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Abstract

Wireless Sensor Networks have evolved as an alternative to wired networks fit for

quick deployments in areas with limited access. New protocols have been devices to deal

with the inherent scarcity of resources that characterizes such networks. Energy efficient

network protocols are used for communication between nodes. Data collected by wireless

nodes is transmitted at an energy cost and therefore carefully managed. The remote

deployment of wireless networks opens the possibility of malicious attacks on the data

and on the infrastructure itself. Security measures have also been devised, but they come

at an energy cost. One item that has received little attention is the situation of the data

sink becoming unreachable. The nodes still collect data as instructed and accumulate it.

Under prolonged unavailability of the sink node, the storage space on sensor nodes is

used up and collecting new data is no longer feasible. Our proposal for a prioritized data

reduction alleviates this problem. The collected data is divided into data units who are

assigned an importance level calculated in agreement with the business case. We have

proposed data reduction primitive operations that reduce the needed space while only

losing a limited amount of data resolution. A multi-node deployment opens the

possibility for data load sharing between the nodes as well as redundancy. Algorithms

were proposed to evaluate the potential gain of these approaches in relation to the amount

of energy spent for data transfer. The proposed approach works well in coping with fixed

size data storage by trimming the low interest data in a manner that data is still usable.
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Sommaire

Les réseaux des capteurs sans fil sont considérés comme une alternative aux

réseaux câblés afin de permettre l’installation dans des zones peu accessibles. Par

conséquent, de nouveaux protocoles ont été conçus pour supporter le manque des

ressources qui est spécifique à ce type de réseau. La communication entre les nœuds est

réalisée par des protocoles spécifiques pour la gestion efficace de l’énergie. La gestion

des données collectées par ces nœuds doit être également prise en compte car la

communication entre les nœuds engendre un coût non-négligeable en termes d’énergie.

De plus, l’installation de ce type de réseau dans des régions lointaines facilite les attaques

sur la structure des réseaux ainsi que sur les données collectées. Les mesures de sécurité

envisagées amènent des coûts d’énergie supplémentaires. Un aspect souvent négligé

concerne le cas où un nœud ne peut pas communiquer avec la station de base (sink node)

qui collectionne et traite les données. Cependant, les nœuds continuent à accumuler des

informations en suivant les plans de collection. Si la situation continue, l’espace de

mémoire (storage) diminue à un point où la collection de nouvelles données n’est plus

possible.

Nous proposons des mécanismes pour la réduction contrôlée de données en

considérant leur priorité relative. Les données sont divisées dans des unités auxquelles un

niveau d’importance est alloué, en fonction des considérations d’utilité et de missions qui

les utilisent. Nous proposons un ensemble de primitives (opérations) qui permettent la

réduction d’espace de stockage nécessaire, tout en préservant un niveau raisonnable de
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résolution des informations collectées. Pour les larges réseaux à multiple nœuds, nous

proposons des mécanismes pour le partage de données (data load sharing) ainsi que la

redondance. Des algorithmes ont été proposés pour évaluer l’efficacité de ces techniques

de gestion de données vis-à-vis de l’énergie nécessaire pour transférer les données.

A travers des simulations, nous avons validé le fait que les résultats sont très

utiles dans les cas à mémoire limitée (wireless nodes) et pour les communications

intermittentes.
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Chapitre 1

Introduction

1.1 Motivation

Les réseaux sans fils bénéficient d’une autonomie de déploiement, car ils sont

destinés pour des régions avec accès limité. Les nœuds capteurs sont équipés d’une

source d’alimentation (limitée), de mécanismes de calcul, de mémoire (limitée) et d’un

émetteur/récepteur sans fil. Bien que le rôle soit focalisé sur la collecte de données, une

activité toute aussi importante est la gestion des ressources, en particulier celle de

l’énergie et de la mémoire disponible.

La ressource la plus suivie est l’énergie. Les protocoles les plus utilisés ont

comme une caractéristique principale la consommation minimale de l’énergie durant les

opérations courantes. Pour des endroits qui ne sont pas accessibles, d’autres sources

locale d’énergie ont été envisagées (solaires, thermales, ....).

Un aspect qui a été souvent négligé est la gestion des données en considérant

l’espace limité de stockage d’un nœud. Ceci est particulièrement important dans les cas

où la connexion avec la station de base (sink node) n’est pas fiable ou encore lorsque la

connexion est interrompue. Ceci peut s’avérer une décision délibérée si la station de base

arrête les opérations en suivant un plan, pour des raisons de dissimulation (surtout dans

les zones non-sécuritaires).
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1.2 Contribution de la Thèse

Nos travaux se situent dans le domaine de la gestion de données en considérant

les contraintes de ressource mentionnées. Le problème est plus complexe lorsque les

données collectées sont acheminées pour le traitement vers une station de base (sink

node). Comme la station de base peut devenir inactive (défaillance ou planification), les

données s’accumulent sur les nœuds. Notre contribution prévoit des mécanismes pour

gérer les données, en particulier, en allouant un index lié à une collection de données

afin de planifier de règles de réduction sans affecter (ou affecter très peu) l’information

contenue dans ces données.

Nous introduisons deux types d’instance de données collectées: non-récurrent ou

récurent. Une instance de donnée non-récurrente constitue la collection et le stockage

d’une valeur d’un paramètre lorsqu’une condition est satisfaite. Une instance de donnée

récurrente est représentée par un ensemble de valeurs d’un paramètre, en commençant

lorsqu’une condition est satisfaite et en finissant lorsqu’une autre condition est satisfaite.

Les instructions pour activer la collection (quoi ?, à quelle fréquence ?, quelle résolution

?, etc.) sont dérivées à partir des applications qui utilisent les données et sont dictées par

les intérêts corporatifs.

Une fonction établie l’importance (importance factor) pour chaque unité de

données. Elle prend en compte les dépendances d’une unité de données avec d’autres

unités de données (valeurs, temps ...). Cette fonction permet de classifier les unités de
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données par leur importance (ranking). Cette classification devient importante lorsque

l’espace de mémoire disponible devient insuffisant et la réduction de données doit être

invoquée.

La réduction de données peut se faire en annulant en totalité une partie de la

collection de données. Une solution plus avantageuse est de diminuer la résolution ou

l’intervalle d’échantillonnage (sampling interval). A cet égard, nous avons proposé des

primitives qui réduisent une unité de données. Une application continue de ce processus

assure plus d’espace pour les données avec une importance significative.

Nous proposons une solution complémentaire au niveau réseau, dans les réseaux

multi-nœuds, où l’espace de stockage du réseau est vue comme une entité unique. Nous

proposons des mécanismes pour un transfert contrôlé des données d’un nœud à un autre

nœud en considérant le volume de données collectionnées et l’espace disponible, tout en

ayant en vue l’effet de consommation d’énergie. Finalement, nous abordons le problème

du sauvetage redondant pour les unités de données critiques et pour les nœuds classifiés

à risque.

Une simulation est présentée comme un ‘proof of concept’, nous permettant de

faire une évaluation sur les résultats de nos propositions et de développer des

améliorations futures.

1.3 Structure de la Thèse
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Le chapitre 1 introduit le sujet de la thèse, l’importance du sujet, ainsi que les

contributions. Le chapitre 2 présente les principes de base des réseaux sans fil, leurs

limitations et les principaux mécanismes et protocoles utilisés.

Le chapitre 3 se focalise sur la gestion de données, en présentant les algorithmes

de base pour leurs traitements (agrégation, requêtes, sécurité....). Le chapitre 4 introduit

un modèle de réduction de données sur un nœud. Il introduit également différents types

de collection d’instances et des primitives afin de réduire le volume de données. Un cas

d’étude utilisant la fonction de calcul d’une unité de données est présenté et discuté.

Le chapitre 5 étend ces concepts aux réseaux multi-nœuds. Nous introduisons des

mécanismes pour le partage du stockage des données en considérant l’espace disponible,

les priorités (par l’importance) et les fonctions de réduction. Une version utilisant la

duplication des données est également proposée. Le chapitre 6 présente les résultats de

nos propositions à travers un cas plus complexe. Les résultats confirment nos prévisions.

Le chapitre 7 conclut sur nos contributions et détaille les sujets à étudier dans le futur.
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Chapter 1

Introduction

1.1 Motivation

Wireless Sensor Networks are given a high level of autonomy for their operations

as deployments are often in areas with difficult access. Sensor nodes are equipped with a

power source, processing capabilities, memory, and a wireless transceiver. While

performing data collection tasks, they are expected to maximize their lifetime by

managing the use of their resources.

The main resource considered is the energy. Clearly, without energy, the node is

useless. Protocols have been devised to handle the operations of the network while

making the most of the limited amounts of energy. Proposals exist on how to harness

additional energy from natural sources.

One item that has not received enough attention is the management of the limited

storage space. This is especially relevant in cases where the sink node itself is unreliable

or purposely unavailable. Mobile sink nodes are available and their very mobility makes

it that the sink is not always in reach. Deployment in dangerous zones may forbid

continuous operations of the sink node as a method of dissimulation.
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1.2 Thesis Contribution

Our work is in the domain of data management under the restrictions imposed by

the resource scarcity of Wireless Sensor Networks. We consider the case of data

collection networks that relay all data to the sink node for off-site processing. As the sink

node can fail, or become intentionally inactive, there data accumulates on the sensor

node. Our proposal deals with this case by first formalizing how data is collecting and

giving a methodology to rank data importance in view of applying reduction rules.

Data collection is divided into two types: non-recurring data instances and

recurring data instances. A non-recurring data instance is the collection and storage of a

sensed parameter value when a given condition is met. A recurring data instance is a

collection of a parameter that starts when a condition is met and ends when another

specified condition is met. The business case dictates what is being collected, how often,

and with what resolution. In order to manage the data in blocks, as opposed to a stream,

we propose a data unit production function that divides recurring data instances into data

blocks.

The importance function is proposed in order to evaluate the importance of each

data unit. This importance can be specified as depending on a wide array of available data

in the node: time, values, other data, etc. Using this function, data units can be ranked in

order of relevance. When available storage space reaches certain critical levels, a data

reduction process is invoked.

Data reduction can be done by dropping entire data spans, but that is usually a

poor choice. It may be better to decrease the resolution or the sampling interval of data
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rather than completely erasing some of it. To this effect we proposed primitives that are

applied to data units in order to reduce the data taken by an individual data unit. Applied

continuously, this process ensures that data space is always available for high importance

data at the expense of low importance data.

Finally, we propose an approach to extend the concept to multi-node

deployments. Instead of data reduction, an option is to pool the total storage space that is

available in the network. Nodes with high data output can transfer some data to the

storage space of nodes with lower volume of data output. This comes at an energy cost.

The issue of data redundancy is addressed where critical data or data generated by nodes

in high risk areas needs to be present in multiple copies.

We show via simulation how data undergoes changes and moves between nodes

of a network as part of the prioritized data reduction approach.

1.3 Structure of the Thesis

Chapter 1 introduces the topic of the thesis and the relevance of the issues tackled

as well as the contribution of the thesis.

Chapter 2 presents the basic principles of WSNs, their limitations, and their

intended use. Specific protocols are also presented.

Chapter 3 focuses on data handling in WSNs. It covers the basic algorithms of

dealing with data, data aggregation, data search, and data security.
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Chapter 4 introduces the model of data reduction focused on a single node.

Collection instances are defined as well as primitives used in data size reduction. The

importance function is introduced and a use case is presented.

Chapter 5 expands the concept to a multi-node deployment. The idea of shared

data space is presented in the context of prioritized data reduction. The idea of redundant

data copies is integrated into the proposed mechanism.

Chapter 6 presents the results of a use case built on all the newly introduced

concepts. Results are presented and conclusions are drawn.

Chapter 7 summarizes the ideas proposed and presents several items in need of

further research attention.
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Chapitre 2

État de l'art

Sommaire

Dans ce chapitre nous présenterons les concepts liés aux réseaux sans fil qui sont

vus comme des réseaux ad hoc déployés dans des régions avec un accès limité. Les

nœuds de ces réseaux présentent des caractéristiques spéciales, telles que une capacité

limitée de calcul, un espace limite pour stocker les données, plusieurs capteurs et des

interfaces pour communique avec d’autres nœuds ou une station de base fiable. Il y a une

diversité d’applications qui décrivent ces caractéristiques comme la santé,

l’environnement, le militaire, etc.

Ce type des réseau utilise plusieurs protocoles, mais les deux plus sont: LEACH

et UNFP. Les autres protocoles ont des utilisations plus criblées, comme la transmission

des données, la collection des données, la localisation des capteurs, la synchronisation,

etc.

L’énergie constitue le facteur majeur qui détermine le cycle de vie d’un capteur.

Cependant, même pour les nœuds isolés, il y a des possibilités pour recharger les

batteries, soit par des voies mécaniques, par lumière, par des sources thermales, etc.

Ce chapitre passe ensuite en revue les solutions actuelles et décrit les aspects qui

restent ouverts.
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Chapter 2

State of the Art

Summary

In this chapter we introduce Wireless Sensor Networks as ad-hoc networks often

deployed in areas with restricted access. These nodes have limited computation

capabilities, some memory space, sensing devices(s), and a transceiver to communicate

with other nodes or with a reliable base station. The applications of such technology are

diverse: environmental, military, health, etc.

Two main protocols are used to provide a structured organization in such a

network: LEACH and UNPF. Additional protocols are implemented in such networks to

support data disseminations, data gathering, localization, clock synchronization, etc.

A major limiting factor in the life of a sensor node is the energy reserve. This is

carefully managed to last as long as possible. There are several possibilities for energy

reserves to be replenished from natural sources: mechanical, light, thermal sources, etc.
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2.1 Introduction

A Wireless Sensor Network (WSN) is a collection of network elements which

work in collaboration to achieve tasks for which a standard network deployment is not

practical. WSNs are prime candidates for scenarios where there is little to no

infrastructure present either due to human inaccessibility or dangerous access conditions.

The elements of such a network are designed to be very light weight from both hardware

and software perspectives. Depending on design, the nodes have variable amount of

processing capabilities, multiple types of memory, a wireless transmitter/receiver, and a

power source. The great majority of the nodes are also equipped with some sort of

sensing devices to measure parameters in the immediate area of the node [1].

WSNs are distributed systems. While developing technology to fit their

requirements, one is tempted to look at other distributed systems and adapt the solutions

to address the peculiarities of WSNs. Sensor networks are similar to regular networks in

that data can originate at any point and can be routed to a final destination. There is

traffic and data on top of which there are applications.

Unlike traditional networks, wireless sensor networks have shortcomings that

dictate different priorities with respect to implementations. Except for the few cases

where WSN nodes are equipped with energy gathering devices, the nodes start with a

fixed allotment of power which must be efficiently used to prolong the life of the node.

The links between nodes are wireless which makes them inherently unreliable. Node

failure, which impacts routing paths, is higher in rough environments where WSNs are
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regularly deployed. For these reasons, simple adaptations of current network protocols

for use is WSNs is not feasible [2].

The remainder of this chapter presents the architecture of a WSN and protocols

that have been devised to work around the constraints imposed by the scarcity of

resources.

2.2 Architecture

The classical deployment architecture of a wireless sensor network consists of

several sensor nodes and one sink node. The sensor nodes are in charge of collecting data

at their location while the sink node provides an access path to the network via a reliable

connection.

Figure 2.1. Deployment of a wireless sensor network

Figure 2.1 shows the generic deployment for a wireless sensor network. It reflects

the fact that some nodes are within wireless transmission reach of each other via the
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dashed lines, and that there is a multi-hop path for every node to communicate data to a

central station with further relaying capabilities.

Depending on the nature of data collection that networks perform, there are

variations that can be brought to this model. There are factors that affect the structure of a

network compared to the layout presented above: sink redundancy, sink mobility, and

sensor node mobility.

Sink redundancy is desirable when the sink node itself is not reliable or when

there are very few nodes within wireless reach of the sink node. Since sensor nodes are

prone to becoming faulty, having very few within reach of the sink node is a risk. In this

case, reliability is not only dictated by the nature of the hardware deployed, but also by

the conditions where they are deployed. For example, WSNs can be placed in combat

zones where risk of hardware damage is very high.

Mobility is another design factor. Both the sink node and the sensor nodes can be

mobile. Sink node mobility helps in situations where the deployment is in a very remote

area, such as a jungle, where installing a base station is not feasible or perhaps not worth

it due to a short term mission for the deployment. In such cases, the sink can be flown

within contact range where either data can be retrieved for a full data acquisition, or

queries can be performed on stored data. The nodes themselves can be mobile, but

because they have such limited power, the mobility needs to come from external sources.

We have encountered the case of nodes that float down a river and also the case of nodes

attached to animals.
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2.3 Application Domains

The areas of applications of sensor networks fall into two categories: those where

reliable infrastructure is not available, and those where deploying reliable infrastructure is

not feasible. In this section, we describe some scenarios where WSNs are the method of

choice for input gathering. Additional details are presented in [3].

2.3.1 Surveillance

In combat zone situations, covert surveillance can be quickly deployed via

wireless sensor networks. WSNs have the ability to form ad-hoc networks and can

provide information collected by seismic, chemical, acoustic, and video sensors.

Deployment opportunities are scarce, so the WSNs’ approach of energy conservation and

resilience to node loss can provide service for a long period of time. VigilNet is a system

built to support such operations. It detects events such as presence of people, people with

weapons, and vehicles. It also provides position information so that a tracking can be

performed. Tripwires within VigilNet can activate additional sensors only when

necessary thereby increasing their efficient use of limited power. Such a system can

provide continuous service of near real-time data for 3 to 6 months [4].

2.3.2 Medical

For patients needing constant monitoring, it can be very expensive if the

monitoring task is performed directly by medical workers. By using sensors attached to
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the patient, monitoring can be achieved. At the same time, the bulky and wired

monitoring devices are avoided. Small miniature on-body sensors can be used as well as

external sensors such as cameras. Such a deployment can also benefit from a better ease

of access to address failing equipment. There are already solutions available assisted

living facilities based on sensor network technology. One solution is AlarmNet which can

cover large-scale units. It integrates data collected from body sensors, sensors within the

living space, as well as sensors attached to mobile units [5].

2.3.3 Environment

Environmental surveillance is effort intensive, and consequently costly, when

done in person. Large areas cannot be covered with the same ease compared to deploying

a WSN. Environments vary in landscape and features, but often they prove to be

inaccessible. The situation is somewhat similar to combat situations, but for different

reasons. When long term data collected from vast regions is needed, WSNs provide a

feasible solution [6]. Similarly, monitoring animal migrations and movement patterns,

WSN nodes can be attached to animals and allowed to roam. These nodes can move out

of signal reach, but eventually make it back carrying with them relevant data [7].
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2.3.4 Special cases

With some imagination and relaxation of the initial definitions of a wireless

sensor network, the WSN technology can be adapted to some unexpected situations. In

this section, we give a few examples of such situations.

Livestock monitoring is a fairly complex task when applied at a very large scale.

This task is usually left up to the individual farms without mandatory reporting. As it

turns out, cattle mobility can give serious hints about possible disease outbreak. It

becomes interesting to monitor such activity. In [8], the authors propose a no

infrastructure solution consisting of self-organizing nodes where data dissemination is

supported by proactive caching.

Roaming profiling is still concerned with animal monitoring, yet it focuses on a

very small set of individuals. This case is more tied in to the environmental observation

case, but the fact that the possible mobility area is tens of square miles, creates new

problems. There is a need for a large number of sink nodes to be able to make contact

with the roaming sensor at an acceptable rate. In this case, the “sink” is a mobile trapping

unit in charge of capturing the animal along with the sensor that it carries. Although not

in the context of WSNs, such a case was recently shown on the Animal Planet show “The

Trapper and The Amazon”.

Underwater wireless sensor networks are a special case because water absorbs

a great amount of radio frequency waves. Unless positioning is very precise and nodes

are linked via cables, communication is only possible at very short range, and even in that

case, at a high energy cost. Acoustic transmissions are possible under water, but the cost
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of hardware becomes a problem in that case. An acceptable solution for underwater

sensors is to have mobile units that can move from sensor to sensor and perform data

delivery which would otherwise happen via radio transmissions on land. The same device

can then navigate to the sink node to make the data available. This works well in non

real-time deployments [9][10][11].

2.4 Network Protocols

While specialized sensor networks call for specialized protocols, all sensor

networks need to handle basic organizational, traffic, and data handling protocols. In this

section, we introduce existing approaches to problems inherent to wireless sensor

networks.

2.4.1 Architecture

WSNs can consist of very large number of nodes. For the purpose of energy

conservation, these nodes need to be organized so as to function in an orderly fashion.

The organizational decisions will later impart data flow through the WSN as well as

between the WSN and the sink.

LEACH proposes a solution where the nodes form clusters. The clusters elect a

head which is in charge of communication with the sink [12][13].
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Figure 2.2. WSN organization with LEACH

Figure 2.2 depicts the conceptual organization of WSN nodes in clusters. Each

cluster head is responsible for communication with the sink node on behalf of every node

in the cluster. Clusters are formed on a geographical proximity basis. This gives non-head

nodes in the cluster the option to reduce their transmit power when transmitting data to

the cluster head. The head receives all data from the nodes in the cluster and has the

opportunity to perform some data manipulation before sending it to the sink. Tasks such

as data deduplication and data fusion are appropriate at this stage.

As a protocol, LEACH consists of two phases. In the first phase, the clusters are

formed and the initial cluster head is elected. In the second phase, called the steady-state,

the data collection and flow is operational. As the cluster head uses up considerably more
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energy for transmissions, there is a periodical reiteration of the cluster head election

process to even out the expense of being a cluster head.

LEACH performs well under stable conditions but, being location proximity

oriented, is affected by mobility.

UNPF operates as a layered architecture. The WSN nodes that are in close

proximity and can communicate directly with the sink are considered the one-hop layer.

The rest of the network is divided in layers. A node that is far away from the sink will

have to send data via multiple hops in order to arrive at the sink [14][15].

Figure 2.3. WSN organization with UNPF

Figure 2.3 shows the classification of WSN nodes with respect to transmit

distance to the sink. In situations where all nodes have the same transmit power, the

five hop four hop three hop two hop one hop
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division in hops closely maps to the geographical distance. In cases where the power

differed from one node to another, we can have nodes further away that are fewer hops

away from the sink.

The layers are established via a set of beacons. The first beacon is sent by the sink

and can only reach the first layer nodes. These nodes send their ID to the sink node, at

which point the sink node confirms them as first layer nodes. Following their

confirmation, the layer one nodes send beacons to acquire the layer two nodes just like

the sink node did to start off the process. Each node remembers the nodes in the next

layer that it can use to relay data to the sink node. The beaconing process happens at

regular intervals in order to account for possible changes in the network topology.

Overall UNPF has the advantage over LEACH in that it does not require any

single node to transmit over long distances, hence saving power. It is also more resilient

to node failure as each node contains several potential next hop nodes for transmission

operations.

2.4.2 Data Dissemination

Data collected by a node can be of interest to the rest of the WSN. In order to

relay data, or awareness of the existence of data, WNSs use data dissemination protocols.

Several protocols are available each of them having advantages and drawbacks.

Flooding is a very simple protocol. Each packet of data that needs to be

disseminated in the network is broadcast to all neighbors. The packet is tagged with the
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maximum number of hops that it can go simply so that it is not broadcast forever. This

type of algorithm is very easy to implement and easy to maintain. It is resilient to even

the fastest changes in network topology. The drawback is in its overuse of resources.

There are overlapping regions and redundant transmits of the same data to the same

nodes, which results in unnecessary use of power [16][17].

Gossiping is a variation on Flooding. Instead of broadcasting the data to all its

reachable neighbors, it randomly selects one to be the recipient of the message. Each

node in turn sends it around until the number of hops it can go is met. In this case, there

are no guarantees that the packet will actually make it to all the nodes in the network. The

selection of the next recipient neighbor needs to be truly random. Improvements such as

Smart Gossip have been brought to this protocol to decrease the overhead and make it

more topology aware [18][19].

Rumor routing is proposed to handle the cases where there are queries for data

happening. Flooding alone can be event flooding or query flooding. Rumor routing take a

hybrid approach. Each node keeps a list of neighbors. When a node records new data, it

adds it to the list of local events. At this point, the node has a random chance of

generating an agent. The agent is very long lived and travels the network to propagate

information residing on the node that created it. It updates every node on its path. If a

node initiates a query and does not receive a reply via an agent, it will follow with a flood

query request [20][21].

Sequential Assignment Routing is a tree based algorithm rooted at a central

node which grows down the paths of most residual energy. Several trees can be created,
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usually rooted at a node one hop away from the sink. Trees can overlap and different

paths can provide variable energy and variable quality of service [22][23][24].

Directed diffusion uses named data and all queries are for named data without

knowledge of central authority. The protocol is request driven with requests being placed

by the sink. The source is found, and the intermediary nodes participate to relay the date

to the sink. The path along the way is enforced. The protocol allows data propagation

even in the absence of queries [25][26].

SPIN uses negotiations via three types of messages: ADV, REQ, and DATA. The

messages are used to advertise presence of data, request data, and to tag data payloads

respectively. The advertising of data is done via small messages which are less taxing on

energy consumption than full data packets. This protocol also provides data fusion

[27][28].

There are other protocols out there that dictate date dissemination, along with a

large number of proposed improvements. Improvements often apply to specific use cases

and don’t necessarily improve all relevant parameters.

2.4.2 Data Gathering

Data gathering algorithms are used to control the manner in which the sink node,

and in consequence, the external world, gets to the data collected by the sensor network.

There are conflicting requirements as to how these protocols should function as we want
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to maximize the number of communication rounds before the network goes out of service

while using as little energy as possible. Several proposals have been made.

Direct transmission is the naïve approach where any node gathering new data

sends it to the sink. While easy to implement and not affected by network topology, the

approach is very wasteful. Nodes that are far away from the sink don’t take advantage of

possibility to relay data and simply increase their radio power to be able to reach the sink.

PEGASIS operates by constructing a greedy chain and using it for data

transmission. The data moves node to node and additional data is aggregated during the

data migration. All data eventually arrives at a leader node which is in charge of relaying

the data to the sink. There are two main drawbacks with this approach. There are

increasing delays for nodes far away from the sink and having a single leader can create

bottleneck problems [29][30].

Other than the examples above, there are several improvements that are proposed,

each of them seeking to improve on specific parameters of these algorithms.

2.4.3 Additional Protocols

The main duty of wireless sensor networks is to sense and relay data. In addition

to the organization and networking protocols, there are some additional factors that play

an important role in WSN deployments.

Node localization is relevant to certain position sensitive protocols. In the case

where nodes locations are pre-defined, this can be built into the nodes. For a smaller
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deployment, GPS devices can be the answer, although they add considerable size. For

large deployments, GPS devices are cost prohibitive. Nodes can key off of signal strength

decay assuming they know the signal strength at the source node. They can also key off

of message delay in radio transmission from other nodes [31]. For this to be achievable

the next item is critical:

Clock synchronization is a problem in all distributed systems. It is known that

clocks eventually drift over time and they need to be reset at regular intervals. NTP is the

protocol of choice for internet connected devices, but it is too heavyweight for usage in

WSNs [32]. A most complete solution is provided by FTSP [33][34] which is robust with

regards to node failure and topology changes.

2.5 Autonomous WSNs

The field of autonomous systems is often times equated to the field of robotics.

The studies usually focus on single entities or at the very least, entities that don’t have a

tight cooperation. WSNs are quite different in that nodes depend on each other to carry

out tasks. So why put together autonomy and WSNs? In recent years, efforts have been

made to give additional self-reliance to deployed wireless sensor nodes.

WSN protocols are already constructed with resource conservation in mind.

While minimizing all usage and employing tactics such as load balancing, one still

reaches a stage where deployed resources are being consumed. Additional self-reliance
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can be gained by finding ways to compensate for the inherent limit on resources present

in WSNs, by gathering resources to replenish what has been used.

Additional computational abilities (i.e. processing units) and additional data space

(i.e. memory chips) are impossible to find readily available in deployment areas. The

only target for replenishment is energy. There are several options as to where energy can

be harnessed, which depends on the deployment environment:

2.5.1 Mechanical

Mechanical forces are used in conventional renewable energy sources mostly

limited to waterfalls and wind. For WSNs, mechanical energy sources come in the form

of vibrations and mechanical stress [35][36]. Extracting energy from a mechanical source

involves a mass mounted on a spring mechanism. The mechanical acceleration induced

by movement causes oscillations which can be converted to electricity via magnetic field

or strain on a piezoelectric material [37][38]. Mechanical devices to harvest energy have

a best yield at a specific frequency off of which yield greatly decreases. Matching the

mechanical structure to the expected vibration frequency is essential.

For electromagnetic energy harvesting, the moving mass contains a coil which

moves through a stationary magnetic field. As the coil moves through the magnetic field,

a flow of electricity is induced.

Strain on a piezoelectric material by mechanical force causes charge separation

producing an electrical field. The voltage produced varies with the strength of the
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mechanical force applied. This idea has been considered in association with rain drops

which provide the mechanical action [39][40].

Water flow is a viable source for anchored sensors in a moving water stream. For

small scale devices, wind and water flow are not feasible [41].

2.5.2 Light

Indoors and outdoors light can be used by photovoltaic cells to produce

electricity. The conversion happens at atomic level where the light rays strike a

semiconductor surface, which captures part of the energy. This energy is enough to knock

some electrons loose causing them to flow. An electric field causes the electrons to flow

in specific direction. In theory, this is a feasible solution for sensors with reasonable

access to sun light (for outdoors deployment) or appropriate spectrum (for indoors

deployments).

Problems are encountered given the large surface of photovoltaic cells needed to

produce a significant amount of electricity. Varying weather conditions affect the results

of this technique [42][43].

2.5.3 Thermal Energy

Heat cannot be used to produce energy, but a flow across a temperature gradient

can. The heat flow is accompanied by a charge flow as energy carriers migrate from high

concentration to low concentration regions. This creates a voltage difference between the
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cold and hot regions. Significant temperature gradients are required for this to create

useful amounts of energy, usually 10C being the minimum usable temperature difference.

For most small size WSN nodes, differences of 10C are not common. The solid state

operation with no moving parts is an advantage to this technology, but the research

targeted for micro components is only now starting to gain attention [44].

Thermophotovoltaics is a different approach to thermal energy capture. Instead of

using heat gradients, it proposes the harnessing of energy from the photons emitted at

temperatures above the photovoltaic device values [45][46].

2.5.4 Electromagnetic Energy

A wide wavelength spectrum is filled with transmissions from radio, TV,

telephony, and wireless networks. The energy from these waves can be converted to

useful energy. A specialized antenna can convert this to DC current. The conversion rate

is very high although the actual energy content of these waves is very limited. The size of

the necessary apparatus also poses a challenge for practical uses of this idea [47].

2.5.5 Human Body Energy

The human body is a perfect idea for providing energy especially for body

sensors. There are several human body sources that can generate energy. Some of these

ideas imply active involvement of humans with activities that are not part of routine:

riding a bicycle or turning a wheel. Both of these tasks are regularly tapped into to power
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a flashlight so there is enough potential power production in those instances. Other

activities such as walking, arm movement, and breathing, are naturally occurring with

some specific expected rate over a 24 hours cycle [48][49].

2.5.6 Energy Harvesting Issues

Additional items of concern are related to energy harvesting, regardless of the

harvesting method used. The actual availability of the physical phenomenon to produce

the energy is an issue. Communication standards between devices place requirements on

power usage, especially related to the minimum usable power levels. Energy storage can

be done with rechargeable batteries. In this case, additional power expenditure is incurred

to operate the electronics that manage the charging profile of the batteries [50][51].

2.6 Conclusion

In this first chapter, we introduced the concept and presented use cases for

wireless sensor networks. We presented algorithms used to organize the ad-hoc network

into a hierarchy. Network protocols used to lay out data traffic paths were summarized.

Additional protocols that deal with clock synchronization and geolocation were

presented. Finally, the issue of autonomy was presented. Energy conservation being the

key to WSN life, additional methods to harvest energy were presented.

The aim of a WSN is to collect data. In the next chapter, we present some of the

aspects related to data. Many scenarios can arise where data manipulation is more



39

complex than a simple “collect and relay” approach. From the collection point to the sink,

data can undergo many transformations: encryption, deduplication, compression, etc.
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Chapitre 3

Données dans les Réseaux des Capteurs sans Fil

Sommaire

Ce chapitre présente les concepts de base pour la gestion de données collectées.

Les réseaux de capteurs sans fil sont déployés pour les données dont la collecte s’avère

difficile. Ainsi, certains protocoles sont conçus spécialement pour la gestion des données.

D’une part, il y a des protocoles qui collectent des données et surveillent le trafic ; et

d’autre part, des protocoles qui assurent la protection des données contre les attaques.

Afin de réduire l’énergie consommée pour la transmission des données, des

algorithmes de compression sont utilisés, tout en assurant une perte tolérable ou minimale

d’information. On peut rajouter aussi des algorithmes pour l’agrégation et la duplication

de données afin obtenir des volumes plus petits à transférer.

Comme les modèles de trafic peuvent indiquer que certaines attaques altèrent les

données, des algorithmes spéciaux détectent les anomalies dans l’architecture des

réseaux. En même temps, la corrélation entre le type de trafic et les événements dans les

réseaux peuvent rendre les réseaux vulnérables et ainsi les intrus peuvent obtenir

l’information quant aux types de données collectées. Toute mesure de dissimulation

induit des coûts en termes d’énergie. Une solution basée sur des délais aléatoires de

transmission peut s’avérer alors satisfaisante.

Les données collectées par les capteurs peuvent être utilisées par le biais de

requêtes spécialisées ou envoyées à la station de base pour un traitement plus laborieux
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(off-line analysis). Il n’y a pas de solutions acceptables concernant le volume

agrandissant de données lorsque la connexion entre un nœud de capteurs et la station de

base est interrompue.
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Chapter 3

Data in WSN

Summary

WSNs are deployed in order to gain access to data that otherwise would be

difficult to collect. It follows that several protocols have been designed to address the

issue of data handling. There are protocols that cover the aspects of data collection and

traffic, and there are protocols to ensure that these operations occur in a secure manner

without interference from potentially malicious attacks.

Lossless compression algorithms are used to reduce the amount of energy needed

for transmissions. Data aggregation and deduplication algorithms are also employed to

further compact the data for a less costly transmission.

Security can be compromised even if attackers do not get access to the data in the

network. Traffic patterns can give hints about the architecture of the network. Correlation

between traffic levels and events can lead to attackers gaining knowledge as to what type

of information a WSN is collecting. Dissimulation measures come at the cost of

additional energy being spent. Random delays can prevent correlation attempts.

Once data is collected by the network nodes, it can be made available to

distributed query engines or it can be sent to the sink node for off-site analysis. There are

currently no proposed solutions to deal with increasing data loads when the sink node is

unavailable.
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3.1 Introduction

Wireless sensor networks are all about data: sensing data and making it available.

In this chapter, we review some of the changes that data can undergo and data base

systems that support the necessary functions of a highly distributed database.

3.2 Data manipulation

There are two driving forces behind data manipulation in wireless sensor

networks. First, the size of the data needs to be reduced simply to avoid moving around

unnecessary amounts and thereby using up more energy than necessary. In these cases we

have deduplicatios and aggregation. The data also needs to be protected. In remotely

deployed networks, it’s conceivable that malicious attacks can be mounted by instances

seeking illegal access to the data or seeking to corrupt the gathered data. In this section,

we review some of the changes that the data can go through.

3.2.1 Compression

Lossless data compression is meant to reduce the size of transmissions, and hence

helps limit power usage. In [52], the authors introduce compressive wireless sensing.

They propose that a deployed fusion center receive sensed information from several

spatially distributed sensor nodes. Based on compressive sampling theory, a matching is

proposed between the source and the communication channel. As a result, there is an
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increase in latency of data but at the same time, a reduced size of the transmitted data. A

variation of the same idea is presented in [53] where distributed compression is used.

[54] builds on the idea of a distributed compression. The proposed system

computes random projections of the sensor data and distributes them in the network using

a gossip type algorithm. The statistics are stored in several places in the network and they

can be used to construct a good approximation of the data available on all nodes in the

network.

3.2.2 Security

The resource limitations present in wireless sensor networks also affect the range

of security measures that can be deployed on WSN nodes. Given that such deployments

are generally not attended, security measures still need to be put in place. Attacks can

seek to simply disrupt the operations of the WSN, or they can seek access to data and

information from the network. In this section, we cover some of the aspects related to

data security and privacy.

Common attacks against data are eavesdropping, traffic analysis, and camouflage

[55][56][57]. Eavesdropping consists of simply listening to the data that is being sent

from one node to another and collecting sensitive information. This information can

compromise components related to the WSN as it can contain control information.

Traffic analysis consists of statistical interpretation of packet counts. An increase in

packet counts can show that the node in question has registered activity that it is meant to
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monitor. With such analysis over time, specific node profiles are built and their tasks can

be inferred. Camouflage is the technique by which one node inserts itself into a

deployment, attract traffic, and then misdirect it.

There are solutions to these problems. Some solutions simply require protocol

changes, others require additional resources. The use of the secure SPINS protocol

prevents any meaningful eavesdropping [58]. Inserting additional bogus traffic can

confuse the statistical collections for traffic analysis, but it comes at the extra cost of

additional overhead traffic.

[59] presents an algorithm that one can use to minimize the effect of the security

breach in a compromised network. The routing protocol proposed specifies the use of

multiple routes to forward chunks of a single data. Even if certain routes are

compromised by eavesdropping nodes, the adversary cannot get access to the entire

information. If these chunks are part of an encoded data segment, the captured partial

data yields no information as to the contents.

In [60], the author proposes two approaches on improving data security:

camouflage and evasive data storage. The principle of camouflage is to decrease the odds

that an adversary can tell between an active node and an inactive node. This can be done

via fake traffic generation as well as delayed traffic generation in order to break the

correlation between data traffic and events. An evasive data storage approach has as

objective to dissimulate the exact location of long term data storage. It also seeks to

dissimulate the identities of data aggregator nodes.
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3.2.3 Dissemination

Two approaches to data dissemination protocols are presented in [62]. An

acknowledgement based dissemination protocol is along the lines of a traditional unicast

protocol. Data chunks are sent and confirmation of receipt is expected. In the case there is

no confirmation within a time window, the unacknowledged data segment is

retransmitted. Due to the nature of wireless media, a unicast can be picked up by any

sensor within reach. Though not required to send acknowledgements, sensors other than

the targeted one will most probably receive a copy of the relayed data. In case some of

them have certain data pieces missing, they can request them once the channel is

available for communication. To continue the dissemination of the data, each node

having received new data will advertise it and will send it to reachable nodes [61].

Request-based data dissemination improves on the acknowledgement overhead

associate with the above proposal. A node having data to disseminate will first broadcast

knowledge of the data chunks that make up the data. The node will wait for a given time

to give a chance to the neighboring nodes to express interest in the data. After the timer

expires, the node starts broadcasting the chunks. Once the broadcast in complete, the

node waits for re-requests that neighboring nodes make in order to get the data chunks

that may have not been properly received [62].

3.2.4 Aggregation

In many instances, the end user of a wireless sensor networks only needs an

aggregated form of data. They may be interested in minimum, maximum, and average
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values for a specific parameter. In these cases, it makes sense to perform the

computational tasks in the network - which cost little in the way of power - as opposed to

sending entire sets of collected data to have the computation done at the sink node or

beyond. Real time requirements from sink may pose a limitation on how much

information can be aggregated before delivery [63].

In currently proposed solutions, trees are used to frame the data aggregation

process:

Center at Nearest Source (CNS) is an approach where every node sends the

information to the node closest to the sink. This node performs aggregation functions

before relaying the data to the sink. Shortest Path Tree (SPT) is a solution where

overlapping paths are merged to form trees. Greedy Incremental Tree (GIT) is built

starting with the path from sink to the nearest source, to which the next nearest source is

added to form the tree [64][65].

3.2.5 Time

Data collected by sensor networks can have both real-time and historical

relevance. Historical data needs particular storage and indexing. As this can amount to a

large size, it will be distributed across several nodes. In [66], the authors introduce a

provenance-aware data storage approach which deal with indexing and accessing

historical data.
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In the case where real time data availability is needed, a different approach is

needed Power consumption takes a second priority as it is better to perform for a limited

lime at expected parameters than a longer time while providing unusable data. SPEED

and RAP are two protocols dealing with real-time data delivery. They are based on a

model that includes how close to real-time the data availability actually needs to be. Also

factoring in distance and velocity of the packets, the data transfer is done so as not to

miss the delivery deadline. Both protocols make extensive use of geographical protocols

[67][68][69].

3.3 Query

Distributed databases are used to store the data for wireless sensor networks. This

storage can be meant for in-network queries or simple storage for periodic relaying to the

sink node.

TinyDB is a query engine that runs on sensor nodes and provides an SQL-like

interface for data access. Once the data of interest is specified, the TinyDB engine

manages the retrieval and aggregation of data which is then routed towards the initial

requester using power conserving algorithms. Tasks are optimized via query batching and

reordering of predicates. The aggregation stage of TinyDB makes used of Semantic

Routing Trees (SRT) [70].

Geographic Hash Tables (GHT) provides a convenient method to map the

location of data [71]. Using hash functions on data keys, data location is computed. A
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perimeter of nodes is established in the area where the hash function pointed to for the

data storage. These nodes will end up receiving a copy of the data to protect against

potential node failures. The nodes and the query initiators share the same hash functions.

This approach reduces the communication overhead in situations with large numbers of

deployed nodes.

Another approach to a WSN database is Cougar [72]. Cougar assumes a

centralized indexing of all data, although sensor clusters can provide a tiered aggregation

method. Each sensor node implements a light weight database component to assist in the

distributed querying process.

3.4 Sink failure

All wireless sensor networks depend on a sink node as their gateway for data

transfer or incoming data queries. A question is what happens to data during times when

the sink node is not available. Very limited research is available in this area, nevertheless,

the subject has been considered in some occasions.

In [73], the authors propose a scheme that is based on having replicated data

sinks. Under normal operating procedures, all sink nodes are available. Each sink is

responsible to handle a specific number of sensor nodes. When a sink dies, the nodes that

were in that sink’s responsibility are simply handled by other sink nodes based on

proximity considerations.
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3.5 Conclusion

Data handling is an important aspect of wireless sensor networks. Considerable

amounts of energy are spent on securing the data and dissimulating the locations where

data is stored. Network wide query languages have been developed. However, very little

attention has been given to the scenario where the sink node fails or is only intermittently

available. Data gathering cannot stop, yet continuously accumulating data poses a

problem for the nodes.

In the following chapters, we tackle the issue of data collection during sink node

outages. We propose mechanisms that ensure optimal data survival and that ensure the

data of most interest to the network operator is retained in its most fine grained state.
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Chapitre 4

Réduction des Données: un Seul Nœud

Sommaire

Dans ce chapitre, nous proposons la réduction de données en considérant un index

de priorité attaché à ces données. D’abord, nous classifions les données en deux

catégories, soit récurant et non-récurant. Les données devant être réduites sont partagées

en unités de données (en utilisant des fonctions spécifiquement introduites) qui peuvent

être manipulées indépendamment.

La nature d’une telle unité peut avoir des liens avec d’autres unités. A chaque

unité on associe un niveau d’importance. Lorsque l’espace de mémoire diminue sous un

certain seuil, les unités avec le plus petit niveau d’importance sont soumises à la fonction

réduction.

La réduction des unités est étroitement liée aux mécanismes internes corporatifs.

Cependant, les primitives proposées permettent une réduction appropriée de la nature de

l’application qui utilise ces données. L’idée de base est que, bien que la réduction décroît

l’espace occupé, elle préserve la valeur de l’ensemble des données sans changement

(minimum side effect).

Un cas d’étude permet de montrer les mécanismes proposés et la nature des

résultats obtenus.
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Chapter 4

Prioritized data reduction: single node

Summary

In this chapter we introduce the prioritized data reduction. Data collections are

characterized as either recurring or non-recurring. The data reductions are further divided

into manageable data units using a data unit productions functions.

Depending on the nature of the data they carry in relation to other data, each data

unit is assigned an importance level. When the available data space is below a threshold,

the least important data units are targeted for data reduction.

Data reduction is dictated by business case. The reduction process can employ

any combination of several presented primitives. While the reduction decreases the space

occupied by the data unit, it only minimally affects the relevant information that can be

extracted from the data.

An example is given that shows how the mechanism is used and the nature of

results that can be expected.
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4.1 Introduction

As we have seen so far, wireless sensor networks have evolved into complex

deployments where their nodes can have a full network protocol stack, database systems,

etc. The main rationed resource in such a deployment is energy. Having power usage

tightly managed ensures a long operational life for the node in cases where

replenishments (either via recharge or battery change) are difficult or impossible.

The basic deployment of wireless sensor networks consists of sensing nodes as

well as a relay node (i.e., sink), which collects sensory data to be relayed via a reliable

network [74]. The sink node can become unreachable due to malfunction, scheduled

uptime or, in the case of mobile sink nodes, due to being out of the sensor nodes’ reach

[75]. In addition, the sensor nodes may decide against relaying data for some period. In

these cases, optimal use of sensor node memory space also becomes critical. In this

section, we classify data types and establish a set of node level approaches that can be

taken to make the most of limited data storage via a prioritized data reduction. We

conclude that such a methodology enables the node to be useful by collecting data

beyond the point where its data storage size would otherwise allow.

Much research has been devoted to optimizing the usage of limited resources in

WSNs. In particular, energy has been a main focus. Very resourceful power sources have

been suggested, nuclear energy included. Both routing and dissemination protocols have
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been approached from the energy conservation standpoint [76][77]. In addition, some

proposals target replenishing energy from sources such as sun, wind, water flow, etc. [78].

Other resources related to WSN deployment have received less attention compared

to energy source and usage. In this chapter, the focus is data storage, which, just like

energy, is limited. Unlike energy, which once used is gone, data storage space can be

reclaimed by discarding existing stored data. Another difference between energy and data

storage constraints is that one can propose ways of harnessing energy to prolong the life of

a wireless node, but so far, there is no way of harnessing data storage space.

There are many examples outside of the WSN world where storage space is a

factor. Many cases are outside of the technology world and include storage spaces,

garages, warehouses, disk drives, kitchen drawers, video surveillance recording, etc.

Unlike the WSN scenario, these cases allow for direct human intervention, i.e., additional

storage space, although for a cost, can be achieved.

We consider a WSN node in cases where unloading the data is not possible at all

times. The sink node, or the next hop routing node, may not be available at times.

Referring to Figure 1, if the sink is not available, the nodes cannot relay their data.

Similarly, if one node is unavailable, it cannot relay data from other nodes as part of a

routing path. It is the responsibility of the node to use the storage space in order to hold

the most relevant data until this data can be relayed at the expense of less relevant data. A

set of business logic instructions that are deployed with the node provide the decision
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making. The same principles can apply to sensor nodes that are deployed and later

physically retrieved for data extraction without ever having to wirelessly transmit any

data.

4.2 Related Work

Current work in WSN associated storage management revolves around energy

efficiency in manipulating and querying the data [79][80], improving the characteristics of

stored data [81][82][83], and making use of adjacent nodes in order to gain access to

additional storage [84][85].

Norbert Siegmund et al. [81] propose FAME-DBMS to provide a robust data

storage solution. This system ensures reliability and integrity of the data, and provides a

customizable query engine. It answers to the requirements related to data retrieval more so

than to storing data. In order to deal specifically with encryption, Joao Girão et al. [82]

present TinyPEDS, an encryption data storage engine.

The energy usage is still relevant when focusing on storage and querying. Joon

Ahn and Bhaskar Krishnamachari [79] evaluate the scalability of a WSN performance

with respect to the distributed nature of data.

Kyungseo Park and Ramez Elmasri [80] evaluate several storage schemes in terms

of where the data is stored, what types of routing protocols are most appropriate, and

finally the impact that each storage approach has on energy usage.
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Majid I. Khan et al. [84] present the problem of data persistence in a congested

WSN scenario. The main point is that congested networks can drop packets, which in turn

translates to a waste of energy equivalent to the cost of sending the dropped packets. The

proposed approach involves clustering where cluster nodes can act as temporary buffers

during congestion periods.

Current work on WSN related storage has been limited to data characteristics and

management across several nodes. The case of a standalone node has not yet been

considered.

4.3 Components of a WSN Node

In this section, we describe the conceptualized components performing the tasks -

known as well as newly proposed - associated with a WSN node.
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Figure 4.1. WSN node building blocks

There are several physical sensors s on a WSN node, each specialized in sensing a

specific parameter: temperature, pressure, etc. Each of these physical sensors has registers

(R), which are updated to reflect a currently observed parameter vale. The Storage

Engine (SE) is concerned with writing data to the node’s storage. It makes no judgment as

to the relevance or importance of the data itself. It simply follows data collection rules

established by the business case and sends them to the node’s permanent storage. At this

time, there may enough space on the storage device in which case the data is simply

recorded, or there isn’t enough space at which point some data reduction occurs: either on

the incoming data, existing data, or both. The PDR Engine (PDRE) contains all the data

reduction rules, which are a direct reflection of the business case. They are not constantly
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applied, but at specific times and with specific space recovery objectives as dictated by the

PDR Controller. The PDR Controller (PDRC) is responsible for monitoring the state of

the available storage, and, if dictated by the business case, triggers the PDRE to perform

data reduction operations. Deciding what data to target and how much to reduce it is again

subject to the business requirements.

This section focuses on the operations executed inside the PDR engine. For that

matter, we first characterize how the SE operates.

4.4 A Model for Data Classification

Triggers or conditions are used to control data collection. These conditions trigger

the SE to perform transfer operations from R into the data storage.

4.4.1 Conditions

We break down the conditions into two categories: value-based and sequence-

based. Value-based conditions are evaluated as a whole and can immediately evaluate to

TRUE or FALSE:

if ((temperature > α) && (humidity > β))

Figure 4.2. Value-based conditions
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Sequence-based conditions are evaluated in sequence. We must establish a chain

of TRUE evaluations in order for the entire condition to be considered TRUE. If one

element in the sequence evaluates to FALSE, we pause there until the next round of

evaluations:

sequence {
s1: (temperature < 0C)
s2: (temperature > 0C)
s3: (temperature > 10C)
s4: (temperature > 20C)
s5: (temperature > 25C)

}

Figure 4.3. Sequence-based conditions

Sequences are useful in establishing trends. Even though one sequence item may

temporarily be FALSE, once we arrive to s5 and it evaluates to TRUE, the sequence is

said to evaluate to TRUE.

4.4.2 Data Collection

Data collections can be classified in two categories, based on the periodicity of the

collection: there are samplings at defined intervals (recurring), or single shot samples

(non-recurring).
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4.4.2.1 Recurring Data Collection

Recurring data collections involve taking specific measurements at defined time

intervals. One example of this type of data collection is temperature. We can specify such

intervals at microseconds to hours and even less frequent. The sampling rate would

depend on the exact use for the data collected and according to the business model. Not all

recurring data sampling is enabled by default and continuously done throughout the live of

the sensor. There are conditions that can trigger starting or stopping a series of such data

collections.

As an example, we assume we are monitoring temperature on the side of a volcano

in order to detect abnormally high values. We assume that baseline values are available.

Under normal conditions, a few degrees difference warmer than prevailing temperatures

may be acceptable, but once the temperature crosses a certain value (hinting of some sort

of activity), it becomes interesting to start taking measurements of several factors: sound,

land vibrations, gas composition, etc. When the ambient temperature returns to a specific

value, it may not be of interest to sample a wide variety of parameters.

Recurring data sampling can be defined by a start condition, a stop condition, a

sampled parameter, and a recurrence window.
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start: (temperature > (baseline + Δ))
stop: (temperature <= baseline)
sample parameter: sound
recurrence: 1ms

Figure 4.4. Recurring data sampling definition

Once a collection has started, a second instance of the same collection cannot start

even though the start condition evaluates as TRUE.

It serves no purpose to sample data any faster than the sensory devices can update

registers holding the sensed data.

As a special case, the primitive values TRUE and FALSE can be used as a start

condition and a stop condition respectively, and hence a continuous sampling is achieved.

We label as a recurring data instance (RDI) a recording of the entire set of data

points from the collection start to collection stop, or to current time if the collection has

not stopped.

Defining an RDI

RDI: (Tstart, Tend, param, recurrence, resolution, compression), where:
Tstart: start time
Tend: stop time
param: the parameter being collected
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recurrence: how often the collection is done
resolution: how precise the stored value is
compression: boolean stating if the RDI has been compressed
e.g., RDI(2009/12/06 16:43:23, ongoing, temperature, 60 seconds, 0.01C, FALSE)

Figure 4.5. RDI definition

4.4.2.2 Non-Recurring Data Collection

Non-recurring data collection happens when a specific condition is met. It leads to

a single value being stored every time the condition evaluated to true. Such conditions

must be written as a sequence so as to avoid constant firing of the rule and hence leading

to a constant parameter sampling.

sample condition:
sequence {

light < 50lx
light > 10000lx

}
sample parameter: temperature

Figure 4.6. Sample condition in non-recurring data

What the example above means is that we are sampling the temperature of a

location after the sun has come up and is providing a specific light intensity. The reason

we require a value increase from under 50lx to over 10000lx is to establish a trend.
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If we simply state the above as :

sample condition: (light > 10000lx}
sample parameter: temperature

Figure 4.7. Counter example for a sampling condition

then we would have continuous temperature sampling once the light goes over

10000lx.

We label as a non recurring data instance (NRDI) a non-recurring stored data

recording.

Defining an NRDI

NRDI: (T, param, resolution, compression), where:
T: recording time
param: the parameter being collected
resolution: how precise the stored value is
compression: boolean stating if the NRDI has been compressed
e.g., NRDI(2009/12/06 16:43:23, temperature, 0.01C, FALSE)

Figure 4.8. NRDI definition

4.5 Primitives for Space Optimization

In this section, we introduce primitives which are invoked inside the PDR Engine

once the PDR Controller has identified data to be subjected to reduction.
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4.5.1 Compression

Lossless data compression algorithms are widely available and used [85]. On a

normal basis, compression and decompression cause little impact. On a sensor node,

compressing certain portions of the data will yield available data space with no

information loss. The loss is from a flexibility perspective. Once compressed, the data

becomes a blob which should be treated as an atomic entity. The WSN node looses the

capacity to discard partial data.

Such an approach is recommended for very critical data, and hence very important,

that can never be discarded. Otherwise, it should be used for non-recurring data instances,

or for portions of recurring data collections that can be dropped one whole section at a

time. A parameterized compression is used to specify which span of a data instance should

be compressed:

Compress[(a, b)](RDI) signals that only the data from time interval a to b is

compressed, while the rest remains as initial.

The non-parameterized compression affects the entire RDI.

Usage on non-recurring data:

Compress(NRDI(2007/11/24 13:21:37, humidity, 0.01%, FALSE)) = NRDI(2007/11/24
13:21:37, humidity, 0.01%, TRUE)
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Usage on portions of recurring data by first dividing the data instance several data
instances:

Compress[(2008/11/11 12:00:00, 2008/11/12 12:00:00)](RDI: (2008/11/10 12:00:00,
2008/11/13 12:00:00, temperature, 3600 seconds, 0.01C, FALSE)) = RDI: (2008/11/10
12:00:00, 2008/11/11 12:00:00, temperature, 3600 seconds, 0.01C, FALSE) +
Compress(RDI: (2008/11/11 12:00:00, 2008/11/12 12:00:00, temperature, 3600 seconds,
0.01C, FALSE)) + RDI: (2008/11/12 12:00:00, 2008/11/13 12:00:00, temperature, 3600
seconds, 0.01C, FALSE)

At this point, the second data instance can undergo compression and becomes:

RDI: (2008/11/11 12:00:00, 2008/11/12 12:00:00, temperature, 3600 seconds, 0.01C,
TRUE)

while the first and third data instance retain all original data.

Figure 4.9. Usage of compression primitive

4.5.2 Thinning

For a non-recurring data instance, thinning involves simply discarding the

collected data. For recurring data, thinning involves discarding a contiguous amount of

data that corresponds to a time span of low importance in the case of recurring data

instances. This can be used when the collection has a cyclic pattern and a long sampling

period gives little additional insight when compared to a somewhat shorter period, or a

period with gaps.

To better clarify, we can resort again to the temperature sampling example. Let’s

assume that we are sampling temperature every minute. This has been going on for five

months. Depending on the business case, it may be acceptable, without any significant

impact to data significance, to either discard data pertaining to the third operational month,
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or to discard data pertaining to the third quarter of each operational month. Figure 4.10

shows the impact of thinning on a data sample.

Figure 4.10. Impact of thinning on data top) initial data bottom) resulting data after

thinning
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Thin[(a, b)](RDI) signals that the data collected between time a and time b are

dropped from the data instance.

Usage of thinning on recurring data:

Thin[(2008/11/12 12:00:00, 2008/11/13 12:00:00)] (RDI(2008/11/10 12:00:00,
2008/11/17 12:00:00, temperature, 6 hours, 1C, FALSE)) = RDI(2008/11/10 12:00:00,
2008/11/12 6:00:00, temperature, 6 hours, 1C, FALSE ) + RDI(2008/11/13 12:00:00,
2008/11/17 12:00:00, temperature, 6 hours, 1C, FALSE )

Figure 4.11. Usage of thinning primitive

4.5.3 Sparsing

Sparsing can only be used recurring data collections. If the global pattern of

fluctuation in the measurement is an important factor, then it is important not to lose entire

spans of information. In such cases, the recurrence window can be widened by means of

dropping values at regular intervals. The resolution suffers, but the overall pattern is

conserved.

Looking at the same example as in 3.2, instead of dropping a full data set

corresponding to day 3, we are going to double the sampling interval for days 2 and 3.
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Figure 4.12. Impact of data sparsing top) on the left with initial data bottom) on the right

after sparsing is applied

The syntax for sparsing is Sparse[(a,b,r,s)](RDI), which means that for the time

interval between a and b, r entries are removed out of every s entries.
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Usage of sparsing on recurring data:

Thin[(2008/11/12 12:00:00, 2008/11/14 12:00:00, 1, 2)] (RDI(2008/11/10 12:00:00,
2008/11/17 12:00:00, temperature, 6 hours, 1C, FALSE)) = RDI(2008/11/10 12:00:00,
2008/11/12 6:00:00, temperature, 6 hours, 1C, FALSE) + RDI(2008/11/12 12:00:00,
2008/11/14 6:00:00, temperature, 12 hours, 1C, FALSE) + RDI(2008/11/14 12:00:00,
2008/11/17 12:00:00, temperature, 6 hours, 1C, FALSE )

Figure 4.13. Usage of sparsing on recurring data

4.5.4 Grain coarsing

Data collections can be with very high precision, or can be with lower precision.

For example, captured images can be anywhere from black and white to 24 bit images. To

a lesser extent, this can be applied to numeric data which contains more precision in an 8

byte floating point representation versus a 2 byte integer representation.

Grain coarsing can be applied to both non-recurring and recurring data. Just like

thinning and sparsing, we can opt to apply grain coarsing only to a specific interval of an

RDI.

Because precision or resolution depends on the nature of the data, we give the

example of an image whose resolution is measured in dpi. To specify a 50% decrease in

DPI, the exact call would be GrainCoarse[(50%)](NRDI).
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Usage of grain coarsing on an image:

GrainCoarse[(50%)](NRDI(2007/03/23 17:32:45, image, 300dpi, FALSE)) =
NRDI(2007/03/23 17:32:45, image, 150dpi, FALSE)

Figure 4.14. Usage of grain coursing on an image

4.5.5 Range representation

In some cases we would like to eliminate most of the collected data for a specific

parameter over a certain time range, yet still keep some hint of where values were for that

range. In such an instance, we can keep for example the minimum value, the maximum

value, the average, as well as the number of values used to compute the average and how

far apart in time those values were. Note that the minimum and maximum values are not

necessarily correct, but they are the largest and smallest value as far as available data

samples.

A case where this can be misleading is for example a recurring data sampling that

has undergone extensive sampling. In that case, it is plausible that many of the brief spikes

and dips in values are lost.

The range primitive applied to an RDI produce a tuple: Range(RDI) = Tuple(Tstart,

Tend, Min, Max, Average). A data span that is represented as a tuple can be considered for

further space optimization in the same manner as an NRDI.
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4.5.6 Usage of primitives

The proposed space optimization methods are primitives. They are not the last

word on a specific data collection. It should be noted that the same data can be subjected

multiple times to data reduction, and each time a different mechanism can be deemed

appropriate. While data morphs, its importance changes as well.

4.6 Use Case

We take the example of a single sensor node that is deployed in a dangerous

climate area. The node is to collect several parameters over a long period of time. At the

end, the node is either removed or a sink node is placed in proximity for a brief period in

order to retrieve collected data.

The parameters that are to be surveyed are: temperature, barometric pressure, light,

humidity, vibrations, and CO2 concentration. There are several recurring data collections

as well as triggered single time collections.

We grade data importance from 0 to 1 as a continuous value. The value of 1 is

reserved for critical data that under no circumstance should be reduced in size.

Critical data involves a full day’s unaltered temperature and barometric pressure

sampling every second on the first operational day, and every 10 minutes thereafter with

importance 0.5. Except for the first day, recurring recordings of these two parameters are
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subject to 50% sparsing while at the same time their importance increases by half the

interval between current importance and 1.

Whenever a vibration amounting to 2nd degree on the Richter scale, all parameters

are collected for one hour at 5 second intervals and bear importance 1. This collection is

followed by 24 hours of collections every minute with importance 0.8. This collection can

be subjected to range representation based on 10 minute intervals, which data now

becomes of importance 1.

With this data set and requirements, the simulation is allowed to proceed both with

data reduction and no data reduction. Here is what is found in each case:

4.6.1 No data reduction

Under an approach of no data reduction, the storage space was used up in about 12

operational days. The following were found in the data storage:

 First day of temperature reading every second
 First day of barometric pressure reading every second
 Eleven days of temperature readings every 10 minutes
 Eleven days of barometric pressure readings every 10 minutes
 Data collections related to three vibration shocks: all parameters collected

for one hour at 5 second intervals, and 24 hours every minute
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4.6.2 With data reduction supported by proposed primitives

While allowing for the data reduction, here is what was found on the machine after

15 operational days:

 First day of temperature reading every second compressed
 First day of barometric pressure reading every second compressed
 Fourteen days of temperature readings every 10 minutes out of which the

first six had been sparsed (i.e. are now every 20 minutes)
 Fourteen days of temperature readings every 10 minutes out of which the

first six had been sparsed (i.e. are now every 20 minutes)
 Data collections related to five vibration shocks, two of which have been

subjection to range representation

With all of the above in storage, there are still items that can be removed to make

space for incoming data.

4.6.3 Comparison

Clearly the data reduction presents opportunity for storing more relevant data in

the long run. There are some drawbacks regarding the resolution and recurrence of

collected data, but the emphasis is placed on high importance data.

4.7 Freeing Space

Now that we have proposed procedures for data reduction, the question is when

such data reduction should be performed. There are competing constraints to consider:
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 We do not want to run the data reduction process too often
 We do not want to get overenthusiastic with data reduction as the sink may

soon be available for integral data transmission

The problems faced here are similar to garbage collections in processes such as

JVM. The added complexity is that, as opposed to JVM garbage collector, which collects

true disposable garbage, the process we intend to run recovers space in exchange for some

loss of lower importance data or loss of flexibility.

An assumption is made that while the storage recovery process is under way, the

sensing devices have enough buffer space to store sensed data until the main processor is

ready to take the data to the main storage unit.

4.7.1 The Pessimistic Approach

The main idea of a pessimistic approach in running a data reduction process is that

the space available must always be able to accommodate the biggest possible data influx

spike which cannot be dropped based on its importance. This rule can only be broken if

the existing stored data has an importance level which makes it final and not subject to

reduction.

Let us denote the total storage space with T, the occupied space by O, and the

biggest possible influx spike by S. It follows that (T – O) >= S. Technically, we can get

away with T – O = S. However, we risk fluctuating values of O which leads to a repeated
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invocation of data reduction algorithm. The free space target depends highly on business

logic and should be a value higher than S.

4.7.2 The Optimistic Approach

The optimistic approach keeps all data until it is time to store higher importance

data. At that point, storage space will be made available by running a storage space

recovery process while the incoming data is still in the sensing device buffers. For this

approach, the assumption is made that data reduction is a quick process both in identifying

the data subject to reduction, as well as the reduction process. In certain cases this may be

true, and hence there is no need to have available space sitting unused just in case there is

incoming data that needs to be stored.

4.8 Extending the Single Node Functionality

In this section, we take as a starting point the Prioritized Data Reduction (PDR)

presented above and expand it to include a complete characterization of the data reduction

mechanisms. The overall model of the sensor network under consideration is “dumb data

collection”: collection is done by the nodes, processing is done offsite. At this point, data

deduplication is not addressed as part of PDR; it is left as future work.
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In [87], data importance was introduced as a continuous value assigned to

collected data instances used in the data reduction process. The lowest value is 0 and the

highest value is 1. In order to assign this value to collected data, the data needs to be

divided in manageable pieces. Each such piece, called a data unit, has two associated

values: data importance and compensation factor.

4.8.1 Data Units

Data collections can be both recurring and non recurring. The non recurring

collections generate data that is stand alone and considered atomic. It makes sense to

consider a non recurring data record as a single data unit.

Recurring data collections have several values over a potentially long period of

time. Such a data needs to be divided in intervals that can be treated as a whole during the

process of data reduction. We propose that such intervals be devised as contiguous time

intervals. There is no need for the intervals to be of equal length. What the data units do is

provide a contained set of data on which we can apply the primitives enumerated in

Section 4.5.

For the sake of simplicity, we also assume that once a data unit has been delimited

within a recurring data collection, it is no longer subject to further division or merger with

other data units. There may be flexibility gains from allowing such operations, but this is

left as future work.
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The lifecycle of a data unit starts with a data collection, which can potentially go

through several rounds of data reduction, and ultimately possibly dropped, assuming a

long period of sink node unavailability. If at some point, the sink node is available, data is

simply unloaded and space freed.

To assist in selecting what data unit to target for data reduction, each data unit is

reflected by a data importance, denoted I. Once a data reduction is performed, this needs

to be reflected in future importance computations. For this purpose, each data unit is

assigned a compensation factor, K.

4.8.2 Data Importance

Data importance, denoted as I, is a value that numerically reflects the relevance of

a data unit for the business case. The raw value of I is primarily used to rank data units in

view of data reduction, but the exact magnitude of the difference does not necessarily

carry a meaning.

START

WHILE ‘storage availability level’ is below a ‘threshold’

FIND ‘data unit ‘ with ‘lowest importance’

APPLY ‘data reduction’ to that data unit

ADJUST the compensation factor



78

RECOMPUTE ‘importance’ for any dependent data unit

Figure 4.15. High level PDRE process for data reduction

Figure 4.15 shows an abstraction of the process that happens within the PDRE

when the controller triggers a data reduction operation. The reduction can occur in one or

more iterations. In the first step, the data unit with the lowest importance is found and the

corresponding reduction method is applied. As a consequence, the compensation factor is

adjusted. All other data units whose importance factor depends on the reduced data need

to have their importance level recomputed.

4.8.3 Compensation Factor

The compensation factor, K, is an importance modifier that reflects the data

reductions that have already been performed on the specific data unit. The compensation

factor, is defined as a percentage value between -100% and +100% and it is used in the

following manner:

I = if K < 0, (1+K)*I’ (4.1)

if K > 0, I’ + K*(Imax-I)

where I is the data importance for a data unit, I’ is the resulting data importance

post data reduction, and Imax is the maximum possible value for data importance. In our
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example, we assume that data importance is continuous between 0 and 1; 1 is reserved for

data that cannot be reduced under any circumstance.

To illustrate the application of the compensation factor, let’s take an example

where a data unit’s importance value is evaluated to 0.75 before the compensation factor is

applied.

 for a compensation factor K = 40%

I = 0.75 + 0.40(1 – 0.75) = 0.85 (4.2)

 for a compensation factor K = -40%

I = (1 + (-0.40)) * 0.75 = 0.45 (4.3)

4.8.4 Available Input

Determining data importance is in the hands of the business model. In this section,

we identify input factors that can be used to establish the importance of a data unit.

 age/collection time

The data collection time is a relevant factor. Whether in a linear manner,

exponential decay, or in some irregular manner, the collection time is relevant. For

example, one may be interested to correlate rush hour to atmospheric CO2 levels over a

month’s period. In such a case, the time dependency is rather irregular: the data collected
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just before, during, and just after rush hour are more important than data collected on a

week-end.

 self values

The very collected values can affect the importance of a data unit. For example, for

any parameter that is collected, any value outside of an expected interval may need further

investigation. Hence, additional importance can be assigned to data units containing such

values.

 other data units of same instance

In cases where a parameter’s cyclic aberrant values are suspected, the values of a

data unit affect the importance of data in other data units of the same data instance.

 other data instances

Similar to the case above, if correlation is to be made between multiple parameters,

then special values of interest in a data unit of one parameter add importance to data units

taken around the same time for other parameters measured.
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4.8.5 Summarizing the components of RDI and NRDI

In order to make the jump from a single node model to a multiple node

deployment, we have identified additional functions to better characterize data handling.

In this section, we will review the components added to the model described in [87].

 interval production function (for RDI only)

For a recurring data instance, this function is used to produce data units. This

function can be rather simple, such as grouping every fixed number of measurements in

data units, or it can be more complex resulting in the creation of data units covering

variable time spans.

 default compensation factor

The compensation factor is used to reflect already performed data reduction. A

default value needs to be specified.

 data importance function

A data importance function which computes the importance of a data unit, taking

into account some or all of the factors listed in section A.

 data reduction operation function
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A data reduction function which, given a data unit outputs a smaller sized data unit

based on its internal use of reduction primitives. It also changes the compensation factor

so as to reflect upon future data importance computations.

4.9 A Single Node Use Case

Given the above extensions to the single node model, we now consider an example

and get into details as far as the specifications for data collection. The approach to data

collection reflects human perception with respect to quantifying and formulating data

importance. In order to validate such approaches, a preliminary step is to simulate the

setup intended for deployment.

4.9.1 Car traffic and CO2 concentration use case

The main objective of the deployment in the example is to observe data that can be

used to correlate car traffic volume with atmospheric CO2 concentration. There is a broad

pattern that is expected, with more CO2 production during rush hours where there is more

traffic. There are also temporary spikes in the detected levels when a large vehicle passes,

such as a large truck. These spikes need to be accounted for.

The deployment consists of many sensors installed in a very large geographical

area, but all in proximity of a street. Some of the sensors may be able to reach other for
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communication, but communication is very costly given the distance. The collection

happens using a mobile base on a vehicle with. The frequency of data collection is not

predetermined.

The sensors that are deployed have four sensory devices in addition to an internal

clock: a gauge for CO2 concentration, a sensor across the street to detect traffic levels, as

well as to detect the presence of an oversized vehicle, a gauge for wind speed, and one for

wind direction. The sensor is also able to take a panoramic photo and store the picture.

4.9.2 Data Collection Requirements

 Every 10 seconds, the CO2 concentration is recorded continuously (data instance A)

 Matching the above, wind speed and direction is recorded continuously (data instance
B and C)

 When a large car passes, the CO2 concentration is recorded for 5 minutes at 1 second
intervals (data instance D)

 Matching the above, wind speed and direction is recorded continuously (data instance
E and F)

 If an unexpected spike in CO2 is detected, a panoramic image is recorded (data
instance G)

 The number of cars passing is recoded for every 10 second intervals (data instance H)
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4.9.3 Data Reduction Specification

Each of the above data collections need to have specific interval production

functions to generate data units, default compensation factor, data importance functions,

and data reduction functions.

 data instances A, B, and C

The division in data units is done according to the time of day. The regions of

higher interest (i.e. rush) are divided in smaller data units. That way, any data reduction

algorithm applied to a data unit affects a smaller data interval.

Table 4.1. Data unit size for data instances A, B, and C

time label data unit size
9pm – 4am night 10 minutes
4am – 6am pre rush 2 minutes
6am – 9am rush 30 seconds
9am – 11am post rush 2 minutes
11am – 2pm day 5 minutes
2pm – 4pm pre rush 2 minutes
4pm – 7pm rush 30 seconds
7pm – 9pm post rush 2 minutes

For the purpose of defining compensation factor, the reduction function, and the

data reduction function, we divide the collected data into four sections. The first three

sections span 7 days each, and the fourth section covers the remaining time interval. The

days being labeled from 0 (most recent), here are additional parameters for the data units:
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Table 4.2. Data handling parameters for instances A, B, and C

span K data reduction data importance
day 0 – day 6 50% 25% trimming set to 0.95
day 7 – day 13 25% 50% trimming set to 0.85
day 14 – day 20 0% 75% trimming set to 0.65
day 21 - end -25% 75% trimming set to 0.5

The use of K and the data reduction trimming primitive have been covered above.

For the data importance, whenever a data unit moves from one span to another, its

importance is set to a fixed value (as noted in the table). Only subsequent data reduction

operations will affect this (via the compensation factor).

 data instances D, E, and F

In this case, we select a constant data unit interval for the entire span of the data

collection. The data collection is rather shot, so the entire 5 minutes will be treated as a

data unit.

For the remaining parameters of a data instance, we divide such instances into the

10 most recent, following 100 most recent, following 1000 most recent, and as a fourth,

the remaining instances.
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Table 4.3. Data handling parameters for instances D, E, and F

span K data reduction data importance
10 most recent 20% 50% sparsing set to 0.9
next 100 20% 50% sparsing set to 0.75
next 1000 20% 50% sparsing set to 0.50
after1000 -20% 50% sparsing set to 0.50

The same approach as above is used in the case of data importance.

 data instance G

This data instance is non-recurring. A recording of this data is a data unit. Similar

to the case above, we divide the instances in the 5 most recent, the following 10 captures,

and the rest of the captures:

Table 4.4. Data handling parameters for instance G

span K data reduction data importance
5 most recent 50% 20% resolution reduction 1
next 10 50% 20% resolution reduction 0.8
after1000 50% 20% resolution reduction 0.7

 data instance H

In this instance, we are dealing again with continuous data collection. In this case,

counting the vehicles, we divide the collection in even data units. Just like in the first
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example, the data units are placed in several time spans: three spans are 30 days long, and

the fourth span contains the remaining days. The data units are 5 minutes long.

Table 4.5. Data handling parameters for instance H

span K data reduction data importance
day 0 – day 29 25% 50% grain coarsing set to 0.80
day 30 – day 59 15% 50% grain coarsing set to 0.70
day 60 – day 89 -15% 50% grain coarsing set to 0.50
day 90 - end -50% 50% grain coarsing set to 0.40

4.9.4 Use Case Conclusions

The use case described is quite simple, yet it does the job of properly collecting the

data. The model used needs the validation of intense simulation in order to validate the

nature of the data it produces in various circumstances.

4.10 Data Dependency

In the example so far, there was no dependency between the different data

collections with regards to data values from a concurrent data collection. In this section,

we expand on data instance A from the previous section in relation to data instance B. As

a reminder, data collection A is the CO2 concentration sensed, while B is wind speed.
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As a business case decision, we decide that certain atmospheric disturbances in the

area of the sensor affect the relevance of the CO2 concentration measurements. We are

going to look at two aspects to determine dependency: (i) increase in wind speed and (ii)

average wind speed within a data unit. We decide that wind acceleration beyond a fixed

value a affects the importance of CO2 measurements, while an average wind speed beyond

a certain level s affects the importance of CO2 measurements for four data units.

Figure 4.16. Data dependency across data units

In Figure 4.16, several data units, labeled from a to f, are shown with

corresponding reading of CO2 concentration and wind speed. Data units b and c on the

wind speed graph are of interest as they affect the importance of CO2 readings. In data unit

b, the wind acceleration causes an effect on the corresponding concentration reading. In

a b c d e f

time

time

CO2 %

wind

speed

data units
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data unit c, the average wind speed affects the data importance of four data units for

concentration reading.

On a more specific note, here is a proposal for to compute the data importance

mapped to a data unit of CO2 concentration reading. We denote by CO du ti - tj the CO2

concentration data unit between time ti and time tj, while WS du ti - tj refers to the wind

speed data collection.

var tempI

if age(du ti - ti+1) < 7 days

tempI ::= 0.95

else if age(du ti - ti+1) < 13 days

tempI ::= 0.85

else if age (du ti - ti+1) < 20 days

tempI ::= 0.65

else

tempI ::= 0.50

if acceleration(WS du ti - ti+1) > a

tempI ::= tempI * 50%

if average(WS du ti - ti+1) > s

tempI ::= tempI * 10%
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if average(WS du ti-1 - ti) > s

tempI ::= tempI * 20%

if average(WS du ti-2 - ti-1) > s

tempI ::= tempI * 50%

if average(WS du ti-3 - ti-2) > s

tempI ::= tempI * 80%

I(COdu ti - ti+1) :: = tempI

Figure 4.17. Computing data importance with dependency

At this point, we can generalize the constraints on the data importance

computation as pertaining to two categories: (i) internal constraints and (ii) external

constraints.

External constraints are caused by factors over which input data has no effect.

Such factors are data age and inherent interest in the data depending on the exact purpose

of the data collection.

Internal constraints represent inter- and intra-data dependencies. In the case

presented above, increased wind renders CO2 concentration less relevant and less usable;

there can be events which affect the importance of data at any point along the timeline.
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4.11 General Architecture

In this section, we present the general building blocks of the data collection

process, as well as the prioritized data reduction process. While these processes act on the

same data, they run in parallel as uncoupled processes.

Figure 4.18 presents the control steps for the data collection. Figure 4.19 presents

the steps involved in the data reduction process. The black arrows denote sequence of

steps. The red arrows denote control.

Figure 4.18. Storage management as per instance specifications
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In Figure 4.18, we have the physical sensors which make actual measurements.

They have associated registers where the data readings are placed. This happens whether

data is being collected or not. At this point, depending on the running condition of the

recurring data instances, the recurrence interval, and the resolution, the data is captured

into a buffer. Enough data is accumulated to construct a full data unit. When complete, the

data unit has its importance calculated and is placed into the storage. In case we are

following an optimistic approach to data reduction, as described in [87], then we compute

the data importance of the data unit in the buffer in order to compare with stored data. In

case the data unit in the buffer is the one with lowest importance, then it will be the one to

be reduced.

Figure 4.19. Data reduction based on data instance specifications
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Figure 4.19 only shows a single sensing unit and a single data instance. In

deployments, there can be several sensing units for different parameters, and several data

instances that are collected. There can be different instances collecting from the same

sensor, but with different specifications, such as resolution for example.

In Figure 4.19, the flow of data reduction processing is presented. The PDR

Controller continuously monitors the amount of data in the storage. If the levels cross a

given threshold, then data importance ranking is consulted to identify the least important

data. This data unit maps to a specific data instance which carries a data reduction function

as well as an importance computation function. After a reduction, the data unit is written

back to memory.

4.12 Conclusion

In this chapter, primitives were proposed in order to deal with increasing amounts

of data stored by a sensor node. The scope is to have the basic mechanisms to gracefully

discard lower importance data, or lose some flexibility and data resolution, for the benefit

of higher importance data. The results presented in the example are encouraging. With a

more complex business case, the algorithms can get more complex, but the overall

objective remains the same.
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The internal operation of a sensor node consumes little energy compared to the

requirements for transmission. Hence, the energy issue has been disregarded with respect

to operations taking place without transmission.

We also presented a methodology for prioritizing data processing in WSNs. In the

first part, primitives were introduced to support a data reduction approach. However, the

general framework of the application of the primitives was not specified. This article

identifies the modules and functions needed for a sustained data collection in situations of

limited storage availability.

Related work was presented in relation to single node situations as well as

collaborative approaches. In general, there are no specific solutions other than stating that

one needs a systematic approach to data aging. Current strategies also don’t address the

problem from the perspective of sink node unavailability, but rather from the perspective

of an intelligent WSN which gives the possibility of executing queries through the entire

network.

In our case, the constant availability of the sink node is not a given, which reflects

the reality in which sensor networks often operate. We have proposed that the data be

divided into manageable data units. These data units are evaluated and ranked in terms of

importance. When it is time to reduce the data load, the lowest importance data units are

subjected to a specified data reduction function.
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An example was shown with the use case of a very large area CO2 monitoring

WSN serviced by a travelling data sink node. Several data were collected: CO2

concentration, car traffic, wind speed and direction. A complete solution was proposed

using only external constraints on the importance of the data. One of the data collections

was further considered with respect to internal data constraints.

Finally, a system architecture was shown. The proposed architecture shows the

steps and control factors during a data collection, as well as the conditions and stages of

prioritized data reduction. We conclude that these proposed methods offer an overall

systematic approach to data reduction as a function of business case.

As future work, the presented approach can be extended via cooperation amongst

nodes. One node has opportunity to negotiate storage on other sensor nodes. Data

importance becomes a factor of the entire network. While the entire sensor network works

together towards the data gathering task, there is competition amongst individual nodes for

access to the storage available in the sensor network.

An additional item that adds interest for future work is the option to have

heterogeneous sensor nodes, and hence the ability to design WSN data center nodes. As a

consequence of a coordinated data storage approach, there is added communication, and

hence, additional energy expense. Such an expense must be justified by benefits on the

data storage optimization.

When going from the single node focus to the multiple node scenario, the

positioning of the nodes is a factor. The distance matters for transmission power. If the
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nodes are placed at predetermined positions, the preferred communication links and

energy requirements can be pre computed. If the placement of nodes is non-deterministic,

self-organization algorithms are needed to guide communication paths for access to other

nodes’ storage.

In conclusion, extending the idea from a single node to multiple cooperating nodes

adds complexity to the computation of importance factor, energy expense to the process of

data management, and to the organization of the network.

Several items remain open. A simulation model is needed to validate the choices

that we make in the importance calculation function and the data reduction function. The

parameters need to be adjusted as a function of expected input data and expected behavior.

The next step is the expansion of the model to several node systems. While some

nodes may experience spikes in data production, other nodes may simply just collect low

relevance monitoring data. It is beneficial to consider this case for collaborative storage.

The context in which importance evaluations and reduction functions operate so far is

specific to the node that has produced the data. When we consider sharing other nodes’

storage space, data that is being housed on a different node needs to be sent with proper

instructions for handling. Internal dependencies can no longer be enforced; they need to be

rephrased or simply dropped.

As a final step for having a robust solution, redundancy needs to be addressed. We

have assumed smooth operation of the nodes with no equipment loss or malfunctions. This
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can very well be the case in a remote area. The degree to which redundancy is required

and how importance of redundant copies is computed is left as future work.

The decisions taken by the node while handling data make no assumption

regarding scheduled, probabilistic, or statistical availability of the sink node. This

additional information can affect the manner in which data reduction is applied, as well as

the storage occupancy level at which data reduction processes are triggered.

Overall, the proposed solution and framework for a single node case are now

robust enough to provide flexibility for future extensions.
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Chapitre 5

Réduction des Données: Multiples Nœuds

Sommaire

Dans le chapitre précédant, nous avons introduit la réduction de données en

considérant un seul nœud. Dans un réseau à multiple-nœuds, la possibilité de déplacer les

données est une alternative à la réduction (la relocalisation peut également être utilisée en

parallèle avec la réduction).

La relocation des données implique inévitablement une dépense non-négligeable

d’énergie. Les trois facteurs qui influencent cette consommation supplémentaire sont: le

nœud source, le nœud destination et les données (en incluant aussi leurs dépendances avec

d’autres données). Le nœud source doit conserver une énergie suffisante pour transmettre

les données résidantes lorsque la station de base (sink node) devient disponible. Le nœud

qui reçoit doit avoir assez d’espace disponible pour des données avec un index

d’importance très bas (pour ne pas prendre la place de données transférées, car l’espace

alloué est en compétition). Les données elles-mêmes doivent être auto-suffisantes, dans le

sens où elles doivent toujours être associées avec tous les autres paramètres nécessaires

pour le calcul de l’importance sur le nouveau nœud.

Un autre opération possible dans les réseaux à multiple nœuds consiste à avoir des

copies redondantes afin de protéger la collection de données contre les défaillances d’un
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nœud. Cependant, ces copies ont une particularité: leurs fonction d’importance ne doit pas

dépendre d’autres données (c'est-à-dire rester sur le nœud d'origine).
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Chapter 5

Prioritized data reduction: multiple nodes

Summary

The previous chapter approached the data reduction from the perspective of a

single node. There are benefits from looking at a WSN deployment as a whole. There is an

opportunity to relocate some data to less active nodes and spare it from a reduction

process.

There are energy considerations to take into account in evaluating the potential

benefit from spending some energy to relocate data. Three factors play a part in this: the

source node, the receiver node, and the data itself. The source node needs to save enough

energy to relay its data once the sink node becomes available. The receiver node needs to

have space available, or at least have a lot of space occupied by low importance data. The

data itself needs to be self-enclosed as far as parameters needed for importance

computation.

Another aspect that becomes feasible in a multi node environment is having

redundant copies of data to protect against potential node failures. These copies have their

own particularities, a notable one being that their importance function cannot depend on

other data.
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5.1 Introduction

Several approaches and protocols have been proposed with regards to collaborative

storage. By having a wider view of the deployment, such protocols attempt to address

aspects such as alleviating situations, where certain nodes produce more data than others,

deduplication of data that was collected unknowingly by more than one sensor, and

ultimately, as a side effect of deduplication, less energy is needed to relay the data to a

base station.

In [88], Tilak et al. propose a Cluster Based Collaborative Storage (CBCS) as a

specific solution to collaborative storage. Several algorithm improvements in WSNs have

this common approach of clustering nodes, electing cluster heads, and establishing an

overall tree structure through the network. CBCS does this in the context of storage

management. Nodes are grouped in clusters, based on geographical data. Cluster heads

(CH) are elected, one per cluster; they have the task of aggregating all data from the

cluster nodes. This improves power use efficiency as only the CH needs to further relay

the data towards the sink node. Such an approach seems to place more emphasis on the

energy saving rather than dealing with large amounts of data. Aggregating all the data

from the cluster nodes on the CH storage space cannot be beneficial when we are trying to

solve storage issues.

In Figure 5.1, a visual representation of clusters is shown. Most clusters are created

with geographical proximity in mind in order to minimize energy expenditures on



102

communication. The designated or elected cluster heads, shown circled, handle the

communication with a sink node, S, which is linked to a stable reliable network.

Figure 5.1. Clusters in a WSN

In [89], Shenker et al. propose a method, Data Centric Storage (DCS), to store data

as identified by its name. Related data would in the end be stored either on the same node,

or on neighboring sensor nodes. This would facilitate deduplication and also improve

queries since data pertaining to a query would reside in the same proximity, therefore

avoiding the need for queries to be run through large sections of the network. This

approach is useful for WSNs that are designed to support searches, but does not apply to

networks where data analysis is done offsite.

S
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Siegmund et al. [90] address the issue of data integrity. Data redundancy is

achieved in the network via the implementation of a new abstraction layer in the WSN.

This layer can support the need for data redundancy. While robustness is of importance,

there is very limited work in view of alleviating potential data overload in the network.

Collaborative storage presents challenges in terms of locating data during queries

through the network. It also adds to the power requirements of the nodes. In the proposals

published so far, there is no consideration for collaborative storage to mitigate memory

limitations on some sensor nodes. There is also no effort to give a semantic to the stored

data in order to assist with data age-out in the context of a node who is only storing the

data without having produced it.

Having multiple nodes interact in an effort to better manage storage space gives

the opportunity for two considerations: storage space sharing and redundancy. In this

chapter, we address these concepts from the perspective of prioritized data reduction.

5.2 Storage space sharing

5.2.1 Load sharing

Most research related to sharing across several nodes the impact created by data

refer to balancing out the data access hot-spots. Occasionally, data queried in a network

will be accessed in a skewed manner resulting in a small set of nodes receiving a

disproportionate amount of queries and hence taxing the energy storage of those specific
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nodes. In order to deal with these cases, methods to replicate the data are presented as well

as methods to divide the data across several nodes. In [91], the problem is approached

from the perspective of k-d tree mapped data. In such a mapping, data storage is done

independently of the node that produced the data. When one node becomes overwhelmed

with respect to the amount of data that it needs to store, a tree rearrangement is done in

order to balance the data load.

A k-d tree covers a two dimensional surface by recursively dividing the surface in

two parts. At the point where we have a single node inside a parcel, that parcel no longer

undergoes division and the node becomes the leaf of the path that created the parcel.
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Figure 5.2. Division of a WSN in a k-d tree

Another facet of load sharing is found in [85], where the authors address the

problem of congestion at nodes on highly used paths. Not only are these nodes’ energy

supplies overtaxed, but the limited storage space that they have may not be enough to

transiently hold all the packets. The proposal is to group the sensor nodes into small

clusters, ideally a highly redundant deployment. When high traffic volume is sensed, the

cluster head node starts to divert traffic to neighboring nodes. Because the nodes are in the

vicinity, the congestion is localized to the specific area without spreading to other nodes.

For critical data, the head node can make the decision to replicate the data several times so

as to assure its continuity even in the event of a node failure. One drawback is a potential

added delay caused by the added store and forward operations within a cluster.
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5.2.2 Storage sharing

In this section, we cover the aspects of sharing the storage space that exists within

an entire wireless sensor network. This is already done as part of geolocated data having

as aim to facilitate queries. In our case, we assume a network that does not support in-

network queries, but relays all data to the sink for offsite processing. Data produced by a

node stays on that node until delivered to the sink. However, in the interest of balancing

out space needs, we consider the possibility to forward certain data to other nodes as

opposed to applying prioritized data reductions.

Until storage sharing, it was rather straight forward to perform a round of data

reduction, i.e., select the data unit with the lowest importance and apply the reduction

function. This could be done iteratively to bring the memory usage below a certain

expected threshold. With an option to package and send data as a method of storage size

recovery, several decision factors appear. How much data to send? How to select the most

appropriate data to send? How to select the best node to send the data to? There are no

definite answers in situations where external inputs dictate how much or how little data

needs to be stored. There are however preferred ways to handle storage space sharing.
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5.2.3 Energy considerations

When encountering limited data storage space, a node has two options, (i) to

reduce the size of the data by applying some primitives, or (ii) to relocate some data. In

this section, we consider the factors that affect the decision:

current energy levels

Negotiations to find an appropriate host for data require energy. As the packets

involved in negotiations don’t contain data, they are fairly short so they don’t consume

much energy. The energy cost needed for the transfer of the data depends directly on the

size of the data transferred. The node needs to save enough energy to eventually transfer

the entire contents of the data to the sink node once the sink node becomes available.

expected opportunity to connect to sink

Energy is wasted if a portion of data is relocated only to be transferred to the sink

shortly after. In the case of unreliable sinks or sinkless deployments, expected access to

sink is hard to compute. It can be done with statistical data, but reliability can vary. If the

sink operates on a predefined schedule, it is feasible for this to be taken into consideration.

A similar case to a predefined uptime schedule is a mobile sink. With some uncertainty,

the sink will travel along a route with high probability of being in specific areas at certain

times.
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5.2.4 Data considerations

There are characteristics that make data appropriate for relocation. The size is one

factor, as we want to have a sizable impact as a result of investing energy in the

negotiation part. Other factors relate to the dependency between data units.

The importance calculation function should depend on self values or on time only.

In that way, we can preserve the importance calculation function after the data has been

moved. In some cases, the importance of a data unit depends on other data units of the

same collection. It is conceivable that all the data units with importance interdependence

relations be subject to a data transfer as a whole.

The reverse is also true, i.e., the data units to be transferred are used in computing

the importance level of other data units. Bundling everything in the data to be relocated is

an acceptable solution.

A special case is the situation where yet uncollected data can affect the importance

of data units already collected and tagged for relocation. Such data is best not moved as

this would imply changed to the importance calculation function.

The parameter K was introduced in Chapter 4 as a compensation factor to affect

the importance value for data units that have undergone data reductions. A positive K will

increase the importance of post reduction data, while a negative K will decrease it. The
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data that is considered for a move needs to have a positive K so as to make it through

potential data reductions it will undergo on the receiver node.

5.2.5 Receiver node considerations

The conditions of the receiver node affect how the received data will be handled

on that node. The potential recipient of the data needs to have a good situation of its

storage space as well as a good outlook for future situations. The recipient also needs to

have a good amount of energy left so as not to compromise the long term survival of the

data being sent.

The number of active collections and the amount of data they produce is an

important factor. If there are many collections going on, the space on the receiving node is

quickly filled up. Even if these collections produce low importance data units, a large

number of ongoing collections generate lots of data reductions and data relocations. We

want to avoid causing such events.

Inactive collections are collections whose start condition is not met. Some of these

are predictable as to when collection actually starts, such as collections that only depend

on time to be activated. Others depend on data values detected by sensors. Having a large

number of inactive collections makes a node less desirable to act as a data recipient. These

collections can start unexpectedly and produce data that competes for space with the

relocated data.
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Finally, the general importance profile of the stored data units are a factor in

deciding if a node is a good recipient of relocated data. If most data on the receiver node is

low importance, then the node is a good recipient of data. However, the nature of the

importance functions on that node is to be taken into consideration. An event could trigger

a recomputation that changes the data importance to higher values.

5.2.6 Sending vs. Reducing: the decision

The decision to favor data reduction vs. data relocation is subject to network’s

owner decisions. In this section, we provide a parameterized approach to handle this task.

We specify three functions as follows:

 SF(i) specifies the fitness of a node i to act as a data source

 RF(i) denotes the fitness of a node i to act as a data receiver

 DF({du}) denotes the fitness of a set of data units for a data transfer operation

We also specify a threshold value t such that:

if (a*SF(n) + b*RF(m))*DF({du}) > t, then node n should initiate a data transfer of

the {du} set of data units to node m, where a and b are parameters to give more or less

weigh to each of the functions
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SF(i) is defined as a function of the source node’s ability and opportunistic interest

to spend energy on data movement related operations: negotiations and actual data

movement. We define as LD(i) the percent of data stored on node i having an importance

that is low and decreasing, that is, an importance smaller than a fixed value, decreasing in

time, and a negative K. The K does not have to be negative for a fixed number of initial

reductions, but it needs to be negative for remainders of the reductions or the reductions

are quickly reaching a point where data is entirely dropped. Let e be the minimum residual

energy required for a node n to send its data contents and E the current amount of energy

in storage. The value of SF(i) directly related to available energy and to the lack of low

and decreasing importance data units. We define SF(i) as follows:

SF(i) = k*(1-LD(i)) + j*(E/e) (5.1)

where k and j are parameters to adjust the weights of the two factors.

RF(i) is defined as a function to quantify the potential receiver’s node fitness to act

as a receiver. With respect to energy, RF(i) behaves just like SF(i). With respect to the

stored data profile, it behaves in an opposite manner. In addition to these two aspects,

RF(i) needs to account for the effect of active collections as well as inactive data

collections.

RF(i) = k*S*LD(i) + j*(E/e) - k*(Da + p*Di) (5.2)



112

where Da is the storage debit of active collections and the Di is the potential storage debit

of inactive collections. The constant p is used to decrease the impact of inactive

collections.

DF(i) reflects on the fitness of data to be subjected to transfer. As a limiting factor,

we have established that the bundle of data units must be self enclosed as far as

importance calculation dependency. We propose the following formula for evaluating a

data unit’s fitness for transfer:

DF(i) = I*(trend(K) - k*|M - s|) (5.3)

where M is the ideal data transfer size, s is the size of the current data slated for transfer, k

is an adjustment parameter, and trend(K) is a function that evaluates the value trend of K

in time and as potentially affected by reductions within the transferred data. The entire

result relates to the overall importance I of the data bundle considered for transfer.

With these formulas, we have captured the essence of the decision making process

of data transfer vs. data reduction. The approach is heavily parameterized as weighing

different factors varies from one business case to another. In light of these proposals,

Figure 4.19 undergoes changes:
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Figure 5.3. Data reduction via move or prioritized reduction

We can assume that process to evaluate the source not for fitness to participate in a

data send is straight forward: the value of the SF(i) is computed. Finding a recipient and

finding appropriate data to send are more complex as they involve selecting from a pool of

possibilities.

Finding data to transfer is a complex process. There can be a large number of data

units, and therefore, considering all possibilities can be a lengthy process. We propose a

heuristic on how to approach data targeting for relocation with the understanding that an

exhaustive process may offer a better solution but at a higher cost. Data units that are

targeted for transfer are incrementally added to the set of data for transfer as we seek to

fulfill the requirements for self-enclosure for importance function evaluation. We stop as
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we reach a data size in the vicinity of M. In certain cases, we reach a dead end and can no

longer have hope to find appropriate data to move.

The set of data units to be moved is incrementally increased in steps as follows:

 high importance and positive K data units on which no other data units’ importance
depends

o data units’ importance dependence limited to self values

o data units’ importance dependence limited to self values and time

 high importance data units with positive K whose importance depends only on other
data units already collected (i.e., future data units collected have no impact on the
importance of this data)

 recursively add the data units on which the above units depend for importance
calculation

 as we reach a value close to M, we stop adding data units to the set of data targeted for
a data transfer

We realize that recursively adding data units may be getting out of hand. If the

minimum amount of self dependent data units amount to a very large amount of data, we

can safely give up the idea of a transfer and opt for a data reduction.

The simplest approach to finding a recipient for data is to query the status of all

reachable nodes, evaluate their RF(i) function and select the best option. Depending on

the deployment, querying the immediate neighbors only may be artificially limiting the

amount of potential recipient candidates for data relocation. Attempting to go the extra

distance via additional hops requires the cooperation of other nodes along the path. These

nodes need to commit energy reserves towards the data relocation process. Given that we
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have already selected the data that will be moved, there is a clear expectation as to what

amount of energy would be required from the transient nodes during the data move.

Finding an appropriate receiver for the data follows the following steps:

 decide how many hops away we want the data to potentially go

 broadcast a message to the effect of finding a host, including the number of hops; if
more than immediate neighbors are considered, include the data size to be able to
obtain commitment along the transfer route

 reachable nodes reply with their current RF(i) computation

 select the best RF(i), compute (a*SF(n) + b*RF(m))*DF({du}) (see section 5.2.6) and
if result is satisfactory, proceed with the transfer

 if the computation yields an unsatisfactory result, then data reduction is undertaken
instead of transfer

5.2.7 Validation and calibration of heuristics

In the above section, we have proposed a series of heuristics to quantize the fitness

of nodes to act as receiver or sender, as well as the fitness of data to be transferred. The

proposed formulas are parameterized so they can be tweaked to several circumstances. In

this section, we are going to evaluate the trends that the formulas generate under different

circumstances depending on the statistical distribution of importance and compensation

factor of stored data units.

We recall that the formula to decide the fitness of a node to act as a sender is:

SF(i) = k*(1-LD(i)) + j*(E/e) (5.1)
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By its definition, the fitness function depends on the raw amount (not ratio) of high

importance data and level of energy required to relay the entire data load towards the base

station. We consider the scenario of different statistical distributions of data importance on

a node, and in each case, we vary the amount of energy available. We consider the cutoff

for LD(i) to be at the importance level of 0.5. Hence, in the graphs below, the blue bars

represent (1-LD(i)).

Figure 5.4. Data distribution scenarios for validation of SF(i)

The image above shows the scenarios considered with respect to the distribution of

importance values. We have considered skewed, bell curve, and bimodal.



117

The initial proposal was that the amount of energy available would have a linear

impact on the value of SF(i). This works well at points where the available energy levels E

are within a few orders of magnitude of e, the energy needed for a full data transfer. At

higher orders of magnitude (i.e orders of thousands, and above), the linear growth of

j*(E/e) poses a problem as it identified a node as a “good node to send data” mostly based

on its energy levels. If the nodes deployed fall in such a class, then the problem can be

alleviated by using a logarithm to attenuate de higher orders of magnitude:

SF(i) = k*(1-LD(i)) + j’*log(E/e) (5.4)

Experiments with different LD(i) values only changes the balance between

defining good source nodes via SF(i) and balanced by the ability to find receiver nodes via

RF(i) defined in equation 5.2.

Along the same lines, simulations were run to further analyze the proposed

formula for RF(i). We notice an important difference between SF(i) and RF(i): the

formula for SF(i) depends on a percentage of storage while the RF(i) formula depends on

the value of raw storage. The idea is that we don’t want to put at a disadvantage nodes

that, as per a deployment decision, have less storage space than others.

Analysis of RF(i) brings up a matter similar to SF(i) in that excessive energy levels

can drive up the value of the function and artificially flag it as a good receiver node. In

reality, this excess of energy may hide data space availability issues on the receiver node.

it was found that in reality, aside from using a logarithm to attenuate the energy effect, a
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product rather than a sum gives a better assessment for a node’s ability to receive data.

Therefore, RF(i) as presented in equation 5.2 can be refined as:

RF(i) = j*log(E/e) (k*S*LD(i) - l*(Da + p*Di)) (5.5)

The evaluation of data fitness for transfer was defined in equation 5.3 as

DF(i) = I*(trend(K) - k*|M - s|) (5.3)

Statistical evaluation on this formula with a linear relation between the trend of the

compensation factor (trend(K)) and the deviation of the data size from an ideal size (|M-

m|) is a good approximation. Since there are already strict conditions on assembling a set

of data units for relocation, it would be counterproductive to discount the selected data set

in case there are variations from the ideal size. Hence, we opt for a linear dependence on

size deviations.

Additional simulations were conducted on the formula assembling the three

heuristic items:

(a*SF(n) + b*RF(m))*DF({du})

We need both a pair of nodes to participate in the data transfer and a data set. If

either of these items scores low with our evaluation, we want to prevent the data

relocation. Hence, a product is appropriate.
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For the purposes of the simulations in this section, we have compared trends in

values. Specific parameter values can be assigned for very specific deployment scenarios,

which must be validated on a case by case basis via simulation.

5.2.8 Relaxing data dependency for transfer

In the approach described above, we have restricted the data movement to data

units whose importance function can be evaluated even after the move. This restricts the

set of data units that can be targeted for relocation. While not going into the details of a

full solution, we present in this section two approaches that can be used to mitigate the

relocation of data units

A first approach is to simply replace the importance function for the relocated units

with a version that does not depend on other data units. This basically changes the

business case approach and may not be feasible while retaining a reasonable amount of

intended resolution.

A more refined approach is to use expected values to replace the parameters inside

of the importance function. It is less than desirable and requires some statistical approach

in deciding what the expected values are. In the end, this approach may not yield a good

compromise either because we may be interested in situations where unexpected values

are encountered.
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5.3 Redundancy

Up to this point, we have not addressed the issue of data redundancy. Having

multiple copies of data in a wireless sensor network is important to balance the high

incidence of node failure. In the framework presented in this thesis, having multiple copies

of the same data runs counter to idea that we seek to make maximum use of a limited

storage space.

5.3.1 Implementing redundancy

The implementation of redundancy is done at the specification of the data instance

as shown in section 4.4.2. The additional parameters that we include relate to the number

of that we want to store for that specific data instance. Hence, the data instance definition

becomes:

Definition of an RDI with redundancy

RDI: (Tstart, Tend, param, recurrence, resolution, compression, copies), where:
Tstart: start time
Tend: stop time
param: the parameter being collected
recurrence: how often the collection is done
resolution: how precise the stored value is
compression: boolean stating if the RDI has been compressed
copies: integer stating on how many nodes the data needs to be stored
e.g., RDI(2009/12/06 16:43:23, ongoing, temperature, 60 seconds, 0.01C, FALSE, 4)

Figure 5.5. RDI definition with redundancy
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Defining an NRDI with redundancy

NRDI: (T, param, resolution, compression, copies), where:
T: recording time
param: the parameter being collected
resolution: how precise the stored value is
compression: boolean stating if the NRDI has been compressed
copies: integer stating on how many nodes the data needs to be stored
e.g., NRDI(2009/12/06 16:43:23, temperature, 0.01C, FALSE, 3)

Figure 5.6. NRDI with redudancy

As data is collected one data unit at a time, these data units are stored locally

(master copy) and copies are also stored on as many nodes as specified. These redundant

nodes are not tied to one specific recurring data instance for example. The node collecting

the data can select any other node to store the copies on. The process can be batched as

node to node negotiations can be very costly for a small data segment at a time.

5.3.2 Importance calculation

We have seen in Chapter 4 how each data instance has a function that can be used

to compute the relative importance of each data unit produced. When we deal with several

copies of the same data unit, we need to specify a different importance value for each of

the copies. Redundant copies have less importance than master copies. For this reason, in

addition to the factors listed in section 4.8.4, we propose an importance decay function
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which is applied to the importance calculation of redundant copies. For example, if we

have a linear decay, the adjusted value of a data unit importance would be:

D(I(du)) = (1/r) * I(du), where r is the redundancy level (5.6)

As nodes collect data and go through data reductions, some of the redundant

copies of specific data units may be dropped. This is normal as nodes prioritize data units

as a function of importance. However, depending on the environments in which the

redundant copies end up, higher level redundancy copies may disappear before lower level

ones. In that case, we need to attach a message trigger to update the redundancy level of

the copied of the dropped data unit. A limited flood mechanism can be used as it is not

expected for data units to migrate very long distance from the point of origin.

Since redundant copies are targeted for transfer, the function used in calculating

the redundant copies importance level must be computable on the receiving node. That

restricts the computation function in a way similar to the restrictions imposed by load

sharing. In consequence, if the data importance calculation function depends on other

stored data, then redundant copies need to carry a completely new function, as opposed to

a function simply affected by a decay function.

5.3.3 Load sharing under redundancy

The objective of redundancy is to protect the data from eventual sensor node

failures. We therefore have several copies stored in the network. As a result of using load
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sharing to mitigate storage issues, we may at some point attempt to store more than one

copy of a data unit on the same node. This should be prevented as it defeats the purpose of

redundancy.

5.4 Conclusion

In this chapter, we have presented our proposal for prioritized data reduction in

light of a multi-node deployment. In such a case, it becomes feasible that a node facing

storage space shortages look first at offloading some data to neighboring nodes. We have

proposed a mechanism by which a node can quickly assess the situation and decide

between the option of local data reduction or a date transfer.

The opportunity for redundancy was also evaluated. As wireless sensor networks

are often deployed in unreliable and dangerous areas, node failure is high. Data

redundancy reduces the possibility of critical data loss caused by node failures. We

presented a mechanism to evaluate the importance level of data units that are redundant

copies rather than master copies of the collected data.

In the next chapter, we present a use case where the concepts introduced so far are

used.
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Chapitre 6

Déploiement avec Redondance dans une Région à Haut

Risque

Sommaire

Ce chapitre présente un cas d’étude qui utilise les concepts introduits dans les

chapitres précédant. Il considère un réseau à six nœuds chargé de la surveillance d’un

volcan. Tous les six nœuds sont équipés de capteurs spécialisés pour la concentration de

CO2, la température et la concentration des particules.

La collection des données suit un plan préétabli initié par des sommets de

température (mesures). Deux nœuds dans la proximité du volcan présentent un très grand

risque de perdre les données ; donc par précaution deux copies de données collectées sont

gardées dans d’autres nœuds.

La simulation est menée par deux ensembles de paramètres : un ensemble

favorisant la réduction des données et l’autre recommandant la relocalisation des

données.

En analysant les résultats, nous avons constaté que l’approche par redondance

demande des protocoles spécifiques. Les deux nœuds à haut risque ont été crées afin

d'avoir leurs données en copie sur d’autres nœuds.
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Chapter 6

Use case: Redundant Deployment in High Risk Area

Summary

In this chapter, we present a use case that covers all the presented concepts. The setup is a

WSN made up of six nodes in charge of monitoring a volcano environment. All nodes are

equipped with sensors for CO2 concentration, temperature, and airborne particle concentration.

Some ongoing data collections are scheduled as well as some triggered by spikes in the

temperature measurements. The two nodes closer to the volcano crater are deemed high risk, and

therefore, the data they collect needs to have redundant copies on other nodes.

The simulation is run with two different sets of parameters: one set favoring data

reduction, and one favoring data relocation. Data relocation is a viable option as the importance

computation function of one data instance in most cases does not depend on other data instances.

While analyzing the results, we discover that the redundancy approach behaves in a

manner that needs additional protocol specifications. The two high risk nodes were using each

other to host redundant copies of collected data.
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6.1 Introduction

In this section, we select a use case for the presented approach and analyze the

outcome of a simulation. We chose to simulate a deployment where six sensor nodes are

placed in proximity of a volcano. The nodes are pre-positioned as follows:

Figure 6.1. Deployment of use case sensor nodes

In the scenario above, the aim is to monitor the volcanic activity both at close

range as well as from a longer distance. The nodes are identical as far as hardware

configuration. Sensors are equipped with sensors for CO2 concentration, temperature,

and airborne particle concentration.

A

B

C
F

D E
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6.2 The business case

The purpose of the data collection is to obtain a baseline level of data collection

for the three parameters that a node can collect. In addition to this, several unexpected

events can trigger shorter term fine grained data recordings. It is clear that sensor nodes A

and B, being in closer proximity to the volcano, are subjected to higher change for a

hardware failure. Therefore, redundant copies of the data collected by those nodes should

also be stored on other nodes.

6.3 The specifications

For the sake of simplicity, we divide the nodes into two classes of nodes: high risk

nodes and low risk nodes. The high risk nodes are those closer to the volcano crater (A

and B) while the low risk nodes are further away (C, D, E, and F). We specify data

collections and parameterization for each class of nodes.

Low risk nodes

Ongoing collections with no redundancy required:

Table 6.1. Specification of ongoing data collections with no redundancy

name start end parameter recurrence resolution compress.
CO-1 TRUE FALSE CO2 % 5 minutes 0.01 FALSE
C-1 TRUE FALSE temperature 1 minute 0.01 FALSE
D-1 TRUE FALSE airborne

ppm
10 minutes 0.001 FALSE
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Triggered collections with no redundancy required:

Table 6.2. Specifications of triggered collections with no redundancy

name start end parameter recurrence resolution compress.
CO-2 airborne

particles

over

1ppm

airborne

particles

under

0.1ppm

CO2 % 10 seconds 0.01 FALSE
C-2 temperature 5 seconds 0.01 FALSE
D-2 airborne

ppm
20 seconds 0.001 FALSE

So what we have described above are constant data monitoring operations in the

form of ongoing collections. In addition, while monitoring the airborne particle

concentration, if the concentration goes over 1ppm, we monitor all three parameters at a

very short interval until the airborne particle concentration drops below 0.1ppm. As these

nodes are in low risk areas, at least by comparison to other nodes, we do not require that

redundant copies be made.

High risk nodes

Ongoing collections with redundancy required:

Table 6.3. Specifications of ongoing data collections with redundancy

name start end parameter recurrence resolution compress.
CO-1 TRUE FALSE CO2 % 1 minutes 0.01 FALSE
C-1 TRUE FALSE temperature 10 seconds 0.01 FALSE
D-1 TRUE FALSE airborne

ppm
1 minutes 0.001 FALSE
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Triggered collections with redundancy required:

Table 6.4. Specification of triggered collections with redundancy

name start end parameter recurrence resolution compress.
CO-2 airborne

particles

over

10ppm

airborne

particles

under

1ppm

CO2 % 2 seconds 0.01 FALSE
C-2 temperature 1 seconds 0.01 FALSE
D-2 airborne

ppm
5 seconds 0.001 FALSE

On the high risk nodes, we have specified a tighter sampling rate for the ongoing

data collections. In the case o triggered collections the start and end conditions are also

changed as a proximity to the crater has different expected steady state concentration of

airborne particles. For the ongoing collections, the data needs an additional copy for

redundancy. For the triggered data collections, we need two additional backup copies

stored in the network.

For each of the data instances, we have the option to specify a data unit

production. This gives the ability to have a more fined grained control regarding potential

data reduction during times of high interest. This would apply to cyclical events such as

traffic during rush hour, or traffic during the week-end. In our case, we are doing

environmental monitoring of a volcano. There is no reason to vary data unit sizes. We

decide that for the ongoing data collections, the data is to be divided in one hour long

data units. For the triggered collections, we divide the data into five minute long data

units.
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As a method of data reduction, we favor iterative sparsing. The data units

themselves are fairly small. Therefore, we can gather a general picture of the trend in the

measured parameters by comparing representative values from each data unit. Having

access to the micro-variations that occur within a data unit is deemed only marginally

better than having a sparsed data set. When there is a single measurement left in the data

unit, we can drop the entire data unit as part of data reduction.

While the sparsing is applied as part of data reduction, we design K, the

compensation factor, to age out data that is older than a certain time. For example, we can

agree that a default K is 0% for all the data collections. As collections undergo

reductions, K grows towards 50% by one percentage point every time the data unit

undergoes a reduction.

At this point, we need to construct formulas to compute the importance values for

data units. Overall, the business decision is to give more importance to data generated by

the high risk nodes. Those nodes are at risk for data loss via node failure and we need to

assign higher importance to the data generated by those nodes and for the redundancy

copies generated by those nodes.

Low risk nodes

For the ongoing data collections, we assign I as follows:

 0.85 for the 10 most recent days

 0.65 for the following 100 days
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 0.55 for the following 1000 days

 0.40 for any data older than the above

 if we experience a temperature spike above 100C, then

o all the data importance increases by 0.25, capped by a maximum of

1.0, for all data units 20 days following the temperature spike

o all the data importance increases by 0.20, capped by a maximum of

1.0, for all data units 30 days prior to the temperature spike

For the triggered collections, we assign I as follows:

 0.95 for the 5 recent and least recent days

 0.80 for the days in between

High risk nodes

For the ongoing data collections, we assign I as follows:

 0.95 for the 10 most recent days

 0.75 for the following 100 days

 0.65 for the following 1000 days

 0.50 for any data older than the above

 if we experience a temperature spike above 200C, then

o all the data importance increases by 0.25, capped by a maximum of

1.0, for all data units 20 days following the temperature spike



132

o all the data importance increases by 0.20, capped by a maximum of

1.0, for all data units 30 days prior to the temperature spike

For the triggered collections, we assign I as follows:

 0.95 for the 5 recent and least recent days

 0.80 for the days in between

In the case of high risk nodes, we recall that we seek redundant copies of the data

collected. We need one redundant copy of the ongoing data as well as two redundant

copies for the triggered data. We are going to establish that the importance of the

redundant copies will be established as follows:

 we eliminate the special clauses where data importance depends on

temperature reading spikes

 we establish that the first redundant copy has an importance reduced to 80%

of the computed value

 we establish that the second redundant copy has an importance reduced to

60% of the computed value

6.4 The results

We run two simulations of the above scenario: one that is more inclined to use

data reduction, and one that is more inclined to use load sharing. At the end of the

simulation, we analyze the data stored in each node (columns) against the data producer
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(rows). In Table 6.5, we see the results at the end of a simulation with storage level

mitigation weighed towards data movement.

Table 6.5. Breakdown of data storage with preferred relocation

A B C D E F
A 70% 14% 25% 8% 3% 17%
B 11% 66% 22% 5% 8% 23%
C 7% 8% 38% 3% 2% 6%
D 5% 3% 7% 67% 12% 5%
E 2% 2% 2% 10% 68% 3%
F 5% 7% 6% 7% 7% 46%

To gain better understanding of these numbers, we plot the data relating the data

producer and the node that in the end stores the data:

Figure 6.2. Data storage as related to origin of data under relocation favoured conditions
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For comparison reasons, Table 6.6 and Figure 6.3 show the data in case data

reduction is given preference over data relocation.

Table 6.6. Breakdown of data storage with preferred reduction

A B C D E F
A 81% 11% 19% 8% 2% 12%
B 8% 73% 16% 4% 6% 13%
C 5% 7% 53% 1% 1% 5%
D 3% 2% 5% 74% 11% 3%
E 1% 2% 2% 8% 77% 2%
F 2% 5% 5% 5% 3% 65%

Figure 6.3. Data storage as related to origin of data under reduction favoured condtions
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The results above show that the proposed mechanisms perform the task of

ensuring longest survival of most important data. By comparing figures 6.2 and 6.3, we

can see how the balance can be tilted in favor of data reduction of data relocation.

One item of concern with the above data is the handling of the redundancy data

generated by the high risk nodes. The ongoing data collection of the two high risk nodes

was required to have a redundant copy saved on a different node. Because of their

proximity, nodes A and B ended up using each other to store redundant copies of their

data. While this ensures redundancy, the reason for the redundancy was not captured in

the mechanism, resulting in two high risk nodes offering redundant space for each other.

We can see that a fair amount of data was relocated even in the case where the

decision was tilted towards data reduction. This was facilitated by having importance

calculation functions that are very free of data dependencies. In cases with several nodes

where data dependency is high, it is harder to find appropriate data to move, and nodes

are relegated to data reduction.
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Figure 6.4. Highly connected sensor nodes

The data profile generated by the above deployment will look something like

Figure 6.5:
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Figure 6.5. The effect of highly dependent importance function

In Figure 6.5, we notice that above 90% of the data stored on a node has been

collected by that node. In cases where the importance calculation function needs to

frequently access many data units, finding a self enclosed set of data units is not feasible.

Lots of energy is spent finding for this type of search and in the end, there is no benefit. It

would be a good decision in cases like this to completely turn off data relocation.

6.5 Conclusion

In this chapter, we presented a simple use case of an environmental monitoring

deployment. Prioritized data reduction has been used to free storage space so that high

importance data can stil be stored. Data load sharing was implemented in order to make
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better use of the general storage pool of the network. Redundancy was used to protect the

data collected by the nodes in high risk areas. The data collected shows that we can favor

data reduction or data relocation as we decide.

One item that needs additional attention is the choice of redundancy nodes.

Redundancy is mostly needed for nodes that are in high risk areas, or that by their nature,

are proce to faults. At this point, there is no mechanism to specify the danger associated

with storing redundant copies on one node versus another. Such a mechanism is needed

to prevent redundant copies of data from ending up in high risk areas altogether.
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Chapitre 7

Conclusion et Recherches Futures

7.1 Conclusion

Dans cette thèse, nous avons considéré certains problèmes spécifiques aux

réseaux de capteurs sans fil. Par leur mode d’opération et leur structure, ces réseaux

possèdent des ressources limitées quant au calcul, au stockage et à la transmission. Par

conséquent, les protocoles existants, habituellement utilisés dans des réseaux câblés plus

fiables, ne peuvent pas être utilisés à cause par exemple, de connexions intermittentes,

d'un taux élevé de défaillance des nœuds, etc. Des protocoles spécifiques de transmission

et de distribution de données ont été proposés ainsi que des mécanismes pour permettre le

groupage dans le cas de transmission de données.

Le problème lié à la gestion de données collectées et à leur stockage, surtout dans

un environnement assez peu fiable, a été négligé. Dans les réseaux de capteurs sans fil

ayant pour but la collecte intensive de données traitées off-line, une défaillance entre les

nœuds émetteurs et la station de base (nœud récepteur) peut compromettre la valeur des

informations et mener à une situation dangereuse, en fonction de l’application supposée

utiliser les données. La solution immédiate est d’arrêter la collecte de données ou de

vider la mémoire pour en recevoir de nouvelles. Cependant, il est possible que les

données perdues soit d’une importance majeure et même critiques.
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Nos propositions concernent des solutions pour la gestion de données lorsque le

nœud émetteur ne peut pas établir une connexion avec la station de base (sink node).

Nous avons proposé le concept d‘unité de données dans lequel on associe un facteur

d’importance à l’aide de primitives et d’une fonction de calcul spécifiquement introduite.

Les unités de données ainsi considérées peuvent subir un traitement dans lequel on

conserve la valeur de l’information collectée mais avec un volume de mémoire réduit.

Un vue à travers un réseau étendu nous a permit de proposer des mécanismes qui

utilisent la mémoire disponible dans le réseau entier pour garder le plus d’information

ayant le facteur d’importance le plus élevé. Notons que dans la majeure partie des

réseaux, il y a des nœuds qui collectionnent des données avec une grande valeur pour les

applications, tandis que d’autres collectionnent des données avec une importance faible.

Notre proposition et les mécanismes associés pour la relocalisation de données s’avère

très efficace. On a associé à cette option des mécanismes pour évaluer les décisions à

prendre entre la réduction des données ou la relocalisation de données.

Un mécanisme supplémentaire a été introduit pour assurer la possibilité de

déployer des copies de données lorsqu’elles sont logées dans des nœuds à risque. Dans

ces cas, il a des restrictions afin de pouvoir calculer l’importance des données sur les

nouveaux sites.

Par le biais de simulations nous avons testé la faisabilité de nos propositions et

leurs avantages. Comme la gestion de données est étroitement liée au facteur

d’importance, les nœuds continuent à collecter des données et l’espace de stockage

disponible se rétrécit. Les paramètres proposés permettent alors d'obtenir de bons
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résultats. Cependant, plus de simulations sont nécessaires pour identifier des directions

plus précises, tant pour la réduction que pour le partage de données.

7.2 Recherches futures

Les solutions présentées permettent de déployer des nœuds spécialisés. Par

exemple, certains nœuds peuvent être équipés de mémoire supplémentaire pour être

désignés comme des nœuds cibles pour la relocation de données ou pour la sauvegarde de

copies de données. Ces types de ‘mini-data-centers’ peuvent être placés dans des endroits

plus sécurisés.

La collection récurrente de données est basée sur des conditions de ‘start’ et

‘stop’. Des mécanismes supplémentaires sont nécessaires pour déterminer à quel moment

la collecte de données doit être arrêtée et lorsque plusieurs collectes s’exécutent en

parallèle, une décision doit être prise sur les collectes qui doivent être arrêtées.

Un autre aspect à reconsidérer est la manière utilisée pour calculer l’importance

d’une unité de données. Dans l’étude présente, nous avons considéré que l’importance

des données dans les actions présentes mais il est envisageable que certaines données

soient très importantes dans les actions futures.

Dans nos propositions, l’importance des données est calculée localement sur un

nœud. Il y a une limitation qui doit être révisée, car il est possible qu’une importance soit

dépendante des données qui sont captées ou stockées sur d’autres nœuds. Comme le

temps de transmission varie, l’actualisation de l’importance d’une unité de données doit
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s’effectuer dans certains intervalles de temps. Comment caractériser ces intervalles et

comment identifier l’influence de cette non-synchronisation de calcul restent des

problèmes ouverts.

Il sera intéressant d'étudier ce qui se passe lorsque la station de base devient

disponible.. Comme les données peuvent être acheminées par des nœuds différents et

comme le calcul de l’importance de données doit se faire à travers tous les nœuds

impliqués, ceci soulève des questions de précision de calcul et des priorités de transfert

sont alors nécessaires

Si la station de base (sink node) est disponible pour une courte période (ou

planifiée), le transfert de données n’est pas envisagé, car le temps n’est pas suffisant pour

leur transfert et pour le calcul. Dans ce cas, ‘in network querries’ est plus souhaitable et

des méthodes de compression de données peuvent s’avérer utiles.

À une échelle plus grande, une fois la connexion avec la station de base établie, la

station peut déployer des planifications de collecte pour certains nœuds ou encore

introduire des priorités ou des dépendances nouvelles entre les données. Dans ce cas, les

aspects de sécurités deviennent plus importants.

Pour conclure, nous considérons que le travail et les solutions proposés

concernant la gestion de données dans les réseaux de capteurs sans fil ouvrent des pistes

de recherche pour la modélisation et l’optimisation des ressources et la collecte de

données.
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Chapter 7

Conclusion and Future Work

In this work, we have presented some of the problems inherent to Wireless Sensor

Networks. Given their mode of operation, WSNs are limited with respect to the resources

they can use. Protocols normally used in reliable wired networks cannot simply be adapted

to work in wireless setups with unreliable connections and high node failure rate. New

routing protocols have been devised as well as data dissemination protocols. Support for

distributed queries has been implemented. Clustering protocols have been proposed in an

effort to compact transmissions.

One item that has not received much research interest is the management of the

storage space in instances where the network is disconnected from the sink node. In WSNs

mandated to conduct intensive data collection for off-site analysis, a disconnect from the

sink node can translate into an unmanageable accumulation of data. This can lead to a

need to stop the collection until current data can be offloaded. Simple aging out of data

can be a simple option, but the assumption that older data is less important than new data

can lead to the loss of particular events of interest.

Our proposal addresses the issue of data management while the nodes are unable

to transfer data back to the sink node. We proposed the basic building blocks which allow

the architect of the WSN to reduce the data load while maintaining the maximum possible

amount of most important data. The collected data is broken up in manageable data units.
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Several primitives are available that give up some data but still maintain a good

representation of the collected data. The primitive operations are applied on data units.

When we consider the entire WSN as a whole, there is opportunity to use the entire

available storage to come up with a better solution to storage space limits. Nodes that are

actively accumulating high importance data can make use of the storage space on nodes

that are not actively collecting data, or that are actively collecting lower importance data.

To this effect, we introduced a method for nodes to consider data relocation before

considering running a round of data reduction.

To address the issue of WSNs being prone to failure, we proposed a mechanism to

address data redundancy within the framework of prioritized data reduction. Restrictions

were set on the functions evaluating the importance of redundant copies because the

redundant copies need to be immediately sent to other nodes.

The simulated use cases prove that the proposed solutions are feasible. As long as

there is energy on the nodes, the nodes continue to collect data while clearing out low

importance data to make necessary space. Given that the proposed approach is heavily

parameterized, simulations are needed to validate the impact of the parameter values

selected.

The proposed solution has been presented as operating on its own. It performs

well, but further work is needed to integrate the approach with ongoing protocols in a

deployed WSN. As seen in Chapters 2 and 3, many protocols are available. Routing
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protocols to move data run continuously, as well as protocols that directly affect the data,

such as data aggregation.

The presented solution gives the possibility to deploy specialized data nodes.

These nodes can be equipped with additional storage and only server as recipients of data

relocation actions and redundancy copies. Such data center nodes can be placed in more

secure locations and provide a viable solution to the situation we had in our example

where two high risk nodes were using each other to store redundant copies of data.

Data collections are specified with a start and a stop condition. Within those two

conditions, data collection is happening. Further work is needed to assess how the

importance of the collected data compares with the already stored data, and under what

conditions it is acceptable to pause a data collection. The situation gets even more

complex with several ongoing data collections. A mechanism is needed to decide which

subset of collections is put on hold.

Another aspect that needs more studying is the way we compute importance of

data units. At this point, we compare the importance levels of data units without regards to

the potential importance that data units can have in the future. That is not always a

guarantee as events of interest can increase the importance level to data collected in the

past.

Data importance is computed locally on the nodes. The computation function has

access to all the data that is already stored there to make a decision on a data unit’s
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importance level. There is a limitation as a node may want to define data importance in

relation to data being collection on a different node. As inter-node communication is not

constant, updating data unit importance depending on data stored on other nodes has to be

done at some intervals. More research is needed to specify and characterize such intervals.

Finally, there is the issue of what exactly happens when a sink node becomes

within reach of the deployed network. Ideally all the collected data is sent to the sink.

There are several issues that appear when this happens. The connection to the sink may

not be permanent so an educated ordering must take place for the data transfer. Data can

be routed via multiple hops, so some nodes need to manage their own data transfer as well

as acting as relay nodes. Another issue that presents itself is with respect to the

computation of the importance for data units. Some of these computations depend on the

presence of other data. If some data has been sent to the sink, this needs to be accounted

for so that the computation of the importance value is correct.

If the access to the sink is very short lived and scheduled, a data transfer is not

desirable as it will not complete during the time the sink is available. In these cases, in-

network queries are a better choice. Even then, instructions are needed regarding the fate

of data that has been queried. Is there still a need for that data to be stored, or can it be

discarded?

On a bigger scale, a connection being established to the sink is an opportunity for

the sink to assess the resource levels in the network and to push updates to the data
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collection schedule. A large range of security issues arise in such a context which need to

be further studied.

We consider that this work opens the possibility for more research in the area of

storage space optimization in Wireless Sensor Networks.
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