1990).  

(2) Zones of weakness and crustal boundaries. Old zones of weakness are 

widespread in many plates, such as crustal thickness variation, ancient fault zone or 

lithologic boundary. They may have significant influences on subsequent structural 

development.  

(3) Local basement heterogeneities. Mafic or ultramafic intrusive bodies which 

are probable sources of major gravity and magnetic anomalies have been suggested to 
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be some influence of the intraplate orogeny. 

(4) Thermal expansion and contraction. Thermally induced forces are generally 

recognized as an origin of stress within the earth. A major method of translating 

thermal energy into stress is by thermal expansion and contraction. Thus, it is to be 

expected that this mechanism could be used to explain the geodynamics of plate 

interiors. It could be the results of igneous intrusions or the mantle penetrative 

convection. 

(5) Isostatic warping. Regional variations in loading or unloading of the crust 

cause isostatic deviations, leading to crustal warping and the possibility of relatd 

crustal rupture and earthquake activity.   

1.2 Some examples of intracontinental orogens 

An early hypothesis of plate tectonics was that plates moved as rigid pieces of 

lithosphere and that the relative motion between plates was taken up at narrow zones 

along their boundaries. However, intraplate deformation is universal in the world. For 

example, the Atlas in Morocco, northern Africa; the Pyrenees between France and 

Spain, in southwest of Europe; Canadian Rocky mountain, located in the America. 

(a) Atlas 

The High Atlas and part of the Middle Atlas correspond to an intracontinental 

mountainous system that developed on a former set of WSW–ENE and NE–SW 

striking Mesozoic grabens. 

These grabens were approximately initiated contemporaneously with the Trias to 

Lias rifting (Laville et al., 2004) that led to the opening of the Atlantic and Tethys 

Oceans. This graben-related thinned crust appears then to have behaved as a 

weakened lithosphere that has subsequently localized the compressional deformations 

during the Cenozoic inversion resulting from the Africa–Eurasia convergence. The 

major High Atlas inversion occurred during Neogene and Quaternary and developed a 
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bi-vergent mountain chain (Jacobshagen et al., 1988; Gomez et al., 2000; Teixell et al, 

2003; Sébrier et al., 2004).  

 
Figure 1-2. (a) Location sketch map of the Atlas Mountains in the North African 

foreland. (b) Geological map of the central High Atlas. (c) Geological cross sections 

through the High Atlas of Morocco (location in Figure b) (Modified after Teixell et al., 

2003; Missenard 2006). 

In the core of the chain, the basement uplift is triggered by a fan of steep reverse 

faults, most of which are inherited from Triassic-Liassic rifting. Deformation 

propagated to the proximal basins by four different décollement levels (Missenard et 

al., 2007). The Shortening in the High Atlas, which is mainly localized on its southern 

and northern border faults, is overall small and ranges between 10 and 25% (Figure 

1-2) (Teixell et al., 2003; Missenard 2006). The deformation style varies laterally 

along the two northern and southern fronts, which caused by the competition of 



11 
 

different rocks, the thickness of Mes-Cenozoic sediments and the inherited structures 

(Missenard et al., 2007). However, section restoration indicates that shortening 

decreases along strike from east to west in the High Atlas (Fig 1-1a), while 

topographic elevation generally increases. This inverse correlation suggests that 

crustal thickening does not fully explain the observed topography and suggests a 

mantle contribution to uplift (Teixell et al., 2003). 

(b) Pyrenees 

 

Figure 1-3. (a) Structural map of the Pyrenees and its main tectonic units (Sibuet et 

al., 2004). Also shown are the locations of the ECORS (Choukroune and ECORS 

Team, 1989) deep seismic reflection profiles. NPF, north Pyrenean fault; NPFT, north 
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Pyrenean frontal thrust; NPZ, north Pyrenean zone; SPFT, south Pyrenean frontal 

thrust; SPZ, south Pyrenean units; sPZ, sub-Pyrenean zone. (b) Interpretation (on 

depth section) without vertical exaggeration based on the ECORS profile (Roure et al., 

1989; Sibuet et al., 2004). 

The Pyrenees is a 400-km-long but relatively narrow (~150 km) trending fold belt 

located between France (part of European plate) in the north and Spain (part of Iberia 

plate) in the south (Figure 1-3). It formed in Late Cretaceous–Eocene times in 

response to the collision between the European plate and the 

Iberian-Sardinian-Corsican block (Arthaud and Séguret, 1981; Choukroune et al., 

1989). The deep seismic ECORS (Etude Continentale et Océanique par Réflexion et 

réfraction Sismique) profile suggests that Iberia plate subducted beneath the Europeen 

plate (Roure et al., 1989). Above, the chain interior is composed by an antiform of 

Variscan basement and the thrust propagate to the foreland basins, Aquitaine basin to 

the north and Ebro basin to the south. The amount of shortening cross the total 

Pyrenees is considered in the order of 100 to 150 km (Déramond et al., 1985; Roure et 

al., 1989; Specht, 1989; Muñoz, 1992). 

(c) Rocky Mountain  

The Rocky Mountains stretch more than 4800 km from the northernmost part of 

British Columbia, in western Canada, to New Mexico, in the southwestern United 

States. They were formed in the late Cretaceous, by the Laramide orogeny (English et 

al., 2004). The structural styles are very diverse along the front of the Rcoky 

Mountains (Erslev et al., 2004). In the southern part, located in USA, the high-angle 

dipping basin-bounding faults separate the core basement and adjacent basins (Figure 

1-4a). The basement-cored uplift by these reverses faults, caused by intraplate 

compression. In contrast, the Canadian Rocky Mountains display asymmetry 

structures, with much uplifted Paleozoic basement in the western and less uplifted 

with cretaceous sedimentary in the east. The crust-scale thrusts propagate up to upper 
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crust by a ramp, forming a décollement in the base of sediments (Figure 1-4b). 

Delaminations with up-concave thrusts were indicated by seismic profiles and drilled 

wells (Debelmas et al., 2008).  

 

Figure 1-4. (a) Simplified geological map of the rocky mountain in USA and the 

geological cross-section traverse the mountain. (b) Canadian Rocky Mountains with 

cross-section (After Debelmas et al., 2008). 

There are some characteristics of the chains intracontinental as presented above. 

First, they reactive in the weak place of lithosphere, where may be the ancient suture 

or rifts. For example, the Pyrenees and the Atlas were built by the inverted structural 

in the ancient rifts. Second, the driving force probably is the far-effect of the plate 

margin, e.g. subduction and collision. The objective of above brief introductions is to 

compare attributes of different kinds of intraplate mountains with the Tian Shan 

Mountain, which will be described in the following (Discussion see chapter 6). 

1.3 Deformation in fold-and-thrust belts 

As discussed above, Fold-and-thrust belt is one of the characteristic in the fronts 

of almost of the compressional orogens, also in these intracontinental orogens. They 

are commonly strongly deformed and the key to understand the characteristics and 

evolutions of the intracontinental orogens. Here, the discussion of crustal deformation 
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was limited to the surface scale (~15 km in depth) deformation in the fold-and-thrust 

belts. Therefore, the mainly deformation types in this area are of faults and folds. 

Many studies in thrust belts have shown that most folds are ultimately generated by 

fault movement at depth (Rich, 1943; Dahlstrom, 1969; Fail, 1973; Dahlstrom, 1990). 

Thus, we can use the geometry of an exposed fold to infer the position and geometry 

of a fault at depth. The kink-like character of folds in thrust belts can be generalized in 

cross-section construction by used of the “kink-fold” method developed in the early 

1980s by Suppe (1983). This method assumes that the folds are produced by a 

flexure-slip mechanism so that bed thickness does not change, and the footwall 

remains undeformed during the formation of folds in the hanging wall. There are 

several kinds of structures as 

described below. 

(a) Fault-bend folds 

Fault-bend folds occur where a 

thrust fault steps up from a 

structurally lower flat to a higher flat. 

Two kink bands form in the hanging 

wall, one above the base of the ramp, 

and the other above the top of the 

ramp (Figure 1-5a). With continued 

slip on the fault, these two kink 

bands grow in width (Figure 1-5b). 

As the truncated hanging wall moves 

up the ramp, and the two kink bands 

widen, an anticline forms at the top 

of the ramp. This anticline terminates 

downward into the upper flat (Figure 

1-5b and c). 

Figure 1-5. Progressive development of 

a fault-bend fold as the thrust sheet 

moves over a ramp in a decollement 

(after Suppe, 1983). Letters A, A’, B, and 

B’ denote the axial traces. 
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(b) Fault-propagation folds 

Fault-propagation folding occurs 

when a propagating thrust fault loses 

slip and terminates upsection by 

transferring its shortening to a fold 

developing at its tip (Mitra, 1990; 

Figure 1-6). This model is developed 

by Suppe and Medwedeff (1990), 

keeping the constant thickness and 

fixed axis fault propagation folding. 

However, several other modes are 

built: trishear folding (Erslev, 1991; 

Hardy and Ford, 1997; Allmendinger, 

1998); and basement-involved (triple 

junction) folding (Narr and Suppe, 

1994).  

Figure 1-7. (a) The geometry of trishearing (after Shaw et al., 2003). The dark area 

(a-b-c) indicates trishear zone. (b) Influence of propagation/ slip ratio on fold 

configuration (after Shaw et al., 2003; Allmendinger, 2004).   

Figure 1-6. Progressive development of a 
fault-propagation fold at the tip of a 
thrust, as the thrust sheet moves over a 
ramp in a decollement (after Supper, 
1983). Letters A, A’, B and B’ denote the 
axial surfaces. Note that the fault tip 
coincides with the hinge of an asymmetric 
syncline. 
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Trishear folds form by distributed shear within a triangular (trishear) zone that 

expands outward from a fault tip (Erslev, 1991; Figure 1-7 a). Folds develop in the 

trishear zone, the bed thickness or lengths are not preserved during deformation. The 

geometry of the structure is a function of the apical angle, the fault dip, and the fault 

propagation to slip (P/S) ration (Figure 1-7 b). 

Narr and Suppe (1994) proposed another kinematic theory: fault-fault-fold triple 

junction, in which fold growth is governed by the migration of fault-fold triple 

junction (Figure 1-8). The main monocline in the stratified cover forms as a drape 

fold over a triple junction in the basement. The development stages are composed by: 

i) layer-parallel shortening in the early time and ii) extension in the cover sequence 

later. 

 

Figure 1-8. The evolution stages of basement-involved model (after Shaw et al., 

2003). 

Forced-folding has also been proposed as the mechanism for some of these 

structures (Johnson and Johnson, 2002). Forced folding defined by Stearns (1978) as 

‘folding in which the final overall shape and trend of the fold are dominated by the 

shape of some forcing member below’. This is different from the normal buckle folds 

by layer-parallel compression. The essential features of the mechanism are a 

sedimentary cover deformed more or less passively and the rigid basement blocks that 

are displaced along planar or listic faults. The main deformation mechanism is 

‘bending’, defined as the flexuring of a layer or surface by a compression at a high 

angle to the layering. However, many folds in nature will compose components of 

compression both parallel to (viz. bulking) and normal to the layering (viz. bending) 

(Mohammed and Ameen, 2000).                                                   
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(c) Detachment folds 

 Detachment folds form when a thrust fault contines to displace above a 

bedding-parallel detachment and transferred into folding of the hanging wall layers. 

They are different from fault-bend and fault-propagation folds, because they are not 

directly related to thrust ramps but rather to distributed deformation above 

detachments. In the core of fold, an incompetent and ductile basal unit is thickened. 

Growth units, if present, will thin onto the fold crest and exhibit a fanning of limb 

dips (Shaw et al., 2003). They generally occur above a good detachment such as the 

gyps or coal. Poblet et al., (1997) proposed three kinematic models to account for the 

geometry and kinematics of detachment folds involving a homogeneous competent 

layer detached over a ductile unite: 1) variable limb dip-constant limb length, 2) 

constant limb dip-variable limb length, and 3) variable limb dip- variable limb length 

(Figure 1-9).  

 

Figure 1-9. Three different models for asymmetric kink detachment folds. A 

homogeneous competent layer has preserved the length and the ductile unite shorted 

in the core of the anticline (after Shaw et al., 2003).  
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(d) Shear fault-bend folds 

Shear fault-bend folds are similar with the normal fault-bend folding, but it is 

distinguished by a long back-limb that dips less than the fault ramp (Figure 1-10). It 

was developed by Suppe et al., (2004), reflecting the significant non-flexural slip 

component to the deformation. This structure is also characteristic by a significant 

stratigraphic section covered the back limb during fold growth, moreover the front 

limbs are quite narrow relative to their long back limbs.  

 

Figure 1-10. The models of shear fault-bend folds, two end-member of simple-shear 

and pure-shear, mixed model of the two end-member above, the classic normal 

fault-bend fold (after supper et al., 2004).  

Two end-member theories are used to explain the structure, simple-shear and 

pure-shear (Figure 1-10). In the simple-shear member, the décollement layer 

undergoes bedding-parallel simple shear with no actual basal fault, just a distributed 

zone of shear. In the contrast of the pure-shear member, the décollement layer slides 

above a basal fault and shortens and thickens in a triangular area above the ramp. The 

mixtures between these are possible as well, shown in Figure 1-10. The model 

becomes to classic fault-bend fold when the ductile unite (gray light) is competent 

with thickness preserved.     
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(e) Imbricate structures 

When thrust structure is characterized by the stacking of two or more thrust 

sheets, they are referred as the imbricate fault-bend folds. Two types of this structure 

are proposed, the break-forward propagation and break-backward thrusting, or with 

coeval motion on both deep and shallow faults (Shaw et al., 1999; Figure 1-11).   

 

 

Figure 1-11. The evolution models of break-forward imbricate and break-backward 

imbricate fault-bend folds (after Shaw et al., 2003). 

(f) Structural wedges 

Structural wedges could occur at a variety of scales. It is often associated with 

mountain fronts in large scale or decameter fault and fold belt in small scale. Here, we 

limited the structural in the hectometer geological sections. Structural wedges 

composed by two connected fault segments that bound a triangular fault block. 

Folding developed in the wedge zone pin to the wedge tip (shaw et al., 2003; Figure 

1-12).  



20 
 

 

Figure 1-12. The structural wedges contain two faults, forethrust and back thrust.  

(g) interference structures 

Interference structures have been studied 

since several decades (e.g. Dewey, 1965; 

Paterson and Weiss, 1966; Stewart and Alvarez, 

1991) and they are considered as the origin of 

structure in seismic profiles interpretations (e.g. 

Novoa et al., 1998; Shaw et al., 2003).  

Interference structure refers a typical 

geometry when two or more monoclinal kink 

bands intersect and yied distinctive paterns in 

cross section with anticlines perched above 

synclines (Shaw et al., 2003). Interference 

structure can induce complex structures, which 

sometimes are difficult to explain. Here we 

present a simple example, interfering 

developed above two bends in the same fault (Figure 1-13). 

In a summary, these structures could help us to understand the geometry in depth 

and the deformation processes. However, it is worthy to notice that these models are 

based on two basic assumptions. First, folds are produced by a flexure-slip 

mechanism so that bed thickness is constant. Second, the footwall remains 

undeformed during the formation of folds in the hanging wall. Moreover, the 

deformation in fold-and-thrust belts is always complex and affected by variety kinds 

of factors. It forces us to analysis local structure with considering every local 

Figure 1-13. Interference structures 

by two bends above a bended fault 

(Shaw et al. 2003).  
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characteristic and obtain as much as data in depth, such as seismic profiles and drilled 

wells. 
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2.1 Cenozoic tectonics in Asia 

Asia constitutes two broad Cenozoic deformation zones: the India-Asia collision 

zone in the east and the Arabia-Asia collision zone in the west (Yin et al., 2010). 

 

Figure 2-1. Cenozoic structures and distribution of volcanic rocks (Yin et al., 2010). 

The India-Asia collision zone consists of the following major tectonic domains: 1) 

the Himalayan orogen, 2) the Tibetan Plateau, 3) the southeast Asia extrusion system, 

4) the Central Asia deformation domain stretching from the Tian Shan in the south to 

the Baikal rift zone in the North, 5) the North China deformation domain, and 6) the 

eastern Asia margin deformation domain extending from the eastern continental 

margin of Asia to the western Pacific trench system in the E-W direction and from the 

Sea of Okhotsk in the north to South China Sea in the south in the N-S direction (Yin 

et al., 2010; Figure 2-1). The Arabia-Asia collision zone will not be discussed here in 
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details.  

2.1.1 The collision of the India-Asia 

 

Figure 2-2. (a) Cenozoic northward drift of India, relative motion of India with 

respect to Eurasia, kept arbitrarily fixed in its present position. The two traces 

indicate two points located on the Indian continent near the northern margin. 

Black-bold outlines indicate the initiation of India-Asia collision. (b) The velocity of 

the two points above move toward the Asia plate. India-Asia collision time was 

suggested by the sudden decrease (~ 50 Ma) (Patriat and Achache, 1984; Avouac and 

DeWver, 2002). 
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The most recent dramatic structure in the earth is the development of the Tibetan 

plateau resulting from the India-Asia collision, which is firstly documented by 

paleomagnetic study of Patriat and Achache. (1984; Figure 2-2). The Himalya belt 

isolates the Indian subcontinent from the rest of Eurasia, with the world’s highest 

mountain Mount Everest (8844.43 meter in altitude). It is among the youngest 

mountains of the world, and it is still undergoing structural changes and growing 

(Sorkhabi, 2003). 

However, the onset age of collision India-Asia is still in debates. Stratigraphic 

research suggested that the western part of Himalayan region the collision age is well 

constrained as starting in the Late Ypresian (~ <52 Ma). However, the most eastern 

sections are younger than Lutetian (< 48 Ma) (Rowley, 1996).  

Yet, Beck et al. (1995) report that accretionary-prism and trench strata were first 

thrust onto the northwest Indian passive margin after 66 Myr but before 55.5 Myr, and 

suggest that suturing was complete by 49 Myr. Yin and Harrison. (2000) reviewed the 

stratigraphic, paleontologic evidences and age of the Gangdest batholiths, suggesting 

that the initial collision between India and Asia could have stated as early as the latest 

Cretaceous time (~ 70 Ma). However, Aitchison et al., (2007) recently suggested by 

stratigraphic study that the India-Asia collision did not start until about 35 Ma, which 

is not consistent with most of the geologic observations (Garzanti, 2007). 

Though, the exact onset age of the collision remains debated and as it is out of 

scope of this study, most acceptable range from 65 Ma to ~ 50 Ma (e.g., Rowley, 1996, 

1998; Najman et al., 2001; Zhu et al., 2005; Yin, 2010) is referred in this dissertation. 

Regardless of this uncertainty, the deformation review on the Cenozoic will discussed 

below. 

2.1.2 The deformation by the India-Asia collision 

The India-Eurasia collision caused a high stress to be transmitted over a broad 

area (Molnar et al., 1973). Two end member models of how the high elevations in 

Tibet formed are (i) continuous thickening and widespread viscous flow of the crust 
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and the mantle of the entire plateau and (ii) time-dependent, localized shear between 

coherent lithospheric blocks (Tapponnier et al., 1982).  

The crustal shortening amount due to the India-Asia collision is mainly controlled 

by the paleomagnetic studies. Besse et al. (1984) reported that order of 550 km and 

400 km convergence amounts were found in suture and intracontinental thrusting 

respectively between the major Himalayan thrusts and the india-Tibet suture zone. 

Chen et al. (1993) estimated ~ 2700 km of crustal shortening between India and 

Siberia and documented that the Tibetan plateau has probably experienced the internal 

deformation of different scales from 1 to 1000 km. Pozzi and Feinberg. (1991) 

proposed that the post-collision continental shortening of the north of the Tajik basin 

did not exceed a few hundred kilometers and was probably between 100 and 300 km. 

This displacement amounts were absorbed not only by intracontinental thrusting and 

internal deformation but also by subduction of continental crust and lateral extrusion 

(Patriat and Achache, 1984). Reconstruction of the initial geometry of the Indian crust 

shows that at least 670 km of shortening have been accommodated at the scale of the 

Himalayan belt (e.g., DeCelles et al., 2002). 

The crustal shortening due to the India-Asia collision are essentially absorbed by 

reactivation of the ancient suture zones, such as Kunlun, and Tian Shan ranges (Chen 

et al., 1993). Quaternary faulting and seismicity show that most of the active 

deformation of Central Asia is partitioned between thrusting in mountain belts and 

sliding along great strike-slip faults (Tapponnier and Molnar, 1977; 1979). Avouac 

and Tapponnier (1993) modeled the velocity field of present-day deformation in 

Central Asia by four rotating blocks: Siberia, Tarim, Tibet and India on a spherical 

earth. It implies that nearly all the present convergence between India and Asia can be 

accounted for by slip-partitioning on these four zones, with as much as 50% absorbed 

by northeastwards extrusion of Tibet. The resulting deformation of Asia apparently 

occurred in several discrete phase. Harrison et al. (1992) suggest that rapid uplift and 

unroofing of southern Tibet began about 20 million years ago and that the present 

elevation of much of the Tibetan plateau was attained by about 8 million years ago. 
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Zhong and Ding (1996) proposed four stages of uplift from the onset of the collision: 

45-38 Ma; 25-17 Ma; 13-8 Ma and 3 Ma-today. A fundamental switch in the latest 

Oligocene-early Miocene in the tectonic style of the collisional system is suggested by 

multidisciplinary studies from the collision zone (Hendrix et al., 1994). Numereous 

studies of the Himalyaya and Tibet suggest a major shift from extrusion-dominated to 

crustal thickening-dominated tectonics occurred in that time, which is approximaltely 

coincident with the start of unroofing in the Tian Shan. For example, major left-lateral 

movement on the Red River fault system of Southeast Asia ceased at ~23 Ma 

(Tapponnier et al., 1990). Exhumation rates within the Trans-Himalayan batholiths 

(Copeland et al., 1987; Richter et al., 1991) and parts of the western Himalaya (Zeitler, 

1985) increased in that time.  

2.2 Geological setting and history of Tian Shan  

 

Figure 2-3. The topography of the central and southern Asia. MNT (NASA). 

Tian Shan (Shan is Chinese for mountain) is the pre-eminent mountain range of 
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Central Asia, over 2500 kilometers in length, with peaks in excess of 7000 meters in 

elevation. The range locates in the border region of Kazakhstan, Kyrgyzstan and the 

Xinjiang Uyghur Autonomous Region of western China (Figure 2-3).The highest peak 

in Tian Shan is the Victory Peak up to 7,439 meters, on the Kyrgyzstan-China border. 

The eastern part of Tian Shan is bounded by the Junggar basin to the north and Tarim 

basin to the south.  

2.2.1 The origin of basement and Paleozoic assembly of 

Tian Shan 

The Paleozoic Tian Shan is a major orogenic domain within the Central Asian 

Orogenic Belt (CAOB) (e.g. Jahn et al., 2000; 2004a; 2004b; Xiao et al., 2004; 

Kröner et al., 2007; Windley et al., 2007) or Altaid orogenic collage (Sengör et al., 

1993; Sengör and Natal’in 1996). It is bounded by the Kazakhstan microcontinent to 

the northwest, the Junggar basin to the northeast, and the Tarim basin to the south 

(Coleman 1989; Xiao et al., 1992; Konopelko et al., 2007; Kröner et al., 2008Erreur ! 

Source du renvoi introuvable.). It extends east-west for over 2500 km and exhibits 

the highest relief in Central Asia. The present topography is due to the Tertiary 

Asia-India collision (Tapponnier et al., 1986; Nelson et al., 1987; Avouac et al., 1993; 

Sobel and Dumitru 1997). In addition, the Cenozoic tectonism is responsible for the 

recent northward underthrusting of Tarim below South Chinese Tian Shan, and for the 

southward underthrusting of Junggar below North Tian Shan (Windley et al., 1990; 

Avouac et al., 1993; Hendrix et al., 1994; Burchfiel et al., 1999; Allen et al., 1999; Li 

et al., 2009). From the Neoproterozoic to Paleozoic, accretion of several continental 

blocks, island arcs and accretionary complexes to the southern margin of Eurasia 

formed the CAOB, within which the Tian Shan Belt resulted from amalgamation of 

the Tarim, Junggar and Kazakhstan-Yili blocks and intervening microcontinents 

(Wang et al., 1994; Gao et al., 1998; Chen et al., 1999; Charvet et al., 2007; Wang et 

al., 2007; Windley et al., 2007).   
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Figure 2-4. Geological map of the Chinese western Tian Shan belt (after Wang et al., 2008). Numbers in circle refer to the main faults: 1, North 

Tian Shan fault (NTF); 2, Main Tian Shan shear zone (MTSZ); 3, Qingbulak-Nalati fault (QNF); 4, Sangshuyuanzi fault; 5, Jinghe fault. Inset 

shows location of the Tian Shan Belt in Central Asia (modified from Jahn, 2004). Abbreviations: CAOB, Central Asian Orogenic Belt; EEC, 

Eastern European Craton; KZN, Kazakhstan; QQ, Qaidam-Qinling. 
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According to previous works (e.g. Windley et al., 1990; Allen et al., 1993; Gao et 

al., 1998; Chen et al., 1999), several ophiolitic belts have been used to define an Early 

Paleozoic South Tian Shan Suture (STSS, corresponding to faults 3 and 4 in Erreur ! 

Source du renvoi introuvable.) and a Late Paleozoic North Tian Shan suture (NTSS, 

corresponding to faults 1 and 2 in Erreur ! Source du renvoi introuvable.), dividing 

the Chinese Tian Shan belt into North Tian Shan, Central Tian Shan and South Tian 

Shan zones. In the literature, there is often a confusion on the suture zone that 

represents an initial plate boundary and also the strike-slip fault resulted from a 

reworking of the plate boundaries during Permian, i.e. after accretion and collision. 

In addition, the tectonic evolution of this complex orogen remains controversial, 

and numerous geodynamic models have been proposed since the last two decades. 

According to Coleman (1989), the Tian Shan resulted from the closure of an oceanic 

basin during the early Paleozoic. Ma et al. (1993) suggested that the southern Tian 

Shan evolved from a back-arc basin that formed by southward subduction of the 

Paleo-Junggar Oceanic lithosphere, whereas Cao et al. (1992) considered that the 

southern Tian Shan represents oceanic crust thrust to the south upon the Tarim Block 

during the late Paleozoic. According to Windley et al. (1990) and Allen et al. (1993), 

in the eastern Chinese Tian Shan, the north-directed subduction occurred during the 

late Devonian-early Carboniferous along the STSS and the south-directed subduction 

occurred in late Carboniferous-early Permian time along the NTSS. In western Tian 

Shan, Gao et al. (1995, 1998) proposed a north-directed subduction along the southern 

Tian Shan suture zone. According to Chen et al. (1999), the southern Tian Shan was 

originated from the closure of an early Paleozoic ocean located between Tarim and the 

Central Tian Shan and subsequent late Paleozoic oblique collision. More recently, 

Charvet et al. (2007), Wang et al. (2008) argued that the Paleozoic Chinese Tian Shan 

is a polyorogenic belt formed by the closure of three oceanic basins that separated 

four continental blocks, namely from north to south, Junggar, Yili-North Tian Shan, 

Central Tian Shan, and Tarim. The three subduction systems were not coeval, but all 

directed to the south. However, these models are often controversies, many of them 
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are still in debates. 

(a) The Altaid tectonic collage 

Sengor (1993) suggested that all the independent orogens within the Altaid 

edifice, including Tian Shan, have evolved dominantly along a single subduction zone 

that developed during the Cambrian along the eastern margin of a unified 

Baltico-Siberian continent. Most units are bounded by large strike-slip faults. Passive 

consolidation of the southern margin of Paleo-Asia is marked by accretion and 

subduction of the Paleo-Tethys oceanic basins and by development of volcanic arcs. It 

highlighted the function of strike-slips and the continental growth in the evolution 

processes, which is different from Alps and in the Himalaya belts (Sengor and 

Natal’in, 1996; Figure 2-5).  

 

Figure 2-5. Simplified and generalized tectonic map of the Altaids and related 

surrounding units. Numbers refer to different geological units (see reference Sengor 

and Natal’in, 1996). 
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(b) Multi-subduction and collision 

An alternative model of with the Altaid model concerns multi-subduction and 

collision ones are proposed by different authors based on different evidences 

(Windley et la., 1990; Allen et al., 1993; Gao et al., 1998; Laurent-Charvet, 2001; 

Xiao et al., 2004; Wang et al., 2008). The all highlight the function of 

multi-subductions, arcs and collisions in the evolution of the Paleozoic Tian Shan. 

However, several important issues are still under debate, such as the suture locations, 

the age of (U) HP metamorphism and the polarity of subduction and so on. A recent 

geodynamic model seems to be commonly recognized during the international field 

excursion and workshop in Urumqi, China on the Paleozoic Tian Shan evolution 

(September 9-18, 2009, Wang et al., 2010Erreur ! Source du renvoi introuvable.). It 

may be briefly described as follows. 

(1) Early Paleozoic closure of the Central Tian Shan Ocean.  

The oceanic basin separating the Tarim and Kazakh-Yili-North Tian Shan block 

began to close in the Ordovician. The closure was due to a south-directed subduction 

below the Tarim block. Later, the northern margin of the Tarim block suffered 

extensional tectonism that resulted in the formation of the South Tian Shan back-arc 

basin during Late Silurian-Middle Devonian (Figure 2-6 (1)). 

(2) Devonian-Early Carboniferous collision between the Kazakh-Yili-North Tian 

Shan and Central Tian Shan blocks.  

This early collision in the evolution of the Tian Shan orogen was responsible for 

the development of the high to ultra-high pressure metamorphism along the Central 

Tian Shan suture. The collision was followed by oceanic lithosphere consumption, 

deep subduction and coeval with top-to-the-North ductile shearing (Figure 2-6 (2)). 
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Figure 2-6. A multi-subductins and collisions geodynamic evolution model for the 

Paleozoic Chinese Tian Shan (after wang et al., 2008; Wang et al, 2010). 
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(3) Early Carboniferous closure of the South Tian Shan back-arc basin, and 

formation of the North Tian Shan magmatic arc.  

The welding of the Kazakh-Yili-North Tian Shan and Central Tian Shan blocks 

collided with the Tarim block and induced closure of the South Tian Shan back-arc 

basin. Southern Tian Shan ophiolitic mélange formed by sedimentary rocks (chert, 

siliceous mudstone, limestone), remnants the oceanic crust (pillow lava, diabase, 

gabbro), and the underlying mantle (serpentinized peridotite) of the South Tian Shan 

back-arc basin mixed together with sedimentary rocks of the Tarim block. This unit 

crops out as klippes emplaced from South to North upon the Central Tian Shan block 

in the current Tian Shan. Furthern north, high pressure eclogitic rocks along the 

Central Tian Shan suture are retrogressed into greenschist facies during their 

exhumation. Finally, the northern boundary of the Kazakh-Yili-North Tian Shan 

became an active margin along the North Tian Shan accretionary complex, coeval 

with the North Tian Shan ophiolitic melange, and the North Tian Shan magmatic arc 

developed (Figure 2-6 (3)).  

(4) Late Carboniferous tectonics in the Kazakh-Yili-North Tian Shan block.  

During this period, Most of the tectonic activity was located in the 

Kazakh-Yili-North Tian Shan block. The end of North Tian Shan arc magmatism is 

probably the consequence of subduction of the continental part of the Junggar 

basement. Late Carboniferous sedimentation was characterised by shallow marine 

terrigeneous and carbonated rocks in the Central Tian Shan. South-directed thrusts 

and folds that developed in the Kazakh-Yili-North Tian Shan and Central Tian Shan 

blocks can be considered as back-folding and back-thrusting due to the north Tian 

Shan subduction (Figure 2-6 (4)). 

(5) Permian dextral strike-slip faulting.  

During the end of the Carboniferous, the various tectonic elements, including 

magmatic arcs, continental blocks, and ophiolitic melanges, were already welded 

together. Later in Permian, all these units experienced major dextral wrenching 

parallel to the strike of the orogen. The Altai Fold Belt underwent sinistral strike-slip 
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faulting to the norther. The two strike-slip systems accommodated an opposite motion 

of Tarim and Siberia as suggested by paleomagnetism studies. This strike-slip 

tectonics was accompanied by pull-apart basin opening and post-tectonic magmatism 

expressed by volcanic rocks and granitic plutons. The coeval emplacement of Permian 

calc-alkaline and alkaline suites suggest the influence of the mantle metasomatism 

during the Carboniferous subduction (Figure 2-6 (5)).  

During the Mesozoic, deformation resumed, as documented by Triassic and 

Jurassic unconformities. But these tectonic events were purely intracontinental, like 

the Cenozoic event responding to the Asia-India collision. 

2.2.2 Mesozoic activity and inactivity  

Up to now, most of the previous studies in Tian Shan focused on either the 

Paleozoic evolution of the range linked to the agglomeration of Central Asia and the 

accretion of Central Asia Orogenic Belt or its Cenozoic intracontinental evolution 

linked with the India-Asia collision. Few studies found in the literature essentially 

concern the sedimentological studies on Mesozoic sediments of these basins adjacent 

to the Tian Shan (Hendrix et al., 1992, 2000; Li et al., 2004, 2010). The Mesozoic of 

the Tian Shan are poorly studied. Explanation for the regional Jurassic sedimentation 

is at odds. Some Chinese geologists have the hypothesis of a Mesozoic Tian Shan 

(Huang 1978; 1949) with long time. They proposed that the Mesozoic-Tian Shan was 

the remains of eugeosynclinal variscides and less lofty by erosion, associated by 

intermountain basins interior. Watson et al. (1987) proposed that the Tarim and 

Junggar Basins were flexural, foreland basins in the Jurassic, loaded by thrusts 

originating within the orogenic belts at their margins. 
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Figure 2-7. Summary diagram of indicators of timing of deformation in Chinese Tian 

shan. Subsidence history in northern Tarim basin shows rapid subsidence during 

collisions at southern margin of Asia (After Dumitru et al., 2001). 

Several stratigraphic evidences suggest that the Junggar and Tarim basins 

continued to be physiographically separated by the ancestral Tian Shan during 

Mesozoic contractile deformation (Hendrix et al., 1992; Figure 2-7). However, basing 

on Jurassic basins without fault control, Allen et al. (1991) suggested that it was 

proceeded a phase of thermal subsidence associate with fluvial and lacustrine 

sedimentation throughout the Jurassic, Cretaceous and early Tertiary. Shu et al. (2004) 
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take notice of the coaly Jurassic deposited widely even in the Tian Shan without 

molasse of marginal facies. He proposed that in the interval of Jurassic-Paleogene, 

extensional tectonic activity within plate split the peneplaned Tian Shan region into a 

series of sub-E-W-striking extensional basins. Jia et al. (1997) related the Chinese 

northwest basins to the evolution of the Tethyan orogenic belt. He proposed the 

extension in early to middle Jurassic, whereas compression in latest later Jurassic to 

Cretaceous. 

Low temperature thermochronology approach (fission tracks and (U-Th)/He) is 

widely used to constrain the Triassic to present history of the range. The 

thermochronolgy ages distributed in various periods during Mesozoic and Cenozoic 

(Dumitru et al., 2001; Wang et al., 2009; Jolivet et al., in press). These ages indicate 

the multiphase uplifting in the Tian Shan area. It is noteworthy that the ages vary 

along the orogen strike in the Tian Shan and difference between the northern and 

southern sides along faults (Figure 2-8).  

 

Figure 2-8. Low temperature thermochronology ages in the Tian Shan area. The 

numbers denote the cooling ages (Ma). Red lines are the faults in the mountain 

basement (faults from XBGMR, 1993).  
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2.2.3 The current Tian Shan 

(a) Seism 

 

Figure 2-9. Seismicity map of the Tian Shan (IRIS). 

The biggest documented earthquakes in Tian Shan took place on Decembre 3rd, 

1906, with M≈8, in Manasi area, north piedmont of Tian Shan (Molnar and Deng, 

1984; Avouac et al., 1993; Wang et al., 2004). Field investigations indicate that this 

earthquake occurred along a blind thrust fault (Deng et al., 2004).  

Figure 2-9. presents about 500 seisms in Tian Shan area science 1965 (M≥5; 

82°-88.5°E in longitude; 40.5°-45°N in Latitude; 

http://www.iris.edu/data/event/eventsearch.htm). This map show that the deformation 

in the Tian Shan is mainly located in both the northern and southern fronts. Seismic 

moment tensors of major earthquakes in this century suggest an average shortening 

rate of 7 (± 2) mm yr-1 across the Tian Shan (Molnar and Ghose, 2000). 
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(b) GPS measurement 

 

Figure 2-10. GPS vectors with respect to stable Eurasia. Fergana B.: Rotation pole of 

FGB, TFF: Talas Fergana Fault, CHR: Chatkal range, ALR: Alai range (Reigber et 

al., 2001). 

GPS (Global Positioning System) is used to measure the present-day kinematics 

of deformation on the surface of earth. The results of GPS network in the Republics of 

Kyrgyzstan and Kazakhstan suggest that the total shortening of Tian Shan is 

approximately 20 mm yr-1. This result also indicates that most of Tian Shan has been 

constructed during the past 10 Myr (Abdrakhmatov et al., 1996). Later, more dense 

GPS network measurement suggested 20 mm/yr N-S shorting rate in the west of Tian 

Shan and 10 mm/yr in Chinese Tian Shan (Reigber et al., 2001; Figure 2-10). Chinese 

GPS measurements taken from 1992 to 2006 in the Tian Shan mountains and their 

adjacent areas show that slip rates on east-west trending detachment vary from 10-13 

mm/yr in the southwest of Chinese Tian Shan to 2-5 mm/yr in western Chinese Tian 

Shan (Yang et al., 2008). The rotation clockwise of Tarim basin was proposed by 

paleomagnetic results and structural analyses with the pole in the west of Tian Shan 

(Chen et al., 1991; Avouac et al., 1993), which is corresponding to the GPS results 

(Reigber et al., 2001). 
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(c) The deformation along the piedmont. 

Based on fault scarp offsets (10.2±0.7m) and the Holocene age (10±2 kyr) for 

highest terrace surface, Avouac et al., (1993) proposed the surface shortening rate is 

about 1.25±0.5 mm/yr and the mean depth shortening rate have been 3.0±1.5 mm/yr. 

They also estimated the Cenozic shortening amount was the order of 30 km in the 

northern piedmont Cenozoic shortening, assuming with an imaged antiformal stacking 

in the front. The differences of relative heights between two terraces could reach 100 

to 120 m over the crests of anticlines in the northern piedmont, Morlnar et al., (1994) 

infer that this spacing is due to alternating stages of valley widening and rapid 

incision associated with climate changes with a periodicity of 100 kyr. Hence, the 

average vertical rate of is about 1 mm/yr. Burchfiel et al., (1999) constructed four 

cross-sections in the northern piedmont of Tian Shan, the southern part of the Hutubi 

River, Tugulu anticline, Tuositai anticline and Dushanzi anticline. The balanced 

cross-sections show that the shortening amounts are 6.2km, 5.5km, 4.6-5.0 km and 

2.12-2.35 km respectively. Calculating large-scale shortening rate is difficult, because 

the four profiles are spare and not lined. Moreover, their structures are active and 

laterally vary significantly. The range interior is poorly studied as well. A minimum 

shortening rate of >5.7 to 7.2 mm/yr was proposed assuming the time of initiation of 

deformation is 2.5 Ma (Burchfiel et al., 1999).  

Along the southern piedmont, at least 20-40 km of crustal shortening with a 

hozizontal shortening strain of 20-30% was proposed by Yin et al. (1998). It was 

suggested that these estimates are minimum because of both conservative 

extrapolation of the thrust geometries and partial coverage of the thrust belt by the 

cross sections. A shortening strain of 1.0-1.9 mm yr-1 was obtained, assuming the 

initiation thrust begin about 21-24 Ma (Yin et al., 1998). Burchfiel et al. (1999) 

constructed cross-sections of Kalasu River, Qiulitage anticline in the west part and 

Boston Tokar in the east and suggested the shortening of 12-14 km, 6-7 km and 

10.3-13.0 km, respectively. Deng et al (2000) applied system studies in the Tian Shan 
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area on the active tectonics. Based on geological mapping and technique of balanced 

cross-section, the amounts of shortening in Tulufan, Urumqi and Kuche foreland 

basins are calculated with 10-12 km, 17 km and 23 km respectively.  

The reason of these diversity values of shortening amounts and rate are due to 

lacking of reliable geometry data in depth, such as seismic profiles or other 

geophysics data. Most of the cross-sections are constructed by surface observations, 

combining with theoretical models. 

2.3 Problems and methodology 

The northern and southern piedmonts of Tian Shan are characterized by foreland 

thrust-and-fold belts, which are the key areas to understand the multiphase mountain 

building. Geodesic measurement shows the decrease GPS velocity from the southern 

Tibet plateau, to the northern Tian Shan area (Reigber et al., 2001; Wang et al., 2001; 

Niu et al., 2007; Figure 2-10). The northern piedmont of Tian Shan has been proposed 

to be the north end of the far-effect by India-Asia collision (Tapponnier and Molnar., 

1977; Avouac et al., 1993; Tapponnier, 2001). Within the northern piedmont 

depression of Tian Shan, three sub-parallel fold belts prolong along east-west strikes 

due to the north-south convergence. North-flowing rivers incise the anticlines 

perpendicular to strike where they expose successions of deposited series. 

Magnetostratigraphy studies have been carried out in the Cenozoic series of some of 

these anticlines to find out the sedimentary rates and defined the growth strata ages 

(Charreau et al., 2005; 2006; 2008; 2009; Sun et al., 2004; Huang et al., 2006; Ji et al., 

2008; Li et al., 2010; Lu et al., 2010). Numerous petroleum seismic profiles and 

drilled wells are located in this area by profit-driven. Furthermore, the structural and 

the sedimentary characteristics in the northern piedmont of Tian Shan may offer direct 

evidences of the far-effect by India-Asia collision and the Cenozoic tectonic evolution 

history of Central Asia. This is the the reason why we chose the northern piedmont of 

Tian Shan as the study area. Up to now, structural studies along the northern front of 

Tian Shan are mostly modern–driven than data-driven (Avouac et al., 1993; Burchfiel 
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et al., 1999), which were essentially based on surface studies. The structural profile 

published from seismic profiles lack often surface constraints and, moreover, with 

limited extent to the piedmont of Tian Shan that may make missing of information on 

the contact between the range basement and basin cover (Wang et al., 2005; Chen et 

al., 2007; Lu et al., 2007). The results from previous studies by different methods are 

often therefore contradictory, such as shortening rates along the northern piedmont 

(Avouac et al., 1993; Burchfiel et al., 1999; Deng et al., 2000). This study focuses on 

the field observations along the northern front of Tian Shan, especially in the contact 

zones between the mountain basement and basin sediments, to define their tectonic 

and geometric relationships. Following major problematic subjects are evoked in this 

study: 

1, What are the relationships between the Paleozoic mountain basement and the 

Meso-Cenozoic basin sediments in the northern front of Tian Shan? 

2, What is the nature of Tian Shan during Mesozoic as most of previous studies 

are concentrated on its Paleozoic and Cenozoic histories? Moreover, a good 

understanding on its Mesozoic nature will help to recognize better the Cenozoic 

evolution of Tian Shan;  

3, Consequently, how much the deformation has occurred due to the Cenozoic 

tectonics along the northern piedmont of Tian Shan? 

4, What is the mechanism of the Cenozoic deformation in the northern piedmont 

of Tian Shan? 

To answer these questions, multidisciplinary studies are carried out in the 

northern piedmont of Tian Shan. Two types of the data are obtained, the surface and 

subsurface data (Figure 2-11). The surface data consist of (1) available geological 

maps, which were digitized in Arcgis (ESRI) with geological limits, faults, strikes and 

dip angles. (2) detailed geological observations made in the northern front of Tian 

Shan. Subsurface data consist of available seismic profiles and drilled wells. For 

following reasons, the gravity measurements have been carried out along certain 

profiles and then integrated into subsurface data, (1) Outcrops cannot be continuously 
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observed in the field because of the important Cenozoic cover; (2) Seismic profiles 

are often limited in the basin and there is no any data available on the depth close to 

the mountain; (3). Seismic method becomes less sensitive to the strongly deformed 

zone. These gravimetric data are treated to Bouguer anomaly and two dimensional 

(2D) forward gravity modeling has been performed using the Geosoft-GM-SYS 

software. With these surface and sub-surface data, a 3D model of the northern 

piedmont of Tian Shan is possible to construct with Geomodeller or Gocad softwares 

(Figure 2-11， see Annexes). 

 

Figure 2-11. The methods applied in this study and the processes. 
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3.1 Abstract 

The Tian Shan mountain range offers a natural laboratory to study orogenic 

processes. Most of the previous studies focused on either the Paleozoic evolution of 

the range or its Cenozoic intracontinental evolution linked with the India-Asia 

collision. In this study, detailed stratigraphic and structural investigations on the 

relationship between sedimentary cover and basement allow to constrain the 

Mesozoic evolution of Northern Tian Shan. Stratigraphic field observations argue for 

Jurassic sedimentation with very limited transport in certain places of the range front. 

Sections presented in this paper show that, in some locations, Triassic to Jurassic 

sedimentary series present a continuous onlap type sedimentary unconformity on the 

top of the basement.  At different scales, observations clearly evidence the existence 

of a major paleo-relief during Mesozoic. According to the present study, the actual 

Tian Shan nature and the associated movements along its northern front structures 

cannot be considered as the consequence of Cenozoic reactivation alone. 

3.2 Introduction 

The modern Tian Shan is one of the Major mountain range in Central Asia belt. 
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The current structure of the Tian Shan results from two principal tectonic phases: i) 

subductions, arc-accretions and continental collision during Paleozoic (e.g. Windley et 

al., 1990; Söngor et al., 1993; Gao et al., 1998; Laurent-Charvet et al., 2002; Charvet 

et al., 2007; Wang et al., 2007) and ii) intracontinental reactivation linked with the 

India-Asia collision, during Cenozoic (e.g. Tapponnier and Molnar, 1977; Avouac et 

al., 1993). At first order, this finite structure displays a remarkable uprising of 

Paleozoic ‘basement’ rocks – as a crustal-scale ‘pop-up’ – surrounded by two closed 

intracontinental basins (Figure 3-1). The present-day high topography of the Tian 

Shan, with a mean altitude of ~2500m and summit of more than 7000m, is 

traditionally related to the latest intracontinental reactivation of the range (e.g. 

Tapponnier and Molnar, 1977; Avouac et al., 1993). Ages constraints for the onset of 

this intracontinental reactivation range from 10 Ma to 24Ma (Avouac et al., 1993; 

Hendrix et al., 1994; Abdrakhmatov et al., 1996; Métivier and Gaudemer, 1997; Sobel 

et al., 1997; Dumitru et al., 2001; Charreau et al., 2009). In spite of this relative age 

discrepancies mostly related to the method applied, all ages estimated for the 

deformation and the associated relief erosion suggest that the mountain range 

reactivation and relief creation began during Early Miocene at 

oldest.

 

Figure 3-1. Simplified geological map of the northern Tian Shan from Wusu to 

Urumqi area. Mesozoic series are most exposed in the southernmost parts of the 

Junggar basin along the adjacent Tian Shan range. ‘He’ indicates river in Chinese 

(geological map modified after He et al., 2005). 
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However, recent fission track analyses suggest 

that uplifting may have existed well before the onset 

of the Tertiary reactivation through Tian Shan, with 

exhumation ages as: 160-120Ma in central Tian Shan, 

200-250 Ma detritus cooling age in the Manasi River 

valley (Dumitru et al., 2001) or 140-120Ma from 

Bayanbulak intracontinental basin, in the southern 

Tian Shan (Wang et al., 2009). Moreover, Triassic to 

Cretaceous sediments are composed of thick series 

often coarse grained continental sediments within 

both foreland basins, suggesting rather high erosion 

rate at that time (Hendrix et al., 2000; Carroll et al., 

2010). 

This study considers the Mesozoic tectonic and 

morphologic evolution of Tian Shan through a 

combined stratigraphic and structural analysis of 

Mesozoic deposits. It focuses on the northern 

piedmont of the range, along a ~280Km west-east 

trending segment (Figure 3-1); thanks to deep 

incisions of seasonal rivers, contacts between 

Paleozoic basement and Mesozoic-Cenozoic 

sedimentary cover are particularly well 

exposed along several north trending sections 

in this region (Figure 3-1). A better 

understanding of the Mesozoic Tian Shan 

would lead to highlight the real role of 

Cenozoic tectonics and the relative 

contribution of the paleo-topographic 

remained in the mountain range building.  

Figure 3-2. Synthetic 

stratigraphic log of the study 

area (Modified after Hendrix et 

al., 1992). The Mesozoic lie 

unconformably over the 

Paleozoic basement. 
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3.3 Stratigraphy of Mesozoic sediments within the 

study area 

Sedimentary series can be extensively observed and have already been studied 

within the Junggar basin, as summarized below (Figure 3-1 and Figure 3-2; Hendrix 

et al., 1992 and references therein; XBGMR, 1993). Basement units of the north Tian 

Shan mainly consist of Paleozoic volcanic and sedimentary rocks. From bottom to top, 

the entire Mesozoic series is composed of continental clastic deposits (Figure 3- 2). In 

the study area, the Triassic series is mostly missing along the piedmont though locally 

exposed (Figure 3-1). Where it crops 

out Triassic displays alluvial or 

braided-fluvial sandstone and siltstone 

intercalated with conglomerate and 

mudstone.  

 

 

 

 

Figure 3-3. Landscape pictures of 

representative features of the Mesozoic 

series (see position in the Fig.1) (a) 

Coarse-grained conglomerate bars in the 

lowermost Jurassic (southern Qingshui He 

area); (b) Uppermost Jurassic breccias 

(J3k) unconformably overlie the Upper 

Jurassic Qigu formation (Hutubi He area); 

(c) Detailed view of the Uppermost 

Jurassic breccias (west to Hutubi He area). 
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Lowermost Jurassic layers are characterized by thick and coarse conglomeratic 

layers which can be observed in numerous places along the northern front of Tian 

Shan, as to the south of Qingshui He (Figure 3-3a). Lower Jurassic thickness reaches 

1000m over an area extending from Manasi to Urumuqi, and decreases westwardly 

and eastwardly. Series become finer upward, grading into a very thick series of 

Lower/Middle Jurassic gray sandstone, siltstone and shale (Figure 3-2). Middle 

Jurassic sandstone and mudstone locally contains very rich coal layers consistent with 

a lacustrine environment deposit (Hendrix et al., 1992). Upper Jurassic comprises 

typical fine-grained red beds. Transition from Jurassic to Cretaceous series is marked 

by up to 800m thick breccias (Kalaza formation; Figure 3-3b). Clasts forming these 

particular layers are dark, 5 to 30 cm in width and display highly angular shapes 

(Figure3-3c) suggesting very short transport distances of material before deposition. 

The basal contact of this formation is sharp and often presents unconformity on top of 

the finer-grained Upper Jurassic red beds (Fig3-3b). The Kalaza formation laterally 

grades to finer deposits and is exclusively made of sandstone within the Junggar basin 

itself. 

In this study, Mesozoic sediments have also been extensively observed within 

internal parts of the range, and more particularly in the eastern half part of the study 

area (Figure 3-1). Triassic to Jurassic sediments lying in direct contact with the 

Paleozoic basement can be found at rather high altitudes (2000 to 3000 m) in 

comparison with the mean altitude of the foreland fold-and-thrust belts (1000 to 

1500 m high). In the Houxia valley – 65km SSW of Urumuqi – a Lower to Upper 

Jurassic continuous sedimentary series is preserved in a syncline structure (Figure 

1-4a). According to the map (Figure 4-4a; XBGMR, 1993), a south verging thrust 

developed along one limited central segment of the northern limb of the fold while, 

elsewhere, sediments unconformably rest on top of the Carboniferous volcanic 

sediments. Besides, according to the geological map, Lower Jurassic formations 

directly lie on top of basement units to the northwest, with no preserved sediments 

owning to Triassic or to the lowermost Jurassic formation (Figure 3-4a). Along a 
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section made to the north of the syncline, in a small south trending valley, 

sedimentary 

series can be continuously observed with no internal structural contact. To the south, 

its upper and main part is composed of fine grained sandstone with mudstone layers 

with a constant stratification dip-angle of about 30˚ to the south. To the north, 

stratifications progressively straighten up and overturned below the thrust displayed 

on the map (Figure 3-4a, b).  

 

Figure 3-4. Structural and sedimentological features of the Houxia area (a) 

Simplified geological map of Houxia area. (b) Geological cross-section of Houxia. (c) 
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Close-up view of the Lower Jurassic breccias, here mainly composed of carboniferous 

basement detritus (see location on the cross-section). 

There, the lowermost deposits of the series comprise interbedded levels of 

sedimentary breccias with coarse grained conglomerates and both rich in highly 

angular clasts of Carboniferous tuffaceous sandstone (Figure 3-4c). Local abundance 

of these breccias and the common lithological nature of the clasts with the adjacent 

basement unit strongly suggest a very small distance transport. 

3.4 Structural analysis of the Mesozoic basal contact 

Deformation of northern Tian Shan has already been studied through the 

structural analysis of sedimentary series, within the proximal foreland basin (Avouac, 

1993; Deng, 1996; Burchfiel et al., 1999). Yet, as described above, Mesozoic series 

restricted to the piedmont fold-and-thrust belts are also widely preserved on top of the 

basement units, within range (Figure 3-1). As shown on the map (Figure 3-1), 

classical frontal thrust structures can be pointed out over some segments of the 

piedmont. In that case, the structure marks out the boundary between the uplifted 

basement Paleozoic units and the relatively subsiding proximal foreland basin. For 

other segments, following Mesozoic layers, structural continuity of the sedimentary 

series can be observed from basin until more internal and higher parts of the range 

(Figure 3-1). Structural analysis of such unstrained basal contact of Mesozoic series is 

presented for two of the studied sections constructed from field work, seismic profiles 

and drill-holes data: the Hutubi He and the Wusu sections. 

At first order, to the north of the Hutubi He area, Triassic to Neogene sedimentary 

series forms a rather simple monocline structure, dipping 15-20° to the north (Figure 

3-5a). The first fold-and-thrust belt is composed of one gentle upright anticline and 

associated syncline with only very limited thrusts developed (Figure 3-5a). These are 

second order structures which can be regarded as a fault propagation fold structure 

according to the available seismic data (Figure 3-5b). Further south, entering within 

the interior parts of the range, sub-horizontal Lower Jurassic strata lie on top of the 
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Carboniferous units (Figure 3-5b). While basement is strongly deformed as evidenced 

by sub-vertical cleavage, overlying sedimentary layers form very gentle upright folds 

as marked by the curved outline of the Mesozoic series bottom, few kilometers west 

of the river (Figure 3-5a). No décollement structure has been observed between the 

basement top and the sedimentary cover. Besides, a southward backthrust of basement 

rocks above sediments can be observed to the south of the section, but the net slip 

must be limited as it rapidly dies out and fault westwardly transforms to a fold (Figure 

3-5a). 

 

Figure 3-5. (a) Simplified geological map of the Hutubi He area. ‘A’ indicates the 

unconformity between Middle Jurassic and Carboniferous basement. There, Triassic 

and Lower Jurassic are apparently lacking. (b) Geological cross-section of along the 

Hutubi He constrained by field data, seismic profile and drill well W1. 

Unconformity of the basal contact of Mesozoic sediments on top of basement 

units is observed to the southernmost part of the section (Figure 3-5a and Figure 3-6a). 

As a whole, the successive sub-horizontal and monocline segments draw a hinge fold 
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at regional scale (Figure 3-5b). Nevertheless, while ~900m thick of Triassic sediments 

have been drilled along the W1 well (Figure 3-5b), in the basin, no series of Triassic 

exist further south, toward the range (Figure 3-5a). Similarly, Jurassic of contrasted 

ages have been observed and mapped on top of the basement units (Figure 3-5a). In a 

similar situation to that of the Houxia area, basal contact of the Mesozoic series 

suggests its onlap deposit, from basin to range, at least during Triassic and 

Lower-Middle Jurassic.  
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Figure 3-6. Landscape pictures (corresponding field sketches) of the contacts between 

the Jurassic series and the basement. (a) General southward onlap of the Jurassic 

sediments over the folded basement. In the North, a basement block is back thrusted 

over the sediments (see Fig. 5b). (b) Meso-scale basement relief coved by Jurassic 

sandstones as evidenced by onlaps over a steep inherited ~150 m high basement 

paleo-relief. Basement rocks are deformed with a large inclined Paleozoic fold.  
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More local-scale evidences for onlap sedimentation can be observed in the Hutubi 

He area. First, to the south end of the section, Lower Jurassic strata display a 

kilometer scale onlap type structure on top of basement units, i.e. with younger 

sediments progressively covering basement, from north to south (Figure 3-5a and  

Figure 3-6a). Second, ~10 km west of the Hutubi river, subhorizontal layers of the 

Lower Jurassic formation, which can be continuously followed all along few 

kilometers in this small valley, structurally die on deformed Paleozoic basement units 

(Figure 3- 6b). 

  

Figure 3-7. Structural and sedimentological features of the Wusu area. (a) Simplified 

geological map of the Wusu area. (b) Geological cross-section constrained by field 

data, seismic profile and drill well W2 (location see Figure 3- 7a). (c) Picture and the 

corresponding field sketch of the unconformable contact between Jurassic layers and 

the carboniferous basement. 
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There, stratification planes are markedly oblique with the top of the Paleozoic 

units and no deformation has been observed along this contact. In the landscape, 

younger Jurassic sediments progressively extend southwardly, on top of the 

Carboniferous units. From bottom to top, sediments progressively overlie and cover a 

~150 m high drop of the basement units that was forming a relief when Jurassic 

sediments deposited.    

To the north of the Wusu section, first order structure of the Mesozoic-Cenozoic 

series displays as a 40-45° north dipping monocline (Figure 3-7a, b). To the south, 

stratification is sub-horizontal and structure of the sedimentary series displays as a 

large hinge fold. As drawn on the geological map, thrust faults are observed at surface 

but seismic data show that these do not extend down in the Mesozoic series, which is 

compatible with the limited throw they display (Figure 3-7a, b). While ~400 meters of 

Triassic sediments have been found along a well drilled, in the basin, close to the 

section (see W2 on Figure 3-7a), Triassic series becomes much thinner to the south 

and Jurassic sandstones sometimes directly lie on top of the Carboniferous rocks 

thought an erosional unstrained contact (Figure 3-7c). On the map, the curvilinear 

shape of the outline of the top of the basement units results from their southward 

progressive covering by Triassic and Jurassic sediments.  

3.5 Discussion and conclusions 

In parallel to rather classical view of frontal forward thrust systems, this study 

highlights that the northern piedmont of Tian Shan is also characterized by full 

segments where Mesozoic series are preserved unconformably on the basement 

though onlap-type relationships. Such features are pointed out along two distant 

cross-sections and have also been clearly shown at outcrop-scale. Sedimentary 

breccias showing very limited transport distances have been found within Lower 

Jurassic sediments of the internal parts of the range. Whatever the scale, all these 

observations argue for the existence of proximal relieves when Triassic/Jurassic 

sediments deposited in this area.  
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Figure 3-8. Conceptual models of the paleo-relief evolution in the Northern piedmont 

of Tian Shan during the Early, Middle and Late Jurassic times. ‘A’ indicates the 

locality of Figure 3-3a; ‘B’ indicates Figure 3-4c; ‘C’ indicates Figure 3-5a-A; ‘D’ 

indicates Figure 3-3b, c. 
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Our direct observations are consistent with previously published indirect ones, 

such as paleocurrent measurements, heavy mineral composition and sedimentological 

source analyseswithin sediments of the Junggar and Tarim basins show that Tian Shan 

could already have existed as a positive physiographic feature during Mesozoic times 

(Hendrix et al., 1992, Graham et al., 1993; Hendrix, 2000; Li et al., 2004).  

At outcrop scale, the studied onlap architecture reveals that the paleo-altitude 

difference can be as important as 100-150m in a hectometer horizontal distance 

highlighting local steep slope see cliffs (cf. Figure 3-6c). This and the 

sedimentological observations within the Houxia valley suggest that small-scale 

ridges with intercalated intramountainous basins probably have existed during 

Mesozoic (Figure 3-8a). 

The drill well W1 (Figure 3-4a, b) displays ~1300m of Lower Jurassic sediments. 

A comparable J1 thickness has also been observed in the Manasi area, 50km west of 

the Hutubi section (Figure 3-2). In the southern part of the Hutubi River, the 

geological map shows that the Middle Jurassic directly rest unconformably onto the 

Carboniferous basement, with no Triassic or Lower Jurassic sediments preserved (see 

location A in Figure 3-4a). The thickness difference of Jurassic sediments achieves 

1300 m between the location A and the drill well position, for a horizontal distance of 

about 50 km (Figure 3-4a). Such thicknesses difference may result from three distinct 

mechanisms: thermal subsidence, tectonic subsidence or relief infilling.  

If considering thermal subsidence, the latest regional tectono-magmatic event 

occurring before Mesozoic is dated around 240 Ma (Han et al., 1999), which is about 

100 Ma earlier than Jurassic sedimentation. Moreover, wavelength of the subsidence, 

as highlighted by the altitude difference calculation, is not large enough to be properly 

explained by a thermal type subsidence. Therefore, following Hendrix et al. (1992) it 

seems that thermal driving mechanism for Early and Middle Jurassic subsidence may 

play a weak role for the Jurassic sedimentation. If considering tectonic subsidence, as 

described above, Jurassic strata often overlie directly on Carboniferous by onlap, 

without fault or others syn-sedimentary deformations observed. Seismic profiles 
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across the southern margin of the Junggar basin do not show any fault controlling 

sedimentation for the Early Jurassic period (Allen et al., 1991; Wang et al., 2005). 

Furthermore, compressional flexure subsidence may also be negligible as lithosphere 

buckling process would result in much larger wavelength (~100 km) than observed in 

this study (~50 km). Finally, in the Kuqa sub-basin, south of the Tian Shan, 

mineralogical maturities of conglomerate and sandstone increase from Triassic to 

Middle Jurassic (Li et al., 2004; 2010), indicating that the tectonics is relatively calm 

at that time. In other words, Jurassic sedimentation could not be considered as 

controlled by tectonic processes across northern Tian Shan. 

Accordingly, the 1300m thickness difference may be principally produced by 

infilling of a relatively high lasting relief of ~1300 m high in this region, during 

Triassic/early Jurassic times (Figure 3-8a). During Middle Jurassic times, finer 

grained sediments conformably deposited on top of the Lower Jurassic strata, within 

the basin, and deposited onlap of the Paleozoic basement toward the mountain interior 

(Figure 3-5a and Figure 3-8b). Middle Jurassic sediments extend to a larger area with 

respect to the Lower Jurassic and the paleo-relief lateral extension was certainly less 

important during Middle Jurassic than during Triassic/Early Jurassic (Figure 3-8b). 

During uppermost Jurassic to Lower Cretaceous, conglomerates and breccias 

deposited onto the Middle Jurassic sediments with a weak angular discordance. These 

conglomerates are geographically confined along the front of Tian Shan and this 

particular formation becomes finer toward the basin. This behaves as very thick 

alluvial fans deposited down of a major relief rising to the south, as the ones currently 

deposited along the modern Tian Shan range, with limited northward transport of 

sediments (Figure 3-8c). This uplifting movement is also recorded by AFT 

chronology studies: fission-track modeling indicates ca. 160 and 120 Ma cooling age 

along a Dushanzi-Kuqa corridor, in the mountain interior (Dumitru et al., 2001). 

Apatite sampled from Bayanbulak in the northern part yield the earliest cooling ages 

of Early Cretaceous (Dumitru et al., 2001; Wang et al., 2009). Finally, the main 

morphological front of the current Tian Shan range would correspond to an ancient 
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one that might be stable from early Cretaceous. 

Results from this study show that the topography of the current Tian Shan can 

probably not be considered only as the consequence of the Cenozoic intracontinental 

reactivation alone. Physiography of the range actually results from a combination of 

Cenozoic deformations superimposed on a reminiscent Mesozoic paleo-range. These 

new results question on the total amplitude of the movements along the northern front 

structures that could be attributed to the Cenozoic India-Asia collision. 
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In the previous chapter, field observations and geological maps evidence that a 

significant relief existed, during Mesozoic times, through northern Tian Shan. Such a 

paleo-relief has probably significantly contributed to the presently observed 

topography of the Tian Shan range; in other words, the Mesozoic relief influence 

cannot be ignored when considering the morphologic and tectonic evolution when 

Cenozoic reactivation occurred. As the whole present day topography can not be 

solely attributed to Cenozoic tectonic history, our observations and interpretations 

also imply that the Cenozoic deformation along Tian Shan front may be less important 

than what has been estimated in previous studies (Avouac et al., 1993; Burchfiel et al., 

1999). 

In northern Tian Shan region, most of the structural analyses have been 

performed within the folded and thrusted foreland Junggar basin and the “front” 

contact zone in-between basement Paleozoic units and Mesozoic to Cenozoic 

sedimentary series has only been poorly studied. As shown by seismic activity (Figure 

2-9) modern deformation likely concentrates along this front of the range. On another 

hand, our new field observations, has presented in chapter 3, highlight unconformity 

structures, in some places of the range front, with a strict structural prolongation of 

sedimentary layers from basin to more internal parts of the range onward. This 

suggests only limited movement along this zone. In order to clarify this point and 

misunderstanding, detailed geological observations have been made on the contact 

between the range basement and basin cover along the northern front of Tian Shan 

(Figure 4-1). Mesozoic sediments are widely exposed and the Jurassic to Cretaceous 

strata, in particular, make very good markers for qualifying and quantifying 

post-Mesozoic deformations. The structural analysis which is presented in this chapter 

has been applied thanks to several river valleys crossing the contact zone of the 

northern front of Tian Shan and, also, thanks to newly open roads which facilitate 

access and rather continuous observations of outcrops from west of Wusu to the east 

of Urumqi (Figure 4-1a). Structural field work has been performed during three field 

trips (Sept.-Oct. 2007, 2008, 2009) and more than 800 outcrops have been visited 
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(Figure 4-1).  
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Figure 4-1. Geological map of the northern piedmont of Tian Shan with locations of field observations along the front. The upper map (a) shows 

the observed locations of cross-sections and outcrops (modified after He et al., 2005). Red triangles with numbers: thrust contact outcrops, 

purple squares: fold-type contact outcrops, orange reversed triangle: backthrusts in the mountain and blue circles: unconformity contact 

between range basement and basin sediments. All the numbers will be found in the pictures displayed and presented in this chapter.Lower 

framed map (b) is the DEM of the northern piedmont of Tian Shan with red circles points indicating 820 visited outcrops during 3 field trips.
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As detailed below, rather classical forward thrusts have been identified for some 

segments of the piedmont, delineating the boundary between the uplifted basement 

units and the relatively subsiding proximal foreland basin.  

On the contrary, for other segments, Mesozoic series display as structural 

continuous layers from basin to higher parts of the range, showing regional scale 

unconformity on top of the Paleozoic basement units. Synthesizing the numerous 

structural observations made during this work, four types of contact can be drawn 

along the northern front of Tian Shan: thrust, unconformity, large fold and backthrust 

types. Based on the most representative and the most comprehensive data that could 

be used among hundreds observation points, sections corresponding to each one of 

these types of contact are detailed and interpreted in the following four parts of this 

chapter. 

4.1 Thrust contact 

Thrust type contacts have been observed in several localities and are presented in 

detail, as follows. These observations are located along rivers flowing down the 

mountain: Taxi He, Toutoun He and its western sector, Anjihai He, Jingou He, Kuitun 

He and its eastern section (Figure 4-1).    

4.1.1 Taxi He 

The southern end of the Taxi He section shows a typical thrust fault between the 

basement and the Jurassic series of the Junggar basin (Figure 4-1 and Figure 4-2, N°1). 

As shown on the panoramic picture of Figure 4-3, the boundary can be easily drawn 

in between the Paleozoic basement, to the south and the Jurassic basin sediments, to 

the north. From north to south, the roughly east striking Jurassic strata become steeper 

(from 30° north to vertical), and even overturned (55° south) close to the 

Carboniferous basement rocks. This fan shape like structure is preserved for a 

horizontal distance of about 500 to 1000 meters.  
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Figure 4-2. (a) Geological map (b) DEM of the Taxi He and Hutubi He area.  
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Figure 4-3. The Carboniferous basement thrusts onto the Jurassic series. The dip 

angles of Jurassic sediment strata are overturned adjacent to the basement, to the 

south. 

Here, the structure exposed along the Taxi He section obviously shows 

deformation associated with the development of a forward, south directed thrust of the 

basement units on the foreland basin domain. The particular structure within the 

sedimentary series suggests a significant net slip associated with. However, the deep 

structure along such a thrust fault contact can be questioned. If considering overturned 

series in front of the thrust, two alternative models could be proposed for the 

kilometer-scale structure in this contact zone. In the first model, a concentric type 

folding is considered with the sedimentary series keeping parallel strata under and 

adjacent to the thrust fault (Figure 4-4a). In contrast, a second model type shows a 

similar fold type development in front of the thrust, with thickening of the layer strata 

in the hinge and thinning in the limb, along the adjacent thrust fault (Figure 4-4b). 

The first type model is typical of nappes stacking and implies much more net slip than 

for the second model type. As shown on our structural interpretation (Figure 4-4b), 
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the Taxi He section displays clear variable Jurassic sediment thickness adjacent to the 

thrust fault, which is compatible with the second model type for the deep structure of 

the frontal thrust contact (Figure 4-4b, c). The superficial pattern of such structure 

within the sediment strata (Figure 4-4c) has been observed along several sections in 

front of the range and is a typical deformation pattern for this kind of front contact in 

north Tian Shan. This will be detailed and discussed below. 

 

Figure 4-4. Deep structure of a range basement thrusting on a basin sediment cover. 

(a). In the first model, the frontal sedimentary series keeps parallel strata under the 

thrust and adjacent to it, (b) the second model type displays variable thickness of 

strata, thicker in the drag fold axis area and thinner in the limb, close and along the 

thrust fault. (c) Close-up on the surface structure of the second model (b), which is 

displayed by several examples along the northern Tian Shan front. Numbers refer to 

locations where such deformation pattern has been observed (see Figure 4-1a and 4-2 

for location).  
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4.1.2 Toutun He West 

 

Figure 4-5. (a) Geological map (b) DEM of the Toutun He and Urumqi He area.  

This section is located about 5 km west of the Toutun He valley (Figure 4-1, 

Figure 4-5, N°6). In its middle segment, this section displays a sharp and straighten up 

contact in-between the Paleozoic rock units, to the south, and the Mesozoic sediments, 

to the north (Figure 4-6a). To its southernmost part, Paleozoic rocks are well layered 

Carboniferous turbidites with no or only limited deformation observed (Figure 4-6a 

and b). When approaching the contact, these sediments become deformed with 

cleavage and associated shear planes developed inside. These planes form 

sigmoid-shapes indicating top to the north shearing within this contact zone (Figure 

4-6c and e).   
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Figure 4-6. Structural analysis along the “west” Toutun He section. (a) Panoramic 

view of the section, (b) undeformed Carboniferous turbidites of the basement units, (c) 

and (d)different scaled pictures and drawings of the ductilely deformed basement 

rocks, along the thrust zone, (f) overturned Jurassic sandstone evidenced by 

crossbeding geometry, (g) straighten up sheared coal bed. 
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Figure 4-6 (Continued) 

Due to a topographic depression formed in the landscape, the Paleozoic/Mesozoic 

contact is only poorly exposed along the section but scarce outcrops display highly 

brecciated rocks. Northeast, close to the contact, Jurassic sandstone and conglomerate 

layers display straighten up stratification planes, along ~300m long, and clear 

overturning as evidenced by cross-bedding attitude within thick sandstone layers 

(Figure 4-6f). Northward, beyond limits of the section presented here, the bedding 

progressively flattened within this series, displaying “fan like” geometry. Here again, 

the “west” Toutoun He section highlight a clear north- to northeastward thrusting of 

Paleozoic basement units on Mesozoic sedimentary series (cf. Figure 4-1. and Figure 

4-5). Hence, the thrust contact can be well characterized here: it is in fact composed 

of a ~50m thick deformation band with development of rather “cold” ductile 

structures within the upper basement unit to more brittle type ones toward lower unit.  

Moreover, several coal beds are interstratified in between coarse grain 

white/yellow-colored Jurassic sandstones for a ~5m cumulated thickness (Figure 

4-6a). Coal display strong breccias and cleavage planes developed (Figure 4-6e) while 

on both sides, Jurassic clastic layers are not deformed at all (Figure 4-6a and f). This 
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deformation analysis is well compatible with the model of similar/drag fold presented 

on Figure 4-6c; the contrasted mechanical behavior of sedimentary layers allows the 

development of internal décollements necessary to form similar folds, in front of the 

thrust, within the Jurassic series. 

4.1.3 Toutun He 

 

Figure 4-7. Geological cross section of the Toutun He based on the geological 

observations. Bar symbols on the top of the section indicate the dip direction. See 

photos in Figure 4-8. Continued.8 for 2 to 5 and Figure 4-1 for the section location. 

The Toutun He flows about 20 km west of Urumqi and trends North-South 

parallel to the Urumqi He (N° 2 to 5, Figure 4-1 and Figure 4-5). Lower- to 

Upper-Jurassic series are widely exposed all along this section. At first order, layers 

display as sub-horizontal ones to gentle upright open folds, which explains how the 

sedimentary layers of the same age could be observed and followed along tens of 

kilometers in this particular sector of the north piedmont (Figure 4-7 and Figure 4-5). 

This section also exposes several contacts in-between Mesozoic sediments and 

Paleozoic basement units. Contact studied to the southernmost end of the section 

looks sharp and upright even if not strictly exposed there (Figure 4-8a).  
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Figure 4-8. Pictures of several outcrops all along the Toutoun He and the 

corresponding interpretation drawings. (a) Carboniferous basement thrusts 

northwards onto the Jurassic deposits, (b) deformed Jurassic series showing steep dip 

angle to overturned stratification planes, (c) horizontal Jurassic deposits resting on 

the basement rocks and showing neither internal deformation nor basal décollement, 

(d) backthrust within the mountain internal parts at the southern margin of a 

basement “pop-up”, (e) tectonic breccias along the northern boundary of the 

basement “pop-up”. See Erreur ! Source du renvoi introuvable. locations in Figure 

4-7.  
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Figure 4-8. Continued. 

However, Jurassic sediments show local vertical to overturned strata just north of 

the contact zone  (Figure 4-8. Continued.8a and b) while bedding progressively 

flatten northward to become horizontal few kilometers north of the contact (Figure 

4-8. Continued.8c and see n°3 on Fig.4-1a). The deformed zone which extends 1 to 2 

kilometers north of the Paleozoic rocks and, in particular, the straightening up and 

overturning of Jurassic sedimentary layers close to the contact argue for a thrust 

movement developed along this southernmost extension boundary of Jurassic 
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sediments (see Figure 4-1). Forming local summits, Paleozoic units also outcrop at 

about one third south of the Toutoun He section on about 5 km long (Figure 4-5 and 

Figure 4-7). Here again, the Jurassic strata becomes steeper on both sides of the 

basement. Along the northern contact, tectonic breccias in a ~30m thick deformation 

band were observed in the basement turbidites (Figure 4-8. Continued.8d) and this 

kilometer scale structure as been analysed as a “pop-up” of basement units limited by 

two steep WNW striking thrust faults (Figure 4-5). As said before, the rest of the 

section highlights only gentle deformation within sedimentary series. Hundreds of 

meters north of the Paleozoic pop-up, Jurassic strata rest horizontally (Figure 4-8e). 

Summarizing, the structure of the north half of the section is characterized by two 

principal anticlines (Figure Erreur ! Source du renvoi introuvable.4-7): the 

southern one is a gentle and upright anticline with both limbs dipping about 25-30° to 

the north and south, respectively. The northern one is an asymmetrical one with about 

40° dip angle of stratification along the southern limb and 60° in the northern limb 

(Figure Erreur ! Source du renvoi introuvable.4-7). We proposed a northward 

thrust under the anticline developed in the Paleozoic basement (Figure 4-7). 

4.1.4 Jingou He 

Thanks to deep incision two major and well studied anticlines, the Anjihai (north) 

and Huoerguosi (south) anticlines are exposed along the Anjihai He and Jingou He 

(Charreau et al., 2008; Figure 4-1 and Figure 4-9). However, Quaternary alluvial 

terraces and loess deposits cover a large area of this studied segment of the north Tian 

Shan piedmont (see white color on geological map, Figure 4-9a). When accessible, 

stratification planes orientations have been measured along those valley. In the contact 

area in between the Paleozoic units and the basin series, outcrops are very scarce 

within the river bed of the Jingou He and the range “front” can not be directly studied 

there.  
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Figure 4-9. (a) Geological map (b) DEM of the Jingou He, Anjihai He and Kuitun He 

area. 
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Figure 4-10. Structure of the Jurassic and Triassic sedimentary strata of the basin 

along the main contact with the Paleozoic units along a N-S oriented small valley, 

west of the Jingou He: (a) Geological cross section and (b) field structural 

observations. 

However, ~10 km west to the main valley, a second order river valley allows 

analyzing this contact area (see N° 7 in Figure 4-1 and Figure 4-9). Along the right 

bank of this river, Triassic to Jurassic strata display a continuous evolution of bedding 

orientation from steep, north oriented dip angle, to the north, through vertical and to 
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overturned strata, in the southernmost part of the section (Figure 4-10). There, 

Jurassic series is made of a rhythmic alternation of coarse grain thick sandstone layers 

with shales (see differential erosion of layers on the picture of Figure 4-10b). To the 

south, Paleozoic meta-sedimentary units are in direct contact with an overturned thick 

layer of Triassic purple shales and marls. In addition, second order chevron folds can 

be observed within the sedimentary series as the one shown on the top hill of 

Figure 4-10b. These folds well underline a northward dragging of the sedimentary 

layers compatible with a northward thrust movement. Even not exposed, though, the 

front contact can be identified here as a northward thrust of the basement Paleozoic 

units onto Mesozoic sedimentary series; again, strata display a typical fan like type 

deformation in front of the thrust that can be developed in favor of the contrast in 

competency of the layers forming the series (cf. Figure 4-4 and discussion before). 

4.1.5 Anjihai He 

The Anjihai He flows north-northeast in the eastern part of the studied area 

(Figure 4-1). The contact area in-between basement rock units and foreland 

sedimentary basin is marked by a strong slope break of the topography (Figure 4-9, 

N°8). Close to the contact, the western side of the valley highlight a dragging type 

structure within the Jurassic sediments: bedding dip angles increase rapidly from 

basin toward the northern boundary of the basement, on about 1.5 km distance along 

the section (Figure 4-9). The sharp and straight contact in-between the basement rocks 

and the Mesozoic sediments combined with the internal deformation of the strata most 

probably result from a northward thrusting of the Paleozoic units (Figure 4-11). On 

the other hand, the east bank section display a similar dragging structure of the 

Jurassic strata showing a continuous increase of the bedding dip angle, from north to 

south (Figure 4-11, bottom). It must be pointed out here that i) both pictures/drawings 

have been strictly made perpendicular with the bedding ~east striking direction and ii) 

both valley sides display the same segment of the Jurassic sedimentary section which 

mean that one section, as illustrated on Figure 4-11, is expected to be the strict lateral 
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prolongation of the other one. However, both sections do not exactly display the same 

structure as, along strike of the sedimentary layers, bedding systematically dips more 

along the western bank than along the eastern one (compare the two pictures and 

drawings of Figure 4-11). To be more precise, structures are in fact comparable on 

both sides of the valley but do not present the same amplitude in their development. 

Finally, the thrust occurring in-between basement and sedimentary rocks as identified 

along the western bank (see above) do neither extend further east; the 

basement/sedimentary rocks contact is mapped a few hundred meters further south 

along the eastern bank section and is not visible on the corresponding picture of 

Figure 4-11. 

The Anjihai He section displays a dragging type structure, as presented on 

Figure 4-4b and c, within the Jurassic sedimentary series and this can be regarded as 

resulting from a forward thrust developed in front of the uprising basement units of 

the range. The particularity of the Anjihai He section is that the structure is not 

cylindrical at local scale. Thrust fault map trace as well as the bedding attitude can not 

be extended from one side to the other of this ~north oriented valley. As far as the 

valley is only ~500 m wide, it seems difficult to envisage a continuous transition from 

one side to the other; better, a strike slip fault must have developed perpendicularly 

with the thrust contact and sub-parallel with the local principal shortening direction, 

acting as a small transform zone during deformation in front of the range 

(Figure 4-12). Nowadays, the trace of this right lateral transform fault does 

correspond to the one of the river bed and/or associated terraces. Such structural local 

observations can highlight modes of deformation within the specific segments of the 

piedmont where frontal forward thrust display curved shape at map scale.  
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Figure 4-11. Panoramic views of the Anjihai He banks. Along the western bank (top 

picture) the Jurassic strata displays as a “fan like” type structure; on about 1.5 km 

long, gently northward dipping bedding become vertical and even overturned close to 

the contact with basement units. The eastern bank of Anjihai He (bottom picture) 

displays a similar and compatible structure within the Jurassic sediments. Pictures 

have been made perpendicularly to the strike of the bedding orientation and both 

correspond to the same section segment within the stratigraphic column; note that, 

however, the two banks do not display strictly the same structural pattern.   

 

Figure 4-12. Block-diagram illustrating the structural pattern within the Anjihai He 

valley, in the contact area in-between the basement units, to the south, and the 

Jurassic sediment, to the north. A strike-slip transform fault developed in-between the 

western and eastern bank, perpendicular with the structures (i.e. main thrust and 

associated drag fold structure, in front of this one). See Erreur ! Source du renvoi 

introuvable. for the corresponding photographs and interpretation drawings.  
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4.1.6 Kuitun He  

In the area comprised in-between the Kuitun and the Anjihai rivers, the contact 

between the Paleozoic basement units and the basin sediments displays a great 

northward convex arc shape in map view (Figure 4-9). Going from south-southeast to 

north-northwest along this front, Paleozoic rock units are observed in contact with 

sediments of younger and younger age, from lower Jurassic to upper Neogene series, 

as clearly shown on the geological map (Figure 4-9). Field structural measurements 

highlight overturning of the sedimentary layers in several locations, all along and just 

at the contact with Paleozoic rocks (Figure 4-9). Moreover, note that, along this 

peculiar arc shape in front of the basement units, the bedding measurements strike 

oblique to the map direction of the contact (Figure 4-9).  

The first structural observations detailed here for this sector are located at mid 

distance in-between the Kuitun and Anjihai rivers (13 km east of Kuitun He, N°9 in 

Figure 4-1 and Figure 4-9). Strictly speaking, the contact between the Paleozoic 

basement rocks and the sediments is not outcropping there but the contact area 

displays as a rather thin corridor with a steep attitude (Figure 4-13). The Tertiary 

green shale of the Taxihe formation is overturned along the contact itself (see 

southward dipping layers on Figure 4-13) and the red shale and silt clastic sediments 

of the Dushanzi formation steeply dips to the north (see measurements displayed on 

Figure 4-9 for this particular location) which, once again, is compatible with a 

northward thrusting of the basement on the basin sedimentary series. As said before, it 

must be pointed out that bedding planes strike N90° while the thrust contact at the 

base of the basement units strikes ~southeast.   
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Figure 4-13. Northward thrusting of the Paleozoic basement on Cenozoic sediments 

observed ~13km east of the Kuitun river, along the northern front of the Tian Shan.  

In the same area, geological observations have also been carried out along the 

Kuitun He valley. In the basin, the Northern part of this section exposes the Dushanzi 

anticline which has been already extensively studied (Charreau et al., 2005; He et al., 

2005) and which belongs to the third and more external belt of the northern Tian Shan 

piedmont (N°10 in (Figure 4-1 and Figure 4-9). At front of the mountain 

green–brown-colored upper Neogene taxi He fromation mudstone layers are 

straightened up and overturned along the contact with basement Carboniferous 

turbidites (Figure 4-14). Few hundreds meters north of the contact, toward the basin, 

Tertiary series displays normal strata (Figure 4-14) and bedding becomes even 

horizontal about 1 to 2 km apart from this studied location. Note that thick dark and 

coarse conglomerates of the Xiyu formation rest horizontally on top of the straight 

Neogene series, with a clear angular unconformity surface at the base (see Figure 4-14 

and geological map on Figure 4-9). This geometrical configuration shows that 

Cenozoic thrusting and associated deformation in front of the range must have 

occurred before the local age for onset of the Xiyu formation deposit. 

 

Figure 4-14. Carboniferous basement turibidites thrusting onto Neogene sediments 

along the Kuitun river. Close to the contact, basin sedimentary strata are overturned 

and progressively flatten northward. 



89 
 

4.2 Unconformity contact 

As detailed in the first part of this chapter, forward thrusting of Paleozoic 

basement has been observed at numerous locations along the northern Piedmont of the 

Tian Shan range. This systematic northward thrusting is associated with the 

development of large-scale drag folds which results in “fan like” type typical 

structures within the underlying sedimentary series of the Jungar basin (see Figure 4-4 

and the relative discussion in the text). Most of such northward thrusting has been 

observed at the boundary contact in-between Paleozoic rocks and sediments of 

Jurassic age but certain front geometrical configurations, like the “arc” shape in the 

Kuitun/Anjihai He area, display younger sediments of the basin in direct thrust 

contact with the basement. As shown before, clastic sedimentary series are composed 

of alternations of rather coarse grained and thick sandstone and conglomerate layers 

with shale and/or marls sediments. Such layering configuration and competency 

contrast certainly allows the initiation and amplification of the “drag folds” structures 

in the sedimentary series, below the thrust contact. Finally, all of the sections 

presented before show rather steep dipping of the thrusts (45° to 60°), either as 

directly displayed in the field or as can be deduced from section construction and 

deformation analysis within sediments. From our field work, northward thrusting has 

been locally evidenced all along the northern front zone of the range, i.e. from west to 

east, at locations N°: 10, 9, 8, 7, 1, 6, 5 and 2. 

Yet, along the northern front of Tian Shan, the sedimentary series of the basin are 

not always thrusted by the range basement as described above. In some valleys, the 

Jurassic series can be continuously followed from the basin to the mountain interior. 

The Jurassic sediments are unconformably deposited and preserved on top of the 

range basement, in the contact zone. During our field work, such configuration has 

been analyzed at several locations (cf. Figure 4-1) and examples of unconformity type 

contact between basement units and sedimentary series of the Jungar basin will be 

illustrated, along different studied sections or locations, as follows.  
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4.2.1 Houxia east 

The Houxia valley is an east striking small valley located close to the Urumqi He 

valley, in the southern part of the map of the studied area (Figure 4-1 and Figure 4-5, 

N°15). There, a thick series of Jurassic detrital sediments is preserved at rather high 

altitude within internal parts of the range (Figure 4-5). The northern boundary contact 

of this Jurassic small “basin” is pretty well exposed along the western side of the main 

Urumqi He valley (Figure 4-15). While Carboniferous metamorphic rocks display 

steep ancient fabric, the Jurassic sedimentary layers are only slightly tilted to the 

south (Figure 4-15). The interpreted picture of Figure 4-16 shows a clear 

unconformable stratigraphic contact in-between the Jurassic series and the underlying 

Carboniferous basement units. Here, the unconformity contact presents an orientation 

roughly parallel to the one of the bedding within the Jurassic sedimentary pile 

(Figure 4-15). 

 

Figure 4-15. Jurassic sediments unconformably deposited on top of the 

Carboniferous basement rocks at the northern margin of the Houxia basin preserved 

at rather high altitude within the range interiors. 

4.2.2 Changji He  

This section is located ~20 km west to the Toutun He (Figure 4-1, N°16). In the 

geological map, along the northern contact zone between the Jurassic sediments and 

the Paleozoic basement, Triassic sediment specially outcrop in this area (Figure 4-5, 

N°16). In this piedmont area, the Jurassic sequences dip northwards stably with about 
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20-30° (Figure 4-5). In the field observation to the south, typical purple Triassic 

mudstone layers outcrop along a small valley (Figure 1-13). The dip-angle is about 

20° towards northeast, which is different general east-west trending direction in the 

basin sediments. Its gentle dip-angle and the direction indicate the Triassic here seems 

weakly deformed during Cenozoic (Figure 4-16). 

 

Figure 4-16. Purple Triassic sediments with northeastward gentle dip angle in the 

contact area between the Paleozoic basement and the Mesozoic basin sediments. The 

location of photo 16 see Figure 4-17 and Figure 4-5. 

In the section scale (Figure 4-17), Paleozoic basement locate to south of the 

Triassic sequences. Our field work and the geological map show not obvious structure 

deformation between the Mesozoic sediments and the Paleozoic basement. North 

basinward, the dipping-angles of the Mesozoic series increase slowly northwards and 

form a kink fold near the Cretaceous series. If the thrust front in the northern Tiansahn 

prolong parallels along the mountain strike from Jingou He and Taxi He to this 

section (Figure 4-1), the “front” along this section is characterized by an 

unconformity without obvious structure deformation (Figure 4-17). This section 

suggests that the contact zone between the basement and the basin are not 

continuously separated by an obvious thrust fault.  



92 
 

 

Figure 4-17. Geological cross-section along the valley of the Chanji He. Location see 

Figure 4-1 and Figure 4-5. 

4.2.3 Hutubi He 

The detailed structural observations along Hutubi He valley has been described in 

Chapter 3. This river flows down from the southern mountain and through the Hutubi 

city to the north (Figure 4-1 and Figure 4-2). Along this river, the northern sediments 

form an anticline, where the core consists of Middle-Lower Jurassic. Its southern limb 

dips 20-30 ° southwards, while the dipping-angle of the northern limb is gentle close 

the core and increase to ~60° within the Cenozoic series. This asymmetric geometry 

probably indicates the northern-propagation thrust fault in of the basement (Burchfiel 

et al., 1999). To south of this anticline, a paired syncline formed with Cretaceous 

series in the core. The southern limb of this syncline is characterized by stable 

northward dipping-angle about 20° in ~ 10 km to the south. In the southern end of this 

section (Figure 4-2), the Jurassic sediments sub-horizontal deposit on the 

Carboniferous turbitites without deformation, while the Paleozoic basement are with 

vertical fabrics (Figure 4-18, Figure 4-2, N°17). 

These location correspond the northern front of Tian Shan, such as Jingou He and 

Taxi He (Figure 4-1 and Figure 4-2). The sub-horizontal Jurassic deposed on the 

mountain basement and the very gentle dipping-angle in Jurassic sediments in the 

contact area suggest that no significant tectonic contact between the basin and the 

mountain basement at “front”. 
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Figure 4-18. Jurassic sediments unconformably overlie on the carboniferous 

basement. See Figure 4-1, N°17 for the location. 

4.2.4 Tugulu He 

About 10 km west to Hutubi He, a minor valley incise the contact zone between the 

Lower Jurassic and the Paleozoic basement (Figure 4-1 and Figure 4-2 N°17). 

 

Figure 4-19. The Jurassic series onlaps the Carboniferous basement without visible 

Cenozoic deformation. See Figure 4-1, N°18 for the location. 
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This outcrop present well deformed Paleozoic basement with vertical fabrics. 

However, the Lower Jurassic sandstone deposit sub-horizontally to north side of the 

Paleozoic basement. Moreover, the Jurassic could be observed overlying on the 

basement (Figure 4-19). This structure presents an “onlap” sedimentary structure and 

it probably indicate a Mesozoic Paleo-relief (see Chapter 3). This structure is similar 

with above mentioned Hutubi He section, which also indicates not obvious 

deformation along the contact zone between the Paleozoic basement and the Jurassic 

sediments. 

4.2.5 Dabaiyanggou 

About 20 km westward to the Taxi He section, Lower Jurassic sediments are 

located adjacent to the Paleozoic basement. A north-south trending fault offsets the 

contact line between the Jurassic sediments and the Paleozoic basement (Figure 4-2). 

To the east, it is characterized by a thrust fault (e.g. Taxi He, Figure 4-2 N°1).  

 
Figure 4-20. Jurassic sediments sub-horizontally deposit on the steep basement. On 
the top of the southern basement, the Jurassic strata are horizontal extent southward 
to the mountain interior.  

To the west, along the Dabaiyanggou valley, thick white sandstone Jurassic layers 

show about 5° dipping northwards (Figure 4-20; Figure 4-2, N°19). In the right and 

southern part of this photo, the basement is composed by thin turbitites layers dipping 

~60° northwards. Moreover, the sub-horizontal Jurassic sediments have been 

observed on the top of the basement. Therefore, the ‘onlap’ structure is showed here 

as well as the Tugulu He section (Figure 4-19). The contact zone between the 

basement and the sediments is indicated by the low topography minor valley (Figure 
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4-20). This structure of unconformity in contact area indicates no obvious 

deformation between the basement and the basin sediments. 

4.2.6 Wusu 

Along the northern piedmont of Tian Shan, the Tuositai anticline is the main structure 

feature, which shows high topography as well (Figure 4-1 and Figure 4-21).  

 

Figure 4-21. Geological map (b) DEM of the Tuositai anticline in the Wusu area. 

 

The Tuositai anticline has a northern limb dipping 60° in Cenozoic series and a 
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southern limb characterized by ~ 10 km syncline (Figure 4-21). The syncline is most 

coved by Quaternary terraces in the field, excepting a narrow fold and two fault 

developed within it. The detailed structure of this area is presented by seismic and 

gravity measurements in Chapter 5. In the southern end of the basin sediments, 

Mesozoic series of Jurassic and Triassic outcrop adjacent to the Paleozoic basement. 

Field observations are carried out along the northern margin of basement and two 

outcrops are presented as follows (Wusu east and Wusu west). 

Wusu east section is located at the southern end of the Tuositai anticline (Figure 

4-21, N°20). As showed in the photo, the Jurassic sediments containing with coal 

layer dip northward with ~30 ° (Figure 4-22). Paleozoic basement is observed at the 

left hand in the photo (Figure 4-22). This characteristic of monocline in the sediments 

indicate that no significant movement between the Mesozoic Jurassic and the 

Paleozoic basement. 

 

 
Figure 4-22. Jurassic sediments deposit on the basement with gentle northward dip 

angle at Wusu East. 

About 15 km west to the Wusu east section, similar structure is observed in the 

Wusu west section. As showed in the photo (Figure 4-1 and Figure 4-21, N°21), 

Jurassic sediments deposit on the carboniferous basement without obvious 

deformation. The basement is dark in color and with vertical fabrics, while the 

Jurassic consist of white and yellow sandstone (Figure 4-23). The dip angle in the 

sediments is about 20° northwards (Figure 4-23). Further north, red and green 
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Cretaceous sediments are sub-horizontal in the back view of the photo. It suggests the 

weak deformation along the northern margin of the Paleozoic basement within the 

basin area.  

 

Figure 4-23. Jurassic series overlie on the Paleozoic basement with a monocline 

towards north at the southern end of Wusu area.  

4.3 Fold contact 

Previous studies show the thrust and the unconformity contacts between the 

mountain basement and the Mesozoic sediments. However, the two kinds of structures 

along the northern piedmont of Tian Shan indicates different deformation 

characteristics. For the first one, the basement thrust on the basin sediments and the 

sediment layers always show a local drag fold. In contrast, the second, i.e. 

unconformity, suggests very weak deformation between the mountain basement and 

the basin. Therefore, a kind of transition structure is necessary for the two structure 

types. In fact, folds in the contact zone have been observed in several sections along 

the northern front of Tian Shan. These folds are characterized by faults developed in 

the underlain basement. However, they does not cut the sediments and not thrust on 

the basin sediments yet. Therefore, the amplitude of deformation in the fold structure 

is between the faults and the unconformity contact. This kind of fold contact probably 

plays the role of the transition zone of the previous structures. From our field work, 
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two examples of fold contact are presented here, i.e. the Manasi He (C-C’) and the 

Qingshui He (D-D’). 

4.3.1 Manasi He 

The study of the Manasi He section focused on the southern part of the contact 

zone between the Paleozoic basement and the basin sediments (Figure 4-1, C-C’).  

 
Figure 4-24. Geological cross-section along Manasi He. 

The northern most of this section is characterized by a nomocline within the 

Cenozoic and Mesozoic series, dipping northward 40-60°. To the southern, the dip 

angels in Lower Jurassic decrease and then become southward with ~15° (Figure 

4-24). This turning in dip-angles build an anticline with lower Jurassic in the core 

(Figure 4-24 and Figure 4-25a). The dipping-angel within the southern limb of this 

anticline turns into vertical and overturned in ~3 km southwards (Figure 4-25b and c). 

Further south, the purple Triassic mudstones show overturned as Jurassic series 

(Figure 4-25 c). Moreover, the thrust of basement rock on the Triassic has not been 

observed on the surface. Instead, Triassic becomes normal dip northwards and 

deposed directly on the Paleozoic basement with unconformity (Figure 4-24). At the 

most end of this section, the Triassic sediments dip northwards with ~ 50°. This rapid 

change from northern overturned to southern normal Triassic is less than 1 km 

distance, suggesting a fold and probably a fault here.  
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Figure 4-25 (a) A gentle anticline in Jurassic. (b) Rapid change of the dip angles in 

Jurassic. (c) Sub-vertical contact between Jurassic and Triassic. 
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Nevertheless, the net faulting lag should be small, as the Triassic strata deposit on 

the hangingall yet. The geometry here shows a fold with a limited fault along the 

contact zone between the basement and the sediments. In contrast, in the fault contact 

case, the basement thrust on the basin sediments and the overlying sediments of the 

hangwall have been eroded, suggesting more net slips. This kind of the fold contact is 

less deformed than thrust fault ones but more than unconformity ones as presented 

above. Therefore, it could be an important transition structure along the northern 

piedmont of Tian Shan. 

4.3.2 Qingshui He 

The Qingshui He section is located ~ 13 km west to the Manasi He section 

(Figure 4-1, D-D’).  

 

Figure 4-26. Geological cross-section along Qingshui He. The southernmost basin 

sediments show a monocline but without any visible relative movement with respect to 

the Paleozoic basement. 

The geometry of the Qingshui He section is similar with the Manasi one. The 

northern part shows a monocline, including Eocene to Jurassic sediments. The dip 

angles change from steep 50-70° in the north to 20-30° in the south, building a kink 

fold. The southern limb of the kink fold dips about 25° close to the core but increase 
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southwardly closed to the basement (Figure 4-26). The basal Jurassic competent 

conglomerates layers dip northward ~ 70° at the southern this section (Figure 4-26). 

This steep Meszoic form the southern limb of a syncline with deformation showing a 

kink fold in the contact zone (Figure 4-26). 

 

Figure 4-27. Jurassic conglomerates show steep northward dip-angle along the 

Qingshui He section. 

4.4 Backthrust contact 

Backthrust are the faults with contrast direction comparing with most forward 

thrust in the foreland thrust belt. They are common in the strongly deformed 

fold-and-thrust belts (Coward et al., 1988; Pfiffner et al., 2000; Kapp et al., 2005; 

Marquer et al., 2006). However, this type of tectonic has been only observed in the 

interior of the Tian Shan, but has not been discovered in the northern piedmont of 

Tian Shan during our field trips. Two locations of backthrust contact between the 

basement and the sediments are presented as follows: Houxia West and Hutubi He 

South, locations N°22 and 23 (Figure 4-1). 
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4.4.1 Houxia West 

In the interior of the Mountain, Jurassic sediments overlie on the mountain 

basement with ~2000-2300m high altitude in Houxia area (Figure 4-5). The Jurassic 

series are good marks to record the deformation process during Mesozoic and 

Cenozoic. The Houxia West section is located 3 km west to the Urumuqi He along a 

minor vallay flowing from northern to southern (Figure 4-1 and Figure 4-5, N°22). 

 

Figure 4-28. The Carboniferous basement thrust southward on the Jurassic sediments. 

Sedimentary breccias, with clasts of Carboniferous basement rocks, have been locally 

found at the bottom of the Jurassic series.  

 The Jurassic sediments consist of sandstones and interbed mudstones, with dip 

angle ~ 35° in the southern part of this section (Figure 4-28). Jurassic layers become 

steeper and overtured closed to the basement. Moreover, some sedimentary briccas, 

consisting of basement coarse anglar clasts, have been observed close to the basement. 

The sedimentary breccias in the Jurassic series indicate a range marginal facies, 

suggesting here is the ancient Mesozoic piedmont of the Mountain (see Chapter 3). 

Briefly state, the basement thrust southward on the basin of the interior of Tian Shan 
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by a thrust fault. The feature of the backthrust is similar with forward thrust contact in 

the northern piedmont of Tian Shan, where the sediments show a drag fold and rapid 

change of dip angles in ~ 500m close to the fault (Figure 4-28).  

4.4.2 Hutubi He South 

In the southern part of the Hutubi He, Jurassic sediments widespread overlie the 

Paleozoic basement (Figure 4-2). Within the Jurassic cover, basement outcrops along 

the southern of the Hutubi He. A southward thrust is drawn between the Jurassic cover 

in the south and the middle buck of basement in the north (Figure 1 and Figure 4-5, 

N°23).  

 

Figure 4-29. To the south of the Hutubi He valley, the Carboniferous basement thrusts 

on the Jurassic sediments. However, the fault disappears to the west and the Jurassic 

sediments directly deposit on the basement with weak “kink” type folding. 
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In field, the basement with vertical fabrics show vertical fabrics and the Jurassic 

sediments are overturned dipping northward adjacent to the contact (Figure 4-29). 

About 200m to south, the sediment layers turn to normal and dip northward ~ 30°. It 

forms a drag fold closed to the backthrust as previous forward thrust or backthrust. 

However in the back view, the fault disappears to the west and the Jurassic sediments 

deposit on the basement with weak “kink” type folding (Figure 4-29). This rapid 

lateral change of faults to less deformed fold suggests limited net slip along the fault. 

This lateral variation of deformation is very popular in the northern piedmont of Tian 

Shan in different scales. Moreover, the kink fold to the west of this location also 

indicates that the fold-contact in-between the basement and the sediments is located in 

the interior of mountain as well. 

4.5 Discussion 

The structural observations along the northern piedmont of Tian Shan are 

presented above with four distinguishable contact types, thrust, unconformity, folding 

and backthrust. The backthrust contact has been only observed in the interior of the 

Tian Shan mountain and rare seen in the southern of the Junggar foreland basin. 

However, several important structure problems are raised. Firstly, did décollement 

develop as backthrust in the zone of unconformity contact? Secondly, what is the 

contribution of the Mesozoic relief to the present Tian Shan topograpy? Thirdly, what 

is the mechanism of the deformation along the front of the Tian Shan.  

4.5.1 Backthrust in the northern piedmont of Tian Shan  

The backthrusts play important role in the deformation processes in the contract 

faults and thrust belts. They can absorb an important amount of shortening during the 

deformation, which is important to study the shortening amount (Coward et al., 1988; 

Pfiffner et al., 2000; Kapp et al., 2005; Marquer et al., 2006). Backthrust faults were 

proposed in the northern piedmont of Tian Shan to explain the importance of 
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shortening in the foreland Junggar basin (He et al., 2005). The Jurassic coal and 

Tertiary evaporates, such as gypsum, are often considered as layers of backthrust 

décollement (Deng et al., 1999; Chen et al., 2007; Dong et al., 2007; Lu et al., 2007). 

In the northern Tian Shan front, the basin sediments mainly consist of Mesozoic 

sediments, therefore, the Jurassic coal beds will be discussed below. 

The well deformed coal bed is presented in the Toutun He West section (N° 6 in 

Figure 4-1). The coal bed is well deformed with cleavage and sandwiched by the 

overturned sandstone adjacent to the northward thrust (Figure 4-6). However, the 

sandstones are not deformed at all, suggesting the coal layer is rather easy to deform 

with deformation. Therefore, the backthrust, if existed, should be active at coal layers 

at first.  

Carefully observations are taken out in the northern piedmont of Tian Shan. In the 

Tugulu He area (No. 24 in Figure 4-1), the Jurassic sandstone dips gentle northward 

with ~15° and this stratigraphic slope extends several kilometers northwards and 

southwards (Figure 4-30).  

 

Figure 4-30. Gentle northward dipping Jurassic sandstone extends northwards and 

southwards several kilometers.  

Moreover, the observed coal bed is interbedded with the Jurassic sandstone, 

where the vertical fractures indicate there is not horizontal shearing movement 

(Figure 4-31, No. 25 in Figure 4-1). Compared with the deformed coal bed adjacent to 



106 
 

a fault in Toutun He West section, this undeformed coal bed indicates there is no 

décollement movement in the contact zone in the northern piedmont of Tian Shan. In 

other words, the deformation just focuses on the thrusting area and the unconformity 

contact zone is without significant deformation. 

 

Figure 4-31. Coal bed inbedded in Jurassic sandstone. The vertical fractures indicate 

no horizontal movement. 

4.5.2 The effect of Mesozoic paleo-relief on the Cenozoic 

deformation 

The geological and tectonic evidences illustrated in Chapter 3 show that the 

present Tian Shan may be importantly inherited from the Mesozoic relief. It is thus 

questionable for the importance of the Cenozoic deformation of the northern Tian 

Shan due to the India-Asia collision. Two thrust models are proposed in Figure 4-32. 

The first one concerns the horizontal basin bottom and another concerns the inclined 

basin basement with onalp sedimentary structure. The former one produces an 

important net slip and big shortening when the basement thrusts on the sedimentary 

cover (Figure 4-32a). In contrast, the latter produces less relative displacement 

(Figure 4-32b). For example, the Houxia West section shows that this section is 

located at the ancient Mesozoic Tinashan piedmont and activated during Cenozoic 

(Figure 4-1, N°22, Figure 4-28). A part of the present topography should be the 

influence of the Mesozoic mountains as shown in the second model (Figure 4-32). 
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This Mesozoic relief effect should be taken into account for the evaluation of the 

amplitude of the Cenozoic deformation of the modern Tian Shan due to the India-Asia 

collision. 

 

Figure 4-32. (a) The thrusting of the basement on the sedimentary cover produces an 

important net slip in the horizontal base of basin. (b) The thrusting of the basement on 

the sedimentary cover produces less net slip in an onlapping contact in a high 

Paleo-relief area. See the example of N° 22 in Figure 4-1. 

4.2.3 Mechanism of the deformation along the northern 

Tian Shan 

Three main structural types of the contact in the northern piedmont of Tian Shan 

have been identified, thrust, unconformity and fold. These structures are marked by 

the originally horizontal Mesozoic and Cenozoic sediments. It is difficult to 

distinguish the Paleozoic deformation style of the basement during subduction and 

collision processes. However, the field observations in the basement reveal some 

characteristics during their Cenozoic deformation. 

Along the Urumuqi He, the Carboniferous basement consists of turbidites. They 

are well deformed by many parallel joints and faults, where quartz veins show reverse 

faulting steps (Figure 4-1, N°26, Figure 4-33a and a’). Moreover, in the south of the 

Taixi He valley, the basement shows some high-angle reversed faults. Quartz veins 
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are grinded into powders during the fault movement (Figure 4-1, N°27, Figure 4-33). 

These powders deposit on the surface by about 4 cm in thickness, suggesting that the 

fault is still active now. These structural characteristics show that the basement is 

deformed as a kind of rigid blocks with faults and joints. This deformation of block 

can be also observed in larger scales. 

 
Figure 4-33. (a) Joints and faults in Carboniferous turbidites show the deformed 
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basement as blocks. (a’) Faulting steps in quartz veins on the surface of faults. (c) 

Quartz veins were grinded into powders along the faults. 

Four section sketches are constructed based on field observations in a ~100 

km-wide zone along the northern front of Tian Shan from Manasi He to Hutubi He 

(Figure 4-34).  

These four sections are spatially controlled by three reverse faults from south to 

north, F1, F2 and F3, respectively. The F1 fault in the mountain interior is presented 

in the Chinese geological maps (XJGB, 1993). Others faults in the basin are observed 

in field or inferred from the geometry of their overlay anticlines. In the western part, 

the southern fault (F1) is located in the basement that can be easily identified by 

published geological maps. In the eastern section (Sections c and d in Figure 4-30), F1 

is marked on the contact between the basement and Jurassic sediments. Basinwards, 

the fault F2 is limited in the basement and did not cut the sedimentary cover (Sections 

a and b in Figure 4-34).  

Although this fault can be well observed on the surface in the Taxi He section 

(Section c in Figure 4-30), it is disappeared in Section d with very gentle dipping 

northwards without deformation. The fault F3 in basement is inferred from the 

anticline of the sediments. This fault is better developed in the eastern two sections c 

and d (Figure 4-34). By the geometry of the sedimentary cover, it seems clear that the 

sedimentary structures of the basin layers are controlled by these three faults in the 

basement. These faults are sub-parallel with the front of the mountain and separated 

by a sub-equal interval of 15-20 km (Figure 4-34).  

The basement is therefore cut by these faults into 15-20 km-wide blocks 

northwards and these blocks of the basement thrust with each other by faults between 

them. The faults show often a lateral component of net slip, where an obvious thrust 

disappears laterally. 
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Figure 4-34. Sketches diagram show the lateral variation mechanism of deformation. 

(A) Geological map of the northern front zone between the Manasi He and the Hutubi 

He (map position see Figure 4-1). (B) Four sections along the northern front of Tian 

Shan.  
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These above characteristics are observed not only in the tens-kilometer scale, but 

also in kilometer scale and even in outcrops. The faults can turn laterally into a gentle 

fold in a short distance to the later side (Figure 4-35). An example of this fault is 

presented in southern Hutubi backthrust fault (Figure 4-1, Figure 4-26, N° 23). This 

shows that the fault displacement is limited because it is constrained by continuous 

sediments in lateral side. 

 

Figure 4-35. Sketch diagram shows the lateral structural variation. This example can 

be seen in the southern Hutubi (Figure 4-1, N° 23). 

 For the same reason, the lateral structural variation along the northern front of 

Tian Shan indicates that the northward thrusting movement in the frontal contact zone 

should be limited (Figure 4-36). The boundary between the mountain basement and 

the basin sediments does not show a clear thrust belt as often illustrated by a front of 

maturated range-basin (e.g. Pyrenees, Barrier 2002; Muñoz, 1992; Teixell, 1998; 

Vergés, 1999). The fault contact in the front often becomes a fold extending laterally 

or unconformity contact. This structural variation suggests that the deformation and 

the faulting are establishing and will be reinforced due to the future ongoing 

deformation by India-Asia collision. However, the shortening could be absorbed by 

fault-and-thrust belt in the foreland basin as well. The next chapter will focus on the 

basin structure by filed observation, seismic profile, drilled well and gravimetric 

measurement, and then on the estimation of Cenozoic deformation in the northern 

piedmont of Tian Shan.  
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Figure 4-36. The structural geological map of the northern piedmont of Tian Shan. The frontal structures of thrust, fold, unconformity and 

backthrust are marked by red, blue, violet and orange colored symbols, respectively 
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 Chapter 4 has presented the characteristics of highly variable structural styles of the 

contacts between the range basement and Junggar basin cover along the northern Tian Shan, 

indicating that the Cenozoic deformation is rather weak in the contact zone in-between the 

basement and the basin. Moreover, the thrust faults developed in the piedmont turn rapidly 

into kink folds, and then die out laterally. However, important amounts of Cenozoic 

deformation may have been absorbed by folds and thrust belts in the Junggar foreland basin. 

To quantify shortening and to understand how the deformation is distributed in the 

fold-and-thrust belt in the basin, large-scale geological sections have been constructed by 

integrating field observations, gravity measurements, available seismic profiles and drilled 

wells. To illustrate the structure of the whole northern Tian Shan piedmont and show the 

lateral distribution of deformation along the range, four sections have been chosen from east 

to west in this study, i.e. Hutubi He, Qingshui He, Jingou He and Wusu section (Figure 5-1).  

 

Figure 5-1. Location of the four sections chosen to illustrate the deformation in the northern 

piedmont of Tian Shan. S1: Hutubi He section; S2: Qingshui He section; S3: Jingou He 

section; S4: Wusu section.  

5.1 Approach of the construction of regional geolog ical 

sections 

The principal aim of this study is to estimate the Cenozoic deformation in the northern 

piedmont of Tian Shan. To realize it, the first step is to recognize geological structures and 

then make geological sections from the front of the range to the basin and from the surface to 

the substratum of the basin. The following three complementary methods have been applied 

to the construction of geological sections. 
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(1) Surface structural observations 

The field observations can provide the important information on tectonic structure, 

stratigraphic geometry, kinematics of the deformation, as well as key structural measurements 

needed for a good reconstruction of the cross-sections. A good geological section may be 

constructed where the geological outcrops are relatively continuous. However, it is not the 

case for the northern piedmont of Tian Shan. The high rate erosion produces thick Quaternary 

deposits that cover the majority of the basin surface and prevent the continuous surface 

observations (e.g. Figure 4-9). This is reason why seismic profiles have been used to complete 

the gaps. Moreover, the seismic profile may offer more information on the structure variation 

in the depth. 

(2) Seismic profile 

 

Figure 5-2. (a) Uninterpreted line drawing of the seismic profile along the Jingou River 

section presented with the structural data measured on the field. (b) Interpretation of the 

seismic profile.  The southern part of the profil remains unclear. It is then noteworthy that 

gravimetric data is the only way to propose reliable bulk geometry. 

As the Junggar basin is a hydrocarbon-producing basin, numerous seismic profiles are 

fortunately available in our study zone. Seismic reflectors have been well identified, 

presenting the main interfaces within the sediments and allowing defining the structure of the 

basin, even better with the surface structural observations (the right part of Figure 5-2); 
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However, for different reasons, such as the deformed strata making sightless of the seismic 

method, or the economic reason, the seismic profiles are sometimes absent, especially, in the 

range-basin contact zone (Figure 5-2), that makes some difficulties on the structural 

interpretations of this zone and, consequently, leads misunderstanding of the deformation 

mechanism. To ensure the reality of the constructed geological sections, the gravity method 

has been complementary applied as well in this study. 

(3) Gravity measurement 

 

Figure 5-3. An example to illustrate the importance of gravity method in the interpretation of 

geological section. (a) 2D gravity model computed after integration of geological and seismic 

data; (b) alternative model fitting to the gravity anomalies. 

Figures 5-2 and 5-3 present a good example for the utility and efficiency of the gravity 

method. The left part of Figure 5-2 shows a blind zone for both seismic method (inclined 

and/or strongly deformation) and surface observations (Quaternary cover), this blank space 

may be structurally interpreted by two distinguishable types of contact between the range 

basement and sedimentary cover: (1) thrusting of the range basement on the weakly or no 

deformed strata with a rather large faulting displacement (Figure 5-3a); (2) thrusting of the 
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range basement on the overturned strata with a rather small faulting displacement (Figure 

5-3b). The interpretation of the gravity measurements carried out along this profile favorites 

the second model with better fit between the gravity anomalies and modeling (Figure 5-3), 

that presents also a good certainty to the construction of the geological section.  

According to above experiences, gravity measurements have been systematically carried 

out along all four sections. Moreover, field observations, seismic profiles and available drilled 

wells have been integrated into the construction of their 2-D geological sections.  

Time to depth conversion has been computed for seismic profiles. Gravity measurements 

have been carried out along these sections with a CG-5 gravimeter. These gravity data in each 

station are treated as Bouguer anomaly and modeled with GM-SYS of Geosoft. For details of 

the data processing on seismic reflections and gravity measurements, please see Appendixes 1 

and 2, respectively. 

5.2 Geological sections 

Integrating all available field (structural and geological) and subsurface (seismic, gravity 

and drilled well) data, four 2-D geological sections have been constructed and presented in 

following. 

5.1.1 Jingou He Section 

The Jingou He section is located to the west of the Shawan city and along the Jingou He 

(Figure 5-4). It crosses two anticlines in the north and the contact zone in-between the Tian 

Shan basement and basin in the south. The northernmost anticline is named the Anjihai 

anticline, which is characterized by gently dipping symmetric limbs (about 15°). It exposes 

the coarse-grained Xiyu and Dushanzi formations (Figure 5-4). The seismic profile running 

along the anticlinal reveals a smooth, rather symmetric subsurface structure favoring with 

detachment-driven folding and the finite shortening is ~1.55km (He et al., 2005; Daëron et al., 

2007). Moreover, faults lie in the depth and do not attain to the surface or shallow subsurface. 
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Figure 5-4. Geological map of the Jingou He and Qingshui He areas with locations of 

seismic profiles and gravity stations. 

The southern anticline concerns the Huoerguosi anticline (Figure 5-4, Figure 5-5), which 

presents a clear asymmetric geometry with northward thrusts. In the outcrop-scale, the core of 

this anticline is well deformed (Figure 5-6). Two thrusts can be identified by field 

observations and satellite image. The southern one is illustrated by the thrusting of the 

greenish Anjihai formation on the redish Shawan formation (Figure 5-6). The upper unit of 

the thrust, to the southern Anjihai formation, shows a monocline, while the northern Shawan 

formation presents an asymmetric anticline. The southern limb dips southwards with about 30 

degrees, but the northern limb is vertical or even overturned.  In the northern limb, the 

Shawan formation is on contact with the sub-vertical greenish Taixihe formation. To the west, 

the motion along this thrust reduced rapidly, and two kilometers further west of the river it 

displays only the Shawan formation. Further north, about 50 m-thick Dushanzi formation 

thrusts on Quaternary terraces by the northward thrust fault (Figure 5-6). It is difficult to 

precisely estimate the net slips of these two faults. However, the compressive displacements 

along these faults could be limited because of following reasons. Firstly, these thrust faults are 

quite superficial and only located in the Cenozoic series, the underlain Mesozoic strata are not 
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thrust on the surface. Secondly, the faults are rapidly disappeared from the surface eastwards 

and westwards (Figure 5-5). For example, the Anjihai formation, located and well developed 

in the central part of the Huoerguosi anticline, is pinched out to both west and east sides, 

suggesting that the net slip of these fault decreases rapidly. Finally, but not the least, the 

eastern and western ends of this anticline show very gentle dips like the edge of a dome 

(Figure 5-4; Figure 5-5), indicating a small amount of deformation here. Therefore, the net 

fault slip in the central part of the anticline should be limited. Moreover, this fault does not 

exceed 10 km laterally neither westwards nor eastwards. This characteristic of the Huoerguosi 

anticline corresponds to the typical basin structure along the northern Tian Shan (Chapter 4).  

 

Figure 5-5. (a) Landsat TM image and (b) geologic interpretative map showing the 

Huoerguosi anticline along the Jingou He. See Figure 5-4 for its location. 
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Figure 5-6. (a) Interpreted section of the Huoerguosi anticline from Figure 5-5 and (b) the 

photo of its central part showing the anticline hinge complicated by thrust faults. 

As mentioned in Approach Section, because of the widespread Quaternary deposits, that 

can sometimes been several hundred of meters thick in the northern piedmont, the deep 

structure cannot be continuously observed on the surface from the front of Tian Shan to the 

basin (Figure 5-4). Gravity measurements have been therefore carried out and existed seismic 

profiles have been interpreted along this section (Figure 5-4).  

Time to depth conversion of the seismic profiles has been computed along this section 

using velocities estimated from corresponding lithological facies. The geological map and 

observed stratigraphic geometry are integrated into the interpretation of this profile (Figure 

5-7). Gravity measurements were carried out along the seismic profile and prolonged further 

south into the range (Figure 5-8).  
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Figure 5-7. (a) Linedrawing of the seismic profile along the Jingou He section associated with formation limits and dip angles on the field. (b) 

Interpretation of the seismic profile. (c) the restored section along Jingou He.  
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The Anjihai anticline presents as a detachment fault in seismic reflection profile. Gravity 

profile does not show obvious anomaly here, because of the weak deformation and weak 

contrast in density within the whole Cenozoic series. Nevertheless, the Huoerguosi anticline 

position shows positive anomaly along the gravimetric profile, indicating an upward 

movement of deeper and denser rocks by folding and/or faulting. In seismic profiles, Tertiary 

strata are well deformed with two northward thrusts, which are also visible on the surface 

(Figure 5-6). Under these two thrusts, a fault-propagation fold is developed in the lower 

Mesozoic series (Figure 5-7b). A thrust fault cuts the northern limb and probably connects the 

Anjihai anticline by underlain the detachment fault (Figure 5-7). Two thrusting faults visible 

on the surface could be prolonged untile to the basement (Figure 5-7). However, the net slip 

should be limited, because this fault cannot be observed in another parallel seismic profile 

located 5 km to east (Li et al., 2010b). In the southern part of the seismic profile, reflectors are 

not clear for unknown reasons (Figure 5-7a). The structural section is only constrained by 

surface observations and the gravity data. Five kilometers west to the section, Jurassic layers 

show an overturned structure close to the mountain basement (Figure 4-10). Gravimetric 

profile shows higher positive anomaly values on the thrust with respect to that of the normal 

stratigraphic contact (Figure 5-8). Moreover, the positive anomaly here is less bounced than 

the model with basement in the footwall in the 2D forward model (Figure 5-8). It suggests 

that less dense Mesozoic sediments underlay the contact and show an overturned synform in 

the front of the thrust. 

 The restored cross-section has been constructed by integrating data from the geological 

profile (Figure 5-7c). As discussed above, the shortening in the Cenozoic series is limited as 

shown by the rapid decrease of lateral deformation in the Huoerguosi anticline, though It is 

difficult to precisely estimate the shortening. Once more, the Jurassic strata can be used as a 

mark layer of deformation. The main deformed part of this section is concentrated on the 

second fold-and-fault belt and the thrust contact between the mountain and the basin (Figure 

5-7b). All the layers are restored to their initial horizontal geometry, and the thickness and 

lengths are reserved (Figure 5-7c). The bottom of the eroded Mesozoic level was assumed 

about 3000m on the mountain basement. This assumption is based on field observations in the 

southern Manasi area, where the Jurassic sediments horizontally deposed about 2500 to 

3000m over on the mountain basement. The Jurassic series that could extend 40 km 

westwards to the Jingou He at the approximately same altitude was eroded at the actual 

section. The comparison between the geological section and the restored one indicates an 

about 12 km of shortening on this 72.4 km-long profile, taking the Jurassic layers as the 
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marker. Therefore, the shortening rate on this section is about 16.5%. 

 

Figure 5-8. Bouguer anomalies modeling along the Jingou He section. In the upper panel, the 

natural gravity data has been fitted to Bouguer anomaly data using densities indicated in the 

figure legends to construct the structural section. 

5.2.2 Qingshui He section 

The Qingshui He section is located about 25km to east of the Jingouhe section (Figure 

5-4). This section crosses the contact between the basement and the Junggar basin sediments 

in the south and two anticlines in the north (Figure 5-4). The northern one, namely the Manasi 

anticline, is similar with the Huoerguosi anticline in structure. Its southern limb dips about 

45° southwards, while the northern limb dips steeply to the north or even overturned. A 

south-dipping thrust cuts the northern limb of this anticline. To south of the Manasi anticline, 

this section passes beside the eastern end of the Huoerguosi anticline. Farther south, the 

Cenozoic to Mesozoic series compose a monocline dipping about 60° northwards. It passes 

beside the western end of an anticline in Jurassic series. The Jurassic and Triassic sediments 

deposed on Paleozoic basement by stratigraphic contract dipping 60 to 70° north (Figure 5-4). 

Gravity measurements have been carried out along this river, where, moreover, a seismic 
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profile is available. The seismic profile of Figure 5-9 shows the Manasi anticline with faults 

and the Tertiary series in the core. Below the faults, Mesozoic series forms a very gentle and 

asymmetric anticline. The northern limb is sub-horizontal and the southern limb dips 15° 

southwards, probably indicating a north-dipping thrust toward to south (Figure 5-9). However, 

this fault stops in the basement and doesn’t attain to the basin sediments, which show a gentle 

anticline instead. To south of the Manasi anticline, a pair of small wavelength 

syncline-anticline is presented, extending until to in the eastern end of Huerguosi anticline 

where the deformation is weak with respect to its central part (Figure 5-4).  The southern 

part of this section is characterized by a gentle anticline in Jurassic sediments (Figure 5-4). 

The contact is characterized by a fold of the Mesozoic basement without visible thrust fault in 

the field. Figure 5-10 presents the gravity measurements corresponding the seismic profile 

shows consistent geological interpretations. 

A restored cross-section has been constructed by integrating data from the geological 

profile. The space-continuous Jurassic strata can be also used as a mark of deformation. The 

main deformed part of this section concentrates on gentle folds in the northern part and the 

fold contact between the mountain and the basin. All the layers are restored to their initial 

horizontal geometry, and the thickness and lengths are reserved (Figure 5-9). The bottom of 

the eroded Mesozoic level was also assumed 3000m over the mountain basement. The same 

argument has be used to this assumption, the Jurassic sediments horizontally deposed about 

2500 to 3000m over the mountain basement according to the field observations in the 

southern Manasi area. The Jurassic could extend 15 km westwards to the Manasi He section 

with the approximately same altitude. The results show a shortening of ~6 km along this 63.1 

km-long profile,taking the Jurassic layers as the marker. Therefore, the shorting rate is about 

9.5% on this section.  
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Figure 5-9. (a) Linedrawing of the seismic profile along the Qingshui He section associated with geological formation limits and dip angles 

measured on the surface. (b) Interpretation of seismic profile. (c) Restored section along the Qingshui He. 
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Figure 5-10. Modeling of Bouguer anomalies along the Qingshui He section. In the upper 

panel, natural gravity data has been fitted to Bouguer anomaly data using densities indicated 

in the figure legend to construct structural section. 

5.2.3 Hutubi He section 

Hutubi He flows northeastwards to the Junggar basin. It sub-perpendicularly cuts the 

structures of the fold-and-thrust belt in the northern piedmont of Tian Shan. Structural 

observations have been carried out in the southern part of this section. A seismic reflection 

profile is available for its northern part while gravity measurements have been carried out to 

complement the profile at the vicinity of the basement along the river (Figure 5-11).  

To the north of the Hutubi He area, an anticline, namely the Tugulu anticline, can be 

observed to the west of the river (Figure 5-11). Its southern flank dips ~35 to 50° southwards, 

and the northern flank shows 45 to 60° northward dipping. The dip angle increases near the 

core and is even overturned due to the motion over a S-dipping thrust (Figure 5-11). While 

this anticline not extend eastward on map view, there covered by recent deposits, the seismic 

profile along the river shows similar structures at depth highlighting its lateral equivalent 

(Figure 5-12). The net slip of the thrust appears smaller than the outcropping west Tugulu 

anticline, evidenced by the lack of steep or overturned layers. The gravimetric profile also 

presented negative anomaly, indicating the fault and the anticline (Figure 5-13). The core of 
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the anticline is composed of the Cenozoic Dushanzi formation along the river, while older 

Anjihai formation presents in the central of Tugulu anticline. 

 

Figure 5-11. Geological map of the Hutubi He area, with the locations of the seismic profile 

and the gravimetric stations. 
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Figure 5-12. (a) Linedrawing of the seismic profile along Hutubi He section (b) Interpretation of seismic profile. (c) Restored section along the 

Hutubi He, taking the Jurassic layers as marker. 
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To the southern part of this section, Cenozoic to Mesozoic rocks uniformly dip to the 

north with an intermediate dip (~ 40 to 60°; Figure 5-11). It composes the northern flank of a 

second anticline farther south (Figure 5-12). This anticline is a gentle upright fold associated 

with a syncline in the south with only very limited thrust development. Further south, entering 

within the inner parts of the range (basement), sub-horizontal Lower Jurassic strata directly lie 

on the top of the Carboniferous units (Figure 4-15). In addition, a southward backthrust of 

basement rocks above Jurassic sediments can be observed to the south of the section, but the 

net slip must be limited as it rapidly dies out and the fault laterally transforms westwards to a 

kink fold (Figure 5-11 and Figure 5-12). The gravity profile along the southern part of the 

section shows positive anomalies in the anticline position (Figure 5-13). Bouguer anomaly 

modeling stops while entering the basement area because of the major influence of the steep 

topography in both sides of the valley. 

Restored cross-sections has been constructed by integrating data from both geophysical 

and field data. The Jurassic strata can be continuously followed from the basin to the top of 

the basement. Therefore, they can be used as a continuous marker of deformation. A 

calculation for the initial length of the section has been made from the northernmost part of 

the section to the first outcrops of the Paleozoic basement (Figure 5-12). The main deformed 

part of this section concentrates on the two main fold-and-fault structures. All the layers are 

restored to their initial horizontal geometry and thickness and lengths are reserved (Figure 

5-12). The comparison of two sections shows a shortening of about 5 km along this 83.2 

km-long profile, taking the Jurassic layers as marker indicating a shortening rate is about 6 %. 

 

Figure 5-13. Modeling of Bouguer anomalies along the Qingshui He section. In the upper 

panel, natural gravity data has been fitted to Bouguer anomaly data using densities indicated 

in the figure legend to construct structural section. 
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5.2.4 Wusu section 

The Wusu section is located southeast to the Wusu city, the westmost of the study area 

(Figure 5-14). In the field, the northern part of the section is characterized by monoclinal 

layers, composed of Cenozoic sediments dipping about 60° northwards (Figure 5-14). Further 

south, a large wavelength syncline is present involving some faults and small-scaled folds 

(Figure 5-14). A geological section has been built up integrating field surface observations, 

seismic profile and drilled wells (Figure 5-14). This section has been strengthened by gravity 

measurements and 2D forward modeling realized along the main road.  

 

Figure 5-14. Geological map of the Wusu area. Shown are the locations of the seismic profile 

and the gravimetric stations. 

In the Wusu area, the total thickness of the preserved Jurassic strata is reduced to about 

1km according to drilled wells. Both seismic profile and gravimetric measurements show a 
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horizontal stratigraphic geometry for the northernmost part of this section without obvious 

deformation (Figure 5-14, Figure 5-16 and Figure 5-16). Moving southwardly, conformingly 

with the Hutubi He and other sections, the first-order structure of the Mesozoic-Cenozoic 

series displays a 40-60° northward dipping monocline (Figure 5-16 and Figure 5-15). 

Continuously to the south, the stratification becomes sub-horizontal and the structure of the 

sedimentary series displays as a large hinge fold. As drawn on the geological map, thrust 

faults are visible in the field in this segment. However, seismic data do not show any extend 

of the faults to depth into the Mesozoic series, indicating a limited thrust displacement along 

the faults. In the southernmost part of the Wusu section, sediments are directly covering 

basement units with a 20 to 40˚ diping northwards. As a whole, the structure of this section 

show a trishear fault-propagation fold, which indicates a thrust fault northwards in the deep 

basement (Figure 5-16 and Figure 5-16). 

Taking the lower Jurassic as marker, the similar calculation on the balanced cross-section 

shows that the shortening is about 2.0 km on the 20.4 km-long profile (Figure 6-16b). Minor 

deformation recognized in the field is neglected, such as the two south dipping reverse faults 

that do not extend to depth on the seismic reflection profile. The shortening rate calculated 

along this section is then of the order of 9.8%. 

 

Figure 5-15. Modeling of Bouguer anomalies along the Wusu section. In the upper panel, 

natural gravity data has been fitted to Bouguer anomaly data using densities indicated in the 

figure legend to construct structural section. 
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Figure 5-16. (a) Linedrawing of the seismic profile along Wusu section associated with dip 

angle field measurements of  (b) Interpretation of seismic profile. (c) Restored section along 

the Wusu section. Note the impressive thickness of the so called Xiyu formation here clearly 

displaying growth strata geometry 

. 
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5.3 Discussion 

5.3.1 Mechanism of deformation in the northern piedmont of  

Tiansahn 

(a) Is the northern Tian Shan characterized by a st ructural 

front? 

The structure of the northern Tian Shan range has been carefully observed in the field. 

These observations together with structural measurements have been complemented with an 

important set of drilling well and geophysical data including seismic profiles and gravity 

measurements. Intracontinental orogens, such as the the Pyrenean mountain ranges and 

Canadian Rocky mountain, are often characterized by main frontal structures that concentrate 

most of the strain and most account for the overall shortening. Unlike this traditional view of 

a mature range front, the northern front of Tian Shan is characterized by a variety of structures 

within the contact with the Junggar basin, including thrust fault contact, kink fold contact and 

even still preserved unconformity, sedimentary contact. 

First, thrust fault type contact between the basement and the Junggar basin sediments can 

be observed in several places, such as Taixi He, Jingou He and Kuitun He sections. Second, 

kink fold type contact with normal steep dip angle in sediments are located in Qingshui He 

and Manasi He sections. Last, sedimentary type contact with sub-horizontal unconformity 

between strongly deformed basement and overlying sediments without obvious deformation 

are widespread over the study area and mainly observed to the south of Hutubi He and Wusu 

sections. These three types of contracts between the Tian Shan basement and the Junggar 

basin sediments are displayed laterally along the northern front of the mountain belt (Figure 

5-17). These types mostly depend on the local deformation intensity (local shortening) which 

fastly evolve laterally. Such local variations of shortening gives rise to the different structural 

geometry along the front of the northern Tian Shan, such as thrust to sedimentary contact 

from strong to weak deformation intensity.  

These rather rapid lateral variations are also strongly suggested by Bouguer anomaly map 

in the northern piedmont of Tian Shan highlighting strong unexpected lateral gradient (Figure 

5-18). Along a single structure, at this local scale, a clear range front can not be pointed out as 

deformation is distributed over a rather large orogen-parallel stripe where overall shortening 
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may reasonably been the same. The northern Tian Shan, while characterized by a spectacular 

orogenic front corresponding more or less to boundary between the basement rocks and the 

Junggar sediments is, to date, devoid of a clear structural front. The most probable reason may 

be due to the immaturity of the belt, tectonically reversed during the Neogene and as seen in 

the previous chapter from an existing relief. 

 

Figure 5-17. Conceptual structural sketch showing how, on a rather local scale (∼100km 

along the range), the structure may principally vary from a thrust to a unconformity through a 

fold observed at Jingou He, Qingshui He and Hutubi He between the basement and the 

Junggar sediments, respectively. 
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Figure 5-18. Bouguer anomaly map in the northern piedmond of Tian Shan with locations of gravity stations (red dots). Major geological limits 

are drawn. See Figure 4-1 for details of geological boundaries. 
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(b) The structure of the fold-and-thrust belt in th e basin 

Since the Junggar region has been widely investigated for oil and gas resources, 

seismic profiles and drilled wells are particularly abundant. These data together with 

field observations, structural studies permitted to settle the overall geometry of the 

fold-and-thrust belt developed along the Tian Shan range into the front zone (Avouac 

et al., 1993; Fu et al., 2003; Deng et al., 1996; Burchfiel et al., 1999; Molnar, 2004; 

He et al., 2005; Li et al., 2010b; Lu et al., 2010). The southernmost fold belt is located 

in the north of the basement–basin contact, such as the Qigu and the Qingshui He 

anticlines. Theses folds are basement-involved with gentle asymmetric anticlines. 

This belt is not well developed along the Jingou He and Kuitun He sections, where the 

contract is characterized by large-displacement thrust fault. In contrast, this first 

southern fold belt is well displayed along Manasi He, Hutubi He and Changji He in 

the east part of the study area where the southern contacts are less deformed. 

Therefore, this first southern fold belt is probably well deformed when the contact is 

less shortened, while it is weak deformed when the contact area absorbed the mainly 

shortening. 

The second fold belt is mainly a fault-bend fold belt. The mechanisms to produce 

this fold require a décollement zone in Jurassic layers, such as coal layer or marls, 

with emerging ramps often observed in the field as a thin-skin deformation or 

deduced from the seismic profiles (Burchfiel et al., 1999; He et al., 2005). However, 

this fault-bend fold is accompanied and visibly controlled by basement fault at depth, 

such as the Huoerguosi anticline along Jingou He. This fault of rather high angle in 

basement reaches a flat décollement zone in the Mesozoic series and propagates 

northwards.  

The third fold belt is composed, for example, by the Dushanzi and the Anjihai 

anticlines along the Kuitun He and Jingou He, respectively. The Dushanzi anticline is 

a fault-bend fold and the Anjihai anticline is a detachment fold. The basement is not 

involved in the deformation here (Daëron et al., 2007). 
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Fault-propagation fold accounts for most of the shortening in the first fold belt, 

while these faults are located in the Paleozoic basement. For the two fold belts in the 

north, the critical mechanism problem is where the faults come from. One model 

concerns the detachment in the basal Jurassic with ramps located in the second and 

third fold belts (Deng et al., 2000; Figure 5-19a). Based on our geological sections, an 

alternative deformation and propagation model is proposed (Figure 5-19b). It is 

characterized by: 1) the basement is deformed as rigid blocks; 2) no large-movement 

décollement in the basin; 3) the shortening is limited in the northern “front” and in the 

foreland basin as well. 

 

 

Figure 5-19. (a) Sketch diagram proposed prior to this study for the northern of Tian 

Shan. A main décollement zone at the base of Jurassic layers accounts for a rather 

large shortening involving a main intrabasement blind fault (after Deng et al., 1999). 

(b) Model proposed in this study where deformation, still gentle is localized over 

pre-existing basement structures whose reactivation deforms the sedimentary cover. 

Deformation and slip over these faults may be captured by decollement zones.   

5.3.2 The shortening in the foreland thrust-and-fold belt 

Shortening estimates have been previously calculated for most of the anticlines in 
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the northern Tian Shan foreland from seismic data (Deng et al., 1991; Molnar et al., 

1994; Deng et al., 1996; Burchfiel et al., 1999; Deng et al., 2000; Wang et al., 2004; 

Daëron et al., 2007; Charreau et al., 2008). However, these local shortening values, 

rather high for individual structures in these three fold belts, could not be simply 

summed up to reach the total account of shortening for the whole fold-and-thrust belt 

(Table 5-1), because of not only the laterally variation of the structures (Burchfiel et 

al., 1999), but also the different deformation characteristics in depth. For example, the 

shortenings in the northernmost (third) and second thrust belts, which is mostly 

calculated with Cenozoic layers, could not summed up with that in the southernmost 

(first) thrust belt, which is calculated with Mesozoic layers. Moreover, theses studies 

are most concept model-driven rather than data model-driven (Avouac et al., 1993; 

Burchfiel et al., 1999). Therefore, in this study, lower Jurassic strata as a marker are 

restored and are used to calculate the regional shortening. 

 

Table 5-1. Shortening estimates of anticlines in the northern piedmont of Tian Shan 

(Lu et al., 2010). 

Besides the deformation of the three successive fold belts in the foreland basin, 

the shortening is also located in the intramountain basin areas as presented in Chapter 

4. However, this fault varies to an unconformity contact along strike suggesting a 

various and limited displacement. In fact, along the northern piedmont of Tian Shan, 

relatively important shortenings in the contact zone between the range and the basin 

can be only observed in the Junggar southern thrusting faults of the Kuitun He and 

Jingou He sections. Other sections did not show obvious fault in the contact zones, 

and Jurassic sediments can be continuously followed from the basin to the inner parts 
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of Tian Shan.  

In summary, the comparison of geological sections with their corresponding 

restored ones shows shortenings of 12 km (16.5%), 6 km (9.5%), 5 km (6%) and 2 km 

(9.8%) for the Jingou He, Qingshui He, Hutubi He and Wusu He sections, 

respectively. This data are fairly weak with respect to the well developed foreland 

basin. However, though these estimates, deriving from multidisciplinary yet 

consistent studies, are rather accurate for the foreland basin, the total shortening in the 

front zone or event the whole intercontinental range may be highly underestimated as 

the main intrabasement thrust and, more generally, the deformation in the basement 

remain unexplored.
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The current high relief of the Tian Shan range is traditionally considered as a 

far-field consequence of India-Asia collision (e.g. Tapponnier and Molnar, 1977; 

Avouac et al., 1993) which is responsible for the tectonic reactivation of the Paleozoic 

range (Avouac et al., 1993; Hendrix et al., 1994). Propagation of the deformation to 

the north and inception of the reactivation throughout the Tian Shan area is still a 

matter of debate. Based on numerous and multidisciplinary observations, the effective 

onset of deformation seems, in any case, younger than 25 Ma, leading some authors to 

suggest high rates of deformation (Avouac et al., 1993; Molnar and Ghose, 2000; 

Charreau et al., 2008; Lu et al., 2010). Field works carried out during the last 3 years 

in this PhD thesis all along the northern piedmont of Tian Shan show rather weak 

deformation in the piedmont and conversely point out the existence of a significant 

Mesozoic paleo-relief. To better understand the evolution of the northern piedmont of 

the Tian Shan, a brief review of new data acquired in this study will firstly be exposed 

in this chapter. Then, a synthetic analysis is made to discuss the main results. Finally, 

general conclusions on this work will be exposed as well as some ideas on the future 

research needed on this topic.    

6.1 Persistence and contribution of a Mesozoic 

paleo-relief 

Basement rocks encountered in the Tian Shan range carry unambiguous traces for 

a long-lived subduction, accretion and collision history during Paleozoic times and 

several sutures have been described as well as major shear zones of various geometry 

and kinematics (Windley et al., 1990; Gao et al., 1998; Xiao et al., 2004; Charvet et 

al., 2007; Wang et al., 2007). The present-day topography of the Tian Shan is 

traditionally related to the Neogene intracontinental reactivation of such main 

inherited structures within the Tian Shan range (Tapponnier and Molnar, 1977; 

Avouac et al., 1993). Mesozoic history of the northern Tian Shan is characterized by 

thick continental sediments deposits. Despite this period remains widely unexplored, 

it appears devoid of any major deformational event. This study along the northern 
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piedmont of Tian Shan, however, unambiguously demonstrates new and clear field 

evidences for the existence of a significant Mesozoic relief before the Neogene 

uplifting. The Jurassic series are mostly characterized by thick coarse-grained 

continental deposits. Within intramountain basins, sedimentary breccias carrying a 

significant contribution of Carboniferous basement clasts characterise the base of the 

series, arguing for the presence of a rather proximal paleo-relief of basement rocks 

along the range front and the occurrence of proximal intramountain basins. In parallel, 

while a major thrust system is traditionally evoked between Junggar basin deposits 

and the basement units, some of the studied sections show unconformable deposit of 

Triassic to Jurassic sediments overlying deformed basement rocks with a continuous 

extend of sedimentary series from basin to the top range. Some of sections clearly 

show “onlap” type deposits of Jurassic clastic sediments on top of the Paleozoic 

basement that was thus significantly sloping down to the north at that time. These 

results are strengthened by the attitude of the geological outlines of lower Mesozoic 

series that clearly display regional onlaps at map-scale. A major paleo-relief along the 

northern Tian Shan is thus progressively sealed during, at least, a part of Mesozoic 

times, and particularly during Triassic and Lower Jurassic times (Figure 3-8a).  

At the outcrop scale, the “onlap” architecture reveals local drastic paleo-elevation 

difference of at least of 100-150m for some hectometers horizontal distance (see 

example in the Hutubi He area). At a larger scale (50 km), the thickness difference of 

Jurassic sediments reaches around 1300 m between the outcropping series along the 

Tian Shan and drill well data basinward (Figure 3-5 in Chapter 3). In addition, while 

the entire Mesozoic sedimentary sequence is preserved within the basin, from Triassic 

to Cretaceous, Triassic to Middle Jurassic strata are missing within most interior parts 

of the range. No major internal deformation is observed within the sedimentary series 

and layers of Mesozoic sediments remain almost parallel in the northern Tian Shan 

piedmont. These latter features argue for the existence of a relatively high relief 

during Early Jurassic time and its progressive infilling, or covering during Mesozoic 

times (See chapter 3 for detail arguments). This paleo-elevation difference of 1300m 
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indicates a minimum for the relative altitude of the Tian Shan early Mesozoic 

paleo-relief. 

This major result from this thesis work is in agreement with published indirect 

studies that emphasized a probable Mesozoic relief located within the present day 

basement range. Firstly, Mesozoic paleocurrent indicators highlight northward 

sediments transport along the southern Junggar basin flanks and southward transport 

along the north Tarim basin area (Hendrix et al., 1992; Li et al., 2004). Secondly, due 

to the agglomeration of “terranes” from different origin during Paleozoic times, the 

basement of Tian Shan is made of several contrasted lithologies (Windly et al., 1990; 

Gao et al., 1998; Wang et al., 2007). Clastics, and in particular sandstone deposits can 

thus be tied to specific source terranes within the Tian Shan basement complex. The 

mineralogical composition of sandstone layers is different in the southern Junggar and 

north Tarim basins, indicating that a Mesozoic Tian Shan mountain was most 

probably separating the two basins (Hendrix et al., 2000). Thirdly, the apatite 

fission-track cooling ages reported by recent studies suggest the unroofing of Tian 

Shan during Mesozoic (Dumitru et al., 2001; Guo et al., 2007; Zhang et al., 2007; 

Wang et al., 2009; Jolivet et al., in press). At last, isopach maps show that the 

Mesozoic series in the southern Junggar and northern Tarim basins are thicker on both 

sides of the Tian Shan range (Gu, 1994), indicating that an ancestral Mesozoic Tian 

Shan would be present and i) was the source of sediments, ii) controlled the 

sedimentation location in the adjacent basins and iii) the range was roughly striking 

parallel to the current one. 

Thus, field observations and large-scale map analyses done in this study argue for 

i) the persistence of a paleo-relief from early Mesozoic times and during Triassic and 

Jurassic times and ii) relief “infilling” by a continuous clastic sedimentation, with no 

deformation and/or vertical movement associated with, during that period. From this 

and from available sedimentological data, the following scenario may be proposed for 

the Mesozoic relief evolution along the northern piedmont of Tian Shan. During 

Middle Jurassic times, clastic sediments conformably deposited on top of the Lower 
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Jurassic strata within the basin, while they progressively deposited onlap of the 

Paleozoic basement toward the mountain interior (Figure 3-8a). Middle Jurassic 

deposits extend to a larger area with respect to the Lower Jurassic and the paleo-relief 

latitudinal extension was certainly less important during Middle Jurassic than that 

during Triassic/Early Jurassic (Figure 3-8b). During the latest Jurassic to Early 

Cretaceous, conglomerates and breccias deposited onto the Middle Jurassic sediments 

with a weak angular discordance. These conglomerates are geographically confined 

along the front of Tian Shan and this particular formation becomes laterally finer, 

toward the basin. This behaves as very thick alluvial fans deposited downwards from 

a major relief rising in the south, as the ones currently deposited along the modern 

Tian Shan range, with limited northward transport of sediments (Figure 3-8c). 

This study brings the first and numerous field-based observations that 

unambiguously demonstrate the persistence of a major paleo-relief during Mesozoic 

times that is currently passively integrated into the modern Tian Shan. As shown here, 

the altitude difference for this Mesozoic paleo-relief can be computed to a minimum 

of 1300 m for a horizontal distance of 50 km along the northern Tian Shan piedmont. 

Consequently, a preexisting relief must be considered when studying either tectonic or 

geomorphological Cenozoic evolution of the Tian Shan. Indeed, both the shortening 

amount over the main structures of the front and fold-and-thrust belt and the bulk Tian 

Shan modern topography are traditionally assigned to its Cenozoic reactivation but 

results from this study show that these must be reduced. 

6.2 The immature fold-and-thrust belt of the northe rn 

front of Tian Shan 

6.2.1 Analysis of the range-basin contacts 

As shown before field analysis shows that remnants of unconformable Mesozoic 

deposits over the Paleozoic basement, rather high in the range, are still preserved 

along the northern Tian Shan (Figure 6-1). 
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Figure 6-1. The geological map of the northern piedmont of Tian Shan with Satellite 

image. G1-G3 indicat the locations of magnetostratigraphy studies of growth strata 

(Charreatu et al., 2005; 2008; Lu et al., 2010) and G4 indicat the manetostratigraphy 

study of Xiyu formation (Charrea et al., 2007). 

 Structural analysis held in this thesis has also proven particularly instructive for 

analyzing the contact between the Tian Shan basement and the Junggar basin. In brief, 

three types of contact can be recognized among the several studied sections and 

outcrops and the two corresponding end-members can be defined as i) unambiguous 

northward thrust faulting of the Paleozoic basement units on the sedimentary series of 

the Junggar basin and, conversely, ii) pure unconformity contact of the clastic 

sediments above the basement and structural continuous extension of the layers from 

basin toward the range uplands. Such continuous unconformity basal contact 

in-between the mountain basement and the basin sediments argues for no significant 

deformation along those corresponding segments of the range front (Figure 4-35 in 

Chapter 4, Figure 5-17 in chapter 5). Between the two end-members, intermediate 

case of front deformation results in fold development; these folds display as large 
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scale chevron type folds which geometry itself evolves from gentle upright fold to 

strongly asymmetric kink fold and ultimately to thrust fault (Figure 6-1 and Figure 

4-1 in Chapter 4). Moreover, the different types of contacts show rapid lateral 

variations along strike (e.g. Figure 4-35 in Chapter 4). Consequently, shortening 

accumulated over front thrust faults must be weak as these faults rapidly turn into 

folds, along the strike, within about 10 km distance (Figure 4-35 in Chapter 4). In the 

northern Tian Shan, the outcropping basement rocks generally display steep to vertical 

fabrics and appear as more mechanically competent with respect to Junggar sediments; 

they are faulted and comprise a significant amount of joints (Figure 4-33 in Chapter 4). 

This kind of deformation is well illustrated in the trishear fault propagation folding 

(Figure 1-8 in Chapter 1). These observed structural characteristics of a giving 

structure that presents rapid lateral evolution argue for an overall weak deformation, 

during Cenozoic, along the northern front of the range and suggests a relative 

immaturity of the orogenic fold-and-thrust belt. 

Such character is a first order difference from other intracontinental mountain 

ranges, such as French Pyrenees piedmont. This latter intracontinental collision range 

has been extensively studied and the deformation pattern observed at surface can be 

quite well linked with the deep crustal-scale structure which has been imaged through 

geophysical investigations (Roure et al., 1989; Teixell et al., 1998). In the Pyrenees 

(Figure 1-3a), the range basement is separated from the Aquitaine basin by the 

northward North Pyrenean thrust (Sibuet et al., 2004). The basement thrusts 

northwards and the Aquitaine sediments are deeply buried under the thrusting fault 

(Figure 1-3b), as illustrated by the corresponding ECORS deep seismic profile (Roure 

et al., 1989; Figure 6-2a). This structure suggests that the northern piedmont of 

Pyrenees is characterized by i) a large amount of shortening, ii) strain and 

displacement very localized at crustal-scale, concentrating on few main structures 

along the front range and iii) a cylindrical character of the deformation pattern in the 

piedmont with main structures extending on several tens of kilometers along the range 

front. As such, the structure of the northern piedmont of Tian Shan presents a different 
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nature with respect to the Pyrenean front (c.f. Figure 1-3b, Figure 6-2a and b).  

 

Figure 6-2. (a) Crust scale geological section interpreted from the ECORS seismic 

profile in the northern piedmont of Pyrenees (Roure et al., 1989; Sibuet et al., 2004). 

(b) Interpreted section of the northern piedmont of Tian Shan; finite deformation is 

rather weak and the structural front of the range could not strictly be defined and 

localized in that case. As discussed in the text, conversely with the case of the 

Pyrenees, the deformation is not (yet) localized along a major crust scale structure 

but would better be distributed over several basement reverse faults. 

In Tian Shan, the Jurassic sediments can be continuously followed, from the basin 

to the interior of Tian Shan, along several sections (e.g. the Hutubi section in Figure 
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5-12; Figure 6-2b). The deep structure of the northern Tian Shan does not present any 

northward thrusting fault crossing over the crust, from Moho to the surface, as the 

northern Pyrenean front does. Instead, the structure of the middle and lower crust 

show sub-horizontal attitude in the northern piedmont of Tian Shan (Zhao et al., 2003). 

This feature can also be shown on deep seismic profiles crossing the northern Tian 

Shan fold-and-thrust belt (Lu et al., 2000; Xu et al., 2002; Zhao et al., 2003; Wang et 

al., 2004). 

6.2.2 Deformation pattern within the fold-and-thrust belt 

Integrating data from field observations, gravity measurements, seismic profiles 

and drilled wells several “regional scale” sections have been built crossing over the 

northern front and piedmont of the Tian Shan, within the foreland basin of the range. 

The Mesozoic-Cenozoic series, with low mechanical competence, overlie on the 

basement and certain parts of the series can be used to constrain the deformation as a 

mark layer along the studied cross sections. Three rows of fold-an-thrust belts are 

recognized in the southern of Junggar foreland basin with strikes roughly parallel to 

the Tian Shan mountain range (Figure 6-1; Figure 4-1) and showing different 

structural styles.  

The first southern belt is well developed and exposed in the east of the study area, 

such as along the Hutubi He and Chanji He valleys where a rather large anticline is 

mapped (Figure 6-1). The structure of this belt has been proposed to develop above a 

major thrust fault which is limited to depth as it only involves the basement and does 

not cut through the sedimentary cover (Deng et al., 1996; Burchfiel et al., 1999; Deng 

et al., 2000; Lu et al., 2007). However, such fold belt structure does not extend 

westwardly: instead, in the Jingou He area, for instance, the sedimentary series 

displays a single north gently dipping monocline showing that the above mentioned 

basement thrust must die out laterally, along strike of the range front. This feature is 

compatible with field observations made along the front zone of the northern Tian 

Shan, which highlight quick lateral transitions of deformation pattern. Besides, 
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shortening of the foreland fold-and-thrust belt, along the Jingou He section, is 

accommodated by another northward reverse fault which developed further south of 

the monocline (Figure 6-1; Figure 4-1). This latter thrust fault could hardly be 

considered as the prolongation of the blind thrust as described above as it does not 

extend in the same prolongation and, in turn, it also laterally dies out eastwardly 

(Figure 6-1; Figure 4-1).  

The second and middle belt, displays as a series of parallel and inline anticlines 

developed in the Mesozoic to Cenozoic series of the basin: the Huoerguosi anticline 

along the Jingou He, the Manasi anticline along the Manasi He and the Tugulu 

anticline along the Taixi He (Figure 6-1; Figure 4-1). These anticlines are often 

interpreted as fault-bend fold (Deng et al., 2000; Charreau et al., 2008)  

At surface, the third and northernmost belt is solely composed of two inline 

anticlines striking ~east-west. The Anjihai anticline displays as a typical right 

detachment fold with gentle dipping angle (~ 30°) in the south and north limbs 

(Figure 5-4; Figure 6-1). Similarly, ~30 km to the west, the Dushanzi anticline shows 

gentle dip-angle in the southern limb but a reverse fault cut across the northern limb 

of the fold in that case. 

At the first order, the whole of the Cenozoic fold-and-thrust belt, displays only 

limited shortening, structures marking strong deformation, such as recumbent fold, 

overlapping nappes, duplex or thick overturned sedimentary series, have never been 

observed along the northern Tian Shan. They have certainly not yet been developed 

within the basin cover, at that stage of the Cenozoic deformation history. The total 

shortening calculated from the four studied regional-scale cross sections reach a 

maximum of ~12km in the study area of northern Tian Shan, for ~70 km long 

sections.  
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Figure 6-3. (a) Contour map of the Cenozoic sedimentary thickness in the northern 

piedmont of Tian Shan and with the locations of four sections. (b) Diagram of 

shortening amount and rate for four studied sections along the northern piedmont of 

Tian Shan. 

Structural analysis highlights clear uncylindrical pattern of the deformation 

within the fold-and-thrust belt. Indeed, along strike of the structures – i.e. east to 

east-southeast striking – the three fold belts present a series of repeated structural 

culminations, where local shortening is locally at maximum, flanked by less shortened 

areas that, finally, vanish to the lateral ends within ~ 15-20 km (Figure 5-19 in 

Chapter 5; Figure 6-1). Moreover, the total shortening amount presents high lateral 

variations. From west to east, the geological sections display shortening amounts of: 2, 

12, 6 and 5 km for the Wusu section, the Jingou He section, the Qingshui He section 

and the Hutubi He section, respectively (Figure 6-3). If the total length of each section 

is measured from the front of mountains to the end of topographic slope (i.e. to the 

zero topographic gradient), the corresponding deformation amount has been 

calculated for each section varying from a minimum of 6% to a maximum of 16.5% 
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(Figure 6-3). A similar study has been carried out and consistent results have been 

obtained for the Jingou He, i.e. ~15 km of shortening and 22% of shortening amount 

(Li et al., 2010b). Figure 6-3 presents these shortening rates obtained from the four 

sections compared with the contour map of the Cenozoic sedimentary thickness in the 

study area. The variation of the shortening rate is correlated with the lateral thickness 

variation of Cenozoic sediments. In particular, the Jingou He section, with a maximal 

shortening amount of 16.5%, corresponds to the thickest deposit zone for Cenozoic 

sediments. Shortening amount decreases eastwards and westwards, while the 

thickness decreases in the same manner. This suggests that the shortening amount 

would control location of the maximum subsidence, along the northern front of Tian 

Shan, during Cenozoic. 

6.2.3 Which tectonic model could apply for Cenozoic 

north Tian Shan deformation? 

Different types of models have been proposed to explain the development and 

mechanisms of deformation through the foreland fold-and-thrust belt of northern Tian 

Shan. As shown on figure 6-4, the first model type is characterized by a rather large 

movement along a main frontal crust-scale thrust. This movement is propagated 

forward through a horizontal décollement localized at the bottom or within the 

sedimentary series and a significant amount of shortening is thus accommodated 

within the two frontal external belts (Figure 6-4a). In the particular case of northern 

Tian Shan, this décollement is assumed to be localized in the basal part of the 

Mesozoic sedimentary series and it merges, to the south, with a main front thrust 

system at the basement/sediments boundary (Avouac et al., 1993; Burchfiel et al., 

1999; Deng et al., 2000; Charreau et al., 2008; Lu et al., 2010). Such tectonic model 

induces a great displacement either i) along the frontal main thrusts, ii) over the flat 

décollement and through one or the other external belt or iii) both (see Figure 26b in 

Avouac et al., 1993). An alternative model has also been proposed with the 

development of duplex structures in the basement units, just below the range “front” 
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(Figure 6-4b). In this model, shortening is accommodated in the fold-and-thrust belt 

through a flat décollement and associated shortening across the two external belts (He 

et al., 2005). This shortening is smaller in this model than in the previous one and a 

consequent part of the shortening imposes by the numerous basement duplex is 

accommodated by large movement localized along a backthrust system developed 

within the north dipping sedimentary series, parallel to the layers orientation and 

emerging along the range front (Figure 6-4b; He et al., 2005). 

 

Figure 6-4. Models of deformation within a foreland fold-and-thrust belt with: (a) 

movement along a main frontal, crust scale thrust transmitted through a décollement 

structure within the sedimentary series and large movements in the frontal external 

belts (Modify after Deng et al., 2000), (b) construction of duplex type structures 

within the basement, below the range front. Shortening of the fold-and-thrust belt is 
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accommodated by an horizontal décollement and more limited movement in the 

external belts in that case but large movement along a backthrust developed parallel 

with the sedimentary layers (Modify after He et al., 2005). 

However, as discussed below, structural analyses and observations made during 

this thesis work do not allow applying one or the other of these two proposed tectonic 

models. 

First, the present study highlights a rather limited deformation of the northern 

Tian Shan fold-and-thrust belt, if compared with what would previously be admitted. 

Based on combined geological and geophysical data, four regional scale sections have 

been built. The maximum shortening amount calculated across the belts is of 12 km 

along the Jingou He section, which is 16.5% shortening for a 72.4 km initial section 

length. Other sections show 2 km (9.8% shortening for 20.4 km initial section length), 

6 km (9.5% shortening for 63.1 km initial length) and ~5 km (6.0% for 83.2 km initial 

length) in the Wusu, Qingshui He and Hutubi He sections, respectively. The nature 

front contact in-between the basement and the basin sediments has been taken into 

account for these calculations as, for instance, in the Hutubi He section where the 

Jurassic series can be followed from the basin to the Mountain interior, which is an 

important marker for deformation analysis and restoration. These results highlight 

very small shortening amount within the foreland fold-and thrust belt in the southern 

Junggar basin and, as a whole, this first order feature is not compatible with one or the 

other of the two proposed models implying rather large net shortening amount 

through the front of the northern Tian Shan and the fold-and-thrust belt. 

Second, both above presented models, and in particular the first one (see 

Figure 6-4a) imply a significant shortening through one or the other of the external 

belts and, thus, rather large movement along the corresponding thrusts emerging 

within these belts (Figure 6-4a and b). However, the present study shows that these 

folds of the basin display as uncylindrical folding. As discussed in chapter 5 (Figure 

5-2), such as the Huoerguosi anticline along Jingou He: the limits of Cenozoic series 

in the two limbs forms ellipses shapes in map view and closed to the two sides of the 
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fold, along strike. A reverse fault, located in the central part of the anticline, thus 

rapidly disappears eastwards and westwards sides from the centre. Therefore, the net 

movement along such thrust fault must be limited and the deformation in the fold 

laterally dies out, along strike, in ~ 15-20 km distance. Other folds of the second belt 

– Manasi anticline and Tugulu anticline – are similar in geometry and the associated 

local shortening amount is also limited for the same reason. In the third fold belt, the 

width of the Anjihai and of the Dushanzi anticline is about 20 km and 10 km, 

respectively. The gentle dip angles of the strata on the two limbs and their 

uncylindrical geometry suggest these folds are also only weakly deformed. 

Uncylindrical folding within the fold-and-thrust belt clearly shows only weak 

shortening. As the surface deformation rise from the “basal” basin flat décollement 

(Figure 6-4a and b), the weak deformation indicates that the movement along this 

décollement must also be limited, which is not compatible with, at least the first of the 

models previously proposed. 

Third, shortening within the fold-and-thrust belt can be accommodated by 

significant movement along a backthrust system, as proposed in the second of the 

models. These backthrusts would localize either within the base of the sedimentary 

series or along the basement/sediments contact itself (Figure 6-4b). However, among 

the overall study sections and outcrops visited for this work, backthrust movement has 

never been observed within the Mesozoic sedimentary series. Coal layers are the 

weakest layers of the Mesozoic sedimentary series which is the more represented 

along the contact interface with the basement units, all along the range piedmont. This 

feature is particularly well expressed where frontal northward thrust occurred: 

underlying and overturned sediments present a big internal deformation contrats in 

between these coal layers and the others interstratified coarse clastic sediments. Yet, 

coal layers located close to the front area where a monocline structure of the 

sedimentary series is observed are undeformed (see Figure 4-31). These segments of 

the piedmont where the development of a duplex system could be assumed, to depth, 

do not show the backthrust systems conditioning this tectonic model (Figure 6-4b). 
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Figure 6-5. Sketch diagram of the structure and developing model for the northern Tian Shan. Numbers indicate the faults in the basement 

(modify after Qi et al., 2007). 
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Fourth, regional sections, integrated with seismic interpretation and gravity 

modeling, suggest that, in addition to their folding, some reverse movement affected 

the Jurassic layers in depth. Along the Jingou He section, the steep basement fault cut 

the Jurassic layers in the middle segment of the section (Figure 5-7).  Moreover, a 

steep thrust crosses and offset the basal surface of the basin (Figure 5-12). These 

structures questioned the previously proposed models showing large regional flat 

décollement in Mesozoic series within, the foreland Junggar basin (Figure 6-4a and 

b). 

Thereby, tectonic models implying large total shortening amounts for the belts, 

large thrust movements within the external belts and/or significant backthrust 

movements along the front of the range are almost inapplicable to the case of northern 

Tian Shan.  

By consequence, an alternative model for development of the deformation within 

the fold-and-thrust belt can be proposed from the present work study. Summarizing 

principal observations and interpretations, a “model” cross section can be drawn for 

the north Tian Shan piedmont, as displayed on Figure 6-5. From south to north this 

one can be detailed as follows: Jurassic sediment unconformably deposed on the 

basement and can border with reverse faults in the mountain interior, such as along 

the Toutun He section (Figure 4-5, Figure 6-5) and in the Houxia valley (Figure 4-18, 

Figure 6-5) . Going north, in some places, the Jurassic series can be continuously 

followed on top of the interior mountain basement units (cf. Hutubi section; Figure 

5-9; Figure 6-5), while Jurassic sediments have been eroded in other sections (e.g. 

Jingou He section; Figure 5-4, Figure 6-5). Along the basement/basin boundary, either 

thrust fault or unconformity contact are observed along the northern front of the 

mountain (Figure 6-5). Northward, deformation rises from the basement faults and 

propagates into the basin. Geophysical data highlight that the basement thrust may 

exist below the sedimentary cover. Yet, movement along these faults is limited to the 

base of the sediments and only rarely crosses over the entire series. Movements along 

flat décollements are limited in the sediments and only developed for propagating 
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local shortening between the main faults of the basement and the belts (Figure 6-5). 

As well displayed on study sections and on Figure 6-5, basement blocks are separated 

by important inverse faults with an interval distance of ~15-20 km (Figure 4-34; 

Figure Figure 6-5; and see Qi et al., 2007). Almost the same interval distance can be 

measured in between the three fold belts in the foreland basin of Junggar and we 

propose that the location of these belts could be driven by the one of underlying 

basement faults which would play an important role in the deformation propagation 

process. This feature is compatible with the mechanical behavior of basement units: 

indeed, field study in mountain interior suggests that the basement is principally made 

of competent rocks and that few localized main structures cut these basement units 

into rigid blocks. This new image of the mechanisms driving deformation within the 

north Tian Shan fold-and-thrust belt is highly compatible with a schematic model 

published by Lacombe and Mouthereau, 2002 for the foreland tectonics of ranges 

(Figure 6-6a). Their model display deep detachment tectonics in forelands of orogen 

as recognized in Taiwan or western Alps belts (Lacombe and Mouthereau, 2002). 

Basement shortening in forelands are accommodated at the scale of the upper crust, 

which requires that it is partially decoupled from the deeper lithosphere levels by a 

crustal detachment (Figure 6-6a). This detachment presumably occurs along the 

midcrustal, thermally weakened brittle-ductile transition. In the previous exampled 

belts, the detachment ramps toward the surface into a shallow detachment and 

propagates far away from the orogen. However, in the northern front of Tian Shan, 

present-day microseismicity shows a hypocentral depth-distribution between 5 and 35 

km, with a peak at 20 km (Wang et al., 2004). The nowadays geothermal gradient 

follows a “modern type” gradient of ~ 22°C/km suggested by borehole (Hendrix et al., 

1994). At a depth of ~20 km, a weakened brittle-ductile transition zone may be 

concerned with the temperature of about 440°C and the pressure about 500Mpa (27 

MPa/km) (Horii and Nemat-Nasser 1986; Byerlee 1968). In our model (Figure 6-6b), 

the main detachment would be located ~15-20 km in depth and ramps to surface in 

the foreland. These ramp faults cut basement into rigid blocks which have also been 
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evidenced by field observations and well displayed on geological sections. The basin 

sediments couple with the sectoried basement in the first southernmost fold belt. 

While in the second and third belts, the sediments decouple with basement by some 

shallow décollements (Figure 6-6b). In these two models, the first one show large 

displacement along the front of the mountain and numerous faults rise from the deep 

detachment to surface, suggesting amount of shortening in the front. However, in 

northern piedmont of Tian Shan, large displacement fault is absent in the front, and 

only two or three ramp faults rise from the deep detachment fault. This characteristic 

confirms that the fold-and-thrust belt in the northern piedmont of Tian Shan is fairly 

weakly deformed than the examples in the first model, such as Taiwan, western Alps, 

Pyrenees belts. 

 

Figure 6-6. (a) Schematic model of superimposed shallow and deep detachment 

tectonics in orogen forelands of (Lacombe and Mouthereau, 2002). (b) Adaptation of 

this scheme to the Tian Shan structure. 
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6.2.4 Structural characteristics of an immature 

fold-and-thrust belt 

Front of a collision orogens are commonly characterized by fold-and-thrust belts, 

which is critical to establish the relationship between the range and the adjacent 

foreland basin (Davis et al., 1983; Dahlen et al., 1984; Vann et al., 1986; Tozer et al., 

2006; Lacombe et al., 2007). Strongly deformed orogens, such as Pyrenees, Canadian 

Rocky Mountains present highly folded foreland basins and fold-and-thrust belts, with 

important front thrusts developed between the range basement and the adjacent 

foreland basins, deep décollements as well as recumbent folds, duplex and nappes 

(Price, 1981, 2001; Teixell, 1998). Contrarily, this study highlights that the Cenozoic 

shortening is very limited in front of the northern Tian Shan range, in comparison 

with these others intracontinental collision ranges (Price, 1981, 2001; Teixell, 1998). 

In comparison to these well known examples which can be considered as mature front 

of collision orogens, the active northern Tian Shan fold-and-thrust belt can be 

regarded as an ‘immature’ range front structure. The characteristics of an immature 

fold-and-thrust belt and relative front range can thus be drawn, from the example of 

the northern Tian Shan piedmont, as follows: 

- First, Shortening within the belts developed within the foreland basin is rather 

small. Thus, movements along the potential frontal thrusts associated with these folds 

are limited. This limited shortening indicates that the inception of deformation is 

young or that the rate is low,  

- Second, resulting from the preceding point, deformation pattern displays as very 

uncylindrical through the fold-and-thrust belt,  

- Third, no backthrust developed within or at the base of the sedimentary series in 

front of the range, which would be the result of a young, weak deformation. This is a 

structural feature that may initiate and amplify later on during the evolution of the 

deformation process in piedmont areas, 

- Fourth, as discussed above, no backthrust movement and limited thrust 

movement within the belts indicate limited development of a potential horizontal 
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décollement structure within the sedimentary series. A regional décollement would be 

associated with more localized deformation, along a crust-scale structure, in front of 

the range; such décollement can propagate much shortening deformation, in the basin 

area, which is commonly developed in more strongly deformed orogen front, such as 

Canadian Rocky mountains (Debelmas et al., 2008; Figure 1-4b), 

- Finally, Localization of the belts could be controlled by the location of basement 

deep thrusts which would imply the characteristic distance separating these belts (the 

same mean distance than in-between the thrust faults visible within the range 

interiors). It indicates that deformation of the basement is distributed over a large 

band in front of the range, with several reverse faults active in the interior parts of the 

range and below the foreland basin sediments. This characteristic is contrasted with 

more strongly and mature collision range fronts where deformation in the basement 

levels is better localized along a main front thrust structure that likely cross over the 

entire continental crust (e.g. northern front of Pyrenees; Teixell, 1998).  

The immature character of the northern Tian Shan could be explained by several 

reasons as follows. First, the far-effect of India-Asia collision decreased by a 

progressive northward propagation of deformation (Tapponnier and Molnar, 1977; 

Tapponnier et al., 2001). The northern Tian Shan piedmont may be almost considered 

as the northern end of this far field compression. Geodetic measurements in central 

area show the total shortening rate between longitudes 81°E and 85°E is only 4.7±1.5 

mm/year. Eastwards, this rate decreases to <1 mm/year between longitudes 86°E and 

87°E (Abdrakhmatov et al., 1996; Wang et al., 2001). Second, the southern piedmont 

of the Tian Shan may have 20-40 km of crustal shortening with a horizontal 

shortening strain amount of 20-30% during the late Cenozoic (Yin et al., 1998). The 

net horizontal shortening through the Tian Shan area could thus be accommodated by 

southern foreland fold-and-thrust belt. Deep seismic profiles cross the whole Tian 

Shan show the Tarim block is bended and subducted under the Tian Shan, while the 

Junggar block is much less deformed showing a flat geometry (Zhao et al., 2003). 

This indicates that the northern piedmont may have experienced less deformation than 
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the southern one. Third, several estimations of Cenozoic shortening in the interior of 

the Tian Shan have been estimated across Tian Shan, i.e. 80 km (Allen et al., 1994), 

100 km (Molnar and Tapponnier, 1975), 124±30 km (Avouac et al., 1993), and 330 

±760 km (Chen et al., 1991). Despite the important difference among these values, the 

basement of the interior mountain could absorb a large part of the total shortening. 

Finally, the northern piedmont of Tian Shan is active, evidenced by seismicity 

studies (Molnar et Deng, 1984, Avouac et al., 1993; Deng et al., 1996; Ghose et al., 

1998; Wang et al., 2004). The shortening in north-south direction will be ongoing with 

the continuously northward displacement of India plate, therefore, the northern 

piedmont of Tian Shan will be more and more developed and become a mature 

fold-and-thrust belt. 

6.3 Deformation timing and shortening rate in the 

northern piedmont of Tian Shan 

The northward propagation of the deformation and precise timing of the Tian 

Shan Cenozoic reactivation have been largely questioned during last decades (Avouac 

et al., 1993; Hendrix et al., 1994; Métivier and Gaudemer 1997; Abdrakhmatov et al., 

2001). To estimate the onset of the Cenozoic range uplifting and the deposition of 

sediments, several geochronological methods have been applied in both northern and 

southern Tian Shan flanks, such as fission tracks, magnetostratigraphy, and results 

become more and more available (Zhou et al., 1997; Yin et al., 1998; Sun et al., 2004; 

2007; 2009; Charreau et al., 2005; 2007; Ji et al., 2008; Charreau et al., 2009). 

Meanwhile, some current strain rates in this area have also recently published by GPS 

kinematical studies (Wang et al., 2001; Niu et al., 2007; Yang et al., 2008). After 

discussing how those data can be used to determine the onset timing of the Cenozoic 

foreland deformation, the shortening amounts calculated for the present study area 

will be confronted to the deformation rates estimated and accepted for the northern 

piedmont of Tian Shan though the uncertainties would be relatively large due to the 

important discrepancies of estimations coming from different methods. Such analysis 
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is still important to better understand the deformation processes in front of the Tian 

Shan or for intracontinental collision settings, in general. In future works, much more 

detailed and multidisciplinary work needs, therefore, to be reinforced. 

6.3.1 Onset timing of Cenozoic foreland deformation 

The timing of deformation in the northern piedmont of Tian Shan is evidenced by 

the development of fold-and-thrust belts, unconformities and growth strata. Age 

determinations for these particular structures are often approached using sedimentary 

sequence, fission tracks and magnetostratigraphy. Here are briefly summarized the 

recent results. 

A 400-m-thick Latest Jurassic coarse conglomerates and breccias unconformably 

overlay on the early Jurassic series indicating a significant deformation and/or uplift 

of the ancient Tian Shan during Latest Mesozoic (Chapter 3; Hendrix, 2000; Dumitru 

et al., 2001; Jolivet et al., in  press). However, these conglomerates are wedging 

rapidly out and are only deposited in the piedmont of mountains. The dip angle 

difference between the conglomerate series and underlying layers is less than 5°, the 

deformation seems, therefore, very weak at that time. Moreover, in the basin cover, 

the Cretaceous through Neogene sedimentary series are mostly parallel and display 

conformable contacts, suggesting that no significant deformation occurred during that 

time interval (Burchfiel et al., 1999; Bullen et al., 2001; Bullen et al., 2003; Sobel et 

al., 2006). It seems that the deformation didn’t propagate to the interior of the 

foreland basin at least until Neogene. 

By extrapolating the current shortening rate derived from GPS measurements to 

the past and assuming that the total shortening rate across the western Tian Shan is 

around 200 km, Abdrakhmatov et al., (1996) suggested that most of Tian Shan was 

constructed during the past 10 Ma. By comparing cumulative crustal shortening 

across Tian Shan with current deformation rates, Avouac et al. (1993) estimated that 

the initiation of the deformation began at 16 +22/-9 Ma. According to the calculated 

mass accumulation rates in the Junggar basin, Métivier and Gaudemer (1997) placed 
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the beginning of the major uplift at 16 Ma. Their analyses show that the accumulation 

rate has been accelerated at around 5 Ma, which could indicate an acceleration of the 

Tian Shan uplift at that time. In situ apatite fission-track analyses from sediments 

exposed in both north and south of Tian Shan suggest that the unroofing of the Tian 

Shan began ca. 24–25 Ma (Hendrix et al., 1994; Dumitru et al., 2001). More and more 

recent fission track results seem confirming this age for the onset of Tian Shan 

topographic reactivation (Guo et al., 2006; Zhang et al., 2007; Wang et al., 2009; 

Jolivet et al., in press). This commonly accepted age for the reactivation and new 

uplift of the Tian Shan range relief may relate to the onset time of the deformation 

within the foreland fold-and-thrust belt. However, front deformation along the range 

is not obligatory directly linked with the uplift of the range interiors.  

An alternative method for estimating the onset age of shortening within the 

foreland fold-and-thrust belts consists in analyzing the growth strata structures 

developed within foreland basins. In northern Tian Shan, growth strata structures are 

particularly well expressed through within the Xiyu conglomerates formation (Xu et 

al., 1992) such as in the Tuositai anticline, the southernmost fold belt along Wusu 

section, at the bottom of the Xiyu formation (Lu et al., 2010; Figure 6-1, G1). 

However, age of this series along this section is not available up to now. Yet, about 

10 km east to the Tuositai anticline, the sedimentary boundary between the Dushanzi 

formation and Xiyu conglomerate has been magnetostratigraphically dated at 4.8 Ma 

in the Dushanzi anticline along Kuitun He (Charreau et al., 2005; Figure 6-1, G4).  

This 4.8-Ma-old boundary is located ~ 10 km northward to the basal Xiyu 

conglomerate of the Tuositai anticline. Assuming the northward propagating rates of 

3.9 mm/yr (Charreau et al., 2009), the Xiyu conglomerate limit of ~10 km southwards 

should be about 2.5 Ma older, in other words, the age of the growth strata extrapolated 

at the basal Xiyu conglomerate, in the Tuositai anticline, could be about 7.3 Ma. This 

may suggest that the study area experienced a tectonic forcing starting at that time. In 

the middle and second fold belt, Charreau et al., (2008) have identified growth strata 

in the Huoerguosi anticline (Figure 6-1, G3) by seismic profiles along the Jingou He 
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and estimated its age at ~10 Ma by the magnetostratigraphic study and stratigraphic 

correlation. In the same second fold belt, but about 70 km to the east, two 

magnetostratigraphic results have been reported for the Tugulu anticline (Figure 6-1, 

G2). Li et al. (2010a) proposed that the sediment accumulation rates increase at ~ 4 

Ma and that growth strata of the Xiyu formation started ~2 Ma ago, which provides a 

minimum age for folding here. Another study by Lu et al. (2010) also reported the 

same acceleration of sediment-accumulation rate at ~4 Ma. Moreover, the age of 

growth strata in the upper Taxi He formation is estimated at about 6 Ma. The 

significant dispersion in age even for the growth strata from folds of the same belt (at 

lateral distance of ~70 km (Figure 6-1), confirms the heterogeneous and uncylindrical 

pattern of the deformation along the northern piedmont of Tian Shan. 

In summary, several growth strata marking tectonic movements have been 

identified and dated directly and indirectly along three sections. Two of them have 

been studied in the same Taxi He section, one is estimated at 2 Ma and another at 6 

Ma, suggesting that multiphase tectonic forcing could have taken place along the 

northern Piedmont of Tian Shan. Three oldest ages of growth strata observed in these 

sections are about 10 Ma in the Huoerguosi anticline along the Jingou He section, 7.3 

Ma at the Tuositai anticline along the Wusu section and 6 Ma at the Tugulu anticline 

along the Taxi He section. It is worthy to notice the age of growth strata in the 

Huoerguosi anticline located in the middle fold belt is about 3 Ma older than that of 

the Tuositai anticline located in the southernmost fold belt, but ~ 70 km westwards. 

As shown in this study, the southernmost belt is absent in the Jingou He section. 

These laterally heterogeneous ages of growth strata indicate that the deformation 

within the southern Junggar basin do not propagate parallel with respect to the front 

range, in other words, folds from the same fold belts may not be necessarily 

developped simultaneously.  

It should be noticed here that most ages mentioned above come from growth 

strata analysis made on the surface. It is still possible that other growth strata 

structures may be masked by younger sedimentary cover and unexposed due to the 
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weak deformation.   

6.3.2 Qualitative shortening rates 

The deformation rate is a key parameter to study processes of the uplifting of 

Tian Shan and the deformation of its foreland basin. Several rather heterogeneous 

rates have recently been proposed, based on different methods. Geodetic survey 

shows a deformation rate of ~5 mm/yr across the range and at the longitude of the 

Jingou He area (Reigber et al., 2001; Wang et al., 2001; Niu et al., 2007; Yang et al., 

2008). However, Inferred from theoretical modeling and geological investigations, the 

deformation rate ranges from about 1 to 3 mm/yr (Avouac et al., 1993; Molnar et al., 

1994; Charreau et al., 2008).  

If two extreme oldest ages of growth strata may be considered as the possible 

range of the earliest tectonic forcing in the south Junggar basin, i.e. 10 Ma and 6 Ma, 

the deformation rate in this study area may be estimated as well according to the 

shortening amounts observed along four geological sections (Table 6-1).   

  Shortening rate (mm/yr) 

Section Shortening 

(km) 

for 6 Ma  

onset Age 

for 10 Ma  

onset Age 

Jingou He 12 2 1.2 

Qingshui He 6 1 0.6 

Hutubi He 5 0.8 0.5 

Wusu 2 0.3 0.2 

Table 6-1. The shortening rates calculated with different onset ages. 

The higher values of these estimations (0.3-2 mm/y) seem quite consistent with 

those estimated by other methods (1-3 mm/y). However, the difference between the 

lowest values from this study and other methods is a factor of 5. This may question if 

the shortening in some sections, such as Wusu, would be underestimated by this study.  

In fact, these geological sections are essentially estimated with seismic profiles and 

Jurassic sediments as marker layer. Moreover, geological structures in this area are 
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relatively simple. If there were an error on the restoration of geological section and an 

underestimation on the shortening, it would not be as important as a factor of 5. If the 

estimated results in Table 6-1 are qualitatively admitted, one of conclusions can be 

made is that the deformation rates are laterally variable as we observed for the contact 

types along the piedmont and ages of growth strata along the fold belts. 

Based on the shortening amounts estimated in this study and on the above 

mentioned deformation rates defined by other methods we can calculate the tectonic 

onseting age of deformation within the north Tian Shan foreland. Taking the extreme 

values of deformation rate, i.e. 1 and 3 mm/yr, the minimum and maximum possible 

deformation onset time can be estimated for the four studied sections of this study, in 

the northern piedmont of Tian Shan (Table 6-2). 

     

  Onset Age (Ma) 

Section Shortening 

(km) 

for 1 mm/yr  

shortening rate 

for 3 mm/yr  

shortening rate 

Jingou He 12 12 4 

Qingshui He 6 6 2 

Hutubi He 5 5 1.7 

Wusu 2 2 0.7 

Table 6-2. The onset age of deformation calculated with different shortening rates. 

The calculated results show a relative late deformation onset age. The maximal 

age is about 12 Ma for the Jingou He section when a shortening rate of 1 mm/y is 

applied, even only 4 Ma when 3 mm/y applied.  

Two possibilities may be proposed to explain the late estimated ages, assuming 

the shortening has been well estimated. (1) the deformation rate estimated by GPS 

measurements is temporary for a very recent and short period and it could not be 

representative of the whole deformation history since the last reactivation of the Tian 

Shan, saying that the deformation rate should be lower than the actual one; (2) The 

deformation rate estimated by the growth strata study may varies from 1 to 3 mm/y. 
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These deformation rates, corresponding to the tectonic events, may be discrete instead 

of continuous. In other words, these rates present an intensive deformation nature only 

for a short period. After such intensive deformation period when the growth strata 

formed, the deformation rate may decrease. If so, the initial deformation onset time 

may be earlier than the results presented in Table 6-2. (3) as the shortening has been 

estimated only from the geological section of the basin cover, the deformation onset 

time of in the basin may be significantly delayed with respect to that in the mountain 

range (cf. ~25 Ma for uplifting estimated by fission tracks).  

It is worthy to notice that the calculated onset times are very heterogeneous, even 

qualitatively. This may indicate that the deformation may start at different times, even 

for folds owning to the same row of fold belt. For instance, the Jingou He and Taxi He 

anticlines, located both in the middle fold belt, show onset ages of 12 and 6 Ma, 

respectively (Figure 6-1). These folds are isolated and do not connect each other in 

the depth. This may reveal that these folds seem having spatial relationship 

(equidistance to the front of the range), but are not coeval. As illustrated for the 

contact zone which displays rapid lateral variation of contact types, the deformation in 

the basin is also highly uncylindrical and also variable in time. Once more, this 

character indicates that the deformation in the northern fold-and-thrust belt has not 

been well developed, yet, and the study area is experiencing the beginning of a 

foreland deformation process. As discussed above, the appearance of three fold belts 

parallel to the Paleozoic structure may be just related to basement thrust that could be 

inherited Paleozoic structures. 

In summary, according to relatively comprehensive study (detailed field observation, 

geophysical investigation, drilled well, etc…), small amounts of shortening in the 

basin cover of Junggar have been calculated from restored geological sections. 

Considering previous studies on geochronology, kinematic motion from the study area, 

the first obvious conclusion made is that the deformation is highly variable along the 

strike of the range in age of the tectonic onsetting, deformation rate and amount. This 

may emphasis again the immature nature of the northern piedmont of Tian Shan as an 
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orogenic belt and the ongoing process of foreland basin development in south 

Junggar.   

6.4 Influences of inherited structures and paleo-re lief 

on the development of Cenozoic Tian Shan  

6.4.1 Influence of the Mesozoic paleo-relief  

In the northern piedmont of Tian Shan, marginal sedimentary breccias and coarse 

conglomerates were deposited in Jurassic series (Figure 3-3 in Chapter 3). The 

Jurassic “onlap” structure has also been deduced in the front of modern Tian Shan 

from the present field analysis, as illustrated in Figure 3-6. These characteristics 

indicate that a significant relief existed during Mesozoic times. The range piedmont 

was certainly located close and along the northern modern Tian Shan front during 

latest Jurassic, early Cretaceous times as the Kalaza sedimentary breccias locate along 

the present northern front of the modern mountain, along a N100-110° strike (see 

Chapter 3). Moreover, some locations described in this thesis work display the 

Paleozoic basement units thrusting over overturned Jurassic sedimentary breccias, 

such as in the Houxia section (Figure 4-26a). Such observation suggests that, at local 

scale, the Mesozoic paleo-relief may have controlled the location of the Cenozoic 

thrust faults, as illustrated on Figure 6-7. Indeed, analysis of these coarse sedimentary 

breccias highlighted i) erosion of the Paleozoic basement units and ii) a very limited 

transport of those clastic sediments, both features underlining the location of foothills 

during Mesozoic times (Figure 6-7a and Figure 3-6). On the other hand, structural 

observations made such as in the Houxia valley clearly shows that Cenozoic 

deformation could have localize exactly along those paleo-foothills as illustrated on 

figure 6-7b (Figure 3-4). In that case, Cenozoic Tian Shan “front” structures may be 

influenced by the piedmont of the Mesozoic paleo-relief. However, while segments 

where Jurassic series deformed during Cenozoic shortening, the northern Tian Shan 

front also displays continuous Mesozoic series and preserved onlap type structures 
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(Figure 3-6) which highlight, conversely, only poor control of the paleo-relief 

structure on the location of Cenozoic deformation (cf. Hutubi He section illustrated in 

Figure 6-7b and Figure 3-6).  

 
 

Figure 6-7. (a) An active Cenozoic thrust between the Paleozoic basement and the 

Jurassic sedimentary breccias. (b) inactive Cenozoic “front” of the northern Tian 

Shan. 
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Besides, several previous studies, such as Avouac et al. (1993), Burchfiel et al. 

(1999) and Deng et al. (2000), have suggested that a significant displacement has 

occurred along the thrust of the northern front of Tian Shan, assuming that the 

mountain basement rises from the deep basal basin (~10 km in depth) and thrusts onto 

the sediments. However, evidences for the persistence of a Mesozoic paleo-relief 

indicate the mountain basement was shallowly buried or located at a similar altitude 

with sediments along the Mesozoic front (Figure 6-7b).  Therefore, the thrust 

between the mountain basement and the basin sediments could be much less 

important with respect to the previous estimation with rather small accounts of slip, 

such as observed in Houxia section (Figure 3-4 and Figure 4-28). Therefore, the 

deformations in the front, even though thrust contacts can be sometimes observed 

between the mountain basement and the basin sediments, are less important than that 

estimated by previous studies because of the neglect of the paleo-relief in Tian Shan 

front.  

6.4.2 Influence of the Paleozoic structure 

The importance of inherited structures in the geological evolution of Tian Shan 

has been pointed out by numerous studies (Molnar et al., 1973; Molnar and 

Tapponnier, 1975; Hendrix et al., 1992; Dumitru et al., 2001; Sobel et al., 2001; Wang 

et al., 2009; Jolivet et al., in press). For instance, earthquake analyses show that 

location of the current deformation can be related, to some extent, to the one of 

ancient structures (Molnar et al., 1973; Molnar and Tapponnier, 1975). With only few 

exceptions, most authors consider that the Tian Shan Cenozoic activity is related to 

the reactivation of crust structures inherited from the Paleozoic collision (Allen et al., 

1993; Avouac et al., 1993; Hendrix et al., 1994; Yin et al., 1998; Allen et al., 1999; 

Dumitru et al., 2001). Yet, up to now, only poor discussion have been exposed and 

details for such a reactivation are often lacking.  

Recent statistic studies on the Quaternary deformation show that the current 

maximum shortening axis in Tian Shan area is sub-horizontal and strike ~ N0° (Holt 
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et al., 1995; Holt, 2000; Kreemer et al., 2003); in other words, the resulting structural 

must strike at about N90°. On the other hand, in the study area, the major Paleozoic 

shear zones, in the interior of the range, strike about N105-110° (Figure 6-8; Carroll, 

1990; Charvet et al., 2007; Gao et al., 1998; Shu et al., 2004; Kröner, 2007; Wang et 

al., 2007; 2008). These shear zones display high-dipping angles and dextral strike-slip 

movements until, at least, late Permian (Wang et al., 2008; Shu et al., 2010).  

If considering deformation pattern of the basement units in the study area: the 

chapter 4 of this thesis show that the basement units are faulted and clearly separated 

into blocks with an interval of 15 to 20 km wide (Figure 4-34 and Figure 5-19). Field 

observations show that localized brittle deformation within basement rocks cut across 

the pervasive ductile structures lasting from the Paleozoic evolution of the range; few 

indicators – e.g. fault planes and tension gashes – also point out that basement units 

most probably behave as brittle and rather strong blocks, within the upper crust level, 

during Cenozoic intracontinental reactivation of the range. In addition, this study 

highlights that the Cenozoic shortening in front of the range results in very 

uncylindrical deformation pattern and presents strong lateral variations of the nature 

of the structures developed along-strike. Yet, analysis of the resulting structural map 

clearly shows that the brittle thrust developed within the mountain interiors, along the 

boundary in between basement rocks and Mesozoic sediments, can often be 

continuously extended in strike of an ancient, inherited basement shear zone. 

Rectangle zone A in the central part of Figure 6-8 particularly well highlight such 

configuration; the corresponding ductile shear zone is located to the north of the 

major North Tian Shan Fault (NTF) and was active as a strike-slip shear zone during 

Permian (Wang et al., 2006; Charvet et al., 2007).  

If considering now the deformation pattern through the fold-and-thrust belts:   

i) in the eastern part of the study area, from Urumqi to Shawan, fold axes and 

thrust faults developed within the foreland sedimentary series also show a N100-110° 

mean striking orientation, sub-parallel with respect to the inherited Paleozoic structure 

(Figure 6-8). The southernmost fold belt is characterized by basement-involved 
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structure. The basement is “cut” by reverse faults into rigid blocks (Figure 6-5) with 

also a parallel strike. It must be pointed out here that the thrusts developed within the 

interior parts of the range, within basement units, but also the ones observed within 

the foreland fold-and-thrust belts systematically display very steep dip angles. This 

feature, which is a rather peculiar one for the orientation attitude of reverse faults, 

may certainly be influenced by the orientation of the Paleozoic structures (shear zones 

or more penetrative steep cleavage developed within basement rocks).  

ii) Conversely, in the north-western part of the study area, from Anjihai to Wusu, 

the northernmost anticline belt shows E-W striking axes (see Anjihai and Dushanzi 

anticlines; Figure 6-8). This orientation is well consistent with the one of the 

maximum shortening axis direction deduced from Quaternary structures analysis, as 

exposed above. Within that particular area, i.e. west of the study area and rather far 

from the range “front”, 10° to 20° angle difference can be measured in between the 

Paleozoic structure and the fold axis orientation, which contrast with the rest of the 

studied fold-and-thrust belt. It is noteworthy that this feature coincides with parts of 

the foreland basin where Cenozoic sediments are the thickest along the study area of 

the northern Tian Shan piedmont (Figure 6-8). The change in fold orientations is 

progressive in-between the eastern and western parts of the study area which also 

corresponds to a progressive variation of the Cenozoic sediments thickness (Figure 

6-8). Indeed, in the easternmost part, Jurassic series outcrops directly at surface while 

the same series is buried in depth (~10 km), below Cenozoic strata, in the western 

area (Figure 6-8). As the difference in fold orientations looks correlated with the 

thickness variation of the Cenozoic sediments in between the eastern and western 

parts of the study area, we propose that the Cenozoic sedimentary pile may act as a 

decoupling layer. Yet, where the sedimentary thickness is the less important, in the 

eastern part of the basin as well as all along the range front, orientation of the 

structures observed at surface seems controlled by the one of the underlying basement 

structures, inherited from the Paleozoic tectonic history; shortening deformation of 

the cover may thus be coupled with the basement-involved structure in that case. 
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Conversely, where the sedimentary thickness is the more important, in the western 

part of the basin, orientation of the structures (i.e. folds and thrust faults) only 

depends on the maximum shortening orientation; orientation of the inherited 

Paleozoic structures seem not to have any control in that case as they are deeply 

buried below the Cenozoic sediments much certainly acting as a decoupling layer in 

that case.   

From the all above discussed points, this study shows that the localization of the 

Cenozoic deformation – and in particular the location and orientation of reverse faults 

and folding – must be controlled, in most part of the study area, by Paleozoic 

inherited structures, including crust scale ductile shear zone as well as more 

penetrative ductile deformation. On the other hand, Cenozoic sedimentary series may 

act as a decoupling layer where they display the thickest deposits. Structures east-west 

mean striking is thus solely controlled by the one of the regional north-south striking 

maximum shortening direction in that case. 
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Figure 6-8. Geological 

map of the northern piedmont of 

Tian Shan, with comparision of 

the location and orientation of 

the Paleozoic and Cenozoic 

structures.
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6.5 Conclusions 

The Tian Shan mountain range, located in the northwest of China, has experienced 

successive tectonic events. The most attention has been, up to now, concentrated on the 

Paleozoic subduction-collision related block accretion of the range and its Cenozoic 

reactivation. Its contrasted topography and obvious fold-and-thrust belts along its piedmont 

have attracted attention of geoscientists since several decades and the ongoing deformation of 

the northern piedmont of Tian Shan offers an ideal natural laboratory to study the active 

mountain building. Moreover, the obtained results concerning the deformation amount, rate 

and mechanism are still in debate, in order to better understand the uplifting process and the 

deformation mechanism of Cenozoic Tian Shan, we have carried out a multidisciplinary study 

along its the northern piedmont from Urumqi to Wusu areas integrating detailed structural 

observations on the field as well as subsurface data including seismic profiles, gravity 

measurements and drilled wells. The main conclusions of this study can be made as follows: 

(a) About the “immature” northern front of Tian Sha n 

The observations along the range-basin contacts show variable structural types between 

the basement range and the basin sediments, i.e. fault, fold and unconformity that admits rapid 

lateral evolution. The basin structure is mainly characterised by discrete and uncylindrical 

folds in the Meso-Cenozoic series. By integrating all available data, restored geological 

sections show rather weak shortening amounts ranging from 12 km (16.5%) to 5 km (6%) for 

the Jingou He and the Hutubi He sections, respectively. Above observations argue that the 

deformation should be weak with a significant lateral variations along the northern piedmont 

of Tian Shan.  

In the depth, the structure of the basement is characterised by parallel high-angle-dipping 

thrusts characterised by a rather steady 15-20 km wide periodicity. No any low-angle and 

important amplitude thrust (nappe) neither backthrust has been observed in the northern 

piedmont of Tian Shan despite previous interpretations (Avouac et al., 1993; Burchfiel et al., 

1999; Deng et al., 2000). Moreover, only few-kilometre-scaled décollements have been 

identified within the basin.  

Assuming the modern shortening rate is 1-3 mm/yr, suggested by the geodetic surveying 

and geological investigations (Avouac et al., 1993; Molnar et al., 1994; Wang et al., 2001; Niu 
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et al., 2007; Charreau et al., 2008; Yang et al., 2008) and admitting the shortening amount 

obtained from this study, the oldest deformation onset age may be extrapolated to about 12 

Ma (for about 12 km in shortening) among four studied geological sections. This result may 

be representative for the northern Tian Shan piedmont as these sections are extended about 

170km east-westwards. Therefore, this representative onset age of modern deformation may 

indicate the northern piedmont is “young” with respect to onset age of unroofing age of Tian 

Shan (~25 Ma by fission tracks; e.g. Hendrix et al., 1994; Dumitru et al., 2001; Jolivet et al., 

in press). 

 Comparing to well-developed fold-and-thrust-belts in other ranges, such as Pyrenees 

(France) or Rocky Mountains (Canada), the features of the surface and deep structures, weak 

deformation and “younger” age may characterise the northern piedmont of Tian Shan as an 

immature orogenic front. As this area is still experiencing characterised by the ongoing 

India-Eurasia convergence, and the deformation rate is relatively high, the deformation will, 

therefore, become stronger and its ‘maturity’ will be, consequently, better and quickly 

developed.  

(b) Consequences of Mesozoic Paleo-relief in presen t Tian 

Shan 

Our study clearly has evidenced, at different encasing scales, the existence of a major 

Mesozoic paleo-relief along the northern Tian Shan range. A minimal difference of relative 

altitudes of about 1300m has been estimated between the basin and the mountain range based 

on the thickness variation and onlap sedimentary structure of the lower Jurassic series. The 

concept that the far-effect of the collision India-Asia is the only responsible for the present 

topography of the Tian Shan should be, therefore, questioned. In other words, the Mesozoic 

paleorelief has probably influenced the present Tian Shan topography. The Cenozoic uplifting 

of Tian Shan, due to the India-Asia collision, may be therefore reduced. 

(c) Mechanism of the deformation in the northern “f ront” 

Field observations and restored geological sections suggest rather weak deformation in 

the northern piedmont of Tian Shan. The basement on the surface is deformed by joints or 

steep faults and is appears to behaviour as rigid blocks. Large-scaled sections show that the 

basement is cut into rigid blocks with a roughly periodic interval of ~15-20 km. As the 
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overlying sediments are sub-horizontal, the basement should be weakly deformed though 

some joints and minor faults have been observed within it. Moreover, in the contact zones, all 

visible tectonic contacts are of reverse faults. Regional detachment, proposed in previous 

studies (Avouac et al., 1993; Burchfiel et al., 1999; Deng et al., 2000) with large movement 

has yet not been traced in the study area. Therefore, the deformation in the northern piedmont 

of Tian Shan is most probably controlled by the basement structures, which are mostly 

characterized by the steep dipping reverse faults. 

A tentative model has been proposed for the deformation mechanism in the northern 

piedmont of Tian Shan. The reverse fault features are separated by ~15-20 km suggests that 

these reverse faults may be considered as ramps and be produced by a deep detachment fault. 

This detachment may be located about 15-20 km in the depth where it is localised below the 

traditional depth of brittle-ductile transition zone (Wang et al., 2004). In the upper and more 

brittle zone, the basement may be cut by reverse faults into rigid internally unstrained blocks. 

The northward compressive deformation is mainly propagated by the relative movement 

among these blocks. These reverse faults, visible in the contact zone and into the basement 

range have mainly deformed the basin cover and produced the fold belts in the basin. This 

model is significantly different from previous proposed ones: large detachment of the basin 

cover with respect to the basement.   

(d) Paleozoic inherited structures on the present Tian Shan 

 Cenozoic structures, such as fold axes of thrust traces in the southern Junggar basin 

presents a general N90° strike in the western study area where the series are characterized by 

thick Cenozoic cover. To the East, with an extent of ~130 km in distance along the range 

Cenozoic cover disappears and Mesozoic rocks directly crops out. There, structure strikes are 

consistently N 100-110° and appear parallel to the main Paleozoic shear zones in the northern 

Tian Shan with strike direction around N100-110° as well. Some of these Paleozoic shear 

zones have been rejuvenated during Cenozoic and deform the basin sediments along this 

direction when the sedimentary cover in thin. However, to the West, where sedimentary cover 

is rather thick with ~5 km of Cenozoic series, direction of the structures, while probably 

linked to the same reactivation at depth, are rather orthogonal to the main shortening direction 

(i.e. N90°) and appears as newly formed. The Dushanzi and Anjihai anticlines show east-west 

orientated strikes by a difference of about 10-20° with respect to the Paleozoic structure. It 

indicates that the basin cover in the western study zone may be decoupled with the basement 



180 
 

structure and the far-effect of the north-south compression probably plays a main role here.      

6.6 Perspectives 

Though this study has made progresses in the understanding of the Cenozoic evolution of 

the northern piedmont of Tian Shan, such as the role of far-effect of India-Asia collision on 

the present topography of Tian Shan, the process and mechanism of deformation along its 

northern piedmont of Tian Shan Cenozoic, onset age of tectonic forcing in the Junggar basins, 

etc., several essential problems still remain unclear. 

(a) Relationship between Paleozoic Inherited and Ce nozoic 

structures 

The control of the Paleozoic structure on the Cenozoic one seems having been 

demonstrated, but still qualitatively. Much detailed work is need in geometrical relationship, 

relative kinematic movements, and active age constrain both the Paleozoic and Cenozoic 

faults are necessary to clarify their relationships.   

(b) The 3D modelling of the southern Junggar basin 

Though four geological sections have built up from the basin to the range along the 

northern piedmont of Tian Shan, the observations still remain discrete, especially because of 

highly lateral variations of deformation style, rate and shortening the 3D modelling will help 

to better reveal structural characteristics of the study zone and understand the deformation 

mechanism. Furthermore, this work may also allow estimating the sedimentary volume, 

understanding the foreland basin processing, and, consequently, probably erosion and 

uplifting history of Tian Shan.  

(C) Cenozoic evolution of the southern piedmont of Tian Shan 

The northern piedmont of Tian Shan has been characterised as an immature orogenic belt. 

Its southern piedmont seems having undergone stronger Cenozoic deformation suggested by 

previous studies (e.g. Yin et al., 1998). However, what are the characteristics of the front in 

the southern piedmont? What is the difference between the northern and southern piedmont in 



181 
 

deformation? Much more field works are needed to answer these critical questions and to 

understand the deformation propagation of due to the collision India-Asia and the Cenozoic 

uplifting history of Tian Shan. 
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Appendix 1. Interpretation of seismic data 

The seismic method is by far the most important geophysical technique in terms of 

expenditures and number of geophysicists involved. Its predominance is due to high accuracy, 

high resolution, and great penetration (Telford et al., 1990). The basic technique of seismic 

exploration consists of generating seismic waves and measuring the time required for the 

waves to travel from the sources to a series of geophones, usually disposed along a straight 

line directed toward the source. From a knowledge of traveltimes and the velocity of the 

waves, one attempts to reconstruct the paths of the seismic waves. Structural information is 

derived principally from paths that fall into two main categories: headwave (refracted) paths, 

in which the principal portion of the path is along the interface between two rock layers and 

hence is approximately horizontal, and reflected paths, in which the wave travels downward 

initially and at some point is reflected back to the surface, the overall path being essentially 

vertical (Figure A-1). For the both types of path, the traveltimes depend on the physical 

properties of the rocks and the altitudes of the beds. The goal of seismic exploration is to 

deduce information about the rocks, especially about the attitudes of the beds, from the 

observed arrival times and from variation in amplitude, frequency, phase, and wave shape. In 

this thesis, we focus on the seismic reflection. 

 

Figure A-1. Seismic refraction model, (b) seismic reflection model (Modified from USGS 

website). 

Seismic methods are widespread used in variety domains. The mainly goal is exploring 

for petroleum: the locations for exploratory wells rarely are made without seismic information. 

Seismic methods are also important in orogenic structures study, such as ECORS (Etude 

Continentale et Océanique par Réflexion et réfraction Sismiques) in Pyrenees (Roure et al., 

1989; ECORS Pyrenees Team, 1988), ECORS-CROP in the Alps (Bayer et al., 1987; Schmid 

and Kissling, 2000) and COCORP profile in Rocky Mountains (Allmendinger, et al., 1982; 

Brewer et al., 1982). Seismic profiles are widespread used in foreland fold-and-thrust belt (e.g. 
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Bally et al., 1966; Tozer et al., 2006; McClelland and Oldow, 2004). 

The original profiles are come from some Chinese petrol companies. In this study, we 

concentrate in the interpretation of seismic profiles. About 200 drilled well are come from 

some source. These seismic profiles were well treated by commercial processes, such as stack, 

migration and noise attenuation. They present the two-way travel reflection times in y-axis. 

So it has to translate the two-way time to depth. 

Local stacking velocities derived from the reflection survey are used for the conversion of 

seismic wave travel times into depths. Moreover it provides an indication of the lithology of a 

rock or, in some cases, the nature of the pore fluids contained within it. Several methods are 

used for the conversion of the time sections to depth. 

Firstly, it could be treated in Adobe software Photoshop with another plugin, namely 

seismic plugin by Jay Lieske (1998). It is software that works within Photoshop 5 or 6 to 

depth-correction and unfold scanned seismic reflection profiles. One channel in photoshop of 

filled gray presents the velocity of a seismic profile. The values in the gray channel must be in 

the range of a byte, 0…255. The values in the channel could associate with real velocities by 

arbitrary factor. For example, if we choose a pixel value of 40 to represent the seismic 

velocity of air (2000 m/s one-way) then pixels with a value of 50 represent 2500 m/s, 100 

represent 5000 m/s, etc. Finally, the original image will be pushed off or up by rubbersheeting 

each column according to the velocity model channel. 

 Secondly, original seismic profile could be converted to depth by “DIY” computer 

programmers. For example, Matlab could be easily used for bitmap treating. Every pixel is 

calculated and relocated to their real vertical depth according to velocities. All the pixels 

locate in their really depth in the seismic profile (Shengli Wang, personal communication).  

Finally, time profiles are converted to depth by the first methods when they are with 

simpler velocities structure. In contrast, some profiles are complex to describe by different 

velocities by blocks, which are treated by the second methods.  
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Appendix 2. Methodology of gravity data 

2.1 Basic theory 

The basis of the gravity survey method is Newton’s Law of Gravitaion, which states that 

the force of attraction  between two masses  and , whose dimensions are 

small with respect to the distance γ between them, is given by  

 

where  is the Gravitational Constant 

(6.67 ). 

Consider the gravitational attraction of a spherical, non-rotating, homogeneous Earth of 

mass  and radius  on a small mass  on its surface. It can be simply considered that 

the mass of a sphere acts as though it were concentrated at the centre of the sphere and by 

substitution in the last equation: 

 

 

Force is related to mass by acceleration and the term  is known 

as the gravitational acceleration, namely gravity. The weight of the mass is given by mg. 

On the Earth, gravity should be constant. However, the Earth’s ellipsoidal shape, rotation, 

irregular surface relief and internal mass distribution cause gravity to vary over its surface. 

The gravitational field is most usefully defined in terms of the Gravitational potential U: 

 

Whereas the gravitational acceleration  is a vector quantity, having both magnitude and 

direction, the gravitational potential  in any direction gives the component of gravity in that 

direction. The sea-level surface, or geoid, is the most easily recognized equipotential surface, 

which is everywhere horizontal, that is, at right angles to the direction of gravity. The shape of 

the Earth, determined by geodetic measurements and satellite tracking, is nearly spheroidal, 
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bulging at the equator and flattened at the poles. The term “reference spheroid” is an oblate 

ellipsoid that approximates the mean sea-level surface (geoid), with the land above it removed. 

This theoretical model was described by the International Union of Geodesy and Geophysics 

with a formula in 1930. 

 

 This formula has been superseded by the Geodetic Reference System 1967 (GRS67). 

 

where  is latitude. 

Because of the excess mass in depth, the geoid and reference spherioid do not coincide 

and the local mass anomalies warp the geoid (Figure A-2a). The geoid is expedted to be 

warped upward under the continents because of attracting material above and downward over 

the ocean basins because of the low density of water (Figure A-2b). The deviation between 

the two surfaces is as much as 100m. 

 

 

Figure A-2. Reference spheroid and geoid. (a) Local excess mass warpe the geoid. (b) 

Continent and Ocean warp the geoid. 

2.2 Gravity anomalies of simple-structures 

The gravitational attraction of a point mass  at a distance  from the mass and the 
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gravitational attraction  in the direction of the mass is given by  from 

Newton’s Law. The gravity anomaly  caused by the mass is  (Figure 

A-3). 

 

Figure A-3. The gravity anomaly of a point mass or sphere. 

 

Figure A-4. The gravity anomaly of an irregular shape. 

In general, the gravity anomaly of a body of any shape can be determined by summing 

the attractions of all the mass elements which make up the body (Figure A-4). Considering a 

small prismatic element of such a body of density , the anomaly of whole body  is then 

found by summing all such elements which make up the body, then 
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Where  

Some forward models are presented here. For example, 1 km square with 0.07 gm/cc 

more in density could cause a 0.09 mGal anomaly in surface. The anomaly curve shows a 

symmetric curve below the denser mass. The anomaly increases when the square moves 

upward and decreases when it moves downward (Figure A-5). 

 

 

Figure A-5. The gravity anomaly of an square with 1 km and 0.07 gm/cc density contrast. 

A fault could also cause the gravity anomaly in surface. For example, a fault reverse with 

one layer denser could cause a rotationally symmetric curve (Figure A-6).  The lighter layer 

in this section also results in a similar model profile. 
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Figure A-6. The gravity anomaly of a reserve fault, which cut off a less or more 0.1 gm/cc in 

density. 

The folds could be identified by the profile of the gravity anomaly. For example, a 

detachement fold with 0.1 mg/cc lighter in density and with 4 km wave length cause 1 mGal 

anomaly (Figure A-7).  

 

Figure A-7. The gravity anomaly of a detachment fold, which cut off a less or more 0.1 gm/cc 

in density. 

Finally, the forward simple model of a foreland basin is constructed. We assume that the 

density of the basement it 2.6 gm/cc and the basin sediments is 2.4 gm/cc. The profile of the 

anomaly is controlled by the contract of the basin and basement. The anomaly increase to the 

mountain direction but decreased when the thickness of the basin increase (Figure A-8). 
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Figure A-8. The gravity anomaly of a foreland basin (2.4 gm/cc) and a mountain basement. 

2.3 Density analysis 

Gravity anomalies result from the difference in density, or density contrast, between a 

body of rock and its surroundings. The sign of the density contrast determines the sign of the 

gravity anomaly. Most common rock types have densities range from 1.60 and 3.20 Mgm-3. 

The density of a rock is dependent on both its mineral composition and porosity. 

Several methods are used to determine the densities in the northern piedmont of Tian 

Shan. The direct measurements on rock samples is the common way, which is usually 

necessary to measure several tens of samples of each particular rock type in order to obtain a 

reliable mean density and variance. Moreover there are some indirect methods, providing a 

mean density of a particular rock unit which may be internally quite variable. They are 

measured in boreholes, Nettleton’s method of density determination, and also by the P-wave 

velocities of rocks. 

We carried out the direct measurement by electronic balance ( 

 

Figure A-9). The rocky samples are dried in a baker during 12 hours. They are then 

weighted on the balance and obtain the value in air . After that, they are weighted in 

water . They are placed in a dry plate about 30 minutes and weighted wet on the balance 

 then weighted in water . Finally, two type of the densities can be calculated, the dry 

and the wet. 
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However, the Cenzoic are the sandstone and mudstone without well compression. They 

would dissolve in water. We measured their volumes in a measuring cup and the density will 

be:  

 

 

 

 

 

Figure A-9. Cartoon shows the direct measurement of 

rock densities with. 

 
Nettleton’s method of density determination involves taking gravity observations over a 

small isolated topographic prominence. Field data are reduced using a series of different 

densities for the Bouguer and terrain corrections (Figure A-10).The density value that yields a 

Bouguer anomaly with the least correlation (positive or negative) with the topography is taken 

to represent the density of the prominence. The method is useful in that no borehole or 

mineshaft is required, and a mean density of the material forming the prominence is provided. 

A disadvantage of the method is that isolated relief features may be formed of anomalous 

materials which are not representative of the area in general. 
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Figure A-10. Nettleton’s method of density determination over an isolated topographic 

feature.The profile corresponding to a value of 2.3 gm/cc shows least correlation with 

topography so this density is taken to represent the density of the feature (Kearey et al., 2002). 

Densities are also provided from the P-wave velocities of rocks obtained in seismic 

surveys. P-wave velocities are related with various rock densities by empirical 

velocity-density formulas (Gardner et al., 1974; Birch 1960; 1961; Christensen and Fountain 

1975; Figure A-11). Nafe and Drake (1963) suggested that velocities estimated from seismic 

are probably no more accurate than about  . However, this is the only method 

available for the estimation of sensibilities of deeply buried rock units which cannot be 

sampled. 

 

 

 
 

 
 
 
 
 
 
 
 

Figure A-11. Logarithm of P-wave 

velocity against density for various 

rock types, show the best-fitting 

linear relationship between density 

and log velocity (after Gardner et al., 

1974). 
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Number Lithology Age W1 W2 W3 W4 W5 W6 D1 D2
Cen3a microconglomates Cenozoic 0.1652 0.4306 0.4919 0.7569 0.6103 0.4913 2.24 1.48
Cen5 marnes silt Cenozoic 0.165 0.3674 0.4229 0.6251 0.5092 0.3752 2.35 2.15
Cen6 marnes silteuses Cenozoic 0.1652 0.343 0.4814 0.6591 0.5601 0.3636 2.26 1.79
Cen7 sandstone carbonate Cenozoic 0.1651 0.4863 0.5687 0.8892 0.6982 0.4949 2.48 2.33
Cen8 sandstone Cenozoic 0.1652 0.4204 0.4861 0.7457 0.5905 0.4288 2.44 2.29
Cen1 Greenish sanstone Cenozoic * 0.2812 0.1602 0.2824 0.1631 0.2855 2.30 2.29
TS123/K sandstone Cretacous * 0.1627 0.0968 0.1633 0.0988 0.1654 2.44 2.44
J3a marnes Jurassic 0.1651 0.5551 0.5725 0.9619 0.7249 0.5606 2.56 2.47
J4a marnes Jurassic 0.1651 0.3475 0.515 0.6973 0.5968 0.3564 2.23 2.01
J4b marnes Jurassic 0.1651 0.3669 0.4985 0.7002 0.578 0.3703 2.54 2.43
J3c(A) medium sandstone Jurassic * 0.4211 0.2491 0.4249 0.2595 0.4348 2.39 2.40
J3c(B) medium sandstone Jurassic * 0.4325 0.2565 0.436 0.2673 0.4468 2.40 2.40
J4b red sandstone Jurassic * 0.4556 0.2754 0.4567 0.2784 0.4601 2.51 2.50
K130 sandstone Jurassic * 0.7333 0.451 0.7352 0.4531 0.7372 2.58 2.58
K148 sandstone Jurassic * 0.5139 0.2969 0.5183 0.3107 0.5319 2.32 2.32
T1 Marres Triassic 0.165 0.5713 0.5849 0.9909 0.7579 0.619 2.35 0.01
T2a conglomerate and gravel Triassic * 0.87 0.5277 0.8723 0.5329 0.8774 2.52 2.52
T2b sandstone Triassic * 0.6728 0.4076 0.674 0.4107 0.6774 2.52 2.52
K146B Puddingstone Permian * 0.6214 0.3744 0.6264 0.3859 0.6363 2.46 2.48
P1a andsite Permian * 0.4168 0.2569 0.4174 0.2574 0.4181 2.59 2.59
P1c volcanoclastite Permian * 0.2506 0.1561 0.2514 0.1569 0.2522 2.62 2.62
P2 red silsite Permian * 0.4041 0.2467 0.4049 0.2472 0.4058 2.55 2.54
P3 red sandstone Permian * 0.5456 0.3381 0.5469 0.3389 0.5477 2.61 2.61
K104 sandstone Permian * 0.5747 0.3523 0.5762 0.3536 0.5774 2.56 2.56
C1a andésite massive Carboniferous * 1.0186 0.6499 1.0193 0.6502 1.0196 2.75 2.75
C1b conglomerate of andsite Carboniferous * 0.657 0.4191 0.6578 0.4195 0.6583 2.75 2.75
C2 marbre Carboniferous * 0.731 0.4585 0.7321 0.4591 0.732 2.67 2.67
C3 Andsite Carboniferous * 0.5874 0.3644 0.5915 0.374 0.6021 2.58 2.57
C4 Andsite Carboniferous * 0.9455 0.5827 0.9466 0.583 0.947 2.59 2.59
K107 sandstone Carboniferous * 0.3388 0.2106 0.3399 0.2116 0.3414 2.62 2.60
K82 sandstone Carboniferous * 0.8335 0.5222 0.8346 0.5225 0.8355 2.66 2.66
K89 limestone Carboniferous * 0.6933 0.4264 0.694 0.4268 0.6967 2.59 2.56
K168 limestone Carboniferous * 0.7469 0.4697 0.7479 0.4699 0.7484 2.68 2.68
K137 sandstone Cretacous * 0.4069 0.251 0.4076 0.252 0.4084 2.59 2.60
K91 limestone Carboniferous * 0.5052 0.3052 0.5071 0.3091 0.5117 2.50 2.49
Table A-1. The measurement data of density samples with balance.  
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In this study, absolute densities are measured directly by electronic balance. Two methods 

are used to two types of samples: the incompact and the solid. For the first one, six values are 

obtained, weight of cup dry (W1), weight of samples dry with cup dry (W2), weight of cup 

and water (W3), weight of samples , cup and water (W4), weight of more water without 

sample (W5) and weight of samples wet, cup and water (W6).  

D1=(W2-W1)/(W5-W3); D2=(W2-W1)/[W5-W3+(W6-W2)]. 

Secondly, for the solid sample, also six values are obtained without W1 in the Table A-1. 

They are weight of dry sample (W2), weight of sample in water (W3), weight of wet sample 

(W4), weight of wet sample in water (W5) and weight of wet sample after previous step 

(W6).   

D1=W2/(W4-W3); D2= W2/(W6-W5). 

Two results of density are calculated and compared to verify the effect of the porosity in 

measurement (D2). D1 is the original density result. 

P-wave velocities are also used for determining rock densities (Table A-2). It is based on 

the formula: 

   (from Gardner et al., 1974).  

Q24 2500 2
Q1x 3600 2.4
N2d 3400 2.37
N1t 3500 2.38
N1s 3700 2.42
E23a 3150 2.32
E12z 4100 2.48
K2d 4750 2.57
K1tg 4230 2.5
J3 4300 2.51
J2 4300 2.51
J1 4500 2.54
T 4600 2.55

Basement 5000 2.61

seismic 
velocity 

Density(gm/cc)

 

Table A-2. Densities of every formation obtained from Seismic P-velocities. 

The density of the northern Tian Shan has been studied in previous studies 

(B·И· Tchaikov, 1951; Li et al., 1958; Gao et al., 1958; Jiang et al., 1983; Zuo et al., 1999, 

Figure A-12). Those results were obtained by a great deal of measurements and they 

correspond to our measurement and velocity results. 
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Figure A-12. Density distribution from different resoures. 1 to 15 indicate Quaternary (1), 

Xiyu Fm. (2), Dushanzi Fm. (3) , Taxi He Fm. (4), Shawan Fm. (5), Anjihai Fm. (6),   

Ziniquanzi Fm. (7), Dongou Fm. (8), Tugulu Fm. (9), Upper Jurassic (10), Middle Jurassic 

(11), Lower Jurassic (12), Triassic (13), Permian  (14),  Carboniferous (15), Devonian (16) 

and crystal basement. 

Finally, the densities which are implied to gravity models are showed following (Table 

A-3). They are much simpler than really formation variation in density but show the 

characters of density variation in the southern Junggar area.  

 Basement Triassic Jurassic Cretaceous Tertiary Xiyu Fm. Quternary 

Densities 

(gm/cc) 
2.6 2.55 2.5 2.45 2.4 2.5 2.0 

Table A-3. The densities of southern Junggar basin used for the following gravity modeling.  

2.4 Gravity measurement 

2.4.1 Field measurements 

 
The measurement is carried out by SCINTREX CG-5 

(Figure A-13), the reading error is about 1 µGal. The error of 

100 m in longitude or latitude could result in an error of 0.1 

mGal in maximum. In contrast, the altitude variation is 

important to the gravity study, an error of 30 cm could cause 

the same error value.  

 
Figure A-13. Gravimeter of Scintrex CG-5. 
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ProMark 3 RTK, a Post-processing differential GPS of Magellan®, has less than 10 cm in 

error with full of signal. It worked with a base fixed and the rover on the point to be surveyed 

(Figure A-14). 

Before interpretation of the gravity data, all variations in the Earth’s gravitational field 

which do not result from the differences of density in the underlying rocks are corrected, such 

as latitude correction, elevations correction and Tidal correction (details see Joly 2005; 

Kearey et al., 2002).  

 

Figure A-14. Post-Processing Surveying of GPS Promark 3 RTK. 

2.4.2 Crust-scale structure. 

The crust-scale structure of Tian Shan has been studied by several methods, such as 

seismic topographic image (Xu et al., 2002; Li et al., 2009) or by deep seismic sounding (Lu 

et al., 2000; Wang et al., 2004; Zhao et al., 2003). Results show that the depth of Mono 

present a shift of 10 km from the Junggar basin to the Mountain area. In this study, these 

results are used to constrain the deep Moho surface, which have regional effect in gravity 

measurement. 

In western part of the Mountain, the geometry of Moho is based on the deep seismic 

sounding result of Lu et al.(2000). This profile traversed Tian Shan along the Dushanzi and 

Kuitun road. It shows that Moho is offset by 10 km in the northern Tian Shan region, 62 km 

deep in the south while 52 km deep in the Moho beaneath the Tian Shan Mountain (Figure 

A-15). Following 2D forward models include the structure in depth. The upper mantle is 3.3 

gm/cc, while 3.0 gm/cc in the lower crust. This deep profile is parallel to the Wusu section, 

Kuitun section and Jingouhe section.  
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Figure A-15. Schematic crustal structure along the Kuitun-Shaya profile in the Tian Shan 

area. The overstriking line indicates the Moho (after Lu et al., 2000). 

In the eastern part, the deep seismic reflection profile in the front of Tian Shan was 

published (Wang et al., 2004). This profile is along the Manasi He, about 20 km to the 

Qingshui He (Figure A-16). The offset of the Moho in the basin along this section is different 

with the Kuitun profile. 

 

Figure A-16.  Sketch of the crustal structure in the northeastern Tian Shan margin along 

Manasi He (after Wang et al., 2004). 
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Appendix 3. Methods of 3D modeling 

 
Traditionally in geology, both stratigraphic and structural analyses have been carried out 

in one or two dimensions. 3D geological models are usually achieved integrating surface, 

wells and seismic data. Due to the difficulty of collecting these data, reliable 3D models are 

generally realized by oil companies for exploration or production and by engineering 

companies for major infrastructural works, such as dams and tunnels. 3D models can improve, 

at different scale, our capability of understanding the geometry of complex geological settings: 

they also permit to compute volumes and parameterize geological data for further 

applications. 

Recently, the 3D approach to geology has been applied to field data with interesting 

results following different work flows (Berra et al., 2008; Bistacchi et al., 2008; De Donatis, 

2001; Dhont et al., 2005; Fernandez et al., 2004; Joly et al., 2008; Martelet et al., 2004; Tonini 

et al., 2008; Zanchi et al., 2009). Several commercial software were developed for 3D 

geological modeling. For example, Gocad (Geological Object Computer Aided Design) of 

CRPG; 3D Move by Midland Valley Exploration; Geomodeller by BRGM; Earthversion by 

Dynamic Graphics, Inc. and so on. Most of them are based on the interpolation in every point 

to construct boundary surfaces then in 3D volumes. In this chapiter, 3D modeling procedure is 

focused on work with 3D GeoModeller and Gocad. 

 The 3D Geomodeller is a software that take into account the limited shape and topology 

geological objects. This tool construct geological 3D model by complex implicit functions. To 

do this, it combines not only the available structural data on interfaces, but also data in depth 

(e.g., drilled wells, sections of geophysics). The algorithm is based on the interpolation of a 

scalar field defined in the space, the gradient in which is orthogonal to the orientations. The 

modeled interfaces are shows as isovalues of the interpolated field (Lajaunie et al., 1997). 

Geological body geometry is described by discretising reference isovalues. Faults are 

modelled by the same method of inserting discontinuities in the potential field(Calcagno et al., 

2008). 

Geostatistical methods 

Geostastic method of Kriging allows estimating a field knowing spot values of a field by 

isovalues of potential-field. There are spatial correlations between a field and its derivatives. 
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So interfaces are finally represented as isolines in two dimension or isosurfaces in three 

dimensions by interpolation (Figure A-17). 

Cubic covariance function of the potential field is used in this software. In practice, date 

is defined by varies methods as followings. An orientation is translated into three partial. Data 

polarity can complete the gradient of the potential field. If two points belong to the same 

interface, it indicates that the value of potential filed between these two points is zero. 

 

Figure A-17. Principle of the potential-field interpolation method (in 2D). (a) An anticline 

mapped by two formations outlines and their dip measurements. (b) The geological formation 

modelled by the potential-field method. 

Faults are presented with a spatial function discontinuous in the system for cokriging, as a 

function of drift.  Its value is 1 in one side of the fault and decrease to 0 on the other side 

depending on the distance to the fault and the distance along the fault. For example, if a 

translation is rigid, the function would be zero for one side and one for other side. Otherwise, 

if it is wished to model a gradual deformed fault, the function depends on its distance from the 

edge and along the fault (Figure A-18). 

 

Figure A-18. Graphical profiles of the drift function took into the cokriging equations to 

model the effect of offsets to geological formations across faults. (a) Infinite fault. The drift 

function is 1 on one side of the fault and 0 on the other side (transverse profile). The 

longitudinal profile shows that the fault is infinite. (b) Finite fault. The domain of fault was 
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influenced in an ellipsoid. The drift function varies from 1 or −1 to 0 when moving away from 

the fault (transverse profile). Along the fault, the drift function decreases from the centre to 

the fault limits (longitudinal profile). 

In real cases, it is rare that the interfaces are parallel or subparallel within a study area. It 

must interpolate these separately interfaces or groups of interfaces. It is reduced to interpolate 

as many potential fields there are distinct groups of interfaces intersecting. For example, 

modeling structures complexes such as folds or 

granitic intrusions, which can be modeled by 

surface elevation of the type z = f (x, y), n is only 

possible by the introduction of polarity on 

orientation data. We then define a series as a set of 

layers (formations) concordant and one uses a 

potential field series. 

It remains to impose the rules specific to geology 

to determine the relationship between 

series and thereby solving the problems of contact 

between them. There are two rules: erosion (Erode) 

and deposit (onlap). Such rules can solve all 

situations encountered. The formations of a series 

of type onlap will only be deposited in the space 

left by the previous series. The formations of a 

series of type Erode will both erode existing series 

and settle. Erode combines two events: a sequence 

of erosion then a phase of deposition (Figure 

A-19) 

 

Figure A-19. (a) Formation 1 (basement) and 

potential field of Formation 2. (b) Interpolated Formation 2 by an Onlap relation and data for 

potential field of formation 3. (c) Interpolated formation 3 by an Erode relation. 

As reliable sections constructed in the southern Junggar basin, 3D modeling could be 

built in the the software of Geomodeller (BRGM). 3D modeling in the foreland basin could 

used to calculated the sediments volumes during different periods and show the variation 
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sedimentary and structural variations along the Tian Shan front. So far the 3D modeling is 

primary constructed along the Jingou He (Figure A-20). As more reginal sections to be built in 

the future, the whole fold-and-thrust belt in the foreland could be present in three dimension.  

 

Figure A-20. The 3D model in the southern Junggar basin, integrated by three north-south 

trending sections. 
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 Ke CHEN 
Le piedmont nord du Tian Shan : cas d'école d'un front de chaîne immature 

 

La chaîne actuelle du Tian Shan (Asie centrale) est considérée comme une conséquence directe de la 
réactivation d'une ceinture orogénique du Paléozoïque due à la collision Inde-Asie, au Cénozoïque. 
Un travail détaillé a été réalisé le long du piémont nord de la chaîne en intégrant les observations 
géologiques de terrain, analyses structurales, profils sismiques, nouvelles mesures des anomalies 
gravimétriques et des données de forages.  
Tout d'abord cette étude apporte de nouvelles preuves directes, à différentes échelles, sur l'existence 
d'un paléo-relief majeur le long du front nord du Tian Shan au cours du Mésozoïque, et plus 
particulièrement pendant le Jurassique. Deuxièmement, la quantité de raccourcissement calculée à 
travers cette ceinture de plis et chevauchements nord du Tian Shan est relativement faible et les 
structures reconnues le long du front de la chaîne présentent une hétérogénéité latérale forte. Ainsi, 
alors qu’un chevauchement du socle paléozoïque sur les séries sédimentaires mésozoïques et 
cénozoïques du bassin est remarquablement exposé le long de certaines vallées, d'autres sections 
montrent que les séries sédimentaires du Trias au Jurassique peuvent être suivies de manière 
continue, depuis le bassin jusque sur le toit du socle Paléozoïque où ils reposent en discordance 
relativement haut dans la chaîne. Quatre coupes géologiques ont été construites par l'intégration des 
données pluridisciplinaires acquises. La restauration de ces coupes montre que les taux de 
raccourcissement sont inférieurs à 20% et peuvent descendre à un minimum de 6%. Ces observations 
suggèrent que le piémont nord du Tian Shan est plutôt «jeune» et que la chaîne d’avant pays est 
encore à un stade primaire de son évolution tectonique. En d'autres termes, le piémont nord du Tian 
Shan peut être considéré comme un exemple type de front de chaîne immature.  
 
Mots-clés: Tian Shan, déformation, front, ceinture de chevauchements et de plis, basin d’avant-pays, 
immature. 

 The northern piedmont of Tian Shan: a case study of immature range front  

The modern Tian Shan (Central Asia) is considered as a direct consequence of the reactivation of a 
Paleozoic orogenic belt due to the India – Asia collision, during Cenozoic times. A detailed work has 
been investigated along the northern piedmont of Tian Shan, integrating the field work, structural 
analysis, seismic profile data, gravity anomaly measurements and drilled wells. Firstly, this study 
brings new and direct evidences, at different scales, for the existence of a major paleo-relief along the 
northern Tian Shan range during Mesozoic, and particularly during Jurassic times. Secondly, the 
calculated shortening amount in the northern piedmont of Tian Shan is rather small and the structural 
pattern of its front is heterogeneous along-strike. While, thrusting of the Paleozoic basement on the 
Mesozoic or Cenozoic sedimentary series of the basin is remarkably exposed along several river 
valleys, other sections display continuous Triassic to Jurassic sedimentary series from the basin to the 
range where they unconformably overlie on the Carboniferous basement. Four cross-sections are made 
by integrating multi-method data, showing that shortening amounts are less than 20% and could be 
even until to 6%. This suggests that the Tian Shan intracontinental range is rather “young” and still at a 
primary stage of its tectonic evolution. In other words, its front may be considered as a typical example 
of an immature range front. 
 
Keywords: Tian Shan, deformation, front, fold-and-thrust belt, foreland basin, immature. 
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