N
N

N

HAL

open science

Reconstruction and Rendering of Implicit Surfaces from
Large Unorganized Point Sets
Patrick Reuter

» To cite this version:

Patrick Reuter. Reconstruction and Rendering of Implicit Surfaces from Large Unorganized Point
Sets. Human-Computer Interaction [cs.HC]. Université Sciences et Technologies - Bordeaux I, 2003.

English. NNT: . tel-00576950

HAL Id: tel-00576950
https://theses.hal.science/tel-00576950
Submitted on 15 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00576950
https://hal.archives-ouvertes.fr

N° d’ordre : 2793

THESE

PRESENTEE A

L’'UNIVERSITE BORDEAUX 1

ECOLE DOCTORALE DE MATHEMATIQUES ET
D’INFORMATIQUE

Par Patrick REUTER
POUR OBTENIR LE GRADE DE

DOCTEUR

SPECIALITE : INFORMATIQUE

Reconstruction and Rendering of Implicit Surfaces
from Large Unorganized Point Sets

Soutenue le : 12 décembre 2003

Aprés avis des rapporteurs :
Marc Alexa Professeur, Université Technique de Darmstadt

George Drettakis . Directeur de Recherche INRIA (HDR)
Devant la commission d’examen composée de :

Marc Alexa Professeur, Université Technique de Darmstadt
Kadi Bouatouch .. Professeur, Université Rennes 1
George Drettakis . Directeur de Recherche INRIA (HDR)
Laurent Grisoni .. Maitre de Conférences, Polytech’ Lille
Pascal Guitton ... Professeur, Université Bordeaux 1

Christophe Schlick Professeur, Université Bordeaux 2

- 2003 -

Rapporteur
Président du jury
Rapporteur
Examinateur
Examinateur
Directeur de Thése

a Raphaél,
mon filleul

Remerciements

Mes remerciements s’adressent en premier & mon directeur de theése Christophe Schlick. 11 a
fait preuve d’un soutien sans faille et a toujours su exprimer sa confiance en moi, non seulement
dans les moments de succes mais aussi dans les moments difficiles. Ses qualités pédagogiques
et scientifiques extraordinaires m’ont toujours poussés jusqu’au bout.

Je tiens & remercier mes deux rapporteurs de thése, Marc Alexa et George Drettakis, pour
m’avoir fait 'honneur de lire attentivement mon mémoire et pour étre venus a Bordeaux lors
de ma soutenance. Leurs commentaires sur mon mémoire ont été trés enrichissants, et leur
présence a la soutenance m’a fait ressentir une valorisation importante de mon travail effectué.

Je remercie Kadi Bouatouch d’avoir accepté de présider mon jury. Je le remercie aussi
pour les nombreuses discussions que nous avons menées non seulement & Bordeaux, mais aussi
dans le cadre de nombreuses missions a Rennes, Londres ou Paris.

Je tiens & remercier Pascal Guitton pour son talent de mener notre équipe de recherche a
Bordeaux et de mettre en avant nos résultats a ’extérieur. Etant donné que je n’ai pas eu de
bourse de thése, c’est grace a Pascal que j’ai pu démarrer ma thése sur un contrat ingénieur.

Je remercie Laurent Grisoni d’avoir accepté d’étre examinateur de ma thése et de s’avoir
déplacé & Bordeaux lors de la soutenance. C’est lui qui m’a donné le précieux conseil de
démarrer une thése sous la direction de Christophe Schlick.

Je tiens a remercier Johannes Behr pour I'impulsion initiale qu’il m’a donné pour travailler
dans l'informatique graphique au sein de I'Institut Fraunhofer.

Je remercie [reneusz Tobor pour sa gentillesse et disponibilité tout au long de ma thése.
Sans lui, ma thése n’aurait pas été ce qu’elle est.

Je tiens a remercier Martin Hachet pour son chaleureux accueil depuis mon arrivé au
LaBRI et Benjamin Schmitt pour des moments de travail intenses et des discussions ouvrant
I’esprit.

Je remercie Carole Blanc pour les nombreuses discussions et pour 'ame qu’elle apporte a
notre équipe.

Je remercie mes deux stagiaires Tamy Boubekeur et Julien Hadim pour leur enthousiasme
envers l'informatique graphique et pour avoir partagé mon bureau « sauna » pendant la
rédaction cet été.

Je tiens a remercier de nombreuses autres personnes au LaBRI pour ’ambiance et les
conditions de travail agréables, parmi mes compeéres doctorants ainsi que Philippe Biais, Pierre
Casteran, Robert Strandh, et Anne Vialard.

Je remercie de nombreuses autres personnes d’autres institutions pour des discussions
scientifiques, et en particulier Alexander Pasko et Loic Barthe.

Je tiens a remercier Flo, Baddi, Robbie et Rouss pour leur amitié et pour de nombreuses

I11

discussions profondes qui aménent ’esprit toujours plus loin. Je remercie mes amis Alex, Axel,
et Jérome de m’avoir fait découvrir ma passion du surf. Je tiens a remercier mes amis Roland
et Max pour les encouragements et ravitaillements sur la derniére ligne droite. Je remercie
mon amie Nat pour son existence et sa présence qui fait & tous les moments qu’on passe
ensemble des moments extraordinaires, ainsi que pour son soutien tout au long de ma thése.
Je remercie tous mes autres amis pour des moments inoubliables qu’on a passé ensemble.

Finalement, je remercie mes parents et ma soeur pour leur soutien et leur amour depuis
toujours.

Reconstruction and Rendering of Implicit Surfaces
from Large Unorganized Point Sets

Abstract: Recent three-dimensional acquisition technologies provide a huge number of un-
organized points in three dimensions. It is desirable to reconstruct a continuous surface
representation that is faithful to the unorganized points for further processing, and to render
the resulting surfaces in order to get a visual feedback.

In this thesis, we present new methods to reconstruct implicit surfaces from large unorga-
nized point sets. The methods are based on locally reconstructed variational surfaces using
radial basis functions that are blended together by applying a partition of unity.

In order to get an interactive visual feedback of the generated surfaces, we present new
rendering techniques that use not only the reconstructed implicit surfaces, but also the initial
unorganized point set. This rendering is either done view-dependently in an output-sensitive
multiresolution manner using points as rendering primitive, or by using local differential ge-
ometry for every point in the point set. Finally, we discuss a wide variety of applications and
potential applications of the presented fundamentals, such as interactive construction of pro-
cedural solid textures from unorganized point sets, reconstruction of heightfields from contour
lines, or repairing of damaged photographs.

Keywords: implicit surfaces, surface reconstruction, radial basis functions, point-based ren-
dering

Discipline: Computer Science

LaBRI,
Université Bordeaux 1,

351, cours de la libération
33405 Talence Cedex (FRANCE)

Reconstruction et Rendu de Surfaces Implicites & partir de
grands ensembles de points non-structurés

Résumeé : Les technologies récentes d’acquisition de données en trois dimensions fournissent
un grand nombre de points non-structurés en trois dimension. Il est important de reconstruire
une surface continue a partir de ces points non-structurés et de la visualiser.

Dans ce document, nous présentons de nouvelles méthodes pour reconstruire des surfaces
implicites a partir de grands ensembles de points non-structurés. Ces méthodes mettent
en oeuvre des surfaces variationnelles reconstruites localement & partir de fonctions de base
radiales, surfaces qui sont combinées entre elles par un mécanisme de partition de l'unité.
Afin d’obtenir une visualisation interactive des surfaces générées, nous présentons également
des techniques de rendu qui utilisent non seulement la surface implicite reconstruite, mais
également ’ensemble de points initial. Une premiére technique de rendu & base de points
s’adapte automatiquement en fonction de la position de I'observateur et de la taille de la
fenétre de visualisation, grace a une structure hiérarchique a multirésolution, et une deuxiéme
technique de rendu & base de points utilise la géométrie différentielle locale dans chaque point.
Enfin, un grand nombre d’applications effectives ou d’applications potentielles des techniques
précédentes sont présentées, telles que la construction interactive de textures solides & partir
de points non-structurés, la reconstruction altimétrique de terrain en fonction des lignes de
niveaux, ou encore la réparation de photographies abimées.

Mots clés : surfaces implicites, reconstruction de surfaces, fonctions de base radiales, rendu
a base de points

Discipline: Informatique

LaBRI,
Université Bordeaux 1,

351, cours de la libération
33405 Talence Cedex (FRANCE)

Contents

Introduction

I Reconstruction of Implicit Surfaces from Large Unorganized
Sets

1 Previous Work

1.1 Blobby Objects
1.2 Surface Reconstruction by Signed Distance Function Estimation
1.3 Moving Least Squareso
1.4 TImplicit Surfaces defined by Radial Basis Functions
1.4.1 Variational Techniques and Radial Basis Functions
1.4.2 Global Support
1.4.3 Fast Evaluation Techniques
1.4.4 Compact Support
1.4.5 Multi-level methods
1.5 Multi-level Partition of Unity Implicits
1.6 Other Work

2 The Partition of Unity Variational Method

2.1 Overview
2.2 The Partition of Unity Method
2.3 Domain Decomposition o
2.3.1 Fixed Grid Domain Decomposition
2.3.2 Octree Domain Decomposition
2.4 Local Reconstruction
2.4.1 RBF Reconstruction
2.4.2 Off-surface Constraints
2.4.3 Approximating local Reconstructions
2.4.4 Surface Normals
2.5 Sticking Solutions together Lo
2.6 Scalability
2.7 Parameter Impact oo
2,71 Overview
2.7.2 Measuring the Distance between two Implicit Surfaces

IX

II

2.7.3 Octree Domain Decomposition Parameters 36

2.8 Example 43
2.9 Results. 45
2.10 Conclusions L 95
The Hierarchical Partition of Unity Variational Method 59
3.1 Overview 59
3.2 Binary Tree Domain Decomposition 59
3.3 Sticking Solutions Together 61
3.4 Scalability 62
3.5 Example 64
3.6 Results. e 67
3.7 Conclusions L 72

Rendering of Implicit Surfaces from Large Unorganized Point Sets 73

Previous Work 75
4.1 Point-based Rendering and Ray-Tracing 75
4.1.1 Point-based Rendering o000 75
4.1.2 Point-based Ray-Tracing 80
4.2 Visualization of Implicit Surfaces L. 81
421 Ray-Tracing oo 81
4.2.2 Polygonization L 82
4.3 Rendering and Ray-Tracing of Implicit Surfaces reconstructed from Points . . . 84
4.3.1 Point-based Rendering oL L 84
4.3.2 Polygonization 85
4.3.3 Ray-Tracing of Point Set Surfaces. 85
4.4 Other Work 86
Point-based Rendering of Implicit Surfaces from Unorganized Points 87
5.1 OVerview 87
5.2 Preprocessing Phase 87
5.2.1 Implicit Surface Reconstruction 87
5.2.2 Construction of the Bounding Sphere Hierarchy 88
5.3 Rendering Phase 92
5.3.1 Traversing the Hierarchy 92
5.3.2 Culling 92
5.3.3 Drawing Splats 93
5.3.4 Generating Additional Pointso 93
5.4 Results. 97

5.5 Conclusions L 102

6 Differential Point Rendering of Implicit Surfaces 103

6.1 Overview 103
6.2 Preprocessing Phase L Lo o 104
6.2.1 Implicit Surface Reconstruction 104

6.2.2 Extracting the Principal Directions and Curvatures of an Implicit Surface104

6.2.3 Creating the Differential Points 106

6.3 Rendering Phase 107
6.4 Example 107
6.5 Results. e 108
6.6 Conclusions 110
IITI Applications 111
7 Further Reconstruction Applications 113
7.1 Procedural Solid Textures from Points 113
7.2 Heightfields 118
7.3 2D Imagingo 121
7.4 Conclusions L 122

8 Interactive Constructive Texturing 123
8.1 OVerview e e 123
8.2 Previous Work 123
8.3 Constructive Texturing 124
8.4 A new Interactive Solid Texturing Approach 125
8.4.1 Overview 125

8.4.2 Preprocessingo 126

8.4.3 Real-Time Process 126

8.4.4 User Interactive Texturing 128

8.4.5 Postprocessingo 130

8.5 Results. 130
8.5.1 Overview 130

8.5.2 Preprocessing Lo 130

8.5.3 Real-Time Process 131

8.5.4 User Interactive Texturing 132

8.5.0 Postprocessingo 132

8.6 Conclusions L 135
Conclusions and Future Research Directions 137
A Differentials 141
B Reference of Symbols 145
Bibliography 151
Index 165

List of Figures

O 1 O Ot = W N

10

11

12

13
14
15
16
17
18

19

20
21
22
23

Involved matrices in the linear system.

Slightly overlapping subdomains of an octree.
Generation of off-surface points from unorganized points.
Reconstruction from a point set of a hand. o0
Cubical and spherical distance functions values.
Graphs of the decay functions v. oL
Graphs of the derivatives v’ of the decay functions.
Hausdorff distances in % of the bounding cube between polygonizations of ar-
bitrarily rotated models at the same resolution with grid size factor p.
Impact of T},;, and Tj,q. With Thee = 1.2T5,, on the number of subdomains
M, the required reconstruction time in seconds, and the reconstruction quality
compared to a globally reconstructed implicit surface.
Impact of Thnin and Thee With Thee = 2Tmin on the number of subdomains
M, the required reconstruction time in seconds, and the reconstruction quality
compared to a globally reconstructed implicit surface.
Impact of Thnin and Thee With Thee = 5Tmin on the number of subdomains
M, the required reconstruction time in seconds, and the reconstruction quality
compared to a globally reconstructed implicit surface.
Impact of 8 on the number of subdomains M, the required reconstruction time
in seconds, and the reconstruction quality compared to a globally reconstructed
implicit surface. L
A simple example of the partition of unity variational method.
Graphs of the values of the involved functions along aray.
Some visual results when reconstructing from the vertices of polygonal meshes.
Impact of Tynin and Tipee on the reconstruction time of the Stanford Bunny. . .
Scalability of the reconstruction time with respect to the number of points.
Robustness of the partition of unity variational method against highly non-
uniformly distributed point sets. oo
Approximating unorganized point sets with different values for the regulariza-
tion parameter A. L
Reconstruction from range scanner data. L.
Ray-tracing using our POVray plugin.
Simple low-level modelling demonstrated on a sphere.
Twisting the Stanford Bunny around the z-axis.

XIIT

17

44
45
49
50

24

25

26
27
28
29
30

31
32
33
34
35
36
37

38

39

40
41

42

43
44
45
46
47

48

49
20
ol
52
53
o4
29
26

Morphing the Max Planck head to the Cyberware Igea. 58

2D example of the hierarchical partition of unity variational method compared

to a global variational implicit surface. 65
Stability against topological differences. 66
Reconstruction time in seconds with respect to the number of points. 69
Visual results of the hierarchical partition of unity variational method. 70
Reconstruction quality for different values of the overlap quota q. 70
Robustness of the hierarchical partition of unity variational method. 71
The projection of the bounding spheres to the screen forms a closed region. . . 88
A BSP from 10 unorganized points.o 90
The corresponding BSP tree.o 90
Some levels of the Stanford Dragon’s bounding sphere hierarchy. 91
The projection of a leaf’s bounding sphere to the screen (in 2D). 94
Quality comparison when generating additional points. 96

Traversing the hierarchy and generating additional points where required for
the Stanford Dragon. 99
Traversing the hierarchy and generating additional points where required for

the Cyberware Igea. 100
Different types of splats. 101
Calculating the curvature of an implicit surface S with defining function f. . . 105
Differential point rendering of a reconstructed implicit surface from uniformly

distributed points.o 108
Differential point rendering of the Cyberware Rabbit. 109
Procedural solid textures from points.o 116
Twisted chameleon without texture distortion. 117
Reconstruction of a continuous heightfield. 119
Rendering of the textured terrain. L. 120
Example of 2D image processing using the partition of unity variational method:

repairing 2D images. oL L 121
Two other examples for repairing 2D images by using the partition of unity

variational method. oL L 122
The texture follows the geometry after applying a twist operator. 125
The different steps involved in our interactive texturing process. 127
Aliasing artefacts do not occur in postprocessing. 128
A set of established space partitions shown on the dinosaur statue. 128
A screenshot of our plugin. oL 130
A more complex example using multiple space-partitions. 131
Texturing a surface from the Siemens voxel array head. 133

Multiresolution rendering using hardware splats and high-quality EWA splats
and obtained framerates, starting from 140,616 discrete surface points extracted
from an FRep model, and the final ray-traced image. 134

List of Tables

10
11

12

13

14

15

Classical and useful choices for the basic function ¢.
Wendland’s compactly supported basic functions ¢ of minimal degree for a
given continuity C'® in three dimensions.

Some decay functions of different smoothness.
Hausdorff distances in % of the bounding cube between polygonizations of ar-
bitrarily rotated models at the same resolution with grid size factor p.
Impact of Tyyn and T With Tiee = 1.2T,,;, on the number of subdomains
M, the required reconstruction time in seconds, and the reconstruction quality
compared to a globally reconstructed implicit surface.
Impact of Thnin and Thee With Thee = 2Tmin on the number of subdomains
M, the required reconstruction time in seconds, and the reconstruction quality
compared to a globally reconstructed implicit surface.
Impact of Ty and Tyee With Thee = 5Thmin on the number of subdomains
M, the required reconstruction time in seconds, and the reconstruction quality
compared to a globally reconstructed implicit surface.
Impact of 8 on the number of subdomains M, the required reconstruction time
in seconds, and the reconstruction quality compared to a globally reconstructed
implicit surface.
Impact of T}, and T},4. on the reconstruction time of the Stanford Bunny. . .
Scalability of the reconstruction. L.
Hausdorff distance for different values for the regularization parameter A com-
pared to A =0. L

Scalability of the hierarchical partition of unity variational method (timings in
SECONAS). . v o e e
Total reconstruction time with varying overlap quota ¢ and minimum number
of points per leaf node Tjeqp.

Required time in seconds for the construction of the bounding sphere hierarchy
and the number of levels L.

Reconstruction times in seconds for the defining function and the texture func-
tions from different number of points. oo

XV

Introduction

Recent three-dimensional acquisition technologies such as laser range scanners, light detection
and ranging (LIDAR), mechanical touch probes, and computer vision techniques such as
depth from stereo, provide a huge number of unorganized points in three dimensions (3D). It
is desirable for further processing to get a continuous surface representation in a small amount
of time with a low memory overhead that is either faithful to such an unorganized point set
or tolerates noise. In order to get a visual feedback of the reconstructed continuous surface,
it is rendered on an output device, the most often a computer display.

Basically, there are three approaches to represent a continuous two-dimensional (2D) sur-
face embedded in 3D space. First, the surface can be represented by an explicit equation,
where all points p = [z,y, 2]T on the surface are expressed as z coordinate in terms of the z
and y coordinates, i.e. feppiicit(2,y) = z. The resulting surface is called a heightfield, but the
surfaces that can be represented are limited, for example it is easy to see that closed surfaces
cannot be described.

The second approach is to represent surfaces as parametric surfaces, where the surface is
represented as a function II : R — R? that provides a mapping of the 2D surface into the 3D
space in which it is embedded. Unfortunately, topology issues have to be considered.

In this thesis, we focus on a third approach to represent continuous surfaces, namely the
implicit surfaces. A general implicit surface S is defined as the zero-set of a scalar defining
function f:R3> — R with

f(z) = 0. (1)

So, the implicit surface is defined as S = {& € R*|f(x) = 0}, sometimes also called
1sosurface at the value 0. Based on a common convention, we define the interior of the surface
to be at all points where the defining function is positive, i.e. f(x) > 0. Accordingly, we
define the exterior of the surface to be at all points where the defining function is negative, i.e.
f(x) < 0. Note that a nice characteristic of implicit surfaces with continuous and differentiable
defining functions is, that the normal n can be calculated using the gradient of the defining
function

Vi) = |50 50, 5) ©)

at any point p on the surface with non-zero gradient.

2 INTRODUCTION

Representing objects and their surfaces implicitly with a defining function has a number
of advantages, in particular implicit surfaces

e have a mesh-independent representation, but the mesh can be generated when it is
required,

e are compactly represented within any desired precision in a simple data structure,
e are thus memory storage efficient,

e have an associated solid model allowing efficient point membership classification and
collision detection,

e are guaranteed to be manifold surfaces with no self intersections and are thus manufac-
turable,

e allow analytical smoothing and anti-alias filtering as well as stepless zooming, and

e are topologically flexible.

In this thesis, we show how to reconstruct implicit surfaces from unorganized point sets
and how to render the resulting surfaces. Moreover, we discuss a wide variety of applications
using the underlying fundamentals. This thesis is organized as follows:

Part I: Reconstruction of Implicit Surfaces from Large Unorga-
nized Point Sets

We show in Part I how implicit surfaces can be reconstructed from an unorganized point set.

In particular, we start by a discussion of previous work in Chapter 1 and present a first
new method that we call the partition of unity variational method in Chapter 2. This method
combines locally reconstructed variational implicit surfaces together by applying a partition
of unity blending.

In Chapter 3, we present a second new method that we call the hierarchical partition of
unity variational method that extends the ideas of partition of the unity variational method
by hierarchically applying a partition of unity blending to the locally reconstructed variational
implicit surfaces.

Part II: Rendering of Implicit Surfaces from Large Unorganized
Point Sets

In Part II, we focus on rendering of reconstructed implicit surfaces from unorganized points
on an output-device in order to get a visual feedback.

In particular, we present in Chapter 4 an extensive survey of previous work on rendering
the discrete surface representation, i.e. the unorganized point set, some previous work on
rendering the reconstructed continuous surface representation, i.e. the implicit surface, as
well as some previous work on rendering that uses both these types of surface representation.

In Chapter 5, we present a new point-based rendering technique that also uses both these
types of surface representation. In this technique, the unorganized points are structured in a
bounding sphere hierarchy for rendering. Whenever the projected size of the spheres is above
a threshold, new points on the surface are generated using the reconstructed implicit surface
representation.

In Chapter 6, we present another point-based rendering technique for implicit surfaces
reconstructed from unorganized points that is running on modern programmable graphics
hardware. The local differential geometry for every point in the unorganized point set is
extracted in a preprocess, and then every point is rendered as a fragment-shaded rectangle.

Part III: Applications

In the final part, we present an incomplete list of potential applications that use the funda-
mentals of the first two parts of this thesis.

In Chapter 7 we show how the ideas of the partition of unity variational method and
the hierarchical partition of unity variational method can be used in further reconstruction
applications than implicit surfaces. In particular, we define a new class of procedural solid
texture that can be reconstructed from unorganized points, we show the reconstruction of
terrains from 2D contour lines as well as applications in 2D image processing.

In Chapter 8, we present a new interactive environment for constructive texturing of
surfaces of arbitrarily defined 3D objects (including, of course, implicit surfaces). A user
can texture the surface by defining space partitions that are combined using constructive
texturing, and by specifying attributes that are applied in the space partition. The partition
of unity variational method can be used to define space partitions amongst other primitives.
When specifying the attributes, the new class of procedural solid textures can be used as
well. In order to give an interactive feedback, a point-based multiresolution representation of
the surface is used that is not only exploited for rendering, but also for the evaluation of the
texture.

INTRODUCTION

Part 1

Reconstruction of Implicit Surfaces
from Large Unorganized Point Sets

In this part, we present different methods to reconstruct implicit surfaces from large un-
organized point sets. We start by giving some formal definitions.

Let P = {p;,ps,---,Pny} be a an unorganized point set consisting of N points
p; € R without any connectivity information. As a tenor, we will make no further as-
sumptions on the distribution of the point set P, unless we assume quasi-uniformly dis-
tributed points. We define quasi-uniformity according to Schaback [139]: a point set
P is quasi-uniformly distributed on a bounded domain © C R?, when the quotient of
the fill distance hpgo = maxgeq (minp,ep (|| — p;|])) and the separation distance gp =
%minpi,pj €Ppi#p; (Ilp; — pj||) is bounded above by a constant.

Starting from the point set P, we want to reconstruct an implicit surface that passes either
through the points of P, we will then refer to an interpolating implicit surface, or nearby the
points of P, in this case we will refer to an approzimating implicit surface. Moreover, as a
genus for these expressions, we will refer to a reconstructed implicit surface.

Of course, the problem to reconstruct implicit surfaces from unorganized points is ill-posed,
because there are an infinite number of implicit surfaces that are interpolating or approximat-
ing the unorganized points. In this thesis, we emphasize the reconstruction of implicit surfaces
that are smooth, and we define the smoothness of the surface S = {x € R*|f(x) = 0} by
the smoothness of the defining function f in terms of C% continuity. Remember that a C'¢
function is a function with o continuous derivatives. In particular, C° denotes the space of
continuous functions, C'' denotes the space of continuously differentiable functions, and a C*°
is a function that is differentiable for all degrees of differentiation that we call infinitely smooth,
because neither the function nor its derivatives have discontinuities. We rate the ability to
reconstruct smooth implicit surfaces by defining C'* functions with a high value for « as very
important. This is, because implicit surfaces with defining functions that are only in C? are
not smooth, that can be seen with the naked eye, and even smoother defining functions are
desirable for illumination, as they are often based on the normals of the implicit surfaces that
are calculated using the derivatives (see Equation (2)).

In order to allow the reconstruction and evaluation of implicit surfaces from a point set P
consisting of a high number N of points, the reconstruction method should be efficient in terms

of required computational time and memory usage. Following Schaback [139], we consider a
reconstruction method to be efficient, when it produces at most O(N log N) intermediate
data at a computational cost bounded by O(N log N). Moreover, we consider the evaluation
of implicit surfaces, i.e. the evaluation of the defining function f, to be efficient when it can
be done in at most O(log N) operations.

This part of the thesis is organized as follows. After an extensive study of previous work
in Chapter 1, we present the first new method that we call the partition of unity variational
method in Chapter 2. Based on some fundamentals of this method, we present the second
new method that we call the hierarchical partition of unity variational method in Chapter 3.

Chapter 1

Previous Work

1.1 Blobby Objects

To our knowledge, one of the first attempts to automatically reconstruct implicit surfaces from
unorganized point sets in 3D has been investigated by Muraki [114]. The reconstructed implicit
surface is described by successively blending several simple 3D base primitives together that
are minimizing an energy function. As the base primitive, Blinn’s blobby model [21] is used
where the potential function g;(x) of the blobby primitive B; for a 3D shape defined by the
function f; is described as

i(z) = bie—aifi(m)_ (3)

Muraki et al. limit the base primitive to blobby spheres, radially symmetric shapes around
a skeleton point s; defined by

—a; 112
() = eIl (@

which can be described by the parameters (a;, b;, 8;). Blending N base primitives together
to obtain the defining function f is simply done by summing up the potential functions and
defining a threshold 7

N
fl@)=7=> be “fi®, (5)
i=1

Muraki starts with a single primitive By centered at the mass of the data at sg with
ag = by = 7e which is put in a list. The reconstruction process iteratively selects and
removes an arbitrary primitive B; from the list, which is splitted into two new primitives
B’i and B;’ that are added to the list. The parameters of the new primitives B’i and B;’
are calculated by minimizing an energy function. This energy function takes into account
the measurement of the defining function f at the initial point set P, the deviation of the
gradients of the function f from the normals at the initial point set, and a term designed to
localize the surface to the initial points. By continuing the iterative reconstruction process,
the resulting defining function gradually comes to approximate the initial points since the
number of primitives is increased, and the reconstruction is finished when the energy function

7

8 CHAPTER 1. PREVIOUS WORK

value falls below a threshold. This gradual refining procedure can also be considered as one
of the first multiresolution approaches in reconstructing implicit surfaces, since intermediate
results during the iterative process can be used as coarse surface approximations.

The outlined method of Muraki is a skeletal approach, since the center of each base prim-
itive describes a point skeleton, and the radius of each base primitive defines a surface around
its center. Unfortunately, reconstructing implicit surfaces using this fully automatic method
is rather costly in terms of computational effort. Using the original implementation, Muraki
reported for example, that calculating 243 primitives to describe a surface reconstructed from
2893 initial points “took a few days on a UNIX workstation (Stardent TITAN3000 2CPU)”.
To tackle this problem, Tsingar et al. [153] allowed to interactively specify the initial skeleton,
which was further enhanced to an automated method by Bittar et al. [20].

However, we think, that even with the advances of computer resources and using the
optimization methods, fitting blobby spheres is not adapted to reconstruct implicit surfaces
from large unorganized point sets because of the required computational effort. Furthermore,
the surfaces lack of control as they are based on squeleton points and hence not directly
defined from the unorganized points. As a consequence, they have a slippery behavior when
additional points are added to the unorganized point set.

1.2 Surface Reconstruction by Signed Distance Function Esti-
mation

One of the most cited works about surface reconstruction from an unorganized point set
P ={pi,py,...,pn} is the work of Hoppe et al. [81]. A signed geometric distance function
d: R — R between points £ € R? and the unknown surface S is estimated, and the zero-set
of the signed distance function d(x) = 0 defines the reconstructed surface implicitly. The
surface S is described by local linear approximations using the tangent planes of the initial
points. The distance from an arbitrary point & € R3 to the surface S is the distance between
x and the tangent plane associated to the closest initial point. In order to obtain the signed
distance function d, this distance is multiplied by £1 depending on which side of the tangent
plane the point @ lies. Hence, there are two key ingredients of this procedure: first, estimating
the tangent planes of the initial points, and second, consistently orientating the tangent planes
so that the tangent planes of all pairs of “sufficiently close” points have the same orientation.

In the first step, the tangent plane of an initial point p; € P is approximated by the least
squares best fitting plane of the H-neighborhood ./\fi{H}, i.e. the H points of P being nearest
to p;. In order to avoid bumps on the surface, the stronger the noise in the input data, the
more points have to be considered. The tangent plane is passing through the centroid o; of
./\fZ-{H}, and its normal is determined using principal component analysis: the normal is the unit
eigenvector which is associated to the highest eigenvalue of the symmetric, positive definite
covariance matrix C with

C= > (y—o)x(y—o) (6)

ye,/\f{H}

In the second step, the sign of the normal is modified so that all tangent planes are

1.3. MOVING LEAST SQUARES 9

consistently oriented, i.e. that the normals n; and n; associated to two geometrically close
points p; € P and p; € P have a similar orientation. In the case of a smooth surface described
by dense initial points P, and Hoppe et al. assume that n; e n; ~ 1. The problem can be
modeled as an optimization problem using a graph with one node per tangent plane, and with
an edge (i, 7) if either o, is in the H-neighborhood /\/'J{H} of 0, or 0; is in the H-neighborhood
M{H} of 0;, associated with a cost n; e n;. The solution is given by selecting the orientations
for the tangent planes that are maximizing the total cost of the graph. Since finding this
solution is an NP complete problem, Hoppe et al. define the following heuristic. By assigning
for each edge (i,7) a cost 1— | n; en; |, an initial tangent plane orientation is propagated by a
depth-first order traversal of the minimal spanning tree of the resulting graph. This traversal
order avoids ambiguous situations since orientations are propagated primarily in directions of
low curvature.

The resulting implicit surface is described by the zero-set of the signed distance function d.
Hoppe et al. demonstrated the power of their algorithm on various point sets from different
sources, and it worked even on models with high topological complexity. However, the resulting
surfaces only have C continuity, and thus in practice, the method is not adapted to reconstruct
smooth surfaces.

Nevertheless, Hoppe’s method that estimates consistently oriented tangent planes is used
to determine normals for the points of an unorganized point set in various reconstruction
methods.

1.3 Moving Least Squares

Recently, Alexa et al. presented a purely local method to reconstruct implicit surfaces from an
unorganized point set P = {p;,ps,...,Py} based on work from Levin [97, 98], and they call
the resulting surface a point set surface |7, 6]. By defining a projection procedure that projects
any point near the point set P onto the surface based on the method of moving least squares
[96], the surface S is defined implicitly as all points that project onto themselves. Although
the defining function f of the reconstructed implicit surface is not determined explicitly, it is
implicitly defined by the projection procedure.

e pear the

The projection procedure can be divided into two steps. First, for a point p
surface, a local reference plane defined in Hessian normal form H={nexz —d =0,z € R*}
with n € R? and ||n|| = 1 is determined by minimizing a local weighted sum of squared

distances of the points p; to the plane H

N
Y (nep;—d)*0(|p; — gll), (7)
i=1

where q is the orthogonal projection of p™¢*"

and monotonically decreasing weight function.

on H, and @ is a radially symmetric, positive,

In a second step, the local reference domain for p™®*" that is given by the orthonormal
coordinate system on H with the origin q is used to compute a local bivariate degree d poly-
nomial approximation g € R? — R of the surface in a neighborhood of p™®". Let g; be the
projection of p; onto H, then p; has the height h; = n e (p; — q) over H, and the coefficients

10 CHAPTER 1. PREVIOUS WORK

of the polynomial approximation g are determined by minimizing the weighted least squares
error

N

> (gl yi) — ha)*0(Ip; — all), (8)

i=1
where [z;,y;]" is the representation of boldsymbol g in the local reference domain. Alexa
et al. propose to use cubic or quartic polynomials for g, since they experienced oscillatory
artefacts with polynomial approximations of higher degree . The projection ¥ : R® — R? of
p’I'LB(IT'

Note that the property ¥ (¥ (p™©®")) = ¥(p™°®") is extremely important, since this means that
a point on the surface projects onto itself.

onto the surface is defined by the polynomial value in the origin ¥(p"*") = g+ g¢(0,0)n.

For 0, the same weight function of Equation (7) and Equation (8), Alexa et al. use the
Gaussian function 6(z) = e=2*/h* that was already proposed by Levin [97, 98]. The parameter
h called feature size influences the smoothness of the reconstructed surface and is usually set
to the anticipated spacing between neighboring points. Higher values for h result in a more
global surface approximation by smoothing out sharp or oscillatory features of size smaller
than h. For all weight functions 0 with § € C°, Levin believes that the resulting implicit
surface is infinitely smooth [97, 98], i.e. that is also has C'*° continuity.

Note that the local reference plane changes at every point, and thus the implicitly defined
point set surface is not piecewise parametrically defined. However, the computation of the
projection involves some expensive operations. Finding the minimum of Equation (7) is a
non-linear minimization problem that has to be solved iteratively, and finding the minimum of
Equation (8) is a standard linear least squares problem where the coefficients of the polynomial
g are determined by solving a system of linear equations. Hence, the required computational
effort makes most practical shape operations with point set surfaces expensive.

1.4 TImplicit Surfaces defined by Radial Basis Functions

1.4.1 Variational Techniques and Radial Basis Functions

Reconstructing implicit surfaces as the zero-set of a function f : R? — R from given point sets
P on the surface can be formulated as a general scattered data interpolation problem: for a
given finite set of N distinct points in R? with associated function values h;, find a function
f:R? - R, that is satisfying the constraints

f(p;) =h; 1=1,...,N. 9)

The problem (9) is clearly ill-posed, since it has an infinite number of solutions. In order
to choose one particular solution, some more a priori knowledge about the function to be
reconstructed is required. The most common form of a priori knowledge consists in assuming
smoothness, i.e., that two similar inputs @y ~ @ create two similar outputs f(xzg) =~ f(z1),
and in the special case of reconstructing implicit surfaces, smooth surfaces with a high C'¢
continuity should be obtained. Moreover, it has to be determined whether the function to
be reconstructed should fulfill the constraints (9) exactly, we refer then to an interpolation

1.4. IMPLICIT SURFACES DEFINED BY RADIAL BASIS FUNCTIONS 11

problem, or approximately, where we refer to an approximation problem.

By underlying regularization theory, the solution of the ill-posed problem can be obtained
from a variational principle containing both data closeness and smoothness information. Since
we look for a function that is simultaneously close to the data and also smooth, solving the
reconstruction problem by a wariational technique consists in finding a function f that is
minimizing the variational functional V' of Equation (10).

VLI =D _(f(pi) = hi)* + B[] (10)

The first term is enforcing closeness to the data, and the second term is enforcing smooth-
ness. The positive number A is usually called the regularization parameter to control the
trade-off between these two terms, and with A = 0 the function indeed interpolates the scat-
tered data. Moreover, E is called stabilizer or smoothness functional.

In this thesis, we define the smoothness functional by Equation (11) that considers a
function to be smoother when it oscillates less. We denote the Fourier transformation with ~,
and ¢ is some positive basic function that falls off to zero as ||s|| — co.

Bl [o (1)

It can be shown [60], that the function that minimizes the functional (11) has the form

N Q
f@)=> wid(x—p)+ > mapalT) (12)
=1 a=1

where {poé}gz1 is a basis in the m-dimensional null space containing all real-valued poly-
nomials in d variables and of order at most m, hence () = (m_(il+d), and we require N > @) as

well as the side conditions ensuring orthogonality

N N N
Ma=> Am=...=) \mp=0. (13)

Moreover, ¢ is a basic function, and w; and 7, are the coefficients that satisfy the following
linear system:

12 CHAPTER 1. PREVIOUS WORK

Ax = b (14)
T
A = P]
® = [¢(||pz,p]||] where i =1... N, j=1...N
P [Pa(Di)] where i =1... N, a=1...0Q
x = [wl,wz,...,wN,7r1,7r2,...,7rQ]T
T

b = |hi,ha,...,hn,0,0,...,0

—_———

Q@ times

A sufficient condition for the basic function ¢, under which the linear system (15) has
a unique solution for any choice of p, and h;, is conditionally positive definiteness. In this
thesis, we will limit ¢ to radially symmetric basic functions, i.e. ¢(x) = ¢(Rx) for any
rotation matrix R. This choice reflects the a priori assumption, that there are no privileged
directions and thus that all constraint locations p; have the same relevance.

By using radially symmetric basic functions, the Equation (12) is commonly referred to
radial basis functions (RBF), and Franke [56| identified in an extensive survey RBFs as one of
the most accurate and stable functions to solve the scattered data interpolation problem that
produces surfaces, that are “usually pleasing and very smooth”.

Note that in the radial basis function jargon, the constraint locations p; are traditionally
referred as centers, since the basic functions are symmetric around them.

The most commonly known classes of basic functions ¢ in dimension d of order m are
multivariate splines and have been identified by Duchon [53].

|z||?™¢1In||z|| for d even

Pm,a(T) = {

||| for d odd
(15)
In two dimensions, for m = 2, this yields to the so-called thin-plate spline
¢(z) = ||z|* |z, (16)

inspired by the following metaphor: by taking a thin sheet of metal, laying it horizontally
and bending it in a way that it touches the tips of the vertical poles at height h; at the positions
p;, the metal plate resists bending so that it smoothly changes its height between the positions
p;. This springy resistance is mimicked by the smoothness measure (11) to minimize, and in
two dimensions the smoothness functional E can be considered as

B[f] = / f2(@) + 2, () + 12, (@) de. (17)

In three dimensions (d = 3), the corresponding smoothness functional E to minimize is

1.4. IMPLICIT SURFACES DEFINED BY RADIAL BASIS FUNCTIONS 13

E[f] = [, fh(®) + fy, (@) + f[Z(x) + 2f2,(®) + 2f7.(2) + 2f5. (2) d=, (18)

and for the order m = 2, the Equation (15) yields the bivariate spline (biharmonic basic
function) with C° continuity,

$(x) = |lzl], (19)

and for order m = 3 the trivariate spline (trivariate basic function) with C? continuity:

¢(x) =], (20)

Table 1 summarizes classical and useful choices for the basic function ¢, that are either
positive definite or conditionally positive definite of order m. In contrast to using positive
definite basic functions for the RBFs of Equation (12) where no polynomial 22:1 TaPa(x) is
required, conditionally positive definite basic functions of order m require a polynomial with
a degree of at least m.

Gaussian positive definite

multiquadric

z) = +/||[z||> + 2 | conditionally positive definite | order 1
T

multivariate splines conditionally positive definite | order m

$(x)
$(x)
inverse multiquadric | ¢(x) = e positive definite
$(x)
$(x)

I
multivariate splines = [|z[|*™ In||z| | conditionally positive definite | order m

Table 1: Classical and useful choices for the basic function ¢.

More recent developments [168, 163| have provided compactly supported radial basis func-
tions, e.g. Wendland [163] has derived positive definite compactly supported basic functions ¢
with minimum degree for a given continuity C® of the resulting radial basis function (Equation
(12)). See Table 2 for some examples of Wendland’s basic functions in three dimensions.

CV | p(z) = (1 — |lz|))2 positive definite
C? | p(z) = (1 — ||z|)% (4]|z] + 1) positive definite
C* | d(z) = (1 — |||)%(35]||* + 18|/ + 3) positive definite
CO | ¢p(x) = (1 — |l=]))8.(32]||)® + 25||=||* + 8||x| + 1) | positive definite

Table 2: Wendland’s compactly supported basic functions ¢ of minimal degree for a given
continuity C'* in three dimensions.

In the remainder of this subsection, we will discuss some previous work using variational
techniques to reconstruct surfaces from unorganized point set P, and we will divide it into four
categories. The first category are “naive” reconstruction methods using radial basis functions
with global support. The second category are methods allowing a higher number of constraints
using greedy fast evaluation techniques of radial basis functions with global support. The third
category are methods using compactly supported radial basis functions, and thus also allow
a higher number of constraints. Finally, the fourth category are methods using multi-level
reconstruction methods.

14 CHAPTER 1. PREVIOUS WORK

1.4.2 Global Support

The pioneering work to reconstruct implicit surfaces from given point sets using variational
techniques can be attributed to Savchenko et al. [138]. The implicit surface f : R — R is
reconstructed by introducing a carrier solid with a defining function f. : R* — R, which, in
the simplest case, can be a sphere with radius r defined by f.(z) = 72— ||z||?. First, the values
r; of the carrier function f. are calculated at all given points p, as can be seen in Equation
(21).

ri = fe(D;) 1=1,...,.N (21)

The reconstruction problem is now shifted to finding a volume spline function u : R? — R

that interpolates all values r; of the function f. in the points p; as can be seen in Equation
(22).

u(p;) =i i=1,.,.N (22)

Then, the zero set of the algebraic difference between u and f. describes the reconstructed
implicit surface f,

f(@) = u(@) — fe(z). (23)

Savchenko et al. describe the interpolating spline function w as a function of the class
defined in (12) being a linear combination of Duchon’s basic functions of (15). We find

N Q
u(z) =Y wip(@ —p;) + > Tapa(®), (24)
=1 a=1

and hence, the constraints of Equation (22) and Equation (13) together with the Equation
(24) lead to the linear system shown in Equation (26):

Az = b (25)
T
A - ® P
P 0
® = [¢(lpi,p;ll)] where i =1... N, j=1...N
P = [p.(pi)] where i =1... N, a=1...Q
r = [wl,wz,...,wN,7r1,7r2,...,7rQ]T
T
b = |ry,re,...,m5,0,0,...,0
—_———
Q times
Savchenko et al. use the triharmonic basic function ¢(z) = ||z||* that has global support

since ¢(x) >0 Va # 0, and thus the linear system (26) is dense.
The authors proposed to use the Householder method [62] to solve the linear system
and have shown, that the runtime of the algorithm decreased linearly proportional with the

1.4. IMPLICIT SURFACES DEFINED BY RADIAL BASIS FUNCTIONS 15

number of processors used in a parallel computing network. However, the algorithm is only
applicable to reconstruct implicit surfaces from a restrained number of unorganized points, say
several thousands, due to the O(N?3) behavior. Furthermore, the evaluation of Equation (23)
is in O(N), which can get rather costly. Consequently, the surface can neither be efficiently
reconstructed nor efficiently evaluated. Another drawback of this method is, that besides the
choice of the volume spline function, the carrier solid to use has to be defined. The choice of
the carrier solid has a significant impact on the shape of the reconstructed surface since it is
isomorphic to the carrier solid, and it is still an open problem how to determine an adapted
carrier solid.

We can state that the definition of the reconstructed implicit surface as a difference of a
carrier solid and a volume spline in (23) avoids that the constructed linear system (15) from
the interpolation constraints (9) with h; = 0 has the trivial solution. Another way to avoid the
trivial solution has been introduced by Turk and O’Brien [156] in their work called variational
implicit surfaces. In addition to the reconstruction constraints (9) where h; = 0, K so-called
off-surface constraints

are introduced at the off-surface points py,; allowing to reconstruct the implicit surface
directly without defining a carrier solid.

Turk and O’Brien discuss the usage of three different kinds of off-surface constraints,
based on the common convention that f(z) > 0 inside and f(z) < 0 outside the surface.
First, positive interior constraints can be introduced by specifying positive values for h; at
one or more off-surface points p/ that are to be in the interior of the surface. Second, negative
exterior constraints can be introduced by specifying negative values for h; at off-surface points
p on the exterior of the shape to be reconstructed, for example at selected positions on a
sphere around the surface to be reconstructed. Third, normal constraints can be used when
there is knowledge about the normals of the surface at the reconstruction constraints, that
is either directly obtained during data acquisition or estimated from neighboring points [81].
Normal off-surface points can be placed at positions p; = p; + kn; computed starting from
the initial points p; and moving them along its normal vector m;. Turk and O’Brien add one
off-surface constraint at the exterior of the surface (k; > 0,h; = —1) for every initial point.

After specifying the K off-surface constraints, the implicit surface can be described as a
function of class (12). For an interpolation in d = 3 dimensions, Turk and O’Brien use the
triharmonic basic function ¢(z) = ||||*> with a polynomial of degree one accounting for the
linear and constant portions of f, i.e. @ = 4 and Zizl TaPa(T) = [m1, T2, m3] ® T + T4, and
the radial basis function is

N+K
f(z) = Z w;p(x — p;) + 71, T2, T3] @ T + T4. (27)

i=1

The resulting linear system that can be written as

16 CHAPTER 1. PREVIOUS WORK

Ax = b (28)
& P’ 1

A= |P 0 O
1 0 O

® = [4(lpip;ll)] wherei=1...N+K, j=1...N+K

P p;] where i =1... N+ K

r = [UJl,UJQ,...,UJN_|_K,7T1,7FQ,7F3,7F4]T

b = [hi,ho,...,hnik,0,0,0,0]7

Again, the linear system can be solved using direct solution techniques, and Turk and
O’Brien propose to use LU-decomposition or Singular Value Decomposition (SVD). However,
setting up the linear system and the memory requirement are in O(N?), and with the cost
of O(N?) to find a solution for the linear system, the computational effort is still in O(N?3).
Hence the number of constraints is still limited to, say, several thousands, and the method
of Turk and O’Brien cannot be considered as efficient according to the definition of Schaback
[139].

1.4.3 Fast Evaluation Techniques

The latter two methods fail to reconstruct implicit surfaces from a large number of constraints,
since the computational cost of O(N?) to solve the linear system becomes prohibitively ex-
pensive, and the huge amount of required memory in O(N?) rapidly grows above available
memory amounts. Furthermore, evaluating the defining function is in O(N), and this becomes
prohibitively expensive since the evaluation step usually has to be performed many times.

The pioneering work to reconstruct implicit surfaces using radial basis functions with global
support from a high number of constraints can be attributed to Carr et al. [33]. They overcome
the previously discussed computational cost and storage limitations by using a greedy fast
evaluation technique of radial basis functions that allows fast and storage-efficient computation
of matrix-vector products [17, 15|, hence making iterative solutions very attractive as solvers
for the linear system. The greedy fast evaluation technique is based on the Fast Multipole
Method of Greengard and Rohklin [66] that takes benefit of the fact, that when evaluating the
radial basis function f at an argument @, infinite precision is not required and the evaluation
can be approximated by dividing into far- and near-field expansions for a given argument .
On the one hand, all radial basis function terms in the near-field, i.e. where the centers p;
are close to the argument @, are computed directly and explicitly. On the other hand, many
radial basis function terms of the far-field whose centers p; are close to each other (but far
away from the argument @) are approximated simultaneously by a Taylor series of truncated
Laurent expansions. The accuracy, i.e. the length of the truncated Laurent expansion, can be
preset, for example to a multiple of the machine precision of the computer in use. In order to
identify the near and far fields of a given argument efficiently, the data has to be structured
hierarchically. See the introductory short course [14] for more details of the Fast Multipole
Method.

1.4. IMPLICIT SURFACES DEFINED BY RADIAL BASIS FUNCTIONS 17

(a) Dense matrix. (b) Sparse matrix. (c) Band-diagonal
matrix.

Figure 1: Involved matrices in the linear system (white for zero-value elements).

Using the greedy evaluation technique, the evaluation cost drops from O(N) to O(1) after
a O(Nlog N) setup, and calculating a matrix-vector product drops from O(N?) to O(N).
This matrix-vector product is involved when solving the linear system iteratively, either by
pre-conditioned conjugate gradient methods [17], preconditioned GMRES iterations [13], or
domain decomposition methods [16], and the computational cost to solve the linear system
drops from O(N?) to O(N log N). Furthermore, since the involved matrix of the linear system
never has to be calculated explicitly, storage requirements are also greatly reduced to only
O(N) compared to O(N?) before. Consequently, the method of Carr et al. can be considered
as efficient.

Unfortunately, the development of the far and near fields is very complex to implement,
and its deviation has to be done for every radial basis function separately. Carr et al. have
developed the far fields for the biharmonic and triharmonic basic functions, but their imple-
mentation is only commercially available [9].

Besides the gain in computational and storage complexities, the reconstruction of the
implicit surfaces is quite similar to Turk and O’Brien. Carr et al. [33] also define off-surface
constraints, however, they propose to add two new constraints at normal off-surface points
on both sides of the surface (k > 0,h; = —1 or kK < 0,h; = 1) for a subset of the initial points
according to Equation (26). Experimental results have shown, that their scale-independent
global reconstruction method behaves well on a variety of point sets coming from different
sources such as polygonal meshes, LIDAR data, or range scanner data.

1.4.4 Compact Support

Morse et al. [113] propose another way to allow a higher number of constraints when recon-
structing implicit surfaces by using Wendland’s compactly supported radial basis functions
of minimal degree [163]. In contrast to the methods presented so far, the resulting linear
system is sparse since ¢(x) = 0 for ||z|| > o for a given support radius o. Figure 1(b) shows
an example of the sparse matriz involved in the linear system compared to a dense matrix
generated with globally supported radial basis functions (Figure 1(a)).

Similar to Turk and O’Brien [156] and Carr [33], Morse et al. use normal constraints in
order to avoid the trivial solution of the linear system.

18 CHAPTER 1. PREVIOUS WORK

The sparse linear system that is generated has a nice impact on the computational com-
plexity: by using hierarchical data structures for point queries like k-d trees, the linear system
can be built up in O(N log N) time, solved in the range O(N'?) to O(N'5) [113], and the
evaluation drops to O(log N). Concerning storage complexity, by using sparse-matrix repre-
sentations, only O(IN) storage is required.

The major drawback of this method is, that the support radius ¢ has to be chosen glob-
ally, hence an additional parameter compared to globally supported radial basis functions is
introduced. Choosing a large radius o drops the performance, and may result in the same
computational and storage complexities as by using globally supported radial basis functions.
On the other hand, choosing a small radius o may result in a too local reconstruction, possibly
with the generation of holes in the surface. For these reasons, compactly supported radial basis
functions should only be used to reconstruct implicit surfaces from quasi-uniformly distributed
point sets.

Another disadvantage is, that the reconstructed implicit surface f is not the only set of
zero-valued points in space, but there are extra zero-sets. Hence, point membership classifica-
tions, which are often used in constructive solid geometry (CSG) are not directly applicable
to this kind of surfaces, as the common convention of the implicit surface to be positive inside
and negative outside is not met.

The work of Morse et al. was further improved by Kojekine et al. [90] by organizing the
involved sparse matrix into a band-diagonal sparse matriz (see Figure 1(c)) in an efficient man-
ner using an octree data structure. The resulting linear system can be solved more efficiently
using a combination of block Gaussian solution and Cholesky decomposition [59]. Further-
more, Kojekine et al. use a carrier solid instead of normal constraints, which is reducing the
number of constraints and thus further improving efficiency. But Kojekine et al. state also,
that compactly supported radial basis functions are only suitable for “moderately sized” 3D
point sets, they did not report reconstruction results for point sets consisting of more than
one hundred thousand points.

1.4.5 Multi-level methods

Compactly supported radial basis functions are also used by Ohtake et al. [119] to reconstruct
implicit surfaces from larger point sets P in a multiresolution manner. Basically, a hierarchy
of point sets P, PR P is computed recursively, and the point set P! at level [+ 1
is interpolated by offsetting the interpolation function used to interpolate the point set Pl at
the previous level [.

The point set P! at the coarsest level of subdivision is constructed by fitting the initial
point set P into a bounding box, subdividing the bounding box into eight equal octant cells,
and computing the eight centroids with averaged unit normals of the points of P which are
contained in the corresponding cell. By continuing this process recursively, the point set P!
at level [of the hierarchy contains 8' points, and the recursion is stopped when each cell does
not contain more than eight points.

After the hierarchy is constructed, a base function f%(z) = —1 is defined, and the set of
interpolation functions fU interpolating P! is defined in a coarse-to-fine way by offsetting
fUI=1 with the offsetting function ol

1.5. MuLTI-LEVEL PARTITION OF UNITY IMPLICITS 19

@) = @) + o) 1=1,...,L (29)

In order to reconstruct the implicit surface at level [that is interpolating Pl

) =0, (30)

the offsetting function ol has to be determined. Ohtake et al. define o/l as a linear combi-

4
nation of Wendland’s compactly supported radial basis function ¢(x) = (1 — @Jr)(lln%u +1)
with support radius o

M) = 3" [o'@) + wgpun(lz - P (31)

pilepll]

U

Note, that a quadric function g; is determined by least-squares minimization that is

approximating the shape of Pl in a small vicinity of pz[-”. As the Equation (31) has the form of
U
i
by solving the corresponding linear system with the constraints ol!l(a) = — f'="(z) obtained
by inserting (30) into (29). Ohtake et al. use the preconditioned biconjugate gradient method
U
i
no extra off-surface constraints need to be introduced. The support radius ol!l is defined
as 75 % of the length of the P’s bounding box diagonal, and ¢! is defined recursively by
I+1] _ o
5

the class of functions of Equation (12) introduced above, the coefficients w;" can be calculated

to solve the linear system, and since the function g;"' can be considered as a local carrier solid,

ol —

The multiresolution approach of Ohtake et al. overcomes several limitations encountered
before when compactly supported radial basis functions were used. First, the number of con-
straints can be significantly higher, i.e. Ohtake et al. reconstruct implicit surfaces from several
hundreds of thousands of input points. Second, as the support radius varies throughout the
different levels of the hierarchy, highly non-uniformly sampled point sets can be reconstructed
allowing to fill larger holes and repair incomplete data. On the other hand, similar to the
drawback of traditional reconstruction methods using compactly supported radial basis func-
tions, extra zero-sets are generated when the surface described by the sampled point set has
thin parts. Furthermore, since the reconstruction of the finest levels of the hierarchy involves
the solution of sparse linear systems with a high number of constraints, the number of input
points is still limited.

1.5 Multi-level Partition of Unity Implicits

In order to reconstruct implicit surfaces from a very large number of unorganized points with
associated normals, Ohtake et al. [118] use multi-level partition of unity implicits, i.e. an
implicit surface with a global defining function that is reconstructed by partition of unity
[12] blending of local shape approximations. Basically, the reconstruction process starts by
rescaling the point set P into a bounding cube and creating an octree-based subdivision of
this cube. At each cell of the octree, a local shape approximation is calculated, and while the
local shape approximation is not accurate enough, the cell is subdivided recursively until a
certain accuracy is achieved. Note that in this way the depth of the octree is rather dependent

20 CHAPTER 1. PREVIOUS WORK

on the complexity of the reconstructed shape than on the number of points.

Depending on the number of points in the given cell and the distribution of their associated
normals, one of three types of local shape approximations is chosen. The first type of local
shape approximation is used to approximate larger parts of the surface, and the second one
is used to approximate a local smooth patch. Both types are identified, when there are more
than T),;, points in a sphere defined by the cell’s center and a radius being 75 % the length
of the cell’s main diagonal. When the deviation of the normal direction of the points to their
average normal direction is more than 7, the first type, i.e. a large part of the surface, is
approximated by a 3D quadratic surface by using a least-squares fitting procedure to find the
parameters. Otherwise, when the normal deviation is less than §, the second type, i.e. a
local smooth patch, is approximated by a bivariate quadratic polynomial by again using a
least-squares fitting procedure.

The third type of local shape approximations is used to reconstruct sharp features, and
it is identified when there are less than T,;, points in the ball associated to the given cell.
Furthermore, some edge and corner detection criterions have to be matched according to
Kobbelt et al. [89], otherwise, a bivariate quadratic polynomial is fitted as in the second
type of local shape approximations. But in the case, when an edge or a corner is detected, a
piecewise quadratic function is fitted to the points.

The three types of local shape approximations are blended together in slightly overlapping
domains using the partition of unity method, that will be discussed in more detail in Section
2.2, as it is also part of our new reconstruction methods. Since all local shape approximations
are done by quadratic functions, multi-level partition of unity implicits can also be understood
as piecewise defined algebraic surfaces.

Multi-level partition of unity implicits are a powerful tool since implicit surfaces can be
reconstructed from a large number of input points as well as from incomplete data, and they
are one of the only methods that enables to reconstruct implicit surfaces with sharp features.

1.6 Other Work

In this chapter, we presented an extensive study of previous work reconstructing implicit sur-
faces from unorganized points. Nevertheless, there are several other techniques to reconstruct
implicit surfaces from unorganized points that have been developed recently, but it is out of
the scope of this thesis to discuss them all. For example, adaptively sampled distance fields
[57] reconstruct an implicitly defined surface from a distance function that has to be given
on a regular grid in space, thus the surface detail is limited by the fixed grid resolution. As
another example, level set methods deform an initial surface following the gradient flow of an
energy functional, and a minimal surface like model with partial differential equations (PDE)
is used 172, 171].

The presented previous work reveals the requirement to define other methods to recon-
struct implicit surfaces from unorganized point sets that overcome the stated drawbacks of
the respective existing methods. In the following two chapters, we present two new methods
that overcome, at least partly, these drawbacks.

Chapter 2

The Partition of Unity Variational
Method

2.1 Overview

In this Chapter, we present a new method to reconstruct an implicit surface from a large
number of unorganized points that we call the partition of unity variational method. This
purely local method was inspired by a fast evaluation technique of radial basis functions based
on the partition of unity method [164, 165].

After presenting the partition of unity method in the following section, we present our
new method that can be decomposed into three principal steps. First, the global domain of
interest containing the unorganized point set is decomposed into smaller local subdomains,
based on regular or adaptive domain decomposition methods (Section 2.3). Second, the re-
construction problems of the local subdomains are solved using variational techniques with
radial basis functions (Section 2.4). Third, the solution of the global reconstruction problem
is obtained by sticking the solutions of the local reconstructions problems together by using
weighting functions defined by the partition of unity method (Section 2.5). Using this method,
the complexity of the surface reconstruction and the evaluation of the defining function is re-
duced significantly compared to straightforward methods as we will see in Section 2.6, but
it introduces some new parameters that define the locality of the method. We will present
the results of a study that we have conducted in order to determine the impact of these pa-
rameters (Section 2.7). Finally, we discuss an illustrative example (Section 2.8) and present
some results of our reconstruction method showing its robustness and scalability (Section 2.9)
before we conclude in Section 2.10.

2.2 The Partition of Unity Method

The main idea of the partition of unity method is to divide the global domain of interest into
smaller domains where the problem can be solved locally. More precisely, the global problem
is decomposed into several smaller local problems, and their local solutions are combined
together by weighting functions that act as smooth blending functions in order to obtain the
global solution.

21

22 CHAPTER 2. THE PARTITION OF UNITY VARIATIONAL METHOD

Consider a global domain Q@ C R? and divide it into M overlapping subdomains D =
{Q M, with @ C ;. On this set of subdomains D, we construct a partition of unity,
i.e. a set of non-negative normalized weighting functions W = {wi}iﬂil with limited support
supp(w;) C €, i.e. V& ¢ Q; = w; =0, and with sz\il wi(x) =1 at all points & € Q.

By applying the partition of unity method to reconstruct implicit surfaces, for each €2;, the
point set P; = {p € P|p € ;} is collected, and a local defining function f; for P; is computed.
The global defining function f is then defined as a sum of the local functions f; multiplied by
the corresponding normalized weighting functions w;

M
f@) =" filz)w(). (32)
=1

The condition Y~ w; = 1 is obtained from any other set of weighting functions {€;}M i
by a normalization procedure

Zj wj(z)

Any function w; is appropriated, but to guarantee the continuity of the global interpolation

function f, it has to be continuous at the boundary of the domains €2;. Obviously, the global
interpolant f inherits the smoothness of the local functions f; and the normalized weighting
functions w;. As a consequence, interpolants of arbitrary smoothness can be constructed
depending on the choice of the local reconstruction functions f; and the normalized weighting
functions w;.

Recall that the only constraint of the decomposition of €2 into M subdomains €2; is, that
each subdomain £2; is overlapping with all neighboring subdomains in order to guarantee
continuity. This fact leaves much freedom in the choice of the domain decomposition method,
and a large variety of strategies can be adapted. We will present in the following two concrete
domain decomposition methods relying on several decisions that have been taken, based on a
regular space subdivision using a fixed grid and the use of an adaptive space subdivision based
on an octree. Note that some of these decisions have been taken rather arbitrarily, pointing
out the freedom of choice of the domain decomposition method.

2.3 Domain Decomposition

2.3.1 Fixed Grid Domain Decomposition

This first domain decomposition method defines the bounding box of the point set P =
{p,,Ps,---,Pxn} as the entire domain Q C R?, and decomposes it into a fine regular grid of
axis-parallel cells. To each cell, a spherical or cubical domain €2; is associated with a diagonal
that is higher than the cell’s main diagonal in order to obtain overlapping subdomains.

A severe drawback of this method is, that the number of points in each cell can vary
significantly depending on the distribution of the points. Only in case of quasi-uniformly
distributed points, the number of points per cell can be bounded above by a constant T4,
but there could be some cells containing no points at all. Anyway, in order to get stable local

2.3. DOMAIN DECOMPOSITION 23

reconstructions, the number of points per subdomain should be between an upper and a lower
bound that can be freely determined.

For this reason, we did not implement the fixed grid domain decomposition method, since
our initial challenge is to reconstruct surfaces from non-uniformly distributed, unorganized
point sets.

2.3.2 Octree Domain Decomposition

Consequently, we developed a second domain decomposition method using an adaptive space
subdivision method based on an octree [82, 109]. Given a point set P and two threshold
values Tynin and Thnae With Thin < Thnes, the entire domain Q0 is subdivided recursively into
overlapping subdomains {Qi}f\il, until each subdomain €; contains at least T},;, and at most
Tmaz points.

To determine the entire domain © = Q°, we fit the smallest axis aligned bounding cube ¢%
with main diagonal d. around the point set P in order to create cubic octant cells during the
octree domain decomposition. Finally, we set €2 to be a centered bounding sphere or bounding
cube around the cube with the diagonal dq that is a factor f with # > 1 of the bounding
cube’s main diagonal d.:

do = pd. (34)

Starting from the entire domain Q° at level 0 and as long as the number of points in
the domain QE” associated to a cubic cell cgl} at level [of the octree is higher than T},4z, i.e.
Card(PZ-[l]) > TipazWith PZ-[Z] ={p € Plp € QZ[-”}, we divide the cube recursively into eight
disjoint cubic cells c[1l+1] - cg+1]. To each cubic cell cEl—H]
cubical domain with similar center and the diagonal of Equation (34). Note that the higher
the value for f3, the bigger are the subdomains and thus the more they overlap. When the

number of points in QEZ is smaller than T7,;,, we increase dqo, by a factor v until the number

U

i

, we associate again a spherical or

of points in :" is higher than T},;,:

de] = dggz] + ’}’dggz] (35)

Possibly, when the number of points in §2; exceeds T}z, we have to decrease do, by a
factor smaller than 7 accordingly. Note that in case that dg,m is increased using Equation (35),

[
i
Tomin points for a stable local reconstruction. Then, after the local reconstruction function for
QEZ] is created, the domain’s diagonal is set to its original value of Equation (34) that will be

considered in further domain queries.

this is only done temporarily in order to guarantee that the domain €2:" contains more than

We sketched the octree domain decomposition method in the recursive Algorithm 1 that
has to be called with decompose(P, c9,0), and the result of the domain decomposition
method by associating either spherical or cubical domains to the octree cells can be seen in
Figures 2(a) and 2(b), respectively. To form the partition of unity, we do not consider the
domains resulting from the interior nodes of the octree that are sketched in dashed lines, but
only the domains resulting from its leafs that we call D = {Q;}, in the following.

We will see in Section 2.6, that the octree used to create the overlapping subdomains can

24 CHAPTER 2. THE PARTITION OF UNITY VARIATIONAL METHOD

Algorithm 1 decompose(P, ¢, 1)

Require: points P, cubic cell ¢!, level I

Ensure: set of subdomains domains D = {Qz}l]‘i1
compute ol with dQ[,] = fBd.m

i
set n the number of points of P in QEZ]
if n > Ty then
subdivide ¢ into cubic octant cells c[llﬂ], e ,cg +1]

decompose(P, c[lHu,l +1)

decompose(P, cngH,l +1)
else if n < Ty, then
while n & [Thin, Trnaz] do
if n < T}, then

enlarge Qil
else if n > T,,,, then
reduce €2;
end if
set n the number of points of P in QZ[-”
end while
domain OK, add QZ[-” to D
else
domain OK, add QZ[-” to D
end if

be exploited for efficient range queries resulting in an efficient evaluation of the global defining
function f of the reconstructed implicit surface.

2.4 Local Reconstruction

2.4.1 RBF Reconstruction

Once the set of local subdomains D is determined and the point sets P; in the subdomains
are collected, the local functions f; have to be reconstructed. Of course, the partition of
unity method does not impose any particular choice on the local reconstruction functions
to use. In contrast to the multi-level partition of unity implicits [118], we reconstruct the
local functions using radial basis functions, which seem to be the best suitable functions
to reconstruct continuous smooth functions from scattered data [56]. Moreover, Wendland
proved that putting the local radial basis functions together by the partition of unity method
inherits the same approximation order than the global method [164]. Since we can delimit
the number of points Card(P;) per subdomain §; to an interval [Ty, Tmaz] using the octree
domain decomposition method, we can use a rather “naive” reconstruction method for the
local functions f;. Thus, we reconstruct the local reconstruction functions f; in spirit of
Turk and O’Brien’s variational implicit surfaces [156], that we already outlined in Subsection
1.4.2. We also define K off-surface constraints as explained in the following subsection. As

2.4. LocAL RECONSTRUCTION 25

(a) Overlapping spheres (8 = (b) Overlapping cubes (8 = 1.5)
1

Figure 2: Slightly overlapping subdomains of an octree.

basic functions, we either use biharmonic basic functions ¢(x) = ||z|| associated with a linear
polynomial (Equation (36)) resulting in C° continuous local reconstructions, or triharmonic
basic functions ¢(z) = ||z||* associated with a quadratic polynomial (Equation (37)) resulting
in C? continuous local reconstructions.

N+K 4
f@) =" willz—p)ll+) mapal@), (36)
=1 a=1
N+K 10
f@) =Y willl@=p)I*+) mapal@), (37)
i=1 a=1

2.4.2 Off-surface Constraints

Recall that off-surface constraints have to be introduced in order to avoid the trivial solution
of the linear system. We create two normal constraints from each initial point using the
normal vector inspired by Carr et al. [33] and in contrast to Turk and O’Brien who create
only one normal constraint for each initial point. To be more precise, starting from the point
set P = {py,ps,-.., PN} With f(p;) = h; = 0, for each point p, in the point set, we create
two normal constraints f(p}) = h. and f(p}) = h! at two temporarily created off-surface
points p} and p?. The positions of the off-surface points p; and p! are computed starting
from the initial points p; and moving them along its normal vector m;, i.e. p. = p; + kn;
and p?! = p, — kn;, respectively. The normal is usually obtained during data acquisition,
however, when the normal is not available, we estimate it from neighboring points [81] as
already explained in Section 1.2.

Our experiments have shown that the final implicit surface is rather independent of the
choice of the assigned function values h; at the off-surface points. This has also been observed
by Carr et al. as well as Wendland [33, 165]. In contrast, the parameter x that specifies the
projection distance, i.e. the distance between an initial point and one of its off-surface points,

26 CHAPTER 2. THE PARTITION OF UNITY VARIATIONAL METHOD

EERE

(a) Unorganized (b) Correct pro- (c) Incorrect pro- (d) Validated pro-
points with jection distance. jection distance. jection distance.
normals.

Figure 3: Generation of off-surface points (outlined points) from unorganized points (bold
points).

has to be chosen more carefully. Consider the unorganized points with their associated normal
vectors of Figure 3(a). For a correct value of k, the off-surface points form a shell around the
points (Figure 3(b)), but for a too high value of the projection distance k, projecting the
off-surface point could intersect other parts of the surface (Figure 3(c)).

In order to qualify correct values for the projection distance k, we use the projection
distance validation method of Carr et al. [33, 55]: when the closest off-surface point p) or
p generated from p; using the projection distance is not p; itself, the off-surface point
is moved towards p,; until it is the closest point of p;. See Figure 3(d) for the validated
projection distance using the same value of k as in Figure 3(c). As a general rule, we use

~= % of the bounding box’s diagonal as the value for . Note the resulting artefacts during

VN
the reconstruction of a point set of a hand (Figure 4(a)), where a too high value for x can
lead to cracks in the surface (Figure 4(b)) compared to the reconstruction of the hand using

the validated projection distance (Figure 4(c)).

2.4.3 Approximating local Reconstructions

By using the method of Turk and O’Brien [156] for the local surface reconstruction, the
reconstructed implicit surfaces interpolates the point set P;. In case of noise in the point set,
it is desirable to reconstruct surfaces that are only approximating the point set. To this end,
we take benefit of the variational character of the local reconstruction method, and allow a
regularization parameter A > 0 in Equation (10).

As a consequence, the diagonal of the matrix A involved in the linear system Equation (29)
has to be modified to A < A — 8NwAI according to Carr et al. [33], where I is the identity
matrix. The parameter A controls the fitting tolerance, and the result is getting smoother

2.4. LocAL RECONSTRUCTION 27

(a) Unorganized (b) Too high projec- (c) Validated projec-
points. tion distance. tion distance.

Figure 4: Reconstruction from a point set of a hand.

when A is increased.
See the excellent overview of Carr et al. for further methods to manage noise in the point
set [34].

2.4.4 Surface Normals

Recall, that the normals of implicit surfaces are calculated using the gradient of the continuous
and differentiable defining function f, and the normal n at a point p € S is

T
n =it - |5t e). 2w L] (39)

One way to calculate the partial derivatives is to take a small value for e:

ex[1,0,0]") —
g—£<P>=3£0f(p+ [1,(6),0]) f(p)
af o f(p—{—EX[OW]_,O]T)—f(p)
8_y(p)_glao €
df . f(p‘f‘E*[OaOal]T)_f(p)
5(_ll—m € (39)

28 CHAPTER 2. THE PARTITION OF UNITY VARIATIONAL METHOD

In order to calculate the normals of implicit surfaces that are defined using radial basis
functions, the choice of the value of € should be neither too small, as this can lead to undesirable
results due to numerical instabilities, nor too high because that would smooth out fine details.
Hence, we decided to calculate the gradient of the local reconstruction functions f; analytically,
see Appendix A for the partial derivatives of the defining function using biharmonic basic
functions and triharmonic basic functions.

2.5 Sticking Solutions together
Recall, that the global reconstruction function f is calculated by sticking together the local

reconstruction functions f; using the normalized weighting functions w;, and by inserting
Equation (32) in Equation (33), we obtain

SSML fil@)wi() .

We will now see how to choose the weighting functions w; that determine the continuity

flx) =

(41)

between the local solutions f; and therefore the continuity of the global reconstruction function
F'. To this end, we define the weighting functions w; as the composition of a distance function
d; : R" — [0,1], where d;(x) = 1 at the boundary of the local subdomain, and a decay function
v:[0,1] = [0,1]: w;(x) = v o d;(x).

The distance function is defined depending on the shape of the local subdomains. The
distance functions d¢"* to use for a cube spanned between a = [z4, Ya, Za]’ and b = [z, yp, 2]
with side length v = |z, — xp| = |y — ys| = |24 — 23| is shown in Equation (42). The distance
function d? here for a sphere with center ¢ and radius r is shown in Equation (43). We also
sketched the respective function values in Figure 5.

A (eyz) = 1 g [0 va)oy —v) (42)

VET,Y,Z
dfphere(m) _ HZB;—CH (43)

The choice of the decay function v influences the continuity of the global reconstruction
function f, and in the following we show how to construct polynomial decay functions for dif-
ferent continuities. We only consider the construction of degree n polynomial decay functions
of the form v(x) = a,z™ + ... + asx?® + a1z + ag, since they are the most efficient functions to
evaluate, and nevertheless they are smooth. The construction of the decay functions is done
in a similar way to the construction of spline functions and is explaned in the following.

In order to ensure that the weighting functions w; have limited support to guarantee the
locality of our approach, we set v(1) = 0, since with @w; = v o d; and d; = 1 at the boundary,
the resulting weighting functions w; are 0 at the boundary. Furthermore, without loss of
generality, we set v(0) = 1, since its value will be overridden anyway during the normalization
procedure of Equation (33). These two restrictions v(0) = 1 and v(1) = 0 are sufficient to

2.5. STICKING SOLUTIONS TOGETHER 29

(a) Cubical distance (b) Spherical distance
function. function

Figure 5: Cubical and spherical distance functions values according to the convention

[blz[z)ck —? whlite] :

determine the coefficients ay and a; of the linear decay function vo(z) = a1z + ag as follows:

vo(z) =1—z. (44)

The decay function vy offers only a C° continuity at the boundary of the subdomains.
In order to construct a decay function for ensuring a C' continuity between the local recon-
struction functions, in addition to the constraints v(0) = 1 and v(1) = 0, the constraint
v'(1) = 0 has to be satisfied, and for symmetry reasons we also require v'(0) = 0. The low-
est degree polynomial function that can satisfy these four constraints is a cubic polynomial
v(z) = azz® + asz? + a1z + ag with the derivative v'(z) = 3azx? + 2azx + a1, and by inserting
the four constraints, we obtain the following linear system:

v(0) =1: ap = 1
v(l)=0: a3 + as + a + a = 0
’U’(l) =0: 3a3 + 2a2 + a1 =0
v'(0)=0: ap 0

Solving these systems leads to the decay function vy ensuring C' continuity between the
local reconstruction functions shown in Equation (45).

vi(z) =223 — 322 + 1 (45)

Decay functions ensuring higher continuity are constructed similarly, for a C“ continuity
with & > 0, the constraints v(®(0) = v(® (1) = 0 with v(®"®) being the o' derivative
have to be satisfied. See Table 3 for various decay functions for a given continuity with the
corresponding derivatives, and their corresponding graphs in Figure 6 as well as the graphs of
their first derivatives in Figure 7.

When evaluating the global defining function of Equation (41) at a given point @, it is
sufficient to collect all domains including the point @, since the weighting functions w;(x) are

30 CHAPTER 2. THE PARTITION OF UNITY VARIATIONAL METHOD

1 I 1 I
vo(7) v1()
vo 0.5 — U1 0.5 —
0 . 0 .
0 0.5 1 0 0.5 1
x T
(a) vo(x) =1—=x (b) vi(z) = 22> — 32” + 1
1 T 1 T
va(7) v3()
v2 0.5 F — vz 0.5 —
0 . 0 .
0 0.5 1 0 0.5 1
A X
(c) v2(z) = (2 — 1)? (d) w3(z) = —62° + 152* — 102® + 1

Figure 6: Graphs of the decay functions v.

2.5. STICKING SOLUTIONS TOGETHER

-1.5 I
vy ()
vy -1 U1
0.5 '
0 0.5 1
€T
(a) vh(e) = —1
0 —
vy ()
-0.5 -
N N T U3
-1.5 -
-2 !
0 0.5 1 0 0.5
X X
(c) vh(z) = dx(x* — 1) (d) vi(z) = =30z + 60x° — 302”

Figure 7: Graphs of the derivatives v’ of the decay functions.

31

32 CHAPTER 2. THE PARTITION OF UNITY VARIATIONAL METHOD

‘ Continuity ‘ v ‘ v’
(o vo(z) =1—1x v(z) = -1
ct vi(z) = 22° — 322 + 1 vl (z) = 62° — 6
ct vg(z) = (22 — 1)? vh(z) = 423 — 4z
C? v3(z) = —62° + 15z — 1023 + 1 | vi(x) = —30z" + 602> — 3022

Table 3: Some decay functions of different smoothness.

bounded (x ¢ Q; = w;(x) = 0).

In order to obtain the normals in a point on the reconstructed surface, we have to calculate
the gradient and thus the partial derivatives of the global defining function f of Equation (41),
and we refer to Appendix A for the determination of the partial derivatives.

2.6 Scalability

In this section, we analyze the scalability of the partition of unity variational method in terms
of computational complexity. We divide this analysis into two phases, first the complexity
analysis of the reconstruction of the global defining function f starting from a point set P
consisting of N points, and second, the complexity analysis of the evaluation of the global
defining function f at a point & € R3.

Concerning the first phase, let us first summarize the three necessary steps to reconstruct
the global defining function f from an unorganized point set P using the partition of unity
method.

1. Determine the entire domain 2.

2. Decompose 2 into M local subdomains €2; and collect all points P; that are in the local
subdomains €;, i.e. P; = {p € P|p € Q;}.

3. Compute the local defining functions f; for all local subdomains €2;.

In the first step, the domain is determined by a first O(IV) scan over the N points. Of
course, the second step depends on the choice of the domain decomposition method. In the
fixed grid domain decomposition method (Subsection 2.3.1), the grid can be determined in
O(1), and all points P; are collected in O(N) in case of quasi-uniformly distributed points,
since the number of points per grid cell is bounded above by the constant Tj,;4. In the octree
domain decomposition method, the points are collected during decomposition, and both is
done in O(N log N) complexity. The third step is done in O(N), since the number of points
per subdomain is bounded by a constant and thus the number of subdomains M is proportional
to the number of points N. Consequently, the memory requirement is in O(N). Note that the
upper bound constants Tg,;q and Tyqz, respectively, have to be of moderate size, otherwise
the computation of the local interpolants in the third step can become prohibitively expensive.

Concerning the second phase, the following steps are necessary in order to evaluate the
global defining function f at a point = € R3.

1. Find all subdomains Q; with & € ;.

2.7. PARAMETER IMPACT 33

2. Evaluate all local defining functions f; and the corresponding weighting functions w;.

3. Determine the normalized weighting functions w; by Equation (33), and sum up using
Equation (32).

The first step is done in O(1) using the fixed grid domain decomposition method and in
O(log N) using the octree domain decomposition method, since every @ is only contained in
O(1) subdomains. This follows immediately because the number of points per subdomain
is bounded by a constant. Steps two and three can be computed in O(1) as well, since the
normalized weighting functions have limited support supp(w;) C Q;, i.e. Ve ¢ Q; = w; = 0.

Summing up, the surface can be reconstructed in O(N) time from quasi-uniformly
distributed point sets P consisting of N points by using the fixed grid method, and in
trecO(N log N)41,¢.O(N) = O(N log N) time using the octree domain decomposition method
for non-uniformly distributed point sets P. Since the storage requirement is in O(N), and
the surface evaluation is in O(1) for fixed grids and in fleyeO(10g N)veyaO(1) = O(log N)
for octrees, the partition of unity variational method is efficient according to the definition of
Schaback [139].

But the practical experience with the octree domain decomposition method in the parti-
tion of unity variational method has even shown a better behavior. For the reconstruction
phase, the constant fipec in the pie.O(N log N) domain decomposition method is very small
with respect to the constant vpe. in the v,...,O(N) local reconstructions. Similarly, during the
evaluation, the constant fieye; in the fieyqO(log N) determination of the involved local subdo-
mains is rather small compared to the constant ve,q; in the vg,,O(1) evaluation of the local
defining functions.

2.7 Parameter Impact

2.7.1 Overview

Depending on the domain decomposition method, different parameters have been used to
define the degree of locality. In this section, we will first present a procedure that compares
two implicit surfaces in order to check the surface reconstruction quality. Based upon, we will
analyse the quality of the surface reconstruction and the required time using different values
for the parameters.

2.7.2 Measuring the Distance between two Implicit Surfaces

Usually, the difference between two surfaces is calculated using the Hausdorff distance, named
after Felix Hausdorff (1868-1942), in Euclidean space. Based on the distance d(z, S’) between
a point p on a first surface S and a second surface S’ defined as

d(p,S') = min {|lp — p'l|}, (46)
p' eSS’

the Hausdorff distance is the maximum distance d(p,S’) of all points of the first surface
p € S to the nearest points of the other surface. More formally, the mazimin function defining
the Hausdorff distance dg(S,S’) between two surfaces S and S’ is

34 CHAPTER 2. THE PARTITION OF UNITY VARIATIONAL METHOD

du(8,8") = rggg{d(p,S')} (47)
= rggg{;,neig,{llp,p’ll}}- (48)

Besides the Hausdorff distances measuring the maximum deviation between two given
surfaces, we also define the root mean square distance drprs in order to characterize the
averaged distances between two given surfaces as follows:

drars(S,8) = \/é / / dlp.52ds (19)

Note, that the distances diy and dppss are in general not symmetric, so it is convenient to
introduce symmetrical distances as dgymm = max[d(S,S’),d(S’,S)].

To the best of our knowledge, there is unfortunately no method to analytically calculate
the Hausdorff distance between two given implicit surfaces, so we had to develop the following
strategy to calculate the Hausdorff distance approximately in order to compare two given
implicit surfaces.

First, we polygonize the two implicit surfaces. A general overview of polygonizing implicit
surfaces can be seen in Subsection 4.2.2 of Part II of this thesis, we decided to use the im-
plementation proposed by Bloomenthal [24]. Then, we calculate the symmetrical Hausdorff
distance dp,,,,,, and drms,,,,, distances between the two resulting polygonal meshes using
the MESH tool [10] that is a new and more efficient implementation of the METRO tool [38].
Of course, the polygonization only describes the implicit surface approximately, thus it intro-
duces an error that decreases with an increasing precision of the polygonal mesh. Furthermore,
polygonal meshes produced by the marching cubes algorithm are not rotation invariant since
discrete samples are taken in regular axis-aligned spacings. Hence, to estimate the error that
is introduced intrinsically by the polygonization process, we take the same implicit surface
several times, rotate it arbitrarily and create various polygonal approximations in different
precisions and compare the respective Hausdorff distances between them.

To this end, we reconstructed an implicit surface of the Stanford Bunny that was reduced
aribitrarily to 600 points, and all connectivity information had been discarded. We polygo-
nized the reconstructed implicit surface in different resolutions, i.e. in a grid size to be a factor
p of the bounding cube of the model, and we created several different polygonizations at every
resolution by rotating the implicit surface arbitrarily before. For every resolution, we calcu-
lated the maximum of the symmetrical Hausdorff distance dp,,,,,, and the mean symmetrical
Hausdorff distance dgas,,,,,, between all polygonizations. The quantitative results can be
seen in Table 4, and the corresponding graphs are shown in Figure 8. Note that the unit of
the Hausdorff distances are given in per cent of the bounding cube.

Since the difference between the Hausdorff distances of the polygonizations in different
resolutions becomes smaller for an increasing resolution, we decided to polygonize all recon-
structed implicit surfaces for the parameter evaluation using a grid size p = 0.03 of the model’s
bounding cube.

2.7. PARAMETER IMPACT 35

Pl At eymm | CRMSeymm
0.2 |[15.7050 0.5552
0.19 6.4054 0.5125
0.18 | 7.5797 0.4523
0.17 3.7464 0.3913
0.16 3.6180 0.1691
0.15 | 4.2926 0.3291
0.14 || 2.3921 0.2083
0.13 | 2.9503 0.2202
0.12 | 3.2918 0.1957
0.11 || 2.2491 0.1482
0.1 | 2,1903 0.1257
0.09 | 1.7888 0.1049
0.08 1.2429 0.0737
0.07 | 1.2005 0.0548
0.06 1.1299 0.0427
0.05 0.7787 0.0295
0.04 | 0.3768 0.0187
0.03 0.2197 0.0109
0.02 | 0.0998 0.0052
0.01 0.0348 0.0012

Table 4: Hausdorff distances in % of the bounding cube between polygonizations of arbitrarily
rotated models at the same resolution with grid size factor p.

Hausdorff distance (du,,,,,,)

RMS Hausdorff distance (drass,y)

0
0.2 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02
p

Figure 8: Hausdorff distances in % of the bounding cube between polygonizations of arbitrarily
rotated models at the same resolution with grid size factor p.

36 CHAPTER 2. THE PARTITION OF UNITY VARIATIONAL METHOD

2.7.3 Octree Domain Decomposition Parameters

In order to decompose the domain using an octree as introduced in Subsection 2.3.2, the
parameters Tyuin, Tmaez, and have to be chosen. Intuitively, higher values will lead to
larger local domains and a higher surface reconstruction quality at the expense of a higher
reconstruction time.

The surface reconstruction quality is compared by first reconstructing a reference surface
using radial basis functions with global support according to Turk and O’Brien [156] but using
the off-surface constraints of Subsection 2.4.2. Then, the difference in reconstruction quality
using the partition of unity variational method with different parameters and the reference
surface is determined.

First, we analyze the impact T},;, and T},., parameters to the reconstruction quality. To
this end, we compare a reference implicit surface that was reconstructed using one global
radial basis function with the biharmonic basic function ¢(x) = ||@|| against implicit surfaces
reconstructed by the partition of unity variational method using the same basic function,
spherical subdomains ;, vz(z) = —6x° + 15z* — 102® + 1, and 8 = 1. You can see the
results for Thee = 1.2T 000, Tmar = 2T min, and T = 5T, in Table 5, Table 6, and
Table 7, respectively. The number of resulting local subdomains is indicated in the column
M, the required reconstruction time in column #,.., and the Hausdorff distances between
the reconstructed surface and the reference surface of the Stanford Bunny that was reduced
aribitrarily to N = 600 points in columns dp,,,,, and dras,,,,,- The results are also shown
visually in Figures 9-11.

Let us now analyze the obtained results. A too small T},;, may generate a too few number
of points per subdomain, and the local reconstruction can lead to undesired results. On the
other hand, a too high T},,, may generate a too high number of points per subdomain resulting
in an expensive reconstruction time for the local subdomain. For example, with Tj,0: = N,
only one subdomain is created (M = 1), and the reconstruction is global. We can see also,
that when 7,4, approaches T, as in the example Tjqp = 1.2T0,;,, a larger number of
subdomains that are highly overlapping is created since the domains are first subdivided and
later enlarged according to Equation (35). This results in a higher reconstruction time. On
the other hand, when T},,, is much higher than T},;,, as in the example T},40 = 5Timin, the
number of points in the local subdomains can be either too high, and this results also in a
higher reconstruction time, or too low, and this results in a bad reconstruction quality. We
found that Tyap = 2T min is a good compromise between required reconstruction time and
quality.

In general, higher values for T;,;, and hence T}, results in a higher reconstruction quality
at the expense of a higher reconstruction time, and the reconstructed surfaces are more and
more similar to globally reconstructed implicit surfaces.

Second, we tested the impact of the parameter 3 for fixed parameters of T},;, = 80 and
Trnaz = 160 on the Stanford Bunny that was reduced to 600 points. You can see the results for
different values for 5 in Table 8 as well as the corresponding graphs in Figure 12. Note that
the reconstruction quality is increased with a higher value for 8, but the number of resulting
local subdomains and the reconstruction time are increased as well.

We ran the same tests using cubical domains, and we did not notice any particular differ-
ence of the parameter impact.

2.7. PARAMETER IMPACT 37

Tmin Tmax M trec stymm dRMSSymm
20 24 || 281 0.59 || 3.9176 0.1877
40 48 || 106 1.42 1.2971 0.0804
60 72 71 3.82 | 0.5670 0.0507
80 96 50 14.05 || 0.3138 0.0353

100 120 || 43 15.8 || 0.3024 0.0281
120 144 43 30.47 0.2133 0.0212
140 168 29 40.59 || 0.2084 0.0209
160 192 22 42.33 0.2227 0.0210
180 216 15 46.99 || 0.1969 0.0177
200 240 15 70.93 || 0.1983 0.0164
220 264 8 00.85 || 0.2114 0.0182
240 288 8 75.53 || 0.1978 0.0168
260 312 8 110.58 || 0.1970 0.0143
280 336 8 || 184.104 || 0.1991 0.0133
300 360 8 241.42 || 0.1967 0.0130
320 384 8 || 374.337 || 0.1975 0.0127
340 408 8 470.58 || 0.1995 0.0126
360 432 8 || 627.678 || 0.1995 0.0122
380 456 8 873.26 || 0.1952 0.0125
400 480 81| 909.639 || 0.1952 0.0122
420 504 8 || 1263.24 0.1952 0.0120
440 028 8 1389.2 || 0.1952 0.0118
460 952 8 || 1539.33 || 0.1952 0.0116
480 476 8 || 1859.38 || 0.1952 0.0115
500 600 1 586.31 || 0.1952 0.0111

Table 5: Impact of T}, and T, With The. = 1.275,:, on the number of subdomains M,
the required reconstruction time in seconds, and the reconstruction quality compared to a
globally reconstructed implicit surface.

38 CHAPTER 2. THE PARTITION OF UNITY VARIATIONAL METHOD

Tmin | T M rec stymm dRMSsymm
20 40 || 162 1.12 || 3.7958 0.1831
40 80 71 2.85 || 29071 0.1175
60 120 43 8.94 || 0.6015 0.0532
80 160 | 29 || 20.38 | 0.3574 0.0381

100 200 22 24.42 | 0.3046 0.0287
120 | 240 15] 33.56 || 0.2330 0.0219
140 280 8 37.87 | 0.2340 0.0207
160 | 320 81 45.08 | 0.2323 0.0208
180 360 8 62.16 || 0.2313 0.0206
200 400 8 87.24 || 0.2219 0.0193
220 440 8 98.24 | 0.2167 0.0182
240 480 8 || 148.73 || 0.2016 0.0168
260 | 520 8 1 207.96 || 0.1195 0.0132
280 260 8 || 316.12 || 0.0793 0.0121
300 | 600 1| 632.42 || 0.0584 0.0111

Table 6: Impact of Ty and Thee With Thee = 2T, on the number of subdomains M, the
required reconstruction time in seconds, and the reconstruction quality compared to a globally
reconstructed implicit surface.

| Tomin | Timao || M |

trec H stymm ‘ dRMSsymm

20
40
60
80
100

120

100
200
300
400
500
600

50
22
8

8
8
1

1.04
2.97
18.12
19.03
18.23
586.31

3.5731
2.7512
0.2453
0.2450
0.2383
0.1964

0.1828
0.1008
0.0289
0.0289
0.0282
0.0111

Table 7: Impact of Ty and Thee With Thee = 5T on the number of subdomains M, the
required reconstruction time in seconds, and the reconstruction quality compared to a globally
reconstructed implicit surface.

L B1 M tree [dmazoymm | drMSiymm
T 29 2038 03574] 0.0381
12| 57 2037| 02032 0.0348
14| 64 41.09| 03068 | 0.0338
16| 99| 6668| 02072 0.0269
18 [134 | 9799 | 01979 | 0.0247
2| 225 | 135.08 | 0476 | 0.0224

Table 8: Impact of § on the number of subdomains M, the required reconstruction time in
seconds, and the reconstruction quality compared to a globally reconstructed implicit surface.

2.7. PARAMETER IMPACT 39

300 2000
1800
1600
1400
1200
1000
800
600
400

200

250

200

150

100

20

Number of subdomains (M)

0 | D A ks i S| i i i i i 0
20 60 100 140 180 220 260 300 340 380 420 460 500
Tmin

Reconstruction time in sec. (¢recon)

(a) Subdomains and reconstruction time.

Tmam = 1-2Tmin

Uoymm —— 1 .18

— 0.16
—0.14
4 0.12
- 0.1
= 0.08
— 0.06
- 0.04
________ 4 0.02

| | | | | | | | |

0
20 60 100 140 180 220 260 300 340 380 420 460 500
Tmin

Hausdorff distance (dg,,,.,,)

RMS Hausdorff distance (drazs,, ..)

(b) Hausdorff distances.

Figure 9: Impact of T}, and Thee with Thpee = 1.270,;, on the number of subdomains M,
the required reconstruction time in seconds, and the reconstruction quality compared to a
globally reconstructed implicit surface.

40

Hausdorff distance (dg,,,.,,)

CHAPTER 2. THE PARTITION OF UNITY VARIATIONAL METHOD

Tmin

(a) Subdomains and reconstruction time.

Tma:v = 2Tmin

I NN N N N N T T T T R s

Tmax - 2Tmm
180 N B B B B B B L 700 fg
g 160 trecon _____ ? 600 £
g 140 D500 &
o— | —
< _] 95}
: 120 / p
< 100 ;7400 ¢
,_g / g
2 80 /7300 o
o 4 o
z OO {200 §
q 40 4 &
2 20 —-//’/’,_-/ 7 100 §
0 Lood--A4-- T 7T T 17T 1T T T 1 0 =
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

0.2
0.18
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02
0

40 60 80 100 120 140 160 180 200 220 240 260 280 300

Tmin

(b) Hausdorff distances.

RMS Hausdorff distance (drazs,, ..)

Figure 10: Impact of Ty and Thney With They = 27,4, on the number of subdomains M,
the required reconstruction time in seconds, and the reconstruction quality compared to a
globally reconstructed implicit surface.

2.7. PARAMETER IMPACT 41

Tmam - 5Tmzn
50 T T T T 600 ”g
S Br g M 7] 2
= recon /] 500 ~
L !

E gg — /// — 8
: ;400 2
s 30 Fa— B=
o) /]
2 25+ /300 F
5 20 S PO
= 0k / . -
% L qw
< L / — 3
o b Loooooo—- fo--—---- q--——---- o 0 2

20 40 60 80 100 120

Tmin
(a) Subdomains and reconstruction time.

Tma:v = 5Tmin .
4 T T T . 0.2 %
[Hs mm 5:}
S RMSSme _____ = 0.18 §
2 —10.16 &
T — 3
o —0.14 ‘@’
— [\9)
§ 9012 =
= 401 =
A o]
g = 0.08 i
= - 0.06 §
3 Jo.04 2
= T Foo02 T
]] 0 =
80 100 120 &

Tmin
(b) Hausdorff distances.
Figure 11: Impact of Ty and Tiney with They = 5T, on the number of subdomains M,

the required reconstruction time in seconds, and the reconstruction quality compared to a
globally reconstructed implicit surface.

42 CHAPTER 2. THE PARTITION OF UNITY VARIATIONAL METHOD

240 140
220 120 S
= 200 £
Z 180 100 §
o— 0]
= w0
S 140 80 o
@ 120 g
— 60 ¢
100 =
é 80 40 =
= A7
2 00 20 &
40 8
o
20 0
(a) Subdomains and reconstruction time.
stymm - S
— dRMSsymm _____ 3
g 035 F %)
g =
B &
= =
= 03F ®
[¢D])
5 025 F .2
.2 aS
~ C=!
T 02f B
2 =
=
0.1 | | | | | 0 ~=
0.8 1 1.2 1.4 1.6 1.8 2

g

(b) Hausdorff distances.

Figure 12: Impact of 8 on the number of subdomains M, the required reconstruction time in
seconds, and the reconstruction quality compared to a globally reconstructed implicit surface.

2.8. EXAMPLE 43

2.8 Example

In order to illustrate the new reconstruction method based on the partition of unity, we discuss
a very simple example in the following. Consider the point set of Figure 13(a) consisting of
200 points. Using the octree domain decomposition method of Subsection 2.3.2 with T},;, =
50, Thhar = 150, and = 1.5, eight spherical domains are created (Figure 13(b)), and the
reconstructed implicit surface using the triharmonic basic function ¢(z) = ||||* is shown in
Figure 13(c).

(a) Seed point set. (b) Octree (¢) Reconstructed (d) Intersecting
domain decompo- surface. ray.
sition.

Figure 13: A simple example of the partition of unity variational method.

We will now analyze the behavior of some involved functions along a ray that passes
through the implicit surface shown in Figure 13(d). The ray only passes through four of
the eight spherical domains, and the four corresponding local reconstruction functions are
shown in Figure 14(a). By using the decay function vz of Table 3 and the spherical distance
function (43), the resulting normalized weighting functions after the normalization procedure
of Equation (33) along the ray are shown in Figure 14(b). Finally, by putting together the
local solutions using Equation (32), the global reconstruction function along the ray and its
derivative are shown in Figures 14(c) and 14(d), respectively.

44 CHAPTER 2. THE PARTITION OF UNITY VARIATIONAL METHOD

(c) Global reconstruction function. (d) Derivative of the global reconstruction func-
tion.

Figure 14: Graphs of the values of the involved functions along a ray.

2.9. RESuLTS 45

(a) Stanford Bunny. (b) Stanford Dragon. (c) Stanford Buddha.

Figure 15: Some visual results when reconstructing from the vertices of polygonal meshes.

2.9 Results

We tested the partition of unity variational method to reconstruct implicit surfaces from a
variety of point sets coming from different sources, and in this section we show the obtained
quantitative and qualitative results. All results were obtained on an Intel Pentium 1.7 GHz
with 512 MB of RAM running Linux. To solve the linear systems involved in the local
reconstruction processes, we used the linear solver from the GNU Scientific Library package
[61] based on LU-decomposition. We decided to drive all the results by using the biharmonic
basic function ¢(x) = ||| for the local reconstructions. Furthermore, we exclusively used the
decay function v3(z) = —62° + 152* — 102> + 1.

As a first class of point sets, we take the vertices of polygonal meshes and discard all
connectivity information. You can see some visual results of the reconstructed Stanford Bunny,
the Stanford Dragon, and the Stanford Buddha in Figure 15.

Let us analyze the impact of T},;, and T4, while reconstructing the Stanford Bunny from
N = 34,834 points. Recall that we use two normal constraints per point, and the total number
of constraints is 3N. In table 9, the number of created subdomains is denoted by M and the
required time is given by ¢j7. The required time by using the biharmonic basic function for
the local reconstruction is given by #,.. and the resulting total reconstruction time by t;ptq;-
We also sketched the total reconstruction time #;,q; with respect to Ti,in and The, in a graph
in Figure 16.

Together with the obtained visual results, we found T},;, = 50 and T},,, = 100 to be a
good compromise between locality of reconstruction and the required reconstruction time, and
we will use these values for the further tests in this section.

Table 10 illustrates the scalability of the partition of unity variational method. We reduced
the number of points of the original Stanford Bunny (34,834 points), the Stanford Dragon
(437,645 points), and the Stanford Buddha (543,652 points) arbitrarily to N points. According
to the results experienced above, we set Tj,;, = 50 and T;,., = 100 and use the biharmonic
basic function ¢(x) = ||| for the local reconstructions. The number of domains after applying
the domain decomposition method is denoted with M, and the required time is given by ;.

46 CHAPTER 2. THE PARTITION OF UNITY VARIATIONAL METHOD

We also show the required time for the local reconstructions in the subdomains (f,e.), and
the accumulated total reconstruction time #;54q;. Consider the corresponding graphs of the
required times with respect to the number of points in Figure 17.

The partition of unity variational method is particularly adapted to reconstruct implicit
surfaces from non-uniformly distributed point sets. To illustrate the robustness against highly
non-uniformly distributed point sets, we artificially created subsets of points of the Stanford
Bunny and the Stanford Dragon with a sharp density variation and a smooth density variation,
respectively (Figure 18(a) and 18(b)). The results of the reconstruction using the partition of
unity variational method can be seen in Figures 18(c) and 18(d).

We will now show the impact of the regularization parameter A smooothing out fine details
to reconstruct implicit surfaces with noise in the point set. In order to elaborate qualitative
results, consider the Stanford Bunny with its 34,834 points. Again, we discarded all connectiv-
ity information and reconstructed the implicit surface for different values of the regularization
parameter \. The higher the value for lambda, the more the model is approximated, and hence
the more the concavities in the Stanford Bunny’s fur and ear disappear as can be seen in the
results shown in Figure 19. The Hausdorff distances of the different reconstructed models for
A > 0 to the reconstructed model with A = 0 can be seen in Table 11.

As a second class of point sets, we take unorganized points from range scanners. We
reconstructed the Cyberware Igea consisting of 134,346 points (Figure 20(a)) and the Max
Planck head (Figure 20(b)) consisting of 52,809 points using the partition of unity variational
method with Ty = 50, Thee = 100, and 8 = 1 in 5,205 seconds and 1,205 seconds,
respectively. The resulting reconstructed implicit surfaces can be seen in Figure 20(c) and
20(d), respectively.

In order to show that the reconstructed implicit surfaces apply well for global illumination,
we implemented a plugin for POVray [126] that allows to ray-trace implicit surfaces recon-
structed by the partition of unity variational method. With this plugin, photorealistic images
can be produced, and in Figure 21, you can see two examples of the ray-tracing of the Max
Planck head and the Stanford Bunny.

2.9. RESULTS 47
‘ Tinin ‘ Tz ‘ M ‘ v ‘ lrec ‘ Ltotal H Timin ‘ Tnax ‘ M ‘ v ‘ lrec ‘ Ltotal ‘
20 40 | 7960 | 14.07 | 138.67 | 152.74 100 | 120 | 4320 | 7.31 | 2034.27 | 2041.58
20 60 | 6756 | 14.91 | 132.91 | 147.82 100 140 | 3172 | 5.78 | 1707.39 | 1713.17
20 80 | 6028 | 13.47 | 13543 148.9 100 160 | 2052 | 3.85 | 1422.45 | 1426.3
20 100 | 5216 | 9.35 | 130.98 | 140.33 100 180 | 1779 | 2.58 | 1412.27 | 1414.85
20 | 120 | 4320 | 9.50 | 200.57 | 210.07 100 | 200 | 1667 | 2.5 | 1421.36 | 1423.86
20 140 | 3172 | 6.68 | 327.77 | 334.45 100 | 220 | 1597 | 3.19 | 1451.9 | 1455.09
20 160 | 2052 | 3.24 | 537.29 | 540.53 120 140 | 3172 | 5.51 | 2648.92 | 2654.43
20 | 180 | 1779 | 3.04 | 608.01 | 611.05 120 | 160 | 2052 | 3.93 | 2057.33 | 2061.26
20 | 200 | 1667 3.1 | 659.57 | 662.67 120 180 | 1779 | 2.58 | 1938.65 | 1941.23
40 60 | 6756 | 11.01 | 229.92 | 240.93 120 | 200 | 1667 | 3.22 | 1948.19 | 1951.41
40 80 | 6028 | 9.52 | 217.18 226.7 120 | 220 | 1597 | 2.34 | 1979.07 | 1981.41
40 | 100 | 5216 11 | 240.67 | 251.67 140 | 160 | 2052 | 3.9 | 2861.88 | 2865.78
40 120 | 4320 | 6.83 281.8 | 288.63 140 180 | 1779 | 2.77 | 2786.25 | 2789.02
40 | 140 | 3172 | 5.86 | 409.27 | 415.13 140 | 200 | 1667 | 2.91 | 2805.32 | 2808.23
40 160 | 2052 | 3.62 575.8 | 579.42 140 | 220 | 1597 | 3.05 | 2813.77 | 2816.82
40 | 180 | 1779 | 2.82 | 682.19 | 685.01 160 | 180 | 1779 | 2.58 | 3733.24 | 3735.82
40 200 | 1667 | 2.44 | 720.14 | 72258 160 200 | 1667 | 2.84 | 3840.42 | 3843.26
40 | 220 | 1597 | 2.67 | T776.28 | T78.95 160 | 220 | 1597 | 2.71 | 4059.2 | 4061.91
60 80 | 6028 | 10.71 | 567.55 | 578.26 180 | 200 | 1667 | 2.56 | 5029.62 | 5032.18
60 100 | 5216 | 9.47 | 637.69 | 647.16 180 | 220 | 1597 | 2.37 | 5508.26 | 5510.63
60 | 120 | 4320 9.1 | 579.04 | 588.14 || 200 | 220 | 1597 | 2.52 | 8016.18 | 8018.7
60 140 | 3172 | 8.79 | 672.14 | 680.93
60 | 160 | 2052 | 4.65 | 754.72 | 759.37
60 180 | 1779 | 2.96 | 890.81 | 893.77
60 | 200 | 1667 | 3.13 | 981.19 | 984.32
60 | 220 | 1597 | 3.26 | 940.56 | 943.82
80 | 100 | 5216 | 8.56 | 1418.07 | 1426.63
80 120 | 4320 9.1 | 1486.33 | 1495.43
80 140 | 3172 | 6.17 | 1298.12 | 1304.29
80 160 | 2052 | 4.27 | 1206.97 | 1211.24
80 180 | 1779 | 3.80 | 1131.58 | 1135.38
80 | 200 | 1667 | 3.27 | 1050.3 | 1053.57
80 | 220 | 1597 | 2.98 | 1098.45 | 1101.43

Table 9: Impact of Ty;n and Thee on the reconstruction time of the Stanford Bunny.

48 CHAPTER 2. THE PARTITION OF UNITY VARIATIONAL METHOD

| Model | P | M | tar | trec | tiotal |
Dragon 1,000 134 0.02 5.52 5.54
2,000 288 0.12 12.77 12.89

4,000 561 1.23 33.08 34.31

8,000 897 1.58 53.67 55.25

16,000 | 1,940 6.45 146.44 | 152.89

32,000 | 4,068 26.17 449.44 | 475.61

64,000 | 8,009 98.38 | 1162.72 | 1261.1

128,000 | 17,039 | 333.16 | 3448.41 | 3781.57

256,000 | 32,467 | 589.82 | 7224.44 | 7814.26

437,645 | 61,755 | 1216.65 | 12853.15 | 14069.8

Buddha 1,000 155 0.03 8.1 8.13
2,000 253 0.16 21.74 21.9

4,000 491 0.63 31.02 31.65

8,000 932 1.93 75.81 77.74

16,000 | 2,171 9.27 196.03 205.3

32,000 | 3,893 28.9 458.77 | 487.67

64,000 | 8,828 | 115.58 | 1328.42 1444

128,000 | 15,856 | 343.09 | 4319.41 | 4662.5

256,000 | 34,966 | 1018.9 | 8230.98 | 9249.88

512,000 | 65,423 | 1555.6 | 14816.4 | 16372.1

543,652 | 69,651 | 1686.67 | 15669.33 | 17356.9

Bunny 1,000 78 0.01 3.96 3.97
2,000 239 0.09 9.47 9.56

4,000 330 0.26 23.28 23.54

8,000 1107 1.41 61.37 62.78

16,000 1569 2.51 108.68 | 111.19

32,000 4845 7.53 420.39 | 427.92

34,834 5216 13.61 398.89 | 412.50

Table 10: Scalability of the reconstruction.

Table 11: Hausdorff distance for different values for the regularization parameter A compared

to A =0.

A dmaxsymm dmeansymm dRMSsymm
0.00001 || 0.419367 | 0.0143101 | 0.0227934
0.00005 || 0.828604 | 0.0365094 | 0.0531872

2.9. RESuLTS

Reconstruction time in sec. (tyec)

10000
8000
6000
4000
2000

0

Figure 16: Impact of Ty, and Ty, on the reconstruction time of the Stanford Bunny.

49

20

Reconstruction time in sec.

Reconstruction time in sec.

CHAPTER 2. THE PARTITION OF UNITY VARIATIONAL METHOD

20000 T T T T
ty —+—
trec __X_-
Liotal -~ X --
15000 -
X
X
10000 | e .
s o
5000 e =
,;/'%//
"¥W
0 e — '
0 100000 200000 300000 400000 500000
Number of points P
(a) Dragon timings.
ty ——
trec —=X--
20000 + tiotal -~ X -~ _|
15000 B ;x/x .
10000 o -
st
5000 - %= i
0 e . . .
0 100000 200000 300000 400000 500000 600000

Figure 17: Scalability of the reconstruction time with respect to the number of points.

Number of points P

(b) Buddha timings.

2.9. RESULTS o1

(a) Sharp density variation. (b) Smooth density variation.

(c) Reconstructed surface. (d) Reconstructed surface.

Figure 18: Robustness of the partition of unity variational method against highly non-
uniformly distributed point sets.

52 CHAPTER 2. THE PARTITION OF UNITY VARIATIONAL METHOD

(a) 34,834 unorganized points. (b)y A=0.

(¢) A = 0.00001. (d) A = 0.00005.

Figure 19: Approximating unorganized point sets with different values for the regularization
parameter \.

2.9. RESuLTS

(a) Cyberware Igea points. (b) Max Planck head points.

\

(c) Reconstructed surface. (d) Reconstructed surface.

Figure 20: Reconstruction from range scanner data.

54

CHAPTER 2. THE PARTITION OF UNITY VARIATIONAL METHOD

(a) Max Planck head. (b) Stanford Bunny.

Figure 21: Ray-tracing using our POVray plugin.

2.10. CONCLUSIONS 55

2.10 Conclusions

In this chapter, we described the partition of unity variational method, a new method to
reconstruct implicit surfaces from large unorganized point sets. This method divides the
global reconstruction domain into smaller overlapping local subdomains using an adaptive
domain decomposition method by using an octree, solves the reconstruction problems in the
local subdomains using radial basis functions with global support, and blends the solutions
together using the partition of unity method.

The method has a nice linear behavior of the required reconstruction time and memory
usage with respect to the number of points in the point set, because the O(N log N) creation
involved in the domain decomposition method is negligible compared to the O(N) reconstruc-
tion of the local subdomains. Furthermore, the local reconstruction problems can be solved
by various, non-communicating entities due to the independence of the local subdomains. We
believe that this fact enables a straightforward out-of-core implementation of the new implicit
surface reconstruction methods, where only the data of the local subdomain to reconstruct
has to be kept in core.

We showed the quality of the partition of unity variational method on a variety of point sets
coming from different domains, and the quantitative results confirmed our anticipation of the
linear complexity behavior. We think that the simplicity of the described process makes the
new method highly accessible, compared for example to the method based on fast evaluation
techniques of radial basis functions using Fast Multipole Methods of Carr et al. [33].

The partition of unity variational method distinguishs itself by the freedom it offers to
decompose the global domain into local subdomains, even allowing to combine different sub-
domain shapes. This can be particularly useful when there is already some information about
the unorganized point set to handle.

Implicit surfaces reconstructed by using the partition of unity variational method are
composed of variational implicit surfaces in the local subdomains. This assumes that the
reconstructed surface is everywhere locally symmetric, making it impossible to preserve sharp
features along edges and corners. One elegant solution to overcome this limitation may be
to use anisotropic basis functions [52] for the local reconstructions. But by sticking together
the local reconstructions by using the partition of unity method, partition of unity blendings
between sharp and smooth parts of the surface do not preserve sharp features either. We
believe, that multi-level partition of unity implicits suffer from the same drawback, and that
it is impossible to guarantee the preservation of sharp features without an extensive topology
study.

In general, since we use the same type of local reonstructions in the subdomains, the
variational implicit surfaces, we believe that our method is more stable against topological
differences between blended subdomains than multi-level partition of unity implicits [118]. On
the other hand, reconstructing variational implicit surfaces in the local subdomains is much
slower than reconstructing quadratic surfaces, and consequently multi-level partition of unity
implicits are much faster to reconstruct than reconstructing implicit surfaces by the partition
of unity variational method.

Compared to reconstruction methods using compactly supported radial basis functions
[113, 90], we can reconstruct implicit surfaces from unorganized point sets and not only quasi-
uniformly distributed point sets.

56 CHAPTER 2. THE PARTITION OF UNITY VARIATIONAL METHOD

(a) Starting points. (b) Moving a point. (c) Adding a point. (d) Changing a nor-
mal.

Figure 22: Simple low-level modelling demonstrated on a sphere.

Finally, since we use two normal constraints for the involved reconstructions of the local
subdomains, we do not have to define a carrier solid that sometimes influences the shape of
the reconstructed implicit surface [90] since it has to be bijective to it.

The use of the partition of unity method to reconstruct implicit surfaces from unorganized
point sets enables to design point-based modeling environments, where points are used as
modeling primitives, as an alternative to modeling techniques based on polygonal meshes. The
pioneering work for point-based modeling can be attributed to Turk and O’Brien [156, 157],
who interpolate global variational implicit surfaces from small unorganized point sets. Very
recently, Pauly et al. have shown how to use the approximation power of moving least squares
to define a point-based free-form shape modeling technique [122].

Implicit surfaces reconstructed using the partition of unity variational method is partic-
ularly adapted for free-form modeling with a large number of points as modeling primitives.
After every change of the positions or normals of any of the points, an implicit surface is
reconstructed efficiently by simply updating the reconstructions in the involved local subdo-
mains. This can be done either by solving the linear systems in the involved subdomains from
scratch, or by using the previous solutions of the local reconstruction problems to determine
the new solutions with the Sherman-Morrison formula [128].

In Figure 22, we illustrate some simple examples of low-level modeling on a sphere. The
initial implicit surface was reconstructed using the partition of unity variational method from
a set of 42 seed points (Figure 22(a)). The results of some basic low-level operations such as
changing a point’s position, changing a point’s normal, as well as adding a new point can be
seen in Figures 22(b) - 22(d), respectively.

Since we allow a high number of unorganized points for modeling, we believe that it will be
useful to define modeling operators on several modeling points at a time, where, for example,
all modeling points are influenced with an impact according to a decay function.

High-level operators that act simultaneously on a large number of modeling points can be
defined using space deformation techniques that define geometric deformations as a general
transformation from R? to R?, such as the warping operator by Barr, the free-form deformation
operator by Sederberg and Parry, and others, see [18] for a survey. As our point-based modeling
primitives are totally defined by a set of 3D points, all these techniques can be easily used,

2.10. CONCLUSIONS 57

(a) Twisted points. (b) Reconstructed surface.

Figure 23: Twisting the Stanford Bunny around the z-axis.

and by using either the partition of unity variational method or the hierarchical partition of
unity variational method, topology issues do not have to be considered. For instance, Figure
23(a) presents the application of a classical squeezing operator applied to the unorganized
points of the Stanford Bunny, and the resulting reconstructed surface using the partition of
unity variational method is shown in Figure 23(b).

Since the defining function is at least C° continuous and has negative values outside
the surface and positive values inside, the function representation model (FRep model), a
powerful solution for point membership classification [121], can be applied to the partition of
unity and hierarchical partition of unity variational methods. Function-based shape modeling
operations are usually built in a constructive approach, resulting in a tree structure, with
defining functions at the leaves and operations at the nodes.

Morphing between two implicit surfaces reconstructed by the partition of unity variational
method or the hierarchical partition of unity variational method with defining functions f;
and fo can simply be done by the following linear interpolation with ¢ € [0, 1]:

fmorph(m) = (1 - C)fl(m) + Cf2(w) (:)O>

By starting with ¢ = 0 and by gradually increasing ¢ up to ¢ = 1, the implicit surface
defined by fporpn gradually metamorphoses the implicit surface defined by f; into the implicit
surface defined by fo. See Figure 24 for an example of the metamorphosis of the Max Planck
head into the Cyberware Igea for 12 different values for c.

CHAPTER 2. THE PARTITION OF UNITY VARIATIONAL METHOD

(i) @) (k) (1)

Figure 24: Morphing the Max Planck head to the Cyberware Igea.

Chapter 3

The Hierarchical Partition of Unity
Variational Method

3.1 Overview

In this chapter, we present a hierachical way to use the partition of unity method for variational
implicit surfaces in order to reconstruct implicit surfaces from a large unorganized point set
P. In contrast to the partition of unity variational method introduced in the preceding
chapter, where the local reconstructions of all the leaf nodes of the domain decomposition
are glued together using the partition of unity method, the hierarchical partition of unity
variational method uses the partition of unity method also at the inner nodes of the hierarchy.
The solutions are sticked together by pairs and propagated bottom-up, and the root node
contains the global reconstruction function. Moreover, instead of fixed grid or octree domain
decompositions, a binary tree is used to create the local subdomains. The particular charme
of the new method is, that the local reconstruction is calculated from the same number of
points in every local subdomain. Furthermore, the number of points in the overlapping zone
can be specified, ensuring a useful constraint to stabilize the partition of unity blending of the
local subdomains.

Again, we decompose the method into three principal steps. First, the global domain of
interest is subdivided into overlapping subdomains using a binary tree, where every subdomain
contains the same number of points (Section 3.2). Second, the local reconstructions of the
subdomains in the leaf nodes of the binary tree are computed according to Section 2.4. Third,
in order to evaluate the global defining function, the local reconstructions are glued together
bottom-up by recursively applying the partition of unity method (Section 3.4).

After illustrating the hierarchical partition of unity variational method on a simple example
in 2D in Section 3.5, we present the results of this new method in Section 3.6 and conclude in
Section 3.7.

3.2 Binary Tree Domain Decomposition

Starting from the unorganized point set P and its bounding box being the entire domain
QL% the binary tree domain decomposition method adaptively subdivides Q[using a binary

29

60 CHAPTER 3. THE HIERARCHICAL PARTITION OF UNITY VARIATIONAL METHOD

tree. The tree is built in a top-down recursive process starting from the root node, where the
entire domain QU9 is subdivided into two overlapping subdomains Q[ll] and 9[21} containing an

equal number of points nl!l in the respective point sets P{H and 732[1]‘ All subdomains Q[

Q[llﬂ}

at level [are themselves subdivided recursively into two overlapping subdomains and

9[21 +1] containing an equal number of points n¥ in the respective point sets PFH and Pgﬂ].
The recursion terminates, when the number of points in a subdomain falls below a threshold
2 % Tjeqp. In this way, a perfect binary tree of level L is established, i.e. all leaf nodes are at
the same level L in the tree, and all internal nodes have the degree two. Furthermore, in all
25 leaf nodes, the equal number of points ntH is restricted to Tiear < n < 2Theqf-

Let us now give some insight how to subdivide a domain Q¥ into two overlapping subdo-
mains Q[ll 1 and Q[;H} containing an equal number of points nll in the respective point sets
P{Hrl] and 73£l+1]_

In contrast to the octree domain decomposition method described in Section 2.3.2, the
number of points n[ollmap = Card(P{l—H] N Pg—H])) in the overlapping zone Q[IH'H N Q[QZH] can

be specified explicitly as an overlap quota q €]0,1[of the number of points nll:

U

noverlap

In order to avoid a too low or too high number of points in Q[IHH N 9[21+1] at the interior

nodes of the binary tree resulting in either an undesired behavior when sticking together the

functions of the local subdomains, or in a too high computational overhead, we clamp ngjj erlap

to [Timins Tmaz). Then, the number of points nl*1 in the subdomains can be calculated as
follows:
7] 1
n[l-H] — noverla;; + nl! (52)

The extent of the two overlapping subdomains Q[IHH and 9[21+1] is calculated by the fol-
lowing steps. First, the longest axis of QY is determined. Second, we collect the point sets

P¥+1] (respectively 7;2[l+1}) containing the nl+1]

points with the lowest (respectively highest)
values with respect to the longest axis. In practice, we rearrange the points PU with respect
to their values of the longest axis. By setting i; = nlt and iy = nll —nl+1 41, we rearrange

the points so that p; < p;, for 1 <¢ <4 and p; > Di, for io <7 < nlll:

,P£1+1]

A

l L N
PH =DPir--5Piy15Piys- -1 Piy s Pig 15 - - - Pyl

,P£l+1]

Finally, Q[IH'H and Q[QZH] are defined by the bounding boxes of PgH} and PQ[H_H, respec-
tively. Consider the resulting recursive algorithm for the binary tree domain decomposition
in Algorithm 2 that has to be called using decompose (P, 0).

In the leaf nodes, the local reconstructions are calculated according to the partition of
unity variational method resulting in defining functions fIX1. See Section 2.4 for more details
about the local reconstructions.

3.3. STICKING SOLUTIONS TOGETHER 61

Algorithm 2 decompose(P, 1)

Require: points P level I
Ensure: binary tree
set QY be the bounding box of P
set nll = Card(PW)
if nlll >= 2Tjeqy then

U — ol
set noverlap - qn[]
e [l
if Noverlap < Timin then
(1 _
noverlap Tmm
else if ngz])erlap > Trar then
(1 _
noverlap - Tma:z:
end if

determine the longest axis of Q1
rearrange the points in P according to the longest axis

determine the points P£l+1} and 732[l+1}

decompose(PyH}, 141)
decompose(PQ[HH, 141)

else
Calculate the local reconstruction for PU

end if

3.3 Sticking Solutions Together

In order to evaluate the global defining function f at a point @, the local reconstructions are
glued together by recursively applying the partition of unity method bottom-up in the binary
tree. More precisely, at every internal node of level [, the defining function f[is given by a
partition of unity blending of the defining functions of the two child nodes fl[H_l] and fQ[H_H:

@) (@) + @) ol (@)

() = (53)
i) + (@)
Recall that the weighting functions ﬁ)[IHH (and u?g H]) at level [+ 1 are constructed as

the composition of a distance function d[llﬂ]) (respectively d[QZ H]) and a decay function v, i.e.

ﬁ)[IHH (&) =vo d[llﬂ}(a:) (respectively u“igﬂ](a:) =wvo dgﬂ](a:)), as already explained in detail
in Section 2.5.

Of course, since the domains Q[lH_H and Q[ZH_H are defined as the bounding boxes of the

point sets Pl spanned from a and b, the distance function to use is a box distance function:

4(v — ay)(by —)

dgox(xayaz) =1- H (b —a)2
v v

VET,Y,Z

(54)

To illustrate the evaluation of the global defining function f at a point @, consider the
recursive Algorithm 3 that has to be called with eval(x, root node).

62 CHAPTER 3. THE HIERARCHICAL PARTITION OF UNITY VARIATIONAL METHOD

Algorithm 3 eval(xz, node node)

Require: point , node node at level [
Ensure: defining function value of at node node of level [
if p € QU then
if node is a leaf node then
return f(x)
else
[+1 .
set fi* = eval(x, node->child[0])
set f2[l+1] = eval(x, node->child[0])
calculate uAngH] from Q[IZH]
calculate u?g 1 from 9[21 1l
FI T () (@) 4 1) (@)) ()
iy @)y (@)

return

end if
else
if node is the root node then
return some negative value
else
return 0
end if
end if

3.4 Scalability

In this section, we analyze the scalability of the hierarchical partition of unity variational
method in terms of computational complexity. We are interested in the scalability of both
the reconstruction of the global defining function f starting from a point set P consisting of
N points, and the complexity analysis of the evaluation of the global defining function f at a
point & € R3.

Concerning the reconstruction of the global defining funtion f, the following principal steps
are involved:

1. Determine the domain QY from the bounding box of the point set P and recursively
subdivide it into overlapping domains after collecting the point sets P¥+1] and Pg—H].
2. Compute the local defining functions f£ for all local subdomains QM in the 2% leaf

nodes.

The first step is the recursive domain decomposition process. In order to analyze the
scalability, we need to determine the number of points per level as well as the number of levels
L.

Of course, the number of points in the root node is N = Card(P). Using equations (51)
and (52), the number of points for a node at level [is nl!l = %}H])l, and since there are 2/
nodes per level, the number of points per level is N (1 +¢)!. Since the number of points in the
overlapping zone is bounded above by T},4:, the number of points per node at level 0 <[< g

is bounded above by % + %Tmam with L; = [logy N'|. Furthermore, at level Ly, the number

3.4. SCALABILITY 63

of points per node is ntE1l < 27, .. + 1. By applying Equation (52) for all levels [> Ly, there
2T max (1+q)!~ 1
Hmorflr0)
all nodes nl!l < 27, 7> the number of levels L is bounded above, and hence the number of
[Z]

are at most points per node for L; <[< L. Since the recursion terminates for

points nl™! at level L is bounded above as well, with the constants « and f:

log —L2TT’”
L <[logN|+ | —7= | = a+ [logN] (55)
2
log Tlea[

2Tmax

TTq

7 X*NZBN (56)

nlLl <2

Since we know that for I} > Iy we have nlltl > nll2l the total number of points in all nodes
of the binary tree is bounded by SN« [log N| and is hence in O(N log N).

At every node of the binary tree, it is understood that the bounding box as well as the
longest axis can be determined in linear time with respect to the number of points in the node.
According to Sedgewick [142], the points can also be rearranged in linear time with respect to
the longest axis. Since the total number of points of all nodes in the binary tree is bounded
by O(N log N), the binary tree can be created in O(N log N).

The second step involves the computation of the local reconstructions in all 2& leaf nodes.
Finding the local reconstructions in a leaf node is in O(1), since the number of points nl%!
per leaf node is bounded by the constant Tj.,;. Moreover, since the number of leaf nodes is
proportional to N, all local reconstructions can be resolved in O(N) time.

Concerning the evaluation of the global defining function f in a point @, the following
three steps are involved:

1. Find all local subdomains Q! with € QI

2. Evaluate all local defining functions f1 and the corresponding weighting functions @
3. Propagate the evaluations of the local defining functions bottom-up in the binary tree
by using a partition of unity blending by pairs.

Due to the fact that there is only a constant number of regions including the point x, the
first and third step, i.e. traversing the binary tree from the root node and propagating the
evaluations bottom up, require O(log N) time. The evaluation of one local defining function
can be done in constant time because the number of points is bounded by Tje.f, and since
there is a constant number of concerned subdomains for «, step two can be done in O(1).

Summing up, the implicit surface can be reconstructed in piecO(Nlog N) + v O(N) =
O(Nlog N) time, and the global defining function f can be evaluated in pie,qO(log N) +
VeratO(1) = O(log N) time. Consequently, the hierarchical partition of unity variational
method is efficient according to the definition of Schaback [139].

Similar to the partition of unity variational method, we experienced a better scalability
in the hierarchical partition of unity variational method in practice. During the surface re-
construction and evaluation, the constants e and piepq are very small compared to the
constants Vpe. and Nieyq, and the results in Section 3.6 show an overall linear reconstruction
and constant evaluation time with respect to the number of points N.

64 CHAPTER 3. THE HIERARCHICAL PARTITION OF UNITY VARIATIONAL METHOD

3.5 Example

In this section, we show two examples of the hierarchical partition of unity variational method
to illustrate the domain decomposition method using the binary tree as well as the stability
against differences in topology of the subdomains.

First, a simple example illustrates the domain decomposition method using the binary

tree in the hierarchical partition of unity method in 2D (Figure 25). All function values are
0" ot __, 4o
white ! black white | *
The local reconstructions in the four leaf nodes of the binary tree can be seen in Figure
25(a). The result of blending together the leaf nodes using the partition of unity method

can be seen in Figure 25(b). The global defining functions of the root node of the binary

represented by grayscale values according to the convention bl_aﬁ -

tree and a straightforward global variational implicit surface are sketched in Figure 25(c) and
Figure 25(d), respectively. Note that the results are similar near the zero-set of the defining
functions where we are interested in. They may differ elsewhere without having an impact on
the reconstructed zero-set.

A second example in 2D illustrates the stability of the hierarchical partition of unity
variational method when sticking together two subdomains with radically different topologies.
To this end, consider the unorganized point set in 2D in Figure 26(a). The local reconstructions
in the two subdomains are shown in Figures 26(b) and 26(c). The resulting partition of unity
blending is shown in Figure 26(d), and no noticeable differences can be seen compared to the
global reconstruction shown in Figure 26(e).

3.5. EXAMPLE 65

(b) Partition of unity blending of the leafs’ local recon-
structions.

(c) Global defining (d) Defining function of
function in the root the global variational
node. implicit surface.

Figure 25: 2D example of the hierarchical partition of unity variational method compared to

a global variational implicit surface (all function values are represented by grayscale values
0= | ot +00])

. . oo
according to the convention [black == pi rack T white

66 CHAPTER 3. THE HIERARCHICAL PARTITION OF UNITY VARIATIONAL METHOD

(a) Seed point set in 2D. (b) Local reconstruction (¢) Local reconstruction
on the left side. on the right side.

(d) Partition of unity (e) Global reconstruc-
blending of the left and tion.

right local reconstruc-
tions.

Figure 26: Stability against topological differences (all function values are represented by
. ; : —00 0~ 0t 400
grayscale values according to the convention |, * --» L. | = —=» &% 1).

3.6. RESULTS 67

3.6 Results

We reconstructed implicit surfaces using the hierarchical partition of unity variational method
from various point sets from different sources, and we show some results in this section. As
for the partition of unity variational method, all results were obtained on an Intel Pentium
1.7 GHz with 512 MB of RAM running Linux. Again, the linear systems involved in the local
reconstructions were solved using the linear solver from the GNU Scientific Library package
[61] based on LU-decomposition. For the local reconstructions, we exlusively used biharmonic
basic functions ¢(x) = ||| since we experienced that they are more stable ingainst numerical
instabilities.

For a first type of point sets, we take the vertices of a polygonal mesh and discard all
connectivity information. In order to show the scalability of the hierarchical partition of
unity variational method, we reduced the Cyberware Isis (187,645 points) and the original
Stanford Dragon (437,645 points) arbitrarily to N points. In Table 12, we show the required
reconstruction time t,.. as the total of the binary tree creation time t4... and the required
time ¢, for the local reconstructions with two normal constraints per point. We experienced
the best quality-speed trade-off by setting T}, = 30, Tiee = 00, and Tjeqp = 50 as well as
an overlap quota ¢ = 0.05, and the resulting number of leaf nodes is given by 2% and the
equal number of points per leaf node is given by n!l). We also sketched the graph of the total
reconstruction time t;,:q; With respect to the number of points NV in Figure 27. It can be seen,
that the given total reconstruction times of the Cyberware Isis increase by leaps and bounds
with respect to the number of points N. This is due to the fact, that the total reconstruction
time can be inferior even for a higher number of points IV since the number of points per leaf
Ll can decrease, and the complexity of the local reconstructions is in O((n!")?). But
in a general view, there is a linear behavior with respect to the number of points N, since

node nl

the O(N log N) creation of the binary tree is negligible compared to the O(N) solving of the
involved local reconstructions as can be seen in Figure 27(a) and 27(b).

Some visual results of the reconstructed implicit surfaces can be seen in Figure 28.

In order to illustrate the impact of the overlap quota ¢ as well as the minimum number of
leaf nodes Tj.qy on the total reconstruction time #;44;, see Table 13 for some different values
on the Stanford Bunny (34,834 points). For a too low overlap quota ¢ = 0.01, artefacts appear
as can be seen in Figure 29.

As the partition of unity variational method, the hierarchical partition of unity variational
method is particularly adapted to reconstruct implicit surfaces from non-uniformly distributed
point sets. To illustrate the robustness against highly non-uniformly distributed point sets,
we reconstructed implicit surfaces from the same artificially created density varying subsets
of points of the Stanford Bunny and the Stanford Dragon as in Chapter 2. The results can
be seen in Figures 30(a) and 30(b).

68 CHAPTER 3. THE HIERARCHICAL PARTITION OF UNITY VARIATIONAL METHOD

Model N ‘ 2L ‘ ’I’L[L] ‘ tiree ‘ ttotal ‘
Isis 10,000 256 | 60| 0.4 34
20,000 512 | 63| 1.0 72
40,000 | 1,024 | 66 | 2.5 | 173
60 000 | 1,024 | 96 | 4.1 | 593
80,000 | 2,048 | 69| 6.0 | 416
100 000 | 2,048 | 85 | 81| 812
120 000 | 4,096 | 56 | 10.5 | 403
140 000 | 4,096 | 64 | 12.8 | 623
160,000 | 4,096 | 72 | 14.4 | 1087
187,645 | 4,096 | 84 | 16.0 | 1323
Dragon | 50,000 | 1,024 | 81 | 3.3 | 362
100,000 | 2,048 | 85| 8.6 | 935
200,000 | 4,096 | 89 | 18.7 | 2114
400,000 | 8,192 | 93 | 43.2 | 4360

Table 12: Scalability of the hierarchical partition of unity variational method (timings in

seconds).

Model ‘ 71lea,f ‘ q ‘ 2r ‘ n[m ‘ Liotal ‘
Bunny 50 | 0.01 | 1,024 | 46 54
0.02 | 1,024 | 48| 59

0.05 | 2,048 | 34 46

0.1]4,09 | 30 66

100 | 0.01 512 | 81| 171

0.02 012 | 86. | 211

0.05 | 1,024 | 58 | 109

0.1 1,024 | 89| 474

200 | 0.01 256 | 152 | 633

0.02 256 | 162 | 799

0.05 512 | 106 | 417

Table 13: Total reconstruction time with varying overlap quota ¢ and minimum number of

points per leaf node Tjeq ;.

3.6. RESULTS

1400

1200

1000

800

ttotal
600

400

200 - -

0 20 40 60 80 100 120 140 160 180 200

1000

(a) Isis

4500
4000
3500
3000
2500
Liotal
2000
1500
1000

500

0 ! ! ! ! ! !
50 100 150 200 250 300 350 400
N

1000

(b) Stanford Dragon

Figure 27: Reconstruction time in seconds with respect to the number of points.

70 CHAPTER 3. THE HIERARCHICAL PARTITION OF UNITY VARIATIONAL METHOD

(a) Isis - 160,000 points. (b) Dragon - 200,000 points.

Figure 28: Visual results of the hierarchical partition of unity variational method.

8%

(a) ¢ = 0.01. (b) g = 0.02. (¢) ¢ = 0.05.

Figure 29: Reconstruction quality for different values of the overlap quota g.

71

3.6. RESULTS

uniform point set with hard density variation.

(a) Non

(b) Non-uniform point set with smooth density variation.

Figure 30: Robustness of the hierarchical partition of unity variational method.

72 CHAPTER 3. THE HIERARCHICAL PARTITION OF UNITY VARIATIONAL METHOD

3.7 Conclusions

In this chapter, we described the hierarchical partition of unity variational method, another
new method to reconstruct implicit surfaces from large unorganized point sets. This method
divides the global reconstruction domain into smaller overlapping local subdomains using a
binary tree, solves the reconstruction problems in the local subdomains using radial basis
functions with global support, and blends the solutions together by hierarchically applying
the partition of unity method at all inner nodes of the hierarchy. Consequently, the local
reconstructions are blended together by pairs and propagated bottom-up, and the root node
contains the global reconstruction function.

Of course, the hierarchical partition of unity variational method has many similarities with
the partition of unity variational method presented in Chapter 2. The method also has a nice
linear behavior of the required reconstruction time and memory usage with respect to the
number of points in the point set, enables an out-of-core implementation due to the inde-
pendence of the local subdomains, is robust against topological differences between blended
subdomains, and does not require a carrier solid.

However, an important advantage of the hierarchical partition of unity variational method
compared to the partition of unity variational method is, that the local reconstructions in the
leaf nodes are computed from an equal number of points. Furthermore, the number of points
in the overlapping zone can be specified explicitly while further increasing the stability of
the implicit surface reconstruction. This makes the hierarchical partition of unity variational
method even more robust against highly non-uniformly distributed and topologically complex
point sets.

Part 11

Rendering of Implicit Surfaces from
Large Unorganized Point Sets

After the acquisition of the unorganized point set P, there are different techniques to
render it on the screen in order to get a visual feedback. In this part, we will discuss different
rendering techniques for implicit surfaces reconstructed from unorganized points. We start by
reviewing some previous work in Chapter 4 that we divide into three categories.

The first category of previous work describes techniques that are using the unorganized
point set P directly for visualization. The two major techniques of this first category are
called point-based rendering, where the points are mapped by forward warping from 3D space
to 2D image locations, and point-based ray-tracing, where rays passing through the 2D image
locations and the viewpoint are intersected with the points, also called backward warping.

The second category of previous work to be described are techniques to visualize implicit
surfaces in general, since we have shown how to reconstruct an implicit surface S from the
unorganized point set P in Part I of this thesis.

Finally, the third category of previous work are techniques to visualize the unorganized
point set P that are using information from both the unorganized point set P as well as its
reconstructed implicit surface S.

In Chapter 5, we present a new point-based rendering technique for an unorganized point
set that uses a reconstructed implicit surface as well. The implicit surface is rendered view-
dependently in an output-sensitive multiresolution manner using points as rendering primitive
without the creation of a polygonal mesh representation.

In Chapter 6, we present another point-based rendering technique for implicit surfaces
reconstructed from unorganized points that is running on programmable graphics hardware.
The local differential geometry for every point in the unorganized point set is extracted in a
preprocess, and then every point is rendered as a fragment-shaded rectangle.

73

74

Chapter 4

Previous Work

4.1 Point-based Rendering and Ray-Tracing

4.1.1 Point-based Rendering
Motivation

Point-based rendering has become very popular in the last years due to the evolution of the
rendering power of modern 3D graphics hardware and due to the fact, that extremely large
models from laser range scanners become available [99, 42, 108|. In contrast to traditional
rendering techniques developed as far back as the middle of the 1970’s, where 3D objects
are approximated by sets of polygons (polygonal meshes), rendered using a depth buffer [35],
and shaded during projection using a model according to Gouraud [65] or Phong [125], point-
based rendering techniques are rendering unorganized points without explicit connectivity.
There are several reasons for the success of point-based rendering techniques. First, the huge
memory available on modern graphics hardware has made it possible to treat scenes with
dramatically more polygons, and as a consequence, by optimally using the rendering pipeline,
projected polygons are mapped to less than one screen pixel. So the main advantage of
scan-line rendering, i.e. the incremental calculation of a polygon’s inner points, has mostly
vanished for scenes of high complexity. Second, representing a curved surface connected planar
polygons requires information about connectivity and remains only an approximation of the
curved surfaces. During point-based rendering the connectivity has no longer to be managed,
and some common operations such as level-of-details, geometrical deformation, and topology
modifications are much easier to implement.

History of Origins

Let us now give some insight into the evolution of point-based rendering techniques. The
first use of 3D discrete points as rendering primitives in computer graphics can be attributed
to Reeves in 1983, with his famous concept of particle systems [129]. According to Reeves,
a particle is simply a point in the 3D FEuclidean space, combined with some additional in-
formation, such as color, density, shading or scattering coefficients. The main advantage of
particle systems is that the rendering step becomes trivial: projecting each particle on the
screen, checking it for visibility with the depth buffer, and finally shading the corresponding

6]

76 CHAPTER 4. PREVIOUS WORK

pixel using the color stored in the particle. Particle systems have mainly been used as a
convenient modeling primitive to generate and animate specific objects that are hard to man-
age by conventional geometric models: fire and explosion [129], smoke [45], waterfalls [146],
clouds [22], and fluids [45, 110]. Original particle systems, based on what we propose to call
1sotropic particles, were developed for modeling and rendering volumetric models. Szelisky
and Tonnesen [149] adapted particle systems to surface models, by introducing the concept
of oriented particles in 1992, based on work done by Reynolds [134]. In this technique, each
particle represents a sample of an underlying surface, and is associated to a 3D frame that
represents the local behavior by the normal vector and the tangent plane of this surface.

An early approach exploiting the possibility to use particles to render solid objects was
first investigated by Levoy and Whitted in 1985 [100]. Their idea is to sample a solid object
into a set of 3D points with a sufficient density to give the visual impression of a solid object
when individual points are projected on the screen. A similar idea was proposed by Max [106]
to render trees.

At the time of all these early approaches, existing computer resources were not feasible to
render a large amount of points in real-time, i.e. to be able to render them in a frame rate
keeping up with the human eye perception. But when Shade et al. presented layered depth
images [143] and Grossman and Dally presented an efficient point-based rendering technique
called point sample rendering [69, 68| simultaneously in 1998, the first scenes using points as
rendering primitive were rendered in real-time, resulting in a highly growing interest towards
point-based rendering recently.

We classify the point-rendering techniques according to the characteristic, whether there
is knowledge about the surface where the points are sampled from or not. First, we discuss
point-rendering techniques, where there is knowledge about the surface and the sampling can
be surface-driven, and second, we discuss point-rendering techniques that do not require any
other underlying surface representation.

Knowledge about the Surface

When there is some knowledge about the underlying surface, we consider that discrete points
are used because they can be rendered more efficiently than other primitives gained from
an underlying surface representation. We will first review some previous work about point
rendering completely implemented in software before reviewing work that is making use of
current graphics hardware pipelines.

Shade et al. generate a layered depth image (LDI) [143], i.e. a view of a scene from a single
viewpoint with multiple pixels along each line of sight, from any other surface representation.
The front element of a layered depth pizel samples the first surface along the line of sight,
and the following pixels sample the next surfaces. To render the layered depth image from
arbitrary viewpoints, the layered depth pixels are warped to image space efficiently using
an incremental calculation, and they are rendered as rectangular gaussian splats, i.e. an
associated image raster parallel to the viewport. The name splat comes from the colorful
analogy of throwing a snowball against a wall, with the spreading energy analogous to the
splatting snow. The splat size is calculated efficiently by using the camera coordinates of
the layered depth image and the new camera coordinates, and no holes appear in the output
image.

4.1. POINT-BASED RENDERING AND RAY-TRACING 77

Note that the fixed resolution of the LDI does not provide an appropriate sampling for all
camera coordinates resulting in blurry artefacts. Chang et al. [36] overcome this problem by
a hierarchical space partitioning method using an octree where in each cell a bounding box
and an LDI containing the samples of this bounding box is stored. All LDI in the tree have
the same resolution, but when traversing the so-called LDI tree from the root, the bounding
boxes become smaller and hence the object is described more accurately. The LDI tree is
rendered by traversing from the root and checking in each cell whether it provides enough
detail when it is warped to the output image. If a current cell does not provide enough detail,
i.e. the warped bounding box covers more than one output pixel, its children are traversed.
Of course, the highest resolution is still limited by the resolution of the LDI in the leaf nodes
of the octree.

Grossman and Dally’s point sample rendering |69, 68| generates discrete surface points
associated with normal and color information (point samples) by sampling orthographic views
on an equilateral triangle lattice from any other surface representation. For rendering, the
point samples are simply projected to screen space. By knowing in advance the target resolu-
tion and magnification at which the 3D object will be viewed, the side length of the triangles
in the triangle lattice is chosen that no holes will appear in the final image. Grossman and
Dally call this technique adequate sampling. However, magnifying an adequately sampled 3D
object to a higher resolution results in a target image with holes, i.e. several pixels are not
addressed although they should be. But as the object is adequately sampled at the original
magnification, decreasing the object resolution by the same amount that the magnification is
increased results again in an adequately sampled object [69]. Instead of using this brute force
approach and rendering the point samples in the lower resolution resulting in blocky artefacts,
Grossman and Dally use the pull-push algorithm primarily introduced by Gortler et al. [64].
In the pull phase, a succession of lower resolution approximations is calculated, and in the
push phase, these lower resolution images are used to fill in the holes in the target resolution
image.

Pfister et al. [124] generate discrete surface points associated with normals and material
attributes called surfels by sampling an octree hierarchy of layered depth cubes [102], i.e. three
orthogonal LDI, of any geometrically defined surface representation. For rendering, the octree
is traversed starting from the root until the desired resolution is obtained, and the surfels
are projected to image space. As the distance of adjacent rays during sampling is known in
advance, the surfels are adequately sampled at a fixed resolution. Similar to Grossman and
Dally [69, 68], when magnifying, holes are filled using the pull-push algorithm.

Botsch et al. [29] use a pure software implementation to render discrete surface points
associated with normals and material attributes, that are generated by sampling a locally pa-
rameterized surface described by a parameterization function I ¢ R?> — R?. The points are
compactly stored in a hierarchical representation based on an octree with extremely low mem-
ory requirements, and this hierarchical representation is exploited to perform fast rendering
by an incremental calculation of the projection of the surface points.

In contrast to all point rendering approaches using pure software implementations, Grisoni
et al. [67, 152] make use of the simple OpenGL point primitive [116]. They sample surface
points of a geometrically defined geometric object associated with normal and color infor-
mation, also called surfels, on 3D grids of various resolutions. By knowing the resolution

78 CHAPTER 4. PREVIOUS WORK

of the grid, the object is adequately sampled in spirit of Grossman and Dally [69, 68]. For
rendering, the appropriate grid is chosen regarding the viewing parameters, and each surfel is
projected using the OpenGL point primitive. When magnifying, holes are filled using circular
or rectangular splats, and the size can be determined by the viewing parameters.

Rusinkiewicz and Levoy [136] presented the QSplat algorithm that generates a hierarchy
of spheres of different radii from a polygonal mesh in a preprocess that is stored efficiently
in a tree. This is done by splitting the set of all vertices from the mesh along the longest
axis of its bounding box. The two subtrees are computed recursively until a single vertex is
reached. At the highest resolution in the leave nodes of the tree, small spheres are associated
to the vertices of the mesh, and at intermediate resolutions in the interior nodes of the tree,
bounding spheres are created that include the spheres of the corresponding subtrees. During
rendering, the hierarchy traversal is adjusted in order to guarantee a given frame rate. The
spheres are rendered by graphics hardware as splats, Rusinkiewicz and Levoy use circular,
ellipsoidal, or rectangular splats that are either opaque, resulting in blocky artefacts, or have
a gaussian transparency distribution, resulting in blobby artefacts. However, the QSplat
algorithm adapts nicely to level-of-detail streaming over networks [137]|. Recently, Dachsbacher
et al. [46] showed, that the computational cost to traverse the multiresolution hierarchy can
be shifted from the CPU to the graphics hardware by rearranging the nodes of the hierarchy
into a sequential list.

Wand et al. use an output-sensitive rendering algorithm called the randomized z-buffer
algorithm [160] that dynamically chooses random surface points from surfaces described by
triangular meshes. The rendering time grows only logarithmically with the number of triangles,
and Wand et al. state, that they can render surfaces consisting of up to 10'* triangles at
interactive frame rates. A similar approach was developed independently by Stamminger and
Drettakis [147], they also generate discrete points to be sufficiently dense in the final image
using a hierarchical sampling method of triangular meshes, procedural objects, terrains, or
volumetric objects. Their algorithm adapts particularly nice to simple modifications of the
geometries.

Whereas all latter approaches render high-quality images by using a huge amount of stat-
ically or dynamically sampled surface points, Kalaiah and Varshney [85, 86| use less sur-
face points by embedding local differential geometry for every point resulting in differential
pointsdifferential point that are created in a preprocess. Starting from surfaces described by
polygonal meshes or NURBS (parametric surfaces based on nonuniform Rational B-Splines),
an initial super-sampled point-based representation is generated and then simplified to dif-
ferential points, by generating less differential points in regions of low curvature and more
differential points in regions of high curvature. The differential points are quantized into 256
different types and then rendered as normal-mapped rectangles. Thanks to the small number
of required differential points to represent surfaces, the storage requirements and the traffic
bandwidth from the CPU to the graphics hardware are significantly reduced.

Besides these pure point-based rendering techniques, various approaches have been pro-
posed recently combining point-based and polygon-based rendering in one framework using
some hybrid hierarchy [37, 41, 51, 40]. Points are rendered in regions where the polygo-
nal mesh has a small screen-space projected area, but again the polygonal mesh has to be
known a priori. Hybrid point-based and polygon-based rendering approaches have proven to

4.1. POINT-BASED RENDERING AND RAY-TRACING 79

be particularly successful for the rendering of plant ecosystems [50].

No Knowledge about the Surface

All previous approaches render discrete surface points starting from 3D objects, where another
surface representation is available. As our initial goal is to render an unorganized point set
P coming from any source, we cannot rely on a given surface representation a priori, and we
will now discuss some previous work about point rendering of an unorganized point set P.

Zwicker et al.’s surface splatting [175] builds on work of Pfister et al. [124], but they
can render an unorganized point set P associated with normals and color information by us-
ing a screen space formulation of the Elliptical Weighted Average (EWA) filter, that is still
successfully used for traditional texture mapping of polygonal meshes |79, 78]. In a small
neighborhood of a point p; € P, a local 2D parameterization of the surface is constructed by
weighting the points in the small neighborhood projected on the tangent plane of p, using
truncated radially symmetric Gaussian functions. The variance matrix of the Gaussian func-
tion is chosen in order to match the local density of the points around p;. The mapping of the
truncated local parameterizations to screen space (EWA splats) can be regarded as splatting
ellipsoids, and the contributions of the mappings of all points of P convolved with a low-pass
filter are accumulated in screen space. In order to avoid the accumulation with hidden surface
parts, a modified A-buffer [32] is used.

Surface splatting provides high-quality anisotropic texture filtering with visually stunning
results, but the pure software implementation is fill-limited and can only render a limited
number of surface points in real-time. To overcome this problem, Ren et al. [130] formulated
an object space EWA filter that renders EWA splats as textured rectangles on programmable
graphics hardware [101] resulting in a significantly higher performance by transforming four
vertices for an EWA splat using a textured rectangle. Botsch and Kobbelt [28] as well as
Guennebaud and Paulin [71]| obtain an even higher performance on programmable graphics
hardware since they render EWA splats by transforming only one vertex through the rendering
pipeline using the point sprite extension on modern graphics hardware.

The power of surface splatting has recently been extended to support depth-of-field point-
based rendering [94]. However, since the surface is only approximated by local 2D parameter-
izations that are drawn as elliptical splats parallel to the viewport, artefacts can be noticed
along the silhouette.

Efficiency

Almost all presented point-based rendering techniques have two components to further accel-
erate memory and rendering efficiency, and we will present some examples in the following.
First, for memory efficiency, the discrete surface points as well as its normals and material
attributes are quantized in order to fit a huge amount of points in the memory. The point
locations and material attributes are often quantized in an incremental method [136, 29] or
by simply neglecting the least significant bits [67, 152]. The normals are often quantized by
considering a volume divided into discrete patches and defining the quantized rays from the
center of the volume to the patches. For example, a cube where the faces are subdivided into
rectangular patches according to Zhang and Hoff [170] is used by Grossman and Dally [69, 68]

80 CHAPTER 4. PREVIOUS WORK

and Rusinkiewicz and Levoy [136], and a recursively subdivided octahedron is used by Grisoni
et al. [67, 152] and Botsch et al. [29].

Second, for rendering efficiency, when a hierarchy is used for levels-of-detail, commonly
known culling techniques are used to cull away fully invisible interior nodes in order to avoid
the traversal of its subtrees. For hierarchical view frustum culling [39], the bounding sphere
hierarchy is exploited for example by Rusinkiewicz and Levoy [136] as well as Alexa et al.
[7, 6], and for hierarchical backface culling |95], they use normal cones [145] to represent the
orientation of the interior nodes of the hierarchy. We [131] proposed to use a hierarchical bit
encoding of the normal cones based on work of Zhang and Hoff [170].

All these point-based rendering techniques using forward warping account for local illu-
mination, and in the following subsection we will present point-based ray-tracing techniques
that also account for global illumination.

4.1.2 Point-based Ray-Tracing

Of course, ray-tracing of an unorganized point set P with an additional underlying surface
representation can simply be done by ray-tracing the underlying surface. Various techniques
exist for polygonal meshes, parametric surfaces [83] and especially NURBS surfaces [104],
procedurally defined objects [84|, and implicit surfaces as discussed in detail in Subsection
4.2.1, for a general survey see Hanrahan [73].

Schaufler and Jensen [140] presented a point-based ray-tracing technique where no other
underlying surface representation is required. Schaufler and Jensen assume, that for an un-
organized point set P the maximum size g of the largest gap between two points is known,
and that the point set has associated normals n; and eventually material attributes. Given
a ray R(t) = o+ td with origin o and direction d, an intersection between the ray and the
point set P is reported, when there is at least one point p; in a cylinder C surrounding the
ray and capped off by a plane perpendicular to the ray at the origin and the maximum length
of the ray. Then, all C' points inside the cylinder C and with a distance d; from the ray R
smaller than g are collected, and the intersection point p,, is calculated by interpolating the
ray parameters t; weighted by (g — d;) and inserted into R:

5y tilg — dy)
Yii(g —dj)

The normal of the intersection point is simply interpolated and weighted by g — d; as well,

pis = R() (57)

C
> milg —dj)
n;,s = c , (58)
Zj:1(9 — dj)
and any other associated material attribute is interpolated similarly. Note that the distance
between a point and the ray is measured orthogonal to a point’s normal and not orthogonal
to the ray. For efficiency reasons, an octree is used to accelerate the decision whether a point
p; is inside the cylinder.

Unfortunately, the point-based ray-tracing technique is view-dependent, since the surface
points to be taken into account during the interpolation of equations (57) and (58) depend
on the view direction. Moreover, the technique suffers from noticeable artefacts along the

4.2. VISUALIZATION OF IMPLICIT SURFACES 81

silhouette. Since the maximum size g of the largest gap between two points has to be known
in advance, the point set P has to be quasi-uniformly distributed, and a high variation between
the spacing of neighboring surface points can lead to strong artefacts.

Recently, Wand and Strasser [161] used the point-based ray-tracing technique to derive a
multiresolution point-based ray-tracing technique. But in contrast to Schaufler and Jensen
[140], an underlying surface defined by a triangular mesh is required. In a preprocess, a
multiresolution hierarchy is set up from the triangular mesh, and it is stored in an octree.
Discrete surface points are only used to approximate the geometry of the inner nodes, whereas
the leaf nodes contain the original triangles of the mesh. In order to intersect a ray with the
surface, the hierarchy is traversed, and when the points in the inner nodes are dense enough,
the intersection is calculated according to Schaufler and Jensen [140], otherwise the ray is
intersected with the original triangles of the mesh.

4.2 Visualization of Implicit Surfaces

4.2.1 Ray-Tracing

Ray-tracing enables to directly visualize implicit surfaces without any additional storage over-
head while creating high-quality images. For every pixel in the output image, a single ray
is cast from the viewpoint, and the intersection with the implicit surface is determined. By
following secondary rays, ray-tracing also accounts for global illumination.

In this subsection, we will discuss various methods to intersect a ray R(t) = o + td
with origin o and direction d with the implicit surface S defined by the function f:R? — R.
Whereas analytical solutions exist for low-degree algebraic implicit surfaces, where the defining
function f can be written as a polynomial equation, we will concentrate here on the more
general case for the defining function f.

Interval analysis was first used by Mitchell [111] to intersect a ray with an implicit surface.
First, the zero-values of the defining function are isolated by finding intervals ¢ € [t1, t2]
that are known to contain one and only one zero-value of the defining function f(R(t) =
o+ td) = 0. Secondly, a refinement technique based on Newton’s method and regula
falsi is applied to those intervals until the ray surface intersection is located as accurately
as needed.

Sphere Tracing is a ray-tracing technique for implicit surfaces that marches stepwise along
the ray R starting from o towards the first intersection, primarily introduced by Hart
[75]. The steps are calculated guaranteed not to penetrate the implicit surface, and the
only requirement is that the defining function f is Lipschitz, i.e. there exists a Lipschitz
bound L such that for all arguments &; and @9 the following inequality holds:

|[f(@1) = f(@2)] < Lz — a2 (59)

The Lipschitz bound L bounds above the rate of change of the defining function f

between x; and x-, and this means that @ is an upper bound for the distance between

x and the implicit surface S.

]2 CHAPTER 4. PREVIOUS WORK

Sphere tracing starts with ¢ = 0 and marches along the ray R(t) = o+td in irregular steps

f(R(t))
T

reported when the marching along the ray approaches the zero-value of the defining
function within an error tolerance €, i.e. |f(R(t))] < e. No intersection is reported,
when ¢ takes a value greater than a maximum ray traversal distance.

guaranteed not to intersect the implicit surface. Nevertheless, an intersection is

LG-Surfaces introduced by Kalra and Barr [87| are another class of implicit surfaces that
can be ray-traced reliably. Besides the existence of a Lipschitz bound L of the defining
function, LG-Surfaces require the existence of a directional bound G of its gradient along
the ray R:

Kalra and Barr’s ray-tracing algorithm relies on the determination of an interval [t1,¢2]
nearest to the ray’s origin o with exactly one intersection of the ray and the implicit
surface, that can then be refined using Newton iterations or regula falsi. Starting from
the intersections of a bounding box of the implicit surface S at ray parameters ¢ and to,
the interval [t1, t2] is subdivided recursively, and an intersection is reported if an interval
with exactly one intersection is found.

In order to find the number of intersections of an interval [t,to] with ¢, = (1 + t2)/2
and d = (t2 — t1)/2, the directional bound G is used: if f(R(t1)) and f(R(t2)) are of
opposite signs, there is at least one intersection in the interval, and there is exactly one
intersection, when || f(R(t,))|| > Gd, i.e. when the defining function is monotone in the
interval. Otherwise, if f(R(t1)) and f(R(t2)) have the same sign and || f(R(tm))]| > Gd,
it is guaranteed that there is no intersection in the interval.

Note, that Kalra and Barr use a preprocess to accelerate the ray-tracing, where regions
in space that do not contain any intersection with the implicit surface are pruned away
using the Lipschitz bound L of the defining function.

4.2.2 Polygonization

In this subsection, we present different methods to represent a continuous implicit surface
S defined by an defining function f : R® — R by discrete polygonal meshes, and according
to Bloomenthal [25], we call this conversion polygonization. Polygonal meshes have received
much attention in computer graphics since conventional graphics hardware is optimized for
displaying polygons, and today’s graphics hardware is capable of rendering 350 million trian-
gles per second [117] by using a depth buffer [35] and shading model according to Gouraud
[65] or Phong [125]. A major advantage compared to ray-tracing of implicit surfaces is, that
the polygonization has to be done only once for a static surface, regardless of the viewing
parameters. On the other hand, the polygonization may require a considerable amount of
time and induces storage overhead. In contrast to ray-tracing implicit surfaces, rendering the
polygonal mesh by graphics hardware does not account for global illumination.

Of course, the polygonal mesh obtained by the polygonization should accurately describe
the implicit surface and should be topologically correct, i.e. it should be homeomorphic to

4.2. VISUALIZATION OF IMPLICIT SURFACES 83

the implicit surface. Furthermore, the polygonal mesh should be topologically consistent, i.e.
without disconnected vertices, edges, or faces, and distorted faces should be avoided.

According to Akkouche and Galin [5]|, we divide the polygonization techniques into three
categories.

Spatial sampling techniques subdivide the 3D space into cells, commonly either cubes or
tetrahedra, and search for the cells that intersect the implicit surface.

One of the most commonly known spatial sampling techniques is the marching cubes
algorithm [169, 103], that divides the 3D space into cubic cells. At each vertex of each
cube, the defining function f is evaluated and depending on the signs, triangles are
created for each of the cubes. When there are at least two vertices 1 and x5 of the
same cube with f(x1)f(x2) < 0, the surface S must cross the edge between x; and
@2, and the intersection @' with f(2') = 0 of the surface and the edge is computed by
linear interpolation. There are 28 = 256 different configurations depending on the signs
of the 8 vertices of the cube, and by exploiting symmetry, this reduces to 15 essential
configurations. But as pointed out by Diirst [54], 5 of these essential configurations
are ambiguous, and different triangles can be created for the cube leading to topolog-
ical inconsistencies for the wrong choice. Several disambiguation strategies have been
addressed, see Van Gelder and Wilhelms [58].

Marching tetrahedra algorithms, e.g. by Shirley and Tuchman [144| or Hall and Warren
[72], further divide the cubic cells into tetrahedra, and for each tetrahedra, there are only
8 essential configurations without ambiguous cases resulting in topologically consistent
polygonal meshes [8]. Nevertheless, marching tetrahedra algorithms create numerous,
often over distorted triangles.

Since the cells are of constant size, all these techniques may miss small features and do
not adapt to the local geometry of the implicit surface, and an adequate cell size has to be
determined. When the size is chosen too small, an excessive number of polygons may be
produced, and when it is too large, detail may be obscured. To overcome this drawback,
adaptive subdivision techniques converge to the surface recursively. Bloomenthal [23]
uses a conventional octree decomposition, but cracks may occur between triangles of
adjacent cells of different size.

Surface fitting techniques create a seed mesh that roughly approximates the implicit sur-
face and progressively adapt and deform it to better fit the implicit surface. For example,
Velho [158, 159] starts with a coarse polygonal approximation of the surface according
to [63], and subdivides each polygon recursively according to the local curvature. Care
must be taken, that the coarse polygonal approximation captures the correct topology
of the implicit surface, otherwise the resulting polygonal mesh may be topologically
incorrect.

Other surface fitting techniques either assume special classes of implicit surfaces created
from skeletal elements [49, 43|, or rely on a search for critical points [30, 148, 167]
suffering from inefficiency for complex implicit surfaces.

Surface tracking techniques also known as continuation techniques, start from a seed ele-
ment on the surface and iteratively grow a polygonal mesh that approximates the implicit

84 CHAPTER 4. PREVIOUS WORK

surface. Cellular surface tracking techniques [8, 169, 24| start from a cell that intersects
the implicit surface and iteratively find all intersecting cells among its neighbors. Since
the cells are of constant size, cellular surface tracking techniques suffer from the same
drawback as non-adaptive spatial sampling techniques, and furthermore, in the general
case it can be difficult to determine a seed cell.

Alternatively, a particle system can be used to evenly distribute samples over the implicit
surface [154, 149, 166| and a Delaunay triangulation [48] is computed for polygoniza-
tion [47]. Again, care must be taken that the particles are dense enough to create a
topologically correct polygonal mesh.

Hilton [80] defines a surface tracking technique that directly creates triangles during
polygonization called marching triangles. Starting from a seed triangle, new triangles
are created iteratively from the boundary edges by using a relaxed Delaunay constraint
that locates new vertices that are linked to the mesh. Hilton’s initial marching triangles
algorithm was further improved by others [5, 77, 88].

After the polygonization of the implicit surfaces, the resulting polygonal mesh can further
be optimized in a postprocess, e.g. by efficiently creating triangle strips [132]. In order to
represent sharp features more precisely, see for example Ohtake and Belyaev [120] as well as
Kobbelt et al. [89].

4.3 Rendering and Ray-Tracing of Implicit Surfaces recon-
structed from Points

4.3.1 Point-based Rendering

Alexa et al. |7, 6] reconstruct an implicit surface starting from the unorganized point set
P called point set surface. The surface reconstruction is based on the moving least squares
approximation that we already explained in Subsection 1.3 in Part I of this thesis. The
unorganized point set is organized in a bounding sphere hierarchy similar to QSplat [136],
but since the radius of the spheres in the leaf nodes cannot be estimated from an underlying
polygonal representation, it is simply set to the feature size h, i.e. the anticipated spacing
between neighboring points. For rendering, the hierarchy is traversed recursively starting from
the root, and the size of the bounding spheres in pixel space is calculated similar to QSplat.
If the bounding sphere projects to less than a pixel, its center is simply projected to screen
space without regarding the subtree. Otherwise, when the traversal reaches a leaf node with
a bounding sphere that projects to more than one pixel, additional points are generated on
a sufficiently dense grid parallel to the reference plane H of the leaf node’s representation
point in order to cover the extent of the projected leaf node’s bounding sphere. Alexa et
al. sample the polynomial associated with the representation point on the grid rather than
projecting the grid points on the surface using the projection ¥ introduced in Section 1.3,
since the cost would be too high for interactive applications. Consequently, a non-continuous
surface is rendered, but Alexa et al. show that the Hausdorff error of this approximation can
be bounded and is not worse than the error of the surface computed using the projection W.

4.3. RENDERING AND RAY-TRACING OF IMPLICIT SURFACES RECONSTRUCTED FROM POINTS85

4.3.2 Polygonization

Crespin uses a polygonization technique that is exclusively designed for variational implicit
surfaces [44]. The technique takes benefit of the fact, that the unorganized point set P provides
direct information about the geometry and topology of the surface.

In a first step, Crespin creates an initial Delaunay tetrahedralization from P and the ver-
tices of its bounding box stretched by a factor of two, assuming that the variational implicit
surface entirely lies in this stretched bounding box. The Delaunay tetrahedralization is calcu-
lated incrementally according to Boissonnat et al. [27]. In a second step, Crespin collects the
tetrahedra that cross the implicit surface, i.e. the tetrahedra where the defining function f
has both positive and negative values at the vertices. Then, in an iterative refinement proce-
dure, the tetrahedra are refined until they all have a circumsphere smaller than a predefined
threshold. The refinement is done by inserting new vertices at the centers of the tetrahedra
into the Delaunay tetrahedralization, that is updated incrementally [27], and all tetrahedra
that cross the implicit surface are kept. Finally, the tetrahedra are polygonized according to
Bloomenthal [24].

Crespin’s algorithm can be understood as a surface fitting technique, since a seed mesh
that roughly approximates the surface is created using the initial Delaunay tetrahedralization,
and the seed mesh is then adapted to better fit the surface. Unfortunately, Crespin’s algorithm
was designed to polygonize variational implicit surfaces reconstructed from small unorganized
point sets, and no results for implicit surfaces reconstructed from large unorganized point sets
are given.

4.3.3 Ray-Tracing of Point Set Surfaces

Adamson and Alexa [2] describe a method to ray-trace surfaces represented by point set
surfaces that are implicitly defined by the projection ¥ : R* — R? as the points that project
onto themselves as explained in Section 1.3 of Part I.

In a preprocess, a sphere structure enclosing the surface is computed as the union of spheres
around all p; € P with a radius slightly smaller than the feature size h. Starting from these
spheres, a bounding sphere hierarchy is built bottom-up.

For a given ray R(t) = o+ td with origin o and direction d, the ray-surface intersection is
calculated as follows. First, all spheres intersected by the ray are collected using the bounding
sphere hierarchy, and the spheres are sorted with respect to their distance from the ray origin
o and stored in a priority queue. Then, the spheres from the priority queue are inspected one
at a time, until an intersection with the surface is reported.

In order to calculate an intersection between the ray and the surface in a given sphere, the
sphere’s center is projected onto the surface by the projection ¥ providing a local polynomial
approximation. When there is no intersection between the ray and this local polynomial
approximation, no intersection inside the sphere is reported. Otherwise, let p,, be the closest
intersection point to the ray origin o. If the projected distance between p,, and the surface is
below an error tolerance € , i.e. ||U(p;s) —P;sll < €, the intersection is found. Otherwise, in an
iterative refinement procedure, the projection ¥(p,,) and the intersection between the resulting
new local polynomial approximation and the ray yielding a new intersection point is repeated,
until the projected distance to the surface falls below the error tolerance e. Adamson and

86 CHAPTER 4. PREVIOUS WORK

Alexa experienced, that 2 to 3 projections are sufficient to accurately intersect a ray with the
surface [2]. Note, that Adamson et al. propose to use degree d = 2 polynomial approximations
in order to avoid iterative intersection computations [2]. For efficiency reasons, the algorithm
exploits coherence by storing the local polynomial approximation resulting from the projection
of the sphere’s center for further rays.

Adamson and Alexa are currently working on a new surface approximation technique for
unorganized point sets that is inspired by the moving least squares approximation, but the
ray intersection computations can be calculated more efficiently [1].

4.4 Other Work

In this chapter, we presented an extensive study of previous work on rendering techniques for
unorganized point sets, rendering techniques for implicit surfaces, and rendering techniques
that use both these surface representations. Nevertheless, there are several other rendering
techniques that we did not discuss in detail. For example, Witkin and Heckbert [166] intro-
duced a totally different rendering technique for implicit surfaces that was further improved
by Hart et al. [76]. The implicit surface is sampled by a physically based particle system
and the particles are rendered as discs perpendicular to the particle’s normal. As an other
rendering technique for implicit surfaces, Mora et al. [112] use an efficient implementation of
parametric cubes.

We have seen in Section 4.3, that the only rendering techniques using both the unorganized
point set and the reconstructed implicit surface were presented for point set surfaces [7, 6, 2]
and for variational implicit surfaces reconstructed from small unorganized point sets [44].
This fact motivated us to define two new rendering techniques that use both these surface
representations, and we will present them in the next two chapters.

Chapter 5

Point-based Rendering of Implicit
Surfaces from Unorganized Points

5.1 Overview

In this chapter, we present a new point-based rendering technique for an unorganized point set
P ={py,py,--.,Py} With associated normals and material attributes using the reconstruction
of an implicit surface S [133]. The implicit surface is rendered view-dependently in an output-
sensitive multiresolution manner using points as rendering primitive without the creation of
a polygonal mesh representation.

The technique can be divided into a preprocessing phase and a rendering phase. During
preprocessing, an implicit surface is reconstructed from the unorganized point set P, and a
bounding sphere hierarchy is set up (Section 5.2). During rendering (Section 5.3), the bound-
ing sphere hierarchy is traversed starting from the root, invisible nodes are culled away, and
the spheres are either projected directly to the screen when their projected screen-space size
is smaller than a threshold, or additional surface points are generated by sampling the re-
constructed implicit surface & through local ray-casting within the sphere. We show some
examples to illustrate the point-based rendering technique and present qualitative and quan-
titative results in Section 5.4 before we conclude in Section 5.5.

5.2 Preprocessing Phase

5.2.1 Implicit Surface Reconstruction

In a first step of the preprocessing phase, an implicit surface S is reconstructed from a given
unorganized point set P. Any surface reconstruction method of implicit surfaces of Part I
can be used, as long as a defining function f is explicitly given. Furthermore, the implicit
surface should interpolate the point set P or pass nearby the points p,. In order to enable the
reconstruction from a large point set P, we initially proposed [133] to use variational implicit
surfaces defined by radial basis functions with either compact support (Subsection 1.4.4) or
global support with an associated fast evaluation technique (Subsection 1.4.3). However,
the rendering algorithm is even more efficient by exploiting recent advances in reconstructing
implicit surfaces from large unorganized point sets P, such as the partition of unity variational

87

88CHAPTER 5. POINT-BASED RENDERING OF IMPLICIT SURFACES FROM UNORGANIZED POINTS

method (Chapter 2), the hierarchical partition of unity variational method (Chapter 3), and
multi-level partition of unity implicits (Section 1.5), due to the locality of these techniques
and hence the faster evaluation of the defining function f.

5.2.2 Construction of the Bounding Sphere Hierarchy

In the second step of the preprocessing phase, a bounding sphere hierarchy is constructed
from the unorganized point set P in spirit of the QSplat algorithm [136]. In general, bounding
sphere hierarchies are considered as time and space efficient [135], and are typically stored as
trees, whose inner nodes consist of spheres that bound the volume of all children nodes, and
whose leaf nodes consist of simple primitives. This results in a level-of-detail representation
allowing view-dependent refinement and the use of several speed-up techniques, especially
visibility culling.

Figure 31: The projection of the bounding spheres to the screen forms a closed region.

We create the bounding sphere hierarchy in a top down recursive process and store it in
a binary space partitioning (BSP) tree. The root node consists of the bounding sphere of the
point set P. At each step of the recursion, the axis aligned bounding box of the node’s points
is computed, and two children nodes are created by splitting the points along the longest axis
of the bounding box into two disjunct sets with an equal number of points (or one set with
only one point more than the other). In each node except the leaf nodes, a bounding sphere
of the points is stored. The recursion terminates at nodes with only one point of the point set
P. The bounding spheres associated to the leaf nodes are calculated, so that they are slightly
overlapping and enclose the entire reconstructed implicit surface in order to form a closed
region when projected to the screen (Figure 31). In every node in addition to the bounding
sphere, we store a material attribute and a normal by averaging the respective values of the
children nodes. Note that this can smooth out sharp edges and high-frequency materials,
nevertheless, we found averaging the best approximation in the inner nodes. Furthermore, in
every inner node, we store a normal cone [145] for hierarchical backface culling:

struct Node {
Node* left;
Node* right;
Sphere boundingSphere;
Material someMaterialAttribute;
Normal normal;
NormalCone normalCone;

5.2. PREPROCESSING PHASE &9

The algorithm that generates the bounding sphere hierarchy is outlined in Algorithm 4.

Algorithm

4 generateHierarchy(points[1..n])

Require: n points points[1..n] with associated normals points[1..n].normal and mate-
rial attributes points[1..n] .material
Ensure: returns a node of the bounding sphere hierarchy
if n>1 then
determine the bounding box bbox of the points[1..n]
determine the longest axis of bbox
determine points[median] and rearrange points

node.
node.
node.
node.
node.
node.
node.

left = generateHierarchy(points[1..med])

right = generateHierarchy(points[med+1..n])

boundingSphere — calculateBoundingSphere(bbox)

material = (node.left.material+node.right.material) /2

normal = (node.left.normal+node.right.normal)/2

normalCone = calculateNormalCone(node .1left .normalCone,
right.normalCone)

return node

else
node.
node.
node.
node.
node.
node.

left =0

right =0

boundingSphere = calculateBoundingSphere(node)
material = points[1].material

normal = points[1].normal

normalCone = calculateNormalCone(points[1] .normal)

return node

end if

In order

to illustrate the bounding sphere hierarchy construction on a simple example in

2D, see Figure 32 for the BSP created from 10 unorganized points, as well as its corresponding

BSP tree in

Figure 33. The bounding spheres of three different levels of the hierarchy created

from 437,645 points of the Stanford Dragon model can be seen in Figure 34.

90CHAPTER 5. POINT-BASED RENDERING OF IMPLICIT SURFACES FROM UNORGANIZED POINTS

I
1
1
1
1
) PQJ ®
® 4 P8
p1o prosesenasannnns [ERTEIRER
! L i first level subdivision
1 P7
1 1
1 I ————— second level subdivision
1 H ®
1 . e
T 1 Po third level subdivision
L4 1
P1
..................... I""""I ° === fourth level subdivision
o i : Ps
P2 I ®,0
: pg Pa
! 1

Figure 32: A BSP from 10 unorganized points.

® point with associated
bounding sphere

O bounding sphere

Figure 33: The corresponding BSP tree.

5.2. PREPROCESSING PHASE

(a) 437,645 unorganized points. (b) 65,340 bounding spheres.

(c) 15,284 bounding spheres. (d) 3,803 bounding spheres.

Figure 34: Some levels of the Stanford Dragon’s bounding sphere hierarchy.

91

92CHAPTER 5. POINT-BASED RENDERING OF IMPLICIT SURFACES FROM UNORGANIZED POINTS

5.3 Rendering Phase

5.3.1 Traversing the Hierarchy

Once the bounding sphere hierarchy is set up during the preprocessing phase, it is used for
the view-dependent multiresolution point-based rendering algorithm that is described in the
following.

For every rendering frame, the hierarchy is traversed starting from the root node. When
a node is entirely invisible, the corresponding branch is skipped from processing as explained
in Subsection 5.3.2. The hierarchy is traversed until the screen space projected size of a
node’s bounding sphere in pixels falls below a threshold 7, and a splat is drawn as explained
in Subsection 5.3.3. The threshold 7 determines the level-of-detail for the multiresolution
rendering, i.e. the maximum splat size for each projected bounding sphere on the screen. Too
high values for 7 can lead to blocky or blurry artefacts, ideally 7 should be set to one pixel so
that each projected bounding sphere falls onto one pixel on the screen.

When reaching a leaf node of the hierarchy with a screen-space projected size above the
threshold 7, additional points on the surface have to be generated as can be seen in Subsection
5.3.4, in order to avoid splats with a size greater than the threshold 7 and hence blocky or
blurry artefacts. An overview of the rendering algorithm is outlined in Algorithm 5.

Algorithm 5 traverseHierarchy(node)

Require: node node of the bounding sphere hierarchy
Ensure: render the node
if node invisible then
skip this branch of the tree from processing
else if node is a leaf node then
if projectedSceenSize(node .boundingSphere) < 7 then
draw a splat
else
generate additional points
draw splats of the additional points
end if
else if projectedScreenSize(node.boundingSphere) < 7 then
draw a splat
else
traverseHierarchy(node.left)
traverseHierarchy(node .right)
end if

5.3.2 Culling

We use a conservative culling technique to cull away nodes that are entirely invisible during
the hierarchy traversal. Recall, that every node of the bounding sphere hierarchy stores a
bounding sphere and a normal cone, that are used for hierarchical view frustum culling and
hierarchical backface culling, respectively.

5.3. RENDERING PHASE 93

Hierarchical view frustum culling is done by using the bounding sphere of a node to cull
away nodes, that are entirely not in the view frustum. The center of the bounding sphere
is checked against all six planes that define the view frustum. When the center of the
bounding sphere is outside of at least one of the view frustum planes with a distance
greater than the bounding sphere’s radius, it is completely out of the view frustum, and
the branch of the node is skipped from further processing.

In order to further optimize the hierarchical view frustum culling, we adopted two speed-
up techniques from Assarsson and Moller [11].

First, we use masking during the hierarchy traversal to mask off all view frustum planes
where the bounding sphere of a node is completely inside, in order to exclude these view
frustum planes from the view frustum culling test for all children nodes.

Second, we exploit temporal coherence between consecutive rendering frames using the
plane-coherence test: when a node of the bounding sphere is outside a view frustum
plane in a rendering frame, it is probable that it is outside the same view frustum plane
in the next frame. Hence, for every view frustum culled node, we store the corresponding
plane against the node was culled away, and this will be the first plane to test the node’s
bounding sphere in the next frame.

Hierarchical backface culling is done by using the normal cones stored in each node to cull
away nodes, that are entirely backfacing. When the normal cone of a node is entirely
backfacing, the node is completely invisible, and the branch of the node is skipped
from the hierarchy traversal. Furthermore, in spirit of the masking performed during
hierarchical view frustum culling, we mask off all children nodes with entirely frontfacing
normal cones, in order to exclude them from the backface culling test.

5.3.3 Drawing Splats

In our new rendering algorithm, both the projected bounding spheres and the additionally
generated points are drawn as splats. After calculating the screen-space projected size of the
bounding sphere or the additionally generated point, respectively, a splat is drawn. Rendering
a square or circular splat parallel to the viewport can be done very efficiently using the graphics
hardware, but the higher the splat size, the blockier is the resulting image. This is why we
also support high-quality EWA splats introduced by Zwicker et al. [175], where the splat is
not parallel to the viewport but perpendicular to a point’s associated normal, and the splats
are accumulated in screen space using an elliptical weighted average filter. But again, larger
splats lead to visible artefacts, and for EWA splats, the higher the splat size, the blurrier is
the resulting image.

5.3.4 Generating Additional Points

In order to avoid to render splats of a size greater than the threshold 7 when reaching a
leaf node of the bounding sphere hierarchy, additional surface points are generated. To this
end, the reconstructed implicit surface S defined by the defining function f is sampled within
the leaf’s bounding sphere through local ray-casting. We prefer to use the term ray-casting

94CHAPTER 5. POINT-BASED RENDERING OF IMPLICIT SURFACES FROM UNORGANIZED POINTS

surface S

viewpoint

Figure 35: The projection of a leaf’s bounding sphere to the screen (in 2D).

instead of the term ray-tracing, since we cannot account for secondary rays in our rendering
technique.

Let us suppose that 7 = 1. In a first step, the screen space projected area of the leaf’s
bounding sphere is determined using the viewing parameters. This area consists of all screen
pixels ¢;. Then, in a second step, for each pixel an additional surface point p?dd € § that
projects to the screen pixel ¢; is determined. This is done by casting a ray R from the viewpoint
through the pixel ¢; and intersecting it with the reconstructed implicit surface S inside the
leaf’s bounding sphere. Since we consider implicit surfaces with no further assumption on
the defining function f, and we suppose that there is either exactly one intersection or no
intersection with the implicit surface inside the leaf’s bounding sphere (we will be more precise
on this fact below), we determine the additional surface point p}‘dd by a local ray-casting
through interval analysis inside the leaf’s bounding sphere for efficiency reasons.

Consider the projection of the leaf’s bounding sphere to the output image in Figure 35 to
the pixels ¢;. The plane T™¢%" (respectively T/97) is the nearest (respectively farthest) tangent
plane of the leaf’s bounding sphere that is parallel to the viewport. For each pixel ¢;, the ray
R from the viewpoint to ¢; intersects the planes T"¢*" (respectively T/ in the points q;"
(respectively g;*").

ar

near and q; are

Then, the values of the defining function f of the implicit surface S in gj
calculated. By supposing that the leaf’s bounding sphere is sufficiently small so that there is

at most one intersection with the surface between q;-w‘" and q;-c " we only have to consider

the two following cases.

near

o If the values of the defining function f(q}°*") and f (qj “") are of different sign (see g7

and q{ “"in Figure 35), we calculate the surface intersection point p%4?

J
between ¢7“" and qf " using the regula falsi algorithm. Tests have shown, that two

iterations are enough to get a sufficient approximation. The resulting surface intersection
point p?dd
the defining function f.

by interpolating

will be projected to the pixel ¢;, and its normal is given by the gradient of

e If f(g}°") and f(q;-c”) are of the same sign (see g5**" and qgar in Figure 35), we consider

that the ray is not intersecting the surface.

5.3. RENDERING PHASE 95

For 7 > 1, we sample only a regularly sampled subset of the pixels ¢; and generate a
subset of the additional points p?dd, so that all pixels are covered when splatting the subset
of the additionally generated points.

Let us now discuss some details about the rendering algorithm.

First, why do we expect that there will be only exactly one intersection or no intersection
at all inside the leaf’s bounding sphere? We admit that we cannot prove this to be true.
Especially along the silhouette of the implicit surface, there might either be more than one
intersection with the implicit surface, or the interval analysis might report no intersection
although there is one. But recall that we reconstruct the implicit surface S from the point set
P, with all points p; being the centers of the leafs’ bounding spheres, and that the bounding
spheres are just small enough to be slightly overlapping. Since we presume to reconstruct
a smooth implicit surface from the point set P, we exclude high frequency surfaces between
neighboring points in the point set P at the outset, especially when reconstructing variational
implicit surfaces, multi-level partition of unity implicits, or implicit surfaces by using the
partition of unity variational or hierarchical partition of unity variational methods. Therefore,
we trade speed for quality in the rendering algorithm by using interval analysis. Of course,
we can also use more sophisticated and expensive algorithms as discussed in Subsection 4.2.1
to find the ray surface intersection inside the sphere. But when considering the difference
between using interval analysis in the leaf’s bounding spheres (Figure 36(a)) against using
Hart’s sphere tracing in the leaves’ bounding spheres (Figure 36(b)) on a rendering example
of a reconstructed Stanford Bunny using the partition of unity variational method where all
pixels result from additionally generated points, we did not find any significant visual difference
as can be noticed in the difference image in Figure 36(d). The extent of the projected leaves’
bounding spheres is illustrated in Figure 36(e).

Second, in order to determine f(g}°*") and f (qf “"), we do not intersect the ray R with the
sphere but with the tangent planes T and T/%". Again, we trade speed for quality, since
intersecting the ray R(t) with the tangent plane does not require the calculation of a square
root compared to intersecting the ray R(t) with the sphere. In order to defend the choices
made by our algorithm, consider the difference on the rendering example between using Hart’s
sphere tracing in the tangent planes of the leaf’s bounding spheres (Figure 36(b)) against the
straightforward ray-tracing of the Stanford bunny (Figure 36(c)) shown in Figure 36(f).

96CHAPTER 5. POINT-BASED RENDERING OF IMPLICIT SURFACES FROM UNORGANIZED POINTS

(a) Interval analysis in the
leaves.

(d) Difference image between
(a) and (b).

(b) Sphere tracing in the
leaves.

(e) Hlustration of the extent
of the leaves with a different
color for each leaf.

(c) Straightforward sphere
tracing.

(f) Difference image between
(b) and (c).

Figure 36: Quality comparison when generating additional points.

5.4. RESULTS 97

5.4 Results

In this section, we present and discuss some obtained results using our new point-based ren-
dering technique. All results were obtained on an Intel Pentium 1.7 GHz with 512 MB of
RAM and a GeForce 3 graphics board running Linux.

First, we present the results of the preprocessing phase. Of course, the required time for
the reconstruction of the implicit surface depends on the chosen reconstruction technique. In
this section, we exclusively use the partition of unity variational method presented in Chapter
2 of Part I, and we refer to the obtained results therein. For the construction of the bounding
sphere hierarchy, see Table 14 for the required time tjierqreny and number of levels L, that as
a matter of course depends on the number of points IV of a given 3D object.

Model N L thierarchy
Buddha | 543,652 | 19 5.75
Dragon | 437,645 | 18 4.04

Male 148,138 | 17 1.48

Bunny | 34,834 | 15 0.29

Table 14: Required time in seconds for the construction of the bounding sphere hierarchy and
the number of levels L.

Second, the results of the rendering phase are presented. Since we implemented the bound-
ing sphere hierarchy in a queue data structure, no pointers have to be followed and hence
traversing the hierarchy is extremely fast. The hierarchical view frustum culling and the hi-
erarchical backface culling can be processed very fast as well, and we do not give any timings
here since the bottleneck in the rendering algorithm is the rendering of the splats and the
generation of the additional points.

Consider Figures 37 for an illustration of the bounding sphere hierarchy traversal to render
the Stanford Dragon. When the hierarchy is not traversed until the leaf node because the
screen space projected size of an interior node’s bounding sphere falls below the threshold
7 = 2, a red-colored splat is drawn. Otherwise, when reaching a leaf node, a green-colored
splat is drawn for nodes with a screen-space projected size below the threshold 7, and a blue-
colored splat is drawn when additional points have to be generated. See Figures 37(a) (10,352
splats), Figure 37(c) (53,211 splats), and Figure 37(e) (248,645 splats) to illustrate what
type of node was used for three different viewing parameters, and consider the corresponding
rendered images using hardware-accelerated splats without the generation of additional points
in Figure 37(b) (> 400 frames per second (fps)), Figure 37(d) (> 90 fps), and Figure 37(f)
(> 20 fps).

The rendering quality is much higher when 14,517 additional points are generated at the
mouth of the Stanford Dragon using a reconstructed implicit surface as can be seen in Figure
37(g). Note especially the set of teeth and the tongue in a close-up of Figure 37(g) shown
in Figure 37(i) compared to the close-up of Figure 37(f) shown in Figure 37(h), where no
additional points were generated.

Another example of a similar image sequence can be seen in Figure 38, where especially
the mouth and the nose of the Cyberware Igea are rendered much smoother by generating

98CHAPTER 5. POINT-BASED RENDERING OF IMPLICIT SURFACES FROM UNORGANIZED POINTS

17,212 additional points using a reconstructed implicit surface as can be seen in Figure 38(g)
and its close-up in Figure 38(i) compared to the close up of Figure 38(f) shown in Figure
38(h), where no additional points were generated.

Let us now present some timings for the rendering. When no additional points have to
be generated, by using our GeForce 3 graphics board, we can render up to 5M hardware-
accelerated splats. Our output-sensitive software implementation of the high-quality EWA
splatting technique can render up to 300k high quality EWA splats per second in a 512x512
window. Note that the authors of the EWA splatting technique claim to render up to 500k
EWA splats per second using a better optimized implementation on a similar hardware config-
uration [175]. In order to show the visual difference with respect to the type of splats, consider
the 38,221 unorganized points (after view-frustum and backface culling from 148, 138 points)
representing a male in Figure 39(a) and the hardware-accelerated rendering using square splats
(Figure 39(b)), circular splats (Figure 39(c)), and high-quality EWA splats (Figure 39(d)).

The most time-consuming process in our rendering algorithm is the generation of additional
points. Of course, the cost of the rendering algorithm is linearly proportional to the number of
additional points to generate. This directly shows that our algorithm is highly output-sensitive.
It is self-evident that the cost to generate one additional point also depends on the type of
implicit surface that was reconstructed from the unorganized point set. For example, we can
inspect about 2,000 points per second for implicit surfaces reconstructed by the partition of
unity variational method presented in Chapter 2 with the parameters T, = 50, Tinee = 100,
B =1, v3(z) = —62° + 152* — 102> 4 1, and a biharmonic basic function. Recall, that the
number of points per second that can be inspected does not depend on the number of points in
the unorganized point set P due to the constant evaluation time of the defining function (see
Section 2.6 of Part I). However, for multi-level partition of unity implicits [118], the generation
of additional points is much faster, since the local defining functions in the local subdomains
are quadratic polynomials that are much faster to evaluate than the radial basis functions
when using the partition of unity variational method.

99

5.4. RESULTS

(a) 10,352 splats.

(c) 53,211 splats.

(4 [V
S5 > S
? 1 N

o 'Z‘ [)e .f'v:"
¢ B £ t B Y
s [sg

(f) > 20 fps. (g) 14,517 additional points
at > 0.1 fps.

4

(e) 248,645 splats.

(h) Close-up of (f). (i) Close-up of (g).

Figure 37: Traversing the hierarchy and generating additional points where required for the

Stanford Dragon.

100CHAPTER 5. POINT-BASED RENDERING OF IMPLICIT SURFACES FROM UNORGANIZED POINTS

(a) 13,193 splats. (b) > 400 fps.

(c) 25,211 splats. (d) > 200 fps.

L B

(e) 83,711 splats. (f) > 50 fps. (g) 17,212 additional points
at > 0.1 fps.

(h) Close-up of (f). (i) Close-up of (g).

Figure 38: Traversing the hierarchy and generating additional points where required for the
Cyberware Igea.

5.4. RESULTS 101

(a) 38,221 unorganized points. (b) Square splats at > 100 frames per second.

N

(c) Circular splats at > 100 frames per second. (d) EWA splats at > 8 frames per second.

Figure 39: Different types of splats.

102CHAPTER 5. POINT-BASED RENDERING OF IMPLICIT SURFACES FROM UNORGANIZED POINTS

5.5 Conclusions

In this chapter, we presented a new point-based rendering technique where the implicit surface
is rendered view-dependently in an output-sensitive multiresolution manner using points as
rendering primitive. The initial unorganized point set is used to establish a multiresolution
representation as a bounding sphere hierarchy, and a reconstructed implicit surface is used
to generate additional points through local ray-casting when the initial unorganized point set
does not provide enough detail for rendering. In our point-based rendering technique, different
splatting techniques can be used for rendering, such as hardware splats or high-quality EWA
splats.

Note the conceptual difference of our new point-based rendering technique compared to
standard acceleration techniques for ray-tracing and ray-casting: we apply forward warping
in regions where the unorganized point set is sufficiently dense and does not create holes in
the output image. In the other regions, no ray needs to be cast in order to identify the sphere
which is associated to the corresponding point as this is a prerequisite. Rays are only cast
locally inside the sphere in order to generate additional points when the projected size of the
sphere on the screen exceeds a threshold.

The required time to generate the additional points is strongly related to the type of the
reconstructed implicit surface. The faster the evaluation of the defining function of the implicit
surface, the faster is the generation of the additional points. Consequently, we believe that the
new point-based rendering technique is particularly well adapted for multi-level partition of
unity implicits [118], since the defining function can be evaluated very quickly. Furthermore,
the point-based rendering technique is better suited for large unorganized point sets, since
the more points are contained in the initial unorganized point set, the fewer additional points
have to be generated.

The most time-consuming process of our rendering algorithm is still the generation of
additional points. Hence, when the viewing parameters are changed, a high threshold 7 should
be used in order to quickly provide a visual feedback. On the other hand, when the viewing
parameters remain unchanged, the threshold should be decreased in order to increase the visual
quality by generating additional points. We intend to automatically adapt the threshold 7 to
ensure a given frame rate. In order to further accelerate our rendering algorithm, we strive to
integrate the additionally generated points in the bounding sphere hierarchy for the following
frames with different viewing parameters in order to exploit frame-to-frame coherence.

Note that the additional surface points can be generated in parallel since the bounding
spheres in the leaf nodes can be considered independently from each other, and since no con-
nectivity problems have to be resolved in our point-based rendering technique. Note also the
particular importance of the culling techniques that are used in our technique: no additional
points have to be generated in areas that are culled away anyway.

Chapter 6

Differential Point Rendering of
Implicit Surfaces

6.1 Overview

In this chapter, we present another point-based rendering technique for a point set P =
{p1,Ps,--.,py} that uses the reconstruction of an implicit surface S. This point-based ren-
dering technique is still under development, and at the moment it is only appropriate for
quasi-uniformly distributed point sets. Nevertheless, we felt that the information given in this
chapter is useful and interesting.

The rendering technique is based on differential point rendering by Kalaiah and Varshney
[85, 86]. For every point in the point set P, we create a differential point by adding local
differential geometry using the reconstructed implicit surface §. More precisely, by local
differential geometry for a point p; € &, we understand the principal directions up and
vp, as well as the associated principal curvatures up, and vy . Recall, that the principal
directions are the directions of the greatest and least curvatures, and the associated principal
curvatures are the respective curvature amounts in these directions. Since the differential
points are rendered as fragment-shaded rectangles that lie on the tangent plane of the point p,
we use the principal directions and principal curvatures to determine the rectangle’s extent.
In flat regions or regions of low curvature of the surface, a differential point approximates
larger vicinities than in regions of high curvature, and thus the rectangle has a larger extent.
The differential points are rendered as fragment-shaded rectangles being perpendicular to
the differential point’s normal. Consequently, the implicit surface is rendered efficiently as a
collection of local neighborhoods without requiring any connectivity information.

This chapter is organized as follows. First, in Section 6.2, we present the preprocessing
phase. After an implicit surface S is reconstructed from the unorganized point set P, we show
how the implicit surface S is used to extract the principal directions and principal curvatures
for a point p € &, and how this is used to create the differential points from a point set
P. Then, in Section 6.3, we present the rendering phase where we show how the differential
points can be rendered on programmable graphics hardware. Finally, we present an illustrative
example in Section 6.4 as well as qualitative and quantitative results in Section 6.5 before we
conclude in Section 6.6.

103

104 CHAPTER 6. DIFFERENTIAL POINT RENDERING OF IMPLICIT SURFACES

6.2 Preprocessing Phase

6.2.1 Implicit Surface Reconstruction

In the first step of the preprocessing phase, an implicit surface S is reconstructed, so that it is
faithful to the point set P. Any surface reconstruction method of Part I that creates at least
C? continuous surfaces with an explicitly given defining function f can be used. The implicit
surface has to be at least C? continuous, because the extraction of the principal directions and
principal curvatures for a point p € S requires the second derivatives of the defining function
f of the implicit surface S as we will see in the following subsection.

For all the examples in this chapter, we reconstructed an implicit surface using the partition
of unity variational method presented in Chapter 2 of Part I. In order to guarantee a C?
continuous implicit surface, we used the triharmonic basic function ¢(x) = ||z||® for the local
reconstructions as well as the decay function v3(z) = —6x° + 152* — 1023 + 1 involved in
the partition of unity blending. Furthermore, we used only one interior normal constraint
per point since we experienced the second derivatives (and hence the principal directions and
curvatures) to be less oscillatory. The derivation of the first and second derivatives of the
defining function for implicit surfaces created by the partition of unity variational method can
be found in Appendix A.

6.2.2 Extracting the Principal Directions and Curvatures of an Implicit
Surface

In the initial differential point rendering technique [85, 86], Kalaiah and Varshney extract the
principal directions and curvatures from parametric surfaces [31], triangular meshes [151], or
NURBS surfaces that are fit to triangular meshes [93]. In this section, we show how to extract
the principal directions and curvatures for a point p = [z,y,2]? on the implicit surface S,
i.e. p € S. To this end, consider the defining function f : R?> — R of the implicit surface
S ={z € R : f(x) = 0}. Recall, that the normal n of a point p is defined by the gradient
of the defining function

_|of

n=Vf(p) = ax(p)’ of

dy

In order to derive second-order local geometry for the determination of the principal di-

v). L) (61)

rections and curvatures, we require the Hessian matriz H of the second derivatives of the
defining function f:

82f 82f 82f
Za—g (p) ? (p) 3aw23y (p) 3;232 (p)
H=Vn= g—Z (p) | = %afy (p) 3_;45 (p) a%gz (p) (62)
on o o 0
9z (P) 5 (P) 54:(p) SH(p)

We use a local parameterization to extract the principal directions and curvatures on a
point p € S with an associated normal n and a Hessian Matrix H. For the illustration of the
following calculations, consider Figure 40.

Let us now approximate the defining function f of the implicit surface S in a small vicinity
of p by using a small vector w for a second degree Taylor expansion with an approximation

6.2. PREPROCESSING PHASE 105

Normal n

Tangent Plane

Implicit Surface S

distance function d(h)

Figure 40: Calculating the curvature of an implicit surface § with defining function f.

error o(||w|?):

fp+w) = f(p) +n" e w + Jw e (Hw) + of w]?) (63)

Since p € S, the defining function of the implicit surface S in p is f(p) = 0, and we find

F(p+w)=n" ow + sw e (Hw) + of|w]) (64

Now, we split the small vector w into a vector h that is orthogonal to n, i.e. n” e h =0, and
a distance function d : R* — R to the tangent plane in p:

w = h +d(h)n” (65)

We want to determine the distance function d so that f(p + h + d(h)n’) = 0. By inserting
w into equation (64) and setting d(h) = o(h) since per definition d'(0) = 0, we find

n” o (bt d(h)n®) + 3 ((h+d(hn") o (H(h +d(hn")) = of|RIP), (66)

that we develop to

n” o (b + d(h)|n|? + %(h, o (HR)) + %(h, o (Hd(h)n")) (67)
+% (d(h,)nT . (Hh)) + %(d(h)nT . (Hd(h)nT)) = o||h]]?).

Since n” @ h = 0, and since we can neglect the constant term with respect to h, we find

Am)in|” + 5 (1o (ER)) +d(h) (s (HR")) = o |n), (68)

106 CHAPTER 6. DIFFERENTIAL POINT RENDERING OF IMPLICIT SURFACES

and the second order approximation of d is

he(Hh)
dh) = —————. (69)
2||n|?
Now, we want to find the maximum and minimum of % for h orthogonal to m. This

he(Hh)
2[h[1?

implies that the derivative of has a component orthogonal to n with the value 0, and

hence

Hh = ph 4+ \nT. (70)

In order to determine the principal directions and curvatures, we have to find the eigenvectors
with associated non-zero eigenvalues of

(Hh)o’n,T T

Hh — n,
[l

(71)

that can be written more compactly as

H (I — %) . (72)

Summing up, the principal directions wp, and vy, are the eigenvectors of the matrix (72) with
associated non-zero eigenvalues, and the principal curvatures u, and vy, are the corresponding
non-zero eigenvalues.

6.2.3 Creating the Differential Points

In our differential point rendering technique, we create one differential point for every point
p; of the point set P. To this end, we first calculate the principal directions uy,, and vp,
as well as the principal curvatures uy, and vp, for every point p; by using the reconstructed
implicit surface S as explained in the preceding subsections. The principal directions are used
to determine the orientation of the rectangle of the differential point to be rendered, and
the principal curvatures are used to determine the extents of the rectangle in the principal
directions. In order to avoid disproportional aspect ratios of the rectangle, we delimit the
extents of the rectangle to [Fmin, Fmaez] With Epin < Egmee. Using a maximum principal
width x with 0 < x <1 according to Kalaiah and Varshney, the extents ug’ and vf,fte”t in
the principal directions u,, and vy, respectively, are calculated as follows:

/Dy — 2
ulre = max (Emm, min <7X X ,Emm)) (73)

extent

p;

|upi |
/2 _ 22
v;:ptent = max (Emma min (%7 Emam)) (74)

Then, we define the positions of the four corners of the rectangle as follows:

6.3. RENDERING PHASE 107

ri, =p;+ uf,fte”tupi + Ugfte”tvpi (75)
Tiy = i+ Uy p, — vp Mg, (76)
Tis =Pi — u;ftentupi - U;ftentvpi (77)
ri, =D; — u;:ictentupi 4 U;:ictentvpi (78)

Finally, we determine the normals in the four corners of the rectangle to be rendered by
simply using the gradient of the reconstructed implicit surface S resulting in the normals
Ny, s Npyyy My and n,,, . Summing up, a differential point is simply represented by the four
corners of the rectangle as well as the corresponding normals.

When creating the differential points, we choose the maximum principal width y so that the
rectangles of all the differential points overlap sufficiently without leaving holes in the surface
coverage. Note that even though this results in a complete surface representation, there are
redundant differential points that are completely covered by neighboring differential points.
Consequently, redundant differential points can be pruned away in a simplification process
according to Kalaiah and Varshney [86]. Note also that a too high maximum principal width
X creates too large rectangles for the differential points, and artefacts appear especially at
the silhouette and at surface parts with a high curvature represented by too few points in
the point set P. We believe that a curvature-driven sampling of the differential points might
overcome this drawback.

6.3 Rendering Phase

After the differential points for all points p; have been created, we render the differential points
as fragment-shaded rectangles on programmable graphics hardware since curved primitives are
not supported by current graphics hardware. In contrast to Kalaiah and Varshney, who select
the best fitting normal map out of 256 precomputed normal maps according to the principal
curvatures, we interpolate the normals at the corners of the differential point’s rectangle
using verter shaders and fragment shaders. More precisely, for each vertex at the rectangle’s
corners, the vertex shader copies the normal at the vertex into a texture coordinate. Then,
the fragment shader interpolates the normals represented by the texture coordinates for each
fragment and normalizes them by using a cube map texture. Note that even though we
render the differential points as overlapping fragment-shaded rectangles, no information about
connectivity is required.

6.4 Example

In this section, we discuss a very simple example in order to show how implicit surfaces can be
rendered by differential points. For a more explicit illustration, consider the 2,616 uniformly
distributed points on an ellipsoid in Figure 41(a). Starting from these points, we reconstructed
an implicit surface by using the partition of unity variational method presented in Chapter
2 of Part I. The differential point rendering of the reconstructed implicit surface is shown in
Figure 41(b), where the differential points were rendered as fragment-shaded rectangles, and

108 CHAPTER 6. DIFFERENTIAL POINT RENDERING OF IMPLICIT SURFACES

(a) 2,616 uniformly (b) Differential point (c) Wireframe render- (d) Wireframe ren-
distributed points on rendering. ing. dering with scaled
an ellipse. rectangles.

Figure 41: Differential point rendering of a reconstructed implicit surface from uniformly
distributed points.

the corresponding wireframe rendering is shown in Figure 41(c). In order to illustrate the
principle directions and principal curvatures of the differential points, we scaled the rectangles
representing the differential points, and the results of the wireframe rendering can be seen in
Figure 41(d). In this simple example, it can be observed that the extents of the rectangles
are larger in regions of low curvature and smaller in regions of high curvature. Note also, that
the energy minimizing reconstructed surface using the partition of unity variational method
is not a mathematically regular ellipsoid, since it can be seen that the principal directions are
not parallel to the coordinate axes.

6.5 Results

In this section, we present some quantitative and qualitative results that we obtained on an
Intel Pentium 1.7 GHz with 512 MB of RAM and a GeForce3 graphics board running Linux.
For the computation of the eigenvectors and eigenvalues involved in the determination of the
principal curvatures and directions, we used the GNU Scientific Library package [61].

First, we present the results of the preprocessing phase. Of course, the required time for
the reconstruction of the implicit surface depends on the chosen reconstruction technique. In
this chapter, we exclusively use the partition of unity variational method presented in Chapter
2 of Part I. We refer to the obtained results therein, but note that the number of constraints
is decreased by a third since we only use one normal constraint per point.

Of course, the cost to extract the differential points is linearly proportional to the number
of differential points to create. The cost to determine the Hessian matrix and the normal in
a point depends on the type of implicit surface that was reconstructed from the point set,
whereas the cost to determine the principal directions and principal curvatures is independent
of the type of implicit surface. For an implicit surface reconstructed by the partition of
unity variational method with the parameters T, = 50, Thee = 100, = 1.2, vs(z) =
—62°+152*—1023+1, and a triharmonic basic function, we can create about 5,000 differential

6.5. RESULTS 109

points per second. Recall, that the number of differential points that can be created per second
does not depend on the number of points in the point set due to the constant evaluation time
of the defining function (see Section 2.6 of Part I).

Second, the results of the rendering phase are presented. Since the involved vertex shaders
and fragment shaders are very simple, rendering a differential point is not much more expensive
than rendering a rectangle by using the fized-function pipeline, and we can render about 1M
differential points per second on our GeForce 3 graphics board.

In the following, we present some visual results. Starting from the 67,038 points of the
Cyberware Rabbit (Figure 42(a)), we created a differential point for each point in the point
set. The result of the differential point rendering can be seen in Figure 42(b), and compared
to a hardware splat rendering shown in Figure 42(c), the surface appears much smoother. In
order to illustrate the extent of the rectangles representing the differential points, we scaled
the rectangles in a close-up of the Cyberware Rabbit’s ear as shown in Figure 42(d).

(a) 67,038 quasi- (b) Differential point (¢) Hardware splat (d) Close-up of the

uniformly distributed rendering (16 fps). rendering (64 fps). wireframe rendering

points. with scaled rectan-
gles.

Figure 42: Differential point rendering of the Cyberware Rabbit.

110 CHAPTER 6. DIFFERENTIAL POINT RENDERING OF IMPLICIT SURFACES

6.6 Conclusions

In this chapter, we presented another point-based rendering technique for an implicit surface
reconstructed from a point set P that is running on programmable graphics hardware. We
extract the local differential geometry for every point p; in the point set P using a reconstructed
implicit surface, store this information in so-called differential points, and then render the
differential points as fragment-shaded rectangles. Note that by using displacement mapping
proposed on some recent graphics boards [105], the rendering quality can be increased even
further.

By packing more information in each point of the initial point set P resulting in a differen-
tial point, a lower number of differential points is required to represent the initial point set P,
and once the differential points are extracted, the reconstructed implicit surface is no longer
required. This reduces the required memory to store the surface representation and ensures
a lower bus traffic between the CPU and the graphics board during rendering. Furthermore,
like for all point-based rendering techniques, no information about the connectivity of the
differential points is required, and the differential points can be structured in a hierarchical
data structure such as the bounding sphere hierarchy that we presented in Chapter 5.

At the moment, the point-based rendering technique based on differential point rendering
is not well adapted for non-uniformly distributed point sets. This is due to the fact, that we
create one differential point for every point in the point set. In regions where few points in the
point set define surfaces with high curvatures, there might either not be enough information
to cover the surface with differential points, or the extent of the rectangles will be too high,
and the second-order surface approximation as well as artefacts along the silhouette become
visible.

Consequently, we believe that there are better solutions than creating a differential point
for every initial point p; in the point set P, such as using a curvature-driven sampling technique
for implicit surfaces and creating a differential point for every sample. We plan to develop
a curvature-driven sampling technique by adapting the particle-based sampling technique for
implicit surfaces proposed by Witkin and Heckbert [166] and its optimized implementation by
Hart et al. [76].

Part 111

Applications

The fundamentals of reconstructing and rendering of implicit surfaces from large unorga-
nized point sets presented in Part I and Part IT give rise to a variety of applications in various
domains. In this part, we present an incomplete list of potential applications that use the
fundamentals of the first two parts of this thesis.

In Chapter 7 we show how the partition of unity variational method and the hierarchical
partition of unity variational method can be used in other reconstruction applications besides
implicit surfaces. In particular, in Section 7.1, we present a new class of procedural solid
texture that can be reconstructed from unorganized points. Furthermore, we present two
applications in 2D, namely the reconstruction of terrains from 2D contour lines and recon-
struction in 2D image processing, in Sections 7.2 and 7.3, respectively, before we conclude in
Section 7.4.

In Chapter 8, we present a new interactive environment for constructive texturing of
surfaces of arbitrarily defined 3D objects (including, of course, implicit surfaces). A user
can texture the surface by defining space partitions that are combined using constructive
texturing, and specifying attributes that are applied in the space partition. The partition
of unity variational method can be used to define space partitions amongst other primitives.
When specifying the attributes, the new class of procedural solid textures can be used as
well. In order to give an interactive feedback, a point-based multiresolution representation of
the surface is used that is not only exploited for rendering, but also for the evaluation of the
texture.

111

112

Chapter 7

Further Reconstruction Applications

7.1 Procedural Solid Textures from Points

In this section, we present a new method to define procedural solid textures from an unorga-
nized point set P that uses either the partition of unity variational method or the hierarchical
partition of unity variational method introduced in Part I. Unorganized point sets coming
from range scanners, for example, are often delivered with a material attribute a; for every
point p;. In the following, we will refer to material attributes as a genus for ambient, diffuse
and specular color channels, reflectance and transmittance coefficients, and others. In order to
define a procedural solid texture for the material attributes, we regard every material attribute
a; for a point p, € P separately and try to find a texture function f, that is satisfying the N
constraints

fa(D;) = a; 1=1,...,N. (79)

In order to reconstruct a texture function f, from a high number of constraints N, we use
the partition of unity method and solve the interpolation problems locally before sticking them
together as described in Part I. The global domain is subdivided into M local subdomains
with N, points each for m = 1... M, either by using the octree domain decomposition
(Chapter 2) or the binary tree domain decomposition (Chapter 3). We determine the M local
interpolation functions f,,, for m =1... M by using variational techniques with radial basis
functions according to Turk and O’Brien [156] as well, but since we assume, that there are
at least two material attributes a; and a; with a; # a; for ¢ # j in every local interpolation
problem, we do not need any additional off-surface constraints (such as normal constraints for
example) in order to avoid the trivial solution. Consequently, when reconstructing the texture
function, there are only a third of the numbers of constraints per local subdomain compared
to reconstructing the defining function of the implicit surface. Recall, that the local functions
interpolating the attributes of the points p; for ¢« = 1... N,, are defined by functions of the
class

N Q
fam (@) =Y _wid(® —p;) + > Tapa(). (80)
=1 a=1

113

114 CHAPTER 7. FURTHER RECONSTRUCTION APPLICATIONS

After choosing a suitable basic function ¢ : [0,00) — R and the order of the polynomial,
the coefficients w; and 7, can be determined by solving the following linear system:

Ar = b (81)
T
A - ¢ P
P 0
® = [¢(lpi,p;ll)] where i = 1... Ny, j=1...Np
P = I[pi(pi) where i = 1... N, a=1...Q
r = [UJI,UJQ,...,(,L]Nm,7r1,7T2,...,7TQ]T
T
b = al,ag,...,aNm,O,O,...,O
N——
Q times

In order to give some results of the new procedurally defined solid textures, let us now
suppose, without the loss of generality, that we have material attributes m; containing diffuse
RGB color values m; = [r;, g;, b;]" for every point p; € P. We use the partition of unity
variational method to interpolate the three procedurally defined texture functions f,, fy, and
fv, one for each color channel of the RGB color values:

fr(pi) =
fo@i) = g fori=1...N (82)
fo(pi) = b

See Figure 43 for the visual results of four different examples of the reconstruction of the
implicit surface and the procedurally defined solid texture of a chameleon using the partition
of unity variational method. All images were ray-traced by our plugin for POVray [126] in
order to get the best quality. In Figures 43(a) and 43(b), the implicit surface is reconstructed
from 101,685 points, whereas in Figures 43(c) and 43(d), the implicit surface is reconstructed
from only 10,000 points. The reconstruction of the texture functions is done from 101, 685
points in Figures 43(a) and 43(c), and from 10,000 points in Figures 43(b) and 43(d).

See Table 15 for the reconstruction times for the implicit surface, the three procedurally
defined solid textures, and the total reconstruction time including the domain decomposition.
We used Tyin = 50, Thae = 100, 8 = 1, a spherical distance function, and vs(x) = —62° +
15z* — 102> 4+ 1. For 101, 685 points, the domain decomposition into M = 15,772 domains
was done in 91 seconds, and for 10,000 points, the domain decomposition into M = 1317
subdomains was done in 2.76 seconds. Recall, that there are no off-surface constraints when
reconstructing the procedurally defined solid textures, hence reconstructing a texture function
for one color channel is faster since it involves only a third of the number of constraints per
local subdomain compared to reconstructing the defining function of the implicit surface, while
the number of local subdomains M remains equal.

The new procedurally defined solid texture can be applied to surfaces of arbitrary 3D
objects, regardless whether the surface is defined as a polygonal mesh, as a parametric or

PROCEDURAL SOLID TEXTURES FROM POINTS

Model Defining function || Texture function | Total
Ngeometry tﬁgg%my Ntemtures tfn%gf#bres ttotal

Chameleon 101,685 1599.47 101,685 | 729.57 | 2511.04

101,685 1599.47 10,000 41.59 1734.82

10,000 150.48 101,685 | 729.57 973.81

10,000 150.48 10,000 41.59 197.59

115

Table 15: Reconstruction times in seconds for the defining function and the texture functions
from different number of points.

implicit surface, or whatever.

Of course, all characteristics of solid textures still apply to this new procedurally defined
solid texture. Since both the surface as a 2D manifold in 3D and the solid texture are defined
in R?, deformations applied to the surface and to the texture conserve the geometry-texture
coherence and can hence be done without distortions. See for example Figure 44 for the
chameleon reconstructed using the partition of unity variational method that was twisted

along the z-axis.

116 CHAPTER 7. FURTHER RECONSTRUCTION APPLICATIONS

(a) 101,685 points geometry and 101,685 points (b) 101,685 points geometry and 10,000 points
texture. texture.

(c¢) 10,000 points geometry and 101,685 points (d) 10,000 points geometry and 10,000 points
texture. texture.

Figure 43: Procedural solid textures from points.

7.1. PROCEDURAL SOLID TEXTURES FROM POINTS 117

Figure 44: Twisted chameleon without texture distortion.

118 CHAPTER 7. FURTHER RECONSTRUCTION APPLICATIONS

7.2 Heightfields

In this section, we show how the partition of unity variational method presented in Chapter 2
of Part T can be succesfully applied to reconstruct continuous heightfields from terrain data.
Commonly, terrain data issued by modern acquisition devices measured from airplanes or
satellites is given as height values on regular rectangular grids. Nevertheless, terrain data
is often more accessible given as contour lines in 2D with an associated height value that is
invariant in each contour line. In the following, we present a method to reconstruct continuous
heightfields that is suited both for regular as well as scattered terrain data issued from contour
lines.

Formally, the terrain data is given as an organized or unorganized point set P =
{py,...,pn} with p, € R? for 4 = 1... N, with an assoicated height h; for every point p;.
Consequently, reconstructing a continuous heightfield can be considered as an interpolation
problem, and a function f : R?> — R satisfying the following constraints has to be found:

In order to allow the reconstruction of continuous heightfields from a high number of
constraints IV, we use the 2D counterpart of the partition of unity variational method presented
in Chapter 2 of Part I. In 2D, the entire domain is decomposed by using a quadtree domain
decomposition method, and the local reconstruction functions are functions of the class

Nm Q
f(@) =) widle —p;) +) Tapa(@), (84)
=1 a=1
and by using ¢(x) = ||z|| as basic functions together with a linear polynomial, i.e. Q = 3,

the coefficients w; and 7, can again be determined by solving a linear system according to
equation (82) of Section 7.1.

We illustrate the reconstruction of continuous heightfields using the partition of unity
variationals method on a simple example. Consider the image with the contour lines grayscale-
coded in the pixels in Figure 45(b) that were extracted from the map shown in Figure 45(a)
with a resolution of 5122 pixels. The lighter the gray value of a pixel, the higher is the height
of the corresponding contour line. Black pixels do not reflect any information, and there
are 10,028 pixels reflecting the heights in the map, i.e. only about 4% of the pixels reflect
information, and about 96% have to be reconstructed.

By using the quadtree domain decomposition method with T},;,, = 300, Ty = 600,
3 = 1.2, the cubical distance function, and v3(z) = —62° 4+ 152* — 1023 + 1, the resulting
domain decomposition with M = 64 local subdomains can be seen in Figure 45(c). After
the computation of the local reconstructions, the resulting global reconstruction using the
partition of unity method can be seen in the grayscale-coded image of Figure 45(d). The total
reconstruction time was 103 seconds. An example of the rendering of the resulting terrain as
a polygonal mesh can be seen in Figure 46(a), and the textured terrain can be seen in Figure
46(b).

7.2. HEIGHTFIELDS 119

(b) Contour lines as grayscale-coded pixels.

(c) Quadtree domain decomposition. (d) Reconstructed height values.

Figure 45: Reconstruction of a continuous heightfield.

120 CHAPTER 7. FURTHER RECONSTRUCTION APPLICATIONS

(a) Without texture. (b) With texture.

Figure 46: Rendering of the textured terrain.

7.3. 2D IMAGING 121

v

(a) Original im- (b) Damaged (¢) Segmenta- (d) Recon-
age. image. tion of damaged structed image.
zones.

Figure 47: Example of 2D image processing using the partition of unity variational method:
repairing 2D images.

7.3 2D Imaging

In this section, we show how the partition of unity variational method can be applied to 2D
imaging, based on similar ideas presented in the preceding sections. Pixels of a discrete 2D
image can be considered as discrete samples, and by handling every channel of a 2D image
separately, a continuous function for each channel can be reconstructed by using either the
partition of unity variational method or the hierarchical partition of unity variational method.
This continuous function can be used for 2D image processing, such as repairing images,
changing resolutions, rotations, and others. We believe that the partition of unity variational
and hierarchical partition of unity variational methods are particularly useful when they are
used in addition to other traditional image processing techniques.

Figure 47 shows a simple example of repairing a 2D image from incomplete data. Let
us suppose that an original scanned photograph (Figure 47(a)) has been damaged by some
accident (Figure 47(b)). In our implementation, we simply require the damaged pixels to be
segmented (Figure 47(c)) in order to reconstruct the missing part. Note that the segmentation
step can be rather simple as shown in the example, where a simple thresholding on the bright-
ness has been used. A user-assisted process could also be defined that can be easily included
in conventional image editing software. We used the partition of unity variational method to
reconstruct the damaged parts of the image starting from the scattered data represented by all
pixels except the segmented ones, and we handled each of the RGB color channels separately.
The resulting repaired image can be seen in Figure 47(d). At most of the damaged parts of
the image, the missing data was reconstructed quite well, but of course a postprocessing is
required at the damaged part of the mouth, where not enough data was available.

Figure 48 shows two other examples. Again, we used the partition of unity variational
method to repair the damaged images of Figures 48(a) and 48(c), and the resulting repaired
images can be seen in Figures 48(b) and 48(d).

122 CHAPTER 7. FURTHER RECONSTRUCTION APPLICATIONS

(c) Damaged image. (d) Repaired image.

Figure 48: Two other examples for repairing 2D images by using the partition of unity varia-
tional method.

7.4 Conclusions

In this chapter, we have shown how the partition of unity variational method and the hierar-
chical partition of unity variational method can be used in other reconstruction applications
besides implicit surfaces. We defined a new class of procedurally defined solid texture that can
be generated from the attributes of an unorganized point set. Furthermore, we presented two
applications in 2D that emphasize the generality of the fundamentals of the partition of unity
variational and partition of unity variational methods. Of course, there is an unexhausted
potential to use the fundamentals for other applications. For example, we believe that they
are even more appropriate for real-time deformations used in character animation than com-
pactly supported radial basis functions [92, 91]. Moreover, constrained texture mapping using
variational techniques [150] could be adapted to allow a higher number of constraints.

Chapter 8

Interactive Constructive Texturing

8.1 Overview

The main advantage of solid texturing is, that it can be applied to surfaces of arbitrary
3D objects without requiring a parameterization. On the other hand, applying different solid
textures at specific locations of the surface is difficult for a non-expert user. In this chapter, we
present a new interactive environment for solid texturing of surfaces whatever the underlying
surface representation (i.e. polygonal meshes, voxel arrays, unorganized point sets, parametric
or implicit surfaces, and others).

The involved process combines two approaches previously developed in computer graphics:
constructive texturing [141], that we shortly present in Section 8.3, and point-based represen-
tations, that we already introduced in Part II. The first approach offers a general framework
for texturing objects of arbitrary type, while the second one offers a flexible way for rendering
the surfaces of such objects. The combination of both approaches allows the development
of an intuitive tool for applying textures to geometric shapes with interactive feedback. This
interactivity is guaranteed, whatever the complexity of the geometry and the texture, by using
a multiresolution representation of discrete surface points extracted from the object, both for
rendering and for texture evaluation.

The major advantage compared to the Pointshop3D system [174], the most commonly used
system for point-based texturing, is, that we always keep a feedback to the initial geometric
representation of the object. As a consequence, the final textured object can be easily ex-
ported to standard graphics software that cannot directly handle discrete surface points (e.g.
Computer Aided Design (CAD) systems and photorealistic rendering engines).

In the following section, we present some previous work about interactive surface painting
and texturing, before we briefly review the constructive texturing approach in Section 8.3.
Then, in Section 8.4, we present our new interactive solid texturing technique in detail, and
discuss some results in Section 8.5.

8.2 Previous Work

In the literature, several environments can be found, which can be used to interactively paint
or texture the surface of an object. Surface painting environments are usually based on a

123

124 CHAPTER 8. INTERACTIVE CONSTRUCTIVE TEXTURING

metaphor of the real painting approach, where one uses a symbolic pencil or a brush to paint
the object, the color being applied is then evaluated according to a brush function resulting in
a realistic effect [74, 4]. Surface texturing environments require first to specify a location and
a direction on the surface, and second, to apply an existing 2D image. The latter step requires
a local parameterization of the surface, which is often a non-trivial task. Furthermore, one
has to think how to stitch the 2D images together without distortions. Several solutions exist,
Praun et al. [127] show how to repeatedly map a small texture on a polygonal mesh using
local overlapping parameterizations, and Turk [155], Wei and Levoy [162], as well as Nealen
and Alexa [115] show how to synthesize textures on polygonal meshes.

In almost every existing surface painting and texturing environment, a polygonal mesh
or a parametric patch is required. When the object is defined by polygons, no additional
step is needed. But if it is defined by another underlying surface representation, a special
preprocessing is required. For instance, Pedersen [123| proposes a general solution when the
object is defined as an implicit surface, where a local parameterization is defined by estimating
geodesics on the surface. Witkin and Heckbert’s particle system [166] can also be used to
establish a parameterization for texture mapping on implicit surfaces [173].

One solution to avoid parameterization when texturing surfaces of arbitrary objects is the
use of octree textures developed recently [19, 70|, where only the subsets of volume textures
actually intersecting the surface are stored efficiently in an octree. However, the resulting
texture is discrete and has a fixed resolution limit determined by the depth of the octree.
Moreover, an octree has to be stored for every attribute, resulting in a significant storage
overhead. Nevertheless, octree textures can be easily integrated in our interactive solid tex-
turing environment thanks to the constructive texturing approach.

Another solution that does not require explicit parameterization is used in the Pointshop3D
environment [174]|. This innovating approach proposes to paint the surface of an object that
is defined as a cloud of points. By applying a texture (2D texture, uniform color, or other),
the corresponding surface points are colored. The interactive process of painting is intuitive,
and good results are achieved. However, as it is totally based on discrete surface points, this
approach suffers from a severe drawback: once the surface is textured, the resulting object can
hardly be exported to standard graphics software that cannot handle discrete surface points
(e.g. CAD systems and photorealistic rendering engines).

8.3 Constructive Texturing

Constructive texturing is a general approach for solid texturing of objects of arbitrary type
[141]. This technique consists in defining for a given object a space partitioning = = |J; E;,
where in each space partition =; C R3, a different set of attributes A; is defined!. For each
point of the object, one has to be able to answer the following question: “Is this point inside or
outside a given space partition Z;7” In the affirmative case, the attributes A4; corresponding
to Z; are applied.

One powerful solution for point membership classification is to use the FRep model [121].
In this model, each space partition Z; is defined by a function f;, and a set of attributes A;

In this chapter, according to the involved references and in order to avoid confusions, we use the specific
term space partition for a domain in R?.

8.4. A NEW INTERACTIVE SOLID TEXTURING APPROACH 125

is associated. All space partitions are organized as leaf nodes in a tree, which are combined
together with operations in the interior nodes.

The main advantage of constructive texturing is its generality: it can be applied to polygo-
nal meshes, boundary representations, parametric and implicit surfaces, voxel arrays, unorga-
nized point sets, and others. Moreover, the texture behaves accordingly to geometry changes
in animated sequences without creating distortions, like for all solid textures, as illustrated
in Figures 44 and 49. On the other hand, the major drawback of the constructive texturing
approach is that the creation of the space partitions is usually complex and rather painful
to do at the desired locations of the surface. This is due both to the constructive approach
inherent to the method, and to the lack of interactive tools. Consequently, it is difficult for a
non-expert user to generate the nodes of the partition at the desired locations of the object’s
surface.

(a) Textured cube. (b) Twisted geometry
and texture.

Figure 49: The texture follows the geometry after applying a twist operator.

8.4 A new Interactive Solid Texturing Approach

8.4.1 Overview

In the following, we present a new interactive solid texturing approach that overcomes these
drawbacks. The basic idea is to let the user define the space partition by interactively selecting
points on the surface.

Interactivity is guaranteed thanks to the dual nature of the point-based multiresolution
representation being applied. First, as usual, the multiresolution representation is used for
rendering to maintain a constant frame rate. Thanks to the adaptive and flexible multireso-
lution representation, areas of interest can be rendered in a higher resolution than the other
areas of an object’s surface without causing connectivity problems. Second, in addition to
rendering, we also use the multiresolution approach in the texturing step: at low resolution,
the user can paint large parts of the object, and when the resolution is increased, finer details
can be painted. Moreover, the attributes can also be determined in a multiresolution man-
ner, thus, when texturing an object’s surface, visual results are obtained rapidly in a coarser
resolution before refining them in a background process.

The procedure we have defined can be decomposed into 10 steps, as illustrated in Figure 50.
In a preprocessing step, discrete surface points are extracted from a given object of arbitrary

126 CHAPTER 8. INTERACTIVE CONSTRUCTIVE TEXTURING

type (Step 1), and a multiresolution representation of the cloud of discrete surface points is
set up (Step 2). After this, the object is visualized in the adapted level-of-detail (Step 3).
Then, the user can texture the object’s surface (Steps 4-7), the attributes of the surface points
are updated (Step 8), and visualized (back to Step 3). Finally, when the user has finished
texturing, the texture can be exported (Step 9) and used during postprocessing (Step 10).
Details of these steps are given in the following.

8.4.2 Preprocessing

Before texturing an object using point-based representations, one needs to define a cloud of
discrete points on the object’s surface (Step 1). The complexity of this preprocessing stage
heavily depends on the object’s type. In the case of polygonal meshes, parametric surfaces
or unorganized point sets, the extraction is done directly as these representations explicitly
define the boundary of the object. In the case of other representations, such as FRep, voxel
arrays, or scanned data, one needs to extract the isosurfaces. A large number of techniques
exist for this task, such as polygonization, particle systems [166], or ray-tracing applied to
an object. Moreover, some efficient resampling techniques have been proposed in order to
augment or lessen the number of extracted surface points, see for example Alexa et al. [7].

Once the cloud of discrete surface points is extracted, the multiresolution representation
is set up (Step 2). This is done not only for level-of-detail rendering, but also for progressive
evaluation of the constructive texturing tree. We use a hierarchy of bounding spheres stored
in a binary tree in spirit of QSplat [136] which is built up in a top-down recursive manner
during preprocessing as explained in Chapter 5 of Part II. In each node, we store the radius of
the bounding sphere and the surface point lying closest to the barycenter of all surface points
in the bounding sphere. Note that the radius of the bounding spheres at the leaf nodes is
determined directly from the sampling grid used for extracting the surface points.

Defining solid texture coordinates by discrete surface point locations is prone to aliasing
artefacts when high-frequency textures are used, even at the highest resolution of the hierarchy.
This is also true for the surface textures natively defined in the Pointshop3D environment [174],
but in contrast to Pointshop3D, discrete surface points are only used in an intermediate step to
previsualize the textured surface. These aliasing artefacts will not occur during postprocessing
as illustrated in Figure 51, where a high-frequency Perlin noise is applied to a tiger object
defined in the FRep model.

8.4.3 Real-Time Process

In order to ensure real-time processing, the evaluation of the attributes of the surface points
as well as the rendering itself has to be done in a given time. To meet this requirement,
the adapted level in the multiresolution hierarchy, where the attributes of all nodes can be
evaluated in the given time, is determined. This might not be the highest level of the hierarchy,
as the cost of determining the attributes for a surface point increases with the complexity of
the solid texture represented by the constructive texturing tree. Then, the attributes of all
further nodes and surface points of the multiresolution hierarchy are determined (Step 8) in
a background process as indicated by (a) in the algorithm.

In addition to choosing the adapted multiresolution level with respect to the evaluation

8.4. A NEW INTERACTIVE SOLID TEXTURING APPROACH 127

Geometric model
of arbitrary type
1

preprocessing

Extraction of dis—
crete surface points &
multiresolution set-uf

Update of

Visualization |- | Photometric
attributes

3] 8]
(@

real-time
processing

Selection of
material index
ﬁ

Primitive selection
(sphere, RBF, con-
volution surface, %
5

user interactive painting

Point Selection

6

Add new node to the
constructive texturing
tree

HyperFun Export

B

Use in standard
graphics software
(CAD, ray-tracing, ...
10

postprocessing

Figure 50: The different steps involved in our interactive texturing process.

cost of the attribute tree, the number of surface points that can be rendered by the graphics

128 CHAPTER 8. INTERACTIVE CONSTRUCTIVE TEXTURING

(a) Previsualization. (b) Final ray-traced im-
age.

Figure 51: Aliasing artefacts do not occur in postprocessing.

Figure 52: A set of established space partitions shown on the dinosaur statue.

hardware has also to be taken into account for efficient visualization (Step 3). This cost might
be rather small when the projection of the bounding sphere of the surface point falls on a
single screen pixel. Even when the projection of the bounding sphere falls on several screen
pixels, the cost might stay small using some hardware-accelerated splatting technique [136],
but increases when a high-quality splat is drawn [175]. However, even high-quality splats can
now be drawn with hardware acceleration [130] using modern graphics hardware [101].

8.4.4 User Interactive Texturing

At this stage of the algorithm, the user textures the object’s surface. This is done by choosing
a material index for the texture to be used (Step 4), defining a space partition (Steps 5 and
6), and adding the space partition as a new node in the constructive texturing tree (Step 7).
We will detail these steps in the following.

Selection of the material index (Step 4) First, the user selects a material index for a
solid texture that will be applied in the space partition. Any kind of solid texture can
be used, varying from procedurally defined solid textures, volumetric textures, simple

8.4.

A NEW INTERACTIVE SOLID TEXTURING APPROACH 129

materials, and others. Of course, the new procedurally defined solid texture of Section
7.1 can be used as well, and we experienced that this solid texture is particularly useful
at locations, where the user wants to leave the original texture of the surface unaffected.

Primitive selection (Step 5) Depending on the shape of the space partition the user wishes

to obtain, different tools are available. By tool, we mean any primitive that can be
defined in the FRep model. The simplest tools to define a space partition are the sphere
and the block. By using convolution surfaces [26] for the space partition, the user can
texture the object with a brush tool of a any size. With more complex primitives, the
user has even more control over the space partition to define, and we integrated a tool
that defines space partitions using the partition of unity variational method. This tool
reveals to be extremely useful, since a significant number of points in Step 6 can be
selected, and a space partition including all these points is created. For an example of
various different space partitions issued by various tools, see the textured object and its
corresponding space partitions of a dinosaur sculpture in Figure 52.

Point selection (Step 6) In this step, the user selects the surface points. These surface

New

points are the parameters of the FRep primitive defining the space partition. For exam-
ple, by using the partition of unity variational method tool, a space partition including
all the selected surface points is determined. When the chosen tool is a brush, the
selected surface points define the skeleton of the convolution surface for the space parti-
tion. When a sphere is chosen as the tool, the selected surface point defines the center,
and a radius can be specified interactively.

node in the constructive texturing tree (Step 7) Once the new space partition
has been created (i.e. a new primitive), it is added to the current constructive texturing
tree. This is done automatically while using the set-theoretic union operation, but any
other operation available in the FRep model can be used (including other set-theoretic
operations such as intersection, or blending union). In the case of overlapping partitions,
set-theoretic operations need to be defined by the user. Indeed, if one considers a union
operation of, for instance, two overlapping blocks, the resulting geometry is well defined.
But if one considers the union of attributes, the result needs to be specified. In the case
of a red and a green block, the color of the intersection of the blocks can be either red, or
green, or yellow, or any other color; it corresponds to different operations on attributes,
namely priority given to an attribute, a min/max function, or a user defined operation.
By default, we give priority to the last added primitive.

When the user has painted on the surface by choosing the desired texture and points to

define the space partition, the attributes of the surface points are updated (Step 8) and visu-
alized (back to Step 3). Then, the user can continue to add further space partitions and to
associate attributes with them. Although the space partitions can be very complex, interac-

tivity is achieved because the evaluation of the solid texture represented by the constructive

texturing tree is processed only for the discrete surface points used for visualization, at the

adapted level-of-detail.

130 CHAPTER 8. INTERACTIVE CONSTRUCTIVE TEXTURING

8.4.5 Postprocessing

Once the solid texture defined by the constructive texture is created, it can be saved, and
exported using the extended version of HyperFun [3] (Step 9), which is a special high-level
language that supports all the main notions of FRep modeling and has been recently extended
to support constructive texturing. A set of plug-ins has been developed such that several
existing software tools support objects described by HyperFun, such as Maya [107], POVRay
[126], and other (Step 10). Export to polygonal representations, such as VRML, is also
supported.

8.5 Results

8.5.1 Overview

We implemented our tool as a plugin for Pointshop3D [174] in C++ using Qt for the graphical
user interfaces. A screenshot of our plugin can be seen in Figure 53, where the user is selecting
the tool to define a space partition. Besides the rendering modes provided by Pointshop3D,
we implemented our own rendering modes to manage the multiresolution representation. All
timings given in this section were measured on a 1.7 GHz Pentium PC with 512 MB RAM.

Fle Edit Camera Select Pluging Jew ﬂelpl

(=[]

1.00

Threshald : |0.000010 ﬂ

7 block

Figure 53: A screenshot of our plugin.

8.5.2 Preprocessing

The preprocessing step is divided into two parts, the extraction of the surface points and
the creation of the multiresolution representation. The time for the extraction of the surface

8.5. RESULTS 131

(a) High resolution. (b) Very low resolution.

(c¢) Corresponding space partitions.

Figure 54: A more complex example using multiple space-partitions.

points is strongly related to the type and complexity of the object’s geometry. Setting up
the multiresolution representation is fast, it only depends on the number of extracted surface
points and is in O(n logn).

Since our texturing technique can be applied to surfaces of objects from arbitrary type,
we decided to take example objects with different underlying object representations. For the
polygonal mesh of the Stanford Dragon, extracting the 437,645 surface points (Figure 54(b))
is done instantaneously like for the 38,619 surface points of the dinosaur statue (Figure 52)
by directly using the vertices of the mesh. For the implicit surface of the 3D ant defined
by an FRep model, it took 46 seconds to extract the 140,616 surface points (Figure 56(g)).
Extracting the 78,499 surface points (Figure 55(a)) from the well known Siemens head sampled
on a 150x200x192 voxel grid took 13 seconds.

Setting up the multiresolution representation took less than five seconds for every example
shown in this chapter, for more details see the results in Chapter 5 of Part II.

8.5.3 Real-Time Process

There are two major bottlenecks which determine the interactivity of our texturing approach.
First, the evaluation of the constructive texturing tree to determine the attributes of the
surface points when nodes to the attribute tree were added, and second, the rendering of the
surface points. Thanks to the multiresolution approach we use, maintaining interactivity for

132 CHAPTER 8. INTERACTIVE CONSTRUCTIVE TEXTURING

both bottlenecks is achieved by choosing the right balance between the number of surface
points which can be evaluated by traversing the constructive texturing tree and the number
of surface points which can be rendered.

The time to determine the attributes of the surface points heavily depends on the com-
plexity of the solid texture defined by the constructive texturing tree. The evaluation of the
attributes of the surface points becomes critical only when very complex primitives are used.
In all the examples shown in this chapter, the attributes of all surface points as well as of
the interior nodes of the hierarchy used for multiresolution could be evaluated in less than a
second.

If the attributes of a huge number of surface points are determined, simple hardware-
accelerated splatting of the surface points suffices [136], resulting in high-quality images when
the projection of the bounding sphere associated to each surface point falls only on a few
screen pixels. Using our implementation, we can render up to 5M splats per second using a
GeForce 3 graphics board as we already experienced in Chapter 5 in Part II.

If only a small number of surface points could be evaluated, a high-quality software splat-
ting technique is used for point-based rendering. The adapted level-of-detail of the multireso-
lution representation is chosen to ensure interactive framerates. Using our implementation of
the output-sensitive surface splatting technique, we can render up to 300k high-quality EWA
splats per second in a 512x512 window (see also Chapter 5 of Part IT). However, we envisage to
use the hardware-accelerated approach of [130], which is less output-sensitive and where up to
3M surface high-quality splats per second can be rendered, or to use the even more performant
hardware-accelerated approach of Botsch and Kobbelt [28]. Moreover, we strive to integrate
the hardware-accelerated point-based multiresolution rendering approach of Dachsbacher et
al. [46], which is perfectly suited for our approach. By shifting the computational cost to
traverse the multiresolution hierarchy from the CPU to the graphics hardware, CPU load is
liberated for evaluating the attributes while rendering over 50M surface points per second.

The desired quality/speed trade-off can be chosen, Figure 56 shows different levels-of-detail
of our 3D ant rendered using EWA splats (Figures 56(a)-56(c)) and hardware splats (Figures
56(d)-56(f)), as well as the obtained framerates.

8.5.4 User Interactive Texturing

A more complex textured object, the Stanford Dragon described by 437,645 points, can be
seen in Figure 54(a). We also show another resolution that was used during the texturing
step (Figure 54(b)) as well as the corresponding space partitions that have been established
(Figure 54(c)).

8.5.5 Postprocessing

In our environment, we used POVRay [126] to obtain photorealistic rendering. Some of our
results are shown in Figure 55(b) and Figure 56(h).

8.5. RESULTS 133

(a) 78,499 extracted discrete surface points. (b) Ray-traced image.

Figure 55: Texturing a surface from the Siemens voxel array head sampled on a 150x200x192
grid.

134 CHAPTER 8. INTERACTIVE CONSTRUCTIVE TEXTURING

I Spaw

(a) 140,616 high-quality EWA (b) 34,980 high-quality EWA (c) 11,043 high-quality EWA

splats rendered at > 1.5 fps. splats rendered at > 5 fps. splats rendered at > 15 fps.
(d) 140,616 hardware splats (e) 34,980 hardware splats ren- (f) 11,043 hardware splats ren-
rendered at > 35 fps. dered at > 140 fps. dered at > 400 fps.

(g) 140,616 extracted discrete surface points (h) Ray-traced image.
from FRep model.

Figure 56: Multiresolution rendering using hardware splats and high-quality EWA splats and
obtained framerates, starting from 140,616 discrete surface points extracted from an FRep
model, and the final ray-traced image.

8.6. CONCLUSIONS 135

8.6 Conclusions

In this chapter, we presented a new idea that links the texture and the geometry of an object
by combining two approaches previously developed in computer graphics: constructive textur-
ing and point-based multiresolution representations. This combination allowed us to develop
a software environment where 3D objects of arbitrary type can be textured by using an in-
teractive and intuitive process. An interactive framerate is always guaranteed, whatever the
complexity of the geometry and/or the texture, because the multiresolution representation of
discrete surface points extracted from the object is tuned according to the performance of the
graphics hardware and according to the texture complexity. This multiresolution representa-
tion offers also high-quality antialiased point-based rendering. One major advantage of our
approach is that point-based rendering is only used during the interactive texturing step. We
always keep a feedback to the initial geometric representation of the object (polygonal mesh,
parametric or implicit surface, or whatever) which means that the final textured object can
be easily exported to standard graphics software that cannot directly handle discrete surface
points (e.g. CAD systems, photorealistic rendering engines).

Our implementation is still under development: currently four kinds of FRep primitives
(i.e. spheres, blocks, convolution surfaces, and radial basis functions applied to a set of
discrete surface points) can be used to create a partition of the constructive texturing tree.
An immediate extension will be to widen the set of available FRep primitives. Two more
straightforward extensions will be to integrate the hardware-accelerated high-quality splatting
technique [130] that renders more than 3M points per second on current graphics hardware,
and to integrate the sequential point trees technique [46], that shifts the CPU load for the
multiresolution rendering to the graphics hardware.

136 CHAPTER 8. INTERACTIVE CONSTRUCTIVE TEXTURING

Conclusions and Future Research
Directions

Conclusions

Recent three-dimensional acquisition technologies provide a huge number of unorganized
points in 3D. In this thesis, we have shown how to reconstruct implicit surfaces from such
large unorganized point sets, how to render the resulting surfaces, and how these fundamen-
tals can be used in a wide variety of applications.

More precisely, in Part I, we focused on the reconstruction of implicit surfaces from un-
organized point sets and we started by presenting some previous work. We have seen that
the existing methods suffer from various drawbacks. For example, some methods do not scale
well with respect to the size of the point set, others are not robust against non-uniformly
distributed points or noise in the point set, and others involve complex calculations or are just
very hard to implement.

Consequently, we presented two new methods that overcome these problems. The new
methods divide the global reconstruction domain into smaller overlapping local subdomains
by using adaptive domain decomposition methods, solve the reconstruction problems in the
local subdomains using radial basis functions with global support, and blend the solutions
together using the partition of unity method. Whereas the first method called partition of
unity variational method uses an adaptive domain decomposition method based on an octree
and blends the solutions of all the leaf nodes together by forming a partition of unity, the
second method called hierarchical partition of unity variational method uses an adaptive
domain decomposition method based on a perfect binary tree and at all interior nodes, the
solutions of the two child nodes are blended together by forming a partition of unity. The
hierarchical partition of unity variational method is even more robust against non-uniformly
distributed points than the partition of unity variational method, since the number of points
that are in the intersection of the two overlapping subdomains can be specified explicitly. Both
methods have a nice linear behavior of the required reconstruction time and memory usage
with respect to the number of points in the point set since the O(N log N) creation involved
in the domain decomposition method is negligible compared to the O(NN) reconstruction of
the local subdomains.

In Part II, we focused on the rendering of implicit surfaces reconstructed from unorganized
point sets. Again, we started by presenting some previous work, and we found that there
is a wide variety of rendering techniques for unorganized point sets as well as for implicit
surfaces. To our knowledge, the only rendering techniques using both the point set and the

137

138 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

reconstructed implicit surface were presented for point set surfaces [7, 6, 2] and for variational
implicit surfaces reconstructed from small point sets [44]. This fact motivated us to define two
new rendering techniques that use both the point set and a reconstructed implicit surface.

In the first new rendering technique, the implicit surface is rendered view-dependently in
an output-sensitive multiresolution manner using points as rendering primitive. The initial
unorganized point set is used to establish a multiresolution representation as a bounding sphere
hierarchy, and a reconstructed implicit surface is used to generate additional points through
a local ray-casting when the initial unorganized point set does not provide enough detail
for rendering. By its definition, the rendering technique is faster than standard ray-tracing
techniques. Nevertheless, the generation of additional points can be rather costly depending
on the evaluation complexity of the defining function of the implicit surface. This is why the
first new rendering technique is particularly adapted for implicit surfaces reconstructed from
very large unorganized point sets with a defining function that is very fast to evaluate.

The second rendering technique based on differential point rendering [85, 86| uses a recon-
structed implicit surface to pack information about local differential geometry in every point
of the point set resulting in a differential point. In flat regions or regions of low curvature,
a differential point approximates larger vicinities than in regions of high curvature, and thus
the rectangle has a larger extent. The differential points are then rendered as non-connected
fragment-shaded rectangles on programmable graphics hardware. A particularly nice feature
is, that after the differential points have been created, the reconstructed implicit surface is
no longer required, and a lower number of differential points suffices to represent the implicit
surface. This reduces the required memory and ensures lower bus traffic between the CPU and
the graphics board. However, the rendering technique is only appropriate for quasi-uniformly
distributed point sets.

In Part III, we presented an incomplete list of potential applications that use the fun-
damentals of the first two parts of this thesis. In fact, the two new reconstruction methods
presented in Part I are not limited to reconstruct the defining functions of implicit surfaces,
but apply also to reconstruct continuous functions of any dimension. Consequently, we used
the reconstruction methods to define a new class of procedural solid textures that can be recon-
structed from the attributes of unorganized point sets. Furthermore, we applied the methods
to reconstruct terrains from 2D contour lines and to repair images in 2D image processing.

Finally, we presented a new interactive environment for constructive texturing of surfaces
of arbitrarily defined 3D objects (including, of course, implicit surfaces). A user can texture
the surface by defining space partitions that are combined using constructive texturing, and by
specifying attributes that are applied in the space partitions. The partition of unity variational
method can be used to define space partitions amongst other primitives and revealed to be
particularly useful. When specifying the attributes, the new class of procedural solid texture
can be used as well. In order to give an interactive feedback, a point-based multiresolution
representation of the surface is used that is not only exploited for rendering, but also for the
evaluation of the texture.

139

Future Research Directions

The results of reconstruction and rendering of implicit surfaces from large unorganized point
sets as well as the applications that we presented in this thesis give rise to various future
research directions, and we present here some directions that seem to be particularly valuable.

The new implicit surface reconstruction methods from large unorganized point sets di-
vide the global reconstruction domain into local subdomains that can be solved by various,
non-communicating entities due to their independence. We believe that this fact enables a
straightforward out-of-core implementation of the new implicit surface reconstruction meth-
ods, where only the data of the local subdomain to be reconstructed has to be kept in core
thereby enabling to reconstruct implicit surfaces from hundreds of millions of unorganized
points.

At the moment, the new implicit surface reconstruction methods generate one final implicit
surface at highest precision. We are currently extending our reconstruction methods to gener-
ate implicit surfaces at various precisions by gradually refining lower precision implicit surfaces
that are stored in the hierarchical data structure resulting from the domain decomposition
method. A multi-level reconstruction method is not only interesting to rapidly gain a coarse
approximation of the reconstructed implicit surface, but also valuable in bandwidth-limited
network applications for a progressive transfer of the implicit surface.

In the first new point-based rendering technique, the most time-consuming process is
the generation of additional points. Besides generating the additional points in parallel when
several processors are available, we strive to move some operations that are involved in the local
ray-casting of the implicit surface to the graphics processing unit (GPU) on programmable
graphics hardware. We think that this is particularly beneficial for partition of unity blendings
of lower order algebraic implicit surfaces, such as the quadratic surfaces involved in multi-level
partition of unity implicits, since the ray-casting can be calculated analytically.

The differential point rendering technique for point sets using a reconstructed implicit
surface is still under development. We believe that a curvature-driven sampling technique
of the implicit surface in order to create the differential points further reduces the required
number of differential points. Consequently, the initial point set is no longer required, and the
rendering technique can be applied to implicit surfaces in general.

The new implicit surface reconstruction methods from unorganized points enable to design
point-based modeling environments, where points are used as modeling primitives, as an
alternative to modeling techniques based on polygonal meshes. By using our point-based
rendering techniques instead of rendering the implicit surfaces by polygonal meshes, we plan
to design a completely meshless interactive modeling environment by using points both as
modeling and as rendering primitive.

We have shown that the new reconstruction methods can be applied to reconstruct contin-
uous functions of different dimensions in various application domains. We intend to apply the
procedural solid texture reconstructed from unorganized points of an object with a first geom-
etry to an object with a different geometry by defining a shape transformation R?* — R3 from
the first to the second geometry, and by applying the shape transformation to the procedural
solid texture. Moreover, we want to show the power of our new reconstruction methods in
further applications, such as repairing 3D polygonal meshes and the reconstruction of missing
information in medical data sets.

140 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

Appendix A

Differentials

3D RBF reconstruction

Biharmonic basic functions

The radial basis function reconstruction by using biharmonic basic funtions ¢(xz) = |||
associated with a linear polynomial in vector notation is:

N 4
=Y willz—p)ll+ > wapa(@)
=1 a=1

By setting = [z,y, z]" and p; = [z;,yi, z;]", the radial basis function is:

N

f(@,y,2) = Zfﬂi\/(ﬁﬁ—«’iﬁz‘)2 + (Y —y)+ (z—z)? +mz+my+m3z+m
i=1

The partial first and second derivatives are the following:

g; (2,9,2) szl i V(@—2:)? +(y—yi)*+(z—2)? tm
g/ — " . Y=Y
oy (@,9,2) = Yz wi V(@) +(y—yi)?+(z—2)> +m
of = YN 22
5z (%:9,2) 2 i V(e—:)2+(y—yi)>+(2—2)? s

or(my?) = Xk Y e T e A \/<zf:m>2+(f:;3>22+(mi>23
sy = XL V(e—z; T \/<x—xi>2+(?z;—y;z;+(z—zl-)23
ey = XL V(@) 2+(;iyi)2+(zfzz-)2(1 - \/@fmi>2+(fo;f;+(mi>23)
%gy(m,y,z) = 32{;,;(:5 y2) = =200, \/(x_:)lz(j_;;l);ly) yl()z PR

%(m,y,z) = %(m,y,z) = _Zi]\il NE= w)l(j_(;z);) ZZ()Z PAE

g (e2) = gyey,2) = ~ i, e

\/(f :1:1)2+() = Zz)

141

142 APPENDIX A. DIFFERENTIALS

Triharmonic basic functions

The radial basis function reconstruction by using triharmonic basic functions ¢(z) = |||
with associated with a quadratic polynomial in vector notation is:

N 10
fl@) =Y will(x—p) I+ mapal®), (85)
=1 a=1

By setting = [z,y, 2]" and p; = [z;,yi, z;]", the radial basis function is:

3
fzy,2) = S wiv/m—2)2+ (y—)2+ (2 — 2)2
+ma? + 7r2y2 + w322 + T4XY + T5YZ + TeL2Z + T7x + 7Y + W9z + T

The partial first and second derivatives are the following:

%(fﬁ,yaz) =3 Zi]\; wi(r — sz‘)\/(fE —)2+ (y —yi)? + (2 — 2)?
+2mix 4+ Ty + Mgz + M7

Swyz) = 35N wily— vV @ -2+ —)2 + (2 — 2)°
+2moy + max + Tz + T

U(w,y,z) = 30N, wilz—2)/@—2)2+ (Y —)2 + (2 — 22

+2m32 + w5y + wex + o

2

Vw2 F =) T (2 - z))

%(x,y,z) = 327{21 (wz(\/ (2—2:)

(x—2;)2+(y—yi) 2 +(2—2)

+2m

3—;‘2(3:,y,) = 39N, (wi(\/(:Hﬂi)2J(ry(;fiy);Jr(z_zl‘)2 + V(@ —zi)? + (y —y)? + (2 - Zi)2)>
+2my

lry2) = 3T (el otV w + - P+ (- a))
4273

g (102) = ayren2) =3 D e e e e

@ 9,7) = ey 2) = 3T e e G g

af

oyoz (ZE, Y, Z) = 3(2(};y (III, Y, Z) =3 sz\il wj \/(I, (y—yi)(z—=i)

23)2+(y—yi)?+(z—2i)

2+7T5

143

3D Partition of Unity blending
The partition of unity blending of M local reconstruction functions f; with the weighting

functions w; is given by:

M fi(@) i () .
S (@)

The first and second derivatives are the following:

flx) =

S i) (S @bi@) + S, fil@yw)@) - D dle) (S, fi@)i(e)

f’(iB) = VB 2
(Zi:l wz(az)>
" _ XM f (@)l () " (2)wi (2)+ fi(z)w] ()]
/ (w) - M %ﬁl i (@) M M
237 () 30T [() wi (@) 4 fi ()Wl ()] + 50,0 by 3250 fi(m)wi(x))
S I, (@)
+ 23 i u;;(m)z 2in1 fé(m)d’i(m)
(CiL, bi(=))
with

)
- o (di (@) d (@)
W(@) = o"(d(@)di(2)? + v (d(x))d! (=)

3

IS

—~
8

~
I

The derivatives of several decay functions v are as follows:

| Continuity | v K | v
[vo(z) =1—2x vh(z) = —1 vy (z) =0
ct vi(z) =273 — 322 + 1 | v|(z) = 62 — 67 v (z) =122 —6
ct va(z) = (22 —1)? vh(z) = 423 — 4o vli(z) = 1222 — 4
v3(7) = —62° + 155* | vi(z) = —30z* + 6023 | v (z) = —1202° + 18022
C? —10z% +1 —30z2 —60x

When using the cubical distance function for a cube spanned between a = [wa,ya,za]T and
b = [z, yp, 2] with side length u

64 Ip. c|l
cube _)
di""(z,y,2) = -5 H (v —va) (vp —) ma—

vET,Y,Z

the partial first and second derivatives are as follows:

144 APPENDIX A. DIFFERENTIALS

W wyn) =~ ([~)~ (2~ 2] [0~ va) W~ 9)(z — 20)(2 — 2)])
W @) =~ ([=) — = va) [—) — 2)(z — 20) (21 — 2)])
M @0.2) = —5([(z —) — (&~ 2)] [(@ — 20) (6 — D)y — va) w5 — 9)])
W @y2) = By~ o)~ y)(z — 2a) (2~ 2)
M (@9,7) = 2 — g0 —)z~ 2) (5 2
ZZ“Z (2,y,2) = ;dzi(w —zq)(@p —) (Y — ya) (Y —)
ey (7:0:2) = G (,9:2) = (2 = 20)(5 = (= 1) = (5 = wa)ll(zy —2) = (2~ z)
e (2,4,2) = S (@,,2) = Sy — o) (v — 1) (2 — 2) — (2 — 2a)][(—) — (3 — x“)
o (wyn) = M (ay,2) = S — xa) (s —) (2~ 2) — (2)]~ 9) — (-

When using the spherical distance function with center ¢ = [z, yc, zC]T and radius r

dfphere(m) _ HZB;CH’

the partial first and second derivatives are as follows:

adsphere

T (@02) = s (o)
ph
3df ere _ 1 _
o 92 Y s TR e A)
dsrhere
b —(2,y,2) = ! (2 — 2)

v/ (@ =) 2 +(y—ye) 2 +(z—2¢)?

3d?phere . 1 (.’L’—CEC)Q

902 (J?, Y, Z) - r\/(mfxc)2+(y*yc)2+(3*26)2 N r(\/(Ifl‘c)2+(y*yc)2+(zfzc)2)3
3d§phere (x z) _ 1 _ (y_yC)Z

oy> 'Y, r\/(:v—xc)Z+(y—yc)2+(2_z6)2 r(\/(x—:vc)2+(y—yc)2+(3—2c)2)3
8d§;phere () . 1 _ (Z*Zc)2

o227 WYz = r\/:L‘ ze)?+H(y—ye)2+ (2—2c)? T(\/(I*l’c)hr(y Ye)?+(z—2:)%)?
dsPhere I o (x—zc)(y—ye)

0oy (z,y,2) = 3?/395 z,Y,2) = r(V(@—2)2+(y—ye)2 +(2—2c)?)3
pahere _ aater _ (o—we)(zz)

0x02 (J?, Y Z) - 020z ($’ Y Z) - T(\/(l'—:vc)Z‘l‘(y—yc)2+(Z_ZC)2)3
o4 _odrer _ (vye)(z—ze)

0y0z (ZE, Ys Z) o 3z8y (ZE, Y Z) o r(\/(wfmc)Q‘F(y*yc)2+(Z*ZC)2)3

Appendix B

Reference of Symbols

Symbols

— T T, 0 x e

AN

i, 7)
z,y,z]"

dot product

cross product

chain rule

Fourier transform of f
edge between ¢ and j
three-dimensional vector

Euclidean norm of a vector \/Zgzl z? with @ = [21, 22, . ..

gradient
space mapping
follows

Math spaces

N
1
R

natural numbers

polynomial space

real numbers

Domains (capital greek letters)

2 2 (1]

@)

e

CR?
C R
C R
CR?

space partition
global domain
local subdomain

local subdomain at level [

145

axd]T

146

Sets (rounded capital roman letters)

set of attributes

overlapping domains
H-neighborhood of ¢

point set

point set at level [

point Set of a local subdomain
surface

set of weighting functions

Vectors (bold small roman letters)

lower extrema of box

upper extrema of box
center of sphere/cube
center pixel

ray direction

normal

normal in point p,

centroid

ray origin

points for reconstruction
points at level &

point near an MLS surface
additionally generated point
ray-surface intersection point
projected MLS point
projected MLS point
intersection point with T"€"
intersection point with Tfer
skeleton point for blobby objects
principal direction in p
principal direction in p
small vector

point in space

Matrices (capital bold roman letters)

W T QR

for Ax=b
covariance matrix
Hessian matrix
identity matrix
polynomial matrix
rotation matrix

APPENDIX B. REFERENCE OF SYMBOLS

Univariate scalar Functions R — R (small greek letters)

0 R —R weight function
v R — R decay function
¢ R — R basic function

Multivariate scalar Functions R” — R (small roman letters)

d R3
f R
fi B
f 1] R?)
fo R
fo R
g R
g R
0 [R?)
p R
¢ R
U R3
w R3
W R3

—R
—R
— R
— R
—R
—R
— R
—R
—R
— R
— R
—R
—R
— R

distance function

defining function

local defining function

defining function at level [
carrier solid function

attribute reconstruction function
quadric function

polynomial MLS approximation
offset function at level [
polynomial basis function
potential function

volume spline function
normalized weighting function
weighting function

Univariate Vectorial Functions R — R™ (capital roman letters)

R R—->R

ray

Multivariate Vectorial Functions R* — R™ (capital greek letters)

I R2-R3
U R R

parameterization function
projection operator function

Functionals f — R (capital bold roman letters)

E energy functional

V' variational functional

147

148 APPENDIX B. REFERENCE OF SYMBOLS

Bounds (capital roman letters)

C number of points in the cylinder
K number of off-surface points

H number of points in the H-neighborhood
L number of levels

L Lipschitz bound

M number of domains

N number of points

Q dimension of the polynomial
Tyria point bound

Tonins Traz point bounds

Trnin point bound

Constants (small greek letters)

degree of derivative
degree of overlapping
increasing overlapping
for gaussian function
precision

I N2 ™R

N

for placing normal constraints
regularization parameter

for computational complexity
for computational complexity
coefficient for polynomials

grid size step for polygonization
support radius

threshold

maximum principal width
coefficient for RBF

€ > 9 9™ 3 ¥ T >

Variables (small roman letters)

a;, b; parameters for blobby spheres
a; material attribute

c for morphing

d for dimensions

d; distance from the point

d offset for hessian normal form
de diagonal of a cubic octant cell
do diagonal of the domain €2

h feature size

h; for interpolation constraints
hp fill distance of the point set
1,7, k.1, m running variables

i1, %9 for overlapping zone

m order

qp separation distance of the point set
r radius

7 values of the carrier function
T3, Giy bi material attributes

t parameter for ray R

trecs ttotal, TM, thierarchy timings

u side length of a cube

Up, Up principal curvatures in p

v coordinate v € x,, 2.

T,Y, % coordinates

Names (capital sans serif letters)

B
C

H
Tnrear Tfar

blobby primitive

cylinder

local MLS reference plane

planes for additional point generation

149

150 APPENDIX B. REFERENCE OF SYMBOLS

Bibliography

1]

2]

3]

[4]

[5]

6]

7]

8]

19]
[10]

[11]

Anders Adamson and Marc Alexa. Approximating and intersecting surfaces from points.
In Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Process-
ing 2003, pages 230-239, 2003.

Anders Adamson and Marc Alexa. Ray tracing point set surfaces. In Proceedings of
Shape Modeling International 2003, pages 272-282, 2003.

Valery Adzhiev, Richard Cartwright, Eric Fausett, Anatoli Ossipov, Alexander Pasko,
and Vladimir V. Savchenko. Hyperfun project: A framework for collaborative multi-

dimensional F-rep modeling. In Proceedings of the Implicit Surfaces '99, pages 59-69,
1999.

Maneesh Agrawala, Andrew C. Beers, and Marc Levoy. 3D painting on scanned surfaces.
In Proceedings of the ACM Symposium on Interactive 3D Graphics 1995, pages 145-150,
1995.

Samir Akkouche and Eric Galin. Adaptive implicit surface polygonization using march-
ing triangles. Computer Graphics Forum, 20(2):67-80, 2001.

Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, and
Claudio T. Silva. Computing and rendering point set surfaces. IEFEE Transactions on
Visualization and Computer Graphics, 9(1):3-15, 2003.

Marc Alexa, Johannes Behr, Daniel Cohen-Or, David Levin, Shachar Fleishman, and
Claudio T. Silva. Point set surfaces. In IEEE Visualization 2001, pages 21-28, 2001.

Eugene L. Allgower and Stefan Gnutzmann. Simplicial pivoting for mesh generation of
implicitly defined surfaces. Computer Aided Geometric Design, 8(4):305 — 325, 1991.

Applied Research Associates Ltd. 2003. http://www.aranz.com.

Nicolas Aspert, Diego Santa-Cruz, and Touradj Ebrahimi. Mesh: Measuring er-
rors between surfaces using the hausdorff distance. In Proceedings of the IEEE In-
ternational Conference on Multimedia and FExpo, volume I, pages 705 — 708, 2002.
http://mesh.epfl.ch.

Ulf Assarsson and Tomas Moller. Optimized view frustum culling algorithms. Technical
Report 99-3, Chalmers University of Technology, 1999.

151

152

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

BIBLIOGRAPHY

Ivo M. Babuska and Jens M. Melenk. The partition of unity finite method. International
Journal for Numerical Methods in Engineering, 40:727-758, 1997.

Richard K. Beatson, Jon B. Cherrie, and Cameron T. Mouat. Fast fitting of radial basis
functions: Methods based on preconditioned GMRES iteration. Advances in Computa-
tional Mathematics, pages 253-270, 1999.

Richard K. Beatson and Leslie Greengard. A short course on fast multipole methods. In
M. Ainsworth, J. Levesley, W.A. Light, and M. Marletta, editors, Wavelets, Multilevel
Methods and Elliptic PDEs, pages 1-37. Oxford University Press, 1997.

Richard K. Beatson and Will A. Light. Fast evaluation of radial basis functions: meth-
ods for two-dimensional polyharmonic splines. IMA Journal of Numerical Analysis,
17(3):343-372, 1997.

Richard K. Beatson, Will A. Light, and Stephen Billings. Fast solution of the radial
basis function interpolation equations: Domain decomposition methods. SIAM J. Sci.
Comput., 5(22):1717-1740, 2000.

Richard K. Beatson and Garry N. Newsam. Fast evaluation of radial basis functions.
Computational Mathematics and Applications, 24(12):7-20, 1992.

Dominique Bechmann. Space deformation models survey. Computers & Graphics,
18(4):571-586, 1994.

David Benson and Joel Davis. Octree textures. ACM Transactions on Graphics (Pro-
ceedings of ACM SIGGRAPH 2002), 21(3):785-790, 2002.

Eric Bittar, Nicolas Tsingos, and Marie-Paule Gascuel. Automatic reconstruction of
unstructured 3D data: Combining medial axis and implicit surfaces. Computer Graphics
Forum (Eurographics ’95), 14(3):457-468, 1995.

James F. Blinn. A generalization of algebraic surface drawing. ACM Transactions on
Graphics, 1(3):235-256, 1982.

James F. Blinn. Light reflection functions for simulation of clouds and dusty surfaces.
Computer Graphics (Proceedings of ACM SIGGRAPH 82), 16(3):21-29, 1982.

Jules Bloomenthal. Polygonization of implicit surfaces. Computer Aided Geometric
Design, 5(4):341-355, 1988.

Jules Bloomenthal. An implicit surface polygonizer. Graphics Gems IV, pages 324-349,
1994.

Jules Bloomenthal. Introduction to implicit surfaces, chapter Surface Tiling. Morgan
Kaufmann, 1997.

Jules Bloomenthal and Ken Shoemake. Convolution surfaces. Computer Graphics,
25(4):251-256, 1991.

BIBLIOGRAPHY 153

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Jean-Daniel Boissonnat, Olivier Devillers, and Monique Teillaud. A dynamic construc-
tion of higher-order Voronoi diagrams and its randomized analysis. Rapport de recherche
1207, INRIA, 1990.

Mario Botsch and Leif Kobbelt. High-quality point-based rendering on modern GPUs.
In Proceedings of Pacific Graphics 2003, pages 335-343, 2003.

Mario Botsch, Andreas Wiratanaya, and Leif Kobbelt. Efficient high quality rendering of
point sampled geometry. In Rendering Techniques 2002 (Proceedings of the Eurographics
Workshop on Rendering 2002), pages 53—64, 2002.

Andrea Bottino, Wim Nuij, and Kees van Overveld. How to shrinkwrap through a
critical point: an algorithm for the adaptive triangulation of iso-surfaces with arbitrary
topology. In Proceedings of Implicit Surfaces ’96, pages 53-73, 1996.

Manfredo P. Do Carmo. Differential Geometry of curves and surfaces. Prentice-Hall,
1976.

Loren Carpenter. The a-buffer, an antialiased hidden surface method. Computer Graph-
ics (Proceedings of ACM SIGGRAPH 84), 18(3):103-108, 1984.

Jonathan C. Carr, Richard K. Beatson, Jon B. Cherrie, Tim J. Mitchell, W. Richard
Fright, Bruce C. McCallum, and Tim R. Evans. Reconstruction and representation of
3D objects with radial basis functions. In Eugene Fiume, editor, Proceedings of ACM
SIGGRAPH 2001, pages 67-76, 2001.

Jonathan C. Carr, Richard K. Beatson, Bruce C. McCallum, W. Richard Fright, Tim J.
McLennan, and Tim J. Mitchell. Smooth surface reconstruction from noisy range data.
In Proceedings of ACM Graphite 2003, pages 119-126, 2003.

Edwin E. Catmull. A subdivision algorithm for computer display of curved surfaces.
PhD thesis, University of Utah, 1974. Report UTECCSc -74-133.

Chun-Fa Chang, Gary Bishop, and Anselmo Lastra. Ldi tree: A hierarchical representa-
tion for image-based rendering. In Proceedings of ACM SIGGRAPH 99, pages 291-298,
1999.

Baoquan Chen and Minh Xuan Nguyen. Pop: a hybrid point and polygon rendering
system for large data. In IEEE Visualization 2001, pages 45-52, 2001.

Paolo Cignoni, C. Rocchini, and Roberto Scopigno. Metro: Measuring error on simplified
surfaces. Computer Graphics Forum, 17(2):167-174, 1998.

James H. Clark. Hierarchical geometric models for visible surface algorithms. Commu-
nications of the ACM, 19:547-554, 1976.

Liviu Coconu and Hans-Christian Hege. Hardware-accelerated point-based rendering of
complex scenes. In Rendering Techniques 2002 (Proceedings of the Eurographics Work-
shop on Rendering 2002), pages 43-52, 2002.

154

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

BIBLIOGRAPHY

Jonathan D. Cohen, Daniel G. Aliaga, and Weiqgiang Zhang. Hybrid simplification:
Combining multi-resolution polygon and point rendering. In IEEE Visualization 2001,
pages 37-44, 2001.

Wagner T. Corréa, Shachar Fleishman, and Claudio T. Silva. Towards point-based
acquisition and rendering of large real-world environments. In Proceedings of SIBGRAPI
2002, 2002.

Benoit Crespin, Pascal Guitton, and Christophe Schlick. Efficient and accurate tessel-
lation of implicit sweep objects. In Proceedings of Constructive Solid Geometry 98,
1998.

Benoit Crespin. Dynamic triangulation of variational implicit surfaces using incremental
delaunay tetrahedralization. In Proceedings of the IEEE Symposium on Volume visual-
wzation and graphics 2002, pages 73-80, 2002.

Charles Csuri, Ron Hackathorn, Richard Parent, Wayne E. Carlson, and Marc Howard.
Towards an interactive high visual complexity animation system. Computer Graphics
(Proceedings of ACM SIGGRAPH 79), 13(3):289-299, 1979.

Carsten Dachsbacher, Christian Vogelgsang, and Marc Stamminger. Sequential point
trees. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2003),
22(3):657 — 662, 2003.

Luiz Henrique de Figueiredo, Jonas Gomes, Demetri Terzopoulos, and Luiz Velho.
Physically-based methods for polygonization of implicit surfaces. In Proceedings of
Graphics Interface 92, pages 250-257. CIPS, 1992.

Boris N. Delaunay. Sur la spheére vide. [zvestia Akademia Nauk SSSR, VII Seria,
Otdelenie Matematicheskii i Estestvennyka Nauk, 7:793-800, 1934.

Mathieu Desbrun, Nicolas Tsingos, and Marie-Paule Cani. Adaptive sampling of implicit
surfaces for interactive modeling and animation. Computer Graphics Forum, 15(5), 1996.
Published under the name Marie-Paule Gascuel.

Oliver Deussen, Carsten Colditz, Marc Stamminger, and George Drettakis. Interactive

visualization of complex plant ecosystems. In Proceedings of the IEEE Visualization
2002. TEEE, 2002.

Tamal K. Dey and James Hudson. PMR: Point to mesh rendering, a feature-based
approach. In IEEE Visualization 2002, 2002.

Huong Quynh Dinh, Greg Slabaugh, and Greg Turk. Reconstructing surfaces using
anisotropic basis functions. In Proceedings of International Conference on Computer

Vision (ICCV) 2001, pages 606-613, 2001.

J. Duchon. Spline minimizing rotation-invariant semi-norms in Sobolev spaces. In
W. Schempp and K. Zeller, editors, Constructive Theory of Functions of Several Vari-
ables, volume 571, pages 85100, 1977.

BIBLIOGRAPHY 155

[54]

[53]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Martin J. Diirst. Letters: Additional reference to "marching cubes". Computer Graphics,
22(2):72-73, 1988.
Far Field Technology. FastRBF Toolbox User Manual. 2003.

www.farfieldtechnology.com.

Richard Franke. Scattered data interpolation: Tests of some methods. Mathematics of
Computation, 38(157):181-200, 1982.

Sarah F. Frisken, Ronald N. Perry, Alyn P. Rockwood, and Thouis R. Jones. Adaptively
sampled distance fields: A general representation of shape for computer graphics. In
Proceedings of ACM SIGGRAPH 2000, pages 249-254, 2000.

Allen Van Gelder and Jane Wilhelms. Topological considerations in isosurface genera-
tion. ACM Transactions on Graphics, 13(4):337-375, 1994.

A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall, Englewood Cliffs, NJ., 1981.

F. Girosi, M. Jones, and T. Poggio. Priors, stabilizers and basis functions: From regu-
larization to radial, tensor and additive splines. A.I. Memo No. 1430, MIT, 1993.

GNU Scientific Library. http://www.gnu.org/software/gsl/.

G. H. Golub and C. F. Van Loan. Matriz Computations. 2nd ed. Johns Hopkins Press,
Baltimore, MD., 1989.

Jonas Gomes and Luiz Velho. Implicit Objects in Computer Graphics. Série Monografias
do IMPA| Rio de Janeiro, 1992.

Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. The
lumigraph. In Holly Rushmeier, editor, Proceedings of ACM SIGGRAPH 96, pages
43-54. Addison Wesley, 1996.

Henri Gouraud. Continuous shading of curved surfaces. IEEE Transactions on Com-
puters, C-20(6):623—629, 1971.

Leslie Greengard and Vladimir Rokhlin. A fast algorithm for particle simulation. Journal
of Computational Physics, 73:325-348, 1987.

Laurent Grisoni, Christophe Schlick, and Ireneusz Tobor. Rendering by surfels. Proceed-
ings of the 10th International Conference on Computer Graphics € Vision GraphiCon,
2000.

J. P. Grossman. Point sample rendering. Master’s thesis, Massachusetts Institute of
Technology, 1998.

J. P. Grossman and William J. Dally. Point sample rendering. FEurographics Rendering
Workshop 1998, pages 181-192, 1998.

156

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

[82]

[83]

BIBLIOGRAPHY

David (grue) DeBry, Jonathan Gibbs, Devorah DeLeon Petty, and Nate Robins. Painting
and rendering textures on unparameterized models. ACM Transactions on Graphics

(Proceedings of ACM SIGGRAPH 2002), 21(3):763-768, 2002.

Gaél Guennebaud and Mathias Paulin. Efficient screen space approach for hardware
accelerated surfel rendering. In Proceedings of Vision, Modeling, and Visualization 20083,
2003.

Mark Hall and Joe Warren. Adaptive polygonalization of implicitly defined surfaces.
IEEE Computer Graphics & Applications, 10(6):33-42, 1990.

Pat Hanrahan. A survey of ray-surface intersection algorithms. In Andrew Glassner,
editor, Introduction to Ray Tracing, pages 79-119. Academic Press, 1989.

Pat Hanrahan and Paul E. Haeberli. Direct WYSIWYG painting and texturing on 3D
shapes. Computer Graphics (Proceedings of ACM SIGGRAPH 90), 24(4):215-223, 1990.

John C. Hart. Sphere tracing: A geometric method for the antialiased ray tracing of
implicit surfaces. The Visual Computer, 12(10):527-545, 1996.

John C. Hart, Ed Bachta, Wojciech Jarosz, and Terry Fleury. Using particles to sample
and control more complex implicit surfaces. In Proceedings of Shape Modeling Interna-
tional 2002, pages 129-136, 2002.

Erich Hartmann. A marching method for the triangulation of surfaces. The Visual
Computer, 14(3):95-108, 1998.

Paul Heckbert. Fundamentals of texture mapping and image warping. Master the-
sis (technical report no. ucb/csd 89/516), University of California, Berkeley, 1989.
http://www.cs.cmu.edu/~ph.

Paul S. Heckbert. Survey of texture mapping. IEEE Computer Graphics & Applications,
6(11):56-67, 1986.

Adrian Hilton, Andrew Stoddart, John Illingworth, and Terry Windeatt. Marching
triangles: Range image fusion for complex object modelling. In Proceedings of the
International Conference on Image Processing, volume 2, pages 381-384, 1996.

Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle.
Surface reconstruction from unorganized points. Computer Graphics (Proceedings of
ACM SIGGRAPH 92), 26(2):71-78, 1992.

Gregory M. Hunter. Efficient computation and data structures for graphics. PhD the-
sis, Department of Electrical Engineering and Computer Science, Princeton University,
Princeton, NJ, 1978.

James T. Kajiya. Ray tracing parametric patches. Computer Graphics (Proceedings of
ACM SIGGRAPH 82), 16(3):245-254, 1982.

BIBLIOGRAPHY 157

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

98]

James T. Kajiya. New techniques for ray tracing procedurally defined objects. Computer
Graphics (Proceedings of ACM SIGGRAPH 83), 17(3):91-102, 1983.

Aravind Kalaiah and Amitabh Varshney. Differential point rendering. In K. Myskowski
and S. Gortler, editors, Rendering Techniques 2001 (Proceedings of the Eurographics
Workshop on Rendering 2001), pages 139-150. Springer Verlag, 2001.

Aravind Kalaiah and Amitabh Varshney. Modeling and rendering of points with local
geometry. IEEE Transactions on Visualization and Computer Graphics, 9(1):30-42,
2003.

D. Kalra and A. H. Barr. Guaranteed ray intersections with implicit surfaces. Computer
Graphics, 23(3):297-306, 1989.

Tasso Karkanis and A. James Stewart. Curvature-dependent triangulation of implicit
surfaces. IEEE Computer Graphics and Applications, 22(2):60-69, 2001.

Leif P. Kobbelt, Mario Botsch, Ulrich Schwanecke, and Hans-Peter Seidel. Feature-
sensitive surface extraction from volume data. In Proceedings of ACM SIGGRAPH
2001, pages 5766, 2001.

Nikita Kojekine, Ichiro Hagiwara, and Vladimir Savchenko. Software tools using
CSRBFs for processing scattered data. Computers & Graphics, 27(2):311-319, 2003.

Nikita Kojekine, Vladimir Savchenko, Michail Senin, and Ichiro Hagiwara. A prototype
system for character animation based on real-time deformations. The Journal of Three
Dimensional Images, 16(4):91-95, 2002.

Nikita Kojekine, Vladimir Savchenko, Michail Senin, and Ichiro Hagiwara. Real-time 3d
deformations by means of compactly supported radial basis functions. In Proceedings of
Eurographics 2002 (Short Paper), pages 35-43, 2002.

Venkat Krishnamurthy and Marc Levoy. Fitting smooth surfaces to dense polygon
meshes. In Proceedings of ACM SIGGRAPH 96, pages 313-324, 1996.

Jaroslav Krivanek, Jiri Zara, and Kadi Bouatouch. Fast depth of field rendering with
surface splatting. In Proceedings of Computer Graphics International 2003, pages 196—
201, 2003.

Subodh Kumar, Dinesh Manocha, William Garrett, and Ming Lin. Hierarchical back-
face computation. FEurographics Rendering Workshop 1996, pages 235-244, 1996.

David Levin. The approximation power of moving least-squares. Mathematics of Com-
putation, 67(224):1517-1531, 1998.

David Levin. Mesh-independent surface interpolation. In 4th International Conference
on Curves and Surfaces, page 46, 1999.

David Levin. Mesh-independent surface interpolation. In Guido Brunnett, Bernd
Hamann, and H. Miiller, editors, Geometric Modeling for Scientific Visualization.
Springer, Heidelberg, Germany, 2003.

158

[99]

[100]

[101]

[102]

[103]

[104]

105
[106]

107]

108

109

[110]

[111]

[112]

[113]

[114]

BIBLIOGRAPHY

Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David Koller, Lucas
Pereira, Matt Ginzton, Sean Anderson, James Davis, Jeremy Ginsberg, Jonathan Shade,
and Duane Fulk. The digital michelangelo project: 3D scanning of large statues. In Pro-
ceedings of ACM SIGGRAPH 2000, pages 131-144, 2000.

Marc Levoy and Turner Whitted. The use of points as display primitive. Technical
Report TR 85-022, University of North Carolina at Chapel Hill, 1985.

Erik Lindholm, Mark J. Kilgard, and Henry Moreton. A user-programmable vertex
engine. In Proceedings of ACM SIGGRAPH 2001, pages 149-158, 2001.

Dani Lischinski and Ari Rappoport. Image-based rendering for non-diffuse synthetic
scenes. In Furographics Rendering Workshop 1998, pages 301-314, 1998.

William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3D
surface construction algorithm. Computer Graphics (ACM SIGGRAPH 87 Proceedings),
21(4):163-169, 1987.

William Martin, Elaine Cohen, Russell Fish, and Peter S. Shirley. Practical ray tracing
of trimmed nurbs surfaces. Journal of Graphics Tools, 5(1):27-52, 2000.

Matrox. Matrox Graphics - Parhelia-512. http://www.matrox.com.

Nelson Max and Keiichi Ohsaki. Rendering trees from precomputed z-buffer views.
Eurographics Rendering Workshop 1995, pages 74-81, 1995.

Maya. Alias-WaveFont. http://www.aliaswavefront.com.

David K. McAllister, Lars Nyland, Voicu Popescu, Anselmo Lastra, and Chris McCue.
Real-time rendering of real world environments. In Rendering Techniques 1999 (Pro-
ceedings of the Eurographics Workshop on Rendering 1999), pages 145-160, 1999.

Donald J. Meagher. Geometric modeling using octree encoding. Computer Graphics
and Image Processing, 2(19):129-147, 1982.

Gavin Miller and Andrew Pearce. Globular dynamics: A connected particle system for
animating viscous fluids. Computers & Graphics, 13(3):305-309, 1989.

Don P. Mitchell. Robust ray intersection with interval arithmetic. In Proceedings of
Graphics Interface °90, pages 68-74, 1990.

Benjamin Mora, J.P. Jessel, and René Caubet. Visualization of isosurfaces with para-
metric cubes. Computer Graphics Forum (Eurographics 2001), 20(3):377-384, 2001.

Bryan S. Morse, Terry S. Yoo, Penny Rheingans, David T. Chen, and K. R. Subra-
manian. Interpolating implicit surfaces from scattered surface data using compactly
supported radial basis functions. In Proceedings of Shape Modeling International 2001,
pages 89-98, 2001.

Shigeru Muraki. Volumetric shape description of range data using "Blobby Model".
Computer Graphics (Proceedings of ACM SIGGRAPH 91), 25(4):227-235, 1991.

BIBLIOGRAPHY 159

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

Andrew Nealen and Marc Alexa. Hybrid texture synthesis. In Proceedings of Eurograph-
1cs Symposium on Rendering 2003, pages 97-105, 2003.

Jackie Neider, Tom Davis, and Mason Woo. OpenGL Programming Guide: The Official
Guide to Learning OpenGL. Addison-Wesley, 1993.

nVidia. GeForce FX technical data. http://www.nvidia.com.

Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and Hans-Peter Seidel.
Multi-level partition of unity implicits. ACM Transactions on Graphics (Proceedings of
ACM SIGGRAPH 2003), 22(3):463-470, 2003.

Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Seidel. Multi-scale approach to 3D
scattered data interpolation with compactly supported basis functions. In Proceedings
of Shape Modeling International 2003, pages 153-164, 2003.

Yutaka Ohtake and Alexander G. Belyaev. Dual/primal mesh optimization for polygo-
nized implicit surfaces. Journal of Computing and Information Science in Engineering,
2(4), 2002.

Alexander Pasko, Valery Adzhiev, Alexei Sourin, and Vladimir V. Savchenko. Function
representation in geometric modelling: concept, implementation and applications. The
Visual Computer, 11(8):429-446, 1995.

Mark Pauly, Richard Keiser, Leif Kobbelt, and Markus Gross. Shape modeling with
point-sampled geometry. ACM Transactions on Graphics (Proceedings of ACM SIG-
GRAPH 2003), 22(3):641-650, 2003.

Hans Kghling Pedersen. Decorating implicit surfaces. In Robert Cook, editor, Proceed-
ings of ACM SIGGRAPH 95, pages 291-300. Addison Wesley, 1995.

Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus Gross. Surfels:
Surface elements as rendering primitives. Proceedings of ACM SIGGRAPH 2000, pages
335-342, 2000.

Bui-T. Phong. Hlumination for computer generated pictures. Communications of the
ACM, 18(6):311-—317, 1975.

PovRay. The Persistance of Vision. http://www.povray.org.

Emil Praun, Adam Finkelstein, and Hugues Hoppe. Lapped textures. In Proceedings of
ACM SIGGRAPH 2000, pages 465-470, 2000.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Nu-
merical Recipes in C: The Art of Scientific Computing (2nd ed.). Cambridge University
Press, 1992.

William T. Reeves. Particle systems - a technique for modeling a class of fuzzy objects.
ACM Transactions on Graphics, 2(2):91-108, 1983.

160

[130]

[131]

[132]

133

[134]

[135]

[136]

[137]

138

[139)]

[140]

[141]

[142]

[143]

BIBLIOGRAPHY

Liu Ren, Hanspeter Pfister, and Matthias Zwicker. Object space EWA surface splatting:
A hardware accelerated approach to high quality point rendering. Computer Graphics
Forum (Eurographics 2002), 21(3):461-470, 2002.

Patrick Reuter. Efficient real-time level-of-detail rendering using surfels. Master’s thesis,
Technische Universitidt Darmstadt, 2001.

Patrick Reuter, Johannes Behr, and Marc Alexa. An improved adjacency data structure
for efficient triangle stripping. accepted for publication in the Journal of Graphics Tools,
To appear.

Patrick Reuter, Ireneusz Tobor, Christophe Schlick, and Sebastien Dedieu. Point-based
modelling and rendering using radial basis functions. In Proceedings of ACM Graphite
2003, pages 111-118, 2003.

Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral model. Com-
puter Graphics (Proceedings of ACM SIGGRAPH 87), 21(4):25-34, 1987.

Steven M. Rubin and Turner Whitted. A 3-dimensional representation for fast rendering
of complex scenes. Computer Graphics, 14(3):110-116, 1980.

Szymon Rusinkiewicz and Marc Levoy. Qsplat: A multiresolution point rendering system
for large meshes. In Proceedings of ACM SIGGRAPH 2000, pages 343-352, 2000.

Szymon Rusinkiewicz and Marc Levoy. Streaming QSplat: a viewer for networked visu-
alization of large, dense models. In Proceedings of the ACM Symposium on Interactive
3D Graphics 2001, pages 63-68, 2001.

Vladimir V. Savchenko, Alexander Pasko, Oleg G. Okunev, and Tosiyasu L. Kunii. Func-
tion representation of solids reconstructed from scattered surface points and contours.
Computer Graphics Forum, 14(4):181-188, 1995.

Robert Schaback. Remarks on meshless local construction of surfaces. In R. Cipolla and
R. Martin, editors, The mathematics of surfaces 1X, pages 34-58. Springer, 2000.

Gernot Schaufler and Henrik Wann Jensen. Ray tracing point sampled geometry. In
Rendering Techniques 2001 (Proceedings of the Eurographics Workshop on Rendering
2001), pages 319-328, 2000.

Benjamin Schmitt, Alexander Pasko, Valery Adzhiev, and Christophe Schlick. Con-
structive texturing based on hypervolume modeling. The Journal of Visualization and

Computer Animation, 12(5):297-310, 2001.
Robert Sedgewick. Algorithms. Addison-Wesley, second edition, 1988.

Jonathan Shade, Steven J. Gortler, Li wei He, and Richard Szeliski. Layered depth
images. In Michael Cohen, editor, Proceedings of ACM SIGGRAPH 98, pages 231242,
1998.

BIBLIOGRAPHY 161

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

153

[154]

[155]

[156]

157]

Peter Shirley and Allan Tuchman. A polygonal approximation to direct scalar vol-
ume rendering. Computer Graphics (San Diego Workshop on Volume Visualization),
24(5):63-70, 1990.

Leon A. Shirman and Salim S. Abi-Ezzi. The cone of normals technique for fast process-
ing of curved patches. Computer Graphics Forum (Eurographics '93), 12(3):261-272,
1993.

Karl Sims. Particle animation and rendering using data parallel computation. Computer
Graphics (Proceedings of ACM SIGGRAPH 90), 24(4):405-413, 1990.

Marc Stamminger and George Drettakis. Interactive sampling and rendering for complex
and procedural geometry. In K. Myskowski and S. Gortler, editors, Rendering Techniques
2001 (Proceedings of the Eurographics Workshop on Rendering 2001), pages 151-162.
Springer Verlag, 2001.

Barton T. Stander and John C. Hart. Guaranteeing the topology of an implicit surface
polygonization for interactive modeling. In Proceedings of ACM SIGGRAPH 97, pages
279-286, 1997.

Richard Szeliski and David Tonnesen. Surface modeling with oriented particle systems.
Computer Graphics (Proceedings of ACM SIGGRAPH 92), 26(2):185-194, 1992.

Ying Tang, Jin Wang, Hujun Bao, and Qunsheng Peng. Rbf-based constrained texture
mapping. Computers & Graphics, 27(3):415-422, 2003.

Gabriel Taubin. Estimating the tensor of curvature of a surface from a polyhedral
approximation. In Fifth International Conference on Computer Vision (ICCV’95), pages
902-907, 1995.

Ireneusz Tobor, Patrick Reuter, Laurent Grisoni, and Christophe Schlick. Visualisa-
tion par surfels. 13iémes Journées de I’Association Frangaise d’Informatique Graphique,

pages 193-204, 2000.

Nicolas Tsingos, Eric Bittar, and Marie-Paule Gascuel. Implicit surfaces for semi-
automatic medical organs reconstruction. In Computer Graphics International '95, 1995.

Greg Turk. Generating textures for arbitrary surfaces using reaction-diffusion. Computer
Graphics (Proceedings of ACM SIGGRAPH 91), 25(4):289-298, 1991.

Greg Turk. Texture synthesis on surfaces. In Proceedings of ACM SIGGRAPH 2001,
pages 347-354, 2001.

Greg Turk and James O’Brien. Variational implicit surfaces. Technical Report GIT-
GVU-99-15, Georgia Institute of Technology, 1998.

Greg Turk and James F. O’Brien. Modelling with implicit surfaces that interpolate.
ACM Transactions on Graphics, 21(4):855-873, 2002.

162

158

[159]

160

[161]

[162]

163

[164]

[165]

[166]

167]

168

[169]

[170]

[171]

[172]

BIBLIOGRAPHY

Luiz Velho. Adaptive polygonization made simple. In Proceedings of SIBGRAPI ’95,
pages 111-118, 1995.

Luiz Velho. Simple and efficient polygonization of implicit surfaces. Journal of Graphics
Tools, 1(2):5-25, 1996.

Michael Wand, Matthias Fischer, Ingmar Peter, Friedhelm Meyer auf der Heide, and
Wolfgang Strafser. The randomized z-buffer algorithm: Interactive rendering of highly
complex scenes. In Proceedings of ACM SIGGRAPH 2001, pages 361-370, 2001.

Michael Wand and Wolfgang Strasser. Multi-resolution point-sample raytracing. In
Proceedings of Graphics Interface 2003, 2003.

Li-Yi Wei and Marc Levoy. Texture synthesis over arbitrary manifold surfaces. In
Proceedings of ACM SIGGRAPH 2001, pages 355-360, 2001.

Holger Wendland. Piecewise polynomial, positive definite and compactly supported
radial functions of minimal degree. Advances in Computational Mathematics, 4:389—
396, 1995.

Holger Wendland. Fast evaluation of radial basis functions: Methods based on partition
of unity. In C. K. Chui, L. L. Schumaker, and J. Stockler, editors, Approzimation
Theory X: Abstract and Classical Analysis, pages 473-483. Vanderbilt University Press,
Nashville, 2002.

Holger Wendland. Surface reconstruction from unorganized points. Preprint Gottingen,
2002.

Andrew P. Witkin and Paul S. Heckbert. Using particles to sample and control implicit
surfaces. In Proceedings of ACM SIGGRAPH 9/, pages 269-278, 1994.

Shin Ting Wu and Marcelo de Gomensoro Malheiros. On improving the search for critical
points of implicit functions. In Proceedings of Implicit Surfaces 99, pages 137144, 1999.

Z. Wu. Compactly supported positive definite radial functions. Advances in Computa-
tional Mathematics, 4:283-292, 1995.

Brian Wyvill, Craig McPheeters, and Geoff Wyvill. Data structure for soft objects. The
Visual Computer, 2(4):227-234, 1986.

Hansong Zhang and Kenneth E. Hoff. Fast backface culling using normal masks. In
Michael Cohen and David Zeltzer, editors, Proceedings of the ACM Symposium on In-
teractive 3D Graphics 1997, pages 103-106. ACM SIGGRAPH, 1997.

Hong-Kai Zhao, Stanley Osher, and R. Fedkiw. Fast surface reconstruction using the
level set method. In 1st IEEE Workshop on Variational and Level Set Methods, pages
194-202, 2001.

Hong-Kai Zhao, Stanley Osher, Barry Merriman, and Myungjoo Kang. Implicit and
non-parametric shape reconstruction from unorganized points using variational level set
method. Computer Vision and Image Understanding, 3(80):295-319, 2000.

BIBLIOGRAPHY 163

[173] Ruben Zonenschein, Jonas Gomes, Luiz Velho, and Luiz Henrique de Figueiredo. Con-
trolling texture mapping onto implicit surfaces with particle systems. In Proceedings of
Implicit Surfaces '98, pages 131-138, 1998.

[174] Matthias Zwicker, Mark Pauly, Oliver Knoll, and Markus Gross. Pointshop 3D: An in-
teractive system for point-based surface editing. ACM Transactions on Graphics (Pro-
ceedings of ACM SIGGRAPH 2002), 21(3):322-329, 2002.

[175] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus Gross. Surface
splatting. In Proceedings of ACM SIGGRAPH 2001, pages 371-378, 2001.

164 BIBLIOGRAPHY

Index

A
e adaptively sampled distance fields. ... 20
e adequate sampling 7
e algebraic implicit surfaces............ 81
e approximating implicit surface.........)
e approximation problem............... 11
B
e backward warping.................... 73
e band-diagonal sparse matrix.......... 18
e basic function........... 11
e biharmonic basic function 13
e binary space partitioning (BSP)...... 88
e blobby model............ 7
e blobby primitive....................... 7
e blobby sphere 7
C
e carrier solid L. 14
e cellular surface tracking techniques. .. 84
® CENberS.....cooviii 12
e coefficients 11
e compactly supported................. 13
e Computer Aided Design (CAD)..... 123
e conservative............... 92
e constructive solid geometry (CSG) ... 18
e constructive texturing............... 123
e continuation techniques.............. 83
e continuity o ool)
e convolution surfaces................. 129
ecracks. 83
e cube map texture................... 107
D
e defining function 1
e Delaunay triangulation............... 84
e differential point.................... 103
e displacement mapping............... 110

165

E
e Elliptical Weighted Average (EWA) .. 79
e EWA splats.....................o... 79
e explicit equation 1
F
e Fast Multipole Method............... 16
e fixed-function pipeline............... 109
e forward warping...................... 73
e fragment shaders.................... 107
e framerate............... ..., 76
e frames per second (fps)............... 97
e function representation model 57
H
e Hausdorff distance 33
e heightfield.......... 1
e Hessian matrix...................... 104
e hierarchical backface culling.......... 80
e hierarchical partition of unity variational
method........................ 59
e hierarchical view frustum culling 80
eholes..........o. o i 7
I
e implicit surface............. 1
e infinitely smooth 5
e internal node.............. 61
e interpolating implicit surface)
e interpolation problem 11
e isosurfacel 1
e isotropic particles 76
L
e Laurent expansions................... 16
e layered depth image (LDI) 76
e layered depth pixel................... 76
eDItree.............iiiiiL, 7

166
e level set methods..................... 20
e Lipschitz............................. 81
e Lipschitz bound 81
e [LU-decomposition.................... 16
M
e marching triangles 84
e masking........... ... oL 93
e material attribute......... 113
® MaxiMminoouuuiineeanna... 33
e minimal spanning tree................. 9
e morphingl o7
e multi-level partition of unity implicits 19
N
e negative exterior constraints.......... 15
e normal constraints 15
e normal off-surface points............. 15
e normalized weighting functions....... 22
e NURBS..... ... 78
o)
® OCETEE . .. 18
e off-surface constraints................ 15
e off-surface points..................... 15
e oriented particles..................... 76
e overlap quota 60
e overlapping zone 29
P
e parametric surfaces.................... 1
e partition of unity variational method . 21
e perfect binary tree 60
e plane-coherence test.................. 93
e point membership classifications. 18
e point sample rendering............... 7
e point samples........................ 7
e point set surface................... 9, 84
e point sprite ... ool 79
e point-based modeling................. o6
e point-based ray-tracing............... 73
e point-based rendering 73
e polygonal meshes................. 34,75
e polygonization 82
e positive interior constraints........... 15

e principal curvatures................. 103

INDEX

e principal directions.................. 103
e projection distance................... 25
e projection distance validation 26
epull phase............................ 7
e pull-push algorithm 7
e push phase........................... 7
Q
e quadtree.......... L. 118
e quasi-uniformly distributed............)
R
e radial basis functions (RBF).......... 12
e ray-casting oL 93
ereal-time.................... ..., 76
e reconstructed implicit surface..........)
e regularization parameter 11
e root mean square distance............ 34
S
e Singular Value Decomposition (SVD).16
e smoothness functional 11
e space deformation techniques......... o6
e space partition...................... 124
e space partitioning................... 124
e sparse matrixoooiiiiiia. ., 17
e spatial sampling techniques........... 83
esplats..........oo 76
e stabilizer........... 11
e surface fitting techniques............. 83
e surface painting..................... 123
e surface splatting 79
e surface texturing.................... 124
e surface tracking techniques........... 83
esurfels.............. ... L 7
T
e Taylor series 16
e texture function..................... 113
e topologically consistent............... 83
e topologically correct.................. 82
e trivariate basic function.............. 13
V
e variational implicit surfaces 15
e variational principle........... 11

INDEX

e variational technique................. 11
e vertex shaders....................... 107

e wireframe............oiieii... 108

167

