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1.1 Introduction on thermoelectricity

During the last two decades, increasing demand for energy and pollutants free envi-

ronments has led to continuous investigation of leading-edge technological products

with high energy efficient performance and low fabrication costs. World wide research
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on the thermoelectric(TE) materials for their various applications, has been giving a

constant improvement to the technology.

This new century has already witnessed various new technologies in the nano

science field. Nanotechnology brings a lot of new disigns in the field of material science

[1, 2, 3, 4]. This new field gives the ability to decrease the size of devices, together

with the improvement of their efficiency. Recently, we have strong improvements of

the thermoelectric material properties due to the nanostructuring of bulk materials

[5, 6, 7, 8]. The systems based on these thermoelectric materials are expected to

upgrade energy efficiency and to decrease pollutants. These devices will have vast

application in automotive, microelectronics, space research and many other fields [9].

The following Figure.1.1 is an application of TE generator in automotive industry.

Figure 1.1: A prototype of TE generator in vehicle, which will convert energy from the

heat loss.

Such technological innovations have been based on the numerous works in the

field of transport properties of materials. Performance and efficiency of thermoelectric

devices have been largely increased by improving the transport properties of materials

and discovering new materials. The basic TE device consists in the Peltier pump or

the TE cooler, which we present in the next section.
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1.1.1 Thermoelectric device efficiency

A schematic diagram of thermoelectric cooler is shown in Fig.1.2.(A), from which

several desired material properties become clear. This cooler ( also known as Peltier

cooler) is made of two legs, one of which is ntype and contains mobile electrons and

the other leg is ptype which has positive charges called holes. These two legs are

connected electrically in series and thermally in parallel. When the current is passed

through the legs along the direction shown, both the electrons and holes flow away

from the top of the device towards the bottom and carry heat from the junction at

the top of the device towards the base, cooling the junction at the top.

Figure 1.2: (A) A schematic diagram of thermoelectric cooler. Two electrically conducting

legs are connected by a metal(black bar) at the top to make a junction. The right leg is

”ntype” and contains mobile electrons and the left leg is ”ptype” which has positive charge

called holes. When the current pass as the direction shown, both electrons and holes flow

away from the top of the device towards the bottom. In this processes they carry energy in

the form of heat from the cold side to hot side. (B) Instead of passing current through the

device, a temperature gradient can be created by applying two different temperatures on the

two sides to produce a voltage difference as shown.

Thermoelectric generator is the opposite of a Peltier cooler. Thermoelectric gen-
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erator as demonstrated in Fig.1.2(B), generate power in the presence of an externally

generated temperature gradient. In this case, both carriers conduct heat from the

heated junction at the top to the cooled side at the base, and a voltage drop is

generated between the electrode at the bottom.

In addition to cooling the top junction when the current is passed, there will be

Joule heating in each leg. The amount of Joule heating is equal to the square of current

times the electrical resistance of the materials. Therefore materials with low resistivity

are required. Additionally to prevent the back flow of heat from hot to cold junction

materials, low thermal conductivity is necessary. The final important parameter is

Seebeck coefficient, which measure from the voltage generated across the material

due to a temperature difference. From the above thermoelectric power generator

(TEG) example, it is clear that large Seebeck coefficient is desired to maximize the

voltage output for a given temperature drop. The voltage (V ) generated by a TEG

is directly proportional to the number of couples (N) and the temperature difference

(∆T ) between the top and bottom sides of the TEG and the Seebeck coefficients of

the ntype and ptype materials (Sn and Sp respectively).

V = N(Sp − Sn)∆T (1.1)

Power output from a TEG is defined as,

η =
Th− Tc
Th

√
1 + ZT − 1√

1 + ZT + Tc/Th
, (1.2)

where Th and Tc are the hot junction and cold junction temperature, T is the

average temperature of the system between Th and Tc and ZT is the dimensionless

figure of merit of the TE materials which is used in the power generating device. ZT

is defined as,

ZT =
σS2T

κ
(1.3)

where σ refers to the electrical conductivity, S represent to the Seebeck coefficient

and κ corresponds to the thermal conductivity. To get an optimum device perfor-

mance this figure of merit should be maximized. Materials with highest Seebeck

coefficient, in general have low thermal conductivity but are also poor conductor of

electricity. On the other hand, metals have high electrical conductivity but ther-

mal conductivity also very high and Seebeck coefficient is small. The properties of

Semiconductors which lie between metals and insulators are best for these three TE

properties.
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1.1.2 Nanostructure for thermoelectric efficiency

In the early stage of semiconductor physics it was mainly studied for the applications

on thermoelectric rather than the applications in microelectronics. Almost every

semiconductors were investigated for their potential application in TE. At the end

of 1950′s the best thermoelectric materials were found to be alloy of Bismuth tel-

luride and Antimony, with ZT close to unity. After that few improvements on the ZT

were achieved during the next forty years. In the early 1990′s, by using nanotech-

nology we have noticed strong improvement on ZT and the new discovery show that

nanostructure materials have better ZT compared to bulk materials.

In the following plot, we can observe the recent improvements of thermoelectric

figure of merit, ZT for both ptype and ntype materials which was under unity during

half a century.

Figure 1.3: (A) ptype materials. (B) ntype materials.

In 1990′s, Hicks, Dresselhaus and Harman suggested[10, 11] that the figure of

merit could be improved if electrons were to be confined in two dimensions using so

called quantum well superlattices, where superlattices are multilayers of thin films on

the order of several nanometers in thickness. Hicks and Dresselhaus later extended

their work to include one-dimensional conductors such as nanowires[12]. The primary

reason for the enhancement in the figure of merit in these low-dimensional structures

is through an increase in the electronic density of states per unit volume, which leads

to an improved thermopower. However, low-dimensional structures often exhibit

a reduced thermal conductivity when compared to bulk materials[13]. In fact, in

some instances, the benefits came from the suppressed thermal conductivity which

may outweigh any gains due to electron confinement. To study the thermoelectric
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properties, we need a detailed knowledge on the transport properties, such as mobility,

diffusivity, carrier lifetime, and surface effect, which will be now presented.

1.2 Basic concepts in electron and heat transport

1.2.1 Electron Transport in Bulk Materials

The transport properties of electron in a material are related to the energy band

structure and the nature of collision processes. Again the characteristics of the energy

band structure are related with the crystal structure.

1.2.1.1 Crystal Structure

Crystal structure is composed of a pattern, a set of atoms arranged in a particular

way, and a lattice exhibiting long-range order and symmetry. Patterns are located

upon the points of a lattice, which is an array of points repeating periodically in three

dimensions. The points can be thought of as forming identical tiny boxes, called unit

cells, that fill the space of the lattice. The lengths of the edges of a unit cell and

the angles between them are called the lattice parameters. The symmetry properties

of the crystal are embodied in its space group. Most of the useful and well-known

compound semiconductor have one of the three structure: that of zinc blende ( also

known as sphalerite), the wurtzite ( also known as zincite) or rock salt ( also called

sodium chloride).

In Zinc blende structure an atom of one kind constituting binary compound is

surrounded by four equidistant atom of another kind, which occupy the vertex of a

tetrahedron, the atom of the first kind being at its center. The orientation of the

neighbouring atoms is such that the atoms also occupy the sites of two interpenetret-

ing face-centered-cubic (fcc) lattice. The arsenides, antimonides, and phosphides of

aluminium, indium, and galium among the III-V compounds and sulphides, selenides,

and tellurides of cadmium, zinc, and mercury among the II-VI compounds have the

zinc blende crystal structure. Most well-known semiconductor silicon and germanium

have essentially the same kind of crystal structure, but the two atoms forming the

basis being similar, this type of structure is also known as diamond structure, has

inversion symmetry.

In the wurtzite structure the basis arrangement of atoms is similar to the in the

sphalerite structure. An atom of one kind is surrounded tetrahedrally by four atoms

of another kind, but the tetrahedrons are oriented so that the location of the atoms

fit two interpenetrating close-packed hexagonal lattices. In the III-V compounds,
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the relatively unknown crystals of nitrides of aluminium, indium, and gallium have

wurtzite structures. Most of the II-IV compounds have both a wurtzite and a spha-

lerite modification.

The arrangement of atoms in the rock-salt structure is such that atoms of the

two kinds occupy alternate positions on a face-centered-cubic lattice. It may also

be considered as two interpenetrating parallel face-centered lattices. The important

compound semiconductors having the rock-salt structure are the sulphides, selenides,

tellurides and lead. The band structure of these materials have broad similarity

with those of the sphalerite and wurtzite structure, however due to the differences in

the lengths of the basis vector, there are also some significant differences, the most

important in this will be the position of the valence band maxima and the shape of

the associated constant energy surface.

1.2.1.2 Energy Band

The forms of the energy bands are determined by the crystal structure. Information

related to the band structure is generally presented by plotting the energy of electron,

E for the value of wave vector, k, limited to within the first Brillouin zone[14]. When

we consider the transport properties of different materials, we are mainly concerned

with the extrema of energy band. For different materials the properties change de-

pending on the position of these extrema of the band and on the effective mass, m∗,

of the band[15].

The characteristics of the energy bands are usually indicated by plotting the energy

eigenvalues of the electrons for different values of k in the Brillouin zone. The crystal

potential is different in different directions because of the differences in the spacing

of the atoms. Therefore the values of E depends on both the magnitude and the

directions of k. In the case of transport problem, we are generally concerned with

the lowest minima and the highest maxima as these are populated respectively by

electrons and holes. From Fig.1.4, it is clearly understood that the conduction band

is higher than the valence band, has minima at the zone center (Γpoint ) and one

minimia on the < 111 > direction and another on the < 100 > direction. The valence

band, which is at below of the conduction band, which is separated by a energy gap

for the insulator or semiconductor from conduction band, generally has a maxima at

the zone center.
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Figure 1.4: Energy band diagram of (a) germanium, (b) silicon and (c) gallium arsenide.

Ref.[16]

If the energy E varies parabolically with (k − k0), where k0 is the values of k at

the extremum. The relation between E and k at the Γpoint can be expressed as[17]

E =
~2k2

2m∗
(1.4)

where ~ is the reduced Planck constant and m∗ is the effective mass of these band.

For the Γ− point, m∗ is a scalar quantity.

The E and k relation for the minima lying on the X and L directions is of the

form

E =
~2

2
(
k2
l

ml
+
k2
t

mt
) (1.5)

where kl and kt represents respectively the components of k in a direction parallel

to the direction of symmetry, measured from the position of the minimum, and in the

transverse direction. The constant energy surface are spheroidal, and the shape of the
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spheroid is generally prolate. The effective mass for these minima are tensor quantity,

the tensor being diagonal, with diagonal quantity ml, mt, and mt, when a direction

of symmetry corresponding to the particular minimum is chosen as a reference axis.

In some cases the energy E for points in k space away from the extrema varies

nonparabolically with k. In that case the nonparabolic E-k relation can be written

as [15],

E(1 + αE) =
~2k2

2m∗
(1.6)

where m∗ is the effective mass for k tending to zero, and α is a constant which in

many materials is approximately equal to 1/Eg, Eg being the separation between the

conduction band minimum and valence band maximum,i.e. band gap.

There are different methods to solve the energy band structure of materials. The

detailed nature of the energy band may be worked out by solving the Schrödinger

equation [15, 14]. There are also methods for the calculation of the band structure of

the solid from first principles.

Electrons in the conduction band and holes in the valence band behave as free

particles, and their distribution among the available energy levels, when in thermal

equilibrium with the lattice, obeys Fermi-Dirac statistics. For the parabolic band the

number of electrons occupying a particular energy level is given by,

n = 4π(
2m∗

h2
)3/2

∫ ∞
0

E1/2dE

1 + exp[(E − EF )/kbT ]
(1.7)

where h is the Planck’s constant and kb is the Boltzmann constant. The density

of states in the energy space varies as E1/2.

Integral in Eqn.1.7 in general cannot be evaluated analytically. But when EF is

negative and |EF | is much larger than kbT , i.e. when the material is non-degenerate,

the Fermi function simplifies to the Maxwellian function. Then by neglecting 1 in

comparison to exp[(E − EF )/kbT ], we get:

n = 2(
2πm∗kbT

h2
)3/2exp(EF /kbT ) = Ncexp(EF /kbT ) (1.8)

But in the degenerate case when EF is positive and is not much lower than kbT

of band edge, the integral has to be evaluated numerically. The integral in Eqn.1.7,

can be written as:
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n = Nc
2√
π

∫ ∞
0

x1/2dx

1 + exp(x− η)
= NcF1/2(η) (1.9)

The integral in the above form is often called Fermi integrals, where x = E/kbT

and η = EF /kbT . The distribution function Fi is call Fermi-Dirac distribution

function[10] and is defined for any index i as:

Fi = Fi(η) =

∫ ∞
0

xidx

1 + exp(x− η)
(1.10)

From Eqns 1.7 and 1.9 we can relate the concentration of electron to the Fermi

energy and to the density of states. Later we can determine the position of Fermi

level for different impurity concentrations and temperature.

1.2.1.3 Electron Scattering

The motion of an electron is unhampered in a perfect crystal, in which the wave

function of the electron is given by stationary Bloch functions, and the application

of an external field would uniformly accelerate the electron causing a linear increase

of the drift velocity with time in the direction of the field. But such linear increase

in drift velocity with time does not occur in real crystals. The average drift velocity

of the electron reaches a limiting value, which at low field will be proportional to

the magnitude of the field. The limit is set by the interaction of the electron with

the imperfection of the crystal through the process referred as scattering or collision

processes. The electron continues to be in a stationary state until it comes close to

an imperfection. After it interacts with the imperfection, the electron has a new wave

function characterized by new wave vector and often different value of energy.

In a lattice crystal, there are different type of scattering mechanisms for differ-

ent imperfection. The important of each kind of scattering varies from material to

material, it also depends on temperature and carrier concentrations. Later we will

discuss the importance electron scattering mechanism for Si, Ge, and SiGe alloy. In

the bellowing Fig.1.5 we gave a list of all kind of electron scattering mechanisms.
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Figure 1.5: Electron scattering Mechanisms

1.2.1.4 Kinetic theory of Electron Transport

After having defined the scattering mechanisms for different kind of materials, we

have to know the different macroscopic transport coefficient to calculate the trans-

port properties of the material. In the simplest kinetic method we can define some

macroscopic properties of the materials by considering electron as a particle and fol-

lowing the motion of one of them at a time. Here the particle scattering is governed by

the characteristic relaxation time τ when a particle collide with impurity or interact

with phonons. For n electron per unit volume, we can define the electric current as,

J = neδv =
ne2vτ

∂E/∂v
E (1.11)

where δv is the average drift velocity parallel to the Electric field E. Now macro-

scopic relation defining the electrical conductivity, σ, Eqn.1.11 becomes,

J = σE (1.12)

Therefore,

σ =
ne2vτ

∂E/∂v
=
ne2τ

m∗
(1.13)
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In terms of electron mean free path, le, where le = τv, the electrical conductivity

becomes,

σ =
ne2le
m∗v

(1.14)

We can also relate the mobility(µ) of the material with the relaxation time and

the carrier concentration, n as,

µ =
eτ

m∗
(1.15)

because σ = neµ

1.2.2 Phonon Transport in Bulk Materials

In solid materials, heat is transported by the atomic lattice vibration, called phonons

and charge carriers such as electrons and holes. The contribution of charge carri-

ers in heat transport was discussed in earlier section. The electronic contribution

explains the fact that good electrical conductors also have high thermal conductiv-

ity. Although electronic contribution in thermal conductivity is significant for highly

doped materials and metals, the lattice contribution remains dominant in dielectric

and semi-conductor materials.

1.2.2.1 Phonon dispersion curves

Atoms in solid are held together as a lattice by a chemical bond between them. These

bonds are not rigid, but act like a spring which connects the atoms, by creating a

spring-mass system as shown in Fig.1.6. When an atom or plane of atoms displace,

this displacement can travel as a wave through the crystal, transporting energy as

it propagate [18]. This wave can be longitudinal where the displacement of atoms

are in the same direction of wave, or they can be transverse where in the three

dimensional case the displacement of atoms are in the perpendicular direction of the

wave propagation. These lattice vibrations are quantized and known as phonons.
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Figure 1.6: One dimensional representation of atoms and chemical bond as spring mass

system. The chemical bond act as a spring and atom as mass. The distance between two

adjacent atom is called lattice constant and represented by, a.

By solving equation of motion for these waves, we can determine the angular

frequency of the waves (ω) for its different wave length (λ) or wave number (also

called wave vector) (k), where k = 2π/λ. The relationship between k and ω is called

the dispersion relation. From the slope of the dispersion relation, one can determine

the speed of propagation of phonons, (∂ωk∂k ), which is also called group velocity. For a

crystal that has at least two atoms in a unit cell (which may or may not be different),

the dispersion relations exhibit two types of phonons, namely, optical and acoustic

modes corresponding to the upper and lower sets of curves in the Fig1.7, respectively.

The vertical axis is the energy or frequency of phonons, while the horizontal axis is

the wave-vector.

Since the group velocity of the acoustic phonons is much larger than the one of

optical phonons, the contribution in the thermal conductivity is mostly came from

acoustic branch.

1.2.2.2 Phonon energy

As the dispersion relation of the phonon is known, one can determine the thermal

properties of solid from there. The entire set of all possible phonons that are described

by the above phonon dispersion relations combine in what is known as the phonon

density of states which determines the heat capacity of a crystal. We consider our

solid as an assembly of 3NV independent harmonic oscillators, one for each lattice

mode, is capable of taking up one or more quanta of energy. Therefore phonons are

’Bose-Einstein particles’ of which any number may go to any given energy level. The
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equilibrium number of phonons with a polarization p and wave vector k is given by

< nk,p >=
1

exp( ~ω
kbT

)− 1
(1.16)

where kb is the Boltzmann constant, and T is the temperature.

Figure 1.7: Dispersion relation of phonon. Ref[19]

The average energy of this mode is [20]
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E =
∑
p

∑
k

(< nk,p > +
1

2
)~ω (1.17)

Crystal volumic energy, E is obtained by summarizing each quanta ~ω over the

two polarizations of phonon for longitudinal and transverse of acoustic and optical

modes. Assuming that phonon wave vector k are sufficiently dense in K space, the

summation over k may be replaced by an integral[21],

E =
∑
p

∫
ω
(< nk,p > +

1

2
)~ωDp(ω)gpdω (1.18)

where Dp(ω)dω is the number of vibrational mode in the frequency range [ω, ω +

dω] for polarization p and gp is the degeneracy of the considered branch.

1.2.2.3 Phonon Scattering

When different kind of phonon wave propagate through the lattice, it is disrupted or

scattered by the defects or dislocations, crystal boundary, impurities such as dopant

or alloying components, or by interaction with another phonons. These different type

of scattering can be divided in two groups, one elastic scattering where the frequency

does not change after the scattering and another inelastic scattering where frequency

changes after the scattering. The distance or the path traveled by phonon between

two scattering event is generally defined by the phonon mean free path, lp. Where

lp = vτ (1.19)

v is the phonon velocity and τ is the relaxation time of the scattering events. Each

scattering event has its own mean free path which depends on the materials and the

temperature.

1. Normal and Umklapp Scattering. Inelastic scattering process arises due to the

fact that forces between atoms are not purely harmonic. There are two types

of phonon-phonon scattering, one is Normal and another is Umklapp which are

generally referred as N and U scattering process. Normal scattering process is

shown in Fig.1.8
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Figure 1.8: (A) Vectorial representation of a Normal phonon scattering where two phonons

combine to create a third. (B) Normal processes where one phonon scatters into two phonons.

(C) Umklapp processes where two phonons combine to create a third. Due to the discrete

nature of the atomic lattice there is a minimum phonon wave length, which corresponds to a

maximum allowable wave vector. If two phonons combine to create a third phonon which has

wave vector greater than this maximum, the direction of the phonon will be reversed with a

reciprocal lattice vector G, such that its wave vector is allowed. Ref.[22]

Where two phonons K1 and K2 interact with each other and produce another

phonon K3 or one phonon can scattered into two phonons. In this scattering

mechanism the phonon momentum does not change, so it does not put any

resistance in the heat transport.

The Umklapp phonon scattering mechanism is described in Fig.1.8.(C), where

after the scattering, new phonons may cross the first Brillouin zone and the

momentum direction after the scattering is changed. Umklapp scattering is the

dominant process for thermal resistivity at high temperatures for low defect

crystals.

2. Scattering by defects, impurities, and boundary. In addition to phonon-phonon

interaction, there may be phonon scattering by the imperfections in the crystal

lattice. This imperfection may be due to the defects in the crystal, or due to

impurities and the boundary of the crystal.

In the crystal lattice, imperfection occurs due to various reason. All kind of

imperfection mostly have the same effect, i.e. reducing the heat transport. The

types of defects are classified as isolated point imperfections (i.e., vacancies,

chemical impurities, isotopes) , line imperfection( typically dislocation), surface

of imperfection, e.g., grain boundaries, twin boundaries and stacking faults and
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volume disorder as in the case of alloys [18].

Defects or dislocation in the atomic lattice have an effect as acting as different

spring and mass constant to the incident phonon. The speed of sound related to

the elastic stiffness(C) of the chemical bond is defined by the bellowing equation,

v =

√
C

ρ
(1.20)

where ρ is the mass density and v is the speed of sound. So when a phonon

encounters a change in mass or elastic stiffness, it scattered. The impurity

atoms inside the host matrix with different mass and spring constant produced

a disruption in the phonon transport. These impurity atoms can be in the form

of dopant atoms or from the species introduced to form an alloy. Alloying is a

very effective way to reduce thermal conductivity due to this kind of scattering.

The role of boundary scattering in limiting the phonon mean free path has

long been considered as low temperature phenomena. Where in absence of

other phonon scattering mechanism, boundary scattering observe as phonon

mean free path approaches the sample dimensions[23]. As in the recent years

interest has grown in the used of hot-pressed highly doped materials for the

use in thermoelectric application, there are significant contribution from the

boundary scattering as in the solid large proportional of heat was carried by

low frequency phonons, boundary scattering effects can manifest themselves at

high temperatures[24]. We will discuss the boundary scattering for different

structure in details in chapters II and III.

1.2.2.4 Phonon thermal conductivity

In the kinetic formulation of thermal conduction, we can define the heat flux, q, as

equal to the product of thermal conductivity, κ and the negative local temperature

gradient, −∇T . The heat flux is the amount of energy that flows through a particular

surface per unit area per unit time. The final relation is also called Fourier’s Law of

thermal conduction.

q = −κ×∇T (1.21)

Now if we suppose that each particle has an atomic heat capacity c, so that it

requires an energy cδT per particle to change the local temperature of the assembly by

an amount δT and each particle traveling with a velocity v from one region to another
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region. If the motion of one particle is unrestricted for a time t, the contribution of

this particle to the thermal current per unit area, q, will depend on the distance vt

that it crosses before it is scattered. The average value of this over all particle is vτ ,

where τ is the relaxation time. Summing over all the particles, we can write the heat

current as

q = −ncτv2.∇T, (1.22)

where n is the total number of particles. Now the thermal conductivity, κ, is

κ =
1

3
Cpvlp (1.23)

since nc corresponds to the total specific heat Cp, and lp is given by Eqn.1.19.

From the Eqns 1.14 and 1.23 we can calculate very easily some important proper-

ties of material. From these two equations, we can also calculate the mean free path

of the carriers without knowing details scattering mechanisms. By assuming le = lp
we can write,

κ

σ
=
Cpm

∗v2

3ne2
(1.24)

For the classical gas, where 1
2mv

2 = 3
2kbT and the specific heat is 3

2nkb, Eqn.1.24

becomes [25],

κ

σ
=

3

2
(
kb
e

)2T (1.25)

The ratio κ/σT is called the Lorenz number and should be a constant, independent

from temperature and from the scattering mechanisms. Eqn.1.25 is in fact the well

known Wiedemann-Franz law.

1.2.3 The Boltzmann Transport Equation

Instead of following one particle from collision to collision, it is much instructive

to consider the system as a whole at a fixed time. We can assume the form of the

distribution function, f(r, k, t), probability that the state (r, k) will be found occupied

by an electron, or phonon or by particles at time t. This statement violates uncertainty

principle according to which both position and momentum of the electron can not
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be specified at the same time. However in most transport problem, the position of

the carrier need to be fixed at the macroscopic scale. We assume that r is fixed

with an interval ∆r and that the carrier is spread over δk in k such that ∆r∆k > 1.

Therefore the specification of r and k are correct in f(r, k, t) within ∆r and ∆k. The

distribution function can be changed due to following mechanisms:

(a) Diffusion. Carriers from adjacent region enter into r, whilst other leave, as

a result of their spatial velocity vk. If f varies from point to point, there will be a

tendency for it to change with time, at each point, at the rate:

f
′
diff = −vk.

∂f

∂r
(1.26)

(b) External fields. In the presence of external force the distribution function

change as the occupation number of the states k will change. The rate of change is

defined as,

f
′
field = − e

~
(E +

1

c
vk ×H).

∂f

∂k
(1.27)

(c) Scattering. All the scattering mechanisms have the effect of throwing carriers

from one state to another. This process gives rise to a net rate of change,f
′
scatt.

which is the difference between the rate at which the state k is entered and the

rate at which carriers are lost from it.

Making balance, we can write for the total rate of change of the distribution

function,

f
′

= f
′
diff + f

′
field + f

′
scatt (1.28)

In the steady state, f
′

= 0, so the resulting equation becomes:

− vk.
∂f

∂r
− e

~
(E +

1

c
vk ×H).

∂f

∂k
= −f ′scatt (1.29)

This is the Boltzmann’s equation in its general form. When the Eqn.1.29 is solved

for f we can derive the electric current density as follows:

J =

∫
evkfdk (1.30)

and the flux of energy is yielded according to:
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Φ =

∫
Ekvkfdk (1.31)

The main problem of solving the transport equation by this way is the difficulty

to find the proper scattering term for each mechanisms. We need to add together

the transition rate from all other states into the kth state, and these will depend

on the occupation number of those states. There are different procedures such as

relaxation time approximation[15], variational method [26], iteration method [27], and

Monte Carlo method [28] to solve this equation by considering different scattering

mechanisms for carriers. We will implement Eqn.1.29 in our next modeling and

investigate the transport properties of different kind of materials and structures by

considering different scattering mechanisms.

1.3 Nanoscale Heat Transfer: State of the art

There are various ways to improve thermoelectric properties of current materials,

several of which are subjected in recent reviews[5, 29, 30, 31, 32, 33, 34]. One partic-

ularly interesting approach is nanostructuring. With the recent advancements in the

fields of microfabrication and nanoscale characterization, it is now possible to grow

and analyze materials with atomic layer precision [35, 36]. A better understand-

ing of transport phenomena such as mass, charge, and heat is essential in designing

and/or improving the performances of such nanoscale devices. Although charge and

mass transport at nanoscales have been studied extensively owing to the emergence

of fields such as microelectronics and chemical and biological sensors [37, 38, 39], by

comparison nanoscale heat transport has received little attention. The second law of

thermodynamics requires that irreversible charge and mass transport must always be

accompanied by heat transport with the environment. This heat transport may be

useful or detrimental to the performance of the nanoscale device. Therefore, a detailed

study of heat transport at the nanoscale is critical in improving the performance of

low-dimensional devices [40].

Nanostructured materials (such as nanowire, nanotube, nanoparticles, nanofilms,

superlattices) properties could be modulated by changing the density, nature and

the ordering of the included nanostructure to obtain the best properties [41]. As

we have discussed before, for the TE application, we need the materials with good

electrical conductivity and low thermal conductivity which we can obtained by using

superlattices [42], nanowires [43] and nanoparticles [44]. Heat conduction in nanos-

tructure is also not same as in the macroscopic systems. Heat conduction calculation



1.3. Nanoscale Heat Transfer: State of the art 23

in these nanostructured materials span the range from the numerical solution based

on the Fourier’s law [45] to the calculation based on the BTE [18, 46] to atomic level

simulation. While in some cases (e.g., anharmonic phonon effects, isotopic defects,

and point defects) understanding is well-developed, in others (e.g., interfaces, size

effects of nanoparticles) current understanding is poor. In the nanostructure ma-

terials, there are non-Fourier effect due to nanometer size and the interfaces. To

handle with these non-Fourier effects, there are models established depending on the

Green-Kubo approach [47] in which the equilibrium fluctuations in the heat current

are analyzed, the direct method such as Monte Carlo (MC) method[28], which mimics

experiment by imposing a temperature gradient on the system and determining the

thermal conductivity from Fourier’s Law. MC method is very advantageous in the

calculation of the boundary scattering and size effect. Modeling of the heat transport

in complex nanostructure geometries was reported in publications[21, 48, 49] using

MC method. In the next chapter we have discussed in details the physical properties

of the nanocomposites using the MC method and an analytical approach.

Understanding of heat transport in nanowires is still in the primitive stage. Though

only in past few years the growth of dense nanowire arrays become repeatable, the

technique to measure the thermal conductivity of the single nanowire have only been

recently developed [50, 51, 52]. As a result very little data is available in literature.

Figure 1.9: The array of nanowires was fabricated with CVD tool in CEA-Grenoble.

Though the physics of one dimensional electron transport is well understood in
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the theoretical framework of Landauer theory [53, 54, 55], the phonon transport is

very recently addressed in a few publications [56, 57, 58]. Some recent publications

have also shown that nanowires could have a promising potential in thermoelectric

applications [10, 59]. Still there are a lot of lacks of knowledge on the phonon transport

which very much depends on the structure and surface of the wire. If we can control

the heat transport mechanism from the fundamental approach, we can expect to

achieve the best devices as per requirement.

1.4 Objectives

My works aim to develop a complete understanding of heat transport of porous mate-

rials at nanometer length scale, for which we need to understand different mechanisms

that govern phonon transport in this scale. At the nanoscale, the mean free path and

wavelength of different heat carriers become comparable to the size of the devices or

structures themselves. Interface effects also become dominant and play a major role

in defining the thermal characteristic of devices or structures. As we have seen in the

publication by Mingo. et. al. [60], the presence of nanoparticle can increase the fig-

ure of merit 5 times of SiGe alloy at room temperature. This enhancement is mainly

due to the large reduction of the thermal conductivity. This example illustrates the

importance of understanding the transport in composites materials.

In this dissertation, I examine the heat transport in three dimensional (3D)

nanoporous composites and nanowires. There is an ongoing debate in the research

community regarding the size effect of the phonon transport in the composites ma-

terials. If we change the size of the embedded materials in the host matrix keeping

the volume ratio fixed, the distance between the two phases and the view factor will

also change and that could be affected the thermal transport. A numerical model was

made to investigate the size effect in the transport properties.

My second research task involves studying the over all thermoelectric properties of

the nanocomposites materials by considering different scattering mechanisms for the

charge carriers and phonons comparing with the new and old experimental results.

In much of the previous work many important parameters were varied between the

measurement of different samples making it difficult to understand which parameters

and hence which mechanisms are important. In this work, we have investigated all

the mechanisms in details to present a best model for the thermoelectric properties.

This thesis manuscript is divided in the bellowing chapters:

In the 2nd chapter we will present in details the numerical method (Monte Carlo

technique) used to obtain the mean free path of the porous materials together with

an analytical model and we will calculate thermal conductivity of alloy and non-alloy



1.4. Objectives 25

porous materials.

There will be a brief description of phonon transport in nanowire in the 3rd chap-

ter. Ballistic phonon transport will be studied by using Monte Carlo Simulation. We

will also discuss on how much phonon transmission can be restricted by engineering

the nanowire shape.

The 4th chapter of this manuscript will focus on the thermoelectric properties of

the SiGe alloys and also its individual components, i.e., Si and Ge. Here we will discuss

the carrier mobility of these materials and the possibilities of further improvement of

the thermoelectric properties and the figure of merit.

In the last chapter of this manuscript, complete discussion on the thermoelectric

properties and their various implementations, possibility of the future improvement

and a brief conclusion of all chapters will be presented.
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Thermal Conductivity of Porous Materials
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2.1 Introduction

There is common consensus that important thermal conductivity reductions should

be expected in nano porous materials, as the diameter and distance between the

nanopores are made smaller[61, 62, 63, 64]. However, concrete trends beyond this

qualitative assessment are not yet clearly understood. In fact, we will show here

that some of the dependencies previously predicted stem from oversimplifications in

the model used, rather than from the real physical behavior of the system. Also,

most previous efforts have concentrated on the thermal conductivity of nanoporous

non-alloy matrices, such as pure Si. Previous works addressing SiGe considered nano

composites comprising individual nanosized parts of pure Si and pure Ge, but they did

not address the case where the matrix is a random alloy at the atomic level [65]. Here
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we show that the thermal conductivity of nanoporous alloys behaves in a qualitatively

different way than that of non-alloys, and this may be very advantageous for certain

applications.

In this chapter, We have focused on the thermal conductivity of parallel pore

arrangements, in the direction parallel to the pores. In this system heat(energy)

propagates parallel to the pore length, as it was shown in the Fig.2.1. Where one side

has been kept at high temperature, Th and other side at low temperature, Tc. We

have considered there is an average temperature, T all over the system between these

two sides.

Figure 2.1: Cylindrical pores embedded in a host matrix. Heat propagate in the direction

of the pore length.

To investigate these systems, a cylindrical geometry approximation (CGA) was

proposed in Ref.[63], where the thermal conductivity was found by numerical solution

of the frequency independent Boltzmann transport equation. In parallel, the CGA

was also employed in Ref.[62], which provided the exact analytical solution to the

Boltzmann equation for this geometry. An extension of this analytical calculation to

the frequency dependent case was given in Ref.[66]. The CGA consists in replacing

the porous medium by a single pore surrounded by a specularly reflecting cylindrical

boundary[62, 63]. This in principle should mimic the fact that when a phonon gets

away from the pore, it will approach a different pore nearby. The other boundary
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condition, at the surface of the pore, can be chosen to be partly or totally diffusive.

Figure 2.2: A drawback of the CGA: in the small pore radius limit some phonons never

collide with the pore.

The results presented in Refs.[63] and [62] numerically agree with each other, as

they should. However, the CGA employed there leads to the peculiar result that, for

fixed pore volume fraction (or porosity), the thermal conductivity does not decrease

indefinitely upon pore size reduction, but saturates below a certain pore size. The

reason why this occurs is implicit in the analytical solution[62], which shows the

presence of a continuous range of phonon directions that keep circling around the

system without ever colliding with the pore (see Fig.2.2). This finite fraction of

phonons gives a contribution equal to the bulk thermal conductivity weighted by the

fraction of angles in which the infinite circling occurs, F = 1 − 2×arcsin(
√
ε)

π , where ε

is the porosity. So the saturated thermal conductivity for infinitely small, infinitely

close pores, is given by κ = (1 − ε) × F × κbulk. Obviously, this result is linked to

the model, and the question is whether the predicted saturation has any physical

meaning. Intuitively, it is apparent that the real pore configuration will not show any

continuous range of angles that do not intersect a pore: sooner or later, a line in any

chosen direction should hit a pore. (This excludes high symmetry directions, if one

considers ordered arrangements; but even then, the range of ”unblocked” angles is not

continuous, in contrast with the CGA.) Thus, the answer to whether a saturation
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should occur is not obvious, and the way the thermal conductivity might depart from

the CGA prediction is a priori unclear.

To answer these questions we have implemented a Monte Carlo (MC) simulation

of phonon transport through a 3 dimensional array of parallel pores. We discuss

Monte Carlo simulation technique in details in the section.2.2.

Figure 2.3: (A) Top view of the nanopore array. (B) 2 dimensional square arrangement

geometry used for the Monte Carlo calculation.

2.2 Monte Carlo Method

Nowadays the Monte Carlo (MC) method is used in a lot of research areas. This

method is very popular among the statisticians [67] and chemists [68, 69]. MC method

also can be applied for neutron fluxes [70] and in the calculations of fluid flows [71].

Boltzmann transport equations (BTE) for phonons can be solved by Monte Carlo

simulation technique in a statistical framework in an arbitrary geometry. MC simula-

tion has been widely used to solve the radiative transfer equation and the Boltzmann

equation for electrons and holes in semiconductor[37, 72, 73, 74, 75]. Recently pub-

lications have also addressed the MC simulation for the phonon transport in various

complex geometries[76, 48, 77, 21, 78]. In all these modeling phonon transport had

been simulated for bulk and nanostructured materials. In an arbitrary geometry, it is

difficult to solve the BTE for phonons by deterministic approach such as the discrete

ordinate method (DOM) because the number of independent variables are too large

and the non-linear scattering events are difficult to incorporate without an overall

relaxation time approximation. Individual scattering events can not be treated by

the exact solutions such as which provided by molecular dynamics, is limited to very
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small structures. Therefore, the alternative is to solve the BTE for phonon in an ar-

bitrary geometry using MC simulation technique. The MC method takes microscopic

constituents into account by sampling them in a relevant way, in order to produce

the most accurate statistical averages possible on the basis of a limited number of

operations. Its numerical accuracy only depends on the number of samples used

and therefore we can independently follow each scattering mechanism (i.e., phonon-

phonon, phonon-impurity, phonon-boundary scattering processes). MC simulation is

very efficient for the phonon transport in complex three dimensional nanostructures,

i.e., nanocomposites. MC method is also very advantageous to the implementation of

periodic boundary condition and to the study of the size effect of thermal conductivity

in nanocomposites. In this section, we will discuss the heat (phonon) flux calculation

by MC method. Here the heat flux is generated by the atomic motion, the atom is

treated as a point mass with known trajectory i.e., position and velocity.

2.2.1 MC simulation for porous materials

In the modeling of nano structured materials, it is assumed that the phonon spectrum

is same as in bulk materials.

Figure 2.4: Square arrangement geometry used for the 3 dimensional Monte Carlo calcula-

tion.

We have implemented MC simulation for the cylindrical nanoporous system, de-

scribed in the Fig.2.2 and Fig.2.3(a). The pores are organized in a square mesh

configuration described in Fig. 2.3(a). This allows to reduce the simulation to a cell

containing one pore, with periodic boundary conditions (Fig. 2.4).
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First we have investigated how much the mean free paths Λ are affected due to

the presence of the pores. Λ is computed as a function of the bulk mean free path Λ0,

the pore radius r, and the porosity ε (as reported in Fig.2.4). The interpore distance,

δ, is related to the pore radius and porosity as δ = 2r((0.5/
√

ε
π )− 1). An additional

variable is the length of the system, L (Fig.2.2), which needs to be taken in the long

length limit.

To obtain the effective mean free path of the system, one launches a large number

N of particles (phonons) from one end of the system (z=0), and let them evolve until

they come out through either side (z=L or z=0). We have initialized conditions before

launching a phonon from z=0 as explained in the following:

2.2.1.1 Initial conditions for MC

Figure 2.5: (A) Random position of points (phonons) in a 2D surface of a cylindrical wire

system. The inner circle corresponds to pore surrounded by a cylinder. (B) Random position

of phonons on the wall of a square mesh configuration, inside circle is the wire like pore and

outside square is a periodic boundary.

1. Phonon position. The first step is to initialize the position of phonon on one

side of the wall. we arbitrarily choose the position of each phonon on the surface

(on the XY plane) of the wall of our system, Fig.2.3.(b). In the figure (Fig.2.5),

we show the random positions of points (phonons) on the 2D wall (Z = 0) for
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two geometrical systems.

2. Velocity. Each phonon has a random velocity in the three dimensions (3D). All

the direction which can be viewed from the wall is randomly chosen for each of

the particle. The directions of the total number of phonon which was launched

from the one side of the wall is sampled in such a manner that the number

of phonon in each random direction remain equally distributed. We consider

Cartesian coordinate system for the direction of phonons, so we defined three

random numbers between 1 and -1.

3. Free Path. Before launching the phonons from the wall, we define the free

path(free flight) length of each phonon from the probabilistic equation[28],

p(s) = e−s/Λ0 , (2.1)

where Λ0 is the mean free path of the bulk and s is the distance traveled. For

randomly sampling this free flight trajectory, we consider p(s) as a random

number between 0 and 1.

Figure 2.6: (A) Particle trajectory in 2D for the CGA model. (B) particle trajectory in 2D

square geometry.

4. Boundary condition. We put a periodic boundary condition on the four sides

(sides A, B, C, and D in Fig.2.3(b)) of the cube surrounding the cylindrical pore.

When phonon (particles) cross one of these four sides, we launch another phonon
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from the opposite side. For the boundaries of the cube we used Cartesian

coordinate and for the cylindrical pore we used cylindrical coordinates. In

cylindrical boundary approximation (CGA), we considered specular boundary

conditions [62, 63] on the outer cylinder and diffusive boundary condition on

the inner cylinder. In Fig.2.6, we have shown the trajectory of the particle

(phonon) projected in 2D for the cylindrical geometry approximation (CGA)

and square system. This figure reveals the periodic (Fig.2.6 (B)) and reflective

(Fig.2.6 (A)) boundary conditions.

5. Scattering. We have considered two types of scattering mechanisms, phonon-

phonon scattering and phonon-boundary scattering. Boundary scattering oc-

curs when the phonon particle reaches the inner cylinder surface diffusively and

the surface of the outer cylinder (for CGA model) specularly. As we consider dif-

fusive boundary condition on the cylindrical pore surface, phonons are scattered

diffusively in all directions with a new free path(s) calculated from Eqn.2.1. If

it collides with the outer surface (in the CGA model), it is specularly reflected

with the same velocity. In the periodic boundary approximation, if the phonon

crosses any of the four surfaces of the cube surrounding the pore, we again inject

a phonon from the opposite side with the same velocity and with the remain-

ing free path. Phonon-phonon (particle-particle) collision occurs when the free

path(s) is less than the length(L) of the system. After the phonon crossed the

system a new phonon with new velocity and new free path(s) is generated.

2.2.1.2 Phonon drift

After initializing those above conditions, we launch particles (phonons) from the plane

z = 0 and let them evolve along the system length (L). Then we calculate the number

of phonons which fly along the opposite side of the wall at z=L. The fraction of

particles that transmit across the whole length, Nthrough, reaches a diffusive type of

transport given by[59]:

Nthrough/N '
(
1 + L/Λ

)−1
, (2.2)

where Λ refers to the effective phonon mean free path. We perform the simulation

enlarging the system’s length, L, until the above behavior is attained with enough

precision. We have fixed the system length L at such manner that we obtain a constant

slope for N/Nthrough. The slope is dependent very much on the system length. When

the distance is very small (i.e., L << Λ0) the transport is of ballistic type. For a

diffusive type drift transport, L is set larger than Λ0. If the system length is very



2.2. Monte Carlo Method 35

long, we have very large number of phonon-phonon collisions and the calculation

starts to be very much unstable and much more time consuming. So we chose the

slope on a region where the particles reach diffusive limit and L was increased until

a good accuracy was obtained ((≥ 99%).)

Figure 2.7: Length dependency of the transmission is described by the summation of ballistic

and diffusive contribution. Ratio of launched and transmitted phonon for different length of

the system at porosity, ε = 0.6.

It can be verified that this model is equivalent to other descriptions based on time

steps discretization [48, 21], and that it yields the correct solution to the diffusion

equation. The simulations employed 106 phonons, which ensures satisfying statistical

averages.

2.2.2 Mean Free Path by MC method

The mean free path of the system is evaluated from the slope of the inverse throughput

fraction, using Eqn.2.2. In order to verify that this method accurately yields the mean

free paths, we have first applied it to reproduce the CGA results given analytically in

Ref.[62]. As shown in Fig.2.8, the numerical MC results (open symbols) are in very
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good agreement with the exact analytical results (red lines). This makes us confident

that our computations for the fully 3D square geometry are accurate.

Figure 2.8: Dimensionless mean free path for porosity, ε = 0.1, 0.3, 0.6, and π/4 , calculated

by: MC CGA approximation (open symbols), analytical CGA (red lines).

Then we calculated the mean free path of the cylindrical porous wire nanocompos-

ites considering periodic boundary condition in 3D as described previously. In Fig.2.9

the filled symbols represents the MC calculations and the solid lines corresponds to

the analytical calculation which we will discuss in the next Section.

The shortening of the mean free path with pore size for the real systems is shown

in Fig. 2.9. The figure shows that when the intrinsic bulk mean free path Λ0 is

larger than the pore size and interpore separation, the size effect becomes important.

However, contrary to the CGA’s prediction (red lines), no saturation occurs at small
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pore size. This is clearly due to phonon-boundary scattering which is increased, when

we decreased the pore radius for a fixed porosity, ε. In the previous CGA model

due to the oversimplification of the boundary condition, some fraction of the phonon-

boundary scattering was neglected. Therefore, by introducing a periodic boundary

condition, we have overcome this problem and have obtained the accurate mean free

path of the phonon for the cylindrical porous wire system. It can be also possible to

predict this kind of mean free path (MFP) dependency for porous materials by an

analytical solution as presented in the next section.

Figure 2.9: Dimensionless mean free path for porosity, ε = 0.1, 0.3, 0.6, and π/4 , calculated

by: MC fully 3D periodic boundary (closed symbols), analytical (blue lines).
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2.3 Analytical method for the MFP calculation of Porous

materials

By using the MC simulation technique for the porous materials, we have seen that

the mean free path keeps decreasing indefinitely as the pores become smaller. It is

tempting to associate the decrease with a formula of the Casimir type, in which the

role of the system’s size would be played by the inter-pore separation d, as Λ ∼ d [18].

Figure 2.10: Geometry used for the analytical interpolation eqn. (2.5).

However, the log-log plot in Fig. 2.9 shows that this oversimplified form does

not match the results, except when the volume fraction exceeds π
4 . When ε > π

4

the nanopores touch each other, so that the system becomes an array of parallel

independent nanowires, which is well described by Λ ∼ d [79]. However, for ε < π
4 the

system becomes connected, and the thermal conductivity depends on d more slowly.

We can understand this behavior as follows. Within the unit mesh depicted in

Fig. 2.10, we have a fraction of the boundary C = 1/(1 + 2δ/πr) (thick solid line)
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that is covered by the pores. The remaining fraction, 1−C (thin solid lines), is open

and it allows the particles to traverse into a neighboring mesh.

Most of the phonons that traverse to a neighboring mesh via the opening between

pores, will do so in a rather shallow angle. This means that the effective row of pores

seen by those phonons looks more like two continuous parallel plates (dotted lines in

Fig. 2.10). One can therefore try to interpolate the total mean free path as a simple

combination of the Casimir type mean free path for a wire of radius r [18],

Λcasimir(ω) = (1/Λ0(ω) + 1/(2Br))−1 (2.3)

and the mean free path for a thin film given by Lucas [80],

ΛLucas(ω,D) = Λ0(ω)
(

1− 3Λ0(ω)

4D

∫ 1

0
2(x− x3)(1− e−D/xΛ0(ω))dx

)
(2.4)

where B is a parameter associated to the shape of the wire’s cross section, and D

is the thickness of the equivalent film.

Therefore, a plausible form for the system described in Fig.2.10 is

Λ(ω) ' CΛcasimir(ω) + (1− C)Λlucas(ω,A× r/
√
ε) (2.5)

where A ≡ D
√
ε/r is the only adjustable parameter, corresponding to the effective

thickness of the equivalent thin film. B should not be considered adjustable; rather,

it corresponds to the case of ε = π
4 , when the system becomes a nanowire array.

We have calculated parameter B in the following way. In the ε = π
4 case for

different pore radius, the pore wire touch each other and the system look like as a

nanowire with the shape black cross section area described in Fig.2.11
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Figure 2.11: Top view of the cylindrical pore wire when porosity, ε = π
4 . In this case the

system becomes nanowire with the shape as depicted by black colour.

According to Casimir formula, the boundary scattering MFP, (ΛB) for any geo-

metrical structures can be expressed as

ΛB(ω) =

∫ 1

−1

3 < ρ >
√

1− cos2θ d(cosθ)
2

=
3π

4
< ρ > (2.6)

where ρ is the distance of the lattice point from the boundary and θ is the direction

of the velocity.

We can obtain < ρ > for different geometries form the bellowing

< ρ >=

∫ ∫
ρ(ϕ, x, y)

dϕ

2π

dSc
Sc

, (2.7)

where Sc is the cross section of the solid system. Now we can analytically solve the
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Eqn.2.7 for the simple geometry such as cylindrical and square rod. The analytical

solution of ΛB for the cylindrical and square wires are 2R and 1.12D respectively,

where R is the radius of the cylinder and D is the side of the square.

For the complex system as described in Fig.2.11, it is very difficult to solve the

above integration. Therefore, we calculated the total area by generating a random

mesh of points by using a METROPOLIS scheme. The parameter B is the ratio

between the number of points inside this special shape and the total number of points

all over the square of the side 2a. From this model we obtained B = 0.85. The

proposed formula for the porous cylinder (Eqn.2.5) works remarkably well. Fig. 2.9

shows a comparison between the MC (filled symbols) and analytical (blue lines) results

for a large range of porosities and pore sizes. The best fit was obtained for A = 1.85.

This formula is extremely practical, because it allows for a very fast computation of

the effective mean free paths (mfp) of the nanoporous material, for any values of Λ0,

r, and ε, with good accuracy. This is advantageous in the application of these results

to compute the thermal conductivity of concrete nanoporous materials.

2.4 Thermal Conductivity Calculation

2.4.1 Relaxation time approximation

In the relaxation time approximation, the thermal conductivity can be expressed as

an integral over frequencies of the form Ref.[79]

κ =

∫ xc

0

dfB
dT

Λ(ω)T0(ω)~ωdω/2π (2.8)

where T0(ω) = 1
2

∑6
α=1

∫
BZ δ(ω − ωα(~q))|dωα(~q)

dqx
|d~q/2π, Λ(ω) is the total mean free

path, and fB is the Bose distribution.

The thermal conductivity of the nanoporous material is therefore calculated by

the equation above, using the mean free paths computed via the MC simulation,

Λ(ω) = ΛMC(Λ0(ω), δ, r), where Λ0(ω) is the bulk mfp of the matrix material. The

phonon dispersion relations for Si and Ge were obtained via the Harrison interatomic

potential[79, 59]. The phonon dispersion for SiGe was considered in the standard

virtual crystal approximation, by averaging the force constants of Si and Ge. The

bulk mfp’s Λb(ω) for Si and Ge were computed in the way explained in Ref.[79], and

they yield a good match to the bulk crystal thermal conductivity in the 50-900K

temperature range. The bulk mean free path are given by calculating relaxation time
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due to different scattering mechanism. The total relaxation time is given by the

Mathiessen’s rule. For the bulk materials the expression used for the anharmonic,

and impurity scattering are,

τ−1
a = BTω2e−C/T (2.9)

τ−1
i = Aω4 (2.10)

where A, B and C are numerical constant. The constant B and C are adjusted

to reproduce the experimental values of bulk materials, here B = 1.73 × 10−19s/K

and C = 137.3K. Parameter A = 1.32 × 10−45 is analytically determined from the

isotope concentration, and it should not be adjusted so we maintain the same value

given by the Ref.[81].

The full dispersion relation of Si, Ge and SiGe virtual crystal, has been computed

from Harrison’s potential[82], and are shown bellow,

Figure 2.12: The dispersion relation of (A) Si, (B) Ge, and (C) Si0.5Ge0.5. Angular

frequency is in the unit of 100 THz.

The average group velocity in the axial direction can be defined from the trans-

mission function. Where the density of states Nb(ω), is defined as the number of

phonon subbands crossing the frequency interval [ω, ω + dω]. Therefore, the average

group velocity is,

< vz(ω) >= (
∑
ζ

vz(ζ, ω))/Nb(ω), (2.11)

where ζ is a set of discrete quantum numbers labeling the particular subbands

that are crossing the frequency ω. We have in Fig.2.13 the function Nb(ω) for Si, Ge

and Si0.5Ge0.5 from where we later calculate the group velocity.
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(A)Si

(B)Ge

(C)SiGe

Figure 2.13: Function Nb(ω) calculated using the total dispersion relations.
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2.4.2 Thermal conductivity of bulk materials

From the dispersion relation, we have obtained the group velocity for different fre-

quency and the bulk mfp, Λ0(ω), has been calculated from the different scattering

mechanisms. So from Eqn.2.8, we have calculated the thermal conductivity of the

pure Si and Si0.5Ge0.5 to verify the model. In the bellowing figure, the bulk thermal

conductivity of Si is reported and agrees well with the experimental results.

Figure 2.14: Bulk thermal conductivity of Si. Experimental results are form Ref.[83]

The bulk mfp for the alloy includes the additional alloy scattering term [60, 84].

The alloy scattering relaxation term can be expressed as

τ−1
al = x(1− x)αω4 (2.12)

where x is the volume fraction ofGe in the SiGe alloy, α = ((MGe−MSi)/M)2δ3/(4πv3
sige)

and δ3 is the volume around one atom in the lattice, M and vsige are the mass
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and mean group velocity of SixGe1−x alloy respectively. Alloy disorder scattering

becomes zero in the case of pure Si and Ge. Also the parameter B in Eqn.2.10

for the alloy is calculated from the weighted average of Si and Ge in the alloy, as

B = xBSi + (1− x)BGe and similarly for the derivation of C.

We verified that the experimental bulk alloy thermal conductivity[84] is well ex-

plained up to temperatures of 900K.

Figure 2.15: Bulk thermal conductivity of Si0.5Ge0.5. Experimental results are form

Ref.[84]

2.4.3 Thermal conductivity of porous materials

Using the interpolation expression, Eqn. 2.5, combined with the knowledge of the

bulk mfp, Λ0(ω), allows to efficiently compute κ for the porous materials because we

obtained Λ(ω)/Λ0(ω), where Λ(ω) is the mfp of the porous bulk materials from the

MC simulation and also from the analytical formula.

The computed room temperature thermal conductivities of nanoporous Si, Ge, and
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Si0.5Ge0.5 are shown in Fig. 2.16 as a function of pore radius, for various porosities.

For comparison, results using the CGA mean free paths are also plotted for the Si

case (filled symbols). The differences become very large as the pore radius becomes

small enough to visibly affect the mean free path. This graph shows that the CGA

yields a quite inaccurate representation of the phonon mfp and κ of the nanoporous

system.

Figure 2.16: Conductivity of Si, Ge and Si0.5Ge0.5 at 30% and 60% porosity. The symbols

correspond to the CGA result for Si with ε = 0.3 (circles) and ε = 0.6 (squares).
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In addition to the full dispersion approach just described, we also tried the non-

dispersive model introduced at the end of Ref.[59] (see Eq.(15) in this reference,

and also Refs.[60, 79]), obtaining results very close to the ones yielded by the full

dispersions model.

An even more striking finding is the noticeably different behavior of the alloy

and non-alloy material thermal conductivities as a function of pore size. This is

clear on the plot of the porous material conductivity normalized by the bulk material

conductivity, in Fig. 2.17. The alloy material is considerably affected by the presence

of a 10% porosity already at pore sizes of 1000 nm, whereas the pure Si and Ge cases

are barely affected at this pore size. Only below 100 nm pore size do the 10% porosity

pure Si and Ge matrices start displaying a size effect.

These pore sizes become about 5 times bigger for porosities close to the nanowire

limit (ε = π/4.) The room temperature thermal conductivity of bulk Si0.5Ge0.5 is just

one order of magnitude smaller than those of Si or Ge, but this difference becomes 2

orders of magnitude when comparing nanoporous materials with r ∼ 200 nm at 10%

porosity, or with r ∼ 1000 nm at 60% porosity. Below this diameter, the decrease

becomes faster in the non-alloys. Nonetheless, the absolute thermal conductivity of

SiGe always stays smaller than that of Si or Ge for the same porosity and size, as one

would expect.

The reason for the pore effect being noticeable in the alloy at considerably larger

pore diameters than in the non-alloy case, is related to the very sharp dependence of

the alloy scattering mean free path. Alloys have a reduced thermal conductivity well

below that of their individual components, because atomic scale disorder can scatter

short wavelength phonons very efficiently. Longer wavelength phonons, however, can

have mean free paths many orders of magnitude larger than the short wavelength ones.

For non-alloys, the contrast between long and short wavelength mean free paths is

not so marked, and a considerable amount of heat is carried by the short wavelengths.

Introducing nanopores affect the long wavelengths more strongly than the short ones.

This is because the former have longer mean free paths than the latter, and according

to Fig. 2.9, the effect of the pores becomes noticeable when their separation starts to

be comparable to the bulk mean free path. Since heat in the alloys is carried by a

very small range of phonon frequencies, with very long mean free paths, rather large

pores are already able to block a large fraction of that heat. For non-alloys, heat

is carried in a larger frequency range, so even if the pores can block the long mfp

phonons, there is a non-negligible amount of shorter mfp phonons which still requires

smaller pores in order to be affected. (A similar behavior has been identified in the

case of nanodots embedded into a matrix [60].)
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Figure 2.17: (A) Thermal conductivity of Si, Ge and Si0.5Ge0.5 at 1% and 10% porosity,

normalized by their bulk values. (B)Thermal conductivity of Si and Si0.5Ge0.5 at 30% and

60% porosity, normalized by their bulk values.

In order to better assess the size effects, results can be compared with the macrop-

ore analytical limit, κmacro = (1− ε)κ0. Fig. 2.17(B), shows κ/κ0 for a small porosity

of 1%. For large pores the macroscopic limit 1− ε is retrieved. Size effects are more

appreciable for SiGe than for Si, consistently with our previous discussion.

This is illustrated in Fig. 2.18. This figure shows, for each value of the mean free

path Λ, the contribution to the bulk thermal conductivity of all phonons having mean

free paths shorter than Λ.

For SiGe most of the heat is carried by phonons with mean free paths longer than

10 µm. In contrast, in Si, a significant fraction of the heat is carried by phonons with

shorter intrinsic mean free paths, which are less affected by the introduction of the

pores.
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Figure 2.18: Relative contribution I(Λ) to the thermal conductivity associated to phonons

with mfp’s shorter than Λ, plotted as a function of Λ, for bulk Si and Si0.5Ge0.5 at room

temperature. (I → 1 in the limit Λ→∞.)

Finally, it is interesting to look at the temperature behavior of the thermal con-

ductivity of these systems. It is experimentally known that phonon scattering with

pores or cavities can mask interphonon scattering, thus rendering the effective thermal

conductivity nearly independent of temperature[85, 86]. Our calculation also yields

this effect, as shown in Fig. 2.19. As expected, the effect is more pronounced for

smaller pore sizes. SiGe is more strongly affected than Si at comparable pore sizes,

for the reasons explained in the previous paragraph.
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Figure 2.19: Temperature dependence of thermal conductivity for different pore sizes, for

Si and Si0.5Ge0.5 at 30% porosity.

The remarkable differences just described between the thermal conductivities of

alloy and non-alloy nanoporous materials imply that nanoporous alloys may be very

advantageous for certain applications. For example, nanoporous materials have been

proposed as potentially interesting thermoelectrics [66, 87]. Difficulty to produce

nanosized pores may however be an obstacle for their synthesis. Furthermore, the

pore surfaces might in some cases act as charge traps and considerably decrease

electron mobility [88]. Using a porous alloy instead would allow to take advantage of

the thermal conductivity reduction at much larger pore sizes. Thus, they would be

easier to synthesize, and additionally their surface to volume ratio would be smaller

than in the non-alloy case, minimizing the problem of electron scattering by surface

charges.
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2.5 conclusion

1. By Monte Carlo simulation we have accurately evaluated the phonon mfp’s of

parallel nanoporous materials.

2. We have found that a previously used cylindrical geometry approximation yields

an inadequate description of the actual mean free paths in the real system.

3. The behavior of the mfp with pore size and porosity can be understood as a

combination of a wire and film behavior, and a suitable interpolation formula

has been provided that accounts well for all the MC results.

4. For small pores, calculation of the thermal conductivity using the correct mfp’s

yields results considerably lower than those predicted in earlier publications.

We have then investigated the thermal conductivity of porous Si, porous Ge,

and porous SiGe alloy, obtaining an important qualitative difference between

the alloy and the non-alloys.

5. The thermal conductivity of the alloy is strongly affected by pores even at

large (1 µm) diameters. In contrast, the thermal conductivity of Si or Ge is

only affected when the pores are considerably smaller (< 100 nm), due to the

rather different competing phonon scattering mechanisms acting in alloys and

non-alloys. These remarkable differences are highly relevant for applications

targeting thermal conductivity reduction, such as nanostructured thermoelec-

tric materials, where we have shown that the use of an alloy is potentially

advantageous.
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3.1 Introduction

A current major challenge in thermal physics is the control and manipulation of

phonons, the quantized modes of vibration of the lattice, and hence the heat trans-

fer at small length scale [30, 29]. Such control via nanoengineering, also termed

nanophononics[89], may one day enable the development of thermal logic components

analogous to those existing in electronics like thermal rectifiers [90, 91, 92], diodes

or logic gates and memories [93]. The modification of phonon transport in nanoscale

systems as compared to the bulk has been at the core of rare but significant experi-

ments at low temperature [94, 95, 96, 97, 98, 50]. The effects of surface roughness and

contact resistance on phonon transport through nanowires and nanotubes has been

studied in numerous publications[59, 99, 100, 101, 102, 103]. However, only one work

has investigated the effects induced by changes in the conductor’s geometrical shape,

in the particular case of a carbon nanotube (CNT)[104]. That experiment showed

that strong bending of the CNT does not affect phonon trnasport significantly. In
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contrast, in this chapter we show that changes in geometrical shape can strongly af-

fect heat flow through Si nanowires. By engineering serpentine shaped nanowires,

the phonon transmission is reduced by nearly 40% at temperatures below 5K. Ex-

periments on this special kind of structure have been successfully carried out by our

collaborator [105]. We will show that this amount of reduction is strikingly large and

cannot be understood by a simple Casimir type model. We have performed a more

detailed transmission function analysis, which unveils the fact that transverse modes

are strongly filtered out at the interface between the nanowire and the thermometer.

This model yields a very satisfactory agreement with experimental measurements.

Figure 3.1: SEM pictures of the different studied systems. These nanowires are fabricated

and experimentally characterized by J-S Heron et. al., in Institute Néel. Ref.[105] A, The

straight nanowire 10µm long with a section of 200nm×100nm; it will be used as the reference

sample. B, Top view of the serpentine nanowire composed of two double bend connection to

the heat bath, the phonon trap.

The total length of each nanowire structure has been purposely set to 10µm in

order to easily compare the thermal measurement of the two systems. The section of

the nanowires (100 nm by 200 nm) as well as the double bend structure (400 nm long)

are of the order of the dominant phonon wave length (λdom ∼= hvs/2.82kBT , where vs
is the sound velocity [18]) in silicon at 1K: λdom ∼=100 nm. We have considered the

exact geometry and the dimension for the numerical calculation.

The hottest point is located in the middle of the systems, and heat flows from the

center of the nanowire to the heat bath on both sides. Therefore, the nanowire length,

L, must be taken as the distance between the center of the structure and the heat
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bath, i.e. 5µm. For the measurement of the thermal conductance, a typical power

of a few tens of femtowatts is dissipated in the niobium nitride (NbN) transducer

deposited on top of the nanowire creating a temperature gradient smaller than 1mK

[52].

3.2 Conductance of nano wire

The values of the experimentally measured thermal conductance are around a few

universal quanta of thermal conductance σ0 = π2k2
BT/3h ∼ 10−12TW/K2. The uni-

versal quantum of the thermal conductance for the 1-D wire is theoretically calculated

in the Ref.[58] starting from the Landauer formula for heat flux[106, 107].

3.2.1 Landauer Equation and Quantum of thermal conductance

From the Landauer formula, the energy flux carried by a wire connecting two reser-

voirs labeled R and L can be written as,

Q̇ =
∑
α

∫ ∞
0

dk

2π
~ωα(k)vα(k)(ηR − ηL)Tα(k) (3.1)

where ωα(k) and vα(k) are the frequency and velocity of mode α of the quantum

wire with wave vector k, Tα(k) is the phonon transmission probability through the

wire, and ηi(ω) = 1/(e~ω/kBTi − 1) represents the thermal distribution of phonons

coming from the left and right, assumed to be a Planck distribution at temperature

Ti.

Now as the phonon velocity vα(k) = ∂ωα/∂k is canceled by 1-D density of states

g(ωα) = ∂k/∂ωα, Eqn.3.1 transforms to,

Q̇ =
1

2π

∑
α

∫ ∞
0

dω~ωα(ηR(ω)− ηL(ω))Tα(ω) (3.2)

The reservoir to reservoir thermal conductance of the wire is,

σ = Q̇/∆T (3.3)

where ∆T = TR − TL is the temperature difference between the reservoirs.

Now from Eqn.3.2 and Eqn.3.3 the harmonic phonon thermal conductance can be

written as[59],
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σ(T ) = Nα

∫ ∞
0
T (ω)~ω

df

dT

dω

2π
, (3.4)

Where df
dt = ηR−ηL

∆T = ~ω
kBT 2

e~ω/kBT

(e~ω/kBT−1)2
and Nα is the number of massless modes.

In a suspended wire, there are 4 acoustic modes, as described in figure.3.2

Figure 3.2: Different modes in the wire.

For the suspended nanowire, when we assume perfectly adiabatic contact between

the thermal reservoir and the ballistic quantum wire, we can consider T (ω) = 1 and

the solution of the Eqn.3.4 becomes σ = Nα
k2Bπ

2T
3~ . Therefore, the theoretical low

temperature thermal conductance of a nanowire with no contact resistance is 4σ0[58].

The values of the thermal conductance are thus presented in unit of 4σ0 (Fig.3.8),

and correspond to the 5µm long nanowires ( half of the total length of the structure).

3.2.2 Transmission function

In the real geometry, where the thermal conductance is not independent of the

length, L of the systems, we can describe the thermal conduction by the concept

of transmission channels, as it was shown by Landauer for the electron transport in

the small microelectronic system[108]. At frequencies above the quantized regime

(ω > 2πc/
√
A ∼ 0.2THz, in our wires, where A is the wire’s cross section), phonon

dispersion are practically bulk like, the transmission function simply can be written
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as [59]:

T =
A

4π2

3∑
α=1

∫ ω/cα

0
t̃α(~k⊥, ω)d2k⊥ ≡

A

4π

3∑
α=1

tα(ω)
1

c2
α

ω2, (3.5)

where tα(ω) ≡
∫ ω/cα

0 t̃α(~k⊥, ω)d2k⊥
/ ∫ ω/cα

0 d2k⊥ is the average phonon transmission

probability across the structure at that frequency.

The transmission probabilities tα(ω) are the most important magnitudes in the

expression Eqn.3.5, since they account for all the geometry related effects on the

thermal conductance. They can be adequately modeled as the sum of the inverse

transmission probabilities associated with the different scattering obstacle along the

wire[109].

There is contribution from the nanowire’s boundary, proportional to the ratio

between the boundary mean free path , λ(ω) and the total nanowire length L. If the

wire is sufficiently long so that all phonons are transported diffusively, t is

t(ω) =
4

3

λ(ω)

L
, (3.6)

where L is the wire length and λ(ω) is the average phonon relaxation length. This

equation yields the Callaway formula for bulk materials [50] when inserted into

Eqs. 3.4 and 3.5.

For shorter L, a good interpolation formula between the ballistic and diffusive

regimes is[110]

t(ω) ' 1

1 + 3L
4λ(ω)

, (3.7)

which correctly yields the diffusive limit when L→∞ and ballistic limit when L→ 0.

At frequencies lower than ωl ∼ 2πc/
√
A, only the four lowest nanowire acoustic

modes exist, and Eq. 3.5 is no longer valid. Instead we have T =
∑4

i=1 ti(ω), where

0 < ti < 1 is the transmission probability of each of the four modes. If the contact

junction is abrupt, the transmission is dominated by the contact. Chang and Geller

have provided analytical expressions for the transmission probabilities, 0 ≤ t(ω) ≤ 1,

from the contact into the four different branches. The largest contribution is that of

the longitudinal acoustic branch, which at low frequency is [111]:

tcontact↔LA ' 0.923
A

π

ω2

c2
t

. (3.8)

Except for the just slightly different prefactor, this expression is identical to the

ballistic transmission function expression valid at higher frequencies, Eq. 3.5. The
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other branches depend more rapidly on frequency so their contribution to the con-

ductance is smaller. Expression 3.8 is only valid at low frequencies, and it is not

applicable for frequencies larger than ct
√
π/0.923/

√
A (or else t would become larger

than 1.) However, for fitting purposes, we will assume this to be the form of the

transmission function in the quantized regime, for ω < ωl, including an adjustable

parameter of order 1, fadj , as

Tlow ' fadj0.923
A

π

ω2

c2
t

. (3.9)

The ultimate validity of this approximation is only confirmed by its ability to match

the experimental data.

There are also significant contribution in the phonon transmission from the geo-

metrical structure of the nanowires. By creating special kinds of geometrical struc-

tures we can provide obstacles to the phonon transmission along the wire. In the case

of the nanowire geometry in Fig.3.1.(B), the serpentine in the wire provides this kind

of obstacle to phonon transport. considering the contribution, t−1
obs from this kind of

localized obstacle, the final transmission equation can be written as,

t(ω) ' 1

t−1
obs + 3L

4λ(ω)

. (3.10)

3.2.3 Mean free path

In Eqn.3.10, we have seen that the transmission probability calculation of the wire

depends on the mean free path, λ(ω) of the phonon on that geometry. Therefore,

accurately defining λ(ω) becomes important for the proper calculation of the ther-

mal conductance. For the low temperature Casimir proposed a model of thermal

transport[112] due to surface scattering of the wire. According to the Casimir model,

thermal transport is described in the following way: the phonons are diffracted in

all directions when they reach the surface of the wire, scattering occurs only at the

boundaries of the nanowire, which are considered as perfect black bodies. Thus the

mean free path is limited only by the cross section of the wire for the perfectly rough

surface. For the different geometrical nanowire the mean free path, λCas can be cal-

culated from Eqn.2.7 given in Chapter.2 . The circular nanowire has mean free path

λCas = 2R and rectangular nanowire have λCas = 1.12(LA ×LB)1/2, where LA ×LB
is the cross section of the wire. Later this Casimir model was modified by Ziman

[113] for the case when the surface is not totally rough. According to this model a
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Figure 3.3: (A). Scattering at the totally rough surface (p = 0). (B). Scattering at perfectly

smooth surface(p = 1).

phenomenological parameter p(l, T ) can be considered which describes the probabil-

ity of the phonon of wave length, l at the temperature T to be specularly reflected.

The parameter p(l, T ) is defined between the p = 0, totally rough surface, an incident

phonon on the surface will be scattered in all directions (Fig.3.3(A), this is the limit

of the Casimir model for the perfectly rough surface) and p = 1, perfectly smooth

surface, every single phonon will be specularly reflected when hitting the surface(

Fig.3.3 (B)).

We can express the mean free path now as[18]

λph = λ(l, T ) ' p(l, T ) + 1

p(l, T )− 1
λCas. (3.11)

This definition of the scattering is the same as in the flow of the vary rarefied gas

in the tube known as Kundsen gas [114, 115].

The value of p is not constant, it depends on the wave length of the phonon and the

temperature. As the temperature decreases dominant phonon wave length increases,

and the value of p starts to increase. The same surface can be rough for the small

wave length phonons and very smooth for the high wave length phonons. As we see

in Fig.3.4.

3.2.4 Surface roughness

Now parameter p(l, T ) can be expressed as a function of the root mean square devia-

tion of the height of the surface from the reference plan, η. It was named as asperity

parameter by Ziman.

When a plane wave incidents normally on the surface, a reflected wave will be

propagated or retarded with a phase, φ depending on this asperity parameter as,
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Figure 3.4: Same surface appears smooth for long wave length and rough for the small

wave length.

φ =
4πη

l
(3.12)

Now the probability of specular or diffusive scattering will be

p′(l, T ) = e−πφ
2

= e−
16π3η2

l2 . (3.13)

Eqn.3.13 very well defines the relative proportion of the specular or diffuse reflec-

tion. When l << η, p′ is very small, the wave after the reflection get or loss phase

randomly and scattered very widely. For larger values of l, much exceeding the as-

perity height, the change in phase will be negligible and the reflection become totally

specular at p′ closed to unity.

The asperity is not fixed for the surface, there may be some space where it is

perfectly smooth again with some area with scratches and some other irregularities.
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Therefore, there is a probability for the η itself, P (η). Assuming an exponential

distribution function for P (η), we can express it as [98],

P (η) =
1

η0
e−η/η0 , (3.14)

where η0 can be seen as the mean value of the roughness.

Therefore, the average value of p′ becomes,

p′(l, T ) = p(l, T ) =

∫ ∞
0

P (η)e−π
16π2η2

l2 dη ∼=
∫ ldom/4π

0
P (η)dη. (3.15)

From Eqn.3.15, the polish of the surface can be understood as a function of the

wave length. The fraction of phonon l which will be specularly reflected, is a measure

of the fraction of the area of the surface where the asperities are less than l/4π in

height.

3.3 Transmissivity calculation by MC Simulation

We have done a MC simulation to understand the phonon transport in the serpentine

nanowire (see Fig. 3.1) and straight nanowires. For the MC method, we consider

the phonon as a particle with very large mean free path. Then we launch phonon

(particle) from the one side of the wire and calculate the number arrives on the other

side. To make similar as the 3ω experimental method we consider half length of the

wire (5µm) as a system length. Because in 3ω method the heater was placed on the

middle of the wire and the two thermometer at the end side. Therefore, the heat

gradient is created only on the ( 5µm) length with one kink (Fig.3.5(A)).

We choose the random direction on two dimension (2D) by choosing an random

number Rθ between -1 to 1. Therefore the direction of the phonon becomes Λ0Sinθ =

Λ0Rθ. Where Λ0 is the phonon mean free path which larger than the nano wire length

L. Therefore, we can consider that phonon is only colliding with the nanowire surface

before pass through the nano wire length (for specular reflection) or may be reflected

in the same side (for diffusive case). When the surface is totally specular the incident

phonon on the wall of the wire reflected with the same angle in opposite direction(

Fig.3.5(B,C)). Then we also make a random sample of the surface roughness. For this

we choose a random number Rs between 0 and 1 and we define the specularity of the

surface by a number Ps. When phonons incidents on the surface, a random number

was generated . If the random number, Rs, is less than the number Ps the reflection
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is specular otherwise it is diffusive. When the reflection is diffusive it can randomly

reflect phonons in all directions (Fig.3.5(D)).

Figure 3.5: (A) The actual length of the nanowire is divided by two because the heater

for the experimental measurement is placed on the middle of the wire . (B) Totally specular

reflection on the straight nanowire, all the phonon transmitted to the opposite side. (C)

Totally specular reflection on the nanowire with one kink. (D) Diffusive type of reflection

from the nanowire surface for the kink nanowire.

We did the calculation of the transmissivity for the straight and the bent wire by

changing the specularity of the wire from totally specular (Ps = 1) to totally diffusive

(Ps = 0). For the totally specular wire all the phonons launch from the one side of

the wire pass through the wire. Therefore the transmissivity is 100 %. In the case

of the wire with kink we found the transmitivity is only 40 %. So implementing this

bend structure we can block the 60 % of phonons to pass through the wire. When we

change the specularity, the difference between the phonon transmitivity of the bent

and straight wire decreases and in the totally diffusive case transmissivity for the two
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Figure 3.6: Transmissivity(T ) of the straight and bent nanowire for the different specularity

(p).

wires are almost same (See Fig.3.6). Because in this case the phonon mean free path

became comparable to the nanowire cross section (Casimir’s mfp), as the cross section

of the both wire are same, the transmissivity also becomes almost equal.

Figure 3.7: calculated specularity (p(l, T )) for the different wave length(l) of phonon at 2K

temperature.
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Now from Eqn.3.14 and Eqn.3.15, we can calculate the transmissivity of the

phonon for the different wave length. In the case of the nanowire we made the

dimension of the wire such that the dominant phonon wave length, ldom >> η. For

our nanowire the average asperity, η0 is 4.4 nm. From Eqn.3.15 we have found that

the most of the phonon will be reflected specularly from the surface of the wire at

very low temperature.

3.4 Results

Figure 3.8: Thermal conductance of 5µm long nanowires normalized to four times the

universal value of thermal conductance versus temperature and the related theoretical fits.

The straight nanowire corresponds to the purple curve and the double bent nanowires (three

different samples) to the violet curves.
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Theoretical low temperature thermal conductance is equal to 4σ0. Thus the values

of the experimental thermal conductance in Fig. 3.8 are presented in units of 4σ0,

and correspond to the thermal conductance of 5µm long nanowires (half of the total

length of the structures).

Figure 3.9: Thermal conductance of 5µm long straight nanowires normalized to four times

the universal value of thermal conductance versus temperature. The curve 1 corresponds to

the thermal conductance calculation with mean free path λCas and speed of sound 9000m/s,

the curve 2 corresponds to mean free path λCas and speed of sound 6000m/s, the curve 3

corresponds to the mean free path λph and speed of sound 9000m/s and curve 4 corresponds

to the mean free path λph with an additional resistivity from the interface and speed of sound

is 9000m/s

In Fig. 3.8, we present the thermal conductance measured on the double bend

nanowires (DBNW) in purple as compared to the measurement made on the straight

nanowire in blue. The measurement on the three DBNW are quite reproducible,

giving a value at 3K of the order of ∼ 4σ0, i.e. 12 pW/K. As expected, the thermal
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conductance of each wire is continuously decreasing with the decrease of temperature.

However major differences can be seen between the straight wire and the DBNW.

The latter are conducting heat much less than their counterpart. The only difference

between the two is the presence of the serpentine. This is the main result of this study:

via a purely geometrical effect phonon transport can be strongly blocked, resulting in

a reduction of the thermal conductance between 20% and 40%.

In order to understand this significant reduction of heat transfer in the DBNW,

we have performed a numerical simulation of the phonon transport process through

the structure. In the real experiment, heat is injected in the wire from the NbN

transducer placed on top of it, all throughout the wire length. The largest fraction of

this injected heat enters around the center of the structure, where the temperature

gets highest. In the simulation we have made the simplifying assumption that heat

is injected at the center of the structure, dissipating towards the two wire edges and

into the bulk monolithic contacts. We thus calculate the thermal conductance of half

the wire, which will be compared with the experimental results presented in Fig. 3.8.

First we did the simulation for the straight wire using equations 3.4, 3.5 and 3.10.

For the straight wire t−1
obs will be 1. The thermal conductance of the straight wire

at this temperature range can not be explained with the simple Ziman or Casimir’s

model. In the Fig.3.9 we have shown the conductance calculated with the different

transmission functions.

Considering totally diffusive surface as Casimir’s model (when transmissivity be-

comes 4λ
3L) and the average speed of sound as 6000m/s, we have obtained very high

conductance (line 2 in the Fig.3.9) and with the average speed of sound as 9000m/s,

the conductance (line 1 in the Fig.3.9) is lower than the experimentally measured

values. Now considering the correction term for the roughness as given by Eqn.3.11,

thermal conductance ( line 3 in the Fig.3.9) of the nanowire with the dimension

100 × 200nm2 and length 5µm and speed of sound 9000m/s is still higher than

the experimental values. Therefore, to fit the experimental result, we considered

an additional resistive contribution at the interface between the thermometer and the

nanowire, in the form of an intrinsic reduction of the transmission probability of the

transverse modes. This additional contribution tTinterface is added as in Eq. 3.10. This

implicitly assumes that scattering with asperities does not mix different branches. Us-

ing a value of tTinterface = 0.017, and a mean asperity of 4 nm yields a very good match

between theoretical and experimental curves (line 4 in Fig.3.9). We stress that this

only works if it is the transverse modes that are blocked. Trying to block the longitu-

dinal mode only, or all three modes in the same amount, does not yield a reasonable

agreement with experimental data. Further support of this hypothesis comes from the

fact that the wire with the serpentine can be fitted very well using this assumption,
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with the same parameters as for the straight wire (see next paragraph). Additional

investigation of thermal transport across the NbN:Si interface might provide further

evidence on whether this strong mode selectivity is truly occurring.

Figure 3.10: Thermal conductance of 5µm long bend nanowires normalized to four times

the universal value of thermal conductance versus temperature. The blue curve corresponds

to the thermal conductance calculation with tobs = 0.4 and speed of sound 9000m/s and the

green line corresponds to the tobs = 0.2 and speed of sound 9000m/s.

To model the conductance of the nanowire with the serpentine, we use Eq. 3.10

in place of Eq. 3.7. The simplest is to assume that tobs is frequency independent.

This allows us to estimate its value by fitting the experimental curve. A best fit is

obtained for tobs = 0.2( corresponds to the green curve in Fig. 3.10 and violet line in

Fig.3.8).

Blue line in the Fig.3.10 corresponds to tobs = 0.4. We have obtained tobs = 0.4 for

the bent wire with the MC simulation. Calculated thermal conductance with tobs =

0.4 is little bit higher than the experimentally obtained values. So we consider tobs
equal to 0.2 which is the same order as the numerically obtained value. The numerical

discrepancy with the best fit result may be due to some of the simplifying assumptions

used in the model, and the classical character of the Monte Carlo approach, and/or
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some degree of experimental uncertainty. The model thus allowed us to estimate an

intrinsic 80% reduction in phonon transmission probability due to the serpentine. The

thermal conductance reduction is not as large, because this effect is acting in series

with the resistive effect of asperity scattering, which masks the former.

The fitted mean asperity value of 4 nm is of the same order of the SEM observed

irregularities, thus the asperity treatment developed above appears to be adequate.

The lowest temperature part of the measurements matches well with the theory for

a value of fadj = 0.5, which is of order 1 as expected. This confirms the adequacy of

approximated Eq. 3.9 to analyze the low temperature conductance( Fig.3.8).

3.5 Conclusion

1. We have obtained a striking 20-40% reduction of conductance at low tempera-

ture due to a double-bend junction in the nanowire.

2. To model this reduction theoretically, we find that a simple Casmir’s type model

is not adequate to explain these results. Therefore, we adopted an frequency

independent transmissivity calculation for these nanowires.

3. The experimental conductance of these nanowires only can be explainable with

the phonon of the longitudinal branch. We have blocked the transverse phonon

in the theoretical calculation. The result can not be obtained by blocking the

transverse branch and longitudinal branch of same amount. Therefore, we con-

clude that only longitudinal phonon frequency can transmitted at the contact

of the wire and thermometer.

4. The geometrical effect reported could be further enhanced by using nanowires

having very smooth surfaces. Furthermore, it might be possible to implement

the bent structure in smaller nanowires at the scale of 1 nm to be effective at

room temperature.
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4.1 Introduction

Recent experimental discovery that nanostructured alloy materials can improve the

figure of merit, ZT , has lead us to an investigation on the nanostructured SiGe

alloy material. In some recent publications[116, 117], we have observed that nanos-

tructured bulk alloys pose very low thermal conductivity compared to their bulk

materials[118, 119]. The same approach has also been demonstrated in Bi2Te3 and

other alloys [120, 121, 122]. The main reason behind these enhancements is an im-

portant reduction in lattice thermal conductivity due to increased phonon scattering
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at the grain boundaries. This idea had been proposed some decades ago, and theo-

retical analyses predicted the feasibility of reducing κ and enhancing ZT in SiGe by

grain boundary phonon scattering [123, 124]. Experimental decrease of κ was also

observed [85]. During the last two decades, bulk SiGe alloy has been analyzed very

rigorously due to their low thermal conductivity, which is very useful for different

modern thermo electric applications [117, 125, 126, 127]. Although bulk SiGe alloys

poses low thermal conductivity for the alloy disorder scattering, the figure of merit,

ZT = S2σT/κ, does not improve as expected[127]. Recently nanostructured SiGe

bulk material, fabricated by ball milling and hot pressing procedure, has shown con-

siderable improvement on the figure of merit. In these nanocomposite alloy materials

the grain size is ≈ 15− 50 nm, so the phonon which have mean free path comparable

with the grain size, are scattered very much by the grain boundary and the electrons

which have much lower mean free path are not affected so much. This grain bound-

ary phonon scattering further reduced the thermal conductivity and also improved

the ZT values. This nanostructured SiGe will be very useful in the power generator

application[128]. Recently Silicon-Germanium alloy has been used for power genera-

tion in temperature range 600̊ C − 900̊ C in radio isotope power generators (RTGs)

for deep space missions to convert radio isotopes energy into electrical power. The

optimal efficiency of the power generator is defined by Eqn.4.1

η =
Th− Tc
Th

√
1 + ZT − 1√

1 + ZT + Tc/Th
, (4.1)

where Th and Tc are the hot-end and cold-end temperature of the thermoelectric

materials, and T is the average temperature of the system between Th and Tc. So it

is important to use materials with high ZT value for this kind of application and an

improved and better ZT will provide more energy efficient power generation.

In this chapter we will present experimental measurements of the thermal conduc-

tivity, Seebeck coefficient and electrical conductivity at high temperature of Si0.8Ge0.2

alloy materials. We also present a theoretical model to predict these thermo electric

properties of SiGe alloys at different temperature for different carrier concentration

and for different volume fraction of Ge.

ptype and ntype Si0.2Ge0.8 were fabricated by ball milling and hot pressing pro-

cedure. This fabrication technique is very simple and also very low cost. Therefore

we can use this method very easily for the commercial production of TE materials.

The ball-milling and hot pressing method has been employed to produce thermo-

electric composites since 1960′s. In the early stage, only micrometer sized particles

were obtained from the ball milling. Grain size of these particles varies from several

micrometers to one hundred micrometers. Thermal conductivity of these hot-pressed



4.1. Introduction 71

materials decreased from that of the single crystal mainly due to imperfection scat-

tering by the boundary. The ZT peak of the materials consisting of micrometer size

grain was increased by nearly 20%. Recently, using high-energy ball-milling proce-

dure, large quantity of nano size powder can be produced. After the hot-pressing the

size of the grains still remain in the nano meter range. Here, first, nano powder is

made by ball milling. The size of nano powder grains are in average 5−15nm. These

sizes depended on the milling time. Then the bulk nano composites were made by an

optimized mechanical alloying step. Hot Uniaxial Pressure (HUP) and Spark Plasma

Sintering (SPS) have been used for sintering the powders, enabling very different

thermal ramp time scale during compaction cycles . For the former method, heating

is generated by standard thyristor with a typical thermal heating rate of 10̊ C/min,

while the latter reaches 300̊ C/min. After the hot pressing, we got the bulk nano

composite materials Fig.4.1. The detailed fabrication technique of these materials

was given in Ref.[129].

Figure 4.1: Si0.2Ge0.8 bulk nano composites materials. This materials was fabricated by

the group in LITEN/DTBH/LCTA Ref.[129].

Then we measured the thermal diffusivity, α, by the laser flash technique and the

specific heat, Cp, by differential scanning calorimetry (DSC). After that we calculated

the thermal conductivity for different temperature by κ = αρcp, where κ is the thermal



72 4. Thermo Electric Properties of SiGe NanoPowder

conductivity, and ρ is the density of the materials. Electrical conductivity was also

measured by four probe method and Seebeck coefficient was measured by a tool

applying temperature difference on the two sides of the materials.

4.2 Thermal Conductivity

Thermal conductivity of a nanostructured material can differ from the bulk material

due to several reasons. First, boundary and interface scattering effects may dominate

over the volumetric effects such as umklapp and alloy scattering. Secondly, since the

nanostructured materials are generally made by technique such as chemical vapor

deposition, and sintering methods, they may contain micro-structure or porosity that

is different from the bulk sample.

4.2.1 Experimental Measurement

There are different techniques to measure the thermal conductivity of materials.

These techniques can be divided in two general categories depending on the time de-

pendent of the heating source, i.e. whether the heating is steady or transient. Steady

state techniques use a time independent heat flux to impose a temperature gradient

on the sample. The temperature difference over a known distance is then measured

and the thermal conductivity is readily calculated. Steady state techniques offer the

advantage of generally being simple to use, however they have several drawbacks.

One such disadvantage is that heat losses due to blackbody radiation can result in

a large amount of error. Furthermore, low conductivity samples can be particularly

troublesome as a larger fraction of heat is lost to the surroundings. This error can be

reduced through the use of radiation shields or carefully shaped samples, however this

complicates the experimental setup and sample preparation. Another shortcoming is

that long periods of time are often required in order to reach steady state conditions.

Additional problems arise for steady-state measurements of thin films as temper-

ature gradients across a film are often small and the process of measuring these small

temperature differences can often influence the actual temperature itself. Moreover,

in order to measure the temperature gradient across a film, extensive processing may

be required to place a temperature sensor on both the top and bottom of a film. This

makes it difficult to measure the conductivity of a particular film directly without

having to fabricate separate samples, which may be different than the actual sample

of interest.

Transient techniques utilize a time-dependent heat flux, typically in the form of a

periodic heat source or as a heat pulse, and measure the time dependent temperature
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change and compare this value with an analytical or numerical solution of the heat

equation. As a result of the time dependent nature of the heat flux, instead of mea-

suring the thermal conductivity directly, most transient techniques actually measure

the thermal diffusivity α, which is defined as κ/ρCp [130] where κ is the thermal

conductivity, ρ is the density, and Cp is the specific heat per unit mass. Therefore, in

order to extract the value of the thermal conductivity, the density and specific heat

must also be known which can be a source of uncertainty. One significant advantage

of transient techniques is that long equilibration times are not needed, as most tech-

niques require only a few periods of heating which generally is on the order of a few

seconds.

For the SiGe nano composite materials we used the Laser Flash Technique to

measure thermal diffusivity and specific heat for different temperature. The Laser

Flash Technique is based on the transient approach.

Figure 4.2: schematic diagram of Laser Flash Technique.

Using this method, the front side of a plane-parallel sample with a well defined

thickness is heated by a short light or laser pulse. The resulting temperature rise on

the back surface is measured versus time using an infrared detector. Analyzing the

measured detector signal with appropriate mathematical models yields information

on thermal diffusivity and the specific heat of a material. Together with the density

of the material the thermal conductivity can be determined.

Samples are generally prepared with diameter of 10 mm, and 1 mm width. The

sample is then placed inside a holder and the front surface is heated by a short light

pulse. The temperature rise on the rear surface is measured versus time using an IR

detector.
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Figure 4.3: Thermal diffusivity and specific heat measurement by Laser flash.

The total thermal conductivity was calculated from κT = α× ρ×Cp, by individ-

ually measuring α and cp. Thermal diffusivity measurement of different samples was

given in Fig.4.4

Figure 4.4: Thermal diffusivity Vs Temperature for the ptype and ntype Si0.8Ge0.2, mea-

sured by the Laser flash technique.
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And specific heat was measured by differential scanning microscope(DSC),

Figure 4.5: Specific heat Vs Temperature for the ptype and ntype Si0.8Ge0.2, measured by

Differential scanning calorimetry .

4.2.2 Theoretical model of Lattice Thermal conductivity

The lattice thermal conductivity of the alloy can be defined by using callaway model,

κla =
1

πc

∫ ωc

0

dfB
dT

τ(ω)ω2~ωdω/2π, (4.2)

where τ(ω) is the total relaxation rate, c is the speed of sound in the material, and

fB is the Bose distribution. The relaxation rate of bulk Si(1−x)Gex due to anharmonic

scattering, alloy scattering and ionized impurity is given as[83, 84, 79]

1

τan
= BTω2e−C/T (4.3)

1

τal
= x(1− x)Aω4 (4.4)

1

τdop
= Dω4 (4.5)

where A, B, C and D are parameters adjusted for the high T dependence of

the single crystal materials. The anharmonic scattering is a gross simplification of

Umklapp Scattering. For doped n type and p type nanocomposites materials, we
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included the extra scattering rate due to the doping concentration. The impurity

scattering and alloy scattering are derived from the Rayleigh formula.

The grain boundary scattering for the SiGe alloy can be defined from Ref.[131].

1

τgb
=

v

LB1
(4.6)

where v is speed of sound in SiGe and L is grain size of the nano composite and

B−1
1 = 1

36γ
2ϕ2. Here γ is the Gruneisen constant for SiGe. Value of the Gruneisen

constant of SiGe for different Ge volume fraction is given in Ref.[132] as γ = 1.01. ϕ

is the angle of misfit.

4.3 Electrical Properties

4.3.1 Experimental Measurement

Experimental measurement of the electrical conductivity, Seebeck coefficient and mo-

bility was performed by collaborators of our group on the SiGe samples [133]. These

measurement techniques are from the sate of art method. Electrical conductivity of

the samples are measured by the four probe point technique. For some samples we

had performed Hall effect to the carrier concentration and carrier mobility.

To measure the Seebeck coefficient we applied a temperature gradient. Cold-side

was fixed at 25̊ C and the temperature of the other side was increased and then

we measured the voltage created by this temperature difference. We get a curve of

voltage versus the difference of temperature and the slope of this curve is the Seebeck

coefficient.

4.3.2 Theoretical model for the Electrical Properties

To model the electrical conductivity, Seebeck coefficient and electronic part of the

thermal conductivity, we use the Boltzmann transport equation in the relaxation

time approximation. Previously different authors modeled the thermo electric prop-

erties of bulk SiGe[134, 118, 135], by considering different scattering mechanisms.

In Ref[118, 136], they parameterized the acoustic scattering and ionized impurity

scattering to explain the experimental result for the degenerate SiGe bulk materials.

These two authors predicted different values of DOS effective mass, the dielectric

constant and the deformation potential. From the Ref[136], the intervalley scattering

and the alloy scattering is not also clear. In Ref[135, 137], the authors had defined the

alloy scattering for the non-degenerate values, and as in the degenerate materials the
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doping concentration is very high, there will be significant change in alloy scattering

and ionized impurity scattering. Here we present theoretical calculation of Seebeck

coefficient and electrical conductivity and electronic part of thermal conductivity by

considering relaxation rate due to the acoustic scattering, τac, intervally scattering,

τin, impurity scattering, τii, and alloy scattering, τal. For the SiGe alloy materials we

used two conduction bands and one valence band extrema. As in the SiGe alloy have

two conduction band minima at X(< 111 >) and L (< 100 >) point. Since SiGe is

a non polar material and intervalley scattering in rate is canceled due the selection

rule[138]in this kind of material, we can consider there are no inelastic scattering.

Therefor the relaxation time approximation is appropriate for the SiGe alloy.

In the relaxation time approximation, we can express the transport equation

as,[139]

σ = e2

∫ +∞

−∞
dε(−∂f0

∂ε
)Σ(ε) (4.7)

S =
e

Tσ

∫ +∞

−∞
dε(−∂f0

∂ε
)Σ(ε)(E − δ) (4.8)

κel =
1

T

∫ +∞

−∞
dε(−∂f0

∂ε
)Σ(ε)(E − δ)2 − σS2T (4.9)

For the parabolic band approximation the transport distribution function can be

written as Σ(ε) = N(ε)v(ε)τ(ε) , where v is the group velocity of the carrier, N(ε)

is the density of states, e is the carrier charge, δ is the level of chemical potential

at a particular temperature, T , and τ is the total relaxation rate. We get the total

relaxation rate by using Mathiessen’s rule,

1

τ
=
∑ 1

τi
(4.10)

Now the different relaxation rates can be expressed as explained below [140, 137].

Electron scattering by lattice vibration, i.e. by the the phonon eigenstates was de-

scribed by the Bardeen and Shockley[141]. Phonons disturb the lattice, that moves

the atoms from their original position in the lattice. An electron is affected by this

position changing and may liable to be deflected or scattered. For a parabolic band

considering isotropic valley, the differential scattering rate was proposed by[140]. The

relaxation rate for the acoustic deformation potential was given by

1

τac
=
e2kTE2

1m
∗

π~3cl
(4.11)
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where E1 is the intravalley deformation potential, cl is the longitudinal elastic

constant.

Acoustic relaxation rate 1
τac

is proportional to k and leads to nearly constant

mean free path. The corresponding partial mobility due to acoustic scattering is

proportional to T−3/2. All the parameter in Eqn.4.11 depend on the materials. For

Si, Ge, and SiGe we have listed all this parameter at Table.4.1 from literature.

The relaxation rate of electron scattering due to ionized impurity was given in

Eqn.4.12 [140].

1

τii
=

e4Nm∗

8πε20~3k3
(ln(1 +

4k2

β
−B) (4.12)

The relaxation rate due to ionized impurity 1
τii

, is approximately proportional

to 1/k3 and gave a T 3/2 partial mobility dependence, aside from screening factors.

Screening effects appears only in the logarithmic term and through the B term in

Eqn.4.12.Where B = 4k2/(β2+4k2), ε0 is the low frequency dielectric constant. When

the Born approximation (4k2/β2 >> 1) is valid, we can consider the screening length

as given by Dingle’s expression [138] neglecting the neutral impurity concentration.

The inverse screening length β is given by as

β2 = (e2/ε0kT )

∫
(k/π)2f(1− f)dk (4.13)

For the ntype f is the Fermi distribution function of the electron and for the

ptype it is the Fermi distribution function of the positive charge, i.e.; holes. In this

approximation we assume that all impurities are ionized. Besides that the other

approximation in this scattering is that the electron or hole interacts with only one

ionized center at a time.

For the indirect band crystal such as Si and Ge besides the above two scattering, we

have to include an intervalley scattering. We assume that various indirect equivalent

minima are isotropic and parabolic. In Si there are six isotropic valleys in conduction

band.
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Figure 4.6: First Brillouin zone conduction band valleys.

Now in these different valleys, there are two types of scattering, denoted by f and g

scattering. In Fig.4.7 below, from valley1 transition to valley 2 (g-scattering), requires

an X-directed phonon participating in an Umklapp process. For the transitions to the

remaining valleys (f-scattering), the phonon labeled f in the figure extends beyond

the first Brillouin zone. Hence, reduction of this same phonon to the first Brillouin

zone yields the phonon labeled S [27].

Figure 4.7: Scattering between Si-like minima consists of two different type scattering as

illustrated here [27].
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Electron effective masses for indirect band gap materials are generally large and

the Fermi energy level lies always very close to the band edge. Thus we can consider

parabolic band approximation for these materials and the relaxation rate can be

expressed as,

1

τin
= (N + 1− f−)

e2D2
e(Z − 1)m∗k−

e2πρ~2ωp
+ (Ne + f+)

e2D2
e(Z − 1)m∗k+

e2πρ~2ωp
(4.14)

where N is the total number of carrier, N =
∫
Z 1

4π3 4πk2f(k)dk .Z is the number

of isotropic valleys at each band. For Si, Z = 6 and for Ge, Z = 4. De is the

intervalley deformation potential.

f± is the distribution function evaluated at energy δ
′

= δ±~ωp, ~ωp is the phonon

energy. The intervalley scattering rate is proportional to k′ and at high temperature

it mimic the acoustic scattering and leads to a T−3/2 mobility dependence.

Though the mobility of different materials predominantly depends on the impurity

and phonon scattering, in the case of alloy materials it is also affected by disorder

arising from aperiodic atomic position and atomic potential. For alloy scattering the

relaxation rate can be expressed as,[137]

1

τal
= 2π(x− 1)x

A1(
∑

i fsiZigi(E)∆i)
2

gi(E)Zi
(4.15)

where i= X or L and g(E) is the density of carriers in a particular band minimum,

g(E) = (2m∗)3/2E1/2/4π2~2 and A1 = 0.95 × 105 is a parameter. The value of A1

is adjusted to obtain the experimental values. For SiGe ∆ is defined from Ref.[135].

x is the Ge volume fraction in the SiGe alloy, fs is the s fraction of the density of

states, ∆i is the band gap parameter for the indirect band gap materials. Zi is the

number of isotropic valley, in the case of SiGe number of Z depend on the Ge volume

fraction in the alloy. The values of all these parameters are listed in the Table.4.1.

Now for the nanostructured materials, we have defined a scattering rate due to

the grain boundary as

1

τgb
= v/l (4.16)
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Band structure parameter Symbol (Units) Value

Low frequency dielectric constant ε0/ε 11.7(1− x) + 15.98x

Longitudinal elastic constant cl(N/m
2) 19.02(1− x) + 15.03x

Inter-valley deformation potential,X/L E1 (eV) 7.5 (1-x) + 9.5 x

Number of equivalent valleys, X/L Z 6/4

Lattice mass density ρ(gm/cm3) 2.33(1− x) + 5.32x

Inter-valley phonon Debye temperature Te(K) 542(1− x) + 382x

Electron DOS effective mass, X/L m∗/m 0.42/0.22

Hole DOS effective mass m∗/m 1.5

s fraction in the density of states, X/L fs 0.333 + 0.05(1− x)/0.632 + 0.13(1− x)

Band gap energy, X Eg(eV ) 0.8941 + 0.0421(1− x) + 0.1691(1− x)2

Band gap energy, L Eg(eV ) 0.7596 + 1.086(1− x) + 0.3306(1− x)2

Hole- deformation potential E1(eV ) 4.8

Table 4.1: Band structure parameter used in the theoretical calculation of TE properties

of Si, Ge and SiGe

4.4 Results

4.4.1 Modelling of Bulk Materials

The modeling of thermoelectric properties by using Boltzmann transport equation is

very common practice. For Seebeck coefficient, electrical conductivity and electronic

contribution to the thermal conductivity we have calculated the different scattering

mechanisms for alloy materials as mentioned in the previous section. Experimental

measurements of bulk Si, Ge and SiGe alloy at high doping concentration were re-

ported in Refs.[119, 118, 142, 143]. There are also theoretical models to calculate

the mobility of alloy materials [127, 136, 144] considering only impurity scattering

and acoustic scattering for six valleys. We have first validated the parameters by

reproducing bulk transport properties.



82 4. Thermo Electric Properties of SiGe NanoPowder

Figure 4.8: Mobility of Ge for different carrier concentration at T = 300K, compensation

ratio(c.r) 1 and 2. Experimental points are from Ref.[145].

Electrons mobility as a function of carrier density for Ge at high doping is shown

in Fig.4.8, and compared with measurements from Ref.[145].

In the case of thermoelectric materials where the carrier concentration or doping

level is generally high, transport properties of materials become different then non-

degenerate materials. In this case the DOS effective mass of carrier changes from the

non-degenerate values and the ionized impurity scattering has an important contri-

bution. In Ref.[140], the high carrier concentration experimental results were well

explained by using a compensation ratio greater than unity. At 300K temperature

we changed the level of chemical potential with the value of doping and calculated

mobility of pure Si and Ge for different doping level.

Mobility of Si for different doping concentration is shown in Fig.4.9.
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Figure 4.9: Mobility of Si for different carrier concentration at T = 300K.

Thus it was clear that higher compensation ratio could better explain the experi-

mental result of pure Si and Ge at the high carrier concentrations. This is mainly due

to the change of the scattering mechanisms for the high concentrations. Fischetti has

shown that in order to properly match the high concentration mobility for pure Si one

needs to include additional scattering mechanisms on top of acoustic and ionized im-

purity, in particular electron-plasmon and electron-electron interactions[72]. To avoid

these complications we have followed Rode, using an ionized impurity compensation

ratio of 2 in order to properly match the high concentration data[145].

Therefore, we have also calculated the transport properties of alloy materials for

the high doping level with compensation ratio 2. In the Fig.4.10 we plot the mobility

of Si0.7Ge0.3 and Si for the degenerate carrier concentration. The experimental results

which are from Ref.[143] match very well with our theoretical calculation.
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Figure 4.10: Mobility of Si(Black line) and Si0.7Ge0.3(gray line) at 300K for different carrier

concentration. Experimental results are from Ref.[143]

We have used all the band structure parameters from Table.4.1. We also imple-

mented two conduction bands minima , X and L( where as in Ref.[127, 136], they

used only one conduction band) and there are 6 and 4 degeneracy in these minima

respectively.

The carrier mobility of SiGe for different Ge volume fraction at non-degenerate

doping concentration have been calculated with the band gap parameter given in

Table.4.1 and compensation ratio of impurity scattering as 1. In Fig.4.11, we have

presented the calculation of the mobility for different Ge volume fraction in SiGe

alloy at low carrier concentration.
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Mobility of SiGe for different Ge volume fraction at non-degenerate

carrier concentration, N = 1.4 × 1016 at T = 300K.

Mobility of SiGe for different Ge volume fraction at degenerate carrier

concentration,N = 5.0 × 1019 at T = 300K

Figure 4.11: Mobility of SiGe for different Ge volume fraction.

SiGe mobility very much depended on the Ge volume fraction. We had adjusted

the compensation ratio of impurity scattering at 2 to obtain the experimental result
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of degenerate doping concentration.

Figure 4.12: (A) Seebeck coefficient of sintered bulk ntype Si0.8Ge0.2. Experimental results

are from ref.[118]. (B) Electrical conductivity of sintered bulk ntype Si0.8Ge0.2. (C) Seebeck

coefficient of sintered bulk ptype Si0.8Ge0.2. Experimental results are from ref.[119] (C)

Electrical conductivity of sintered bulk ptype Si0.8Ge0.2.

Seebeck coefficient and electrical conductivity of both ntype and ptype Si0.8Ge0.2



4.4. Results 87

have been also calculated from the theoretical model by calculating the chemical

potential at high temperature. We have obtained good agreement with the bulk

sintered Si0.8Ge0.2 experimental results from ref.[119, 118] for both ntype and ptype

materials.

Doping concentration are 1.7×1020cm−3 and 1.8×1020cm−3 for n and ptype case

respectively.

We have also represented electrical conductivity and Seebeck coefficient of the bulk

sintered Si0.8Ge0.2 for the different carrier concentrations as represented by Jonker

in Fig.4.13.

Figure 4.13: Seebeck Coefficient versus Electrical conductivity. Solid lines are the theoretical

calculation and the dots are experimental result from Ref.[146] .

In the above Fig.4.13, we have changed the doping concentrations of both ntype

and ptype materials at a fixed temperature. Theoretical results of these bulk sintered
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materials match well with the experimental results which validate our theoretical

model.

4.4.2 Modelling of Nanograined sintered materials

For the nanostructured sintered material, there is a grain boundary scattering for

both electrons and phonons by the nanograin. The carrier mean free paths are in

general in the order of ∼ 5 nm. Thus the effect of grain size on electronic transport

is not expected to be large for grains above this size. We have therefore considered

a simple form of the carrier scattering rate due to grain boundaries proportional to

the grain size, τ−1
gb ' ve/lgb, where ve is speed of the electron and lgb is the grain

size. In Fig.4.14 we show the theoretical result for ntype Si0.8Ge0.2 along with the

experimental result from Ref.[117].

In this theoretical calculation of ntype materials, we have considered that the

grain size is 12 nm and the carrier concentration is 2.0× 1020cm−3. In the Ref.[117]

the carrier concentration are between 1.8×1020cm−3 to 2.5×1020cm−3 and the grain

size are 10 to 15 nm. Therefore, the theoretical values are accurate as the experi-

mental values changed 10% in different measurment. We have calculated the lattice

thermal conductivity for the materials using the Eqn.4.2 for the nanostructured ma-

terials and then we have calculated the total thermal conductivity of the materials by

adding the lattice thermal conductivity, κl and electronic contribution in the thermal

conductivity, κe. Total thermal conductivity of different materials match well with

the experimental results. Lattice thermal conductivity has been calculated with the

mean free path of the grain boundary scattering adjusted by the parameter B1. We

have adjusted, B1 = 20, to obtain the total thermal conductivity which match well

with the experimental thermal conductivity.

In the case of ptype materials we have obtained all the thermoelectric properties

with the effective mass of hole (given in the Table.4.1) and the other band structure

parameter for the valence band also listed in Table.4.1 . Additionally for the nano size

materials we have considered a grain boundary scattering same as ntype materials.

The grain size in the bellowing calculation is 20nm and the carrier concentration is

1.8× 1020cm−3. These values are in the range of the experimentally measured values

in Ref.[116].
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Figure 4.14: (A) Seebeck coefficient of sintered nanostructured ntype Si0.8Ge0.2 with grain

size 12 nm. Experimental points are from Ref.[117]. (B) Electrical conductivity. (C) Elec-

tronic thermal conductivity, lattice conductivity and total thermal conductivity, (C) Figure

of merit, ZT.
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Figure 4.15: (A) Seebeck coefficient of sintered nanostructured ptype Si0.8Ge0.2 with grain

size 20 nm. Experimental points are from Ref.[116]. (B) Electrical conductivity. (C) Elec-

tronic thermal conductivity, lattice conductivity and total thermal conductivity, (C) Figure

of merit, ZT.
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4.4.3 Characterization and Modelling of larger grain sintered mate-

rials

Figure 4.16: (a) Seebeck coefficient of sintered ntype Si0.8Ge0.2 reported in this article, (b)

Electrical conductivity. (c) Seebeck coefficient of of sintered ptype Si0.8Ge0.2 reported in this

article, (d) Electrical conductivity.

We measured thermal diffusivity, specific heat, Seebeck coefficient and electrical con-

ductivity of sintered Si0.8Ge0.2 at high temperature. Si0.8Ge0.2 sample was fabricated

by ball milling and hot-pressing procedure by our collaborators and the measurement
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of Seebeck coefficient and electrical conductivity also have been done by our collabo-

rators. The experimental results of the thermal conductivity was discussed in detail

in the previous section. Here in Fig.4.16 we have presented the experimental results

of Seebeck coefficient and electrical conductivity of these samples with the theoretical

model.

The doping level for the ntype material is 2.2× 1020cm−3 and grain size is 80nm

and for the ptype material doping levels are 2.5× 1020cm−3 and 2.9× 1020cm−3 and

the grain size is 40 nm.

The measured thermal conductivity is shown in Fig.4.17. The grain boundary

phonon transparency used in the theoretical curve is the same as for the nanograined

case above, i.e. B1 = 20.

Figure 4.17: (a) Thermal conductivity of of sintered ntype Si0.8Ge0.2 reported in this article,

(b) Thermal conductivity of of sintered ptype Si0.8Ge0.2 reported in this article.

Thus, it is clear from these result that as the grain size is large, thermal conduc-

tivity was not reduced much by the grain boundary scattering of phonons.
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Sample Type n (1019cm−3) µ (cm2/V s) σ (S/m) S (µV/K) κ (W/m−K) ZT

HUPsige1 p 2.88 194 8.94× 104 103 3.47 0.109

HUPsige2 p 2.94 230 1.08× 105 87 4.12 0.079

HUPsige5 p 13.8 50.1 1.1× 105 95 4.17 0.095

SPSsige p 22 9.8× 105 115.67 4.13 0.1

HUPsige6 n 16.7 37.2 9.94× 104 -105 4.54 0.096

HUPsige8 n 3.89 154 9.57× 104 -140 4.461 0.168

Table 4.2: Summary of the thermoelectric properties of sintered Si0.8Ge0.2 at room tem-

perature.

4.4.4 The potential for further ZT improvement in nanograined SiGe

We now address the question of whether ZT is likely to be improved in nanograined

SiGe, beyond the values already demonstrated in Refs.[136]. First of all we will

discuss whether, keeping the same kind of grain boundary structure, ZT could be

still improved by fine tuning the doping level. A very clear pictorial way to do

this is to represent experimental results together with theoretical ones in a modified

’Jonker’ plot. This means plotting the Seebeck coefficient as a function of the ratio

of electrical and thermal conductivities, i.e. S versus σ/κ, for samples of different

doping concentrations. (The standard Jonker plot is just S versus σ.) In the same

graph, we also represent curves of constant ZT . It is then easy to locate the best

optimized sample by finding the point along the S(σ/κ) curve that is tangent to the

iso-ZT curve.

As we had mentioned above that for the SiGe alloy in degenerate case the ionized

impurity play a important role in the transport properties, in our theoretical calcu-

lation for the alloy materials we had changed the compensation ratio of the ionized

impurity. The compensation ratio was defined as,[138] the ratio of

concentration of fixed ionized centers/concentration of mobile charges =N++N−

n+p .

For ntype materials where free-hole concentration, p is negligible and for the ptype

where free-electron concentration, n is negligible it becomes unity. For the mobility

calculation in Fig.4.10 and thermoelectric properties calculation, we had used the

compensation ratio as 2 which modified the ionized impurity scattering rate in these

highly doped materials. This is considerable because for these highly doped materials,

the validity of the Born approximation is questionable. With these approximations

the electrical conductivity and Seebeck coefficient and the electronic thermal conduc-

tivity of the bulk Si0.8Ge0.2 are plotted in Fig.4.12 and introducing a grain boundary
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scattering proportional to the grain size, we had calculated the thermoelectric prop-

erties of nanostructured Si0.8Ge0.2( See Fig.4.14). From Fig.4.18 it was understood

that we can achieve an optimum ZT by choosing the proper doping concentration.

In Fig.4.18, we represent the modified Jonker’s plot for different grain size at

400K. Here the Seebeck coefficient of ntype and ptype are plotted in opposite sign.

Figure 4.18: Seebeck coefficient Vs (electrical conductivity/ thermal conductivity) for dif-

ferent grain sized at 400K. Black lines are the constant ZT curve at 0.1, 0.2, 0.3, 0.4 and 0.5.

Ref A is [116, 117].

From Fig.4.18 it is clearly understood that the we can achieve an optimum ZT by

choosing the proper doping concentration on which the σ
κtotal

depends. By varying

doping concentration for different grain size we can improve the ZT values at a par-

ticular temperature. Where the dots are the experimental points and moving these

point from right to left, we can have better ZT values. We can see that at 400K

temperature, some slight ZT enhancement can be achieved using slightly reduced

doping levels. The theoretical optimized values for the transport parameters are

S = 202.28µV/K, σ = 612.5S/cm, κ = 2.3W/m−K for the n-type, and 163.3µV/K,

536.65S/cm, 2.35W/m−K for the p-type material with grain sizes 12nm and 20nm

respectively. Furthermore, if slightly smaller grains are used, ZT could be enhanced

a bit more, up to about 0.5.

For the modified jonker’s plot of high temperature (1000K), it is also clearly
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noticed that the further improvement of the ZT is possible by only changing the

doping concentration.

Figure 4.19: Seebeck coefficient Vs (electrical conductivity/ thermal conductivity) for dif-

ferent grain size at 1000K. Black lines are the ZT curve at 0.4, 0.6, 0.8 and 1.0, 1.2 and 1.4.

The exact enhancement of the ZT values for different temperature is given in the

Fig.4.21 (for ntype) and the Fig.4.22 ( for the ptype).

At a temperature of 1000K the samples are essentially at the optimum point on

the plot, and a different doping level at the same grain size would only reduce ZT .

However, reducing the grain size and simultaneously adjusting the doping would fur-

ther increase ZT. Within the simple description of electron grain boundary scattering

employed, we expect that ZT would continue to improve up to grain sizes around 5

nm, potentially reaching ZT = 0.5 at 400K. When the grain size becomes smaller

than the mean free path of the electron ZT starts decreasing.

In the Fig.4.20, ZT values of ntype Si0.8Ge0.2 is given at grain size 10 nm for three

different temperature for different carrier concentrations.
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Figure 4.20: ZT for different carrier concentration at 600K, 800K and 1000K at grain size

10 nm.

For degenerate materials ZT depends very much on the doping level of impurity.

In Fig.4.21 we have presented the ZT for the bulk sintered materials, ZT values of our

sintered sample and the ZT values of the nanostructured samples with the grain size

12 nm. We can still optimize the ZT values of nanograin materials at 12 nm grain

size by optimizing its doping level at all temperature. Our calculations suggests that

further optimization of current state of the art ntype (ptype) material could possibly

lead to ∼6% (5% ) ZT enhancement at 1000K and 25% (4%) at room temperature.

Even larger enhancements should be possible if the phonon scattering probability

of the grain boundaries could be increased beyond its present value of 10%. In the

previous section we saw that the grain boundaries are quite transparent to phonons, a

fact that had also been pointed out in ref.[136]. Roughly, a phonon needs to traverse

about 10 grain boundary interfaces in order to experience a diffusive scattering event.

In principle one could envisage nano grains with rougher boundaries, which would

scatter phonons more efficiently. A plausible limit to the degree of diffusivity of the

interface is that of the diffuse mismatch model. In this model, every time a phonon
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reaches a grain boundary it loses memory and it is randomly scattered. The result

is a phonon mean free path equal to the grain size. Thus for a totally diffusive grain

boundary, the phonon mfp would be one order of magnitude smaller than for the state

of the art nanograined SiGe. The calculated result for such diffusive grain boundaries

yield an available ZT of 2 for ntype, or 1.5 for ptype material at 1000K, i.e. more

than 30% increase over the so far demonstrated values. It is questionable whether the

grain boundary roughness can be increased without simultaneously creating charge

traps for the electrons. Interfacial charge trapping could have catastrophic effects on

the electrical conductivity, by creating large potential barriers for electrons. To avoid

this, it is probably important to minimize the formation of defects and dislocations.

A step in this direction has been recently demonstrated in Ref.[147, 148], where

well defined fully diffusive phonon barriers were fabricated in a single crystalline

Si/SiGe system. We believe that a direction for further improvement of sintered

nano grain thermoelectric materials may be through the development of techniques

that can effectively enhance the phonon diffusivity of the grain boundaries, possibly

through the introduction of well lattice matched secondary phases, such as embedded

nanoparticles, at the interfaces between grains.

Figure 4.21: Comparison between ZT of different sintered ntype Si0.8Ge0.2. Ref b is [117].
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Figure 4.22: Comparison between ZT of different sintered Si0.8Ge0.2. Ref c is [116].

From the Fig.4.18 it is also clear that when grain size becomes comparable to the

mean free path (m.f.p) of the electron( 5 nm) we achieve the maximum ZT. When

the grain size became much smaller than the m.f.p of the electron ZT start decreasing.

In this case Boltzmann transport equation may also not be satisfied [149].

4.5 Conclusion

1. In this Chapter we have presented a theoretical model for the thermoelectric

properties of SiGe nanocomposite materials. In our theoretical model we imple-

mented different types of scattering mechanisms for both electrons and phonons

scattering.

2. By analyzing the experimental results of the sintered materials fabricated by the

ball milling and hot pressing technique we have understood that we can improve

ZT by optimizing grain size and doping concentration. Further optimization of
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the ZT could be possible if phonon scattering by grain boundaries could be

made to reach the phonon diffuse mismatch limit.

3. Finally, we have seen that the nanostructuring also reduced the electrical con-

ductivity of the materials. So the power factor of the nano structure materials

also decreased with the thermal conductivity reduction.
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5.1 Conclusions

The physics of the heat and charge carrier transport in nanocomposites is only par-

tially understood. A more complete understanding is required in designing and im-

proving the performance of a wide variety of devices and materials including micro-

electronics, thermoelectrics, heat spreaders, thermal insulators, and composites. This

dissertation presents a better insight in the heat and charge transport mechanisms

across the nanostructured materials.

In Chapter 2, thermal properties of porous alloy and non-alloy materials are cal-

culated by measuring effective mean free path in these materials by a numerical and

an analytical method. We found that thermal conductivity of the porous alloy is

much more affected by the pore radius of 100nm compare to the non-alloy materials

at room temperature. Where for the non-alloy materials decrease in the thermal con-

ductivity started after the pore size 100nm, in the alloy materials we have obtained

the reduction for much larger pore radius. Without pores thermal conductivity of

Si0.5Ge0.5 is one order of magnitude smaller than the pure Si and Ge thermal con-

ductivity. With pores this difference becomes 2 order of magnitude at pore radius

1000nm for 60% porosity and at pore radius 100nm for 10% porosity. This study

on the porous materials explain the pore radius effect in thermal conductivity more

clearly and we have understood the proper dependencies of the conductivity on the

pore radius, interpore distances, and porosity. This model also modifed the previous

model based on the simple cylindrical boundary geometry approximation. Also from

the analytical model, we can calculate the porous materials thermal conductivity for

any porosity and pore radius very efficiently and quickly.
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In Chapter 3 of this dissertation, we have presented a study of heat transport

in nanowires. Experimental thermal conductance of a straight and bent nanowires

are strikingly much low than their ballistic conductance. For a 200 × 100nm2 Si

nanowire, the ballistic thermal conduction would be like 124 × 4σ0 at temperature

5K. The measured thermal conductivity is 40 times smaller than the ballistic thermal

conductance and introducing double kink in the straight wire further reduced the

thermal conductance by 40%. This large reduction in the thermal conductance is not

clearly proven by the Casimir’s model. To properly understand the physics behind

this reduction, we have performed a simple MC simulation of phonon transmitivity in

the straight and bent nanowires. We indeed found that for the bent jounction there

will be 60% reduction in the phonon transport compared to the straight wire with

total specular reflections. When the surface starts to become diffusive this difference

also decreases and in the totally diffusive region this difference is very small. Though

only this back scattering for the bent jounction does not enough to explain this high

reduction in thermal conductivity. We further consider that transverse phonon mode

contribution to the thermal conductance was diminished by an interface between

wire and thermostat. With this additional assumption, we can exactly explain the

experimental results.

In Chapter 4, the effect of grain size on the overall thermoelectric properties of

nanocomposites were studied. Thermoelectric properties of nanograined SiGe alloy

were calculated using a theoretical model. From this model, we can predict the

maximum ZT of the materials for a particular temperature. This model includes

all the scattering mechanisms for electrons and phonons. We have obtained very

good agreement between the theoretical calculations and the experimental results of

the mobility, the electrical conductivity and the Seebeck coefficient of the Si0.8Ge0.2

alloy. This model predicts that further optimization can be possible by optimizing

the doping level and the grain size. From the model, it is evident that thermoelectric

properties of the alloy can be improved until the grain size becomes comparable to

the electron mean free path (5nm for the SiGe alloy)because the electronic transport

is not affected largely by the grain size above this diameter. If we further reduce the

grain size, it strongly affected the electronic transport and reduce the ZT . To sum

up, optimization of current state of the art ntype (ptype) material would be feasible

by optimizing doping level and grain size, leading to ∼6% (5%) ZT enhancement

at 1000K and 25% (4%) at room temperature. More interestingly, we have shown

that further reduction in the thermal conductivity is possible considering complete

diffusive grain boundary. This modification can increase the ZT almost 2 times for

the ntype and ptype SiGe alloys at 1200K. This could be possible by engineering the

synthesis of the nanograined composite materials.
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5.2 Future Direction

There are several issues that future work in this area should address. One vital issue is

determining the thermal conductivity of the porous alloy experimentally with differ-

ent pore radius, which will establish the theory of the calculation in Chapter 2. More

experimental measurements and theoretical calculations are required for the ther-

mal conductivity of nanoporous and nanocomposites materials with quantum dots or

tubes inside bulk or superlattices to understand more evidently the size effect of dots

or pores or wires in the composite. It is very much challenging to prepare and measure

the conductivity of these types of structures. Though recently there are lot of im-

provement on the measurement technique on nanoscale, some new techniques such as

3ω method, time-domain thermoreflectance (TDTR) method, scanning thermal mi-

croscopy(SThM), Laser flash technique are providing more accurate measurements on

nanoscale. More detailed model on the phonon transport of the composite materials

and the detailed understanding of the scattering mechanisms responsible for reducing

the thermal conductivity is necessary for further improvements of the materials.

Similarly, phonon transport in nanowires also required more details investigation.

Surface and structure of the nanowires affected the phonon transport very much in the

low temperature range. Again both growth condition and temperature affected the

quality of the surface. So different growth techniques need to be investigated in more

details. It is also not clearly understood how the frequency dependencies of the contact

and structure modifies the resistance of nanowires. Further investigation should be

done on these to have a clear knowledge on the phonon transport in nanowires. In

future that could help to make nanowires, which can also be useful in the application

at high temperatures and these could also enhance the properties of the nanowires.

Finally, applications of the TE materials in power generator that directly convert

heat to electricity, or refrigeration devices that use electricity to pump heat from cold

to hot, need to include improved figure of merit, ZT to achieve more efficient devices.

Currently the best thermoelectric materials are the alloys of antimony and bismuth

tellurides with some other doping elements which show the ZT reaching 1 at room

temperature. TE coolers with ZT of 1 operate at only 10% of Carnot efficiency. Some

30% of Carnot efficiency (comparable to home refrigeration) could be reached by a

device with a ZT of only 4. Increasing ZT by a factor of 4 has remained a formidable

challenge.

There are lot of research going on to achieve a better ZT and to optimize the

devices. Though we understood from Chapter 4 that by reducing lattice thermal

conductivity on the alloy or by optimizing the doping level we could increase the ZT.

Another way for this may be increasing the electronic power factor of the materi-
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als. In this direction some model proposed ”Phonon blocking/Electron transmitting

Structure” [5, 42]to block the phonon without affecting the electrical resistance. The

other possible ways to increase the ZT could be (a) a high symmetry crystal struc-

ture (high number of degeneracies of band extrema near Fermi level) which would

increase the power factor, with a large number of heavy elements per unit cell which

will decrease lattice conductivity (b) small electronegativity differences between the

elements in the compound which will higher the mobility or increase the scattering

time, (c) at least one high effective mass. This list of needs remains daunting, be-

cause the structure of most new materials cannot be predicted. Recent advanced in

determining the electronic band structure based on the density functional theory[150]

gives some details about the TE material properties. More detailed understanding

of the crystal structure is necessary to understand properly the energy band diagram

of the complex materials which could give the knowledge about the band structure

parameters and the ability to produce TE materials which will generate maximum

efficiency.
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Appendix

Mathematica code for MC Simulation of MFP for CGA with a cylinder

pore Function definition

This function generates a random free path:

RandLamb:=−Log [ Random [ ] ]

This function generates a random direction 3D unit vector:

RandVel:=#/ &@{Random [ Real ,{ −1 . , 1 .} ] ,

Random [ Real ,{ −1 . , 1 .} ] ,Random [ Real ,{ −1 . , 1 .} ]}

This function generates a random 2D starting point, bound between

inner (rin) and outer (rout) radius

RandX [ r in , rout ] :=

Module [{ rm} , I f [ r i n >= rout , Abort [ ] ] ;

rm = {Random [ Real , {−rout , rout } ] , Random [ Real , {−rout , rout } ] } ;

While [ Sqrt [ rm . rm ] < r i n | | Sqrt [ rm . rm ] > rout ,

rm = {Random [ Real , {−rout , rout } ] , Random [ Real , {−rout , rout } ] } ] ;

rm ]

Full program, using the slope method

(*Results for different diameters*)

Timing [ flxwdiam = {} ;

Do [ systemlength =. ; { rout , r i n } = {1 . , Sqrt [ 0 . 4 ] } ∗ 1 0 . ˆ idiam ;

cndcty = {} ;

Do [ convergence = 1 ; systemlength = 10 .ˆ s y s l ; n r e f l = 0 ;

nthrough = 0 ;
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Do [ newx = RandX [ r in , rout ] ˜ Join ˜{0 .} ;

lamb = RandLamb ;

newv = {# [ [ 1 ] ] , # [ [ 2 ] ] , Abs [ # [ [ 3 ] ] ] } &[RandVel ] ; i i = 0 ;

Do [ x = newx ; v = newv ; xp = x + lamb∗v ;

x2d = x [ [ { 1 , 2 } ] ] ; xp2d = xp [ [ { 1 , 2 } ] ] ;

v2d = #/Sqrt [#.#] &[v [ [ { 1 , 2 } ] ] ] ;

wunit = v2d ; yunit = {v2d [ [ 2 ] ] , −v2d [ [ 1 ] ] } ;

y = ( x2d . yunit ) yunit ;

w = ( x2d . wunit ) wunit ;

case =. ;

I f [ Norm [ y ] <= r i n &&

v2d . x2d < 0 . && (Norm [ xp2d ] < r i n | | v2d . xp2d > 0 . ) , ( case =

1 ; rimpacted = r i n ; s i g n r o o t = −1) ,

I f [ Norm [ xp2d ] >= rout , ( case = 2 ; rimpacted = rout ;

s i g n r o o t = 1) , case = 3 ] ] ;

I f [ case == 3 , r = xp2d ,

r = y + s i g n r o o t Sqrt [ r impacted ˆ2 − y . y ] wunit ] ;

phi = #/Sqrt [#.#] &[{ r [ [ 2 ] ] , −r [ [ 1 ] ] } ] ;

r u n i t = #/Sqrt [#.#] &[ r ] ;

I f [ case == 2 , newv2d = −(v2d . r un i t ) ru n i t + ( v2d . phi ) phi ;

newv = Join [ newv2d∗Norm [ v [ [ { 1 , 2 } ] ] ] , {v [ [ 3 ] ] } ] ,

newv = RandVel ] ;

newx =

Join [ r , {x [ [ 3 ] ] + ( xp [ [ 3 ] ] − x [ [ 3 ] ] ) ∗
Norm [ r − x2d ] /Norm [ xp2d − x2d ] } ] ;

I f [ case == 2 , lamb = lamb − Norm [ newx − x ] , lamb = RandLamb ] ;

i i ++;

I f [ newx [ [ 3 ] ] < 0 . , Return [{ i i , n r e f l ++} ; ] ] ;

I f [ newx [ [ 3 ] ] > systemlength , Return [{ i i , nthrough ++} ; ] ] ;

I f [ i conv == 50000 , convergence = 0 ] , { iconv ,

50000} ] , {numphonons = 5 000 0} ] ;

Pr int [ ” convergence =”, convergence ] . Pr int [ n r e f l , ” ” , nthrough ,

” ” , systemlength ∗nthrough/numphonons // N, ” ” ,

numphonons/ nthrough // N ] ;

AppendTo [

cndcty , { systemlength , systemlength ∗nthrough/numphonons // N,

numphonons/ nthrough // N} ] , { sy s l , −0.2 , . 5 , . 7 } ] ;

AppendTo [
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flxwdiam , { rout , # [ [ 1 ] ] / # [ [ 3 ] ] &@( cndcty [ [ − 1 ] ] −
cndcty [ [ 1 ] ] ) } ] , { idiam , −2, 2 , 0 . 2 } ] ] ;

Mathematica code for MC Simulation of MFP for periodic square

boundary with a cylinder pore Function definition

This function generates a random free path:

RandLamb:=−Log [ Random [ ] ]

This function generates a random direction 3D unit vector:

RandVel:=#/ &@{Random [ Real ,{ −1 . , 1 .} ] ,

Random [ Real ,{ −1 . , 1 .} ] ,Random [ Real ,{ −1 . , 1 .} ]}

This function generates a random 2D starting point, bound between

inner (rin) and outer (rout) radius

RandX [ r in , rout ] := Module [{ rm} , I f [ r i n \geq rout , Abort [ ] ] ;

rm={Random [ Real ,{− rout , rout } ] ,Random [ Real ,{− rout , rout } ] } ;

While [ <r in , rm={Random [ Real ,{− rout , rout } ] ,Random [ Real ,{− rout , rout } ] } ] ; rm ]

Full program, using the slope method

(*Results for different diameters*)

Timing [ flxwdiam = {} ;

Do [ systemlength =. ; { rout , r i n } = {1 . , 2∗ Sqrt [ 0 . 4 / \ [ Pi ] ] } ∗ 1 0 . ˆ idiam ;

cndcty = {} ;

Do [ convergence = 1 ; systemlength = 10 .ˆ s y s l ; n r e f l = 0 ;

nthrough = 0 ;

Do [ newx = RandX [ r in , rout ] ˜ Join ˜{0 .} ;

lamb = RandLamb ;

newv = {# [ [ 1 ] ] , # [ [ 2 ] ] , Abs [ # [ [ 3 ] ] ] } &[RandVel ] ; i i = 0 ;

Do [ x = newx ; v = newv ; xp = lamb∗v + x ;

x2d = x [ [ { 1 , 2 } ] ] ; xp2d = xp [ [ { 1 , 2 } ] ] ;

v2d = #/Sqrt [#.#] &[v [ [ { 1 , 2 } ] ] ] ;

wunit = v2d ; yunit = {v2d [ [ 2 ] ] , −v2d [ [ 1 ] ] } ;

y = ( x2d . yunit ) yunit ;

w = ( x2d . wunit ) wunit ;
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A = ( xp2d [ [ 2 ] ] − x2d [ [ 2 ] ] ) / ( xp2d [ [ 1 ] ] − x2d [ [ 1 ] ] ) ;

xr1 = ( ( rout − x2d [ [ 2 ] ] ) /A) + x2d [ [ 1 ] ] ;

yr1 = rout ;

xr2 = rout ;

yr2 = x2d [ [ 2 ] ] + ( ( rout − x2d [ [ 1 ] ] ) ∗A) ;

xr3 = ((− rout − x2d [ [ 2 ] ] ) /A) + x2d [ [ 1 ] ] ;

yr3 = −rout ;

xr4 = −rout ;

yr4 = x [ [ 2 ] ] + ((− rout − x2d [ [ 1 ] ] ) ∗A) ;

d [ 1 ] = {xr1 , yr1 } ;

d [ 2 ] = {xr2 , yr2 } ;

d [ 3 ] = {xr3 , yr3 } ;

d [ 4 ] = {xr4 , yr4 } ;

ca se =. ;

I f [ Norm [ y ] <= r i n &&

v2d . x2d <

0 . && (Norm [ xp2d ] \ [ LessS lantEqual ] r i n | |
v2d . xp2d > 0 . ) , ( r = y − Sqrt [ r i n ˆ2 − y . y ] wunit ;

r f = y − Sqrt [ r i n ˆ2 − y . y ] wunit ; newv = RandVel ;

case = ” I n n e r C o l l i s i o n ”) ,

I f [ ( xp2d [ [ 1 ] ] >=

rout ) | | ( xp2d [ [ 1 ] ] <= −rout ) | | ( xp2d [ [ 2 ] ] >=

rout ) | | ( xp2d [ [ 2 ] ] <= −rout ) , case = ”Oute rCo l l i s i on ”;

L inepo int = {} ;

Do [ I f [ ( d [ i ] − x2d ) . v2d >= 0 && (d [ i ] − x2d ) . ( d [ i ] − x2d ) !=

0 . 0 , AppendTo [ Linepoint , {d [ i ] , i } ] ] , { i , 4 } ] ;

newLinepoint =

Sort [ Linepoint , ( # 1 [ [ 1 ] ] − x2d ) . ( # 1 [ [ 1 ] ] − x2d ) <= ( # 2 [ [ 1 ] ] −
x2d ) . ( # 2 [ [ 1 ] ] − x2d ) &] ;

I f [ ( newLinepoint [ [ 1 , 2 ] ] == 1) | | ( newLinepoint [ [ 1 , 2 ] ] ==

3) , ( r = {newLinepoint [ [ 1 , 1 ] ] [ [

1 ] ] , −newLinepoint [ [ 1 , 1 ] ] [ [ 2 ] ] } ;

r f = newLinepoint [ [ 1 , 1 ] ] ) ,

I f [ ( newLinepoint [ [ 1 , 2 ] ] == 2) | | ( newLinepoint [ [ 1 , 2 ] ] ==

4) , ( r = {−newLinepoint [ [ 1 , 1 ] ] [ [ 1 ] ] ,

newLinepoint [ [ 1 , 1 ] ] [ [ 2 ] ] } ) ; r f = newLinepoint [ [ 1 , 1 ] ] ] ] ,

( case = ”B u l kC o l l i s i o n ”; r = xp2d ; r f = xp2d ;

newv = RandVel ) ] ] ;
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newx1 =

Join [ r f , {x [ [ 3 ] ] + ( xp [ [ 3 ] ] − x [ [ 3 ] ] ) ∗
Norm [ r f − x2d ] /Norm [ xp2d − x2d ] } ] ;

newx = Join [

r , {x [ [ 3 ] ] + ( xp [ [ 3 ] ] − x [ [ 3 ] ] ) ∗
Norm [ r f − x2d ] /Norm [ xp2d − x2d ] } ] ;

I f [ case == ”Oute rCo l l i s i on ” , lamb = lamb − Norm [ newx1 − x ] ,

lamb = RandLamb ] ; i i ++;

I f [ newx [ [ 3 ] ] < 0 . , Return [{ i i , n r e f l ++} ; ] ] ;

I f [ newx [ [ 3 ] ] > systemlength , Return [{ i i , nthrough ++} ; ] ] ;

I f [ i conv == 90000 , convergence = 0 ] , { iconv ,

90000} ] , {numphonons = 3 000 0} ] ;

Pr int [ ” convergence =”, convergence ] . Pr int [ n r e f l , ” ” , nthrough ,

” ” , systemlength ∗nthrough/numphonons // N, ” ” ,

numphonons/ nthrough // N ] ;

AppendTo [

cndcty , { systemlength , systemlength ∗nthrough/numphonons // N,

numphonons/ nthrough // N} ] , { sy s l , −0.2 , 0 . 4 , 0 . 6 } ] ;

AppendTo [

flxwdiam , { rout , # [ [ 1 ] ] / # [ [ 3 ] ] &@( cndcty [ [ − 1 ] ] −
cndcty [ [ 1 ] ] ) } ] , { idiam , −2, 2 , 0 . 2 } ] ] ;
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Résumé

Propriétés Thermoélectriques de Matériaux Nanocomposites

Cette thèse présente une étude théorique du transport de chaleur dans les matériaux com-

posites nanoporeux et nanofils ainsi qu’une étude théorique des propriétés thermoélectriques

de l’alliage Si0.8Ge0.2 confrontée à des mesures expérimentales réalisées pour une partie, dans

le cadre de l’étude

La première étude démontre que les alliages poreux affichent des réductions de conduc-

tivité thermique à des dimensions de pores beaucoup plus grandes que les matériaux poreux

non allié de même porosité nominale. Si on considère une taille de pores de 1000nm, la conduc-

tivité thermique de l’alliage Si0.5Ge0.5 avec 0.1 de porosité est deux fois plus faible que la

conductivité thermique d’un matériau non poreux, alors que les pores plus petits que 100 nm

sont nécessaires pour obtenir la même réduction relative dans le Si ou Ge pur. Nos résultats

indiquent que les alliages nanoporeux devraient être avantageux devant les matériaux nano-

poreux non alliés, et ceux pour les applications nécessitant une faible conductivité thermique,

tels que les nouveaux matériaux thermoélectriques.

La deuxième étude théorique sur la conductance thermique de nanofils révèle l’effet de

la structure sur le transport des phonons. Avec un modèle théorique qui considère la dépen-

dance en fréquence du transport des phonons, nous sommes en mesure quantitativement de

rendre compte des résultats expérimentaux sur des nanofils droits et coudés dans la gamme

de température qui montre qu’un double coude sur un fil réduit sa conductance thermique de

40% à la température de 5K.

Enfin, nous avons procédés à une approche théorique des propriétés thermoélectriques des

alliages SiGe frittés, en les comparant aux mesures expérimentales nouvelles et antérieures,

tout en évaluant leur potentiel d’amélioration. L’approche théorique a été validée par compa-

raison de la mobilité prévue et la conductivité thermique prévues, en faisant varier la quantité

de Ge et les concentrations de dopage, dans une gamme de température comprise entre 300

et 1000K. Nos calculs suggèrent qu’une optimisation par rapport à l’état de l’art actuel est

possible pour le matériau de type n et type p, conduisant potentiellement à une augmentation

de 6% (5%) du ZT à 1000K et 25% (4%) à température ambiante. Même des améliorations

plus grande devrait être possible si la probabilité de diffusion des phonons aux joints de grains

pouvait être augmentée au-delà de sa valeur actuelle de 10%.





Abstract

Thermo Electric Properties Of Nanocomposites Materials

This dissertation presents a theoretical study of heat transport in nanoporous composites and

in nanowire and also theoretical study of thermoelectric properties of the Si0.8Ge0.2 alloy

with some experimental new and old measurements.

The first study on the porous alloys show that its can display thermal conductivity reduc-

tions at considerably larger pore sizes than nonalloyed porous materials of the same nominal

porosity. The thermal conductivity of Si0.5Ge0.5 alloy with 0.1 porosity becomes half the

nonporous value at 1000 nm pore sizes, whereas pores smaller than 100 nm are required to

achieve the same relative reduction in pure Si or Ge. Using Monte Carlo simulations, we also

show that previous models had overestimated the thermal conductivity in the small pore limit.

Our results imply that nanoporous alloys should be advantageous with respect to nanoporous

nonalloys, for applications requiring a low thermal conductivity, such as novel thermoelectrics.

The second theoretical study on the nanowire thermal conductance reveals the structure

effect on the phonon transport. With a theoretical model that considers the frequency depen-

dence of phonon transport, we are able to quantitatively account for the experimental results

of straight and bent nanowires in the whole temperature range which shows that due to an

double bend on the straight thermal conductance reduced by 40% at temperature 5K.

Finally, we theoretically investigate the thermoelectric properties of sintered SiGe alloys,

compare them with new and previous experimental measurements, and determine their poten-

tial for further improvement. The theorwtical approach is validated by extensive comparison

of predicted bulk mobility, thermopower, and thermal conductivity, for varying Ge and dop-

ing concentrations, in the 300 − 1000K temperature range. The effect of grain boundaries

is then included for Si0.8Ge0.2 sintered nanopowders , and used to predict optimized values

of the thermoelectric figure of merit at different grain sizes. Our calculations suggest that

further optimization of current state of the art n-type (p-type) material would be possible,

possibly leading to 6% (5%) ZT enhancement at 1000K and 25% (4%) at room temperature.

Even larger enhancements should be possible if the phonon scattering probability of the grain

boundaries could be increased beyond its present value of 10%.
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