Statistical cryptanalyses of symmetric-key algorithms

Benoît Gérard

supervised by Jean-Pierre Tillich

Thesis defense

December 9, 2010

Iterative block ciphers

- K: master key.
- F : round function.
- K_{i} : round sub-keys.

$$
\begin{aligned}
E_{K}: \mathbb{F}_{2}^{s} & \rightarrow \mathbb{F}_{2}^{s} \\
M & \mapsto C=E_{K}(M)=F_{K_{r}} \circ \cdots \circ F_{K_{1}}(M)
\end{aligned}
$$

Iterative block ciphers

- K: master key.
- F : round function.
- K_{i} : round sub-keys.

$$
\begin{aligned}
E_{K}: \mathbb{F}_{2}^{s} & \rightarrow \mathbb{F}_{2}^{s} \\
M & \mapsto C=E_{K}(M)=F_{K_{r}} \circ \cdots \circ F_{K_{1}}(M)
\end{aligned}
$$

Iterative block ciphers

- K : master key.
- F : round function.
- K_{i} : round sub-keys.

$$
\begin{aligned}
E_{K}: \mathbb{F}_{2}^{s} & \rightarrow \mathbb{F}_{2}^{s} \\
M & \mapsto C=E_{K}(M)=F_{K_{r}} \circ \cdots \circ F_{K_{1}}(M)
\end{aligned}
$$

Last round attack

1. Find a non-ideal behavior of $r-1$ rounds of the cipher.

Last round attack

1. Find a non-ideal behavior of $r-1$ rounds of the cipher.
2. For every possible candidate k for K_{r}

- Decipher ciphertexts by one round F using k.
- Generate the corresponding statistic (generally a counter).

3. Order the candidates regarding their likelihood.
4. Test all the master keys that correspond to the best candidate and so on...

Wrong key randomization hypothesis (W.K.R.H.).

Statistical cryptanalyses: notation

- N is the number of samples available to the attacker.
- k^{*} is the correct value of the subkey we are interested in.
- $n_{\text {key }}$ the number of bits of k^{*}.
- Σ_{k} is the counter extracted from samples for a candidate k.

Concerning the time complexity.

- Only stop when the key is recovered.
- Keeping a list \mathcal{L} of the likeliest candidates for the final search.

$$
P_{S} \stackrel{\text { def }}{=} \operatorname{Pr}\left[k^{*} \in \mathcal{L}\right] .
$$

- Defining a criterion to determine candidates to keep.
- Fixing the size of the list $\ell=|\mathcal{L}|$.

Issues

Analyzing the efficiency of a statistical cryptanalysis.

- data complexity: N.
- success probability: P_{S}.
- time complexity: related to ℓ.
- Each quantity is determined by the two others.

One would like to quantify the tradeoff between them i.e.

- Expressing P_{S} as a function of N and ℓ.
- Expressing N as a function of P_{S} and ℓ.

Summary

Basics of statistical cryptanalysis

Simple statistical cryptanalyses
Some known results
Data complexity
Success probability
Multiple differential cryptanalysis

Entropy as a tool for analyzing statistical cryptanalyses
Advantage vs gain
Entropy: an alternative to advantage
Some applications
Other works and perspectives

Model

- A non-ideal statistical behavior of the cipher has been found: statistical characteristic.
- From this characteristic and the samples, one is able to compute a counter Σ_{k} for each candidate.

Model

$$
\Sigma_{k} \sim \begin{cases}\mathcal{B} \operatorname{in}\left(N, p_{*}\right) & \text { if } k=k^{*} \\ \mathcal{B i n}(N, p) & \text { otherwise } .\end{cases}
$$

Linear cryptanalysis: Matsui's Algorithm 2

- Non-ideal behavior:

$$
\begin{gathered}
\operatorname{Pr}_{M, K}\left[\langle\pi, M\rangle \oplus\left\langle\gamma, F_{K}^{r-1}(M)\right\rangle=0\right]=\frac{1}{2}+\varepsilon . \\
p_{*}=\frac{1}{2}+\varepsilon \quad \text { and } \quad p=\frac{1}{2}
\end{gathered}
$$

- Statistics extracted from N known plaintext/ciphertext pairs $\left(m^{i}, c^{i}\right)$:

$$
\Sigma_{k}=\sum_{i=1}^{N}\left\langle\pi, m^{i}\right\rangle \oplus\left\langle\gamma, F_{k}^{-1}\left(c^{i}\right)\right\rangle
$$

- Criterion for ordering candidates:

$$
\left|\frac{\Sigma_{k}}{N}-\frac{1}{2}\right|
$$

Analysis

Typical values for a 64-bit cipher $(s=64)$:

$$
p_{*}=\frac{1}{2}+2^{-32} \quad \text { and } \quad p=\frac{1}{2} .
$$

In this domain, the Gaussian approximation for the binomial distribution is tight.
$\checkmark \ln$ [Matsui 1993]: $N=\mathcal{O}\left(1 / \varepsilon^{2}\right)$.
$\checkmark \ln$ [Junod 2001]: a precise formula for the distribution of the rank of k^{*}.
\checkmark In [Selçuk 2008]:

$$
P_{S} \approx \Phi\left(2 \sqrt{N}|\varepsilon|+\Phi^{-1}\left(1-\frac{\ell}{2^{n_{k e y}+1}}\right)\right)
$$

Differential cryptanalysis

- Non-ideal behavior:

$$
\begin{gathered}
\operatorname{Pr}_{M, K}\left[F_{K}^{r-1}(M) \oplus F_{K}^{r-1}\left(M \oplus \delta_{1}\right)=\delta_{2}\right]=p_{*} . \\
p_{*}>2^{-s} \quad \text { and } \quad p=\frac{1}{2^{s}-1} \approx 2^{-s} .
\end{gathered}
$$

- Statistics extracted from N ciphertexts $\left(c_{1}^{i}, c_{2}^{i}\right)$ corresponding to chosen plaintexts (m_{1}^{i}, m_{2}^{i}) with difference δ_{1} :

$$
\Sigma_{k}^{i}= \begin{cases}1 & \text { if } F_{k}^{-1}\left(c_{1}^{i}\right) \oplus F_{k}^{-1}\left(c_{2}^{i}\right)=\delta_{2} \\ 0 & \text { otherwise }\end{cases}
$$

- Criterion for ordering candidates:

$$
\Sigma_{k}=\sum_{i=1}^{N} \Sigma_{k}^{i}
$$

Analysis

Typical values for $s=64$:

$$
p_{*}=2^{-60} \quad \text { and } \quad p=2^{-64} .
$$

In this domain, the Poisson approximation for the binomial distribution is tight.
\checkmark [Biham, Shamir 1990]: for p_{*} sufficiently larger than 2^{-s},

$$
N=\mathcal{O}\left(1 / p_{*}\right)
$$

x In [Selçuk 2008],

$$
P_{S} \approx \Phi\left(\frac{\sqrt{N p_{*}^{2} / p}-\Phi^{-1}\left(1-\frac{\ell}{2^{n} k e y}\right)}{\sqrt{1+p_{*} / p}}\right) .
$$

Truncated differential cryptanalysis

- Non-ideal behavior:

$$
\begin{gathered}
\operatorname{Pr}_{M, K}\left[F_{K}^{r-1}(M) \oplus F_{K}^{r-1}(M \oplus \delta) \in \Delta_{2} \mid \delta \in \Delta_{1}\right]=p_{*} . \\
p_{*}>\left|\Delta_{2}\right| \cdot 2^{-s} \quad \text { and } \quad p=\frac{\left|\Delta_{2}\right|}{2^{s}-1} \approx\left|\Delta_{2}\right| \cdot 2^{-s} .
\end{gathered}
$$

- Statistics extracted from N ciphertexts $\left(c_{1}^{i}, c_{2}^{i}\right)$ corresponding to chosen plaintexts $\left(m_{1}^{i}, m_{2}^{i}\right)$ with difference in Δ_{1} :

$$
\Sigma_{k}^{i}= \begin{cases}1 & \text { if } F_{k}^{-1}\left(c_{1}^{i}\right) \oplus F_{k}^{-1}\left(c_{2}^{i}\right) \in \Delta_{2} \\ 0 & \text { otherwise }\end{cases}
$$

- Criterion for ordering candidates:

$$
\Sigma_{k}=\sum_{i=1}^{N} \Sigma_{k}^{i}
$$

Analysis

No typical values for probabilities since it depends on $\left|\Delta_{2}\right|$.

$$
\left(2^{-60}, 2^{-64}\right) \quad, \quad\left(2^{-15.8}, 2^{-16}\right) \quad, \quad\left(0.5+2^{-32}, 0.5\right)
$$

Both the Poisson and the Gaussian approximations may not be valid.

Analysis

No typical values for probabilities since it depends on $\left|\Delta_{2}\right|$.

$$
\left(2^{-60}, 2^{-64}\right) \quad, \quad\left(2^{-15.8}, 2^{-16}\right) \quad, \quad\left(0.5+2^{-32}, 0.5\right)
$$

Both the Poisson and the Gaussian approximations may not be valid.

Approximating the tails of the binomial distribution

Main tool (folklore)

Supposing that $\Sigma_{k} \sim \mathcal{B} i n(N, p)$, then, for $\tau<p$,

$$
\operatorname{Pr}\left[\Sigma_{k} \leq \tau N\right] \underset{N \rightarrow \infty}{\sim} \frac{p \sqrt{1-\tau}}{(p-\tau) \sqrt{2 \pi N \tau}} \cdot e^{-N D(\tau \| p)}
$$

and, for $\tau>p$,

$$
\operatorname{Pr}\left[\Sigma_{k} \geq \tau N\right] \underset{N \rightarrow \infty}{\sim} \frac{(1-p) \sqrt{\tau}}{(\tau-p) \sqrt{2 \pi N(1-\tau)}} \cdot e^{-N D(\tau \| p)}
$$

The Kullback-Leibler divergence:

$$
D(a \| b) \stackrel{\text { def }}{=} a \cdot \ln \left(\frac{a}{b}\right)+(1-a) \cdot \ln \left(\frac{1-a}{1-b}\right) .
$$

Data complexity (1/2)

$$
\operatorname{Pr}\left[\Sigma_{k^{*}}<\tau N\right] \leq \alpha \quad, \quad \operatorname{Pr}\left[\Sigma_{k} \geq \tau N\right] \leq \beta
$$

τ

Data complexity $(1 / 2)$

$$
\operatorname{Pr}\left[\Sigma_{k^{*}}<\tau N\right] \leq \alpha \quad, \quad \operatorname{Pr}\left[\Sigma_{k} \geq \tau N\right] \leq \beta .
$$

τ

Data complexity $(1 / 2)$

$$
\operatorname{Pr}\left[\Sigma_{k^{*}}<\tau N\right] \leq \alpha \quad, \quad \operatorname{Pr}\left[\Sigma_{k} \geq \tau N\right] \leq \beta .
$$

τ

Data complexity $(1 / 2)$

$$
\operatorname{Pr}\left[\Sigma_{k^{*}}<\tau N\right] \leq \alpha \quad, \quad \operatorname{Pr}\left[\Sigma_{k} \geq \tau N\right] \leq \beta .
$$

τ

Data complexity $(2 / 2)$

Estimates for N [Blondeau, G. 2009]

Two estimates for the data complexity of a simple statistical cryptanalysis with success probability close to 0.5 are

$$
N^{\prime} \stackrel{\text { def }}{=}-\frac{1}{D\left(p_{*} \| p\right)}\left[\ln \left(\frac{\lambda \beta}{\sqrt{D\left(p_{*} \| p\right)}}\right)+\frac{1}{2} \ln \left(-\ln \left(\frac{\lambda \beta}{\sqrt{D\left(p_{*} \| p\right)}}\right)\right)\right]
$$

and

$$
N^{\prime \prime} \stackrel{\text { def }}{=}-\frac{\ln (2 \sqrt{\pi} \beta)}{D\left(p_{*} \| p\right)}
$$

Bounds on error made using N^{\prime} and $N^{\prime \prime}$ guarantee their accuracy.

Empirical accuracy of the estimates

Linear cryptanalysis

Differential cryptanalysis

Empirical accuracy of the estimates

Truncated differential cryptanalysis

Fixing the list size

We gave estimates of N

- for $P_{S}=1-\alpha \approx 0.5$,
- function of β : proportion of kept candidates.

Now, we fix the list size $|\mathcal{L}|=\ell$.

- Expressing P_{S} as a function of N and ℓ.

$$
P_{S}=\sum_{i=0}^{N} \operatorname{Pr}\left[\Sigma_{k^{*}}=i\right] \cdot B_{n-\ell, \ell}(G(i)),
$$

where G is the cumulative distribution function of $\Sigma_{k \neq k^{*}}$.

Success Probability (1/2)

$$
P_{S}=\sum_{i=0}^{N} \operatorname{Pr}\left[\Sigma_{k^{*}}=i\right] \cdot B_{n-\ell, \ell}(G(i))
$$

Success Probability (2/2)

Theorem [Blondeau, G., Tillich 2009]

If G^{-1} denotes the inverse cumulative distribution function of the counters Σ_{k} for $k \neq k^{*}$, then,

$$
P_{S} \approx \sum_{i=G^{-1}\left(t_{0}\right)}^{N} \operatorname{Pr}\left[\Sigma_{k^{*}}=i\right]
$$

with $t_{0} \stackrel{\text { def }}{=} 1-\frac{\ell-1}{2^{n^{n e y}}-2}$.
Formula in [Selçuk 2008]:

$$
\int_{\Phi_{w}^{-1}\left(1-\frac{\ell}{2^{n} k e y}\right)}^{\infty} \varphi_{r}(x) d x
$$

Multiple differential cryptanalysis

Multiple cryptanalyses: extracting more information using several characteristics.

$$
\operatorname{Pr}_{M, K}\left[F_{K}^{r-1}(M) \oplus F_{K}^{r-1}\left(M \oplus \delta_{1}^{j}\right)=\delta_{2}^{j}\right]=p_{*}^{j} .
$$

Here the counters are

$$
\begin{gathered}
\Sigma_{k}^{j} \stackrel{\text { def }}{=} \#\left\{\left(m_{1}, m_{2}=m_{1} \oplus \delta_{1}^{j}, c_{1}, c_{2}\right), F_{k}^{-1}\left(c_{1}\right) \oplus F_{k}^{-1}\left(c_{2}\right)=\delta_{2}^{j}\right\} \\
\Sigma_{k} \stackrel{\operatorname{def}}{=} \sum_{j} \Sigma_{k}^{j}
\end{gathered}
$$

Main difficulty

$$
\Sigma_{k}^{j} \sim \mathcal{B} i n\left(N, p_{*}^{j}\right) \text { with } p_{*}^{j_{1}} \neq p_{*}^{j_{2}} .
$$

Analyzing multiple differential cryptanalysis

Main issue: estimating the distribution of a sum of binomial variables.
x In literature, Selçuk's formula is used.
x Using Poisson approximation, the behavior of counters for large deviations is not caught.

Use another approximation for the tails.

Main tool

Generalization of the formula used in the case of binomial tails for approximating the tails of the distribution of a sum of i.i.d. variables.

Experimental results

Proposed attack on 18-round PRESENT

Improvements from [Wang 2008]

- Use of differentials with different output differences.
- Better estimation of differential probabilities.
- Specific analysis that do not use Gaussian approximation.

	Data	Time	Version	Rounds	Type
[Wang08]	$2^{64.0}$	$2^{64.0}$	80	16	(multi.) diff.
[OVTK09]	$2^{63.0}$	$2^{104.0}$	128	17	related keys
submitted	$2^{62.0}$	$2^{75.0}$	80	18	multi. diff.
[AlbCid09]	$2^{62.0}$	$2^{113.0}$	128	19	alg. diff.
[ColSta09]	$2^{57.0}$	$2^{57.0}$	80	24	stat. sat.
[Cho10]	$2^{64.0}$	$2^{72.0}$	80	26	multi. lin.

Advantage and gain

- Ψ : random variable corresponding to the rank of k^{*} among the $2^{n_{k e y}}$ candidates.
- Advantage:

$$
a \stackrel{\text { def }}{=}-\log _{2}\left(\frac{\operatorname{Med}(\Psi)}{2^{n_{k e y}}}\right) .
$$

- Gain:

$$
\Gamma \stackrel{\text { def }}{=}-\log _{2}\left(\frac{2 \mathbb{E}(\Psi)-1}{2^{n_{k e y}}}\right) .
$$

Advantage vs gain (1/2)

Advantage vs gain (2/2)

Gain:

\times provides pessimistic results;
$\checkmark \mathbb{E}(\Psi)$ can be easily estimated.

Advantage:

\checkmark provides non-pessimistic results;
x estimating $\operatorname{Med}(\Psi)$ may not be easy.

Advantage vs gain (2/2)

Gain:
\times provides pessimistic results;
$\checkmark \mathbb{E}(\Psi)$ can be easily estimated.

Advantage:

\checkmark provides non-pessimistic results;
x estimating $\operatorname{Med}(\Psi)$ may not be easy.

Remark on previous example

- $\operatorname{Med}(\Psi)=2^{18.05}$;
- $\mathbb{E}(\Psi)=2^{19.99}$;
- $\mathbb{E}\left(\log _{2}(\Psi)\right)=17.96$.

Some definition

An alternative quantity to look at is entropy.

$$
\begin{aligned}
\mathcal{H}(X) & \stackrel{\text { def }}{=} \mathbb{E}_{X} \quad \log _{2}(\operatorname{Pr}[X]), \\
\mathcal{H}(X \mid Y) & \stackrel{\text { def }}{=} \mathbb{E}_{X, Y} \quad \log _{2}(\operatorname{Pr}[X \mid Y]),
\end{aligned}
$$

- Y : the variable containing the statistics.
- K^{\prime} : the sub-key to recover.
- $\mathcal{H}\left(K^{\prime} \mid Y\right)$: quantify the uncertainty on the key knowing samples.

Heuristic

Taking a list of size $\ell=2^{\mathcal{H}\left(K^{\prime} \mid Y\right)}$ leads to a success probability greater than 0.5.

Links between entropy and advantage

$$
a \stackrel{\text { def }}{=}-\log _{2}\left(\frac{\operatorname{Med}(\Psi)}{2^{n_{\text {key }}}}\right) \text { similar to } ?=-\log _{2}\left(\frac{2^{\mathcal{H}\left(K^{\prime} \mid Y\right)}}{2^{n_{k e y}}}\right) .
$$

Links between entropy and advantage

$$
\begin{gathered}
a \stackrel{\text { def }}{=}-\log _{2}\left(\frac{\operatorname{Med}(\Psi)}{2^{n_{k e y}}}\right) \text { similar to } \mathcal{I}\left(K^{\prime} ; Y\right)=-\log _{2}\left(\frac{2^{\mathcal{H}\left(K^{\prime} \mid Y\right)}}{2^{n_{\text {key }}}}\right) . \\
\mathcal{I}\left(K^{\prime} ; Y\right) \stackrel{\text { def }}{=} \mathcal{H}\left(K^{\prime}\right)-\mathcal{H}\left(K^{\prime} \mid Y\right) .
\end{gathered}
$$

Formula for $\mathcal{I}\left(K^{\prime} ; Y\right)$

$$
\mathcal{I}\left(K^{\prime} ; Y\right)=\sum_{k^{\prime}} \sum_{y} \operatorname{Pr}\left[K^{\prime}=k^{\prime}, Y=y\right] \log _{2}\left(\frac{\operatorname{Pr}\left[K^{\prime}=k^{\prime}, Y=y\right]}{\operatorname{Pr}\left[K^{\prime}=k^{\prime}\right] \operatorname{Pr}[Y=y]}\right),
$$

Estimating $\mathcal{I}\left(K^{\prime} ; Y\right)$

Bounding mutual information by a sum of quantities easier to compute.

The probability function of a variable A is $g(A)$.

Main tool

If

$$
g\left(Y \mid K^{\prime}\right)=\prod_{j} g\left(Y_{j} \mid K_{j}^{\prime}\right)
$$

then,

$$
\mathcal{I}\left(K^{\prime} ; Y\right) \leq \sum_{j} \mathcal{I}\left(K_{j}^{\prime} ; Y_{j}\right) .
$$

Application to multiple linear cryptanalysis (1/3)

Here the variables are decomposed regarding approximations.

$$
\operatorname{Pr}_{M, K}\left[\left\langle\pi_{j}, M\right\rangle \oplus\left\langle\gamma_{j}, C\right\rangle=\left\langle\kappa_{j}, K\right\rangle\right]=\frac{1}{2}+\varepsilon_{j} .
$$

Counters are

$$
\Sigma_{j} \stackrel{\text { def }}{=} \sum_{i=1}^{N}\left\langle\pi_{j}, m^{i}\right\rangle \oplus\left\langle\gamma_{j}, c^{i}\right\rangle
$$

Then, we use the bound with

$$
\begin{gathered}
Y_{j} \stackrel{\text { def }}{=} \frac{N-2 \Sigma_{j}}{2 N \varepsilon_{j}} \quad \text { and } \quad K_{j}^{\prime} \stackrel{\text { def }}{=}\left\langle\kappa_{j}, K\right\rangle . \\
Y_{j}=(-1)^{K_{j}^{\prime}}+B_{j} \text { with } B_{j} \sim \mathcal{N}\left(0, \frac{1}{4 N \varepsilon_{j}^{2}}\right) .
\end{gathered}
$$

Application to multiple linear cryptanalysis (2/3)

$$
g\left(Y \mid K^{\prime}\right)=\prod_{j} g\left(Y_{j} \mid K_{j}^{\prime}\right) \Longleftrightarrow \text { approximations are independent. }
$$

Then,

$$
\mathcal{I}\left(K_{j}^{\prime} ; Y_{j}\right) \leq \operatorname{Cap}\left(\sigma_{j}^{2}\right)
$$

where $\operatorname{Cap}\left(\sigma_{j}^{2}\right)$ is the capacity of the Gaussian channel with noise variance $\sigma_{j}^{2} \stackrel{\text { def }}{=} 1 / 4 N \varepsilon_{j}^{2}$.

$$
\mathcal{I}\left(K^{\prime} ; Y\right) \leq \sum_{j} \operatorname{Cap}\left(\sigma_{j}^{2}\right) \approx \frac{2 N \sum_{j} \varepsilon_{j}^{2}}{\ln 2}+\mathcal{O}\left(\sum_{j} \varepsilon_{j}^{4}\right)
$$

Application to multiple linear cryptanalysis (3/3)

Theorem

For $\ell=1$, if

$$
\sum_{j} \operatorname{Cap}\left(\sigma_{j}^{2}\right)>n_{k e y}
$$

then the success probability tends to 1 with the number of approximations.

In this case, we obtain the following estimates for N :

$$
\times \text { Gain } \rightarrow N \approx \frac{n_{k e y}+1}{\sum_{j} \varepsilon_{j}^{2}}
$$

$$
\checkmark \quad \text { Entropy } \rightarrow N \approx \frac{n_{k e y}}{2 \sum_{j} \varepsilon_{j}^{2}}
$$

Application to Matsui's Algorithm 2

The decomposition is done among possible values for k^{*}.

$$
\mathcal{I}\left(K^{\prime} ; Y\right) \leq \int_{\mathbb{R}^{+}} f^{1}(y) \log _{2}\left(\frac{f^{1}(y)}{f(y)}\right)+\left(2^{n_{\text {key }}}-1\right) f^{0}(y) \log _{2}\left(\frac{f^{0}(y)}{f(y)}\right) d y .
$$

Using this bound, we can explain observations in [Junod 2001]:
Experimental time complexity is 2^{41} while the theoretical complexity obtained considering the expected rank of the key is 2^{43}.

Applying the bound on mutual information leads to a time complexity of 2^{41}.

Application to multidimensional linear cryptanalysis

We easily obtain the following bound as a function of $\mathcal{H}\left(\Sigma_{k^{*}}\right)$ the entropy of the counter corresponding to the correct candidate,

$$
\mathcal{I}\left(K^{\prime} ; Y\right) \leq \sum_{j=1}^{N} \mathcal{I}\left(K ; Y_{j}\right) \leq N \cdot\left(d-\mathcal{H}\left(\Sigma_{k^{*}}\right)\right) .
$$

Other works and perspectives

Some other works:

- experiments on the use of a linear decoding algorithm for recovering the key in multiple linear cryptanalysis;
- implementation of a multiple linear cryptanalysis on DES.
- experiments on differential cryptanalysis [Blondeau, G. 2010].

Perspectives:

- Other way for handling multiple attacks.
- Application of entropy approach to other cryptanalyses.
- Bounding the success rate when taking $\ell=2^{\mathcal{H}\left(K^{\prime} \mid Y\right)}$.

Entropy in multidimensional linear cryptanalysis (1/2)

For d base approximations

$$
\begin{gathered}
\operatorname{Pr}_{M, K}\left[\left\langle\pi_{j}, M\right\rangle \oplus\left\langle\gamma_{j}, C\right\rangle=0\right]=\frac{1}{2}+\varepsilon_{j} . \\
Y_{k}^{i} \stackrel{\text { def }}{=}\left(\begin{array}{c}
\left\langle\pi_{1}, m^{i}\right\rangle \oplus\left\langle\gamma_{1}, F_{k}^{-1}\left(c^{i}\right)\right\rangle \\
\vdots \\
\left\langle\pi_{d}, m^{i}\right\rangle \oplus\left\langle\gamma_{d}, F_{k}^{-1}\left(c^{i}\right)\right\rangle
\end{array}\right) .
\end{gathered}
$$

- For $k=k^{*}$, the distribution of $Y_{k^{*}}^{i}$ is \mathbf{p}_{*}.
- For $k \neq k^{*}$, the distribution of $Y_{k^{*}}^{i}$ is uniform on \mathbb{F}_{2}^{s}.

$$
\mathcal{I}\left(K^{\prime} ; Y\right) \leq \sum_{i=1}^{N} \sum_{k \in \mathbb{F}_{2}^{n_{k e y}}} \mathcal{I}\left(K^{\prime} ; Y_{k}^{i}\right)
$$

Entropy in multidimensional linear cryptanalysis (2/2)

$$
\begin{aligned}
& \mathcal{I}\left(K^{\prime} ; Y\right) \leq \sum_{i=1}^{N} \sum_{k \in \mathbb{F}_{2}^{n} k e y} \mathcal{I}\left(K^{\prime} ; Y_{k}^{i}\right) \\
& \mathcal{I}\left(K^{\prime} ; Y_{k}^{i}\right)=\mathcal{H}\left(Y_{k}^{i}\right)-\mathcal{H}\left(Y_{k}^{i} \mid K^{\prime}\right)
\end{aligned}
$$

Final result

$$
\mathcal{I}\left(K^{\prime} ; Y\right) \leq N \cdot\left(d-\mathcal{H}\left(\mathbf{p}_{*}\right)\right)
$$

Entropy in multidimensional linear cryptanalysis (2/2)

$$
\begin{aligned}
& \mathcal{I}\left(K^{\prime} ; Y\right) \leq \sum_{i=1}^{N} \sum_{k \in \mathbb{F}_{2}^{n} \text { key }} \mathcal{H}\left(Y_{k}^{i}\right)-\mathcal{H}\left(Y_{k}^{i} \mid K^{\prime}\right) . \\
& \sum_{k \in \mathbb{F}_{2}^{n_{\text {key }}}} \mathcal{H}\left(Y_{k}^{i} \mid K^{\prime}\right)=\mathcal{H}\left(\mathbf{p}_{*}\right)+\left(2^{n_{k e y}}-1\right) \cdot d .
\end{aligned}
$$

$$
\sum_{k \in \mathbb{F}_{2}^{n_{\text {key }}}} \mathcal{H}\left(Y_{k}^{i}\right)=2^{n_{\text {key }}} \cdot d .
$$

Final result

$$
\mathcal{I}\left(K^{\prime} ; Y\right) \leq N \cdot\left(d-\mathcal{H}\left(\mathbf{p}_{*}\right)\right) .
$$

Application to multidimensional linear cryptanalysis

Formula used from [Hermelin, Cho, Nyberg 2009]:

$$
a_{\mathrm{LLR}} \approx \frac{N C(p)}{2}-m
$$

Application to multidimensional linear cryptanalysis

Formula used from [Hermelin, Cho, Nyberg 2009]:

$$
a_{\mathrm{LLR}} \approx \frac{N C(p)}{2 \ln (2)}-m
$$

Application to multidimensional linear cryptanalysis

Formula used from [Hermelin, Cho, Nyberg 2009]:

$$
a_{\mathrm{LLR}} \approx-\log _{2} \Phi(-\sqrt{N C(p)})-m
$$

Application to multidimensional linear cryptanalysis

Formula used from [Hermelin, Cho, Nyberg 2009]:

