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Abstract 
 

Continuous scaling of CMOS technology push circuit designs towards multi-core 

complex SoCs. Unfortunately with the nanometric technologies, the integrated system 

performances after fabrication will not be fully predictable. Indeed, the process variations 

really become huge at the chip scale. Therefore the design of such complex SoCs in the 

nanoscale technologies is now constrained by many parameters such as the energy 

consumption and the robustness to process variability. This implies the need of efficient 

algorithms and built-in circuitry able to adapt the system behavior to the workload 

variations and, at the same time, to cope with the parameter variations which cannot be 

predicted or accurately modeled at design time. In this context, this thesis work addresses 

the design of Globally Asynchronous Locally Synchronous “GALS” based Network-on-

Chip “NoC” architectures in the upcoming CMOS technologies. A novel methodology to 

dynamically control the speed of different voltage-frequency NoC islands according to 

the process variability impact on each domain is proposed. This control technique can 

improve the performances, the energy consumption, and the yield of future SoC 

architectures in a synergistic manner. The control methodology is based on the design of 

an asynchronous programmable self-timed ring where the controller takes into account 

the dynamic workload and the process variability effects. The controller especially 

considers the operating frequency limit which does not exceed the maximum locally 

allowed value for a given clock domain. With such an approach, it is no more required to 

separately guaranty the timing performances for each node at design time. This 

drastically relaxes the fabrication constraints and helps the yield enhancement. 
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Chapter 1 

Introduction 
 

1.1 Context and Motivations 

With increased levels of integration in scaled technologies, complex systems 

containing (large number of processors, on-chip memories, IPs, complex clock trees, I/O 

control units, etc.) have become a reality. As recognized by the International Technology 

Roadmap for Semiconductors (ITRS), dealing with on-chip communications and power 

management problems require a drastic departure from the classic design methodologies 

[SEM 06]. Therefore novel on-chip communication architectures that use a Network-on-

Chip (NoC) approach have emerged as a scalable alternative to traditional bus-based or 

point-to-point communication solutions [DAL 01] and [LEE 07]. 

By eliminating global wires, the NoC approach provides the needed modularity 

and performance, while facilitating design reuse. Moreover, the NoC approach offers a 

matchless platform for implementing the globally asynchronous locally synchronous 

(GALS) design paradigm [CHA 84] and [MUT 00]. This makes the clock distribution 

and timing closure problems more manageable. In addition, a GALS design style fits 

nicely with the concept of different voltage-frequency domains, which provides better 

power-performance tradeoffs than its single voltage, single clock frequency counterpart 

[DIE 03] and [BER 05], while taking advantage of the natural partitioning and mapping 

of applications onto the NoC platform. However, the implementation of GALS systems 

makes mandatory the synchronization of the communicating clock domains frequencies 

and phases in order to guarantee that data is reliably transferred among them [BEI 06].  

In addition to this huge increase in system complexity, the systems designed in 

nanoscale technologies suffer from systematic and random variations in process, voltage, 

and temperature (PVT), particularly from the 45nm CMOS technologies and beyond. As 
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a result, the integrated system performances after fabrication will not be fully predictable. 

Indeed, within die variations play an increasingly important role in system power 

consumption and performance as the technology scales down [BOR 03].  

Since designers cannot rely on the accuracy of the nominal parameter values, 

there is a tremendous need for on-line techniques that can cope with such dynamic 

variations [REB 09] and [MIE 08]. More precisely, there is a need for efficient 

algorithms and built-in circuitry able to adapt the system behavior to workload variations 

and, at the same time, cope with the parameter variations which cannot be predicted or 

accurately modeled at design time.  

Not surprisingly, designing appropriate dynamic voltage and frequency scaling 

(DVFS) control algorithms for run-time control of different voltage-frequency domains in 

a GALS system is a matter of great importance. While this problem has been addressed 

before by a number of authors [OGR 08], [WU 04] and [NIY 05], no attention has been 

given to add the feature of controlling the impact of manufacturing process variations to 

the capabilities of the DVFS controllers.  

Starting from these overarching ideas, ARAVIS project (Architecture avancée 

Reconfigurable et Asynchrone pour la Video et la radio logicielle Intégrée Sur puce) 

sponsored by Minalogic, looks for architecture and design solutions that allow the 

production of embedded computational platforms in its scalability limit. It proposes a 

generalization of certain techniques in order to obtain a solution to the technology 

variability problem in 32nm, which will represent an input toward the development of a 

new paradigm. The ARAVIS project is focused on three technology keys: 

1- Reconfigurable structure with respect to applicability requirements. It can be 

accomplished by programming the flexible interconnections between the 

clustered nodes of the SoC computational unit [PIN 01]. 

2- GALS paradigm in order to release the communication constraints between 

remote points. 

3- Dynamic management of the power consumption and activity with respect to 

constraints are achieved by control theory application [HEL 04].  
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This thesis is included as a part of the ARAVIS project context. It specifically 

focuses on the design of GALS-based NoC architectures in the upcoming CMOS 

technologies. Activity monitors are disseminated into each voltage-frequency island to 

locally evaluate the process quality in terms of its relative speed with respect to the other 

processing nodes. A novel methodology to dynamically control the speed of different 

voltage-frequency GALS-NoC islands according to the process variability impact on each 

domain is proposed. This control technique can improve the performances, the energy 

consumption, and the yield of future SoC architectures in a synergistic manner. 

 The proposed control methodology is based on the design of an asynchronous 

programmable self-timed ring where the controller takes into account the dynamic 

workload and the process variability effects. The controller especially considers the 

operating frequency limit which does not exceed the maximum locally allowed value for 

a given clock domain. With such an approach, it is no more required to separately 

guaranty the performance for each node. This drastically relaxes the fabrication 

constraints and helps the yield enhancement.  

1.2 Thesis Outline 

This thesis dissertation is mainly split into two main parts: GALS Paradigm (Part-

I) and CMOS Power Reduction and Design for Yield (Part-II). 

This first part comprises the chapters 2 to 4. In Chapter 2 an introduction of the 

asynchronous circuits is introduced. Asynchronous circuit classes are discussed stating 

the different handshaking protocols. In addition to this, token and bubble rules were also 

presented to facilitate the discussion of data flow in asynchronous circuits. This helps to 

understand the basic principle of operation of self-timed rings. 

In Chapter 3, we propose a design for a Programmable/Stoppable Oscillator 

(PSO) which is based on self-timed ring to exploit its interesting characteristics 

(programmability, accuracy and robustness against process variability). Through a 

handshaking protocol, the oscillator is communicating with the synchronous processor to 

ensure a proper switching from one frequency to another. The oscillator is designed in 

order to avoid the presence of glitches and truncated clock periods. 
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As we consider GALS-NoC architectures, low latency high throughput 

asynchronous communication mechanisms between synchronous blocks will be 

obligatory. Therefore in Chapter 4, we make use of the previously designed 

programmable self-timed ring to propose a new scheme based on the use of asynchronous 

handshake circuits to safely synchronize these clocks. This circuit design gathers the 

small area and the low power consumption advantages of the pausible clocking GALS 

with the high throughput advantage of the FIFO-based GALS. 

The second part of the thesis contains the chapters 5 to 7. The necessary concepts 

needed to understand and well characterize the main sources of CMOS power dissipation 

in the nanometric era are declared in Chapter 5. Moreover, in this chapter we investigate 

different low power solutions that are needed to reduce the impact of each contributing 

part to the total CMOS power consumption. As DVFS is recognized as one of the most 

effective power reduction techniques, therefore its different algorithms and its 

architecture are detailed.  

In Chapter 6, a novel DFVS architecture that dynamically adapts the speed of 

each voltage-frequency island in a GALS system is proposed. The DVFS control 

principal not only considers the dynamic workload variations, but also ensures that the 

operating frequency does not exceed the maximum allowed value for a given process 

variability effect. The control methodology is based on the use of the asynchronous PSO 

with a fast predictive feedback controller. 

Chapter 7 addresses the problem of designing the proposed process variability 

robust DVFS control methodology. MIPS R2000 presents our processing load case study. 

The PSO was programmed and configured to compensate for MIPS R2000 variations on 

STMicroelectronics 45nm CMOS technology. Moreover, the digital controller part of the 

DVFS was completely designed and tested on different process variability corners.  

Finally the conclusion of the thesis and the prospects are discussed in Chapter 8.  



 
 
 
 
 
 
 
 
 
 
 

Part – I 
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Chapter 2 

Asynchronous Circuits 

2.1 Introduction 

In recent years there has been tremendous growth in the silicon integration 

capacity. Starting from the 45 nm technology and beyond, designers face various 

problems in power consumption, process variability, environment-parameters (Process, 

Voltage, and Temperature) “PVT” variations and Electromagnetic Interference “EMI”. 

As synchronous design style is based on global timing assumptions determined by the 

clock. Coping with this assumption, especially with the recent technologies, is 

challenging from two points of views. First, the increase of process variability implies 

inefficient increase in timing doubt while designing. Second, clock trees are gradually 

consuming more power and needing more effort for managing. Therefore, different 

solutions are presented for these challenges as multi-clock systems and clock gating. 

However, Asynchronous circuits show an efficient alternative solution for these problems 

[REN 03] and [BEE 02].   

Asynchronous circuits use handshaking between their components in order to 

perform the necessary synchronization, communication, and sequencing of operations. 

This results in a behavior that is similar to systematic fine-grain clock gating and local 

clocks that are not in phase and whose period is determined by actual circuit delays; i.e. 

registers are only clocked where and when needed. This behavior gives asynchronous 

circuits the following interesting features [SPA 01], [BER 99], and [MAR 97]:  

(1) Low power consumption 

Because asynchronous circuits do not need any clock signals, the power spent on 

clock switching in a synchronous chip is avoided. Additionally, the signal transitions in 

asynchronous circuits will automatically stop when there is no data. Therefore, 

asynchronous circuit design has zero standby dynamic power consumption), [BER 94]. 
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(2) No global-signal distribution and clock skew problems 

Since asynchronous circuit designs have simple handshake interfaces and local 

timing, the difficulties of clock distribution and clock skew faced by synchronous designs 

are removed from asynchronous designs.  

(3) Low emitted EMI noise 

In a synchronous design, flip-flop transitions follow a certain clock frequency so 

that the energy spent on signal transitions concentrates within the very narrow bands 

around the clock frequency. Thus, the synchronized signal switching activities will 

produce substantial electrical noise. Whereas, the switching activities in an asynchronous 

circuit are correlated loosely because there is no universal timing pace, hence, they 

produce a more distributed noise spectrum and a lower peak noise value, [PAV 98]. 

(4) Average-case performance 

In a synchronous design, the operating speed is limited by the worst-case, called 

critical path in the circuits. However, in asynchronous circuits, the operating speed is 

determined by actual local latencies in the circuits rather than global worst-case latency. 

In most of cases, the average-case of latencies are smaller than the worst-case latency, 

hence, asynchronous designs can achieve better operating speed performance, [WIL 91] 

and [WIL 95].  

(5) Robust and adaptive  

A synchronous circuit is sensitive to the delay variations caused by the process 

variability effects and environment-parameters variations (i.e. clock signal, supply 

voltage, and operating temperature) related with the manufacturing process and 

application surrounding. Whereas, the loose timing requirement of asynchronous circuits 

allow them to operate correctly under large variations caused by different manufacturing 

processes and application environment, [NIE 94] and [SPA 01].  

(6) Better modularity 

The modularity of asynchronous circuits is almost perfect. It is due to the locality 

of control and the use of a well-specified communication protocol by all operators. It is 

indeed easy to construct a complex system involving pre-existing blocks, [SPA 01].  
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According to the previously mentioned asynchronous circuit advantages, research 

and industry are progressively more motivated to the introduction of asynchronous 

technology into products and design flows. On the other hand there are also some 

drawbacks of the asynchronous circuit implementation. The asynchronous control logic 

that implements the handshaking normally causes an overhead in terms of silicon area, 

circuit speed, and power consumption. It is therefore important to ask whether or not the 

investment pays off, i.e. whether the use of asynchronous technique results in a 

considerable improvement over the synchronous one or not [SPA 01].      

2.2 Asynchronous Circuits Principles 

In synchronous design style, depicted in Figure 2.1, synchronous circuits are 

composed of combinational function blocks and registers. The circuit activity is 

controlled by a global clock which triggers at the same time the memorization of the 

complete state of the circuit. As a new state is sampled and placed in the registers, the 

combinational circuits start the computation of the next state to be sampled at the next 

clock edge.  The clock signal is fixed so that all functional blocks correctly complete their 

operations and their data outputs are stable and ready to be sampled. That implies a 

global timing assumption which is applied to the whole circuit: the longest combinational 

path (critical path) must not exceed the clock period. Synchronization in asynchronous 

circuits is done by replacing the clock signal with some form of handshaking between 

adjacent registers; for example the request-acknowledge based handshake protocol shown 

in Figure 2.2 [MYE 01] and [SPA 01].  

 

 

Figure 2.1: Basic Structure of a Synchronous Circuit. 
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Asynchronous circuits are composed of communicating stages which computation 

is controlled by the presence of data at their inputs and outputs. Their behavior is much 

similar to the data-flow model, [REN 03]. Let’s consider one asynchronous stage 

described in Figure 2.2. It receives data from its input port, the functional block computes 

it, and sends the result through a register to its output port. Data communication over its 

ports are not controlled by an external signal, like a clock, but by a communication 

protocol implemented within the control part of the stage itself. Such protocols require a 

bi-directional exchange of information between senders and receivers called handshake 

protocols.  

 

Figure 2.2: Basic Structure of an Asynchronous Circuit. 

The communication protocol is the basis of the sequencing rules of asynchronous 

circuits. The first rule is that an asynchronous stage starts the computation if and only if 

all the data required for the computation are available. Once the result can be stored in the 

register, the asynchronous stage releases the input ports. It outputs the result through the 

output port if and only if this port is available, i.e. released by the next stage connected to 

it, at the end of the previous communication. The implementation of the communication 

protocol in each stage is the price to pay to get rid of the clock and be able to control the 

sequencing locally, [REN 03]. 

Each asynchronous stage can implement functions with very different granularity: 

bit-level functions, word-level arithmetic functions or even complex algorithms. 

However, they always have the following three main characteristics, [YUN 96], [REN 

96], [CUM 94], and [WIL 94]: 
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1. All their channels respect a unified communication protocol. 

2. They all compute the input data set at the highest speed and place the 

result at its output as soon as possible (minimum forward latency), 

while, the synchronous circuits forward latency may not vary with the 

data computed. The forward latency is constrained by the clock period. 

3. They also all have a maximum throughput which corresponds to the 

maximum frequency at which the module can process the incoming 

data (maximum cycle time). This characteristic is not the inverse of the 

forward latency because the asynchronous stage has to release the 

communication channels before accepting the next data set. With 

asynchronous circuits, we have to consider the forward and reverse 

phases to compute the throughput (Notice that is not a trivial relation 

because this depends on the employed handshaking protocol).     

2.3 Handshaking Protocols 

To implement a bidirectional signaling in asynchronous circuits, two 

communication protocols are commonly used: the two-phase protocol, also called NRZ 

(Non Return to Zero) or “half-handshake” and four-phase protocol, also known as RZ 

(Return to Zero) or “full-handshake”. Both protocols are respectively shown in Figure 2.3 

and Figure 2.4. In both cases, it should be noted that any event on a signal from the 

transmitter stage is reset by an event on a signal from the receiver stage, and vice versa. 

This mechanism ensures the insensitivity to the processing time of the operator. In these 

protocols, the only importance is in the occurrence of events locally between the 

transmitter and the receiver, and not in their relative time, or their respective orders in 

relation to the transmitter input or the receiver output. The choice of communication 

protocol affects the characteristics of the board layout (Area, speed, power consumption, 

robustness, etc ...), [REN 03] and [SPA 01]. 

The two phase protocol has the minimum required sequence of information 

exchange per communication. Signaling in the 2-phase protocol is event-based since data 
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detection and acknowledgment are done by means of rising and falling edges of signals. 

The two phases are as follows: 

1st Phase: The transmitter generates a transition on the request signal. The 

receiver detects the incoming data and once the reception process is completed, it 

generates a transition on the acknowledgement signal.     

2nd Phase: The transition on the acknowledgement signal is detected by the 

transmitter and depending upon the availability, the new data is transmitted. 

 

Figure 2.3: A Two-Phase Protocol. 

Four phase protocols are level-based. These protocols require a return to zero 

phase for both the data and the acknowledgement as shown in Figure 2.4. The sequencing 

between two asynchronous stages in the four phase protocol is done in the following 

manner:  

1st Phase: The transmitter issues data and sets the request signal high.  

2nd Phase: The receiver absorbs the data and sets the acknowledgement high.  

3rd Phase: The transmitter responds by taking request low (at which point data is 

no longer valid).  

4th Phase: The receiver acknowledges this by taking acknowledge low. At this 

point the transmitter may initiate the next communication cycle.  
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Figure 2.4: A Four-Phase Protocol. 

Despite of the apparent effectiveness of the two-phase protocol (i.e. faster and less 

power consuming), but actually it is not always the case because event-based logic is 

more costly than level-based in terms of CMOS implementation. Moreover, very 

effective optimizations can be done at the logic and architectural levels when using four-

phase protocols. Generally speaking two-phase protocols are preferred when slow 

components (with large forward latencies) are involved in the cycle time. On the 

contrary, four-phase protocols are mostly used within the circuit due to the symmetry of 

its phases, where the designer is free of balancing component latencies to optimize the 

circuit performances [REN 03], [SPA 01], and [REN 00].  

2.4 The Muller’s C-element 

In a synchronous circuit the checking role is to define points in time where signals 

are stable and valid. In between the clock ticks, signals may exhibit hazards and may 

have multiple transitions till the combinational circuits stabilize. This does not matter 

from the functional point of view. Conversely, asynchronous control circuits shown in 

Figure 2.2 have a different behavior. The absence of the clock means that, in many 

situations signals are required to be valid all the time, that every signal transition has a 

meaning. As a result, hazards and races must be avoided. A circuit that is better in this 

respect is the Muller’s C-element shown in Figure 2.5, [RIG 02], and [MAR 86].  

Actually, it is a state holding element works in the following principle:  When both inputs 

are 0 the output is set to 0, and when both inputs are 1 the output is set to 1. For other 

input combinations the output does not change. Consequently, an observer seeing the 
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output change from 0 to 1 may conclude that both inputs are now at 1; and similarly, an 

observer seeing the output change from 1 to 0 may conclude that both inputs are now 0. 

Combining this with the observation that all asynchronous circuits rely on handshaking 

that involves cyclic transitions between 0 and 1, it should be clear that the C-element is 

indeed a fundamental component that is extensively used in asynchronous circuits.   

 

Figure 2.5: The Muller’s C-element: Symbol and Truth Table.  

2.5 The Muller’s Pipeline 

Figure 2.6 shows a circuit that is built from C-elements and inverters. The circuit 

is known as a Muller’s pipeline, [GUN 93] and [MUL 59]. Variations and extensions of 

this circuit form the control backbone of almost all asynchronous circuits. This Muller’s 

pipeline is a way to transmit the handshakes. After all of the C-elements have been 

initialized to 0, the left environment may start handshaking. To understand what happens 

let’s consider the ith C-element, C[i]: It will propagate a 1 from its predecessor, C[i-1], 

only if its successor, C[i+1], is 0. In a similar way it will propagate a 0 from its 

predecessor if its successor is 1. It is often useful to think of the signals propagating in an 

asynchronous circuit as a sequence of waves, as illustrated at the bottom of figure 2.6. 

Viewed this way, the role of a C-element stage in the pipeline is to propagate these waves 

in a carefully controlled way that maintains the integrity of each wave.  

On any interface between C-element pipeline stages an observer will see correct 

handshaking, but the timing may differ from the timing of the handshaking on the left 

hand environment. Once a wave has been injected into the Muller pipeline, it will 

propagate with a speed that is determined by the actual delays in the circuit. Eventually 
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the first handshake (request) injected by the left hand environment will reach the right 

hand environment. If the right hand environment does not respond to the handshake, the 

pipeline will eventually fill. If this happens the pipeline will stop handshaking with the 

left hand environment.  In addition to this elegant behavior, the pipeline has a number of 

beautiful symmetries. Firstly, it does not matter if 2-phase or 4-phase handshaking is 

used. The difference is in how the signals are interpreted and the circuit is used. 

Secondly, the circuit operates equally well from right to left, with reversing the role of the 

request and acknowledge signals. Finally, the circuit has the interesting property that it 

works correctly regardless of delays in gates and wires. The Muller pipeline is delay-

insensitive.  

 

 

 

Figure 2.6: The Muller Pipeline. 
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2.6 Classification of Asynchronous Circuits 

Asynchronous circuits can be classified as being speed-independent, delay 

insensitive or self-timed depending on gate and wire delays assumptions that are required 

to guarantee their functional correctness [PAN 02], and [EBE 91]. Figure 2.7 facilitate 

the illustration of this concept. The figure shows three gates: A, B, and C, where the 

output signal from gate A is connected to inputs on gates B and C. 

 

Figure 2.7: Gates and Wires Delay Model for a Circuit Fragment, the output of Gate A 

forks to inputs of gates B and C.    

Speed-Independent (SI):  

This class of circuits operates correctly assuming that positive, bounded but 

unknown delays in gates and ideal zero-delay wires, [EBE 91]. Referring to Figure 2.7 

this means arbitrary dA, dB, and dC, but d1 = d2 = d3 = 0. Assuming ideal zero-delay wires 

is not very realistic in today’s semiconductor processes. 

Delay-Insensitive (DI):  

This class of circuits operates correctly with positive, bounded but unknown 

delays in wires as well as in gates. Referring to Figure 2.7 this means arbitrary dA, dB, dC, 

d1, d2, and d3. Such circuits are obviously extremely robust. At the gate level, only 

circuits composed of C-elements and inverters can be delay-insensitive, and their 

functionality is limited. This is why delay-insensitive circuits are usually built out of 

modules which require some delay assumptions internally. Circuits that are delay-
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insensitive with the exception of some carefully identified wire forks, where d2 = d3 are 

called Quasi-Delay-Insensitive (QDI). Such wire forks where signal transitions occur at 

the same time at all end points are called “isochronic forks”, [BER 92] and [MAR 90]. At 

the gate level, this assumption enables the design of circuits made of single-output gates.    

Self-Timed Circuits:  

Speed independency and delay-insensitivity as introduced above are 

mathematically well defined prosperities under the unbounded gate and wire delay 

model, [SPA 01]. Circuits whose correct operation relies on more elaborate and/or 

engineering timing assumptions are simply called self-timed. In the next chapter a full 

description of self-timed rings and their programmability will be presented.   

The different circuit classes SI, DI, QDI and self-timed are not mutually exclusive 

ways to build complete systems, but useful abstractions that can be used at different 

levels of design, [SPA 01] and [HAU 95]. In most practical designs they are mixed. For 

example, in the Amulet processors SI design is used for local asynchronous controllers, 

and DI is used for high-level composition, [GAR 00]. Therefore, the careful choice of 

handshake protocol and circuit implementation style is among the factors to optimize an 

asynchronous digital system.  

2.7 Pipelines and Rings: Token Game 

At architectural level, in order to ease the token flow discussion it is assumed that 

an asynchronous circuit is composed of functional blocks (combinational circuits), 

memory elements (registers) and channels (request, acknowledgment, and data signals). 

Figure 2.8 shows the basic elements of an asynchronous circuit.  

 

Figure 2.8: Basic Elements of an Asynchronous Circuit. 



Part-I                                                                              Chapter 2.   Asynchronous Circuits 
   

   
Hatem Zakaria       Université de Grenoble     18 

A token is carrying information and is stored in a memory element.  A token is 

represented by a filled circle next to the memory element it is stored in. When using a 4-

phase protocol, the asynchronous data-path processes a stream of alternating valid and 

return to zero tokens. When a 2-phase protocol is used, there are only valid tokens, but 

apart from that everything is the same. Data flow information is controlled by two rules, 

[REN 03]:   

Token rule: a memory may receive and store a new token from its 

predecessor if and only if it has a bubble.   

Bubble rule: a memory becomes empty (bubble) if and only if its 

successor has received and stored the token that it was holding. 

Figure 2.9 shows a snapshot of a simple five stage pipeline, which is implemented 

using 2-phase protocol. The valid value in L1 and L3 has just been copied into L2 and L4 

respectively. This means that L1 and L3 are now holding old duplicates of the values now 

stored in L2 and L4. Such old duplicates are called “bubbles”, and the newest valid 

values are called “tokens”. To distinguish tokens from bubbles, tokens are presented with 

a circle around the value. Bubbles can be viewed as a medium: a bubble allows a token to 

move forward, and in supporting this, the bubble moves backward one step. 

 

Figure 2.9: A Possible State of a Five Stage Pipeline. 

Any circuit should have one or more bubbles; otherwise it will be in a deadlock 

state. This is a matter of initializing the circuit properly. Furthermore, as we will see in 

the next chapter, the number of bubbles also has a significant impact on performance. 
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Figure 2.10: A Sequence of Data Transfers in a Ring. 

In a pipeline with at least three stages, it is possible to connect the output of the 

last stage to the input of the first stage, forming a ring in which data tokens can circulate 

autonomously, [SPA 01]. Assuming the ring is initialized as shown in Figure 2.10 at time 

t0 with two valid tokens and a bubble, the steps of the circulation process are shown in 

Figure 2.10, at time t1, t2 and t3. Rings are the backbone structure of circuits that perform 

iterative computations. The cycle time of the ring in Figure 2.10 is 3 steps (the state at t3 

is identical to the state at t0).  

Next chapters of the thesis show how programmable versions of 2-phase self-

timed rings could be used, in order to: Firstly, synchronize the data transfer between 

different clock domains in a GALS system, while avoiding metastability problems. 

Secondly, manage not only the energy consumption but also the process variability in 

complex integrated system (System on Chip often denoted SoC).    

2.8 Conclusions 

Problems with the clock in synchronous circuit design are becoming more and 

more complex, which open the path to the design of asynchronous circuits. Unlike the 

global clock mechanism used in synchronous circuits, timing in asynchronous circuits is 

done locally through a bidirectional signaling between all elements of the circuit. This 

signaling is established via communication channels using a specified handshaking 
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protocol (2-phase or 4-phase). Asynchronous circuits are classified into different types 

according to their gate and wire delays assumptions that are required to guarantee their 

functional correctness. Asynchronous circuits make the design of distributed finite state 

machines as well as data paths much easier than before, as there is no need to know the 

global state of the system to make things communicate and synchronize, where it is the 

case with synchronous circuits. Token and bubble rules were presented to facilitate the 

discussion of data flow in asynchronous circuits. This also helps to understand the basic 

principle of operation of self-timed rings, which will be presented in details within the 

next chapter.   
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Chapter 3 

Self-Timed Rings 

3.1 Introduction 

Ring oscillators are one of the most essential building blocks in many digital and 

communication systems. They are used in to generate and distribute timing signals which 

synchronize processing unit operations. Programmable versions of these ring oscillators 

have a variety of applications. In Dynamic Voltage and Frequency Scaling “DVFS” 

systems, they are used to dynamically manage the energy consumption of a complex 

system integrated on a chip. This is done with the regular adaption of the processing unit 

clock frequency according to the computational needs, as will be shown in Chapter 5. In 

Globally Asynchronous Locally Synchronous “GALS” systems programmable ring 

oscillators are also required in order to adjust the clock frequency for each clock domain, 

where each domain has its own local clock frequency, as will shown in Chapter 4. With 

the rapid increase in the process variability effects on the system behavior due to the 

shrinking of the integrating technology, one must carefully choose the operational ring 

oscillator. This oscillator should have robust behavior under different environmental and 

process variability effects.  

Adjustable clocks can be derived from different kinds of clock generators. For 

example, these clocks can be derived from analog Voltage Controlled Oscillators “VCO”, 

which are a part of a Phase Locked Loop “PLL”. However, VCO have a limited operating 

range and a required stabilization time when changing the frequency [BOY 06]. Another 

solution is to use a standard clock divider, but this will make the time resolution coarser, 

due to counting integer periods of the input frequency [STO 03]. In addition, they give 

regular time step which implies irregular frequency step (usually frequency step follows 

“1/x” curve).  
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Asynchronous self-timed rings are considered promising solution for generating 

clocks. In [FAI 04] they are efficiently used to generate high-resolution timing signals. 

Their robustness against process variability in comparison to inverter rings is proven in 

[HAM 08]. They are efficiently used as a data driven clocks in [MUL 07]. Moreover, for 

a given number of stages self-timed rings can be reconfigured easily by controlling their 

initialization (i.e. their number of tokens and bubbles; explain in the sequel), while in the 

contrary, inverter-ring frequency is fixed [FAI 04]. Furthermore, as events propagate 

between adjacent stages in self-timed rings according to a simple request/acknowledge 

handshake signals, we can make use of these handshakes in synchronizing the data 

transfer between different clock domains in a GALS system while avoiding metastability 

problems, as will be shown in Chapter 4.  

This chapter proposes a design for a Programmable/Stoppable Oscillator which is 

based on asynchronous self-timed ring to exploit its interesting characteristics. Through a 

handshaking protocol, the oscillator is communicating with the synchronous processor to 

insure a proper switching from one frequency to another. The oscillator is designed in 

order to avoid the presence of glitches and truncated clock periods. A new methodology 

for calculating the ring oscillation period will also be presented. 

3.2 Ring Structure 

Various kinds of implementations of a self-timed ring exist and the underlying 

token and bubble notions depend on the communication protocol (e.g. 2-phase or 4-phase 

communication protocol). In this context, it is important to clearly define the structure 

and the token and bubble notions. 

3.2.1 Ring Connectivity 

Figure 3.1 shows the structure of the ring stage. It is composed of a Muller C-

element and an inverter. In each stage, the input which is connected to the previous stage 

is marked F (Forward) and the input which is connected to the following stage is marked 

R (Reverse), C denotes the output of the stage. Figure 3.2 shows an example of a ring 

composed of self-timed handshaking N-stages, [MUL 59]. 
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Figure 3.1: A Ring Stage 

 

 
Figure 3.2: A Self-Timed Ring.  

3.2.2 Definitions and Notations 

We choose the 2-phase communication protocol as defined in [SUT 89], which 

allows us to derive the token and bubble concepts of the self-timed ring as follows:  

•  Stagei contains a token if its output Ci is not equal to the output Ci+1 of stagei+1. 

TokenStageCC i1ii ←⇔≠ +  

•  Stagei contains a bubble if its output Ci is equal to the output Ci+1 of stagei+1. 

BubbleStageCC i1ii ←⇔= +  

The numbers of tokens and bubbles are denoted by NT and NB respectively. 

Because a token is defined with respect to the value of two adjacent stages, NT is an even 

number whatever the number of stages. Moreover, each stage of the ring contains either a 

token or a bubble, so NT + NB = N, where N is the number of the ring stages. As self-

timed rings have a 2-phase pipeline structure, the data flow through its adjacent stages is 

the same as it was previously discussed in Chapter 2. If a token is present in stagei, it will 

propagate to stagei+1, if and only if stagei+1 contains a bubble. The bubble of stagei+1 will 
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move backward to stagei. This implies a transition on stagei+1. In Figure 2.10 an example 

was shown for these token/bubble movements in a three stage self-timed ring, which 

contains two tokens and one bubble. With the previous notations, the necessary and 

sufficient condition for a token to propagate from stagei-1 to stagei can be expressed as:  

1ii1i CCC +− =≠  

From these propagation rules, we can derive the requirements to obtain an 

oscillating asynchronous self-timed ring. By definition, the number of tokens in a ring 

must be even and at least one bubble is necessary to enable tokens to move. The minimal 

number of stages is hence 3. Self-timed rings produce two different modes of oscillation: 

“Evenly spaced” or “Burst” modes, see Figure 3.3. In the evenly spaced mode, the events 

inside the ring are equally spaced in time. In the burst mode, the events are non-uniformly 

spaced in time. In our application, we only target the evenly spaced mode.  

 

Figure 3.3: Modes of Operation in Self-Timed Rings.  

3.3 Ring Modeling 

The key to understand the temporal properties of self-timed rings lies in finding 

an appropriate model for the ring. The ideal model will be one that captures the non-

linear timing dependencies of real circuits while still being simple enough to provide 

insight into the causes of bursting and uniformly spaced behavior. Two key effects have 

been identified as being responsible of the ring behavior, the Charlie effect, [EBE 98] and 

[ZEB 05], and the Drafting effect [WIN 01], [WIN 02], and [FAI 04]. 
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 3.3.1 The Charlie effect 

The deep observation of the C-element temporal behavior shows that the 

separation time between input events has a direct impact on the propagation delay: “the 

closer the input events; the longer the propagation time”. This phenomenon is called 

“Charlie effect” in reference to Charles E. Molnar. The analysis of the C-element 

structure can explain these variations in the propagation time. Figure 3.4 shows a 

conventional implementation of the C-element referenced as “week feedback”, [SHA 98]. 

It can be divided into two stages: the input stage which calculates the output value when 

both inputs are identical and the output stage which stores this value in other cases.  

 

Figure 3.4: “week feedback” Implementation of a Muller C-element. 

The Charlie effect appears in the input stage transistors when both N-channel and 

P-channel transistors must move simultaneously from the cut-off state to the saturation 

state, or vice versa. This occurs when the events on both inputs of the C-element are 

close. To understand this phenomenon, we propose an example. Consider a scenario 

where both A and B make a 0 to 1 transitions, and A changes after B. If A changes a long 

time after B, then the P-channel transistor controlled by B will be in its cut-off region, and 

the N-channel transistor controlled by B will be fully conducting as A changes. 
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Furthermore, the node between the two N-channel transistors will be close to ground 

potential. This allows a relatively fast transition on signal Q and therefore on the output 

C. on the other hand, if A changes only slightly after B, then the transistors controlled by 

B will both be partially conducting as A changes. This result in a greater delay from the 

transition of A to the transition of C. Similar effects occur if A changes before B.  

3.3.2 The Drafting effect 

Similarly, there is an impact of the time elapsed between two successive output 

communications on the propagation delay: the closer the successive transitions; the 

shorter the propagation delay. This phenomenon is called the “Drafting effect”. This 

effect is opposite to the Charlie effect which has a tendency to slow the spread of tokens, 

while the Drafting effect tends to accelerate several tokens in sequence. This effect which 

appears on the output stage of the Muller C-element is due to the output capacitance of 

the stage. When a commutation occurs just after the previous one, the output has not 

enough time to reach neither Vdd nor GND before its new commutation which causes a 

faster transition (i.e. shorter propagation delay). 

3.3.3 The Charlie Model 

The Charlie model represents the ring stage propagation delay as a function of 

two variables, s and y as shown in Figure 3.5 where: 

- s is the half separation time between input events: 

࢙ ൌ
ࡲ࢚ െ ࡾ࢚

૛  

- y is the time between the previous output commutation and the mean input time. 

࢟ ൌ  
ࡲ࢚ ൅ ࡾ࢚

૛ െ ష૚࡯࢚ ൌ ࢔ࢇࢋ࢓࢚ െ  ష૚࡯࢚
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Figure 3.5: A Ring Stage Chronogram.  

 The Charlie model is also adjusted by a set of five parameters that correspond to 

the physical characteristics of the stage implementation (dimensions of the Muller C-

element and inverter transistors). These parameters are noted as: 

- Dff the static forward propagation delay. 

- Drr the static reverse propagation delay. 

- Dcharlie the amplitude of the Charlie effect. 

- A the duration of the drafting effect. 

- B the amplitude of the drafting effect. 

 The shape of the Charlie model at constant y corresponds to a parabola defined by 

the asymptote lines Dff + s and Drr – s (see Figure 3.6). Noting that the minimum value of 

this parabola, which is called “valley” of Charlie model, corresponds to the longest 

propagation delay where the influence of the Charlie effect is the maximum. Similarly, 

the shape of the Charlie model at constant s follows the exponential form of charging a 

capacitance through a resistance (see Figure 3.7). Therefore, the analytical formulation of 

the Charlie model can be expressed as:  
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,࢙ሺ ࢋ࢏࢒࢘ࢇࢎ࡯             ሻ࢟ ൌ ࢔ࢇࢋ࢓ࡰ ൅ ටࢋ࢏࢒࢘ࢇࢎࢉࡰ
૛ ൅ ሺ࢙ െ ሻ૛࢔࢏࢓࢙

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ࢋ࢏࢒࢘ࢇࢎ࡯

െ ࢟ି࡮
ต࡭

ࢍ࢔࢏࢚ࢌࢇ࢘ࡰ
                    (3.1) 

with: 

൞
࢔ࢇࢋ࢓ࡰ ൌ

࢘࢘ࡰ ൅ ࢌࢌࡰ

૛

࢔࢏࢓࢙ ൌ
࢘࢘ࡰ െ ࢌࢌࡰ

૛

 

Finally, the commutation instant tC can be expressed with respect to the input 

commutation instants (tF and tR) and the Charlie model as: 

࡯࢚                                                 ൌ ሺࡲ࢚ ൅ ሻࡾ࢚ ૛⁄ ൅ ,࢙ሺࢋ࢏࢒࢘ࢇࢎࢉ  ሻ                               (3.2)࢟

 

 

Figure 3.6: Charlie Diagram at Constant y. 
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Figure 3.7: Charlie Diagram at Constant s. 

3.3.4 Timed VHDL Models 

Without modeling the Charlie effect and by simulating the same self-timed ring 

with the same number of tokens and bubbles, but with different spatial token 

distributions, digital simulation (VHDL Model) shows different steady state waveform. 

However, Analog simulation shows exactly the same steady state waveform. An 

explanation of this incorrect behavior of the digital simulation is due to the absence of 

Charlie effect in the model, [YAH 09]. To confirm this explanation, we simulate an 11-

stage ring without modeling the Charlie effect. We first configured it by the following 

Token/Bubble pattern (“TTTTBBBBBBB”). The steady state output was a burst mode 

oscillation. When the ring is initialized with (“TBBBBTTBBBT”), the steady state output 

becomes evenly spaced. This wrongly concludes that the initial spatial distribution of the 

Tokens/Bubbles could affect the oscillation mode, which is not true. These simulation 

results are shown in Figure 3.8. 
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Figure 3.8: VHDL Simulation Results for two Different Configurations of 11-Stages 

Self-Timed Ring without Charlie Effect. 

The same simulation is now performed using Muller gates models which are 

taking the Charlie effect into consideration. Figure 3.9 shows that they give identical 

steady state behavior and both are oscillating in evenly spaced mode as it was expected. 

 
Figure 3.9: VHDL Simulation Results for two Different Configurations of 11-Stages 

Self-Timed Ring with Charlie Effect. 

The conclusion is that including the Charlie effect inside our digital model is 

mandatory to have a correct behavior of the ring model. As the design and analysis 

phases need so many simulations, our digital model saves us a lot of time compared to 

standard analog simulations. 

3.4 Oscillation Frequency Calculation of Self-Timed Rings 

In this section, we propose a simple methodology for calculating the oscillation 

frequency of the self-timed ring oscillator. The new method allows us to estimate the 

oscillation period in function of the stage temporal parameters and the number of bubbles 

and tokens. In [HAM 08] a behavioral model of asynchronous ring is proposed. The 

proposed behavioral model offers interesting prospects regarding timing information. It 

needs to calculate the half separation time between inputs s. To do so, it uses state graph 
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to iteratively catch the timing evolution inside the ring. That seems a bit complex if the 

goal is only estimating the oscillation frequency. Consequently, it seems very useful to 

find a simple relation between s and the number of bubbles and tokens. In [FAI 04], the 

authors give a relation between the period, the stage delay and the separation time. In this 

model the Drafting effect can be neglected because its effect is very small compared to 

the Charlie effect in the period calculation. With our terminology we can express this 

relation as: 

            ܶ ൌ 4 ൈ ܦ ൅ 4 ൈ |ݏ| ൌ 4 ൈ ሺܦ ൅ ሻ|ݏ| ൌ 4 ൈ  ሻ                    (3.3)ݏሺ݈݁݅ݎ݄ܽܥ

Where ܦ ൌ ሻݏሺ݈݁݅ݎ݄ܽܥ െ  .is the stage delay from the last arriving input (i.e |ݏ|

Dff in Figure 3.5). The period of the self-timed ring oscillators depends on the ratio 

ܴ ൌ ்ܰ
஻ܰ

ൗ . For the same ratio, we have the same oscillation whatever the number of 

stages. This is why we think that there is a direct relation between s and R. To estimate s 

we can use the Charlie diagram at constant y shown in Figure 3.6 at two different 

operating conditions. First, when the operating point of the asynchronous self-timed ring 

is in the token limited region, where ்ܰ
஻ܰ

ൗ ൒ ௙௙ܦ
௥௥ܦ

൘  i.e. s ≤ smin. Second, when the 

operating point of the asynchronous self-timed ring is in the bubble limited region where 

்ܰ
஻ܰ

ൗ ൑ ௙௙ܦ
௥௥ܦ

൘  i.e. s ≥ smin, the two operating conditions are shown in Figure 3.10.  

   

 

 

 

 

 

(a) Token Limited                                          (b)  Bubble Limited 

Figure 3.10: Charlie Diagram at Constant y for two Different Operating Conditions. 
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At point “A” shown in Figure 3.10 (a) the ring is oscillating at its maximum 

frequency, [WIN 01]: 
 

           ܴ ൌ ்ܰ ஻ܰ⁄ ൌ ௙௙ܦ ⁄௥௥ܦ    and   ݏ ൌ ௠௜௡ݏ ൌ ൫ܦ௥௥ െ  ௙௙൯/2           Lemma 1ܦ
 

At points B and C shown in Figures 3.10 (a) and (b) respectively: 
 

ݏ                                          ൌ 0      ܴ ൌ 1                                              Lemma 2 
 

Lines (A-B) and (A-C) are applied when ்ܰ
஻ܰ

ൗ ൒ ௙௙ܦ
௥௥ܦ

൘ and ்ܰ
஻ܰ

ൗ ൑ ௙௙ܦ
௥௥ܦ

൘  

respectively. From Lemma 1 and by dividing s by Drr: 
 

ݏ2
௥௥ܦ

ൌ
௥௥ܦ െ ௙௙ܦ

௥௥ܦ
ݏ   ൌ

௥௥ܦ

2 ሺ1 െ ܴሻ                      (3.4)

 

If we prove that Equation 3.4 is correct for point B then we can assume that it is 

correct for the line (A-B). At point B, s = 0 and from Lemma 2, R = 1. Substituting R = 1 

into Equation 3.4, results in s = 0 which is correct. This means that Equation 3.4 is 

correct for the line (A-B). This could be mathematically formulated as: 
 

If ܴ ൌ
்ܰ

஻ܰ
൒

௙௙ܦ

௥௥ܦ
 then ݏ ൌ

௥௥ܦ

2 ሺ1 െ ܴሻ                    (3.5a) 

 

By the same way, from Lemma 1 and by dividing s by Dff, we can prove that:  
 

If ܴ ൌ
்ܰ

஻ܰ
൑

௙௙ܦ

௥௥ܦ
 then ݏ ൌ

௙௙ܦ

2 ሺ
1
ܴ െ 1ሻ                 (3.5b) 

These equations allow us to calculate s without going through the behavioral 

model. Therefore, we can introduce a new function called Charlie(R), which expresses 

the value of the function of Charlie according to the ratio R. This equation can be 

obtained by replacing s, from Equation 3.5, into Equation 3.1. The result is shown in 

Equation 3.6.  
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              If ܴ ൌ
்ܰ

஻ܰ
൒

௙௙ܦ

௥௥ܦ
 then  

ሺܴሻ ݈݁݅ݎ݄ܽܥ ൌ
௥௥ܦ ൅ ௙௙ܦ

2
൅ ඩቌܦ஼௛௔௥௟௜௘

ଶ ൅ ൭
௥௥ܦ

2
൬ܴ െ

௙௙ܦ

௥௥ܦ
൰൱

ଶ

ቍ                    (3.6a) 

  

              If ܴ ൌ
்ܰ

஻ܰ
൑

௙௙ܦ

௥௥ܦ
 then  

ሺܴሻ ݈݁݅ݎ݄ܽܥ ൌ
௥௥ܦ ൅ ௙௙ܦ

2 ൅ ඩቌܦ஼௛௔௥௟௜௘
ଶ ൅ ൭

௙௙ܦ

2 ቆ
1
ܴ െ

௥௥ܦ

௙௙ܦ
ቇ൱

ଶ

ቍ                    (3.6b)

 

To show the accuracy of Equation 3.6, we compared the Charlie values extracted 

from the VHDL simulation which is based on Charlie (s) Equation 3.1. These values are 

plotted against the corresponding R in Figure 3.11. The same curve is plotted using 

Charlie(R), Equation 3.6. The figure shows that the two plots are identical with an error 

which is less than 1%.     

 

Figure 3.11: Charlie (R) against Charlie (s) Diagrams with respect to R. 
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The importance of this Charlie(R) diagram is that it allows us to have a clear idea 

about the oscillation period with respect to R = NT / NB. For designers it is easier, even 

obvious to interpret the Charlie diagram with the R parameter than the Charlie diagram 

with the s parameter. In case of the burst mode, s is not the same for all stages and s 

which is computed by Equation 3.5 is the average value. Equation 3.7 shows how the 

oscillation period can be calculated using Charlie(R). 

                                                        ܶ ൌ 4 ൈ ݈݁݅ݎ݄ܽܥ ሺܴሻ    (3.7) 

If we neglect Charlie effect in Equation 3.6, and by substituting the result in 

Equation 3.7: 

               If ܴ ൌ
்ܰ

஻ܰ
൒

௙௙ܦ

௥௥ܦ
 then ܶ ൌ 2 ൈ ௥௥ሺܴܦ ൅ 1ሻ         (3.8a) 

               If ܴ ൌ
்ܰ

஻ܰ
൑

௙௙ܦ

௥௥ܦ
 then ܶ ൌ 2 ൈ ௙௙ܦ ൬

1
ܴ ൅ 1൰         (3.8b) 

3.5 Programmable Self-Timed Rings (PSTR) 

As explained in the previous sections, Self-Timed Rings give advantages from 

different points of view, generation of high-resolution timing signals, robustness against 

process variability, and reconfigurability. As a result, our programmable oscillator will be 

based on a Programmable Self-Timed Ring (PSTR). One example of a Self-Timed Ring 

is depicted in Figure 3.2. 

3.5.1 PSTR Architecture 

 There are many possible ways to control the frequency of the self timed ring. In 

this section, two strategies using architectural solutions are described. Strategy1 is to 

change the number of tokens and bubbles inside the ring. That would change the value of 

the term R in Equation 3.4. We designed a Muller gate which has a Set/Reset control, see 

Figure 3.12. Using this gate, an asynchronous self-timed ring in which we can 

dynamically insert tokens and bubbles is designed. This ring has the same architecture as 

the one in Figure 3.2 except that it is based on Set/Reset Muller gates. 
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Figure 3.12: Muller Gate with Set/Reset. 

As an example, for a ring with five stages (N=5), we can insert “BTTTT” by 

controlling the Set/Reset of the stages so they are initially loaded by “11010”. That 

configuration would produce the minimum frequency of this ring. If we change the 

Set/Reset so that the ring is initialized by “11110”, which means “BBBTT”, this ring will 

oscillate at a higher frequency. This example shows how the ring frequency can be 

controlled by changing the NT over NB ratio. By using Strategy1, the Ring can achieve 

high frequencies. Since the programmability overhead is limited to the addition of the 

Set/Reset controls. It is not significantly affecting the speed. However, using fixed 

number of stages limits the number of possible frequencies. For example, 12 stages gave 

us 5 different frequencies. This makes the frequency step quite coarse. If the objective is 

to produce finer frequency steps, we propose Strategy2. 

Strategy2: in this strategy, not only the Token/Bubbles ratio is controllable but 

also the number of stages. Figure 3.13 shows the block diagram of our programmable 

self-timed ring. It is composed of stages based on the Muller gates with Set/Reset. The 

initialization of the ring is controlled by the Token Control Word “TCW”. This is 

defining the number of Tokens and Bubbles inside the ring. By means of the TCW the 

frequency of the ring can be programmed. To be able to change the number of stages, a 

multiplexer is placed after each stage. These multiplexers are controlled by the Stage 

Control Word “SCW”. SCW is controlling the number of stages inside the ring. The 

design starts with the maximum number of stages “N”. Then, by using SCW we can 

remove up to N-3 stages. If the stage is enabled, the equivalent bit in the SCW is set to 
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zero. In Figure 3.13, suppose that all stages are enabled. That means SCW bits are all 

zeros. That will make all the multiplexers select input “a” which is connected to the 

preceding C-Element (STG1 is connected to STG2, STG2 is connected to STG3 etc...). 

Regarding the last stage “STGn”, its acknowledgment is connected by the tri-state buffer 

“T1” to the output of STG1. That closes the ring and makes it functioning correctly. 

Now, suppose that STG1 has to be removed. Then SCW0 is set to “1” and the other bits 

are zeros. Two things are to be done. First, the “Req” of STG2 needs to be connected to 

the output of STGn. Second, the signal “Ack” of STGn needs to be connected to the 

STG2 output. As SCW0 is “1”, Mux1 will connect input “b” to the output. That would 

connect STGn out to the STG2 Request signal. In addition, SCW0 will force “T1” to high 

impedance. The AND gate “D1” outs “1” which enables “T2” and connects STG2 out to 

STGn Ack. By this scenario, the ring contains N-1 stages. By means of SCW and TCW, 

the self-timed ring in Figure 3.13 can dynamically be programmed to have a range of 

stages between N to 3, and whatever configurations of Tokens and Bubbles. 

 

Figure 3.13: Programmable Self-Timed Ring. 

Regarding the delays of the ring stages, the design is very modular and balanced. 

The forward delay Dff has the Muller gate and the Mux. The reverse delay Drr has the 
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Muller gate and an inverter. Only STGn has a bit longer Drr as the delay of the tri-state 

buffer is added. This will not affect the ring behavior especially this stage is dealt 

differently during the physical implementation. The set of AND gates at the tri-state 

buffer control are not contributing to the delay as they are prepared once, at programming 

phase, and they never change until the ring is reprogrammed. This structure provides a 

Self-Timed Ring which has an interesting range of frequencies. More details about the 

implementation as well as performance figures are shown in Section 3.7. In Strategy2, the 

PSTR gives finer frequency steps, however the programmability overhead from speed 

and power point of views is higher than Strategy1. Adding a limited number of 

multiplexers gives a nice solution. For example, for a 12 stages two multiplexers can be 

added, one after stage 1 and one after stage 7. That gives a PSTR with possibilities of 12, 

11 and 5 stages. This compromise gives nice results from all points of view. This hybrid 

solution is denoted as Strategy3. 

3.5.2 PSTR Design Flow 

In this section, we present a design flow for PSTR oscillators, see Figure 3.15. 

According to the specifications, thanks to the frequency calculation Equation 3.8 and 

according to Drr (defined by the targeted CMOS implementation); the design flow helps 

the designers to choose the suitable PSTR architecture (number of stages Nstages, bubbles 

NB and Tokens NT) which allows approaching the target oscillation frequencies Ftar. 

In this design flow, we assume that the self-timed ring operating point always 

exists in the token limited region, and that the maximum allowable Nstages from which we 

start our design is 20, and then it will be changed during the design. This number is 

chosen according to the circuit area and power consumption limitations; see Chapter 7 for 

more details on the design of PSTR for MIPS R2000 on 45nm STMicroelectronics 

CMOS technologies. As the thesis is targeting an optimum design in terms of area and 

power consumption on the 45nm CMOS technology, designing a PSTR with this 

limitation on Nstages will always give us frequencies within the GHz range (i.e. above 0.5 

GHz), see Section 3.7. Consequently, if the design is targeting lower frequencies (i.e. 

below 0.5 GHz), we have to choose between two solutions. First solution is to increase 
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the allowable Nstages. This will accordingly increase the area and power consumption of 

the PSTR. For example in order to get a frequency of 60 MHz with Drr = 73 ps on the 

45nm CMOS, and according to Equation 3.8a we need to have a PSTR with at least 113 

stages, which is impractical. This guides us to the second solution, which is the addition 

of external D Flip-Flops at the self-timed ring output, see Figure 3.14. This will divide 

the asynchronous self-timed ring output Fosc by 2No. of F.Fs. Subsequently, we can complete 

our design using Fosc which is now applicable with the Nstages limitation.       

 

Figure 3.14: PSTR with External D-F.Fs for Targeting Low Frequencies.  

 The main idea of the design flow shown in Figure 3.15 is to keep looking on the 

most suitable values of NT, NB and Nstages that achieve the target frequency Ftar. This is 

done by comparing the ratio NT/NB calculated from Equation 3.8a with our assumption 

NT_d/NB_d. Noting that in the case of targeting low frequencies we have to use a set of D-

F.Fs. In this case, the target PSTR frequency FOsc will be equal to Ftar multiplied by 

2No._of_F.Fs. If NT_d/NB_d is not equal to NT/NB, then we enter into a loop to adapt these two 

ratios to be as close as possible. As long as NT > NB (token limited region), we keep 

minimizing NT_d by 2 while NB_d = Nstages-NT_d and each time we compare the two ratios 

together. If we could not achieve that NT_d/NB_d ≈ NT_d/NB_d, then we resort to adapting 

Nstages. This is done by reducing Nstages by 1, and selecting the maximum allowable even 

number for NT_d, while NB_d = Nstages – NT_d. Once NT_d/NB_d is approximately equal to 

NT_d/NB_d then NT = NT_d, NB = NB_d and Nstages = NT + NB, so the design is complete.   
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Figure 3.15: Design Flow for PSTR Oscillators. 
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3.6 Programmable Stoppable Oscillator (PSO) 

Note: since silicon data are confidential, no exact delay-values are shown in this 

section. However, the complete performance figures are given in Section 3.7. 

Based on the PSTR proposed in Section 3.5, a fully Programmable-Stoppable 

Oscillator, “PSO”, is designed. The main goal of our design is to provide a 

communication protocol between the processor and the PSO so that:  

- The processor can Pause/Reprogram the PSO clock output.  

- The clock is paused when switching from one frequency to another and the length 

of the pausing period is controlled by the processor. 

- While taking into consideration Metastability and racings, the Start/Stop clock-

periods are always complete without any truncated periods or glitches. 

 
Figure 3.16: The Interface between Micro-Processor and PSO. 

Figure 3.16 shows the connections between the processor and our PSO. The PSO 

receives two commands from the processor. Change Frequency, “CF”, which is putting 

the PSO in change frequency mode, “Mode1”, where it uses the Frequency Code, “FC”, 

to program the PSTR by the required frequency. The other command is Pause Clock, 
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“PC”, which puts the PSO in a Pause mode, “Mode2”, where the output clock is paused 

until it is released, with the same frequency, by the processor. The communication 

protocol is as follows. In Mode1, the processor sends CF high and the FC is set to the 

appropriate code for the required frequency. When the PSO is ready to change the 

frequency, it pauses the clock and lowers the Change Frequency Done signal, “CFD”. 

The clock is paused until the CF command is lowered by the processor. When CF is 

lowered, the clock is released with the new frequency and the CFD is returned to high. 

By the same scenario in Mode2, the processor raises PC command when the clock is 

needed to be paused. The PSO pauses the clock and sets its Pause Clock Done signal, 

“PCD”, to zero. Whenever the processor lowers the PC command, the PSO raises its 

PCD out and continues sending clock output with the last frequency before pausing. 

By means of the upper handshaking protocol between the processor and the PSO, 

the processor has a full control on the pausing period between two different frequencies. 

The importance of that, from our point of view, is to give the processor (or its upper 

controller) the control on the time between two frequencies. In this way different 

techniques can be applied on the processor, (task rescheduling, DVS, HW reconfiguration 

…), without caring about the time needed by these techniques. 

 

Figure 3.17: Programmable/Stoppable Oscillator. 
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In Figure 3.17, the details of the PSO are depicted. It is composed of a Control 

Unit, “CU”, and the PSTR. The CU outs the TCW and the SCW which are determining the 

number of Tokens/Bubbles and the number of stages respectively. The CU is clocked by 

the output of the PSTR, “R_Out”. The Clk out which is sent to the processor is the output 

of the dissymmetric Muller gate “C1”. The output “Stop” from the CU is controlling 

whether R_Out is connected to Clk or not. When Stop is high R_Out is connected to Clk. 

When it is low, any change in R_Out, including truncated periods and glitches, is filtered 

by the Muller gate. Figure 3.18 shows the details of the CU. 

 

Figure 3.18: PSO Control Unit. 

In the two lookup tables, LUT1 and LUT2, the map of the frequency code to the 

corresponding TCW and SCW is stored respectively; this map of the frequency code is 

determined by using the model presented in Section 3.4 for all Token/Bubble possible 

configurations. In LUT2, there is another stored value per each frequency; it is the 

number of clocks needed by the PSTR to reach its steady state, where it’s calculated using 

the simulation. This output is denoted by Count_Ref. Count_Ref and the output of 

stoppable binary counter is compared by a comparator. The binary counter is clocked by 

R_Out to count the clocks during the transient state. The comparator outs one, “EQ=1”, 

when its inputs are equal and vice versa. EQ is latched by a D-FF which is clocked by 

R_Out. The output of the D-FF is the Signal “Stop”. This signal is delayed by two 

matching delays, Delay1 and Delay2, before sent to the processor as CFD and PCD 
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signals respectively. LUT1 have asynchronous Reset. However, the counter and the D-FF 

have synchronous resets. The Stop control of the counter is asynchronous. During normal 

operation, CF and PC are set to zero. The Stop signal is high, which makes R_Out 

connected to Clk by the Muller C1 in Figure 3.17. The processor could issue one of two 

commands CF for Mode1 and PC for Mode2. 

Mode1: the processor sets CF to high and sends the appropriate code on FC. With 

the next negative edge on R_Out, the D-FF and counter outputs are set to zeros. That 

lowers the Stop signal and isolates R_Out from Clk. In addition, LUT1 and LUT2 out the 

new TCW and SCW for programming the PSTR by the new frequency. LUT2 outs the 

new Count_Ref too. Delay1 delays Stop by equivalent time to the access time of the 

LUTs plus the required time for programming the PSTR. This guaranties that the CFD is 

not lowered before the PSTR is properly programmed. When CFD is lowered, the 

processor lowers CF whenever it is ready to receive the new Clk. When CF is lowered, 

LUT1 receives a Reset signal. That forces TCW to be all zeros and allows the PSTR, 

Figure 3.13, to start oscillation. The Counter counts the clocks on R_Out. When they are 

equal to Count_Ref, the comparator sets EQ to high. When EQ is high, the counter is 

stopped and counts no more edges. With the next negative edge on R_Out, the D-FF 

latches EQ and sets Stop to one. That enables the Muller C1, in Figure 3.17, and connects 

R_Out to Clk. Now the PSO returns to its normal operation and the PSTR output is 

connected to the processor. 

Mode2: the processor sets PC to high asking for pausing the Clk output. The D-

FF receives a Reset signal. With the next negative edge on R_Out, Stop is set to zero and 

isolates R_Out from Clk, which is stalled at zero. Delay2 delays the Stop by a time equal 

to the delay of the Muller C1, Figure 3.17. After this delay, the PCD is sent to the 

processor. Whenever the processor, or its upper controller, wants to unpause the Clk, it 

lowers the PC signal. With the next negative edge on R_Out, the D-FF latches EQ again 

which is still one as Counter output and Count_Ref are still equal. That sets Stop to one 

which connects R_Out to Clk and the clock of the processor is unpaused.  
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The main difference between Mode1 and Mode2, is that in Mode2 TCW and SCW 

are not changed. As a result the LUTs accessing have a fixed output value and so no 

pulses are skipped by the counter. That makes the processor able to pause and unpause in 

a higher rate compared to the possible rate for programming and re-programming. In 

Mode1, the minimum delay between two requests on CF should be longer than the access 

time of the LUTs plus the PSTR programming time plus the time to skip the transient 

state clocks (by the counter). In contrast, the minimum time between two requests on PC 

is equal to the sum of the OR gate, the D-FF and the Muller gate delays. This sum is 

lower than the period of one clock of the PSTR maximum frequency. As the ring size 

could be long, we restrict the CU to have very low growth with respect to the ring size. In 

Figure 3.18, the HW which will grow with the Ring number of stages is the LUTs. For 

each extra stage, LUT1 has two more bits and LUT2 has 1 extra bit. This growth is really 

very limited. 

Racing and Metastability: any racing or Metastabilty cases could affect the 

operation of the PSO. In Mode1, there are two possible scenarios for Metastability. First, 

when CF is set to one and FC is changed to the new code. Since the processor is 

synchronous and sends these controls on a negative edge of the clock and because these 

inputs will not affect the control unit until the next negative edge, these controls have a 

complete clock period to get ready at the CU inputs. This delay reduces the probabilities 

of Metastability. The second possible Metastability scenario is when CF is lowered by 

the processor; especially this is done completely asynchronously. However, the 

handshaking protocol ensures that CF can not be lowered before the PSTR is stalled by 

the TCW. In this way no possible Metastability or racing can appear.  

In Mode2, same two scenarios are possible. Firstly when the processor sets PC to 

high, similarly as in Mode1, this scenario is safe. Secondly when the processor or its 

upper controller lowers the PC, this case could have Metastability if the Reset input at the 

D-FF is deasserted during a negative edge at R_Out. However, the probability of this 

Metastability is very low due to the short delay of the reset logic path.  
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The PSO is implemented on STMicroelectronics 45nm technology, the 

implementation details are discussed in Section 3.7. The delay information is extracted 

from the physical design and inserted in our timed VHDL model. By using the digital 

flow, we could quickly get various simulations. Thanks to including Charlie and drafting 

effects inside the digital model which gave us accurate results, very close to the analog 

simulation results. Figure 3.19 shows one example where the PSO is requested to switch 

from low frequency to a higher one. After that, the PSO is requested to pause the clock.   

 

Figure 3.19: Timing Diagram of the PSO. 

In Figure 3.19 at point “A”, the CF and the new FC are sent. Nothing happened 

till the next negative edge on R_Out, at point “B”. After this edge, the Stop signal is 

lowered. At point “C”, it is clear that R_Out has a truncated clock due to the new 

programming pattern. However, this truncated clock never appears on Clk. CF is lowered 

at point “D”, which makes R_Out to start oscillating with the new frequency and the 

counter starts counting the transient clocks. On the other hand, at point “F” the PC is sent. 

On the next negative edge, the Stop signal is lowered and Clk is stalled at zero (see point 
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“G”). Please note that R_Out is continuing oscillating with the same frequency. At point 

“H”, the PC is lowered. The next negative edge on R_Out, forces the D-FF to latch 

“EQ=1” and set the Stop to one. Consequently, the Clk output starts to oscillate from the 

following positive edge. The design is extensively tested against many scenarios 

especially for the communication protocol between the processor and the PSO. All test 

cases show a correct behavior for the design.   

3.7 Implementation and Results 

The design presented in Sections 3.5 and 3.6 is implemented using 

STMicroelectronics 45nm CMOS Technology. We use our TAL “TIMA Asynchronous 

Library” and the STMicroelectronics 45nm standard libraries for the physical 

implementation. CADENCE design flow is used for the design, simulation, layout and 

post layout simulation. 

In our design, a Muller gate with Set/Reset, as depicted in Figure 3.12, is 

implemented. Then a complete circuit of the ring with 11 stages as in Figure 3.13 is built 

and tested. The Muller gate at Stagen, needs to be sized so that it can derive the stage 

multiplexers. As a result, we could have a well shaped clock output, as shown in Figure 

3.20. 

 

Figure 3.20: Analog Results of the PSO. 
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3.7.1 Analog Results 

As explained in Section 3.5, we have two main strategies to control the frequency 

of the proposed PSTR. Table 3.1 indicates the main features of each of them. For fair 

comparison of power consumption, all strategies are tested in a configuration of 11 

stages, 10Tokens/1Bubbles. In this case, the frequency of operation is very close in all 

strategies due to its dependency on Drr which is almost equal in the three strategies.  

Table 3.1: Results for Different Programming Strategies. 

 Strategy 1 Strategy 2 Strategy 3 

Frequency Range 500 MHz – 3 GHz 400 MHz – 1.7 GHz 450 MHz – 2 GHz 

No. of Frequencies 5 13 9 

Step Size Irregular 100 MHz Irregular 

Static Power 8.7 nW 37.5 nW 15.94 nW 

Dynamic Power 

(for 1 Bubble) 
63.68 µW 145 µW 82.3 µW 

 

In strategy 1, a ring with 11 stages is implemented, where its output frequency is 

controlled by only changing TCW. Its max oscillation frequency is 3 GHz. It has a few 

numbers of possible frequencies due to its coarse and irregular frequency-step size (300 

to 700 MHz). It has the smallest static and dynamic power consumption, as it uses 

minimum hardware.   

In strategy 2, a ring with 11 stages is implemented, where its output frequency is 

controlled by changing the TCW/SCW. On one hand, it provides a finer-regular 

frequency step (around 100 MHz). On the other hand, maximum frequency is decreased, 

that was expected, due to the delays added by the multiplexers. It has the largest static 

and dynamic power consumption, as it is implemented with more hardware. 
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Regarding Strategy 3, which is a hybrid between the first two strategies, we build 

it using 12 stages, and 2 multiplexers are used to implement a ring with possibilities of 

12, 11, 5 stages. Strategy 3 is a compromise between strategy 1 (No multiplexers, few 

frequency steps, and Min. power consumption), and strategy 2 (Max. No. of multiplexers, 

Max. No. of frequencies, and Max. power consumption). 

In strategy 2, there are 25 different configurations of frequencies with TCW and 

SCW. In spite of that, we get only 13 frequencies. This is due to two mean reasons. 

Firstly, some frequencies are repeated within these possible configurations. For example, 

for 10 stages with NT/NB = 4/6, we get the same frequency as for 5 stages with NT/NB = 

2/3, which is 1.4 GHz. This is due to the proportionality of the output frequency of the 

PSTR with the ratio NT/NB. The second reason for this is the existence of some burst 

mode outputs. Within this range, we have 10 frequencies with 50% duty cycle and 3 with 

30% duty cycle. A 50% duty cycle is mandatory only in double-edge trigger applications 

[BUI 06]. As a conclusion we have 3 different strategies for frequency control that we 

can choose between them, according to the requested application. 

Figure 3.20 indicates how the output frequency changes by changing TCW/SCW 

configurations. We get the lower frequency in the left hand side of the graph with 10T, 

and 1B. While the higher frequency in the right hand side is obtained with 6T and 5B. 

3.7.2 Frequency vs. Supply Voltage 

The time response of the PSTR against its supply voltage is an interesting feature. 

Generally speaking, the speed of asynchronous circuits, including self-timed rings, can be 

naturally controlled using the supply voltage. Our implementation for a PSTR using 

Strategy1 is tested against the supply voltage change; results are shown in Figure 3.21. 

The PSTR is configured so that it oscillates on its maximum frequency. Its supply voltage 

is changed from zero to 1.1V. The ring could not oscillate under 0.5V. Starting from 

0.8V, it shows linear change in its frequency till it reaches the maximum frequency at 

1.1V. This behavior enables us to use the voltage for generating more frequencies and/or 

fine tuning the final oscillation. However, we did not completely include this feature in 

our chip as we need more work on voltage regulator and level shifters. 
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Figure 3.21: PSTR Output Frequency Change with respect to the Supply Voltage. 

3.7.3 Sensitivity to Process Variability 

In order to measure the effect of the process variability on the proposed ring, 

Monte-Carlo simulation (1000 iterations) of strategy 1 with 12 stages, 6T/6B 

configuration had been performed with Cadence. As shown in Figure 3.22a, for a Die-To-

Die variability, we have an average frequency of 2.7 GHz, and a standard deviation of 

205 MHz. This result indicates that we have a process variability effect on the clock 

period of 7.6%. For Within-Die variability, simulation results give us an average value of 

2.6 GHz and a standard deviation of 25 MHz, which means a process variability effect on 

the clock period of 1%, see Figure 3.22b. 

 
Figure 3.22: Process Variations of PSTR (a) Die-to-Die (b) Within-Die. 
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3.8 Conclusions 

This chapter addressed the problem of designing programmable/Stoppable 

Oscillator targeting the applications which need a frequencies in the range of 3 GHz to 

400 MHz. Self-Timed Ring is chosen as the core of the oscillator because of its reported 

advantages with respect to many points of view (programmability, accuracy, robustness 

against process variability …). A new methodology for calculating the oscillation 

frequency of Self-Timed Rings is proposed. By including Charlie/drafting effects to our 

VHDL models, we showed the possibility of using digital simulation to accurately model 

and simulate the Self-Timed Ring behavior.  

By using two main different strategies, programmability is introduced to Self-

Timed Rings. The two proposed strategies are simple architecture-based solutions. These 

strategies show high efficiency and flexibility while choosing the ring frequency. Based 

on the proposed programmable Self-Timed Ring, a complete Programmable/Stoppable 

Oscillator is designed and implemented. An efficient handshaking protocol between the 

processor and the oscillator is used to insure a proper switching from one frequency to 

another. The Oscillator shows glitch free and no truncated clocks at its output. 

Metastability scenarios are investigated and the oscillator shows no metastability when 

changing frequency and one possible scenario when pausing the output.   

The proposed architectures are physically implemented using STMicroelectronics 

45nm CMOS technology. For the different programming strategies, the implemented chip 

is characterized for its speed, power consumption and sensitivity to process variability. 

The chip shows a wide range of frequencies with regular and fine frequency step. By 

using Monte-Carlo simulation of 1000 iteration, the chip shows less than 1% process 

variability effect on the clock period due to Within-Die variability and around 7.5% 

process variability effect on the clock period due to Die-To-Die variability. 

The effect of changing the power supply on the chip is studied as well. The chip 

shows very linear changes in its frequency with respect to the variations in its power 

supply. However, in the current version of the chip, this strategy is not fully 

implemented.  
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This design shows how Self-Timed Rings can be efficiently used to implement a 

Programmable/Stoppable Oscillator. The implemented chip shows High-speed, Low-

Power, Low-Process Variability of the generated frequency, Wide-Range with Regular 

and Fine frequency step output. To the best of our knowledge, this chip is the first 

realization of a programmable Self-Timed Ring. 
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Chapter 4 

PSTR Case Study in a GALS System 

4.1 Introduction 

As the number of processing or functional components in an on-chip system 

becomes larger and faster. Moreover, with the growing number of system components, 

the functionalities of systems components also become largely different from each other. 

It means that an on-chip system may include different processors for different 

computation tasks, varied hardware accelerators for varied functions, and various 

interface controllers for various peripheral devices. Therefore, these heterogeneous 

system components have different clock frequencies according to the tasks that they are 

handling. When integrating all heterogeneous components into an on-chip system, 

coordinating different clock domains is a challenge.  This Chapter starts with stating the 

main challenges a designer could face when dealing with multi clock GALS systems. 

Then, it presents a comparison between different techniques of synchronization. After 

that, a new clock synchronization scheme is proposed. This clock synchronization 

scheme is based on the use of the PSTR presented in Chapter 3. In this scheme each 

synchronous module has both an incoming and an outgoing clock signal, which have 

been obtained by opening the PSTR oscillator module. Since these clock signals also 

behave as handshake signals, handshake circuits can be used to synchronize the clocks. 

Finally, the idea of synchronizing a point to point GALS system is generalized to a 

multipoint GALS interconnection, where three different topologies were presented.  

4.2 Multi Clock Challenges and GALS Scheme 

From the viewpoint of a chip design, as addressed in [OLS 99], for large high-

speed globally synchronous systems, designing the clock distribution net becomes a 

troublesome task because of the problems caused by clock skew, by growing die sizes 

and shrinking clock periods. At the same time, the power consumption is increasing 
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tremendously because the working clock frequency driven by demanding applications is 

getting higher in the scale of Gigahertz. Therefore, one solution of the challenges 

mentioned above is to enable different processing or functional system components to 

work at their own clock rates. Thus, the following challenge that a SoC designer needs to 

handle is how to integrate the clock independent components into one system. In this 

situation, the Globally Asynchronous Locally Synchronous (GALS) scheme is proposed 

to solve the system integration challenge, [CHA 84]. The basic idea of applying GALS 

scheme into on-chip systems is to partition the system into several independently clock 

domains that communicate with each other in an asynchronous fashion. 

GALS design style holds the promise of combining the advantages of both 

synchronous and asynchronous operation, [CHA 84]. Our GALS employs a self-timed 

communication scheme between coarse-grained circuit blocks and combine the following 

features: 

1. All major modules are designed in accordance to proven synchronous 

clocking discipline. 

2. Data exchange between two modules strictly follows a full handshake 

protocol. 

3. Each module is allowed to run from its own local clock frequency (and 

supply voltage), making scaling far more convenient than with the standard 

synchronous approach, which in accordance contributes to power savings. 

4. All asynchronous circuitry necessary for coordinating the clock-driven with 

the self-timed operation is confined to “self-timed wrappers” arranged around 

each clock domain.   

5. The GALS architecture can mitigate the impact of process and temperature 

variations, because a globally asynchronous system does not require that the 

global frequency was dictated by the longest path delay (the critical path) of 

the whole chip. In this case, each clock-domain frequency is only determined 

by the slowest path in its domain, [MAR 05]. 
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The methods and challenges of designing a GALS on-chip network will be 

presented in the following two sections, with a case study for the application of the PSTR 

(presented in Chapter 3) in synchronizing data communication within a GALS system.  

4.3 Data Synchronization in GALS Systems 

In a GALS system, each synchronous part, usually referred as clock domain, 

operates with its own clock signal. The different domains are mutually asynchronous as 

they run at different clock frequencies, see Figure 4.1. Therefore synchronization remains 

an issue either the clock domains work with different frequencies, or with the same 

central clock frequency. This is so, because the communications among clock domains 

demand harmonization of the different clock phases in order to guarantee that data is 

reliably transferred among clock domains. The term, synchronous domain, used in this 

thesis refers to the group of design blocks which work under the dictation of clock signals 

in a SoC, while, the term of asynchronous domain refers to the group of blocks which 

work in a self-timed manner without any clock signal. 

 

 

Figure 4.1: GALS Architecture. 
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Several synchronization schemes or structures for data transfers among 

independent clock domains in a GALS system have been presented. One category of 

solutions is to synchronize the signals from asynchronous domain with the local clock in 

an arbitrary timing relationship and limit synchronization failures within an acceptable 

level. The most widely applied scheme in this category is the double-latching as 

illustrated in Figure 4.2. It consists of two serially connected D-Flip-Flop (D-FF) 

components to latch the input signals with the reference clock of the receiver. It is 

possible that the first D-FF enters into metastable state if input signal transitions violate 

the setup or hold timing requirement. In this situation, the second D-FF gives a whole 

clock cycle for the first D-FF to resolve the metastability before latching its output. 

However, in the double-latching scheme, there still exists the failure possibility if the first 

latch can not get rid of metastability state before the second flip-flop samples its output. 

Therefore, Mean Time Between Failure (MTBF) is introduced to measure the safety of a 

synchronizer. MTBF gives indication about how often a synchronization failure occurs. 

The performance analysis of double-latching synchronizers and the equation of 

calculating MTBF of a synchronizer are presented in [DIK 99] and [KIN 02].    

 

Figure 4.2: Double-Latching Synchronization Scheme. 

Another type of solutions of data synchronization in a GALS system is to avoid 

synchronization failures by adjusting the clock signal of the local synchronous module or 

by generating a controllable clock signal in the synchronization interface. Clock Domain 

Crossing (CDC) strategies are required to achieve this purpose. Several hardware 

techniques have been proposed to deal with this problem. For example, the work 
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presented in [MAT 05] develops a stoppable clock structure to build a deterministic 

wrapper. The work in [MUT 99], and [ZHU 02] presents stretchable clock schemes to 

avoid synchronization failure in the interface between synchronous and asynchronous 

domains. A plausible clock scheme is firstly presented in [YUN 96a] to manage the data 

transfers between independent clock domains without synchronization failure. The work 

presented in [JOY 04], and [MUT 00] further develops the plausible clock scheme. The 

work in [BOR 97] presents an asynchronous wrapper which combines the stretchable and 

pausible clock schemes together. This wrapper can avoid synchronization failures caused 

by metastability in circuits. An interesting taxonomy of these different CDC hardware 

techniques is summarized and presented in [CUM 09]. Three main strategies are outlined, 

namely, pausible-clock generators, FIFO buffers, and boundary synchronization. 

4.3.1 GALS Wrapper with Pausible Clocking 

 
Figure 4.3: GALS System with Pausible Clocking. 

Many GALS systems presented in the past few years use (plausible, stretchable, 

or data-driven) clocking [YUN 96a] and [MUT 00]. The basic idea of all these proposals 

is similar: transferring data between wrappers when both the data transmitter and data 

receiver clocks are stopped. This elegantly solves the problem of synchronization 

between the two clock domains. Figure 4.3 illustrates the general structure of such a 

system. The asynchronous wrapper contains input and output ports that perform the 
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handshake process between the locally synchronous modules, and generates a stretch 

signal to stop the activity of both clocks. The basic GALS method focuses on point-to-

point communication between blocks. 

4.3.2 FIFO Solutions 

Another approach for interfacing locally synchronous blocks is using specially 

designed asynchronous FIFO buffers and hiding the system synchronization problem 

within the FIFO buffers [CHE 00], [CHA 03], and [BEI 06]. Such a system can tolerate 

very large interconnect delays and is also robust with regard to metastability. Designers 

can use this method to interconnect asynchronous and synchronous systems and also to 

construct synchronous-synchronous and asynchronous-asynchronous interfaces. Fig. 4.4 

diagrams a typical FIFO interface, which achieves an acceptable data throughput [CHE 

00]. In addition to the data cells, the FIFO structure includes an empty/full detector and a 

special deadlock detector. 

 

Figure 4.4: Typical FIFO Based GALS System. 

The advantage of FIFO synchronizers is that they do not affect the locally 

synchronous modules operation. However, with very wide interconnect data buses; FIFO 

structures can be costly in silicon area. Also, they require specialized complex cells to 

generate the empty/full flags used for flow control. The introduced latency might be 
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significant and unacceptable for high-speed and low-latency applications. As an 

alternative, in [BEI 06] a synchronous-asynchronous FIFO based on the bisynchronous 

classical FIFO design using gray code has been designed, for the specific case of an 

asynchronous Network-on-Chip (NoC) interface. Their aim was to maintain compatibility 

with existing design solutions and to use standard CAD tools. Thus, even with some 

performance degradation or suboptimal architecture, designers can achieve the main goal 

of designing GALS systems in the standard design environment. 

4.3.3 Boundary Synchronization 

A third solution is to perform data synchronization at the borders of the locally 

synchronous island, without affecting the inner operation of locally synchronous blocks 

and without relying on FIFO buffers. For this purpose, designers can use standard two-

flop, one-flop, predictive, or adaptive synchronizers for mesochronous systems, or locally 

delayed latching [GIN 03, DOB 04]. This method can achieve very reliable data transfer 

between locally synchronous blocks. On the other hand, such solutions generally increase 

latency and reduce data throughput, resulting in limited applicability for high-speed 

systems.  

Table 4.1 summarizes the properties of GALS systems synchronization methods. 

Contrary to earlier expectations, GALS-based solutions do not automatically offer 

performance gains. Inter-block communication incurs some penalty in all GALS systems. 

In pausible-clock systems, the clock can be stretched when transferring data on slow 

communication links, reducing the locally synchronous modules operating frequency. 

FIFO-based systems, depending on the communication link, suffer from additional 

latency. If designed carefully, performance degradation in a GALS system will be 

insignificant; however, in some examples (for various reasons), the reported performance 

degradation of the GALS system was as high as 23% [MUT 00]. The GALS approach is 

a vehicle for block interconnects. A crucial parameter for such an application is data 

throughput and latency. For many GALS solutions, the problem of data throughput is 

critical. Some pausible-clocking schemes can theoretically reach a maximum data 

throughput of one data item per clock cycle [MUT 00]. However, more often, data 

transfers are limited to every second clock cycle or even every fourth or fifth clock cycle 
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of the locally synchronous block. In addition, in an environment with intensive data 

transfers the performance degrades significantly. For FIFO-based solutions, the 

throughput problem is less severe, but latency increases. 

Table 4.1: Properties of GALS Systems. 

Property 

Synchronization Method 

Pausible 
Clocking FIFO-Based Boundary 

Synchronization 

Area Overhead Low Medium to High Low 

Latency Low High Medium 

Throughput Lowered according 
to clock pause rate High Medium 

Power Consumption Low High Medium 

Additional Cells Mutex, Delay-line, 
Muller-C Empty/Full flag  Muller-C, Mutex 

Advantages No Metastability Simple Solution, 
Throughput Low Overhead 

Disadvantages 
Local Clock 
Generators, 
Throughput 

Area Overhead, 
Latency 

Requires 
Verification, 
Throughput 

4.4 Application of PSTR for GALS Data Synchronization 

In this section we present a new method for synchronizing different clock 

frequencies in a GALS system. Our GALS system uses the PSTR oscillator presented in 

Chapter 3 as the main generating source of clocks in each synchronous domain. In 

contrast to most conventional GALS schemes, the method is not based on including in 

each ring oscillator a synchronizing element (such as for instance an arbiter) which on 

one side can pause the clock and on the other side offers a handshake interface. Instead, 

we propose a scheme in which each synchronous module has both an incoming and an 
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outgoing clock signal, which have been obtained by opening the ring oscillator module. 

Since these clock signals also behave as handshake signals, handshake circuits can be 

used to synchronize the clocks.  

4.4.1 Circuit Design 

The clock synchronization approaches mentioned in the previous sections have all 

one property in common: they include in the ring oscillator a synchronizing element that 

on one side can pause the clock and on the other side offers a handshake interface. Each 

approach has its specific synchronizing element (such as for instance an arbiter). The fact 

that either the clock or the environment may proceed implies that input and output 

operations are mutually exclusive (no overlap in the data validity intervals). A 

communication between two clock domains then implies two conversions: first from one 

clock domain to handshakes and then from handshakes to the other clock domain. 

Therefore, during such a communication one clock domain will be running while the 

other side clock domain is paused. 

In this subsection we propose a scheme in which the handshake signals are 

obtained directly by opening the PSTR oscillator feedback. The simplest form of clock 

synchronization is then by means of a C-element which synchronizes the two clock 

domains directly with a small and predictable timing overhead (and without the need for 

any conversion). The clock signal generated by each synchronous GALS domain C-

element can be used to support bidirectional communication. Arbiters are only needed 

when they are unavoidable, for example for sharing resources between independent clock 

domains. The main advantage of this method is that it uses asynchronous logic in 

securing data communication between different clock domains and avoiding the problem 

of metastability. Moreover, as process variability could have different effects on the two 

communicating clock domains even if they are programmed to work at the same clock 

frequency, this method enables us to remove this slight difference between the clock 

frequencies and to make them completely synchronized. One more advantage is that it 

avoids stopping data communication between different clock domains during their 

synchronization phase.  
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Figure 4.5: PSTR Based GALS System. 

Figure 4.5 shows a simplified block diagram of such PSTR based GALS system. 

It uses a PSTR (i.e. asynchronous ring) oscillator and a kind of control switch to safely 

synchronize the data transfer by means of the asynchronous handshaking request Req and 

acknowledgement Ack signals. The Com signal is used to define whether or not the 

synchronous clock domains are in a data exchange mode.  The detailed interconnections 

between the asynchronous ring and the control switch are depicted in Figure 4.6. 

The control switch is used to manage the connections of Ring_out_Req and 

Ring_out_Ack signals with the GALS network through the handshaking Req_ANoC and 

Ack_ANoC signals. If Com equal 1 (i.e. we have data exchange) the Ring_out_Req and 

Ring_out_Ack will be connected directly to Req_ANoC and Ack_ANoC respectively. In 

this case the two communicating domain asynchronous ring outputs will be connected 

together through the control switch. Then, the main functionality of the control switch 

will be to synchronize the two communicating clock domains together, so that they are 

working with the clock frequency of the slower communicating one. This 

synchronization has to be done without the need to reprogram each PSTR oscillator, just 
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by the mean of a C-element (as shown in Figure 4.7). Once Com signal equals 0 (i.e. no 

communication) the feedback connections of the asynchronous ring are closed. Each ring 

oscillator returns to work again with its own operating clock frequency.   

 

Figure 4.6: Control Switch Interconnections with the Asynchronous Ring. 

The details of the control switch circuit design are depicted in Figure 4.7. The 

Muller C-element C2 has one input which is connected to the output of the tri-state 

buffers of the PSTR shown in Figure 3.13. The second input of C2 comes from the Mux 

output. The Mux defines wither the second input of C2 will be connected to Ack_ANoC or 

it will be short circuited with the first input of C2 according to Sel value. If “Sel = 0”, 

then the two inputs of C2 will be connected together. In this case C2 will behave as a 

buffer gate that passes the signal coming from the tri-state buffers directly to 

Ring_out_Ack, which means that the ring backward feedback connection is now closed. 

C1 and Delay element have been added in the forward feedback connection in order to 

match the delays of C2 and the Mux. The output of C1 is connected to the request input of 

the first stage in the PSTR. Note that C1 and C2 set and reset inputs are the same as that 

of last and first stages in the PSTR respectively. Currently, the two PSTR asynchronous 

ring feedback connections are completely closed and balanced, so that the ring behaves 

normally as explained in Chapter 3. On the other hand, if “Sel = 1” then the PSTR 
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backward feedback connection will be opened. The two inputs of C2 will be Ack_ANoC 

and the output coming from the tri-state buffers. Given that, the clock signal of the other 

side communicating module is connected to the GALS network through Ack_ANoC. 

Accordingly, each of the C2 inputs will now be connected with the clock output of the 

two different communicating domains.  

 

Figure 4.7: Control Switch. 

In order to guaranty the correctness of our system behavior, we have to be always 

sure that the last clock cycle of our communicating domain has already been completed 

before/after the start/stop of the synchronization phase of the two clock domains; this is 

to avoid the presence of any glitches or truncated clock periods. So that, if Com signal 

changes its state from 0 to 1 (i.e. from no communication into data exchange state), the 

multiplexer Sel signal will not be allowed to change its state except with the next negative 

edge of our communicating domain. In this case, it will be always guaranteed that the 

other GALS communicating domain clock output will only be connected to one of C2 

inputs only when the clock of our communicating domain is active low. As Muller C-

element is actually a state holding element, C2 will not start to generate any output except 

when both inputs are equal to 1. Thus, the synchronization phase will only start just after 

the completion of our communicating domain last clock cycle. After that, C2 output will 
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exactly follow the slower clock frequency of the two communicating domains with a 

small time shift corresponding to the Charlie effect on C2. Conversely, if Com signal 

changes its state from 1 to 0 (i.e. from data exchange into no communication state), DFF-

1 output Q_x will be changed from 1 to 0 on the next negative edge of the synchronized 

clock. As Q_x is connected to the input of DFF-2, therefore with the next positive clock 

edge of the last synchronized clock cycle, the output of DFF-2 will be changed from 1 to 

0. Thus, the two inputs of the OR gate are 0, which forces Sel signal to be 0. This 

disconnects Ack_ANoC from the Mux input, which cuts the connection between the two 

communicating domains. Moreover, it insures that Ring_out_Ack is reconnected with the 

output from the tri-state buffers. As a result, the backward feedback connection is again 

closed after completing the last clock cycle of the synchronized clock. An amazing 

feature of the PSTR is that, it will now consider the last positive clock edge as the start of 

the first original domain clock cycle and returns back to run at its normal oscillating 

frequency, thanks to the state holding functionality of C1.  

4.4.2 Simulation Results 

The control switch shown in Figure 4.7 is implemented on a CMOS 45nm 

technology from STMicroelectronics. The delay information is extracted from the 

physical design and inserted in our timed VHDL model. Figure 4.8 shows an example 

where the control switch is requested to change the synchronous module state from no 

communication to data exchange with another synchronous module, then it disconnects 

and returns back to the no communication state.  

At point “A”, Com changes its level from 0 to 1. As a result, Q_x and Sel are 

changed with the next negative edge of Clock. Once, the Clock completes its last clock 

cycle, it starts to decide wither or not to continue at the same clock frequency. As the 

other communicating part clock frequency connected to Ack_ANoC is slower than the 

Clock frequency, the Clock frequency is synchronized with Ack_ANoC with a small time 

shift corresponding to C2 delay. Consequently, the two domains are now well 

synchronized, with the receiving domain is sampling the correct data sent over the GALS 

network.  
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At point “B”, Com changes its level from 1 to 0. Again, Q_x is changed with the 

next negative edge of Clock, while Sel changes its level after the completion of the last 

Clock cycle. After that, the Clock returns again to oscillate at the same clock frequency it 

has before the data exchange state. As only a small number of additional elements have 

been used in this control switch circuit (C-element, Mux, and DFF). Therefore, this 

circuit gathers the small area (30.34 µm²) and the low power consumption advantages 

(12.67 µW) of the pausible clocking GALS with the high throughput advantage of the 

FIFO-based GALS, as we are switching directly from one frequency to the other with no 

need for pausing or reprogramming our clock generator.  

 

Figure 4.8: Timing Diagram of the Control Switch. 

4.4.3 Multipoint Interconnection Schemes 

 A shared system bus or another form of multi-point data exchange is a key 

necessity of a modern SoC design as point-to-point exchange alone does not provide the 

necessary modularity and scalability. Synchronous SoC designs most often use a 

synchronous shared bus with central arbitration. Clock skew across the chip and the use 

of many timing domains in a system raise many problems concerning placement and 

routing and strongly limit the throughput. Our early circuits only supported point-to-point 

connections. To generalize the idea with the standard synchronous on-chip interconnects 

solutions, several interconnection approaches are being considered to add to the current 

GALS technique. Three different topologies were chosen for further studies. 
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Shared Bus 

The point-to point concept shown in the previous sections can be enhanced to 

support a shared bus solution as shown in Figure 4.9. A central arbiter handles the access 

to the shared bus resources by multiple senders, and an address decoder selects the 

appropriate destination. The control switch located in each GALS module manages the 

self-timed data transfers between different GALS modules through the handshaking 

request and acknowledgment signals.  The shared bus only needs little area, but has the 

disadvantage of high capacitive loads, resistances and crosstalk effects due to the rather 

long wiring. As every bus transaction is controlled by a four-phase handshake, long wires 

cause a considerable delay on the handshake cycle (Request rising  Acknowledgment 

rising  Request falling  Acknowledgment falling). 

 
Figure 4.9: Multipoint GALS interconnects (Shared Bus). 

 



Part-I                                                       Chapter 4.   PSTR Case Study in a GALS System 
   

   
Hatem Zakaria         Université de Grenoble 68 

Switch Network 

In Figure 4.10 a central switch network routes the incoming requests from the 

senders to the appropriate receiver. Such a switch can be build from a matrix of smaller 

self-timed switching elements. Arbitration between the incoming requests is handled 

within the switching elements. The micropipeline-like structure divides the long 

interconnection wires into smaller parts thereby lowering capacitance, resistance as well 

as crosstalk effects. The time for a handshake cycle is greatly reduced as the acknowledge 

signal comes from the subsequent stage directly. As long as data transfers do not 

interfere, the capacity of the network as a whole can be a multiple of the shared bus 

solution due to the concurrent channels. No arbitration is necessary in this case. The price 

to pay is the higher end-to-end latency, quite poor scalability, and a considerable area 

requirement. 

 
Figure 4.10: Multipoint GALS interconnects (Switch Network). 
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Ring Structure 

Figure 4.10 shows a block diagram of a self-timed ring topology that connects 

GALS modules in a circular fashion. At each node, local address decoders decide 

whether a received data word is bound for the local node or must be passed on to the 

successor node. Every node can also insert new data into the ring. One can think of a feed 

through solution with ring nodes connected by point-to-point transfer channels only, or a 

bypass version with ring transceivers acting independently from the modules. The two 

approaches are addressed in details in [VIL 03]. 

Concerning throughput, latency, and area requirement, the ring occupies a 

position somewhere in between the shared bus and the switch solution. Because the data 

packets have to traverse unrelated transceivers before reaching their destination, the 

latency is high compared to the shared bus. On the other hand the reduction of the length 

of the connecting wires scales down wire capacitance and crosstalk effects as in the 

switch and thus higher throughput is expected. The approach is modular and scales easily. 

No central instance is necessary and no distinction is made between masters (that can 

initiate a data transfer) and slaves (that just respond to a request). 

 
Figure 4.11: Multipoint GALS interconnects (Ring Structure). 
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4.5 Conclusions 

The use of GALS architectures opens a range of opportunities and advantages for 

system design. From a synchronous designer’s point of view, it provides the opportunity 

to completely decouple timing constraints of different modules and to assemble them 

without fearing metastability. This adds a high degree of modularity and the modules get 

much more amenable to reuse.  

The GALS approach is also advantageous from an asynchronous designer's 

perspective. Because asynchronous modules can easily be incorporated in the self-timed 

network-on-chip, they can be used in system-on-chip designs wherever they are available 

and beneficial. Thus asynchronous design styles can demonstrate their potential and 

maturity in projects they otherwise wouldn't have access to.  

This Chapter presents a comparison between different GALS synchronization 

schemes. After that, a new scheme based on the use of the PSTR as the main clock 

generating source in each GALS module is proposed. This scheme supports reliable 

communication between independently clocked GALS modules. However, instead of 

including in each PSTR oscillator a standard element for pausing the clock (such as for 

instance an arbiter), each synchronous module is proposed to have both an incoming and 

an outgoing clock signal, which have been obtained by opening the PSTR oscillator 

module. Since these clock signals behave as handshake signals, handshake circuits can be 

used to synchronize the clocks. The simplest way synchronizing two different clock 

domains is then by means of a C-element, which introduces only a small and predictable 

timing overhead. A multiplexer and DFF have been used in this circuit design, in order to 

adapt the instants on which we switch between no communication and data exchanges 

states, so we don’t have any glitches nor truncated clock periods.  

The advantages of this scheme are: due to its self-timed nature, the control switch 

used with the PSTR allows connecting modules running at different clock frequencies 

with very small power consumption.  It offers high throughput compared to a pausible 

clock solution and a small area compared to FIFO based solution. Moreover, it can be 

easily applied in different multipoint GALS interconnection schemes. 
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Chapter 5 

Power Saving Techniques 

5.1 Introduction 

Rapid development of portable systems like laptops, PDAs, digital wrist watches, 

and cell phones requires low power consumption and high density ICs, which leads to a 

surge of innovative developments in low power devices and design techniques. In most 

cases, the requirements for low power consumption must be met with equally demanding 

goals for high chip density and high throughput circuits. Hence, the low-power digital 

design and digital ICs have emerged as very active fields of research and development. In 

this cutting-edge technology era, reduction in the power dissipation is a critical task, 

especially as the size of transistors is scaled down to increase the transistor density over 

the silicon chip. Consequently, careful consideration must be given to minimize digital 

ICs power dissipation without sacrificing its performance. 

5.2 Sources of CMOS Power Consumption 

There are three major sources of power dissipation in digital CMOS circuits 

which are summarized in the following Equation 5.1. 

ܲ ൌ ௟ܲ௘௔௞௔௚௘ᇣᇧᇤᇧᇥ
ௌ௧௔௧௜௖ ௉௢௪௘௥

൅ ௦ܲ௪௜௧௖௛௜௡௚ ൅ ௦ܲ௛௢௥௧௖௜௥௖௨௜௧ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ
஽௬௡௔௠௜௖ ௉௢௪௘௥

                      (5.1)

The first term Pleakage represents leakage power consumption, where leakage 

currents can arise from substrate injection and sub-threshold effects, which is primarily 

determined by fabrication technology considerations. The second term Pswitching is the 

switching power which occurs when a gate is switching from one logic state to another 

and is the result of the switching current (needed to charge and discharge internal nodes). 

Finally, Pshortcircuit is the short circuit power consumption due to the direct-path short 
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circuit current, which arises when both the NMOS and PMOS transistors are 

simultaneously active, conducting current directly from supply voltage to ground.  

The sum of the switching and the short circuit powers is called the dynamic 

power, while the leakage power is called the static power. Accordingly, power dissipation 

in CMOS circuits involves both static and dynamic power dissipations. In the submicron 

technologies, the static power dissipation, caused by leakage currents and sub-threshold 

currents contribute with a small percentage to the total power consumption. This static 

power consumption occurs when all inputs are held at the same logic level and the circuit 

is not in changing states. On the other hand, the dynamic power dissipation, resulting 

from charging and discharging of parasitic capacitive loads of interconnects and devices 

dominates the overall power consumption. Therefore, traditional low power management 

techniques for 130nm and 180nm technology nodes were focusing only on reducing the 

dynamic power. 

Advances in CMOS technology allow MOS transistor sizes to be continuously 

scaled down in progressively smaller technology nodes. As transistor sizes become 

smaller, supply voltages can be lowered to reduce the power dissipation. In order to 

achieve high speed with low supply voltages, the threshold voltage must be reduced 

accordingly. This reduction of the threshold voltages combined to the short channel effect 

has led to an exponential increase in the transistors leakage current. Thinner gate oxides 

have also contribute to an increase in gate leakage current as well. Consequently, leakage 

power is no longer negligible in deep-submicron CMOS technologies.  

At 90 nm and beyond, leakage power accounts for a significant portion of the total 

power in high-performance designs as shown in Figure 5.1 [PAN 05], therefore its 

management becomes essential in the ASIC design process. Leakage power is now a 

growing concern in the overall design process. Unlike dynamic power, which can be 

managed by reducing switching activity, leakage power causes its effect as long as the 

power is on. That is why current process technologies are pushing designers to consider 

new design methods to reduce both static and dynamic power consumption.  
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Figure 5.1: Static vs. Dynamic Power with Process Migration. 

In this chapter a survey on different methods that can be used to control both the 

static and the dynamic CMOS power consumption will be presented. The following 

subsections will show using equations how each part contributes to the total CMOS 

circuit power consumption. This will help the circuit designers in choosing the most 

suitable technique for reducing the effect of each power consuming part, as will be shown 

in Sections 5.3 and 5.4.   

 5.2.1 Leakage Power 

Leakage or static power dissipation is associated with logic gates when they are 

inactive (static); that is, not currently switching from one state to another. In this case, 

these gates should theoretically not be consuming any power at all. In reality, however, 

there is always some amount of leakage current passing through the transistors, which 

means they do consume a certain amount of power. Even though the static power 

consumption associated with an individual logic gate is extremely small, the total effect 

becomes significant when we come to consider today’s ICs, which can contain tens of 

millions of gates. Furthermore, as transistors shrink in size when the industry moves from 

one technology to another, the level of doping has to be increased, thereby causing 

leakage currents to become relatively larger. The result is that, even if a large portion of 
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the device is completely inactive, it may still be consuming a significant amount of 

power. The leakage power consumption associated with the transistors is expressed as: 

௟ܲ௘௔௞௔௚௘ ൌ ௗܸௗ. ௟௘௔௞௔௚௘ܫ ൌ ௗܸௗ. ଴݁ି௤௏೟೓ܫ
௄்ൗ                      (5.2)

where q is the elementary charge, Vth is the transistor’s threshold voltage, K is 

Boltzmann’s constant, I0 is the saturation current, and T is the temperature.  

One important point about this equation is that it shows that static power 

dissipation has an exponential dependence on temperature. This means that as the chip 

heats up, its static power dissipation increases exponentially. Furthermore, we see that 

static power dissipation has an inverse exponential dependence on the switching 

threshold of the transistors. 

5.2.2 Switching Power 

Equation 5.3 allows for the calculation of the power consumption of a switched 

capacitor. At the transistor-level, the load capacitance CL includes the parasitic gate 

overlap and fringing capacitances as well as the Miller capacity. α models the switching 

probability of the transistor during a cycle of the clock toggling at frequency f. Vdd is the 

supply voltage.   

௦ܲ௪௜௧௖௛௜௡௚ ൌ .ߙ .௅ܥ ݂. ௗܸௗ
ଶ                       (5.3)

From equation 5.3 we can note that switching power is not a function of the 

transistor size, but rather a function of switching activity and load capacitance. Thus, it is 

data dependent. 

5.2.3 Short-Circuit Power 

Short-circuit power is the second part of the dynamic power consumption.  It 

occurs during a short period of time when both the pull-up and the pull-down networks of 

static CMOS-gates are conducting. Equation 5.4 gives a simple model of the short-circuit 
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power with β modeling the transistors’ conductivity per voltage unit factoring the linear 

region, Vth is the threshold voltage, T is the inputs’ rise/fall time, and τ is the gate delay.   

௦ܲ௛௢௥௧௖௜௥௖௨௜௧ ൌ
ߚ

12 ሺ ௗܸௗ െ 2 ௧ܸ௛ሻଷ ߬
ܶ                      (5.4)

Equation 5.4 is an overestimation by up to a factor of three. For an accurate 

analysis, transistor level models and transient analyses are needed [HED 87]; however, 

Pshortcircuit within modules can be captured as part of the dynamic power models of the 

modules. 

5.3 Static Power Reduction Techniques 

Since, static power has become a significant contributor to the total CMOS power 

consumption in today’s technological nodes, as the gate length and threshold voltage are 

scaled down. Therefore, several techniques have to be applied at the circuit level to 

reduce this amount of power. From equation 5.2, one can conclude that, the static power 

reduction is mainly related to managing the transistor threshold and/or supply voltages 

(Vth and/or Vdd). As a result, static power reduction techniques can include multi-

threshold libraries, multiple and dynamic supply voltages, power gating and variable 

body biasing [BOR 05] and [PFI 07]. 

5.3.1 Multi-Threshold 

Silicon foundries have started to offer multiple threshold devices at the same 

process node to address the need to control leakage current and enabling designers to 

trade off leakage and performance [SVI 01]. Consequently, a certain number of libraries 

of gates are defined for different implementations of functions, including high-voltage-

threshold (HVT), standard-voltage-threshold (SVT) and low-voltage-threshold (LVT) 

cells, which have different speed and leakage characteristics.  

It is common for the LVT device to have an order of magnitude higher leakage 

than the SVT device and the HVT device to have leakage characteristics an order of 

magnitude below the standard. This reduction in leakage is not free, however, and it 
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comes at the expense of the speed of the device and an increase in the cost of the 

fabrication process. The LVT cells are the fastest and have the highest leakage. They are 

used by the synthesis and optimization tools in the critical paths. The SVT and HVT 

gates are used in less-critical paths to reduce leakage power. The challenge for EDA tools 

is to use the available characteristics of the cells in the design library to create an 

implementation that will meet the timing constraints, while reducing the leakage current 

as much as possible. 

5.3.2 Body Biasing 

The threshold voltage and therefore the leakage current in a CMOS transistor are 

controllable by varying the back biasing. The change in the threshold voltage is roughly 

proportional to the square root of the back bias voltage. A distinct advantage of this 

approach is that during periods when heavy processing is needed, the threshold voltage 

can be reduced, thus speeding up the cells. When the cells are in a slower drowsy or idle 

mode, the threshold voltage can be raised, thus lowering the leakage. 

 

Figure 5.2: Using Bias to Control Threshold Voltages.  

One significant impact of using variable back biasing is that two new terminals 

for each cell need to be routed. A common ASIC design practice is to create cells that tie 
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the N-well regions to Vdd and the P-well regions to ground. In the physical 

implementation, these are simply predefined contacts designed into the cell, which are 

connected as part of the power and ground routes. To enable back-biasing, new voltage 

lines are routed to control the bias. These can be to individual cells or, more likely, to 

regions that contain multiple cells sharing the same WELL and a common tie-cell to 

control the WELL bias, [FLA 03] and [MAR 02]. Figure 5.2 illustrates the concept of 

variable body biasing. Figure 5.2 (a) is a traditional implementation with wells tied to Vdd 

and Vss, and Figure 5.2 (b) presents wells biased for leakage reduction. 

5.3.3 Power Gating 

To reduce the overall leakage power of the chip, it is highly desirable to add 

mechanisms to turn off blocks that are not being used. This technique is known as power 

gating.  The basic strategy of power gating is to provide two power modes: a low power 

mode (i.e. sleep mode) and an active mode. The goal is to switch between these two 

modes at the appropriate time and in the appropriate manner to maximize power savings 

while minimizing the impact to performance. 

Power-gating reduces leakage by reducing transistor gate to source voltage. The 

operation of power-gating technique is simple. A header (p-type transistor) switch is 

placed in between a block and power to control supply power from this block with sleep 

signal, see Figure 5.3. In active mode, the voltage V_Vdd is acting as power supply at a 

potential of approximately Vdd to the block; leakage power exists both in header and this 

circuit block. In standby mode, header is switched off, meaning that the voltage V_Vdd is 

beginning to drop with time. The voltage is no longer at Vdd, but rather at a voltage 

somewhat above VSS at saturation point. Hence, transistor gate to source voltage is 

reduced. As soon as V_Vdd starts to fall, leakage power saving in this block begins. Yet, 

leakage still exists in the header. This is why sleep transistors are usually made of HVT 

devices to prevent from cell leakage while maintaining a high potential on V_Vdd. Same 

principle applies to a footer (n-type transistor) switch where it is inserted between a block 

and ground. Both headers and footers are employed alternatively in a power-gating 

design.  
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Figure 5.3: Fine Grain Power Gating with an Inverter.  

Since standard cells are tagged to an additional transistor, chip area will be much 

bigger than a normal one. This will result a larger die size on wafer and leads to cost 

increasing. It is also required a set of libraries for a good power saving, timing closure 

and area efficiency design. This type of power-gating is known as fine-grain power-

gating, [FRE 07]. In coarse grain power gating, a block of gates has its power switched 

by a collection of switch cells, see Figure 5.4. The sizing of a coarse grain switch network 

is more difficult than a fine grain switch as the exact switching activity of the logic it 

supplies is not known and can only be estimated. But coarse grain gating designs have 

significantly less area penalty than fine grain. Over the last few years, there has been a 

strong convergence towards coarse grain power gating as the preferred method. The area 

penalty for fine grain power gating has just not proven worth the savings in design effort. 

Today, virtually all power gated designs use coarse grain power gating. 

One of the key challenges in any power gating design is managing the in-rush 

current when the power is reconnected. This in-rush current must be carefully controlled 

in order to avoid excessive voltage drop in the power network; otherwise, the function 

and state of powered-on blocks could be corrupted as the power gated block goes through 

its sleep/wakeup sequence. 



Part-II                                                                         Chapter 5.  Power Saving Techniques 
   

   
Hatem Zakaria         Université de Grenoble 81 

 
Figure 5.4: Coarse-Grain Power Gating. 

5.4 Dynamic Power Reduction Techniques  

The dynamic power consumption is a dominant power component for the current 

and future design technologies. Dynamic power substantially increases in nanometer 

technologies because of increased number of on-chip functions as well as a prolonging 

trend on getting higher clock frequencies. Since all applications running over system 

processors do not require fast processors to operate at the highest speed all the time, it is 

possible to slow down the fast circuitry and reduce the static power consumption as well 

as the dynamic power consumption when the maximal performance is not required. 

Equation 5.3 calculates the dynamic power consumption, Pdynamic, of CMOS logic 

gates. It can be easily inferred that Pdynamic is proportional to the load capacitance, CL ,the 

square of Vdd , the switching activity, α, and the clock frequency, f. Consequently, power 

consumption reduction can be achieved by: 

• Reducing of output capacitance, CL 

• Reducing of supply voltage, Vdd 

• Reducing of switching activity, α 

• Reducing of clock frequency, f 
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Thus, a designer should devise new techniques aiming at the decrease of each 

above mentioned parameter or any combination of them. Concerning, the load 

capacitance CL, it can only be affected during chip design (for example by minimizing on 

chip routing capacitances and reducing external components access). Therefore the two 

main dynamic power reduction strategies concern the reduction of the switching activity 

and the supply voltage with the clock frequency. Clock gating is a very popular example 

of switching activity control. Dynamic Voltage and Frequency Scaling “DVFS” 

introduces a significant example of dynamic power reduction in most complex SoC 

systems by controlling their supply voltage and clock frequency. Therefore, the rest of the 

thesis will mainly focus on the use of DVFS in GALS systems, and how they can be 

improved to smartly control the process variability effect.  

5.4.1 Clock Gating 

A significant fraction of the dynamic power in a chip is in the distribution 

network of the clock. Up to 50% or even more of the dynamic power can be spent in the 

clock buffers. This result makes intuitive sense since these buffers have the highest toggle 

rate in the system, there are lots of them, and they often have high drive strength to 

minimize clock delay. In addition, the flops receiving the clock dissipate some dynamic 

power even if the inputs and outputs remain the same.  

The most common way to reduce this power is to turn clocks off when they are 

not required. This approach is known as clock gating. Modern design tools support 

automatic clock gating: they can identify circuits where clock gating can be inserted 

without changing the functionality of the logic. Figure 5.5 shows how clock gating 

works. In the original design, the register is updated or not depending on a variable “EN”. 

The same result can be achieved by gating the clock based on the same variable. If the 

registers involved are single bits, then a small savings occurs. If they are, say, 32-bit 

registers, then one clock gating cell can gate the clock to all 32 registers (and any buffers 

in their clock trees). This can result in considerable power savings.   

In the early days of RTL design, engineers would code clock gating circuits 

explicitly in the RTL. This approach is error prone – it is very easy to create a clock gated 
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circuit that glitches during gating, producing functional errors. Today, most libraries 

include specific clock gating cells that are recognized by the synthesis tool. The 

combination of explicit clock gating cells and automatic insertion makes clock gating a 

simple and reliable way of reducing power. No change in the RTL is required to 

implement this style of clock gating. 

 

Figure 5.5: Clock Gating. 

In [POK 07], Pokhrel reports on a unique opportunity his team recently had to 

compare a (nearly) identical chip implemented both with and without clock gating. As a 

power reduction project, an existing 180nm chip without clock gating was re-

implemented in the same technology with clock gating. Only minor changes in the logic 

were implemented (some small blocks were removed and replaced by other blocks, for a 

small net increase in functionality). Pokhrel reports an area reduction of 20% and a power 

savings of 34% to 43%, depending on the operating mode. (This savings was realized on 

the clock gated part of the chip; the processor was a hard macro and not clock gated. 

Power measurements were made on the whole chip when the processor was in sleep 
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mode; i.e. the processor clock was turned off.) The power measurements are from actual 

silicon. The area savings is due to the fact that a single clock gating cell takes the place of 

multiple multiplexers. Pokhrel makes a couple of interesting observations:  

• After some analysis and experiments, the team decided to use clock gating only 

on registers with a bit-width of at least three. They found that clock gating on one-

bit registers was not power or area efficient. 

• Much of the power savings was due to the fact that the clock gating cells were 

placed early in the clock path. Approximately 60% of the clock buffers came after 

the clock gating cell, and so had their activity reduce to zero during gating. 

5.4.2 Dynamic Voltage and Frequency Scaling 

Dynamic voltage and frequency scaling (DVFS) is recognized as one of the most 

effective power reduction techniques. Given that, switching power Pswitching is the major 

contributing part to total CMOS power dissipation. Therefore, controlling Pswitching will 

have a significant impact on the reduction of the total CMOS power consumption. 

Equation 5.3 shows that, reducing the supply voltage Vdd will decreases the switching 

power dissipation. The reduction in switching power is a quadratic function of the voltage 

Vdd and a linear function of the clock frequency fclk. As a result, Dynamic Voltage Scaling 

(DVS) can be used to efficiently manage the SoC power/energy consumption [FLA 04]. 

Supply voltage can be reduced whenever slack is available in the critical path. However, 

this drop will also decrease the computational speed because of the propagation delay of 

gates, i.e. Td, which is seriously increasing as Vdd approaches the threshold voltage of the 

device Vth, see Figure 5.6. In this figure an inverter implemented on STMicroelectronics 

45nm CMOS technology using three different libraries (i.e. HVT, SVT and LVT) was 

taken as an example. Figure 5.6 also shows that for the same gate, the LVT 

implementation provides the smallest propagation delay while the HVT implementation 

presents the largest amount of delay, as it was explained previously in section 5.3.1. The 

relation between the propagation delay Td and the supply voltage Vdd can be expressed as: 

ௗܶ ߙ ௗܸௗ
ሺ ௗܸௗ െ ௧ܸ௛ሻଶ                      (5.5)
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Figure 5.6: Propagation delay vs. Vdd for an inverter gate in STMicroelectronics 45nm 

CMOS process using HVT, SVT and LVT libraries. 

Controlling the supply voltage is hence a power-delay tradeoff: the power 

consumption decreases while the delay increases. That is why the supply voltage and the 

clock frequency have to be controlled together to guarantee the critical path (i.e., the 

slowest path between two clocked components). If the frequency is too high the data 

cannot be computed during a clock period, which means that the results sampled by the 

clocked components will probably be incorrect. Therefore the critical path delay has to be 

lower than the clock period, [POU 01]: 

ௗܶ ሺ݈ܿܽܿ݅ݐ݅ݎ ሻ݄ݐܽ݌ ൏
1
௖݂௟௞

                      (5.6)

Clearly, it is required to decrease the clock frequency before decreasing the 

supply voltage and, respectively, increase the supply voltage before increasing the clock 

frequency. This principle is needed in all systems to guarantee the critical path: either 
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with a hardware solution like some delay lines, [DHA 01] and [DHA 02], or with a 

software technique at least. Scaling supply voltage and clock frequency together results in 

a reduction in the energy computation as well. While, scaling clock frequency alone is 

insufficient because, reducing the clock frequency does not only reduce the processor 

power consumption but also increase the computation execution time (which is to a first 

approximation linearly dependent on clock frequency). The clock speed reduction results 

in a computation taking more time but using the same total amount of energy. Because 

the power consumption is quadratically dependent to the voltage level, scaling the voltage 

level proportionally along with the clock frequency offers a significant total 

power/energy reduction while running a processor at a reduced performance level. 

As a conclusion, adapting the supply voltage is very interesting when possible but 

this implies the use of Dynamic Frequency Scaling (DFS) to keep correct the system 

behavior. The addition of DFS to DVS is called DVFS and results in simultaneously 

managing the frequency and voltage which provides a good consumption-performance 

tradeoff. 

 

Figure 5.7: Energy Consumption vs. Power Consumption. 
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As applications do not require the full computational power at any time, it is 

possible to control speed and energy. In many cases, the only performance requirement is 

that the task meets a deadline, see Figure 1.3 (a). Such cases create opportunities to run 

the processor at a lower performance level and achieve the same perceived performance 

while consuming less energy. Figure 1.3 (b) shows that decreasing the processor clock 

frequency reduces power consumption but simply spreads the computation out over time, 

thereby consuming the same total energy as before. Figure 1.3 (c) shows that reducing the 

voltage level as well as the clock frequency achieve the desired goal of reduced energy 

consumption at an appropriate performance level [VAR 03]. 

5.5 Classification of DVFS Algorithms 

For hard real-time systems, there are two kinds of scheduling approaches 

depending on the scaling granularity: intra-task DVFS (Intra-DVFS) and inter-task DVFS 

(Inter-DVFS). The intra-task DVFS algorithms adjust the voltage and the frequency 

within an individual task boundary, [SHI 01] and [GRU 01], while the inter-task DVFS 

algorithms determine the voltage and the frequency on a task-by-task basis at each 

scheduling point. The main difference between them is whether the slack times are used 

for the current task or for the tasks that follow. Inter-DVFS algorithms distribute the slack 

times from the current task for the following tasks, while Intra-DVFS algorithms use the 

slack times from the current task for the current task itself. 

 5.5.1 Intra-Task DVFS 

In scheduling hard real-time tasks, in order to guarantee the timing constraint of 

each task, the execution times of tasks are usually assumed to be the worst case execution 

times (WCETs). However, since a task has many possible execution paths, there are large 

execution time variations among them. So, when the execution path taken at run time is 

not the worst case execution path (WCEP), the task may complete its execution before its 

WCET, resulting in a slack time. In that case, Intra-DVFS exploits such slack times and 

adjusts the processor speed. Intra-DVFS algorithms can be classified into two types 

depending on how to estimate slack times and how to adjust speeds. 
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  Path Based Method 

In the path-based Intra-DVFS, the voltage and the clock frequency are determined 

based on a predicted reference execution path, such as WCEP. For example, when the 

actual execution deviates from the predicted reference execution path (say, by a branch 

instruction), the clock speed is adjusted. If the new path takes significantly longer to 

complete its execution than the reference path, the clock speed is raised to meet the 

deadline constraint. On the other hand, if the new path can finish its execution earlier than 

the reference path, the clock speed is lowered to reduce the energy consumption. In the 

path-based Intra-DVFS, program locations for possible speed scaling are identified using 

static program analysis [SHI 01] or execution time profiling [LEE 00]. 

  Stochastic Method 

The stochastic method is based on the idea that it is better to start the execution at 

a low speed and accelerate the execution later when needed than to start with a high 

speed and reduce the speed later when slack time is found. By starting at a low speed, if 

the task finishes earlier than its WCET, it does not need to execute at a high speed. 

Theoretically, if the probability density function of execution times of a task is known a 

priori, the optimal speed schedule can be computed, [GRU 01]. Under the stochastic 

method, the clock speed is raised at specific time instances, regardless of the execution 

paths taken. Unlike the path-based Intra-DVFS that can utilize all the slack times of the 

task in scaling speed, the stochastic Intra-DVFS may not utilize all the potential slack 

times. 

 5.5.2 Inter-Task DVFS 

Inter-DVFS algorithms exploit the “run-calculate-assign-run” strategy to 

determine the supply voltage and the appropriate clock frequency, which can be 

summarized as follows: (1) run a current task, (2) when the task is completed, calculate 

the maximum allowable execution time for the next task, (3) assign the supply voltage 

with the corresponding clock frequency for the next task, and (4) run the next task. Most 

Inter-DVFS algorithms differ during step (2) in computing the maximum allowed time 
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for the next task τ which is the sum of WCET of τ and the slack time available for τ. A 

generic Inter-DVFS algorithm consists of two parts: slack estimation and slack 

distribution. The goal of the slack estimation part is to identify as much slack times as 

possible while the goal of the slack distribution part is to distribute the resulting slack 

times so that the resulting speed schedule is as uniform as possible. Slack times generally 

come from two sources; static slack times are the extra times available for the next task 

that can be identified statically, while dynamic slack times are caused from run-time 

variations of the task executions. 

A. Slack Estimation Methods 

 (1) Static Stack Estimation 

Maximum constant speed 

One of the most commonly used static slack estimation methods is to compute the 

maximum constant speed, which is defined as the lowest possible clock speed that 

guarantees the feasible schedule of a task set, [SHI 00]. For example, in earliest deadline 

first (EDF) scheduling, if the worst case processor utilization (WCPU) U of a given task 

set is lower than 1.0 under the maximum speed fmax, the task set can be scheduled with a 

new maximum speed f’max = U. fmax. Although more complicated, the maximum constant 

speed can be statically calculated as well for RM scheduling, [SHI 00] and [GRU 01]. 

(2) Dynamic Stack Estimation 

Three widely-used techniques of estimating dynamic slack times are briefly 
described below. 

Stretching to Next Task Arrival time (NTA) 

Even though a given task set is scheduled with the maximum constant speed, 

since the actual execution times of tasks are usually much less than their WCETs, the 

tasks usually have dynamic slack times. One simple method to estimate the dynamic 

slack time is to use the arrival time of the next task, denoted by NTA, [SHI 00]. Assume 

that the current task τ is scheduled at time t. If NTA of τ is later than (t + WCET (τ)), task 

τ can be executed at a lower speed so that its execution completes exactly at the NTA. 

Figure 5.8 shows examples of the Stretching-to-NTA method. When a single task τ is 
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activated as shown in Figure 5.8 (a), the execution of τ can be stretched to NTA. When 

multiple tasks are activated, there can be several alternatives in stretching options. For 

example, the dynamic slack time may be given to a single task or distributed equally to 

all activated tasks. Cases I and II of Figure 5.8 (b) illustrate these two options, 

respectively. 

 

Figure 5.8: Examples of Stretching to NTA. 

Priority-based slack stealing 

This method exploits the basic properties of priority-driven scheduling such as 

EDF. The basic idea is that when a higher-priority task completes its execution earlier 

than its WCET, the following lower-priority tasks can use the slack time from the 

completed higher-priority task. It is also possible for a higher priority task to utilize the 

slack times from completed lower priority tasks. However, the latter type of slack stealing 

is computationally expensive to implement precisely. Therefore, the existing algorithms 

are based on heuristics, [AYD 01] and [KIM 02]. 
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Utilization updating 

The actual processor utilization during run time is usually lower than the worst 

case processor utilization. The utilization updating technique estimates the required 

processor performance at the current scheduling point by recalculating the expected worst 

case processor utilization using the actual execution times of completed task instances, 

[PIL 01]. When the processor utilization is updated, the clock speed can be adjusted 

accordingly. The main merit of this method is its simple implementation, since only the 

processor utilization of completed task instances have to be updated at each scheduling 

point. 

B. Slack Distribution Methods 

In distributing slack times, most Inter-DVFS algorithms have adopted a greedy 

approach, where all the slack times are given to the next activated task. This approach is 

not an optimal solution, but the greedy approach is widely used because of its simplicity. 

Table 5.1 summarizes all previously mentioned DVFS scheduling algorithms with 

the main characteristics (i.e. scaling method and slack computation) of each technique. 

Table 5.1: Classification of DVFS Algorithms. 

DVFS 
Algorithm Scaling Method Slack 

Computation 

Intra-DVFS 
Path-based method 

Off-Line Stochastic method 

Inter-DVFS 

Maximum Constant Speed 

Stretching to NTA 

On-Line Priority-based slack stealing 

Utilization Updating 
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5.6 DVFS Architecture Overview 

DVFS is a technique that allows the processor to dynamically alter their voltage 

and speed at runtime under the control of voltage scheduling algorithms. Implementing 

DVFS in a general-purpose microprocessor system includes three key components: 

1. An operating system that can smartly vary the processor speed. 

2. A regulation loop which generates the minimum voltage required for the 

desired speed. 

3. A microprocessor which operates over a wide voltage range. 

Nowadays, because of the instruction complexity and the access time to memory 

through different levels of cache, it is extremely hard to predict the execution time of a 

program and consequently the real speed of a processor. DVFS implementation generally 

assumes that the speed of the processor is constant (do not care about the cache 

mechanisms) and takes the worst case. With such an assumption, the processors run faster 

than the minimal speed enabling the highest energy savings. With a feedback system, it is 

possible to control with a high accuracy the power/energy consumed by the circuit. This 

is done respecting all the specifications and needs of the applications executed by the 

processor.  

Fig. 5.9 shows the block diagram of the DVFS system. The sensor integrates an 

instruction counter and the clock is used as a time reference. Because the processor 

informs the sensor every time an instruction completes, it can calculate the real speed of 

the processor in Millions Instructions per Second (MIPS), averaged on a period of 

computation. Indeed, each executed application indicates to the co-processor through a 

software layer (OS) the speed it requires. The information about the speed can be inserted 

statically into the code at compile time (API - Application Programming Interface – 

function calls in the code) or computed dynamically at run time by the operating system. 

Therefore combining the information about the real-time requirements (estimated in 

MIPS) of the applications and OS running on the microprocessor enables us to create a 

computational load profile with respect to time. Consequently, using this profile it is 
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possible to apply a fine-grain power/energy management (software) allowing application 

deadlines to be met. Note that task scheduling is an important issue when using this 

technique. Sophisticated scheduling policies, as the one proposed in, [ZHU 03], can 

easily take advantage of this work by simply interfacing to the hardware features 

proposed using an API. The co-processor integrates with the sensor two main parts, the 

load error prediction unit and the digital controller part. The load error prediction 

computes the amount of error in the load profile (i.e. the difference between the set point 

sent by the OS and the calculated average speed by the sensor). The digital controller part 

dynamically controls the voltage/frequency scaling hardware which integrates a DC/DC 

converter to scale the supply voltage as well as the programmable clock generator to 

control the clock frequency in order to satisfy the application computational needs with 

an appropriate management strategy. This leads to a lower supply voltage and frequency 

reducing the system power/energy consumption. Indeed, the lower the processor speed, 

the lower the power consumption.  

 

Figure 5.9: Voltage/Frequency Control Simplified Architecture. 
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There are many ways to control the voltage/frequency scaling hardware 

(Proportional Integral Derivative (PID) controller, fuzzy logic compensators, etc). Since 

the control is performed by the digital controller of the co-processor, this enables us to 

choose the way the control operates. The control depends on the microprocessor and the 

DC/DC converter. For each circuit, it is necessary to perform a complete characterization 

of the whole system in order to tune the control parameters at best. For instance, the 

period of the external sensor clock is crucial since it determines the accuracy of the 

calculated average speed. Moreover, it determines the system speed response. In fact the 

coprocessor sensor integrates also a register to memorize the number of executed 

instructions (i.e. the counter output) on a predefined period and determines the average 

speed on each rising-edge of the clock. If this period is short, the system will be fast but 

the calculated average speed will not be accurate. On the opposite, a long period leads to 

a slow system but to a more accurate speed. Therefore the period used to estimate the 

speed must be chosen carefully 

5.7 Conclusions 

The CMOS power consumption in the nanometric scales is becoming a really 

important design constraint. Therefore, optimization is required at all circuit levels in 

order to get low-power circuits with an acceptable level of performance. The goal of this 

chapter was to provide to the user the necessary concepts to understand and well 

characterize the causes of different sources of CMOS power dissipation. From which, 

designers can choose the appropriate way to reduce the effect of each contributing part in 

a CMOS circuit. Therefore different low-power solutions were investigated, for example, 

the impact of leakage power can be reduced using multi-threshold, body biasing or power 

gating techniques. On the other hand, the impact of dynamic power consumption can be 

reduced by clock gating or DVFS techniques. Since supply voltage scaling affects both 

static and dynamic power, DVFS with power gating are chosen during the rest of the 

thesis as the promising techniques for a global CMOS power reduction. Therefore 

different DVFS algorithms and the main DVFS architecture were explained in details.   
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Chapter 6 

Controlling Uncertainty and Handling the 
Process Variability  
 

6.1 Introduction 

Due to continuous scaling of CMOS technology, systems containing a large 

number of processors and on-chip memories have become a reality. Consequently, novel 

architectures that allow various cores communicate to each other via the Network-on-

Chip (NoC) paradigm have emerged as a promising alternative to traditional bus-based or 

point-to-point communication solutions [DAL 01]. By eliminating global wires, the NoC 

approach provides the needed scalability and predictability, while facilitating design 

reuse. Moreover, the NoC approach offers a matchless platform for implementing the 

globally asynchronous, locally synchronous (GALS) design paradigm, [CHA 84] and 

[MUT 00]; this makes the clock distribution and timing closure problems more 

manageable. In addition, a GALS design style fits nicely with the concept of different 

voltage-frequency domains, which provide better power-performance tradeoffs than its 

single voltage, single clock frequency counterpart, while taking advantage of the natural 

partitioning and mapping of applications onto the NoC platform.  

Besides this huge increase in system complexity, systems designed in nanoscale 

technologies suffer from systematic and random variations in process, voltage, and 

temperature (PVT). Nowadays, within die variations play an increasingly important role 

in system power consumption and performance as the technology scales down [BOR 03]. 

Since designers cannot rely on the accuracy of the nominal parameter values, there is a 

tremendous need for on-line techniques that can cope with such dynamic variations. More 

precisely, there is a need for efficient algorithms and built-in circuitry able to adapt the 

system behavior to workload variations and, at the same time, cope with the parameter 

variations which cannot be predicted or accurately modeled at design time.   
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Figure 6.1: A NoC Architecture with Multiple Voltage-Frequency Domains. 

Not surprisingly, designing appropriate dynamic voltage and frequency scaling 

(DVFS) control algorithms for run-time control of different voltage-frequency domains in 

a GALS system is a matter of great importance. While this problem has been addressed 

before by a number of authors [OGR 08], [WU 04] and [NIY 05], no attention has been 

paid to add the feature of controlling the impact of manufacturing process variations to 

the capabilities of the DVFS controllers. Starting from these overarching ideas, in this 

chapter, we specifically focus on proposing a new NoC architecture, which have a 

process variability robust adaptive control technique. This control technique can improve 

the performance, power consumption, and reliability of future NoC architectures in a 

synergistic manner. We consider NoC architectures consisting of multiple voltage-

frequency islands, or voltage-clock domains, as shown in Figure 6.1. Each island is a 

synchronous region, i.e., the cores within the same island share a single clock and supply 
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voltage that can be controlled independently of other islands. Communication across 

different clock domains is asynchronous and it can be achieved through the use of the 

control switches integrated within the PSTR as presented previously in Chapter 4.  

The contribution of our work is twofold: First, we propose a novel methodology 

to dynamically control the speed of each island. The controller not only considers the 

dynamic workload variations, but also ensures that the operating frequency does not 

exceed the maximum allowed value for a given process variability effect. Then, on the 

following Chapter we will study, analyze and design a complete circuit for the adaptive 

control system and its different parts on a real processor on STMicroelectronics 45nm 

CMOS technology. 

6.2 Related Work Contributions 

Generally speaking, feedback control reduces the systems sensitivity to parameter 

variations. So, design of nanoscale MPSoCs is likely to benefit from the systematic 

approaches from modern control theory [REB 10] and [JUA 05]. As such, in [MAR 02], 

the authors propose using adaptive body biasing and dynamic voltage scaling 

simultaneously to reduce power in processors with a single clock domain. Partitioning 

NoCs into multiple voltage-clock islands to minimize the energy consumption is 

considered in [OGR 07]. The power management for NoCs have been recently 

considered by several authors. The work in [SIM 04] presents a stochastic power 

management technique for NoCs. In [SHA 03], the authors present a run-time technique 

to satisfy peak power consumption constraints in interconnection networks by controlling 

the local power consumption of each router.  An on-line DVFS algorithm based on 

proportional-integral-derivative (PID) controller for multiple clock domain processors is 

presented in [WU 04]. PID control requires manual tuning of the control gain which may 

become prohibitive as the number of voltage-clock domains increases.  To address these 

shortcomings, we develop the architecture of the voltage-frequency domains used within 

a NoC, put limits on the maximum operating clock frequency for each voltage-frequency 

island according to the impact of the process variability effect on it and take the 

advantage of tools from modern control theory to build a process variability robust 

energy controller. More precisely, we propose: 
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- A novel NoC architecture model for multiple voltage-frequency island design 

- Activity monitors integration in different voltage-frequency islands to limit the 

maximum allowable clock frequency used according to the process variability 

impact on this island.  

- Feedback control algorithms that control the speed of each voltage-frequency 

island to cope with the PVT and workload variations. 

6.3 Process Variability Robust NoC Architecture 

 In a GALS system, process variability and fabrication yield can be improved by 

smartly removing tasks over fault or low performance nodes and assign them into other 

high performance ones, as shown in Figure 6.2. As each processing node performance 

could be measured by some kind of an activity monitor, a global system manager is able 

to distribute the tasks over the nodes. The task assignment takes into account the node 

performances and the task processing loads. The main target of this manager is to 

guaranty an overall chip performance. With this kind of approach, it is no more required 

to separately guaranty a performance for each node which relaxes the fabrication 

constraints and permits a yield enhancement. 

 

Figure 6.2: Fabrication yield control by distributing tasks over different processing nodes 
in a GALS system. 
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Based on the previous ideas we propose a solution to manage the impact of 

process variability in a multiprocessor GALS system. In a GALS system, we can choose 

to slow down some parts of the circuit while allowing others to operate at the maximal 

frequency. This enables more energy saving opportunities than conventional systems 

built around one processor and allows adapting the clock speed to the local process 

quality [ZAK 10b] and [REB 10]. Moreover, it has also been shown that multiple-clock 

designs (GALS) with voltage scaling are even better not only in terms of power and 

performance, but also in terms of variability [MAR 05]. As a result building a system 

based on the implementation of hardware resources whose performances are 

unpredictable at the fabrication time requires having total management strategies of the 

performance by adaptation of the voltage/frequency in order to respect the real time 

constraints of the application and the allocated energy budget. So it is proposed to use 

automatic feedback loops based on: 

1. Measurement of the real local performances of silicon and the actuation of the 

parameters voltage/frequency (hardware level). 

2. The suitable hardware resource allocation for the execution of a task in the 

assigned time/energy budget (operating system level). 

The idea is the use of dynamic DVFS with task scheduling techniques to 

dynamically manage not only the energy budget but also the activity of the processing 

node based on advanced automatic control techniques. These techniques will allow an 

optimal regulation of the clock frequency and the supply voltage according to the 

computational load and the load distribution in the various GALS processors. In order to 

compensate for the process variation due to the technology dispersion, and optimize the 

operation of the circuit, the dynamic voltage/frequency regulation itself should be self-

adjustable and robust against process variability with the variable loads and dispersion 

models. Implementing DVFS in a GALS system presents many design challenges: 

1. Specific mechanisms are needed, allowing the different domains to communicate 

and synchronize in a reliable manner. 

2. Splitting the computational load on the processors must be done as a trade-off 

with the communication load. Usually the communication systems consume a lot 

of energy. 
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3. Interdependencies between different clock domains impact the overall 

performances. A domain operating at a low speed tends to slow down the 

communications and to reduce the processor speed in communication. 

4. Sensing the local process quality and processor speed can also be a design issue. 

Many researches have been done in this field to develop DVFS and to guaranty a 

correct system behavior even if the process variations are huge. In [SEM 02], a GALS 

system model has been developed to gradually decrease the clock frequency when there 

are little observable changes in the workload. Compiler for controlling GALS systems 

have been developed too as in [MAG 03]. However, there are very few studies 

integrating power and process variation management together.  

One of the propositions to handle the uncertainty of a processing node over a 

GALS system due to the impact of process variability and also to reduce its energy-

consumption by means of automatic control methods is the use of activity monitors. The 

activity monitors can be embedded in each voltage-frequency island (i.e. processing 

node) in order to provide a real performance measurement of different voltage-frequency 

islands after the fabrication process, which will be used afterwards by the operating 

system to distribute tasks over different processing nodes and assign those low or fault 

processing node tasks over idle ones. This means the need for rescheduling tasks in each 

processing node to meet the new assigned deadlines. This will be achieved by controlling 

the supply voltage/ clock frequency, which in accordance will control the power/energy 

of consumption.  

Figure 6.3 shows a simplified architecture of this control system using three 

different control loops [ZAK 10a]. The control loops are applied in different architecture 

levels: control in energy of consumption (supply voltage), control in the processing 

power (supply voltage/clock frequency) and in the management of the Quality of Service 

(QoS) provided by the application. Voltage, frequency and energy control loops are used 

in order to adapt the energy of consumption and the process variability effect. The other 

control loop is needed to deal with the QoS (at the application level), the limitation of 

processing and/or communication power and the constraints in energy consumption. Note 

that the QoS control loop is out of the scope of this thesis.  
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Figure 6.3: Energy/Performance Control Simplified Architecture. 

In Figure 6.3, the QoS controller sends a set of information (required speed, No. 

of instructions, and deadlines for each instruction), which are given by the operating 

system (that can be statically inserted into the code or dynamically computed at run time 

by the OS). There are also sensors embedded in each processing unit in order to provide 

real-time measurements of the processor speed. Therefore, combining this information 

about the real-time requirements of the applications and the OS enables us to create a 

computational load profile with respect to time. Consequently, using such a profile makes 

possible to apply a fine-grain power/energy management allowing application deadlines 

to be met. Note that task scheduling is an important issue when using this technique. 

Sophisticated scheduling policies, as the one proposed in [ZHU 03], can easily take 

advantage of this work by simply interfacing to the hardware features proposed using an 

API (Application Programmable Interface). Here, the DVFS hardware part contains a 

DC-DC converter for voltage regulation and a programmable clock generator for 

frequency regulation. The energy controller dynamically controls the DC-DC converter to 



Part-II          Chapter 6.  Controlling Uncertainty and Handling Process Variability Effects 
   

   
Hatem Zakaria         Université de Grenoble 102 

scale the supply voltage as well as the clock frequency in order to satisfy the application 

computational needs with an appropriate management strategy. Note that, the maximum 

allowable clock frequency of the programmable oscillators is defined on the system start-

up according to the evaluation of process variability impact on each voltage-frequency 

island. This information is received from an activity monitors located in each processing 

domain. By this way, we could manage the impact of process variability by the 

application of DVFS with task scheduling techniques, under the control of an 

Energy/Performance controller. 

 6.3.1 Overall Architecture 

Using both a Network on Chip (NoC) distributed communication scheme and a 

GALS approach offers an easy integration of different functional units thanks to a local 

clock generation [KRS 07]. Moreover, it can allow better energy savings since each 

functional unit can easily have its own independent clock frequency and supply voltage. 

Hence, NoC architectures combined with a multi-power domain GALS system appear as 

natural enablers for distributed power management systems as well as for local DVFS. In 

this section, we propose a new architecture for the voltage-frequency islands in a GALS-

NoC system. This architecture helps in modeling both DVFS and local process quality 

management.  

In Figure 6.4, a detailed block diagram of the novel voltage-frequency island 

architecture in a GALS-NoC system is shown, [ZAK 10a]. Since in advanced 

technologies, the associated processor leakage has an important contribution to the 

system energy consumption, the Sleep Mode Management block is used to put useless 

processors into a sleep mode in order to limit their static power consumption. On the 

other hand, the Speed Sensor is used to calculate the Real-Time Speed of the processing 

node in MIPS. The Activity Monitors disseminated into each voltage-frequency island 

are used to locally evaluate the process quality in terms of its relative speed with respect 

to the other processing nodes (i.e. Intrinsic Speed). The Intrinsic Speed value defines the 

upper clock frequency bound of the operating voltage-frequency island. We have also 

two actuators: the DC-DC converter which provides the supply voltage and the 

Asynchronous Programmable Ring which generates the desired clock frequency to each 
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local processing node. The Digital Controller manages the voltage/frequency couple. It 

processes the error between the Unit Speed and the speed set point information extracted 

from the information sent by the operating system (i.e. No. of instructions and deadlines) 

within a closed loop system, and by applying a well-suited compensator sends the desired 

voltage and frequency code values to the DC-DC converter and to the clock generator. 

Consequently, the system is able to locally adapt their output voltage and clock frequency 

values clock domain by clock domain in order to limit their dynamic power consumption.  

 

Figure 6.4: Energy/Performance Management Architecture for a Voltage-Frequency 

Island in a GALS-NoC System. 

In this model, the ANoC (Asynchronous NoC) is the reliable communication path 

between the different clock domains. Therefore, the communication across different 

clock domains is asynchronous and it can be achieved through the use of the control 

switches integrated within the PSTR as presented previously in Chapter 4. This can fix 

the speed of data communications between any two different processing nodes to the 
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slowest communicating node. This local synchronization mechanism is based on 

Req_ANoC and Ack_ANoC handshake signals. As a result, we could have a secure 

communication with no metastability problem at the clock domain crossing and an 

adaptation to process variability. Within this framework, we explore two feedback control 

techniques, namely regulation and tracking, as follows: 

1- Start-Up Regulation: For this scenario, we assume that the activity monitor 

located in each voltage-frequency island evaluates the impact of the 

manufacturing process variability within it in terms of the Intrinsic Speed. 

Subsequently, this value is sent through the ANoC to the OS, which will use it in 

evaluating the relative performance of the different NoC voltage-frequency 

islands. As a result, the OS can distribute tasks over different processing nodes, 

and assign those low or fault processing node tasks over idle ones. The task 

assignment takes into account the node performances and the task processing 

loads. Moreover, the Intrinsic Speed value is also used by the programmable 

oscillator to define the maximum allowable clock frequency to be generated for 

this processing node. So that, the maximum number of processing nodes in a chip 

could be used even at an acceptable lower performance level with respect to other 

ones. This guaranties the overall chip performance instead of separately 

guarantying each node performance, which relaxes fabrication constrains and 

permits more yield enhancement. 

2- On-line tracking: This scenario is more general, in the sense that it can scale the 

voltage and clock frequency within a range of values in order to minimize the 

energy/power consumption, as well as provide robustness in operation. In this 

case, we have an upper bound on the operating clock frequency, which is 

previously defined for each voltage-frequency island by the activity monitors. 

Moreover, we assume there exists a lower bound on the operating frequency 

(hence on the voltage) for a subset of voltage-frequency islands that doesn’t 

violate the critical path condition of their processing nodes. The proposed 

controller sets the speed of each island such that it minimizes the penalizing high 

voltage (hence clock frequency) run time while guaranteeing a computational 

speed performance. 
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         6.3.2 Sensing the Computational Activity 

As mentioned in Chapter 5 activity sensors play a critical role in DVFS systems 

and must be selected carefully. However we are facing many difficulties in order to 

implement a sensor that measures the processor activity accurately. Different assumptions 

were proposed, here is an example for two of them: 

Current Activity Sensor 

It consists of an analog solution to monitor the activity of the system with respect 

to the amount of current consumed. In [RIU 06], a monitor fabricated in a 90nm CMOS 

technology which is able to estimate the circuit activity is proposed. Unfortunately, this 

kind of sensors has very limited applications, for example in our case it's difficult to say 

if the activity is strong or not. Indeed, the current is data-dependant for a part and 

activity-dependant for the other part (we can say that the current gives an image of the 

executed instructions). Moreover, it is also difficult to plan the deadline of the task, so 

this sensor is not well-suited for our DVFS application. 

Instruction Counter 

There exist two possible solutions to implement this kind of activity sensing: 

- Direct instruction count: by incrementing the counter each time a new instruction has 

been executed and calculates the average value with respect to a reference clock. It is a 

simple and efficient way to estimate the activity and the progress in a task. The limit is 

that it is difficult to accurately compute the time. Indeed, with CISC machine (not RISC), 

it is difficult to predict the remaining clock cycles or the speed for reaching a deadline. 

- Statically computing the clock cycles: at compile time, we calculate a bound for the 

number of clock cycles. We estimate here, instruction by instruction, the number of 

cycles. This is a little bit more complex and more accurate. The gain is not formally 

proven compared to a simple counter. 
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6.3.3 DC-DC Converter 

The DC/DC converter is a circuit that converts a voltage source (of direct current) 

from one voltage to another. Two kinds of DC/DC converter can be used. The first class 

is a continuous DC/DC converter which provides an accurate supply voltage, but with a 

weak efficiency. The second kind of converter used is a digitally controlled step-

converter (Vdd-hopping converter) that has a better efficiency but discrete output values. 

The Vdd-hopping technique was modeled in our system, where its principle is described 

in [ALB 08] and [ALB 09]. Two voltage levels are available (Vlow and Vhigh) and the one 

or the other could be achieved with a certain transition time and dynamics that depend 

upon the internal controller of the Vdd-hopping, as shown in Figure 6.5 [MIE 07]. 

 
Figure 6.5: Chronogram of Vdd-Hopping (a) Falling and (b) Rising Transitions. 

 6.3.4 Frequency Controller  

 The frequency controller is a vital part in our proposed NoC architecture. Given 

that, our goal is to design process variability robust voltage-frequency islands in a NoC 

system which has the minimum possible energy consumption. This could be done by 

limiting the upper clock frequency bound of the different processing islands with respect 

to process variability impact on each. Subsequently, adapt their clock frequency to 

dynamic workload variations. Therefore, we have to carefully choose our clock frequency 

generator.  
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Asynchronous PSTR are considered promising solution for generating clocks. It 

has the low power consumption and process variability robustness advantages of 

asynchronous circuits, as it was shown in Chapter 3. Moreover, PSTR can be easily 

reconfigured in order to change its output clock frequency. Furthermore, PSTR output 

frequency has a linear change with respect to the supply voltage. Consequently, it could 

be supplied with the output of the Vdd-Hopping to give the corresponding clock frequency 

at different voltage levels. As a result, our design in the rest of the thesis will be mainly 

focused on the use of the asynchronous PSTR as the clock generator part in the system.   

6.4 NoC Control Method 

As the GALS-NoC voltage frequency islands can run at several voltage levels 

with an available frequency range for each level. In order to control the energy-

performance tradeoff we propose to calculate a Speed Set Point to track, denoted ωsp (in 

MIPS), for each task that the processing domain has to execute. This set point is based on 

some task information sent by the operating system: for each task Ti the operating system 

provides the computational load (i.e. the number of instructions Ci) and the deadline Ni, 

as shown in Figure 6.4. 

The presence of deadline and time horizon to compute tasks naturally leads to 

predictive control. Predictive control consists in finding an open-loop control profile over 

some time horizon and in applying it until the next time instant. The stability relies in the 

way the open loop control is chosen. The most classical strategy consists in taking the 

open-loop control that minimizes a cost function. The horizon can be constant, infinite or 

less classically contractive as in [DUR 09]. For further details on predictive control, one 

can refer to [MAY 90]. The key point of the present control problem will be the choice of 

the open-loop strategy and its computational cost. Indeed, if predictive control is known 

to be a robust approach, it is also often associated to high computational cost which is not 

acceptable in the present case. The strategy adopted here is called fast predictive control 

and consist in taking advantage of the structure of the dynamical system to fasten the 

finding of the open-loop control, [ALA 06]. The simplicity of the system considered here 

is therefore very suitable for such strategies.  
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Two speed set point building methods are illustrated on Figure 6.6 for a three-task 

example. The digital controller is an upstream from the Vdd-Hopping and the 

asynchronous PSTR, where it calculates the voltage and frequency values that have to be 

sent to these actuators, in order to minimize the energy consumption while guaranteeing 

the computational performance [DUR 09a]. Therefore, the control behavior is restricted 

to only two voltage levels Vlevel = {Vhigh, Vlow} with three different frequency levels Flevel 

= {Fhigh, Flow1, Flow2}, where Fhigh is the maximum possible frequency at Vhigh, Flow1 is the 

maximum possible frequency at Vlow, and Flow1 > Flow2. Let ωmax
, ωmax_L1 and ωmax_L2 

denotes the processing unit speed at Fhigh, Flow1 and Flow2 respectively. An intuitive 

method would consist in building the average speed set point of each task that is the ratio 

Ci/Ni. With such an approach the Ci instructions are performed and ended at Ni, Figure 

6.6 (a). However, this method is not energy-efficient. Indeed, one could see that, as soon 

as the average speed set point of a task is higher than ωmax_L1 - such as for the task T2. The 

task has to be executed all the time at Vhigh to not miss the deadline. Therefore, the chip 

will consume a lot by running the whole task at the penalizing highest supply voltage. A 

solution to avoid that is to split the tasks into two time intervals, as follows: 

i) First (if required), the chip begins to run at Vhigh with the maximum available 

frequency in order to achieve the maximum possible speed ωmax - such as for T2 

from t2 to tswitch on Figure 6.6 (b). 

 

ii) Then, the task can be finished at the low voltage with a speed under ωmax_L1. The 

switching time to go from Vhigh to Vlow - denoted tswitch in the example - has to be 

suitably calculated in order that the performed number of instructions during the 

two time intervals corresponds to the number of instructions to do Ci, i.e. the task 

fits with its deadline and the performances are so guaranteed.  

Thus, this proposal allows reducing the penalizing high voltage running time tVhigh 

and so the energy consumption as much as possible since the maximum available 

frequency is automatically used when the system is running at high voltage.  
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(a) Intuitive Average Computational Speed Set Point Building. 

 

(b): Energy-Efficient Speed Set Point Building. 

Figure 6.6: Different Computational Speed Set Point Buildings and their Impact on the 

Energy Consumption (i.e. the Penalizing High Voltage Running Time). 
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Indeed, the computational load used to treat a given task is equal with both strategies 

since the darken surface areas of the task T2 are respectively the same on both drawings 

in Figure 6.6. Nevertheless, the switching time tswitch could not be a priori known and 

therefore, a predictive control law is required to dynamically calculate this switching time 

[DUR 09b]. That point will be detailed in the following subsections. Furthermore, the 

task information given by the operating system is not enough anymore to build such an 

energy-efficient computational speed set point. We also need some information about the 

system resources, such as the maximum speed for the different voltage levels, i.e. ωmax, 

ωmax_L1 and ωmax_L2. Moreover, we need to know what it has already been done, and for 

this reason we propose to use a closed-loop system in order to predict the minimum high 

voltage running time. 

6.4.1 Fast Predictive Control 

To minimize the energy consumption the system has to run the shortest possible 

time with the penalizing high supply voltage. Thus, the controller dynamically calculates 

if the system needs to run at Vhigh (and at ωmax) or at the low voltage level (and a speed 

lower than ωmax_L1) will be enough to compute the task before its deadline. This principle 

could be formulated as a predictive control problem: for each task Ti, what is the speed 

set point which will minimize the high voltage running time tVhigh while guaranteeing that 

the executed instruction number is equal to the number of instructions Ci to do: 

min ௏೓೔೒೓ݐ / න ݐ݀ ߱ ൌ ௜ܥ
ே೔

 

Nevertheless, the speed set point can be obtained in an easier and faster way. We 

simply need to know what the processor has to do and how much time is available to do 

it. Let ωj and ωj+1 are the two computational speeds which are immediate neighbors to 

“predicted average speed” δ, (i.e. ωj > ωj+1 and ωj > δ ≥ ωj+1). The aim of the controller is 

to dynamically calculate δ which is required to perform the task exactly on its deadline, in 

order to know if the task has to be executed at the more penalizing voltage level Vj or on 

the contrary if Vj+1 will be enough to perform it before its deadline. The value of δ can be 

easily described as the ratio between what the processor has to do to compute the task 
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minus what it has already done (that is corresponding to what it remains to do) and the 

remaining time before the end of the task, this can be mathematically expressed as: 

௞ାଵሻݐሺߜ                 ൌ
௞ሻݐ௜ሺܥ െ ∑ ߱ሺݐ௞ሻ௧ೖష௧೔

௧೔

௞ሻݐ௜ሺܮ           (6.1) 

where ti is the beginning of the task Ti, ti is the current time and tk+1 is the next sampling 

time. Li denotes, the remaining available time to complete a given task. This equation can 

then be implemented as following: 

   Ωሺݐ௞ሻ ൌ Ωሺݐ௞ିଵሻ ൅ ௦ܶ . ߱ሺݐ௞ሻ   

௞ାଵሻݐሺߜ                 ൌ
௞ሻݐ௜ሺܥ െ Ωሺݐ௞ሻ

௞ሻݐ௜ሺܮ
          (6.2) 

where Ω is the integration of the computational speed ω, Ts is the sampling period and tk-1 

is the last sampling time.  Moreover, a conditional instruction is added to be coherent 

with Equation (6.1): indeed, the computational speed ω is integrated on the running time 

of each task and so when a task execution is completed, which means in the last sampling 

time before its deadline, the variable Ω is reset to zero.   

The computational speed set point is then deduced from the dynamic value of δ 

and so are the voltage and frequency levels. Indeed, the device runs with the more 

penalizing neighboring speed ωj during a certain time. As the running computational 

speed of the device is higher than the average predicted speed because ωj > δ , the value 

of δ decreases until achieving δ(tk+1) = ωj+1, which means that the task can be finished 

with the less penalizing neighboring speed ωj+1.  

To conclude, this control method is called a fast predictive control technique 

because the strategy consists in predicting the time when the system has to switch from 

the more penalizing voltage level to the less one, but to calculate this switching time, the 

controller does not need to compute a complex optimization algorithm since the 

computation is easy and immediate. Moreover, the computational performances are 

guaranteed because the speed set point to track is always higher or equal than required. 

Therefore, the control law is robust thanks to the prediction [DUR 11].  
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According to the two voltage levels and the three frequency levels we have 

previously defined with the corresponding computational speed at each of them, the 

control algorithm can be defined as: 

                          If   δሺݐ௞ሻ ൐ ߱୫ୟ୶_௟ଵ   

                           ቊ ௟ܸ௘௩௘௟ሺݐ௞ାଵሻ ൌ ௛ܸ௜௚௛

௞ାଵሻݐ௟௘௩௘௟ሺܨ ൌ ௛௜௚௛ܨ
  

    

(6.3) 

                          Else if   δሺݐ௞ሻ ൐ ߱୫ୟ୶_௟ଶ  

                           ൜ ௟ܸ௘௩௘௟ሺݐ௞ାଵሻ ൌ ௟ܸ௢௪
௞ାଵሻݐ௟௘௩௘௟ሺܨ ൌ ௟௢௪ଵܨ

  

                          Else    

                           ൜ ௟ܸ௘௩௘௟ሺݐ௞ାଵሻ ൌ ௟ܸ௢௪
௞ାଵሻݐ௟௘௩௘௟ሺܨ ൌ ௟௢௪ଶܨ

  

6.4.2 Tracking Efficiency 

The proposed control strategy is easy to implement, except for the parameters ωm, 

i.e. the possible computational speeds when the device is supplied with the voltage Vm 

and the clock frequency fm. Since we would like to have a controller robust to process 

variability where the value of fm and Vm are not known a priori and could vary, therefore 

we propose to estimate ωm.  

Let ෥߱௠ denotes the estimation of the computational speeds. The solution consists 

in measuring the speed for each couple of voltage/frequency levels. Therefore all the 

speeds ωm are measured when the system is running with the supply voltage Vm and the 

clock frequency fm. In order to know that we use the previous values of the control 

variable and to filter the fluctuation of the measured speed, a weighted mean is used, with 

the weighted value 0 ≤ ρ ≤ 1. The following algorithm summarizes that principle: 

                          If             ൜ ௟ܸ௘௩௘௟ሺݐ௞ െ 1ሻ ൌ ௟ܸ௘௩௘௟_௠
௞ݐ௟௘௩௘௟ሺܨ െ 1ሻ ൌ ௟௘௩௘௟_௠ܨ

   

                        Then ෥߱௠ሺݐ௞ሻ ൌ ሺ1 െ .ሻߩ ෥߱௠ሺݐ௞ିଵሻ ൅ .ߩ ߱௠ሺݐ௞ሻ  (6.4) 
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However, a problem could appear during the voltage transitions. Indeed, the 

algorithm (6.3) allows to dynamically calculate the predicted average speed δ and to 

compare this value with the computational speeds ωm (in fact with the estimation of the 

speeds ෥߱௠). For example, for a given task the system runs with the voltage Vhigh and the 

frequency Fhigh while δ is higher than ෥߱୫ୟ୶_௟ଶ, but as soon as δ becomes lower than 

෥߱୫ୟ୶_௟ଶ the controller changes the voltage and frequency levels. Nevertheless, during this 

level transition the estimated speed could also vary (due to the fluctuations in the 

estimation) and so becomes lower than the current value of δ. Because of this 

phenomenon, the levels could hence switch and switch again and a solution is so 

required. For this reason, we propose bounding the value of ρ in order that the variation 

of the estimation is always lower than the variation of δ.  

First, let ∆ ෥߱௠ denotes the variation of the estimation of the computational speeds, 

obtained from Equation (6.4): 

                     ∆ ෥߱௠ሺݐ௞ሻ ൌ
෥߱௠ሺݐ௞ሻ െ ෥߱௠ሺݐ௞ିଵሻ

௦ܶ
   

 ∆ ෥߱௠ሺݐ௞ሻ ൌ
ߩ

௦ܶ
· ሾ߱ሺݐ௞ሻ െ ෥߱௠ሺݐ௞ିଵሻሿ  (6.5) 

Then, let ∆ߜ  denotes the variation of the predicted average speed. By substituting 

the value of Ωሺݐ௞ሻ into Equation (6.2), then ߜሺݐ௞ାଵሻ can be expressed as: 

௞ାଵሻݐሺߜ                           ൌ
௞ሻݐ௜ሺܥ െ Ωሺݐ௞ିଵሻ

௞ሻݐ௜ሺܮ െ ௦ܶ · ߱ሺݐ௞ሻ
௞ሻݐ௜ሺܮ   (6.6) 

As the number of instructions Ci usually does not change for a given task, 

then ܥ௜ሺݐ௞ሻ ൌ ௞ିଵሻݐ௜ሺܥ ൌ ௞ሻݐ௜ሺܮ ,௜. Moreoverܥ ൌ ௞ିଵሻݐ௜ሺܮ െ ௦ܶ ؄  ௞ିଵሻ for smallݐ௜ሺܮ 

values of Ts. Consequently, the first term on the right hand side of Equation (6.6) can be 

approximated as ߜሺݐ௞ሻ. As a result, the variation of δ is given by: 

௞ሻݐሺߜ∆                      ൌ
௞ାଵሻݐሺߜ െ ௞ሻݐሺߜ

௦ܶ
ൌ െ

߱ሺݐ௞ሻ
 ௞ሻ  (6.7)ݐ௜ሺܮ

Finally, we need to get the condition for which |∆ ෥߱௠ሺݐ௞ሻ| ൑  ௞ሻ|. Fromݐሺߜ∆|

Equations (6.5) and (6.7), this can be expressed as follows: 
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ߩ

௦ܶ
 · |߱ሺݐ௞ሻ െ ෥߱௠ሺݐ௞ିଵሻ| ൑

߱ሺݐ௞ሻ
   ௞ሻݐ௜ሺܮ

ߩ  ൑ ௦ܶ · ߱ሺݐ௞ሻ
௞ሻݐ௜ሺܮ · |߱ሺݐ௞ሻ െ ෥߱௠ሺݐ௞ିଵሻ|  (6.8) 

Therefore, Equation (6.8) helps us in finding the proper ρ value between zero and 

one to have the best tracking efficiency. Simulation results in the following sections 

shows that choosing smaller ρ values close to zero achieve better tracking, as we limit 

large fluctuations in estimated computational speed ෥߱୫ at the specified voltage and 

frequency levels, by limiting the amount of contribution of measured speed ω to it, see 

Equation (6.4).  

6.4.3 Digital Controller Algorithm 

Equation (6.4) allows as tracking the system variations efficiently by selecting a 

suitable value for ρ. Furthermore, no information on the system parameters is required at 

all, that is very important for process variability since the voltages and the frequencies are 

not known and could vary. Thus, the controller just needs to measure the computational 

speed ω and get the Ci and Ni information from the operating system in order to estimate 

the value of the computational speeds ෥߱୫ at the two different frequencies defined at Vlow, 

i.e. ෥߱୫ୟ୶_୪ଵand ω෥ ୫ୟ୶_୪ଶ. Note that each  ෥߱୫ is updated only as long as we stay longer at 

its corresponding frequency level, otherwise it remains unchanged. By multiplying 

෥߱୫ୟ୶_୪ଵand ω෥୫ୟ୶_୪ଶ by the remaining time Li respectively, we could know how many 

instructions can be executed at these two threshold speed values (i.e. ∆ଵൌ ෥߱୫ୟ୶_୪ଵሺݐ௞ሻ ·

௞ሻ and ∆ଶൌݐ௜ሺܮ ෥߱୫ୟ୶_ଶሺݐ௞ሻ ·  ௞ሻ). Comparing the remaining number of instructions toݐ௜ሺܮ

be executed ∆ ൌ ௞ሻݐሺߜ · ௞ሻݐ௜ሺܮ ൌ ௞ሻݐ௜ሺܥ െ Ωሺݐ௞ሻ, from Equation (6.2) with ∆ଵ and ∆ଶ, 

we could specify at which operating region we should be as shown previously by 

equation (6.3). Finally, if the remaining time ܮ௜ሺݐ௞ሻ  is less than Ts (i.e. the task has been 

completed and we are going to start a new one, we reset the value of Ω to zero and set 

 ௞ሻ to be equal to the new task deadline Ni. Otherwise, the loop to update the value ofݐ௜ሺܮ

the computational speeds ෥߱୫ୟ୶_୪ଵ and ෥߱୫ୟ୶_୪ଶ, estimate ∆ଵ and ∆ଶ, and compare them 

with the value of ∆ is repeated. Figure (6.7) explains in details the control algorithm of 

the digital controller used in each voltage-frequency island GALS-NoC.  
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Figure 6.7: Flow Chart of the Digital Controller Algorithm. 
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6.5 Simulation Results 

6.5.1 Load Modeling 

In order to build and test a MATLAB behavioral model for a GALS-NoC 

processing node, we have used the definitions for the main sources of power dissipation 

shown in Chapter 5. A fictive load that behaves more like a real loaded processor has 

been built using MATLAB/Simulink [ZAK 10a]. It uses Equation (5.1), (5.2), and (5.3) 

in representing its output current waveform and power dissipation variations. Figure 6.8 

shows the processing node behavior observed with such a simulation. It gives the current 

variation and the processed number of instructions of our fictive processor which depends 

on the applied voltage and frequency values. The effect of loading a new instruction into 

the processor on the current waveform is also shown by the added irregular ripples with 

each instruction. Also the sampling effect on the processor current waveform has been 

taken into consideration. Moreover, this model is enabled to change its computational 

speed with respect to the voltage/frequency pair applied to it.  

 

Figure 6.8:  Simulink simulation for the processing node load model showing its current 

variations with respect to different processing instructions.  
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This model helps us to verify the proposed NoC control methodology by testing 

the effect of applying DVFS through the use of the digital controller in minimizing the 

average power and energy consumption while guarantying the system performance with 

parameter variations. 

6.5.2 Workload Tracking Efficiency 

This subsection presents some simulation results to evaluate the tracking 

efficiency of the proposed digital controller. A scenario with three tasks to execute is 

proposed: the first task starts with 4 instructions to do in 0.5µs, then a 65 instruction task 

has to be executed in 2.5µs and the last one has to compute 10 instructions in 1µs, these 

data are provided by the OS. Figure 6.9 shows the simulation result of the system with 2 

voltage levels and 3 frequency levels. The top plot shows the average speed set point 

Ci/Ni of each task (for guideline), the predicted average speed δ (for guideline) and the 

measured computational speed ω, while the bottom plot shows the supply voltage Vdd.  

 

Figure 6.9: Matlab Simulation Result of the Digital Controller. 

The energy consumption is calculated in order to have an idea of the reduction 

achieved. Thus, the Equation (5.1) is used and a ratio of this power consumption is added 

due to the Vdd-hopping principle: 20% more during the voltage transition times and 3% 

more during the steady state [DUR 09]. Finally, the integration during the whole running 
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time gives the total energy consumption. The control strategy is compared with a system 

without Dynamic Voltage and Frequency Scaling (DVFS) mechanism: the supply voltage 

is fixed to the most penalizing level, i.e. Vdd = Vhigh, and so is the clock frequency 

fclk_=_fhigh. Figure 6.9 shows that with the 2 possible voltage levels the system runs during 

more than 75% of the simulation time at the low voltage. As a result, a reduction of the 

energy consumption more than 20% is achieved (in comparison to a system without 

DVFS mechanism) with the 3-task test bench proposed [ZAK 10a]. Note that as far as we 

have frequency levels less than the two maximal possible clock frequencies (i.e. fhigh, 

flow1), this will contribute to the instant dynamic power saving but not to the energy 

consumption. More simulation results will be shown for the system workload tracking on 

MIPS-R2000 processor with the 45nm CMOS parameter variations on Chapter 7. 

6.5.3 Robustness to Process Variability 

As the proposed control strategy does not use any information on some system 

parameters, the controller adapts itself with these uncertainties. Figure 6.10 shows how 

the system is still working for different process variability effects.  

 

Figure 6.10: Matlab Simulation Results to Test the System Robustness with Different 

Degrees of the Process Variability Effect.  
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In Figure 6.10 different degrees for the process variability effect were tested, 

which correspond to “no variability”, “10% of variability” and “20% of variability”. One 

could see that the estimation of the maximum computational speed ωm allows the system 

to still work, even if the processing node does not work as expected (i.e. with a 

computational speed ω lower than expected).  Of course, in order to compensate a lower 

computational speed induced by the process variability, the system will run a longer time 

at the penalizing supply voltage [ZAK 10a]. The robustness is limited by the maximum 

possible activity of the processing node anyway. Indeed, if the chip is not enough fast to 

compute the task while running at the maximal speed (the chip runs with the highest 

voltage and highest frequency), the controller would not be able to do anything to solve 

this failure. The only way is to migrate the task allocated to this processing node to a high 

performance one, and this has to be done by the operating system, see Figure 6.2. 

6.6 Conclusions 

In this Chapter, we have addressed the design of GALS-based NoC 

communication architectures with multiple voltage-frequency domains. Firstly, we have 

introduced a new architecture based on the use of the asynchronous PSTR that adapts its 

maximal output clock frequency according to the performance evaluation of the 

processing domain. Evaluating the fabrication process quality and the local 

environmental parameters (voltage, temperature) is done with the help of activity 

monitors embedded in each processing domain.  Secondly, we have presented a variation-

adaptive feedback control methodology for NoC architectures with multiple voltage-

clock domains. More precisely, we developed techniques to dynamically control the 

speed of each voltage-frequency island and provide robustness against the uncertainties 

and variations in the design parameters. At the same time, our techniques adapt the 

operating voltage and frequency to the variations in the workload to save power and 

energy consumption. Simulation results demonstrate robustness to parameter variations 

and more than 20% energy savings for a behavioral-like Matlab load model. An 

implementation of the proposed digital controller in the CMOS 45nm technology from 

STMicroelectronics will be shown in the following chapter. The system will be tested on 

MIPS-R2000 processor under different process variability corners.    
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Chapter 7 

Designing Process Variability Robust 
DVFS Control 
 

7.1 Introduction 

In the previous chapter, it has been shown that integrating activity monitors in 

different clock domains in a GALS-NoC system is a promising solutions to reduce the 

process variability impact. A complete modeling methodology was introduced to build a 

process variability robust NoC-node with minimum energy consumption. The proposed 

feedback controller was proven to especially adapt more smartly voltages and frequencies 

(energy/performance) with strong process variability. The DFVS controller is based on a 

fast predictive control, which is shown to be more energy-efficient than the intuitive 

approach method.  

In this chapter, we will study, analyze and design a complete circuit for different 

parts of the process variability robust energy-efficient DVFS control system. This DVFS 

control technique improves the performance, power consumption, and reliability of future 

NoC-based architectures in a synergistic manner. We consider NoC-based architectures 

consisting of multiple voltage-frequency islands. Each island may contain several 

processing cores that share a single clock, supply voltage, and digital control unit. 

First, the MIPS R2000 microprocessor is synthesized on STMicroelectronics 

45nm CMOS technology, in order to represent our processing load case of study. Then, 

the information extracted from the analysis of the MIPS R2000 processor on different 

process variability corners has been used in the programmability of our asynchronous 

PSTR. Finally, the digital control system is designed. The gain in the power/energy 

consumption reduction and the area overhead of the proposed control system is compared 

with a system without DVFS, and the one that uses the intuitive DVFS approach method.   
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7.2 Case Study: MIPS-R2000 

MIPS-R2000 is a 32-bit reduced instruction set computer (RISC) initially 

developed by the Stanford University, where it stands for a Microprocessor without 

Interlocked Pipeline Stages. This means that it has single execution cycle instructions so 

that the compiler can schedule them to avoid conflicts. The MIPS architecture includes 

thirty-two general-purpose 32-bit registers and fifty-eight instructions, each 32 bits long. 

The instructions are processed in a five-stage pipeline: fetch, decode, execute, memory, 

and write back, see Figure 7.1. MIPS R2000 includes also a coprocessor to handle 

exceptions and hold configuration bits. Only a few configuration bits are used for the 

R2000 architecture, and are mostly used to enable/disable exceptions and to configure the 

caches. The MIPS architecture supports exception handling and interrupts. Due to the 

MIPS R2000 simplicity in terms of architecture, programming model, and instruction set 

as well as availability as an open core, it has been used as our main case of study in the 

DVFS control system design for a GALS-NoC, that compensate for the 45nm CMOS 

uncertainties. Details of the MIPS R2000 synthesis and analysis results are shown in the 

following section.   

 

Figure 7.1: Internal Architecture of the Pipelined MIPS (5 Stages). 



Part-II   Chapter 7.  Designing Robust DVFS Control for Process Variability management 
   

   
Hatem Zakaria         Université de Grenoble 123 

7.3 Analysis of MIPS R2000 Critical Path Delay Variations 

Presently, the variability is captured in the design by using simulation corners, 

which correspond to the values of certain process parameters that deviate by a certain 

standard deviations from their typical value. In STMicroelectronics 45nm CMOS 

technology, three PVT (Process, Voltage, and Temperature) corners are available: Best, 

Nominal and Worst. All standard logic cells were characterized at each of these three 

corners. So, we use Design Vision tool to implement MIPS-R2000 using 

STMicroelectronics 45nm CMOS libraries in order to test its behavior at each of the 

previously specified PVT corners.  

Since, our main goal is to define the optimum operating clock frequency needed 

by the processing load that compensates for the propagation delay variations due to the 

process variability impact. Therefore, the critical path delay of the synthesized MIPS 

R2000 with respect to supply voltage is analyzed at the three different PVT corners, as 

shown in Figure 7.2.  

 

Figure 7.2: MIPS R2000 Critical Path Delay Variation with Respect to Supply Voltage at 

Three Different PVT Corners. 
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In Chapter 6, we have defined two main operating voltage levels outputs from 

Vdd-Hopping unit (Vlow and Vhigh), where extra voltage levels will have a direct impact on 

the control system complexity and its relevant power consumption [DUR 09]. According 

to STMicroelectronics 45nm libraries, we choose Vlow = 0.95 volts and Vhigh = 1.1 volts. 

Consequently, the optimum clock frequency needed by the MIPS R2000 at the specified 

two voltage levels with the three different process variability corners are defined as 

shown in Table 7.1:      

Table 7.1: MIPS R2000 Optimum Clock Frequencies Required to Compensate for the 

Process Variability Impact on 45nm CMOS Technology. 

Clock 
Frequency 

(MHz) 

Process Variability Condition 

Worst Nominal Best 

V
ol

ta
ge

 
L

ev
el

 0.95 60 75 85 

1.1 95 115 145 

 Figure 7.3 shows how the MIPS R2000 processor is integrated as our main 

processing load into the previously proposed process variability robust DVFS 

architecture for a GALS-NoC system, depicted in Figure 6.4. Rom is loaded with a 

factorial program to test its execution by the processor. Each time a new instruction is 

loaded into ram_data bus, a pulse is generated on the ram_ack signal to indicate the 

availability of a new data for the processor.  

Speed sensor is used to provide to the digital controller the computational speed 

information ωi in terms of number of instructions executed per unit time. Therefore, the 

speed sensor contains an instruction counter which is clocked with the ram_ack signal, 

and a reference clock. Since, the period of the reference clock is crucial since it 

determines the accuracy of the calculated average speed. Moreover, it determines the 

system speed response. In fact the, speed sensor integrates also a register to memorize the 

instruction counter output (i.e. computational speed ωi) on a predefined period and 

determines the average speed on each rising-edge of the reference clock (i.e. RST signal). 

If this period is short, the system will be fast but the calculated average speed will not be 
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accurate. On the opposite, a long period leads to a slow system but to a more accurate 

average speed. Therefore, according to the set of clock frequencies available for the 

MIPS R2000, see Table 7.1, the reference clock frequency was chosen to be 2MHz, in 

order to count a considerable amount of instructions with a proper system response. Note 

that, the RST signal is also used to reset the instruction counter every 500 ns to be ready 

for a new measurement of the computational speed ωi. To conclude, the computational 

speed ωi is now applied in terms of number of instructions executed per 500 ns to the 

digital controller.   

 

Figure 7.3: Process Variability Robust Energy/Performance Management Architecture 

(MIPS R2000 Case Study).  

The digital controller predicts the corresponding set of speed set points based on 

the information sent by the OS (i.e. No. of instructions Ci and deadlines Ni), and the 

integrated process variability monitors (i.e. activity monitors). Afterward, it processes the 

error between computational speed ωi and the predicted average speed point, to send the 
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proper voltage Vlevel and frequency Flevel code values to the Vdd-Hopping and to the 

programmable oscillator respectively. CF and PC are the change frequency and pause 

clock pulses used by the programmable stoppable oscillator (PSO), refer to Chapter 3.  

The activity monitor output is also used by the programmable oscillator to select 

the optimum set of clock frequencies suitable to be used with the present situation of 

process variability impact, further details is shown in the following section. 

Consequently, the system is able to locally adapt the output voltage and clock frequency 

values with respect to the actual process variability impact, in order to get the most 

suitable performance while limiting the system energy/dynamic power consumption.  

7.4 PSTR Programmability to manage MIPS R2000 Variations 

 7.4.1 PSTR 45nm CMOS Delay Parameters 

From Table 7.1 now it’s clear that we have to design a programmable ring which 

has an operating frequency range from 60 to 145 MHz. Since, we are trying to build a 

correct behavioral VHDL model for the asynchronous PSTR ring, so the next step was to 

extract delay parameters of the PSTR ring from an analog tool. We used Cadence and the 

results are as shown in Table 7.2: 

Table 7.2: Extracted Delay Values of the Asynchronous PSTR Functional Parameters on 

STMicroelectronics 45nm CMOS. 

Asynchronous PSTR 
Parameter 

Supply Voltage 

(Volts) 

Propagation Delay 

(ps) 

Asynchronous Ring Stage 

Forward Delay (Dff) 

1.1 62 

0.95 79 

Asynchronous Ring Stage 

Reverse Delay (Drr) 

1.1 73 

0.95 92 

 



Part-II   Chapter 7.  Designing Robust DVFS Control for Process Variability management 
   

   
Hatem Zakaria         Université de Grenoble 127 

 7.4.2 PSTR Architecture 

The requested target frequencies of the MIPS R2000 shown in Table 7.1 is in the 

range of MHz while the asynchronous ring normally generate outputs in the range of 

GHz. Therefore, either we will have to use an asynchronous PSTR with at least 50 stages, 

which means extra hardware, power consumption and area overhead. Otherwise, we have 

to add frequency dividers on the output of the asynchronous PSTR. According to the 

frequency values shown in Table 7.1, it was decided to use an asynchronous PSTR with a 

maximum of 20 stages and add 4 extra D-Flip Flops to divide the generated output 

frequency by 16, as it was previously depicted in Figure 3.14.  

 

Figure 7.4: Memory Mapping of the Programmable Oscillator. 

The main goal of our design is to adapt the generated clock frequency with 

respect to the current located process variability impact and to the processed workload. In 

the 45nm CMOS libraries provided by STMicroelectronics, we have three defined 

process variability corners. Consequently, we will split the contents of our programmable 

oscillator code memory (i.e. LUT1 and LUT2) shown in Figure 3.18 into three main 



Part-II   Chapter 7.  Designing Robust DVFS Control for Process Variability management 
   

   
Hatem Zakaria         Université de Grenoble 128 

pages. Based upon the activity monitor output, the corresponding page will be selected. 

Each page contains a set of programming codes (i.e. TCW and SCW) that generates the 

suitable clock frequencies for the MIPS R2000 which compensate for the delay variation 

due to the process variability effect. In each programming code set, we have one code 

corresponding to the clock frequency Fhigh at the high voltage Vhigh, and two other codes 

corresponding to the clock frequencies Flow1 and Flow2 at the low voltage Vlow. 

Consequently, our programmable oscillator explained in Chapter 3 can be simply 

represented by the block diagram shown in Figure 7.4. 

 7.4.3 PSTR Configuration 

Table 7.1 defines the MIPS R2000 maximal clock frequencies (i.e. Fhigh and 

Flow1), which are needed to compensate for different process variability corners at the two 

specified voltage levels. For the third clock frequency Flow2, it was chosen to be lower 

than Flow1 for each process variability corner, as shown in Table 7.3. Using the PSTR 

programmability design flow, shown in Figure 3.15, we get the PSTR configuration (i.e. 

the number of tokens, the number of bubbles, and the number of stages) for each of these 

frequencies (Fhigh, Flow1 and Flow2) at the three different process variability corners. This 

helps us to specify the TCW and SCW contents of our programmable oscillator memory 

shown in Figure 7.4. The full PSTR programmability results are as shown in Table 7.3. 

Table 7.3: PSTR Programmability to Manage Process Variations of the 45nm CMOS 

Technology on the MIPS R2000. 

Process 
Variability Voltage Frequency

Target 
Frequency 

(MHz) 

PSTR Programmability 
No. 

Tokens 
No. 

Bubbles 
No. 

Stages 

Best 
1.1 Fhigh 145 12 6 18 

0.95 Flow1 85 12 4 16 
Flow2 60 14 3 17 

Nominal 
1.1 Fhigh 115 14 5 19 

0.95 Flow1 75 14 4 18 
Flow2 45 13 2 15 

Worst 
1.1 Fhigh 95 14 4 18 

0.95 Flow1 60 14 3 17 
Flow2 35 17 2 19 
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7.5 Digital Controller Design 

In this section the complete design of the digital controller part in our proposed 

process variability robust DVFS architecture depicted in Figure 7.3 will be presented. Its 

main principle of operation is based on implementing the energy-efficient control 

algorithm, described by the flow chart shown in Figure 6.7.  

 7.5.1 Overall Architecture 

 In Figure 7.5 the details of the digital controller are depicted. For each task, the 

OS sends the total number of instructions to be executed Ci, and the task deadline Ni, 

where Ni is represented in terms of the requested number of clock cycles per reference 

clock output RST. Therefore, at the beginning of each task a counter is loaded with Ni-1 

and then it is regularly decremented on each positive edge of the RST signal to present 

the remaining time (i.e. number of reference clock cycles) Li to complete the allocated 

task.     

 
Figure 7.5: Digital Controller Architecture. 



Part-II   Chapter 7.  Designing Robust DVFS Control for Process Variability management 
   

   
Hatem Zakaria         Université de Grenoble 130 

The computational speed information ω sent by the speed sensor represents the 

number of executed instructions per reference clock cycle. We need to know the total 

number of instructions executed by the system since the beginning of the task until the 

last sampling instant, i.e. ωk. Therefore, an adder is used to accumulate ω as long as the 

task is running. This accumulated value is stored in Register 1 on each negative edge of 

the RST signal. Once the down counter output is zero (i.e. Li_0 = 1), this means that we 

have one last RST clock cycle to complete the allocated task. As a result, Register 1 is 

reset (i.e. ωk = 0) on the next negative edge of the RST signal to be ready for a new task 

execution.  

Providing that the task is still running, Ci is subtracted from ωk to estimate the 

remaining number of task instructions to be executed i.e. ∆. If the result of the subtraction 

is negative, this means that our system has already completed the allocated task before its 

deadline. Therefore, a PC signal is sent to the programmable oscillator to stop the 

generated clock output till the assignment of a new task to the processor. This adds more 

energy saving opportunities by relaxing our system as it has no more tasks to execute. 

Otherwise, the digital controller will regulate the generated clock frequency with respect 

to the predicted workload.  

Our energy-efficient digital controller is based on using an adaptive set of speed 

set points, rather than the concept of using a fixed speed set point as in the intuitive 

average control method, for more details refer to Chapter 5. Therefore, the digital 

controller contains a special unit called speed set point update. On the start up regulation 

phase of the system, this unit accepts the proper initial set of computational speeds set 

points (i.e. ωmax_L1_init and ωmax_L2_init). ωmax_L1_init and ωmax_L2_init correspond to the 

maximum predicted computational speed of the system at Flow1 and Flow2 respectively 

with respect to the current situation of process variability impact.  Subsequently, the 

speed set point update unit keeps adapting these two maximum predicted computational 

speeds set points with regard to the last sampled computational speed value ω and the 

update factor ρ’. Afterwards, the main functionality of this unit will be to estimate the 

maximum number of instructions that can be executed by the system if it was supplied by 

either Flow1 or Flow2 (i.e. ∆1 or ∆2 respectively).    
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By comparing ∆ with ∆1 and ∆2 (i.e. GT1 and GT2), we can decide which couple 

of voltage and frequency levels will be sufficient to supply our processor, in order to 

meet the allocated task deadline. Here comes the main functionality of the voltage and 

frequency selection unit. The supply voltage and the clock frequency have to be 

controlled together in order to ensure the maximum delay over the critical path. Clearly, 

the voltage and frequency selection unit is required to increase the voltage before 

increasing the frequency and, respectively, to decrease the frequency before decreasing 

the voltage. 

7.5.2 Speed Set Point Update 

The architecture of the speed set point update unit is depicted in Figure 7.6. The 

main goal of this unit is to continually predict the maximum number of instruction ∆1 and 

∆2 that can be executed by the system within the specified remaining time for the task Li 

before its deadline. Actually, ∆1 and ∆2 are estimated to predict the system computation 

capabilities when it will be supplied by Vlow with either Flow1 or Flow2, respectively. 

 
Figure 7.6: Speed Set Point Update Unit. 
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  The speed set point update unit is composed of two symmetrical branches. Each 

of the two branches applies the formula defined by Equation (6.4) with ρ = 1/8 in order to 

get the two estimated computational speeds ωmax_L1 and ωmax_L2. To facilitate the 

implementation of this part we first get ωmax_L1* 8 and ωmax_L2* 8, using ρ’ = 7, from 

MUX1 and MUX2 outputs respectively. Then, MUX1 and MUX2 outputs are simply 

logically shifted 3 bits to the right to divide their outputs by 8, so we get ωmax_L1 and 

ωmax_L2 from Register 1 and Register 2 outputs respectively. Subsequently, each of the 

two outputs ωmax_L1 and ωmax_L2 are multiplied by Li. As a result, we obtain the 

corresponding maximum number of instructions ∆1 and ∆2, that can be executed by the 

system during the remaining number of reference clock cycles Li for the allocated task, 

wither the system was working with the predicted computational speed set point ωmax_L1 

or ωmax_L2. Note that, on the last sampling instant of the current allocated task (Li_0 = 1), 

MUX5 and MUX6 select Ni of the next task to be executed. So that, on the next sampling 

instant (i.e. next positive edge of the RST signal), ∆1 = ωmax_L1 * Ni and ∆2 = ωmax_L2 * Ni. 

Afterwards, as long as the task is running MUX5 and MUX6 select Li, so that, ∆1 = 

ωmax_L1 * Li and ∆2 = ωmax_L2 * Li. 

As on the start up regulation phase of the system, the speed setup point update 

unit has to accept the proper initial set of computational speed set points (i.e. ωmax_L1_init 

and ωmax_L2_init) with respect to the current situation of process variability impact. 

Therefore, the reset pulse generator unit is included. The reset pulse generator unit 

generates a single pulse of duration equal to the RST period, see Figure 7.7. This enables 

MUX1 and MUX2 to select ωmax_L1_init and ωmax_L2_init on the start up regulation phase. 

Subsequently, the speed set point update unit keeps fine tuning these two maximal 

predicted computational speeds as ωmax_L1 and ωmax_L2. Note that, ωmax_L1 or ωmax_L2 are 

updated with the corresponding measured value of ω only if the system is working with 

Flow1 (i.e. GT1 = 0 and GT2 = 1) or Flow2 (i.e. GT1 = 0 and GT2 = 0) respectively. 

Otherwise ωmax_L1 and ωmax_L2 remains unchanged, as the measured value of ω in that 

case corresponds to a processing system under a clock frequency of Fhigh. Therefore 

MUX3 and MUX4 are used to enable this kind of adaption for ωmax_L1 and ωmax_L2. 

Different timing diagrams for the system behaviour on the three different process 

variability corners are shown in Section 7.6 to better explain the flow of all signals. 
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Figure 7.7: Reset Pulse Generator (a) Architecture (b) Timing Diagram. 

7.5.3 Voltage and Frequency Selection 

Switching performance levels take time for both voltage regulators and clock 

generators. Switching voltage levels is particular slow and switching frequencies is orders 

of magnitude faster than voltage level switching. As a result, we have to increase the 

voltage first then the clock frequency, and to decrease the voltage after clock frequency is 

lowered. The voltage and frequency selection unit shown in Figure 7.8 is able to do so 

through the use of Delay1 and Delay2. Delay2 corresponds to the Vdd-Hopping delay to 

switch from one voltage state to another one, which is approximately equal to 300 ns 

[MIE 07]. While Delay1 corresponds to the programmable oscillator delay to switch from 

one frequency to another, which is approximately equal to 20 ns, see Chapter 3. 

Initially DFF1 and DFF2 outputs are reset to zero. There are two possible 

scenarios for voltage switching. First, when the system has to switch from Vlow to Vhigh 

(i.e. GT1 value changes from 0 to 1). In this case, MUX3 output will be directly 

connected to the input port 1 of MUX1. This insures that Vlevel immediately changes its 

value from 0 to 1. On the other hand, this positive edge transition on MUX1 output will 

change XOR output to 1. As a result, MUX2 will select input port 1 to be connected to 

flevel. This delays the corresponding frequency code with an amount of time equal to 

Delay2, see Figure 7.9. This insures that the programmable oscillator will not change its 

output clock frequency before Vdd-Hopping output is stable. 
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Figure 7.8: Voltage and Frequency Selection Unit. 

 
Figure 7.9: Timing Diagram of the voltage and frequency selection unit. 

 (a) Switching from Vlow to Vhigh. (b) Switching from Vhigh to Vlow. 
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Second scenario, when the system has to switch from Vhigh to Vlow (i.e. GT1 value 

changes from 1 to 0). In this case, DFF1 will be triggered and its output will be equal to 

1. Consequently, the XOR output is equal to zero, which enables the immediate 

connection of flevel to the new frequency code value as MUX2 selects the incoming data 

on its input port 0.  MUX3 will select the incoming data on its input port 1, which is 

delayed with an amount of time equal to Delay1. This insures that the Vdd-Hopping unit 

will not change its output before the programmable oscillator new clock frequency is 

stable, see Figure 7.9.  

As our programmable oscillator (Asynchronous PSTR) proposed in chapter 3 

needs a change frequency CF pulse to indicate the presence of a new frequency code. The 

change frequency pulse generator depicted in Figure 7.10 is used. As it is simply en event 

detector, it is mainly composed of XOR gates. The reset pulse generator shown in Figure 

7.7 is used again in the voltage and frequency selection unit with its D input inversely 

connected to GT1. This will reset DFF1 and DFF2 once GT1 changes its value from 1 to 

0. As a result, the voltage and frequency selection unit is allowed to adapt again the 

switching delayed instants between Vlevel and Flevel. 

 
Figure 7.10: Change Frequency Pulse Generator. 

7.6 Simulation Results 

The design presented in Sections 7.5 is implemented using the 

STMicroelectronics 45nm CMOS standard libraries for the physical implementation with 

the Synopsys Design Vision tool. In order to evaluate the tracking efficiency of the 

proposed digital controller under different process variability conditions, a post layout 

simulation with Modelsim has been used. A scenario with three tasks is proposed: the 

first task starts with C1 = 100 instructions to do in 2 µs, (i.e. N1= 4 as TRST = 500 ns), then 
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a C2 = 340 instructions task has to be executed in 4 µs (i.e. N2 = 8), and the last one has to 

compute C3 = 160 instructions in 3 µs (i.e. N3 = 6). These data are supposed to be 

provided by the OS.  

Figure 7.11 shows the simulation result of the system under nominal process 

variability (i.e. activator monitor output A_Mon = 01). We can see that the used set of 

clock frequencies are Fhigh = 115 MHz, Flow1 = 75 MHz and Flow2 = 45 MHz, which 

corresponds to the proper set of clock frequencies that has to be used under nominal 

process variability as it was shown in Table 7.3. Task 1 was completed successfully with 

both Vlevel and Flevel equal to 0 (i.e. Fclk = Flow2 = 45 MHz and Vlevel = Vlow = 0.95 volts), 

all over the allocated time for the task. This is because ∆ during task 1 execution is 

always less than ∆1 and ∆2. Note that ∆ is firstly loaded with C1. Afterwards, it is 

decremented with ωk on each positive edge of the RST signal. Moreover, ωk is reset to 

zero on the RST negative edge just before the start of task 2. Each time a new instruction 

is executed we have a pulse on the Ins_Speed signal, where it’s connected to ram_ack 

signal shown in Figure 7.3. Ins_Speed is added in Figure 7.11 as a guideline for the MIPS 

R2000 clock speed. 

For task 2, ∆ is firstly loaded with C2 = 340, which is higher than ∆1 and ∆2. As a 

result, the digital controller directly sets Vlevel = Vhigh, and then after 300 ns sets Flevel = 

Fhigh. Therefore, the digital controller speeds up the MIPS R2000 to be able to complete 

the task at the proposed deadline N2. This is by setting the MIPS R2000 to work with the 

maximum supply voltage of 1.1 volts and clock frequency of 115 MHz. Once the digital 

controller has detected that task 2 can be completed with relaxed conditions, for example 

at Li = 4, ∆ is less than ∆1, the system switches back to Vlow. Here, we can see that the 

digital controller firstly switches Flevel to Flow1 then after 20ns Vlevel to Vlow. Therefore 

after running the MIPS R2000 for 1.52µs at 1.1 volts, it is now supplied with 0.95 volts 

and 75 MHz. Again the processor continues to work with these operating conditions tell 

∆ is less than ∆2 at Li = 1. At this moment the system switches back again to the second 

lower clock frequency Flow2 = 45 MHz at Vlow. We can see that the estimated 

computational speed ωmax_L1 was updated with the measured speed ω of the MIPS R2000 

only when the system was supplied with Flow1. 
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Figure 7.11: Timing Diagram of the Digital Controller Behaviour with 3 Different MIPS 

R2000 Workloads under Nominal Process Variability Effect. 

For task 3, ∆ is firstly loaded with C3 = 160, which is lower than ∆1 and ∆2. As a 

result, the digital controller keeps supplying the MIPS R2000 with Vlow and Flow2 as long 

as ∆ is lower than ∆1 and ∆2 all over task 3 execution time till its deadline. Note also that 

in this case ωmax_L2 was updated with the measured speed ω of the MIPS R2000 as the 

system was supplied with Flow2 at this time. 

In Figure 7.12, the simulation result of the system under worst process variability 

(i.e. activator monitor output A_Mon = 00) is depicted. We can see that the used set of 

clock frequencies are now Fhigh = 95 MHz, Flow1 = 60 MHz and Flow2 = 35 MHz, as it was 

shown in Table 7.3. Therefore, our programmable oscillator now generates the proper set 

of clock frequencies that has to be used in order to compensate for the reduced 

performance of the MIPS R2000 (i.e. increased critical path delay), under worst process 

variability effect. As a result, Task 1 runs 1.5µs at Flow1 then it switches to Flow2 for the 

last 0.5 µs. Moreover, Task 2 runs for 3.02 µs at Vhigh, which is 2 times longer than when 
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the MIPS R2000 is under nominal process viability, Figure 7.11. Then, when Li = 1, it 

switches to Flow1 = 60 MHz. Finally, it was able to complete the task successfully, where 

at Li = 0 the estimated remaining number of instructions to be executed is only 7. 

Therefore, it was able to relax the processing power again by switching to Flow2 = 35 

MHz.  For task 3, ∆ is firstly loaded with C3 = 160, which is now lower than ∆1 and 

higher than ∆2. As a result, the digital controller supplies the MIPS R2000 with Vlow and 

Flow1. Once, ∆ becomes lower than ∆2 at Li = 1 the digital controller relaxes the frequency 

to Flow2 till task 3 deadline.  

 
Figure 7.12: Timing Diagram of the Digital Controller Behaviour with 3 Different MIPS 

R2000 Workloads under Worst Process Variability Effect. 

The same 3 tasks workload is simulated again for the MIPS R2000 under best 

process variability see Figure 7.13. Now, the used set of clock frequencies generated by 

the programmable oscillator are Fhigh = 145 MHz, Flow1 = 85 MHz and Flow2 = 60 MHz. 

These clock frequencies correspond to the proper set that has to be used under best 

process variability as it was shown in Table 7.3. Using these frequency configurations the 

MIPS R2000 is able to successfully complete all the three tasks at Vlow, which adds more 
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power/energy saving opportunities than under the nominal case. Therefore, our proposed 

DVFS control architecture is able to not only compensate for the delay variations with 

different process variability impacts, but also exploit the enhanced response of the system 

under best variability conditions to gain more in terms of energy savings. Detailed 

comparison results with numbers are shown in Table 7.4. Note that for task 3 the MIPS 

R2000 completes the task 0.75µs before its deadline. At Li = 1, ∆ = 21 which is even less 

than ∆2/2. This means that the processor needs only one half RST clock cycle to complete 

task 3 during Li = 1. Therefore, on the next negative RST clock edge ωk is shown to be 

higher than Ci. Consequently, the output of subtraction shown in Figure 7.5 is negative, 

which is next sampled as ∆ = -13. Thus, a PC signal is sent to stop generated clock output 

by the programmable oscillator, and keeps the processor in an idle mode till it has a new 

assigned task. Again, this exploits the enhanced system performance by adding more 

energy savings as the processor has no more tasks. 

 

Figure 7.13: Timing Diagram of the Digital Controller Behaviour with 3 Different MIPS 

R2000 Workloads under Best Process Variability Effect. 
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To evaluate our proposed energy-efficient DVFS control for GALS-NoC 

architecture, the implemented chip is characterised for its average dynamic power, energy 

consumption, area overhead and robustness to process variability. Table 7.4 shows a 

comparison between the proposed energy-efficient DVFS control and the average based 

one, see Chapter 6, with respect to a system without DVFS. This comparison is in terms 

of average dynamic power and energy savings of the processor alone under different 

process variability corners.  

Table 7.4: A Comparison between Energy-Efficient and Normal Average Based DVFS 

Control with Respect to a System without DVFS at Different Process Variability Corners. 

Process 

Variability 

Impact 

Energy-Efficient Control 
(Adaptive Speed Set Point within 

the Task, Figure 6.6.b) 

Average Based Control 
(Fixed Speed Set Point all over the 

Task, Figure 6.6.a) 

Average Dynamic 
Power Savings 

Energy 

Savings 
Average Dynamic 

Power Savings 
Energy 

Savings 

Best 51, 39 % 25,41 % 
36,78 % 14,12 % 

Nominal 51,42 % 21,18 % 

Worst 

Achieve the Requested 
Performance with a Reduced Set 

of Clock Frequencies  
(Yield Enhancement) 

Used Set of Nominal Clock 
Frequencies Violates the MIPS 

R2000 Critical Path  
(Erroneous Data Outputs) 

  

From table 7.4 it is clear that under nominal process variability, the DVFS control 

with an adaptive computational speed set point during task execution (i.e. energy-

efficient control) is 1.5 more power and energy savings efficient than the one with fixed 

speed set point (i.e. average based control). Energy-efficient DVFS control is able to save 

21.18% of the energy consumption and 51.42% of the average dynamic power consumed 

by a system without DVFS. Note that power savings results are approximately 2 times 

better than energy savings, as power savings are proportional to both voltage and 

frequency control, while energy savings are proportional only to voltage control.  
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Our proposed energy-efficient DVFS control has the ability to adapt the 

computational speed set points (i.e. set of clock frequencies generated by the PSTR) with 

respect to the process variability impact. Since under the previously the allocated 3 tasks 

workload, the proposed DVFS control architecture was able to reduce the high voltage 

running time to zero, see Figure 7.12. Therefore the energy-efficient DVFS control was 

able to exploit this enhanced performance of the system (i.e. reduced critical path delay) 

to save more energy consumption (i.e. 25.41% under best process variability impact). 

However, the average based DVFS control saves the same amount of energy regardless 

of the reduced process variability impact. 

Under worst process variability condition, the used set of clock frequencies for a 

system without DVFS (i.e. 115 MHz) and even that for a system with average based 

DVFS control (i.e. 115 MHz at Vhigh and 75 MHz at Vlow) violates the MIPS R2000 

critical path delay, shown in Figure 7.2. As a result, the MIPS R2000 will have erroneous 

output results. Therefore this GALS-NoC processing node has to be neglected and its 

allocated tasks have to be distributed over other high performance processing nodes. 

However, with the proposed DVFS control architecture, the MIPS R2000 was still able to 

complete the allocated tasks successfully by using the proper set of maximum clock 

frequencies (i.e. 95 MHz at Vhigh and 60 MHz at Vlow). This drastically relaxes the 

fabrication constraints and helps the yield enhancement.  

 In order to perfectly evaluate our system, the average dynamic power, the energy 

consumption and the area of different DVFS control architecture parts shown in Figure 

7.3 has to be considered. From Table 7.5, It is clear that the two most power/energy 

consuming parts are the Vdd-Hopping and the programmable Oscillator. However, the 

digital controller consumes only 64.32 µW, as it has the lowest activity rate in the system 

of 2 MHz. Based on the values shown in Table 7.5, the average dynamic power savings, 

energy savings and area overhead of the whole DVFS control system are evaluated as 

shown in Table 7.6. These values are given for a GALS-NoC voltage-frequency island 

with a single processing element (i.e. MIPS R2000) and compared with another one with 

8 processing elements, refer to Figure 6.1. Under nominal process variability the average 

dynamic power and energy savings values of the whole DVFS control system are smaller 

than but not too far from those presented in Table 7.4.  
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Table 7.5: Power, Energy and Cross Sectional Area of Each Part in the DVFS 

Architecture shown in Figure 7.3. 

 MIPS 
R2000 

Digital 

Controller

Vdd 

Hopping, 
[MIE 07] 

PSTR 

Oscillator 

Speed 

Sensor 

Power Consumption 
(µW) 

at 1.1V - 25°C 
15177,9 64,32 455,37 357 2,57 

Energy Consumption 
(nJ) 

Over 9µSecs 
108,4 0,589 4.098 3,213 ,002 

Area  (µm2) 20210 1858 4400 418 36 

 

Since we have a single DVFS control system for each voltage-frequency island in 

a GALS-NoC system. Therefore, in a voltage-frequency island with multi processing 

elements, the efficacy of the DVFS control system will be more effective in saving power 

and energy consumption, see Table 7.6. Moreover, the area overhead of the extra DVFS 

hardware will be approximately divided by the number of processing elements per a 

GALS-NoC voltage-frequency island. For example the area overhead in a processing 

island with 8 processors is 4.15%. However, the area overhead in a processing island with 

a single processor is 33.21%. 

Table 7.6: Performance Analysis of the Whole Energy-Efficient GALS-NoC DVFS 

Control System under Nominal Process Variability Impact. 

No. of Processing elements per 
GALS-NoC Voltage-

Frequency Island 

Average Dynamic 
Power Savings 

Energy Savings 
Over 9µSecs 

Area 
Overhead 

1 45,62 % 14,86 % 33.21 % 

8 50,7 % 19,92 % 4.15 % 
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7.7 Conclusions 

This chapter addressed the problem of designing the process variability robust 

DVFS control architecture proposed in Chapter 6. First, the MIPS R2000 microprocessor 

is synthesized using the STMicroelectronics 45nm CMOS libraries, in order to present 

our processing load case of study. Then, the information extracted from the analysis of 

the MIPS R2000 processor on different process variability corners has been used in the 

programmability of our programmable oscillator (i.e. asynchronous PSTR). Finally, the 

energy-efficient DVFS digital control system is fully designed and implemented on the 

STMicroelectronics 45nm CMOS technology. The digital controller was able to smartly 

adapt the voltage/frequency couple with workload variation and, at the same time, copes 

with the parameter variations which cannot be predicted or accurately modeled at design 

time. Moreover, it also considers the voltage regulator and frequency oscillator switching 

performance levels, in order to correctly adapt their switching instants. According to the 

measured degree of process variability effect on the processing load performance, the 

programmable oscillator was able to generate the proper set of maximum clock 

frequencies that does not violates the MIPS R2000 critical path delay. Afterwards, the 

digital controller regularly adapts the estimated computational speed set points based on 

the workload variations with the existing process variability impact.  

For the different process variability corners defined by STMicroelectronics 45nm 

CMOS libraries, the proposed DVFS control system was able to successfully achieve the 

requested performance by the OS. This allows us to not neglect most of the voltage-

frequency islands, even if they were under worst process variability effect, which has a 

direct impact on enhancing the fabricated yield. Moreover, it was able to approximately 

save 50% of the power and 25% of the energy consumed by a system without DVFS, 

which is even 1.5 times better than a system with intuitive average based DVFS control. 

In addition to that, the digital controller exploits the enhanced performance of the system 

under best process variability to save more power/energy consumption. One more 

advantage of the proposed DVFS architecture is its small area overhead, especially with 

GALS-NoC voltage-frequency islands, that contains more than one processing element. 

With 8 MIPS R2000 per voltage-frequency island, the area overhead will only be 4.15%.   
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Chapter 8 

Conclusion and Perspectives 
 

Regarding the recent and upcoming nanometric CMOS technologies, designing a 

complex system is now becoming very challenging. These challenges are due to several 

constraints, such as guarantying the correct system behavior with strong process 

variations or controlling the system speed and energy. The main problem with such 

systems is that their modeling is complex and their behavior is difficult to predict. 

Moreover, the fabrication yield is more difficult to maintain as a high rate in the 

nanometric technologies and it can be improved by appropriate design techniques 

(Design for Yield).  

Indeed, process variations play an increasingly important role in system power 

consumption and performance as the technology scales down. This implies to consider 

global management strategies in order to respect energetic and real-time constraints.  

More precisely, there is a need for efficient algorithms and built-in circuitry able to adapt 

the system behavior to workload variations and, at the same time, cope with the 

parameter variations which cannot be predicted or accurately modeled at design time.  

Therefore performance estimation and management are today key points in new 

integrated systems. Concretely, these ideas were considered in a French national project 

called ARAVIS, sponsored by the global competitive cluster Minalogic.   

New strategies for energy management have to be used to meet the energy and 

real-time constraints. Solutions such as dynamic voltage and frequency scaling (DVFS) 

have to be considered, they have been explored and have shown significant energy 

savings while meeting performance requirements. While this problem has been addressed 

before by a large number of engineers and researchers, no attention has been given to add 

the feature of controlling the impact of manufacturing process variations to the 

capabilities of the DVFS controllers.  
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In this thesis, we have first addressed the problem of designing a process 

variability robust source for generating adjustable clocks, in order to be applied within 

each voltage-frequency island in a complex GALS-NoC system. Self-Timed Ring (STR) 

is chosen as the core of the oscillator because of its reported advantages with respect to 

many points of view (programmability, accuracy, robustness against process variability). 

A new methodology for calculating the oscillation frequency of STRs is proposed. The 

method shows very high efficiency and accuracy during the different design phases. By 

including Charlie/drafting effects to our VHDL models, we showed the possibility of 

using digital simulation to accurately model and simulate the STR behavior.   

Programmability has been introduced to STRs using two main different strategies. 

The two proposed strategies are simple architecture based solutions. These strategies 

show high efficiency and flexibility while choosing the ring frequency. Based on the 

proposed programmable STR (PSTR), a complete Programmable/Stoppable Oscillator 

(PSO) is designed and implemented. An efficient handshaking protocol between the 

processor and the oscillator is used to insure a proper switching from one frequency to 

another. The Oscillator shows glitch free and no truncated clocks at its output. The 

proposed architectures are physically implemented using the STMicroelectronics 45nm 

CMOS technology. The implemented chip shows High-speed, Low-Power, Low-Process 

Variability of the generated frequency, Wide-Range with Regular and Fine frequency 

step output. To the best of our knowledge, this chip is the first realization of a PSTR. As 

the PSTR is going to be used as one of the most important parts in the design of a process 

variability robust DVFS control for GALS-NoC systems, the effect of changing the 

power supply on the chip is studied as well. The chip shows very linear change in its 

frequency with respect to the variations in its power supply.  

Since the voltage-frequency islands in a GALS-NoC system have different clock 

frequencies according to the tasks that they are handling as well as their influence by the 

local process variations within each island. Therefore, synchronizing theses different 

clock domains during communication phases was our next challenge. Consequently, we 

have proposed a new scheme based on the use of the PSTR as the main clock generating 

source in each GALS module. This scheme supports reliable communication between 

independently clocked GALS modules. However, instead of including in each PSTR 
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oscillator a standard element for pausing the clock, each synchronous module is proposed 

to have both an incoming and an outgoing clock signal, which have been obtained by 

opening the PSTR oscillator. Since these clock signals behave as handshake signals, 

handshake circuits can be used to synchronize the clocks. The simplest way 

synchronizing two different clock domains is then carried out by means of a C-element, 

which introduces only a small and predictable timing overhead. A multiplexer and DFF 

have been used in this circuit design, in order to adapt the instants on which we switch 

between no communication and data exchanges states, so we do not have any glitches nor 

truncated clock periods. The advantages of this scheme are: due to its self-timed nature, 

the control switch used with the PSTR allows connecting modules running at different 

clock frequencies with very low power consumption.  It offers high throughput compared 

to a shared bus solution and a small area compared to FIFO-based solution. Moreover, it 

can be easily applied in different multipoint GALS interconnection schemes. 

The next and the main objective of this thesis was to design an energy-efficient, 

process variability robust DVFS control system for future GALS-based NoC 

communication architectures with multiple voltage-frequency domains. Subsequently, we 

have introduced a new voltage-frequency island architecture based on the use of the 

asynchronous PSTR that adapts its maximum output clock frequency according to the 

performance evaluation of the processing domain. Evaluating the fabrication process 

quality and the local environmental parameters (voltage, temperature) is done with the 

help of activity monitors embedded in each processing domain. Afterwards, we have 

presented a variation-adaptive feedback control methodology for GALS-NoC 

architectures. More precisely, we developed techniques to dynamically control the speed 

of each GALS-NoC voltage-frequency island and provide robustness against the 

uncertainties and variations in the design parameters. At the same time, our techniques 

adapt the operating voltage and frequency to the variations in the workload to save power 

and energy consumption. Simulation results demonstrate robustness to parameter 

variations and efficient energy savings with a Matlab load model. 

In order to design our proposed GALS-NoC control methodology and test its 

response on a real processing load with different process variability impacts, the MIPS 

R2000 microprocessor has been chosen as our main case study. First, it has been 
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synthesized using the STMicroelectronics 45nm CMOS libraries. Then, the information 

extracted from the analysis of the MIPS R2000 processor on different process variability 

corners has been used to parameterize the programmability of our asynchronous PSTR. 

Finally, the energy-efficient DVFS digital control system is fully designed and 

implemented on STMicroelectronics 45nm CMOS technology.  

The implemented digital controller was able to smartly adapt the 

voltage/frequency couple with workload variations and, at the same time, copes with the 

process variations. Moreover, it also considers the voltage regulator and frequency 

oscillator switching performance levels, in order to correctly adapt their switching 

instants.  According to the measured degree of process variability effect on the processing 

load performance, the programmable oscillator was able to generate the proper set of 

maximum clock frequencies which do not violate the MIPS R2000 critical path delay. 

Afterwards, the digital controller regularly adapts the estimated computational speed set 

points based on the workload variations with the exiting process variability impact.  

For the different process variability corners defined by STMicroelectronics for 

their 45nm CMOS libraries, the proposed DVFS control system was able successfully 

achieve the requested performance by the OS. This allows us to not neglect most of the 

GALS-NoC voltage-frequency islands, even if they were under worst process variability 

effect, which has a direct impact on enhancing the fabrication yield. Moreover, the digital 

controller exploits the enhanced performance of the system under the best process 

conditions to save more power/energy consumption. One more advantage of the proposed 

DVFS architecture is its small area overhead, especially with GALS-NoC voltage-

frequency islands, that contains more than one processing element (or larger than the 

MIPS R2000).  

There are many possible extensions to this work such as:  

1. The proposed PSTR-based GALS synchronization scheme can be 

extended and applied with different multipoint interconnection schemes. 

2. The digital controller part of the DVFS system in the proposed GALS-

NoC architecture can be developed to be completely asynchronous, in 

order to improve its robustness against process variations.  
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3. The new proposed GALS-NoC architecture can be physically 

implemented with different die positions per silicon wafer.  

4. Experimental results with more applications and complex processors like 

ARM cores can be carried out to practically test the DVFS controller 

behavior with different workloads and process variability impact.  

5. The idea can also be extended and practically tested with the 32nm CMOS 

technology and beyond.   
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Architecture Asynchrone pour L’Efficacité Energétique et L’Amélioration du Rendement 
en Fabrication dans les Technologies Décananométriques: Application à un Système sur 
Puce Multi-Cœurs 
 
Résumé - La réduction continuelle des dimensions dans les technologies CMOS a ouvert la porte à la conception de 
circuits complexes multi-cœurs (SoC). Malheureusement dans  les technologies nanométriques, les performances 
des systèmes intégrés après fabrication ne sont pas complètement prédictibles. En effet, les variations des procédés 
de fabrication sont très importantes aux échelles des puces. Par conséquent, la conception de tels systèmes dans les 
technologies nanométriques est désormais contrainte par de nombreux paramètres tels que la robustesse aux 
variations des procédés de fabrication et la consommation d'énergie. Ceci implique de disposer d'algorithmes 
efficaces, intégrés dans la puce, susceptibles d'adapter le comportement du système aux variations des charges des 
processeurs tout en faisant face simultanément aux variations des paramètres qui ne peuvent pas être prédits ou 
modélisées avec précision au moment de la conception. Dans ce contexte, ce travail de thèse porte sur la conception 
de systèmes dit « GALS » (Globally Asynchronous Locally Synchronous) conçus autour d’un réseau de 
communication intégré à la puce (Network-on-Chip ou NoC) exploitant les nouvelles générations de technologie 
CMOS.  Une nouvelle méthode permettant de contrôler dynamiquement la vitesse des différents îlots du NoC grâce 
à un contrôle de la tension et de la fréquence en fonction de la qualité locale des procédés de fabrication sur chaque 
îlot est proposée. Cette technique de contrôle permet d’améliorer les performances du système en consommation, 
et d’augmenter son rendement en fabrication grâce à l’utilisation des synergies au sein du système intégré. La 
méthode de contrôle est basée sur l’utilisation d'un anneau asynchrone programmable capable de prendre en 
compte la charge de travail dynamique et les effets de la variabilité des procédés de fabrication. Le contrôleur évalue 
en particulier la limite supérieure de fréquence de fonctionnement pour chaque domaine d'horloge. Ainsi, il n'est 
plus nécessaire de garantir les performances temporelles de chaque nœud au moment de la conception. Cela relâche 
considérablement les contraintes de fabrication et permet du même coup l'amélioration du rendement. 

 
Mots Clés: Logique Asynchrone, Technologies Nanométriques, Variabilité des Procédés de Fabrication, GALS-
NoC, DVFS Mécanismes de Contrôle, Conceptions pour le Rendement.  
 
 
Asynchronous architecture for power efficiency and yield enhancement in the 
decananometric technologies: Application to a multi-core system-on-chip 
 
Abstract - Continuous scaling of CMOS technology push circuit designs towards multi-core complex SoCs. 
Moreover, with the nanometric technologies, the integrated system performances after fabrication will not be fully 
predictable. Indeed, the process variations really become huge at the chip scale. Therefore the design of such 
complex SoCs in the nanoscale technologies is now constrained by many parameters such as the energy 
consumption and the robustness to process variability. This implies the need of efficient algorithms and built-in 
circuitry able to adapt the system behavior to the workload variations and, at the same time, to cope with the 
parameter variations which cannot be predicted or accurately modeled at design time. In this context, this thesis 
work addresses the design of GALS-based NoC architectures in the upcoming CMOS technologies. A novel 
methodology to dynamically control the speed of different voltage-frequency NoC islands according to the process 
variability impact on each domain is proposed. This control technique can improve the performances, the energy 
consumption, and the yield of future SoC architectures in a synergistic manner. The control methodology is based 
on the design of an asynchronous programmable self-timed ring where the controller takes into account the dynamic 
workload and the process variability effects. The controller especially considers the operating frequency limit which 
does not exceed the maximum locally allowed value for a given clock domain. With such an approach, it is no more 
required to separately guaranty the performance for each node. This drastically relaxes the fabrication constraints 
and helps the yield enhancement.  

 
Keywords: Asynchronous Logic, Nanometric Technologies, Process Variations, GALS-NoC, DVFS Control 
Schemes, Design for Yield.  
 
 




