

la recherche, ressource fondamentale research - a fundamental resource

PHYSIQUE STATISTIQUE, MAGNETISME ET SUPRACONDUCTIVITE

Local spectroscopy at low temperature of disordered superconducting systems

Thomas DUBOUCHET

October 11th 2010

Advisors : Claude Chapelier & Marc Sanquer

Quantum Electronic Transport and Superconductivity Laboratory

inac.cea.tr

Introduction

Disorder & superconductivity : milestones

Introduction

Superconductor to insulator quantum phase transition (SIT)

Disorder-tuned SIT in Amorphous Indium Oxide films (InO_x)

V. F. Gantmakher et al., JETP 82, 951 (1996)

> Homogeneously disordered a-InO_x \rightarrow progressive reduction of T_c

Activated behavior and localized superconductivity

- Superconductivity survives in the localized regime
- $> T_0$: gapped insulator? Superconductivity related?
- Continuity between T₀ and T_c

Introduction

Stewart, Jr., M. D., Yin, A., Xu, J. M., Valles, Jr., J. M., Science 318, 1273, (2007)

Transport measurements give only indirect evidence for the existence of localized Cooper-pairs...

ET CRYOGÉNIE

Transport measurements & theories suggest the possible <u>Quantum localization of Cooper-pairs</u>

A need to probe electronic properties <u>at a local scale</u>

Scanning Tunneling Spectroscopy

I. Experimental techniques

II. Localized Cooper pairs in a-InO_x

III. Coherence energy in a-InO_x

I.1 Experimental setup

Very-low temperature Scanning Tunneling Microscope

Combined transport & spectroscopy measurements

I.1 Experimental setup

Very-low temperature Scanning Tunneling Microscope

Combined transport & spectroscopy measurements \succ

Intro I. Exp. setup

II. STS results

III. PCAS results Conclusion

1) Experimental

2) STS technique

I.1 Experimental setup

Topographic image of epitaxial Rhenium

I.2 Scanning Tunneling Spectroscopy

Tunneling spectroscopy

Measurement of the Density-Of-States (DOS)

$$G(V) = \frac{dI}{dV} \propto \int d\varepsilon N_s(\varepsilon) \left(-\frac{\partial f_T(\varepsilon + eV)}{\partial V} \right)$$

 $N_{S}(\mathcal{E})$: density of states of the sample

- $f_T(\mathcal{E})$: Fermi-Dirac distribution
- $\Delta(T)$: superconducting gap

I.2 Scanning Tunneling Spectroscopy

Tunneling spectroscopy

 Spsss Thomas Dubouchet
 Intro
 I. Exp. setup
 II. STS results
 III. PCAS results
 Conclusion
 13

 1) Experimental
 2) STS technique

I. Experimental techniques

II. Localized Cooper pairs in a-InO_x III. Coherence energy in a-InO_x

Amorphous Indium Oxide

Transport Measurements

Thickness: 15 nm (red & grey) and 30 nm (bleu) - 3D regime

<u>Samples</u>: e-gun evaporation of high purity In_2O_3 onto Si/SiO₂ substrate under O₂ pressure

D. Shahar, Weizmann Institute of Science

Nearly critical samples

Fit : *s*-wave BCS density of states

> Absence of quasi-particle excitations at low energies

Spatial fluctuations of the spectral gap $\Delta(\mathbf{r})$

Map of the spectral gap

Spatial fluctuations of the spectral gap $\Delta(\mathbf{r})$

Spectra measured at different locations (T=50mK)

Unusual relation between transport & spectroscopy ?

Unusual relation between transport & spectroscopy ?

Unusual relation between transport & spectroscopy ?
 Definition of T_c: zero-resistance state (macroscopic coherence)

Unusual relation between transport & spectroscopy ?

- > Definition of T_c : zero-resistance state (macroscopic coherence)
- > Anomalously large spectral gap

Spatial fluctuations of the coherence peaks height

Statistical study

Full spectral gap without coherence peaks

Statistical study

Full spectral gap without coherence peaks

Statistical study

Increase of disorder

> Proliferation of spectra without coherence peaks

Question:

How are the BCS singularities related to

the superconducting phase coherence ?

Macroscopic quantum phase coherence probed at a local scale

> BCS peaks appear along with superconducting phase coherence

Formation of a pseudogap without BCS peaks at T>T_c

- \Rightarrow Local pairing without phase coherence at $T > T_c$
- \Rightarrow Phase coherence is locked at T=T_c

Thomas Dubouchet

Incoherent" gap at 50 mK

 \Rightarrow Local pairing without phase coherence

Spectral signature of **localized Cooper pairs**

III. PCAS results

I. Exp. setup

Intro

2) Pseudogap state

II. STS results

Numerical calculations: superconductivity with disorder

A. Ghosal, M. Randeria, N. Trivedi, PRL 81, 3940, (1998) & PRB 65, 014501 (2001)

Anderson model :

$$H_0 = -t \sum_{\langle i,j \rangle,\sigma} \left(c_{i\sigma}^+ c_{j\sigma} + h.c. \right) + \sum_{i,\sigma} \left(V_i - \mu \right) n_{i,\sigma}$$

Hopping parameter : tOn-site disorder : V_i

Attractive interaction λ :

$$H_{\rm int} = -\lambda \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

With increasing disorder:

- · Superconductivity becomes « granular-like »
- Spectral gap is **not** the SC order parameter

Numerical calculations: superconductivity with disorder

A. Ghosal, M. Randeria, N. Trivedi, PRL 81, 3940, (1998) & PRB 65, 014501 (2001)

With increasing disorder:

- · Superconductivity becomes « granular-like »
- Spectral gap is **not** the SC order parameter

Numerical calculations: superconductivity with disorder

A. Ghosal, M. Randeria, N. Trivedi, PRL 81, 3940, (1998) & PRB 65, 014501 (2001)

With increasing disorder:

- · Superconductivity becomes « granular-like »
- Spectral gap is **<u>not</u>** the SC order parameter

> Why spectral gap & SC order parameter are <u>different</u>?

> How to explain pseudogap regime ?

I. Experimental techniques

II. Localized Cooper pairs in a-InO_x

III. Coherence energy in a-InO_x

Fractal Superconductivity near Anderson transition

M. Feigel'man *et al.*, *Phys. Rev. Lett.* **98**, 027001, (2007) **M. Feigel'man** *et al.*, *Ann. Phys.* **325**, 1390 (2010)

BCS model built on fractal eigenfunctions of the Anderson problem

 $\cdot \Delta_p$ "parity gap": pairing of 2 electrons in localized wave functions

 $\Rightarrow E_{gap} = \Delta_p + \Delta_{BCS}$

 $\cdot \Delta_{BCS}$ "BCS gap": long-range SC order between localized pairs

Fractal Superconductivity near Anderson transition

M. Feigel'man *et al.*, *Phys. Rev. Lett.* **98**, 027001, (2007) **M. Feigel'man** *et al.*, *Ann. Phys.* **325**, 1390 (2010)

BCS model built on fractal eigenfunctions of the Anderson problem

How to measure the SC order parameter ?

• Point-contact spectroscopy (Andreev reflection = transfer of pairs) Transparent interface

I.3 Point-Contact Andreev Spectroscopy

Conductance of a N/S contact

Blonder, G. E., Tinkham, M., and Klapwijk T.M. Phys. Rev. B 25, 7 4515 (1982)

III.1 Distinct energy scales for pairing and coherence

III.1 Distinct energy scales for pairing and coherence

From tunnel to contact in a-InOx

From tunnel to contact in a-InOx

 $\mathsf{E}_{\mathsf{gap}} = \Delta_{\mathsf{p}} + \Delta_{\mathsf{BCS}}$

. Contact: additional peaks at eV $\approx \pm \ 200 \ \mu eV$

Energy scale
$$\Delta_{BCS}$$
 independent of R_{c}

From tunnel to contact in a-InOx

Thomas Dubouchet

SDSI

Intro

I. Exp. setup

1) Two energy scales

Contact regime

$$\mathsf{E}_{\mathsf{gap}} = \Delta_{\mathsf{p}} + \Delta_{\mathsf{BCS}}$$

2-particles signal at eV=Δ_{BCS} mixed with 1-particle signal at eV=E_{gap} ⇒ V-shaped G(V) curves

Tunnel regime

II. STS results

2) Coherence and temperature

III.1 Distinct energy scales for pairing and coherence

From tunnel to contact in a-InOx

III.1 Distinct energy scales for pairing and coherence

Two distinct energy scales in a-InOx

$$E_{gap}(\mathbf{r}) = \Delta_p(\mathbf{r}) + \Delta_{BCS}$$

- $\cdot \Delta_{BCS}$ probed by AR remains uniform
- $\cdot E_{gap}$ probed by STS fluctuates

Distinct energy scales for pairing and coherence in disordered a-InO_x

T-evolution of Andreev signal

$$E_{gap}(T) = \Delta_p + \Delta_{BCS}(T)$$

- . Δ_{BCS} evolves between 0 and ~ T_{c}
- . E_{gap} evolves between 0 and ~3-4T_c

$\succ \Delta_{BCS}$: local signature of SC phase coherence

T-evolution of Andreev signal

\succ Locally: Andreev signal detected between T_c and ~1.3T_c

III.2 Andreev signal : evolution with *T*

T-evolution of Andreev signal

BTK-model with : $E_{gap}(T) = \Delta_p + \Delta_{BCS}(T)$

$\geq \Delta_{BCS}$ remains finite between T_c and ~1.3T_c (preformed pairs)

III.2 Andreev signal : evolution with *T*

Link between tunnel & contact measurements

Simulations of tunneling conductance with : $E_{gap}(T) = \Delta_p + \Delta_{BCS}(T)$

SDSII

Link between tunnel & contact measurements

Simulations of tunneling conductance with : $E_{gap}(T) = \Delta_p + \Delta_{BCS}(T)$

Conclusion

•

•

٠

•

SC

Localization of Cooper pairs

Preformed Cooper-Pairs above Tc Pseudogap in the DOS between Tc and ~ 3-4 Tc

"Partial" condensation of pairs below Tc Rectangular spectra at 50mK = localized Cooper pairs

SIT occurs through the localization of Cooper-pairs

Gap in the DOS remains & coherence peaks disappear

Distinct energy scales for pairing and coherence

STS measures E_{gap} and Andreev reflection measures \triangle_{BCS}

Thomas Dubouchet

Intro I. Exp. setup II. STS results

STS results III. PCAS results Conclusion

Thank you for your attention !

