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lterative block ciphers

M— F = F = ...... _

K ......
Ky Ky K, K,

» K: master key.
» F: round function.
» K;: round sub-keys.
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Last round attack

1. Find a non-ideal behavior of r — 1 rounds of the cipher.

]V[# F %# F %»F“%]V[}——’E—»C

K

Kl Krfl K’!‘
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Last round attack

1. Find a non-ideal behavior of r — 1 rounds of the cipher.

2. For every possible candidate k for K,

» Decipher ciphertexts by one round F' using k.
» Generate the corresponding statistic (generally a counter).

3. Order the candidates regarding their likelihood.

4. Test all the master keys that correspond to the best candidate
and soon ...
k=K,

M~ F |wool F }»F”ll(M@cuniformly

T k # K, random

Ky K, K, k

Wrong key randomization hypothesis (W.K.R.H.).
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Statistical cryptanalyses: notation

» N is the number of samples available to the attacker.
» k™ is the correct value of the subkey we are interested in.
> Niey the number of bits of k*.

» >, is the counter extracted from samples for a candidate k.

Concerning the time complexity.
» Only stop when the key is recovered.

» Keeping a list £ of the likeliest candidates for the final search.

Ps ¥ prk* e £].

» Defining a criterion to determine candidates to keep.
» Fixing the size of the list ¢ = |L].
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lssues

Analyzing the efficiency of a statistical cryptanalysis.

v

data complexity: V.

v

success probability: Ps.

v

time complexity: related to /.

v

Each quantity is determined by the two others.

One would like to quantify the tradeoff between them i.e.

» Expressing Ps as a function of NV and /.
» Expressing N as a function of Pg and /.
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Model

» A non-ideal statistical behavior of the cipher has been found:
statistical characteristic.

» From this characteristic and the samples, one is able to
compute a counter X, for each candidate.

> Bin (N,p.) if k=Fk*,
k Bin (N,p) otherwise.
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Linear cryptanalysis: Matsui’'s Algorithm 2
» Non-ideal behavior:

PI“MJ( [(W,M> D <’7,FIT(71(M)> = 0] = % + €.

1 1
p*:§+e and p=3
» Statistics extracted from N known plaintext/ciphertext pairs
(m*, c"):
N
Sk=Y (m,m') @ (v, F ().
i=1

» Criterion for ordering candidates:

2, 1
N 2|
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Analysis

Typical values for a 64-bit cipher (s = 64):

1 _ 1
p*=§+2 32

In this domain, the Gaussian approximation for the binomial
distribution is tight.
v In [Matsui 1993]: N = O (1/&?).
V" In [Junod 2001]: a precise formula for the distribution of the
rank of k*.
v" In [Selcuk 2008]:

- 2nkey+1

Py~ ® <2\/N|s| + ! <1 E)) .
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Differential cryptanalysis
» Non-ideal behavior:
Py [Fr (M) @ Fi7 H(M @ 61) = 8] = p.

1
25 -1

~ 275,

pe>2"° and p=

» Statistics extracted from N ciphertexts (¢, c}) corresponding
to chosen plaintexts (mj, mb) with difference ¢;:

; {1 if E (e @ B () = 6
-

~ ) 0 otherwise.

» Criterion for ordering candidates:
N
Y = Z i
i=1
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Analysis

Typical values for s = 64:
pe=2"% and p=2"%

In this domain, the Poisson approximation for the binomial
distribution is tight.

V" [Biham, Shamir 1990]: for p, sufficiently larger than 27%,
N=0(1/p.).

x In [Selcuk 2008],

Py~ ® ( Np2/p—®~1(1 - 2n£y)> ‘

V14 pi/p
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Truncated differential cryptanalysis
» Non-ideal behavior:
Prarw [Fie H(M) @ Fi (M @ 8) € As| 6 € Ay] = p..

_|Ag|

*>A ‘278 d fr—
ps > |Ag] and  p=o—

~ A - 27,

» Statistics extracted from NN ciphertexts (c, c}) corresponding
to chosen plaintexts (mj, m5) with difference in A;:

wi {1 FET () @ F(ch) € A
k=1 0 otherwise.

» Criterion for ordering candidates:
N
Y = Z Ni
i=1
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Analysis

No typical values for probabilities since it depends on |Ay].

—60 o—64 —15.8 5—16 —32
(2792759 (27182719 | (0.5427°%,0.5).
Both the Poisson and the Gaussian approximations may not be
valid.
0 T T T T -4 T T T T
5 Binomial i
~ -20 Gaussian
5 -6 Poisson
-40
% Tt
n -60
£ o
v 80 I Binomial 9}
2 Gaussian
100 F “pgisson -10
-120 L L L L 11 L L L L
10 15 20 25 4300 4325 4350 4375
x T
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Analysis

No typical values for probabilities since it depends on |As|.

(27602764 (27158 9716 (054 2792,0.5)
Both the Poisson and the Gaussian approximations may not be
valid.

o
-10

[ Binomial
_50 | Gaussian
Poisson
_60 1 1 1 1 1 1
320 340 360 380 400 420

T

log (Pr [Z4- = a])
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Approximating the tails of the binomial distribution
Main tool (folklore)
Supposing that ¥, ~ Bin (N, p), then, for 7 < p,

_wl=T | -NDle)

Pr[X. <7N| ~
Be <7 ]N%oo (p — T)V2rNT
and, for 7 > p,
Pr[Sg > 7N] ~ A-PVT _  _-ND(Ip)

N—oo (1T —p)y/20N(1 —7)

The Kullback-Leibler divergence:

D (a||b) e In <%) +(1—a)-In (1:2) .
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Data complexity (1/2)

Pri¥p;« <7N|]<a , Pr[¥;>7N]<g.

S

T
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Data complexity (1/2)
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Data complexity (1/2)

Pri¥p;« <7N|]<a , Pr[¥;>7N]<g.

T
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Data complexity (2/2)

Estimates for N [Blondeau, G. 2009]

Two estimates for the data complexity of a simple statistical crypt-
analysis with success probability close to 0.5 are

s def 1 N AB ln I _AB
N = Do [l ( D(p*llp)>+21 ( : ( D(P*”P)))]’

and

N déf In (2ﬁ6)

D (p«llp) -

Bounds on error made using N’ and N” guarantee their accuracy.
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Empirical accuracy of the estimates

Linear cryptanalysis Differential cryptanalysis
50 —r T T T T T T T 58 — T T T T T T T
49
- 4
5 8
&
S 47 50
N N
[Selcuk 2008 48 Selcuk 2008
46 Nl — [ N] —
N' —— | 46} N —
45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20
—logy() —logy(B)
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Empirical accuracy of the estimates

26

25

24

23

22

B.Gérard

Truncated differential cryptanalysis

—logy ()

N
[Selcuk 2008]
N —
NI/
6 8 10 12 14 16 18 20
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Fixing the list size

We gave estimates of N
» for P =1 —a~0.5,

» function of 3: proportion of kept candidates.

Now, we fix the list size |£| = /.

» Expressing Ps as a function of IV and /.

N

Ps = Pr[Sp =i Buge(G(i)),
=0

where G'is the cumulative distribution function of 3j_p+.
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Success Probability (1/2)

N
Ps =Y Pr[S- =i] - Bu_ge(G(0)).
i=0
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B.Gérard
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Success Probability (2/2)

Theorem [Blondeau, G., Tillich 2009]

If G=1 denotes the inverse cumulative distribution function of the
counters X, for k # k*, then,

N
Ps~ Y Pr[S =i,
iZG_l(to)
with tg & 1— 2n£e_y1_2.

Formula in [Selcuk 2008]:

/Oo or () da.

—1 ¢
Pw (17 2"key )
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Multiple differential cryptanalysis

Multiple cryptanalyses: extracting more information using several
characteristics.

Pry ik [F}}_I(M) oF; (Mo 6{) = 5% =pl.
Here the counters are

= # {(m1,m2 =m1 ® 6, c1,c2), Fy H(c1) @ Fy Heo) = 55}7

€Y
j

Main difficulty
S ~ Bin (N,pl) with plt # pi2.
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Analyzing multiple differential cryptanalysis

Main issue: estimating the distribution of a sum of binomial
variables.

x In literature, Selcuk’s formula is used.

x Using Poisson approximation, the behavior of counters for
large deviations is not caught.

Use another approximation for the tails.

Main tool

Generalization of the formula used in the case of binomial tails for
approximating the tails of the distribution of a sum of i.i.d. variables.
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Experimental results

0.8

0.6

Ps

0.4

Ours =—
Selcuk  m——
0.2 Poisson only = ]
Experimental =——
0 1 1 1 1 1 1
28.5 29 29.5 30 30.5 31
log,(N)
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Proposed attack on 18-round PRESENT

Improvements from [Wang 2008]
» Use of differentials with different output differences.
» Better estimation of differential probabilities.

» Specific analysis that do not use Gaussian approximation.

| Data Time Version Rounds Type
[Wang0g] | 2640 2640 80 16 (multi.) diff.
[OVTKO9] | 2630 21040 128 17 related keys
submitted | 2620 2750 80 18 multi. diff.
[AlbCidog] | 2620 21130 128 19 alg. diff.
[ColSta09] | 257-0 2570 80 24 stat. sat.
[Cho10] 2640 9720 80 26 multi. lin.
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Advantage and gain

» WU: random variable corresponding to the rank of k* among
the 2™key candidates.

def Med (W
o g, (MAD),

» Advantage:

2”kr*y

» Gain:

2 Nkey

e 2E(P) -1
I“d:’fflogg <( ) )
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Advantage vs gain (1/2)

25 ——/—m—m—m———————r—rrrrrrrTrTTTTTTTT
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Advantage vs gain (2/2)

Gain:
x provides pessimistic results;
v E(U) can be easily estimated.

Advantage:
V' provides non-pessimistic results;
x estimating Med(¥) may not be easy.
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Advantage vs gain (2/2)

Gain:
x provides pessimistic results;
v E(V) can be easily estimated.

Advantage:
V' provides non-pessimistic results;
x estimating Med(¥) may not be easy.

> Med(¥) = 21805,
> E(\I/) _ 219.99;
» E(logy(T)) = 17.96.
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Some definition

An alternative quantity to look at is entropy.

HX) € Ex log, (Pr[X]),

def
HXIY) = Exy log, (Pr[X[|Y]),
» Y the variable containing the statistics.
» K': the sub-key to recover.

» H(K'|Y): quantify the uncertainty on the key knowing
samples.

Taking a list of size £ = 2HE'Y) |eads to a success probability
greater than 0.5.
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Links between entropy and advantage

IMiey IMikey

o Med(¥ 2HEY)
o — logy (e()) similar to 7 = —log, ( .
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Links between entropy and advantage

. Med (W 2
q & —log, (e()> similar to Z(K';Y) = —log, < :

aney aney

Formula for Z(K';Y)

/. = rlK' =k = (¢} Pr[K/:k/’Y:y]
I(K,Y)_;glj [K kY y]ng (Pr[K’Zk’]PI‘[Y:y]>,
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Estimating Z(K"; Y)

Bounding mutual information by a sum of quantities easier to
compute.

The probability function of a variable A is g(A).

If
g(Y|K') = Hg (Y;1K7),
then,

<ZI 5Y))
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Application to multiple linear cryptanalysis (1/3)
Here the variables are decomposed regarding approximations.
1
PI"M’K [<7Tj,M> ) <’Yj, C> = <I€j,K>] = 5 + €j.
Counters are
N
:C Z mj,mY) @ (yj,c).

Then, we use the bound with

def N — 22 def
V,= —=—, and K= (x;,K).
! 2Ne; ] !

, 1
Y; = (=1)% + B with B, ~ 0,—— |.
J ( )J+ ]WI J N<74N€j2>
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Application to multiple linear cryptanalysis (2/3)

gY|K') = Hg(YﬂKé) <= approximations are independent.
J

Then,
I(K};Y;) < Cap(o7),

where Cap(o 2-) is the capacity of the Gaussian channel with noise

lef .
variance (72 E 1/4\

In2

2N Y. &2
’Y)SZCap(a?)%ﬁ-l-O Za?
J J
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Application to multiple linear cryptanalysis (3/3)

For¢ =1, if
Z Cap (07) > ey,

then the success probability tends to 1 with the number of approxi-
mations.

In this case, we obtain the following estimates for IV:

n
x Gain = N =~ M v' Entropy - N = key

-~ ey
i €5 225€
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Application to Matsui’'s Algorithm 2

The decomposition is done among possible values for k*.

7)< [ faon (L0) e - 0o (50 a

Using this bound, we can explain observations in [Junod 2001]:
Experimental time complexity is 221 while the theoretical
complexity obtained considering the expected rank of the key is 243.

Applying the bound on mutual information leads to a time
complexity of 241,
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Application to multidimensional linear cryptanalysis
We easily obtain the following bound as a function of H(Xx+) the
entropy of the counter corresponding to the correct candidate,

N
I(KY) <Y I(K;Y;) < N - (d—H(Sp)).
j=1

= E[QC"',Q'SS]' S » Attack presented by

10 | Entropy —— ] Hermelin, Nyberg and
o 8 | Cho at FSE 2009.
‘g 6 » For 4 base
2 approximations and

4 the LLR method.

2 1 » Data provided by

0 . . . authors.

23 24 25 26 27 28

logy(N)
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Other works and perspectives

Some other works:

> experiments on the use of a linear decoding algorithm for
recovering the key in multiple linear cryptanalysis;

» implementation of a multiple linear cryptanalysis on DES.

» experiments on differential cryptanalysis [Blondeau, G. 2010].

Perspectives:
» Other way for handling multiple attacks.
» Application of entropy approach to other cryptanalyses.

» Bounding the success rate when taking ¢ = 2H(K'IY),
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Entropy in multidimensional linear cryptanalysis (1/2)

For d base approximations

1
PrM,K [<7rij> @ <7]70> = 0] = 5 + €5.

(m1,m') ® <71,F;;1(Ci)>
YZ def

(g, m'") @ <%F ')

» For k = k*, the distribution of Yki* IS Ps.
» For k # k*, the distribution of Y}.. is uniform on F$.

<Z > LKLY,

1=1 ke]F;key



Entropy in multidimensional linear cryptanalysis (2/2)

N
I(KY) <Y Y Z(K5 V).

=1 ke]F;k:ey

Z(K: V) = 1Y) = HYIK).

Final result

I(K';Y) < N - (d — H(p«)).



Entropy in multidimensional linear cryptanalysis (2/2)

N
Z Z H(YY) — H(YE|K).
=1 pep,*

ke

Y HORIK) = H(p.) + (2" — 1) - d.

keFy ey

> OH(Y) = 2me - d.

keFy ey

Final result

I(KY) < N - (d—H(px)-



Application to multidimensional linear cryptanalysis

Formula used from [Hermelin, Cho, Nyberg 2009]:

Advantage

wee o NO@)
LLR ™~ -
* 2
12 F Empirical
[HCNO9] ———

10 | Entropy
8 i
6 i
4 J
2 J
0
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Application to multidimensional linear cryptanalysis

Formula used from [Hermelin, Cho, Nyberg 2009]:

Advantage

QIR ~ ————— — M

_ NC(p)

21In(2)

12 F Empirical
[HCNO9] ———
10 | Entropy R
8 I J
6 | //' J
4t /wﬂ - E
/

2+ _— 4
0 1 1 1 1

23 24 25 26 27

28



Application to multidimensional linear cryptanalysis
Formula used from [Hermelin, Cho, Nyberg 2009]:

apr ~ —log, @ (7 NU(p)) —m.

12 F Empirical
[HCNO9] ———

10 | Entropy R
% 8t / ]
©
1=
T 6 ]
B

4t /77/\ . _

2+ ///// ]

0 1 1 1 1

23 24 25 26 27 28



Application to multidimensional linear cryptanalysis
Formula used from [Hermelin, Cho, Nyberg 2009]:

12 F Empirical
[HCNO9]

10 | Entropy ]
o 8 1
3
c
s o -
el
<

23 24 25 26 27 28
logy(N)
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