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et Mme. Amel BENAZZA-BENYAHIA (SUP’COM Tunis) pour avoir co-dirigé cette
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Durant ma thèse, j’ai aussi en l’occasion de collaborer avec des chercheurs de NeuroSpin
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Abstract

To reduce scanning time or improve spatio-temporal resolution in some MRI applications,

parallel MRI acquisition techniques with multiple coils have emerged since the early 90’s

as powerful methods. In these techniques, MRI images have to be reconstructed from ac-

quired undersampled “k-space” data. To this end, several reconstruction techniques have

been proposed such as the widely-used SENSitivity Encoding (SENSE) method. However,

the reconstructed images generally present artifacts due to the noise corrupting the ob-

served data and coil sensitivity profile estimation errors. In this work, we present novel

SENSE-based reconstruction methods which proceed with regularization in the complex

wavelet domain so as to promote the sparsity of the solution. These methods achieve ac-

curate image reconstruction under degraded experimental conditions, in which neither the

SENSE method nor standard regularized methods (e.g. Tikhonov) give convincing results.

The proposed approaches relies on fast parallel optimization algorithms dealing with con-

vex but non-differentiable criteria involving suitable sparsity promoting priors. Moreover,

in contrast with most of the available reconstruction methods which proceed by a slice by

slice reconstruction, one of the proposed methods allows 4D (3D + time) reconstruction

exploiting spatial and temporal correlations. The hyperparameter estimation problem in-

herent to the regularization process has also been addressed from a Bayesian viewpoint

by using MCMC techniques. Experiments on real anatomical and functional data show

that the proposed methods allow us to reduce reconstruction artifacts and improve the

statistical sensitivity/specificity in functional MRI.
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Résumé

Pour réduire le temps d’acquisition ou bien améliorer la résolution spatio-temporelle dans

certaines application en IRM, de puissantes techniques parallèles utilisant plusieurs an-

tennes réceptrices sont apparues depuis les années 90. Dans ce contexte, les images d’IRM

doivent être reconstruites à partir des données sous-échantillonnées acquises dans le “k-

space” . Plusieurs approches de reconstruction ont donc été proposées dont la méthode

SENSitivity Encoding (SENSE). Cependant, les images reconstruites sont souvent en-

tâchées par des artéfacts dus au bruit affectant les données observées, ou bien à des erreurs

d’estimation des profils de sensibilité des antennes. Dans ce travail, nous présentons de

nouvelles méthodes de reconstruction basées sur l’algorithme SENSE, qui introduisent une

régularisation dans le domaine transformé en ondelettes afin de promouvoir la parcimonie

de la solution. Sous des conditions expérimentales dégradées, ces méthodes donnent une

bonne qualité de reconstruction contrairement à la méthode SENSE et aux autres tech-

niques de régularisation classique (e.g. Tikhonov). Les méthodes proposées reposent sur

des algorithmes parallèles d’optimisation permettant de traiter des critères convexes, mais

non nécessairement différentiables contenant des a priori parcimonieux. Contrairement à

la plupart des méthodes de reconstruction qui opèrent coupe par coupe, l’une des méth-

odes proposées permet une reconstruction 4D (3D + temps) en exploitant les corrélations

spatiales et temporelles. Le problème d’estimation d’hyperparamètres sous-jacent au pro-

cessus de régularisation a aussi été traité dans un cadre bayésien en utilisant des techniques

MCMC. Une validation sur des données réelles anatomiques et fonctionnelles montre que

les méthodes proposées réduisent les artéfacts de reconstruction et améliorent la sensibil-

ité/spécificité statistique en IRM fonctionnelle.
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1.1 Motivations

Magnetic Resonance Imaging (MRI) is a modality which has already proven to be very

useful since many decades, and continues to be investigated in various clinical and research

activities such as neuroimaging. High resolution images provided in non-invasive manner

are of high interest to clinicians and researchers whatever their research area (cognitive

neuroscience, clinical research,...). Although the significance of MRI is rising, one may

want to minimize time of patient’s exposition to MRI environment and to have more spa-

tial and/or temporal details in the acquired data. These requirements may be met by

improving spatio-temporal resolution and reducing the global imaging time. The above

mentioned improvements were intensively studied in numerous applications such as neu-

roimaging [Rabrait et al., 2008], cardiac [Weiger et al., 2000] and abdominal [Zhu et al.,

2004] imaging. They can be achieved without significantly degrading the image quality by

using parallel MRI (pMRI) systems, developed in the 1990’s. These systems rely on two

main technical features. First, MRI data are simultaneously collected in the frequency

domain by multiple receiver coils with complementary sensitivity profiles located around

the underlying object. Second, the acquisition time is reduced since data are sampled at

a frequency rate R times lower than the Nyquist sampling rate along at least one spatial

direction, i.e. usually the phase encoding direction or typically the Y axis. However, if one

wants to increase the spatial resolution while keeping the acquisition time almost fixed,

the acquired data can be sampled at a higher rate along one or more encoding directions.

A reconstruction step is then necessary to build up a full Field of View (FOV) image. It

is performed by unfolding the undersampled coil-specific data and exploiting the comple-

mentarity of the sensitivity profiles of the used coils. It is also a challenging task because

of three main artifact sources which decrease the Signal to Noise Ratio (SNR): aliasing

artifacts related to the undersampling rate, acquisition noise and also errors in the esti-

mation of coil sensitivity profiles.

Many reconstruction methods have been proposed since the early 1990’s such as SMASH
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[Sodickson and Manning, 1999], SPACE-RIP [Kyriakos et al., 2000], AUTO-SMASH

[Jakob et al., 1998], GRAPPA [Griswold et al., 2002], SENSE [Pruessmann et al., 1999a]...

Some of these methods have been designed to operate directly in the Fourier domain like

SMASH and GRAPPA, while some others operate in the spatial domaine like SENSE.

However, when the experimental conditions become quite severe (i.e. high noise level,

low sampling rate or poor estimation of the coil sensitivity profiles), the reconstruction

quality of all of these methods is strongly degraded. Early works tried to optimize the

coil geometry [Weiger et al., 2001], improve the coil sensitivity profile estimation [Blaimer

et al., 2004] or optimize the encoding trajectory in order to alleviate this problem [Yan

et al., 1999].

In the same context, we have focused in this PhD on the first proposed pMRI reconstruc-

tion method operating in the spatial domain, namely SENSE. We have been interested in

improving its reconstruction performance even under severe experimental conditions by

resorting to non smooth regularization techniques. We have also chosen to design our reg-

ularization method in the wavelet transform domain regarding to the encountered artifact

features. These artifacts generally appear in localized area with either very high or very

low intensity levels (see Fig. 1.1).

Figure 1.1: Reconstruction artifacts using the SENSE method for R = 4.

Indeed, using wavelet transforms allows us to have a sparse representation of the image

to be reconstructed. The wavelet domain enables also extracting spatial and frequency

informations at the same time, which helps in detecting the reconstruction artifacts and

smoothing them.

As any regularization method, a set of regularization parameters has to be estimated so

that the method can be autocalibrated. However, when using redundant wavelet represen-

tations, this problem becomes difficult to handle due to the non-bijectivity of the wavelet

operator. This problem has been addressed from a Bayesian viewpoint in this PhD thesis.

Our regularized approach proceeds by a slice by slice reconstruction like the previously

cited reconstruction methods since a 3D volume is generally acquired slice by slice. Iter-
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ating over slices is then necessary to reconstruct an entire 3D volume. The different slices

are therefore assumed independent and no correlation between them is taken into account

although it does exist in practice. A first extension of our method has been developed in

order to exploit correlation between adjacent slices using 3D wavelet transforms. On the

other hand, in dynamic MRI applications like functional MRI (fMRI), the brain is imaged

several times in order to track the BOLD contrast, which is an indirect consequence of

neuronal activity. Another source of correlation would consequently be helpful: temporal

correlation between successive acquired volumes. This additional source of information

has been exploited in this PhD in order to improve the reconstruction quality in pMRI

SENSE imaging. The resulting 4D regularization approach involves also the 3D regular-

ized one by turning off the temporal regularization.

1.2 Organization of the manuscript� MRI background

The second chapter of this manuscript summarizes the main state of the art in MRI,

pMRI and fMRI. It helps the reader to better understand the rest of the manuscript

by giving the background of MRI from the physical to the technical principle. Parallel

MRI is also introduced to better emphasize the motivations and the challenges of

this PhD. Finally, since we are focusing here on brain imaging, fMRI is also briefly

introduced as it will be the main application in the validation task.� Convex optimization tools for the regularization of inverse problems

When the considered inverse problem is ill-posed, one generally resorts to regular-

ization techniques. These techniques may inhere easy optimization tasks as well as

complicated ones. Although the regularization literature is quite abundant, we will

focus here on regularization techniques which lead to optimization problems invol-

ving convex but not necessarily differentiable optimality criteria. Chapter 3 of this

manuscript aims at presenting the theoretical framework of convex analysis and op-

timization tools which will be used for the proposed regularization approaches in

Chapter 4. The main hurdles which may be encountered are outlined, and some

solutions are also provided in this chapter.� Regularized parallel MRI reconstruction

The SENSE method on which we will focus in this manuscript does not perform

well when the experimental conditions become quite severe (c.f. Chapter 2). For

this reason, regularizing the considered inverse problem would be a suitable solution

to achieve better reconstruction quality. Chapter 4 of this manuscript describes in

details the proposed regularized reconstruction methods. The first proposed method

proceeds by a regularization in the wavelet domain using appropriate priors for the
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wavelet coefficients of the image to be reconstructed. Besides the wavelet regular-

ization, the second proposed algorithm uses an additional constraint on the artifact

regions to better smooth them.

The two first proposed approaches proceed by a slice by slice reconstruction. How-

ever, adjacent slices are actually spatially correlated. Moreover, the whole brain

is imaged several times in dynamic MRI applications like fMRI, and dependencies

between different acquisitions do exist. A third regularization approach is therefore

proposed taking into account 3D spatial correlations and temporal dependencies

between the acquired volumes.� Estimating the regularization hyper-parameters

As any regularization method, the proposed approaches require a hyper-parameter

estimation step in order to be fully automatic. This task may be easy to perform

when a reference image is available so that the hyper-parameters can be estimated

based on this image. However, since the proposed regularization methods operate in

the wavelet domain, the hyper-parameter estimation task becomes much more com-

plicated when redundant representations are used. Indeed, since no bijection exists

between the original and transformed spaces, even if the reference image is per-

fectly known, the frame coefficients are not. Chapter 5 of this manuscript describes

a Bayesian framework and the associated sampling strategies to handle this prob-

lem and estimate the hyper-parameters from a noisy observation when overcomplete

representations are used even if no reference image is available.� Experimental validation

Besides the visual inspection of reconstructed images, a more complete validation of

the proposed approaches is presented in Chapter 6. An fMRI study is conducted in

this chapter on real data at the subject and group levels. These data have been ac-

quired in the neuroimaging center NeuroSpin-CEA (Commissariat à l’Energie Atom-

ique). NeuroSpin is one of the partners of the OPTIMED project which has been

supported by the french Agence Nationale de la Recherche (ANR). This PhD has

been involved in the ANR-OPTIMED project and took place at the Laboratoire

d’Informatique Gaspard Monge (LIGM), the coordinator of this project. In addi-

tion, this PhD has been supported by the Région Île de France.

This validation shows that the proposed approaches allow us to improve the statis-

tical sensitivity/specificity of the activation detection in fMRI.
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1.3 Publications

The main publications are available at the following URL:

http://lotfi-chaari.net/en/publications.html� Journal articles:

– Lotfi Chaari, Jean-Christophe Pesquet, Jean-Yves Tourneret, Philippe Ciuciu

and Amel Benazza-Benyahia, “A Hierarchical Bayesian Model for Frame Rep-

resentation”, IEEE transactions on Signal Processing, vol. 18, no. 11, pp.

5560-5571, November 2010.

– Lotfi Chaari, Jean-Christophe Pesquet, Amel Benazza-Benyahia and Philippe

Ciuciu, “A wavelet-based regularized reconstruction algorithm for SENSE par-

allel MRI with applications to neuroimaging”, Medical Image Analysis, In Press,

DOI 10.1016/j.media.2010.08.001, 2010.� Conference articles:

– Lotfi Chaari, Sébastien Mériaux, Jean-Christophe Pesquet, Philippe Ciuciu,

“Impact of the parallel imaging reconstruction algorithm on brain activity de-

tection in fMRI”, International Symposium on Applied Sciences in Biomedical

and Communication Technologies, Rome, Italy, November 7-10, 2010.

– Lotfi Chaari, Sébastien Mériaux, Jean-Christophe Pesquet, Philippe Ciuciu,

“Impact of the parallel imaging reconstruction algorithm on the statistical sen-

sitivity in fMRI”, 16th Annual Meeting of the Organization for Human Brain

Mapping, Barcelona, Spain, June 6-10, 2010.

– Lotfi Chaari, Jean-Christophe Pesquet, Jean-Yves Tourneret, Philippe Ciuciu

and Amel Benazza-Benyahia, “A Hierarchical Bayesian Model for Frame Rep-

resentation”, IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), Dallas, USA, pp. 4086-4089, March 14 - 19, 2010

– Lotfi Chaari, Amel Benazza-Benyahia , Jean-Christophe Pesquet and Philippe

Ciuciu, “Wavelet based parallel MRI regularization using bivariate sparsity pro-

moting priors.”, IEEE International Conference on Image Processing (ICIP),

Cairo, Egypt, pp. 1725-1728, November 7-11, 2009.

– Lotfi Chaari, Nelly Pustelnik, Caroline Chaux and Jean-Christophe Pesquet,

“Solving inverse problems with overcomplete transforms and convex optimiza-

tion techniques”, Society of Photo-optical Instrumentation Engineers (SPIE)

Conference, San Diego, Ca, USA, August 2009, 14 p.

– Lotfi Chaari, Philippe Ciuciu, Amel Benazza-Benyahia and Jean-Christophe

Pesquet, “Performance of three parallel MRI reconstruction mthods in the pres-

ence of coil sensitivity map errors”, International Society for Magnetic Reso-

nance in Medicine (ISMRM) Meeting, Honolulu, USA, 1 p., April 18-24 2009.

– Lotfi Chaari, Jean-Christophe Pesquet, Amel Benazza-Benyahia and Philippe

Ciuciu, “Minimization of a sparsity promoting criterion for the recovery of

http://lotfi-chaari.net/en/publications.html


complex-valued signals”, SPARS Workshop, Saint-Malo, France, 4 p., April

6-9 2009.

– Lotfi Chaari, Jean-Christophe Pesquet, Amel Benazza-Benyahia and Philippe

Ciuciu, “Autocalibrated regularized parallel MRI reconstruction in the wavelet

domain”, IEEE International Symposium on Biomedical Imaging (ISBI), Paris,

France, pp. 756-759, May 14-17 2008.

1.4 Patent

A patent was recently submitted to the United States patent office under the reference

61/379,105. It involves the proposed 3D and 4D regularized reconstruction algorithms.

Title: “Spatio-temporal regularized reconstruction for parallel MRI acquisition systems”

Date: September 2, 2010

Inventors: Lotfi Chaari, Jean-Christophe Pesquet, Sébastien Mériaux and Philippe Ciuciu.

1.5 Software

This PhD work has led to the design of a free software called pMRILab. pMRILab

1.0.0 is a free software for parallel MRI reconstruction. It can be freely used, modified

and distributed under a CeCILL v2 licence. It allows the standard SENSE and the 2D

regularized reconstructions from the reduced FOV data. It is available online at the

following URL:

http://lotfi-chaari.net/pMRILab/pMRILab.tar.gz.

Note that this version of the software include only the 2D reconstruction apprach. The

3D and 4D regularized approaches are not yet available online for confidentiality reasons.

The current version is implemented in Matlab and can be used with any platform provided

that the Wavelab software is installed.

For more details, the interested reader can refer to the Plume web page availabe at the

following URL:

http://www.projet-plume.org/relier/pmrilab.

The second version of pMRILab (pMRILab 2.0.0) has been implemented in the C language

and is installed in NeuroSpin for validation. However, this version is still not available

online.

In addition to its previous functionalities, pMRILab 2.0.0 implements also the spatio-

temporal regularized version of the proposed approach. Its current implementation in C

runs faster on multi-core machines due to its implementation which supports the OpenMP

library for multithread processing.

http://lotfi-chaari.net/pMRILab/pMRILab.tar.gz
http://www.projet-plume.org/relier/pmrilab
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2.1 Introduction

This chapter briefly describes the technical and physical principles of Magnetic Resonance

Imaging (MRI), functional Magnetic Resonance Imaging (fMRI) and parallel Magnetic

Resonance Imaging (pMRI). More precisely, Section 2.2 describes how to get an MRI image

from the Nuclear Magnetic Resonance (NMR) signal and physical phenomena behind it.

Image contrast and acquisition parameters are detailed in Section 2.3. FMRI is then

briefly introduced in Section 2.4 and finally, parallel MRI, the main topic of this thesis,

is introduced in Section 2.5. However, readers familiar with this topic can directly go

through Chapter 3.

2.2 Magnetic Resonance Imaging

2.2.1 Nuclear Magnetic resonance

The Nuclear Magnetic Resonance (NMR) phenomenon was described for the first time

by Edward Purcell in 1946. It relies on the fact that each proton of a tissue sample

has a quantic property called spin, which refers to its angular momentum. Each spin

has a microscopic magnetic moment −→µ . If no external magnetic field is applied, the

global aimantation is cancelled out:
−→
M =

∑−→µ =
−→
0 (see Fig. 2.1(a)). However, if

an external magnetic field
−→
B 0 is applied, protons will align along its orientation and a

resulting aimantation
−→
M 6= −→0 will appear like shown in Fig. 2.1(b). Actually, spins are

not perfectly aligned along
−→
B 0, but have a circular movement around it at the angular

Larmor frequency f0 = γ
2πB0, where γ is the gyromagnetic ratio related to the specific

atom and B0 is the norm of the magnetic field
−→
B 0. For instance, the hydrogen atom, which
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Figure 2.1: (a): magnetic moment at the initial equilibrium state; (b): magnetic moment
in the presence of a stationary magnetic field of magnitude B0.

is abundantly present in the human body and especially in the brain, has a gyromagnetic

ratio γ = 42.58 Mhz/Tesla. In general,
−→
M may be split into two components as follows:

−→
M =

−→
Mxy +

−→
Mz, (2.1)

where
−→
Mxy and

−→
Mz are the transversal and longitudinal components, respectively. The

transversal component
−→
Mxy is contained into the plane (xOy), while the longitudinal

component is colinear to the (Oz) axis.

At the new equilibrium state,
−→
M is aligned along (Oz) without transversal component

(see Fig. 2.1(b)). Therefore, we have
−→
Mxy =

−→
0 and

−→
Mz which grows with both the

concentration of protons in the tissue and the intensity of
−→
B 0.

However, it is not possible to directly measure
−→
M since it is infinitesimal compared to−→

B 0. Fortunately, indirect measurement is possible through switching its orientation in the

plane xOy using an additional magnetic field
−→
B 1 (see Fig. 2.2(a)) applied due to a Radio

Frequency (RF) pulse. This magnetic field should have an angular frequency f1 = f0 in

order to make the spins resonate and change their energy level.

2.2.2 NMR signal measurement

Subject to excitations, spins are not stable from an energetic viewpoint. When returning

to their equilibrium state, the spins will lead to a precession movement of the magnetic

moment
−→
M as shown in Fig. 2.2(b), which allows the measurement of the NMR signal.

As illustrated in Fig. 2.2(b), the magnetic moment
−→
M follows a spiral trajectory when

returning to its equilibrium position (
−→
Mxy =

−→
0 ). During this time, the two components

of the magnetic moment (
−→
Mxy and

−→
Mz) behave differently to reach their equilibrium
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Figure 2.2: Precession movement of the magnetic moment.

state. The longitudinal module Mz returns back to its initial state in an exponential way

parameterized by a time constant T1 called the spin-lattice relaxation time:

Mz(t) = M0(1− e−t/T1). (2.2)

This movement curve is illustrated in Fig. 2.3. In practice, the constant T1, which generally

takes its values between 100 ms and 1000 ms, corresponds to the time when Mz returns

to 63% of its original value.

Figure 2.3: T1 relaxation curve.

At the same time, and as illustrated in Fig. 2.4, the transversal module Mxy decreases

exponentially as a function of a time constant T2 called spin-spin relaxation time:

Mxy(t) = M0e
−t/T2 . (2.3)

This constant T2 corresponds to the time when Mxy is at 37% of its value just after

the spin excitation. The T2 relaxation time is typically around 40-100 ms, and it is always
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Figure 2.4: T2 relaxation curve.

shorter than T1.

However, in practice, inhomogeneities of the main magnetic field
−→
B 0 and magnetic sus-

ceptibility differences make the spins precess at different frequencies. If we denote by T2B0

and T2MS
the dephasing times caused by the main magnetic field inhomogeneities and

magnetic susceptibility differences, the total decay transversal relaxation time T ∗
2 is often

twice shorter than T2 and is given by 1/T ∗
2 = 1/T2 + 1/T2B0

+ 1/T2MS
.

Each tissue is characterized by a given couple of time constants T1 and T2, which allow

one to distinguish between the different tissues within the same MRI image. More precisely,

in brain imaging for instance, these time constants allow us to distinguish between the

white matter, gray matter and Cerebral Spinal Fluid (CSF) [Brown and Semelka, 2003].

In fact, the pixel intensity in an MRI image is proportional to the number of protons

contained within the voxel weighted by the T1 and T2 relaxation times for the tissues

within the voxel. These time constants define what is called a contrast and we talk about

T1 and T2-weighted MRI images depending on the importance of the T1 or T2 constants

in the images. This fact outlines the importance of the relaxation movement. The impact

of the precession movement is also of great interest since it is the direct source of the

measured NMR signal. In fact, the spiral rotation of the transversal component
−→
Mxy

induces a magnetic field in the plane xOy. This Free Induction Decay (FID) signal is

registered using a receiver coil put in the xOy plane. The receiver coil then transforms

the FID into a measurable electrical signal.

However, at this stage, it is impossible to spatially localize the NMR signal since the

dimensions of the brain (or the imaged organ) are small compared to the used wavelength

at standard magnetic field strength, i.e. 1.5 or 3 Tesla. This assumption is no longer valid

at ultra high magnetic fields such as 7 or 11 Tesla, where the used wavelength become

smaller than the brain size.

In order to be able to encode an MRI image, it is necessary to proceed by a spatial coding

of the measured NMR signal. This was proposed by Lauterbur in 1973 [Lauterbur, 1973]

who demonstrated that it is possible to reconstruct images from the NMR signal using a

superposition of linear magnetic field gradients. Doing so, the MRI technique consists of

three steps: slice selection, phase encoding and frequency encoding.
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2.2.2.1 Slice selection

Although 3D imaging techniques have been developed more recently (3D- EPI [Afacan

et al., 2009] or EVI [Rabrait et al., 2008]), the MRI technique generally proceeds by a

slice by slice (2D) acquisition as illustrated in Fig. 2.5. For this reason, the first step in

the acquisition process is the slice selection. Suppose that we are interested in acquiring

Figure 2.5: Slice by slice acquisition in MRI.

a slice located at some z position in the Cartesian coordinate system (x, y, z) having the

same orientation as in Fig. 2.5. In order to excite the spins belonging to this slice, a

magnetic field gradient
−→
Gz orthogonal to the plane xOy is applied. For the excited spins,

the related Larmor frequency writes as follows:

fz(t) =
γ

2π
(B0 + zGz(t)), (2.4)

where t is the acquisition time and Gz is the norm of
−→
Gz. Hence, the Larmor frequency of

these spins will allow us to distinguish them from spins belonging to the rest of the brain.

The next step aims at spatially encoding the NRM signal measured from a given slice. For

doing so, two other encoding steps are applied: frequency and phase encodings.

2.2.2.2 Frequency encoding

This step is called frequency encoding because the spatial position along the x-axis is

encoded using the precessing frequency of the spins. This direction (x-axis) is also called

the read-out because the frequency encoding gradient is turned on during the signal read-

out (acquisition of the NMR signal). Subject to this second magnetic field gradient
−→
Gx

applied in the x direction, the spins will precess at a Larmor frequency which depends on
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x as follows:

fx =
γ

2π
(B0 + xGx), (2.5)

where Gx is the norm of
−→
Gx. The longer the gradient

−→
Gx applied, the higher the spatial

frequency in the measured 1D signal. Using the expression of the Larmor frequency of

the excited spins in Eq. (2.5), the measured signal from the excited Field of View (FOV)

writes:

d̃(kx) ∝
∫

FOV
ρ(x)e−ı2πfxtdx

∝
∫

FOV
ρ(x)e−ıxkxdx (2.6)

where t is the acquisition time, kx = γGxt and ρ is the spin density in the imaged volume1.

2.2.2.3 Phase encoding

After slice selection and frequency encoding, it is necessary to encode the received NMR

signal along the third spatial direction, i.e. the y-axis. In this respect, the phase of the

NMR signal is used, performing therefore what is called the phase encoding step. To

this end, a magnetic field gradient n
−→
Gy is applied in the y direction during a short time

Ty (w.r.t the acquisition time) before the readout, where the integer n changes for each

acquisition. As a result, during this short time, the spins precess with a spatially dependent

phase:

ϕ(y) =
γ

2π
ynGyTy, (2.7)

where Gy is the norm of
−→
Gy. Within a given slice, spins located at a spatial position

(y, x) will therefore precess at a unique frequency. However, in contrast with frequency

encoding where the gradient
−→
Gx is applied once, in order to cover all the imaged space,

the repetition of the phase encoding step by changing either the gradient’s module nGy

or duration Ty is essential.

Regarding the new precession frequency of the excited spins after a frequency and phase

encoding steps, the 2D measured signal will therefore be expressed as:

d̃(ky, kx) ∝
∫ ∫

FOV
ρ(y, x)e−ı2π(fxt+ϕ(y))dxdy

∝
∫ ∫

FOV
ρ(y, x)e−ı(yky+xkx)dxdy, (2.8)

with ky = γnGyTy.

After slice selection, frequency and phase encoding, it is possible to fully encode the

measured NMR signal and provide an MRI image for a given slice, and therefore for

all the imaged volume by iterating over slices. The sequencing of the encoding steps is

illustrated in Fig. 2.6 where the diagram of a GRadien-Echo (GRE) sequence is given with

1The overbar is used to distinguish the “true” data from a generic variable.
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the following definitions of the sequence parameters:� TE: Echo Time: the time between the RF excitation and the signal acquisition time,� TR: Time of Repetition: the time between successive excitation pulses for a given

slice.

Figure 2.6: GRE sequence diagram (ADC denotes the Analog-to-Digital Converter).

For a given slice, the measured signal writes as in Eq. (2.8). However, in practice,

only a finite number of Nx samples is acquired at equidistant time intervals ∆t during the

frquency encoding step, which means that a discrete sampling of the k-space is performed

at equidistant frequency intervals ∆kx = γGx∆t. Similarly, only Ny samples are acquired

along the phase encoding direction at equidistant frequency intervals ∆ky = γGyTy by

changing the integer n.

2.3 Image contrast and acquisition parameters

An MRI contrast consists of transcoding the acquired NMR signal into gray levels. It

reflects the relaxation times and spin density differences between the image tissues. The

main two factors in an MRI contrast are T1 and T2. Since these factors always contribute

in different ways to define a contrast, changing the sequence parameters (i.e. TE and

TR) allows indirectly defining a contrast through managing the respective contributions

of these main factors.

2.3.1 TR effect

The module of the longitudinal aimantation Mz returns nearly to its original maximum

value M0 function to TR, and then it is re-switched to the transversal plane (xOy) due to
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the RF pulse so that a new cycle is iterated. Depending on TR, one of the following cases

may be encountered:� TR is long w.r.t. T1 of the imaged tissues: the longitudinal aimantation returns

completely to its equilibruim position at the end of each cycle (after each TR),� TR is short w.r.t. T1 of the imaged tissues: the longitudinal relaxation curve is

interrupted and Mz will not completely return to its initial value.

TR influences therefore the longitidunal relaxation, and so the T1 contrast (also called T1

weighting) of a given MRI sequence.

In fact, let us consider two different tissues belonging to the same imaged FOV, each

of them has its own relaxation time T1. We will suppose that the first (F) and second

(S) tissues have a fast and slow relaxation times TF
1 and T S

1 , respectively. If TR is long

comparing to TF
1 and T S

1 , spins of the two tissues will recover their initial longitudinal

aimantations. In this case, it will be impossible to distinguish the two tissues although

they have different longitidunal relaxation times. On the other hand, if TR is short, the

aimantation of the tissue F will return faster than S to its initial situation. The measured

signal from the tissue F will therefore be stronger than the one from S, which defines the

T1 contrast.

2.3.2 TE effect

At the begining of each cycle, the transversal aimantation will appear due to the RF

pulse. As mentioned above, TE determines the time when the NRM signal is measured,

or equivalently the time during which the transversal aimantation returns to its initial

value. Let us consider now the same example of Section 2.3.1, but with tissues having fast

and slow T2 relaxation times. If TE is long comparing to TF
2 and T S

2 , the two tissues will

recover their initial transversal aimantations, and it will be impossible to distinguish them

although they have different transversal relaxation times. However, if TE is short, the

aimantation of the tissue F will return faster than S to its initial situation. The measured

signal from the tissue S will therefore be higher than the one from F, which defines the T2

contrast.

2.3.3 Acquiring a T1 or T2-weighted MRI image

Based on the roles of TR and TE, acquiring a T1 or T2-weighted MRI image will be

performed by fixing the values of TR and TE while accounting for the image tissue features

(T1 and T2). To acquire a T1-weighted image, the sequence parameters have to be fixed

as follows:� short TR in order to make appearing the T1 contrast,� short TE in order to cancel the T2 contrast.
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However, to acquire a T2-weighted image, the sequence parameters have to be fixed as

follows:� long TR in order to reduce the T1 contrast,� long TE in order to enhance the T2 contrast.

2.4 Functional Magnetic Resonance Imaging

In order to understand the structure and function of the human brain, neuro-scientists

have been probing brain’s structure and function using indirect methods for a very long

time. Starting from post-mortem analysis, scientists succeeded to establish functional

cerebral maps of the human brain due to electrical stimulations applied directly to the

brain during a neuro-surgery by Wilder Penfield [Penfield and Rasmussen, 1952]. Since

the early 90’s, different imaging modalities have revolutionized this active research field

making it possible to collect real-time information about what is happening into the human

brain without opening the cerebral box.

Generally speaking, we talk about anatomical and functional imaging. The first modality

is designed to highlight the cerebral structures and outline any disorder or damage (tumor,

deformation, hemorrhage ...).

The second modality is rather designed to measure brain activity during some specific

tasks (also called stimuli) or to probe intrinsic or ongoing activity (resting state). Besides

fundamental research aiming at understanding the organization of cerebral structures,

functional imaging is also used for epileptic diagnosis, pre-surgery investigations in order

to preserve some specific brain areas, studying the effect of new drugs designed to cure

some brain diseases or neurological disorders like Alzheimer, schizophrenia,... However,

for simple brain functions, these two imaging modalities may be coupled in order to draw

functional cerebral maps by linking each brain area to its functional role. For more com-

plicated brain functions, connections and interactions between the involved brain areas

may also be studied.

In this context, functional Magnetic Resonance Imaging (fMRI) is a recent neuroimaging

technique for measuring brain activity. Generally speaking, it is used to detect brain ar-

eas which are involved in a specific task (e.g. simple auditory visual or motor) or more

complex cognitive process (e.g. language, computation,...). It can also be used to study

emotions, attention, memory, the intrinsic activity of the brain,... This technique is being

widely developed due to its strength especially when coupled with anatomical MRI [Ogawa

et al., 1990; Bandettini et al., 1993; Chen and Ogawa, 1999]. The main advantage of fMRI

is its non-ionisant property which allows one to non-invasively establish functional maps

of activated areas. Moreover, compared to other imaging modalities like Positron Emis-

sion Tomography (PET), fMRI has a better spatial and temporal resolution. However, it

should be noted that at standard magnetic field intensities such as 1.5 or 3 Tesla, fMRI

has a lower chemical/molecular resolution. This drawback is being alleviated due to the

use of ultra high magnetic fields such as 7 Tesla.
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2.4.1 Blood Oxygen Level Dependent effect

Signal acquisition in fMRI is based on oxygenation variation and blood flow. In fact,

it has been observed by Roy and Sherrington [Roy and Sherrington, 1890] since 1890

that there is a blood flow increase in the cortex of subjects exposed to stimulation. A

link between neuronal activity and blood flow has therefore been established: cerebral

activity changes the oxygen concentration in the blood within the cortex. It has also been

highlighted that hemoglobin, the molecule that carries oxygen in the blood, is mainly

responsible for this concentration variation. In fact, oxyhemoglobin (hemoglobin loaded

of oxygen) is a diamagnetic molecule and does not affect the local magnetic field, whereas

the deoxyhemoglobin (hemoglobin unloaded of oxygen) is paramagnetic and disturbs the

relaxation phenomena of the spins, which is the source of the BOLD (Blood Oxygen Level

Dependent) signal [Ogawa et al., 1990]. A change of the BOLD signal in a given brain

region indicates then that this region is involved in the stimulation delivered to the subject.

The BOLD signal hence allows indirect measurement of neuronal activity [Logothetis et al.,

2001].

2.4.2 Data acquisition in fMRI

During an fMRI run, the whole brain volume is imaged many times. The acquisition of

each volume is called a scan. The requested time to acquire a scan is called Time-of-

Repetition. Generally speaking, a scan is performed in about two seconds, while a run

may last up to ten minutes. During an fMRI session, several runs may be acquired in ad-

dition do eventual anatomical or diffusion [Filler et al., 1991] MRI acquisitions. However,

an fMRI session should last less than 90 minutes for adults and 45 minutes for children.

During this acquisition time, and unless a resting state fMRI study is conducted, the

subject is exposed to an experimental paradigm. Two kinds of paradigms may be used:

event-related or block paradigms. The first one consists of presenting isolated and ran-

dom stimuli with jittering to the subject. Each of these isolated stimuli lasts less than

two or three seconds. However, in a block paradigm, repeated tasks every two seconds

are presented to the subject during 30 to 40 seconds. Fig. 2.7 illustrates an example of

an event-related and block paradigms where several conditions (i.e. A, B, C,...) are dif-

ferently delivered. In a given experimental paradigm, one or more tasks can actually be

involved. These tasks (stimuli) may be visual (e.g. face recognition), motor (e.g. pressing

a button), auditory (e.g. listening to sentences) or cognitive (e.g. mental calculation, read-

ing,...)... Subject to the presented stimuli, the time course of the BOLD signal represents

the haemodynamic response function (HRF), which describes the brain response to the

related stimuli. Fig. 2.4.2 illustrates an example of stimuli and the related BOLD signal

acquired in a voxel which belongs to the activated area.

Ideally, if the concerned voxel belongs to the activated brain area involved in processing

of the the stimulus, the measured BOLD signal should be close to the expected response.

However, because of low Signal-to-Noise Ratio (SNR) of MRI images, the BOLD signal

is degraded, leading to a decrease of the Contrast to Noise Ratio (CNR). Based on this

degraded signal, activated voxels are detected using a statistical analysis. This procedure

will be presented in more detail in Chapter 6.
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Figure 2.7: Example of experimental paradigms: (a) block paradigm; (b) event-related
paradigm.

MRI SIGNAL

STIMULUS

ON

OFF

Figure 2.8: Used stimuli with a block paradigm (top) and induced BOLD signal (bottom).

To achieve a good activation detection performace and sentitivity, a trade off has to be

made between the spatio-temporal resolution and SNR of the fMRI data. However, ac-

quiring fMRI images of high temporal resolution requires fast imaging sequences like the

Echo Planar Imaging (EPI) one, which has been proposed by Mansfield in 1997 [Mansfield,

1997]. This sequence on which rely most of the fMRI studies in the literature allows to

reduce the imaging time due to the application of an echo-train after the RF pulse, which

enables the acquisition of all the phase encoding steps at once. However, acquired images

generally suffer from several forms of artifacts.

2.4.3 Artifacts in fMRI

Generally speaking, two kinds of artifacts may be encountered in EPI fMRI images: ar-

tifacts encountered in conventional MRI, and those specific to the EPI sequence. A non

exhaustive describtion of these artifacts is given herebelow.
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2.4.3.1 Artifacts in conventional MRI� Metal artifacts:

These artifacts are caused by the presence of ferromagnetic objects within or next

to the imaged organ. They can consist of an increase (hyper-signal) or loss (hypo-

signal) of the signal in some areas, or also a deformation of the image (see Fig. 2.9).

Figure 2.9: Example of metal artifacts; yellow array: hyper-signal areas; red array: hypo-
signal areas; green arrays: image deformation [Gerardin, 2006].� Motion artifacts:

Motion artifacts occur because of the subject movement between two TRs or during

the phase encoding. This kind of artifacts often occurs in dynamic imaging such as

abdomen or cardiac imaging. As illustrated in Fig. 2.10 (right), a blur may occur in

the reconstructed image if the movement is random. However, phantom images may

degrade the image if the movement is periodic like illustrated in Fig. 2.10 (left).

Figure 2.10: Example of motion artifacts; right: blur artifacts; left: phantom artifacts
[Gerardin, 2006].� Magnetic susceptibility artifacts:

These artifacts are observed when two structures of different magnetic susceptibil-

ities intersect such as the brain/air interface. Next to such regions, we observe an
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inhomogeneity of the main magnetic field
−→
B 0. These inhomogeneities are resposible

for two kinds of magnetic susceptibility artifacts: first, they result in a frequency

shift of the resoning frequency of the spins, which leads to a shift in the reconstructed

images. This kind of artifacts is also called geometrical distortion artifacts and it

consists of a compression or dilation of the image along the phase encoding direction

(see Fig. 2.11 (right)). Second, these
−→
B 0 inhomogeneities result in an intra-voxel

dephasing, which leads to signal loss in the considered areas (see Fig. 2.11 (left)).

Figure 2.11: Example of magnetic susceptibility artifacts [Gerardin, 2006].

It should be mentioned here that this kind of artifacts is increased in EPI because of the

long TE (which increases the dephasing time).

2.4.3.2 Specific EPI artifacts: ghosting artifacts

Ghosting artifacts in EPI are caused by the fact that the Fourier plane is acquired alter-

natively in two directions (left to right and right to left) as illustrated in Fig. 2.12. This

Figure 2.12: Example of ghosting artifacts [Gerardin, 2006].

encoding scheme requires a temporal correction of even or odd line before reconstruction

because of the gradient dephasing introduced when inverting the encoding pathway. As

illustrated in Fig. 2.13, ghosting artifacts appear as additional shifted parasite images.
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Figure 2.13: Example of ghosting artifacts.

2.5 Parallel Magnetic Resonance Imaging

As detailed in Section 2.2, the frequency encoding step has to be repeated several times

to encode a whole line of the k-space. Moreover, in order to encode all the lines of the

k-space, the phase encoding step has also to be iterated. However, for fMRI experiments,

reducing the global imaging time without significantly degrading the image quality is of

great interest for the final goal, i.e. studying the brain functions. Indeed, since an fMRI

study requires the acquisition of the brain volume several times in order to track brain

activity, reducing the acquisition time (which may lead to reducing TR) allows faster rep-

etition of the brain imaging, which leads to better temporal resolution. It allows hence

getting more accurate knowledge about the brain response dynamics. On the other hand,

increasing the spatial resolution is also benifical for fMRI since it allows more precise spa-

tial localization of activations. Improving this resolution requires the acquisition of more

k-space points. If reducing the TR is not the goal, shortening the acquisition time can be

exploited to increase the spatial resolution by acquiring additional k-space points while

maintaining the TR almost fixed. In multishot acquisitions, reducing the acquisition time

may also be exploited to acquire more images, and hence to increase the acquisition SNR.

It leads also to shorter read-out duration, and hence allows the reduction of reconstruction

artifacts such as magnetic susceptibility ones even for anatomical MRI.

Since switching on/off the magnetic field gradients is technically time-consuming, a solu-

tion to reduce the global imaging time lies in the use of parallel imaging systems. In such

systems, multiple receiver coils with complementary sensitivity profiles located around the

underlying object are used to simultaneously collect MRI data in the k-space. In order

to speed up the acquisition or reduce reconstruction artifacts, the data are sampled at a

frequency rate R times lower than the Nyquist sampling rate along at least one spatial di-

rection, i.e. usually the phase encoding one. Parallel MRI presents therefore the following

advantages for both anatomical and functional MRI:� reducing geometrical distortion artifacts by increasing the phase-encoding bandwidth

[Weiger et al., 2002; Lin et al., 2005];� reducing magnetic susceptibility artifacts by reducing TE;
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quisition time and the acoustic noise by reducing the gradient switching [De Zwart

et al., 2002] (since not all the k-space is acquired);� improving the spatio-temporal resolution of fMRI images;� reducing motion artifacts by shortening the echo-train in EPI (functional).

However, as any imaging technique, resorting to pMRI is not completely costless. Using

pMRI systems generally leads to lower acquisition Signal to Noise Ratio (SNR) than with

conventional MRI. This SNR decrease is less important in functional EPI images since

an important gain is achieved due to the reduction of the previously described artifacts.

Using pMRI systems requires also a specific and more complicated reconstruction step to

build up a full FOV image by unfolding the undersampled coil-specific data sampled under

the Nyquist rate. This pMRI reconstruction is a challenging task because of the low SNR

due to four main artifact sources:� aliasing artifacts related to the undersampling rate;� acquisition noise;� errors in the estimation of coil sensitivity maps;� sub-optimal coil geometry to provide sufficient independent complementary informa-

tion from all the array.

Using parallel imaging to reduce global imaging time at fixed spatial resolution, the TR is

approximately R times shorter than with conventional acquisitions. Hence, in imaging se-

quences involving a single volume acquisition, the global imaging time is directly impacted:

acquiring a high resolution T1-weighted image takes about 9 min using convential settings

and only 5 min (respectively, 3 min) using R = 2 (resp. R = 4) in pMRI. This allows to

reduce the exposition time to the magnetic fields for the subject when only anatomical

data have to be acquired. In dynamic imaging like fMRI, the TR reduction is usually

exploited in another direction, namely the improvement of spatial or temporal resolution

instead of the decrease of the global scanning time. One underlying reason is that the EPI

sequence on which fMRI data acquisition relies has low spatial resolution in conventional

whole brain imaging (typically 64×64 pixels by slice). In that case, pMRI enables high

resolution imaging up to 128×128 for the same TR, provided that a high enough R-factor

is used.

2.5.1 Parallel MRI basics

As illustrated in Fig. 2.14, an array of L coils with complementary spatial sensitivity

profiles is used to measure the spin density ρ in the object under investigation. The signal

d̃ℓ received by each coil ℓ (1 ≤ ℓ ≤ L) is the Fourier transform of the desired 2D field ρ on

the specified FOV weighted by the coil sensitivity profile sℓ, evaluated at some locations
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Figure 2.14: Parallel acquisition in MRI using an 8 coils array.

k = (ky, kx)
T in the k-space:

d̃ℓ(k) =

∫

FOV
ρ(r)sℓ(r)e

−ıkTrdr + ñℓ(k), (2.9)

where ñℓ(k) is a coil-dependent additive zero-mean Gaussian noise [Pruessmann et al.,

1999a; Sijbers et al., 2007], which is independent and identically distributed (iid) in the

k-space, and r = (y, x)T is the spatial position in the image domain. The size of the

acquired data d̃ℓ in the k-space clearly depends on the sampling scheme. For the sake of

simplicity, a Cartesian coordinate system is generally adopted in the neuroimaging context.

In this case, Fig. 2.15 clearly illustrates the differences between conventional and parallel

acquisitions in terms of k-space sampling. In parallel MRI, the sampling period along the

phase encoding direction is R times larger than the one used for conventional acquisition,

R ≤ L being the reduction factor.

Note however that other sampling schemes have been used in the pMRI literature like the

spiral one. Spiral trajectories are in fact less sensitive to motion and blood flow artifacts

[Noll et al., 1995; Yan et al., 1999], which explains the fact that they are usually used for

cardiac imaging for instance. However, other artifacts such as the geometrical distorsion

ones are more complicated to reduce when spiral encoding trajectories are adopted. Spiral

sequences are also more sensitive to magnetic field inhomogeneities. Fig. 2.16 illustrates

three kinds of spiral trajectories. The advantage of square spiral trajectories is that no

interpolation is requested for a Cartesian grid. However, circular spiral trajectories require

lower magnetif field gradient power. In this manuscript, we will focus on the Cartesian

encoding scheme as it is often used in brain imaging, the application that we are interested

in.

Using an eight coils array whose sensitivity profiles are illustrated in Fig. 2.17(a),
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Figure 2.15: Sampling schemes for conventional and parallel acquisitions on a Cartesian
grid. Here R = 2 indicates a subsampling along the phase encoding direction (y-axis) by
a factor of two.

Figure 2.16: Spiral encoding trajectory; (1): square spiral, (2): circular spiral, (3): circular
spiral for segmented acquisition.
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Figure 2.17: Parallel acquisition in MRI using an 8 coils array: (a) coil sensitivity profiles;
(b) acquired images without subsampling the k-space; (c) acquired reduced FOV images;
(d) reconstructed full FOV image.

conventional sampling of the k-space would lead to the coil images shown in Fig. 2.17(b).

However, in practice, and because of subsampling the k-space under the Nyquist rate,

aliasing appears in the spatial domain after an inverse Fourier transform as illustrated in

Fig. 2.17(c). The reconstruction process then consist of recovering the full FOV image

such as in Fig. 2.17(d) based on:� reduced FOV images;� coil sensitivity profiles;� acquisition noise properties.

This step may be performed either in the image domain or directly in the k-space.

2.5.2 Parallel MRI reconstruction

2.5.2.1 Brief state of art

The Simultaneous Acquisition of Spatial Harmonics (SMASH) [Sodickson and Manning,

1999], introduced by Sodickson and Manning in 1997, was the first reconstruction method

to operate in the k-space. It uses a linear combination of pre-estimated coil sensitivity

maps to generate the missing phase encoding steps. Some other k-space based recon-

struction techniques have also been proposed like GRAPPA (Generalized Autocalibrating

Partially Parallel Acquisitions) [Griswold et al., 2002] or generalizations of the SMASH

method (AUTO-SMASH) [Jakob et al., 1998; Heidemann et al., 2001]. The general idea

of these reconstruction methods operating in the k-space is that the missing k-space lines
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(not acquired) are reconstructed using linear combinations of acquired lines. However, the

specificity of SMASH is that it needs a separate coil sensitivity map estimation in con-

trast with these most recent generalizations, which proceed by acquiring a few additional

k-space lines to derive coil sensitivity maps without a reference scan. This explains why

these extensions are referred to as autocalibrated.

Indeed, GRAPPA and its alternatives may be preferable to non-autocalibrated meth-

ods when accurate coil sensitivity maps may be difficult to extract. This occurs when

reference scans are difficult to acquire either because of limited global imaging time or

spatial resolution changes. For instance, in lung and abdomen imaging, the numerous

inhomogeneous regions with a low spin density make the estimation of the sensitivity

information inaccurate. Reference scans may also appear inappropriate in other circum-

stances, typically when they are not able to account for artifacts that will appear later

during the parallel imaging sequence. This is especially critical in dynamic imaging in

the case of motion artifacts. However, all the reported methods may suffer from phase

cancellation problems (since the missing k-space lines are recovered using linear combina-

tion of acquired lines), low SNR during the acquisition process and limited reconstruction

quality.

In [Pruessmann et al., 1999a], an alternative reconstruction method called SENSitivity

Encoding (SENSE) has been introduced. In its simplified form, which relies on Cartesian

k-space sampling, SENSE is a two-step procedure involving first a reconstruction of re-

duced FOV images and second a spatial unfolding technique, which amounts to a weighted

least squares estimation. This technique requires a precise estimation of coil sensitivity

maps using a reference scan (usually a 2D GRE). Note that for non-Cartesian sampling

schemes, like the spiral one, SENSE reconstruction is more complicated and requires iter-

ative reconstruction [Pruessmann et al., 2001].

Extensions of the SENSE method such as in vivo SENSE [Sodickson, 2000], JSENSE [Ying

and Sheng, 2007] or mSENSE [Wang et al., 2001] have also been proposed to avoid sepa-

rately estimating the coil sensitivity maps based on a reference scan. Table 2.1 gives a

summarized overview of pMRI reconstruction methods.

To the best of our knowledge, in actual clinical daily routines, only GRAPPA and

SENSE-like algorithms are available on scanners: Siemens provides GRAPPA and mSENSE

techniques which roughly correspond to ASSET and ARC methods on General Electric

Healthcare machines. In practice, SENSE and GRAPPA perform similarly and provide

comparable reconstruction SNR. The main difference is that GRAPPA is autocalibrated

while SENSE requires separable coil sensitivity estimation. This difference is no longer

significant since autocalibrated methods for SENSE like mSENSE are available. However,

it is known that SENSE performs better than GRAPPA when reconstructing image de-

tails (high frequency content) provided that a good estimation of the sensitivity maps is

available. On the other hand, GRAPPA allows better reconstruction when no precise sen-

sitivity maps are available (artifacts, low spin densities,...) or in the presence of subject

movement. For a general overview of reconstruction methods in pMRI the reader may

refer to [Hoge et al., 2005; Schoenberg et al., 2007].

In the rest of this manuscript we will limit ourselves to the SENSE method since the

considered application (i.e. brain imaging) allows deriving precise sensitivity maps and
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Table 2.1: Classification of the main pMRI reconstruction methods depending of the
reconstruction space.

Method folded data domain unfolded data domain

SMASH [Sodickson and
Manning, 1999]

Fourier Fourier

Cartesian SENSE
[Pruessmann et al., 1999a]

Spatial Spatial

Generalized SENSE
[Pruessmann et al., 2001]

Fourier Spatial

SPACE-RIP [Kyriakos et al.,
2000]

Fourier Spatial

AUTO-SMASH [Jakob et al.,
1998]

Fourier Fourier

GRAPPA [Griswold et al.,
2002]

Fourier Fourier

requires better reconstruction of image details. Although 2D extensions of SENSE have

been investigated in some recent works as in [Van Der Zwaag et al., 2006; Rabrait, 2007;

Rabrait et al., 2008], we will also focus here on the 1D Cartesian version of SENSE.

2.5.2.2 The pMRI acquisition model in the image domain

After discretization of the measured signal in Eq. (2.9) with samplig steps ∆ky and ∆kx,

a 2D inverse Fourier transform allows us to recover the measured signal by a coil ℓ (of

sensitivity profile sℓ) in the spatial domain, which is defined as

dℓ(y, x) =
∆ky∆kx

4π2

+∞∑

p=−∞

+∞∑

q=−∞
d̃ℓ(p∆ky, q∆kx)e

i(py∆ky+qx∆kx) (2.10)

where y ∈ [0,
2π

∆ky
] and x ∈ [0,

2π

∆kx
].

Using the Poisson summation formula, we have

+∞∑

p=−∞

+∞∑

q=−∞
d̃ℓ(p∆ky, q∆kx)e

i(py∆ky+qx∆kx) =

∆ky∆kx
4π2

+∞∑

l=−∞

+∞∑

m=−∞
ρ(y +

l2π

∆ky
, x+

m2π

∆kx
)sℓ(y +

l2π

∆ky
, x+

m2π

∆kx
), (2.11)

which leads to the following expression of the measured signal by a coil ℓ in the spatial

domain:

dℓ(y, x) =

+∞∑

l=−∞

+∞∑

m=−∞
ρ(y +

l2π

∆ky
, x+

m2π

∆kx
)sℓ(y +

l2π

∆ky
, x+

m2π

∆kx
), (2.12)

By accounting for the reduction factor R along the phase encoding direction, the
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dimensions of the bounded support imaged FOV will be
FOVy

R
=

2π

∆ky
and FOVx =

2π

∆kx
along the phase and frequency encoding directions, respectively. In this case, the

undersampled measured signal in the image domain reads:

dℓ(y, x) =
R−1∑

l=0

ρ(y +
lFOVy

R
,x)sℓ(y +

lFOVy

R
,x). (2.13)

In the image domain, this signal has to be sampled using some sampling steps ∆y and

∆x. Let Y =
FOVy

∆y
and X =

FOVx

∆x
be the sizes of the full FOV image along the phase

and frequency encoding directions, respectively assumed to be integer values. We have for

any (i, j) ∈ {0, . . . , Y
R
− 1} × {0, . . . ,X − 1},

dℓ(i∆y, j∆x) =

R−1∑

l=0

ρ((i+ l
Y

R
)∆y, j∆x)sℓ((i+ l

Y

R
)∆y, j∆x). (2.14)

By normalizing ∆y = ∆x = 1, and by a slight abuse of notations substituting i for y and

j for x, we retrieve the following discrete form of the measured signal:

∀(y, x) ∈ {0, . . . , Y
R
−1}×{0, . . . ,X−1}, dℓ(y, x) =

R−1∑

l=0

ρ(y+
lY

R
, x)sℓ(y+

lY

R
, x). (2.15)

Accounting for the whole set of L coils, the observation model at a spatial position r

can finally be expressed in a matrix form as follows:

d(r) = S(r)ρ(r) + n(r), (2.16)

where

S(r)
△
=




s1(y, x) . . . s1(y + (R− 1)YR , x)
...

...
...

sL(y, x) . . . sL(y + (R− 1)YR , x)


 ,

ρ(r)
△
=




ρ(y, x)

ρ(y + Y
R , x)
...

ρ(y + (R − 1)YR , x)




, d(r)
△
=




d1(y, x)

d2(y, x)
...

dL(y, x)




(2.17)

and n(r)
△
=




n1(y, x)

n2(y, x)
...

nL(y, x)




.

In Eq. (2.16), each coil-dependent noise nℓ is a spatially iid circular zero-mean complex-
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valued Gaussian process defined over the FOV of size Y × X. However, the sequence

n is identically distributed and spatially independent, but it is not independent at a

given location r in the sense that its components (nℓ(r))ℓ are correlated, which also reads

n(r) ∼ N (0,Ψ), where Ψ is the between-coil L×L covariance matrix [Pruessmann et al.,

1999a; Sijbers et al., 2007]. In practice, Ψ is estimated by acquiring L images (dℓ)1≤ℓ≤L

from all coils without radio frequency pulse, and its generic entry Ψ(ℓ1, ℓ2) corresponding

to the covariance between the two coils ℓ1 and ℓ2 is given by:

∀(ℓ1, ℓ2) ∈ {1, . . . , L}2, Ψ̂(ℓ1, ℓ2) =
1

Y ×X

∑

(y,x)

dℓ1(y, x)d
∗
ℓ2(y, x), (2.18)

where (·)∗ stands for the complex conjugate. The reconstruction procedure then consists

of recovering ρ(r) based on the observation d(r), the knowledge about the sensitivity

matrix S(r) and noise assumptions.

2.5.2.3 The SENSE method

In its simplest form, the SENSE reconstruction amounts to solving a one-dimensional in-

version problem due to the separability of the Fourier transform. Note however that this

inverse problem admits a two-dimensional extension in 3D imaging sequences like Echo Vol-

ume Imaging (EVI) [Rabrait et al., 2008; Afacan et al., 2009] where undersampling occurs

in two k-space directions. The standard 1D-SENSE reconstruction method [Pruessmann

et al., 1999a] is simply the maximum likelihood estimate, which amounts to minimizing a

Weighted Least Squares (WLS) criterion from a deterministic viewpoint given the Gaus-

sian noise assumptions. The objective is to find a vector ρ̂WLS(r) at each spatial location

r such that:

ρ̂WLS(r) = argmin
ρ(r)∈CL

JWLS(ρ(r)) = argmin
ρ(r)∈CL

‖ d(r)− S(r)ρ(r) ‖2
Ψ

−1

=
(
SH(r)Ψ−1S(r)

)♯
SH(r)Ψ−1d(r) (2.19)

where (·)H (resp. (·)♯) stands for the transposed complex conjugate (resp. pseudo-inverse)

and, ‖ · ‖
Ψ

−1 =
√

(·)HΨ−1(·) defines a norm on C
L.

In practice, the performance of the 1D-SENSE method is limited because of the pres-

ence of:� distortions in the measurements d(r);� the putative ill-conditioning of S(r) specifically at locations r close to the image

center where most of the useful information is contained;� the presence of errors in the estimation of S(r) mainly at brain/air interfaces.

These limitations make the considered inverse problem ill-posed [Hadamard, 1902] and

reconstructed images using the SENSE method generally suffer from severe artifacts. To

illustrate these undesirable effects, experiments have been conducted on real data sets
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comprising 256 × 256 × 14 GRE anatomical and 64 × 64 × 30 fMRI EPI images with

respectively 0.93× 0.93× 8 (mm3) and 3.75× 3.75× 3 (mm3) spatial resolution. Note also

that these images have been acquired using acceleration factors R = 2 and R = 4 on a

Signa 1.5 Tesla GE Healthcare scanner with an eight-channel head coil. Interestingly, the

scanning time of anatomical data lasted 5 min in non-parallel imaging, while acquisition

duration was decreased to 3 min 10 s and 2 min 20 s in parallel imaging with R = 2 and

R = 4, respectively.

Figs. 2.18 and 2.19 show aliasing artifacts in the SENSE reconstructed anatomical im-

ages (9 different slices) for two values of the reduction factor: R = 2 and R = 4.

Slice # 1 Slice # 2 Slice # 3

Slice # 4 Slice # 5 Slice # 6

Slice # 7 Slice # 8 Slice # 9

Figure 2.18: GE anatomical data: reconstructed adjacent slices using SENSE for R = 2.

The illustrated images show that aliasing artifacts increase with the reduction factor

and are generally well spatially localized with either very high or very low intensity lev-

els. The same effects are also observed on functional reconstructed images illustrated in

Fig. 2.20.
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Slice # 1 Slice # 2 Slice # 3

Slice # 4 Slice # 5 Slice # 6

Slice # 7 Slice # 8 Slice # 9

Figure 2.19: GE anatomical data: reconstructed adjacent slices using SENSE for R = 4.
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Slice # 17 Slice # 18 Slice # 23

Slice # 25 Slice # 27 Slice # 29

Figure 2.20: Six EPI reconstructed slices using basic SENSE for R = 4.

2.6 Conclusion

This chapter presented a brief recall of the MRI principles and basics, and how MRI images

are created from acquired signal. It also detailed the main basics of pMRI, as a promiz-

ing technique used for fMRI. For pMRI recostruction methods, it mainly focused on the

SENSE algorithm which will be investigated in this manuscript, and which do not perform

very well under severe experimental conditions. To achieve better SENSE reconstruction

results, and since the reonstruction problem is ill-posed, regularization techniques are gen-

erally used in such a situation in order to enhance the target solution. The regularization

issue is addressed in a general way in Chapter 3 and applied to the pMRI reconstruction

problem in Chapter 4.
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Chapter 3

Regularization and convex analysis

for inverse problems
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3.1 Introduction

Because of sensor imperfection and acquisition mode, the measured data are often noisy

and degraded by a linear operator. These operator and noise properties may actually

depend on the application under consideration. However, in many real world applications

the involved inverse problem is ill-posed. For instance, in pMRI where the noise is Gaus-

sian, the linear operator is simply the sensitivity matrix whose ill-posedness depends on

the acceleration factor regarding the number of channels in the coil.

The general goal of this chapter is to provide the reader with a brief introduction to reg-

ularization techniques for ill-posed inverse problems, as well as to describe the inherent

optimization challenges and algorithmic issues while proposing solutions to some of the en-

countered practical difficulties. Although some inverse problems may involve a non-linear

operator like in diffraction tomography [Pan, 1998], we will limit ourselves in this chapter

to inverse problems where the operator is linear, which is the case in pMRI. We will also

restrict our presentation in this chapter to real-valued signals. However, all the definitions

and algorithms presented in this chapter can be extended to the complex-valued case like

in Chapter 4 where the pMRI reconstruction problem is addressed.

Section 3.2 gives an introduction to ill-posed inverse problems and regularization issues

to achieve stable and efficient solutions. We then go through the inherent optimization

problems in Section 3.3 and solve some of the practical hurdles encountered when using

iterative optimization algorithms. Some numerical illustrations and conclusions are finally

given in Sections 3.4 and 3.5, respectively.
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3.2 Regularization for inverse problems

3.2.1 Inverse problems

In many real world problems where one is interested in measuring a physical signal, this

signal is not directly available, but only measured through some physical laws linking the

sought signal to the measurements. The inherent inverse problem consists of inverting

these physical laws and recovering the target signal. This problem can be formulated as

follows. Let y ∈ R
N be the real-valued signal/image to be recovered from its degraded

observation z ∈ R
M through a linear operator H : RN −→ R

M . This linear operator

simply describes the physical laws linking y to the measurement z. Moreover, an obser-

vation noise n ∈ R
M generally affects the measurements. When this noise is additive, the

resulting observation model reads:

z = Hy + n. (3.1)

Other non-additive noise models may be encountered in applications like Poisson noise in

PET [Padfield and Manjeshwar, 2006], Gamma distributed noise in Synthetic Aperture

Radar (SAR) [Weibin and Mingyi, 2009] . . .

However, the model in Eq. (3.1) is an exact match of the one in pMRI reconstruction since

the noise is zero-mean Gaussian and additive [Pruessmann et al., 1999a; Sijbers et al.,

2007]. For this reason, this model will be investigated in the rest of this manuscript.

We recall that an inverse problem is called ill-posed [Hadamard, 1902] if one of the following

conditions is not met:

i) existence: a solution y exists for each observation z;

ii) unicity: this solution is unique;

iii) stability: a small perturbation of the observation induces a small perturbation of the

solution.

The inverse problem in Eq. (3.1) can be solved using conventional estimators by min-

imizing some distance D between the solution and the observation. In this case, the

estimation procedure relies on the optimization of the following criterion:

ŷ = argmin
y

D(Hy,z). (3.2)

When the considered distance is quadratic, which means that the observation noise is

Gaussian, the Weighted Least Squares (WLS) estimator is often used in signal/image

recovery literature. However, a drawback of the WLS estimation is its lack of stability

with respect to imprecise measurements. Indeed, let δz be the observation error and δŷ the

inherent error affecting the solution ŷ. When the weighting matrix in the WLS estimation

reduces to the identity, the perturbation study shows that [Golub and Van Loan, 1996,

p. 81]:
‖ δŷ ‖
‖ ŷ ‖ ≤ c

‖ δz ‖
‖ z ‖ , (3.3)
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where c ≥ 1 is the condition number of the problem, defined as the ratio of largest and

smallest singular values of H. As shown in Eq. (3.3), this condition number is directly

related to the stability of the solution: the larger it is, the higher the influence of the

measurement error δz on the solution ŷ. The problem is called ill-conditioned when

c ≫ 1, which is generally the case in many real world image restoration and reconstruc-

tion problems like the pMRI reconstruction one where c can be equal to 9 in the center

of the k-space, and can even reach higher values especially in the brain/air interfaces. To

summarize, when M ≥ N , the problem is overdetermined and well-posed, unless H is

ill-conditioned. However, when M < N , the problem is underdetermined with an infinity

of solutions which may match the observation model, and hence it is ill-posed.

To alleviate this problem and get a satisfactory solution, regularization techniques [Tikhonov,

1963] have been widely investigated in the inverse problems literature. For more details

about inverse problems and regularization techniques, the interested reader can refer to

[Demoment and Idier, 2008a; Demoment and Idier, 2008b].

3.2.2 Regularization

In practice, regularization simply consists of introducing some prior knowledge about the

target solution, which is generally user-dependent.

Phylosophically speaking, regularization techniques can be split into two different groups:

those which proceed by reducing the search space where a solution is looked for, and

those which minimize some penalized criterion, eventually under additional constraints.

However, some regularization methods can enter either in the first or the second class.

Equivalence between approaches belonging to different classes can even be demonstrated

in some cases.

Reducing the search space

This regularization approach consists of controlling the solution dimensions: the solution

is decomposed into sub-spaces of reduced dimensions and then reconstructed by elim-

inating sub-spaces dominated by noise. This may be performed using a Singular Value

Decomposition (SVD) [Demoment and Idier, 2001], Fourier [Ciuciu et al., 2001], or wavelet

transforms [Mallat, 1998], eliminating high frequency components, and then reconstructing

a denoised solution.

Penalized regularization

A stabilization of the target solution is here performed by adding a prior information

about it. This additional information may be modelled by a penalization term added

to the criterion measuring the closeness of the estimate to the data (likelihood). For

instance, a penalized regularization of the inverse problem in Eq. (3.1) is simply achieved

by minimizing the following criterion,

ŷ = argmin
y

[D(Hy,z) + αg(y)], (3.4)
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which is obtained from Eq. (3.2) by adding the penalty term g(·). The parameter α > 0 is

called the regularization parameter, which balances the solution between the data fidelity

term D(H·,z) and the penalization g(·). When α tends to zero, the regularized solution

tends to the one obtained using the WLS estimator. When α −→ ∞, the solution tends

to the one obtained by minimizing only the penalization term, called also the regulariza-

tion function. A probabilistic interpretation of this regularization approach is given in

Section 3.2.4. Note that in the rest of this manuscript, we will focus only on the penalized

regularization approach.

The regularization penalty may be designed in order to emphasize some features of the

signal under investigation like sparsity or local smoothness properties. Prior information

about these features can also be supplied whether in the original space or in a transformed

one.

In this context, and since the 90’s, Wavelet Transforms (WT) [Mallat, 1998] have been

widely used in regularization literature [Guerrero-Colon et al., 2008; Pesquet et al., 2009;

Vonesch and Unser, 2009] since they allow one to detect local image features and details

through the sparse representation they provide. WTs allow one to decompose signals into

insightful scale-space elements which are easier to interpret and process. Nevertheless, it

has been observed especially in the image processing literature that using overcomplete

wavelet representations is generally more advantageous than wavelet bases. In fact, some

useful properties cannot be obtained using classical bases transforms. For instance, shift

invariance and directionality are of great interest in image processing and allow to sepa-

rate the information included in the image into different sub-spaces. Each sub-space can

then be processed differently depending on the target application. In this context, various

redundant wavelet representations have been introduced. The undecimated wavelet trans-

form [Coifman and Donoho, 1995] has been proposed having the fruitful shift-invariance

properties, but at the expense of high redundancy. More recently, geometrical transforms

have been proposed such as curvelets [Candès et al., 2006], contourlet [Do and Vetterli,

2005], dual-trees [Selesnick et al., 2005; Chaux et al., 2006b] or grouplets [Mallat, 2009],

which are often able to achieve the shift-invariance property and perform accurate direc-

tional analyses. The next section will give a brief overview of the frame concept in general,

which is not reduced to wavelet transforms and can involve other linear representations.

3.2.3 The frame concept

Let H and G denote two separable Hilbert spaces with scalar product 〈., .〉 and norm ‖.‖. A
family of vectors (ek)k∈I in H with I ⊂ Z is called a frame when there exists two constants

µ and µ in ]0,+∞[ such that

(∀y ∈ H), µ‖y‖2 ≤
∑

k∈I
| 〈y|ek〉 |2 ≤ µ‖y‖2. (3.5)
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If µ = µ, (ek)k∈I is called a tight frame. The bounded linear frame analysis operator F

and its adjoint synthesis frame operator F ∗ are defined as

F : H → G (3.6)

y 7→ (〈y|ek〉)k∈I,
F ∗ : G → H (3.7)

(ξk)k∈I 7→
∑

k∈I
ξkek.

When F is invertible and F−1 = F ∗, (ek)k∈I is an orthonormal basis. A simple example

of a redundant frame is the union of µ ∈ N
∗ orthonormal bases. In this case, the frame is

tight with µ = µ = µ and thus, we have F ∗ ◦ F = µId where Id is the identity operator.

Note that in the rest of this manuscript where the Hilbert spaces H and G are finite-

dimentional (for example H = R
N or H = R

K), the upper bound µ always exists.

3.2.4 Bayesian approach using frame representations

To deal with the regularization task using wavelet frame representations for example, two

strategies can be adopted: regularization with respect to the image (Analysis Approach -

AA) or to the wavelet coefficients (Synthesis Approach - SA). Comparisons of these two

competing approaches have been investigated in some recent works [Elad et al., 2007b;

Carlavan et al., 2009]. The study in [Elad et al., 2007b], where a general inverse problem

involving Gaussian noise has been considered, shows that the two approaches are no longer

equivalent when overcomplete transforms are used. However, the two approaches are not

completely disconnected: depending on the considered problem, it can be easier to express

the prior information in the image or transformed space. Duality properties allow one to

establish relationships between the two inherent optimization problems (see [Combettes

et al., 2010] where a denoising example involving Gaussian noise is investigated).

Under a Bayesian framework, the design of the regularization function is performed through

the choice of a prior distribution that models the signal under investigation in a given space.

Recovery of the unknown signal is then performed based on its posterior distribution.

To go through this Bayesian formulation in more detail, we will first assume the following.� the signal to recover y is a realization of a random variable Y with prior probability

distribution p(y),� the observed signal z is a realization of a random variable Z with conditional likeli-

hood p(z|y).
Using a frame representation, and combining the likelihood and the appropriate prior

distribution, the posterior probability distribution may be easily derived even using AA

or SA.

3.2.4.1 The Analysis Approach

If one adopts AA, the prior distribution will be designed based on a direct transformation

of the signal to recover. In this case, the posterior probability distribution of the unknown
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signal is given by:

p(y|z) ∝ p(z|y) p(y), (3.8)

where the likelihood and prior probability distributions are given by

p(z|y) ∝ exp (−D(Hy,z)) (3.9)

and

p(y) ∝ exp (−g(Fy)) , (3.10)

F being the bounded linear frame analysis operator. In practice, F may be chosen as a

WT, Fourier transform, DCT [Ahmed and Natarajen, 1974],...

The prior defines a proper probability density if for example,

∀x ∈ R
N , g(x) ≥ ρ‖x‖p (3.11)

where ρ > 0 and p > 0. We have indeed

∫

RN

e−g(Fy)dy ≤
∫

RN

e−ρ‖Fy‖pdy ≤
∫

RN

e−ρµp/2‖y‖pdy <∞. (3.12)

The posterior probability in Eq. (3.8) can then be reexpressed as:

p(y|z) ∝ exp (−D(Hy,z)− g(Fy)) . (3.13)

3.2.4.2 The Synthesis Approach

When dealing with SA, the prior distribution will be designed based on the representation

of the signal in a given dictionary such that y = F ∗x. In this case, an estimate x̂ of x will

first be found before getting ŷ = F ∗x̂. The posterior probability of the unknown signal is

given by:

p(x|z) ∝ p(z|F ∗x) p(x). (3.14)

Assuming the same form for the likelihood and the following shape of the prior

p(x) ∝ exp (−g(x)) , (3.15)

the posterior probability distribution in this case is given by:

p(x|z) ∝ exp (−D(HF ∗x,z)− g(x)) . (3.16)

3.2.4.3 Variational formulation of the AA/SA estimation procedure

Based on the posterior probability distribution in each case, the Minimum Mean Square

Error (MMSE) (i.e. the Posterior Mean) or the Maximum A Posteriori (MAP) estimators

may be used to recover an estimate ŷ of y. The MMSE can be used only when easy

mathematical integration of the posterior distribution can be performed. However, its

approximation may be obtained by resorting to Monte Carlo simulation methods. This

approach will not be detailed in this chapter, but more details can be found in [Robert
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and Castella, 2004] and references therein, or by referring to Chapter 5. Our attention

will be focused on the MAP estimator since it is somehow more familiar than the PM one.

If one wants to use the MAP estimator by maximizing the posterior distribution established

with AA and SA, the estimation procedure can be written in the following variational form:� AA:

ŷ = arg min
y∈RN

[D(Hy,z) + g(Fy)], (3.17)� SA:

ŷ = F ∗ arg min
x∈RK

[D(HF ∗x,z) + g(x)]. (3.18)

Philosophically, AA and SA are quite different. However, when the used frame is an

orthonormal basis, the two approaches are strictly equivalent. For more general frames,

the equivalence is not always ensured unless for special cases of frames or regularization

functions. In fact, Elad et al. [Elad et al., 2007b] has proved the equivalence between

AA and SA when a redundant frame is used for the case of Gaussian noise and quadratic

regularization functions. However, for other noise classes or sparser penalty terms like

an ℓ1 norm for instance (Laplace prior), the two problems become quite different and

their respective resolution may lead to different results. Moreover, it has been reported

in the same work that the AA may be more robust to estimation errors in each solution

component apart. However, good results in image deconvolution have been obtained using

even AA in [Weiss et al., 2008] or SA in [Chaux et al., 2007]. Based on this variational

formulation, the regularization process reduces to the optimization problem in Eqs. (3.17)

and (3.18) for AA and SA, respectively. The next section addresses the optimization issue

inherent to the regularization process.

3.3 Convex optimization

For the rest of this chapter, we will denote by Γ0(H) (resp. Γ0(G)) the class of lower

semicontinuous convex functions from H (resp. G) to ]−∞,+∞] which are not identically

equal to +∞. We will also recall the concept of proximity operator [Moreau, 1962; Moreau,

1965] as follows.

Definition 3.3.1 [Moreau, 1965]

For a function φ ∈ Γ0(H), the proximity operator is such that:

(∀ξ ∈ H), proxφ(ξ) = argmin
ζ∈H

φ(ζ) +
1

2
‖ζ − ξ‖2 . (3.19)

In recent convex optimization literature, many useful properties of the proximity oper-

ator are provided in recent works like [Combettes and Wajs, 2005; Chaux et al., 2007;

Combettes and Pesquet, 2010].

Note also that for a function φ : R → R, the convex conjugate [Rockafellar, 1970] of
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ξ2/2 + φ(ξ) reads simply as ξ2/2 − proxφ(ξ). This convex conjugate function has been

used in some recent works for half-quadratic optimization [Ciuciu and Idier, 2002].

For illustration purposes, we give here an example of a convex function and the associated

proximity operator.

Example 3.3.1

Let φ be the function defined by:

φ : R→ R (3.20)

ξ 7→ |ξ|
β

α

where β ∈ [1,∞[ and α ∈ R
∗
+ are the shape and scale parameters, respectively. The

associated proximity operator writes:� if β = 1, the considered function is simply the anti-logarithm of a Laplacian distribu-

tion and we have proxφ(ξ) = soft1/α(ξ) where soft1/α is simply the soft thresholding

operator defined by:

∀ξ ∈ R, softτ (ξ) = sign(ξ)max{|ξ| − 1/α, 0} (3.21)� if β 6= 1, this function corresponds to the anti-logarithm of a Generalized Gaussian

(GG) distribution with proxφ(ξ) = sign(ξ)η, where η is the unique solution in [0,+∞[

to η + βηβ−1/α = |ξ|.

Fig. 3.1 illustrates the curve of the function φ defined in Eq. (3.20) with different values of

the shape and scale parameters. Fig. 3.2 displays the associated proximity operator plots

for the same values of the shape and scale parameters. It can be easily noticed through

these figures that in fact, for β = 1 the proximity operator behaves as a soft thresholder.

This is actually a nice property in image/signal restoration problems which is not achieved

for a wide variety of penalty terms like quadratic or half-quadratic ones [Geman and Yang,

1995; Ciuciu et al., 2001; Ciuciu and Idier, 2004].

The next section describes some optimization schemes from the convex optimization

literature which may be used for the optimization of problems in Eqs. (3.17)-(3.18).

3.3.1 Some convex optimization algorithms

In the rest of this section, we will focus on the case where the optimality criteria in

Eqs. (3.17)-(3.18) are convex, which is generally inherent to the choice of the regulariza-

tion function g, provided that the data fidelity term is also convex. Generally speaking,

convex penalizations induce easier optimization problems than non convex ones since ev-

ery local minimizer is global. However, even within the class of convex penaltizations,

smooth penalties [Phillips, 1962; Twomey, 1963; Geman and Reynolds, 1992] (such as the

Tikhonov one) have been the most frequently used in regularization literature for a long

time, since no efficient algorithms allowing the minimization of non-smooth criteria have
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Figure 3.1: Curves of the convex function defined in Eq. (3.20).
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Figure 3.2: Curves of the proximity operator associated with the functions plotted in
Fig. 3.1.

been available. Due to some advances in the convex optimization literature, non-smooth

penalties (such as half-quadratic or ℓ1 functions) started to be investigated [Geman and

Reynolds, 1992; Geman and Yang, 1995]. This emergence in the image/signal literature

has been catalyzed by the emergence of optimization algorithms having as an idea to opti-

mize an approximation of the non-smooth criterion instead of the criterion itself [Nashed

and Scherzer, 1997; Ciuciu et al., 2001; Lustig et al., 2007; Carlavan et al., 2009]. Using

more general non-smooth penalizations has been made possible due to recent advances in

convex optimization due to algorithms dealing directly with non-smooth criteria. Among

the recent efficient optimization algorithms dealing with convex but non-smooth criteria,

we can cite the Forward-Backward (FB) algorithm [Daubechies et al., 2004; Chaux et al.,

2007], Fast Iterative Soft Thresholding Algorithm (FISTA) [Beck and Teboulle, 2009] or

Parallel ProXimal Algorithm (PPXA) [Combettes and Pesquet, 2008].

Except PPXA which is designed to minimize the sum of J ∈ N
∗ convex functions, FB and

FISTA can only deal with criteria involving two convex functions. However, the common
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property of these algorithms is that they are iterative schemes and their convergence is

guaranteed under appropriate choice of their parameters. Their structure may be summa-

rized in a unique diagram involving two main steps: parameters setting and update. This

diagram is illustrated in Fig. 3.3.

Figure 3.3: Summary diagram of iterative convex optimization algorithms.

We consider here that a good iterative optimization algorithm should satisty the fol-

lowing conditions:

1) Convergence: an algorithm which is not guaranteed to converge cannot be relied

on, especially for applications which are supposed to be user-independent and where

the final results have to be trusted.

2) Stability: one has to pay attention to numerical errors which usually occur when

evaluating some functions, variables ..., which may be nasty especially in iterative

schemes where the error may be increased in each iteration and lead to poor results.

3) Efficiency: a trade-off between convergence speed, computational time and re-

quested computer resources has to be made.

4) Simplicity: the complexity in terms of implementation and parameter settings

should be taken into account.

In what follows, our attention will be paid to convex optimization algorithms which are

widely used in literature and referenced as the fastest available ones that satisfy the four

previously cited conditions. We will namely give a quick overview of the FB, FISTA and

PPXA algorithms.

3.3.1.1 Forward-Backward algorithm

Let us first define the function f ∈ Γ0(R
N ) from D (the data fidelity term) as follows:

∀y ∈ R
N , f(y) = D(Hy,z). (3.22)
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In the following, the functions D(·,z) and g(·) are assumed to be in Γ0(R
M ) and Γ0(R

K),

respectively. When one of these functions is differentiable with a Lipschitz gradient, the FB

algorithm can be used. The FB iterations are given by Algorithm 1 whenD(·,z) is assumed

to be differentiable with α-Lipschitz gradient. The convergence [Combettes and Wajs,

2005; Chaux et al., 2007] of (yn)n∈N (resp. (xn)n∈N) to a solution of Problem (3.17) (resp.

Problem (3.18)) is ensured when infn∈N λn > 0,
∑+∞

n=0 ‖an‖ < +∞ and
∑+∞

n=0 ‖bn‖ < +∞.

The sequences (an)n∈N and (bn)n∈N correspond to some error tolerances in the evaluation

of the gradient and the proximity operator, respectively.

Algorithm 1 The FB algorithm

AA SA

• Select y0 ∈ R
N

for n ∈ N
∗ do

• Set γn ∈]0, 2/(α ‖H‖2)[ and λn ∈
]0, 1]

• yn+ 1
2
= yn − γn

(
∇f(yn) + bn

)

• pn = proxγng◦F (yn+ 1
2
)

• yn+1 = yn + λn

(
pn + an − yn

)

end for
• After convergence, take ŷ = yn+1.

• Select x0 ∈ R
K

for n ∈ N
∗ do

• Set γn ∈]0, 2/(α ‖HF ∗‖2)[ and
λn ∈]0, 1]
• xn+ 1

2
= xn − γn

(
F∇f(F ∗xn) +

bn

)

• pn = proxγng(xn+ 1
2
)

• xn+1 = xn + λn

(
pn + an − xn

)

end for
• After convergence, take ŷ =
F ∗xn+1.

3.3.1.2 Fast Iterative Soft Thresholding Algorithm

The FISTA algorithm is also adapted to the case when one of the two functions is dif-

ferentiable with Lipschitz gradient. We will therefore keep using the same roles for the

functions f(·) and g(·) as for the FB algorithm. The FISTA iterations are summarized by

Algorithm 2 when D(·,z) is assumed to be differentiable with α-Lipschitz gradient. The

Algorithm 2 The FISTA algorithm

AA SA

• Select y0 ∈ R
N , t1 = 1 and buid the

sequence (yn)n∈N as follows
for n ∈ N

∗ do
• yn+ 1

2
= yn − 1

α‖H‖2∇f(yn)
• pn = proxg◦Fyn+ 1

2

• tn+1 =
1+
√

1+4t2k
2

• yn+1 = pn + tk−1
tk+1

(pn − pn−1)
end for
• After convergence, take ŷ = yn+1.

• Select x0 ∈ R
K , t1 = 1 and buid the

sequence (xn)n∈N as follows
for n ∈ N

∗ do
• xn+ 1

2
= xn− 1

α‖HF ∗‖2F∇f(F
∗xn)

• pn = proxg(xn+ 1
2
)

• tn+1 =
1+
√

1+4t2k
2

• xn+1 = pn + tk−1
tk+1

(pn − pn−1)
end for
• After convergence, take ŷ =
F ∗xn+1.



68 Regularization and convex analysis for inverse problems

convergence to a solution to Problem (3.17) (resp. Problem (3.18)) of the sequence (yn)n∈N
(resp. (xn)n∈N) generated by Algorithm 2 is no longer guaranteed. However, the conver-

gence of the objective values (D(Hyn,z)+g(Fyn))n∈N (resp. (D(HF ∗xn,z)+g(xn))n∈N)
is ensured [Beck and Teboulle, 2009].

3.3.1.3 Parallel ProXimal Algorithm

We will use here the same function f(·) as defined in Eq. (3.22). With respect to the

FB context, we will relax the assumption that one of the two functions (f(·) or g(·))
is differentiable with Lipschitz gradient. The involved functions, for which we have to

calculate the proximity operator, have just to be convex. In fact, the PPXA allows the

minimization of criteria involving J ∈ N
∗ convex functions, provided that the computation

of the proximity operator of each of them is possible.

The PPXA iterations minimize the sum of J convex functions (
∑J

j=1 fj) as explained in

Algorithm 3. However, a solution to Problem (3.17) (resp. (3.18)) can be obtained by

setting J = 2 and choosing f1 = f and f2 = g ◦ F (resp. f1 = f ◦ F ∗ and f2 = g). The

Algorithm 3 The PPXA algorithm

AA SA

• Let γ ∈ ]0,+∞[
• Set (ωj)1≤j≤J ∈]0, 1]J such that∑J

j=1 ωj = 1

• Set (uj,0)1≤j≤J ∈ (RN )J and y0 =∑J
j=1 ωjuj,0

for n ∈ N do
• for j ∈ {1, . . . , J}, calculate
pj,n = proxγ/ωjfjuj,n + aj,n

• pn =
∑J

j=1 ωjpj,n

• λn ∈ ]0, 2[
• for j ∈ {1, . . . , J}, calculate
uj,n+1 = uj,n+λn (2 pn−yn−pj,n)

• yn+1 = yn + λn(pn − yn)
end for
• After convergence, take ŷ = yn+1.

• Let γ ∈ ]0,+∞[
• Set (ωj)1≤j≤J ∈]0, 1]J such that∑J

j=1 ωj = 1

• Set (uj,0)1≤j≤J ∈ (RK)J and x0 =∑J
j=1 ωjuj,0

for n ∈ N do
• for j ∈ {1, . . . , J}, calculate
pj,n = proxγ/ωjfjuj,n + aj,n

• pn =
∑J

j=1 ωjpj,n

• λn ∈ ]0, 2[
• for j ∈ {1, . . . , J}, calculate
uj,n+1 = uj,n+λn (2 pn−xn−pj,n)

• xn+1 = xn + λn(pn − xn)
end for
• After convergence, take ŷ =
F ∗xn+1.

sequences (aj,n)n∈N in R
N or RK for j ∈ {1, . . . , J} introduced in Algorithm 3 correspond

to possible errors (numerical errors for instance) in the computation of the proximity

operators, which show that convergence is assured in spite of these errors.

The sequence (yn)n∈N (resp. (xn)n∈N) generated by Algorithm 3 converges to a solution

to Problem (3.17) (resp. Problem (3.18)) under the following assumption [Combettes and

Pesquet, 2008]:

Assumption 3.3.2

(i) lim‖y‖→+∞ f1(y)+ . . .+ fJ(y) = +∞ (resp. lim‖x‖→+∞ f1(x)+ . . .+ fJ(x) = +∞).
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(ii) H is finite-dimensional and ∩Jj=1rint dom fj 6= ∅.1

(iii)
∑

n∈N λn(2− λn) = +∞.

(iv) (∀j ∈ {1, . . . , J}) ∑
n∈N λn‖aj,n‖ < +∞.

3.3.2 For those who see life in pink

Actually, using such iterative optimization algorithms is not completely costless. Indeed,

by considering the proximal algorithms described in the previous section to solve the

minimization problems (3.17) and (3.18), some hurdles can actually be encountered. These

difficulties may be encountered whether in Step 1 or Step 2 of the diagram in Fig. 3.3.

For example, the convergence rate of the FB algorithm [Chaux et al., 2007] when used

to solve Problem (3.18) depends on the upper frame constant µ. For other optimization

schemes such as PPXA [Combettes and Pesquet, 2008], the difficulty may stem from

the computation of the proximity operator associated with ϕ ◦ T where ϕ ∈ Γ0(H) and

T : G → H is a bounded linear operator.

In this section we will focus on these two main difficulties:

i) calculating the proximity operator associated with the composition of a function and

a linear operator;

ii) calculating the frame constant.

3.3.2.1 Proximity operator and frame representation

As reported in the previous section, using FB, FISTA or PPXA may require the calculation

of the proximity operator associated with the composition of a convex function and a

bounded linear operator. To perform this calculation, three methods are described: explicit

form computation, splitting approach and iterative approach.

Explicit form

The described method here is completely based on the proposition 3.3.3 introduced in

[Combettes and Pesquet, 2007] and is restricted to the case where the linear operator T

satisfies a specific property.

Proposition 3.3.3 Let G be a real Hilbert space, let ϕ ∈ Γ0(G), and let T : H → G be a

bounded linear operator. Suppose that the composition of T and T ∗ satisfies T ◦T ∗ = χId,

for some χ ∈]0,+∞[. Then ϕ ◦ T ∈ Γ0(H) and

proxϕ◦T = Id +
T ∗

χ
◦ (proxχϕ − Id) ◦ T. (3.23)

For instance, when a denoising problem (H = Id) is considered with SA and the PPXA

algorithm is used for the optimization task, we mainly need to calculate the proximity

1The relative interior of a set S of H is designated by rintS and the domain of a function f : H →
]−∞; +∞] is dom f = {ξ ∈ H|f(ξ) < +∞}.
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operator proxD(.,z)◦F ∗. This calculation may be performed using Proposition 3.3.3 in the

restrictive framework of a tight frame (F ∗ ◦ F = µId) with T = F ∗ and χ = µ.

Splitting approach [Pustelnik et al., 2010]

When the function ϕ ∈ Γ0(R
N ) is separable, which means that

(∀ξ = (ξ(n))1≤n≤N ), ϕ(ξ) =

N∑

n=1

ϕn(ξ
(n)), (3.24)

the splitting approach consists of decomposing the operator T in operators (Ti)1≤i≤I such

that Ti ◦T ∗
i = χiId. We subsequently assume that (Ii)1≤i≤I is a partition of {1, . . . , N} in

nonempty sets. For every i ∈ {1, . . . , I}, let Ni be the cardinality of Ii and let

Υi : RNi → ]0,+∞[ (3.25)

(ξ(n))n∈Ii 7→
∑

n∈Ii
ϕn(ξ

(n)). (3.26)

Assume that ϕ◦T =
∑I

i=1 Υi ◦Ti where Ti is the linear operator from G to R
Ni associated

with the matrix 


t⊤n1

...

t⊤nNi




with Ii = {n1, . . . , nNi}. The following assumption plays a prominent role in the splitting

approach.

Assumption 3.3.4 For all i ∈ {1, . . . , I}, (tn)n∈Ii is an orthogonal family having the

same norm χ
1/2
i where χi > 0.

Consider AA when the frame representation is associated with a union of I = µ orthogonal

bases and the regularization function g is separable. The minimization problem (3.17) can

be rewritten as

ŷ = argmin
y

D(Hy,z) +

µ∑

i=1

gi(Fiy), (3.27)

where for every i ∈ {1, . . . , I}, F ∗
i ◦ Fi = Id and gi ∈ Γ0(R

K/I) (assuming that K/I and

µ are integers). By considering this form of Problem (3.17), we are able to compute the

proximity operators associated with each of the proxgi◦Fi
by (3.23). Algorithm 3 can thus

be applied to find the optimal solution to Problem (3.17).

Iterative approach

Unfortunately, if the used frame is not tight, the two previous methods to calculate the

proximity operator g ◦ F cannot be used. However, although deriving a closed form for

this proximity operator in this case is not obvious, it can be iteratively calculated using

the duality principle [Zălinescu, 2002]. By using the definition of the proximity operator
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given in (3.19), the primal problem consists of finding

min
p∈RN

1

2
‖y − p‖2 + g(Fp) (3.28)

and the associated dual problem is then

min
v∈RK

1

2
‖y − F ∗v‖2 + g∗(v) (3.29)

where g∗ ∈ Γ0(R
K) is the conjugate of g.2 This formulation is a particular case of the

one proposed in [Combettes et al., 2010] and can be solved using the Splitting Dual-

Primal algorithm [Combettes et al., 2010]. In Algorithm 4, under the assumption that∑
n∈N ‖an‖ ≤ +∞ and

∑
n∈N ‖bn‖ ≤ +∞, the sequence (vn)n∈N converges to a solution

v̂ of the dual Problem (3.29) and proxg◦F (y) = y − F ∗v̂.

Algorithm 4 Splitting Dual-Primal algorithm to compute proxg◦F (y)

1: Select ǫ ∈]0,min{1, 1/µ}[
2: Set v0 ∈ R

K

3: for n ∈ N do
4: yn = y − F ∗vn + bn
5: γn ∈ [ǫ, 2/µ − ǫ]
6: λn ∈ [ǫ, 1]
7: vn+1 = vn + λn

(
γnFyn − γnprox 1

γn
g(

vn
γn

+ Fyn) + an

)

8: end for
9: After convergence, take v̂ = vn+1.

3.3.2.2 Frame constant

Another issue related to proximal algorithms when used to solve the SA optimization

problem consists of computing the norm ‖HF ∗‖2 (see Section 3.3.1). The problem is

clearly present in Algorithms 1 and 2 (SA) where the step-size γn is inversely proportional

to this norm. If the norms of the linear operator ‖H‖ and the frame operator ‖F‖ can

be calculated, the norm ‖HF ∗‖2 can be approximated by its upper bound ‖H‖2‖F‖2.
However, despite its simplicity, this solution remains sub-optimal and the inherent step-

size γn will not lead to the fastest convergence rate. Since the norm ‖HF ∗‖2 is usually

not easy to calculate, we propose herebelow an algorithm which converges to this value.

Consider the objective function (3.18) for which h = D(.,z) is α-Lipschitz differentiable.

By definition of Lipschitz differentiability, we have

(∀(y1,y2) ∈ (RM )2), ‖∇h(y1)−∇h(y2)‖ ≤ α‖y1 − y2‖ (3.30)

When using the FB or the FISTA algorithms to solve the SA optimization Problem (3.18),

the gradient of the function fS = f ◦F ∗ = h◦H ◦F ∗ = D(H ◦F ∗.,z) has to be calculated

2We recall that the conjugate of a function h : R
K → R is the function h∗ : R

K → R defined by
h∗(ξ) = sup

x∈RK{〈ξ|x〉 − h(x)} (see [Rockafellar, 1970] for details).
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and is defined as

(∀x ∈ (RK)), ∇fS(x) = FH∗(∇h(HF ∗x)), (3.31)

which yields to

(∀(x1,x2) ∈ (RK)2) ‖∇fS(x1)−∇fS(x2)‖ ≤ α‖HF ∗‖2‖x1 − x2‖. (3.32)

Consequently fS is α‖HF ∗‖2-Lipschitz differentiable. Let B = HF ∗ and perform the

eigenvalue decomposition UΛU∗ of the matrix associated with the positive semi-definite

operator B∗B, where Λ = diag{λ1, . . . , λK} and U = [u1, . . . ,uK ] ∈ R
K×K is an orthog-

onal matrix. Moreover, ‖HF ∗‖2 = λi0 where i0 ∈ Arg max1≤i≤K λi. Thus, let x0 ∈ R
K

which does not belong to an eigenspace of B∗B, we can write,

‖Bnx0‖2
‖Bn−1x0‖2

=

∑K
i=1 λ

n
i |〈x0,ui〉|2∑K

i=1 λ
n−1
i |〈x0,ui〉|2

, (3.33)

which yields to

lim
n→+∞

‖Bnx0‖2
‖Bn−1x0‖2

= λi0 = ‖HF ∗‖2. (3.34)

The iterations of this algorithm are illustrated in Algorithm 5.

Algorithm 5 Frame constant computation

1: Select randomly x0 ∈ R
K , set ρ0 = ǫ+ 1, n = 1 and ρn = 1

2: while |ρn−ρn−1|
ρn

≤ ǫ do
3: Set xn = B∗Bxn−1 where B = HF ∗

4: Set ρn = ‖xn‖
‖xn−1‖

5: end while
6: After convergence, take ‖HF ∗‖2 = ρn

3.4 Numerical illustrations

In this section, a deconvolution problem is addressed with uniform blur H of size 5 × 5

and additive Gaussian noise of standard deviation σ = 6.

3.4.1 Comparison of the AA and SA performance

The AA and SA performance in image deblurring are compared here using in each case

the appropriate tools described throughout this chapter to solve the inherent optimization

problems. Four different redundant wavelet representations have been used to show how

the results depend on the used frame. The used wavelet frames are:

1) translation invariant wavelet (TIW) [Coifman and Donoho, 1995];

2) GenLOT [De Queiroz et al., 1996; Gauthier et al., 2009] transform;
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3) union of two orthonormal bases (U2OB);

4) contourlet transform [Do and Vetterli, 2005].

Since the blur operator H is poorly conditioned, the considered deblurring problem

is necessarely ill-posed. A regularization strategy should then be used to enhance the

target solution. Although many choices for the regularization function like Markovian

edge-preserving priors [Ciuciu et al., 2001] can be made, a simple ℓ1 regularization will be

used as a penalty term, which means that a Laplace iid distribution will be retained as

the prior to model the wavelet frame coefficients.

Based on the noise model and prior distribution, the optimality criteria in (3.17) and (3.18)

may be reexpressed as:� AA:

ŷ = argmin
y

[
1

2σ2
‖Hy − z‖2 + κ‖Fy‖1]. (3.35)� SA:

ŷ = F ∗ argmin
x

[
1

2σ2
‖HF ∗x− z‖2 + κ‖x‖1]. (3.36)

To minimize this criterion we used the FB algorithm (see Algorithm 1 for AA and SA)

with f =
1

2σ2
‖H · −z‖2 and g = ‖ · ‖1. The main difficulty when dealing with AA is to

compute the proximity operator of g ◦ F . This calculation was performed as explained

in Section 3.3.2.1 using the iterative approach applicable for all the used frames. On the

other hand, when SA is adopted, the main difficulty is to evaluate the Lipschitz constant

of the gradient of f ◦ F ∗. In fact, since the gradient of f is
1

σ2
-Lipschitz, fS is then

1

σ2
‖HF ∗‖2-Lipschitz differentiable. The difficulty is therefore to compute ‖HF ∗‖2, which

may be achieved using Algorithm 5 introduced in Section 3.3.2.2.

The comparison in this section is mainly based on the performance of AA and SA in terms

of visual restoration quality, SNR and Structural SIMilarity (SSIM) [Wang et al., 2004].

Tests are conducted on four standard 256 × 256 images with different contents (smooth

regions, contours, contract...): cameraman, barbara, boat and straw.

For illustration purpose, restoration results of AA and SA using the contourlet transform

are visually compared. Figs. 3.4, 3.5, 3.6 and 3.7 show the reference images (a), the

degraded (b) and restored ones using AA (c) and SA (d) for the camerama, barbara,

boat and straw images, respectively. We notice that for the four test images, the restored

images using AA and SA are very similar from a visual viewpoint.

As regards SNR and SSIM, quantitative results are given in Table 3.1. It is worth

noticing through Table 3.1 that no clear preference can be attributed to one of the two

competing approaches. The quantitative performance varies from an image to another

and from a frame to another.
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Figure 3.4: Original cameraman image (a), degraded one (b), restored images using AA
(c) and SA (d) with the contourlet frame.

3.4.2 Convergence speed comparison

In this section, the convergence speed of the described FB, FISTA and PPXA algorithms is

compared when used for the SA or AA. We address here the same deconvolution problem

as in the previous section using the U2OB wavelet transform. Adopting the AA or SA,

Table 3.2 summarizes the encountered difficulties and retained solutions when using the

FB, FISTA and PPXA algorithms. In terms of convergence speed, Figs. 3.8-3.9 illustrate

the evaluation of the optimality criterion w.r.t. the iteration number to show how the

three algorithms compare. It can be easily noticed that when adopting the AA, FB has

a faster convergence that FISTA and PPXA, wich perform similarly. However, when the

SA is used, FISTA has the highest convergence speed, but FB remains faster than PPXA.
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Figure 3.5: Original barbara image (a), degraded one (b), restored images using AA (c)
and SA (d) with the contourlet frame.

It can therefore be concluded that for the considered optimization problems, the FB and

FISTA algorithms behave similarly and tend to be faster than PPXA. Note however that

PPXA is able to address additional regularization terms (e.g. hard constraints on the

solution).

3.4.3 Convergence speed gain when calculating ‖HF ∗‖2

In this section we illustrate the gain in convergence speed when using the FB algorithm

for the SA and calculating the norm ‖HF ∗‖2 using Algorithm 5 instead of approximating

it by ‖H‖2‖F‖2.
Fig. 3.10 illustrates first the convergence curve of Algorithm 5. It is clear through this figure
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Figure 3.6: Original boat image (a), degraded one (b), restored images using AA (c) and
SA (d) with the contourlet frame.

that convergence is reached after about 4 iterations. Fig. 3.11 illustrates the evaluation

of the optimality criterion w.r.t the iteration number for these two cases, when the same

deconvolution problem as in Section 3.4.1 is considered using the U2OB wavelet transform.

It shows that the FB algorithm converges faster when the norm ‖HF ∗‖2 is calculated using

Algorithm 5 than when it is approximated. This confirms that using an optimal step-size

for the FB algorithm, which is directly linked to the calculation of ‖HF ∗‖2 when the

SA is adopted, is essential to achieve the best performance of this algorithm in terms of

convergence speed.

However, it has been noticed in practice through the same comparison using FISTA that

the gain in convergence speed due to the calculation of the norm ‖HF ∗‖2 is negligible for

this algorithm.
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Figure 3.7: Original straw image (a), degraded one (b), restored images using AA (c) and
SA (d) with the contourlet frame.
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Table 3.1: SNR evaluation for different images and frames in image deblurring.
SNR SSIM

Degraded AA SA Degraded AA SA

TIW 17.05 19.93 20.03 0.502 0.764 0.764
GenLot 17.05 20.00 19.90 0.502 0.757 0.745

cameraman contourlet 17.05 19.81 19.72 0.502 0.685 0.687
U2OB 17.05 19.41 20.02 0.502 0.736 0.769

TIW 18.01 20.59 20.50 0.574 0.718 0.719
GenLot 18.01 20.80 20.76 0.574 0.729 0.732

barbara contourlet 18.01 20.22 20.25 0.574 0.706 0.708
U2OB 18.01 20.13 20.33 0.574 0.726 0.740

TIW 17.37 19.43 19.92 0.520 0.666 0.694
GenLot 17.37 19.63 19.56 0.520 0.687 0.675

boat contourlet 17.37 19.55 19.57 0.520 0.664 0.668
U2OB 17.37 19.54 19.89 0.520 0.672 0.683

TIW 15.22 16.78 17.00 0.353 0.557 0.589
GenLot 15.22 16.87 17.02 0.353 0.570 0.587

straw contourlet 15.22 17.93 17.01 0.353 0.687 0.595
U2OB 15.22 17.13 16.98 0.353 0.616 0.609

Table 3.2: Encountered difficulties and retained solutions when using the FB, FISTA and
PPXA algorithms with the AA or SA.

proxg◦F proxf◦F ∗ ‖HF ∗‖2
FB Iterative approach ��� ���

AA FISTA Iterative approach ��� ���
PPXA Splitting approach ��� ���
FB ��� ��� Algorithm 5

SA FISTA ��� ��� Algorithm 5
PPXA ��� Explicit form ���

20 40 60 80 100 120 140 160 180

2.4

2.6

2.8

3

3.2

3.4
x 10

4

 

 
FB
FISTA
PPXA

Figure 3.8: Evaluation of the optimality criterion w.r.t iteration number with the AA.
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Figure 3.9: Evaluation of the optimality criterion w.r.t iteration number with the SA.
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Figure 3.10: Convergence curve of Algorithm 5.
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Figure 3.11: Evaluation of the optimality criterion w.r.t iteration number for the FB
algorithm when calculating (dot line) and approximating ‖HF ∗‖2 (solid line).



3.5 Conclusion

In this chapter, the general regularization framework has been introduced starting from

the inverse problem up to the inherent optimization challenges. A particular interest has

been paid to iterative proximal algorithms and related parameters which have to be care-

fully chosen: three proximal algorithms have been introduced and compared in terms of

convergence speed. The two competing approaches (AA and SA) have been investigated

by underlying in each case the difficulties which can be encountered when using redundant

frames, and how best to solve them. An application to image deblurring showed that the

performance of two methods depends on the used frame and even on the image itself.

Choosing the frame representation may also depend on the image content. Consequently,

it is quite difficult to conclude in a general context about the superiority of one approach

over the other. Note however that similar comparisons have been conducted in [Carlavan

et al., 2010] and do not lead to the same conclusions. In the next Chapter, the previ-

ously described tools are used when regularization is applied to the pMRI reconstruction

problem.
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Regularized SENSE reconstruction
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4.1 Introduction

SENSitivity Encoding (SENSE) is meant to achieve a perfect reconstruction in the case of

noiseless data and perfect coil sensitivity maps knowledge. However, in practice, inaccu-

racies in the estimation of coil sensitivity maps (especially at the center of the FOV) and

using high reduction factors make the reconstruction problem ill-posed. For these reasons,

the SENSE performance is limited under such severe experimental conditions since, as re-

ported in Chapter 2, this method reduces to a Weighted Least Squares (WLS) estimation.

To overcome this limitation, some alternatives have been proposed like the optimization

of the coil geometry [Weiger et al., 2001] and the improvement of coil sensitivity profiles

estimation [Blaimer et al., 2004]. However, at low magnetic fields (such as 1.5 Tesla), the

maximal reduction factor usually employed is R = 2 because severe aliasing artifacts affect

the reconstructed images when larger R values are used.

To further improve the spatial or temporal resolution, or simply reduce the global imaging

time while keeping the same acquistion parameters, it would be necessary to increase the

reduction factor R. To compensate for the intrinsic degradation of the image quality, it is

crucial to regularize the reconstruction process. For an introductory view of linear inverse

problems with a special emphasis on pMRI reconstruction, the interested reader can refer

to [Ribes and Schmitt, 2008].

This chapter aims at presenting the developed wavelet regularization approach and its

different extensions. In Section 4.2, we first present different regularization techniques

which have already beenreported in the pMRI reconstruction literature. Section 4.3 devel-

ops the proposed regularization strategies based on wavelet transforms. A combination of

wavelet and Total Variation (TV) penalizations is also investigated in Section 4.4. For the

specific fMRI concern using EPI sequences, an extension of this approach is presented in

Section 4.5 taking into account temporal dependencies between acquired volumes during

an fMRI session. Finally, a brief conclusion is drawn in Section 4.6.
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4.2 Regularization in pMRI
Regularization techniques were first introduced in pMRI literature by Liang in 2002 using

the standard Tikhonov regularization [Liang et al., 2002; Ying et al., 2004; Lin et al., 2004].

This kind of quadratic regularization can in fact improve the reconstructed image quality

when the experimental conditions are not too degraded (high magnetic field intensity such

as 3T, low reduction factor such as R = 2, low noise level ...). However, when it is not the

case, artifacts are more severe and such regularization methods cannot be relied on as illus-

trated in Section 4.2.1. Since 2007, this underperformance of the Tikhonov regularization

has motivated the use of edge-preserving penalizations in the regularization process such

as TV [Liu et al., 2007; Block et al., 2007; Liu et al., 2009]. Regularization based on these

kinds of penalties aims at preserving image discontinuities by adapting the penalization to

the intensity variation level. As illustrated in Section 4.2.2 and reported in the later cited

works, TV is well adapted to piecewise smooth images, which is not necessarily the case

in most of the real MRI images. In the same context of edge-preserving regularization,

wavelet-based penalizations have been introduced in the pMRI regularization literature

since 2008 to alleviate this problem [Chaari et al., 2008; Liu et al., 2008; Guerquin-Kern

et al., 2009] due to their hierarchical and sparse representations. This chapter will show

that wavelet transforms allow us to achieve accurate reconstruction of full FOV images

even under severe experimental conditions (low magnetic field intensity such as 1.5T, high

reduction factor such as R = 4 and noise level ...).

These edge-preserving penalizations have also been used in conventional MRI [Boubertakh

et al., 2000; Boubertakh et al., 2006] regularization and when Compressed Sensing (CS)

and pMRI were combined in a number of recent works [Liang et al., 2009; Zou et al.,

2008]. In these later works, a two-spets procedure is proposed. First, CS is used when

reconstructing the reduced FOV images. A standard SENSE reconstruction is then per-

formed to generate the full FOV image. The main reconstruction methods that rely on

this procedure are SparseSENSE [Zou et al., 2008] and CS-SENSE [Liang et al., 2009].

It is worth noting that the first step of these methods (i.e. reconstructing reduced FOV

images) relies on what is called Sparse MRI [Lustig et al., 2007], which is based on CS

instead of the Fourier encoding in order to reduce the acquisition time.

However, in contrast to the Tikhonov regularization where a closed form is available for

the regularized solution, edge-preserving penalties (TV or wavelets) may lead to non-

differentiable optimality criteria. Hence, the optimal solution (or its approximation) is

generally calculated iteratively, which means that the optimization algorithm will play

an important role in the efficiency of the regularization process. For this reason, much

attention has been paid in our regularization methods to design a rigorous optimization

algorithm, in contrast to some of the previously cited works [Liu et al., 2008; Liang et al.,

2009; Zou et al., 2008; Lustig et al., 2007] where only an approximation of the optimality

criterion is minimized.

4.2.1 Tikhonov regularization

To improve the robustness of the solution to this ill-posed problem, Tikhonov regular-

ization (also called quadratic regularization) has been widely used in the early pMRI
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regularization literature. As shown in [Ying et al., 2004; Liang et al., 2002], it consists

of computing ρ̂PWLS(r) as the minimizer of a Penalized Weighted Least Squares (PWLS)

criterion:

ρ̂PWLS(r) = argmin
ρ(r)∈CL

JPWLS(ρ(r))

= argmin
ρ(r)∈CL

[
JWLS(ρ(r)) + κ ‖ρ(r)− ρr(r)‖2IR

]
, (4.1)

where IR is the R-dimensional identity matrix and κ > 0 is the regularization parameter.

Interestingly, ρ̂PWLS matches the Maximum A Posteriori (MAP) estimator in the Bayesian

framework provided that a separable complex circular Gaussian prior N (ρr(r),
1
κIR) is

considered on ρ(r).

The regularization parameter κ ensures a balance between the closeness to the data

and the penalty term, which controls the deviation from a given reference vector ρr(r).

The solution ρ̂PWLS(r) is given by:

ρ̂PWLS(r) = ρr(r) +
(
SH(r)Ψ−1S(r) + κIR

)−1
SH(r)Ψ−1

(
d(r)− S(r)ρr(r)

)
.

Note that the accuracy of ρ̂PWLS(r) depends on the reference ρr(r) and the choice of the

regularization parameter κ. On the one hand, if κ tends to zero, the solution ρ̂PWLS(r)

converges to ρ̂WLS(r). On the other hand, for large κ values the penalty term dominates

in JPWLS and we get ρ̂PWLS(r) → ρr(r). To select a relevant value for κ, some works

have proposed to resort to the discrepancy principle or the L-curve technique [Rabrait

et al., 2008; Griesbaum et al., 2008; Engl, 1987; Lin et al., 2004; Ying et al., 2008; Block

et al., 2007; Lin et al., 2005] in order to achieve the best trade-off between reconstruction

noise removal and contrast reduction. Other contributions have promoted the Maximum

Likelihood (ML) estimator using an Expectation-Maximization (EM) algorithm for its

computation [Ciuciu et al., 2003; Ciuciu et al., 2004].

Quadratic regularization is actually known to produce smoothing effects [Phillips, 1962;

Twomey, 1963]. This is well illustrated in Figs. 4.1, 4.2 and 4.3 where reconstructed images

using Tikhonov regularization are shown. Note that illustrations here were made on the

same datasets as in paragraph 2.5.2.3.

A comparison with the basic-SENSE reconstruction can be made by referring to

Figs. 2.18, 2.19 for anatomical images, and 2.20 for functional ones. Note that in Tikhonov

regularization, the reference image ρr was chosen as a mean image based on the basic-

SENSE reconstruction, which contains the mean value of the signal of interest within the

brain mask. The regularization parameter κ was manually fixed and different settings were

tested in order to retain the best choice in terms of SNR/visual quality since a reference

anatomical image acquired in non-parallel imaging was available in this experiment. As

expected, some aliasing artifacts in the basic-SENSE reconstructed images are smoothed

by the Tikhonov regularization at the expense of oversmoothing effects. To avoid intro-

ducing these oversmoothing effects and preserve tiny structures and image discontinuities,

a solution lies in the use of edge-preserving penalty terms such as TV [Wang and Haomin,

2006; Keeling, 2003; Coulon et al., 2004; Liu et al., 2007] or half-quadratic ones [Geman
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Slice # 1 Slice # 2 Slice # 3

Slice # 4 Slice # 5 Slice # 6

Slice # 7 Slice # 8 Slice # 9

Figure 4.1: Reconstructed anatomical slices using Tikhonov regularization for R = 2.

and Reynolds, 1992; Geman and Yang, 1995; Ciuciu et al., 2001; Ciuciu and Idier, 2004].

4.2.2 Total variation regularization

Generally speaking, edge-preserving penalizations take place in the image domain and

make the regularization more efficient by limiting blurring effects and preserving the image

boundaries. One typical example of such penalization is the TV penalty. TV regularization

has already been used in MRI literature, especially for removing artifacts occuring in fast

acquisition schemes [Lustig et al., 2007] or parallel imaging [Raj et al., 2007; Liu et al.,

2007; Zou et al., 2008; Liang et al., 2008; Block et al., 2007]. The ensuing global TV-
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Slice # 1 Slice # 2 Slice # 3

Slice # 4 Slice # 5 Slice # 6

Slice # 7 Slice # 8 Slice # 9

Figure 4.2: Reconstructed anatomical slices using Tikhonov regularization for R = 4.

regularized criterion reads as follows:

ρ̂TV = argmin
ρ∈CY ×X

JTV(ρ)

= argmin
ρ∈CY ×X

JL(ρ) + κ‖ρ‖TV, (4.2)

where ‖ · ‖TV is the TV semi-norm [Liu et al., 2007; Liang et al., 2008], κ > 0 is the

regularization parameter, and

JL(ρ) =
∑

r∈{1,...,Y/R}×{1,...,X}
JWLS(ρ(r)). (4.3)

Note that unlike in Eq. (4.1), the regularization term here is no longer separable in r.

It has been reported in some recent works from regularization literature [Liu et al.,



86 Regularized SENSE reconstruction

Slice # 17 Slice # 18 Slice # 23

Slice # 25 Slice # 27 Slice # 29

Figure 4.3: Two EPI reconstructed slices using Tikhonov regularization for R = 4.

2007] that TV performs well especially on piecewise smooth images. It has also been ob-

served that TV regularization may sometimes lead to reconstruction noise increase [Liu

et al., 2009]. Hence, under severe experimental conditions (at 1.5 Tesla and R = 4) as

shown in Fig. 4.4, the most important artifacts appear as rings with sharp boundaries. For

illustration and comparison purpose, TV regularization has been applied to anatomical

and functional MRI data using moderate and large regularization levels (by tuning the

value of the regularization parameter κ). TV regularized reconstruction results at R = 4

are presented in Fig. 4.4 on anatomical and functional images corresponding to the 9th

anatomical and 27th functional slices, respectively. Figs. 4.4(a)-(b) show that some ring

artifacts were smoothed but the strongest ones still exist. Moreover, the reconstructed

images present some staircase effects. These effects are much more visible on functional

EPI data at lower spatial resolution. To limit these undesirable effects, stronger TV pe-

nalization (by increasing the value of κ) can be used at the expense of the information

content in the reconstructed images as shown in Figs. 4.4(c)-(d).

As shown by these experiments under severe acquisition conditions, image-based edge-

preserving priors are not well-adapted to regularize the reconstruction of the full FOV im-

age: severe aliasing artifacts are smoothed at the expense of the lost of useful information.

On the contrary, if such information is preserved, aliasing artifacts will not be sufficiently

smoothed. Therefore, in what follows, we make use of Wavelet Transforms (WT) to im-

prove artifact localization both in space and scales and introduce some adequate priors

in the wavelet space that promote the sparsity of such decomposition. We then derive

efficient optimization algorithms that are able to cope with convex but non-differentiable

criteria. As illustrated later, it will be shown that our penalization is better suited to the
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(a) (b)

(c) (d)

Figure 4.4: Reconstructed anatomical (left) and functional EPI (right) images using TV
regularization in the image domain with moderate (a)-(b) and strong (c)-(d) regularization
levels (R = 4).

regularization task than its image-based TV counterpart.

4.3 Regularization in the WT domain

4.3.1 Motivation

As mentioned earlier, the presence of sharp artifacts makes the basic SENSE reconstruc-

tion inefficient under severe experimental conditions. Therefore, it is highly desirable to

resort to an image representation where these artifacts can be easily detected and hence

attenuated. In this respect, the WT has been recognized as a powerful tool that enables

a good space and frequency localization of useful informations [Mallat, 1998]. In previous

literature, many wavelet decompositions and extensions have already been reported in

the literature offering different features in order to provide sparse image representations.

For instance, decompositions onto orthonormal dyadic wavelet bases [Daubechies, 1988]

including the Haar transform [Haar, 1910] as a special simple case or decompositions onto

biorthogonal dyadic wavelets [Cohen et al., 1992], M -band wavelet representations [Steffen

et al., 1993] and wavelet packet representations [Coifman and Wickerhauser, 1992] have

been extensively investigated in image denoising [Donoho and Johnstone, 1995; Leporini

and Pesquet, 2001; Müller and Vidakovic, 1999; Heurta, 2005; Daubechies et al., 2004;

Daubechies and Teschke, 2005] and deconvolution [Daubechies et al., 2004; Daubechies

and Teschke, 2005; Vonesch and Unser, 2008; Chaux et al., 2006a].

In medical imaging, wavelet decompositions have also been widely used for image denois-
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ing [Weaver et al., 1991; Wang and Haomin, 2006; Pizurica et al., 2006], coil sensitivity

map estimation and encoding schemes [Lin et al., 2003; Gelman and Wood, 1996; Wendt

et al., 1998] in MRI, activation detection in fMRI [Ruttimann et al., 1998; Meyer, 2003;

Van De Ville et al., 2004; Van De Ville et al., 2006], tissue characterization in ultrasound

imaging [Mojsilovic et al., 1998] and tomographic reconstruction [Pustelnik et al., 2009].

An appealing property of the resulting decomposition is that the statistical distribu-

tions of approximation and detail wavelet coefficients can be easily modelled in a realistic

way. Hence, the Bayesian framework can be adopted to capture relevant information in

the data through the likelihood definition, deriving appropriate priors and selecting an

efficient estimator to perform reconstruction in the wavelet transform domain.

4.3.2 Definitions and notations

In the following section, T stands for the WT operator and corresponds to a discrete

decomposition onto a separable 2D M -band wavelet basis performed over jmax resolution

levels. The full FOV image ρ of size Y ×X can be seen as an element of the Euclidean space

C
K with K = Y ×X endowed with the standard inner product 〈·|·〉 and norm ‖ · ‖. As

mentioned above, we are only interested in reconstructing one slice (2D image) for solving

the 1D-SENSE problem. Hence, only 2D WT operators are investigated. However, an

extension of the proposed approach to deal with 3D images using 3D WT operators will

be presented in Section 4.5. In this context, the following notations are introduced.

Definition 4.3.1

Let (ek)1≤k≤K be the considered discrete wavelet basis of the space C
K . The wavelet de-

composition operator T is defined as the linear operator:

T : CK → C
K (4.4)

ρ 7→ (〈ρ|ek〉)1≤k≤K .

The adjoint operator T ∗ used for reconstruction purpose is then defined as the bijective

linear operator:

T ∗ : CK → C
K (4.5)

(ζk)1≤k≤K 7→
K∑

k=1

ζkek.

The resulting wavelet coefficient field of a target image function ρ is defined by ζ =(
ζa, (ζo,j)o∈O,1≤j≤jmax

)
where ζa = (ζa,k)1≤k≤Kjmax

and ζo,j = (ζo,j,k)1≤k≤Kj
, Kj =

KM−2j being the number of wavelet coefficients in a given subband at resolution j (by

assuming that Y and X are multiple of M jmax). The coefficients have been reindexed

in such a way that ζa,k denotes the k-th approximation coefficient at resolution level

jmax and ζo,j,k denotes the k-th detail coefficient at resolution level j and orientation

o ∈ O = {0, . . . ,M − 1}2 \{(0, 0)} where k = 1, . . . ,Kj . In the dyadic case (M = 2), there

are three orientations corresponding to the horizontal, vertical or diagonal directions. Note
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that, when an orthonormal wavelet basis is considered, the adjoint operator T ∗ reduces to

the inverse WT operator T−1 and the operator norm ‖T‖ of T is equal to 1.

4.3.3 Wavelet-based regularized reconstruction

An estimate of the full FOV image ρ will be generated through the reconstruction wavelet

operator T ∗. Let ζ be the unknown wavelet coefficients such that ρ = T ∗ζ. We aim at

building an estimate ζ̂ of the vector of coefficients ζ from the observations

d = (d(r))r∈{1,...,Y/R}×{1,...,X}.

To this end, we derive a Bayesian approach relying on suitable priors on the wavelet

coefficients.

4.3.3.1 Likelihood

Given the observation model in Eq. (2.16) and the assumptions regarding the noise, the

likelihood function factorizes over pixels lying in the Y ×X FOV:

p(d | T ∗ζ) =
∏

r∈{1,...,Y/R}×{1,...,X}
p(d(r) | ρ(r)) ∝

∏

r∈{1,...,Y/R}×{1,...,X}
exp (−JWLS(ρ(r)))

∝ exp (−JL(T ∗ζ)) (4.6)

with JL and ρ = T ∗ζ are defined from ρ as in Eq. (4.3).

4.3.3.2 Prior

Let f be the prior probability density function (pdf) of the image in the wavelet domain.

We will assume here that the real and imaginary part of the wavelet coefficients are in-

dependent. We will also assume that the real (resp. imaginary) parts of the wavelet

coefficients are independent and identically distributed (iid) in each subband. Their sta-

tistical characteristics may however vary between two distinct subbands. Furthermore, by

looking at the empirical distributions of the real and imaginary parts of the considered

wavelet coefficients, we have noticed that their empirical histograms are well-fitted by

what we called a Generalized Gauss-Laplace (GGL) distribution. The histograms present

a single mode and their shape vary between the Gaussian and Laplacian densities. The

corresponding pdf reads:

∀ξ ∈ R, f(ξ;α, β) =

√
β

2π

e−(α|ξ|+β
2
ξ2+α2

2β
)

erfc( α√
2β
)

, (4.7)

where α ∈ R+ and β in R
∗
+ are hyper-parameters to be estimated using the proposed

MCMC approach in Chapter 5 for instance. Fig. 4.5 illustrates the empirical histograms

of real and imaginary parts of the horizontal detail subband at the first resolution level

using the dyadic (M = 2) wavelet decomposition with Daubechies filters of length 8.

This figure shows also that the adopted GGL distribution better fits the empirical his-
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togram than a Generalized Gaussian (GG) pdf 1. This fact was confirmed by applying a

Kolmogorov-Smirnov goodness-of-fit test.

Note that the anti-logarithm of the pdf in Eq. (4.7) is an exact match of the elastic net

Real Part Imaginary Part

Figure 4.5: Example of normalized empirical histograms of wavelet coefficients and as-
sociated pdfs using GG (red) and GGL (blue) distributions, the hyperparameters being
estimated using the proposed MCMC approach in Chapter 5.

penalty used in statistics [Zou and Hastie, 2005; Zou and Zhang, 2009]. Interestingly, this

kind of penalization is known to be an improvement of the ℓ1 penalization for analyzing

high-dimensional data [Zou and Zhang, 2009]: the ℓ1 part allows automatic variable se-

lection and promotes the sparsity of the solution, while the quadratic part improves the

prediction and tends to preserve the solution regularity. When formulated from a Bayesian

viewpoint, this elastic net penalization simply consists of assuming a prior on the signal

under investigation which matches the pdf in Eq. (4.7).

At the coarsest resolution level jmax, as often used in the wavelet literature, the distribu-

tions of both the real and imaginary parts of the approximation coefficients is assumed to

be Gaussian because of its low frequency content.

Due to its familiarity and simplicity, the MAP estimator will be used for the estimation

purpose. As we will see later, using the MAP estimator is also easier to derive than

many other estimators like the Minimum Meas Square Error (MMSE) since it is obtained

through minimizing criteria which are more complicated to integrate.

1We recall that the pdf of a GG distribution is given by: ∀x ∈ R, f(x|α, β) = β
2αΓ(1/β)

exp
(

− |x|β

αβ

)

where α > 0 and β > 0.
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4.3.3.3 Bayesian inference

Based on the prior and the likelihood given hereabove, the MAP estimator is computed

by maximizing the full posterior distribution or minimizing its negative log-likelihood:

ζ̂MAP = argmax
ζ∈CK

(
ln p(d | T ∗ζ) + ln f(ζ)

)
,

or equivalently by minimizing the following criterion:

ζ̂MAP = argmin
ζ∈CK

JWT(ζ)

= argmin
ζ∈CK

(
JL(T ∗ζ) + JP(ζ)

)
(4.8)

with JP(ζ) =
Kjmax∑

k=1

Φa(ζa,k) +
∑

o∈O

jmax∑

j=1

Kj∑

k=1

Φo,j(ζo,j,k) (4.9)

and

Φa(ζa,k) =
(Re(ζa,k)− µRe)2

(
√
2σRe)2

+
(Im(ζa,k)− µIm)2

(
√
2σIm)2

, (4.10)

Φo,j(ζo,j,k) = αRe
o,j|Re(ζo,j,k)|+

βRe
o,j

2
|Re(ζo,j,k)|2 + αIm

o,j|Im(ζo,j,k)|

+
βIm
o,j

2
|Im(ζo,j,k)|2. (4.11)

Hereabove, Re(·) and Im(·) (or ·Re and ·Im) stand for the real and imaginary parts, re-

spectively. The prior parameters αo,j = (αRe
o,j , α

Im
o,j) ∈ (R∗

+)
2, βo,j = (βRe

o,j , β
Im
o,j ) ∈ (R∗

+)
2,

µ = (µRe, µIm) ∈ R
2 and σ = (σRe, σIm) ∈ R

2
+ are unknown and need to be estimated.

4.3.3.4 Optimization procedure

Although JWT is convex, its optimization cannot be performed by conventional descent

algorithms like the pseudo-conjugate gradient because JP is not differentiable even if JL
is differentiable with a Lipschitz-continuous gradient. This difficulty is frequently encoun-

tered in inverse problems involving sparsity promoting priors [Harikumar and Bresler,

1996; Tropp, 2006; Elad et al., 2007a; Zymnis et al., 2009]. Therefore, we propose to

apply a generalized form of the iterative optimization procedure developed in [Daubechies

et al., 2004; Chaux et al., 2007], which is based on the Forward-Backward (FB) algorithm.

The minimization of JWT is performed by resorting to the concept of proximity op-

erators [Moreau, 1965] introduced in Chapter 3 (see Definition 3.3.1), which was found

to be fruitful in a number of recent works in convex optimization [Chaux et al., 2007;

Combettes and Wajs, 2005; Combettes and Pesquet, 2010]. In our context, and like in

many other signal/image processing problems [Li and Adali, 2008; Calhoun et al., 2002],

the observed data are complex-valued. For this reason, we generalize the definition of

proximity operators to a class of convex functions defined for complex-valued variables.
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For the function

Φ: CK →]−∞,+∞] (4.12)

x 7→ φRe(Re(x)) + φIm(Im(x))

where φRe and φIm are functions in Γ0(R
K) and Re(x) (resp. Im(x)) is the vector of the

real parts (resp. imaginary parts) of the components of x ∈ C
K , the proximity operator

is defined as

proxΦ : C
K → C

K (4.13)

x 7→ proxφRe(Re(x)) + ıproxφIm(Im(x)).

An example of proximity operator for a function of a complex-valued variable is given

below.

Example 4.3.1

Consider the following function:

Φ : C→ R (4.14)

ξ 7→ αRe|Re(ξ − µ)|+ βRe

2

(
Re(ξ − µ)

)2

+ αIm|Im(ξ − µ)|+ βIm

2

(
Im(ξ − µ)

)2

with (αRe, αIm) ∈ (R+)
2, (βRe, βIm) ∈ (R∗

+)
2 and µ ∈ C. It can be easily proved that the

associated proximity operator reads:

proxΦξ =
sign(Re(ξ − µ))

βRe + 1
max{|Re(ξ − µ)| − αRe, 0}

+ ı
sign(Im(ξ − µ))

βIm + 1
max{|Im(ξ − µ)| − αIm, 0}+ µ. (4.15)

By extending the algorithm in [Chaux et al., 2007] to the complex case, a minimizer

of JWT can be iteratively computed according to Algorithm 6 where the gradient of JL is

first calculated, and then the frame coefficients are updated. Note that in this algorithm,

the expressions of proxγnΦa
and proxγnΦo,j

at each iteration n are provided by Eq. (4.15)

associated to Example 4.3.1. It can also be noticed that λn and γn correspond to relaxation

and step-size parameters, respectively.

Again, we iterate Algorithm 6 over all slices to perform 3D volume reconstruction as

required for anatomical data. The proposed reconstruction procedure in Algorithm 6 is

also called the UWR-SENSE reconstruction method. Regarding functional data, we also

iterate over volumes separately to get the reconstructed series of EPI full FOV volumes.

Interestingly, Algorithm 6 allows a parallelization of the computation of the solution over

resolution levels since the proximity operators can be computed separately.
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Algorithm 6 UWR-SENSE: 2D-slice wavelet-based regularized reconstruction

Let (γn)n>0 and (λn)n>0 be sequences of positive reals.

1: Set n = 0 and ε ≥ 0. Initialize ζ(n) and set J (n) = JWT(ζ
(n)).

2: repeat
3: Reconstruct the image by setting ρ(n) = T ∗ζ(n).
4: Compute the image u(n) such that:

∀r ∈ {1, . . . , Y/R} × {1, . . . ,X},
u(n)(r) = 2SH(r)Ψ−1

(
S(r)ρ(n)(r)− d(r)

)
,

where the vector u(n)(r) is defined from u(n) in the same way as ρ(r) is defined from
ρ (see Eq. (2.17)).

5: Determine the wavelet coefficients υ(n) = Tu(n) =
(
υa, (υo,j)o∈O,1≤j≤jmax

)
of u(n).

6: Update the approximation coefficients of the reconstructed image ρ(n+1):

∀k ∈ {1, . . . ,Kjmax}, ζ(n+1)
a,k = ζ

(n)
a,k + λn

(
proxγnΦa

(ζ
(n)
a,k − γnυ

(n)
a,k )− ζ

(n)
a,k

)
.

7: Update the detail coefficients of the reconstructed image ρ(n+1):

∀o ∈ O,∀j ∈ {1, . . . , jmax},∀k ∈ {1, . . . ,Kj},
ζ
(n+1)
o,j,k = ζ

(n)
o,j,k + λn

(
proxγnΦo,j

(ζ
(n)
o,j,k − γnυ

(n)
o,j,k)− ζ

(n)
o,j,k

)
.

8: Compute J (n+1) = JWT(ζ
(n+1)).

9: n← n+ 1
10: until |J (n) − J (n−1)| ≤ εJ (n−1)

11: return ρ(n) = T ∗ζ(n)

4.3.3.5 Convergence of Algorithm 6

For every r ∈ {1, . . . , Y/R}×{1, . . . ,X}, let θr ≥ 0 be the maximum eigenvalue of the Her-

mitian positive semi-definite matrix SH(r)Ψ−1S(r) and let θ = maxr∈{1,...,Y/R}×{1,...,X} θr >
0. To guarantee the convergence of Algorithm 6, the step-size and relaxation parameters

have to meet the following conditions:

Assumption 4.3.2

(i) infn>0 γn > 0 and supn>0 γn < 1
θ‖T‖2 ,

(ii) infn>0 λn > 0 and supn>0 λn ≤ 1.

More precisely, the following result can be shown:

Proposition 4.3.3 Under Assumption 4.3.2, the sequence (ζ(n))n>0 generated when iter-

ating Steps 3 to 9 of Algorithm 6 converges linearly to the unique minimizer ζ̂ of JWT.

Proof :

From Eqs. (4.9)-(4.11), it can be seen that JP is a convex function such that

∀ζ ∈ C
K , JP (ζ) ≥

ϑ1

2
‖ζ‖2 − ϑ0
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where

ϑ0 =
Kjmax

2

(
(
µRe

σRe
)2 + (

µIm

σIm
)2
)

ϑ1 = min{(
√
2σRe)−2, (

√
2σIm)−2, (βRe

o,j)o∈O,1≤j≤jmax , (β
Im
o,j)o∈O,1≤j≤jmax}.

This means that JP is a strongly convex function with modulus ϑ1
2. Since JL is a finite convex

function, JWT also is strongly convex. It is thus strictly convex and coercive

(i.e. lim‖ζ‖→+∞ JWT(ζ) = +∞) and, from standard result in convex analysis [Rockafellar, 1970;

Ekeland and Témam, 1999], it can be deduced that JWT has a unique minimizer ζ̂ .

In addition, JL is a differentiable function and we have

∀ζ ∈ C
K , ∇JLT (ζ) =

∂JLT (ζ)

∂Re(ζ)
+ ı

∂JLT (ζ)

∂Im(ζ)
= T ∇JL(T ∗ζ), (4.16)

where JLT(ζ) = JL(T ∗ζ). Set ρ = T ∗ζ and u = ∇JL(ρ). It can be then deduced from Eq. (4.6)

that

∀r ∈ {1, . . . , Y/R} × {1, . . . , X}, u(r) = 2SH(r)Ψ−1 (S(r)ρ(r)− d(r)) .

where the vector u(r) is defined from u in the same way as ρ(r) is defined from ρ in Eq. (2.17).

Furthermore, for every ζ′ ∈ CK ,

‖∇JLT(ζ)−∇JLT(ζ′)‖ ≤ ‖T ‖‖u− u′‖ (4.17)

where u′ = ∇JL(ρ′) and ρ′ = T ∗ζ′. We have then

‖u− u′‖2 =
∑

r∈{1,...,Y/R}×{1,...,X}

‖u(r)− u′(r)‖2

= 4
∑

r∈{1,...,Y/R}×{1,...,X}

‖SH(r)Ψ−1S(r) (ρ(r) − ρ′(r)) ‖2

≤ 4
∑

r∈{1,...,Y/R}×{1,...,X}

θ2
r
‖ρ(r)− ρ′(r)‖2

≤ 4θ2‖ρ− ρ′‖2

≤ 4θ2‖T ‖2‖ζ − ζ′‖2. (4.18)

Altogether, Eq. (4.17) and Eq. (4.18) yield

‖∇JLT(ζ) −∇JLT(ζ′)‖ ≤ 2θ‖T ‖2‖ζ − ζ′‖ (4.19)

which shows that JLT has a Lipschitz continuous gradient with constant 2θ‖T ‖2.

Based on these observations and the fact that,

∀ζ =
(
(ζa,k)1≤k≤Kjmax

, (ζo,j,k)1≤j≤jmax,1≤k≤Kj

)
,

proxγnJP
ζ =

(
(proxγnΦa

ζa,k)1≤k≤Kjmax
, (proxγnΦo,j

ζo,j,k)1≤j≤jmax,1≤k≤Kj

)
, (4.20)

2A function f : χ →]−∞,+∞], where χ is a Hilbert space, is said strongly convex on χ with modulus

ϑ1 > 0 if there exists some g ∈ Γ0(χ) such that f = g + ϑ1‖·‖
2

2
.
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the sequence (ζ(n))n>0 built by Algorithm 6 can be rewritten under the more classical Forward-

Backward iterative form [Chaux et al., 2007]:

ζ(n+1) = ζ(n) + λn

(
proxγnJP

(
ζ(n) − γn∇JLT(ζ(n))

)
− ζ(n)

)
(4.21)

and, due to the Lipschitz differentiability of JLT, the convergence of the algorithm is guaranteed

under Assumption 4.3.2 (see [Chaux et al., 2007; Combettes and Wajs, 2005]). Furthermore, since

JP is strongly convex with modulus ϑ1, we have (see [Chaux et al., 2009] and references therein)

∀n > 0, ‖ζ(n) − ζ̂‖ ≤
(
1−

λγϑ1

1 + γϑ1

)n−1

‖ζ(1) − ζ̂‖ (4.22)

where γ = infn>0 γn and λ = infn>0 λn. This proves that (ζ
(n))n>0 converges linearly to ζ̂. �

The results we obtained using Algorithm 6 are discussed in Section 4.3.3.6.

4.3.3.6 Reconstruction results

Results on anatomical data

In this experiment, dyadic (M = 2) Symmlet orthonormal wavelet bases [Daubechies,

1992] associated with filters of length 8 were used over jmax = 3 resolution levels. Regard-

ing the wavelet coefficients, the prior described in Subsection 4.3.3.3 has been employed.

The related hyper-parameters 3 were estimated using the Bayesian approach described in

Chapter 5. Full FOV image reconstruction was then performed using our UWR-SENSE

method. For the sake of simplicity, constant values of relaxation and step-size parame-

ters (λn and γn, respectively) have been adopted along the algorithm iterations and will

be denoted by λ and γ: first, we experimentally observed that λ ≡ 1 is the best value of

the relaxation parameter among those tested in terms of convergence rate (see Fig. 4.6).

Second, a step-size parameter γ close to the allowed maximum value in Assumption 4.3.2

provided the fastest convergence rate. After computing the constant θ related to the

considered sensivity map, γ was thus chosen equal to 0.99/θ = 12.83.

The algorithm was stopped when JWT no longer significantly varied, by choosing

ε = 10−4 in Algorithm 6. For different values of λ, Fig. 4.6 illustrates the evolution of the

optimized criterion JWT w.r.t. the iteration number for a 2D-slice reconstruction.

In Fig. 4.6, it is emphasized that after about 20 iterations the minimizer ζ̂MAP was

reached. In terms of computation time, the approach was implemented using the C lan-

guage and took 6 seconds when running on an Intel Core 2 (2.26 GHz) architecture. Note

that accelerated algorithms such as TWIST or FISTA have been proposed in the recent

convex optimization literature [Bioucas-Dias and Figueiredo, 2007; Beck and Teboulle,

2009] for minimizing the same optimality criterion. In Fig. 4.7, we compare these algo-

rithms and their convergence speed on the pMRI application. With respect to the number

of iterations required to achieve convergence, we did not observe any improvement in terms

of convergence speed using FISTA instead of the proposed FB algorithm. Also, our FB

implementation as well as FISTA perform faster than TWIST.

3A couple of hyper-parameters is fitted for real/imaginary parts of each subband, i.e. each approxima-
tion/detail coefficients at each resolution level and orientation.



96 Regularized SENSE reconstruction

Figure 4.6: Convergence speed of the optimization algorithm w.r.t. the choice of the
relaxation parameter λ for jmax = 3.
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Figure 4.7: Convergence speed comparison for the TWIST, FISTA and FB algorithms.

Since our approach is designed to reconstruct 2D slices, we should mention here that

Algorithm 6 behaves similarly for all slices.

Figs. 4.8 and 4.9 shows reconstructed full FOV anatomical images using the proposed

approach (UWR-SENSE) with R = 2 and R = 4.

The smoothing effects observed in Figs. 4.1 and 4.2 with Tikhonov regularization no

longer exist in the WT regularized images in Figs. 4.8 and 4.9, where a quite accurate

reconstruction is performed within the brain mask without introducing staircase effects
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Slice # 1 Slice # 2 Slice # 3

Slice # 4 Slice # 5 Slice # 6

Slice # 7 Slice # 8 Slice # 9

Figure 4.8: Reconstructed anatomical slices using UWR-SENSE for R = 2.

as in the case of TV regularization (see Fig. 4.4). Nevertheless, some strong aliasing

artifacts still exist in the reconstructed images using the UWR-SENSE algorithms. A

more sophisticated reconstruction approach will be developed in Section 4.3.5 to handle

these remaining artifacts.
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Slice # 1 Slice # 2 Slice # 3

Slice # 4 Slice # 5 Slice # 6

Slice # 7 Slice # 8 Slice # 9

Figure 4.9: Rreconstructed anatomical slices using UWR-SENSE for R = 4.
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Results on functional EPI data

This experiment on functional 64×64 EPI data was conducted using the same wavelet

basis and priors. Algorithm parameters (i.e. relaxation λ and step-size γ parameters)

were adjusted according to the same rules as those for anatomical data: λ = 1 and

γ = 0.99/θ = 20.63 were chosen after deriving the θ constant. Again, these EPI fMRI

data were acquired during a short resting state session of 1 min 12 s. Fig. 4.10 illustrates

two reconstructed full FOV slices using our UWR-SENSE algorithm.

Slice # 17 Slice # 18 Slice # 23

Slice # 25 Slice # 27 Slice # 29

 

 

Figure 4.10: Six EPI reconstructed slices using our UWR-SENSE algorithm for R = 4.

It can be shown that many defective pixels (i.e. which have locally very high or very

low intensity level) were corrected when using the proposed WT regularization in UWR-

SENSE without introducing additional artifacts, in contrast to Tikhonov regularization.

Choice of the maximum resolution level

In this paragraph we focus on the effect of the choice of the maximum resolution level

jmax in terms of reconstruction quality. The impact on reconstructed full FOV images

can be emphasized through the difference between reconstructed images using 1, 2, 3 and

4 resolution levels. Fig. 4.11 illustrates the difference between anatomical reconstructed

images using one and two (left), two and three (middle), or three and four (right) resolution

levels.

The difference between anatomical reconstructed images at different resolution levels is

significant since it can reach a value of 40 within the intensity range [0, 255] (around 15%).

Moreover, the intensity difference seems correlated to the presence of distortions since it
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jmax = 2 - jmax = 1 jmax = 3 - jmax = 2 jmax = 4 - jmax = 3
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Figure 4.11: Influence of the number of resolution levels on the anatomical reconstructed
images using our CWR-SENSE method for R = 4; from left to right: reconstructed images
with jmax = 2 - jmax = 1, jmax = 3 - jmax = 2 and jmax = 4 - jmax = 3.

appears particularly important in distorted areas. Hence, the higher the maximum resolu-

tion level, the better regularized the artifacts are. However, only slight improvements are

obtained beyond three resolution levels. Note also that by increasing the number of reso-

lution levels, boundary effects become more visible but they do not affect the brain region.

Clearly, jmax = 3 appears as a fair compromise to achieve an acceptable reconstruction

quality. Similar tests were conducted on EPI images sized 64× 64 (see Fig. 4.12), and led

to the same conclusions.
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Figure 4.12: Influence of the number of resolution levels on the EPI reconstructed images
using our CWR-SENSE method for R = 4; from left to right: reconstructed images with
jmax = 2 - jmax = 1, jmax = 3 - jmax = 2 and jmax = 4 - jmax = 3.

4.3.4 Regularization using bivariate wavelet prior

In the proposed approach, as well as in any wavelet regularization problem, choosing the

prior model for the wavelet coefficients at each resolution level and orientation is a key

issue. As our signal is complex-valued as well as its wavelet coefficients, the simplest way

to model it is, as we considered in Section 4.3.3.2, to assume that the real and imaginary

parts are mutually independent. Despite its simplicity, this model does not account for the

statistical dependence between the real and imaginary parts. In fact, kernel statistical tests

of independence [Gretton et al., 2007] applied on our experimental data sets indicate that
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the hypothesis“the real and imaginary parts are independent”is rejected with an error level

less than 2%. In this section, we will use a more accurate modelling by considering the joint

distribution of the two parts through an appropriate bivariate prior probability density

function (pdf). From the examination of the joint empirical histograms (see Fig. 4.13

below), it seems more appropriate to consider the following bivariate pdf form:

∀ξ ∈ C, fα,β,γ,p(ξ) = Cfe
−(α|Re(ξ)|+β|Im(ξ)|+γ|ξ|p) (4.23)

where Cf ∈ R
∗
+ is a normalization constant, and where the hyperparameters α, β, γ belong

to R∗
+ and p ∈ [1,∞[. It can be noticed that the proposed class of pdfs includes those

considered in [Sendur and Selesnick, 2002] for denoising purpose as particular cases when

α = β and p = 1.

For illustration, Fig. 4.13 shows the empirical histogram of the coefficients ζ1,2, the

independent pdf used in [Chaari et al., 2008] and the adopted bivariate pdf in Eq. (4.23).

Figure 4.13: Joint 2D empirical histogram ζ1,2 (left) and pdfs of the independent (middle) and
proposed bivariate (right) models.

It is clear that, due to the elliptical shape, the bivariate model fits the empirical his-

togram better than the independent one. For instance, according to the independent

model, some pairs of values of (Re(ζ1,2,k), Im(ζ1,2,k)) have an over/under-estimated occur-

rence frequency w.r.t. the empirical joint histogram and the bivariate model.

Based on this bivariate prior, the new MAP estimator ζ̂MAP can be rewritten as follows:

ζ̂MAP = argmin
ζ∈CK

JWTbiv(ζ)

= argmin
ζ∈CK

(
JL(T ∗ζ) + JPbiv(ζ)

)
, (4.24)

with JPbiv(ζ) =
Kjmax∑

k=1

Φa(ζa,k) +
∑

o∈O

jmax∑

j=1

Kj∑

k=1

Φo,j(ζo,j,k) (4.25)

and

Φa(ζa,k) = αa|Re(ξ)|+ βa|Im(ξ)| + γa|ξ|pa (4.26)

Φo,j(ζo,j,k) = αo,j |Re(ξ)|+ βo,j |Im(ξ)|+ γo,j|ξ|po,j .
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The proximity operators of Φa and Φo,j are given by Example 4.3.4.

Example 4.3.4

Consider the following function:

Φ: C→ R (4.27)

ξ 7→ α|Re(ξ)|+ β|Im(ξ)|+ γ|ξ|p

where (α, β, γ) ∈ (R∗
+)

3 and p ≥ 1.

The associated proximity operator is given by:

proxΦ(ξ) = proxϕ

(
softα(Re(ξ)) + ı softβ(Im(ξ))

)
(4.28)

where softτ (·) with τ ≥ 0 is the real-valued soft-thresholding operator defined in Eq. (3.21).

and proxϕ is the proximity operator of ϕ = γ| · |p which is given by:� if p = 1,

∀ξ ∈ C, proxϕ(ξ) =





(
1− γ

|ξ|
)
ξ if |ξ| > γ

0 otherwise
(4.29)� if p > 1,

∀ξ ∈ C, proxϕ(ξ) =





(
1− ν(ξ)

|ξ|
)
ξ if ξ 6= 0

0 otherwise

(4.30)

where ν(ξ) is the unique non-negative real solution of the equation

ν(ξ) +
(
ν(ξ)/(γp)

)1/(p−1)
= |ξ|. (4.31)

Proof :

Let χ = [−α, α] × [−β, β] be a closed convex subset of R2. Let also ϕ ∈ Γ0(R) be the even and

nonconstant function defined by:

ϕ : R→ R

a 7→ γ|a|p. (4.32)

We recall that the support function of the closed convex subset χ ⊂ R2 is defined by [Nesterov,

2004]:

σχ : R2 →]−∞,+∞]

u = (u1, u2)
T 7→ sup

v∈χ
〈v|u〉 = α|u1|+ β|u2|. (4.33)

If we consider the function Φ defined by:

Φ : R2 → R

u = (u1, u2)
T 7→ α|u1|+ β|u2|+ γ‖u‖p (4.34)

where ‖ · ‖ is the euclidean norm, we have therefore ∀u ∈ R2, Φ(u) = σχ(u) + ϕ(‖u‖). Using
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[Briceño-Arias and Combettes, 2009, Prop. 2.2], it tuns out that:

∀u ∈ R
2, proxΦ(u) =





proxϕdχ(u)

dχ(u)
(u− Pχ(u)) if u /∈ χ

0 if u ∈ χ,

(4.35)

where dχ(u) is the distance from u to χ, and Pχ(u) is the projection of u onto χ [Briceño-Arias and

Combettes, 2009].

If we define χ1 = [−α, α] and χ2 = [−β, β], we can write ∀u = (u1, u2)
T ∈ R2, Pχ(u) =

(Pχ1 (u1), Pχ2(u2)) where

Pχ1(u1) =





α if u1 > α

u1 if |u1| ≤ α

−α if u1 < −α
(4.36)

and a similar expression for Pχ2(u2). It turns out that

u1 − Pχ1 (u1) =





u1 − α if u1 > α

0 if |u1| ≤ α

u1 + α if u1 < −α,
(4.37)

or equivalently u1−Pχ1(u1) = softα(u1), and we have similarly u2−Pχ2(u2) = softβ(u2). Conse-

quently, we can write

∀u = (u1, u2)
T ∈ R

2, dχ(u) =
√
d2χ1

(u1) + d2χ2
(u2)

=
√
(u1 − Pχ1 (u1))2 + (u2 − Pχ2 (u2))2

=
√
soft2α(u1) + soft2β(u2). (4.38)

Eq. (4.35) can therefore be rewritten as:

∀u ∈ R
2, proxΦ(u) =





proxϕ

(√
soft2α(u1) + soft2β(u2)

)

√
soft2α(u1) + soft2β(u2)

(softα(u1), softβ(u2))
T if u /∈ χ

0 if u ∈ χ.

(4.39)

Based on the proximity operator form of the function ϕ given in Eqs. (4.29)-(4.30), we can write:

• if u /∈ χ,

– if p = 1,

* if
√
soft2α(u1) + soft2β(u2) > γ,

proxΦ(u) =
(
1− γ(√

soft2α(u1) + soft2β(u2)
)
)
(softα(u1), softβ(u2))

T

* if
√
soft2α(u1) + soft2β(u2) ≤ γ,

proxΦ(u) = 0

– if p > 1,
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since
√
soft2α(u1) + soft2β(u2) 6= 0,

proxΦ(u) =
(
1−

ν
(√

soft2α(u1) + soft2β(u2)
)

(√
soft2α(u1) + soft2β(u2)

)
)
(softα(u1), softβ(u2))

T

where ν
(√

soft2α(u1) + soft2β(u2)
)
is the unique non-negative real solution of Eq. (4.31)

with ξ =
√
soft2α(u1) + soft2β(u2).

• if u ∈ χ,

proxΦ(u) = 0.

In summary, we have

∀u ∈ R
2, proxΦ(u) = proxϕ

(
softα(u1), softβ(u2)

)
. (4.40)

Note that this result can also be generalized in RN with N ≥ 2.

For the complex-valued cas, the proximity operator in Eq. (4.28) can be easily retrieved by taking

u1 = Re(ξ) and u2 = Im(ξ) in Eq. (4.40) for every ξ ∈ C.

�

As a consequence, for every ξ ∈ C such that (Re(ξ), Im(ξ)) ∈ [−α,α] × [−β, β],
proxΦ(ξ) = 0, which means that proxΦ is a bivariate proximal thresholder [Combettes

and J.-C. Pesquet, 2007]. Fig. 4.14 illustrates 3D plots of the moduli of a complex valued

number and the associated proximity operator related to the function Φ in Example 4.3.4.

The proximity operator plot shows that it behaves as a soft thresholder since close to the

origin, a subset of values are set to zero whereas the moduli of the others are attenuated.

Note that in Fig. 4.14 the opposite of the moduli are shown (and not the moduli them-

selves) in order to better illustrate the bivariate soft thresholder behaviour of the bivariate

proximity operator. This shows that the proposed prior distribution should be helpful in

promoting the sparsity of the wavelet representation of complex-valued data.

Finally, to calculate the MAP estimator ζ̂MAP, the optimality criterion JWTbiv is opti-

mized using Algorithm 6. Reconstructed anatomical images using Algorithm 6 with the

bivariate prior are illustrated in Fig. 4.15.

A comparison with results obtained using the independent prior can be made from

Fig. 4.9. Quantitative comparisons between the two prior models were also made based

on the Signal-to-Noise Ratio (SNR) computed as follows:

SNR = 20 log10
(
‖ρTrue‖/‖ρTrue − ρ̂‖

)
, (4.41)

where ρTrue stands for the reference image and ρ̂ is the reconstructed image obtained with

any algorithm. Hence, the denominator gives us the amount of residual obtained by any

reconstructor. Over the whole data volume (9 slices) for R = 4, we noticed no important

gain in term of SNR average (12.63 dB and 12.73 dB for the independent and bivariate

models, respectively).

Note here that SNR values for reconstructed anatomical images using the UWR-SENSE
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Figure 4.14: Top: 3D plot of the modulus of a complex-valued number for which the real
and imaginary parts belong to a uniform 2D grid; bottom: 3D plot of the modulus of the
proximity operator associated to Example 4.3.4 with α = 2, β = 1, γ = 0.5 and p = 1,
and where the real and imaginary parts belong to the same 2D grid as the top figure.

algorithm with the independent prior are also provided for R = 4 in Table 4.1 of Sec-

tion 4.3.5. However, SNR values for EPI images cannot be calculated since no reference

image is available.

Reconstructed EPI images using Algorithm 6 with the bivariate prior are illustrated in

Fig. 4.16. Results also seem very similar to the ones obtained using the independent prior.

Based on these comparisons, it appears that no significant improvement of the re-

construction quality is achieved by using the bivariate prior despite its accounting for
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Slice # 1 Slice # 2 Slice # 3

Slice # 4 Slice # 5 Slice # 6

Slice # 7 Slice # 8 Slice # 9

Figure 4.15: Reconstructed anatomical slices using UWR-SENSE with the bivariate prior
for R = 4.

dependencies between real and imaginary parts of the wavelet coefficients. Moreover, us-

ing the bivariate prior makes the hyper-parameter estimation step much more complicated

in practice than using the independent one since standard estimators such as the ML one

are not easy to be deriven.

In conclusion, our experiments show that using the bivariate prior increases the compu-

tational complexity of the proposed algorithm without significant gain in reconstruction

quality. For these practical reasons, we will keep on using the independent prior in the

rest of this manuscript.

4.3.5 Constrained wavelet-based regularization

Since only artifacts of moderate size were removed using Algorithm 6, we will therefore

present an extension which accounts for additional constraints leading to a better recon-

struction quality and cancellation of more severe artifacts. We propose to extend our
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Slice # 17 Slice # 18 Slice # 23

Slice # 25 Slice # 27 Slice # 29

Figure 4.16: Reconstructed EPI slices using UWR-SENSE with the bivariate prior for
R = 4.

approach by incorporating an additional constraint in the method described hereabove in

order to better regularize artifact regions. The ensuing algorithm is called CWR-SENSE

method hereafter.

4.3.5.1 New optimality criterion

Here, we set local lower and upper bounds on the image intensity values in artifact areas,

regardless of their shape and/or location. These bounds define the nonempty closed convex

set:

C = {ρ ∈ C
K | ∀r ∈ {1, . . . , Y/R} × {1, . . . ,X}, ρ(r) ∈ Cr} (4.42)

where the constraint introduced on the range values at position r ∈ {1, . . . , Y/R} ×
{1, . . . ,X} is modelled by:

Cr = {ξ ∈ C | Re(ξ) ∈ I
Re
r , Im(ξ) ∈ I

Im
r }, (4.43)

with I
Re
r = [IRe

min,r, I
Re
max,r] and I

Im
r = [IImmin,r, I

Im
max,r]. When taking into account additional

constraints defined in Eq. (4.43), the optimized criterion in Eq. (4.24) becomes:

JCWT(ζ) = JWT(ζ) + iC∗(ζ), (4.44)

where

C∗ = {ζ ∈ C
K | T ∗ζ ∈ C}
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and iC∗ is the indicator function of the closed convex set C∗ defined by:

∀ζ ∈ C
K , iC∗(ζ) =

{
0 if ζ ∈ C∗

+∞ otherwise.

Hence, the constrained MAP estimator satisfies:

ζ̂MAP = argmin
ζ∈C∗

JWT(ζ) = argmin
ζ∈CK

JCWT(ζ) (4.45)

An open question consists of choosing the reference image for deriving the convex set

C∗. As illustrated in Section 4.3.5.3, the pixelwise constraints are computed on the recon-

structed SENSE image for simplicity and numerical reasons. This result is straightforward

to obtain and does not require additional numerical steps like hyper-parameter estimation.

4.3.5.2 Computation of the constrained MAP estimator

Theoretically, to solve the minimization problem in Eq. (4.45), the FB iteration has to be

updated according to:

ζ(n+1) = ζ(n) + λn

(
proxγnJP+iC∗

(
ζ(n) − γn∇JL(ζ(n))

)
− ζ(n)

)
. (4.46)

The main difficulty here lies in the fact that the proximity operator of γnJP + iC∗ does

not admit a closed form. However, from its definition, we get:

∀ζ ∈ C
K , proxγnJP+iC∗ (ζ) = arg min

ζ′∈CK
γnJP(ζ ′) + J ′

ζ(ζ
′) (4.47)

where

J ′
ζ(·) =

1

2
‖ · −ζ‖2 + iC∗(·). (4.48)

Although proxγnJP+iC∗ cannot be expressed simply, the proximity operator of γnJP is

given by Eq. (4.20) and the proximity operator of J ′
ζ is easily determined. In fact, it is

quite straightforward to show that:

∀ζ ′ ∈ C
K , proxJ ′

ζ
(ζ ′) = PC∗

(
ζ ′ + ζ

2

)
(4.49)

where PC∗ is the projection onto the convex set C∗. In turn, provided that the considered

wavelet basis is orthonormal, the projection onto C∗ of ζ ′ ∈ C
K is obtained by performing

the wavelet decomposition of the projection of ρ′ = T ∗ζ ′ onto C. The latter projection

reads:

PC(ρ
′) =

(
PCr

(ρ′(r)
)
r∈{1,...,Y/R}×{1,...,X} (4.50)
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where, for every r ∈ {1, . . . , Y/R} × {1, . . . ,X},

∀ξ ∈ C, Re
(
PCr

(ξ)
)
=





IRe
min,r if Re(ξ) < IRe

min,r

IRe
max,r if Re(ξ) > IRe

max,r

ξ otherwise,

(4.51)

a similar expression being used to calculate Im
(
PCr

(ξ)
)
. Knowing proxγnJP

and proxJ ′
ζ
,

proxγnJP+iC∗ ζ can be iteratively computed by solving the optimization problem in Eq. (4.47)

using the Douglas-Rachford (DR) algorithm [Chaux et al., 2009; Combettes and Pesquet,

2007]. More precisely, we apply the following proposition:

Proposition 4.3.5

Set η(0) ∈ C
K and construct for all m ∈ N:

{
η(m+ 1

2
) = proxJ ′

ζ
η(m)

η(m+1) = η(m) + τ
(
proxγnJP

(2η(m+ 1
2
) − η(m))− η(m+ 1

2
)
)
,

(4.52)

where τ ∈]0, 2[. Then, (η(m+ 1
2
))m∈N converges to proxγnJP+iC∗ ζ.

Inserting this extra iterative step in the forward-backward algorithm and using the ex-

pressions of proxγnJP
and proxJ ′

ζ
in Eqs. (4.49)-(4.51) leads to Algorithm 7 hereafter

called the CWR-SENSE method. At iteration n, Mn is the number of times the DR step

is run. According to the convergence analysis conducted in [Chaux et al., 2009, Prop.

4.2], if Mn is large enough (e.g. Mn = 10) and Assumption 4.3.2 holds, iterating Steps

3 to 25 of the CWR-SENSE method guarantees the convergence to the unique solution

of JCWT. Note however that [Chaux et al., 2009, Prop. 4.2] does not provide a practical

guideline for chosing Mn. The practical rule we chose is explained in Section 4.3.3.6. The

improvements in terms of accuracy drawn from the use of the CWR-SENSE algorithm are

illustrated in the next section, but at the expense of the computation time.

4.3.5.3 Reconstruction results

Our CWR-SENSE constrained algorithm presented in Section 4.3.5 was applied to the

anatomical data with the Symmlet 8 wavelet basis. The parameters λ and γ (since λn

and γn have been fixed through iterations) have been set to the same values as for the

UWR-SENSE, while we chose τ = 2 for the underlying Douglas-Rachford iterations as it

was practically observed that this value gives the best convergence rate. In practice, the

value of Mn was defined as the minimum integer value such that

|η(n,Mn−1) − η(n,Mn−2)|
|η(n,Mn−2)| < 10−4,

which results in about Mn = 4 iterations of the Douglas-Rachford algorithm.

A morphological gradient [Serra, 1982] was used to detect artifact regions on which

we apply the additional convex constraints. The upper and lowed bounds that define the
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Algorithm 7 CWR-SENSE: Constrained 2D-slice wavelet-based regularized reconstruc-
tion.
Let (γn)n>0 and (λn)n>0 be sequences of positive reals, let (Mn)n>0 be a sequence of
positive integers and set τ ∈]0, 2].
1: Set n = 0 and ε ≥ 0. Initialize ζ(n) and set J (n) = JWT(ζ

(n)).
2: repeat
3: Same as for Algorithm 6
4: Same as for Algorithm 6
5: Same as for Algorithm 6
6: Initialize the Douglas-Rachford algorithm by setting

η(n,0) = ζ(n) − γnυ
(n).

7: Douglas-Rachford iterations:
8: for m = 0 to Mn − 1 do

9: Compute η(n,m+ 1
2
) = PC∗

(η(n,m) + ζ(n)

2

)
;

10: Update the approximation components of η(n,m):
∀k ∈ {1, . . . ,Kjmax},
η
(n,m+1)
a,k = η

(n,m)
a,k + τ

(
proxγnΦa

(2η
(n,m+ 1

2
)

a,k − η
(n,m)
a,k )− η

(n,m+ 1
2
)

a,k

)
,

11: Update the detail components of η(n,m):
∀o ∈ O,∀j ∈ {1, . . . , jmax},∀k ∈ {1, . . . ,Kj},

η
(n,m+1)
o,j,k = η

(n,m)
o,j,k + τ

(
proxγnΦo,j

(2η
(n,m+ 1

2
)

o,j,k − η
(n,m)
o,j,k )− η

(n,m+ 1
2
)

o,j,k

)
;

12: If η(n,m+1) = η(n,m), goto 14.
13: end for
14: Update the wavelet coefficients of the reconstructed image:

ζ(n+1) = ζ(n) + λn(η
(n,m+ 1

2
) − ζ(n)).

15: Compute J (n+1) = JCWT(ζ
(n+1)).

16: n← n+ 1
17: until |J (n) − J (n−1)| ≤ εJ (n−1)

18: return ρ(n) = T ∗ζ(n)

convex sets Cr in Eq. (4.43) were computed using a morphological opening and closing

operations applied to the basic-SENSE reconstructed image in order to discard very low

and high intensities. The CWR-SENSE reconstruction steps are illustrated in Fig. 4.17.

Clearly, the accuracy of the artifact region detection (see the mask image on the top

of Fig. 4.17) impacts the performance of our CWR-SENSE method since it defines the

areas on which the convex constraints are applied as lower and upper thresholds on the

image intensities. As illustrated in Figs. 4.18 and 4.19, inspection of the CWR-SENSE

reconstruction results shows that the surviving artifacts in Fig. 4.2 have now been removed

due to the anisotropic smoothing using the additional convex constraint.

From a quantitative point of view, significant improvements were achieved by our

UWR/CWR-SENSE algorithms in comparison with basic-SENSE and Tikhonov recon-

structions. Table 4.1 reports the SNR values in dB corresponding to the basic-SENSE,

Tikhonov regularization and the proposed UWR/CWR-SENSE techniques for the illus-
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Figure 4.17: CWR-SENSE reconstruction steps.
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Figure 4.18: Reconstructed anatomical slices using CWR-SENSE for R = 2 .

trated slices of the anatomical brain volume shown in Figs. 2.19, 4.2, 4.9 and 4.19. In

average, the gain drawn from the proposed constrained regularization strategy amounts

to 1.08 dB and a better visual quality.
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Slice # 1 Slice # 2 Slice # 3
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Figure 4.19: Reconstructed anatomical slices using CWR-SENSE for R = 4 .

Table 4.1: SNR (in dB) evaluation for reconstructed images using different methods for
R = 4.

SENSE Tikhonov UWR-SENSE CWR-SENSE

Slice #1 14.36 14.63 14.77 14.95

Slice #2 11.55 11.62 12.01 12.53

Slice #3 12.95 13.44 14.02 14.22

Slice #4 9.24 9.48 10.01 10.30

Slice #5 11.50 11.79 12.06 12.25

Slice #6 9.68 9.87 10.12 10.32

Slice #7 11.00 11.56 11.85 12.00

Slice #8 12.16 12.49 13.00 13.36

Slice #9 13.78 14.77 15.83 16.04

Volume average 11.80 12.18 12.63 12.88
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Results on functional EPI data

This experiment on functional EPI data was conducted using the same wavelet basis and

priors. The algorithm parameters were adjusted according to the same rules as applied

for anatomical data: λ = 1 and γ = 0.99/θ = 20.63 were chosen after deriving the θ

constant. Note that the same approach as that applied to anatomical data was adopted

to detect artifact regions and compute the upper and lower bounds defining the convex

sets Cr. Fig. 4.20 illustrates six reconstructed full FOV EPI slices using our CWR-SENSE

algorithm.

Slice # 17 Slice # 18 Slice # 23

 

 

 

 

Slice # 25 Slice # 27 Slice # 29

 

 

 

 

 

 

Figure 4.20: Reconstructed EPI slices using CWR-SENSE for R = 4.

We noticed that reconstructed EPI images obtained using CWR-SENSE show that the

initial very high intensities were smoothed more than those retrieved using basic-SENSE

and Tikhonov regularization. Residual defective pixels belonging to distorted areas in

SENSE reconstruction were also removed due to the convex constraints introduced in

these areas.

Choice of the wavelet basis

Here, we study how the choice of the wavelet basis may influence the reconstruction

performance. For comparison purposes, we present the results obtained with four different

wavelet bases: dyadic Symmlet 8, dyadic Daubechies 8, dyadic Haar and Meyer with

M = 4 bands [Chaux et al., 2006b]. In Fig. 4.21, reconstructed anatomical images using

the different wavelet bases with jmax = 3 are displayed. Some boundary effects appear in

the reconstructed images, but with a low intensity level. Moreover, they do not affect the

brain mask when using the Symmlet, Daubechies and Haar wavelet bases. These additional

artifacts become much more important with the Meyer 4-band wavelet basis because of
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its large spatial support. Hence, they drastically decrease the SNR of the reconstructed

full FOV image. Note also that the Haar wavelet basis introduces some blocking effects

caused by its discontinuities that do not occur using alternative bases. Among the latter,

Symmlet 8 gives slightly more accurate regularized results than Daubechies 8 but none of

them generates significant additional artifacts.

We would like here to mention that using the Haar wavelets with quadratic penalization

is somehow equivalent to Tikhonov regularization where no reference image is needed (i.e.

by setting ρr = 0CX×Y in Eq. (4.1)) with a weighting matrix which allows us to penalize

the inter-pixel differences. This may be performed by substituting the identity matrix IR

in Eq. (4.1) to the R dimensional square matrix which allows us to calculate the second

order finite differences in the image.

Symmlet 8 (SNR = 15.66 dB) Daubechies 8 (SNR = 15.60 dB)

Haar (SNR = 15.41 dB) Meyer 4 bands (SNR = 12.56 dB)

 

 

Figure 4.21: Influence of the wavelet basis on the anatomical reconstructed images using
our CWR-SENSE method for R = 4.

4.4 Combined wavelet-TV regularization

It has been shown hereabove that using wavelet ragularization allows preserving the image

details while smoothing reconstruction artifacts. However, it has also been noticed that

wavelet regularization may introduce some irregularity in homogeneous area of the image.

On the other hand, it is well known that TV regularization is well adapted to regularize

smooth regions, but may oversmooth image details (see Section 4.2.2).

In the pMRI regularization literature, these two different edge-preserving penalizations

have always been used separately. However, combining them in a joint regularization

framework would be fruitful in order to take advantage of both of them since they may
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alleviate the drawbacks of each other. A joint Wavelet Transform-Total Variation (WT-

TV) regularization can reduce to the optimization of the following penalized criterion:

ρ̂WT−TV = T ∗ argmin
ζ
JWT−TV(ζ)

= T ∗ argmin
ζ
JL(T ∗ζ) + κ1JP(ζ) + κ2‖T ∗ζ‖TV, (4.53)

where JL and JP are defined in Eqs. (4.3) and (4.9), respectively, κ1 > 0 and κ2 > 0

are regularization parameters, and T ∗ is the wavelet adjoint operator. The discrete total

variation norm of an image ρ ∈ C
Y×X is given by:

‖ρ‖TV =

Y∑

y=1

X∑

x=1

√
|(∇1ρ)(y, x)|2 + |(∇1ρT)T(y, x)|2, (4.54)

where for every ρ ∈ C
Y×X , ∇1 is the horizontally smoothed gradient operator defined by

∇1(ρ) =
1

2
(ρ(y + 1, x+ 1)− ρ(y, x+ 1) + ρ(y + 1, x)− ρ(y, x))1≤y≤Y,1≤x≤X . (4.55)

Note here that for the sake of presentation, we assumed that the image ρ is periodic.

Although the optimality criterion JWT−TV(ζ) is an exact match of the kind of criteria

that can be minimized using the Parallel ProXimal algorithm (PPXA), the difficulty here

stems from the calculation of the proximity operator of ‖ · ‖TV ◦ T ∗. To circumvent this

difficulty, the TV penalization in Eq. (4.53) can be split into four terms as in [Combettes

and Pesquet, 2008]. The TV penalty term therefore reads:

∀ρ ∈ C
Y×X , ‖ρ‖TV =

3∑

i=0

tvi(ρ), (4.56)

where for every (q, r) ∈ {0, 1}2,

tv2q+r(ρ) =

Y/2∑

y=1

X/2∑

x=1

√
|(∇1ρ)(2y + q, 2x+ r)|2 + |(∇1ρT)T(2y + q, 2x+ r)|2. (4.57)

For every q and r in {0, 1}, let ↓q,r be the decimation operator defined by

↓q,r: C2Y×2X → C
Y×X

ν = (νy,x)1≤y≤2Y,1≤x≤2X 7→ (ν2y+q,2x+r)1≤y≤2Y,1≤x≤2X . (4.58)

and Uq+2r be the following operator:

Uq+2r : C
Y×X → C

Y×X

ρ 7→↓q,r
[
∇0ρ ∇1ρ

(∇1ρ
T)T ∇2ρ

]
, (4.59)
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where for every ρ ∈ C
Y×X , the operators ∇0 and ∇2 are defined by

∇0(ρ) =
1

2
(ρ(y + 1, x+ 1) + ρ(y, x+ 1) + ρ(y + 1, x) + ρ(y, x))1≤y≤Y,1≤x≤X (4.60)

and

∇2(ρ) =
1

2
(ρ(y + 1, x+ 1)− ρ(y, x+ 1)− ρ(y + 1, x) + ρ(y, x))1≤y≤Y,1≤x≤X , (4.61)

respectively. Let also h be the function defined on C
Y×X by:

h(ρ) =

Y/2∑

y=1

X/2∑

x=1

√
|(∇1ρ)(y, x+X/2)|2 + |(∇1ρT)T(y + Y/2, x)|2. (4.62)

It turns out from Eqs. (4.57) and (4.59) that

∀i ∈ {0, 1, 2, 3}, tvi = h ◦ Ui. (4.63)

Consequently, the optimization problem in Eq. (4.53) can be rewritten as:

ρ̂WT−TV = T ∗ argmin
ζ

[JL(T ∗ζ) + κ1JP(ζ) + κ2

3∑

i=0

tvi(T
∗ζ)]

= T ∗ argmin
ζ

[JL(T ∗ζ) + κ1JP(ζ) + κ2

3∑

i=0

h(Ui(T
∗ζ))]. (4.64)

When the used wavelet transform is a tight frame (T ∗T = µId), The proximity operator of

tvi = h ◦ Ui ◦ T ∗ for every i ∈ {0, 1, 2, 3} can be calculated according to Proposition 4.4.1

[Combettes and Pesquet, 2008, Prop. 4.1].

Proposition 4.4.1 [Combettes and Pesquet, 2008]

Set

Π : CY×X → C
Y×X

ν = (νy,x)1≤y≤2Y,1≤x≤2X 7→ (πy,x)1≤y≤Y,1≤x≤X ,

where ∀(y, x) ∈ {1, . . . , Y/2} × {1, . . . ,X/2},





πy,x = νy,x
πy+Y/2,x+X/2 = νy+Y/2,x+X/2

πy,x+X/2 = Ωy,x(ν)νy,x+X/2

πy+Y/2,x = Ωy,x(ν)νy+Y/2,x

with

Ωy,x(ν) =





1− κ2µ√
|νy,x+X/2|2 + |νy+Y/2,x|2

if
√
|νy,x+X/2|2 + |νy+Y/2,x|2 ≥ µκ2

0 otherwise.
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Then, for every i ∈ {0, 1, 2, 3},

proxtvi = Id + T ◦ (U∗
i ◦ Π ◦ Ui − Id) ◦ T ∗ (4.65)

The regularized WT-TV reconstruction approach is summarized in Algorithm 8 where

the PPXA algorithm [Combettes and Pesquet, 2008] is used to minimize the optimality

criterion in Eq. (4.64) which is made up of J = 6 convex functions.

Algorithm 8 WT-TV-SENSE: 2D-slice WT-TV-based regularized reconstruction.

Set γ ∈]0,+∞[, n = 0, (ωi)1≤i≤6 ∈ [0, 1]6 such that
∑6

i=0 ωi = 1, (ζ
(n)
i )1≤i≤6 ∈ (CK)6

where ζ
(n)
i =

(
(ζ

i,(n)
a ), ((ζ

i,(n)
o,j ))o∈O,1≤j≤jmax

)
for every i ∈ {1, . . . , 6}. Set also ε ≥ 0,

initialize ζ(n) =
∑6

i=1 ωiζ
(n)
i and J (n) = 0.

1: repeat
2: Compute the image u(n) such that:

∀r ∈ {1, . . . , Y/R} × {1, . . . ,X},
u(n)(r) = (IR +

2γ

ω1
SH(r)Ψ−1S(r))−1(ρ

(n)
1 (r) +

2γ

ω1
SH(r)Ψ−1d(r)) where ρ

(n)
1 =

T ∗ζ(n)1 .

3: Compute the wavelet coefficients p
(n)
1 = Tu(n) of u(n).

4: Calculate p
(n)
2 =

(
proxγκ1Φa/ω2

(ζ
2,(n)
a ), (proxγΦo,j/ω2

(ζ
2,(n)
o,j ))o∈O,1≤j≤jmax

)
.

5: For every i ∈ {0, 1, 2, 3}, calculate p
(n)
i+3 = proxγκ2tvi/ωi

(ζ
(n)
i+3).

6: Set P (n) =
∑6

i=1 ωip
(n)
i .

7: Set λn ∈ [0, 2].
8: for i = 1 to 6 do
9: ζ

(n)
i = ζ

(n)
i + λn(2P

(n) − ζ(n) − p
(n)
i ) .

10: end for
11: ζ(n+1) = ζ(n) + λn(P

(n) − ζ(n)).
12: Compute J (n+1) = JWT−TV(ζ

(n+1)).
13: n← n+ 1.
14: until |J (n) − J (n−1)| ≤ εJ (n−1)

15: return ρ(n) = T ∗ζ(n)

Experiments were conducted on the same dataset of anatomical and functional images

used previously. For R = 4, Fig. 4.22 shows the anatomical reconstructed slices using

Algorithm 8 when a dyadic (M = 2) Symmlet orthonormal wavelet basis associated with

filters of length 8 is used over jmax = 3 resolution levels. Fig. 4.23 illustrates reconstructed

images corresponding to the same slices when a Union of 2 Orthonormal Bases (U2OB)

WT is used with Symmlet 8 and Symmlet 4 filters. Note here that the hyper-parameters of

the wavelet prior and the TV regularization parameter were estimated using the proposed

approach in Chapter 5. These figures show that the reconstructed images present better

regularity than the ones reconstructed using the UWR-SENSE algorithm. However, from

a visual viewpoint, using redundant WT do not necessarily lead to better reconstruction

quality. From a quantitative viewpoint, SNR values are provided in Table 4.2. Compar-

isons with SNR values in Table 4.1 confirm the usefulness of combining WT and TV in

a joint regularization framework. This table shows that a slight improvement of 0.02 dB
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is obtained compared to the UWR-SENSE algorithm when using the Symmlet WT. How-

ever, more isignificant improvement (0.24 dB) is reached when using the U2OB WT. It

turns out then that even if the reconstruction performances of WT-TV-SENSE using the

OB and U2OB are visually similar, SNR values indicate that using redundant WTs is

fruitful.

Slice # 1 Slice # 2 Slice # 3

Slice # 4 Slice # 5 Slice # 6

Slice # 7 Slice # 8 Slice # 9

 

 

Figure 4.22: Reconstructed anatomical slices using Algorithm 8 with the Symmlet 8 or-
thonormal basis for R = 4.
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Slice # 1 Slice # 2 Slice # 3

Slice # 4 Slice # 5 Slice # 6

Slice # 7 Slice # 8 Slice # 9

Figure 4.23: Reconstructed anatomical slices using Algorithm 8 with the U2OB for R = 4.

Table 4.2: SNR (in dB) evaluation for reconstructed images using Algorithm 8 with the
OB and U2OB wavelet representations for R = 4.

OB U2OB

Slice #1 14.85 15.16

Slice #2 12.18 12.35

Slice #3 13.85 14.32

Slice #4 9.78 9.85

Slice #5 12.17 12.62

Slice #6 10.20 10.17

Slice #7 11.75 12.04

Slice #8 13.15 13.44

Slice #9 15.94 15.88

Volume average 12.65 12.87
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4.5 Spatio-temporal regularization

All the proposed approaches up to now proceed by a slice by slice reconstruction. Iterating

over slices is therefore necessary in order to reconstruct the whole volume. However, in an

fMRI study, the whole brain volume has to be acquired several times. Iterating over all

the acquired 3D volumes is then possible in order to reconstruct a 4D data volume cor-

responding to an fMRI session. Consequently, the 3D volumes are supposed independent

although they belong to the same fMRI session. However, in practice, the 3D temporal

volumes are somehow dependent since they belong to the same fMRI session involving

the same experimental paradigm. The BOLD time-series and the acquisition noise are

in fact correlated in time in an fMRI session. For this reason, taking into account tem-

poral dependencies between 3D volumes may be fruitful for the reconstruction process.

This ambition motivated the extension of the proposed approach in order to exploit the

dependencies between acquired volumes. These dependencies are exploited by applying

an additional regularization term in the temporal dimension of the 4D dataset. This ad-

ditional regularization should help to increase the SNR through the acquired volumes,

and therefore enhance the reliability of the statistical analysis in fMRI. These temporal

dependencies have also been used in the dynamic MRI literature in order to improve the

reconstruction quality in conventional MRI [Sümbül et al., 2009]. However, since in dy-

namic MRI the imaged object geometry generally changes during the acquisition, joining

the reconstruction process to the temporal regularization is very difficult.

To deal with a 4D reconstruction of the Nr acquired volumes (Nr is usually even), we will

first rewrite the observation model in Eq. (2.16) as follows:

dt(r) = S(r)ρt(r) + nt(r), (4.66)

where t ∈ {1, . . . , Nr} is the acquisition time and r = (y, x, z) is the 3D spatial position,

z ∈ {1, . . . , Z} being the position along the third direction (slice selection one).

Using a dyadic 3D wavelet operator T , the coefficients will be reindexed as in Section 4.3.2

so that ζt =
(
ζta, (ζ

t
o,j)o∈O,1≤j≤jmax

)
with o ∈ O = {0, 1}3 \ {(0, 0, 0)}. Using 3D dyadic

wavelet transforms represents also an extension of the previously proposed approaches

since 3D wavelets allow us to smooth reconstruction artifacts along the slice selection di-

rection, which have always been inaccessible using any slice by slice operating approach.

Accounting for the additional temporal ℓp regularization term, reconstructing the 4D vol-

ume is performed through the minimization of the following optimality criterion:

ζ̂ = argmin
ζ
JST(ζ)

= argmin
ζ

Nr∑

t=1

∑

r∈{1,...,Y/R}×{1,...,X}×{1,...,Z}
‖dt(r)− S(r)(T ∗ζt)(r)‖2

Ψ
−1 +

Nr∑

t=1

JP(ζt)

(4.67)

+ κ

Nr∑

t=2

‖T ∗ζt − T ∗ζt−1‖pp,
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where ζ = (ζ1, ζ2, . . . , ζNr)T, κ > 0 is a regularization parameter and JP is defined sim-

ilarly to Eq. (4.9). The adjoint wavelet operator T ∗ is then applied to each component

ζt of ζ to obtain the reconstructed 3D volume ρt at the acquisition time t by taking into

account the time dependencies with the other acquired volumes.

Adopting this formulation, the minimization step will play a prominent role in the recon-

struction process. Since the optimality criterion is made up of more than two terms, to

the best of our knowledge, the sole algorithm allowing the minimization of such optimal-

ity criteria without using internal iterative loops is PPXA. In fact, PPXA can be used to

minimize the criterion in Eq. (4.67) once we are able to calculate the proximity operator of

each of three involved terms. This task is quite simple for the two first terms of Eq. (4.67)

since they are separable w.r.t. the time variable t and the spatial position r. However,

since this is not the case for the time penalization term (third term in Eq. (4.67)), calcu-

lating its proximity operator is not obvious. For this reason, we propose to rewrite the

optimality criteria in JST by decomposing the time penalization into two terms which are

somehow separable w.r.t. the time variable t (a given acquisition time t is either involved

in the first or in the second term), and for which the proximity operators are easy to

calculate:

JST(ζ) =
Nr∑

t=1

∑

r∈{1,...,Y/R}×{1,...,X}×{1,...,Z}
‖dt(r)− S(r)(T ∗ζt)(r)‖2

Ψ
−1 +

Nr∑

t=1

JP(ζt)

+ J 1
T(ζ) + J 2

T(ζ), (4.68)

where

J 1
T(ζ) = κ

Nr/2∑

t=1

‖T ∗ζ2t − T ∗ζ2t−1‖pp (4.69)

and

J 2
T(ζ) = κ

Nr/2−1∑

t=1

‖T ∗ζ2t+1 − T ∗ζ2t‖pp. (4.70)

Since J 1
T (resp. J 2

T) is separable w.r.t the time variable t, its proximity operator can easily

be calculated based on the proximity operator of each of the involved terms in the sum of

Eq. (4.69) (resp. Eq. (4.70)).

Let us consider the following function

Φ : CK × C
K −→ R (4.71)

(ζt, ζt−1) 7→ κ‖T ∗ζt − T ∗ζt−1‖pp = φ ◦H((ζt, ζt−1)),

where φ(·) = κ‖T ∗ · ‖pp and H is a linear operator defined by

H : CK × C
K −→ C

K (4.72)

(a, b) 7→ a− b.
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Its associated adjoint operator H∗ is therefore given by

H∗ : CK −→ C
K × C

K (4.73)

a 7→ (a,−a).

The proximity operator of Φ can easily be calculated using Assumption 3.3.3 in the explicit

form described in Section 3.3.2.1 of Chapter 3 since we have HH∗ = 2Id:

proxΦ = proxφ◦H = Id +
1

2
H∗(prox2φ − Id) ◦H. (4.74)

The resulting algorithm for the minimization of the optimality criterion in Eq. (4.68) is

given in Algorithm 9. Since it is impossible to apply the 4D-UWR-SENSE algorithm to

anatomical data, and since the resting state EPI dataset acquired at 1.5 Tesla does not

contain enough repetitions (Nr = 14), the validation of this apatio-temporal regularized

reconstruction approach is discussed in Chapter 6. This validation includes an fMRI study

on 4D EPI data acquired at different reduction factors at a 3 Tesla magnetic field.
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Algorithm 9 4D-UWR-SENSE: 4D spatio-temporal regularized reconstruction.

Set γ ∈]0,+∞[, n = 0, (ωi)1≤i≤4 ∈ [0, 1]4 such that
∑4

i=0 ωi = 1, (ζ
(n)
i )1≤i≤4 ∈ (CK×Nr)4

where ζ
(n)
i = (ζ

1,(n)
i , ζ

2,(n)
i , . . . , ζ

Nr ,(n)
i ) and ζ

t,(n)
i =

(
(ζ

t,(n)
i,a ), ((ζ

t,(n)
i,o,j ))o∈O,1≤j≤jmax

)
for

every i ∈ {1, . . . , 4} and t ∈ {1, . . . , Nr}. Set also ε ≥ 0 and initialize ζ(n) =
∑4

i=1 ωiζ
(n)
i

and J (n) = 0.

1: repeat

2: Set p
1,(n)
4 = ζ

1,(n)
4 .

3: for t = 1 to Nr do
4: Calculate the image u

(n)
t such that: ∀r ∈ {1, . . . , Y/R}×{1, . . . ,X}×{1, . . . , Z},

u
(n)
t (r) = (IR +

2γ

ω1
SH(r)Ψ−1S(r))−1(ρ

(n)
t,1 (r) +

2γ

ω1
SH(r)Ψ−1dt(r)) where

ρ
(n)
t,1 = T ∗ζt,(n)1 .

5: Compute the wavelet coefficients p
t,(n)
1 = Tu

(n)
t .

6: Compute p
t,(n)
2 =

(
proxγΦa/ω2

(ζ
t,(n)
2,a ), (proxγΦo,j/ω2

(ζ
t,(n)
2,o,j))o∈O,1≤j≤jmax

)
.

7: if t is even then
8: calculate (p

t,(n)
3 , p

t−1,(n)
3 ) = proxγκΦ/ω3

((ζt,(n), ζt−1,(n)))
9: else if t is odd and t > 1 then

10: calculate (p
t,(n)
4 , p

t−1,(n)
4 ) = proxγκΦ/ω4

((ζt,(n), ζt−1,(n))).
11: end if
12: if t > 1 then
13: Set P t−1,(n) =

∑4
i=1 ωip

t−1,(n)
i .

14: end if
15: end for
16: Set p

Nr ,(n)
4 = ζ

Nr ,(n)
4 .

17: Set PNr ,(n) =
∑4

i=1 ωip
Nr,(n)
i .

18: Set p
(n)
1 = (p

1,(n)
1 , p

2,(n)
1 , . . . , p

Nr ,(n)
1 ), p

(n)
2 = (p

1,(n)
2 , p

2,(n)
2 , . . . , p

Nr ,(n)
2 ),

p
(n)
3 = (p

1,(n)
3 , p

2,(n)
3 , . . . , p

Nr ,(n)
3 ), p

(n)
4 = (p

1,(n)
4 , p

2,(n)
4 , . . . , p

Nr ,(n)
4 ) and

P (n) = (P 1,(n), P 2,(n), . . . , PNr ,(n)).
19: Set λn ∈ [0, 2].
20: for i = 1 to 4 do
21: ζ

(n)
i = ζ

(n)
i + λn(2P

(n) − ζ(n) − p
(n)
i ) .

22: end for
23: ζ(n+1) = ζ(n) + λn(P

(n) − ζ(n)).
24: Compute J (n+1) = JST(ζ(n+1)).
25: n← n+ 1.
26: until |J (n) − J (n−1)| ≤ εJ (n−1).
27: Set ζ̂ = ζ(n).
28: return ρ̂t = T ∗ζ̂t for every t ∈ {1, . . . , Nr}.

4.6 Conclusion

In this chapter, we have presented the proposed wavelet-based regularized reconstruction

approach, as well as its different extensions. The first extension involved convex con-

straints on artifact regions, which allowed us to achieve precise reconstruction even under



severe experimental conditions. The proposed approach was also combined with Total

Variation regularization to take advantage of the two edge-preserving penalties. The last

extension consisted of using 3D wavelet transforms and temporal regularization in order

to reconstruct 4D fMRI data while exploiting temporal dependencies between acquired

3D volumes. It is worth noting that the proposed reconstruction strategy involves the

estimation of several hyper-parameters. It is a delicate task especially when redundant

WT are employed. The next chapter deals with the hyper-parameters estimation problem

in such a regularization framework using frame representations.



Chapter 5

Hyper-parameter estimation
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5.1 Introduction

Results reported in Chapter 4 emphasize the high interest of using wavelet representations

in pMRI regularization. More generally, redundant linear decomposition families called

frames are very useful in many signal and image processing applications like reconstruc-

tion [Kawahara, 1993; Chaari et al., 2010], restoration [Miller, 1999; Chaux et al., 2005],

compression [Martin and Bell, 2001; Meuleneire, 2008]... The main advantage of frames

lies in their flexibility to capture local features of the signal. Hence, they may result in

sparse representations as shown in the literature on curvelets [Candès et al., 2002], con-

tourlets [Do and Vetterli, 2005], bandelets [Le Pennec and Mallat, 2005] or dual-trees

[Chaux et al., 2006b] in image processing. However, as it has been shown in Chapter 4,

a major difficulty when using frame representations in a statistical framework is to es-

timate the parameters of the frame coefficient probability distribution. Actually, since

frame synthesis operators are generally not injective, even if the signal is perfectly known,

the determination of its frame coefficients is an underdetermined problem. This chap-

ter studies a hierarchical Bayesian approach to estimate the frame coefficients and their

hyper-parameters. Although this approach is conceptually able to deal with any desirable

distribution for the frame coefficients, we focus in this chapter on generalized Gaussian

(GG) priors. The developed approach can easily be adapted to handle other priors such

as the Generalized Gauss-Laplace (GGL) one used in Eq. (4.23) for pMRI regularization.

Note however that we do not restrict our attention to log-concave GG prior probability

density functions (pdf), which may be limited for providing accurate models of sparse

signals [Seeger et al., 2007]. In addition, the proposed method can be applied to noisy

data when imprecise measurements of the signal are only available. One of the contribu-

tions of this work is to address the case of uniform noise distributions. Such distributions

are useful in many applications. For example, they can be used to model quantization
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noise arising in data compression [Watson et al., 1997] and they are often employed when

dealing with bounded error measurements [Zhang et al., 1992; Rangan and Goyal, 2001;

Breuel, 1996; Alghoniemy and Tewfik, 2004].

Our work takes advantage of the current developments in Markov Chain Monte Carlo

(MCMC) algorithms [Robert and Castella, 2004; Cappé, 2002; Andrieu et al., 2001] that

have already been investigated for instance in image separation [Ichir and Mohammad-D-

jafari, 2003], image restoration [Jalobeanu et al., 2002; Orieux et al., 2010; Giovannelli,

2008] and brain activity detection in functionnal MRI [Makni et al., 2005; Khalidov et al.,

2007]. These algorithms have also been investigated for signal/image processing problems

with sparsity constraints. These constraints may be imposed in the original space like in

[Dobigeon et al., 2009], where a sparse image reconstruction problem is assessed in the

image domain. They may also be imposed on some redundant representation of the signal

like in [Blumensath and Davies, 2007], where a time-series sparse coding problem is con-

sidered.

Hybrid MCMC algorithms [Zeger and Karim, 1991; Tierney, 1994] are designed combining

Metropolis-Hastings (MH) [Hastings, 1970] and Gibbs [Geman and Geman, 1984] moves

to sample according to the posterior distribution of interest. MCMC algorithms and WT

have been jointly investigated in some works dealing with signal denoising under a Bayesian

framework [Leporini and Pesquet, 2001; Müller and Vidakovic, 1999; Heurta, 2005; Ichir

and Mohammad-Djafari, 2003]. However, in contrast with the present work where over-

complete frame representations are considered, these works are limited to wavelet bases for

which the hyper-parameter estimation problem is much easier to handle. Other interesting

works concerning the use of MCMCmethods for generating sparse representations [Févotte

and Godsill, 2006; Wolfe and Godsill, 2003] assume Gaussian noise models, which may

facilitate the derivation of the proposed sampler, especially when a mixture of Gaussian

prior is chosen. Alternative Bayesian approaches have also been proposed in [Kowalski

and Torrésani, 2008; Molla and Torrésani, 2005] for some specific forms of frame represen-

tations.

This chapter is organized as follows. Section 5.2 presents the general problem formula-

tion. The hierarchical Bayesian model proposed for frame representation is introduced

in Section 5.3. Two algorithms for sampling the posterior distribution are proposed in

Section 5.4. An extension of the proposed approach to account for more general priors is

also presented in Section 5.5. To illustrate the effectiveness of these algorithms, experi-

ments on both synthetic and real world data are presented in Section 5.6. In this section,

applications to image recovery problems are also considered. Finally, some conclusions are

drawn in Section 5.7.

5.2 Problem Formulation

An observed signal y ∈ R
L can be written according to its frame representation (FR)

involving coefficients x ∈ R
K as follows

y = F ∗x+ n (5.1)
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where n is the error between the observed signal y and its FR F ∗x. We recall here that F

and F ∗ are the linear frame and adjoint frame operators, respectively (see Section 3.2.3).

This error is modeled by imposing that x belongs to the closed convex set

Cδ = {x ∈ R
K | N(y − F ∗x) ≤ δ} (5.2)

where δ ∈ [0,∞[ is some error bound and N(.) can be any norm on R
L.

In signal/image recovery problems, n is nothing but an additive noise that corrupts the

measured data. By adopting a probabilistic approach, y and x are assumed to be re-

alizations of random vectors Y and X. In this context, our goal is to characterize the

probability distribution of X|Y , by considering some parametric probabilistic model and

by estimating the associated hyper-parameters.

A useful example where this characterization may be of great interest is frame-based sig-

nal/image denoising in a Bayesian framework. Actually, denoising in the wavelet domain

using wavelet frame decompositions has already been investigated since the seminal work

in [Donoho, 1995] as this kind of representation provides sparse description of regular sig-

nals. The related hyper-parameters have then to be estimated. When F is bijective and

δ = 0, this estimation can be performed by inverting the transform so as to deduce x

from y and by resorting to standard estimation techniques on x. However, for redundant

frames, F ∗ is not bijective, which makes the hyper-parameter estimation problem more

difficult. This chapter presents hierarchical Bayesian algorithms to address this issue.

5.3 Hierarchical Bayesian Model

In a Bayesian framework, we first need to define prior distributions for the frame co-

efficients. For instance, this prior may be chosen so as to promote the sparsity of the

representation. In the following, f(x|θ) denotes the pdf of the frame coefficients that

depends on an unknown hyper-parameter vector θ and f(θ) is the a priori pdf for the

hyper-parameter vector θ. In compliance with the observation model in Eq. (5.1) and the

constraint in Eq. (5.2), n is assumed to be uniformly distributed on the ball

B0,δ = {a ∈ R
L | N(a) ≤ δ}. (5.3)

From Eq. (5.1), it can be deduced that f(y|x) is the uniform pdf on the closed convex

ball BF ∗x,δ defined as

BF ∗x,δ = {y ∈ R
L | N(y − F ∗x) ≤ δ}. (5.4)

Denoting by Θ the random vector associated with the hyper-parameter vector θ and using

the hierarchical structure between Y ,X and Θ, the conditional pdf of (X ,Θ) given Y

can be written as

f(x,θ|y) ∝ f(y|x)f(x|θ)f(θ) (5.5)

where ∝ means proportional to.

In this work, we assume that frame coefficients are a priori independent with marginal

GG distributions. This assumption has been successfully used in many studies [Mallat,
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1989; Joshi et al., 1997; Simoncelli and Adelson, 1996; Moulin and Liu, 1998; Do and

Vetterli, 2002] and leads to the following frame coefficient prior

f(xk|αk, βk) =
βk

2αkΓ(1/βk)
exp

(
−|xk|

βk

αβk
k

)
(5.6)

where αk > 0, βk > 0 (with k ∈ {1, . . . ,K}) are the scale and shape parameters associated

with xk, which is the kth component of the frame coefficient vector x and Γ(.) is the

Gamma function. Note that small values of the shape parameters are appropriate for

modeling sparse signals. When ∀k ∈ {1, . . . ,K}, βk = 1, a Laplace prior is obtained,

which was shown to play a central role in sparse signal recovery [Seeger and Nickisch,

2008] and compressed sensing [Babacan et al., 2009].

By introducing ∀k ∈ {1, . . . ,K}, γk = αβk
k , the frame prior can be rewritten as1

f(xk|γk, βk) =
βk

2γ
1/βk

k Γ(1/βk)
exp

(
−|xk|

βk

γk

)
. (5.7)

The distribution of a frame coefficient generally differs from one coefficient to another.

However, some frame coefficients can have very similar distributions (that can be defined

by the same hyper-parameters βk and γk). As a consequence, we propose to split the

frame coefficients into G different groups. The gth group will be parameterized by a

unique hyper-parameter vector denoted as θg = (βg, γg) (after the reparameterization

mentioned above). In this case, the frame prior can be expressed as

f(x|θ) =
G∏

g=1



(

βg

2γ
1/βg
g Γ(1/βg)

)ng

exp


− 1

γg

∑

k∈Sg

|xk|βg




 (5.8)

where the summation covers the index set Sg of the elements of the gth group containing ng

elements and θ = (θ1, . . . ,θG). Note that in our simulations, each group g will correspond

to a given wavelet subband. A coarser classification may be made when using multiscale

frame representations by considering that all the frame coefficients at a given resolution

level belong to a same group.

The hierarchical Bayesian model for the frame decomposition is completed by the

following improper hyperprior

f(θ) =

G∏

g=1

f(θg) =

G∏

g=1

[f(γg)f(βg)]

∝
G∏

g=1

[
1

γg
1R+(γg)1[0,3](βg)

]
(5.9)

where 1A(ξ) is the function defined on A ⊂ R by 1A(ξ) = 1 if ξ ∈ A and 1A(ξ) = 0

otherwise. The motivations for using this kind of prior are summarized below:

1The interest of this new parameterization will be clarified in Section 5.4.



5.4 Sampling strategies 129� the interval [0, 3] covers all possible values of βg encountered in practical applications.

Moreover, there is no additional information about the parameter βg.� The prior for the parameter γg is a Jeffrey’s distribution that reflects the absence of

knowledge about this parameter. This kind of prior is often used for scale parameters

[Jeffreys, 1946].

The resulting posterior distribution is therefore given by

f(x,θ|y) ∝ 1Cδ
(x)

G∏

g=1



(

βg

2γ
1/βg
g Γ(1/βg)

)ng

exp


− 1

γg

∑

k∈Sg

|xk|βg



(

1

γg
1R+(γg)1[0,3](βg)

)
 .

(5.10)

The Bayesian estimators (e.g., the maximum a posteriori (MAP) or minimum mean

square error (MMSE) estimators) associated with the posterior distribution in Eq. (5.10)

have no simple closed-form expression. The next section studies different sampling strate-

gies that allow one to generate samples distributed according to the posterior distribution

in Eq. (5.10). The generated samples will be used to estimate the unknown model param-

eter and hyper-parameter vectors x and θ.

5.4 Sampling strategies

This section proposes different MCMC methods to generate samples distributed according

to the posterior f(x,θ|y) defined in Eq. (5.10).

5.4.1 Hybrid Gibbs Sampler

A very standard strategy to sample according to Eq. (5.10) is provided by the Gibbs

sampler (GS). GS iteratively generates samples distributed according to conditional dis-

tributions associated with the target distribution. More precisely, the basic GS iteratively

generates samples distributed according to f(x|θ,y) and f(θ|x,y).

5.4.1.1 Sampling the frame coefficients

Straightforward calculations yield the following conditional distribution

f(x|θ,y) ∝ 1Cδ
(x)

G∏

g=1

exp
(
− 1

γg

∑

k∈Sg

|xk|βg

)
(5.11)

where Cδ is defined in Eq. (5.2). This conditional distribution is a product of GG distribu-

tions truncated on Cδ. Actually, sampling according to this truncated distribution is not

always easy to perform since the adjoint frame operator F ∗ is usually of large dimension.

However, two alternative sampling strategies are detailed in what follows.
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Naive sampling This sampling method proceeds by sampling according to independent

GG distributions
G∏

g=1

exp
(
− 1

γg

∑

k∈Sg

|xk|βg

)
(5.12)

and then accepting the proposed candidate x only if N(y − F ∗x) ≤ δ. This method can

be used for any frame decomposition and any norm. However, it can be quite inefficient

because of a very low acceptance ratio, especially when δ takes small values.

Gibbs sampler This sampling method is designed to sample more efficiently from the

conditional distribution in Eq. (5.11) when the considered frame is the union of M or-

thonormal bases and N(·) is the Euclidean norm. In this case, the analysis frame operator

and the corresponding adjoint can be written as F =




F1
...

FM


 and F ∗ = [F ∗

1 . . . F ∗
M ],

respectively, where ∀m ∈ {1, . . . ,M}, Fm is the decomposition operator onto the mth

orthonormal basis such as F ∗
mFm = FmF ∗

m = Id. In what follows, we will decompose every

x ∈ R
K with K = ML as x = [xT

1, . . . ,x
T

M ]T where xm ∈ R
L, for every m ∈ {1, . . . ,M}.

The GS for the generation of frame coefficients draws vectors according to the conditional

distribution f(xn|x−n,y,θ) under the constraint N(y − F ∗x) ≤ δ, where x−n is the re-

duced size vector of dimension R
K−L built from x by removing the nth vector xn. If N(·)

is the Euclidean norm, we have for every n ∈ {1, . . . ,M},

N(y −
M∑

m=1

F ∗
mxm) ≤ δ

⇔ ‖ F ∗
n(Fny −

M∑

m=1

FnF
∗
mxm) ‖≤ δ

⇔ ‖ Fny −
∑

m6=n

FnF
∗
mxm − xn ‖≤ δ (since ∀z ∈ R

L, ‖ F ∗
nz ‖=‖ z ‖)

⇔N(xn − cn) ≤ δ, (5.13)

where

cn = Fny −
∑

m6=n

FnF
∗
mxm. (5.14)

To sample each xn, we propose to use an MH step whose proposal distribution is supported

on the ball Bcn,δ defined by

Bcn,δ = {a ∈ R
L | N(a− cn) ≤ δ}. (5.15)

Random generation from a pdf qδ defined on B0,δ is described in Section 5.4.1.3. Having a

closed form expression of this pdf is important to be able to calculate the acceptance ratio of

the MH move. To take into account the value of x
(i−1)
n obtained at the previous iteration

(i − 1), it may however be preferable to choose a proposal distribution supported on a
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restricted ball of radius η ∈]0, δ[ containing x
(i−1)
n . This strategy similar to the random

walk MH algorithm [Robert and Castella, 2004, p. 287] results in a better exploration

of regions associated with large values of the conditional distribution f(x|θ,y). More

precisely, we propose to choose a proposal distribution defined on B
x̂
(i−1)
n ,η

, where

x̂(i−1)
n = P (x(i−1)

n − cn) + cn (5.16)

and P is the projection onto the ball B0,δ−η defined as

∀a ∈ R
L, P (a) =




a if N(a) ≤ δ − η
δ − η

N(a)
a otherwise.

(5.17)

This choice of the center of the ball guarantees that B
x̂
(i−1)
n ,η

⊂ Bcn,δ.

Proof :

Let x ∈ B
x̂

(i−1)
n ,η

. By using Eq. (5.16), we have therefore :

‖x̂(i−1)
n − x‖ ≤ η ⇐⇒ ‖P (x(i−1)

n − cn) + cn − x‖ ≤ η. (5.18)

Consequently, we can write:

‖cn − x‖ = ‖x̂(i−1)
n − P (x(i−1)

n − cn)− x‖
= ‖x̂(i−1)

n − cn + cn − P (x(i−1)
n − cn)− x‖

≤ ‖x̂(i−1)
n − cn‖+ ‖cn − P (x(i−1)

n − cn)− x‖
≤ ‖P (x(i−1)

n − cn)‖ + ‖cn − P (x(i−1)
n − cn)− x‖

≤ δ − η + η, (5.19)

which means that x ∈ Bcn,δ. �

Moreover, any point of Bcn,δ can be reached after consecutive draws in B
x̂
(i−1)
n ,η

. Note

that the radius η has to be adjusted to ensure a good exploration of Bcn,δ. In practice,

it may also be interesting to fix a small enough value of η (compared with δ) so as to

improve the acceptance ratio.

Remark:

Alternatively, a GS can be used to draw successively the L elements (xn,l)1≤l≤L of xn

under the following constraint for every l ∈ {1, . . . , L}

‖ xn − cn ‖≤ δ ⇔ −
√

δ2 −
∑

k 6=l

(xn,k − cn,k)2 ≤ xn,l − cn,l ≤
√

δ2 −
∑

k 6=l

(xn,k − cn,k)2,

where cn,k is the kth element of the vector cn. However, this method is very time-

consuming since it proceeds sequentially for each component of the high dimensional vector

x.
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5.4.1.2 Sampling the hyper-parameter vector

Instead of sampling θ according to f(θ|x,y), we propose to iteratively sample according

to f(γg|βg,x,y) and f(βg|γg,x,y). Straightforward calculations allow us to obtain the

following results

f(γg|βg,x,y) ∝ γ
−ng

βg
−1

g exp
(
− 1

γg

∑

k∈Sg

|xk|βg

)
1R+(γg), (5.20)

f(βg|γg,x,y) ∝
β
ng
g 1[0,3](βg)

γ
ng/βg
g

[
Γ
(
1/βg

)]ng
exp

( ∑

k∈Sg

−|xk|βg

γg

)
. (5.21)

Consequently, due to the new parameterization introduced in Eq. (5.7), f(γg|βg,x,y)
is the pdf of the inverse gamma distribution IG

(
ng

βg
,
∑

k∈Sg
|xk|βg

)
that is easy to sample.

Conversely, it is more difficult to sample according to the truncated pdf f(βg|γg,x,y).
This is achieved by using an MH move whose proposal q(βg | β(i−1)

g ) is a Gaussian distri-

bution truncated on the interval [0, 3] with standard deviation σβg = 0.05 [Dobigeon and

Tourneret, 2007]. Note that the mode of this distribution is the value of the parameter

β
(i−1)
g at the previous iteration (i−1). The resulting method is the hybrid GS summarized

in Algorithm 10.

Although this algorithm is intuitive and simple to implement, it must be pointed out

that it was derived under the restrictive assumption that the considered frame is the

union of M orthonormal bases. When these assumptions do not hold, another algorithm

proposed in Section 5.4.2 allows us to sample frame coefficients and the related hyper-

parameters by exploiting algebraic properties of frames.

5.4.1.3 Sampling on the unit ℓp ball

This section explains how to sample vectors in the unit ℓp ball (p ∈]0,+∞]) of R
L.

First, it is interesting to note that sampling on the unit ball can be easily performed in the

particular case p = +∞, by sampling independently along each space coordinate according

to a distribution on the interval [−1, 1]. Thus, this section focuses on the more difficult

problem associated with a finite value of p. In the following, ‖ · ‖p denotes the ℓp norm.

We recall the following theorem:

Theorem 5.4.1 [Gupta and Song, 1997]

Let A = [A1, . . . , AL′ ]T be the random vector of iid components which have the following

GG(p1/p, p) pdf

∀a ∈ R, f(a) =
p1−1/p

2Γ(1/p)
exp

(
− |a|

p

p

)
. (5.22)
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Algorithm 10 Sampler 1: hybrid GS to simulate according to f(x,θ|y) (superscript ·(i)
indicates values computed at iteration number i).

1: Initialize with some θ(0) = (θ
(0)
g )1≤g≤G = (γ

(0)
g , β

(0)
g )1≤g≤G and x(0) ∈ Cδ, and set

i = 1.
2: repeat
3: Sampling x:
4: for n = 1 to M do
5: Compute c

(i)
n = Fn

(
y −∑m<n F

∗
mx

(i)
m −

∑
m>n F

∗
mx

(i−1)
m

)

and x̂(i−1)
n = P (x

(i−1)
n − c

(i)
n ) + c

(i)
n .

6: Simulate x
(i)
n as follows:� Generate x̃(i)

n ∼ qη(xn − x̂(i−1)
n ) where qη is defined on B0,η (see Sec-

tion 5.4.1.3).� Compute the ratio

r(x̃(i)
n ,x

(i−1)
n ) =

f(x̃
(i)
n |θ(i−1),(x

(i)
m )m<n,(x

(i−1)
m )m>n,y) qη

(
x
(i−1)
n −P (x̃

(i)
n −c

(i)
n )−c

(i)
n

)

f(x
(i−1)
n |θ(i−1),(x

(i)
m )m<n,(x

(i−1)
m )m>n,y) qη

(
x̃
(i)
n −x̂

(i−1)
n

)

and accept the proposed candidate with the probability

min{1, r(x̃(i)
n ,x

(i−1)
n )}.

7: end for
8: Sampling θ:
9: for g = 1 to G do

10: Generate γ
(i)
g ∽ IG

(
ng

β
(i−1)
g

,
∑

k∈Sg
|x(i)k |β

(i−1)
g

)
.

11: Simulate β
(i)
g as follows:� Generate β̃

(i)
g ∽ q(βg | β(i−1)

g ).� Compute the ratio

r(β̃(i)
g , β(i−1)

g ) =
f(β̃

(i)
g |γ(i)g ,x(i),y)q(β

(i−1)
g | β̃(i)

g )

f(β
(i−1)
g |γ(i)g ,x(i),y)q(β̃

(i)
g | β(i−1)

g )

and accept the proposed candidate with the probability

min{1, r(β̃(i)
g , β

(i−1)
g )}.

12: end for
13: Set i← i+ 1.
14: until Convergence
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Let U = [U1, . . . , UL′ ]T = A/‖A‖p. Then, the random vector U is uniformly distributed

on the surface of the ℓp unit sphere of RL′
and the joint pdf of U1, . . . , UL′−1 is

f(u1, . . . , uL′−1) =
pL

′−1Γ(L′/p)
2L′−1(Γ(1/p))L′

(
1−

L′−1∑

k=1

|uk|p
)(1−p)/p

1Dp,L′ (u1, ..., uL′−1) (5.23)

where Dp,L′ = {(u1, ..., uL′−1) ∈ R
L′−1 |∑L′−1

k=1 |uk|p < 1}.

The uniform distribution on the unit ℓp sphere of RL′
will be denoted by U(L′, p). The

construction of a random vector distributed within the ℓp ball of RL with L < L′ can be

derived from Theorem 5.4.1 as expressed below:

Theorem 5.4.2 [Gupta and Song, 1997]

Let U = [U1, . . . , UL′ ]T ∼ U(L′, p). For every L ∈ {1, . . . , L′ − 1}, the pdf of V =

[U1, . . . , UL]
T is given by

q1(u1, · · · , uL) =
pLΓ(L′/p)

(
1−∑L

k=1 |uk|p
)(L′−L)/p−1

2L(Γ(1/p))LΓ((L′ − L)/p)
1Dp,L+1

(u1, ..., uL). (5.24)

In particular, if p ∈ N
∗ and L′ = L+ p, we obtain the uniform distribution on the unit

ℓp ball of RL.

Sampling from a distribution qη on the ℓp ball of radius η > 0 is straightforwardly deduced

by scaling V .

5.4.2 Hybrid MH sampler using algebraic properties of frame represen-

tations

As a direct generation of samples according to f(x|θ,y) is generally impossible, we propose

here an alternative that replaces the Gibbs move by an MH move. This MH move aims

at sampling globally a candidate x according to a proposal distribution. This candidate

is accepted or rejected with the standard MH acceptance ratio. The efficiency of the MH

move strongly depends on the choice of the proposal distribution for x. We denote as x(i)

the ith accepted sample of the algorithm and q(x | x(i−1)) the proposal that is used to

generate a candidate at iteration i. The main difficulty for choosing q(x | x(i−1)) stems

from the fact that it must guarantee that x ∈ Cδ (as mentioned in Section 5.2) while

yielding a tractable expression of q(x(i−1) | x)/q(x | x(i−1)).

For this reason, we propose to exploit the algebraic properties of frame representations.

More precisely, any frame coefficient vector can be decomposed as x = xH + xH⊥ , where

xH and xH⊥ are realizations of random vectors taking their values in H = Ran(F ) and

H⊥ = [Ran(F )]⊥ = Null(F ∗), respectively2. The proposal distribution used here allows

us to generate samples xH ∈ H and xH⊥ ∈ H⊥. More precisely, the following separable

2We recall that the range of F is Ran(F ) = {x ∈ R
K |∃y ∈ R

L, Fy = x} and the null space of F ∗ is
Null(F ∗) = {x ∈ R

K |F ∗
x = 0}.
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form of the proposal pdf will be considered

q(x | x(i)) = q
(
xH | x(i−1)

H

)
q
(
xH⊥ | x(i−1)

H⊥

)
(5.25)

where x
(i−1)
H ∈ H, x

(i−1)

H⊥ ∈ H⊥ and x(i−1) = x
(i−1)
H +x

(i−1)

H⊥ . In other words, independent

sampling of xH and xH⊥ will be performed.

If we consider the decomposition x = xH + xH⊥ , sampling x in Cδ is equivalent to

sampling λ ∈ Cδ, where Cδ = {λ ∈ R
L|N(y − F ∗Fλ) ≤ δ}. Indeed, we can write

xH = Fλ where λ ∈ R
L and, since xH⊥ ∈ Null(F ∗), F ∗x = F ∗Fλ. Sampling λ in Cδ

can be easily achieved, e.g., by generating u from a distribution on the ball By,δ and by

taking λ = (F ∗F )−1u.

To make the sampling of xH at iteration i more efficient, taking into account the sampled

value at the previous iteration x
(i−1)
H = Fλ(i−1) = F (F ∗F )−1u(i−1) may be interesting.

Similarly to random walk generation techniques, we proceed by generating u in B
û(i−1),η

where η ∈]0, δ[ and û(i−1) = P (u(i−1) − y) + y. This allows us to draw a vector u such

that xH = F (F ∗F )−1u ∈ Cδ and N(u− u(i−1)) ≤ 2η.

Proof :

i) Proof that xH = F (F ∗F )−1u ∈ Cδ:

We can first write that N(y − F ∗xH) = N(y − F ∗F (F ∗F )−1u) = N(y − u). On the other

hand, we can write

N(y − u) =N(y + P (u(i−1) − y)− P (u(i−1) − y)− u)

≤ N(y + P (u(i−1) − y)− u) +N(P (u(i−1) − y))

≤ N(û(i−1) − u) +N(P (u(i−1) − y)). (5.26)

And since u ∈ B
û

(i−1),η, which means that N(û(i−1) − u) ≤ η, we have therefore

N(y − u) ≤ η + δ − η

≤ δ. (5.27)

It turns out thatN(y − xH) ≤ δ, which means that xH ∈ Cδ .

ii) Proof that N(u− u(i−1)) ≤ 2η:

Let u ∈ B
û

(i−1),η, which means that N(u− û
(i−1)) ≤ η. We can therefore write:

N(u− u(i−1)) ≤ N(u− û
(i−1) + û

(i−1) − u(i−1))

≤ N(u− û
(i−1)) +N(P (u(i−1) − y) + y − u(i−1)). (5.28)

If we denote by a = u(i−1) − y, we have

N(a− P (a)) =




N(a− a) = 0 if P (a) = a

N(a− δ − η

N(a)
a) = N(

N(a)− δ + η

N(a)
a) = N(a)− δ + η otherwise.

(5.29)
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And since at the previous iteration x
(i−1)
H = F (F ∗F )−1u(i−1) ∈ Cδ , we have

N(a) = N(y − u(i−1)) = N(y − F ∗F (F ∗F )−1u(i−1)) = N(y − F ∗x
(i−1)
H ) ≤ δ. (5.30)

It turns out from Eqs. (5.29) and (5.30) that N(a − P (a)) ≤ η. Eq. (5.28) can then be

rewritten as:

N(u− u(i−1)) ≤ η +N(a− P (a)) ≤ 2η. (5.31)

�

The generation of u can then be performed as explained in Section 5.4.1.3 provided

that N(·) is an ℓp norm with p ∈ [1,+∞].

Once we have simulated xH = Fλ ∈ H ∩ Cδ (which ensures that x is in Cδ), xH⊥

has to be sampled as an element of H⊥. Since y = F ∗x + n = F ∗xH + n, there is no

information in y about xH⊥ . As a consequence, we propose to sample xH by drawing z

according to the Gaussian distribution N (x(i−1), σ2
xI) and by projecting z onto H⊥, i.e.,

xH⊥ = ΠH⊥z (5.32)

where ΠH⊥ = I− F (F ∗F )−1F ∗ is the orthogonal projection operator onto H⊥.3

Let us now derive the expression of the proposal pdf. It can be noticed that, if K > L,

there exists a linear operator F⊥ from R
K−L to R

K which is semi-orthogonal (i.e., F ∗
⊥F⊥ =

I) and orthogonal to F (i.e., F ∗
⊥F = 0), such that

x = Fλ︸︷︷︸
xH

+ F⊥λ⊥︸ ︷︷ ︸
x
H⊥

(5.33)

and λ⊥ = F ∗
⊥x ∈ R

K−L. Standard rules on bijective linear transforms of random vectors

lead to

q(x | x(i−1)) = |det
(
[F F⊥]

)
|−1q(λ | x(i−1))q(λ⊥ | x(i−1)) (5.34)

where, due to the bijective linear mapping between λ and u = F ∗Fλ

q(λ | x(i−1)) = det(FF ∗) qη(u− û(i−1)) (5.35)

and q(λ⊥ | x(i−1)) is the pdf of the Gaussian distribution N (λ
(i−1)
⊥ , σ2

xI) with mean

λ
(i−1)
⊥ = F ∗

⊥x
(i−1). Recall that qη denotes a pdf defined on the ball B0,η as expressed in

Section 5.4.1.3. Due to the symmetry of the Gaussian distribution, it can be deduced that

q(x(i−1) | x)
q(x | x(i−1))

=
qη(u

(i−1) − P (u− y)− y)

qη(u− û(i−1))
. (5.36)

This expression remains valid in the degenerate case when K = L (yielding xH⊥ = 0).

Finally, it is important to note that, if qη is the uniform distribution on the ball B0,η,

the above ratio reduces to 1, which simplifies the computation of the MH acceptance

3Note here that using a tight frame makes the computation of both xH and xH⊥ much easier due to
the relation F ∗F = µI.
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ratio. The final algorithm is summarized in Algorithm 11. Note that the sampling of the

hyper-parameter vector is performed as for the hybrid GS in Section 5.4.1.2.

Algorithm 11 Sampler 2: hybrid MH sampler using algebraic properties of frame repre-
sentations to sample according to f(x,θ|y).
1: Initialize with some θ(0) = (θ

(0)
g )1≤g≤G = (γ

(0)
g , β

(0)
g )1≤g≤G and u(0) ∈ By,δ. Set

x(0) = F (F ∗F )−1u(0) and i = 1.
2: repeat
3: Sampling x:� Compute û(i−1) = P (u(i−1) − y) + y.� Generate ũ(i)

∽ qη(u−û(i−1)) where qη is defined on B0,η (see Section 5.4.1.3).� Compute x̃
(i)
H = F (F ∗F )−1ũ(i).� Generate z(i) ∽ N (x(i−1), σ2

xI).� Compute x̃
(i)

H⊥ = ΠH⊥z(i) and x̃(i) = x̃
(i)
H + x̃

(i)

H⊥ .� Compute the ratio r(x̃(i),x(i−1)) =
f(x̃(i)|θ(i−1),y) qη

(
u(i−1) − P (ũ(i) − y)− y

)

f(x(i−1)|θ(i−1),y) qη
(
ũ(i) − û(i−1)

)

and accept the proposed candidates ũ(i) and x̃(i) with probability
min{1, r(x̃(i),x(i−1))}.

4: Sampling θ:
5: for g = 1 to G do

6: Generate γ
(i)
g ∽ IG

(
ng

β
(i−1)
g

,
∑

k∈Sg
|x(i)k |β

(i−1)
g

)
.

7: Simulate β
(i)
g as follows:� Generate β̃

(i)
g ∽ q(βg | β(i−1)

g ).� Compute the ratio r(β̃
(i)
g , β

(i−1)
g ) =

f(β̃
(i)
g |γ(i)

g ,x(i),y)q(β
(i−1)
g |β̃(i)

g )

f(β
(i−1)
g |γ(i)

g ,x(i),y)q(β̃
(i)
g |β(i−1)

g )

and accept the proposed candidate with the probability

min{1, r(β̃(i)
g , β

(i−1)
g )}.

8: end for
9: Set i← i+ 1.

10: until Convergence

Experimental estimation results and applications to some image recovery problems of

the proposed stochastic sampling techniques are provided in Section 5.6.

5.5 Toward a more general Bayesian Model

In this section, we extend the previously developed hierarchical Bayesian model in Sec-

tion 5.3 to include an additional term in the prior depending on the Total Variation (TV)
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of the image under investigation [Rudin et al., 1992; Chambolle and Lions, 1997]. This

kind of prior has been used in numerous works in image restoration since it is known to

be edge-preserving and helps in recovering homogeneous image areas. In [Louchet and

Moisan, 2008; Louchet and Moisan, 2010], a TV Bayesian denoising algorithm based on

the Least Square Error estimate (LSE) was proposed when a TV prior is used to regularize

the considered denoising problem. However, like redundant frame representations, using

TV priors leads also to a hyper-parameter estimation problem. This difficulty has been

outlined in [Pustelnik et al., 2010] where a hybrid variational regularization approach is

adopted combining an ℓ1 sparsity term and a TV penalization. We extend here our pro-

posed Bayesian approach to deal with denoising problems when a hybrid prior is considered

to introduce simultaneously prior informations about the frame coefficients and the TV

of the processed image. As it will be outlined hereafter, the proposed approach using this

more general prior allows us to estimate the related hyper-parameters.

Assuming an exponential shape, the new prior can be expressed as:

f(x|θ) = 1

Z(θ)
exp (−κ‖F ∗x‖TV)

G∏

g=1



( 1

γ
1/βg
g

)ng

exp


− 1

γg

∑

k∈Sg

|xk|βg




 (5.37)

where θ = (θ1, . . . ,θG, κ) is the new hyper-parameter vector with κ > 0, ‖.‖TV is the TV

semi-norm [Rudin et al., 1992; Chambolle and Lions, 1997], and Z(θ) is a normalization

constant. The new hierarchical Bayesian model for the frame decomposition is completed

by the following improper hyperprior

f(θ) = Z(θ)ϕ(κ)

G∏

g=1

ϕ(θg) = Z(θ)ϕ(κ)

G∏

g=1

[ϕ(γg)ϕ(βg)]

∝ Z(θ)1[0,κmax](κ)

G∏

g=1

[
1

γg
1R+(γg)1[0,3](βg)

]
, (5.38)

where κmax is a positive real to be fixed (fixed to κmax = 10 in practice).

It should be noted here that the hyperprior f(θ) in Eq. (5.38) has a stable asymptotic

behaviour when γg → +∞. Indeed, we have

Z(θ) =

∫
exp (−κ‖F ∗x‖TV)

G∏

g=1



( 1

γ
1/βg
g

)ng

exp


− 1

γg

∑

k∈Sg

|xk|βg




 dx. (5.39)

Since exp (−κ‖F ∗x‖TV) ≤ 1, it turns out that

Z(θ) ≤
∫ G∏

g=1



( 1

γ
1/βg
g

)ng

exp


− 1

γg

∑

k∈Sg

|xk|βg




 dx. (5.40)
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By performing the change of variable ∀k ∈ Sg, yk = xk

γ
1/βg
g

with g ∈ {1, . . . , G}, we can

write

Z(θ) ≤
∫ G∏

g=1


exp


−

∑

k∈Sg

|yk|βg




 dy < +∞. (5.41)

It is therefore ensured that the right term of the inequality in Eq. (5.41) is bounded, and

thus Z(θ) is uniformly bounded w.r.t. γg.

The resulting new posterior distribution is therefore given by

f(x,θ|y) =1Cδ
(x)

G∏

g=1



( 1

γ
1/βg
g

)ng

exp


− 1

γg

∑

k∈Sg

|xk|βg



(

1

γg
1R+(γg)1[0,3](βg)

)


× exp (−κ‖F ∗x‖TV) 1[0,κmax](κ). (5.42)

The Bayesian estimators associated with the posterior distribution in Eq. (5.42) still

have no simple closed-form expression. For this reason, we will apply the same sampling

strategy as in Section 5.4.2 and sample the frame coefficients as in Algorithm 11. How-

ever, for the hyper-parameters vector, straightforward calculations show that the posterior

distribution for the hyper-parameters γg, βg and κ will be expressed as:

f(γg|βg, κ,x,y) ∝ γ
−ng

βg
−1

g exp
(
− 1

γg

∑

k∈Sg

|xk|βg

)
1R+(γg), (5.43)

f(βg|γg, κ,x,y) ∝ exp
( ∑

k∈Sg

− 1

γg
|xk|βg

)
1[0,3](βg), (5.44)

and

f(κ|γ1, . . . , γG, β1, . . . , βG,x,y) ∝ exp (−κ‖F ∗x‖TV) 1[0,κmax](κ), (5.45)

respectively.

Consequently, as in Section 5.4.1.2, f(γg|βg, κ,x,y) is the pdf of the inverse gamma

distribution IG
(
ng

βg
,
∑

k∈Sg
|xk|βg

)
. Sampling γg will therefore be performed exactly as

in Algorithm 10. Conversely, it is more difficult to sample according to f(βg|γg, κ,x,y)
and f(κ|γ1, . . . , γG, β1, . . . , βG,x,y). This task is achieved by using two MH moves whose

proposal distributions q(βg | β(i−1)
g ) and q(κ | κ(i−1)) are Gaussian distributions truncated

on the intervals [0, 3] and [0, κmax] with standard deviations σβg = 0.05 and σκ = 0.01,

respectively. Note that these standard deviation values have been fixed based on our prac-

tical observations. The resulting method to sample according to the posterior distribution

in Eq. (5.42) is summarized in Algorithm 12.
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Algorithm 12 Hybrid MH sampler using algebraic properties of frame representations to
simulate according to f(x,θ|y) using the general Bayesian model.

1: Initialize with some θ(0) =
(
(θ

(0)
g )1≤g≤G, κ

(0)
)
=
(
(γ

(0)
g , β

(0)
g )1≤g≤G, κ

(0)
)
and u(0) ∈

By,δ. Set x
(0) = F (F ∗F )−1u(0) and i = 1.

2: repeat
3: Sampling x:� Compute û(i−1) = P (u(i−1) − y) + y.� Generate ũ(i)

∽ qη(u−û(i−1)) where qη is defined on B0,η (see Section 5.4.1.3).� Compute x̃
(i)
H = F (F ∗F )−1ũ(i).� Generate z(i) ∽ N (x(i−1), σ2

xI).� Compute x̃
(i)

H⊥ = ΠH⊥z(i) and x̃(i) = x̃
(i)
H + x̃

(i)

H⊥ .� Compute the ratio r(x̃(i),x(i−1)) =
f(x̃(i)|θ(i−1),y) qη

(
u(i−1) − P (ũ(i) − y)− y

)

f(x(i−1)|θ(i−1),y) qη
(
ũ(i) − û(i−1)

)

and accept the proposed candidates ũ(i) and x̃(i) with probability
min{1, r(x̃(i),x(i−1))}.

4: Sampling θ:
5: for g = 1 to G do

6: Generate γ
(i)
g ∽ IG

(
ng

β
(i−1)
g

,
∑

k∈Sg
|x(i)k |β

(i−1)
g

)
.

7: Simulate β
(i)
g as follows:� Generate β̃

(i)
g ∽ q(βg | β(i−1)

g ).� Compute the ratio r(β̃
(i)
g , β

(i−1)
g ) =

f(β̃
(i)
g |γ(i)

g ,κ(i),x(i),y)q(β
(i−1)
g |β̃(i)

g )

f(β
(i−1)
g |γ(i)

g ,κ(i),x(i),y)q(β̃
(i)
g |β(i−1)

g )
and ac-

cept the proposed candidate with the probability min{1, r(β̃(i)
g , β

(i−1)
g )}.

8: end for
9: Simulate κ(i) as follows:� Generate κ̃(i) ∽ q(κ | κ(i−1)).� Compute the ratio

r(κ̃(i), κ(i−1)) =
f(κ̃(i)|γ(i)1 , . . . , γ

(i)
G , β

(i)
1 , . . . , β

(i)
G ,x(i),y)q(κ(i−1) | κ̃(i))

f(κ(i−1)|γ(i)1 , . . . , γ
(i)
G , β

(i)
1 , . . . , β

(i)
G ,x(i),y)q(κ̃(i) | κ(i−1))

and accept the proposed candidate with the probability min{1, r(κ̃(i), κ(i−1))}.

10: Set i← i+ 1.
11: until Convergence
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This approach is applied to image denoising in Section 5.6.3.1. However, in contrast

to the first model where it is possible to generate frame coefficients according to their

prior distribution (see Section 5.6.1), generating frame coefficients according to the prior

distribution in Eq. (5.37) is not possible because of the TV term. For this reason, no

validation experiments on synthetic data will be provided here for the hyper-parameters

estimation. However, to evaluate the performance of the proposed approach in estimating

the hyper-parameters when a hybrid prior is used, we can refer to Section 4.4 of Chap-

ter 4 where reconstruction examples in pMRI are provided. The good reconstruction

performance achieved in that experiments where the hyper-parameters have been esti-

mated using Algorithm 12 shows that our approach provides an accurate estimation of the

hyper-parameters.

5.6 Numerical illustrations

5.6.1 Validation experiments

5.6.1.1 Example 1

To show the effectiveness of our algorithm, a first set of experiments is carried out on

synthetic images. As a frame representation, we use the union of two 2D separable wavelet

bases B1 and B2 using Daubechies and shifted Daubechies filters of length 8 and 4, respec-

tively. The ℓ2 norm is used for N(·) in Eq. (5.1) with δ = 10−4. To generate a synthetic

image (of size 128 × 128), we synthesize wavelet frame coefficients x from known prior

distributions. Let x1 = (a1, (h1,j , v1,j , d1,j)1≤j≤2) and x2 = (a2, (h2,j , v2,j , d2,j)1≤j≤2) be

the sequences of wavelet basis coefficients generated in B1 and B2, where a, h, v, d stand for

approximation, horizontal, vertical and diagonal coefficients and the index j is the resolu-

tion level. Wavelet frame coefficients are generated from a GG distribution in accordance

with the chosen priors. The coefficients in each subband are modeled with the same values

of the hyper-parameters αg and βg, which means that each subband forms a group of index

g. The number of groups (i.e., the number of subbands) G is therefore equal to 14. A

uniform prior distribution over [0, 3] is chosen for parameter βg whereas a Jeffrey’s prior

is assigned to each parameter γg. For each group, the hyper-parameters βg and γg are

first generated from a uniform prior distribution over [0, 3] and a beta distribution, respec-

tively. Drawing the hyper-parameters from different distributions than the priors allows us

to evaluate the robustness of our approach to modeling errors. A set of frame coefficients

is then randomly generated to synthesize the observed data. The hyper-parameters are

then supposed unknown, sampled using the proposed algorithm, and estimated based on

the generated samples by:

(i): computing the mean according to the MMSE principle;

(ii): computing the MAP estimate.

Having reference values, the normalized mean square errors (NMSEs) related to the es-

timation of each hyper-parameter belonging to a given group (here a given subband) are

computed from 30 Monte Carlo runs. The NMSEs computed for the estimators associated
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with the two samplers of Sections 5.4.1 and 5.4.2 are reported in Table 5.1. Table 5.1

shows that the proposed algorithms (using Sampler 1 of Section 5.4.1 and Sampler 2 of

Section 5.4.2) provide accurate estimates of the hyper-parameters using the MMSE or the

MAP estimator (with a slightly better performance for the MMSE estimator). The two

samplers perform similarly for this experiment. However, one advantage of Sampler 2 is

that it can be applied to different kinds of redundant frames, unlike Sampler 1. Indeed,

as reported in Section 5.4.1, the conditional distribution in Eq. (5.11) is generally difficult

to sample when the frame representation is not a union of orthonormal bases.

Table 5.1: Example 1: NMSEs for the estimated hyper-parameters using the MMSE and
MAP estimators.

MMSE MAP
Sampler 1 Sampler 2 Sampler 1 Sampler 2
β α β α β α β α

h1,1 0.019 0.016 0.012 0.030 0.025 0.021 0.013 0.039

v1,1 0.022 0.021 0.022 0.026 0.029 0.032 0.034 0.051

d1,1 0.007 0.030 0.011 0.044 0.013 0.037 0.025 0.051

h1,2 0.042 0.044 0.021 0.026 0.055 0.051 0.033 0.037

v1,2 0.011 0.018 0.020 0.019 0.021 0.027 0.031 0.022

d1,2 0.009 0.012 0.023 0.041 0.017 0.020 0.024 0.038

a1 0.040 0.043 0.039 0.023 0.046 0.050 0.052 0.034

h2,1 0.036 0.043 0.015 0.025 0.045 0.051 0.019 0.038

v2,1 0.041 0.057 0.025 0.031 0.049 0.056 0.034 0.042

d2,1 0.008 0.017 0.029 0.023 0.021 0.026 0.037 0.035

h2,2 0.019 0.021 0.016 0.034 0.025 0.029 0.024 0.041

v2,2 0.011 0.009 0.013 0.022 0.020 0.015 0.019 0.030

d2,2 0.018 0.019 0.011 0.040 0.023 0.027 0.019 0.041

a2 0.025 0.031 0.010 0.028 0.033 0.038 0.017 0.032

To further illustrate the good performance of the proposed estimator, Fig. 5.1 shows

two examples of empirical histograms of wavelet frame coefficients (corresponding to B1)
that are in good agreement with the corresponding pdfs obtained after replacing the hyper-

parameters by their estimates.

5.6.1.2 Example 2

In this experiment, another frame representation is considered, namely a tight frame ver-

sion of the TIW transform [Coifman and Donoho, 1995] with Daubechies filters of length

8. The ℓ2 norm is also used for N(·) in Eq. (5.1) with δ = 10−4. We use the same process

to generate frame coefficients as for Example 1. The coefficients in each subband (i.e.,

each group) are modeled with the same values of the hyper-parameters γg and βg, the

number of groups being equal to 7. The same priors for the hyper-parameters γg and βg
as for Example 1 are used.

After generating the hyper-parameters and frame coefficients, the hyper-parameters are
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a1: β = 1.7, γ = 104 h1,2: β = 1.98, γ = 143.88

Figure 5.1: Examples of empirical approximation (left) and detail (right) histograms and
pdfs of frame coefficients corresponding to a synthetic image.

then sampled using the proposed algorithm, and estimated using the MMSE estimator.

Table 5.2 shows NMSEs based on reference values of each hyper-parameter, where the

frame coefficient vector is denoted by x = (a, (hj , vj , dj)1≤j≤2). Note that Sampler 1 is

difficult to be implemented in this case since the used frame is not the union of orthonor-

mal bases. Consequently, only NMSE values for Sampler 2 have been reported in Table

5.2.

Table 5.2: Example 2: NMSEs for the estimated hyper-parameters using the MMSE and
MAP estimators with Sampler 2.

MMSE MAP
β α β α

h1 0.050 0.027 0.056 0.035

v1 0.024 0.007 0.029 0.011

d1 0.050 0.014 0.051 0.021

h2 0.037 0.028 0.044 0.033

v2 0.051 0.044 0.057 0.050

d2 0.040 0.012 0.043 0.021

a 0.040 0.050 0.046 0.055

5.6.1.3 Example 3

A third frame is considered in this experiment to show the versatility of our approach

with respect to the choice of the frame representation: the contourlet transform [Do and

Vetterli, 2005] with ladder filters over two resolution levels. The ℓ∞ norm is used for N(·)
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in Eq. (5.1) with δ = 10−4. We use the same procedure to generate frame coefficients as for

Examples 1 and 2. The coefficients in each of the eight groups are modeled with the same

values of the hyper-parameters γg and βg and the same hyperparameter priors. After

generating the hyper-parameters and frame coefficients, the hyper-parameters are then

supposed unknown and estimated using the MMSE estimator based on samples drawn with

Sampler 2. Table 5.3 shows NMSEs based on reference values of each hyper-parameter.

Table 5.3: Example 3: NMSEs for the estimated hyper-parameters using the MMSE and
MAP estimates with Sampler 2.

MMSE MAP
β α β α

SB1 0.007 0.027 0.0120 0.071

SB2 0.002 0.032 0.011 0.056

SB3 0.004 0.011 0.009 0.023

SB4 0.001 0.018 0.008 0.022

SB5 0.001 0.006 0.006 0.012

SB6 0.010 0.040 0.028 0.048

SB7 0.009 0.020 0.018 0.07

SB8 0.002 0.021 0.009 0.033

5.6.2 Convergence results

To be able to automatically stop the simulated chain and ensure that the last simulated

samples are appropriately distributed according to the posterior distribution of interest, a

convergence monitoring technique based on the Potential Scale Reduction Factor (PSRF)

is used by simulating several chains in parallel (see [Gelman and Rubin, 1992] for more

details). This convergence monitoring technique indicates that sample convergence arises

as soon as PSRF < 1.2. Using the union of two orthonormal bases as a frame representa-

tion, Figs. 5.2 and 5.3 illustrate the variations w.r.t. the iteration number of the NMSE

between the MMSE estimator and a reference estimator (computed by using a large num-

ber of burn-in and computation iterations, so as to guarantee that convergence has been

achieved). The NMSE plots show that convergence is reached after about 150, 000 it-

erations (burn-in period of 100, 000 iterations), which corresponds to about 4 hours of

computational time using Matlab 7.7 on an Intel Core 4-3 GHz architecture. When com-

paring the two proposed samplers in terms of convergence speed, it turns out from our

simulations that Sampler 1 shows faster convergence than Sampler 2. Indeed, Sampler 1

needs about 110, 000 iterations to converge, which reduces the global computational time

to about 3 hours.

The posterior distributions of the hyper-parameters β and γ related to the subbands

h1,2 and h2,2 in B1 and B2 are shown in Fig. 5.4, as well as the known original values. It

is clear that the modes of the posterior distributions are around the ground truth value,

which confirms the good estimation performance of the proposed approach.

Note that when the resolution level increases, the number of subbands also increases, which
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γ β

Figure 5.2: NMSE between the reference and current MMSE estimators w.r.t iteration
number corresponding to v1,1 in B1.

γ β

Figure 5.3: NMSE between the reference and current MMSE estimators w.r.t iteration
number corresponding to v2,2 in B2.

leads to a higher number of hyper-parameters to be estimated and a potential increase

of the required computational time to reach convergence. For example, when using the

union of two dyadic orthonormal wavelet bases with two resolution levels, the number of

hyper-parameters to estimate is G = 28.

5.6.3 Application to image denoising

5.6.3.1 Example 1

In this experiment, we are interested in recovering an image (the Boat image of size

256 × 256 coded at 8 bpp) from its noisy observation affected by a noise n uniformly
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B1 B2

γ = 85.5 γ = 24.07

β = 1.87 β = 1.35

Figure 5.4: Ground truth values (dashed line) and posterior distributions (solid line) of
the sampled hyper-parameters γ and β, for the subbands h1,2 and h2,2 in B1 and B2,
rsepectively.

distributed over the ball [−δ, δ]256×256 with δ = 30. We recall that the observation model

for this image denoising problem is given by Eq. (5.1). The noisy image in Fig. 5.5 (b) is

simulated using the available reference image yref in Fig. 5.5 (a) and the noise properties

described above.

The union of two 2D separable wavelet bases B1 and B2 using Daubechies and shifted

Daubechies filters of length 8 and 4 (as for validation experiments in Section 5.6.1) is

used as a tight frame representation. Denoising is performed using the MMSE estimator

denoted as x̂ computed from sampled wavelet frame coefficients. The adjoint frame op-

erator is then applied to recover the denoised image from its denoised estimated wavelet

frame coefficients (ŷ = F ∗x̂). The obtained denoised image is depicted in Fig. 5.5 (d).

For comparison purpose, the denoised image using a variational approach [Chaux et al.,

2007; Combettes and Pesquet, 2008] based on a MAP criterion using the estimated values

of the hyper-parameters with our approach is illustrated in Fig. 5.5 (c). This comparison
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shows that, for denoising purposes, the proposed method gives better visual quality than

the other reported methods. Signal to noise ratio (SNR = 20 log10
(
‖yref‖/‖yref − ŷ‖

)
)

and structural similarity (SSIM) [Wang et al., 2004] values are also given in Table 5.4 to

quantitatively evaluate denoising performance. Additional comparisons with respect to

Wiener filtering and the algorithm developed in [Févotte and Godsill, 2006] (denoted here

by SLR) are given in this table. Note that SLR can be applied only when the employed

frame is the union of orthonormal bases, while our approach remains valid for any frame

representation. Note also that SLR and Wiener filtering are basically designed to deal

with Gaussian noise. This comparison shows that assuming the right noise model is es-

sential to achieve good denoising performance. On the other hand, comparisons with the

variational approach, which accounts for the right uniform noise model and uses the same

frame representation and coefficient groups, show that the improvement achieved by our

algorithm is not only due to the model choice.

The SNR and SSIM values are given for seven additional test images (Sebal, Tree, Pep-

pers, Kodim, House, Tire and Cameraman) with different textures and contents to better

illustrate the good performance of the proposed approach and its robustness to model mis-

match. The corresponding original, noisy and denoised images are displayed in Figs. 5.6

to 5.12.

Table 5.4: SNR and SSIM values for the noisy and denoised images.

Noisy Wiener Variational SLR MCMC
Algorithm 10 Algorithm 12

SNR 16.67 18.02 18.41 18.40 19.20 19.16
Boat SSIM 0.521 0.553 0.570 0.563 0.614 0.601

SNR 13.85 14.40 15.04 14.98 15.69 15.91
Sebal SSIM 0.642 0.695 0.704 0.697 0.701 0.748

SNR 17.19 19.27 19.29 19.38 19.82 19.62
Tree SSIM 0.662 0.768 0.765 0.776 0.785 0.802

SNR 21.23 21.64 22.40 22.19 22.67 22.97
Peppers SSIM 0.754 0.781 0.807 0.790 0.811 0.826

SNR 19.89 23.25 23.69 23.80 24.32 24.19
Kodim SSIM 0.444 0.742 0.749 0.795 0.875 0.843

SNR 18.54 19.57 21.09 20.49 22.41 22.56
House SSIM 0.488 0.532 0.651 0.639 0.703 0.741

SNR 16.16 17.86 19.23 19.26 19.86 19.57
Tire SSIM 0.733 0.816 0.811 0.815 0.854 0.860

SNR 17.79 20.47 20.76 20.53 21.03 20.98
Cameraman SSIM 0.524 0.703 0.765 0.718 0.703 0.767

It is worth noticing that the visual quality and quantitative results show that the de-

noised image based on the MMSE estimator of the wavelet frame coefficients is better than

the one obtained with the Wiener filtering or the variational approach. For the latter ap-

proach, it must be emphasized that the choice of the hyper-parameters always constitute
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a delicate problem, for which our algorithm brings a numerical solution. It should also

be noted that compared with the variational approach, our algorithm recovers sharper

and better denoised edges. However, our approach seems to be less performant in smooth

regions, even if it does not introduce blurring effects like the variational approach.

In terms of computational time, in contrast with Wiener filtering and the variational ap-

proach which are very fast, SLR and our approach are more time-consuming. Table 5.5

gives the iteration numbers and computational times for the used methods on an Intel

Core 4-3 GHz architecture using a Matlab implementation. However, a high gain in com-

Table 5.5: Computational time (in minutes) for the used methods.

Wiener Variational SLR MCMC

Iterations 1 100 100,000 150,000

Computational time 0.002 3 60 130

putational time can be expected through code optimization and parallel implementation

using multiple CPU cores. In fact, since the frame coefficients are split into G groups with

a couple of hyper-parameters for each of them, a high number of loops is required, which

is detrimental to the computational time in a Matlab implementation.

5.6.3.2 Example 2

In this experiment, we are interested in recovering an image (the Straw image of size

128 × 128 coded at 8 bpp) from its noisy observation affected by a noise n uniformly

distributed over the centered ℓp ball of radius δ when p ∈ {1, 2, 3}. Experiments are

conducted using two different frame representations: the TIW transform with a Symmlet

filter of length 8 and the contourlet transform with ladder filters, both over 3 resolution

levels. The ℓp norm (p ∈ {1, 2, 3}) was used for N(·) in Eq. (5.1). Figs. 5.13 (a) and 5.13

(b) show the original and noisy images using a uniform noise over the ℓ2 ball of radius

3000. When using the TIW transform, Figs. 5.13 (c) and 5.13 (d) illustrate the results

generated by the denoising strategies based on the variational approach and the MMSE

estimator using frame coefficients sampled with our algorithm.

Table 5.6 shows the SNR and SSIM values for noisy and denoised images using the

proposed MMSE estimator for different values of p and δ.

This second set of image denoising experiments shows that the proposed approach per-

forms well when using different kinds of frame representations and various noise properties,

which emphasizes its robustness to modelling errors.
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Table 5.6: SNR and SSIM values for the noisy and denoised Straw images.

TIW contourlet

Noisy Wiener Variational MCMC Variational MCMC

δ = 3.105 SNR 15.56 16.42 16.67 18.11 17.76 18.79
p = 1 SSIM 0.719 0.705 0.730 0.755 0.678 0.803

δ = 3.103 SNR 16.46 17.03 17.84 19.02 18.61 19.21
p = 2 SSIM 0.749 0.720 0.758 0.796 0.719 0.808

δ = 7.102 SNR 16.14 17.05 17.65 19.29 18.28 19.44
p = 3 SSIM 0.734 0.720 0.671 0.771 0.698 0.788

(a) (b)

(c) (d)

Figure 5.5: Original 256 × 256 Boat image (a), noisy image (b), denoised images using a
variational approach (c) and the proposed MMSE estimator (d).
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(a) (b)

(c) (d)

Figure 5.6: Original 128 × 128 Sebal image (a), noisy image (b), denoised images using a
variational approach (c) and the proposed MMSE estimator (d).
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(a) (b)

(c) (d)

Figure 5.7: Original 128 × 128 Tree image (a), noisy image (b), denoised images using a
variational approach (c) and the proposed MMSE estimator (d).
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(a) (b)

(c) (d)

Figure 5.8: Original 256× 256 Peppers image (a), noisy image (b), denoised images using
a variational approach (c) and the proposed MMSE estimator (d).
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(a) (b)

(c) (d)

Figure 5.9: Original 128 × 128 Kodim image (a), noisy image (b), denoised images using
a variational approach (c) and the proposed MMSE estimator (d).
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(a) (b)

(c) (d)

Figure 5.10: Original 256 × 256 House image (a), noisy image (b), denoised images using
a variational approach (c) and the proposed MMSE estimator (d).
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(a) (b)

(c) (d)

Figure 5.11: Original 128× 128 Tire image (a), noisy image (b), denoised images using a
variational approach (c) and the proposed MMSE estimator (d).
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(a) (b)

(c) (d)

Figure 5.12: Original 128 × 128 cameraman image (a), noisy image (b), denoised images
using a variational approach (c) and the proposed MMSE estimator (d).
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(a) (b)

(c) (d)

Figure 5.13: Original 128 × 128 Straw image (a), noisy image (b) and denoised images
using the variational approach (c) and the proposed MMSE estimator (d).



5.6.4 Hyper-parameter estimation in parallel MRI

This section briefly explains how the proposed algorithm can be used to estimate the hyper-

parameters in the parallel MRI regularization problem addressed in Chapter 4. We should

first recall that the processed data is complex-valued. In this context, a prior pdf has

been used for each of the real and imaginary parts of the wavelet coefficients of the image

to be reconstructed. Estimating the hyper-parameters of these pdfs can be performed

using the Bayesian approach proposed in this chapter. For doing so, the GG prior pdf in

Eq. (5.6) has to be replaced by the prior in Eq. (4.7), and the hierarchical Bayesian model

established in Eq. (5.10) has to be updated accordingly by adopting Jefrey’s hyper-priors

on the hyper-parameters α and β to be estimated (see Eq. (4.7)). The hyper-parameter

estimation can therefore be performed by using the ℓ∞ norm in Algorithm 12 with δ = 10−4

for example since a reference image is available for the estimation task.

5.7 Conclusion

This chapter proposed a hierarchical Bayesian algorithm for frame coefficient from a noisy

observation of a signal or image of interest. The signal perturbation was modeled by

introducing a bound on a distance between the signal and its observation. A hierarchical

model based on this maximum distance property was then defined. This model assumed

flexible GG priors for the frame coefficients, and has been generalized to involve a Total

Variation term. Vague priors were assigned to the hyper-parameters associated with the

frame coefficient priors. Different sampling strategies were proposed to generate samples

distributed according to the joint distribution of the parameters and hyper-parameters of

the resulting Bayesian models. The generated samples were finally used for estimation

purposes. Our validation experiments indicated that the proposed algorithms provide an

accurate estimation of the frame coefficients and hyper-parameters. The good quality

of the estimates was confirmed on statistical processing problems in image denoising.

Clearly, the proposed Bayesian approach outperforms the other methods because it allows

us to use the right noise model and an appropriate frame coefficient prior. The numerous

experiments which were conducted also showed that the proposed algorithm is robust to

model mismatch. This developed Bayesian approach can be extended to handle complex-

values signals/images assuming complex-valued priors like the complex GG [Novey et al.,

2010] or the one in Eq. (4.23).



Chapter 6

Experimental validation in fMRI

Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.2 Data processing in fMRI . . . . . . . . . . . . . . . . . . . . . . . 159

6.3 Validation of the proposed methods . . . . . . . . . . . . . . . . 168

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.1 Introduction

The goal of this chapter is to experimentally validate the proposed UWR-SENSE and 4D-

UWR-SENSE reconstruction approaches (see Chapter 4) in functional MRI (fMRI). We

first recall in Section 6.2 the main fMRI data analysis methods at the subject and group-

level. After describing the real data involved in this validation and the way they have

been reconstructed from the raw data, this chapter details in Section 6.3 the experimen-

tal validation of the proposed reconstruction approaches at the subject and group-level.

This validation allows us to study the impact of the pMRI reconstruction algorithm on

activation detection in fMRI. Some conclusions are finally drawn based on the validation

results.

6.2 Data processing in fMRI

Depending on the functional study context, data analysis in fMRI may be performed at

different levels. In fact, during an fMRI session, data is generally acquired while the subject

is submitted to an experimental paradigm. Analysing these data allows to detect and to

localize haemodynamic variations or the Blood Oxygen Level Dependent (BOLD) signal

in the brain inherent to the experimental paradigm for the involved subject: a subject-level

analysis is therefore performed. These haemodynamic variations indirectly reflect neuronal

activation, which can be used either in cognitive neuroscience or in clinical research. The

first application aims at understanding brain function on healthy subjects, while the second

is usually focused on specific neurodegenerative diseases or neurological disorders. In

cognitive neurosciences where a given cognitive process is studied, one has to go further in

the functional analysis and detect activations inherent to the same experimental paradigm

applied to different subjects belonging to one or more given populations: we talk about

a group analysis. In such an analysis, data are acquired for each subject during one or

more fMRI sessions. Increasing the number of sessions allows to improve the statistical
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sensitivity.

In practice, the statistical analysis of the collected data faces multiple difficulties: huge

data size (up to hundreds of gigabytes), low SNR, acquisition artifacts and distortions (see

Section 2.4.3), ... In the fMRI literature, two families of methods can be found:� univariate methods: the processed voxels are assumed independently in space and

processed separately. Each voxel is represented by its own signal which is used to

decide whether the corresponding voxel is activated or not. These methods generally

rely on some generative model [Friston et al., 1995; Smith, 2004].� multivariate methods: all the data are processed globally and spatial dependencies

between the voxels are exploited. The early multivariate methods are model-free

[McKoewn et al., 1998; Calhoun et al., 2001b; Thirion and Faugeras, 2003; Kherif

et al., 2004], but more recent ones are model-based. [Benali et al., 1997; Makni et al.,

2005; Penny et al., 2005; Flandin and Penny, 2007; Van De Ville et al., 2007].

Although the multivariate methods seem more appropriate to analyse fMRI data where

the voxels are indeed correlated, the univariate methods provide a good trade-off in terms

of efficiency and computational simplicity.

In the literature, another distinction can be made between the available methods: ex-

ploratory and hypothesis-driven methods. Since we will rely on the popular hypothesis-

driven methods for the validation experiments, these methods will be described in details

in Section 6.2.1.2. However, we will also give a brief overview of exploratory methods in

Section 6.2.1.1. For more details about these methods, the interested reader can refer to

[Varoquaux et al., 2010].

6.2.1 Exploratory vs. hypothesis-driven methods

6.2.1.1 Exploratory methods

These methods generally aim at detecting eventual structures or significant forms either

in the spatial or temporal domain in order to characterize the registered signal and study

functional connectivities. They do not rely on any statistical model or prior knowledge

[McKoewn et al., 1998; Petersson et al., 1999; Calhoun et al., 2001b; Beckmann and

Smith, 2004]. These methods allow to extract the main patterns in the images and de-

tect regions involving activations or unexpected parasitic effects (respiratory, cardiac,...).

However, in contrast to recent exploratory methods allowing to derive statistical inference

[Calhoun et al., 2001a; Varoquaux et al., 2010], early methods do not derive any deci-

sion/conclusion about the activation status of voxels. Nevertheless, when combined with

other methods which allow to take such a decision (as we will see for the hypothesis-driven

methods in the next sub-section), exploratory methods may help in the model selection

task before the data analysis, or even for a validation purpose to confirm whether the se-

lected model fits well to the data dynamics or not. Exploratory methods have been widely

investigated first in resting-state data processing in order to study the intrinsic brain ac-

tivation. More sophisticated versions relying on Principal Component Analysis (PCA)

[Thirion and Faugeras, 2003; Kherif et al., 2004] and Independent Component Analysis
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(ICA) [McKoewn et al., 1998; Calhoun et al., 2001b; Calhoun et al., 2001a; Beckmann

and Smith, 2004] were afterwords in the fMRI literature. Although exploratory methods

used to be applied for subject-level analysis, more recent methods such as Canonical ICA

(CanICA) or NEtwork Detection using ICA (NEDICA) [Varoquaux et al., 209; Perlbarg

et al., 2008] were proposed to deal with the statistical aspects at the group-level analysis.

It should be noted here that, by nature, exploratory methods are multivariate since all

the voxels are jointly processed.

In this manuscript, we will mainly focus on hypothesis-driven methods which will be in-

troduced in the following section.

6.2.1.2 Hypothesis-driven methods

Hypothesis-driven methods rely on some assumptions about a given form of the response

to the experimental stimulation [Worsley and Friston, 1995]. Based on these assumptions

which are introduced as a prior hypothesis on the signal dynamics, a parameterized General

Lineal Model (GLM) [Friston et al., 1994] is established and the inherent parameters are

then estimated. Finally, a statistical test is necessary to estimate the response and conclude

about the activation state by rejecting or not the null hypothesis of no activation.

These methods are usually univariate, i.e. the parameter estimation and statistical test

are performed independently for each voxel. The main strength of these methods is that

the statistical test allows to provide a precise answer to the fundamental question with a

type I error (also called false positive) rate α (usually α = 10−3): “Is the time course of

the measured signal in this voxel correlated with the expected BOLD response induced

by the experimental paradigm?” The answer would be either “Yes”, which means that the

concerned voxel is activated, or “Not”, which means that no activation is detected in that

voxel. However, this kind of conclusion does not make sense when one is conducting a

group analysis due to the brain anatomical and functional variabilities between subjects.

In this context, hypothesis-driven methods can even answer a second important question:

“Are there any clusters of connected activated voxels?” Indeed, detecting activated clusters

is more significant than detecting activated voxels in a group analysis.

Our attention will be focused here on the GLM [Friston et al., 1994] which is the most

used hypothesis-driven method, and which has been popularized in the fMRI literature

due to the Statistical Parametric Mapping (SPM) software 1.

Note however that a series of pre-processing steps must be applied to the fMRI images

before analysing them. These steps are summarized in Fig. 6.1 and include:� distortion correction: the acquisition artifacts, and especially geometrical distortion

have to be corrected;� motion correction: the subject may move during the acquisition;� slice timing correction: slices are actually acquired at slightly different acquisition

times in sequential or interleaved order;

1http://www.fil.ion.ucl.ac.uk

http://www.fil.ion.ucl.ac.uk
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so that a joint visualisation is possible;� spatial normalisation: when a group analysis is conducted, data of the different

subjects have to be put in a common space using a template after applying a non-

rigid transform;� spatial smoothing: a convolution using a Gaussian filter is performed in order to

improve the SNR and reduce the anatomical/functional variability between subjects.

Figure 6.1: Required pre-processing steps before data analysis in fMRI.

For further details about these pre-processing steps, the interested reader can refer

to [Flandin, 2004; Makni, 2006]. In the following section, the GLM is described in more

details.

6.2.2 The General Linear Model

The GLM is based on three main properties:� linearity: a group of events (different or not) leads to cumulative effects (if many

stimuli are grouped, their effects sum up);� time-invariance: a delay of the stimulation leads to the same delay of the inherent

response;� causality: an effect depends only on previous causes.

Let Y be an Nv×Nr matrix denoting an fMRI session dataset, where Nv is the number of

voxels and Nr is the number of repetitions (length of the time series). We will also denote

by yn the measured signal at a voxel n 2. We will assume that during the acquisition, the

experimental paradigm is made up of Nc different conditions. In its current version, the

GLM assumes that the measured signal at a given voxel is a linear weighted combination of

2For the sake of presentation clarity, the spatial 3D voxel position (y, x, z) is denoted here by n.
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Nc components (Rc)1≤n≤Nc describing the stimuli presented in the experimental paradigm,

called regressors, and a residual noise component ǫn ∼ N (0, σ2
n). The signal model is

therefore given by:

yn(k) =

Nc∑

c=1

βn
c Rc(k) + ǫn(k), (6.1)

where k ∈ {k1, k2, . . . , kNr} is the acquisition time3 and n ∈ {1, . . . , Nv}. For every

c ∈ {1, 2, . . . , Nc}, βn
c is the amplitude of the response to the cth stimulus and Rc is the

corresponding regressor. When accounting jointly for the Nr repetitions, Eq. (6.1) may

be rewritten as




yn(k1)
...

yn(kNr)


 =




R1(k1) . . . RNc(k1)
...

...
...

R1(kNr) . . . RNc(kNr)







βn
1
...

βn
Nr


+




ǫn(k1)
...

ǫn(kNr )


 , (6.2)

or equivalently in a matrix form at the voxel level:

yn = Rβn + ǫn. (6.3)

All the prior information about the design and the model will be plugged into the well

matrix R, also called the design matrix which is assumed to be known. Every column

of this matrix corresponds to a regressor. The regressor associated with an experimental

condition is simply the convolution of a stimuli vector xc with the HRF h (see Chapter 2).

For every acquisition time k, the regressor can be written as follows:

Rc(k) = h(k) ∗ xc(k), (6.4)

In addition to the stimuli regressors, other regressors describing the first and second tem-

poral derivatives of the first regressors may be added to the design matrix in order to

model the haemodynamic variability. Based on the observations and prior hypothesis on

the HRF, the main task will now consist of estimating the parameter vector βn in Eq. (6.3)

which is the only unknown in the observation model. Actually, the use of a canonical HRF

assumes that the impulse response during an activation remains constant throughout the

brain, which is a quite idealistic scenario that recent works like [Goutte et al., 2000; Ciuciu

et al., 2003; Makni et al., 2008] challenge. In fact, such a response may considerably vary

from one region to another, from one subject to another... A solution may lie in estimating

it at each voxel [Marrelec et al., 2004], or better within functionally homogeneous regions

of interest [Makni et al., 2008; Vincent et al., 2010].

6.2.3 Subject-level analysis

This section describes the activation detection procedure at the subject level using the

GLM. The different steps are presented below.

3We do not use the same notation as in the first part of the manuscript since k denotes the acquisition
time instead of t in order to avoid confusions with the Student t distribution used in Section 6.2.3.2.
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6.2.3.1 Estimation of the model parameters

Estimating the parameter vector βn at a voxel n may be performed using a least squares

estimation. If the noise is assumed to be white in time, the Ordinary Least Squares (OLS)

estimation of βn reads:

β̂n = (RTR)−1RTyn, (6.5)

and the variance of this linear unbiased estimator is simply Var(β̂n) = σ2
n(R

TR)−1.

However, it has been shown that time series in an fMRI session are temporally correlated

[Bullmore et al., 1996]. We therefore have to consider a non-diagonal covariance matrix

Σn = σ2
nV n for the auto-correlated noise entries ǫn ∼ N (0,Σn). The Weighted Least

Squares (WLS) estimator can then be written as:

β̂n = (RTV −1
n R)−1RTV −1

n yn (6.6)

with Var(β̂n) = σ2
n(R

TV −1
n R)−1. The obtained estimator is unbiased, but requests the

knowledge of the matrix V n. Estimating this matrix is actually quite difficult since the

problem is under-determined. In [Friston et al., 2000; Woolrich et al., 2001; Penny et al.,

2003], an efficient technique taking into account the temporal correlations between the

time series has been proposed. It consists of a pre-whitening approach. In other words,

the covariance matrix is estimated by fixing a strong constraint on its structure (e.g.

autoregressive model). However, a poor approximation of the auto-correlation coefficients

may lead to inaccurate parameter estimates βn. After estimating the parameter vector

β̂n for each voxel n, the statistical maps have now to be calculated based on the Nc effect

maps.

6.2.3.2 Calculating the statistical maps

In order to compare two given effects (e.g. a test condition vs. a control condition) and to

detect voxels being activated due to one of the two effects, a contrast has to be defined. A

contrast γ is defined by a linear combination of the design matrix regressors. The coeffi-

cients of this linear combination can be organized in a vector γ = (0, . . . , 0,−1, 1, 0, . . . , 0)T
in which all the terms are set to 0, except the terms involving the effects to be compared.

If we consider that the vector β̂n is the response to the effects in the design matrix R, the

defined contrast allows one to check whether the response to a given effect is more or less

significant than another one. If no significant effect is observed for a given contrast γ, we

have γTβn = 0. We define therefore the null hypothesis H0 for each voxel n as follows:

H0 : γTβn = 0. (6.7)

After calculating the linear combination γTβ̂n, one assesses the significance of the estimated

response to the contrast by comparing it to its estimated standard deviation

√
V̂ar(γTβ̂n)
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through calculating the subsequent statistic

Tn =
γTβ̂n√

V̂ar(γTβ̂n)
, (6.8)

which is distributed according to a Student distribution td with d = Nr − Nc degrees of

freedom [Worsley and Friston, 1995]. For each voxel n, we test if its statistical value tn
(tn being a realisation of the random variable Tn) belongs to the td distribution in order

to decide about the validity of the null hypothesis H0.

The test value tn of each voxel n allows one to draw a statistical t map for each contrast

and each subject describing the significance of the effects related to a given contrast γ.

6.2.3.3 Statistical test and activation detection

After calculating the statistical maps, the final step will now consist of detecting the

activated voxels. The standard method relies on thresholding the t maps at a given level

of significance while controlling the error rate. To this end, we consider the probability α

controlling the false positive rate (also called type I error) which is defined as follows:

α = P (Tn > tα|H0), (6.9)

where tα is the statistical value associated to the risk α (see Fig. 6.2) over which the

probability that tn comes from the distribution td is low. As illustrated in Fig. 6.2, a

p-value is associated with each voxel, indicating the statistical threshold for the t-score

allowing to reject the null hypothesis. Hence, computing the significance at the voxel level

(a)

α

tα

(b)

t
n

p−value

Tn Tn

Figure 6.2: Illustration of the student distribution thresholding: (a) fixed threshold prob-
ability; (b) the threshold corresponds to the observed t-score (tn) allowing to obtain the
maximum probability (p-value). If tn > tα, or equivalently p < α, H0 is rejected, otherwise
(if tn ≤ tα) it is retained.

amounts to comparing p = P (Tn > tα|H0) with α. If tn > tα, or equivalently p < α, H0 is
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rejected in this voxel: the voxel is therefore detected as an activated one. Otherwise, the

null hypothesis H0 cannot be rejected.

After applying the statistical test to all voxels, the result of a functional analyis are

simply represented as images where only voxels of a p-value lower than a threshold α

(generally set to 10−3) are with nonzero intensities. However, if one fixes the threshold α =

10−3 for example, the number of false positives will be equal to α multiplied by the number

of voxels involved in the functional analysis, which is around Nv = 5×104 for each volume.

In such a situation, the number of false positives would be α×Nv = 50. To better control

the false positive rate in the search volume, a correction for multiple comparisons has to

be performed, which amounts to a Family Wise Error Rate (FWER) control problem. The

Bonferroni correction [Holmes, 1994] allows to fix a global threshold taking into account

the high number of voxels by simply dividing α by the number of applied statistical tests,

which consists of reapplying the thresholding step with new p-values calculated from the

old ones multiplied by the number of tests. The drawback of this method lies in its

lack of sensitivity since it leads to rejecting activated voxels (too conservative). A more

sophisticated approach is based on the Random Field theory (RFT) [Ashburner et al.,

2004] and accounts for the spatial correlation of voxels. In this method, the statistical

map is assumed to be a Gaussian random field. It can therefore be applied only when the

data are smoothed using a Gaussian filter. Some other methods have been more recently

proposed such as the False Discovery Rate (FDR) correction [Genovese, 2000; Nichols and

Holmes, 2003] or Wavelet-based Statistical Parametric Mapping (WSPM) [Van De Ville

et al., 2007]. Note also that nonparametric alternatives have been specifically designed for

group-level analysis [Mériaux et al., 2006; Roche et al., 2007].

6.2.4 Group-level analysis

The functional analysis technique presented in Section 6.2.3 allows one to derive activa-

tion maps for a given subject from data acquired when this subject is submitted to an

experimental paradigm. In order to determine if the detected activation for a subject can

be extended to a whole population, a second or group-level is required. This level of anal-

ysis allows to study an entire cognitive process, and not only one realisation for a given

subject. Clearly speaking, a group analysis aims at detecting a mean effect within a group

of subjects by answering the following question: “what regions have been significantly ac-

tivated for the group of subject in response to a given contrast?” Group activation maps

are generally provided as a result. Even at this analysis level, the goal may be to study the

cognitive process just for the considered group of subjects, or to extend the conclusions to

the whole population. As we will see in the two following sections, differently formulating

the null hypothesis allows to achieve the two previously cited goals.

We should note that a series of pre-processing steps must be applied to the data before

activation detection. For instance, data has to be normalized to a common reference space

because of anatomo-functional variability between subjects. For more details about pre-

processing steps, the reader can refer to [Makni, 2006; Operto, 2009]. In what follows, we

briefly recall the principle of three main group analysis methods.
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6.2.4.1 Fixed effect model

This model assumes that the subjects involved in the functional analysis represent the

exhaustive cohort. In this context, a subject is assumed to be a fixed effect and the inter-

subject variance is not taken into account. In practice, the problem is addressed as if all

the subjects correspond to the same one submitted many times to the same experiment.

The null hypothesis can thus be formulated as: “no activation has been detected for any

subject in response to the considered contrast”. Grouping the data corresponding to the

S subjects allows to retrieve the GLM with other parameters to estimate. Therefore,

Eq. (6.3) can be rewritten as:


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n
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n
...

yS
n
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, (6.10)

where ys
n, β

s
n and ǫsn are respectively the observation, parameter and noise vectors defined

in Eq. (6.3) for the sth subject with s ∈ {1, . . . , S}. As regards Rs, it denotes the design

matrix corresponding the sth subject.

If an effect is sufficiently present for at least one subject, the group statistics become sig-

nificant. However, these statistics are only associated with the considered current subjects

and cannot be generalized to any other group.

6.2.4.2 Random effect model

The random effect model [Laird and Ware, 1982] assumes that the considered group of

subjects is simply a sample of a population of interest consisting of an infinity of subjects.

It assumes that the observed effects for different subjects are due to the inter-subject

variability and appear randomly. Each subject is assumed to be a random effect while

taking into account the inter-subject variance. In contrast to the fixed effect model, the

null hypothesis H0 can be formulated in this case as follows: “The mean effect is equal

to zero”. Consequently, the detected activated voxels suggest that a mean effect has been

observed at the group level. The main advantage of the random effect model with respect

to the fixed effect one is that it allows to generalize the results obtained from the group

of studied subjects to the population of interest.

Generally speaking, an fMRI group analysis aims at drawing functional conclusions at the

population level. However, some hurdles may be encountered in such studies when using

the random effect model [Petersson et al., 1999]:

i) random effect analysis is less sensitive than fixed effect analysis and generally request

more subjects to be established in a reliable way (typically 15 subjects);

ii) random effect models assume gaussianity of the data, which is generally not easy to

ensure because of the low number of samples;

iii) the group of subjects used in the random effect analysis rarely represents a perfect

sampling of the same population.
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6.3 Validation of the proposed methods

This section is dedicated to the experimental validation of the proposed methods in Chap-

ter 4. The validation will be based on an fMRI study involving subject and group-level

analyses. The next section describes the used real data that we reconstructed using our

own pipeline at the neuroimaging center NeuroSpin.

6.3.1 Experimental data

The used fMRI data for these validation experiments were recorded at 3 Tesla on a Siemens

Trio magnet using a Gradient-Echo EPI (GE-EPI) sequence (TE = 30 ms, TR = 2400 ms,

slice thickness = 3 mm, transversal orientation, FOV = 192 mm2) during a cognitive lo-

calizer [Pinel et al., 2007; Vincent, 2010] experiment designed to map auditory, visual and

motor brain functions as well as higher cognitive tasks such as number processing and

language comprehension. It consisted of a single session of Nr = 128 scans. The paradigm

was a fast event-related design comprising sixty auditory, visual and motor stimuli, defined

in ten experimental conditions (auditory and visual sentences, auditory and visual calcu-

lations, left/right auditory and visual clicks, horizontal and vertical checkerboards). An

L = 32 channels coil was used to enable parallel imaging. Sixteen healthy subjects gave

informed consent to be scanned. For each subject, fMRI data were collected at different

in-plane spatial resolutions (3× 3, 2× 2 and 1.5× 1.5 mm2). However, in this manuscript

we only report results on 2 × 2 mm2, since the processing of the other dataset is still in

progress. fMRI data were also collected at different reduction factors (R = 2 or R = 4)

but only for the two highest spatial resolutions.

Based on the raw data files delivered by the scanner, reduced FOV images have been

reconstructed as detailed in the diagram of Fig. 6.3.

scanner

Siemens MRI
IFFT

Reduced FOV

images
EPI correction

Deoversampling

Regredding 
+Reading data from the

".dat" file

Figure 6.3: Reconstructing reduced FOV images from the raw data.

This first reconstruction requires two special steps:

i) k-space regredding and deoversampling to take into account non-uniform k space

sampling, which occurs in fast MRI sequences like GE-EPI;

ii) EPI correction to remove the EPI Nyquist ghost artifacts due to the odd-even echo

inconsistencies.

Once the reduced FOV images are available, the proposed reconstruction approaches have

to be used in order to reconstruct the full FOV images which will be used for the fMRI

study. The proposed reconstruction algorithms also require the estimation of the coil sensi-

tivity maps. These sensitivity maps were obtained using the method in [Pruessmann et al.,

1999b] by dividing the coil-specific images by the module of the Sum Of Squares (SOS)

images, which are calculated based on an acquisition of the k-space center (24 lines) before
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the Nr scans. For comparison purpose, our reconstruction pipeline and the Siemens re-

construction have been used to generate EPI volumes in order to measure their impact on

brain activation detection. Figs. 6.4-6.6 illustrate reconstructed slices using the mSENSE

algorithm (SENSE reconstruction implemented in the Siemens scanner), as well as our

pipeline including the UWR-SENSE, 3D-UWR-SENSE and 4D-UWR-SENSE algorithms.

In order to have a general view of the brain, these figures illustrate the reconstructed

axial, coronal and sagittal slices, respectively. These figures easily show that our pipeline

allows to achieve more accurate reconstruction than the mSENSE algorithm in terms of

reconstruction artifacts. In fact, the mSENSE reconstructed images present artifacts lo-

cated at the center and image borders, which may be nasty in activation detection in these

area such as temporal lobes. Note that these conclusions are reproducible across subjects

although the artifacts may appear on different slices (see red circled). Note also that, in

contrast to the Siemens reconstruction, our pipeline do not involve any signal homogeneity

filter that may introduce some bias in the voxel intensities.

mSENSE UWR-SENSE 3D-UWR-SENSE 4D-UWR-SENSE

R = 2

R = 4

Figure 6.4: Axial reconstructed slices using mSENSE, UWR-SENSE, 3D-UWR-SENSE
and 4D-UWR-SENSE for R = 2 and R = 4 with 2 × 2 mm2 in-plane spatial resolution.
Red circles and ellipsoids indicate reconstruction artifacts.

Results and comparisons in terms of statistical sensitivity are given in the two following

sections.

6.3.2 Subject-level analysis

We quantitatively compare here the performance of the mSENSE and our parallel MRI

reconstruction algorithms. Comparisons will concern the UWR-SENSE and 4D-UWR-

SENSE algorithms. Moreover, to better investigate the temporal regularization effect,

another comparison with what we will denote here by 3D-UWR-SENSE algorithm will be

provided. The 3D-UWR-SENSE algorithm is simply obtained from the 4D-UWR-SENSE

algorithm by turning off the temporal regularization, i.e. by setting κ = 0 in Eq. (4.67).

fMRI data analysis has been conducted using the GLM framework proposed in SPM5 in

which the design matrix (see Fig. 6.7) relying on ten experimental conditions has been built



170 Experimental validation in fMRI

mSENSE UWR-SENSE 3D-UWR-SENSE 4D-UWR-SENSE

R = 2

R = 4

Figure 6.5: Coronal reconstructed slices using mSENSE, UWR-SENSE, 3D-UWR-
SENSE and 4D-UWR-SENSE for R = 2 and R = 4 with 2 × 2 mm2 in-plane spatial
resolution. Red circles and ellipsoids indicate reconstruction artifacts.

mSENSE UWR-SENSE 3D-UWR-SENSE 4D-UWR-SENSE

R = 2

R = 4

Figure 6.6: Sagittal reconstructed slices using mSENSE, UWR-SENSE, 3D-UWR-SENSE
and 4D-UWR-SENSE for R = 2 and R = 4 with 2 × 2 mm2 in-plane spatial resolution.
Red circles indicate reconstruction artifacts.

up. This design matrix is made up of twenty regressors corresponding to the canonical

HRF and its time derivative related to the ten used experimental conditions, in addition

to the mean signal regressor (Nc = 21). Here, we only report results involving the Left

click vs. Right click (Lc-Rc) and Auditory vs. Visual (A-V) contrasts since the expected

activations, which lie in different parts of the brain, can be putatively corrupted by re-

construction artifacts. The A-V contrast defines a compound comparison which involves

four stimuli. These stimuli are presented either in the visual or auditory modality. In

this sense, this comparison aims only at localizing sensory brain areas, i.e. the primary

auditory cortices. On the other hand, the Lc-Rc contrast defines a compound compari-

son which involves two stimuli which are also presented either in the visual or auditory
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Figure 6.7: (a): design matrix and the Lc-Rc contrast involving two conditions (grouping
auditory and visual modalities); (b): design matrix and the A-V contrast involving four
conditions (sentence, computation, left click, right clisk). The design matrix is made up
of twenty regressors corresponding to the canonical HRF and its time derivative for each
of the ten experimental conditions, in addition to a mean signal regressor.

modality. This comparison aims therefore at detecting lateralization effect in the motor

cortex. These two contrasts are illustrated in Fig. 6.7 (a) and (b), respectively. Results

here are reported in terms of Student-t statistical maps thresholded at a p = 0.05 p-value

corrected for multiple comparisons [Ashburner et al., 2004] as well as statistical tables that

provide cluster and voxel-level p-values, maximal T-scores and corresponding locations of

these peaks. For the A-V contrast, it is shown in Fig. 6.8 that the proposed algorithms

allow to retrieve expected bilateral activations in the temporal lobes elicited by speech

perception and comprehension involved in the A-V contrast. Conversely, the mSENSE

method recovered smaller clusters: activation cluster in the left hemisphere is somehow

lost due to strong reconstruction artifacts. This result holds both for R = 2 and R = 4.

From a quantitative point of view, the proposed algorithms recover larger clusters whose

excursion or local maxima is close to the one obtained using mSENSE. Concerning the

largest clusters, our algorithms give very often the highest T-score of the local maxima.

Tables 6.1-6.2 give the p-values at the voxel and cluster levels, as well as the size, T-

score and position of the most significant cluster maxima. Note that clusters in these

tables are listed in a decreasing significance order. These tables also indicate that the

4D-UWR-SENSE often gives larger detected clusters than 3D-UWR-SENSE and UWR-

SENSE, which also always outperform the mSENSE algorithm in terms of detected cluster

size. Interestingly, when looking at the activation peak by referring to Tables 6.1-6.2 or

the blue cross in Fig. 6.8, it can be noticed that the mSENSE reconstruction always leads

to an activation peak which is situated in the right hemisphere both for R = 2 and R = 4.

However, for R = 2, the 4D-UWR-SENSE reconstruction allows to detect an activation

peak in the left hemisphere. For R = 4, all our proposed methods retrieve also an acti-

vation peak in the left hemisphere. This is actually more coherent with the experimental
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circumstances since only one headphone has been used in the right ear because of the small

coil dimensions which did not allow to use two headphones. For this reason, the right ear

has been better protected from acoustic noise. It is easier to detect evoked activity in

the right temporal lobe related to the auditory stimuli. However, since all the subjects

are right handed, speech perception usually elicits stronger activation in the left temporal

lobe. Here, using the mSENSE algorithm, this activation is lost because of low SNR.

Our methodology enables the recovery of activation in the left superior temporal sulcus.

These comparisons show therefore that our methods are also more robust to acoustic noise.

Moreover, results for R = 2 show that the 4D-UWR-SENSE algorithm is also more robust

than UWR-SENSE and 3D-UWR-SENSE to acoustic noise.

Table 6.1: Significant statistical results for the A-V contrast (corrected for multiple com-
parisons at p = 0.05). Images were reconstructed using the mSENSE, UWR-SENSE,
3D-UWR-SENSE and 4D-UWR-SENSE algorithm for R = 2.

cluster-level voxel-level
p-value Size p-value T-score Position

< 10−3 695 < 10−3 10.59 -66 -38 12
mSENSE < 10−3 550 < 10−3 11.76 64 -8 3

0.009 28 < 10−3 5.12 48 -26 12

< 10−3 847 < 10−3 10.82 -52 -12 3
UWR-SENSE < 10−3 804 < 10−3 11.37 60 -20 9

0.006 32 0.001 4.53 -48 28 9

3D-UWR-SENSE <10−3 886 < 10−3 11.60 58 -20 9
< 10−3 796 < 10−3 10.69 -54 -12 6

<10−3 889 <10−3 11.55 50 -14 3
4D-UWR-SENSE <10−3 881 <10−3 12.11 -60 -20 9

0.002 38 0.001 4.56 44 30 9

For the Lc-Rc contrast, Fig. 6.9 shows that the proposed algorithms allow the detec-

tion of expected activated areas missed by the mSENSE algorithm especially for R = 4.

Moreover, the detected activation peak using the mSENSE reconstruction for R = 4 moves

far away from the right motor cortex (see blue cross in Fig. 6.9), which is not the case

of our algorithms that always allow to detect significant activations in the expected brain

area. Quantitative results in Tables 6.3-6.4 show that larger clusters with higher local T-

scores maxima are detected using our pipeline with the UWR-SENSE, 3D-UWR-SENSE

and 4D-UWR-SENSE algorithms, both at R = 2 and R = 4.

In order to further investigate the effect of the reconstruction algorithm in pMRI

on the statistical analysis, Figs. 6.10-6.11 illustrate 3D plots of the detected activated

area for the Lc-Rc contrast for R = 2 and R = 4, respectively. It is clear that the

proposed approaches outperform the mSENSE algorithm in terms of statistical sensitivity

and size of the detected clusters. We can also notice through Fig. 6.11 where R = 4 that

the proposed UWR-SENSE, 3D-UWR-SENSE and 4D-UWR-SENSE algorithms allow to

detect activated area which are missed using the mSENSE reconstruction.
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Table 6.2: Significant statistical results for the A-V contrast (corrected for multiple com-
parisons at p = 0.05). Images were reconstructed using the mSENSE, UWR-SENSE,
3D-UWR-SENSE and 4D-UWR-SENSE algorithm for R = 4.

cluster-level voxel-level
p-value Size p-value T-score Position

< 10−3 264 < 10−3 9.21 -66 -40 12
mSENSE < 10−3 197 < 10−3 10.02 66 -8 6

0.009 28 < 10−3 5.12 48 -26 12

< 10−3 441 < 10−3 8.97 62 -8 12
UWR-SENSE < 10−3 139 < 10−3 11.26 -60 -42 9

0.001 28 0.022 5.44 64 -20 6

< 10−3 472 < 10−3 9.26 62 -8 9
3D-UWR-SENSE < 10−3 184 < 10−3 11.34 -62 -38 12

0.005 23 < 10−3 7.10 60 -34 6

< 10−3 447 < 10−3 10.11 -60 -42 12
4D-UWR-SENSE < 10−3 174 < 10−3 9.04 62 -6 6

< 10−3 54 < 10−3 7.65 60 -32 3

Table 6.3: Significant statistical results for the Lc-Rc contrast (corrected for multiple
comparisons at p = 0.05). Images were reconstructed using the mSENSE, UWR-SENSE,
3D-UWR-SENSE and 4D-UWR-SENSE algorithm for R = 2.

cluster-level voxel-level
p-value Size p-value T-score Position

mSENSE < 10−3 172 0.001 6.10 36 -22 66

UWR-SENSE < 10−3 169 0.007 5.68 46 -26 66

3D-UWR-SENSE <10−3 198 0.042 5 40 -32 69

4D-UWR-SENSE <10−3 208 <0.001 6.12 46 -26 66
<0.066 21 <0.005 5.28 36 -8 66

Table 6.4: Significant statistical results for the Lc-Rc contrast (corrected for multiple
comparisons at p = 0.05). Images were reconstructed using the mSENSE, UWR-SENSE,
3D-UWR-SENSE and 4D-UWR-SENSE algorithm for R = 4.

cluster-level voxel-level
p-value Size p-value T-score Position

mSENSE < 10−3 81 0.001 6.08 34 -24 69

UWR-SENSE < 10−3 122 0.001 6.04 32 -22 72

3D-UWR-SENSE < 10−3 105 < 10−3 6.33 32 -24 72
< 10−3 20 0.086 4.21 38 -20 48

4D-UWR-SENSE < 10−3 114 < 10−3 6.73 48 -18 63
< 10−3 33 0.008 5.16 42 -30 66
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R = 2 R = 4

mSENSE

UWR-SENSE

3D-UWR-SENSE

4D-UWR-SENSE

Figure 6.8: Subject-level student-t maps superimposed to anatomical MRI for the A-

V contrast where data have been reconstructed using the mSENSE, UWR-SENSE, 3D-
UWR-SENSE and 4D-UWR-SENSE. Neurological convention: left is left. The blue cross
indicates the activation peak.
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R = 2 R = 4

mSENSE

UWR-SENSE

3D-UWR-SENSE

4D-UWR-SENSE

Figure 6.9: Subject-level student-t maps superimposed to anatomical MRI for the Lc-

Rc contrast where data have been reconstructed using the mSENSE, UWR-SENSE, 3D-
UWR-SENSE and 4D-UWR-SENSE. Neurological convention: left is left. The blue cross
indicates the activation peak.
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mSENSE UWR-SENSE

3D-UWR-SENSE 4D-UWR-SENSE

Figure 6.10: 3D plots of the detected activated area for the Lc-Rc contrast superimposed
to a 3D mesh of the brain where R = 2. Activation foci appear in the right motor cortex
whatever the reconstruction method, but with larger spatial extent using our regularized
reconstructions.
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mSENSE UWR-SENSE

3D-UWR-SENSE 4D-UWR-SENSE

Figure 6.11: 3D plots of the detected activated area for the Lc-Rc contrast superimposed
to a 3D mesh of the brain where R = 4. Only our reconstruction algorithms recover
activation foci in the right motor cortex.
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6.3.3 Group-level analysis

In this fMRI study, random effect analysis has been used for group-level validation involv-

ing fifteen healthy subjects of the acquired database. As for the subject-level analysis,

our reconstruction pipeline and the Siemens reconstruction have been used to generate

EPI volumes in order to compare these methods in terms of activation detection at the

group level. For the A-V contrast, Maximum Intensity Projection (MIP) student-t maps

for R = 2 and R = 4 are provided in Figs. 6.12-6.13. These figures clearly show that,

both for for R = 2 and R = 4, our pipeline allows to better detect expected significant

bitaleral activations than the Siemens pipeline. From a quantitative viewpoint, results

for the most significant clusters are provided for the A-V contrast in Tables 6.5-6.6 for

R = 2 and R = 4, respectively. Voxel and cluster-level results show that our pipeline

outperforms the mSENSE reconstruction in terms of clusters size and T-score maxima. It

should be noted here that, as reported in Section 6.3.2, stronger activation is expected in

the left temporal lobe due to the use of only one headphone at the right ear. When looking

at the position of the largest detected clusters for R = 2 (see Table 6.5), we can notice

that indeed, our methods allow the detection of higher activations in the left hemisphere

in contrast to the mSENSE reconstruction. However, for R = 4 (see Table 6.6), all the

methods detect higher activations in the left hemisphere.

Table 6.5: Significant statistical results at the group-level for the A-V contrast (corrected
for multiple comparisons at p = 0.05). Images were reconstructed using the mSENSE,
UWR-SENSE, 3D-UWR-SENSE and 4D-UWR-SENSE algorithm for R = 2.

cluster-level voxel-level
p-value Size p-value T-score Position

mSENSE < 10−3 539 0.001 10.73 58 -10 3
0.001 390 0.031 8.11 -44 -22 6

UWR-SENSE < 10−3 964 < 10−3 12.80 -52 -10 6
< 10−3 906 < 10−3 12.79 62 -6 0

3D-UWR-SENSE < 10−3 1075 < 10−3 14.15 -42 -28 12
< 10−3 992 0.001 13.05 60 -12 0

4D-UWR-SENSE < 10−3 913 0.001 11.44 -42 -24 12
< 10−3 762 0.003 10.37 58 -10 3
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mSENSE UWR-SENSE

3D-UWR-SENSE 4D-UWR-SENSE

Figure 6.12: Group-level student-t maps for the A-V contrast where data have been recon-
structed using the mSENSE, UWR-SENSE, 3D-UWR-SENSE and 4D-UWR-SENSE for
R = 2. Neurological convention: left is left. Red arrows indicate the global maxima.
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mSENSE UWR-SENSE

3D-UWR-SENSE 4D-UWR-SENSE

Figure 6.13: Group-level student-t maps for the A-V contrast where data have been recon-
structed using the mSENSE, UWR-SENSE, 3D-UWR-SENSE and 4D-UWR-SENSE for
R = 4. Neurological convention: left is left. Red arrows indicate the global maxima.
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Table 6.6: Significant statistical results at the group-level for the A-V contrast (corrected
for multiple comparisons at p = 0.05). Images were reconstructed using the mSENSE,
UWR-SENSE, 3D-UWR-SENSE and 4D-UWR-SENSE algorithm for R = 4.

cluster-level voxel-level
p-value Size p-value T-score Position

mSENSE < 10−3 424 0.002 9.86 -42 -18 6
< 10−3 222 0.048 7.76 44 -14 0

UWR-SENSE < 10−3 639 0.008 10.64 -40 -40 18
< 10−3 555 0.002 9.52 50 8 -6

3D-UWR-SENSE < 10−3 784 0.001 11.06 -40 -40 18
< 10−3 658 0.012 9.93 58 -10 3

< 10−3 653 0.010 10.11 -40 -18 9
4D-UWR-SENSE < 10−3 447 0.004 9.35 60 -16 0

< 10−3 34 0.193 7.24 46 -34 0

For the Lc-Rc contrast, student-t maps for R = 2 and R = 4 are provided in Figs. 6.14-

6.15. These figures clearly show that, both for for R = 2 and R = 4, our pipeline allows to

detect much more spatially extended activation area in the motor cortex. Quantitatively

speaking, Tables 6.7-6.8 show that the detected clusters using our pipeline reconstruction

are of larger size and higher T-score maxima than the ones detected based on the mSENSE

reconstruction. These results are valid both for R = 2 and R = 4. It is also worth noticing

that detected activated area using our pipeline reconstruction are more excentric that

with the mSENSE reconstruction, which has actually been expected regarding to the

motor cortex location.

Table 6.7: Significant statistical results at the group-level for the Lc-Rc contrast (corrected
for multiple comparisons at p = 0.05). Images were reconstructed using the mSENSE,
UWR-SENSE, 3D-UWR-SENSE and 4D-UWR-SENSE algorithm for R = 2.

cluster-level voxel-level
p-value Size p-value T-score Position

mSENSE < 10−3 229 < 10−3 12.21 36 -22 51
0.001 22 0.665 6.25 30 -10 3

UWR-SENSE < 10−3 350 0.005 9.83 36 -22 57
< 10−3 35 0.286 7.02 4 -12 51

3D-UWR-SENSE < 10−3 418 0.011 9.28 36 -22 57
< 10−3 55 0.437 13.05 8 -4 48

4D-UWR-SENSE < 10−3 304 0.001 9.77 40 -22 54
< 10−3 38 0.439 6.74 10 -10 48
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mSENSE UWR-SENSE

3D-UWR-SENSE 4D-UWR-SENSE

Figure 6.14: Group-level student-t maps for the Lc-Rc contrast where data have been
reconstructed using the mSENSE, UWR-SENSE, 3D-UWR-SENSE and 4D-UWR-SENSE
for R = 2. Neurological convention: left is left. Red arrows indicate the global maxima.

Table 6.8: Significant statistical results at the group-level for the Lc-Rc contrast (corrected
for multiple comparisons). Images were reconstructed using the mSENSE, UWR-SENSE,
3D-UWR-SENSE and 4D-UWR-SENSE algorithm for R = 4.

cluster-level voxel-level
p-value Size p-value T-score Position

mSENSE < 10−3 38 0.990 5.97 32 -20 45

UWR-SENSE < 10−3 163 0.128 7.51 46 -18 60

3D-UWR-SENSE < 10−3 174 0.182 7.27 32 -22 54

4D-UWR-SENSE < 10−3 162 0.111 7.61 46 -18 60
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mSENSE UWR-SENSE

3D-UWR-SENSE 4D-UWR-SENSE

Figure 6.15: Group-level student-t maps for the Lc-Rc contrast where data have been
reconstructed using the mSENSE, UWR-SENSE, 3D-UWR-SENSE and 4D-UWR-SENSE
for R = 4. Neurological convention: left is left. Red arrows indicate the global maxima.
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6.4 Discussion

The illustrated results in this chapter clearly show that the proposed UWR-SENSE, 3D-

UWR-SENSE and 4D-UWR-SENSE algorithms outperform the mSENSE reconstruction

algorithm available in the Siemens scanner pipeline. Better results using our algorithms

have been obtained both quantitatively and qualitatively. First, our reconstruction al-

lows us to detect larger clusters with higher T-score maxima, both at the subject and

group-level. These results were confirmed for two different reduction factors R = 2 and

R = 4 and showed that for R = 4, the gain in statistical sensitivity provided by our

reconstruction is much more important compared with the mSENSE reconstruction. This

observation was also confirmed for two different contrasts. Second, it was shown that our

reconstruction algorithms allow always to retrieve expected significant activations in the

right brain region in contrast to the mSENSE reconstruction. In accordance with the ex-

perimental circumstances, comparisons also showed that our algorithms are more robust to

acoustic noise. Moreover, among our algorithms, it turns out from presented expreimental

validations that the 4D-UWR-SENSE algorithm is more robust to acoustic noise than the

UWR-SENSE and 3D-UWR-SENSE ones. It should also be noted that some comparisons

showed that the 3D-UWR-SENSE algorithm may outperform the 4D-UWR-SENSE one

in terms of detected cluster size or T-score maxima. This observation suggests that the

temporal regularization using a given setup of hyper-parameters may be more adapted

to some brain regions than others, to some stimulations than others (inducing different

BOLD signal contrasts, and thus statistical properties)... It is also worth noticing that the

same spatial and temporal regularization hyper-parameters have been used to reconstruct

data relative to all the fifteen subjects, which may actually explain the underperformance

of the 4D-UWR-SENSE algorithm in some cases compared with the 3D-UWR-SENSE

one.

6.5 Conclusion

In this chapter, we examined the impact of the parallel imaging reconstruction algorithm

on the statistical performance for brain activity detection in BOLD fMRI data acquired

using a GE-EPI sequence. At the subject and group-levels (at 3 Tesla), we showed that our

proposed algorithms (UWR-SENSE, 3D-UWR-SENSE and 4D-UWR-SENSE) outperform

the mSENSE method both qualitatively and quantitatively from a statistical viewpoint.

We showed how the choice of the parallel imaging reconstruction algorithm impacts the

statistical sensitivity in fMRI data analysis and enables whole brain neuroscience studies

at high spatial resolution, even when comparing subtle contrasts. Future comparisons

would involve higher resolved images such as 1.5 × 1.5 mm2 in-plane ones, which can

only be reached using parallel imaging with a reduction factor R = 4 if one wants to

keep reasonable TR values (typically TR = 2.4 s). Ongoing work will also concern the

combination with the Joint Detection Estimation (JDE) approach [Makni et al., 2008;

Vincent et al., 2010] to enable new fMRI data analysis pipeline. Another extension would

also be to combine our wavelet regularized reconstruction with the WSPM approach [Van

De Ville et al., 2007] where the statistical analysis is directly performed in the wavelet
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transform domain.
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Chapter 7

Conclusion

MRI is an imaging modality which became widely used in clinical daily routines due to

its non-invasivity and good spatio-temporal resolution. In addition, parallel imaging is a

more recent technique for medical imaging. It presents numerous advantages when used

in MRI like reducing the global imaging time or improving the spatio-temporal resolu-

tion. Unfortunately, standard reconstruction methods such as the SENSE algorithm do

not perform well when experimental conditions become quite severe.

This PhD thesis contributed to the development of new reconstruction methods for parallel

MRI which allow to achieve good reconstruction quality even under degraded experimen-

tal setups. The developed approaches take part of the pMRI regularized reconstruction

literature like Tikhonov and Total Variation regularization for instance. They are mainly

based on the SENSE algorithm which goes back to 1999. The ill-posed inverse problem of

pMRI reconstruction is regularized by providing suitable information about the images to

be reconstructed in the appropriate space. The general regularization issue was first prop-

erly addressed in Chapter 3 while outlining the main practical difficulties which may be

encountered and proposing appropriate solutions. In Chapter 4, the pMRI regularization

problem was then handled from a Bayesian viewpoint. The injected information consisted

of prior knowledge about the solutions in the wavelet transform domain. The inherent

optimization problem for each developed regularization approach was carefully addressed

while taking the complex-valued nature of the data into account. Efficient iterative opti-

mization algorithms were then selected to satisfy the particularities of each optimization

problem. The retained algorithms were extended to the complex-valued case in order to

be used under proven convergence guaranties. Experimental validations of the developed

approaches in fMRI were also provided in Chapter 6, and results show that they allow to

improve the statistical sensitivity/specificity of activation detection in fMRI.

Another issue which was addressed in this PhD (Chapter 5 of this PhD) is the hyper-

parameter estimation in variational regularization when using overcomplete dictionaries.

This problem was also handled from a Bayesian viewpoint by proposing a new approach

to estimate the hyper-parameters based on a noisy observation of the image/signal whose

frame coefficients are characterized by a suitable prior distributions.

In summary, the main contributions of this PhD are the followings:

1) The proposed UWR-SENSE and CWR-SENSE algrithms are among the most recent

reconstruction methods for SENSE imaging in pMRI. The regularized reconstruction

they provide is designed in a Bayesian framework and uses sparsity-promoting priors

for the wavelet coefficients of the image to be reconstructed. They also rely on one

of the most recent and fast iterative convex optimization algorithms. This proximal

optimization algorithm has been carefully chosen and adapted depending on the
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specificities of the criteria to be optimized.

2) Wavelet and Total Variation penalizations have been combined in a joint regulariza-

tion framework for pMRI reconstruction in order to take advantage of both of them.

Results show that this combination leads to slightly better reconstruction quality.

3) A reconstruction method using spatio-temporal regularization has also been pro-

posed for applications where series of images are acquired and have to be recon-

structed such as in fMRI. This method accounts for temporal dependencies between

the acquired volumes and proceeds by a joint temporal and 3D wavelet regulariza-

tion.

4) A Bayesian algorithm has been proposed to estimate the hyper-parameters involved

in the regularization process from a noisy observation of the image to be recon-

structed. This algorithm was also extended to estimate the hyper-parameters in the

case of joint Wavelet-Total Variation prior.

5) The proposed reconstruction methods were validated in fMRI. This validation al-

lowed us to study the impact of our reconstruction algorithms on statistical sensitiv-

ity/specificity of activation detection in fMRI. Results also showed that, compared

with the mSENSE reconstruction algorithm provided with the Siemens scanner, our

reconstruction helps achieving more accurate activation detection.

As a future work, this PhD opens several perspectives both from a methodological and

application viewpoints among which we mention:

1) Using non-convex penalizations:

Designing the regularization method while using frame representations deeply de-

pends on the chosen prior for the frame coefficients. Promoting the sparsity of the

considered representation is therefore of great interest in the reconstruction proce-

dure. In this work, we used sparsity-promoting priors which guarantee the convexity

of the final optimality criterion. This allowed us to take advantage of the availabil-

ity of fast and efficient convex optimization algorithms. However, sparser but not

necessarily convex priors can potentially be used to achieve better reconstruction

quality. In this case, the optimization framework has to be adapted by resorting to

non-convex optimization algorithms.

2) Tissue-dependent regularization:

In neuroimaging, it is well known that the brain is made up of three main compo-

nents: white matter, gray matter and cerebral spinal fluid. Moreover, many efficient

segmentation algorithms are now available and allow to precisely extract these three

components. Based on such a segmentation, the CWR-SENSE algorithm may be

extended to account for the differences between these three tissue types inside the

brain, which may allow one to adapt the regularization process to the image content.
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This differenciation would also help to outline the different statistical properties of

the three tissues either in the original of the transform space. Moreover, extending

the proposed methods by combining the segmentation and regularization steps in a

joint framework would also lead to a fully automatic method exploiting the brain

tissue varieties.

3) 2D-SENSE imaging:

In this work we focused on the SENSE imaging technique where a sub-sampling of

the k-space is performed along only one direction, i.e. the phase encoding direc-

tion. In 3D imaging, sub-sampling the k-space may also be performed along the

partition direction i.e. the slice encoding one: we talk about 2D-SENSE imaging.

In this context, extending the proposed regularization approaches to deal with this

more complicated problem would drastically improve the reconstruction performance

for such imaging sequences. In fact, sub-sampling the k-space along two directions

enables the use of sparser acquisition schemes corresponding for instance to 3 ac-

celeration factors, and hence allows us to reduce the global imaging time and/or to

improve the spatio-temporal resolution of the acquired images. However, the coun-

terpart is necessarily a loss in the reconstruction quality. Since the coil sensitivity

profile estimation will also be more complicated, the problem will become severely

ill-posed and a regularization procedure will be necessary. In this context, extending

the developed regularization approaches will be fruitful especially when using 3D

wavelet transforms, which would allow to smooth reconstruction artifacts along the

three encoding directions.

4) Fully Bayesian reconstruction:

In the current regularization framework, the hyper-parameters are estimated sepa-

rately, and then used in the regularization process. Moreover, the hyper-parameters

of the real and imaginary parts are also estimated separately since the designed al-

gorithm for the hyper-parameter estimation can only deal with real-valued signals.

A first extension of this algorithm to deal with more sophisticated complex-valued

models would therefore be fruitful. This would be of primary interest either in pMRI

or even in other applications where data are complex-valued.

On the other hand, the adopted observation model in the hyper-parameter estima-

tion algorithm reads:

y = F ∗x+ n. (7.1)

Except the frame adjoint operator, this model does not account for any other linear

operator through which the reasurements may be degraded. In fact, the observation

model in pMRI involves such a linear operator, which matches the sensitivity matrix.

In this context, a more general and realistic model would read as follows:

y = HF ∗x+ n, (7.2)
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where H is an arbitrary linear operator (which reduces to the sensitivity matrix in

pMRI). Extending the proposed approach to account for this more general model

enables also direct estimation of the full FOV image in pMRI. In fact, instead of

estimating the hyper-parameters and then plugging them into the regularization

process, this extension would lead to a fully Bayesian regularization of the pMRI

inverse problem. This would be possible since the proposed approach allows also to

estimate the frame coefficients.

5) Other MRI applications:

We mainly focused in this thesis on brain imaging. However, parallel imaging is

widely used even in other MRI applications like cardiac and abdominal imaging.

Applying our reconstruction methods to such applications would face a major prob-

lem: the used encoding trajectories in these application is not necessarily Cartesian.

In this case, more attention has to be paid to the observation model.

On the other hand, the proposed spatio-temporal regularization would also be of

great interest in cardiac imaging for instance where the heart dynamics are stud-

ied, and where several 3D images are acquired. However, if one wants to perform

a temporal regularization using our spatio-temporal reconstruction approach, it is

necessary to take the non-rigidity of the imaged object into account. In fact, in

neuroimaging, the brain is not supposed to move and change its geometry between

successive acquisitions. However, in cardiac imaging, this condition is no longer

satisfied and the intrinsic deformation of the heart has to be taken into account.
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