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Abstract

The determination of the lower-end of the initial mass function (IMF) provides strong constraints

on star formation theories. We report here on a search for isolated planetary-mass objects in the

3 Myr-old star-forming region IC 348 and on a wider survey of the 30 Myr-old open cluster

IC 4665. IC 4665 is a fairly young (∼30Myr) star cluster and is 356pc distant towards the

constellation Ophiuchus. Proper motion is low at -4 to -7.5 mas/yr and extinction is also low

and present at AV ∼ 0.59 ± 0.15 mag. WIRCamY , J , H andKs observations were made using

the CFHT and spanned 10 cluster fields (of total footprint∼1.1sq.deg) and two control fields of

20′x20′ each. Colour/magnitude diagrams were used to compare the catalogue objects to the 30

and 50 Myr BT-SETTL models for photometric selection. Further colour/colour diagrams were

then iteratively used to further filter these objects into a final cluster candidate member list, with

590 unique objects. Contamination by field stars can be assessed using the control fields and M-

and L- dwarf space densities. This part requires further analysis.

Probing into the lowest-mass end of the IMF in IC 348 requireddeep, narrowbandCH4off

andCH4on images. These were were obtained with CFHT/WIRCam over 0.11 sq.deg. over the

central part of IC 348, along withz′, J , H andKs band images. Young T-dwarfs were identified

from their 1.69µm methane absorption bands. Three faint T-dwarf candidateswere detected with

CH4on−CH4off colours>0.4 mag. Extinction was estimated for each candidate and lies in the

range AV ∼ 5 − 12 mag. Comparisons with T-dwarf spectral models, and colour/colour and

colour/magnitude diagrams, reject two of the three candidates because of their extremez′ − J

blueness. The one remaining object is not thought to be a foreground field dwarf because of

a number density argument and also its strong extinction AV ∼ 12 mag, or thought to be a

background field T-dwarf which would be expected to be much fainter. Models and diagrams give

this object a preliminary T6 spectral type. With a few Jupiter masses, the young T-dwarf candidate

reported here is potentially amongst the youngest, lowest mass objects detected in a star-forming

region so far. Its frequency is consistent with the extrapolation of current lognormal IMF estimates

down to the planetary mass domain.

iii





Le Ŕesuḿe en Français

La détermination de l’extrémité inférieure de la fonction de masse initiale (FMI) prévoit de

fortes contraintes sur les théories de la formation des étoiles. IC4665 est un amas d’étoile jeune

(30Myr) et il a situe 356pc de la Terre. L’extinction est AV ∼ 0.59 ± 0.15 mag. WIRCam Y, J,

H et K observations ont été faites par le CFHT et a comprise 10 champs (de 1.1sq.deg totale) et

deux zones de contrle de 20’x20’ chacun. Diagrammes couleur/magnitude et couleur/couleur ont

été utilisées pour comparer les candidats sélectionn´es par les modèles BT-SETTL 30 et 50Myr.

Les imagesCH4off et CH4on ont été obtenus avec CFHT/WIRCam plus 0.11 sq.deg. dans

IC348. Naines-T ont ensuite été identifiés à partir de leur couleur de 1.69µm d’absorption du

méthane et trois candidats nain-T ont été trouvée avecCH4on−CH4 >0.4 mag. Extinction a été

estimée à AV ∼ 5 − 12 mag. Les comparaisons avec les naines-T modèles, et des diagrammes

couleur/couleur et magnitude, rejeter 2 entre 3 candidats en raison de leur extrêmez′ − J coleur.

L’objet reste n’est pas considéré comme un nain avant l’amas en raison d’un argument de densité

en nombre ou l’extinction forte AV ∼ 12 mag, ni d’être un champ de fond nain-T qui serait devrait

être beaucoup plus faible. Les modèles et les schémas de donner cet objet un type T6 préliminaires

spectrale. Avec un peu de la masse de Jupiter, ce jeune candidat nain-T est potentiellement parmi

les plus jeunes, des objets de masse plus faible détectée dans une région de formation d’étoiles à ce

jour. Sa fréquence est conforme à l’extrapolation du courant lognormal FMI estime à au domaine

de masse planétaire
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1.1 Overview

The present knowledge of star formation is incomplete, resulting in the European Commission FP6

Marie Curie Research Training Network, CONSTELLATION1. Within this CONSTELLATION

1http://www.constellation-rtn.eu/
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framework there are three packages2 envisaged to further our understanding of the universe in

this stellar domain; how the collapse of molecular clouds affect the stellar initial mass function

(IMF) from brown dwarfs to massive>5 M⊙ stars; modeling the formation of massive stars

and their effect on the surrounding environment; and how thelower-mass end of this stellar

formation compares with planetary objects. The work presented in this thesis is predominantly

focussed towards Work Package 33 where the modus operandi is to search for the origin of brown

dwarfs, be it from turbulent cloud collapse or formation within the disk of higher-mass objects;

the description of physical parameters that these objects have to help further brown dwarf models;

and finally, at the lowest masses, how these objects compare and/or overlap with the planetary

domain. This Chapter deals with the current understanding of brown dwarf formation and the

associated observable details and mechanisms with which tointerpret the observable data. Stellar

and brown dwarf formation is discussed in the context of having a statistically significant sample

of stars and sub-stellar objects to calculate and to comparethe mass function of young stellar

clusters. Advanced theoretical models of the atmospheres and photospheres of these sub-stellar

objects are also discussed with respect to the formation of molecules and dust grains at varying

temperatures, and the convection and cloud formations in the lowest-mass objects. The formation

of these materials in the atmospheres have a direct impact onthe spectra of these objects. Finally,

this work builds upon previous work on the IMF of two young clusters with tighter constraints in

particular for the lower mass end of the IMF.

The second Chapter is a complete overview of the data acquisition by two wide-field optical

and near infrared (NIR) detectors (MegaCam and WIRCam) at the Canada France Hawaii

Telescope (CFHT), a summary of its treatment within those pipelines, and then a full review of

the development of a custom made pipeline to treat and test this data to achieve a high data quality

that is ready for analysis. The particulars of this analysis, and cluster-specific data treatment,

are discussed in Chapter 3 for the young open cluster IC 4665,and in Chapter 4 for the young

star-forming region IC 348. A full discussion of these two clusters with respect to the literature,

and the impact that this research has for astronomy and astrophysics can be found in Chapter 5;

finishing with the conclusions and a description of further work and prospects necessary for the

advancement of the current understanding of brown dwarfs and the IMF.

The Appendix holds standard information about this work, for example the configuration

details for the extraction programs, example programs to help deal with large amounts of data and

also the routine used to extract candidate members from clusters for census and IMF purposes.

2http://www.constellation-rtn.eu/wiki/index.php/Science overview
3http://www.constellation-rtn.eu/wiki/index.php/WorkPackage3
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1.2 Introduction

The first light-sensitive cyanobacteria were formed on Earth more than 4 billion years ago. More

complex, multi-cellular, organisms found it advantageousto evolve to move towards regions of

less light and away from regions with stronger light as strong light denatured their food source

(Weiss-Schaber, priv. comm). Organelles adapted to use light to change its everyday behaviour

and through larger and more sophisticated evolutionary changes, was then used more as a means

to find more advantageous living spots and food, evolving from light-sensitive cells, to insect

eyes and to focusing animal eyes most recently at 540 millionyears, (Halder et al., 1995). Eyes

have changed little since then, so all the early humans needed after looking upwards to see

seen points of light on the celestial sphere was just increased brain power and interpretation or

perception. The eye detects radiation logarithmically andours is tuned to the peak wavelength

gained from the Sun through the atmosphere of Earth, which atabout 0.51µm known as the

concept ‘green’. This energy originates via hydrogen nucleosynthesis in stars more massive than

∼0.075 M⊙, depending on their impurities of elements heavier than hydrogen and helium, so-

called metallicities, otherwise for lower mass objects there can exist deuterium burning as the

lowest temperature and pressure mass-energy changing mechanism. The typical energy conversion

out-put from one proton-proton chain equates to 26.7 MeV, where all of this outwards radiating

energy supports the Sun from the impending gravitational collapse. This radiation is produced in

the vast central regions of a star, where oneγ-ray photon can take a random-walk path of more

than 1 million years to escape from the centre, changing fromγ-ray energies to the optical at

∼0.48µm from countless energy-sapping subatomic interactions. The majority of this emitted

energy is in the form of thermal radiation, and accounts for most of the emission from stars. The

form of radiation that sub-stellar objects and brown dwarfsemit, however, originates primarily

from the thermal energy left over from their formation, excepting some small deuterium fusion in

the large sub-stellar mass objects. For the lowest mass objects there is no major form of thermal

radiation creation, except what is left from their formation, when the material collapsed and was

heated using the excess rotational and gravitational potential energy as it fell into its gravitational

well. For interest, non-fusion originated thermal radiation is found in more massive and exotic

cosmic entities which usually have very high energy signatures, for example quasars and neutron-

black hole binaries, where mass can be transformed directlyinto energy at various efficiencies

(depending on the spin and the size of the gravitational well), independent of the stellar fusion

process.
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1.2.1 Temperature & Luminosity

Stellar and sub-stellar objects emit radiation which is highly dependent on and proportional to the

temperature of the body, described as the effective temperature, set out as the Stefan-Boltzmann

law, in Equation 1.1:

P = σ T 4
Eff (1.1)

where P is the power radiated per unit area, TEff is the effective temperature of the object in

kelvins, andσ = 5.67x108 W M2 K4 is the Stefan-Boltzmann constant. The luminosity of an

object described in Equation 1.2, however, is the total amount of power that an object radiates,

and assuming that the output per unit area on the surface of a sphere is equal then the total power

output of a spherical object would be:

P = σ T 4
Eff 4 π R2 (1.2)

where R is the radius of the object.

Figure 1.1: Wien’s Law

for various temperatures

as an example of the peak

temperature of a black

body.

Wien’s law allows the peak wavelength of the radiation to be

calculated from the temperature of the black body, shown graphically

in Figure 1.1, and described shown in Equation 1.3:

λpeak =
b

TEff

(1.3)

whereλpeak is the wavelength for an homogeneous object at a given

temperature in kelvin, T, and b = 2.8977686x10−3 m K is Wien’s

constant. For example, when the Universe became transparent to

radiation its initial temperature was∼3000 K, but is now detected at

∼1.06 mm and known as the cosmic microwave background (CMB)

whose temperature has dropped to just 2.725 K at the present day,

after being redshifted by the expansion of the universe.

The Hertzsprung-Russell (HR) diagram can show the relationship between different luminosi-

ties, effective temperatures and also spectral types. Varying types of stellar objects can be plotted

in order to form a scatter diagram as shown in Figure 1.2, taken from Wuchterl and Tscharnuter

(2003). The spectral type of a stellar object is based on its effective temperature, which are

summarised for 5 Gyr field objects from M to Y in Table 1.1. Thisdata is usually gleaned from

photometry or spectroscopy, though data for the M, L, T and Y-dwarf spectral types listed here

were taken from the AMES theoretical models (see Section 1.3.3). Objects with these fainter

spectral types have large differences in their masses because of the spread of detected ages which
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Table 1.1: A list of stellar and sub-stellar spectral types from O as the hottest, (Habets and Heintze,
1981) down through to M, L and T-dwarfs to the newly allocatedY dwarfs. The M, L, T and Y-
dwarf data were taken from the AMES models for 5 Gyr objects.

Class Temperature Mass Radius
K M⊙ R⊙

O >3.3 x 104 >16.0 >6.60
B 1.0–3.0 x 104 2.10–16.0 1.80–6.60
A 7.5–10 x 103 1.40–2.10 1.40–1.80
F 6.0–7.5 x 103 1.04–1.40 1.15–1.40
G 5.2–6.0 x 103 0.80–1.04 0.96–1.15
K 3.7–5.2 x 103 0.45–0.80 0.70–0.96
M 2.0–3.7 x 103 ∼0.03–0.45 0.25–0.70
L 1.3∼2.0 x 103 ∼0.015–0.03 0.10–0.25
T 0.7∼1.3 x 103 ∼0.005–0.015 0.01–0.10
Y <0.7 x 103 <0.005 <1 x 10−2

in tun have an effect on the effective temperature. The hottest and brightest objects are O stars,

whilst the sun is a G2-type star. The lowest temperature objects in this scale are Y-dwarfs which

can overlap with the planetary mass domain. A ‘dwarf’ is defined as being an object that has a

luminosity class ‘V’ in the Morgan-Keenan system and is partof the main sequence on the HR

diagram. For example, an object classified as a ‘M5V’, is an M-dwarf that is half as bright when

compared to an M0 dwarf.

Visually, the luminosity of an object can only be compared toother luminous objects and,

as the first observations were taken by eye, so takes the form of a logarithmic scale. This is the

magnitude system, where each object is catalogued and assigned a value in comparison to some

standard star, which has historically been (and still is) Vega or a Vega-type star. Vega is defined as

being an A0 star where the definition of this system holds thatthe gradient across its spectrum, or

colour, of a star of spectral type A0 is equal to zero. Throughimproved observations Vega takes

a modern value of 0.03 mag. The apparent magnitude, m, is related to the amount of flux that is

obtained via Equation 1.4:

m = −2.5log10(
F

F0
) (1.4)

where F is the flux from the object and F0 is the zero-point flux, dependent on the photometric

system. The total luminosity is obtained from the amount of flux over the whole spectrum, where

the intensity of the radiation is given by the integral of theflux density per wavelength. In this work

both the Vega and AB magnitude systems are used, where the AB system is independent of Vega.
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Figure 1.2: Example Hertzsprung-Russell diagram here showing the evolution of collapsing
clouds of masses between 0.05 and 10 M⊙against the effective temperature. Isochrones are the
evolutionary tracks at various ages. Figure taken from Wuchterl and Tscharnuter (2003), their
figure 3.

A magnitude in the Vega photometric system is related to the flux at a particular wavelength or in

a particular band from the object arriving at the observer, divided by the flux at that wavelength of

Vega, shown in Equation 1.5:

mV ega = −2.5 log(

∫

(Fλstar Sλ dλ)
∫

(FλV ega Sλ dλ)
) (1.5)

where Fλ is the flux at a particular wavelength in W M−2 and Sλ is the instrument response which

depends on the telescope, filter and detector used. Usually the unit W M−2 is too large so the

Jansky unit is used instead where 1 Jy= 10−26 W m−2 Hz−1.

In addition, the AB system is also used although this is independent of any variations in the

magnitude of Vega at a given wavelength, and is given by Equation 1.64:

mAB = −2.5 (log(

∫

(Fλstar Sλ dλ)
∫

(Sλ dλ)
− 48.6) (1.6)

where again the flux is in W M−2. Note that if the flux is in Janskys then there is an additional

4http://dls.physics.ucdavis.edu/calib/vegaab.html
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multiplying factor to the logarithm of26 (from the definition of the Jansky). Agreement is shown

with the Vega system, as if the flux is constant then the same magnitude is achieved and all colours

again equal zero. Conversion between the Vega and AB systemsusually involve a correction

factor, tabulated and discussed further in Chapter 2.

The apparent magnitude is the luminosityas iswith no form of corrections with respect to

distance or extinction, whilst the absolute magnitude, M, is the magnitude of that objects at source.

If the distance to this object is known then and extinction isnegligible then it is possible to change

between apparent and absolute magnitudes using Equation 1.7:

m − M = 5 log10(D) − 5 (1.7)

where D is the distance between the observer and the object.

1.2.2 Absorption & Emission

The luminosity of an object can be imaged spectroscopicallyas shown in Figure 1.3 (top) for the

Sun and fit5, and (bottom) for an M6 dwarf, Wolf 359 (McLean et al., 2003) and depends onthe

resolution of the spectrometer to observe thinner and weaker line features. Note the difference

in energies and also the appearance of emission and absorption lines caused by the presence of

various elements and molecules in the objects’ atmospheres.

Molecules in the line of sight absorb and re-emit radiation depending on the incident energy

of the photon, appearing as peaks and troughs in the spectrum. Extending this means that any

material in between the source of the radiation and the observer is liable to absorb and re-emit the

incident radiation. Space is permeated with small amounts of dust and gas which is the interstellar

medium and reduces the amount of light by∼1-2 mag kpc−1.

Figure 1.4: The absorption spectrum of

water by the Earth’s atmosphere. 2MASS

This is in addition to any non-space based

observation platforms which also have to deal with

the molecules existent in Earth’s atmosphere, where

the most troublesome of these for optical or IR

astronomy is H2O (Bessell, 2005). An absorption

spectrum of water is shown in Figure 1.46, traversing

the optical to infrared regions of the electromagnetic

spectrum. For this reason, modern telescopes tend

to be located in regions of low atmospheric water

vapour, usually in geographical and meteorological

dry spots and/or at great heights, for example

5http://homepages.wmich.edu/∼korista/
6http://people.bu.edu/clemens/mimir/images/imagesin web pages/
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Hawaii on Mauna Kea, Chile or even the middle of

Antarctica on the Trans-antarctic mountain range. A

discussion on the telescopes and surveys used in this

work can be found in Chapter 2.

1.2.3 Extinction & Reddening

Extinction is the term given to the amount of flux lost

between the originating object, be it a star or brown

dwarf, and the observer due to preferential scattering

and absorption of shorter, bluer wavelengths and/or

re-emission to longer, redder wavelengths. The

amount of reddening is affected by the transmitting

medium which can be the interstellar medium (ISM) or more local and compact conditions such

as molecular clouds, dust clouds or circumstellar disks. This amount of material in the line of

sight has a particle density per unit volume, referred to as acolumn density, where the average

ISM column density is∼1 atom cm−3.

The best way to estimate the extinction is from a group of Spectral Energy Distributions (SEDs)

taken from objects across the region of interest where the different absorption features can be

distinguished from features that are not so readily absorbed by the intervening medium. These

extinction curves can be collectively plotted for various stars, as shown in Figure 1.5 (taken from

Savage and Mathis (1979), their Figure 1), to gain the average normalised interstellar extinction.

Generally, the longer the wavelength of the incident emission compared to the size of the molecule

or dust grain in the line of sight, the less the extinction. Another method is to observe large-scale

images using surveys and then modeling varying extinctionsand comparing withχ2 deviation

maps to ascertain the confidence of a particular extinction value (Chapman et al., 2008). Applying

the average extinction for a given region will then not work in the cases of individual objects.

Here, it is possible to retract the individual objects to theoretical isochrones, adjusted to be at the

same distance as the object, where the difference is the amount of flux lost, giving the level of

extinction.

To this end there is the empirical interstellar extinction law which relates the magnitude of an

object in a particular band with a value for the amount flux lost, (Savage and Mathis, 1979). This

law is shown in Equation 1.8 where at least one bands absolutemagnitude is known, usually the

opticalV -band:

Aλ

E(B − V )
=

E(λ − V )

E(B − V )
+ R (1.8)
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where Aλ is the extinction at a particular wavelength, E(B-V) is the colour excess in magnitudes,

where a value of E(B-V) = 1 equates to a hydrogen column density of 5.8 x 1021 atoms cm−2

(Savage and Mathis, 1979). Extinction is usually given as the total-to-selective extinction ratio, R,

as a function of the V-band flux, AV shown in Equation 1.9, although this can be convolved with

the wavelength to get a value Aλ.

R =
AV

E(B − V )
(1.9)

where R takes the value 3.09 for the ISM. Rieke and Lebofsky (1985) confirm this interstellar

extinction law and improve the estimates between 1 and 13µm. Extinction is split into two

components which are the diffuse ISM component and thermal emission from this component

from dust grains, and a variable and generally thicker component originating from the local dust

and gas formations in the line of sight. Various methods are used in order to calculate the extinction

in the line of sight, (Wegner, 2003), and whilst it is not sufficient to use an average of the interstellar

extinction because the values will take errors which are sample specific (Fitzpatrick and Massa,

2007), this method should hold for obtaining good estimatesof the extinction towards particular

areas. The colour-excess is shown in Equation 1.10:

E(B − V ) = AB − AV = (B − V ) − (B − V )0 (1.10)

where (B-V) is the observed optical colour,(B − V )0 is the star’s intrinsic colour, andAx is the

extinction for that particular photometric band,x. It is possible to extrapolate the extinction curve

to find values for the detectors and bands used in this work,z′, Y , J , H, Ks and CH4off/on

narrowbands. For the purposes of this work the extinction values have been taken from the

Spanish Virtual Observatory (SVO) who convolved the bands with the detector responses of the

various telescopes and instruments, and are tabulated in Chapter 2 for the specific telescopes and

instruments used in this work (Table 2.1).
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Figure 1.3: Observed spectra for the Sun and Wolf 359 for a comparison between and examples
of black-body temperatures. (top): Spectrum of the Sun with the fitted black-body effective
temperature of 5777 K. (bottom): infrared spectrum of a low-mass object, Wolf 356 which is
an M6 dwarf of mass 0.09M⊙, where the effective temperature of this object is∼2800 K. The
peak flux emits at 1.03µm. These two plots overlap from 1.0 to 2.0µm. Note the increased
absorption in the infrared domain occurring at lower temperatures due to the presence of more
abundant molecules in the atmosphere. (See text for references).
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Figure 1.5: The normalised curves of various O and B stars’ interstellar extinction are plotted as
a function 1

λ
against E(λ − V ). Each curve is derived from a sample of stars, where the total

extinction can be found by including the total-to-selective extinction ratio, R∼ 3.09. (See text for
plot origin).

11



1.3 Stellar and Sub-Stellar Mass Objects

1.3.1 Stellar Objects

Field (∼ 5 Gyr) M-stars are better understood as they are brighter from being more massive and

have had a longer history of detection. These objects are perfectly capable of hydrogen burning

and usually have low levels of dust in their atmospheres because of their higher local temperatures

which prevent grain formation. The first oxide molecules andhigh-temperature condensate grains

begin to form in the cooler parts of the atmospheres of mid- tolate-type M-dwarfs. The M

to L spectral type transition occurs with the formation of silicate dust that is dense enough to

become a major factor at temperatures less than 2500 K which redden of the spectrum of the star,

characterised by the disappearance of the TiO and VO lines between 500 and 900µm (Jones and

Tsuji, 1997). Hydrogen burning is thought to occur down to masses of 0.075 M⊙ for the solar

abundance, (Burrows et al., 2001), though Burrows (2009) reaffirms that this is not known for

sure. This equates to the early L spectral type with temperatures down to TEff ∼ 2200 K for

the most massive of the field (5 Gyr) brown dwarfs. Objects that are not massive enough to fuse

hydrogen are termed ‘brown dwarfs’.

1.3.2 Sub-Stellar Objects

The first bona fide detections of brown dwarfs occurred withinmonths of each other; firstly Teide

Pleiades 1 discovered by Rebolo et al. (1995) with a constrained mass of between 20 and 50 MJ

and revised spectral type of M8 (Martin et al., 1996) using WHT spectra and Hα and Li detection;

and then secondly, though not much later, the companion dwarf to the nearby star Gl299B by

Nakajima et al. (1995). Further work on clarifying the properties of Gl299B such as its temperature

at TEff ∼900 K, and the existence of IR CH4 and H2O absorption lines (Oppenheimer et al.,

1996), and its spectrum (Oppenheimer et al., 1998) has been done. Since this discovery and proof

of the existence of brown dwarfs according to theory, there have been many surveys with the

express aim of expanding our knowledge of the formation and population of these objects down

to the planetary mass regime.

The Sloan Digital Sky Survey (SDSS)7 and the 2Micron All Sky Survey (2MASS)8 surveys

have been instrumental through their shear coverage but also from their complimentary nature

from the opticalu′ at ∼0.3 µm to the centre of theKs band at 2.17µm. More recent brown

dwarf surveys exploited the UKIRT Infra-red Deep Sky Survey(UKIDSS) where theZ, Y ,

J , H and Ks bands are available between 0.83-2.37µm, (Lodieu et al., 2007, 2009a,b). A

comprehensive database of all∼1300 currently known brown dwarfs, not candidates, is kept at the

7http://www.sdss.org/
8http://www.ipac.caltech.edu/2mass/

12



Dwarf Archives9. There are 536 M-dwarfs, 601 L-dwarfs and 205 T-dwarfs currently catalogued

in this database at time of writing.

A brown dwarf is held to be an object that is less than 0.08 M⊙ and is too lightweight to

sustain hydrogen burning whose limit occurs at approximately 0.075 to 0.08 M⊙, depending on

the metallicity of the object. The effect of age on this limitis unclear, but the younger the object

the lower the mass for a given effective temperature. Brown dwarfs can overlap with the M and

L spectral types, where the newer T and Y-dwarf classes describe the coolest objects. Deuterium

burning can exist, however, down to masses of∼ 0.012 M⊙ (Saumon et al., 1996; Chabrier

et al., 2000) or lower, again depending on the age and temperature of the object. The effective

temperature of the object defines its spectral type, whilst its age defines its mass. Younger brown

dwarfs, therefore, should be less massive than field brown dwarf for a given spectral type. It then

follows that the thermal entropy of these young objects musthave originated from the gravitational

potential energy and rotational potential energy impartedfrom the formation mechanism, where

the associated temperature with an object would then be greatest just after formation. Sequentially,

these objects are similar to gaseous planets and should differ in few areas, where Fortney et al.

(2008) discuss an interesting proposition that brown dwarfs and planets can be differentiated by

their metallicities. Their metallicities should be directly related to the composition of the birthing

cloud, the mass of the clump and also the disk formation process. Indeed, the lower the mass of

the object the higher the likelihood of having proportionally greater amounts of impurities arising

from the settling of heavier elements within the disk, from the parent cloud, over time compared

to the major compositional stellar elements H, He, C N and O.

More complex molecules and dusts form in the atmosphere as the L-dwarfs get later and this

burning reduces to deuterium burning. There is also the formation of cloud layers and internal

convection and mixing, where the cloud bases occur at thermoclines and are dependent on the

lower temperatures needed for upper atmosphere dust formation. When these clouds are cool

enough to allow the heavier materials to drop out from a higher to a lower cloud base, this clears

the upper atmosphere which now dominates the spectrum of this object, discussed in detail as the

L – T transition by Burrows et al. (2006). Of note here is the emergence of CH4 as one of the

dominant absorbers in this spectral range and is a definite marker of the T-dwarf spectral type.

Y-dwarfs are cooler than T-dwarfs and are defined by the emergence of stronger CH4 and NH3

absorption, whilst the H2O lines is thought to reduce because of sedimentation in the atmosphere.

For a more detailed description of the elements, materials and physics involved in the models of

the brown dwarfs over their spectral types, look towards Section 1.3.3.

Observationally, without spectroscopic data it is possible to use broadband magnitudes and

colours to broadly classify objects into spectral types. The appearance of dust in the outer

9http://spider.ipac.caltech.edu/staff/davy/ARCHIVE/index.shtml
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atmosphere of these late-M, L and early-T dwarfs faintens the spectrum through absorption and

emission, but affects the redder part of the spectrum lessercompared to dust-free field stars or

early M-dwarfs. TheKs magnitude is then fainter, but thenJ-band gets even fainter giving the

comparatively redderJ − Ks observed colours. TheJ-band and theY - andz-bands brighten for

early T-dwarfs because of the cloud ‘clearing’ of dust, whilst youth is also suspected to causes

these bands to brighten. TheJ-band brightening in particular is thought to be a consequence of

the rapid clearing of the cloud levels at around∼T3. The region of interest in theH-band is,

specifically, the CH4 molecule that dominates absorption at temperatures lower below TEff ∼

1300 K (Burrows et al., 1997). The colours of the younger objects are usually redder than the field

colours, excepting thez − J colour as discussed above.

Currently, brown dwarf spectral types can be approximated using theoretical models, where it

is possible to use aχ2 test in order to best fit a spectral type to a spectrum (Alves deOliveira et al.,

2010). These associations are not always accurate as the spectra can be noisy due to the extreme

faintness of these objects, due to obfuscation of the emitted radiation by dust or disks (Scholz

and Jayawardhana, 2008), but also by the incompleteness of the theoretical models. Additional

difficulties in assigning spectral type to these young objects via low-resolution spectroscopy is that

age, and so gravity, are significant factors which greatly affect the absorptivity and emissivity of

the molecular lines, making it hard to assign a correct effective temperature. For high-resolution

spectroscopy it is mainly due to gravity that the spectral types are hard to derive because of the

overlapping of the spectral lines. Usually these methods give the spectral type to an error of within

a few sub-types. The treatment of dust within theoretical models is currently the major source of

errors for derived observational properties as its behaviour is still far from being well-understood

across the brown dwarf regime (Burrows, 2009). The most recent BT-model spectra take into

account updated solar abundances which are based on radiative hydrodynamic simulations by

Asplund et al. (2009).

1.3.3 Models

Theoretical models are of immense value to not only help identify candidate objects, but to also

estimate the level of extinction suffered due to the inherent nature of local, stellar, dust and

from interstellar extinction. The problem is relating observations to theory as the age, mass and

temperature are interdependent. Theoretical models are necessary in order to ally observational

discoveries and puzzles with the usually established but hard-to-apply theory. This research makes

use of model atmospheres proposed for M, L and T dwarfs over the past two decades. These

models attempt to predict masses, ages and temperatures to bridge the gap between stars and

planets, and have an associated magnitude for various, user-defined observational bands.

The ‘NextGen’ model (Baraffe and Chabrier, 1996; Baraffe etal., 1998; Hauschildt et al.,
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1999) was the initial model to describe solar-type stars, very low mass objects (VLMs) and

early-type brown dwarfs, for solar metallicities. Magnitudes are given for various masses, and

their associated temperatures, radii and luminosities, and are in good agreement with empirically-

derived relations. These models are more uncertain for lower spectral types and can have large

errors for objects temperatures< 3700 K. This uncertainty was expected to be directly related

to incomplete optical opacities and grain formation in the atmosphere and incomplete solar

abundances.

Initial problems with modeling atmospheres reduce to the problem of having incomplete

molecular line lists, and the poor understanding of the mixing of materials between cloud layers.

This translates to underestimating the level of dust grain formation in the atmosphere, the treatment

within the upper and lower atmospheres, and then thesettling over time of these grains whilst

reducing the formation rate as they condense out, so removing the molecular species necessary

for particular grain formation. A typical zirconium dioxide, ZrO2, grain forms at a temperature of

∼ 2800 K, whilst other grains form at lower temperatures; for example at 1800 K for corundum,

Al2O3, and at 1600 K for VO and enstatite, MgSiO3. A detailed discussion of the astro- and

atmospheric physics involved is discussed in the review by Allard et al. (1997), and the mixing

is discussed in detail by Freytag et al. (2010). There are twosets of models used in this paper,

the Lyon-AMES models that are based upon the Langhoff and Bauschlicher (1994); Partridge and

Schwenke (1997) molecular line lists and Noels & Grevisse, 1993 solar abundances, and the BT-

models which have updated opacities for grain and molecularspecies in the atmospheres (Allard

et al. (2003, 2007) and Allard et al. (in. prep.)), and use theAsplund et al. (2009) abundances. Both

of these sets of models are available as theoretical isochrones or as spectra and can be queried from

the Phoenix simulator10.

The ‘Dusty-AMES’ model (Allard et al., 2001; Chabrier et al., 2000) was created to place

limits on the range of colours that brown dwarfs could have. They also give a good account of what

spectra could be observed of hotter brown dwarfs with respect to dust grain formation, because

the dust was found to be in equilibrium with the gas in the photospheric layers in the atmospheres.

This model applies to L and T dwarfs which are not reproduced by dust-free models, though below

∼2800 K dust grains and opacities are needed which were then incomplete, discussed Chabrier

et al. (2000) and references therein. These L and T-dwarfs have bluer NIR and IR colours due

to the presence of H2O and methane absorbers (Burgasser et al., 1999). Grain formation was

discussed in relation to low-mass brown dwarfs and planetary mass objects by Allard et al. (2001).

Gravitational grain settling allowed ‘backwarming’ whichis the increase in brightness due to

reduced infrared absorption by the H2O present. Missing sources of opacities to give the observed

colours, to be included in future models, are discussed by Baraffe et al. (1998). In all, the Dusty

10http://phoenix.ens-lyon.fr/simulator/
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models underestimate the opacity, and do not account for sedimentation or settling within the

atmospheres. Further discrepancies with observed colourscould be due to the presence of the

strong K I and Na I lines in the optical and near-infrared (Allard et al., 2007).

The ‘Cond-AMES’ model was developed by Allard et al. (2001);Baraffe et al. (2003) and

favours cooler,<1300 K brown dwarfs where the gas is treated condensing into molecules rather

than forming silicate features, so affecting the spectrum with many absorption and emission lines.

As these properties change with time, a hotter object may cool and so transit from the Dusty model

domain through to the Cond model domain. This model is similar to the NextGen model in that

there are no dust features, although it should bridge the brown dwarf-planet regime. The size and

composition of the core is physically a good representationof the difference between abona fide

brown dwarf and a planet; a planet should have more of a rock and ice core which can relate to

a 5% difference in the radius. The cooling theory of a brown dwarf and extrasolar giant planet is

similar, where the differences are more the metallicities and composition (Fortney et al., 2008),

expected because of the different mechanisms of formation.

Atmospheres of these very low mass stars, substellar objects, cooler brown dwarfs and

planetary-mass objects allow the formation of molecules within their atmospheres from the

reduced temperatures. Indeed, low-mass objects have largequantities of molecular hydrogen,

H2, and carbon found as carbon monoxide, CO, (Chabrier et al., 2000). Objects with masses

lower than 0.075 and 0.08 M⊙ have reached hydrogen burning limit depending on the metallicity

of the object, for example the aforementioned seminal discovery of the first brown dwarf, Gl299B,

weighs in at∼ 50 MJ and is thought not to be able to sustain hydrogen burning. There exist

titanium oxide, TiO, vanadium oxide, VO, and water, H2O, among others in varying amounts, and

are found to be the main mechanisms with which to lock up free oxygen - burning indeed! These

molecules greatly affect the optical and infrared spectrumand so influences the overall observed

brightness of the object, where H2O absorption are dominant in the near and mid-infrared down

to ∼1300 K. Below this temperature the CH4 is the dominating absorber (Burrows et al., 1997).

The new ‘BT-Settl’ model is finished and available for querying from the Phoenix database.

Allard et al. (2003, 2007) are the main contributors to the theory. The updated solar abundances

laid out in Asplund et al. (2009) are used for all of the new BT models, (F. Allard, priv. comm) as

opposed to the Noels & Grevisse (1993) abundances as discussed for the previous AMES models.

The major change in these abundances is the reduction in the oxygen abundance which affected

the previous models by predicting too-high water absorption in the M-dwarfs. The treatment of

the atmospheric water within these models are based on data from Barber & Tennyson, (2009).

The input physics to this new model has been described in Allard et al. (2003) and Helling et al.

(2008a), where the cloud is treated as a diffusing medium where material can be convected from
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Figure 1.6: The total dust level is clearly related to the reduction in temperature from the
hydrodynamical models by Freytag et al. (2010), where the crosses depict the total dust level
in the atmosphere, and the plus signs follow the dust presentonly in the layers of the atmosphere
with an optical depth of 10−2, showing the settling of the dust as the temperature decreases. (See
text for figure reference).

the depths to the upper cloud layers. These are based upon thecloud segmentation and dust

grain settling models described by Freytag et al. (2010) in their hydrodynamical simulations of

the influence of the underlying convection zone on this settling. The total dust present in the

atmosphere can be clearly seen to increase with lowering temperature, shown in Figure 1.6, (their

Figure 10bottom left), compared to the atmosphere layers that have a lower optical depth. As

the spectral type latens, the clouds can form thicker and more lasting clouds that begin to have

their own mini-convective mechanisms, creating layers of mixed species and grains, which are

dependent on the local conditions (Helling et al., 2008b). This cloud segmentation and dust grain

settling is dealt with in the BT-Settl model, over the full range of Teff , but is not yet dealt with

within the ‘BT-NextGen’, ‘BT-Dusty’ and ‘BT-Cond’ models.

The ‘BT-Dusty’ and ‘BT-Cond’ models (Allard et al. (in. prep.)) are not quite finished at time

of writing (August 2010) as they take a lot of computer processing power to calculate the new

grids down to the brown dwarf regime. The models outputted from the Phoenix simulator can be

adjusted for different metallicities and can span from 1 Myrto 10 Gyr. Optical and IR bands are

included and are also convolved with a large number of different telescopes and detectors in order

to match the models to the photometric systems of the user.
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1.3.4 Youth & Gravity Considerations

The effects that youth has on the spectrum of an object are addressed in these models which are

related to the gravity of the object. As discussed, the younger an object the less massive it is for

a given temperature. Strong alkali K I doublet (0.77µm) and Na I resonance lines are also major

absorbers in the deeper atmospheres of brown dwarfs. These are greatly affected by reduced

gravity for younger objects and in turn have a discernible effect on the colours of these objects and

spectral types (Martı́n et al., 1999a). As gravity decreases so the convection within the atmosphere,

and the cloud layers, becomes more efficient as the gravitational drag is reduced, consequently the

dust formation is also more efficient to later spectral types. Additionally, the resonance lines can

change the shape of spectrum differently in lower gravity objects, as the greater the mixing the

more that these K I and Na I lines will broaden and overlap in the optical, reducing the expected

flux for a given TEff . H2O vapour will form in lower density mediums for a lower gravity and

increases the strength of these bands, increasing the waterabsorption in the spectra. The molecular

hydrogen bands in Ks are weaker in lower gravities which will increase the brightness in this

band. Additionally, the presence of lithium in the atmosphere, specifically the Li I (at 670.8 nm)

absorption is a sign of youth (Martı́n et al., 1999a) and can help classifcation (Martı́n et al., 1999b).

For T-dwarfs, this lower gravity can increase the radius of the atmosphere and can increase the

observed ‘coolness’ of theJ-band part of the spectrum for a given temperature due to the presence

of H2O and CH4 being created in the extended and cooler atmosphere. Gravity and youth have

been addressed for their effect in the mid-infrared by Leggett et al. (2007).

1.4 Initial Mass Function (IMF)

Data for particular regions can be plotted using colour/magnitude (CMD) and colour/colour

diagrams (COLDs) in order to extract candidate cluster members for analysis. Membership of an

object can be fickle to assign and usually require confirmation using a variety of technological

and data processing techniques. The data must be selected using theoretical isochrones.

Further membership tests involve using spectroscopic observations, and so compare the relative

compositions of the objects, for example Hα emission, Li absorption and any red excess, or using

proper motion surveys for more dynamically evolved clusters. Further, the local reddening is

a problem as it can distort and make it very difficult to achieve accurate absolute magnitudes,

which are necessary in order to accurately assign magnitudes and so masses or spectral types

from theoretical models and/or from the spectra. The cluster mass function, or the distribution of

masses within a particular cluster, can then be derived, where the masses are based on observed

magnitudes and luminosities.

The mass function (MF) was first put forward by Salpeter (1955) and captured the relative
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numbers of the observed luminosity function as a function ofstellar mass across the Galaxy, or in

particular globular clusters or regions. The luminosity ofan object is a function of mass where hot

stars are the most luminous, described for main-sequence stars in Equation 1.11:

L

L⊙
= (

M

M⊙
)3.5 (1.11)

where L is the luminosity and M the mass, as functions of the solar luminosity and mass,L⊙ and

M⊙. The power co-efficient takes lower values for sub-stellar objects. It is also worth noting that

the more massive the object the shorter its life span as it burns its fuel as a function of mass. It can

be shown that star formation occurs at a uniform rate, at least within the solar neighbourhood by

comparing the number of stars as a function of the luminosityat a point in time,φt(Mν), shown

in Equation 1.12:

dN = φt(Mν) dM (1.12)

and wheredN is the total number of stars per cubic parsec of absolute visual magnitude between

Mν andMν + dM . Through the use of deeper surveys from improved technology, the range of

masses now exceed more than five orders of magnitude meaning that it is now more useful to use

a logarithmic definition of the mass. A recent review by Chabrier (2003) thoroughly discusses the

modern interpretation of the MF. Here the mass function is reiterated and shown in Equation 1.13

in log form:

ξ (log m) =
dn

d log m
(1.13)

or

ξ (m) =
1

m(ln 10)
ξ (log m) =

dn

dm
(1.14)

wheren is the number of observed stars per cubic parsec of space at one point in time, as a function

of the mass interval,d log m. The MF can also be expressed as a power-law:

ξ (log m) ∝ m−x (1.15)

and

ξ (m) ∝ m−α (1.16)
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wherex = α-1 and the Salpeter value ofα = 2.35. It can also be expressed as a log-normal law :

ξ (m) ∝ e

[

−
(log m−log m0)2

2σ2

]

(1.17)

where log m0 is the peak mass (mode) of the distribution, andσ the width of the dispersion,

confirmed by Moraux et al. (2007) for the young open cluster Blanco 1. The power-law seems to

more accurately describe the higher-mass portion of the IMF, above 0.3 M⊙, whilst the log-normal

law, Equation 1.17, describes more accurately the lower-mass end of the IMF.

1.4.1 Observations

There have been many surveys into the IMF for various clusters of age and size includingα

Persei (Barrado y Navascués et al., 2002); Hyades (Bouvieret al., 2008); Blanco 1 (Moraux et al.,

2007); NGC 2264 (Kendall et al., 2005); Pleiades (Moraux et al., 2004, 2003); Upper Sco (Lodieu

et al., 2007);σ Orionis (Caballero et al., 2007; Barrado y Navascués et al., 2004) and NGC 2516

(Moraux et al., 2005). Table 1.2 lists a few surveys with somebasic parameters such as age,α,

or log m0 andσ depending on the use of the power or log-normal relations forthese IMF cluster

surveys. Figure 1.7 is taken from Moraux et al. (2005), and plots the IMFs for three young open

Table 1.2: Summaries of various cluster surveys using infrared data to prove the IMF. The mass
range is given for those clusters where the IMFα value is given, rather than the peak mass, M0.
Data origin: 1) Barrado y Navascués et al. (2002) 2) Moraux et al. (2007) 3) Moraux et al. (2004) 4) Moraux et al.

(2003) 5) Caballero et al. (2007) 6) Barrado y Navascués et al. (2004) 7) Lodieu et al. (2007).

Age Distance α mass range σ Cluster
/ Myr / pc or M0 / M⊙ Name
90 176 0.59± 0.05 – – α Persei1

100–150 260 0.67± 0.15 (M0) 0.36± 0.07 0.58± 0.06 Blanco 12

120 125 0.60± 0.11 0.03–10 ∼ 0.52 Pleiades3,4

3± 2 360 0.60± 0.20 0.006–0.11 – σ Orionis5,6

5 120 0.60± 0.10 0.01–0.3 – Upper Sco7

clusters; Blanco 1 (100-150 Myr), the Pleiades (120 Myr), NGC 2516 (150 Myr) and the older

Hyades (625 Myr) which is used to compare the young clusters.Also plotted is the field MF

from Chabrier (2003) for systems with both solitary and multiple objects. The peak mass varies

as expected because of the differing ages of the clusters, but could also be from the different

totals of member populations and so mass distribution from formation. The Hyades appears to

have fewer lower mass objects and so the peak mass is significantly higher than for the younger

cluster, suggested to be the evaporation of low-mass members over the dynamical time-scale of
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the cluster. Cooling of low mass members is not sufficient to reduce the observed deficit in the

low-mass brown dwarf populations.

Figure 1.7: The IMFs of three young (∼100 Myr) clusters compared to the older Hyades (625 Myr)
and the field system IMF, separated by a constant. It can be seen that the three young clusters show
broad agreement with the log-normal law, Equation 1.17, similarly with the field system IMF and
the Hyades. The peak masses,log m0, are different as expected for clusters of such differing sizes
and total masses.

So far only the ‘present day’ mass function has been discussed. The initial mass function (IMF) is

the number of stellar objects that had originally been created in a particular region, be it a galaxy

or stellar cluster, and can only be extrapolated from the present day MF. This has been discussed

but only in relation to clusters losing lower-mass members through dynamical interactions, and in

relation to lower-mass objects cooling over time and therefore being much harder to detect. This

has implications, for example, for the percentage of baryonic matter compared to dark matter in

our Galaxy. Further implications are the size and formationof the molecular cloud that condensed

to form the cluster, as the total mass of the cluster is some fraction of the total mass of the parent
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cloud. Luhman et al. (2000) discuss that what actually is being observed in a star forming region

is the star creation function as similar molecular clouds can still create a different distribution

of objects depending on the initial conditions, and discussquiescent or turbulent clouds that can

create differing populations in a given mass range.

1.4.2 Formation Mechanisms & Simulations

Figure 1.8:left: Dynamical simulation isochrones from Padoan and Nordlund(2004) for different
starting parameters, which are then plotted over an empirical IMF of the young star-forming region
IC 348 from Luhman et al. (2003)right. MS is the Mach number (rms of the cloud’s initial
turbulence). (See text for reference).

After the discovery and confirmation of the theoretical existence of brown dwarfs, the origin of

the population of brown dwarfs was still unclear. Models describing the activity in molecular

clouds were needed in order to describe the formation of dense cores (Padoan and Nordlund,

1997) that then go on to form stars and sub-stellar mass objects. Padoan and Nordlund (2002)

introduced turbulent fragmentation into theoretical 2D simulations that then reduced the allowed

Jeans mass required for classically stable, free-falling gravitational collapsing clouds going

on to form a pre-stellar core. They conclude that turbulenceis a necessary mechanism for

the formation of stellar and sub-stellar objects. Turbulence can be modeled via hierarchical

fragmentation where the minimum mass required for star formation has been shown to vary

between 0.007 and 0.010 M⊙ in newer 3D simulations (Boyd and Whitworth, 2005), which is

still heavier then some isolated planetary mass objects observed, for exampleσ Orionis 70 for

example (Zapatero Osorio et al., 2002, 2008). More advancedmethods are required to model this

formation when presented by evidence of isolated planetarymass objects of masses lower than this.

Fragmentation simulations are required in order to attemptto explain the frequency of brown

dwarfs which are two orders of magnitude lighter (Padoan andNordlund, 2004). An example

their simulation is shown in Figure 1.8left showing the IMF lognormal curve for different initial

conditions whilst theright describes the IC 348 IMF from Luhman et al. (2003) with the lognormal
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IMF curve from the best-fitting initial simulation parameters.

Figure 1.9: Formation of a

brown dwarf with its own disk of

gas and dust.

A large proportion of brown dwarfs also show no evidence

of either being ejected from angular momentum interactions

with a parent star and disk, as proposed by Reipurth and Clarke

(2001), or being formed from further interactions within the

disk, or from possible photo-erosion of pre-stellar cores by

external massive stars (Whitworth and Zinnecker, 2004). Still,

these have all been shown, however, to produce brown dwarf-

mass and planetary-mass objects. The ejection mechanism can

still be one method of brown dwarf formation, though they

occur less in the more advanced models which include radiative

feedback (Bate, 2009c). Bate et al. (2002b) also discuss

from simulations that star/brown dwarf multiple systems can

also occur at a higher frequency around more massive stars,

indicating that fragmentation is not the only mechanism forbrown-dwarf production. Guieu et al.

(2007) discuss the star/disk-brown dwarf interaction which whilst thought to be thedominant

formation mechanism, requires the numbers produced by the ejection mechanism to be increased

by∼ 25-30% to agree with observations. To this end, it is necessary to model one-pass turbulence

within a molecular cloud, originating with soliton shocks from either a relatively nearby supernova

or a nearby and recently turned-on O or B-type star, present in many star forming regions. The

minimum masses for this can be less than as discussed and proposed by Boyd and Whitworth

(2005) when using 2D fragmentation simulations to be as low as 0.003 M⊙ (or 3 MJ ) for specific

shock parameters, and conclude that isolated brown dwarfs with these masses can form from

shock-compression in turbulent clouds. In addition, further work by Whitworth and Stamatellos

(2006) reduces the masses formed fromin-diskformation scenarios to just 1 MJ . In this case, there

is also a constraint on the minimum distance, 30 AU, from the star at which these objects can form

due to the temperature and ease of fragmentation within the disk. There is evidence of more disks

present around brown dwarfs, with further disks observed byLuhman et al. (2007a); Scholz and

Jayawardhana (2008). There is also recent evidence for small brown dwarfs which have formed

within a disk where Luhman (2004) made the first discovery of awide (∼pc) brown dwarf binary,

modeled with success by Whitworth and Stamatellos (2006) with a parent star. There is also further

evidence for brown dwarf-brown dwarf binaries that can formin isolation (Luhman et al., 2009).

A possible brown dwarf forming in isolation is rendered in Figure 1.9 1.9. A further problem

with the current understanding is the proposed brown dwarf deficit detected (or not, as it were) in

many clustered regions, although perhaps the origin of thisdeficit can be partially explained by

the generally small FOV of cluster observations (Guieu et al., 2006), leading to the lower-mass
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brown dwarfs being missed from the census, due to wide cluster orbits or having been ejected

completely. Further, turbulent fragmentation simulations also manage to produce the predicted

number of brown dwarfs from mass function estimates which again are not observed in these

numbers, an improvement on previous simulations by Bate et al. (2002a) which overproduced the

numbers of brown dwarfs (Bate, 2009a). More recent tweakingof the models by Bate (2009b)

indicated a certain robustness of the initial formation conditions where the level of turbulence,

referred to as a ‘power velocity field’, seems not to greatly influence the stellar properties or

distribution.Bate (2009c) summarise their previous hydrodynamical simulations (Bate et al., 2003;

Bate and Bonnell, 2005) between the initial conditions and the formation of cores via radiative

feedback from the more massive stars. The radii used and the initial masses, and so Jeans masses,

resulted in differing distributions of stars and brown dwarfs. The inclusion of radiative feedback

was shown to reduce the number of pre-stellar (or sub-stellar) cores by a factor of∼ 4 by reducing

the fragmentation rate of the larger stellar disks and so theoccurrence of lower mass embryos.

These are summarised in the standard logN IMF plot in Figure 1.10 (their Figure 7), along with

the IMFs from Chabrier (2003); Kroupa (2001) and Salpeter (1955). The accretion radii is the

limit at which a simulation (SPH) particle falls in and onto the sink particle which is created

when the central density of a particular region in the simulation exceeds 10−11 g cm−3; particles

greater than this distance join the sink particle in a circular orbit. Bate (2009c) proposed that the

similarities between the observed IMFs in nearby clusters are fundamentally based upon radiative

feedback between the cloud-star-disk interactions, whichmore accurately explain the observed

numbers of brown dwarfs.

Figure 1.10: Fromleft to right: results from the Bate et al. (2003) at an accretion radius of0.5 AU,
Bate et al. (2003) with a different accretion radius of 5 AU, and the denser initial cloud results
from Bate and Bonnell (2005) with accretion radius 5 AU. The curved, broken, and straight line
are the empirical IMFs from Chabrier (2003); Kroupa (2001) and Salpeter (1955) respectively.
The singularly hashed area defines the accretion and the doubly hashed regions define the non-
accretion set of the sample.
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1.5 Motivation

Two clusters have been observed that should give us the greatest chances of success in detection

low mass objects and to constrain the low-mass end of the initial mass function (IMF), are the star-

forming region IC 348 and the open cluster IC 4665. It is hopedthat with narrowband photometry

the lowest mass members of IC 348 can be catalogued, whilst a cluster census of IC 4665 of M to

L-dwarfs can be divined using a large survey withY and NIR broadband photometry.

Finally, the open questions attempted to be addressed in this work are:

• How do the lowest mass objects form?

• How do the lowest-mass objects affect the IMF?

• How do the lowest-mass objects overlap with the largest planets?

• How does this work add to the current scientific understanding?

To answer these questions, the two young cluster regions should be observed with respect to

frequency and distribution of the lowest-mass brown dwarfsto attempt to find how many brown

dwarfs form. It is expected that the lowest mass objects formin all scenarios and clusters but many

of these remain undetected; from ejection due to dynamically shifting interactions from within

the cluster itself; from cooling to below present detectionlimits; and from regions of high local

extinction which, when in the foreground of these faint objects, also prevents detection. It can be

simple to assume that whilst the lowest mass objects should be the most numerous; the formation

methods could prove that the lowest mass objects are too light to form via unaided gravitational

collapse (i.e. as a lone brown dwarf and disk), or that they experience too much interaction leaving

their formation stunted due to the close proximity of it neighbours located nearby in the cluster

region. This then reduces the number of low-mass objects being formed whose material could

remain as dust and some gas orbiting around a more massive brown dwarf or star, indicated by

large disk fractions in star forming regions yet low numbersof low-mass objects. This affects the

low-mass part of the IMF which can be skewed to either a powerlaw or lognormal dependence.

The lowest-mass objects should overlap with planets with respect to the materials making

up these objects and their coalescence into planet-like objects from parent disks. The types and

amounts of dusts and gases are purely dependent on the materials present in the originating cloud,

and specifically the material present in the original collapsing cloud.

The work presented in this thesis hopes to expand the number of the lowest-mass objects

ever detected in a star-forming region with the discovery ofa candidate T5.5+1
−0.5 dwarf in the 3

Myr old star-forming region IC 348, and the work done towardsa full census and candidate list

ready for spectroscopic followup of the∼40 Myr open cluster IC 4665 down to a completeness of

0.015 M⊙or ∼L3 dwarf regime. Both of these regions have not been observedat such a depth to

date and this work should greatly expand the information on and confirmation of the lower mass
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end of the initial mass function.

1.5.1 Observational Strategy

• Why observe clusters and not field objects?

• Why observe different clusters?

• Why choose star forming regions and young open clusters?

These are the main questions to think about when deciding what sort of observations to take.

The possible telescope integration time and the size of the telescope are main limitations on

current searches for low-mass objects in the field and in star-forming regions. Dedicated surveys

are available but the trade off is depth against survey coverage, which are all dependent on the

observation time allocation. The survey depth should be optimised to the expense of the coverage

to find the lowest mass objects. It is important, then, to carefully balance the telescope and detector

with respect to the regions of interest. To this end we must ask ourselves what the best solution is

when using the available time and technology.

These questions can be answered forthwith. Old, 5 Gyr, sub-stellar mass objects are typically

field objects which have long since evaporated from their birth clusters and are now roaming free

betwixt the stars. They are usually more massive for a given effective temperature as they have

lost thermal energy since their formation and are not producing energy from hydrogen synthesis,

though depending on mass and original temperature or spectral type these objects could have had

some small amount of deuterium burning. There will certainly be some decay from radioactive

isotopes within the confines of the object, similar to that inthe core and mantle of the Earth,

though the energy that this would produce would likely be negligible over such a time frame.

Young,< 50 Myr sub-stellar mass objects are very similar except thatif a young and old object

have similar temperatures or spectral types then it followsthat the young object should be less

massive as they have not had 4.5 billion years to expel heat, and a very little mass, to reduce their

effective temperatures. An additional factor is that sub-stellar objects contract when they cool,

reducing their luminosity further whilst increasing and conserving their gravitational potential

energy, however, a young object will still be more luminous than an old field object. Given that

field objects are likely to be single, or at most small bound systems, it seems more ideal to observe

a cluster which should have a large population of sub-stellar mass objects in one place, without

the need for a large scale survey.

A cluster, therefore, would seem the best place to observe sub-stellar mass objects as the

relatively low coverage area should yield useful numbers ofbona fide objects. Additionally, the

youth of a cluster is especially important as it partially determines the magnitude of the lowest

mass objects that can be detected. The distance to the cluster is also as important as the youth

as it determines how much extinction is present, excepting the local cluster extinction, and so the
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magnitude and depth of the observations. Additionally, in the case of a young star-forming region,

all of the objects should be approximately the same age, witha dispersion of the age of the cluster.

Young clusters are also still evolving through dynamical interactions and so fewer objects should

have been ejected from the cluster, or found in large (> cluster radius) orbits meaning there should

be less contamination in a given region. Extinction also helps this contamination issue as in star-

forming regions there is usually still a lot of dust and gas which occlude background stars, and also

give most objects within the cluster a red excess which is non-existent in the objects found in the

foreground. So, the younger the brighter the object, the closer the brighter the object and, finally,

the lower the extinction the brighter the object. To this endthe young (∼3 Myr) star-forming

region IC 348 is observed for the lowest mass objects<10 MJ , and the young (∼40 Myr) open

cluster IC 4665 is observed to find the initial mass function across this cluster.

1.5.1.1 Coordinate System & Galactic Locations

A coordinate system is used to ascertain the location of the object with respect to the location of

Earth. The most recent coordinate system is the J2000 system, where the tiny variations in the

movement of the Earth around the sun over the course of its orbit requires the coordinate system

to be re-calculated every 50 years. Older data can be found inthe J1950 system. All data in this

work is given in the J2000 coordinate system for clarity.

A map of the Galaxy can be found in Figure 1.11, taken from Momany et al. (2006) and shows

decimal J2000 coordinates and the location of the Sun and also the major features. The Galactic

centre and anticentre, the bar (Freudenreich, 1998) of length ∼3 kpc (Vallée, 2005), along with

some of the spiral arms are labeled. The two clusters IC 4665 and IC 348 are located towards

Ophiuchus and Perseus respectively, where the distances are approximately the same distance,

300-350 pc, from the Sun as shown in the spherical inset. IC 4665 has a distance taken to be

356±15 pc for this work, whilst the distance to IC 348 has been taken to be 300±15 pc. IC

4665 is a young (∼40 Myr) open cluster that contains low-mass objects currently observable to a

spectral type∼L3; and IC 348 is a very young (∼3 Myr) star forming region T-dwarfs of spectral

type later than∼T3 should be observable. The difference in observable spectral types are due to

the cooling and ejection of low-mass members, and the allotted telescope time for this work. The

properties of and the work done on these clusters are discussed further in their respective chapters,

3 and 4.
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Figure 1.11: An HII region/dust mapped schematic view (fromDrimmel and Spergel (2001)) of
the Milky Way as seen from above. The Galactic center, the Sunand the names of the spiral arms
(dashed) are plotted. The Galactic bar was added with an orientation angle of14◦ and is of length
3 kpc. The large blue circle is a fixed heliocentric distance at 17 kpc for scale, with the coordinates
in decimal degrees. The two clusters IC 4665 and IC 348 discussed in this work are within the
black circle around the Sun, expanded in the spherical insetof radius 350 pc (arrowed).

1.6 Summary

The basics of the physics behind the luminosity and temperatures of stars and other celestial bodies

has been discussed with respect to the apparent and absolutemagnitude systems that are in use

today. Further, the loss of energy leading to the differences between this systems occurs from

reddening of the radiation along the line of sight which is referred to as extinction. Galactic star

formation originating from dense molecular clouds formingdark cores is also discussed and can

be greatly affected by the local conditions which can be the turbulence from supernova shocks

or from quiescent gravitational collapse. Angular momentum is conserved as this mass of gas

and dust flattens and collapses into a spinning disk. Low-mass star formation is mainly affected

by the mass of the parent cloud. Turbulent ejection scenarios and ad hoc low-mass brown dwarf

formation is thought not to be the dominant mechanism for theformation of low-mass brown

dwarfs as predicted by hydrodynamical models, rather the majority of these objects form within

the influence of a parent star or disk.
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The Lyon theoretical models are discussed in depth, to explain why these models are used as

the principal isochrones used for this thesis. The updated BT models are the most recent and are

superior in that they take into account the work done over this past decade on the opacities and

distribution of known species and grains in the atmospheresand photospheres of brown dwarfs.

The mass function (MF) and initial mass function (IMF) usually originates with colour/magnitude

(CMD) and colour/colour diagram (COLD) analysis, involving fit-by-eye cluster regions or using

comparisons to theoretical isochrones. Following the feasibility of further study and proposal

acceptance of spectroscopic follow-up, candidates members can be accepted or rejected. The mass

distribution of accepted members can then be plotted against the mass, usually on logarithmic

axes, and the MF or IMF can be found to follow either a power-law distribution for solar and

higher-mass stars and more of a log-normal curve for sub-stellar objects. Additionally, the current

understanding of the IMF is summarised for a sample of young star forming and open cluster

regions from the literature.

Finally, the open questions that are posed encourage further research into the low-mass initial

mass function of star forming regions and open clusters witha view to looking at the overlap

between brown dwarf and planetary mass objects. This is based upon the feasibility of new ground

and space based telescopes and improved detectors that are capable of delving ever deeper into

space, and with it a deepening of our understanding of the cosmos.
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1.7 Résuḿe

Les bases de la physique derrière la luminosité et des températures des étoiles et autres corps

célestes a été discutée en ce qui concerne les systèmesde magnitude apparente et absolue qui sont

en usage aujourd’hui. En outre, la perte d’énergie conduità des différences entre les systèmes de

ce produit à partir de rougissement du rayonnement le long de la ligne de visée qui est appelée

extinction. La formation des étoiles galactique provenant de nuages moléculaires denses formant

des noyaux sombres est également discutée et peut être grandement affectée par les conditions

locales, par example les turbulences des chocs supernova oude l’effondrement gravitationnel de

repos. La conservation du moment angulaire que cette masse de gaz et de poussière aplatit et

s’effondre dans un disque en rotation. La formation des étoiles de faible masse est principalement

affectée par la masse du nuage parente. Scénarios d’éjection turbulent et formation ad hoc de

faible masse naine brune est la pensée de ne pas être le mécanisme dominant pour la formation de

faible masse des naines brunes que prévu par les modèles hydrodynamiques, plutt la majorité de

ces objets forme sous l’influence d’une étoile parent ou disque.

Les modèles théoriques de Lyon sont discutées en profondeur, d’expliquer pourquoi ces

modèles sont utilisés comme isochrones principal utilisé pour cette thèse. Les modèles-BT mis à

jour sont les plus récentes et sont supérieurs à ce qu’ilsprennent en compte le travail accompli au

cours de cette dernière décennie sur les opacités et de ladistribution des espèces connues et les

grains dans les atmosphères et photosphères des naines brunes.

La fonction de masse (FM) et la fonction de masse initiale (FMI) provient généralement

de couleur / magnitude (CMD) et la couleur / couleur (COLD) analyse, impliquant des régions

cluster ajustement par les yeux ou en utilisant des comparaisons à isochrones théoriques. Suite

à la faisabilité d’une étude plus approfondie et l’acceptation de la proposition de spectroscopie

de suivi, les membres de candidats peuvent être acceptés ou rejetés. La distribution massive de

membres acceptés peut ensuite être tracée en fonction dela masse, le plus souvent sur des axes

logarithmiques, et le FM ou le FMI se trouve à suivre soit unedistribution en loi de puissance

pour les étoiles de type solaire et plus de masse et plus d’une courbe log-normale pour les objets

sous-stellaires. En outre, la compréhension actuelle du FMI est résumée pour un échantillon de

régions jeune star cluster formage et ouvert de la littérature.

Enfin, les questions ouvertes qui se posent encourager la recherche sur la fonction de masse

initiale de faible masse des régions de formation stellaire et des amas ouverts en vue d’examiner

le chevauchement entre les naines brunes et des objets de masse planétaire. Ceci est basé sur la

faisabilité d’un nouveau terrain et télescopes spatiauxet détecteurs améliorés qui sont capables

de plonger toujours plus profondément dans l’espace, et avec elle un approfondissement de notre

compréhension du cosmos.
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2.1 Instrumentation & Observations

2.1.1 Principal Observatory - Canada France Hawaii Telescope (CFHT)

The Canada France Hawaii Telescope1 (CFHT) is 3.6m in diameter, located at an ideal location

4,200m up on the summit of the dormant volcano Mauna Kea in Hawaii. Islands classically

make ideal locations for telescopes as the weather usually flows around the high-ground rather

than over it, resulting in reduced atmospheric water vapourthat is always problematic for any

ground-based IR observations. There is still water absorption in the upper atmosphere which

is especially problematic for IR observations resulting inthe use of bands where the absorption

in the atmosphere is at a minimum, discussed in Chapter 1. Theoptical/IR-capable telescope

has historically had various instruments on the back end. There are currently three imaging

instruments available for use, which are the wide-field imager MegaCam (Boulade et al., 2003) (on

the MegaPrime focus), the Wide-Field Infrared Camera (WIRCam) (Puget et al., 2004), and the 1k

x 1k Infrared detector (KIR), that last of which uses the Adaptive Optics Bonnette (AOB/PUEO).

MegaCam and WIRCam were the main instruments used to image parts of the sky necessary to

fulfil our motivation, whilst the KIR has not been used for anyobservations in this work. The fields

of view and CCD layout of WIRCam and MegaCam are shown in Figure 2.1, and are discussed

further in due course. Tabulated data of these two instruments on the CFHT can be found in Table

2.1, where the field of view (FOV), available filters and approximate quantum efficiency values of

the filter regions are also neatly summerised. Figures 2.2 and 2.3 show the quantum efficiency of

the detector and centraleffectivewavelengths of each of the filters for the WIRCam and MegaCam

detectors respectively, where the data originated from theCFHT website. The filters have all been

convolved, excepting theY -band filter, by the Spanish Virtual Observatory2 (SVO - see 2.2.4)

to produce useful extinction Aλ/AV co-efficients. The WIRCam’sY extinction value was not

available at the SVO and therefore will be discussed more thoroughly in section 3.3.

The CFHT offers various sets of dithering patterns where ourobservations usually used the

greatest pattern of 7 dithered images per pointing in order to fill in the gaps between CCDs, to

slightly increase the FOV and also to improve the reliability of the data at the borders of our fields

of view.

2.1.1.1 Wide-field Infrared Camera (WIRCam)

WIRCam3 (Puget et al., 2004) is an upgraded IR version of the retired CFH12K CCD mosaic

optical camera, and is located on the main CFHT prime focus upper end (PFUE) shown in the

upper panels in Figure 2.1. The optics for WIRCam (Thibault et al., 2003) were made by the

1www.cfht.hawaii.edu
2http://svo.laeff.inta.es/theory/filters/index.php
3http://www.cfht.hawaii.edu/Instruments/Imaging/WIRCam/
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Table 2.1: Instruments on the CFHT used listing the FOV, filters and FWHM’s of the associated
MegaCam (z′) and WIRCam (J , H, Ks, CH4off andCH4on) filters. Extinction values for each
filter have also been convolved as a function of each filter by the SVO, with the exception of the
WIRCamY filter (see section 3.3). Values with an asterix have uncertainties of more than 15%.

Telescope FOV Filter AB to Vega Detector Quantum λeff
c ∆λeff Aλ/AV

offset Efficiency µm µm
MegaCam 0.96◦×0.94◦ z′ -0.554 ∼0.30(20 webpage) 0.88 0.27 0.52
WIRCam 20′×20′ Y - 0.50* 1.04 0.10 0.42

J - 0.75 1.25 0.16 0.30
CH4off - ∼0.75* 1.58 0.10 0.21
H - 0.75* 1.63 0.29 0.20
CH4on - ∼0.75* 1.69 0.10 0.18
Ks - 0.80 2.15 0.33 0.13

Groupe D’Astrophysique at the University of Montreal4 and the Institut National d’Optique in

Quebec5. The IR camera has to be cooled to 80K using a cryostat developed at Laboratoire

d’Astrophysique et Observatoire de Grenoble6 (LAOG), where the mechanical structure of the

camera system was also developed. The four CCDs which make upthe WIRCam array each have

dimensions of 2048x2048 pixels, of size 18µm, and gives a total of∼16 Mpixels. The standard

FOV is 19.4′ x 19.4′ and so yields a pixel scale of 0.306′′ pixel−1 with dithering. Another addition

to the camera, and the CFHT dithering option, is the Image Stabilizer Unit (ISU), which allows

micro-dithering of up to 0.5 pixels to increase the pixel scale from 0.306 to 0.15′′ pixel−1 (used

for both of the IC 348 and IC 4665J , H andKs images). The large gaps in between the CCDs,

of size 45′′, are dealt with using a combination of the 7-pattern dithering of the CFHT, the 4 to 8

micro-dithering exposure per dither on the ISU, and also theassociated weight (coverage) maps,

which are discussed later in Section 2.1.2.2.

The imaging capabilities available on WIRCam include a range of broadband IR filters, primarily

the IR Y , J , H and Ks filters. In addition to these broadband filters there are a number of

narrowband (δλ ∼0.1 µm) filters including, and most notably for this work, theCH4off filter

at 1.58µm and theCH4on filter at 1.69µm. Data on these filters can be found in Table 2.1, whilst

filter curves and the approximate quantum efficiency of the detector for all the WIRCam broad

and narrowbands can be found previously in Figure 2.2. Othernarrowband filters not used in this

work can be found on the CFHT WIRCam webpages7.

4http://www.astro.umontreal.ca/groupe/
5http://www.ino.ca/fr/accueil.aspx/
6http://www-laog.obs.ujf-grenoble.fr/
7http://www.cfht.hawaii.edu/Instruments/Imaging/WIRCam/
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Figure 2.1:top: The four CCDs making up the WIRCam array with gaps of order 45′′. bottom:
CCD arrangement of the MegaCam array with gaps ranging from∼13 to∼80′′. Gaps between the
CCDs are dealt with primarily through dithering and micro-dithering and associated weight maps.

2.1.1.2 Mega-Pixel Camera (MegaCam) on MegaPrime

MegaCam (Boulade et al., 2003) is an optical camera which wasbuilt at the Commissariat

l’Energie Atomique (CEA) in France, and is housed on the backend of MegaPrime8, the wide-

field prime focus environment on the CFHT. It requires a cryostat to keep its 36 CCDs cooled to

153K. The CCD matrix is made from 4 rows of 9 rectangular CCDs,arranged into a square, as

seen in the lower panels in Figure 2.1. Each CCD lattice has 2048 x 4612 pixels equating to 360

Mpixels, and giving a pixel size of 13.5µm. The FOV of MegaPrime is 0.96◦ x 0.94◦ and relates to

a pixel scale of 0.185′′pixel−1. There are small gaps (∼13′′) between each part of the CCD matrix

and two large gaps between the first and third row of∼80′′, and are treated in a similar manner

to those gaps on the WIRCam CCD array (see Section 2.1.2). Thetwo largest gaps, however,

8http://www.cfht.hawaii.edu/Instruments/Imaging/MegaPrime/
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Figure 2.2: Black dotted curves are raw detector responses for the broadband filters (labelledY ,
J , H andKs left to right) whilst the red solid curve is the response for theCH4off and green solid
curve theCH4on narrowband filters. The dashed line through the curves is the quantum efficiency
of the detectors, where all points apart fromJ andKs have uncertainties of more than 15%.

are not able to be addressed in this manner resulting in the MegaCam output images having two

blank lines across its raw and then processed images, shown in Figure 2.6. MegaCam has been

calibrated to output data in the modern CFHT AB system using the CFHT Elixir pipeline9.

The MegaCam filters are similar to the filters of the Sloan Digital Sky Survey (SDSS),u′, g′,

r′, i′ andz′, (Fukugita et al., 1996; Bessell, 2005), and though all of these filters were available,

observations from just thez′ filter was proposed and then used in this work. Consequently only this

MegaCam filter is discussed in any detail, found previously in Table 2.1. Thez′ central effective

wavelength is 0.88µm, with an associated detector quantum efficiency of 30 %, where all filters

9http://www.cfht.hawaii.edu/Instruments/Elixir/
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Figure 2.3: MegaCamu′, g′, r′, i′ andz′ filters and associated CFHT quantum efficiency of the
detector. The central effective wavelength of thez′ is λeff

c 0.88µm of width 0.27µm. Additional
information regarding the effectiveness of the CFHT mirrorand optics are also given, with the
final throughput shown as bold coloured lines. The bold blue line is thez′ filter convolved with
the quantum efficiency of the detector, where the base response of this filter is shown as the thin
blue line. Other filters are labelled as per the figure. Figuretaken from the Canadian Astronomy
Data Centre (see text for reference).

can be found in Figure 2.3 along with the otheru′, g′, r′ andi′ filters for completeness (figure taken

from the Canadian Astronomy Data Centre (CADC)10, data from the CFHT MegaCam pages).

The effectiveness of the CFHT mirror and the optics are also taken into account to obtain the final,

effective, filter values.

2.1.2 Observed Data

2.1.2.1 CFHT Pre-Processing Pipeline

MegaCam’s raw output is pre-processed by the Elixir11 (Magnier and Cuillandre, 2004) pipeline

in-house at the CFHT. WIRCam data is also pre-processed at the CFHT using the ’I’iwi

10http://www4.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/megapipe/docs/filters.html
11http://www.cfht.hawaii.edu/Instruments/Elixir/
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preprocessing pipeline1213 (Albert et al., in prep.). Both pre-processing pipelines are meant

to remove any detector-specific details from the outputted images and includes detrending the

raw data and flagging the saturated pixels where saturated flags are assigned if the flux values

exceed 36000 ADUs. Flat-fielding, sky subtraction and establishing an astrometric solution are

also handled in this pipeline, before the photometric calibration is addressed. The photometric

calibration is achieved using standard stars, except for theJ , H andKs bands which are calibrated

using the available 2MASS bands. Consequently, MegaCam data is outputted in the CFHT

AB system whilst the WIRCam calibration uses a mixture of standard stars and 2MASS and is

therefore outputted in the CFHT Vega system, as 2MASS is in the Vega system. Both sets of data

are also zero-point calibrated to 30 mag by the ’I’iwi pipeline. This zeropint is handled in two

ways, depending on the filter. For 2MASS-similar filters (J , H, Ks) the zeropoint is given in the

’I’iwi documentation by:

ZPmeasured = mag2MASS + 2.5 log10(fluxtotal) − 2.5 log10(τexp), (2.1)

whilst for the other filters,Y and the narrowbands for example, the zeropoint is calibrated

using:

ZPmeasured = magmodeled + 2.5 log10(fluxtotal) − 2.5 log10(τexp), (2.2)

wheremag2MASS is the associated 2MASS magnitude,fluxtotal is the integrated flux from

the star in the image,τexp is the exposure time of the measured star, andmagmodeled is calculated

by convolving the filter response curves with model spectra of the standard stars.

2.1.2.2 Elementary Treatment, Reduction and Analysis of PIXels (TERAPIX)

Both MegaCam post-Elixir pipeline data and WIRCam post-’I’iwi pipeline data is sent to

TraitementÉlémentaire, Réduction et Analyse des PIXels (TERAPIX)14 before being calibrated

using their pipeline. This pipeline, (Bertin et al., 2002),includes using various custom made

programs15, for example SCAMP, SWarp and SkyMaker (Bertin, 2008), and custom IDL routines

to calibrate the astrometry and photometry, and image stacking. Finally a catalogue of objects

in the FOV is constructed using Source Extractor (SExtractor), discussed in Section 2.3, and

outputted along with the qualityFITS analysis which is associated with each image, and a weight

map and a flag map.

12http://www.cfht.hawaii.edu/Instruments/Imaging/WIRCam/WIRCamPreprocQueue.html
13http://www.cfht.hawaii.edu/Instruments/Imaging/WIRCam/IiwiVersion1Doc.html
14terapix.iap.fr
15http://astromatic.net/
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Figure 2.4: (left): J-band image from IC 348, shown with the FOV that has been extended using
blank pixels to that of thez′ MegaCam FOV. (right): IdenticalJ-band image (faintened), as (left)
but has theJ-band associated weight map superimposed onto theJ-band image, showing how the
dithering patterns altered how much of the sky each part of the image was exposed to during the
observation periods.

Science-ready TERAPIX Data The TERAPIX pipeline outputs two further data files on top of

the pre-processed data from the CFHT. Weight maps, which have an associated weighting to each

stacked image, and flag maps for each image that specify whichpixels are bad and/or saturated or

next to these types of pixels. Flag values are discrete values of 0, 4, 8 and 12, where 0 indicates

an absence of saturated or bad pixels and 4, 8 or 12 the number of pixels that have or ajoin a

saturated or bad pixel value. The left hand image in Figure 2.4 shows the science-ready WIRCam

J-band image of IC 348 which is made up of a number of stacked images (see Section 2.1.2.4 for

further information about this image). The dithering effect is seen in its associated weight map,

on the right in Figure 2.4, where regions of different weightindicate how often that region has

been observed prior to stacking and what factor that part of the image is weighted with. Note the

less-observed regions form a cross due to the 45′′ gaps between the WIRCam CCDs. These files

can be used for the object extraction and are directly supported by SExtractor, which is discussed

in more detail in Section 2.3.1. A single SExtractor-parsedcatalogue is outputted for each stacked

observation using a set of standard configuration values: 1.5 σ detection and analysis thresholds,

standard 30pixel aperture value and a 64/3 background map/block size for background subtraction.

The full details of the TERAPIX SExtractor configuration filecan be found in the Appendix 5.5,

whilst specifics and optimisation of this file is discussed inSection 2.3.2.
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Figure 2.5: The FOV of observed fields A through to J of IC 4665.The two control fields are
located outside the frame of this image.

2.1.2.3 IC 4665 Observations

IC 4665 is an open cluster whose centre is taken to be at17h46m18s.00 +05◦43′00′′.0 (J2000),

which is towards the constellation of Ophiuchus. The pointings in the direction of IC 4665 are

spread across 12 overlapping fields, (see Table 2.2), which includes the cluster’s centre and the two

control fields all observed by the CFHT in service mode between September 2008 and December

2008.

The grid of 10 images of the cluster are shown graphically in Figure 2.5 where the existance of

30′′ overlaps between each individual field can be clearly seen. The two control fields are located

at least 1◦ outside the known cluster boundary to help assess the contamination from the presence

of field stars within the cluster images, and so are not shown within the frame of this figure. The

short and long observations were taken at the same time for each observing field and acquired

using a 7-position dithering pattern to fill in the 45′′-wide gaps in between the IR arrays. The short

and long exposure images were taken inY , J andH filters. Microdithering was used for the long

images with 8 exposures per dithering pattern for theH and 4 for theY andJ , and were not used
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Table 2.2: Field of view of the WIRCam images and the central coordinates of the pointings
towards IC 4665. TheY , J , H andKs long and short exposure images all have an overlap of 30′′

and the centre of the cluster is taken from the SIMBAD database to be 17h46m18s.00 +05◦43′00.′′0
(J2000).

Instrument Field of Field Coordinates (J2000)
View (FOV)

WIRCam 20′×20 ′

A 17h46m42s.00 +05◦49′23.′′0
B 17h46m42s.00 +05◦29′23.′′0
C 17h45m22s.00 +05◦49′23.′′0
D 17h45m22s.00 +05◦29′23.′′0
E 17h48m02s.40 +05◦29′23.′′0
F 17h48m02s.40 +05◦49′23.′′0
G 17h44m02s.40 +05◦49′23.′′0
H 17h44m02s.40 +05◦29′23.′′0
I 17h44m58s.54 +06◦09′23.′′0
J 17h46m01s.60 +05◦09′23.′′0
Control1 17h51m03s.00 +08◦05′54.′′0
Control2 17h40m53s.00 +02◦50′14.′′0

for the short observations. TheKs images were observed with the remaining allocated time and

so have ‘medium’-length exposure times of between 532 and 700s. The differences in the lengths

of these exposures are dealt with at TERAPIX whilst assessing the zeropoints to ensure that the

Ks band observations are scaled to be equal over all 12 fields.

Total long exposure integration times of 1.07h, 0.54h, and 0.72h for theY , J and H and

were obtained from multiple individual exposures of 128s, 60s and 13s respectively. The same

observing strategy was used for the shortY , J andH images, all with individual integration times

of 5s. See Table 2.3 for more detail regarding the short and long exposure times and observing

periods. The ‘medium’ exposureKs observations are treated in this work as being associated with

both the long and the short exposures, discussed further in Section 2.3.5. The TERAPIX pipeline

outputs qualityFITS which give the details and plots on the results of the processing, and also

outputs a SExtracted catalogue of objects for each field and each filter where the configuration file

can be found in the Appendix 5.5.

2.1.2.4 IC 348 Observations

IC 348 is a clustered star forming region towards Perseus andis located at03h44m34s.00

+32◦09′48′′.0 (J2000). WIRCam was used to take narrowbandCH4off and CH4on along with

J , H, andKs images of IC 348, whilst MegaCam was used to take az′ image of IC 348, where

the properties have been shown previously in Table 2.1. The WIRCam observations were obtained
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Table 2.3: IC 4665: List of the observing programs and respective exposure and integration times
for theY , J , H andKs long and short exposure observations.

Filter Programme(s) Fields Exposure Integration
length / s time / s

Short
Y 07AF22 & 07AF99 ABC,C1C2,D + EFGHIJ 5 315
J 07AF22 & 07AF99 ABC,C1C2,D + EFGHIJ 5 315
H 07AF22 & 07AF99 ABC,C1C2,D + EFGHIJ 5 315
‘Medium’
Ks 07AF99 ABCD 15 700
Ks 08AF98 C1C2,EFGHIJ 15 532
Long
Y 07AF22 & 07AF99 ABCD + C1C2EFGHIJ 128 3864
J 07AF22 & 07AF99 ABCD + C1C2EFGHIJ 60 1960
H 07AF22 & 07AF99 ABCD + C1C2EFGHIJ 13 2576

under programme 06BF23 in service mode between September 2006 and January 2007, whilst

the MegaCamz′ observations were obtained under programme 06BF28 in queueservice mode on

September 21-23, 2006. It was used to take 6, 7-pattern ditheredz′ images of 1500s each, yielding

a total integration time of 9000 s, shown in Table 2.4. TheCH4on andCH4off pointings are both

centred at the same location, which includes the cluster’s center, while four overlapping WIRCam

fields were taken inJ , H andKs to provide a larger areal coverage, shown in Table 2.4.

Table 2.4: IC 348: Instruments used with FOV, filters, and thecentral coordinates of the pointings
of the cluster. TheJ , H andKs final WIRCam images are made up of four overlapping fields (A,
B, C and D), where the total integration times are also included for each filter.

Telescope FOV Filter Integration time (h) Pointing coordinates (J2000)
MegaCam 0.96◦×0.94◦ z′ 2.5 03h44m36s.00 +32◦01′50.′′0
WIRCam 20′×20 ′ CH4off, on 3.7, 1.4 03h44m14s.80 +32◦05′06.′′0
WIRCam 20′×20 ′ J , H, Ks 0.35, 0.16, 0.12

A 03h44m14s.80 +32◦05′06.′′0
B 03h44m14s.80 +32◦15′06.′′0
C 03h45m02s.00 +32◦05′06.′′0
D 03h45m02s.00 +32◦15′06.′′0

Total integration times of 3.7h inCH4off and 1.4h inCH4on were obtained from multiple

individual exposures of 30s using a 7-position dithering pattern to fill in the 45′′-wide gaps in

between IR arrays. The same observing strategy with additional micro-dithering was used for the

J , H andKs images with individual integration times of 45, 10, and 15s,respectively, yielding

total integration times of 1260s (J), 560s (H) and 420s (Ks) for each pointing.

The seeing (PSF FWHM) measured on the final WIRCam images was between 0.55′′ and

0.65′′. The co-addedJ , H andKs images were photometrically calibrated using the 2MASS
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catalogue over the same area and renormalised to the photometric zero-point of 30 mag. The

methane images have no external photometric calibration and theCH4 magnitudes are given here

on an arbitrary albeit internally consistent scale, so thatCH4on-CH4off≃0 for unreddened field

dwarfs. The MegaCam images were photometrically calibrated using standard stars routinely

observed by the Queue Service Observing team at CFHT to the photometric zero-point of 30 mag.

The seeing during the these observations ranged from 0.65′′ to 0.80′′. The WIRCam images

were extended using blank pixels so that the dimensions of these science-ready images were the

same dimensions as thez′ MegaCam image, where the ditheredCH4off image is shown along

with the WIRCam and MegaCam detector arrays, shown in Figure2.6. The TERAPIX pipeline

additionally produced a catalogue of objects with aperturephotometry for each filter.

Figure 2.6: TheCH4off image with the extended blank pixels to the FOV of MegaCamis shown.
The footprint of the WIRCAM detector is overlayed on the stellar field, whilst the footprint of
MegaCam is overlayed over the whole image. The dithering effect can also be seen as the image
boundaries are larger than the FOV of the WIRCam detector footprint.
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2.2 Infrared Surveys & Astronomical Databases

Various additional survey databases were queried in this work to add to our robust CFHT data,

primarily the 2Micron All Sky Survey (2MASS) and the UKIRT Infrared Deep Sky Survey

(UKIDSS). Further analysis was conducted using data from the Spitzer Space Telescope. Data

from 2MASS andSpitzercan be found at NASA/IPAC Infrared Science Archives16 (IRSA) whilst

UKIDSS data can be accessed from the Royal Observatory of Edinburgh at the Wide-Field Camera

(WFCAM) Science Archive17. All of the catalogues are fully searchable using both a selectable

form or a SQL querier.

2.2.1 2Micron All Sky Survey (2MASS)

2MASS (Skrutskie et al., 2006) at IRSA18 was an IR survey finished in 2001 which scanned the

full sky using two telescopes in different hemispheres; in the north the Mt. Hopkins in Arizona,

USA and in the south at Cerro Tololo Inter-American Observatory19 (CTIO) in Chile. Its primary

mission was to survey the whole sky at three, standard, IR wavelengths,J (1.25µm),H (1.65µm)

andKs (2.17µm). Because of the whole sky survey, 2MASS has been used as a basis survey for

IR data calibration for other missions and observations.

The 2MASS All-Sky Point Source Catalog (PSC) was accessed using the Gator catalogue

querying engine at IRSA, accompanied by an input list of pointings. It is useful to parse the input

catalogue using the input file tester20 before trying to use Gator due to some perculiar formatting

requirements21.

2.2.2 UKIRT Infrared Deep Sky Survey (UKIDSS)

The United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) (Lawrence

et al., 2007) comprises various deep sky surveys, for example the Galactic Plane Survey and

the Galactic Clusters Survey, where UKIRT has a detector FOVof 0.21 deg2. The UKIDSS

photometric system spans thez, Y , J , H and Ks range covering a wavelength range of 0.83-

2.37µm and is discussed by Hewett et al. (2006). The authors also discuss the colour differences

between UKIDSS, and the SDSS and 2MASS for various objects, including brown dwarfs, and

give associated colour terms.

16http://irsa.ipac.caltech.edu/
17http://surveys.roe.ac.uk/wsa/
18http : //www.ipac.caltech.edu/2mass/
19http://www.ctio.noao.edu/
20http://irsa.ipac.caltech.edu/applications/TblCheck/
21http://irsa.ipac.caltech.edu/docs/tableuploadhelp.html
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A login is required for the propriatory UKIDSS data and can berequested via an email the

authorised community contact at one’s home institution, a list22 is available to find out who this

is. This work uses the current DR6 data as the currentory UKIDSS data is currently at the DR7

release whilst the public data is at the DR4 release.

The WIRCam Y extinction value shown in Table 2.1, in Section 2.1.1, was taken from the

UKIRT Infrared Deep Sky Survey (UKIDSS) section from the SVOand then adjusted by 0.01

in line with the small 0.01 differences in theJ , H, andKs bands between the UKIDSS and

CFHT extinction values. The basis for allowing this is because the IC 4665 long and short

exposure data have been directly zero-point calibrated to the UKIDSS system and both CFHT

and UKIDSS photometric systems are based on 2MASS as discussed in depth by Hodgkin et al.

(2009), excepting the two control fields. TheY -band can be seen to have a calibration offset

of approximately 0.1 mag from their Figure 16, shown in Figure 2.7, where this offset has been

recalibrated in later data releases than DR2. Calibration is discussed further in Section 3.3.

2.2.3 Spitzer Space Telescope

The Spitzer Space Telescope23 was launched in 2003 with two IR and mid-IR detectors which

were the InfraRed Array Camera (IRAC) at 3.6, 4.5, 5.8 and 8.0µm, and the Multiband Imaging

Photometer (MIPS) at 24, 70 and 160µm. There was also the Infrared Spectrograph (IRS) which

offered low- to mid-resolution spectroscopy between 5.2 to38 m though this was not used or had

data accessed in this work.Spitzercontinues to give solid 3.6 and 5.4µm data, even after the

detector’s cryostat’s coolant was exhausted, leaving the 5.8 µm band and redder too hot, and so

too noisy, for any useful science.

Data pertaining to IC 348 was found by searching theSpitzerpublic archive for IRAC data.

There was no public MIPS data available for this region at thetime of writing the article. IC 348

was the IRAC prime target of programmes 6 (c2d, P.I. Fazio) and 36 (P.I. Fazio) to obtain deeper

exposures, where relevant to this work was provided by H. Bouy24. The c2d data are made up of

shorter exposures, resulting in the use of deep (16×100s) longer-exposure images of programme

36. The data was retrieved and was processed using standard procedures25 with the recommended

MOPEX software.

22http://www.ukidss.org/archive/comm-list-v2.txt
23http://www.spitzer.caltech.edu/mission/32-Mission-Overview
24http://www.iac.es/galeria/bouy
25http://ssc.spitzer.caltech.edu/archanaly/quick.phot
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Figure 2.7: Data taken from the DR2 UKIDSS release showing the offset of theY -band compared
to the field stars. This is corrected for in laster data releases and so is not treated in our data.

2.2.4 Online Respositories

A number of online repositories, or stores of data, were usedfor this work. Great use was

made of the ADS Abstract Service26 in order to search for publish and refereed journals, whilst

astroph27 was also used in order to be kept up to date for very recent developments in this field.

Additional relevant repositories are the Star Cluster Young and Old Newletter28 (SCYON) which is

updated by H. Baumgardt, E. Paunzen and P. Kroupa, and the Star Formation newsletter29, updated

by B. Reipurth, and which both encourage authors to spread their newest article or conference

proceedings via specific genre electronic newsletters.

The SIMBAD Astronomical Database30 (SIMBAD) and associated Vizier database31 are

26http://adsabs.harvard.edu/abstractservice.html
27http://arxiv.org/archive/astro-ph
28http://astro.u-strasbg.fr/scyon
29http://www.ifa.hawaii.edu/users/reipurth/newsletter.htm
30http://simbad.u-strasbg.fr/simbad/
31http://vizier.u-strasbg.fr/viz-bin/VizieR
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grand repositories of extrasolar data and biblography withover 14 million identifiers, and is cross-

correlates with the article service available at the ADS. The sites allow catalogue and online data

retrieval based at the Centre de Données astronomiques de Strasbourg32 (CDS).

Further databases which have been accessed in the course of this work include the Spanish

Virtual Observatory33 (SVO) which have a fairly comprehensive list of telescopes,their filters,

effective bandpasses and wavelengths, widths and extinction co-efficients. The data originates

from being convolved with the filters with each instrument and their empirial band passes. The

Dwarf Archives34 is an uptodate collection of all known L and T-dwarfs, and M-dwarfs which

have both photometry and spectroscopy.

The Star, Brown Dwarf and Planet Simulator35, mentioned in Chapter 1 for the AMES and

BT theoretical models, also holds theoretical models basedupon the Lyon groups work on the

emission and absorption as a result of the presence of empirical and theoretical elemental and

molecular lines in stellar and brown dwarf atmospheres.

2.3 Pipeline Development

After the observations were taken by WIRCam and MegaCam and pre-processed at the CFHT,

and after being run through the TERAPIX pipeline they were then ready for the object extraction

procedure and further analysis. The data taken of IC 348 and IC 4665 can be treated similarlyup

to a point. This section discusses a pipeline for image analysis, shown in Figure 2.8 where the data

for IC 348 and for IC 4665 are shown to be treated similarly on an image-by-filter basis. Human

intervention for this pipeline is the limited to the creation of input variable tables, dependent

on the particular fits headers and images, and for checking and constraining CMDs for survey

comparison and calibration purposes. As the work has been done it is possible to run the script,

using the predefined variables in order to output new catalogues. In essence it is possible to run the

script, after updating the filenames, and with the exceptionof the calibration steps, which require

SuperMongo, can be run from analysis-ready images to final calibrated catalogues and selected

objects. It should be possible, with perhaps a little time, to analysis multiple data sets for multiple

observing runs and regions. Of course this depends on the observations themselves, and what

is requried to be plotted. The main criteria is populating the parameter input files correctly and

changing the path names of the files.

A combination of custom-made programs36 called Source Extractor (SExtractor) (Bertin and

Arnouts, 1996) and Point Source Function Extractor (PSFEx)(Bertin et al., in prep.) were used

32http://cdsweb.u-strasbg.fr/
33http://svo.laeff.inta.es/theory/filters/index.php
34http://spider.ipac.caltech.edu/staff/davy/ARCHIVE/index.shtml
35http://phoenix.ens-lyon.fr/simulator/
36http://astromatic.net/
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on each field for each band to extract sources and build photometric catalogues. On a first step,

SExtractor extracts well defined stellar-like objects, which are used by PSFEx to compute a PSF

model that is allowed to vary with position on the image. Then, the detection was done using one

filter which was used to measure the photometry from all of theavailable filter images. SExtractor

uses this PSF model to measure the photometry more accurately of all the sources detected on

the image, producing a catalogue with a list of identically positioned objects for each filter. It

is important to make sure that the available data is reliable, which requires optimisation and

calibration checks. Parameter optimisation is conducted separately from this pipeline, discussed in

2.3.2. Finally, these catalogues are combined to constructa list of unique objects with associated

filters and PSF information. The IC 348 data is ready for analysis at this point, whilst IC 4665

requires calibration. This calibration is necessary as theIC 4665 data has separate and multiple

fields (images) for each filter so the fields need to be externally calibrated onto UKIDSS, before

being internally calibrated to be consistant from field to field to account for the different seeing

conditions. This pipeline relies heavily upon bash scriptsand awk, and also uses SuperMongo37

scripts for numerical analysis and plotting.

2.3.1 SExtractor First-Pass

Source Extractor (SExtractor) is used as the main method of allocating various parameters and

magnitudes to objects obtained from the observations. The SExtractor manual38 v.2.5 describes in

detail of how the program works, whilst the SExtractor For Dummies manual39 is a useful how-to

guide. The versions used were 2.3.5 for IC 348 and version 3.1.0 for the extraction for IC 4665.

SExtractor requires two configuration files to control the input and output data; the first is the data

extraction parameter file with a ‘.sex’ suffix; the second is the data presentation parameter file with

a ‘.param’ suffix. The parameters used are listed in the Appendix in Table 1, which are identical

for both the first- and second-passes for IC 4665 and IC 348. Other files are also needed as inputs,

for example a neural network file to differentiate between stars and galaxies, ‘.nnw’, and a filter

file ‘.conv’, an example of which can be found in Figure 2.10 (upper left). The other required file is

the data from the ‘.fits’ file, though other file types are also supported. Additionally, it is possible

to add the weight and the flag maps as further input files, whichcorrespond to each observation

image as discussed previously in Section 2.1.2.2.

Other useful functionalities of SExtractor are the check image outputs, ‘CHECKIMAGETYPE’,

which can be one of various types of analysed data; ‘BACKGROUND’, ‘OBJECTS’ and

‘PROTOS’, among others. The check image ‘BACKGROUND’ is an image with the estimated

background fluxes that have been subracted from the apertures, whilst the ‘OBJECTS’ are the

37http://www.astro.princeton.edu/∼rhl/sm/ & http://www.supermongo.net/
38https://www.astromatic.net/pubsvn/software/sextractor/trunk/doc/sextractor.pdf
39http://mensa.ast.uct.ac.za/∼holwerda/SE/Manual.html
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extracted objects which now have a catalogue reference and data, and the ‘PROTOS’ is the

residuals from the extraction from the original image. Eachof these can have a name specificed

using the ‘CHECKIMAGENAME’ parameter.

Data is also required which is unique to each fits image and canbe taken from the fits header,

which is a file information table associated with each .fits file. The ‘SATURLEVEL’ is the

saturation level is used by SExtractor to apply its own saturation flags, active for objects exceeding

this threshold. Other fits-header given values are the ‘MAGZEROPOINT’, here 30 mag, ‘GAIN’,

and ‘PIXEL SCALE’ which are all related to the detector and pre-processing pipeline, extracted

automatically using the ‘dfits’ and ‘fitsort’ commands. Other data can be taken from the image

which is also needed for the photometric analysis; the ‘SEEING FWHM’ is the stellar FWHM

in arcseconds is used to help differentiate an object between a galactic and a stellar PSF and is

calculated using the pixel scale and the FWHM in pixels. The FWHM in pixels is found using the

iraf imexamfunction taken on a randomly selected sample of faint and bright stars in the image

and can be checked using the command line output when PSFEx runs.

Usage The basic command line syntax used for SExtractor is as follows:

sex <input imagefilename(image.fits)> -c <configuration file(firstpass.sex)> -FLAG IMAGE <(flag.fits)> -

WEIGHT IMAGE <(weight.fits)> and whilst it is possible to create multiple configuration.sex files

to correspond to each input file, it is also possible to include command line arguments to change

the parameters that are in the configuration.sex file by usingthe above ‘-KEYWORD<variable>’

syntax. It is also possible to automate this process by running a bash script with all of the variations

that need to be tested. This is useful for optimisation of theinput options that the configuration.sex

file includes, see Section 2.3.2.

2.3.2 SExtractor Optimisation

All of these configuration options need to be assessed and optimised for the data sets that are being

used. The methodology for obtaining these optimal parameters is discussed and the particular

values for IC 4665 and IC 348 are summerised here, but cluster-specific optimisation is discussed

further in Chapters 3 and 4 respectively. A list of configuration options discussed here that

have been tweaked in relation to our extraction can be found in Table 2.5 for both the first pass

and second pass of SExtractor. Optimisation is mainly necessary for the analysis and detection

thresholds, object detection filters, and for the background estimation; all needed to obtain accurate

photometry from the data.

Detection The detection optimisation requires a few parameters to be tested under the ‘Ex-

traction’ heading in the parameters file. Many parameters can be changed permanently in
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Table 2.5: The configuration options in the SExtractor configuration that were changed from the
default. An example file for each SExtractor pass for each cluster can be found in the Appendix
5.5. Here the example given is for extraction data from theH-band image where the gain and
saturation values are used for the photometry and not for thedetection. It can be noted that the
detection images are different to the analysis images for the second-passes of SExtractor, and
the detection and analysis for the long IC 4665 exposures wasrun ‘hot/cold’, at two different
thresholds.

config IC 4665 IC 4665 IC 348 IC 348
option first-pass second-pass first-pass second-pass
detection image IC4665AH.fits IC4665AJ.fits IC348H.fits IC348CH4Off.fits
analysis image IC4665AH.fits IC4665AH.fits IC348H.fits IC348H.fits
PARAMETERSNAME sex1.param sex2.param sex1.param sex2.param
CATALOG NAME LDAC IC4665A H.fits IC4665AH.cat LDAC IC348 H.fits IC348H.fits
MIN AREA 3 3 & 3 5 3
DETECT THRESH 15.0 (short) 1.5 8.0 3.5

(long) 1.0 & 5.0
ANALYSIS THRESH 15.0 (short) 1.5 8.0 1.0

(long) 1.0 & 5.0
PHOT APERTURES 31 31 51 50
GAIN 1.777276524E+01 1.777276524E+01 18.0508 18.0508
SATUR LEVEL 5.795242200E+05 5.795242200E+05 500000 500000
FILTER NAME gauss2.5 5x5.conv gauss2.5 5x5.conv gauss3.0 5x5.conv gauss3.0 5x5.conv
SEEINGFWHM 1.22 1.22 1.10 1.10
BACK SIZE 64 64 128 128
BACK FILTERSIZE 3 3 3 3

the configruation file without needing to be specified in the command line, for example the

‘DETECT TYPE’ is from a ‘CCD’ and not from a photograph, ‘PHOTO’, and so does not need

to be mentioned in the command line as long as it has been correctly changed in the configuraton

file. The ‘DETECTTHRESH’ and ‘ANALYSIS THRESH’ control the confidence level that an

object on the image must have to be eligible for extraction. The ultimate value is whichever one is

the highest; if the detection threshold is higher than the analysis threshold then all objects detected

will be analaysed; if the analysis threshold is highest onlythose objects above this level will be

analysed. An additional problem with the detection is the missing of objects around bright and

saturated stars, shown in Figure 2.9. This is a dual-fold problem; a 1.0σ detection level detects all

the objects in the field but not around bright stars (green squares), whilst a 5.0σ detection threshold

would detect the objects around bright stars (squares) but then, obviously, miss all of the lower

threshold objects in the field. This is a direct consequence of the isophotal algorithm SExtractor

employs, where a higher threshold reduces the isophotal footprint and so alters the distance at

which an object from the central pixel of this bright star could be treated as a different object.

This is usually used in conjunction with the ‘DEBLENDNTHRESH’ algorithm. This details how

the program distinguishes between objects that are in each others’ PSF footprint, where the value

is the number of branches that are allowed within any one PSF,though in our case seems to fail
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around bright stars. The solution, then, is to detect objects at both of these thresholds and then

amalgamate the catalogues later, simplified when using a singular detection image for analysis.

An additional problem is that the centres of the saturated stars have been removed, so whilst these

objects have been flagged, SExtractor still detects objectsaround the locus.

A filter can be chosen, replacing the default filter, which defines as to what shape the PSF of

an object should have to be classed as a detectable object. There are various filters and each has

a different shape, pixel footprint and seeing values; thusly ‘gauss2.5 5x5.conv’, for example, is

a gaussian PSF with a 5x5 convolved mask (grid) and a seeing FWHM value of 2.5 pixels′′
−1

.

This convolved mask is the number of data points to a side thatdefine the filter. Other filters were

tested which were either of a different shape or had different FWHMs and footprint sizes, where

Figure 2.10 shows two types of filter, the gaussian and the mexhat on theupperandlower panels

respectively. The gaussian shape was the best overall detection filter in both datasets, Figure 2.10

(left lower panel), based not only on the number of detections, but also on the quality of detections,

indeed, there is no point detecting every pixel in the image as an object, which the mexhat almost

seems to do as shown in Figure 2.10(left lower panel). That the gaussian is the best filter form is

no coincidence as the response of the CCD is gaussian for a point source.

Analysis The analysis optimisation needs to be carefuly adjusted in order to extract the correct

photometry from the objects. The ‘PHOTAPERTURES’ is the size of the aperture in pixels and

needs to be adjusted in order to take into account all of the flux with the circle. Here it was tested

with values as low as 5 and as high as 45 against the default ‘MAG AUTO’ value. A plot showing

the convergence of the colour magnitude diagram of the aperture magnitude - magauto vs mag

auto (used as a constant here) is shown in Figure 2.11. In thisexample for IC 4665 it can be seen

that the colour converges to a difference of -0.03 with a ‘PHOT APERTURES’ value of 31 and

whilst higher aperture values also give the same differencethe dispersion increases dramatically.

Physically, this means that as the aperture is enlarged it finds more stars within its enclosure and

so cannot as accurately assign a magnitude value correctly to all of the objects, either because of

the deblending but mainly because of the background estimation.

Further analysis optimisation parameters are the ‘BACKSIZE’ and ‘BACK FILTERSIZE’,

which define the background estimated value that is subtracted from within the aperture around a

detected object. ‘BACKSIZE’ is of dimension 64, 128, 256 or 512, indicative of the size of the

side of a square in pixels in which to to coallate flux in order to calculate the average background.

‘BACK FILTERSIZE’ is the size of a side of square, in units of ‘BACKSIZE’ over which the

background level is smoothed, taking odd-numbered values of 3, 5, 7 etc. Underestimation means

that too little background flux is removed locally, Figure 2.12 (upper centrefor a 64x64 grid).

If SExtractor overestimates the background level then there will be more flux overall subtracted

eventually underestimating the flux for objects in that region, Figure 2.12lower right, where a
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larger ‘BACK SIZE’ could do this (for a 256x256 grid). The image on thelower right is the

128x128 grid which is between the two. If there are high levels of background flux, for example

in nebulous or very crowded regions then it is hard to accurately estimate the background flux

over the whole image. This concludes that the best aperture value to use for the IC 4665 data is

31, whilst a similar analysis gives a value of 51 for the mosaicked image for IC 348. Further, the

background parameter values for IC 4665 were 64 and 3 though there was not a great difference

with the 256 and 5 values were used as the fields are comparatively uncrowded. The values for

IC 348 were 128 and 3 and although they helped smooth the variable and nebulous background,

the smoothing should not be too aggressive as the nebulosities vary on scales of less than a few

tens of pixels. The ‘PSFPROTOS’ residuals check image is very useful for both the aperture and

background optimisation as it can be seen how SExtractor hasextracted the flux from the aperture.

Further optimisation is the propogation of these aperture values through the next two steps in

the catalogue extraction process, PSFEx and the SExtractorsecond-pass. Image attributes are

unchangable leaving most parameters used for the SExtractor first-pass unchanged, apart from the

detection and analysis thresholds. For the IC 4665 first-pass a detection and analysis value of 15σ

was used in order to obtain good quality PSFs, for the input into PSFEx, whilst for the second-

pass a value of 1.5 was used for the short exposures, whilst the long exposures used the hot/cold

method at both 1.0 and 5.0σ. This double catalogue can then be amalgamated for unique objects,

where the details are discussed in Section 3.3.1. For IC 348 the first-pass value was 8σ and the

second-pass detection value was at 3.5σ, enough to avoid detecting large amounts of nebulous

material, discussed further in Chapter 4.

Lastly, the output catalogue should be in the LDAC format where this option is specified in the

SExtractor first-pass configuration file and is required as aninput for PSFEx. This configuration

option for the ‘CATALOGTYPE’ is ‘FITS LDAC’, ready for the modeling of the PSF across the

image, handled by PSFEx.

2.3.3 Point Source Function Extractor (PSFEx)

Point Source Function Extractor40 is a program whose primary purpose is to model the small

variations of the PSF across an image using a set of good-quality PSFs taken from that image as

an input. This input is the LDAC.fits output from the first-pass of SExtractor where the detection

threshold has been set high in order to find good quality PSFs.The PSF can vary across the image

due to atmosphere or instrument distortion, but is can also be an artifact of image mosaicking

where overlapping images are stitched together to make a larger, seamless image. In this case

40http://www.astromatic.net/wsvn/public/
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it is usual to have a dithering pattern which tries to increase the reliability of the data near the

edges of the individual detector chips, for example the edges of the external border of the array

or the edges adjacent to gaps between the CCDs. The problem associated with this method is

that the PSF can vary across the image, depending on the number of dithers used to make up

the final image and the accuracy of the flat fielding process. The output PSF model is then used

as one of the inputs for the second-pass SExtractor which then offers first-order corrections to

the final object magnitudes. The PSF input is optimised, as discussed in Section 2.3.2 for stars

rather than galaxies. There is currently no manual for this software as it is still in development

Table 2.6: Configuraton options that were changed for this PSFEx analysis. The unchanged
parameters for the PSEFex configuration files can be found in the Appendix 5.5. Options marked
with an asterix appear in the newer version only.

Parameter IC 4665 IC 348
Name value value
PSFSIZE 35,35 51,51
SAMPLEVAR TYPE* - SEEING
SAMPLE FWHMRANGE 1.5,4.5 1.5,4.5
SAMPLE MINSN 100 100
PSFVARKEYS X IMAGE,Y IMAGE X IMAGE,Y IMAGE
PSFVARDEGREES 2 6

although the location of where the manual should be is discussed in the program41, for future

reference. The configuration file is located in the Appendix 5.5 though the more salient points

are discussed here. Analysis for IC 348 was conducted with version 2.3.5 of PSFEx whilst the

work for IC 4665 was done using version 3.1.0. There main additions present in version 3.1.0

are the check plot capability of outputting PSF ellipticityand FWHM maps, shown in Figure 2.13

for theJ-band of IC 4665 field A; and changes of instead specifiying an output PSF filepath and

filename to specifying just the suffix; ‘PSFNSUPER’ has been removed whilst ‘BASISTYPE’

and ‘BASISNUMBER’ have been added, shown in Table 2.6. ‘PSFNSUPER’ is the number of

super-resolved pixels and has a value of ’0’; whilst the ‘BASIS TYPE’ defines the system the input

.fits file uses (here ‘PIXELAUTO’) and ‘BASIS NUMBER’ is the PSF basis vector coefficients

for non-pixel bases, default of 16 in this version and is usedfor the output PSF file. The ’snap’

check image is the PSFs that PSFEx eventually uses to model the PSF across the frame of the

image.

‘PSFVAR DEGREES’, or ‘GROUPDEGREES’ depending on the version, is the order of freedom

parameter that applies to the PSF over stacked or mosaicked images. This is a 6-degree polynomial

41http://terapix.iap.fr/soft/psfex
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over the final image for IC 348, whilst IC 4665 has no such mosaicking. For IC 348, this was used

in conjunction with independentiraf aperture photometry on the selected candidates, where a final

magnitude was takes as an average of these two values.

There needs to be a range of FWHMs for PSFEx to work with, defined with the ‘SAM-

PLE FWHMRANGE’ parameter, here between 1.5 and 4.5 pixels FWHM.This output file is a

‘.psf’ file which holds the model information and is selectedas an input in the SExtractor second-

pass configuration file with the option ‘PSFNAME’.

The command line usage is of the same format as SExtractor, and was again created through

shell scripts and awk. For IC4665:

psfex<input PSFs(LDAC.fits)> -c<configuration file (psfex.psfex)> -SAMPLE MINSN 100 -CHECKIMAGETYPE

SNAPSHOTS -CHECKIMAGENAME <snap.chk.fits>

2.3.4 PSFEx Optimisation

The total number of pixels in the mask of the PSF is an input to PSFEx and as this result is

unchanged the value gained from the first-pass SExtractor optimisation can be used here, 31 for

IC 4665 and 51 for IC348. The PSFex configuration option ‘PSFSIZE’ needs a similar aperture

size as the ‘PHOTAPERTURES’ in the SExtractor first-pass configuration file, and the value

should always be an odd number as then number of pixels for the‘Vignet(xx,xx)’ parameter in the

.param file. These can be found previously in Table 2.5.

2.3.5 SExtractor Second-Pass

This section deals with the production of the output catalogues, per filter, from the second-pass of

SExtractor. The major difference between the first- and second-passes of SExtractor are the input

files, the detection/analysis thresholds, and the .param control file. All other parameters are the

same as for the first-pass set as shown previously in Table 2.5, whilst the second-pass set can be

seen and compared.

A further detection optimisation option involves using oneimage for the detection algorithm

and another image for the analysis using the objects detected in the first instance. The particular

images used for detection are the IC 4665J-band image for the long and the short exposures due

to the better photometric quality against depth of the imagecompared to the other images, and for

IC 348 the CH4off image was used in order to certainly obtain a corresponding CH4on magnitude

for each CH4off object. The reasons for using these particular images for detection are discussed

in depth in the accompanying Sections 3.2.2 and 4.2, for IC 4665 and IC 348 respectively. Here,

the IC 348 second-pass is run at 3.5σ, whilst the IC 4665 short exposure images are run at 2.5σ,

with the long exposure hot/cold analysed at 1.0 and 5.0σ. The ‘medium’Ks band images for

IC 4665 are used for both the long and short extraction, in essence, being extracted twice. This
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was to ensure that each detected object had aKs counterpart, but is also a useful check for the

robustness of our tests as the magnitude differences between the short and the longKs exposures

should be∼0.

The second-pass configuration file is similar to the first-pass file (Table 5.5 in the Appendix)

whilst the .param file is fuller and outputs more data such as the object location in (x,y) image

coordinates, sexigesimal coordinates, and the associatedaperture and PSF fluxes, magnitudes and

errors, shown in Table 5.5 in the Appendix. Furthermore the output catalogue can now simply be

an ascii file, selected using the option ‘CATALOGTYPE’ is ‘ASCII HEAD’ which includes the

headers taken from the parameters in the .param file. It is possible to have just an ascii file with no

header, ‘ASCII’, or a fits file, ‘FITS1.0’ that can be read by any fits text file-compatible program.

2.3.6 Catalogue Amalgamation

Catalogue matching between different SExtractor output files made heavy use of the TOPCAT42

program and the associated STILTS43 scripting environment. The amalgamation of single-band

catalogues into one multi-band catalogue based on coordinates was used for both sets of data. This

task was simplified due to the choice of a single image for the detection of objects. Essentially,

each catalogue, for example thez′ for IC 348 and theY catalogue for both the short and long

IC 4665 data were used as starting points. Then, each catalogue was matched with one of the

other bands in the respective data set, and so on and so forth until there is a single catalogue which

comprises all the filters observed for each object. For IC 348the final, analysis-ready catalogue

has a total of 22 columns per band so 132 columns for thez′, J , H, Ks, CH4off and CH4on filters,

whilst for IC 4665 the filter-amalgamated catalogue had just92 columns, when an extra column

per field was introduced, discussed in Section 3.2.3, to assist with the identification of saturated

objects from the colour/magnitude diagrams, taking the form of a ‘0’ or ‘1’.

At this stage, the IC 348 data can now be analysed and is discussed further in Chapter 4, whilst

the IC 4665 data requires more treatment to increase its accuracy and reliability.

2.3.7 Calibration

IC 348 did not require any calibration as it was internally consistant. This data was, however,

compared with 2MASS in order to define the offsets between theCFHT and 2MASS, although no

offsets were applied as the data stayed in the CFHT photometric system. Offsets were of order

0.05 magnitudes which is within errors for our purposes of finding methane colours greater than

0.4magnitudes. This 2MASS check is dicussed further in Section 4.2.2.

42http://www.star.bris.ac.uk/∼mbt/topcat/
43http://www.star.bris.ac.uk/∼mbt/stilts/
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IC 4665 also needed to be checked against 2MASS for the same reasons and whilst this is

discussed in great detail in Section 3.3 it eventually had two sets of offsets applied. The first was

to zero-point calibrate to UKIDSS, not 2MASS, as the 2MASS calibration technique needed a

statistically significant number of stars which overlap with 2MASS and the long exposures had

poor quality, mostly saturated, objects. An extra error wasintroduced, therefore, to this process as

the long exposures would have to have been calibrated onto the short exposures which had been

calibrated onto 2MASS. Additionally there is also a lack ofY -band data with which to calibrate

theY exposures onto 2MASS. UKIDSS was checked to be a useful calibrator by examining the

number of A0 stars from our FOV over all theJ , H andKs fields, and so then seeing whether

these stars still hadY − J , Y − H andY − Ks colours∼0. A second calibration was conducted

to compare and neutralise the differences between the 12 different fields, as each were taken under

different photometric conditions. This was done using the overlaps between the fields, which

consitute a band at least∼30′′ wide and∼20′ long for each field, shown previously in Figure 2.5.

Eventually only field J had to be re-calibrated, likely due toits position outside the rectangular

region, and also the poor quality of the CCD in the bottom right hand corners meant that field D

was not an appropriate calibration zero point, leaving a small overlap 10′ long in order to check the

J field. Furthermore, the control fields lacked matching UKIDSS data, so it was best to calibrate

these using 2MASS, but to also apply the calculated 2MASS-UKIDSS offset, indirectly calibrating

them onto UKIDSS. TheY -band was calibrated using the median value from the 10 cluster fields

and applying this offset to theY -band data of control fields.

57



Figure 2.8:A Flowchart of the pipeline used to process the images taken of the observed regions into data that can then be analysed. The main procedure which was

applied to all the data, including IC 348 and IC 4665 include SExtractor to extract well-defined objects (at 8 or 15σ) in order to create a good sample for PSFEx to model the

variations of the PSF across each image. These variations are then taken into account for the final SExtractor parse before outputting a catalogue for each band. IC 4665 has an

extra process in the pipeline to calibrate the long and the short exposures directly onto UKIDSS, to calibrate for different seeing conditions across the different fields, and finally

to calibrate the control fields as they have no associated UKIDSS data.
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Figure 2.9: Cut-outs of theY -band long image of IC 4665 of side 42 x 32′′, where theleft panels
are detection at 1.0σ because they are within the PSF of the bright star, and where thesquaresare
fainter objects that are not detected at the 5.0σ.

Figure 2.10: Gaussian and mexhat filters and their respective detections at 1.0σ overplotted onto
the observed IC 4665AY -band image.upper left: Gaussian gauss2.5 5x5.conv filter detection
at 1.0σ upper right: Gaussian gauss2.5 5x5.conv filter detection at 1.0σ, note the absence of
detections around the bright star on the left, but also the missing fainter objects with the higher
threshold.lower left: mexhat mexhat2.5 7x7.conv filter applied at 6.0σ where∼40,000 objects
are detected over the image andlower right: mexhat mexhat2.5 7x7.conv filter applied with a
detection of 1.0σ to an image and 400,000 detected objects. Note the missed detections of many
bona fide objects in both of the lower panels irrespective of the detection threshold.

59



Figure 2.11: CMD of mag-auto vs mag-aperture–mag-auto for IC 4665 field A. The aperture
footprint was tested at varying sizes using the constant mag-auto and the respective aperture
magnitude. The smaller apertures have high divergence values whilst the larger apertures have
much more dispersion due to the random locations of additional flux from objects within the
aperture. Convergence occurs at mag-aperture–mag-auto = 0.03 for an aperture size of 31.

Figure 2.12: IC4665 field A,J-band: Comparison images of the SExtractor estimate of the
background using different background sizes when over or underestimating the background that
SExtractor uses as a zero point for the detection and photometry of objects.Upper centre: 64x64
grid which can locally underestimate the background, meaning SExtractor takes too little flux
when removing the flux for the object but it will detect objects in the field well;right: 256x256
grid which can overestimate the background flux on a larger scale meaning the fainter objects risk
being undetected, or objects will appear fainter than they otherwise are.Left: 128x128 grid is
somewhere between the two and can be more useful for nebulousregions.
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Figure 2.13:J-band diagnostic maps outputted by PSFEx for IC 4665 field A,left: FWHM map
describes the how the size of the PSF varies across the image,andright: Ellipicity map describes
the how the shape of the PSF varies across the image.
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2.4 Summary

The observing capacities of both ground and space-based telescopes used in this work have been

discussed. The primary telescope is the CFHT located in Hawaii where the two wide field

detectors, WIRCam and MegaCam, were used to obtain deep exposures in thez′, J , H andKs

broadbands and CH4on and off narrowbands of the 3 Myr star-forming region IC 348; and shallow

and deep exposures in theY , J , H andKs broadband for the∼40 Myr open cluster IC 4665. The

CH4on and off narrowbands were observed in order to filter and classify the lowest-mass objects

in IC 348, here methane T-dwarfs which have TEff < 1300 K and associated masses∼10 MJ

for such young objects. Various other telescopes surveys are used, namely 2MASS andSpitzerfor

IC 348, and UKIDSS especially for IC 4665.

A major contribution is the development of an analysis pipeline for the MegaCam and

WIRCam dataset using many tools from TERAPIX, and bash and awk scripts. Fits header data

is extracted from the observed and TERAPIX-processed images, before running a combination of

SExtractor and PSFEx in order to output raw catalogue files ready for processing. The major step

here is the optimisation of the parameters for these two programs, from optimising the detection

images and parameters to get the most from the data, from converging to the correct aperture size

from CMDs using data from different apertures, and estimating background substraction using

different grids and blocks of the image as a whole. These results are then fed back into the

extraction algorithm and an optimised set of catalogues areproduced, before being amalgamated

into one catalogue for each set of exposures. This data can then be checked with 2MASS and/or

UKIDSS, where the associated regions will need to be downloaded from IRSA and calibration

offsets can be calculated and applied if necessary. In this instance the IC 348 data required no

calibration as the offsets with respect to 2MASS only where of the order 0.02 mag for theJ-band.

Calibration offsets for the IC 4665 data shared with value with the 2MASS data, but required the

use of UKIDSS in order to calibrate theY -band, detecting large offsets in some cases as large as

0.23 mag (for field E of theY -band). Comparison is then available, in essence a ’re-calibration’

in order to check that the calibration values are correct. Additional amalgamation can be carried

out in order to have a uniquely populated catalogue for each object, ostensibly for each field.

Colour/magnitude and colour/colour diagrams can then be plotted in order to begin the analysis,

before candidate selection. Narrowband data selection is simpler as the selection can be plotted

and then checked. Specific cluster treatment holds for multiple-field observations where each field

must be cross-checked and calibrated against the other fields.

At the end of this pipeline there are catalogues for each unique object where the physical

analysis can be done, which is discussed in the following twochapters for the open cluster IC 4665

and heavily extincted star-forming region IC 348 respectively.
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2.5 Résuḿe

Les capacités d’observation des télescopes du sol et spatiaux ont utilisés dans ce travail ont été

discutées. Le télescope principal est le CFHT qu’est situé à Hawa, où les deux détecteurs de

champ large, WIRCam et MegaCam, ont été utilisées pour obtenir des expositions de profondeur

dans le broadbandz′, J , H et Ks et CH4 sur et en dehors narrowbands de la région des 3

millions d’années de formation d’étoiles IC 348; expositions et superficielles et profondes dans le

broadband deY , J , H etKs pour le∼ 40 millions d’années amas ouvert IC 4665. Le CH4 sur et

en dehors narrowbands ont été observées afin de filtrer et de classer les objets les plus bas de masse

dans les IC 348, T méthane ici-nains qui ont TEff < 1300 K et les masses associées∼ 10 MJ

pour ces objets jeunes. Plusieurs autres enquêtes télescopes sont utilisés, à savoir 2MASS et

Spitzerpour IC 348, et en particulier UKIDSS pour IC 4665.

Une contribution importante est le développement d’un pipeline d’analyse pour l’ensemble de

données et de MegaCam WIRCam utilisant de nombreux outils de TERAPIX, et les scripts bash

et awk. Données de l’entête FITS est extraite à partir desimages observées et TERAPIX-traitées,

avant d’exécuter une combinaison de SExtractor et PSFEx pour les fichiers de sortie catalogue

premières prêtes à être traitées. L’étape majeure est ici l’optimisation des paramètres pour ces

deux programmes, de l’optimisation des images de détection et de paramètres pour obtenir le

maximum de données, de converger à la taille de l’ouverture correcte du CMD utilisant les données

de différentes ouvertures, et l’estimation de la soustraction de fond en utilisant différents les grilles

et les blocs de l’image dans son ensemble. Ces résultats sont ensuite réinjectées dans l’algorithme

d’extraction et un ensemble optimisé de catalogues sont produits, avant d’être fusionnés en un seul

catalogue pour chaque ensemble de l’exposition. Ces données peuvent ensuite être vérifiée avec

2MASS et / ou UKIDSS, où les régions associées devront être téléchargés à partir IRSA et les

compensations d’étalonnage peuvent être calculées et appliquées si nécessaire. Dans ce cas, les

données pour IC 348 requises aucun calibrage que les décalages par rapport à 2MASS que lorsque

de l’ordre 0,02 mag pour le bande-J . Les compensations d’étalonnage pour IC 4665 ont partagées

avec la valeur avec les données 2MASS, mais nécessitait l’utilisation de UKIDSS afin de calibrer

l’ Y , la détection de décalages importants dans certains cas,aussi grande que 0,23 mag (pour champ

E de laY bande). La comparaison est alors disponible, essentiellement en une re-calibrage afin de

vérifier que les valeurs d’étalonnage sont corrects. fusion supplémentaires peuvent être effectués

afin d’avoir un catalogue unique de population pour chaque objet, soi-disant pour chaque champ.

Couleur / magnitude et la couleur / diagrammes couleur peut ensuite être tracée afin de commencer

l’analyse, avant la sélection des candidats. Bande étroite de sélection des données est plus simple

que la sélection peut être tracée et ensuite vérifiée. Traitement d’amas spécifique est valable pour

de multiples observations-terrain où chaque champ doit être contre-vérifié et calibré contre les

autres domaines.
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la fin de ce pipeline Il existe des catalogues pour chaque objet unique où l’analyse physique

qui peut être fait, qui est discuté dans les deux chapitressuivants de l’amas ouvert IC 4665 et

fortement éteints région de formation d’étoiles IC 348 respectivement.
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Chapter 3

Sub-Stellar Census of the Open Cluster

IC 4665
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A thorough grounding of IC 4665 is covered in this chapter, detailing cluster properties

such as the age, distance, radial velocities and extinction, and difficulties in assigning these
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properties. Subsequently, the CFHT data taken of IC 4665 is discussed and the final stages of

the pipeline that was briefly discussed in Section 2.3 are laid out. Fruitfully, the analysis of

this data leads to candidate members obtained via theoretical models superimposed upon the

CMDs and colour/colour diagrams constructed with our data,before being cleaned from flags,

spurious sources, by flux radius after being visually inspected and before being compared to known

members. The contamination is then calculated using the control fields. It is then possible to assign

temperatures, masses and spectral types in order to producean IMF for IC 4665. This can then be

compared to the IMF of other young clusters in the literature.

3.1 Introduction

Figure 3.1: A composite image of IC 4665 usingJ , H, andKs band data. (See text for image
origin).

IC 4665 is a fairly young, open cluster whose centre taken to be at17h46m18s.00 +05◦43′00′′.0

from Kharchenko et al. (2005) and SIMBAD, located towards the constellation of Ophiuchus,
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shown in Figure 3.11. It is located about 100 pc outwards from the Galactic plane has low radial

velocity of -10.3 km s−1 or proper motion -7.4 mas yr−1. Its age is between∼30 and 50 Myr,

where different methods give different ages, and is discussed below. The cluster also seems to

have a near solar metallicity of[Fe]
[H] = 0.077, derived statistically by Pöhnl and Paunzen (2010).

This cluster also has very low extinction where a value of Av=0.59±0.16 mag, from Jeffries et al.

(2009) is used in this work. This extinction value was found using the intrinsic colours for a

pre-main-sequence star as defined by Bessell et al. (1998), where the JHKLM colours are based

upon the Johnson-Cousins-Glass system (Bessell and Brett,1988) and UBVRI colours defined

by Bessell (1990). The extinction co-efficients towards this cluster can be found previously in

Table 2.1. Additionally, the low levels of extinction mean that it is possible to have a more

complete picture of the IMF, here possibly probing brown dwarfs to a spectral type of∼L3,

where no objects should be hiding in extremely extincted regions as is the case for younger,

more occluded star-forming regions. An additional problem, however, is the contamination due

to relatively unextincted foreground and background dwarfs which are harder to separate from the

sample. In essence this is a good place to study the IMF in terms of both distance and extinction

and consequently IC 4665 is a comparatively well-observed cluster where there have been many

surveys, both optical and infrared.

3.1.1 The Open Cluster IC 4665

of Pioneering Surveys Prosser (1993) made the first CCD survey of this cluster usingthe 1m

Nickel telescope at the Lick Observatory. The 500 x 500 pixels CCD was used to take 80V and

I-band images with a total field of view of 41′ x 32′, covering the centre of the cluster. They

obtain a list of 170 astrometric, 13 known bright and 213 new photometric, and 39 Hα candidate

members of IC 4665. Through the use of V/B-V and V/V-I CMDs andcomparison to the upper and

pre-main-sequence empirical isochrones from Mermilliod (1981), they conclude with 35 bright

candidates, 57 proper motion/photometric and 23 Hα emission stars as good candidate members

warranting follow-up astrometric, photometric and spectroscopic surveys for confirmation. A

further Hα emission survey, which also included Li abundances of low-mass stars was undertaken

by Martin and Montes (1997). Their Hα activity results agree with a young age for this cluster,

however the results show a depletion for their Li I abundances, which usually indicates an older

age. This low Hα-Li I depletion correlation seems to occur for young, 20-100Myr, low-mass

stars, as shown in the Pleiades (120Myr) andα Persei (90 Myr). This has recently been confirmed

using spectroscopic data observed by Jeffries et al. (2009), who discuss the pre-main-sequence Li

depletion. Their isochronal ages are consistent with the Lidepletion boundary (LDB) at 28±5

Myr, but find that the late-type K/early M sequence gives a cluster age>100 Myr. A possible

1Credit: Stefan Binnewies and Josef Pöpsel
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explanation could be the difference in radiative opacitieswhich had not been included with the

theoretical isochrones (Baraffe 2002) used for comparison, and also difference in metallicities

between different clusters or even within different stellar groups within a particular cluster.

of Age & Distance The most recent survey was by Cargile and James (2010), who conducted

a photometric survey of IC 4665 usingB, V , andIc photometry to try to pin down the age of

the cluster, however, there are variations depending on themethod used. Comparing the standard

photometric turn off of the pre-main-sequence to theoretical isochrones they established an age

of 36±9 Myr and a distance of 360±12 pc, in general agreement with the upper-main-sequence

of 42±12 Myr and 357±12 pc. Conversely, the age taken from the lithium depletion boundary

method is much less for this cluster, 28±5 Myr which is opposite to the trend for an older cluster

age usually seen when comparing the difference between the main-sequence isochronal ages and

the lithium ages (Manzi et al., 2008). This age disparity is addressed with respect to our selection

criteria within the candidate extraction section, Section3.4, in order to achieve a conservative list

of candidate cluster members. The envisaged distances, however, coincide very well with previous

estimates taken by Kharchenko et al. (2005) of 350±15 pc.

of Membership

Manzi et al. (2008) focused on the lithium depletion boundary but also assigned levels of

membership to candidates taken from the surveys by Prosser (1993); Giampapa et al. (1998); de

Wit et al. (2006) and a SIMBAD literature search whose locations are shown in an I, I–Z CMD in

Figure 3.2 (from Manzi et al. (2008), their Figure 1), using data taken from FLAMES on the VLT

(Pasquini et al., 2002). They based this membership on radial velocity measurements from the

average shift of the spectral lines in their spectroscopic data; and assigned ‘Y’, ‘Y?’ and ‘N’ flags

to each of their 137 objects in order to clarify the cluster membership status. The average radial

velocity for this cluster was found to be 15.95±1.13 km−1 using this data, taken from a peak

clearly seen in their data, shown in Figure 3.3. A previous radial velocity survey by Prosser and

Giampapa (1994) found 20 of 42 candidates (of spectral type F5-K0) which are likely members

with an average radial velocity of 13.1 km−1 for this cluster.

of Rotation & Variability Rotation and variability studies were conducted by Scholz et al.

(2009), adding to the other surveys and helping to build up a comprehensive picture of this open

cluster. After observing∼100 cluster members they found periodic changes in observedflux from

sub-stellar objects which seem to indicate the presence of solar spots on the surface of∼20 %
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Figure 3.2: 137 Manzi et al. (2008) candidate objects taken from the literature and observed using
FLAMES are plotted on an I/I–Z CMD.circles89 stars from Prosser and Giampapa (1994);open
squares and crosses15 and 8 from de Wit et al. (2006) respectively;triangles2 stars from Luyten
(1961). 30, 50 and 100 Myr NextGen isochrones adjusted to thedistance of IC 4665 (here 370 pc).

of their sample, lower than for similarly-aged, solar-massobjects. Possible explanations for this

could either be the occurrence of few solar spots or evidenceof symmetric geometries, multiply

around the photosphere or just a large and single polar spot.The rotation rates range from between

3 and 30 hours which are relatively fast especially when compared to more massive objects. The

observed lack of slow rotators in this young cluster is thought to be genuine and affects all low-

mass objects, where older, more massive objects can lose angular momentum from wind braking.

of X-Rays ROSAT X-ray data was taken of IC 4665 by Giampapa et al. (1998)using the

High Resolution Imager which detected 28 stellar sources towards the cluster. Further spectra

was obtained for the 22 of these that were thought to be cluster members. Interestingly, they

suggest that the high Galactic latitude of IC 4665 could be explained by a unique formation
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Figure 3.3: Manzi et al. (2008) radial velocity data with an obvious peak at∼16 km−1.

history different to those clusters at lower Galactic latitudes. Comparison with other clusters,

the Pleiades,α Persei, IC 2391 and IC 2602, suggest large similarities based on their absolute B-V

colours. These colours, and normalised luminosities for low-mass stars, also suggest a similar

age to the Pleiades (∼30-100 Myr), Analysis of the higher-mass stars, in particular 5 B stars and

their broad equivalent width Hα emission, indicate that the formation history of open clusters with

solar metallicities cannot be deduced from coronal observations. Their absolute B-V∼ 0.6 colour-

rotational distribution seem to be similar for younger clusters such as IC 4665 and the Pleiades.

of the IMF IC 4665 has been well studied where the most complete IMF workto date was

undertaken by de Wit et al. (2006) down to mass limit of 40MJ with a mean mass of 0.32 M⊙.

From a photometrically-selected sample of low-mass and brown dwarf candidates they found that

a power law fit between 1 and 0.04 M⊙had a fit ofα=-0.6, in keeping with other clusters. Caballero

et al. (2007), for example, found a power law ofα=-0.6 for σ Orionis and Lodieu et al. (2007)

-0.6 for Upper Scorpius, both for the lower mass end between 0.3 and 0.01 M⊙. This work aims

to constrain the lower end of the IMF down to the survey completeness limit of∼0.015 M⊙using

both short and long exposures of IC 4665.
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3.2 Object Catalogue Extraction

Following on from the basic details outlined in Section 2.1.2.3, there are, in total, 216 images

for the entire IC 4665 data sample, of which there are 12 fieldseach havingY , H, J andKs-

band images with 2 sets of exposures each, and where the rest of the images are complimentary

weight and flag maps for each image. Clearly this cannot be maintained manually and to this

end, this work relies heavily onbash shellandawkscripts in order to make sure the right variable

and datacube is in the right place, examples can be found in Appendix section 5.5. The pipeline,

mentioned in Section 2.3, covers the details up to the calibration section, except for cluster-specific

testing.

3.2.1 Data Testing

The IC 4665 data from TERAPIX needed to be tested to ensure it was of good quality. Using

the QualityFITS data from TERAPIX it was possibly to see various properties of the data, for

example the star/galaxy separation, astrometric accuracy, and photometric errors. Additionally,

visually inspecting each image was also a good test to make sure that there was data in the file

and that the images were not of an obviously poor quality. Themain tests are in relation to the

SExtractor and PSFEx extraction routines and involve finding various parameters from the images

to facilitate and optimise this extraction. Two different filters were tested with the IC 4665 data;

the Gaussian-shaped filter and the mexican hat (!) shaped filter. These were tested at different

convolved masks in order to find the best filter for object detection within SExtractor. The filters

tested for the detection objects on the image were the gauss2.5 5x5.conv, gauss2.5 7x7.conv,

mexhat2.5 7x7.conv, and mexhat3.0 9x9.conv. The mexican hat filter was tested because of

problems with many undetections in the PSFs of bright stars with the Gaussian-like filter. Whilst

this helped in detecting many of these objects, the filter missed many faint field objects and

sometimes very good quality objects. Another drawback withthis filter was the detection of

>400,000 objects on each image making a rather large catalogue file for each band and image.

See Figure 2.10 to see the differences between the Gaussian and mexican hat filters, and their

associated detections at 1.0σ.

The background subtraction handled by SExtractor affects the final magnitude and is directly

related to the amount of flux within a configurable grid of sizemuch greater than the footprint of

the PSF. This map is smoothed depending on the number of blocks of grids, for example a 3x3 or

5x5 block of 128 pixel grids.

The analysis to be done on the detected objects takes into account the background subtracted

level, and also the amount of flux with its catchment area. This catchment area is the aperture

and is a grid of pixels, a footprint, around the central detected pixel of the PSF. It is necessary
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to optimise this parameter depending on the depth and crowdedness of the image, for example if

the image is towards the Galactic centre it will, usually, bevery crowded and so using an aperture

that is too large would mean counting flux from stars of objects which are not part of the detected

object, or using an aperture that is too small would mean rejecting flux and so making the object

fainter than it actually is. Whilst SExtractor does take into account some of the flux present

in overlaping apertures, this is not an ideal method and is poorer the worse-fitting the aperture.

Consequently the aperture footprint was tested at varying sizes, where a figure of this method

has been shown in Section 2.11. A table summarising the convergence of the footprint size of

the aperture, based upon the difference between the ‘mag-auto’ property and the varying aperture

magnitude, is shown in Table 3.1. It can be seen that the magnitude varies for apertures that are

too small, whilst for apertures that are too large the dispersion increases as it begins to include flux

from other objects within the perimeter, where these objects are randomly situated giving rise to

the increased dispersion. An aperture size of 31 was found tobe the best for the work on IC 4665.

Table 3.1: Aperture selection offsets for aperture optimisation using the magauto value.
Increasing scatter appeared with a higher incidence of contamination from additional objects
within the aperture footprint. Here, an aperture of 31 was found to be the best to use for this
analysis.

Aperture offset dispersion
size (pixel) mag level
5 +0.220 nominal
11 +0.250 nominal
15 -0.005 nominal
21 -0.015 nominal
25 -0.020 nominal
31 -0.030 preferential
35 -0.030 increasing scatter
41 -0.030 more scatter
45 -0.030 most scatter

3.2.2 Specifics of Object Detection

Initially, detection could have been attempted using a merging of two images, for example theJ

andKs band images, for each field, but the nature of the gain and total exposure time would be

unknown as the process for this within the pipeline from TERAPIX is not fully known. TheJ-

band image could be more useful as it could detect many near-infrared objects whilst theKs image

would be useful for those object detected which favour the presence of dust. A better solution, for

both for detection and for the amalgamation of catalogues after extraction, would be to use just
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one image of the four for the detection. This is also superiorbecause to have a cluster member,

as discussed in Section 1.5, an object would need to be detected in theY , J andH band. The

Ks band is useful to have as well, but it is not the primary methodof detection and analysis that

were the main motivation of this work. Indeed, whilst the short exposures have to have a detection

in theKs band, in fact the long exposures may not necessarily have a detection. In Figure 3.4 it

Figure 3.4: These cut-outs are from the IC 4665 field A long image for the four different filters,
where it can be seen that each band has a different exposure length. Superimposed on all images
are the object detections for each band. Where the PSF wings are the largest (around the brightest
stars) there are the fewest detections, in theY , H, J andKS images respectively. This resulted
in theJ being used as it was the clearest, and also to be considered asa cluster member an object
must be well detected in at least theY , J andH bands.upper left: Y -band image,upper right:
J-band image.lower left: H-band image.lower right: Ks-band image.

can be seen that theY -band image has many brighter and saturated stars due to the comparatively

longer exposure lengths, which are known to be problematic for the detection of objects at low

detection threshold; theKs band image is not as deep as the other three images due to its shorter

(500-732s) exposure times; and this leaves theJ andH-band images which are both similar in

quality but theJ-band image is slightly deeper. Additionally, theJ-band is the peak bandpass for

M and L-dwarfs, resulting in theJ-band image being used for the detection for both the long and

the short exposures.

SExtractor and PSEFEx extraction example scripts can be found in the Appendix 5.5. First-

pass SExtractor thresholds were at 15σ for both the long and short exposure set. Note the comma-

separated .fits files for the input observation images and forthe weight map and flag maps in the

second-pass; the first file is the detection image and the second file is the analysis image. Note
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the detection and analysis threshold of 1.5σ for the short exposures. Long exposures were treated

similarly, except that the detection and analysis thresholds were different, at both 1.0 and 5.0σ,

because the 1.0σ seemed not to detect any objects around the brightest stars,as discussed.

3.2.3 Flags

Here, the flag file that exists for each image is used to mark each object with an appropriate ‘IMA’

flag. Additionally, SExtractor labels each object with a flagdepending on the saturation level

defined in the configuration option. These SExtractor flags are purely dependent on this value. In

some cases the data concerning this level was uncertain or found to be incorrect when compared to

the 2MASS or UKIDSS catalogues due to the non-linearity of the detector, so another flag value

‘SAT’ was defined. This non-linearity occurs as the NIR detectors act, partially, like a capacitor,

where typically 5% of the signal will be non-linear before the detector saturates, compared to just

1% non-linearity at saturation. This custom flag was defined visually from CMDs for each of

the four bands to mark exactly the saturation point. The saturation levels vary between fields and

exposures but each detected object was assigned a flag, ‘0’ for unsaturated and ‘1’ for saturated.

CMDs of the limits where these values were chosen are shown inFigure 3.5 for theJ-band, whilst

the additional plots are shown in the Appendix 2 for readability.
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Figure 3.5: Short exposureJ saturation plots showing the offsets arising due to saturation between
the CFHT IC 4665 data and UKIDSS data over the same FOV. Note the offest at the brightest
magnitudes, and the two-way saturation curves - one apparent because those objects are in the
non-linear region of the detector, whilst the other objectsare incomplete due to their saturated
cores being removed during pipelining. Fields labelled A through to J.

3.3 Calibration

A major part of the treatment of the IC 4665 data concerns the calibration between the observed

fields. In this section the method of calibrating the short and long WIRCamY , J , H andKs

images is discussed, using both 2MASS and UKIDSS as photometric zero-points. 2MASS was

chosen initially because of its relations to the calibration within the TERAPIX pipeline for the

J , H and Ks-bands, however, theY -band eventually proved problematic therefore a different

calibration zero-point needed to be found for this band, UKIDSS. To test this, a good set of stars

were taken for each field for these calibration methods, and of having flux radius less than 4.0

which is a conservative estimate of PSF stellar quality and had bad pixel IMA flags of zero.
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Additionally, the sample of stars was selected for low photometric errors<0.05 mag and our SAT

flags of zero as well. Using these stars, they were matched with data from the respective survey

catalogue, then the median of the colours were taken, along with the dispersion of the median in

bins across each sample for each field/image. Differences between the two calibration systems are

discussed, as well as possible differences arising betweenthe calibrated data and the models that

had been convolved with the CFHT system.

Whilst tests were performed using 2MASS data for the shortJ , H and Ks bands (150

overlapping) then the long onto the short (double calibration) the final option was to use all

UKIDSS data as theY band can be calibrated to the same data as the JHK where possible. For the

control fields there was no data available under UKIDSS, so the Y band was calibrated using the

median offset over all 10 fields, whilst theJ , H andKs bands were calibrated using the 2MASS

J , H andKs short and long-short values.

Calibration onto 2MASS Initially, comparing the data to 2MASS was taken as the first logical

step to check the data had been treated properly within the pipeline, as the WIRCam images are

also calibrated to the 2MASS excepting theY -band, but also as a double check for any offsets

seen between the fields. Each field was treated separately as the seeing on each field was slightly

different and so the saturation line occured at different magnitudes. The use of the short and long

exposures complicates this as there needs to be a statistically significant sample of stars in order

to compare the zero-points of the long and short to the 2MASS zero-point. The short exposures

had on average∼1000 stars per field which had a position-matched 2MASS counterpart, whilst

the long exposures had∼3250 of stars matched where the long catalogues are at least four times

as populous.

The saturation level taken from the TERAPIX flags for the longexposures is between 12.5 and

13.5mag forJ andH, with Ks saturating at 14.5 mag, whilst the depth of the 2MASSJ , H, and

Ks filters are 15.8, 15.1, 14.3 mag respectively. The short exposures were saturated at∼12 mag.

In conclusion the best way to calibrate the short and long exposures was to calibrate the short

exposures directly onto 2MASS, then calculate the difference between the short and the long

exposures and calibrate by using this differenceand the difference between the short exposure

catalogues and 2MASS. A good set of stars was selected on the conditions of having no flags

present and having magnitudes of 12.5< J >15.8, 12.5< H >15.1 and 12.5< Ks >14.3,

used to avoid large errors present at fainter magnitudes Thedifferences between the shortJ , H

andKs values and 2MASS differed by up to∼0.04 mag. The differences between the short and

long exposures varied by up to∼0.04 mag on a field-by-field basis, and by up to∼0.5 mag for

the Y exposures. The full 2MASS calibration and dispersion values for each field, along with

the number of stars used for the calculation, are shown in Table 3.2. An example SuperMongo

program used for this dispersion calculation and for further dispersion calculations is shown in
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the Appendix 5.5. TheKs had negligible differences of less than 0.001 mag as there objects

were extracted from the same analysis image but different detection images for the long and short

exposure sets, as discussed in Section 2.3.5. In Table 3.2 itcan be seen that we have aY value

between the short and long but not between the short and 2MASS, where this large variation is

explained by the lack of aY 2MASS band in the TERAPIX pipeline and consequently is dealt

with separately. An exceptional variation of 0.090 is associated with the longH-band in field F

where there were problems with the reduction, but this has now been calibrated properly using the

zero-point method.∼400 stars were used for the calibration of the short images onto 2MASS,

whilst there were∼1200 stars for the calibration of the long onto the short exposures.

Table 3.2: Calibration values for the 2MASS calibration attempt. Median values, dispersion values
and the average number of stars used are shown for the 2MASS calibration analysis:∼400 for the
short-onto-2MASS comparison and∼1200 for the long-onto-short comparison. Note the lack of
Y -band data in order to calibrate the short exposures onto 2MASS.

Field Ymed Yσ Jmed Jσ Hmed Hσ Ksmed Ksσ no. stars
SHORT onto 2MASS:
A - - -0.058 0.016 -0.075 0.036 -0.046 0.042 324
B - - -0.057 0.016 -0.064 0.015 -0.053 0.007 363
C1 - - -0.057 0.014 -0.059 0.017 -0.044 0.013 331
C2 - - -0.059 0.008 -0.065 0.014 -0.040 0.014 340
C - - -0.051 0.004 -0.052 0.013 -0.047 0.007 292
D - - -0.053 0.018 -0.070 0.005 -0.047 0.005 370
E - - -0.056 0.022 -0.087 0.023 -0.049 0.019 267
F - - -0.055 0.029 -0.085 0.023 -0.047 0.014 342
G - - -0.051 0.006 -0.066 0.016 -0.026 0.007 276
H - - -0.053 0.027 -0.068 0.018 -0.057 0.027 324
I - - -0.061 0.015 -0.065 0.024 -0.042 0.008 367
J - - -0.050 0.010 -0.073 0.003 -0.054 0.008 281
LONG onto SHORT :
A 0.028 0.007 0.014 0.007 0.025 0.009<0.001 <0.001 1108
B 0.005 0.009 0.003 0.006 0.013 0.006<0.001 <0.001 1155
C1 0.220 0.009 0.005 0.016 0.007 0.008<0.001 <0.001 1101
C2 0.158 0.009 0.001 0.013 0.007 0.007<0.001 <0.001 1212
C 0.129 0.006 <0.001 0.015 -0.001 0.016 <0.001 <0.001 982
D 0.056 0.015 0.025 0.005 0.039 0.008<0.001 <0.001 1041
E -0.234 0.007 -0.014 0.013 0.014 0.008<0.001 <0.001 606
F 0.267 0.016 0.024 0.009 0.090 0.022<0.001 <0.001 1019
G -0.201 0.009 0.012 0.014 0.012 0.006<0.001 <0.001 851
H <0.001 0.017 0.015 0.013 0.025 0.004<0.001 <0.001 1134
I -0.059 0.011 0.032 0.014 0.012 0.015<0.001 <0.001 914
J -0.181 0.014 -0.012 0.012 -0.017 0.014<0.001 <0.001 622

A second test was required in order to find whether our set of CFHT Y exposures were properly

calibrated, which was done using the definition of the Vega system. A0 stars are routinely used

as standard reference stars (Gerbaldi et al., 1999) from this very definition. It was not possible to

do this test with 2MASS data as there is no comparableY data set. For the A0 calibration check

we used the DR6 UKIDSS data release, over our FOV. The controlfields had no UKIDSS data,
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and data for the FOV of fields E and I were only 19% and 80% complete for the shortY -band,

and 14% and 72% for the long exposures respectively, which can be seen in Figure 2. Poor or

missingY -band values were given a nominal 9999, meaning the deficit ofY -band data for these

fields could significantly skew the median value used for calibration, therefore only the stars with

goodY , J , H andKs data were used for these dispersion calculations (see Appendix 5.5 for an

example script). Fields E and I were treated separately withtheir fewer number of associated stars

in order to increase the confidence of the results in all of theother fields.

Figure 3.6:Y vs. Y −Ks CMD showing objects detected from our fields, matched with data that
was taken from the DR5 UKIDSS catalogue, and which haveJ − H andJ − Ks andH − Ks

colours within the range of±0.1 mag. Objects in group ‘2’ all have photometric errors<0.1mag,
whilst objects in group ‘1’ have photometric errors<0.05mag. The objects from group ‘1’ can be
said to be A0 stars, as they have a median offset of 0.1 mag overall three CMD permutations. The
Y vs. Y −J median colour offset over all ten fields is 0.068 mag, theY vs. Y −H median colour
offset is 0.114 and here (this plot) shows theY vs. Y − Ks CMD with median colour offset of
0.120.

Twenty-five A0 stars had aJ , H and Ks colour range of no more than±0.1 mag and errors

less than 0.05mag which were found from the DR5 UKIDSS catalogue. These stars were used

to see whether the UKIDSSY -band is an acceptable calibrator for the CFHT WIRCamY -band.

When theY − J , Y − H andY − Ks were analysed these objects still had colours with a mean

median of 0.101 mag but had a dispersion of∼ 0.011 mag, validating their identity as A0 stars.

It can be seen from Figure 3.6 that these objects are not particilarly well groups, even those with

photometric errors<0.05mag, meaning that they cannot be used to acceptably calibrate ourY -

band short exposures. Clearly an additional calibration method was required in order to calibrate

the Y -band, and it was envisaged to calibrate our entire long on short sample onto UKIDSS, in
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place of 2MASS.

Calibration onto UKIDSS This used the DR6 and not the DR7 data as this data was not

available at the time of the data analysis. A further check was made but no new data in our

FOV of IC 4665 was available. TheY -band was tested where the mean difference was -0.008 and

-0.011 mag for the short and long catalogues respectively. There was, however, a spread of 0.15

to 0.3mag between individual field comparisons for the shortand long data. Hodgkin et al. (2009)

found that the UKIDSSY data was significantly bluer offset by up to 0.08mag, but alsodiscusses

that this offset is an artefact of their extrapolation basedon the red-ward selection ofJ −Ks stars.

An offset was applied to all further UKIDSS releases from DR3of -0.078±0.010 in order to fit

theY -band to the Vega photometric system. Additionally, the similarities between the CFHT and

UKIDSS systems allow the use of theAλ

AV
=0.42 extinction co-efficient. The difficulty, however, is

making sure that theY -band data could be compared to the 2MASS calibrated data, soit was then

prudent to calibrate not just the WIRCamY data onto UKIDSS, but also to calibrate theJ , H and

Ks data as well. Applied, calibrated values are shown in Table 3.3. Hence, the data in this work is

zero-point calibrated to UKIDSS DR6 release.

Table 3.3: The average number of stars used for the short-onto-UKIDSS calibration was 676,
whilst 1621 stars, on average, were used for the long-onto-UKIDSS comparison over all four
bands. The number of stars for fields E and I in theY -band (not explicitly shown) are 19% and
80% complete for the shortY -band exposures, and 14% and 72% for the longY -band exposures
because of the lack of coverage of the UKIDSSY -band over the survey area.

Field Ymed Yσ Jmed Jσ Hmed Hσ Ksmed Ksσ no. stars
SHORT onto UKIDSS:
A -0.100 0.010 -0.012 0.009 -0.074 0.010 -0.067 0.022 646
B -0.150 0.011 -0.041 0.006 -0.090 0.011 -0.087 0.007 750
C -0.215 0.019 -0.049 0.025 -0.088 0.031 -0.083 0.012 645
D -0.135 0.012 -0.045 0.005 -0.103 0.022 -0.081 0.010 692
E 0.014 0.013 -0.053 0.022 -0.106 0.024 -0.085 0.023 377
F -0.231 0.010 -0.038 0.020 -0.100 0.028 -0.077 0.019 891
G 0.102 0.002 -0.049 0.011 -0.094 0.024 -0.056 0.021 676
H -0.109 0.022 -0.044 0.029 -0.080 0.014 -0.065 0.019 758
I -0.011 0.008 -0.054 0.018 -0.088 0.015 -0.052 0.009 658
J 0.007 0.006 -0.029 0.029 -0.087 0.020 -0.051 0.032 672
LONG onto UKIDSS :
A -0.076 0.013 -0.002 0.014 -0.052 0.015 -0.075 0.019 1499
B -0.151 0.012 -0.041 0.008 -0.080 0.014 -0.092 0.009 1734
C -0.087 0.017 -0.049 0.014 -0.091 0.021 -0.091 0.010 1725
D -0.080 0.011 -0.029 0.011 -0.071 0.014 -0.086 0.012 1673
E -0.229 0.010 -0.075 0.012 -0.095 0.018 -0.091 0.021 1428
F 0.027 0.006 -0.024 0.020 -0.017 0.023 -0.087 0.018 1947
G -0.105 0.015 -0.039 0.012 -0.083 0.017 -0.060 0.019 1722
H -0.116 0.021 -0.035 0.015 -0.062 0.021 -0.069 0.022 1650
I -0.077 0.013 -0.032 0.011 -0.077 0.004 -0.057 0.011 1530
J -0.179 0.010 -0.057 0.015 -0.109 0.021 -0.058 0.031 1304
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Comparison To this end, as the UKIDSS system has already shown to be photometric, and as its

J , H andKs bands have essentially already been calibrated using 2MASS(Hewett et al., 2006),

we then finally calibrated the long and short exposures directly onto UKIDSS. As a check, the

difference between the two calibration methods was calculated. Residual differences between the

two calibration methods can be found in Table 3.4, exceptingtheY -band for 2MASS.

Table 3.4: Comparison between the two calibration methods.Values are compared to the
calibrated UKIDSS data, explaining the low UKIDSS differences, and the slightly larger 2MASS
differences. Note the increasing difference with wavelength with the 2MASS data.

Field Ymed Yσ Jmed Jσ Hmed Hσ Ksmed Ksσ

2MASS- UKIDSS
A - - - -0.018 0.033 0.034 0.042 0.031 0.034
B - - - 0.004 0.023 0.023 0.026 0.030 0.012
C - - - 0.013 0.016 0.043 0.016 0.043 0.011
D - - - -0.005 0.005 0.038 0.010 0.036 0.007
E - - - -0.007 0.028 0.001 0.019 0.038 0.016
F - - - 0.017 0.046 0.003 0.030 0.029 0.025
G - - - 0.018 0.023 0.023 0.031 0.050 0.020
H - - - 0.076 0.026 0.025 0.017 0.002 0.031
I - - - 0.034 0.013 0.020 0.008 0.023 0.009
J - - - -0.072 0.027 -0.049 0.005 0.015 0.006
Residual UKIDSS
A Y -0.001 0.014 <0.001 0.016 0.006 0.016 <0.001 0.022
B Y -0.009 0.012 <0.001 0.011 <0.001 0.013 -0.003 0.010
C Y <0.001 0.021 <0.001 0.017 <0.001 0.022 -0.001 0.009
D Y -0.009 0.014 -0.001 0.012 -0.001 0.015 -0.005 0.013
E Y -0.005 0.024 -0.001 0.012 <0.001 0.017 -0.006 0.022
F Y -0.005 0.013 0.004 0.021 <0.001 0.024 -0.007 0.021
G Y -0.007 0.014 -0.002 0.014 -0.002 0.018 -0.001 0.018
H Y -0.021 0.032 <0.001 0.016 <0.001 0.020 -0.011 0.022
I Y -0.003 0.015 -0.002 0.012 <0.001 0.010 -0.001 0.011
J Y -0.050 0.015 -0.061 0.017 -0.060 0.021 <0.001 0.030

An additional comparison was made between the BT models which had been convolved with

the CFHT WIRCam system and those models convolved with the UKIDSS system, and is shown

in Figure 3.7. It can be seen that the offsets are below 0.005 mag for theJ − Ks colour range

-1 to 1. This was necessary in order to see if any offsets needed to be applied to the models to

bring them into line with the photometric catalogues, required for the candidate selection. The

offsets wereY ≤ +0.005 mag,J .-0.0005 and forH andKs .0.0005, resulting in no necessary

calibration offsets to be added to the models.

Interfield Calibration The final step in the calibration pipeline is to check each cluster field

against its adjoining fields and see which ones have large discrepancies. The control field had

no such overlapping regions. There were naturally some small discrepancies between each field

caused by the different observing conditions. The calibrated data was plotted in the standard set
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of CMDs and it could be seen that for the CMDs that include theY -band there is an offset with

field J, shown in Figure 3.8. Thus, an interfield calibration must be performed taking each field

and iteratively calculate the median difference. The central fields ABCD were found to have the

smallest interfield offset, as expected. All of the short andlong exposures of field J, for theY ,

J andH-bands were observed within the same observing program. TheKs was observed at a

different time. Field J overlaps just two corners, one on field B and one on field D, as shown in

Figure 2.5. The lower left corner of field D is of poor quality with large flagged regions from the

poor response of the detector and missing pixels, and could be the cause of this offset compared

to the other fields. Offsets that were needed to be applied to theY , J andH-bands were 0.038,

0.053 and 0.064 mag respectively.

Control Fields The control fields which lacked matching UKIDSS data which means they could

not be calibrated directly onto UKIDSS as was the method withthe other fields. Once the data

has been found to be correctly calibrated, theJ , H andKs-band fields could be calibrated onto

2MASS and then have the 2MASS-UKIDSS offset applied, listedin Table 3.4, to indirectly

calibrate them onto UKIDSS. TheY -band was then calibrated by calculating the median offset

value from the other 10Y -band cluster fields, and then applying the average of these medians to

theY -band data of control fields. Final control field calibrationvalues are listed in Table 3.5.

Table 3.5: MedianY -band calibration values of C1 and C2 compared to median of other 10 fields;
JHK from C1C2 onto 2MASS median difference, PLUS residual 2MASS-UKIDSS offsets.

Field Ymed Jmed Hmed Ksmed

Short
C1 -0.088 -0.054 -0.057 -0.035
C2 -0.088 -0.061 -0.059 -0.034
Long
C1 -0.075 -0.037 -0.051 -0.035
C2 -0.075 -0.041 -0.044 -0.034

3.3.1 Short & Long Amalgamation

Two methods were used to amalgamate theY , J , H andKs data into a single, uniquely-populated

catalogue. In the first instance the short and long catalogues were matched together to obtain a

catalogue with the total number of duplicate objects, thoseobjects appearing in both the short

and long catalogues, and the total number of unique objects from both exposure sets. A flag

was introduced here to describe the origin of each line in thenew catalogue, from short or long,

and unique or duplicate. The unique object amalgamation is trivial, whilst the duplicate can
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be problematic. Initially, a string of either/or statements described each band to build a list of

duplicate objects. These statements included the IMA flags,and the errors; if an object is saturated

in the long then the corresponding object from the short catalogue was chosen; if the flags were

identical then the entry with the lowest errors was selected. An unforeseen problem with this

method is that if the data for an object was taken from both thelong and short catalogues there

then occured a discontinuity in colour-space. Bright objects existed that had not been flagged as

saturated in the IMA flag file because they fell within the non-linearity response region, mostly

occuring for objects in the long exposures. Consequently a new set of flags were created as

discussed, taken from the calibration CMDs to take these objects into account. These SAT flags

and IMA flags were then used in conjunction to obtain the uniquely populated catalogues.

Duplicates still exist, however, in the overlaps between the fields but these will be either

accepted or rejected as candidate members depending on the quality of the photometry. Further,

those duplicates which both pass through to the final selection stage can then be accepted or

rejected on a duplicate-by-duplicate basis, discussed in Section 3.4.3.

3.3.2 Completeness

Figure 3.9 shows the completeness and other diagnostic plots as a function of magnitude for field

A for all four bands. The top panel is the completeness histogram where the limit can be seen

when the number of objects begins to drop off, shown by the solid line. The middle panel shows

the flux radius, and the bottom panel the photometric errors.Dotted lines show the saturation and

completeness limits. Errors at this limit are<0.1 mag. Final completeness limits are calculated in

order to ascertain the depth of the survey and to see what massobjects the survey was sensitive to.

Using the BT-Cond models the lowest detected mass could be aslow as 0.015 M⊙, listed in Table

3.6.

Table 3.6: Average completeness magnitudes are shown over all cluster fields, as well as associated
masses for both 30 and 40 Myr BT-Cond models. The depth of theKs-band is less than the other
three bands, where theY is the deepest. The mass values hold for theY , J andH magnitudes.

Depth Y J H Ks Mass Model Y J H Ks

/ mag / mag / mag / mag Limit Age / Myr / M⊙ / M⊙ / M⊙ / M⊙

Short 19.00 18.25 17.50 18.50 30 0.0020 0.0200 0.0300 0.0150
Short 19.00 18.25 17.50 18.50 40 0.0030 0.0300 0.0400 0.0150
Long 21.00 20.50 19.75 18.50 30 0.0120 0.0120 0.0120 0.0150
Long 21.00 20.50 19.75 18.50 40 0.0120 0.0120 0.0120 0.0150
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3.3.2.1 Previously Known Members

Four surveys were initially compared to the catalogues which have been discussed fully in the

introduction to this chapter. Prosser (1993) had a catalogue with photometrically selected objects,

which spawned a follow up paper, Prosser and Giampapa (1994), that focused on obtaining radial

velocity data for 42 candidates of spectral types F5 to K0, which had both BVI and proper motion

data from the previous paper. Of these 42 candidates, 20 werefound to have velocites consistent

with membership of∼13 km s−1. A more recent survey by de Wit et al. (2006) explored the

lower mass function with again a photometrically selected sample of objects, 691 low mass stellar

and 94 brown dwarf member candidates. Of these candidates, 265 were uniquely recovered from

these 785 objects where the discrepancy is shown because of the fields of view of the comparative

surveys was different. Of these recovered candidates, 224 had no IMA or SAT flags. Jeffries et al.

(2009) selected sample objects from Cargile and James (2010) and present 40 candidate objects

of which 30 should be within the central square degree of the cluster and have magnitudes less

thanV = 18 mag. Of these objects, all objects are recovered in our sample, however 25 of the 48

matched objects are saturated, 8 are undetected in at least one of our photometric bands and none

are otherwise fainter thanJ = 13.9 mag.

Manzi et al. (2008) collated a sample of 147 objects where all147 objects are recovered over

our FOV. Of these 147, 124 are without flags. Additionally, they also confirm the membership

of 39 objects from both radial velocity and or Hα data, down to a magnitude of I∼17.2 mag,

and of these objects, 32 have no IMA or SAT flags. Hence, the most useful set of sample objects

for this work originate from Manzi et al. (2008), and so are plotted in the CMDs and COLDs for

comparison to our CFHT selected objects. Objects were considered cluster members if they had a

radial velocity of∼ -15 km s−1, or within 3σ of the cluster average±8.7 km s−1.
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Figure 3.7: The models used in this work, which have been convolved with the WIRCam detectors
and the UKIDSS detectors at the Phoenix site, are compared. The offsets are negligible, and whilst
the colour term takes over atJ − Ks colours greater than 1 which does not affect the calibration
values.
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Figure 3.8: Real offset for the data in field J for the amalgamated Y -band. The offset is of the
order 0.1 mag. Note that in these plots the control fields C1 and C2 are not calibrated.
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Figure 3.9: Diagnostic sample showing the completeness limit, rms error, and the flux radius, as
a function of magnitude for the amalgamated short and long exposures. The solid line on the
completeness plots is the least-squares fit to the data, where the dotted lines are the saturation and
completeness limits. Here the data for field A and for all fourbands is shown as an example.
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3.4 Candidate Selection

CMDs and COLDs are used to select the candidates over the fieldof view. To this end a selection

algorithm was adapted (C. Alves de Oliveira, priv. comm) in the form of an IDL routine, where

the main selection criteria are located in the Appendix 5.5.
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Figure 3.10: IDL selection cri-

teria including the x and y axis

error bars for each object in the

input catalogue. An object is

classed as a candidate if any part

of this schematic is greater than

the model in the CMD selection,

or greater or less then for the

COLD selection.

To be conservative because of the uncertainty in the age,

all objects over the unfiltered catalogues were selected if

they were redder than either the 30 and 50Myr BT-models.

This selection was cumulative over the CMDs, such that only

objects selected in all six permutations were then classed

as preliminary candidates. Residual offsets for theY JHK

calibration are on the order of a few 100dths of a magnitude

on average so errors for the calibration are taken to be a

conservative 0.05 mag. An additional error stems from the

uncertainty in the distance, here±15 pc which corresponds to

∼0.09 mag. Both of these errors, on top of the photometric

error associated with the uncalibrated data point, are taken

into account when interpolating the model values for candidate

selection. This is shown in Figure 3.10, where the central point,

0, takes the extracted value of from the calibrated data. Points

1-8 in the rectangle take into account the residual offset (in

colour and magnitude space) or distance error (in magnitude

space). If any part of this object’s square ‘footprint’ falls

within the ascribed range of the models then it is selected as

a candidate.

3.4.1 Colour/Magnitude Diagram Selection

The first part of the candidate selection method require objects to be chosen using the theoretical

models in the six permutations of the CMDs available. Initially each permutation had a candidate

selection list, where the values for theY vsY −J , Y −H andY −Ks; J vsJ−H, J−Ks andH

vs H − Ks CMDs were 4,483, 10,842, 17,222, 140,538, 72,089 and 61,790objects respectively.

The fewest number of objects, 4483, are selected in theY /Y −Js permutation, clearly showing that

this colour is the most powerful constraint in this candidate selection method. TheJ /J −H CMD

was the least useful with more than 140,000 candidates selected over the ten fields. This was done

on a field-by-field basis before being collated into a single catalogue with 2278 objects chosen
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from all ten fields comprising 380,944 objects. These totalsinclude duplicates from the overlaps

between the fields. Figure 3.11 shows the objects taken from each step of the CMD selection for

just two permutations,Y /Y −J andJ /J −H, where they can be clearly seen to follow the path of

the bluest-appearing model, which can be either the 30 or 50 Myr isochrone. 39 confirmed cluster

members from Manzi et al. (2008) are plotted as well, where all 39 are present before the start

of the candidate selection, but only 32 are included in the CMD-selected catalogue. 40 M- and 5

L-dwarfs from the Pleiades (Bihain et al., 2010) are plottedusing UKIDSS data and adjusted for

extinction and distance, along with the 120 Myr BT-Settl isochrone for comparison. It can be seen

that the Pleiades sequence is generally fainter/brighter than the associated 120 Myr model for the

Y -band, suggesting a possible problem with the models, especially with the Y -band. This could

be attributed to the difference in the treatment of the interior compared to the exterior with respect

to the new abundances in the new models.

3.4.2 Colour/Colour Diagram Selection

CMD candidate objects were re-accepted as COLD candidate members if they followed both the

30 and 50 Myr BT-Settl theoretical isochrones, in a similar manner to the CMD selection phase.

In this analysis, however, the selection script required objects to be present, depending on errors,

in a band around both of the 30 or 50 Myr isochrones. There are 15 permutations of colour/colour

diagram for these four bands and to be a good candidate using this method they must adhere to

the models over all permutations. 1173 unfiltered candidates were selected from this method.

Figure 3.12 shows two examples of these COLDs with the final filtered selection of 608 objects

overplotted. This filtering is discussed in Section 3.4.3. Black constraining boxes are the expected

regions for M and L-dwarfs (marked) taken from theY −J /J −H andJ −H/H −Ks plots from

Hewett et al. (2006). The full CMD-selected sample is also plotted for completeness.

3.4.3 Candidate Cleaning

Further candidate member catalogue treatment involved visually inspecting these candidate

members, and removing those objects that were obviously giants, or have flags, poor PSFs, appear

in defect detector regions, or which are simply spurious objects. This candidate member catalogue

may still contain duplicates and these are accepted or rejected depending on similar criteria, flags,

flux radius and if necessary comparing nearby regions on the image to ascertain the field that

has a better local quality of data. For example, duplicate objects between field J and D would

be chosen from field J, because the bottom left hand corner of the WIRCam detector had many

holes and blank pixels in this region, as discussed before. Candidate objects must also have good

photometry in all four bands. Finally, there are∼608 preliminary candidate members, down from
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2278 selected using the CMD selection criteria over all fields, and down from 1173 after the COLD

exclusion phase. These 608 objects have no IMA or SAT flags andhave flux radii<5.0 pixels.

It can also be seen from Figures 3.11 & 3.12 that there are manyobjects withY − J colours>

1.3, which also have associated magnitudes greater than Y∼21 mag. This magnitude is below the

completeness limit for even theY -band, and the distribution of these objects in theJ − H vs.

Y − J plot also indicate their uncertainty in being good candidates. The same can be said for

objects that have anH − Ks value> 0.85 as these objects too fall outside of our completeness

limit. 590 of these are not duplicated in other fields. Visualscrutiny of the images for candidate

objects is not part of the pipeline but is handled by aniraf routine that allows each group of four

images for IC 4665 to be viewed at the same time for full comparison usingimexamin. 178 of

these 590 unique candidates are well detected with a good PSF, surface contours and FWHM and

in each of the four bands and were given the label ‘OK’ or ‘OK:diam*’. To be more conservative

510 objects, listed in Table 3.7, passed the visual inspection where imperfections in one or more

bands were kept, whilst objects which had imperfections in all bands were discarded, for example

flat topped PSFs, non-Gaussian PSFs or extended emission in one or more bands.

Table 3.7: Sample final candidate list of the 510 objects thathave passed the CMD, COLD,
filtering and visual inspection analysis. The last four digits of the identifier in column two indicate
the origin of the data for that object, either from the short and/or long exposure set. The full list
can be found in the Appendix.

Field Identifier RA DEC Y Yerr J Jerr H Herr K Kerr Observation
/ mag / mag / mag / mag / mag / mag / mag / mag Note

D 168841111 266.46933 5.47968 20.131 0.141 18.974 0.141 18.327 0.141 17.818 0.142 OK:diam:faint
B 6280000 266.82553 5.31048 17.305 0.141 16.309 0.140 15.811 0.140 15.207 0.140 OK:diam:faintY
A 8280000 266.75516 5.65025 19.200 0.148 18.138 0.144 17.493 0.144 17.059 0.140 OK
... ... ... ... ... ... ... ... ... ... ... ... ...
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Figure 3.11:CMD candidate selection using the 30 and 50 Myr BT-Settl isochrones, plotted as dashed cyan and

dotted blue lines respectively. TheY /Y − J top andJ /J − H bottomCMDs are shown.top level: Objects selected

from that particular CMD (red points) are plotted, along with the 39 confirmed cluster members from the Manzi et al.

(2008) can be seen as green diamonds.bottom level: Similar totop levelbut where the full catalogue for one field (here,

field G) in plotted (black dots) and thefinal candidate selection (red squares) which fulfil the selection conditions over

all six variations of the CMDs for the four bands and all ten fields. The 100 Myr Pleiades sequence from Bihain et al.

(2010) is also plotted (purple circles) and the associated 120 Myr BT-Settl isochrone for comparision. 2278 objects

were selected from 380,944 amalgamated objects over all fields. Note that duplicates in the overlaps between the fields

are included in these totals at this stage.
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Figure 3.12:Similar to Figure 3.11, COLD candidate selection using the 30 and 50 Myr BT-Settl isochrones, plotted

as dashed cyan and dotted blue lines respectively. The 39 confirmed cluster members from the Manzi et al. (2008) can

be seen as green diamonds. The full catalogue for one field (here, field G) in plotted (black dots) for comparison, and

thefinal 608 selected candidatesred squareswhich fulfil the selection conditions over all 15 variationsof the COLDs

for the four bands and over all ten fields. The small green squares are the unselected COLD candidate members for

comparison.
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3.5 Discussion

In this section there is an outline of the confidence in the quality of these isochrone-selected

candidate objects, what can be done with these 510 preliminary candidates, and associated

possibilities for further and complimentary analysis.

3.5.1 Recovered Known Members

All 39 confirmed candidates from Manzi et al. (2008) were recovered in the unfiltered objects over

all ten fields. Of these 32 objects had not IMA or SAT flags and were recovered in our pre-selected

sample, whilst only 15 remain recovered at the end of the selection using theoretical models over

all CMD and COLDs which selected 590 objects. Of these, just 13 remain in the sample of 510

visually inspected acceptable objects and are then plottedin the IR CMDs with the 30 and 50 Myr

BT-Settl models for comparison as shown Figure 3.13. In the 178 heavily cleaned candidate list

just 6 of the 32 were recovered. Further analysis could be conducted on other members from

Jeffries et al. (2009) as an additional check and comparison.

If the candidate selection was done perfectly then is no reason why all 32 of 39 candidates could

not be recovered in the sample of 590 objects, but as it is morethan half of these are rejected

from this methodology. There could also be another problem,which is that the selection itself is

non-optimal, not least because the models are simply (yet thorough) approximations to reality.

3.5.2 Selection Considerations

The selection method appears to have some shortcomings related to how much the models can

be trusted for this candidate selection. Specifically, theY -band appears to be problematic for

at leastthe 120 Myr BT-Settl model which fails to follow the Pleiadessequence, as seen in the

Y /Y − J plot in Figure 3.11. The empirical sequence can be clearly seen as 1-2 mag fainter than

the corresponding model in theY /Y −J . The Pleiades data is in the UKIDSS photometric system,

whilst our data is in the CFHT system, but zero-point calibrated to UKIDSS. The offsets for these

two systems have been discussed as negligible and plotted inSection 3.3 and Figure 3.7, though

colour differences greater than∼0.02 mag do begin to appear forJ − Ks colours>0.8 mag on

average, and certainly for theY -band. This small difference in the colour term, therefore,seems

not to be the cause of this discrepancy. Further disparity occurs in theY − J /J −H COLD where

the models are approximately static betweenY − J=0.7 and 1.2 mag. To this end, it seems to be

also acceptable to select candidate members from empiricalisochrones and not from the models.

Indeed, it could be suggested that objects should be selected empirically and then tested against

the models, instead of using the models and then comparing them against empirical sequences,
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Figure 3.13:Y − J /J − H showing the location of the final selected candidates (as blue and red
stars) split into L- and M-dwarfs selected empirically fromHewett et al. (2006), compared to the
30 and 50 Myr BT-Settl isochrones (as labelled). Other features as in Figure 3.12.

which is what this stage of work has acheived. A good test, then, would be to define a box around

the empirical sequence from the Pleiades and to use this to extract objects from the CMDs. For the

COLDs the same approach can be taken where an empirical region of the diagram can be marked,

including errors, in order to select objects.

An additional possibility is to use empirical locations of the brown dwarfs, from the literature,

in order to attempt to broadly classify members of this selection. It is possible to use the colours

computed from the spectra of of 15 M and 30 L-dwarfs selected by Hewett et al. (2006), their

Figure 2. These boxes are superimposed onto the two COLD in Figure 3.12. This resulted in 63

L-dwarfs and 485 M-dwarf candidates for the 510 reasonable candidate objects. When compared

to just the 178 ‘very good’ candidate list there appear just 3L-dwarfs and 164 M-dwarf candidates
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with 12 candidates being either a M- or a L-dwarf. This duplication is due to borderline objects

that were selected by the criteria defined by both of the two empirical boxes. The observations

were sensitive down to∼15 MJ which concurs with around the L3 spectral type for a 40 Myr

brown dwarf.

3.5.2.1 Y -band Considerations

It can be seen that most important selector in this work is theY band which greatly reduced the

number of objects, however, this also was the band that had the largest spread of median values

across the ten fields of±0.33 mag, though the dispersion was similar to the otherJ , H andKs-

bands.

Whilst the final candidate list presented here made great useof this band there are also other

problems involved with the selection criteria. It can be seen from Figure 3.11 that the Pleiades

empirical sequence does not follow the 120 Myr BT-Settl isochrone in theY − J colour space

whilst it does in theH − Ks colour space. This suggests that the models are incomplete,at least

in theY -band part of the theoretical spectra used to compute the isochrones. This could be tested

further by conducting the CMD and COLD selection analysis using the 120 Myr isochrones, and

using just theJ , H andKs-bands, before seeing how many of these objects fall in line with the

empirical sequence. It would be hard to compare the current selection because a lot of objects

have been removed when using theY -band.

In fact, theY -band is greatly affected by telluric lines, as discussed bythe recent paper

regarding the BT-models by Allard et al. (2010) (their Figure 2), meaning that the BT-model which

was used for the selectionhad not yethad an additional calibration adjustment included to take

this extra absorption into account, to close the gap betweenthe model and the observations. The

presence of strong atmospheric absorption could explain some of the large calibration differences

found over the 12 fields if they were certainly dependent on the proportion and turbulence of water

vapour in the atmosphere at the time of the observations. It should also explain why theY -band

is the strongest filter used in the selection process.

3.5.3 Contamination

The low extinction of this cluster means that it is relatively hard to ascertain membership based on

having a high extinction levels, as is possible for younger or more compact and dusty star-forming

regions. It is possible to estimate the population of field objects lying in the foreground of the

cluster, but the clearest is a purely statistical stance where control fields are used to estimate the

distribution and population of stars on regions of the sky away from IC 4665. The number of
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Figure 3.14: Distribution of 510 unique and good selected candidates over the FOV of the IC 4665
observation (filled red circles), and the 39 Manzi et al. (2008) candidates as large filled blue
circles. 15/39 candidates were reselected from the 590 selection, down from 32/39 after the CMD
selection, and 13/39 members recovered after visual inspection.

objects that were detected in control fields C1 and C2, after the CMD selection were 122 and 97

respectively, whilst there were 61 and 60 objects detected after both the CMD and COLD selection

methods, and 28 and 33 respectively after filtering and cleaning. 23 and 29 objects were present

in these fields after visual inspection. The location of the candidates over all ten fields is shown

in 3.14 in sexigesimal J2000 coordinates, and with the full 39 Manzi et al. (2008) members. 13

of these 39 members were recovered after visual inspection and filtering out of bad candidates.

An additional complication is that IC 4665 is very much centred on fields A, B, C and D so it

is expected that these fields have proportionally more cluster members than fields E, F, G, H, I

and J, when compared to the confirmed Manzi et al. (2008) cluster members. It is worth treating

these two sets of fields separately with respect to the control field contamination estimates as the

contamination here will be lower compared to the surrounding fields. A good method to estimate

the contamination of non-cluster objects within our fields would be to add together and multiply

by 5 the number of objects detected in the control fields to have a broad idea of the contamination

within this cluster. From the aforementioned values this value is 110, so broadly speaking∼110

of our 510 objects will have a high probability of being either foreground or background objects

and not cluster members. The trick is to work out which objects within the candidate list these

objects could be. A method of doing this is by assuming that the majority of contaminants when

observing towards an open cluster lie behind the cluster, this means that they should be fainter on
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average than the cluster members. It is then possible to plotthe number of these control objects

against magnitude and compare them to the selected candidates (Muench et al., 2002).

3.6 Summary

The young open cluster IC 4665 was the target of an observing program that took short and long

exposures over 10 fields around the cluster centre and of 2 control fields held off-centre. These

two sets of exposures consisted ofY , J , H andKs broadband photometry which was taken by the

WIRCam on the CFHT. Detection and analysis parameters of SExtractor and PSFEx were then

tested and optimised to extract this data, where various filters, background estimation, aperture

sizes, and PSF models were created in order to accurately detect and refine the data. TheJ-band

image was used as a detection image to be sure that each objecthad a chance of having data in

each of these four bands which was a requirement for cluster membership.

A pipeline was developed which took the input images and a fewtables of input parameters

to analyse and extract the images. This output was then tested against 2MASS and UKIDSS data

in order to check the quality of the data. Calibration was then performed by zero-point calibrating

to the UKIDSS photometric system before amalgamating the long and short exposures together.

Interfield calibration was then performed so that each field can be treated identically.

A candidate was kept if it fulfilled the selection criteria with respect to the BT-Settl 30 and

50 Myr isochrones in both the CMD and COLD selection phase, and if its magnitude is at or

above the completeness limit in all four photometric bands.These objects were visually inspected

to determine the status of the object on each image, where themore definite candidates were

further selected using empirical colour selection criteria in theY − J , J −H andH −Ks colour

space. Vigorous cleaning using completeness limits, flux radii and assigned flags reduced the total

number of objects from 1173 to 608 after the COLD selection phase. Of these 608, 18 objects

were duplicated (with in 1′′) in the overlaps between the images, and 80 of the remaining objects

were rejected from visual inspection, which accounted for 13.5% of the total number of objects.

This data was then tabulated in Table 3.7, where the final candidate list held a possible 485 M-

dwarfs and 63 L-dwarfs from empirical colour constraints. Vigorous rejection of all but the perfect

objects in the field of view reduces this figure to just 178 objects (‘OK’ and ’OK:diam’) but with

only 6 confirmed members from Manzi et al. (2008) being present.
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3.7 Résuḿe

Le amas ouvert jeune IC 4665 a été la cible d’un programme d’observation qui a eu une exposition

court et longue de plus de 10 champs dans le centre de l’amas etde 2 champs de contrle lieu

décentré. Ces deux séries d’expositions se composait deY , J , H etKs photométrie à large bande

qui a été prise par le WIRCam sur le CFHT. paramètres de détection et d’analyse des SExtractor et

PSFEx ont ensuite été testées et ont optimisées pour extraire ces données, où les différents filtres,

estimation du fond, des tailles d’ouverture, et les modèles de PSF ont été créés afin de détecter

avec précision et d’affiner les données. La bande-J de l’image a été utilisée comme une image de

détection pour être sr que chaque objet avait une chance dedisposer de données dans chacun de

ces quatre bandes qui était une condition pour être membredu cluster.

Un pipeline a été élaboré qui a pris des images d’entréeet quelques tables de paramètres

d’entrée pour analyser et extraire les images. Cette sortie a ensuite été testé contre 2MASS et les

données UKIDSS afin de vérifier la qualité des données. L’étalonnage a été ensuite réalisée par

étalonnage du point zéro de la UKIDSS système photométrique avant la fusion des expositions à

long et à court ensemble. Calibration inter-champs a ensuite été effectuée de telle sorte que chaque

champ peut être traités de façon identique.

Un candidat a été conservée si elle satisfait aux critères de sélection à l’égard des isochrones

BT-Settl 30 et 50 Myr dans les CMD et la phase de sélection COLD, et si sa magnitude est égale

ou supérieure à la limite de l’exhaustivité dans les quatre bandes photométriques. Ces objets ont

été inspectés visuellement pour déterminer le statut de l’objet sur chaque image, où les candidats

ont été encore plus précis sélectionnés à l’aide des critères de sélection empirique de couleur dans

le Y − J , J − H et H − Ks espace de couleur. Nettoyage vigoureux utilisant des limites de

l’exhaustivité, les rayons de flux et les indicateurs attribués réduit le nombre total d’objets de

1173 à 608 après la phase de sélection FROID. Parmi ces 608, 18 objets ont été dupliqués (en

1 arcsec) dans les chevauchements entre les images, et 80 desobjets restants ont été rejetés de

l’inspection visuelle, qui représentaient 13,5 % du nombre totale d’objets. Ces données ont été

ensuite présentés dans le tableau 3.7, où la liste finale des candidats a tenu une possible 485 M-

nains et 63 L-nains de couleur contraintes empiriques. rejet vigoureux de tous les objets, mais

parfait dans le champ de vision réduit ce chiffre à un peu 178 objets (OK et OK:diam*) mais avec

seulement 6 membres ont confirmé à partir de Manzi et al. (2008) être présent.
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Chapter 4

Young T-dwarf Candidates in IC 348
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4.1 Introduction & Context

The vast majority of detected brown dwarfs are old (3-6 Gyr) field dwarfs (Faherty et al., 2009),

having cooled over time. The importance of discovering and cataloguing the lowest mass objects
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is necessary in determining the full IMF, and is critical in furthering our understanding of the low-

mass end of stellar evolution. Star-forming regions are well suited to search for the lowest mass

brown dwarfs. Young objects are hottest and brightest immediately after formation as they are

simply not massive enough to begin or sustain fusion via hydrogen or deuterium synthesis so their

temperature decreases from their peak as they radiate theiroriginal thermal energy away over time.

This proves difficult when searching for the lowest mass objects in the field, as detected T-dwarfs

in the field have masses much greater than in star forming regions and they have had billions of

years to cool below∼1300 K. This extra mass also complicates their cooling rate,and the age

estimate as they are heavier than the deuterium fusion limitso it is uncertain how much extra heat

energy has been made available through this mechanism to slow the decrease in temperature from

formation.

T-dwarfs are also referred to as methane dwarfs, stemming from the change in the atmospheric

properties, specifically the increased formation of methane and the cloud clearing of dust occuring

at an effective temperature of around 1300 K which allows themethane to be observed more

readily in the H and Ks bands. This is usually termed as the L – T transition - the transition between

L-dwarfs and T-dwarfs as a spectral type. Consequently methane can both form more readily in

the atmosphere, and can be detected from its absorption effect in the spectrum. Spectroscopic

or narrowband photometry have both been used to not only classify, but also detect T-dwarfs in

star-forming regions and in the field, based on atmospheric absorption of methane.

This chapter chronicles the search for the lowest mass objects in the star-forming region IC 348

using the WIRCam narrowband filters CH4 ‘off’ and ‘on’ at 1.58 and 1.69µm respectively. These

methane-selected detections are supported by MegaCamz′ and WIRCamJ , H andKs broadband

data. The data extraction method has been discussed in Section 2.3 though specific results, for

example aperture sizes and filter are discussed here.Spitzerdata, membership, contamination and

the log-normal and power-law IMFs are then discussed. The article on this chapter was accepted

on the 21st August 2009 before being published in the Astronomy and Astrophysics Highlights,

Volume 508, Issue 2, pp.823-831 in December 2009.

4.1.1 Searching for T-dwarfs

To date, there have been a good set of surveys with respect to searching for field T-dwarfs using

methane data, either from large scale surveys with follow-up spectroscopy or observations of

specific regions, namely star-forming regions. Burgasser et al. (1999), for example, searched

the 2MASS data for field brown dwarfs using two data releases and filtering for known ranges

of brown dwarf colours, and a good signal-to-noise ratio. The obtained NIR, 1.4–2.4µm spectra

using the Keck telescope and compared their objects with thespectrum of Gliese 299B. They

confirm five objects as T-dwarfs from their 1.6 and 2.2µm CH4 absorption bands, which become
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apparent at∼1300 K. They also confirm that their temperatures are greaterthan 950 K and that

they are consistent with the space density for T-dwarfs fromKirkpatrick et al. (1999), with an

upper limit of 0.01 T-dwarfs pc−3. Other lowest-mass-focussed surveys, aimed at usually young

star forming regions, have turned up just one young T-dwarf with confirmed spectroscopy, S Ori 70

by Zapatero Osorio et al. (2002) inσ Orionis (1-8 Myr). Since its discovery there has been some

contention as to the authenticity of the objects, where in fact it could have been an old foreground

field dwarf in the line of sight (Burgasser et al., 2004) rather than a young cluster object (Martı́n,

2004). Further proper motion and follow-up membership workhas confirmed its authenticity as

one of the lowest mass objects found in a star forming region at 2-7 MJ . The most recent data

using IR andSpitzerdata to confirm its existence and membership ofσ Orionis (Zapatero Osorio

et al., 2008).

4.1.2 The Young Star-Forming Region IC 348

IC 348 is a region of continuing star formation (Tafalla et al., 2006), resulting in the opportunity to

see the youngest members, however these may not necessarilybe the lowest-mass members. There

is evidence of clumps (Bachiller et al., 1987) and disks (Luhman et al., 2005a), where around 50%

± 6% of detected objects from aSpitzersurvey by Lada et al. (2006), of spectral types later than

K6, peaking at 47%± 12% for K6-M2 stars. A composite image of IC 348 is shown in Figure

4.1 where its spectacular reflection nebula, illuminated bythe brightest objects in the cluster can

be seen.

of Pioneering Surveys Recent broadband surveys of IC 348 have been conducted by various

groups ranging fromChandraX-ray observations (Stelzer et al., 2009), through the optical using

the Hubble Space Telescope(Najita et al., 2000; Luhman et al., 2005c), other optical surveys

(Cernis, 1993; Herbig, 1998; Luhman et al., 2003), then further into the near-IR (Lada and Lada,

1995; Luhman, 1999; Preibisch et al., 2003),Spitzermid-IR (Lada et al., 2006; Cieza and Baliber,

2006; Muench et al., 2007; Muzerolle et al., 2010) and the sub-mm continuum (Tafalla et al.,

2006). Spectroscopic follow-up surveys have been conducted by Liu et al. (2003); Muench et al.

(2003); Luhman et al. (2005b) of candidate young brown dwarfs and other low-mass cluster

members.

A narrowband survey of IC 348 was conducted by Mainzer and McLean (2003) who used the

Lick observatory and the 1-5µm First Light Camera for SOFIA (FLITECAM) to observe two

custom narrowband H2O and CH4 filters at 1.495µm and 1.66µm respectively. They used further

J , H andKs, achieving a depth ofH ∼19.5 mag, to filter out the lower mass T-dwarfs from the

L-dwarfs, by theirH − CH4 andH2O − CH4 colour differences. They found 12-15 candidates
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Figure 4.1: A composite image of IC 348 usingJ , H, andKs band data. Image produced by
Adam Block and Tim Puckett.

which could be late M, L or T-dwarfs, with masses≥ 5 MJup, although none have been confirmed

spectroscopically because of their faint nature.

of Age & Distance IC 348 is a young star-forming region towards the direction of Perseus,

centred at (J2000) 03h44m34s, +32◦09′8′′, and embedded in the foreground part of the Per OB2

association. The age of IC 348 has been determined to be∼1–3 Myr (Muench et al., 2003). Star-

forming regions generally have high levels compared to openclusters because of the presence of

the necessary dust and gas. IC 348 is relatively nearby, has alow cluster proper motion, and is

held to be an ideal system in which to observe young brown dwarfs and constrain the lowest mass

end of the IMF. Controversy surrounds its distance, though IC 348 is generally held to be located

between 261+27
−23 pc (Scholz et al., 1999) and 316 pc (Herbig, 1998) from the Solar System, whilst

the OB Per association, of which IC 348 is a member, is taken tobe between 315 pc (Luhman
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et al., 2003) and 340 pc (Cernis, 1993). An average value of 300 (±15 pc) has been used for this

work in line with the review by Herbst (2008).

of Membership IC 348 is a dense star-forming region and is young enough where the dynamical

interactions means that not a great many objects should havebeen ejected. This region is very

dense and it is thought that there are more than∼420 cluster objects (Muench et al., 2007)

constrained within a halo radius of about 10′, but no more than 15′ (Herbig, 1998). The core

radius is taken to be∼ 4′. Extinction maps for IC 348, ranging from∼2<AV <20 mag depending

on the cluster region, were derived by Cernis (1993), Muenchet al. (2003), and Cambrésy et al.

(2006). Its low proper motion also indicates a cohesive structure.

of IMF Muench et al. (2003) derived the IMF of IC 348 complete down to35 MJup (for

Av <4mag) and found it to be similar to the IMF of the Trapezium cluster, having a mode between

0.1-0.2 M⊙. Approximately 15-25% of the population of the cluster appear to be brown dwarfs

and their spatial density is independent of the distance from the cluster centre. The lowest mass

objects were not detected in their work because of the detection limits.

4.2 Specific Data Treatment

The data was treated as laid out in the pipeline in Chapter 2, where the data images were visually

checked for obvious defects, then the aperture size were optimised to a grid of 51 pixels, before

being handled by SExtractor and PSFEx. As with IC 4665, one image was used for detection

whilst the analysis was done on each image in turn. As late-type T-dwarfs may remain undetected

in theCH4on image, and due to strongCH4 absorption, object detection was performed at3.5σ

on theCH4off image, where PSF photometry was then performed at the location of these objects

on both theCH4off and CH4on images. This ensured that all objects that could possiblybe

T-dwarfs are searched for in both filters, rather than obtaining undetections in theCH4on that

could be due toCH4 absorption. IC 348 is a nebulous region which is a consequence of its

youth, and as such there were many false detections. In most cases this would have been most

problematic if galaxies were important, as by their nature most of the nebulosities would not

have nice PSFs but rather flatter or more elongated PSFs whichcould then be rejected through

their flux radius orχ2 values. The background level estimation was tested in the same manner

to IC 4665 and were found to use 128 and 5 for the ‘BACKSIZE’ and ‘BACK FILTERSIZE’

respectively, whilst the detection threshold seemed to strike the best balance between too many

nebulous detections and too few stellar detections at 3.5σ, using the gauss3.0 5x5 filter. An

example commandline entry is:sex IC348H long.fits -c prepsfexH.sex -CATALOGNAME prepsfexH.fits
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psfex prepsfexH.fits -c psfex1Hlong.psfex -PSFNAME H psf 6.psf -GROUPDEGREES 6 sex IC348CH4Off.fits

IC348 H long.fits -c postpsfexH.sex -CATALOGNAME postpfexH 6 1.0.cat -PSFNAME H psf 6.psf

4.2.1 Photometric Catalogue

Each waveband had a catalogue created which was then collated and cleaned of saturated objects,

obvious artefacts, and a fraction of extended sources identified from their large PSF FWHM. An

approximation of the completeness of the photometric catalogues was estimated fromlog(Nobj)

vs. magnitude histograms, where Nobj is the number of stellar-like objects detected on the images.

We thus derived completeness limits from Figure 4.2(top) of ∼23.5 (z′), 21.5 (J), 20.0 (H),

18.9 (Ks), 20.3 (CH4on), and 20.7 (CH4off). SExtractor photometric errors for each of the six

bands are plotted in Figure 4.2(bottom), highlighting the increasing photometric error for the

faintening of the objects’ brightness. Uniquely, theCH4off error terminates at 0.06 magnitudes as

theCH4off image was used for the detection of objects over all bands, discussed in Section 4.2.

4.2.2 Photometric Comparison

Further analysis was conducted using publicly-available 2MASS data for those detected objects

that were bright enough to have a 2MASS counterpart. This wasuseful for two reasons: firstly

that the photometric accuracy and pipeline reduction of theWIRCam images could be compared

with those from 2MASS; and secondly that the difference in the photometric systems could be

estimated from the photometric differences between the CFHT and 2MASS. The extractedJ , H

andKs catalogues were matched with theJ , H andKs 2MASS catalogues resulting in 206 stars

that had overlapping magnitudes. Based on these, the dispersion between the extractedJ , H and

Ks catalogues and the 2MASSJ , H andKs catalogues was calculated. Good agreement was

shown by mean magnitude differences of 0.08± 0.02, 0.03± 0.05, and 0.04± 0.02 forJ , H

andKs respectively. These values hold for the brightest stars in our images, since fainter ones

are undetected in the 2MASS survey. In turn, this means that colour effects arising from CFHT

filters are not taken into account in this calibration. Indeed, while the photometric zero-point used

here is obtained from 2MASS, colour effects are not corrected for and our WIRCamJ , H, Ks,

CH4on andCH4off photometry is given in the CFHT Vega system and MegaCamz′ in the AB

system. These colour effects should be negligable (< 0.05mag) for colours up toJ −Ks ∼1 mag,

but increase above this level, thought colours should be systematically different for old (field) and

young (star-forming) objects.
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Figure 4.2: top: log(NObj) vs. magnitude (where NObj is the number of detected objects in each band): The

completeness limits are found from these plots for the six imaged bands,z, J , H , K, CH4on andCH4off. The

line has been fitted to the histogram to find where the turning point occurs, thereby indicating our completeness limit.

bottom: Photometric error, as measured by SExtractor, against magnitude. Note that theJ, H,Ks images have multiple

tracks as they are composed from 4 fields which were not acquired at the same time.
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4.2.3 Methane Photometry

The presence of methane absorption bands in the near-IR spectrum of T-dwarfs can be used to

identify T-dwarf candidates photometrically (e.g. Tinneyet al. 2005). NarrowbandCH4off and

CH4on data was taken in order to classify these objects.CH4off measures the pseudo-continuum

at 1.58µm while CH4on samples the methane absorption band at 1.69µm. The passband of the

two filters is overlain onto the spectra of a T0.5 and a T8 dwarfs in Figure 4.3. Note the greater

methane absorption in the T8 dwarf spectrum compared to the T0.5 spectrum in the region around

1.69µm. The methane images have no external photometric calibration and theCH4 magnitudes

are given here on an arbitrary albeit internally consistentscale, so thatCH4on-CH4off≃0 for

unreddened field dwarfs, shown in Figure 4.3.

Spectra1 of field dwarfs from L1 to T8 were convolved with the WIRCamCH4on and

CH4off filters and the resulting methane colours plotted against spectral type in Figure 4.3. The

methane colours are seen to smoothly increase towards laterspectral types. Whilst L-dwarfs have

CH4on−CH4off colours equal to zero, T-dwarfs have colours above 0.1 mag which rapidly

increase towards later T-types. To date, no other types of objects in current knowledge has

this sequence of methane colours. Thus, theCH4on−CH4off colour provides a useful means

to separate L and T-dwarfs. Additionally, as late-type T-dwarfs may remain undetected in the

CH4on image, and due to strongCH4 absorption, we first performed object detection at3.5σ

on theCH4off image, then performed PSF photometry at the location of these objects on both

theCH4off andCH4on images. This ensures that all objects that could possiblybe T-dwarfs are

searched for in both filters.

Figure 4.3 provides an empirical calibration of the methanecolours against spectral type

for field dwarfs. For comparison, Figure 4.4 shows theCH4on−CH4off colour as a function

of effective temperature (Teff ) as predicted by COND and DUSTY 3 Myr and 5 Gyr models

(Chabrier et al., 2000; Allard et al., 2001; Baraffe et al., 2003). While the DUSTY models are

roughly similar at both ages, withCH4on−CH4off ∼ 0 atTeff ≥ 1500 K, the COND models

predict bluer colours for younger objects atTeff < 1500 K. According to the models, IC 348

T-dwarfs would then have a smallerTeff and thus a later spectral type than field T-dwarfs for the

sameCH4on−CH4off colour.

1www.jach.hawaii.edu/∼skl/LTdata.html
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Figure 4.3: CH4on−CH4off colour vs. spectral type. The triangles are computed methane
colours for a spectral sequence of field L and T dwarfs (see text). The dotted line at
CH4on−CH4off= 0.1 mag highlights the limit where methane absorption becomes conspicuous
in the photometric index, which occurs at a spectral type T0.Note how rapidly the methane index
increases towards later spectral types.Inset: Dwarf T0.5 and T8 spectra are shown in the region of
the 1.6µm methane absorption band. The passband of the WIRCamCH4off andCH4on filters is
superimposed (dashed).
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Figure 4.4:CH4on−CH4off colour vs. Teff . 3 Myr COND (thick solid), 5 Gyr COND(thin
solid) 3 Myr DUSTY (thick dashed)and 5 Gyr DUSTY(thin dashed)models are shown. The
COND models predict later spectral types for 3 Myr IC 348 objects than for field dwarfs for given
methane colours.
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4.3 Results

Catalogues were obtained as described above for each of the MegaCam/WIRCam images. The

COND and DUSTY 3 Myr and 5 Gyr models2 are also in the CFHT Vega system where thez′

band has been converted into AB magnitudes for our purposes.Similarly, the empirical field L-T

dwarf sequence photometry has been adjusted to be consistent with the models and our data. In

the colour/magnitude diagram presented the field dwarf sequence has been shifted to the distance

of IC 348, taken to be at 300 pc.

4.3.1 T-dwarf Candidate Selection

Figure 4.5 showsCH4on−CH4off againstCH4off for stellar-like objects detected on WIRCam

methane images. An object was considered as a T-dwarf candidate if CH4on−CH4off ≥ 0.4

mag, which corresponds to≥ 3.5 σ above the L/T transition (CH4on−CH4off = 0) for the

faintest detected objects. Assuming that young T-dwarfs follow the field dwarf methane relation,

the spectral type of those objects withCH4on−CH4off = 0.4 mag is close to T3 from Figure 4.3.

Objects withCH4on−CH4off ≥ 0.4 mag were initially all classified as T-dwarf candidates.

The objects just below this limit could still be T-dwarfs from their CH4on−CH4off colours as

shown in Figure 4.3, but would be more difficult to extract because of photometric errors. With

this criterion 136 sources were selected. This sample was then visually scrutinised on both the

CH4off andCH4on images before being reduced to a short-list of 12 possiblecandidates. Upon

visual inspection, we found that the rejected 124 ‘objects’were saturated stars, nebulous detections

or ghosts. Of these 12 possible candidates, the shape of the PSF and the contours were further

examined usingiraf, where 9 were identified as ghosts or detector cross-talk, soreducing this

figure to 3 likely candidates. ThumbsizedCH4off images of the three candidates are shown in

Figure 4.6.

The PSF photometry of the 3 candidates in z′, J , H, Ks andCH4on/CH4off filters is listed

in Table 4.1. Candidate IC348CH4 2 was not detected in thez′-band. Thez′-band detection

limit was estimated by simulating a set of 1948 stars with magnitudes between 20 and 26 using

Skymaker (Bertin, 2008). These synthetic stars were then stacked onto theCH4off footprint of

the originalz′ image using Swarp (Bertin et al., 2002). At the 3σ level, 1688 objects were detected

where the faintest had an input magnitude of 25.7, which we take as being the detection limit in

thez′ filter.

Most of the objects detected on the WIRCam images lie along the lineCH4on−CH4off = 0

in Figure 4.5 as expected for field dwarfs (Tinney et al., 2005), the photometric error increasing

2http://phoenix.ens-lyon.fr/simulator/
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Figure 4.5:CH4on−CH4off colour vsCH4off. The large (blue) squares show the three T-dwarf
candidates withCH4on−CH4off ≥ 0.4. The extinction vector is shown forAV = 10 mag. The
sources with strongly negative colours are deeply embeddedobjects (see text).

with magnitude. The 3 candidates are located in the faintestregion of the plot, whilst also having

increasing methane colours. TheCH4on−CH4off rms photometric error at the magnitude of the

candidates isσ ∼ 0.12 mag. The 3 candidates haveCH4on−CH4off colours of 0.54, 0.78, and

0.49 mag, respectively, corresponding to a detection levelof > 4σ (see Table 4.2).

Note that a number of objects in Figure 4.5 have stronglynegativeCH4on−CH4off colours,

well beyond the rms photometric error. Upon inspection of the images, all these objects turn out to

be young IC 348 members deeply embedded in bright compact nebulosities. The large extinction

they suffer results in strong reddening, thus yielding blue(I.e. negative)CH4on−CH4off colours

in spite of the small wavelength difference between the 2 narrow-band methane filters. Reddening

also accounts for the asymmetric colour distribution of thefaint background objects in this plot.

Finally, a cross-comparison was made with the study of Mainzer and McLean (2003). They

classified 5 candidates as being possibly M, L or T-dwarfs, all of which are detected in our images

but with CH4on−CH4off colours between -0.14 and 0.04 mag, placing them out of our T-dwarf
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Figure 4.6: ThumbsizedCH4off images of the three T-dwarf candidates, left to right,
IC348 CH4 1, IC348CH4 2 and IC348CH4 3, respectively. Black circles highlight the location
of the T-dwarf candidates. The images are 48′′ to a side, where North is up and East is to the left.

Table 4.1: PSF photometry and photometric errors of the three T-dwarf candidates, in magnitudes.
Object z′ σz′ J σJ H σH Ks σKs

CH4off σCH4off CH4on σCH4on

IC348 CH4 1 23.32 0.07 21.62 0.04 20.95 0.07 20.22 0.06 20.52 0.04 21.06 0.08
IC348 CH4 2 ≥ 25.7 - 22.51 0.07 21.65 0.08 20.10 0.04 20.59 0.04 21.37 0.10
IC348 CH4 3 23.85 0.10 22.02 0.07 21.02 0.07 19.94 0.05 20.17 0.03 20.66 0.06

candidate criteria.

4.3.2 Reddening & Spectral Type Estimates

Estimation of the candidates’ extinction is required in order to be able to calculate their absolute

magnitude and estimate their spectral type. Extinction hasbeen estimated using colour/colour

diagrams ofCH4on−CH4off versusJ − H, J − Ks and H − Ks, as plotted in Figure 4.7.

The extinction was computed for each candidate using the extinction vector and regressing the

objects back towards the 3 Myr COND model. The final extinction value is the average of the

3 results obtained from each colour/colour diagram and is summarised in Table 4.2, along with

CH4on−CH4off colour, detection level and spectral type for the three candidates. The estimated

extinction is an upper limit if the candidates belong to the cluster as their true dereddened colours

are probably intermediate between the 3 Myr COND and DUSTY models. If they are field dwarfs

however, the given value is a lower limit as the objects should be dereddened towards the 5 Gyr

field dwarf sequence that is bluer than the 3 Myr COND model.

We then used these results to compute the dereddenedCH4on−CH4off colour for each

candidate. We found these values to be 0.69± 0.16, 1.15± 0.24 and 0.76± 0.15 mag

for IC348 CH4 1, IC348CH4 2 and IC348CH4 3, respectively. From Figure 4.3, these

dereddened colours correspond to a spectral type of T5+0.5
−1 , T6+1

−0.5, and T5+0.5
−0.5 for IC348 CH4 1,

IC348 CH4 2 and IC348CH4 3, respectively. As noted above, this may be a lower estimateas the

models suggest that young T-dwarfs have a lower effective temperature than field T-dwarfs for the

sameCH4on−CH4off colour (see Fig.4.4). Moreover, if the candidates were 5Gyr field objects,
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Figure 4.7:CH4on−CH4off vs. J − H, J − KS andH − KS . T-dwarf candidates are plotted
as (blue) squares. Photometric error bars are from SExtractor. Field T-dwarfs (red triangles) are
shown for comparison. Lines show the 5 Gyr COND and DUSTY, and3 Myr COND and DUSTY
models as in Fig. 4.4. Candidates were dereddened towards the 3 Myr COND model using the
extinction vector.

Table 4.2: Summary of values for the three candidates, wherethe cluster centre is taken to be at
03h44m34s +32◦09′48.′′0 (J2000).

IAU name CH4(on-off) Det. AV /mag Est. sp. Distance from Object coordinates
(mag) level type cluster centre

CFHT J0344+3202(IC348 CH4 1) 0.54 4.3σ 5.0± 1.2 T5+0.5
−1

7′35′′ 03h44m49s .24 +32◦02′48.′′4

CFHT J0344+3206(IC348 CH4 2) 0.78 6.2σ 12.4± 3.9 T6+1
−0.5

4′20′′ 03h44m49s .52 +32◦06′35.′′4

CFHT J0344+3156(IC348 CH4 3) 0.49 4.3σ 9.0± 1.3 T5± -0.5 13′56′′ 03h44m57s .95 +31◦56′43.′′3

they would have a larger extinction and therefore an even larger intrinsicCH4on−CH4off colour,

which would also yield a later spectral type.

4.4 Discussion

We discuss here the likelihood that the methane candidates reported above arebona fideyoung,

very low-mass members of the IC 348 star-forming region instead of being more evolved field

T-dwarfs located on the line of sight to the young cluster. Wealso compare the number of T-dwarf

candidates we identify in our survey to the number of expected planetary mass objects in IC 348,

by extrapolating recent estimates of the substellar IMF to the planetary mass domain.

4.4.1 Membership

Further colour/colour and colour/magnitude diagrams (CMD) were plotted to constrain the

candidates’ status. Figure 4.8 shows theJ/J−Ks CMD. Also plotted are the synthetic magnitudes

and colours of the field T-dwarfs when shifted to the cluster distance. The 5 Gyr DUSTY and

COND models are drawn to highlight the agreement between themodels and the field dwarf

sequence. The field T-dwarf sequence begins in between the 5 Gyr DUSTY and COND models,

before sweeping towards the 5 Gyr COND model at∼1500 K that sharply increases in faintness
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Figure 4.8:J vs J − Ks CMD. The (blue) squares are the three T-dwarf candidates as observed,
whilst the (magenta) pentagons represent their dereddenedlocation in the CMD. Field T-dwarfs
(red triangles) as well as S Ori 70 (black square, labelled) shifted to the distance of IC 348 are
shown for comparison. Dereddened M6-M9 IC 348 dwarfs from Luhman et al. (2003) are plotted
for comparison (small green squares). DUSTY and COND modelsare shown as in Fig. 4.4.

with the late-T set.

In this diagram the three candidates appear to be confused with the late-L, early-T field dwarfs.

However, once they are dereddened using the extinction values given in Table 4.2, they become

bluer and brighter. All three candidates appear to follow the 3 Myr COND model quite closely.

The fact that the dereddened candidates appear brighter than field T-dwarfs shifted to the cluster

distance suggest that they are younger indeed. A young T-dwarf has a larger radius than a field

T-dwarf for a given spectral type as it is still contracting.According to the COND models, the

difference amounts to about a factor of 2 in radius between 3 Myr and 5 Gyr (for Teff=1000-

1500 K), which results in a 1.5 magnitude increase, consistent with the observed location of the

candidates in Figure 4.8.

There is a possibility that the candidates are in fact field T-dwarfs located at a closer distance
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(between∼100 and 200 pc) along the line of sight to IC 348. The probability of one of

the candidates being a field T-dwarf instead of an IC 348 cluster member can be estimated

independently from extinction. According to Figure 4.3, the spectral type range T3-T5.5

corresponds to the measuredCH4on−CH4off colours of our candidates at an age of 5 Gyr.

Thusly, using the number density of T3-T5.5 field dwarfs in the solar neighbourhood, I.e.∼1

per 714 pc3 according to Metchev et al. (2008) and the footprint of theCH4 image of 0.11 sq.deg.

gives an estimate of 0.11± 0.06 T3-T5.5 foreground field dwarfs in the direction of IC 348.

As we are concerned here with the probability of one of our candidates being a foreground field

dwarf, this is a fairly robust method for determining the population density for field dwarfs in

the direction of IC 348. However, this estimate is put into context when taking into account the

large extinction values of the three candidates estimated from Figure 4.7. Even the least extincted

candidate, IC348CH4 1, has four magnitudes more extinction than expected for a foreground field

dwarf (<1 mag), so all three objects must be near to or behind IC 348. However, the candidates

cannot be background field T-dwarfs, seen through the IC 348 cloud, as their luminosity would

then be much too high for their estimated spectral type. Finally, as indicated in Table 4.2, all three

candidates are located within the cluster’s boundary (4′ core radius, 10-15′ halo; Herbig 1998,

Herbst 2008) and are thus spatially consistent with being IC348 members.

4.4.2 Contaminants

A further, useful diagram in defining these candidate objects is thez′ − J /J − H colour/colour

diagram shown in Figure 4.9, (note that thez′ is in the AB system). Here it can be seen that the two

detected dereddened candidates are much bluer inz′−J than both the field dwarf sequence and the

COND 3Myr and 5Gyr models. There is mounting empirical evidence for young T-dwarfs to have

bluerz′−J colours than field T-dwarfs because of the effects reduced gravity has on the opacities

(P. Delorme, priv. comm.). This effect stems from the strongpotassium KI (7687&7701µm)

doublets, whose wings fall within thez′ band. The lower the gravity the lesser the line broadening

of these elements so less flux is lost by absorption in thez′ band, resulting in the observed bluer

z′ − J colours (F. Allard, priv. comm). However, these effects areunlikely to explain the extreme

blueness of two of the three objects and suggests that candidates IC348CH4 1 and IC348CH4 3

are unlikely to be T-dwarfs. The final remaining candidate, IC348 CH4 2, remains a good T-dwarf

candidate because of its non-detection inz′.

If candidates IC348CH4 1 and IC348CH4 3 are not young T-dwarfs then what are they? We

checked whether extragalactic objects could contaminate this region of the diagrams. To this end,

galaxies3 from SWIRE, 2MASS and SDSS were found to have very different colours (z′ − J ∼

6-8mag) to our candidates. Similarly, quasars (Labita et al., 2008) also have J-band magnitudes

3iras.ipac.caltech.edu
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Figure 4.9:z′−J vsJ −H CMD. DUSTY and COND models are shown as in Fig. 4.4. Symbols
shown as per Figure 4.8.

of ∼ 24-25 mag, making them much fainter than our objects. Late-type (emission line) galaxies

appear tightly in the regionJ − K ∼ 0.95 mag andJ − H ∼ 0.88 mag and so again cannot be

confused with our candidates (Chang et al., 2006). Cool subdwarfs have been put forward as an

explanation for the identity of these two objects, but further analysis is requried. At this point, the

status of the two rejected candidates continues to be unclear.

4.4.3 Comparison of IC348CH4 2 with S Ori 70

Zapatero Osorio et al. (2002) found S Ori 70 to be a faint mid-Ttype object towards the direction

of the youngσ Orionis cluster, with an estimated mass in the interval 2-7 MJup. However, there

has been some contention with regard to the membership of S Ori 70 to theσ Orionis cluster.

Further work by Scholz and Jayawardhana (2008) indicated that this was a true cluster member by

looking at the IRAC data, and suggested that there is a possibility of a disk structure which gives

rise to the MIR excess.
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Figure 4.10:J − H vsH − Ks. Symbols as per Figure 4.8.

TheJ/J − Ks CMD in Figure 4.8 has the IC 348 dereddened candidates plotted alongside S

Ori 70 for comparison. TheJ,H andKs data for S Ori 70 was taken from Zapatero Osorio et al.

(2008) and adjusted to the CFHT photometric system using the3 Myr COND CFHT and 2MASS

models. The differences forλ2MASS − λCFHT due to colour effects are 0.6 mag, -0.1 mag, and

-0.05 mag, forJ , H andKs respectively. In this diagram, candidate IC348CH4 2, for which we

estimated a spectral type of T6+1
−0.5, falls at approximately the same location as S Ori 70, shifted

to IC 348’s distance.

Figure 4.10 shows theJ −H/H −Ks colour/colour diagram. The dereddenedJ −H colours

of remaining IC348CH4 2 T-dwarf candidate is -0.44 which corresponds to a spectraltype of

around T6-T8 (Luhman et al., 2007b) and so is consistent withour previous estimate. Again in

this plot, the location of IC348CH4 2 is similar to that of S Ori 70. A remarkable property of

these two objects is that they haveH − Ks colours too red for their estimated spectral types, yet

also have blueJ−H colours consistent with them being T6 dwarfs. According to Zapatero Osorio

et al. (2008), this may be a signature of youth.
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Table 4.3: Spitzer PSF photometry and photometric errors ofthe three T-dwarf candidates.
IC348 CH4 1 appeared outside the FOV in the[4.5]µm image.

Object F[3.6]/mJy F[3.6] error F[4.5]/mJy F[4.5] error [3.6]/mag [3.6]error [4.5]/mag [4.5]error
IC348 CH4 1 0.0035 0.0001 - - 19.75 0.03 - -
IC348 CH4 2 0.0093 0.0003 0.0136 0.0004 18.70 0.03 17.80 0.03
IC348 CH4 3 0.0245 0.0003 0.0365 0.0007 17.65 0.02 16.73 0.02

4.4.3.1 Spitzer Data

We searched theSpitzerpublic archive for IRAC data. IC 348 was the prime target of programmes

6 (c2d, P.I. Fazio) and 36 (P.I. Fazio). The c2d data are made up by shorter exposures, resulting in

our use of the deeper (16×100s) images of programme 36. We retrieved the data and processed

them using standard procedures with the recommended MOPEX software. All three candidates

are detected in the[3.6] and [4.5] bands, except IC348CH4 1 which falls out of the[4.5] band

field of view. PSF photometry was performed using Starfinder (Diolaiti et al., 2000) and the

fluxes were translated into magnitudes using the zeropoint fluxes provided by the Spitzer Science

Center4. Measurement uncertainties were tentatively estimated from the Poisson noise weighted

by the coverage maps of the mosaics. The final photometry is given in Table 4.3, and the final

errors include both measurement and zeropoint flux uncertainties.

In Figure 4.11, theKs − [3.6] vs [3.6] − [4.5] colour/colour diagram is plotted with the two

candidates, S Ori 70 and the IC 348 M6-M9 dwarf sequence from Luhman et al. (2005a). The M, L

and T IRAC field dwarf sequence from Patten et al. (2006) have also been plotted for comparison.

The[3.6]− [4.5] colour could be a good indicator of effective temperature, or spectral type, giving

IC348 CH4 2 a spectral type of∼T5, in line with our other estimates of T6. TheKs − [3.6]

colour, however, relates to a spectral type of L1, which is far too early for such a low-mass and

cool object.

The Ks − [3.6] colour of IC348CH4 2 appears significantly bluer compared to the field

sequence, which may be because of reduced gravity (Leggett et al., 2007). For mid-type and

later T-dwarfs the reduced pressure broadening of H2, as a gravity effect, makes theKs band

brighter, whilst the[3.6] band faintens because of additional CH4 absorption at∼ 3 µm, resulting

in a bluerKs − [3.6] colour. Another consequence of lower gravity is the faintening effect the CO

abundances have on the[4.5] band for early T-types, thus balancing the[3.6]− [4.5] colour. These

colour effects of low gravity are in agreement with this object being a young IC 348 T-dwarf.

Other effects such as strong sedimentation and little or no vertical mixing in the atmosphere

could also contribute to the observed bluerKs − [3.6] colours (Leggett et al., 2007). The possible

existence of a hot inner dusty disc around S Ori 70, in keepingwith other young members of S

Orionis, can give rise to its redder[3.6] − [4.5] colour.

4http://ssc.spitzer.caltech.edu/
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Figure 4.11: Ks − [3.6] vs [3.6] − [4.5] COLD. The field dwarf sequence from Patten et al.
(2006) has been plotted (red crosses) for comparison. IC 348M6-M9 dwarfs with disks (filled
green squares) and those without (hollow green squares) areplotted (Luhman et al., 2005a).
IC348 CH4 2 and S Ori 70 appear significantly bluer in theKs−[3.6] colour than for field dwarfs.
The extinction vector has also been plotted using values from the Spanish Virtual Observatory3.
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4.4.4 The Lower End of the IMF

Luhman et al. (2003) derived a nearly complete IMF for IC 348 down to 0.03 M⊙ for AV ≤ 4 mag.

They find a ratio of brown dwarfs (BDs, 0.02-0.08 M⊙) to stars of about 12%. Muench et al. (2003)

similarly derived an IMF for IC 348 down to 0.04 M⊙, with a mode between 0.08 and 0.2 M⊙,

finding a ratio of BDs to stars of about 14%. From a deep J-band survey of the cluster, Preibisch

et al. (2003) derived a BD to star ratio of 10%.

According to the COND and DUSTY models, the mass range of 3 Myrold T-dwarfs is between

0.001 M⊙ and 0.005 M⊙, corresponding to masses from∼1 MJup to ∼5 MJup. However, the

models are somewhat uncertain at very low masses and young ages. Currently the models can have

up to a 50% discrepancy in the masses for objects younger than5 Myr (Chabrier, priv. comm).

Still, the T-dwarf candidate IC348CH4 2 is likely to be less massive than 10 MJup if belonging

to IC 348. In order to obtain an estimate of the number of objects within this mass range that

are expected to be in IC 348, we extrapolated current estimates of the IMF to the planetary mass

regime. A log-normal estimate of the field IMF for unresolvedsystems was provided by Chabrier

(2003), where the mode of the distribution,m0, is 0.22 M⊙ and its width,σ, is 0.57. This log-

normal IMF would predict∼1% objects in the mass range below 10 MJup. Similarly, Moraux et al.

(2007) suggested a universal log-normal IMF for systems in young open clusters, withm0=0.30

± 0.05 M⊙ andσ=0.55± 0.03, which would predict∼0.4% of objects in the 1-10 MJup mass

range. Muench et al. (2007) conducted a Spitzer census of IC 348 and stated that the population of

IC 348 is in excess of 400 members when taking into account unseen disk-less members. Based

on the above IMF and population estimates, we would thus expect about 1.6-4 objects in the mass

range 1-10 MJup in the cluster. The discovery of one T-dwarf candidate closeto the completeness

limit is thus consistent with the extrapolation of current log-normal IMF estimates down to the

planetary mass domain.

Another estimate can be found using the power law derived by Caballero et al. (2007) and

Lodieu et al. (2009b) forσ Orionis and Lodieu et al. (2007) for Upper Sco,dN
dM

∝ M−α, whereα

= 0.6 for the mass range0.3 − 0.01 M⊙. Using the IMF from the AV ≤ 4 mag selected census

of IC 348 by Luhman et al. (2003) and extrapolating the power law for the last two data points

above their completeness limit towards the lowest mass domain gives a different estimate. This

corresponds to a much larger number of predicted objects than for the log-normal estimate, 25±

16 objects in the 1-10 MJup mass range and 15± 9 objects in the 1-5 MJup mass range. Even

though our survey is complete down to AV ∼ 12 mag for T3 - T5.5 dwarfs, we did not detect

any such object with an AV ≤ 4 mag. This suggests that the current power law approximation

over-estimates the number of low-mass objects in IC 348.
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4.5 Conclusions

From a deep methane imaging survey of the star-forming region IC 348 we identified 3 T-dwarf

candidates over the area of the cluster. After colour/colour and colour/magnitude diagram analysis

two candidates have been rejected for being too bright at optical wavelengths. The remaining

candidate, has an estimated spectral type of T6 and theoretical models suggest a mass of a few

MJup for this object at 3 Myr. From its luminosity, colour, extinction and spatial location,

IC348 CH4 2 is a probable IC 348 T-dwarf member, and so is among the lowest mass objects

observed so far in a star-forming region. The frequency of isolated planetary mass objects reported

here for IC 348 is consistent with the extrapolation of current log-normal IMF estimates to the

planetary mass domain.
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4.6 Résuḿe

D’après une enquête d’imagerie méthane profonde de la r´egion de formation d’étoiles IC 348

nous avons identifié 3 candidats du nains-T sur la zone de la grappe. Après la couleur / couleur et

/ analyse des diagrammes de magnitude deux candidats ont été rejetés pour être trop lumineux aux

longueurs d’onde optiques. Les candidats restants, a estimé un type spectral de T6 et des modèles

théoriques suggèrent une masse de quelques-uns MJup pour cet objet à 3 Myr. De sa luminosité,

la couleur, l’extinction et la localisation spatiale, IC348 CH4 2 est probable IC 348 membres de

nain-T, et il est donc parmi les objets les plus bas de masse observées jusqu’à présent dans une

région de formation d’étoiles. La fréquence des objets de masse planétaire isolés signalés ici pour

IC 348 est compatible avec l’extrapolation des estimationsdu FMI log-normale dans le domaine

de masse planétaire.
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Chapter 5

Discussion and Conclusions
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5.1 IC 4665 & IC 348 Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . .123

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
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This chapter is devoted to sewing the working chapters together to make a final coherent

garment with no extraneous holes. Initially, the evolutionof the work that has been done is

discussed with respect to how this can be built on for both of the observed clusters, before

detailing the observations and further work required in order to build on these foundations for the

betterment of this subject. Subsequently the questions that were posed in Chapter 1 are expanded

and discussed with respect to the preliminary results of thecensus of IC 4665 and the candidate

mid-type T-dwarf in IC 348. Additional questions are then posed in light of the aspects of star

formation, brown dwarfs and the initial mass function that have been described in this work.

5.1 IC 4665 & IC 348 Revisited

The data of IC 4665 has been calibrated and analysed as discussed in Chapter 3 and a set of

candidate objects has been selected from all permutations of colour/magnitude and colour/colour

diagrams. The stage reached with the work on IC 4665 indicatethat more work needs to be done

in order to comprehensively confirm the existence of L-dwarfs, but there is potential, with the

current list of candidates to have at least 3. The selection criteria are too conservative because

theY -band is too faint compared to the isochrone in the lower massdomain meaning many good

candidate objects could have been rejected.
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Moving to the lower mass regimes, IC 348 was targeted using methane narrowband obser-

vations in order to distinguish likely T-dwarf candidates as discussed in Chapter 4. IC 348 is

young enough to enjoy the company of lowest mass objects before dynamical interactions could

have removed them all from the cluster centre. The additional interest with this cluster is that its

footprint on the sky is very small directly because of its lowproper motion and young age; there

has not been enough time for all of the objects to have evaporated from the cloud. The problem

is still the high extinction in this region which is almost certainly occluding from view additional

low mass objects, and possibly the lowest possible mass objects than could be formed within this

cluster. One such detection has a very good chance of being a T-dwarf, given a preliminary spectral

type of T5.5, whilst two other detections have not been identified. The possibility of contamination

by a foreground T-dwarf or by a methane-rich cloud in the lineof sight has been entertained but

rejected from number-density arguments and the likelihoodof having a cloud of sufficient density

to impact on the 1.69µm methane band to cause a 0.3 mag reduction in emission. Addedto the

fact that there aretwo objects which are unidentified and the relatively large separation within the

cluster indicates that these are either new objects, or objects which have yet to fully pass the cloud-

clearing stage of their evolution and so are beset by atmospheric convection. When these objects

are dereddened they appear fainter than IC348CH4 2 so could be even younger, less massive and

diskless objects within the same cluster. TheSpitzercolours of one of the objects suggests that it

is diskless, compared to other objects with known disks.

5.2 Future Work

Further work is required in order to compare these data withSpitzerobservations, and then a

spectroscopic follow-up survey to confirm or reject not onlythe membership status of the cluster

members, but also spectral type. It is with only this data that a confident assessment of the IMF

can be established for IC 4665. It is possible to plot the number of objects as a function of mass

and to overplot the previously found IMF for this cluster, and to calculate the new IMF of this

cluster taking into account these new objects. The two can then be compared to see whether the

log-normal or the power law IMF fits the data more closely. Hypothetically there can be three

outcomes to this work; that the census finds a plethora of low-mass members at odds with the

prediction of the previously found IMF; that a dearth is found of low-mass objects which would

also be at odds with previously found members; or that the distribution of objects are various

masses are in reasonable agreement with previous work on this cluster.

IC348 CH4 2 requires spectroscopy to confirm its authenticity as a T5.5dwarf and IC 348

cluster member, currently hard to achieve with current ground and space based telescopes

which would have to probe to J∼21 mag. Burgasser (priv. comm.) suggested that the 10 m
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Keck telescope1 using NIRC-2 might be able to obtain a low resolutionKs-band spectrum.

Collaboration would be required to achieve this as the Keck is not in part of the ESO operating

program. It is strongly recommended to apply for time on the 6.5m James Webb Space Telescope

(JWST) when it is operational some time in 2014, in order to obtain high a resolution spectrum

of this object, and also to measure its proper motion and any possible association with another

cluster member. Additionally, it would also be extremely informative to obtain spectra for the

two unidentified objects which appeared to have quite bluez′ − J colours. Comparison of the

candidate T-dwarf, and the two rejected candidate objects to the new BT-Settl model might also

be useful and worth doing as a comparison to how much the newermodels agree with the analysis

conducted previously. Cool subdwarfs have been put forwardas an explanation for the identity of

these two objects, but further analysis is requried, comparing them to existing subdwarfs, at the

derived extinction.

IC 348 also requires a full census to be taken using the data used for the methane analysis,

though using a different detection image to avoid filtering on the methane narrowbands alone.

The most recent census saw objects of masses as low as 35 MJ detected to a completeness of

Av = 4 mag, indicating the gap between the lowest-mass candidate T-dwarf so far detected in this

cluster and the next least massive confirmed member. Alves Oliveria et al. (in Prep.) are currently

working a census of this cluster using the broadband data that was used for the IC 348 work here.

Additionally, the datasets from both of these sets of work are able to be used in conjunction

with future observations of each respective cluster to achieve proper motion estimates of the

candidates discussed in this work.

5.3 Context

The main aim of Constellation Work Package 3 is to try to answer relevant questions aimed at

explaining the origin of the lower mass objects that exist inthe universe. To this end it is necessary

to ask what their properties are, how they form, how the low-mass sequence in one particular

cluster can be extrapolated to and tested on other more unknown clusters, and how this data can

be used to the fullest extent.

• How do the lowest mass objects form?

Additional implications from this work is with respect to the models and how the discovery

of this young and low-mass object in IC 348, and candidate discoveries of M and L-dwarfs in

IC 4665, impact upon known star-formation and atmospheric models. Are they ejected embryoes

or can they form individually as mini-versions of a stellar disk? The work on IC 348 should help to

1http://www2.keck.hawaii.edu/inst/index.php
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further constrain the parameters and conditions required for modeling the formation of the lowest-

mass isolated objects and how they can form within a time-scale of a few million years. The slight

evidence for the existence of a disk around IC348CH4 2 from Spitzerdata could constrain the

possibly of individual formation, however, it is entirely possible for objects to form in the disk

around a more massive object which can then be perturbed fromnearby objects in the, usually,

densely populated cluster, increasing its eccentricity and allowing the object to take material from

this disk to make a disk on its own. These objects could be classed not as an ejected embryo,

but as a perturbed embryo as they are still bound to their parent disk. This would be less likely

to happen in older clusters as they are usually more dynamically evolved and objects are spaced

further apart.

• How do the lowest-mass objects affect the IMF?

The mass of the initial cloud which goes on to collapse and form a plethora of objects of

differing masses is the main parameter for the distributionof masses of objects in the cluster, at a

particular age. If the cloud is turbulent then the dynamicaltime-scale for ejection and expansion

of the cloud is lower than for a more stable cloud, which couldartificially skew the calculations of

the IMF into having fewer lower mass members compared to higher mass members. The effect of

turbulence could be offset by the possibility that a more turbulent cloudalsoproduces more lower

mass members than higher mass members for a more stable cloud.

• How do the lowest-mass objects overlap with the largest planets?

This question requires high resolution spectroscopy of thelowest-mass objects detected in this

work to be taken. IC 4665 should have detected some early L-dwarfs but even these would be of

the order of at least 15 MJ . Jupiter is a 4.5 Gyr object that could have started as a late T-dwarf

after its formation within the solar system’s primordial disk, though it’s surface has now cooled to

a mere∼550 K and core TEff to just 125 K. The largest observed objects defined as planetsreach

upwards of 30 MJ and are known as hot Jupiters, which also orbit within a few tens of AUs of the

host star. Eccentricity could also be a defining factor as to how an object formed, and how long an

object that is perturbed could re-synchronise its orbit with its host star.

IC348 CH4 2 has an estimated mass from the 3 Myr theoretical AMES-COND isochrone of

between∼1 MJ to ∼5 MJ , but with uncertainties registering possibly more than 50%this object

could have a mass in the region of 10 MJ . Objects of this mass and just a few lighter have been

found circling other stars, or indeed, other brown dwarfs. More analysis and observations need to

be undertaken in order to probe for any possible planetary companions around many known free

floating brown dwarfs in these clusters.

• How does this work add to the current scientific understanding?
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Figure 5.1: Detected objects between 1 and 10 MJ for σ Orionis (8 objects in total) and IC 348
(1 object). The curves are the normalised mass function v.s.mass for predicted MF for different
numerical simulations (and so different initial conditions) from Hennebelle and Chabrier (2009),
and the diagonal lines are the power laws for the Salpeter value and unity.

The deeper census of IC 4665 should add to the IMF for this 30–50 Myr open cluster, which

can be compared to existing data for other clusters, namely the Pleiades, the Trapezium cluster,

Orion, to name but a few. In this way, differences between theage and masses of different clusters

can be statistically examined in order to refine the initial conditions and to compare the frequency

of low-mass and lowest mass objects. An additional use of these observations of IC 348 is to

use it to extend the depth of the IMF into the brown dwarf regime, where the completeness limits

given earlier for this cluster’s observations should allowobjects of at least mid-L spectral type to

be detected (Alves Oliveria et al. in Prep.).

5.4 Conclusion

The salient point of the work on IC 348 is the agreement, bar spectroscopic disagreement as to

the nature of the candidate T-dwarf, with current estimatesand the extrapolation of the lognormal

IMF to the planetary-mass domain. This helps to confirm that the star-formation theories are

broadly correct and that there is not a plethora of low mass objects hidden away at the low

mass end of the IMF. In Figure 5.1 these results from IC 348 arecompared with the number

objects found inσ Orionis for a similar mass range (Zapatero Osorio et al., 2002; Caballero et al.,

2007), overplotted onto the predictions of the IMF by Hennebelle and Chabrier (2009), based upon

cloud collapsing models using different initial conditions from Hennebelle and Chabrier (2008).

Whilst there are approximately ten times fewer objects in IC348 than inσ Orionis it can be seen,

interestingly, that in each case, the log-normal IMF can describe both paths, depending only on

the initial conditions of the collapse of the cloud. The results for IC 348 support the notion that
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the lower-mass end of the IMF is wholly dependent on the initial conditions and therefore will

certainly vary from cluster to cluster unless the properties of the initial cloud, e.g. turbulence,

mass and internal velocity, are similar. Further support for this notion will certainly require the

detailed examination of additional clusters, and comparing this data with the predictions of the

IMF.

Whilst it is slightly more difficult to conclude with the workstage reached with the IC 4665

data, it can be possible to conclude that the 510 possible candidates should span at least the

M-dwarf range and probe into the L-dwarf spectral type range. If the comparison with the L-

and M-dwarf domains are broadly correct then it also seems that this cluster should follow the

IMF predictions to the lower mass domain, because there werenot a multitude of possible low-

mass objects detected in the L-dwarf region of colour/colour space. This, however, is entirely

dependent on the selection criteria and it is still possiblethat many more L-dwarfs are detected in

the observations but were not selected as discussed. T-dwarfs can still exist in this cluster but they

will be very faint.

To conclude, further questions relating to this work can be raised and the original questions

still proposed until a full and complete understanding of the theory of star formation is achieved:

• How do the lowest mass objects form?

• How do the lowest-mass objects affect the IMF?

• How do the lowest-mass objects overlap with the largest planets?

• What direct effects do gravity and age have on objects the IMF?

• How do the atmospheres of the lowest mass brown dwarfs evolve?

• How does a young cluster form the lowest mass objects?
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5.5 Résuḿe

Le point saillant de l’uvre sur IC 348 est l’accord, bar désaccord spectroscopiques quant à la

nature du candidat nain-T, avec des estimations actuelles et l’extrapolation des log-normale du

FMI dans le domaine de masse planétaire. Cela permet de confirmer que les théories de formation

d’étoiles sont globalement correcte et qu’il n’y a pas une multitude d’objets de faible masse cachée

à la fin de faible masse du FMI. Dans la figure 5.1 ces résultats IC 348 sont comparés avec

les objets trouvés dans le numéro deσ Orionis pour une gamme de masse similaire (Zapatero

Osorio et al., 2002; Caballero et al., 2007), sous-plotté sur les prévisions du FMI par Hennebelle

and Chabrier (2009), fondée sur les modèles nuage s’effondre en utilisant différentes conditions

initiales de Hennebelle and Chabrier (2008). Alors, il ya environ dix fois moins objects en IC 348

queσ Orionis il peut être vu, il est intéressant que, dans chaque cas, le log-normale FMI peut

décrire deux chemins, ne dépendant que de la conditions initiales de l’effondrement du nuage. Les

résultats pour IC 348 appuient la notion que l’extrémitéinférieure de masse du FMI est entièrement

dépendant des conditions initiales et donc certainement varier d’un cluster à cluster, sauf si les

propriétés du nuage initial, par exemple turbulence, la masse et la vitesse interne, sont similaires.

Un appui supplémentaire pour cette notion qui nécessitera certainement l’examen détaillé des

grappes supplémentaires, et en comparant ces données avec les prévisions du FMI.

Bien qu’il soit un peu plus difficile de conclure avec l’étape de travail conclu avec les données

de IC 4665, il peut être possible de conclure que les 510 candidats possibles devrait s’étendre sur

au moins les nain-M plage et de la sonde dans le nain-L de type spectral largeur. Si la comparaison

avec les domaines L nains-M et sont globalement correcte, alors il semble également que ce groupe

devrait suivre les prévisions du FMI dans le domaine de masse plus basse, parce qu’il n’y avait pas

une multitude d’objets de faible masse détectés possibledans la région nain-L de couleur / espace

de couleur. C’est dépend entièrement sur des critères desélection et il est toujours possible que

de nombreux autres nains-L sont détectées dans les observations mais n’ont pas été sélectionnés

comme nous le verrons. nains-T peuvent encore exister dans ce groupe, mais ils seront très faibles.

Pour conclure, d’autres questions relatives à ces travauxpeuvent être soulevées et les questions

d’origine sont toujours proposées jusqu’à une compréhension pleine et entière de la théorie de la

formation des étoiles est atteint:

• Comment masse la plus faible sous forme d’objets?

• Comment les objets les plus bas de masse affectent le FMI?

• Comment les objets les plus bas de masse chevauchement avec la plus grande des planètes?

• Quels sont les effets directs ne gravité et l’âge ont sur les objets du FMI?

• Comment les atmosphères de la plus faible masse des naines brunes évoluer?

• Comment un jeune amas forment les objets les plus bas de masse?
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Appendix

TERAPIX Configuration

TERAPIX command

Command line used at TERAPIX during the processing.

sex * _newxt.fits * _newxt.fits -c qualityFITS.sex -CATALOG_NAME * _newxt.ldac

-CHECKIMAGE_TYPE -OBJECTS -CHECKIMAGE_NAME* _newxt_mob.fits

-PARAMETERS_NAME qualityFITS.param -STARNNW_NAME quali tyFITS.nnw

-WEIGHT_IMAGE * _newxt.weight.fits, * _newxt.weight.fits

-FLAG_IMAGE * _newxt_flag.fits -DETECT_MINAREA 3 -DETECT_THRESH 1.5

-ANALYSIS_THRESH 1.5 -FILTER_NAME gauss_2.5_5x5.conv -M AG_ZEROPOINT 30.

-SATUR_LEVEL 100000 -WRITE_XML Y -XML_NAME sex.xml -PHOT_ APERTURES 10

-MAG_ZEROPOINT 30.0

TERAPIX input files

Input files used for the TERAPIX processing.

qualityFITS.sex

qualityFITS.param

qualityFITS.nnw

gauss_2.5_5x5.conv

TERAPIX filter: gauss 2.5 5x5.conv

Example of the gauss2.5 5x5.conv detection filter.

CONV NORM
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# 5x5 convolution mask of a gaussian PSF with FWHM = 2.5 pixels .

0.034673 0.119131 0.179633 0.119131 0.034673

0.119131 0.409323 0.617200 0.409323 0.119131

0.179633 0.617200 0.930649 0.617200 0.179633

0.119131 0.409323 0.617200 0.409323 0.119131

0.034673 0.119131 0.179633 0.119131 0.034673

TERAPIX neural network file: qualityFITS.nnw

Galaxy neural network file.

NNW

# Neural Network Weights for the SExtractor star/galaxy cla ssifier (V1.3)

# inputs: 9 for profile parameters + 1 for seeing.

# outputs: ‘‘Stellarity index’’ (0.0 to 1.0)

# Seeing FWHM range: from 0.025 to 5.5’’ (images must have 1.5 < FWHM < 5 pixels)

# Optimized for Moffat profiles with 2<= beta <= 4.

3 10 10 1

-1.56604 -2.48265 -1.44564 -1.24675 -0.94491 -0.52245 0.0 4613 0.83196 2.15505 0.26477

3.03477 2.69561 3.16188 3.34497 3.51885 3.65570 3.74856 3. 84541 4.22811 3.27734

-0.32248 -2.12804 0.65075 -1.11242 -1.40683 -1.55944 -1.8 4558 -0.11895 0.55240 -0.43656 -5.30052

0.46259 -3.29127 1.10950 -0.60186 0.12949 1.42290 2.90741 2.44058 -0.91912 0.84285 -4.69824

-2.57424 0.89647 0.83478 2.18845 2.46526 0.08609 -0.68808 -0.01336 0.09304 1.64942 -1.01231

4.81041 1.53747 -1.12216 -3.16008 -1.67404 -1.75767 -1.29 310 0.55955 0.80847 -0.01016 -7.54052

10.19330 -20.94840 -1.07426 0.98791 0.60521 -0.06045 -0.5 8783 -0.79412 -0.48919 -0.08127 -20.70670

-5.31793 7.94240 -4.64165 -4.37436 -1.55417 0.75437 1.096 08 1.45967 1.62946 -1.01301 0.11351

0.22034 1.70056 -0.52011 -0.42833 0.00157 -0.33650 -0.081 86 -7.16163 8.23195 -0.01716 -11.37490

3.75075 7.25399 -1.75325 -2.68814 -3.71128 -4.62933 -2.13 747 -0.18919 1.29122 -0.74938 0.67171

-0.84192 4.64997 0.56581 -0.30828 -1.01687 0.17313 -0.892 13 1.89044 -0.27554 -0.77283 0.53675

-3.65598 7.56997 -3.76373 -1.74542 -0.13754 -0.55540 -0.1 5920 0.12791 1.91906 1.42119 -4.35502

-1.70059 -3.65695 1.22367 -0.57437 -3.29571 2.46316 5.223 53 2.42038 1.22919 -0.92225 -2.32028

0.00000

1.00000
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TERAPIX configuration qualityFITS.sex

SExtractor Configuration file.

#--------------------------

# Default configuration file for SExtractor 2.4.2

# EB 2005-09-22

#

# #cfhtls shows parameters different from the default value (sex -d)

#-------------------------------- Catalog ----------- -------------------------

CATALOG_NAME test.ldac #cfhtls # name of the output catalog

CATALOG_TYPE FITS_LDAC #cfhtls # "NONE","ASCII_HEAD","A SCII","FITS_1.0"

# "FITS_LDAC" or "FITS_TPX"

PARAMETERS_NAME default.param # name of the file containin g catalog contents

#------------------------------- Extraction --------- -------------------------

DETECT_TYPE CCD # "CCD" or "PHOTO"

FLAG_IMAGE flag.fits # filename for an input FLAG-image

WEIGHT_TYPE MAP_WEIGHT #cfhtls # e.g. map_weight

DETECT_MINAREA 3 #cfhtls # minimum number of pixels above th reshold

DETECT_THRESH 1.5 # <sigmas> or <threshold>,<ZP> in mag.ar csec-2

ANALYSIS_THRESH 1.5 # <sigmas> or <threshold>,<ZP> in mag. arcsec-2

FILTER Y # apply filter for detection ("Y" or "N")?

FILTER_NAME default.conv # name of the file containing the f ilter

DEBLEND_NTHRESH 32 # Number of deblending sub-thresholds

DEBLEND_MINCONT 0.002 #cfhtls # Minimum contrast paramete r for deblending

CLEAN Y # Clean spurious detections? (Y or N)?

CLEAN_PARAM 1.0 # Cleaning efficiency

MASK_TYPE CORRECT # type of detection MASKing: can be one of

# "NONE", "BLANK" or "CORRECT"

#------------------------------ Photometry ---------- -------------------------

PHOT_APERTURES 27 #cfhtls # MAG_APER aperture diameter(s) in pixels

PHOT_AUTOPARAMS 2.5, 3.5 # MAG_AUTO parameters: <Kron_fac t>,<min_radius>

PHOT_PETROPARAMS 2.0, 3.5 # MAG_PETRO parameters: <Petros ian_fact>,

# <min_radius>

SATUR_LEVEL 30000.0 #cfhtls # level (in ADUs) at which arise s saturation

MAG_ZEROPOINT 0.0 # magnitude zero-point

MAG_GAMMA 4.0 # gamma of emulsion (for photographic scans)

GAIN 0.0 # detector gain in e-/ADU

PIXEL_SCALE 0 #cfhtls # size of pixel in arcsec (0=use FITS WC S info)
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#------------------------- Star/Galaxy Separation ---- ------------------------

SEEING_FWHM 0.9 #cfhtls # stellar FWHM in arcsec

STARNNW_NAME default.nnw # Neural-Network_Weight table f ilename

#------------------------------ Background ---------- -------------------------

BACK_SIZE 64 # Background mesh: <size> or <width>,<height>

BACK_FILTERSIZE 3 # Background filter: <size> or <width>,< height>

BACKPHOTO_TYPE GLOBAL # can be "GLOBAL" or "LOCAL"

#------------------------------ Check Image ---------- ------------------------

CHECKIMAGE_TYPE NONE # can be one of "NONE", "BACKGROUND",

# "MINIBACKGROUND", "-BACKGROUND", "OBJECTS",

# "-OBJECTS", "SEGMENTATION", "APERTURES",

# or "FILTERED"

CHECKIMAGE_NAME check.fits # Filename for the check-image

#--------------------- Memory (change with caution!) --- ----------------------

MEMORY_OBJSTACK 5000 #cfhtls # number of objects in stack

MEMORY_PIXSTACK 400000 #cfhtls # number of pixels in stack

MEMORY_BUFSIZE 1024 # number of lines in buffer

#----------------------------- Miscellaneous -------- -------------------------

VERBOSE_TYPE NORMAL # can be "QUIET", "NORMAL" or "FULL"

Extraction

Extraction Configuration files

The SExtractor first and second-pass configuration files are similar to the TERAPIX files.

#-------------------------------- PSF model ---------- ------------------------

BASIS_TYPE PIXEL_AUTO # NONE, PIXEL, GAUSS-LAGUERRE or FILE

BASIS_NUMBER 16 # Basis number or parameter

#PSF_NAME IC348_CH4Off.psf # Output PSF filename

PSF_ACCURACY 0.01 # Accuracy to expect from PSF "pixel" valu es

#PSF_NSUPER 0 # Max number of super-resolved pixels

PSF_SAMPLING 0.0 # Sampling step in pixel units (0.0 = auto)

PSF_SIZE 51,51 # Image size of the PSF model

#, note: only takes these stars into account

PSF_RECENTER Y # Allow recentering of PSF-candidates Y/N ?

#----------------------------- Sample selection ------ ------------------------
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SAMPLE_AUTOSELECT Y # Automatically select the FWHM (Y/N) ?

SAMPLEVAR_TYPE SEEING # File-to-file PSF variability: NON E or SEEING

SAMPLE_FWHMRANGE 1.5,4.5 # Allowed FWHM range

SAMPLE_VARIABILITY 0.3 # Allowed PSF variability (1.0 = 100 %)

SAMPLE_MINSN 100 # Minimum S/N for a source to be used

SAMPLE_MAXELLIP 0.3 # Maximum A/B for a source to be used

BADPIXEL_FILTER Y # Filter bad-pixels in samples (Y/N) ?

BADPIXEL_NMAX 0 # Maximum number of bad pixels allowed

#----------------------------- PSF dependencies ------ ------------------------

PSFVAR_KEYS X_IMAGE,Y_IMAGE # SExtractor or FITS (precede d by :) params

PSFVAR_GROUPS 1,1 # Group tag for each context key

PSFVAR_DEGREES 2 # Polynom degree for each group

#CONTEXT_NSNAP 7 # Number of PSF snapshots per axis

#------------------------------- Check-plots -------- ------------------

CHECKPLOT_DEV PNG # NULL, XWIN, TK, PS, PSC, XFIG,PNG,

# or JPEG

CHECKPLOT_TYPE FWHM,ELLIPTICITY # NONE, FWHM or ELLIPTICITY

CHECKPLOT_NAME fwhm, ellipticity

#------------------------------ Check-Images -------- -------------------------

CHECKIMAGE_TYPE SNAPSHOTS # Check-image types PROTOTYPES

#,SAMPLES,RESIDUALS,RAWDATA,SNAPSHOTS,MOFFAT,-MOFFAT,-SYMMETRICAL

CHECKIMAGE_NAME snap.fits # Check-image filenames

#CHECKIMAGE_TYPE CHI,PROTOTYPES,SAMPLES,RESIDUALS,SNAPSHOTS,MOFFAT

#,-MOFFAT,-SYMMETRICAL

#CHECKIMAGE_NAME chi.fits,proto.fits,samp.fits,resi. fits,snap.fits

#,moffat.fits,submoffat.fits,subsym.fits

#---------------------- Galaxy Principal Components --- -----------------------

#PC_INCLUDE N # Process galaxy Principal Components (Y/N) ?

#PC_NAME default.pc # File to store galaxy Principal Compon ents

#PC_NPC 0 # Number of principal components

#----------------------------- Miscellaneous -------- -------------------------

PSF_SUFFIX .psf # Filename extension for output PSF filenam e

VERBOSE_TYPE NORMAL # can be QUIET,NORMAL,LOG or FULL

WRITE_XML N # Write XML file (Y/N)?

XML_NAME psfex40.xml # Filename for XML output

XSL_URL file:///usr/local/share/psfex/psfex.xsl # File name for XSL style-sheet

NTHREADS 1 # 1 single thread
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Extraction Parameter files

Tthe parameters used in this work are listed below. .

Table 1: The parameters that are included for IC 4665 and IC 348. Not the Vignet for the first-pass
needs to be of similar dimensions as ‘PHOTAPERTURE’ in the configuration.sex file, and also
for the ‘PSFSIZE’ in the PSFEx file

Parameter
first-pass second-pass Notes
- NUMBER
VIGNET(35,35) -
FLUX APER(1) FLUX APER(1)
- FLUXERR APER(1)
- MAG APER(1)
- MAGERR APER(1)
- FLUX PSF
- FLUXERR PSF
- MAG PSF
- MAGERR PSF
- MAG AUTO
- MAGERR AUTO
- KRON RADIUS
FLUX MAX FLUX MAX
FLUX RADIUS FLUX RADIUS
X IMAGE X IMAGE
Y IMAGE Y IMAGE
- ALPHA J2000
- DELTA J2000
FLAGS FLAGS
- IMAFLAGS ISO(1)
- #CHI2 PSF(2) #fails to function new version at LAOG
ELONGATION ELONGATION
- ELLIPTICITY

Example Scripts

The work for IC 4665 made heavy use of awk to manipulate the data variables, Smongo to interpret

and analysis the data, and bash shell scripts to automate these processes. Of course these multiple

shell scripts were then run using a single command from the terminal. The work conducted

for IC 348 used no such automation, unfortunately, and time was spent manually making the

extraction scripts for the SExtractor passes and PSFex intoa text file to run in the command line.
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Of course, time was further lost due to human (my) error with misplaced variables. The work for

IC 4665 was conducted after IC 348.

Below is an example of the preliminary bright star extraction script for the shortH-band

for field A in IC 4665, where the parameter file and the configuration files can be found in

the Appendix 5.5 & 5.5 respectively:sex IC4665AH newxt.fits -c prepsfex.sex -PARAMETERSNAME

sex1.param -CATALOGNAME LDAC IC4665A H P16.fits -DETECTTHRESH 15.0 -ANALYSISTHRESH 15.0

-PHOT APERTURES 31 -FLAGIMAGE IC4665A H newxt flag.fits -GAIN 1.777276524E+01 -SATURLEVEL

5.795242200E+05 -FILTERNAME gauss2.5 5x5.conv -SEEINGFWHM 1.22 -BACK SIZE 64 -BACK FILTERSIZE

3 -WEIGHT IMAGE IC4665A H newxt.weight.fits,

for PSFEx:psfex LDAC IC4665A H P16.fits -c psfex.psfex -PSFSIZE 35 -SAMPLEMINSN 100 -PSFVARGROUPS

1,1 -PSFVARDEGREES 2 -CHECKIMAGETYPE SNAPSHOTS -CHECKIMAGENAME psfex1 snapIC4665A H P16.chk.fits,

and finally for the second-pass of SExtractor for the short images:sex IC4665AJ newxt.fits,IC4665AH newxt.fits

-c postpsfex.sex -PARAMETERSNAME sex2.param -CATALOGNAME H/sex2 IC4665A H P16psfexed.cat -

DETECT THRESH 1.5 -ANALYSISTHRESH 1.5 -GAIN 1.777276524E+01 -SATURLEVEL 5.795242200E+05

-PHOT APERTURES 15 -FLAGIMAGE IC4665A J newxt flag.fits,IC4665AH newxt flag.fits -WEIGHTIMAGE

IC4665A J newxt.weight.fits,IC4665AH newxt.weight.fits -PSFNAME H/LDAC IC4665A H P16.psf -BACKSIZE

64 -BACK FILTERSIZE 3 -FILTERNAME gauss2.5 5x5.conv -CHECKIMAGETYPE -PSFPROTOS -CHECKIMAGENAME

H/res IC4665A H.chk.fits.

Scripts were used for most purposes when dealing with this large dataset; 216 input

files including weight maps and flag maps for the object extraction (SExtractor/PSFEx) meant

automation was immediately necessary and obvious.

This section of example code is a double nested awk script in order to output the business-end

of the plotting smongo scripts for the candidate selection.This was required to be double-nested

as in initial input file ‘CLUSTERfields input.txt’ there were the 12 fields and in the second file

‘CLUSTER smplots.txt’ the various colour/magnitude and colour/colour plots. Note the use of

”\\047” for a nested ” ’ ”, and the use of ”\\” to escape characters so they are active in the next

awk script.
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Candidate Selection IDL script

This script is tailored version originally compiled by C. Alves de Oliviera, where a candidate is

selected if any part of it with errors falls close enough to the interpolated (‘interpol’ command)

model isochrone, as described in Section 3.4. The business part of the IDL CMD selection script

follows, whilst the COLD selection script is similar but includes both less than and greater than

the model isochrone in order to collect objects in a band around the models that fulfil the selection

criteria:

;CMD J vs J-H

int4y=interpol(jhcfht50,jcfht50,j(mark)-sqrt(jerr(m ark)ˆ2.+0.14ˆ2.))

int4x=interpol(jhcfht50,jcfht50,j(mark))

int4m=interpol(jh2cfht50,j2cfht50,j(mark)+sqrt(jerr (mark)ˆ2.+0.14ˆ2.))

int4n=interpol(jh2cfht50,j2cfht50,j(mark))

int4a=interpol(jhcfht30,jcfht30,j(mark)-sqrt(jerr(m ark)ˆ2.+0.14ˆ2.))

int4b=interpol(jhcfht30,jcfht30,j(mark))

int4c=interpol(jh2cfht30,j2cfht30,j(mark)+sqrt(jerr (mark)ˆ2.+0.14ˆ2.))

int4d=interpol(jh2cfht30,j2cfht30,j(mark))

mark_yjhk=WHERE (( j(mark)-h(mark)-jherr ge int4a or j(ma rk)-h(mark)-jherr ge int4b $

or j(mark)-h(mark)-jherr ge int4c or j(mark)-h(mark)+jhe rr ge int4a $

or j(mark)-h(mark)+jherr ge int4b or j(mark)-h(mark)+jhe rr ge int4c) $

OR ( j(mark)-h(mark) ge int4a or j(mark)-h(mark) ge int4b or j(mark)-h(mark) ge int4c) $

OR ( j(mark)-h(mark) ge int4a and j(mark)-h(mark)+jherr ge int4b) $

OR ( j(mark)-h(mark) ge int4a and j(mark)-h(mark)-jherr ge int4b) $

OR ( j(mark)-h(mark) ge int4c and j(mark)-h(mark)+jherr ge int4d) $

OR ( j(mark)-h(mark) ge int4c and j(mark)-h(mark)-jherr ge int4d) $

OR ( j(mark)-h(mark)-jherr ge int4y or j(mark)-h(mark)-jh err ge int4x $

or j(mark)-h(mark)-jherr ge int4m or j(mark)-h(mark)+jhe rr ge int4y $

or j(mark)-h(mark)+jherr ge int4x or j(mark)-h(mark)+jhe rr ge int4m) $

OR ( j(mark)-h(mark) ge int4y or j(mark)-h(mark) ge int4x or j(mark)-h(mark) ge int4m) $

OR ( j(mark)-h(mark) ge int4y and j(mark)-h(mark)+jherr ge int4x) $

OR ( j(mark)-h(mark) ge int4y and j(mark)-h(mark)-jherr ge int4x) $

OR ( j(mark)-h(mark) ge int4m and j(mark)-h(mark)+jherr ge int4n) $

OR ( j(mark)-h(mark) ge int4m and j(mark)-h(mark)-jherr ge int4n) ) )

SuperMongo

Data was read into smongo using this terminology:

#input directory and filename

data "˜/AMALG/thin/"CALIB_IC4665A_YJHKs_SP.cat
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#assigned columns and labels for object magnitudes

read {A_CAL_Y 2 A_CAL_J 4 A_CAL_H 6A_CAL_Ks 8}

#sets colour, can be used for other calculations

set A_YminusJ = A_CAL_Y - A_CAL_J

Script Input

Bash shell script utilising awk to automatically output a set of files which can be run within the

SuperMongo environment. Note that it is possible to run SuperMongo within the shell script for

full automation.

awk ’!/ˆ#/ && $16˜/[A-E]/ {print " awk

\047!/ˆ#/ && $1˜/SP/ && $2˜/M/{print \"echo

\\047 \\t window "(-$23),(-$24),$25,$26" \\n \\t expand 1. 0 \\n \\t ctype 0 ptype 1 1

\\n \\t limits \"($8),($9),($10),($11)\" \\n \\t box 1 2 3 3 \ \n \\t ylabel \"$4\"

\\n \\t expand 0.8 \\n \\t points "$16"_\"$6\"minus\"$7\" " $16"_CAL_\"$4\"

\\n \\t ctype 4 ptype 4 3 angle 45 \\n \\t points man_\"$6\"min us\"$7\" man_CAL_\"$4\"

\\n \\t expand 0.5 ctype 3 ptype 1 1 \\n \\t points \"$6$7\"_\" $6\"minus\"$7\" \"$6$7\"_CAL_\"$4\"

\\n \\t ctype 3 ptype 20 3 \\n \\t points cand_\"$6\"minus\"$ 7\" cand_CAL_\"$4\"

\\n \\t expand 1\\n \\t

\\047 >> \"$3\"_"$16".sm \" }

\047 $DIR6/CLUSTER_smplots.txt >> cluster_plot.sh "

}’ $DIR6/CLUSTER_fields_input.txt >> cluster.sh

Script Output

The candidates are taken from the IDL extraction script described in Section 3.4 and found here

in the Appendix 5.5. File Y..vs..JHA.sm:

window -1 -2 1 2 #position in output plot

expand 1.0 #size adjustment

ctype 0 ptype 1 1 #colour and shape of IC 4665 catalogue object s

limits -1.5 3 24 9 #axes limits

box 1 2 3 3 #plot area

expand 0.8 #colour and shape of points

points A_JminusH A_CAL_Y #objects plotted from field A

ctype 4 ptype 4 3 angle 45 #colour and shape of manzi et al. 2008 points

points man_JminusH man_CAL_Y #confirmed IC 4665 members fr om the Manzi et al. 2008 work
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ctype 3 ptype 20 3 #colour and shape of IC 4665 candidates obje cts

points cand_JminusH cand_CAL_Y #IC 4665 candidates object s from IDL extraction script

Dispersion Script

This is the active part of the dispersion Smongo script, adapted from the script from Bouvier (priv.
comm), which has been used in both Chapters 3 and 4 to calculate statistics on the dispersed
datasets. The output gives either a mean or a median, depending on the dispersion and also an rms
of the dispersion away from this mean/median value. Again this was scripted to work on all bands
and fields.<magnitude> and<difference in magnitude> are taken directly from the extracted
catalogues.<parameters> include details about the field, filter used, and particular dispersion
run.

#dispersion script

set starmin = 50

set nbin = 4

set dim = dimen(<magnitude>) - 1

define _dim (dim+1)

if (dim >= starmin) {

define _nbin (nbin)

define _nstarperbin (int((dim+1.)/nbin))

do j=1,nbin {

set DIMEN(bin1$j) = $_nstarperbin

}

do j=1,nbin {

set DIMEN(bin1min$j) = $_nbin

set DIMEN(bin1max$j) = $_nbin

}

do j=1,nbin {

define bin1min$j (int(1.e3 * <magnitude>[($j-1) * $_nstarperbin])/1.e3)

define bin1max$j (int(1.e3 * <magnitude>[$j * $_nstarperbin-1])/1.e3)

}

do j=1,nbin {

define _nmin (($j-1) * $_nstarperbin)

define _nmax ( $j * $_nstarperbin)

define _compt (0)

do i=0,dim {

if ( $i >= $_nmin && $i < $_nmax) {

set bin1$j[$_compt] = <difference in magnitude>[$i]

define _compt ($_compt+1)

}

}

}

do j=1,nbin {

stats_med bin1$j med1$j siqr1$j

define med1$j (int(1.e3 * $med1$j)/1000.)

}

set DIMEN(meandiff1) = $_nbin

do j=1,nbin {

set meandiff1[$j-1] = $med1$j

}

stats meandiff1 mean1 sig1 kurt1

150



stats_med meandiff1 med1 siqr1

echo <field> <filter> <mode> $mean1 +/- $sig1

define med1 (int(1.e3 * $med1)/1.e3)

define mean1 (int(1.e3 * $mean1)/1.e3)

define sig1 (int(1.e3 * $sig1)/1.e3)

write +<filename_<parameters>.disp> <parameters> $mean 1 pm $sig1 $_dim $med1

}

Saturation Limit

Figure 2 shows the IC 4665 magnitudes against the differencebetween the data and the UKIDSS

data which had matching objects over the field of view. These plots were used to ascertain

our own SAT flags in lieu of the TERAPIX or SExtractor flags. This was because there were

many objects that were bright enough to appear in the non-linearity part of the detector, yet

were not fully saturated as detailed by the TERAPIX pipeline. Additional objects that had their

saturated centres removed can only be expunged from the catalogues on an object-by-object

basis, for example in the Candidate extraction. This is because the magnitudes are given by our

SExtractor/PSFEx/SExtractor extraction routines and so they appear far fainter than they should

as they have no centre to their PSF, yet are a detected object.
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(a) L–R: ShortY andJ–UKIDSS bands exposures.

(b) L–R: ShortH andKs–UKIDSS bands exposures.

(c) L–R: LongY andJ–UKIDSS bands exposures.

(d) L–R: LongH andKs–UKIDSS bands exposures.

Figure 2: Saturation plots showing the offsets between the CFHT IC 4665 data and UKIDSS data
over the same FOV. Fields labelled A through to J as per the legends. Note lack of data in fields
E and I in theY -band plots due to lack of matchingY -band UKIDSS data. Note also the much
lower level of saturated objects compared to the UKIDSS bands in the short exposures than in the
long exposures.
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