
HAL Id: tel-00578254
https://theses.hal.science/tel-00578254v1

Submitted on 18 Mar 2011 (v1), last revised 27 May 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fragments de l’arithmétique dans une combinaison de
procédures de décision

Diego Caminha Barbosa de Oliveira

To cite this version:
Diego Caminha Barbosa de Oliveira. Fragments de l’arithmétique dans une combinaison de procédures
de décision. Génie logiciel [cs.SE]. Université Nancy II, 2011. Français. �NNT : �. �tel-00578254v1�

https://theses.hal.science/tel-00578254v1
https://hal.archives-ouvertes.fr

 UFR mathématique et informatique École doctorale IAEM Lorraine

Département de formation doctorale en Informatique

Fragments de l'arithmétique dans une
combinaison de procédures de décision

THÈSE

présentée et soutenue publiquement le 14 mars 2011
pour l'obtention du

Doctorat de l'Université Nancy 2
(spécialité informatique)

par

Diego CAMINHA BARBOSA DE OLIVEIRA

Composition du jury

Rapporteurs:
Pascal GRIBOMONT Professeur à l'Université de Liège
David MONNIAUX Chargé de Recherche au CNRS, Verimag

Examinateurs:
David DÉHARBE Professeur à l'Universidade Federal do Rio Grande do Norte
Pascal FONTAINE Maître de conférences à l'Université Nancy 2 - Codirecteur de thèse
Claude MARCHÉ Directeur de recherche à l'INRIA Saclay
Stephan MERZ Directeur de recherche à l'INRIA Nancy – Directeur de thèse
Jeanine SOUQUIÈRES Professeur à l'Université Nancy 2

Laboratoire Lorrain de Recherche en Informatique et ses Applications – UMR 7503

Contents

I Thèse 7

1 Thèse 9

1.1 Introduction . 9

1.2 Les solveurs SAT . 12

1.2.1 L’algorithme DPLL 13

1.3 Les solveurs SMT . 14

1.4 Décider une combinaison de théories 15

1.4.1 La méthode de combinaison de Nelson-Oppen 16

1.4.2 Combinaison par partage d’égalité de modèles 19

1.5 Procédure de décision pour SMT 21

1.5.1 Génération d’ensemble de conflit 21

1.5.2 Génération d’égalité 22

1.5.3 Génération d’égalité de modèle 22

1.5.4 Lemmes . 22

1.5.5 Propagation de théorie 22

1.5.6 Incrementalité and backtrackabilité 22

1.6 La logique de différence . 23

1.6.1 Procédure de décision pour la logique de difference . . 25

1.7 Décider l’arithmétique linéaire 27

1.7.1 La méthode du simplexe 27

1.7.2 Décider la satisfaisabilité incrémentallement 30

1.7.3 Génération de l’ensemble de conflit 33

1.7.4 Backtracking . 33

1.7.5 Génération d’égalité 34

1.7.6 Génération d’égalités de modèle 34

1.7.7 Diségalités et inégalités strictes 35

1.7.8 Variables entières . 35

1.8 Conclusion . 36

II Extended thesis 37

2 Introduction 39

3

4 CONTENTS

2.1 The overview of the thesis . 41

2.2 The publications during the thesis 42

3 From SAT to SMT-solvers 45

3.1 Introduction . 45

3.2 SAT-solver . 46

3.2.1 The DPLL algorithm 47

3.2.2 DPLL, an example . 48

3.2.3 Modern techniques for DPLL based SAT-solvers . . . 49

3.3 An example of modeling in SAT 51

3.4 SMT-solver . 53

3.5 An example of modeling in SMT 55

3.6 Conclusion . 56

4 Deciding a combination of theories 59

4.1 The Nelson and Oppen combination framework 60

4.1.1 Equality generation and propagation 60

4.1.2 Generation of disjunction of equalities and propagation 63

4.1.3 Trying all arrangements 64

4.1.4 Remarks . 66

4.2 Combination sharing model-equalities 67

4.3 Combining with model-equalities, an algorithm 74

4.4 Soundness and completeness of SMT-solvers 77

4.4.1 Model-equalities . 80

4.5 Conclusion . 81

5 Extending a basic decision procedure 83

5.1 Introduction . 83

5.2 Conflict set generation . 84

5.3 Equality generation . 86

5.4 Model-equality generation . 87

5.5 Lemmas . 88

5.6 Theory propagation . 89

5.7 Incrementality and backtrackability 91

5.8 Conclusion . 95

6 Deciding difference logic 97

6.1 Difference logic graph theory 97

6.1.1 Properties and Graph Representation 98

6.1.2 Conclusion . 102

6.2 Difference logic decision procedure 102

6.2.1 Satisfiability Checking 103

6.2.2 Incremental Satisfiability Checking 104

6.2.3 Conflict Set Construction 108

CONTENTS 5

6.2.4 Equality Generation 109
6.2.5 Model-Equality Generation 115
6.2.6 Generating fewer model-equalities 118
6.2.7 Theory propagation 122

6.3 Conclusion . 124

7 Deciding linear arithmetic 125
7.1 Introduction to the simplex method 125
7.2 The primal simplex . 127
7.3 Incremental satisfiability check 134
7.4 The unsatisfiable case . 146
7.5 Generating the conflict set . 147
7.6 Backtracking . 149
7.7 Equality generation . 150
7.8 Model-equality generation . 151
7.9 Disequalities and strict inequalities 151
7.10 Integer variables . 152
7.11 Conclusion and future work 153

8 Conclusion 155

6 CONTENTS

Part I

Thèse

7

Chapter 1

Thèse

1.1 Introduction

Concevoir des logiciels corrects est un défi majeur actuel. Mais construire
un logiciel totalement exempt de bogues est, la plupart du temps, une tâche
extrêmement difficile. De nombreuses techniques peuvent être appliquées
pendant la conception de logiciels, de façon à ce que ceux-ci fonctionnent
du mieux possible. De bonnes pratiques d’ingénieurie logicielle pourront ai-
der à attendre ce but, mais souvent, ce n’est pas suffisant. Le test est un
des moyens habituels pour vérifier qu’un programme fonctionne comme at-
tendu, mais il peut être difficile (voire impossible) de tester le programme
exhaustivement. Les méthodes formelles s’attachent à prouver formellement
des modèles de logiciels. Si le modèle est prouvé, on peut être totalement
convaincu que le modèle est correct en regard des propriétés prouvées. Ce-
pendant, comme toutes les autres techniques, les méthodes formelles ont
leur limitation.

La confiance nécessaire en un logiciel dépend du type de celui-ci. Pour de
nombreuses applications l’effort supplémentaire à fournir pour assurer que le
logiciel fonctionne à la perfection est prohibitif, et ce coût ne se justifie pas.
Les techniques formelles nécessitent effectivement beaucoup de travail et
une grande expertise. Pour beaucoup de logiciels, il est suffisant de délivrer
régulièrement des corrections : un bogue détecté n’aura pas des conséquences
financières ou humaines justifiant des méthodes longues et coûteuses.

Quand le logiciel devient critique pour les vies humaines ou si un
problème dans le logiciel a des conséquences financières ou écologiques qui
le justifie, il devient nécessaire d’utiliser des méthodes de vérification. Des
logiciels dans l’avionique, le transport de personnes sur rails, etc. . . peuvent
avoir des conséquences en terme de vies humaines. Il est essentiel de s’assu-
rer de leur robustesse. Des logiciels utilisés dans les banques, ou en bourse
peuvent être développés avec des méthodes plus couteuses, dans l’optique
que cela permettra de ne pas perdre de l’argent plus tard, quand le logiciel

9

10 CHAPTER 1. THÈSE

sera en fonctionnement. Par ailleurs, du logiciel robuste permet d’obtenir et
de garder la confiance des utilisateurs. Un dernier type de logiciel dont la
robustesse est importante est le logiciel embarqué, qui, pour certains types,
ne peuvent être mis à jour une fois le produit distribué.

Le test est une étape incontournable du développement du logiciel. Cela
permet de détecter beaucoup d’erreurs simples et habituelles. Afin d’être
sûr que le logiciel est correct, on peut näıvement tester toutes les entrées
possibles, et vérifier le comportement sur ces entrées. Cela n’est possible que
pour des cas très spécifiques où le nombre de configurations d’entrée est petit.
Généralement, le nombre de configurations d’entrée crôıt exponentiellement
avec la taille de l’entrée, et cela implique qu’un test exhaustif prendrait un
temps non acceptable même pour des entrées relativement petites. Aussi,
dans certaines situations, tester l’ensemble des cas est impossible car l’entrée
peut être infinie. Ainsi, pour la plupart des logiciels, des tests doivent être
appliqués, mais seulement sur une infime fraction des entrées possibles. Cela
permettra de détecter des erreurs, mais cela ne permettra pas de déterminer
si un logiciel est sans erreurs.

Les méthodes formelles interviennent ici, pour prouver que le logiciel
est correct. Il existe de nombreuses techniques formelles pour monter que
l’implémentation d’un algorithme fonctionne. Mais prouver que tout code,
quel que soit le langage de programmation, donne toujours le résultat at-
tendu, n’est pas possible, vu qu’il n’y a aucune théorie formelle qui gère tous
les aspects des langages de programmation, des compilateurs, des systèmes
d’exploitation, des architectures d’ordinateur, etc. Ainsi, les aspects impor-
tants du logiciel sont traduits dans un modèle qui lui, peut être vérifié.

La preuve d’un algorithme peut aussi être conduite au moyen d’outils.
Il existe de nombreuses classes d’outils disponibles, interactifs ou automa-
tiques. Quelques exemples : les solveurs SAT, les solveurs SMT, les analy-
seurs statiques, les assistants de preuve, les model-checkers. L’usage d’un
outil ou d’un autre déprend du problème et des spécifications. Dans cette
thèse, nous nous concentrons sur les solveurs SMT.

Enfin, les méthodes formelles sont en évolution constante. De nouvelles
méthodes sont régulièrement proposées, ainsi que de nouveaux langages de
modélisation, et des prouveurs plus robustes. Si les méthodes formelles sont à
l’heure actuelle assez peu attractives, elles sont utilisées assez largement dans
l’industrie. Elles sont aussi en expansion, puisque un des buts principaux est
de les rendre accessibles et utilisables pour de plus en plus d’utilisateurs et
d’applications.

Les aspects à prouver impliquent généralement de nombreuses théories
comme des théories des listes, des tableaux, des fonctions, des nombres,
d’ensembles, etc. Créer un outil qui peut raisonner sur une combinaison
de celles-ci n’est pas une chose facile. Il existe une technique classique qui
permet de créer une procédure de décision pour une combinaison de théories,
en combinant des procédures de décision, chaque procédure combinée gérant

1.1. INTRODUCTION 11

une seule théorie : cette technique est connue sous le nom de combinaison
de Nelson-Oppen [52]. Un aperçu assez complet des procédures de décision
pour de nombreuses théories peut être trouvé dans [40].

Les solveurs SMT sont parmi les outils les plus en vogue pour la
vérification. La plupart des solveurs SMT utilisent des combinaison à la
Nelson-Oppen [52]. Ces solveurs sont aussi basés sur des solveurs SAT, qui
sont des outils puissants pour résoudre des problèmes Booléen. L’utilisa-
tion des solveurs SAT, combinés aux procédures de décision, font des sol-
veurs SMT des outils intéressant pour appréhender des formules issues de la
vérifications, dans un langage expressif. Nous aborderons dans cette thèse,
la façon dont les différents composants d’un solveur SMT fonctionnent en-
semble.

Une théorie généralement utilisée est l’arithmétique. Par exemple, on
peut conclure que x + x = 1 est satisfaisable sur les réels, mais pas sur
les entiers. La théorie arithmétique est extrêmement large et on préfère
généralement considérer des fragments avec de meilleures propriétés, les
problèmes concrets n’utilisant généralement qu’un sous-ensemble assez petit
du langage.

Un fragment particulièrement intéressant est la logique de différence. Il
est basé sur des contraintes de la forme x−y ≤ c, où x et y sont des variables
et c est une constante numérique. Bien que le langage est très restreint, la
logique de différence permet d’exprimer de nombreuses classes de problèmes
pratiques, comme des systèmes temporisés, des problèmes d’ordonnance-
ment, et des chemins dans des circuits digitaux (voir par exemple [54]).
La logique de différence peut être modélisé entièrement en théorie des
graphes. Cela permet d’utiliser des algorithmes rapides, capable de résoudre
de grandes instances de problèmes.

Un autre fragment arithmétique important est l’arithmétique linéaire.
Ce fragment est plus expressif que la logique de différence. Dans ce frag-
ment, les additions, soustractions et multiplications sont autorisées, avec la
contrainte que la multiplication doit avoir lieu seulement entre une variable
et une constante. Un autre avantage est que le nombre de variables par
contrainte n’est pas fixé alors qu’en logique de différence, il faut exactement
deux variables par contrainte. Un exemple de contrainte en arithmétique
linéaire est x1 +2x2−5x3 ≤ 5. Les algorithmes pour résoudre des problèmes
d’arithmétique linéaire sont moins efficaces que ceux pour résoudre les
problèmes de logique de différence, mais il est toujours possible de gérer
de gros problèmes en arithmétique linaire.

Nous étudierons la logique de différence et l’arithmétique linéaire. Nous
commencerons par proposer une plate-forme de combinaison basée sur Nel-
son et Oppen, qui rend plus simple et plus efficace la gestion de problèmes
contenant une combinaison de plusieurs théories différentes, incluant de
l’arithmétique linéaire. Nous montrerons ensuite comment construire des
procédures de décision pouvant être intégrées dans une combinaison, pour

12 CHAPTER 1. THÈSE

la logique de différence, et plus généralement pour l’arithmétique linéaire.

1.2 Les solveurs SAT

Les solveurs SMT sont construits sur la base d’un solveur SAT. Les
solveurs SAT résolvent le problème de la satisfaisabilité Booléenne. Ce
problème, aussi connu sous le nom de problème SAT, consiste à déterminer
si une formule Booléenne (ou propositionnelle) donnée est satisfaisable, c’est
à dire s’il est possible de donner à toutes les variables une valeur de vérité
de telle sorte que la formule soit évaluée à vrai.

Le problème de la satisfaisabilité est le premier problème prouvé NP-
complet, en 1971 par Cook [18]. Depuis, on a trouvé de nombreux autres
problèmes NP-complets. Beaucoup de preuves de NP-complétude sont des
preuves par réduction au problème SAT.

Malgré la nature essentiellement exponentielle du problème, des outils
sont maintenant capables d’étudier des problèmes SAT très grands. Les sol-
veurs actuels peuvent résoudre des instances avec des millions de variables
et plusieurs millions de contraintes. Le succès pratique des solveurs SAT
remet en question l’intérêt de considérer la complexité en pire cas, pour
ce problème. De fait, quel que soit le domaine, les solveurs SAT peuvent
souvent résoudre des problèmes très grands.

Grâce à cette capacité des SAT solveurs à gérer de grands problèmes,
beaucoup de problèmes dans des domaines variés sont modélisés en SAT, de
façon à bénéficier des bonnes performances des SAT solveurs : vérification
logicielle et hardware[12, 69], génération automatique de schémas de test [66,
39], ordonnancement [35], planification [38, 62], algèbre [72], etc. Les solveurs
SMT sont aussi un exemple d’utilisation fructueuse des solveurs SAT, vu que
le noyau des solveurs SMT est généralement constitué d’un solveur SAT.

Traduire un problème dans le langage du solveur SAT, c’est-à-dire en
logique propositionnelle, peut conduire à une augmentation substantielle de
la taille du problème. Cependant, la taille n’étant pas le facteur impactant
le plus important, les solveurs SAT parviennent à résoudre les problèmes
souvent plus rapidement que les techniques traditionnelles.

De nombreuses améliorations ont eu lieu récemment dans le
développement des solveurs SAT. Une compétition annuelle de solveurs SAT
[10, 9, ?, 57] a contribué de façon importante au développement de tech-
niques astucieuses.

Aujourd’hui, les meilleurs solveurs SAT sont basés sur une variante de la
procédure introduite en 1960 par Davis et Putnam [24] et améliorée quelques
années plus tard par Davis, Logemann et Loveland [23].

1.2. LES SOLVEURS SAT 13

1.2.1 L’algorithme DPLL

L’algorithme DPLL exécute une recherche avec backtracking dans l’es-
pace des assignations partielles. Sa caractéristique principale est d’élaguer
l’espace de recherche grâce aux clauses falsifiés. L’algorithme 1 donne la
version récursive basique de l’algorithme DPLL.

input : F : CNF Formula
input : p : Assigment
output: status : {(Sat, Assignment) ; Unsat }

// Unit propagation

while F has unit clause u ∧ contains no empty clause do1

F := F |u;2

p := p ∪ {u};3

end4

if F contains the empty clause then return Unsat ;5

if F has no clauses left then return (Sat, p);6

// Branching and decision

ℓ := a literal not assigned by p ;7

status, Γ := DPLL(F |ℓ, p ∪ {ℓ});8

if status = Sat then return status, Γ ;9

return DPLL(F |¬ℓ, p ∪ {¬ℓ});10

Algorithme 1: DPLL récursif.

L’algorithme 1 prend en entrée des formules en CNF1. L’idée est de
répétitivement sélectionner un littéral non assigné ℓ dans la formule d’entrée
F et de chercher récursivement une assignation pour la formule F |ℓ

2 (assi-
gnant ℓ à vrai) et F |¬ℓ (assignant ℓ à faux). L’étape où ℓ est choisi (ligne 7)
est appelée l’étape de branchement. L’étape où ℓ est mis à vrai (ligne 8) ou
faux (ligne 10) est appelée décision. La décision est associée à un niveau (de
décision) égal à la profondeur de récursion de l’Algorithme 1. La fin de la
récursion, qui diminue le nombre de variables assignées, est appelé étape de
backtracking.

Une assignation partielle p est maintenue pendant toute la recherche. Si
F |p contient la clause vide, la clause correspondante de F est dite violée par
p. Dans l’étape de propagation unitaire (lignes 1 à 4), les clauses unitaires
sont immédiatement fixées à vrai pour des raisons d’efficacité. Les littéraux
purs (ceux dont la négation n’apparâıt pas) peuvent être assignés à vrai en
étape de préprocessing et, pour certaines implémentations, pendant la phase

1CNF signifie Conjunctive Normal Form, ou forme normale conjonctive, soit une
conjonction de disjonction. Toute formule peut être convertie en CNF en temps linéaire,
voir par exemple [15].

2La notation F |ℓ désigne la formule simplifiée obtenue par le remplacement de ℓ par
vrai et ¬ℓ par faux, et ensuite l’élimination de toutes les clauses avec au moins un littéral
vrai, et la suppression de toutes les occurrences de faux littéraux dans les clauses restantes.

14 CHAPTER 1. THÈSE

de simplification après chaque branchement.

Les variations de cet algorithme constituent la famille la plus uti-
lisée de procédures complètes pour résoudre le problème SAT. Elles sont
fréquemment implémentées d’une façon itérative plutôt que récursive, ce
qui implique une utilisation plus faible de la mémoire. L’inconvénient est
l’étape supplémentaire nécessaire pour la désassignation des variables au
backtracking. L’approche näıve qui requiert d’examiner chaque clause est
coûteuse, mais les techniques modernes, comme celles des two watched lite-
rals permettent de réaliser ceci très rapidement.

L’efficacité des solveurs SAT actuels doit beaucoup à plusieurs techniques
récentes. Parmi celles-ci on distingue la propagation rapide grâce au two wat-
ched literals, les mécanismes d’apprentissage, les stratégies de redémarrage,
les stratégies d’élimination de clauses, le backtracking non chronologique, et
les heuristiques de décisions.

Bien que ces techniques ne soient pas essentielles pour une compréhension
du comportement d’un solveur SAT à l’intérieur d’un solveur SMT, elles sont
d’une importance primordiale pour l’efficacité.

1.3 Les solveurs SMT

Les premiers outils permettant de traiter des théories encodaient di-
rectement tout le problème au niveau propositionnel. La plupart des sol-
veurs SMT utilisent maintenant les solveurs SAT en combinaison avec des
procédures de décision capables de raisonner sur les atomes écrits dans divers
théories.

De nombreux solveurs SMT ont vu le jour ces dernières années. Certains
se spécialisent dans un nombre restreint de théories tandis que d’autres
tentent de réunir le plus de théories (et de combinaisons) possibles. La
compétition annuelle, la SMT-COMP [3, 1] est un moteur du développement
de ces outils.

La communauté SMT met à disposition une librairie de formules banc
d’essai, la SMT-LIB [59]. Les utilisateurs des SMT peuvent soumettre leurs
propres formules, et les développeurs des SMT peuvent utiliser cette librairie
comme une aide au développement de leur outil. Ces formules banc d’essai
sont écrites dans un langage standardisé, aussi créé et supporté par la com-
munauté : le langage SMT-LIB 1.2 [58] ou SMT-LIB 2.0 [5]. La plupart des
solveurs SMT supportent l’un ou l’autre de ces langages.

La Figure 1.1 présente l’architecture très abstraite d’un solveur SMT. Un
solveur SAT est au coeur du solveur SMT. Il sert à générer des assignations
propositionnelles. Celles-ci doivent être vérifiés pour déterminer s’il existe
une inconsistance au niveau théorie. Dans les solveurs SMT basés sur une
combinaison à la Nelson-Oppen, l’assignation est envoyée à un module qui se
charge de distribuer les contraintes aux procédures de décision respectives.

1.4. DÉCIDER UNE COMBINAISON DE THÉORIES 15

Ces dernières vérifient la satisfaisabilité, en se partageant des informations
quand plusieurs procédures sont en jeu. Si une inconsistance est découverte,
des lemmes sont ajoutés au solveur SAT. Ils invalident l’assignation cou-
rante, et force le solveur SAT à proposer une nouvelle assignation. Le travail
termine quand une assignation satisfaisable au niveau théorie est trouvée,
ou quand le solveur SAT a épuisé toute les assignations propositionnelles.

SAT-solver

Nelson and Oppen
combination module

DP for
 linear arithmetic

DP for
 uninterpreted functions

DP for
 arrays

DP for
lists

...

SMT-solver

Fig. 1.1: Architecture abstraite d’un solveur SMT basé sur Nelson-Oppen,
utilisant plusieurs procédures de décision (DP).

Si une seule théorie est impliquée, il est très simple de réaliser cette
intégration entre le solveur SAT et la théorie. Si plusieurs théories sont en
jeu, il faut alors recourir à des combinaisons.

1.4 Décider une combinaison de théories

Les formules issues de la vérification de programmes contiennent sou-
vent des termes provenant de différentes théories. Il est plus simple en ef-
fet de générer des formules contenant des opérateurs sur plusieurs théories
plutôt que d’encoder tout en utilisant une seule théorie. En utilisant plu-
sieurs théories il est d’ailleurs parfois aisé de générer une formule, qui au-
trement serait difficile, voire impossible à écrire dans un langage plus limité.
Quelques exemples de théories habituelles sont l’arithmétique, les symboles
non-interprétés, les tableaux, les listes, les ensembles, et les vecteurs de bits.

Il n’est pas simple de vérifier des formules contenant des symboles de
plusieurs théories. Les solveurs SMT utilisent des méthodes permettant de
combiner des procédures de décisions sur une théorie seulement. Si une
procédure conclut à l’insatisfaisabilité, le problème est inconsistant. Cepen-
dant, si chacune des théories conclut à la satisfaisabilité, ce n’est pas suffisant
pour conclure à la satisfaisabilité de la combinaison. En effet un tout petit

16 CHAPTER 1. THÈSE

exemple suffit à nous convaincre de ce fait : x = 0, y = 1 − 1, f(x) 6= f(y).
La procédure de décision pour l’arithmétique comprend les littéraux x = 0
et y = 1−1, qui sont ensemble, satisfaisables. La procédure de décision pour
les fonctions interprétées conclut aussi à la satisfaisabilité de f(x) 6= f(y).
Cependant, il est clair que l’ensemble initial est insatisfaisable ; les deux
procédures de décisions peuvent déduire cela à condition de s’échanger des
informations, comme nous allons le voir dans la suite.

1.4.1 La méthode de combinaison de Nelson-Oppen

La méthode de combinaison de Nelson-Oppen a été présenté pour la
première fois dans [52, 53]. Deux décennies plus tard, cette méthode est
adoptée dans la plupart des solveurs SMT.

Cette méthode se base sur le fait que si deux théories T1 et T2 sont
disjointes3 et stablement infinies4, la satisfaisabilité de T1 ∪ T2 peut être
déduite de la satisfaisabilité de T1 ∪ L et T2 ∪ L, où L est un ensemble
d’informations partagées. De ce fait, si on a deux procédures de décision,
une pour T1, et une autre pour T2, l’effort supplémentaire pour vérifier la
satisfaisabilité de T1 ∪T2 est dans la découverte de L. Ceci peut être étendu
à plus de deux théories.

Génération d’égalités et propagation

Le scénario le plus simple correspond à une combinaison de théories
convexes uniquement. Une théorie T est convexe si toute disjonction de
littéraux l1 ∨ l2 ∨ ... ∨ ln telle que T � l1 ∨ l2 ∨ ... ∨ ln est telle que T � li
pour un i entre 1 et n.

De nombreuses théories sont convexes. L’arithmétique linéaire sur les
réels, et certaines théories des listes [56] en sont des exemples. Par contre,
l’arithmétique linéaire sur les entiers, ou l’arithmétique non linéaire sur les
réels, les ensembles, et les tableaux sont non convexes. Nelson et Oppen
remarquent que l’ensemble des informations partagées L peut être déterminé
précisément dans le cas de théories convexes, en déduisant et propageant
répétitivement les égalités entre variables partagées qui peuvent être déduites
de l’ensemble de formules5 jusqu’à ce que l’insatisfaisabilité soit déduite, ou
qu’aucune égalité ne puisse plus être déduite.

Cela fonctionne comme suit. D’abord des littéraux sont envoyés aux
procédures de décision. Chacune reçoit les littéraux relatifs à sa théorie. Si
nécessaire, les contraintes doivent être purifiées, en créant de nouvelles va-
riables, de sorte qu’aucune contrainte ne contient de symboles de plus qu’une

3Deux théories sont disjointes si aucun symbole n’apparâıt dans les deux théories à la
fois, excepté des variables et le symbole d’égalité (=).

4Une théorie est stablement infinie si toute formule sans quantificateur satisfaisable
dans la théorie a un modèle infini.

5Les variables partagées sont les variables qui apparaissent dans plus d’une théorie.

1.4. DÉCIDER UNE COMBINAISON DE THÉORIES 17

théorie. Si l’on conclut à l’insatisfaisabilité, l’ensemble original de littéraux
est insatisfaisable. Sinon, les procédures de décision déduisent les égalités
conséquences du contexte, et propagent ces égalités aux autres procédures.
Avec ces nouvelles contraintes, les procédures peuvent soit décider l’insatis-
faisabilité, soit déduire de nouvelles égalités et les propager. La satisfaisabi-
lité peut être déduite quand chacune des procédures conclut à la satisfaisa-
bilité, et qu’aucune égalité ne peut plus être déduite.

Cette méthode est simple, correcte et complète [68]. Il suffit pour l’ap-
pliquer que les procédures de décision déduisent les égalités entre variables
partagées. Cependant, pour des théories non convexes, les choses se com-
pliquent.

Generation de disjonctions d’égalités et propagation

Considérons la formule 1.1. Elle contient un mélange de théorie non
interprétée (TUF) et de la théorie non convexe6 de l’arithmétique linéaire sur
les entiers (TLIA).

φ : x ≥ 0 ∧ x ≤ 1 ∧ v1 = 0 ∧ v2 = 1 ∧ P (x) ∧ ¬P (v1) ∧ ¬P (v2) (1.1)

La Figure 1.2 donne une simulation de la procédure pour vérifier la
satisfaisabilité de la formule 1.1. À l’état 1.0, les contraintes sont données à
leur procédure respective. L’insatisfaisabilité n’est pas détectée, et aucune
égalité ne peut être déduite. Cependant, la méthode ne peut s’arrêter là, car
le problème est évidemment inconsistant. Il faut d’autres techniques pour
assurer la complétude de la méthode.

Ce qu’il faut prendre en compte ici, c’est que pour des théories non
convexes, bien qu’aucune égalité ne peut être déduite, des disjonctions
d’égalités peuvent l’être. Dans cet exemple, la disjonction x = v1 ∨ x = v2

est une conséquence des contraintes, bien que x = v1 et x = v2 ne le soient
pas.

x = v1 ∨ x = v2 est une information importante qui manque au solveur
pour TUF. À l’état 1.1, le solveur pour TLIA génère et propage cette infor-
mation au solveur pour TUF. Puisque le solveur pour TUF est incapable de
gérer les disjonctions directement, une étude par cas est nécessaire. Si un
chemin sans contradiction peut être trouvé, le problème est satisfaisable.
Sinon, si tous les chemins conduisent à une contradiction, le problème est
inconsistant. Dans notre exemple, les chemins issus de x = v1 et de x = v2

conduisent tous deux à une contradiction directement après7 ; le problème
est donc inconsistant.

6Pour se convaincre que l’arithmétique linéaire sur les entiers est non convexe, il suffit
de prendre comme exemple ψ : 0 ≤ x ≤ 1. ψ =⇒ (x = 0 ∨ x = 1), mais ψ ; x = 0 et
ψ ; x = 1.

7x = v1 ∧ P (x) ∧ ¬P (v1) =⇒ ⊥ ; x = v2 ∧ P (x) ∧ ¬P (v2) =⇒ ⊥.

18 CHAPTER 1. THÈSE

State

 1.0

State

 1.1

State

 1.2

State

 1.1.1
State

 1.1.2

Fig. 1.2: Simulation de Nelson-Oppen sur la Formule 1.1, en propageant des
disjonctions d’égalités.

Dans la pratique, les solveurs SMT ne génèrent pas et ne propagent pas
des disjonctions d’égalité. C’est une tâche trop complexe. Des techniques
particulières sont mises en œuvre.

Tous les arrangements

L’échange de disjonctions d’égalités est une alternative théorique pour
les arrangements. Un arrangement, pour Nelson-Oppen, est un ensemble
consistant maximal qui, pour chaque paire de variables x, y, contient soit
x = y, soit x 6= y. Une méthode brute, mais complète, de combinaison de
théories disjointes et stablement infinies est d’essayer tous les arrangements
des variables partagées. Si un de ceux-ci mène à la satisfaisabilité, alors la
formule est aussi satisfaisable. Sinon, la formule est inconsistante.

Dans l’exemple précédent (Formule 1.1), il y a trois variables partagées :
x, v1 et v2. Il y a cinq arrangements possibles :

A1 = {x = v1, x = v2, v1 = v2}

A2 = {x = v1, x 6= v2, v1 6= v2}

A3 = {x 6= v1, x = v2, v1 6= v2}

A4 = {x 6= v1, x 6= v2, v1 = v2}

A5 = {x 6= v1, x 6= v2, v1 6= v2} (1.2)

Précédemment, nous avons vu que pour tester la satisfaisabilité d’une
combinaison T1 ∪ T2, il est nécessaire de trouver L tel que le problème peut
être réduit à la satisfaisabilité de T1∪L et T2∪L, de façon séparée. Déterminer
L est facile pour des théories convexes, mais infaisable pour des théories non
convexes. L’idée derrière les arrangements est que, s’il n’est pas possible

1.4. DÉCIDER UNE COMBINAISON DE THÉORIES 19

de déterminer L, essayer tous les arrangements permettra de résoudre le
problème. Dans le cas de notre exemple, L est :

L = (x = v1 ∧ x = v2 ∧ v1 = v2)

∨ (x = v1 ∧ x 6= v2 ∧ v1 6= v2)

∨ (x 6= v1 ∧ x = v2 ∧ v1 6= v2)

∨ (x 6= v1 ∧ x 6= v2 ∧ v1 = v2)

∨ (x 6= v1 ∧ x 6= v2 ∧ v1 6= v2) (1.3)

La satisfaisabilité peut être vérifiée en utilisant les procédures de décision
et vérifier chaque arrangement sur chaque procédure. Cependant, utiliser un
solveur SMT est préférable car on bénéficie alors de l’apprentissage, du back-
tracking, etc. qui permettent de diminuer grandement la taille de l’espace de
recherche. Pour utiliser le solveur SAT sous-jacent au solveur SMT, L sera
convertie en CNF. Le résultat de cette conversion est :

L′ = (x = v1 ∨ x 6= v2 ∨ v1 6= v2)

∧ (x 6= v1 ∨ x = v2 ∨ v1 6= v2)

∧ (x 6= v1 ∨ x 6= v2 ∨ v1 = v2) (1.4)

En reformulant la formule 1.1, on obtient la formule 1.5. Un solveur SMT
sans coopération entre les procédures de décision est alors capable de vérifier
la satisfaisabilité de la formule.

φ′ : φ ∧ L′ (1.5)

1.4.2 Combinaison par partage d’égalité de modèles

Combiner des procédures de décision par propagation d’égalité de
modèle [26] est une alternative pour combiner des théories disjointes et sta-
blement infinies, particulièrement appropriée pour des théories non convexes.

Le but de cette combinaison par égalité de modèle est de trouver un
arrangement des variables partagée. Plutôt que de deviner un arrangement
de façon aveugle, les procédures de décision maintiennent un modèle (ou en
construisent un quand nécessaire), et se basent sur ce modèle pour générer
des égalités entre variables. Ces égalités générées depuis les modèles sont
appelées égalités de modèles. Elles sont propagées aux autres procédures de
décision qui les incorporent et continuent le processus habituel.

Considérons l’exemple suivant, dans la théorie arithmétique des entiers :

x ≥ 0, x ≤ 1, v1 = 0, v2 = 1 (1.6)

Aucune égalité ne peut être déduite. Il existe deux modèles possibles (voir
Table 1.1).

20 CHAPTER 1. THÈSE

Modèle 1 Modèle 2

Variable Valeur Variable Valeur

x 0 x 1

v1 0 v1 0

v2 1 v2 1

Tab. 1.1: Modèles pour l’exemple 1.6.

Dans le modèle 1, x et v1 ont la même valeur. Ainsi, on peut extraire
l’égalité de modèle x = v1. Dans le cas du modèle 2, x = v2 peut être extrait.

Une simulation (sur l’exemple 1.1) d’un solveur SMT basé sur la pro-
pagation d’égalités de modèle est présentée Figure 1.3. Une différence par
rapport à une simulation examinant successivement tous les arrangements
est qu’il n’y a pas un ensemble complet contenant soit une égalité ou une
diségalité pour chaque paire de variables partagées. L’arrangement est créé
pendant l’exécution de l’algorithme.

State

1

State

 2

State

 3

State 1

State 2

State 3

State 4

SAT-solver

Fig. 1.3: Simulation d’une combinaison par échange d’égalité de modèle
(Formule 1.1). Le solveur pour TLIA génère des égalités de modèle et les
propage au solveur pour TUF. L’inconsistance est déduite à l’état 4, grâce à
l’apprentissage.

Un avantage de cette combinaison est que le SAT solveur ne génère pas

1.5. PROCÉDURE DE DÉCISION POUR SMT 21

de littéraux inconsistants comme v1 = v2
8. Cela peut contribuer à réduire le

nombre d’assignations passées à la procédure de décision pour les théories.

Une autre observation importante est que la non convexité est implicite-
ment traitée par les modèles. Par exemple, la disjonction x = v1∨x = v2 est
cachée dans les contraintes arithmétiques. Cependant, pour chaque modèle
arithmétique, une seule de ces égalités sera propagée, c’est-à-dire qu’il n’y a
aucun modèle tel que x 6= v1 ∧ x 6= v2 est vrai.

En pratique la combinaison utilisant des égalités de modèle se rapproche
de près de la combinaison utilisant uniquement des égalités. Il est très
simple d’adapter un solveur SMT pour qu’il gère les égalités de modèle.
La différence principale est que si aucune égalité ne peut être déduite, et
si l’inconsistance n’est pas détectée, les procédures pour les théories non
convexes génèrent des égalités de modèle et les propagent.

Un autre changement en pratique est que ces égalités de modèle peuvent
(et le sont souvent) ne pas être présentes dans le problème original. Des
ensembles de conflits passés au solveur SAT peuvent, s’ils contiennent des
égalités de modèle, contenir de nouveaux littéraux. Cela n’a aucune influence
sur la terminaison de la procédure car le nombre de ces nouveaux littéraux
est borné par une fonction du nombre de variables dans la formule d’entrée.

1.5 Procédure de décision pour SMT

Une procédure de décision résout un problème où la réponse est binaire :
le problème est satisfaisable ou ne l’est pas. Dans notre cas, la procédure de
décision décide si une formule arithmétique est satisfaisable ou non, c’est-à-
dire s’il existe une interprétation des variables qui rend vraie la formule.

Cependant, dans notre contexte, une procédure doit fournir plus d’infor-
mation, si elle veut coopérer avec d’autres procédures de décision dans une
combinaison, ou si elle doit travailler avec le solveur SAT sous-jacent.

Certaines fonctionnalités sont très importantes pour obtenir un solveur
SMT complet pour certaines (combinaisons de) théories. Certaines autres
sont importantes pour l’efficacité.

1.5.1 Génération d’ensemble de conflit

Si un procédure détecte l’insatisfaisabilité d’un ensemble donné de
contraintes, nous appelons ensemble de conflit tout sous-ensemble inconsis-
tant de l’ensemble donné. L’ensemble de conflit peut être l’ensemble donné
au complet, mais il est généralement préférable d’obtenir un petit sous-
ensemble. Si l’ensemble de conflit est minimal, c’est-à-dire si l’ensemble privé
d’une de ses contraintes devient satisfaisable, l’information rendue est op-
timale. Les ensembles de conflit sont utilisés pour réfuter les assignations

8Le solveur TLIA, sachant que v1 = 0 et v2 = 1, ne générera jamais v1 = v2.

22 CHAPTER 1. THÈSE

propositionnelles fournies par le solveur SAT.

1.5.2 Génération d’égalité

La combinaison de Nelson et Oppen requiert des procédures qu’elles
soient capables de détecter et propager les égalités entre variables. Il sera
aussi nécessaire de construire, une fois l’insatisfaisabilité déduite, un en-
semble de conflit qui tient compte des égalités qui ont été générées. Plus
précisément, l’ensemble de conflit ne doit pas contenir ces égalités générées
mais les littéraux qui permettent de déduire cette égalité.

1.5.3 Génération d’égalité de modèle

En présence de variables entières, la théorie arithmétique linéaire n’est
plus convexe. Pour des théories non convexes, propager les égalités déduites
n’est pas suffisant pour la complétude de la combinaison. Il sera nécessaire
de générer des égalités de modèle.

1.5.4 Lemmes

Les procédures devant transmettre une information au solveur SAT
peuvent le faire en utilisant des lemmes. N’importe quelle tautologie peut
être ainsi ajoutée à la formule de départ. L’ajout de lemmes pourra augmen-
ter l’efficacité, ou aider la procédure de décision à atteindre la complétude.

1.5.5 Propagation de théorie

Une technique utilisée par les solveurs SMT pour augmenter les per-
formances est la propagation de théories [55]. L’algorithme classique de
DPLL déduit uniquement des faits propositionnellement. La propagation
de théories utilise aussi les théories pour faire de la propagation, comme au
niveau Booléen. Plutôt que de décider aveuglément les littéraux à assigner
dans le solveur SAT, le raisonneur de théorie informe le solveur SAT des
littéraux qui sont vrais dans l’ensemble des littéraux utilisés dans la formule
et non propagés ou décidés au niveau Booléen. De cette façon, l’espace de
recherche du solveur SAT peut être grandement réduit.

1.5.6 Incrementalité and backtrackabilité

L’incrémentalité est la capacité de recevoir de l’information à chaque
étape et d’être capable de poursuivre un raisonnement sans recommencer de
rien. Il est important que les procédures de décision soient incrémentales car
il arrive très souvent qu’elles reçoivent de nouvelles contraintes, qui doivent
être incorporées avec les anciennes.

1.6. LA LOGIQUE DE DIFFÉRENCE 23

L’incrémentalité est souvent considérée de pair avec la backtrackabilité. Il
s’agit d’être capable de revenir à une étape précédente, en récupérant l’état,
et redémarrer un nouveau raisonnement à partir de cet état. L’incrémentalité
et la backtrackabilité doivent être considérés du point de vue de la complexité
en temps et en mémoire.

1.6 La logique de différence

L’arithmétique est une théorie extrêmement large. Généralement, les
formules impliquant de l’arithmétique n’utilisent qu’un fragment très res-
treint de la théorie. Il est dès lors utile de considérer des fragments
de l’arithmétique avec des propriétés de décidabilité et une complexité
intéressantes.

La logique de différence (Difference Logic, DL) est le fragment de
l’arithmétique qui gère des contraintes du type x − y ≤ c, où x et y sont
des variables et c est une constante numérique ; x et y peuvent être des va-
riables entières ou rationnelles. Beaucoup de problèmes utilisent ce fragment
uniquement. Dans de nombreux cas, même si l’on sort de ce fragment très
restreint, la plupart des contraintes restent dans ce cadre. La SMT-LIB [59]
contient de nombreux exemples de problèmes exprimés dans ce fragment
restreint.

La logique de différence est bien étudiée et elle peut être modélisée
complètement en utilisant la théorie des graphes. De ce fait, les solveurs
SMT utilisant cela peuvent bénéficier des algorithmes efficaces de la théorie
des graphes pour obtenir de bonnes performances sur ce langage.

Propriétés et représentation sous forme de graphes

Classiquement, les problèmes de logique de différence traitent unique-
ment des contraintes de la forme x − y ≤ c. Une telle contrainte peut être
représentée sous forme de graphe comme étant une arête de y vers x avec
un coût (ou poids) c (voir Figure 1.4). Cela peut être compris comme : x
doit être au plus y + c.

Fig. 1.4: Représentation de la contrainte x − y ≤ c sous forme de graphe.

Il existe de nombreuses autres contraintes pouvant être facilement tra-
duites et intégrées dans ce modèle. La Table 1.2 donne certaines contraintes
courantes qui peuvent facilement être traduites en DL.

24 CHAPTER 1. THÈSE

Contrainte Traduction

x − y ≥ c y − x ≤ −c

x − y = c x − y ≤ c et y − x ≤ −c

x ≤ y x − y ≤ 0

x ≥ y y − x ≤ 0

x = y x − y ≤ 0 et y − x ≤ 0

x ≤ c x − v0 ≤ c, où v0 est une variable inédite unique avec la valeur 0

x ≥ c x − v0 ≥ c, où v0 est une variable inédite unique avec la valeur 0

Tab. 1.2: Table de contraintes

Les inégalités strictes peuvent aussi être gérées avec des changements mi-
neurs à l’algorithme. Les contraintes comme x+y < c peuvent être réécrites
x+y ≤ (c−δ) ; cela implique de changer la représentation des nombres pour
être capable de réaliser les opérations avec δ [31].

Une fois le graphe construit pour l’ensemble des contraintes de la logique
de différence, on peut remarquer plusieurs choses.

Dépendance Si deux variables x et y ne dépendent pas l’une de l’autre,
il n’y aura aucun chemin de x vers y, ou de y vers x.

Contrainte la plus forte La contrainte la plus forte est associée à une
paire de variables. Si y − x ≤ c1 est la contrainte la plus forte associée à y
et x, cela signifie qu’on ne peut extraire aucune autre contrainte de la forme
y − x ≤ c2 où c2 < c1.

S’il existe un chemin de x à y, le chemin le plus court len de x à y
donne la contrainte la plus forte (y − x ≤ len) qu’il est possible de déduire
des contraintes originales. Notons cependant que le chemin le plus court est
relatif aux poids des arêtes de la source à la destination, et non du nombre
d’arêtes qu’il contient.

Insatisfaisabilité Un ensemble de contraintes est insatisfaisable s’il est
possible de trouver un sous-ensemble en contradiction, comme x− y ≤ −1∧
x − y ≥ 2. Si il n’existe aucune combinaison de contraintes pouvant rendre
le problème inconsistant, le problème est satisfaisable. On peut toujours
trouver un ensemble inconsistant si il existe un cycle négatif dans le graphe.
En combinant linéairement les contraintes liées aux arêtes du cycle négatif,
on obtient la contradiction.

Égalité entre variables Dans un problème satisfaisable, deux variables
x et y sont égales si et seulement si le chemin le plus court de x à y a un

1.6. LA LOGIQUE DE DIFFÉRENCE 25

coût nul et le chemin le plus court de y à x a aussi un coût nul. L’explication
peut être reconstruite des contraintes étiquetant les arêtes des chemins.

1.6.1 Procédure de décision pour la logique de difference

Test de satisfiabilité

La première fonctionnalité requise pour une procédure de décision est
d’être capable de déterminer si un ensemble donné de contraintes est satis-
faisable ou non. Un ensemble de contraintes est satisfaisable si et seulement
si le graphe construit à partir des contraintes a un cycle négatif.

Notre algorithme est incrémental ; il est exécuté pour chaque nouvelle
contrainte. Ceci peut être effectué jusqu’à |E| fois, en stoppant le processus
dès qu’un conflit est trouvé. L’idée de l’algorithme est de chercher dans le
graphe les noeuds dont la distance change à cause de l’ajout de l’arête. La
distance est la longueur du plus court chemin à partir d’un noeud arbitraire.

Pour ceci et pour la simplicité de l’algorithme, un noeud artificiel peut
être créé, et être le noeud de référence. Il sera connecté à tous les autres
noeuds avec une arête unidirectionnelle de coût 0. Comme aucun noeud
n’aura une arête vers ce noeud arbitraire, ce noeud ne pourra jamais in-
tervenir dans un conflit. Ainsi, le système original sera inconsistant si et
seulement si le système intégrant ce noeud de référence l’est.

D’abord, l’algorithme commence par vérifier si la nouvelle arête e dimi-
nue la distance au noeud de destination. Si oui, la recherche commence ; le
noeud dans le tas qui a sa distance diminuée le plus est pris en premier. On
suppose que, quand un noeud v a sa distance modifiée, ses voisins vont aussi
avoir leur distance modifiée d’au plus la modification qu’a subie v. Ainsi,
quand un noeud choisi a sa distance modifiée, cela est fait par le chemin
qui diminue le plus la distance. Donc, chaque noeud doit avoir sa distance
améliorée au plus une fois. L’exception est justement lorsqu’il y a un cycle
négatif. Un cycle négatif apparâıt si et seulement si la distance de l’origine
de e diminue.

Construction d’un ensemble de conflit

Quand l’insatisfaisabilité est détectée, il est nécessaire de générer une
explication du conflit. Il s’agit en fait de l’ensemble des contraintes qui in-
terviennent dans le conflit. Un ensemble de conflit minimal est obtenu en
collectant les contraintes étiquetant les arêtes du cycle négatif.

Génération d’égalité

Dans notre modélisation par graphe, deux variables x et y sont égales si
et seulement si les longueurs des chemins les plus courts entre x et y, et entre
y et x sont 0. Un algorithme pour trouver les égalités, basé sur [42], procède

26 CHAPTER 1. THÈSE

comme suit. Un graphe G′ est construit, en collectant toutes les arêtes de G
qui ont un slack nul. Une arête e a un slack(e) nul si e est dans le chemin
le plus court entre le noeud de référence et la destination de e. L’étape
suivante de l’algorithme est de chercher les composantes fortement connexes
dans G′. Deux noeuds d’une composante fortement connexe de G′ sont dans
un cycle de coût 0 et le chemin entre ces noeuds est aussi le chemin le plus
court dans le graphe d’origine G. Il s’agit de la première condition pour que
les variables étiquetant deux noeuds soient égales. Ensuite, chaque paire de
noeuds, dans chaque composante fortement connexe sont potentiellement
des candidats à l’égalité. Pour vérifier si deux variables v1 et vk sont égales
sans avoir à calculer le chemin le plus court entre chaque paire de variables,
on peut utiliser l’information de distance par rapport à un noeud de référence
collectée ci-dessus. Deux variables v1 et v2 sont égales si et seulement si elles
ont la même distance.

Explication d’une égalité

Si une égalité entre deux variables est générée, les prémisses de cette
égalité sont les contraintes qui permettent de la déduire. Deux variables u et
v sont égales si la longueur du chemin le plus court de u à v et de v à u sont
0. Pour reconstruire ensuite l’ensemble des prémisses, il suffit d’extraire les
contraintes associées à chaque arête dans les deux chemins les plus courts.
Cela peut être réalisé par une recherche en largeur d’abord.

Génération d’une égalité de modèle

La façon la plus simple d’obtenir un modèle hors du graphe calculé est
d’utiliser l’information de distance déjà présente dans le graphe. Aucun coût
supplémentaire n’est associé au calcul du modèle. Les égalités de modèle
peuvent être déduites simplement des variables qui ont les mêmes valeurs.

Une fois générées, les égalités de modèle sont propagées, et, si aucune
autre procédure de décision n’est en conflit avec ces égalités, le processus
termine. Autrement, le modèle sera modifié, par l’envoi d’une diségalité. Les
diségalités ne peuvent être incorporées telles quelles dans le graphe ; elles
seront traitées de façon séparée.

La façon la plus simple de traiter des diségalités est de regarder la consis-
tance par rapport au modèle. Si deux variables ont la même valeur mais
qu’il existe une diségalité entre elle, la procédure de décision génère alors un
lemme qui permettra d’intégrer indirectement l’inégalité dans le graphe, et
ainsi de modifier le modèle.

Diminuer le nombre d’égalités de modèle

Il est possible, avec un peu de processing supplémentaire, de générer
de meilleurs modèles. Un modèle est meilleur s’il génère moins d’égalités

1.7. DÉCIDER L’ARITHMÉTIQUE LINÉAIRE 27

de modèle. Il est préférable de générer moins d’égalités de modèle, car on
diminue ainsi la probabilité d’avoir un conflit avec une autre procédure de
décision. L’effet global est de diminuer le temps nécessaire à corriger des
modèles.

Une variable sans borne inférieure ou supérieure peut avoir sa valeur
dans un ensemble infini. En d’autres termes, il n’est même pas nécessaire de
construire des égalités de modèles faisant intervenir ces variables.

Un autre raffinement important peut être obtenu en considérant les com-
posantes fortement connexes. Des variables dans différentes composantes
peuvent avoir leur valeur dans des intervalles différents. La procédure de
génération de modèle peut elle-même se limiter à générer des égalités de
modèle seulement entre les variables de la même composante fortement
connexe.

Propagation de théorie

Supposons que x − y ≤ c est le littéral à vérifier. Si, dans le graphe, il
existe un chemin de y à x de longueur c′, où c′ ≤ c, alors x − y ≤ c est une
conséquence de l’ensemble de contraintes. Cela peut être réalisé grâce à un
algorithme de plus court chemin avec source unique, comme l’algorithme de
Dijkstra [29, 19], qui peut être implémenté en temps O(|E| + |V | log |V |).

Si il existe de nombreux littéraux qui peuvent être impliqués, cet al-
gorithme de plus court chemin avec source unique sera utilisé un grand
nombre de fois. Dans ce cas, il est peut-être préférable d’utiliser un al-
gorithme de plus court chemin pour toute paire, comme l’algorithme de
Floyd-Warshall [71, 19], qui peut être implémenté en O(|V |3).

1.7 Décider l’arithmétique linéaire

Il existe deux familles principales d’algorithmes pour l’arithmétique
linéaire dans les solveurs SMT actuels. Une est basée sur l’élimination de
Fourier-Motzkin [22], l’autre sur la méthode du simplexe [20]. Dans ce cha-
pitre, nous nous intéressons au simplexe, à la base des algorithmes les plus
efficaces en pratique [30, 61, 28, 51, 2].

1.7.1 La méthode du simplexe

La méthode du simplexe a été conçue en 1947 par George Dantzig et
est une des méthodes les plus populaires pour la programmation linéaire.
L’algorithme doit son nom au concept de simplexe, qui est la généralisation
de la notion de triangle ou de tétraèdre à un espace de dimension arbitraire.

Habituellement, la méthode du simplexe résout des problèmes de pro-
grammation linéaire, c’est-à-dire des problèmes de maximisation (ou de mi-
nimisation) de fonction linéaire, restreinte par un ensemble de contraintes.

28 CHAPTER 1. THÈSE

Par exemple :

Maximiser : F = 3x + 2y + z

Sous : 2x + y ≤ 18

2x + 3y ≤ 42

3x + y + 3z ≤ 24

x, y, z ≥ 0

x, y, z ∈ Q

D’un point de vue géométrique, chaque inégalité réalise une coupure dans
l’hyperespace. Aux intersections, il y a les arêtes et les sommets compose-
ront l’objet géométrique convexe, de polytope en n dimensions, où n est le
nombre de variables. L’algorithme du simplexe commence à un sommet dans
la région accessible (délimitée par les contraintes) et se déplace le long des
arêtes de façon à augmenter la fonction à maximiser. Quand un maximum
local est atteint, par convexité, il s’agit aussi d’un maximum global, ainsi
l’algorithme s’arrête. La Figure 1.5 présente un exemple en trois dimensions
(trois variables).

Fig. 1.5: En commençant d’un point dans la région accessible, le maximum
de F est atteint en suivant les sommets tout en faisant crôıtre la valeur de
F .

Considérons maintenant le problème de la programmation linéaire avec
deux variables et trois contraintes. On veut maximiser la fonction Z (c’est-à-
dire trouver la solution optimale), sous trois contraintes. En plus, la méthode
du simplexe impose des restrictions sur les valeurs des variables : x, y ≥ 0.

1.7. DÉCIDER L’ARITHMÉTIQUE LINÉAIRE 29

Maximiser : Z = 2x + 3y

Sous : − x + y ≤ 5

x + 3y ≤ 35

x ≤ 20

x, y ≥ 0

D’abord, le problème est transformé en un système d’équations linéaires.
Ensuite, un tableau est construit à partir de ce système d’équations

On définit deux classes de variables : les variables basiques et non ba-
siques. Chaque équation dans le tableau possède exactement une variable
basique et cette variable basique intervient dans uniquement cette équation.
Les variables non basiques n’ont pas cette restriction. Intuitivement, les va-
riables basiques sont définies par une combinaison linéaire des variables non
basiques.

À tout instant, on a une solution basique associée au tableau. Dans une
solution basique, toutes les variables non basiques ont une valeur nulle, et
la valeur des variables basiques est obtenue en divisant la valeur dans la
colonne la plus à droite par la valeur (non nulle) dans la colonne de la
variable, soit, dans notre cas, toujours 1. La solution basique du tableau
initial est présentée Figure 1.6.

Fig. 1.6: Solution basique du tableau initial.

L’étape suivante est de sélectionner une variable qui est amenée à devenir
basique. On examine les nombres dans la ligne inférieure, qui correspond à
la fonction à maximiser, et on sélectionne le nombre négatif le plus petit
(soit le plus grand en valeur absolue). Si il n’existe aucun nombre négatif
dans la ligne inférieure, la solution optimale a été atteinte et l’algorithme
s’arrête.

Il faut aussi sélectionner la variable qui quittera la base. Il s’agit de la
variable qui limite le plus le changement de la valeur de la variable qui rentre
dans la base, car on ne peut violer des contraintes. On calcule le ratio entre
les nombres positifs dans la colonne de la variable entrante par le nombre
dans la même ligne dans la colonne la plus à droite. La variable avec le plus

30 CHAPTER 1. THÈSE

petit ratio est la variable qui restreint le plus le changement de valeur de la
variable entrante, et c’est elle qui quittera la base. S’il n’y a aucune valeur
positive, la solution est non bornée et l’algorithme termine.

L’étape suivante est le pivot. Des combinaisons linéaires pour exprimer
les équations du tableau en termes des nouvelles variables basiques sont
réalisées. Le résultat est donné Figure 1.7. La variable y est entrée dans la
base et la variable s1 l’a quitté. Les équations ont été réécrites de façon à
ce que y apparaisse seulement dans une contrainte. La valeur de la fonction
de maximisation Z est 15 dans la configuration présente. Cependant, il y
a toujours la possibilité d’améliorer cette valeur, car il existe un nombre
négatif dans la ligne du bas. Les étapes précédentes (depuis la sélection
d’une variable qui quitte la base) sont répétées jusqu’à ce qu’aucun nombre
dans la ligne du bas ne soit négatif.

Entering variable

New basic variable

Leaving variable

Fig. 1.7: Le résultat du pivot. La variable basique s1 est remplacée par y et
des combinaisons linéaires sont utilisées pour éliminer y des équations.

On peut aussi considérer le problème géométriquement (Figure 1.8). En
associant les axes aux variables x et y, on obtient une représentation en deux
dimensions du précédent exemple.

La région mise en évidence et délimitée par les contraintes du problème,
est la région accessible. On commence au sommet (x = 0, y = 0) et on se
déplace vers un autre sommet chaque fois qu’on peut augmenter la fonction
à maximiser. La fonction de maximisation peut aussi être vue sur la figure.
La flèche pointe dans la direction de maximisation.

1.7.2 Décider la satisfaisabilité incrémentallement

L’objectif est d’adapter la méthode du simplexe pour construire une
procédure de décision pour l’arithmétique linéaire. La première difficulté
est de lever les restrictions sur la forme des contraintes dans le simplexe
primal. Notre procédure doit accepter des variables non bornées initiale-

1.7. DÉCIDER L’ARITHMÉTIQUE LINÉAIRE 31

0
5 10 15 20

5

10

(a) L’état initial

0
5 10 15 20

5

10

(b) Après le premier pivot

0
5 10 15 20

5

10

(c) Après le deuxième pivot

0
5 10 15 20

5

10

(d) Après le dernier pivot

Fig. 1.8: Représentation géométrique

ment (contrairement à des variables positives uniquement), accepter des
équations, négation d’équations, et inégalités. La deuxième difficulté est de
construire une procédure incrémentale.

Notre problème est par ailleurs plus simple que le problème pour lequel
le simplexe est conçu : nous ne demandons pas de solution optimale. Une
solution suffit.

La première étape de l’algorithme est de vérifier s’il y a variables inédites
dans la contrainte. Pour chaque nouvelle variable, les bornes inférieures et
supérieures seront initialisées respectivement à −∞ et ∞. La valeur initiale
de ces variables sera aussi fixée à une valeur arbitraire, 0.

On conserve l’idée de variables basiques et non basiques. Une variable
basique apparâıt dans une contrainte seulement, tandis qu’une variable non
basique peut apparâıtre dans plusieurs. Les variables nouvellement créées
sont non basiques initialement.

La différence principale avec le simplexe primal est que les variables non
basiques peuvent avoir une valeur non nulle. Comme il n’existe pas de res-
triction sur la borne inférieure des variables, les variables peuvent avoir une
valeur inférieure à 0. Une variable basique a toujours sa valeur parfaitement
déterminée par la valeur des variables non basiques, mais, comme la valeur
des variables non basique peut être non nulle, le calcul n’est pas aussi direct
que dans le simplexe primal.

L’étape suivante est de normaliser la contrainte nouvellement ajoutée.
Ceci est réalisé en remplaçant les variables basiques par les expressions qui
les définissent, et qui contiennent des variables non basiques uniquement.

La nouvelle contrainte est alors considérée comme la fonction objectif,
et l’algorithme essaie de la satisfaire, tout en gardant les autres contraintes
valides. Ce n’est pas très différent du simplexe primal hors mis quelques

32 CHAPTER 1. THÈSE

détails. La nouvelle contrainte est enfin intégrée à l’ensemble des anciennes
contraintes. La façon dont elle est intégrée dépend de s’il s’agit d’une égalité,
une négation d’égalité, ou une inégalité.

Si la contrainte est une négation d’égalité, elle est juste sauvegardée
pour utilisation à la fin du processus. Les négations d’égalité ne peuvent
être intégrées directement dans le simplexe, elles ne seront donc utilisées
que plus tard en regard de la solution trouvée.

Si la contrainte est une inégalité, une nouvelle variable slack est crée
pour permettre de transformer cette inégalité en égalité. Une valeur et une
borne est donnée à cette nouvelle variable, et elle est mise dans l’ensemble
des variables basiques. La valeur courante de cette variable est obtenue par
différence entre l’évaluation des variables et le terme constant.

Si la contrainte est déjà une égalité, aucune variable slack n’est créée.
Une variable est choisie pour être basique, et toutes les contraintes sont nor-
malisées pour éliminer cette nouvelle variable basique, si nécessaire. Il existe
cependant deux cas particuliers. Premièrement si la contrainte ne contient
qu’une variable, les bornes de cette variable sont ajustées en fonction de la
contrainte. Deuxièmement, si la contrainte ne contient aucune variable, elle
est ignorée si elle est satisfaite.

L’algorithme appliqué sur l’ensemble de contraintes qui suit

− x + y ≤ 5

x + 3y ≥ 35

x ≥ 0

y ≤ 5

3x + 3y = 120

donne le tableau présenté Figure 1.9. La Figure 1.10 donne une
représentation géométrique des différentes étapes.

Bounds

Fig. 1.9: Le tableau final, après ajout des contraintes −x+y ≤ 5, x+3y ≥ 35,
x ≥ 0, y ≤ 5 et 3x + 3y = 120.

1.7. DÉCIDER L’ARITHMÉTIQUE LINÉAIRE 33

0
5 10 15 20

5

10

(a) Après la première
contrainte

0
5 10 15 20

5

10

-5-10-15-20

-5

-10

-15

-20

15

20

(b) Après la deuxième
contrainte

0
5 10 15 20

5

10

-5-10-15-20

-5

-10

-15

-20

15

20

(c) Après la troisième contrainte

0
5 10 15 20

5

10

-5-10-15-20

-5

-10

-15

-20

15

20

25 30 35 40

(d) Après la dernière contrainte

Fig. 1.10: La représentation géométrique après l’ajout des contraintes −x+
y ≤ 5, x + 3y ≥ 35, x ≥ 0, y ≤ 5 et 3x + 3y = 120.

1.7.3 Génération de l’ensemble de conflit

Le système est insatisfaisable si la nouvelle contrainte ne peut être satis-
faite. Les variables sont alors directement contraintes par leurs bornes. Dans
l’explication du conflit, il faut rendre un sous-ensemble des contraintes ori-
ginales.

Premièrement, toutes les combinaisons linéaires (pendant la normalisa-
tion et les pivots) des contraintes originales sont sauvegardées par l’algo-
rithme. Une expression linéaire donnant l’origine de la contrainte est gardée
à côté de chaque contrainte. Deuxièmement, l’ensemble de conflit doit donner
la raison des bornes des variables qui ne peuvent être modifiées. L’ensemble
de conflit est alors juste l’ensemble de toutes ces contraintes. Comme l’in-
formation nécessaire à l’obtention de ces contraintes est maintenue à jour à
chaque instant, la génération de conflit est très simple.

1.7.4 Backtracking

Un des aspects de notre algorithme est qu’il n’est pas nécessaire d’être
à un sommet. Cette propriété simplifie grandement le backtracking.

34 CHAPTER 1. THÈSE

Le backtracking doit ramener la procédure de décision dans un état cor-
respondant à celui avant l’ajout de certaines contraintes. Dans notre cas,
le backtracking ne restaurera pas exactement le même état, mais un état
équivalent.

Si la procédure a atteint un état insatisfaisable juste à l’ajout de la
contrainte précédente, le backtracking consiste simplement à retirer cette
dernière contrainte. Si par contre la contrainte la plus récemment ajoutée a
préservé la satisfaisabilité, la retirer n’invalide pas la solution. Dans les deux
cas, il suffit donc de retirer la contrainte la plus récemment ajoutée. Il faut
cependant veiller à retirer toute trace de cette contrainte, car il n’est pas
impossible qu’elle soit utilisée dans une combinaison linéaire avec plusieurs
autres contraintes. Les autres tâches liées au backtracking sont triviales, par
exemple il s’agit de restaurer les valeurs de bornes sur des variables, ou
d’éliminer des variables créées pour la contrainte.

1.7.5 Génération d’égalité

Les stratégies complètes pour générer toutes les égalités entre variables
sont coûteuses. Mais il existe des solutions pour trouver certaines des égalités
très rapidement. Par exemple, si deux variables ont la même valeur, et
que cette valeur est totalement contrainte, l’égalité des deux variables est
conséquence logique des contraintes.

Une heuristique un peu moins simple consiste à comparer les équations.
Si deux variables basiques sont exprimées de la même façon en fonction
des variables non basiques, elles sont égales. Par exemple, il est possible de
déduire que x = y de

x = 3z − 4w + 5

y = 3z − 4w + 5

Pour générer de manière complète toutes les égalités, il suffit d’utiliser
le simplexe. Si, on atteint un état inconsistant en ajoutant x < y d’une part
et en ajoutant x > y d’autre part, on sait que l’état courant implique x = y.
Par contre, ce processus est coûteux.

1.7.6 Génération d’égalités de modèle

La génération d’égalités de modèle est triviale dans notre contexte. Il
suffit de regarder les valeurs associées aux variables et de créer des égalités de
modèle entre ces variables. L’algorithme est tel que les valeurs des variables
seront généralement dispersées (contrairement à ce qui était observé pour
la procédure pour la logique de différence). La procédure générera donc
généralement un nombre assez faible d’égalités de modèle.

1.7. DÉCIDER L’ARITHMÉTIQUE LINÉAIRE 35

1.7.7 Diségalités et inégalités strictes

Les négations d’égalité ne peuvent pas être simplement intégrée au ta-
bleau. Elles sont donc gardées en mémoire et vérifiées plus tard. La procédure
de décision pour l’arithmétique linéaire gère alors ces diségalités de la même
façon que la procédure pour la logique de différence. La procédure de décision
inspecte ces inégalités et génère les lemmes pour modifier le modèle courant
si il y a une inconsistance entre le modèle et les diségalités.

Le inégalités strictes sont gérées de la même façon que pour la logique
de différence. On remplace les contraintes du type x + y < c par x + y ≤
(c − δ), tout en modifiant la représentation des nombres de façon à gérer
correctement les opérations avec δ.

1.7.8 Variables entières

La procédure de décision ci-dessus est complète pour les réels, et peut
être intégrée dans un solveur SMT. Cependant, elle n’est plus complète en
présence de variables entières.

Pour gérer les entiers, on ajoute aux algorithmes de simplexe des tech-
niques comme le branch-and-cut [45], qui est un mélange de branch-and-
bound avec cutting planes [36]. L’algorithme sur les réels est utilisé, et,
chaque fois que la solution finale donne une valeur réelle à une variable
entière, les techniques précitées sont utilisés pour éliminer ces solutions
réelles et obtenir une solution entière.

L’idée derrière la technique du cutting planes est de générer une
contrainte qui élimine la solution réelle courante, et un ensemble de so-
lutions réelles autour, tout en préservant les solutions entières. Tant que la
solution trouvée donne une valeur réelle à une variable entière, des coupures
(cuts) sont générées sous la forme de nouvelles contraintes.

La technique du branch-and-bound crée une étude de cas aux variables
entières avec valeurs réelles, en invalidant la solution actuelle. Par exemple,
si x est une variable entière, et que sa valeur est 1.5, la technique du branch-
and-bound introduira une analyse par cas, un sera x ≤ 1 et l’autre x ≥ 2.
Si un des deux scénarios permet d’obtenir une solution entière, la solution
est aussi solution du problème original.

Si cette technique du branch-and-bound est simple, la terminaison pose
problème si les variables ne sont pas bornées. Elle ne suffit donc pas seule.
Par contre la technique du cutting plane est complète, mais il n’est pas
simple de générer les coupures. Les stratégies modernes utilisent les deux
techniques.

Une stratégie complète reste à définir dans le solveur veriT. La tech-
nique du branch-and-bound est implémentée, en plus de la vérification du
plus grand commun diviseur. Ensemble, ces deux techniques permettent de
trouver la plupart du temps un modèle acceptable ou l’inconsistance.

36 CHAPTER 1. THÈSE

1.8 Conclusion

Nous avons présenté des méthodes pour construire une coopération entre
procédures de décision. Ces méthodes ont été appliquées aux fragments
arithmétiques de la logique de différence et de l’arithmétique linéaire. La
plateforme de combinaison est applicable à d’autres théories.

Après avoir présenté les solveurs SAT et solveurs SMT, montré com-
ment des procédures de décision pour différentes théories peuvent être com-
binées au sein d’un solveur SMT, détaillé les fonctionnalités nécessaires pour
construire des solveurs SMT efficaces, nous avons détaillé deux procédures
de décision, une pour la logique de différence, et l’autre pour l’arithmétique
linéaire.

La grande partie du travail présenté ici a été implémenté dans notre
solveur SMT, veriT, qui est distribué en open-source sous la licence BSD,
et téléchargeable sur le site http://www.verit-solver.org. Le module
arithmétique, qui intègre les deux procédures de décision (logique de
différence et arithmétique linéaire) a été implémenté en C, et fait de l’ordre
de 9000 lignes de code. Le code est disponible avec le solveur veriT.

En résumé, les contributions sont :
– Une extension de la plateforme de combinaison de Nelson et Oppen

qui utilise les égalités de modèle.
– Une description de l’implémentation des égalités de modèle pour la

logique de différence.
– Une implémentation libre de la logique de différence, utilisée au sein

du solveur SMT veriT.
– Une version incrémentale du simplexe, utilisée pour vérifier la satisfai-

sabilité d’un ensemble de contrainte en arithmétique linéaire.
– Une implémentation libre de l’arithmétique linéaire basée sur le sim-

plexe, utilisée au sein du solveur SMT veriT.

http://www.verit-solver.org

Part II

Extended thesis

37

Chapter 2

Introduction

The construction of software that works correctly is a major concern in our
society. But building software totally free of failures is most of the times a
hard task. Many techniques may be applied during software construction to
make them work as well as possible. Good software engineering techniques
in project construction and development can help to achieve this goal, but
usually they are not enough. Testing is the most common way to verify that
a program works as expected, but it might be hard (or even impossible)
to test it exhaustively. Formal methods try to prove formally models of
software. If the models are proved, we can be totally sure of the correctness
with respect to the proven properties. But as any of the other techniques,
they have their limitations.

It is not all sort of software that have the real need to be entirely cor-
rect. For many applications the extra effort to ensure that everything works
perfectly is not even worth. That is because using techniques to prove the
correctness may take a long time and they may also not be easy to use.
Sometimes, software can be released when it seems to work correctly, and
later, when a problem comes out, it is fixed and a new version is released.
That is usually what happens and it is not a serious concern if these hypo-
thetical problems do not cause a big loss when it comes to lives or money.

The real necessity of software that works correctly comes from critical
applications. This is where software deals with human lives, money, credi-
bility, etc. Software that controls airplanes, space rockets, air traffic, metro,
trains, and so on, deals with lives. Making sure it is correct is essential. Sys-
tems that deal with money, like bank and commercial softwares, can spend
an extra effort during the construction of the software to make sure they will
not lose money later. Operating Systems need to have the credibility that
they will work correctly, as they are the base for many other software. Bug
free software may also be a good propaganda for companies that produce
such software, as they may gain the trust of their users. As a last exam-
ple, embedded systems or hardware, that once out in the market cannot be

39

40 CHAPTER 2. INTRODUCTION

changed, need extra attention too.
Testing is a mandatory phase when making software. It is a good start-

ing point and may detect many simple and common mistakes as well as
deeper problems such as wrong algorithms. A simple way of completely
testing the system and be sure it works correctly is to test all possible input
configurations and to see if they return the expected results. But testing
every input configuration is only possible for very few special cases as the
number of configurations usually grows exponentially with the size of the
input. So testing them all would take unreasonable time even for relatively
small inputs. Also, in some situations, testing all the cases is impossible as
they might be infinite. Therefore, for most software, testing techniques must
be applied, using only a fraction of the whole input set of configurations.
It will probably detect some errors, but it will not be possible to know if a
program is free of failures, as it cannot test all input configurations.

Formal methods come to help proving the correctness of software. There
are many techniques that aim to prove that an implementation of an algo-
rithm works, based on formal theories. But proving that any code on any
programming language gives always the expected result is not possible, as
there is no formal theory that handles all the aspects of programming lan-
guages, compilers, operational systems, computer architectures, etc. So,
normally, important aspects of the software are translated to a model that
can be then checked.

After that, the proof may be done with the help of tools. There are
many classes of tools available and they can be interactive or automated.
Examples are SAT-solvers, SMT-solvers, extended static checkers, proof as-
sistants, model-checkers... which use will depend on the problem and the
specification. In this thesis we will focus on the components of the SMT-
solvers.

Moreover, formal methods are in constant evolution. Researchers are
often creating new methodologies, model languages and more robust provers.
Although currently not attractive to all, formal methods are well used in
industry in many areas. They are also in expansion, as one of the main
goals is to be suitable for more users and situations.

The aspects to be proven usually have many theories involved such as:
theory of lists, arrays, functions, numbers, sets, etc. Making a tool that
can infer about a combination of them is not an easy task. A common way
of doing it is to have a framework that combines decision procedures that
can infer about some single theories, e.g., the Nelson and Oppen combina-
tion framework [52]. A survey about decision procedures for many different
theories was written by Kroening and Strichnan [40].

SMT-solvers are among the most successful state-of-art solvers for verifi-
cation problems. Most SMT-solvers use the Nelson and Oppen combination
framework to handle different combination of theories. The SMT-solver also
have internally a SAT-solver which is a powerful tool to solve Boolean prob-

2.1. THE OVERVIEW OF THE THESIS 41

lems. The use of SAT-solvers combined with decision procedures makes
the SMT-solver an interesting tool to solve expressive verification formulas.
But as we are going to see in this thesis, making all these components work
together is not trivial.

One of the theories most commonly found in verification problems is
arithmetic. Concluding for instance that x + x = 1 is satisfiable in the real
field, but not in the integer field, is a very simple example. Arithmetic is a
very large theory that can be divided in a few different fragments or classes,
as problems that involve arithmetic usually contain only a subset of the
arithmetic functions and symbols.

An interesting fragment of arithmetic is difference logic. It is based on
constraints of the form x − y ≤ c, where x and y are variables and c is
a numerical constant. Although very simple, difference logic can express
important practical problems like timed systems, scheduling problems and
paths in digital circuits (see for example [54]). Difference logic can be entirely
modeled with graph theory. That allows the use of fast algorithms capable
of solving large instances of problems.

Another important fragment in arithmetic is linear arithmetic. It is more
expressive than difference logic. In this fragment we are allowed to use ad-
dition, subtraction and multiplication as we want, except for multiplication
between variables. Another advantage is to use as many variables per con-
straint as necessary, instead of only two of difference logic. An example of
a linear arithmetic constraint is: x1 + 2x2 − 5x3 ≤ 5. Algorithms to solve
linear arithmetic are slower than the ones to solve difference logic, but they
are still able to handle large size problems.

We are going to focus on the difference logic and linear arithmetic frag-
ments in this thesis. We start by proposing a combination framework based
on Nelson and Oppen that makes it easier and more efficient to solve prob-
lems involving a combination of many different theories, including difference
logic and linear arithmetic. Then we will show how to build decision proce-
dures for these theories that can be used in this framework and integrated
in an SMT-solver.

2.1 The overview of the thesis

In Chapter 3, we present the satisfiability problem for propositional logic and
the SAT-solvers that are used to solve this kind of problem. Then we intro-
duce the SMT-solvers that are used to solve more expressive generalizations
of this problem.

In Chapter 4, we motivate and explain how we can combine the decision
procedures related to different theories. We show the difficulties of com-
bining some theories, in which situations that happens and we propose an
original way of combining theories.

42 CHAPTER 2. INTRODUCTION

In Chapter 5, we start to see the details of the decision procedures. We
analyze the requirements to build decision procedures that can be used in
SMT-solvers.

In Chapter 6, we show how to build a decision procedure for difference
logic using an original algorithm. We additionally describe all the algorithms
to fulfill the requirements of a complete decision procedure that works in the
proposed framework inside an SMT-solver.

In Chapter 7, we present the elements necessary to build a decision
procedure for linear arithmetic. We present an original algorithm based on
the simplex method and the extras necessary to have a cooperative decision
procedure.

2.2 The publications during the thesis

• Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe and
Pascal Fontaine. GridTPT: a distributed platform for Theo-
rem Prover Testing. In Boris Konev, Renate Schmidt and Stephan
Schulz, editors, In Proc. Workshop on Practical Aspects of Automated
Reasoning, 2010.

The development of SMT-solvers requires intensive testing and exper-
iments. During the period of my thesis, many new techniques were
constantly incorporated and tried. It is important to certify the solver
continues correct and observe the impact in the efficiency. This paper
describes a distributed platform used in the tests of our SMT-solver
veriT.

• Diego Caminha B. de Oliveira, David Déharbe, and Pascal Fontaine.
Combining decision procedures by (model-)equality propaga-
tion. Science of Computer Programming, 2010.

This is the extended journal version article where we describe an
original technique for combining decision procedures based on model-
equalities. Part of this paper will be explained in Chapter 4.

• Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe and
Pascal Fontaine. veriT: an open, trustable and efficient SMT-
solver. In Renate A. Schmidt, editor, In Proc. Conference on Auto-
mated Deduction (CADE). LNCS. SpringerVerlag, 2009.

In this article, we find a general description and some of the techniques
of our SMT-solver veriT.

• Diego Caminha B. de Oliveira, David Déharbe, and Pascal Fontaine.
Combining decision procedures by (model-)equality propa-
gation. In Brazilian Symposium on Formal Methods (SBMF2008).
Editora Gráfica da UFBA, EDUFBA, 2008.

2.2. THE PUBLICATIONS DURING THE THESIS 43

In this article, we describe an original technique for combining deci-
sion procedures based on model-equalities. Part of this paper will be
explained in Chapter 4.

44 CHAPTER 2. INTRODUCTION

Chapter 3

From SAT to SMT-solvers

In this chapter, we start by briefly presenting the Boolean satisfiability prob-
lem. Then we show how to solve this problem and how to solve more ex-
pressive generalizations of it.

SAT-solvers are used to solve the satisfiability problem. A SAT-solver
is also a core element of an SMT-solver. Although there are no contri-
butions to SAT-solvers in this thesis, they are very relevant to the work
presented through the thesis because of the role a SAT-solver plays inside
an SMT-solver. The SAT-solver constantly interacts with the decision pro-
cedures, and is fundamental for understanding how to build efficient decision
procedures for SMT-solvers. We can find a significant amount of work on
SAT-solvers that was done in the past few years. However, the following
sections will focus on discussing about basic techniques for building modern
SAT-solvers that are most relevant to the remaining of the thesis.

The last part of this chapter presents SMT-solvers. An SMT instance
is a generalization of the Boolean satisfiability problem, where we can find
a variety of theories in the formula. SMT formulas provides a much richer
modeling language than satisfiability formulas. We present the basic archi-
tecture and how to model problems to be solved by SMT-solvers.

3.1 Introduction

SMT-solvers are built on top of SAT-solvers, and the later were created
to solve satisfiability problems. The satisfiability problem, also known as
SAT problem, is the one that given a Boolean1 (or propositional) formula,
determine if it is possible to give values to the variables in such a way that
the formula evaluates to true, or in other words, create an assignment that
makes the formula true.

1Where variables can only have true or false values.

45

46 CHAPTER 3. FROM SAT TO SMT-SOLVERS

An example of satisfiability problem is, given the formula:

(v1 ∨ v2 ∨ v3 ∨ v4) ∧ (v1 ∨ v2 ∨ ¬v3) ∧ (v1 ∨ ¬v2) ∧ (¬v1 ∨ v4) (3.1)

determine if it is possible to create an assignment, setting true or false values
to the variables v1, v2, v3 and v4, making the formula true.

A brute-force way of solving this problem tries all the combinations of
assigning true or false to the variables, checking the formula each time to
evaluate if it is true. The complexity is O(2n), for n variables. In the case
of Formula 3.1 there would be 16 evaluations.

The satisfiability problem was the first problem proved to be NP-complete,
in 1971 by Cook [18]. Since then, many other problems have been proved to
be NP-complete. Among these proofs, several were done by reduction from
the satisfiability problem.

However, despite the exponential worst-case nature of the problem, a
great advancement was accomplished in SAT solving. State-of-the-art SAT-
solvers can solve instances with millions of variables and several millions of
constraints. The practical success of SAT-solvers challenges the relevance of
worst-case complexity normally taken in consideration. In fact, SAT-solvers
can very often surprisingly quickly solve instances from several different
domains.

Due to this great capacity of handling large instances, many problems
from different domains are modeled to SAT problem for making use of the
high performance SAT-solvers. One can find examples of use of SAT-solvers
in software and hardware verification [12, 69], automatic test pattern genera-
tion [66, 39], scheduling [35], planning [38, 62], algebra [72], etc. SMT-solvers
also constitute an example of successful use of SAT-solvers, using them as
core components to solve problems in a more expressive language.

The translation to satisfiability problem, i.e., using propositional repre-
sentation, usually leads to a substantial increase in problem representation.
That happens because of the limitation of using propositional representa-
tion, as it is going to be shown in Section 3.3. However, SAT encoding is
not an obstacle to modern SAT-solvers anymore. In fact, many problems
are solved faster by a SAT-solver, after been encoded to SAT, than by a
custom search engine running on the original representation of the problem.

3.2 SAT-solver

In the past few years, a lot of progress was observed in the development of
SAT-solvers. Annual SAT competitions, like the SAT competition [10, 9]
and the SAT-Race [57] have contributed to the development of many smart
implementations of SAT-solvers. From a non complete list of SAT-solvers
found in these competitions websites, we can cite as examples: Barcelogic,

3.2. SAT-SOLVER 47

clasp, glucose, Jerusat, kw aig, LySAT, ManySAT, march hi, MiniSat, Pi-
coSAT, plingeling, PrecoSAT, rcl, SATzilla, TNM, Zchaff...

Currently, the most successful SAT-solvers are based on variants of the
procedure introduced several decades ago, the DPLL algorithm. Davis and
Putnam [24] came up with the basic idea of the procedure and a couple of
years later Davis, Logemann and Loveland [23] presented it in the efficient
top-down form which is the base of most SAT-solvers today.

3.2.1 The DPLL algorithm

The DPLL algorithm performs a backtrack search in the space of the partial
truth assignments. Its key feature is efficient pruning of the search space
based on falsified clauses. Algorithm 2 shows the basic recursive version of
the DPLL algorithm.

input : F : CNF Formula
input : p: Assignment
output: status: {(Sat, Assignment); Unsat }

// Unit propagation

while F has unit clause u ∧ contains no empty clause do1

F := F |u;2

p := p ∪ {u};3

end4

if F contains the empty clause then return Unsat ;5

if F has no clauses left then return (Sat, p);6

// Branching and decision

ℓ := a literal not assigned by p ;7

status, Γ := DPLL(F |ℓ, p ∪ {ℓ});8

if status = Sat then return status, Γ ;9

return DPLL(F |¬ℓ, p ∪ {¬ℓ});10

Algorithm 2: Basic recursive DPLL.

Algorithm 2 runs on CNF2 formulas. The idea is to repeatedly select
an unassigned literal ℓ in the input formula F and recursively search for a
satisfying assignment F |ℓ

3 (setting ℓ to true) and F |¬ℓ (setting ℓ to false).
The step where ℓ is chosen (line 7) is called the branch step. The step where
ℓ is set to true (line 8) or false (line 10) is called decision which is associated
to a decision level equal to the depth of the Algorithm 2 recursion. The
end of the recursive call, which takes F back to fewer assigned variables, is
called backtracking step.

2CNF is for Conjunctive Normal Form, i.e., conjunction of disjunctions. Every formula
can be converted in linear time to CNF, see e.g. [15].

3The notation F |ℓ denotes the simplified formula obtained by replacing ℓ by true and
¬ℓ by false, later removing all clauses with at least one true literal, and deleting all
occurrences of false literals from the remaining clauses.

48 CHAPTER 3. FROM SAT TO SMT-SOLVERS

A partial assignment p is maintained during the search. If F |p contains
the empty clause, the corresponding clause of F from which it came is said
to be violated by p. In the unit propagation step (lines 1 to 4), unit clauses
are immediately set to true for efficiency reasons. Pure literals (those whose
negation does not appear) may be set to true as a preprocessing step and,
in some implementation, during the simplification after every branch.

Variations of this algorithm form the mostly used family of complete
procedures for SAT solving. They are frequently implemented in an itera-
tive way rather than recursively, resulting in a reduced memory usage. The
drawback is the extra step necessary for unassigning variables when one
backtracks. The naive way which requires to examine every clause is expen-
sive, but modern techniques, such as two watched literals (presented later
in this chapter), provides an excellent way of dealing with this.

3.2.2 DPLL, an example

Consider the Formula F in 3.2.

F : (a ∨ b ∨ c) ∧ (a) ∧ (b ∨ c) ∧ (b ∨ c) ∧ (b ∨ c) (3.2)

We want to know if there is a propositional assignment that makes F
true. For this we simulate DPLL, as shown in Figure 3.1. In this example,
for conciseness, overline is used on the literals to denote the negation, e.g.,
¬a ≡ a. In the figure, each clause is between parenthesis and in a different
line. The boxes represent different states of the simulation of the algorithm.

- The run of the algorithm starts by detecting a unit clause, (a), so
a unit propagation is performed. The variable a is set to true, the
changes are applied into the formula and then some simplifications
are done. The simplifications in the formula are done over the true
and false literals presented in the clauses. In this first assignment, the
second clause, containing true is removed and the falsified proposition
in the first clause is also removed.

- Following, with no unit clauses in the formula, a variable needs to be
chosen in the branch step. Among the possible choices, the variable b
is chosen and the algorithm decides to set the literal b value to true.

- A unit propagation can be performed. Both c and c are candidates
for unit propagation. The algorithm just choses the literal from the
first unit clause, in this case the literal c. In either way, applying
unit propagation leads to the empty clause (∅) and therefore to an
unsatisfiable assignment.

- The algorithm backtracks to a state where a decision was made, in
this case when it decided b. Now it simply inverts the decision, setting
b to false.

3.2. SAT-SOLVER 49

simplified

simplified

simplified

simplified

simplified

unit propagation

unit propagation

decision

unit propagation

b
a
ck

tr
a
ck

in
g

empty clause no clauses

Figure 3.1: Execution of DPLL on example of Formula 3.2. Starting with
the formula F , the algorithm applies, in successive steps, unit propagation,
decision and backtracking to reach a propositionally true assignment, con-
cluding that the formula satisfiable.

- Once again this generates unit clauses. The variable c is set to true
and after simplification, no more clauses remain.

- With no more clauses, we reach a state where the algorithm detects a
propositional satisfiable assignment. In Algorithm 2, the assignment
is denoted by p. In Figure 3.1, the assignment can be reconstructed
by looking at the decisions made. In this example it is {a, b, c}, or, in
other notation, {a = true, b = false, c = true}.

3.2.3 Modern techniques for DPLL based SAT-solvers

The efficiency of state of the art SAT-solvers relies heavily on several fea-
tures that have been developed and tested in the last decade. Among these
features are fast unit propagation using watched literals, learning mecha-
nisms, deterministic and randomized restart strategies, constraint database

50 CHAPTER 3. FROM SAT TO SMT-SOLVERS

management for clause deletion, non chronological backtracking, and smart
branching and decision heuristics.

Although these features are not essential for understanding the behavior
and integration of a SAT-solver inside a SMT-solver, they are very important
when considering building modern and efficient SAT-solvers. Following, we
give a brief description of some of these features.

Two watched literals. The two watched literals scheme was developed
by Moskewicz et al. [48] in their solver zChaff. It played a critical role in
the success of SAT-solvers and is now a standard technique used by most
SAT-solvers to find unit clauses and perform efficient unit propagation.

As the name suggests, the idea behind this scheme is to maintain and
watch two initially unassigned literals for each non-unit clause. The key
observation of this method is that as long as a clause has two unassigned
literals, it cannot be involved in unit propagation. By doing a few low cost
maintenance steps when one of these two variables have their value assigned,
it is possible to simplify the search for unit clauses, increasing the solver
efficiency specially when clauses in the formula are large. Another gain with
this technique is backtracking. Since the invariant of the watched literals is
maintained when unassigning literals, backtracking is done in constant time.

Branching and decision heuristics. Good heuristics to determine which
variable to choose and which value to set is one of the features that vary
the most from one SAT-solver to another. Different strategies can have a
significant impact on the efficiency of the solver (see e.g. [63, 41] for surveys).

The strategies vary from randomly fixing the variables to moderately
complex functions that take in consideration, for instance, how often a vari-
able appears in conflicts and/or unsatisfied clauses, and how big are the
clauses containing such a variable. In these more sophisticated strategies,
variables are selected based on weights that are initially attributed to them
and dynamically updated as the search progresses. Examples of decision
heuristics are: maximum occurrence in clauses of minimum size [37]; dy-
namic largest individual sum [43]; variable state independent decaying sum
[48]. New solvers like BerMin, Jerusat, MiniSat, and RSat employ further
variations on this theme.

Clause learning. This technique also played a crucial role in the recent
success of SAT-solvers and is an important improvement to the basic DPLL
algorithm. The idea is to learn the causes of conflict by adding new clauses
that will help pruning the search in a different part of the search space
encountered later. There are many different schemes for conflict driven
clause learning. Examples can be found in works of Marques-silva, Bayardo,
Zhang [44, 7, 74].

3.3. AN EXAMPLE OF MODELING IN SAT 51

Clause learning alone can be very limited by the explosion in the num-
ber of clauses that a SAT-solver may learn during the search. Its suc-
cess is very connected to subsequent researches in lazy data structures and
constraint database management strategies, for deletion of some previous
learned clauses. Techniques for reducing the size of the conflict driven
learned clauses also contribute to a more efficient learning process. Examples
are conflict clause minimization introduced by MiniSat [64] and assignment
stack shrinking introduced by Jerusat [50].

Backjumping. It is a technique used to reduce the search space and,
therefore, increase the efficiency. While backtracking goes back in one level
to change the value of the last decided variable and then continue the search,
backjumping may go further. It may go back several levels of decision if it
is possible to safely determine that there is no solution from that point
on, independently of the values the unassigned variables may take. This
generic technique was introduced by Stallman and Sussman [65] and now
has variants in different solvers.

Restarts. Introduced by Gomes et al. [35], this technique allows clause
learning algorithms to arbitrarily stop the search and restart their branch-
ing process from decision level zero. All learned clauses are kept and the
algorithm may take a new, different branch. Gomes et al. showed that with a
controlled randomized restart strategy it is possible to escape of heavy-tailed
branches that very often the solvers face when running on hard problems.
Combined with clause learning, this strategy improves the solvers by sev-
eral orders of magnitude. Most of the current SAT-solvers apply aggressive
restart strategies.

3.3 An example of modeling in SAT

Usually, there are several ways of modeling a problem in SAT. The perfor-
mance of the solvers depends on the way the problem is modeled. In this
section we give an example of modeling a classical NP-complete problem
into a SAT encoding.

The problem is the graph K-coloring. It consists in determining if it is
possible to assign colors to the nodes of a graph using at most K colors in
such a way that no adjacent nodes have the same color. An example of a
3-colored graph is given in Figure 3.2. Observe that there is no 2-coloring
of this graph.

In SAT problems, variables can only have true or false values. So when
modeling, this is the first point to take in consideration. Another point is
that formulas are usually given in CNF, i.e., conjunction of disjunctions, or
in other words, a set of clauses. It happens very often that problems are

52 CHAPTER 3. FROM SAT TO SMT-SOLVERS

1 2

3

4 5

Figure 3.2: An example of a graph colored using K = 3 different colors:
white, black and gray.

easily modeled using clauses, but if that is not the case, a conversion to CNF
can be performed [15] and many solvers implement CNF transformation.

In this example, we start by defining the variables and then we add the
constraints. It is modeled using clauses, directly in CNF, so no subsequent
translation is required.

• Variables have the format xij meaning that the node i has color j.
We do this for all the combination of N nodes and K colors, yielding
N × K variables.

• Each node must have at least one color. So for each node i we create
a clause specifying that: (xi1 ∨ xi2 ∨ ... ∨ xiK), or,

N∧

i=1

(
K∨

j=1

xij)

.

• Each node must have at most one color, i.e., for no node two colors
are set true. So for each node i, we create a clause for each pair of
colors: (¬xi1 ∨ ¬xi2) ∧ (¬xi1 ∨ ¬xi3) ∧ ... ∧ (¬xi(K−1) ∨ ¬xiK), or,

N∧

i=1

K−1∧

j=1

K∧

ℓ=j+1

(¬xij ∨ ¬xiℓ)

.

• No adjacent nodes may have the same color. So for each edge (i, j)
from the set of edges E of the graph and for each color c, we create a
clause: (¬xic ∨ ¬xjc), or,

∧

(i,j)∈E

K∧

c=1

(¬xic ∨ ¬xjc)

3.4. SMT-SOLVER 53

.

For a concrete example of encoding in SAT, we take the graph of Fig-
ure 3.2. In the case of K = 3 colors, the final encoding in SAT is:

(x11 ∨ x12 ∨ x13)∧
(x21 ∨ x22 ∨ x23)∧
(x31 ∨ x32 ∨ x33)∧
(x41 ∨ x42 ∨ x43)∧
(x51 ∨ x52 ∨ x53)∧

(¬x11 ∨ ¬x12) ∧ (¬x11 ∨ ¬x13) ∧ (¬x12 ∨ ¬x13)∧
(¬x21 ∨ ¬x22) ∧ (¬x21 ∨ ¬x23) ∧ (¬x22 ∨ ¬x23)∧
(¬x31 ∨ ¬x32) ∧ (¬x31 ∨ ¬x33) ∧ (¬x32 ∨ ¬x33)∧
(¬x41 ∨ ¬x42) ∧ (¬x41 ∨ ¬x43) ∧ (¬x42 ∨ ¬x43)∧
(¬x51 ∨ ¬x52) ∧ (¬x51 ∨ ¬x53) ∧ (¬x52 ∨ ¬x53)∧

(¬x11 ∨ ¬x31) ∧ (¬x12 ∨ ¬x32) ∧ (¬x13 ∨ ¬x33)∧
(¬x11 ∨ ¬x41) ∧ (¬x12 ∨ ¬x42) ∧ (¬x13 ∨ ¬x43)∧
(¬x31 ∨ ¬x41) ∧ (¬x32 ∨ ¬x42) ∧ (¬x33 ∨ ¬x43)∧
(¬x41 ∨ ¬x51) ∧ (¬x42 ∨ ¬x52) ∧ (¬x43 ∨ ¬x53)∧
(¬x21 ∨ ¬x51) ∧ (¬x22 ∨ ¬x52) ∧ (¬x23 ∨ ¬x53)

The formula is satisfiable, as it is related to the Figure 3.2 where we
can see that there is a solution. If we give the formula to a SAT-solver, it
will confirm that the formula is satisfiable. We can additionally ask for a
model that will show which variables are true and which are false. With this
information we can determine the color of each node, rebuild the graph with
the colors, and do additional checking to ensure that there are no errors in
the translations.

3.4 SMT-solver

We presented so far how to solve satisfiability problems, but we want to
go one step further. We want to be able to solve Boolean problems also
involving expressive theories, such as linear arithmetic, uninterpreted pred-
icate and functions, and various data structures. In other words, we want
to solve SMT4 problems.

Before the appearance of SMT-solvers, the entire theory inside a problem
needed to be encoded in the propositional level if one desired to use a SAT-
solver to tackle the problem. Now this is no longer necessary in most of

4SMT stands for Satisfiability Modulo Theories

54 CHAPTER 3. FROM SAT TO SMT-SOLVERS

the cases. SMT-solvers use the power of SAT-solvers in combinations with
decision procedures capable of reasoning about different theories.

Many SMT-solvers have been developed in the last few years. Some
SMT-solvers try to specialize in a few theories while others try to gather as
many theories and combinations of theories as possible.

The annual SMT competition, the SMT-COMP [3, 1], also encourages
the development of SMT-solvers. Additionally to our SMT-solver veriT,
which implements most of the concepts presented in this thesis, from a
non exhaustive list of SMT-solvers5, we can also cite as examples: Alt-
Ergo, AProVE NIA, Barcelogic, Beaver, Boolector, clsat, CVC, MathSAT,
MiniSmt, OpenSMT, simplifyingSTP, Sateen, Sonolar, Spear, STP #101,
Sword, Yices, Z3.

The basic architecture of an SMT-solver can be seen in Figure 3.3. A
SAT-solver is the core element. It is used to search for propositional satisfi-
able assignments. These assignments need to be verified to check if there are
any theory inconsistency. In SMT-solvers based on the Nelson and Oppen
combination framework (presented in Chapter 4), the assignment is sent
to a module that will distribute each constraint to its respective decision
procedure. The decision procedures check for inconsistencies, sharing some
information with each other whenever there are several theories involved. If
there are inconsistencies, lemmas are sent back to the SAT-solver, invalidat-
ing the current assignment and forcing it look for a new one. The SMT-solver
stops when it finds an assignment with no inconsistencies at the theory level
or when there are no more propositionally satisfiable assignments.

SAT-solver

Nelson and Oppen
combination module

DP for
 linear arithmetic

DP for
 uninterpreted functions

DP for
 arrays

DP for
lists

...

SMT-solver

Figure 3.3: Basic architecture of an SMT-solver based on Nelson and Oppen
framework and using several decision procedures (DP).

When there is only one theory involved, it is easy to integrate a decision

5Links and short description of the solvers can be found in the smtcomp web-page [1].

3.5. AN EXAMPLE OF MODELING IN SMT 55

procedure with a SAT-solver to make a working SMT-solver. However, when
there are two or more theories, the combination may not be trivial. We are
going to see the details of how to combine theories in Chapter 4, and how
to build decision procedures that can be integrated in an SMT-solver in
Chapters 5, 6 and 7.

The SMT community makes available a benchmark library, SMT-LIB
[59], where people can submit their own benchmarks or use the existing ones
to develop the SMT-solvers. Benchmarks are in the standard language, also
created by the community, SMT-LIB 1.2 [58] or SMT-LIB 2.0 [5]. Most of
the SMT-solvers support one of these two languages.

In the next section, it is presented an example showing how to model a
problem using SMT. We are not using an existing language, but the conver-
sion to SMT-LIB 1.2 or 2.0 is simple.

3.5 An example of modeling in SMT

We want to model the same K-coloring problem of Section 3.3, but now
with a more natural encoding that can be used by an SMT-solver. A nat-
ural way of encoding colors is to use numbers, representing each color by
a number. Therefore, the integer linear arithmetic theory is used to model
the 3-coloring problem of Figure 3.2.

Explaining step by step the encoding as it was done in the SAT case:

• For each node i, there is an integer variable xi. The values the variables
may have are between 1 and K (in our case K = 3 colors).

• Each node must have at least one color. In the arithmetic theory,
variables always have one value, so we do not need to include any
clause.

• Each node must have at most one color. In the arithmetic theory,
variables are never assigned two values, so we do not need to include
any clause.

• No adjacent nodes may have the same color. For each edge (i, j) from
the set of edges E of the graph we add: xi 6= xj , or in a precise
formalism,

∧

(i,j)∈E

(xi 6= xj)

Modeling this problem with linear arithmetic results in a conjunctive set
of literals in the theory of integers. In practice it means that a decision
procedure is enough to solve it, and not the full SMT-solver. So to make
the example more illustrative, we add one extra constraint to the problem.

56 CHAPTER 3. FROM SAT TO SMT-SOLVERS

We want also to know if all the colors have been used to solve the problem.
To encode this extra constraint we do like the following:

• Each color c ∈ K has at least one variable assigned to it, i.e.,

K∧

c=1

N∨

i=1

xi = c

The final encoding in SMT of the graph in the Figure 3.2, for K = 3, is:

x1 ≥ 1 ∧ x1 ≤ 3∧
x2 ≥ 1 ∧ x2 ≤ 3∧
x3 ≥ 1 ∧ x3 ≤ 3∧
x4 ≥ 1 ∧ x4 ≤ 3∧
x5 ≥ 1 ∧ x5 ≤ 3∧

x1 6= x3 ∧ x1 6= x4∧
x2 6= x5∧
x3 6= x4∧
x4 6= x5∧

(x1 = 1 ∨ x2 = 1 ∨ x3 = 1 ∨ x4 = 1 ∨ x5 = 1)∧
(x1 = 2 ∨ x2 = 2 ∨ x3 = 2 ∨ x4 = 2 ∨ x5 = 2)∧
(x1 = 3 ∨ x2 = 3 ∨ x3 = 3 ∨ x4 = 3 ∨ x5 = 3)

The formula is satisfiable, as we have seen in Section 3.3. It is simpler to
understand and shorter than the SAT formula. If we translate the formula
to an existing input language and give it to an SMT-solver, it will check if
the formula is satisfiable. SMT-solvers do not offer the same functionality,
but there are many features available. In the case the result is satisfiable,
we can ask for a model, for the assignment, the value of a variable, etc. In
the case it is unsatisfiable, a proof of inconsistency can be obtained. With
these extra informations that some SMT-solvers can offer, we can obtain the
color in each node, rebuild the graph with the colors, obtain an unsatisfiable
subgraph...

3.6 Conclusion

In this chapter, we presented an essential component of SMT-solvers, the
SAT-solver. We showed the basic algorithm which most of the modern SAT-
solvers are based on, and a short description of advanced techniques. Then,
we presented an example of how to encode a problem in SAT.

The second part of the chapter we presented the SMT-solvers. We de-
scribed its basic architecture and how it works. We ended with an example
of how to encode in SMT.

3.6. CONCLUSION 57

In the next chapter we explain how we can combine the decision proce-
dures related to different theories that are inside the SMT-solvers. We are
going to see the difficulties of combining some theories, in which situations
that happens and we also propose an original way of combining theories.
There is also more examples where we can see step by step the interactions
between the SAT-solver and the theory reasoners.

58 CHAPTER 3. FROM SAT TO SMT-SOLVERS

Chapter 4

Deciding a combination of

theories

Formulas in the verification domain very often contain terms that come from
different theories. Producing formulas using several theories is more natu-
ral than trying to encode everything using only a limited in expressiveness
theory. Also, by using several theories, it is easy to express properties that
otherwise would be very hard or impossible to encode. Examples of common
theories that are frequently found in verification problems are arithmetic,
uninterpreted functions, arrays, lists, sets and bit-vectors.

Verifying formulas containing symbols from a combination of theories
is not straightforward. SMT-solvers employ techniques for combining the
individual decision procedures and make them cooperate. Each decision
procedure works on the subset of the formula referring to its theory. If one
of them finds unsatisfiability, the problem is unsatisfiable. However, it is not
necessarily satisfiable if no inconsistency is found by the decision procedures.
A simple example with two decision procedures, one for arithmetic and
another for uninterpreted functions is in x = 0, y = 1 − 1, f(x) 6= f(y). The
arithmetic decision procedure receives the constraints x = 0 and y = 1 − 1
and finds no inconsistency. The uninterpreted functions decision procedure
receives f(x) 6= f(y) and finds no inconsistency either. But, as we are going
to see, they can deduce that this small problem is unsatisfiable if they share
some information.

In this chapter we present techniques for deciding not just a single theory,
but a combination of different ones. We start by presenting the Nelson and
Oppen combination framework that works very well for some combinations of
theories. Later we present an extension by introducing model-equalities that
allows a better combination of a wider range of theories, including integer
arithmetic.

59

60 CHAPTER 4. DECIDING A COMBINATION OF THEORIES

4.1 The Nelson and Oppen combination frame-

work

The Nelson and Oppen combination framework was first presented in [52, 53]
as a way to decide by cooperating decision procedures. Two decades later,
it was adopted by most SMT-solvers as an efficient method for combining
some theories, and nowadays, it is still state-of-art.

Nelson and Oppen state that if theories T1 and T2 are disjoint1 and
stably infinite2, the satisfiability of T1 ∪ T2 can be determined by checking
the satisfiability of T1 ∪ L and T2 ∪ L separately, where L is a set of shared
information. Therefore, if we have two decision procedures, one for T1 and
another for T2, the extra effort for checking the satisfiability of T1∪T2 remains
in finding L. This statement can be extended to more than two theories.

4.1.1 Equality generation and propagation

The simplest scenario is when all the theories involved are convex. A theory
T is convex when all the disjunctions of literals l1 ∨ l2 ∨ ... ∨ ln that can be
deduced from it is a consequence of one of the literals li in the disjunction.
Or more formally, T � l1 ∨ l2 ∨ ... ∨ ln implies T � li for some 1 ≤ i ≤ n.

Many theories are convex. Real linear arithmetic, real difference logic,
uninterpreted functions and lists [56] are examples of convex theories. On
the other side, integer arithmetic, non-linear real arithmetic, sets and arrays
are examples of non-convex theories. Nelson and Oppen observe that the set
of shared information L can be precisely determined in the case of convex
theories by repeatedly deducing and propagating equalities between shared
variables3 until unsatisfiability is found or no more equalities can be deduced
by any of the decision procedures.

This process works as follows. First, literals are sent to the decision
procedures. Each decision procedure will receive the literals related to its
theory. If necessary, constraints will be purified, by creating new variables, so
that in the end no constraint will contain symbols from more than one theory.
If unsatisfiability is found, the original set of literals is unsatisfiable and the
process stops. Otherwise, the decision procedures will look for equalities that
can be deduced from the current set of information and propagate these
equalities to the other decision procedures. With these new constraints,
the decision procedures may once again check for unsatisfiability and new
equalities. The cycle continues until no more equality can be deduced by

1Two theories are disjoint if no symbol appear in both theories, except for variables
and the equality symbol (=).

2A theory is stably infinite if their satisfiable models have an infinite domain. Or more
precisely, a theory is stably infinite if every quantifier-free formula in the theory that is
satisfiable, is satisfiable by an interpretation with an infinite domain.

3Shared variables are the variables that appear in more than one theory.

4.1. THE NELSON AND OPPEN COMBINATION FRAMEWORK 61

any of the decision procedures or unsatisfiability is found.
As an illustrating example, consider the Formula 4.1. The formula con-

tains information from three theories. There is linear arithmetic for reals
with the relational operator ≤, the subtraction function − and the number
0; the uninterpreted function f and predicate P ; and list functions car (that
returns the first element of a list) and cons (that adds a new element to the
head of a list and returns the new list). Simulating the Nelson and Oppen
combination framework, we want to prove that Formula 4.1 is unsatisfiable.

x ≤ y ∧ y ≤ car(cons(x, ℓ)) ∧ P (f(x) − f(y)) ∧ ¬P (0) (4.1)

First, the formula is purified, so that every constraint contains sym-
bols from one theory only. This is done by using new variables to refer
to terms of a constraint that are from another theory, and creating new
constraints explaining what these variables mean. The resulting formula is
equisatisfiable4. For example, there are terms from two different theories
in the constraint ¬P (0). The arithmetic term 0 is inside the uninterpreted
predicate P . To purify it, we create a variable v5 that will replace 0, getting
¬P (v5), and we create a new constraint v5 = 0 that explains what v5 means.
Purifying the entire Formula 4.1 we get Formula 4.2.

x ≤ y ∧ y ≤ v1 ∧ v2 = v3 − v4 ∧ v5 = 0

∧P (v2) ∧ ¬P (v5) ∧ v3 = f(x) ∧ v4 = f(y)

∧v1 = car(cons(x, ℓ)) (4.2)

Formula 4.2 is a conjunction of literals. There is only one propositional
assignment that makes the formula true, where all literals are set to true.
In this case the SAT-solver does not play a relevant role.

The literals are dispatched to their respective decision procedures. There
are three decision procedures: linear arithmetic for reals, uninterpreted func-
tions and lists. They are identified in Figure 4.1 by TLRA-solver, TUF-solver
and TL-solver, respectively. Following, there is a step by step explanation of
the simulation.

State 1.0 - The decision procedures receive the constraints. All the decision proce-
dures are executed and none of them can detect unsatisfiability. How-
ever, equalities can be deduced. v1 = x is detected (cons adds the
element x to the beginning of list ℓ and car returns the first element
of the resulting list, i.e., x) by TL-solver and propagated to the other
decision procedures.

State 1.1 - With a new constraint received, both TLRA-solver and TUF-solver can be
executed again. The set of constraints is almost the same, except for

4Two formulas are equisatisfiable if the first formula is satisfiable whenever the second
is and vice versa.

62 CHAPTER 4. DECIDING A COMBINATION OF THEORIES

State

 1.0

State

 1.1

State

 1.2

State

 1.3

State

 1.4

Figure 4.1: Simulation of the Nelson and Oppen combination framework on
the Formula 4.2 by propagation of equalities.

the new equality received that should also be considered now. After
checking the satisfiability, the status still does not change and remains
satisfiable, but a new equality is detected by TLRA-solver ((v1 = x∧x ≤
y ∧ y ≤ v1) =⇒ x = y).

State 1.2 - Once more, two decision procedures have a new constraint and can
check for satisfiability. The status remains satisfiable, and a new equal-
ity is detected by TUF-solver ((x = y ∧ f(x) = v3 ∧ f(y) = v4) =⇒
v3 = v4).

State 1.3 - Again, new constraints are received and the status does not change.
The new equality v2 = v5 is detected by TLRA-solver ((v3 = v4 ∧ v2 =
v3 − v4 =⇒ v2 = 0) and (v2 = 0 ∧ v5 = 0 =⇒ v2 = v5)).

State 1.4 - Finally, with the new equality v2 = v5, TUF-solver is able to detect the
unsatisfiability due to a contradiction in v2 = v5 ∧ P (v2) ∧ ¬P (v5).
Formula 4.1 is therefore unsatisfiable.

As we have seen, this process is simple. Additionally, it is sound and
complete. A proof is not simple but can be found in [68]. To make this pro-
cedure work, the main requirement is making the decision procedures deduce
equalities between shared variables. However, for non-convex theories it gets
more complicated as we will see in the following example.

4.1. THE NELSON AND OPPEN COMBINATION FRAMEWORK 63

4.1.2 Generation of disjunction of equalities and propagation

Consider the Formula 4.3. It is a mix of the convex theory of uninterpreted
predicates (TUF) and the non-convex theory of linear arithmetic for integers
(TLIA).

φ : x ≥ 0 ∧ x ≤ 1 ∧ v1 = 0 ∧ v2 = 1 ∧ P (x) ∧ ¬P (v1) ∧ ¬P (v2) (4.3)

In Figure 4.2 we can see a trace of a simulation to check for the satisfia-
bility. We initially try to simulate Nelson and Oppen as before. At State 1.0,
constraints are given to their respective decision procedures. No unsatisfi-
ability is detected and no equalities can be deduced. However, the process
should not stop since the problem is unsatisfiable. Clearly, the previous
procedure is not complete in this case.

State

 1.0

State

 1.1

State

 1.2

State

 1.1.1
State

 1.1.2

Figure 4.2: Simulation of the Nelson and Oppen combination framework on
the Formula 4.3 by propagating disjunction of equalities.

The new fact is that from non-convex theories, even though no equalities
can be deduced, disjunctions of equalities can still be. In this example, the
disjunction x = v1 ∨ x = v2 is a true deducible constraint, although neither
of the single equalities x = v1 nor x = v2 is.

x = v1 ∨x = v2 is an important information and it is missing in the TUF-
solver. At State 1.1, TLIA-solver generates and propagates this information
to TUF-solver. Since TUF-solver cannot handle disjunctions in a direct way, it
does by performing a case-split, where one of the equalities in the disjunction
is tried at a time. If continuing generation and propagation of disjunction
of equalities, there is a path that no contradiction can be found, then the
problem is satisfiable. Otherwise, if all path lead to a contradiction, the
problem is unsatisfiable. In this example, trying both x = v1 and x = v2

leads to a contradiction right after5, so the problem is unsatisfiable.

5x = v1 ∧ P (x) ∧ ¬P (v1) =⇒ ⊥; x = v2 ∧ P (x) ∧ ¬P (v2) =⇒ ⊥.

64 CHAPTER 4. DECIDING A COMBINATION OF THEORIES

In practice, SMT-solvers do not generate and propagate disjunctions of
equalities. It is a complicated task to generate all disjunctions that would
cover the missing information in the other decision procedures. Moreover,
it is complicated and not efficient to handle disjunctions inside decision
procedures.

4.1.3 Trying all arrangements

Exchanging disjunction of equalities is a theoretical alternative for arrange-
ments. An arrangement in the Nelson and Oppen context, is a not imme-
diately contradictory set that contains for each pair of variables x and y,
either an equality x = y or a disequality x 6= y. A brute-force, but com-
plete way of combining disjoint and stably infinite theories is trying all the
arrangements6 with the shared variables. If one of them is satisfiable, then
the formula is also satisfiable. Otherwise, if none is satisfiable, the formula
is unsatisfiable.

In the previous example (Formula 4.3), there are three shared variables:
x, v1 and v2. With them, five different arrangements7 can be built:

A1 = {x = v1, x = v2, v1 = v2}

A2 = {x = v1, x 6= v2, v1 6= v2}

A3 = {x 6= v1, x = v2, v1 6= v2}

A4 = {x 6= v1, x 6= v2, v1 = v2}

A5 = {x 6= v1, x 6= v2, v1 6= v2} (4.4)

In the beginning of the section, it was stated that for checking the satis-
fiability of two combined theories T1 ∪T2, we need to find a L such that the
problem could be reduced to checking the satisfiability of T1 ∪L and T2 ∪L,
separately. Determining L is easy for convex theories, but it is unpractical
for non-convex theories. The idea of the arrangements is that if we cannot
determine L, trying all the arrangements will solve the case. So, in the case

6That is the number of ways a set of n elements can be partitioned into nonempty
subsets, also know in combinatorics as Bell numbers. This numbers grow very fast. For
the first few n, the Bell numbers are 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, ...

They can be generated using the recursive formula Bn =

n−1
X

k=0

Bk

n− 1

k

!

.

7A set that is contradictory by itself, like {x = v1, x = v2, v1 6= v2}, is not considered
an arrangement.

4.1. THE NELSON AND OPPEN COMBINATION FRAMEWORK 65

of the last example, L is:

L = (x = v1 ∧ x = v2 ∧ v1 = v2)

∨ (x = v1 ∧ x 6= v2 ∧ v1 6= v2)

∨ (x 6= v1 ∧ x = v2 ∧ v1 6= v2)

∨ (x 6= v1 ∧ x 6= v2 ∧ v1 = v2)

∨ (x 6= v1 ∧ x 6= v2 ∧ v1 6= v2) (4.5)

The satisfiability can be checked using only the decision procedures by
separating the theories in the formula, and performing a check with these five
arrangements in 4.4. However, using an SMT-solver is preferable because
one can make use of important techniques such as learning, backtracking,
etc. that can help reducing the search space and efficiently perform case
splits. For making use of an SMT-solver, L will be converted to CNF. The
result8 of the conversion can be seen in the Formula 4.6.

L′ = (x = v1 ∨ x 6= v2 ∨ v1 6= v2)

∧ (x 6= v1 ∨ x = v2 ∨ v1 6= v2)

∧ (x 6= v1 ∨ x 6= v2 ∨ v1 = v2) (4.6)

Reformulating Formula 4.3, we get Formula 4.7. Now, an SMT-solver
with no cooperation between the decision procedures can check for the for-
mula satisfiability.

φ′ : φ ∧ L′ (4.7)

The continuation of the example, now using arrangements, is shown in
Figure 4.3. At each state, the SAT-solver sends a propositionally satisfiable
assignment9 to the decision procedures, that will handle the constraints
relevant to their theory. At each iteration one of the decision procedures
finds a conflict and sends it back to the SAT-solver, that learns the new
clause. By learning new clauses, at State 5, the SAT-solver cannot find any
more propositionally satisfiable assignments and concludes that the problem
is unsatisfiable.

In principle, each assignment should correspond to one arrangement.
But notice that only four assignments were tried, instead of the five ex-
pected. That is because learning the new clauses allowed the SAT-solver
to reduce the search space. In this case, after (¬P (x) ∨ P (v1) ∨ x 6= v1)
was learned at State 2, the assignments containing x = v1 were no longer
propositionally satisfiable, and therefore, the assignment that would contain
the arrangement A2 was never sent to the decision procedures.

8L′ can be obtained by applying distributivity, resulting in a very large formula, and
later removing redundant expressions.

9There is a propositionally satisfiable assignment when, ignoring the theory of the
literals, we can assign each of the literals to either true or false in such a way as to make
the formula evaluate to true.

66 CHAPTER 4. DECIDING A COMBINATION OF THEORIES

State

 1

State

�

State

�

State

�

State 1

State 2

State 3

State 4

Stat� �

SAT-solver

Figure 4.3: Simulation of the Nelson and Oppen combination framework on
the Formula 4.7 by using arrangements. The SAT-solver plays an important
role, learning clauses and performing the case splits.

4.1.4 Remarks

Using arrangements like presented here, solvers are complete for combina-
tions of disjoint and stably infinite theories. That is the basis of techniques
like delayed theory propagation, see e.g. [16], that many SMT-solvers use.
One may get the impression that a lot of effort is necessary when the num-
ber of shared variables is high, but the use of the SAT-solver with learning
techniques helps considerably the process [17].

Testing all arrangements is not necessary when theories are convex be-
cause the arrangement is implicitly deduced in this case. Part of the set
is the equalities that were generated by the decision procedures. The re-
maining is simply the disequalities between every pair of variables that were
not stated as equal by any of the decision procedures. The same reasoning
cannot be done for a non-convex theory. If for instance, neither of the single
equalities x = v1 nor x = v2 were deduced, we cannot say that x 6= v1

and x 6= v2 when, from the theory, we could have extracted the disjunction
x = v1 ∨ x = v2.

4.2. COMBINATION SHARING MODEL-EQUALITIES 67

One final practical observation of Nelson and Oppen is its good modu-
larity. We can easily incorporate new decision procedures and increase the
expressiveness of the solver. Also, replace a decision procedure by a new
one.

In the next section we introduce the notion of model-equalities, that
works like an extension to the Nelson and Oppen equality propagation
method. It is an alternative for the combination of non-convex theories, that
avoids enumerating all arrangements and guides the satisfiability search by
using models inside the theories.

4.2 Combination sharing model-equalities

In the previous section, we saw some ways of combining theories. They work
well in some cases and had limitations in others. In this section, we present
an original alternative for combining disjoint and stably infinite theories,
that is well suited for non-convex theories, combining decision procedures by
model-equalities propagation [26].

The aim of combining decision procedures by model-equalities is to find
an arrangement of the shared variables, being guided by the decision proce-
dures instead of blindly guessing one, like it was presented in the previous
section. The idea is that the decision procedures will keep a model, or build
a consistent one when required, and look at the values of the variables in
this model to generate equalities between variables. We call these equali-
ties, created from models, model-equalities. They are propagated to other
decision procedures that will incorporate them and continue the process.

First let us focus on understanding the models. To illustrate the idea,
take a look at the next example. The linear arithmetic decision procedure
over integers contains the following constraints:

x ≥ 0, x ≤ 1, v1 = 0, v2 = 1 (4.8)

This example is the same as Example 4.3 in previous section. We know
that no equality can be deduced from it. There are only two models that
are consistent in this case. They can be seen in Table 4.1. The way a model
is generated depends on the decision procedure. The details of how to build
a model for difference logic and linear arithmetic theories will be given in
Chapters 6 and 7.

From Model 1, both x and v1 have the same value. Therefore, we can
extract the model-equality x = v1. In the case of the Model 2, x = v2 can
be extracted.

The simulation (example of Equation 4.3) of an SMT-solver using prop-
agation of model-equalities can be seen in Figure 4.4. One can notice that,
comparing to the simulation of Figure 4.3, the non extended version of For-
mula 4.3 is been used.

68 CHAPTER 4. DECIDING A COMBINATION OF THEORIES

Model 1 Model 2

Variable Value Variable Value

x 0 x 1

v1 0 v1 0

v2 1 v2 1

Table 4.1: Arithmetic models from Example 4.8.

There are many similarities in both simulations. For instance, in both of
them, the SAT-solver learns during the process. At State 2 and 3, it learns
that x should be different from v1 and v2.

One difference between the simulations is that in the one of Figure 4.3,
there is an equality or disequality between each pair of shared variables in
each assignment given by the SAT-solver. While in Figure 4.4, this arrange-
ment is being built during the learning process.

State

1

State

 2

State

 3

State 1

State 2

State 3

State 4

SA��solver

Figure 4.4: Simulation of the combination by model-equality propagation on
the Formula 4.3. The TLIA-solver generates model-equalities and propagates
to the TUF-solver. Learning conflicts, the SAT-solver finds the unsatisfiability
at State 4.

An advantage of the second simulation is that, using the decision proce-
dures to build this missing information, the SAT-solver can avoid to guess

4.2. COMBINATION SHARING MODEL-EQUALITIES 69

theory inconsistent literals, like v1 = v2
10. This allows the SMT-solver to

potentially reduce the number of assignments tried.
Another important observation is that the non-convexity is implicitly

handled by the models. Take a look at this example, the disjunction x =
v1 ∨ x = v2 is hidden inside the arithmetic constraints. However, for every
arithmetic model, one of such equalities will be propagated, i.e., there is no
model where x 6= v1 ∧ x 6= v2 is true.

In practice, the combination using model-equalities is very close to the
combination using only equalities. It is relatively easy to adapt an SMT-
solver to work using model-equalities. Abstracting ourselves from the de-
tails of the decision procedures (like how to generate equalities and model-
equalities) that are going to be presented in future chapters, the general
procedure can be described like this:

• The SAT-solver finds a propositionally satisfiable assignment and sends
it to the decision procedures.

• Each decision procedure gets its relevant constraints and check for
unsatisfiability.

• If unsatisfiability is not found by any of the decision procedures, they
repeatedly look for equalities and propagate them to the other decision
procedures.

• Meanwhile, if no more equalities can be deduced and unsatisfiability
was not found, the decision procedures of non-convex theories generate
model-equalities and propagate them.

• If after all equalities and model-equalities have been propagated, no
conflict arises, the problem is satisfiable.

• Whenever a conflict is found, a conflict clause is generated, added
to the working formula in the SAT-solver, and a new assignment is
produced.

• If the SAT-solver cannot find a propositionally satisfiable assignment,
the problem is unsatisfiable.

In addition to working with model-equalities, a practical change in this
combination is that, since model-equalities are very often new11 literals,
conflict sets including model-equalities may introduce new literals in the
SAT-solver. However, this does not affects termination, since the number of
literals that may be created are limited by the number of variables in the
input formula.

10TLIA-solver knowing that v1 = 0 and v2 = 1, will never generate v1 = v2.
11Not present in the original formula

70 CHAPTER 4. DECIDING A COMBINATION OF THEORIES

An example of combining the theory of uninterpreted functions
and integer difference logic

In this section, we present an example illustrating the cooperation using
model-equalities between the theory of uninterpreted functions (UF) and
the fragment of linear arithmetic, integer difference logic (IDL). The simu-
lation done is very close to what really happens inside our SMT-solver veriT
[14]. Difference Logic is the linear arithmetic fragment that contains only
constraints of the kind x−y ⊲⊳ c, where x and y are variables, c is a constant
number and ⊲⊳ ∈ {≤,≥,=, <,>}. Difference logic and decision procedures
for difference logic will be explained in details in Chapters 6.1 and 6.2. Here,
we look at them in a superficial way to not shift the focus of the chapter.
Assume we want to prove that the following formula is unsatisfiable:

x ≤ y + 1 ∧ y ≤ x ∧ x 6= y ∧ f(x) 6= f(y + 1) (4.9)

As a first step and for simplicity of the presentation, the formula is
purified (i.e. the separation is done at the formula level) so that the different
decision procedures only get literals with symbols from their theory.12

p1

︷ ︸︸ ︷

v1 = y + 1∧

p2

︷ ︸︸ ︷

x ≤ v1 ∧

p3

︷ ︸︸ ︷

y ≤ x∧

¬p4

︷ ︸︸ ︷

x 6= y ∧

¬p5

︷ ︸︸ ︷

f(x) 6= f(v1) (4.10)

Every atom is assigned a propositional variable pi.

Figure 4.5 can be used to trace the status of the algorithm during its
application to this problem. In Figure 4.5 and in the following, the symbols
pi may be used to denote the constraints to which they correspond. Also
a 6= b denotes ¬(a = b), and a > b (or a < b) may be used instead of ¬(a ≤ b)
(respectively ¬(a ≥ b)). TUF and TIDL are the theories for uninterpreted
functions (UF) and integer difference logic (IDL) respectively.

State 1.0 The SAT-solver has found an entailing assignment for the formula.
In this assignment, unsurprisingly, p1, p2 and p3 are assigned to true,
whereas p4 and p5 are assigned to false. This assignment is propagated
to the decision procedures to check for theory consistency. At this
point, no equality can be generated. The process would stop here if
there were only convex theories involved.

State 1.1 However, IDL is non-convex. To obtain completeness of the cooper-
ation of the decision procedures, one can generate model-equalities13.
A suitable model for State 1.0 assigns x = 0, y = −1 and v1 = 0. The

12Another approach, used in veriT, it to build the separation on-the-fly at the theory
reasoner level.

13Details of how this can be done in a difference logic decision procedure are in Sec-
tion 6.2.5.

4.2. COMBINATION SHARING MODEL-EQUALITIES 71

Formula

State

 1.0

State

 1.1

State

 2.0

Decision Procedures

State

 3.0

State

 3.1

State

 4.0

Model-equality generated

Conflict detected

Conflict clause added

Model is conflicting with

Assignment:

Assignment:

Assignment: Lemma added

Equality generated

Conflict detected

Conflict clause added

Propositionally unsatisfiable

Literals

Figure 4.5: An example combining UF and IDL.

model equality x = v1 (abstracted to a new proposition p6) is gener-
ated and propagated to all decision procedures. The resulting state
is State 1.1, and a contradiction is found in the TUF-solver, since the
conjunction x = v1 ∧ f(x) 6= f(v1) is unsatisfiable. The conflict clause
p5 ∨ ¬p6 is added to the SAT-solver.

State 2.0 A second iteration is necessary. The SAT-solver is asked for a new
propositional assignment, the decision procedures backtrack to the
previous satisfiable state, i.e. just before the model equality x = v1 (i.e.
p6) was propagated. The set of literals for each decision procedure is
updated to reflect the change in the SAT-solver assignment: the literal
¬p6 (i.e. x 6= v1) is added to both sets. No contradiction or equality is
generated by either decision procedure, but the current assignment of
concrete values to variables for IDL is not consistent with the current
assignment from the SAT solver, in particular since it contradicts ¬p6

(i.e. x 6= v1). Our implementation of the IDL decision procedure
is not able to automatically handle negation of equalities; in order

72 CHAPTER 4. DECIDING A COMBINATION OF THEORIES

to repair the model, the IDL decision procedure generates a lemma:
(x = v1) ∨ (x > v1) ∨ (x < v1) (or equivalently p6 ∨ ¬p2 ∨ ¬p7, where
p7 is a new propositional variable corresponding to the atom v1 ≤ x).

State 3.0 The lemma is given to the SAT-solver, which therefore refines the
propositional assignment to include ¬p7. At this point, the IDL deci-
sion procedure is able to deduce the equality between shared variables
x = y from x < v1, v1 = y + 1 and y ≤ x.

State 3.1 The equality x = y is propagated to the TUF-solver, which detects the
conflict x 6= y ∧ x = y, so the assignment is once again considered
theory inconsistent. The corresponding conflict clause14 is generated
(p4 ∨ p7 ∨ ¬p1 ∨ ¬p3) and added to the SAT-solver.

State 4.0 Finally, the SAT-solver concludes there is no more assignment to make
the current formula propositionally true. Therefore, the problem is
unsatisfiable.

An example of combining uninterpreted functions with non-linear
arithmetic

Any non-convex theory can make use of model-equalities to achieve com-
pleteness when cooperating with other theories. The previous example high-
lights the cooperation between the SAT-solver and the combination of unin-
terpreted functions and integer difference logic theories. In this section, we
show that the theory of uninterpreted functions (UF) and non-linear arith-
metic (NLA) can cooperate by exchanging equalities and model-equalities.
Our SMT-solver, veriT, does not contain a decision procedure for non-linear
arithmetic. However, with this example, we want to show that it should not
be hard to expand the use of model-equalities to other decision procedures.

The details of the interplay between the theory reasoners and the SAT-
solver are abstracted to focus on the equality exchanges between the decision
procedures. The internal details of the decision procedures are also quietly
ignored. It is just assumed that it is possible to retrieve implied equalities
from the constraint set and to detect unsatisfiability. It is also assumed that
the non-linear arithmetic decision procedure can maintain a concrete model,
assigning values to variables. This model will be helpful when generating
model-equalities.

To study the satisfiability of the following formula

x2 = 1 ∧ y2 = 4 ∧ f(2x) = 1 ∧ f(y) = 0 ∧ f(−y) = 0, (4.11)

14The deduced equality x = y is not used directly in the conflict clause. The literals
that originated it, ¬p7 ∧ p1 ∧ p3 are used instead.

4.2. COMBINATION SHARING MODEL-EQUALITIES 73

like in the previous example, the formula is first purified:

x2 = 1 ∧ y2 = 4 ∧ v1 = 2x ∧ v2 = −y ∧ v3 = 1 ∧ v4 = 0 ∧

f(v2) = v4 ∧ f(v1) = v3 ∧ f(y) = v4 (4.12)

The constraints are first dispatched to their respective decision procedures,
TNLA-solver for non-linear arithmetic, and TUF-solver for uninterpreted sym-
bols. This is shown in Figure 4.6, at State 1.0.

Model

State

 1.0

State

 1.1

State

 1.2

State

 1.3

Conflict Set

Figure 4.6: Example UF and NLA: Trying the first assignment.

At State 1.0, both decision procedures for TNLA and TUF conclude that
their set of constraints are satisfiable. Furthermore, no equality between
variables can be deduced.

However TNLA is not convex. It is not correct to conclude, in State 1.0,
that the set of constraints is satisfiable. At State 1.1, the decision procedure
for TNLA has generated the arithmetic model v2 = −2, v4 = 0, x = v3 = 1
and y = v1 = 2, and thus can indeed generate two model-equalities that are
propagated to TUF-solver. At State 1.2, TUF deduces the equality v3 = v4 that
results in a conflict on the arithmetic side, once propagated. This conflict
is translated to a clause and sent to the SAT-solver which will learn about
the theory inconsistency and will generate a new assignment.

This new assignment will naturally assign false to the new constraint
y = v1, in order to make the new conflict clause true (Figure 4.7, state
2.0). The iteration process is similar, but because of the new constraint,

74 CHAPTER 4. DECIDING A COMBINATION OF THEORIES

the model generated by the decision procedure for TNLA is different from the
previous one, which results in yet another model-equality. The final result is
the same: after the deductions and propagations, TNLA-solver finds a conflict.

Model

State

 2.0

State

 2.1

State

 2.2

State

 2.3

Conflict Set

Figure 4.7: Example UF and NLA: Trying the second assignment.

The third assignment (Figure 4.8, State 3.0) differs from the previous
one by one new constraint only. Now TNLA-solver finds an inconsistency
directly, no arithmetic model can be found anymore. Including this new
conflict clause will result in a formula which is propositionally unsatisfiable.
Therefore the original formula is unsatisfiable.

It is worth noticing that, by combination of all possible values of x and
y (according to constraints x2 = 1 and y2 = 4), four different arithmetic
models are possible. But thanks to the arithmetic reasoning and learning
process, just two of them need to be examined to conclude the unsatisfiability
of the formula.

4.3 Combining with model-equalities, an algorithm

In Algorithm 3, we propose a high level pseudo-code of the Nelson and
Oppen framework with model-equalities. It reflects pretty much how the
previous examples worked and has minimal changes if compared to the orig-
inal framework.

4.3. COMBINING WITH MODEL-EQUALITIES, AN ALGORITHM 75

Model

State

 3.0

State

 3.1

State

 3.2

Conflict Set

None

Cannot be a model

Cannot be a model

Figure 4.8: Example UF and NLA: Trying the third and last assignment.

The propositional satisfiability solver should be able to incorporate new
literals on-the-fly (corresponding to constraints that are not in the original
formula). Also, as two consecutive assignments may have many common
literals, the presented algorithm gives the decision procedures the opportu-
nity to take advantage of the similarities between consecutive sets of literals
produced by the propositional SAT-solver as they may update their state to
reflect only the difference between these sets. This is the case when there
exists efficient decision procedures that incrementally stack new literals and
backtrack while maintaining the T -satisfiability status of the current set of
literals.

The set of theories in the combination is denoted ST , and the subset
of theories that are not convex or with a decision procedure that is not
able to deduce all the implied equalities is denoted ST ,mod. It is assumed
that the decision procedure for each theory in ST ,mod is able to generate the
model-equalities from a model they maintain based on the literals (including
equalities and inequalities) they receive. The main difference of Algorithm 3
with respect to a version without model equalities is located in the lines 16
to 18.

The main loop of the algorithm is executed until the SAT-solver can
no longer produce a propositional satisfiable assignment (line 1). In this
case, the original formula is unsatisfiable. Otherwise, a propositional model
is computed (line 2). Each decision procedure t may then backtrack to

76 CHAPTER 4. DECIDING A COMBINATION OF THEORIES

output: status: {(Sat, assignment); Unsat }
data : assignment: Assignment
data : lemmas: Set of Lemma
data : newLiterals: Set of Literal
data : SAT solver: SATSolver

while SAT solver.GetStatus() = Sat do1

assignment := SAT solver.assignment();2

status := Sat ;3

foreach t in ST do t.Backjump(assignment);4

newLiterals := assignment.GetNewLiterals();5

repeat6

foreach t in ST do7

status := t.Propagate(newLiterals);8

if status = Unsat then9

SAT solver.Add(t.conflictClause);10

break ;11

end12

end13

if status = Unsat then break ;14

newLiterals :=
⋃

t∈ST
t.GetNewEqualities();15

if newLiterals = ∅ then16

newLiterals:=
⋃

t∈ST ,mod
t.GetNewModelEqualities();17

end18

until newLiterals = ∅ ;19

lemmas :=
⋃

t∈ST
t.GetNewLemmas();20

SAT solver.Add(lemmas);21

if lemmas = ∅ ∧ status = Sat ∧ assignment.IsTotal() then22

return (Sat, assignment);23

end24

end25

return Unsat ;26

Algorithm 3: A SMT-solver using Nelson and Oppen combination
framework plus model-equality generation and propagation.

a state based on the new set of literals corresponding to this assignment
(line 4). Note that the set of literals available in such state should be Ti-
satisfiable in each theory Ti. The variable newLiterals represents the set
of literals that the decision procedures need to receive. It is initialized with
the new literals present in the assignment (line 5), and is later updated with
equalities produced by the decision procedures (lines 15 and 17). This set is
repeatedly propagated to each decision procedure through the Propagate()
function (line 8) until one of them detects unsatisfiability (line 9) or no
new equalities can be deduced (line 19). If unsatisfiability is detected, then
a conflict clause is generated and added to the propositional satisfiability
solver (line 10). Otherwise, each decision procedure computes the set of

4.4. SOUNDNESS AND COMPLETENESS OF SMT-SOLVERS 77

variable equalities entailed by the current set of literals. These sets are
stored (line 15) for propagation at the next iteration. Ultimately, if no
equalities between variables can be deduced, then the decision procedures
of non-convex15 theories will look for model-equalities to propagate.

Once all the literals and equalities have been propagated, additional
lemmas produced by the decision procedures may be incorporated as clauses
to the propositional satisfiability solver (lines 20, 21). Eventually, when no
new information can be provided to the propositional satisfiability solver,
and if the assignment is total, then the algorithm concludes that the original
formula is T -satisfiable and halts (line 23).

4.4 Soundness and completeness of SMT-solvers

In this section, we show a proof for soundness and completeness of SMT-
solvers and model-equalities like presented in [26]. Initially, the formula
given as input to the SMT-solver is converted to a conjunctive set of clauses
S. The goal of the SMT-solver is to decide whether S is T -unsatisfiable
or that S satisfiable. In the former case, the SMT-solver is said to be in
the final state UNSAT. In the later case, the SMT-solver shall additionally
identify a boolean assignment Γ of the atoms ocurring in S, such that S
is T -satisfiable. This corresponds to the final state denoted SAT(Γ). A
sound SMT-solver will never get to the UNSAT final state on a T -satisfiable
formula, or decide satisfiability of a T -unsatisfiable formula. It is complete
if it always terminates.

The SAT-solver maintains a boolean assignment Γ of the atoms in the
set of clauses. The pair 〈S,Γ〉 thus represents the current intermediate state
of the solver. The set of rules given in Figure 4.9, given in a SOS-like style,
provides an abstract non-deterministic model of the possible behavior of the
SMT-solver and is described in details in the following. Observe that clauses
may be added to the set S either by the SAT-solver itself, or by the theory
reasoner (based on the propositional assignment from the SAT-solver). The
reasoning ends when the SAT-solver concludes that the set of clauses is
unsatisfiable, or when the theory reasoner asserts that the propositional
assignment Γ is also T -satisfiable.

Rule Bool (4.13) formalizes the update of the propositional assignment
by the SAT-solver; Γ′ is a new assignment such that Γ′∪{C} is proposition-
ally satisfiable for every clause C ∈ S. The assignment is not required to
be total; an assumption about assignment totality will be made later. The
SAT-solver can also conclude that S is unsatisfiable using rule Unsat (4.14).

The addition of new clauses is represented by rule Learn (4.15). The

15In practice, decision procedures that do not have capacity of detecting all implied
equalities may also use model-equalities to achieve completeness, since the models will
naturally include the equalities.

78 CHAPTER 4. DECIDING A COMBINATION OF THEORIES

Bool:
〈S,Γ〉
〈S,Γ′〉

Γ′ is a propositional assignment of S (4.13)

Unsat:
〈S,Γ〉

UNSAT
S is propositionally unsatisfiable (4.14)

Learn:
〈S,Γ〉

〈S ∪ {C},Γ〉
S |=T C (4.15)

Sat:
〈S,Γ〉

SAT(Γ)
Γ is entailing and T -satisfiable (4.16)

Figure 4.9: Rules representing the execution of an SMT-solver

new clause C may be added by the SAT-solver itself. In that case, C is a
propositional consequence of S. The clause may also be added by the theory
reasoner; C should then be a T -logical consequence of the set S, according
to the considered theory (S |=T C). By induction, it is clear that every
added clause is a consequence of the original formula, and that the set of
clauses is always T -equisatisfiable to the original set of clauses.

When the assignment produced by the SAT-solver is entailing and T -
satisfiable, then the theory solver may conclude that the formula is T -
satisfiable. This is summarized in rule Sat (4.16).

In the present scheme, no assumption is made on the order of application
of rules, on how the clause C is generated in Learn (4.15) and on the
relation between consecutive assignments from the SAT-solver. This is all
left abstract, with side conditions for the soundness and completeness of the
SMT-solver.

Theorem 1. An SMT-solver implementing the rules of Figure 4.9 is sound.

Proof. Initially, the set of clauses is just a conjunctive normal form of the
input formula. We first prove by induction that the set of clauses given to the
SAT-solver is always T -equisatisfiable to the input formula. Assume that S
and S′ are the sets of clauses respectively before and after the application of
a rule of Figure 4.9. The sets S and S′ only differ when rule Learn (4.15)
is applied. In that case S′ = S ∪ {C}, with S |=T C. Thus S′ is a T -logical
consequence of S; conversely, since S′ contains S, S is also a T -logical
consequence of S′. In other words S and S′ are T -logically equivalent. By
induction, the set of clauses is always T -logically equivalent to the original
set of clauses, and thus T -equisatisfiable to the input formula.

If the SAT-solver concludes that the set of clauses is propositionally
unsatisfiable (using rule Unsat (4.14)), the initial set of clauses and the
input formula are unsatisfiable.

4.4. SOUNDNESS AND COMPLETENESS OF SMT-SOLVERS 79

If rule Sat (4.16) is applied, then there exists a T -satisfiable entailing
assignment Γ of the set of clauses S. Assume M is a T -model of Γ. Since
Γ is a propositional model of S, M is a model of every clause in S. The set
of clauses S, like the original formula, is thus satisfiable.

Notice that the assumption in rule Learn (4.15) is very permissive. It
holds notably for propositional learning, a technique used inside SAT-solvers,
where the new clause C is obtained by propositional resolution of clauses in
S, guided by a conflict analysis procedure known as the FUIP (First Unique
Implication Point) computation [73]. It also holds for conflict clauses from
the theory reasoner where the clause C is the disjunction of the negation
of literals in a T -unsatisfiable subset of the assignment Γ (T being the
considered theory). Some further assumptions are however required to prove
the completeness of an SMT-solver implementing the rules of Figure 4.9.

Theorem 2. An SMT-solver implementing the rules of Figure 4.9 is com-
plete (eventually terminates on a SAT(Γ) or UNSAT state) provided that

• on any set of clauses, the SAT-solver will eventually either

– provide an entailing assignment

– or conclude the unsatisfiability of the set of clauses with rule Un-

sat (4.14);

• the atoms of the clauses added by rule Learn (4.15) belong to a finite
set that is fixed a priori for the whole execution of the SMT-solver;

• for any state 〈S,Γ〉 where Γ is entailing, either rule Sat (4.16) is ap-
plied or rule Learn (4.15) is applied, with C not being a propositional
consequence of Γ.

Proof. If the run is finite then it should end either with rule Sat (4.16) or
rule Unsat (4.14). This is proved by contradiction. Assume the run is finite
but does not terminates on an UNSAT or SAT state. Then the ending state
is of the form 〈S,Γ〉. The first assumption implies that Γ is entailing. Since
Γ is entailing, the last assumption ensures either that

• the new state is SAT (with the application of rule Sat (4.16)) or

• the rule Learn (4.15) is applied and introduces a clause C that is not
a propositional consequence of Γ.

The first option is not possible, since it contradicts the hypothesis that the
ending state is not a SAT state. The second option is also not possible,
since this would change the set S, and contradicts the fact that 〈S,Γ〉 is the
ending state.

Assume now that the run is infinite. The set of atoms that are or will be
present in the set of clauses is finite, thanks to the second assumption. The

80 CHAPTER 4. DECIDING A COMBINATION OF THEORIES

set of possible different clauses is also finite. At some point no new clause
will be added to the set of clauses S by rule Learn (4.15), and the SAT-
solver will eventually provide an entailing assignment Γ. The rule Sat (4.16)
being an ending rule, the next rule will be rule Learn (4.15), and a clause
C will be generated. Since C already belongs to the set of clauses and Γ
is entailing, then C is a logical consequence of Γ which contradicts the last
assumption of the theorem.

The three requirements in the above theorem are reasonable. The first
requirement is on the SAT-solver: on any set of clauses, it should decide
that it is unsatisfiable, or provide a total (and thus entailing) assignment.
This requirement is fulfilled by existing tools [49, 32]. The two remaining
requirements are related to the theory reasoner and are discussed in the next
subsection.

4.4.1 Model-equalities

The model-equality method presented in this chapter is suitable for decision
procedures that are not able to deduce disjunctions of equalities, or that
are not complete with respect to deduction of (disjunctions of) equalities.
We assume they are however able to find a concrete model for a set of
constraints, i.e. literals. As an example, it means that a decision procedure
for integer linear arithmetic is able to find a mapping from variables to
integers such that all constraints are satisfiable. Many decision procedures
inherently have such a capability.

Assume that an assignment Γ provided by the SAT-solver produces
(pure) literals Γ1 and Γ2 to be handled by theory reasoners for T1 and T2

respectively. Assume also that Γ1 is T1-satisfiable, and Γ2 is T2-satisfiable.
Finally assume that all generated disjunctions of equalities have been han-
dled as in the previous subsection. The theory reasoners that are not com-
plete with respect to deduction of (disjunctions of) equalities should then
compute a model, and generate the equalities between shared variables that
correspond to the model and that do not already belong to Γ. Those equal-
ities are then given to the other decision procedure, as if they were in the
original assignment. Those equalities may themselves force the other deci-
sion procedure to deduce or produce other equalities. Eventually no more
equality is shared. If a conflict occurs, the theory reasoner for Ti generates
a conflict clause C of the form

∨

ℓ∈γ ¬ℓ where γ is a Ti-unsatisfiable sub-
set of Γ ∪ Γ′ with Γ′ being the set of all generated equalities. This clause
is added to the set of clauses handled by the SAT-solver. It may contain
atoms (equalities) coming from models. If it does not, it is conflicting in the
sense that Γ ∪ {C} is unsatisfiable. If it does, it is obviously not a proposi-
tional consequence of Γ. The atoms generated here once again all belong to
a finite set that is known a priori , namely the set of all equalities between
two terms in the original formula.

4.5. CONCLUSION 81

If no conflict occurs, then Γ ∪ Γ′ contains equalities between any two
shared variables that are equal according to the model. Conversely, if an
equality between two shared variables does not belong to Γ ∪ Γ′, it has not
been guessed nor deduced by the decision procedures in the combination. If
we assume every decision procedure is either complete with respect to the
generation of disjunction of equalities, or that it generates model equalities,
one can conclude that the two theories agree that, if no equality between two
shared variables exists in Γ∪Γ′, they should be different. An arrangement A
can thus be built from the equalities in Γ∪Γ′, augmented by the maximum
number of inequalities between shared variables. A ∪ Γ1 is T1-satisfiable
and A ∪ Γ2 is T2-satisfiable. Rule Sat (4.16) can be applied and the third
assumption of Theorem 2 is fulfilled. The approach is sound and complete.

4.5 Conclusion

In this chapter we showed three ways of combining decision procedures based
on the Nelson and Oppen combination framework, and an original alterna-
tive that can be seen like an extension, using model-equalities.

The propagation by exchanging equalities works very well when theories
are convex. When it gets to non-convex theories, disjunction of equalities
are not a practical alternative, while exploring all arrangements can make
good use of the SAT-solver to obtain good results. Our original work with
model-equalities can make the exploration of the arrangements more efficient
by building them step by step with the help of the decision procedures and
models.

There is still some guessing involved when using model-equalities, but
stating theory inconsistent facts is always avoided. Model-equalities are also
a good alternative for decision procedures that are not able to deduce all
equalities. It differs from [25] in the fact that model-based guessing is now
integrated in a classical Nelson-Oppen equality exchange, seeing it just as a
new way to exchange equalities.

So far, we have not seen the details of the decision procedures. We did
some abstractions and use the decision procedures mainly as black boxes.
We will present the details in the next chapter, where we will analyze the
requirements to build decision procedures that can be used in SMT-solvers.
Later, in Chapters 6 and 7, we will present the specific details to build a
decision procedure for difference logic and linear arithmetic.

82 CHAPTER 4. DECIDING A COMBINATION OF THEORIES

Chapter 5

Extending a basic decision

procedure

A decision procedure1 is a method to solve a decision problem, where the
expected answer is yes or no. In our case, a decision procedure will decide if
an arithmetic formula is satisfiable or not, i.e, if there exists an interpretation
of variables that makes the formula true.

However, a decision procedure needs to provide more than just a yes or
no answer if we want to use it in an SMT-solver. This is due to the com-
plex cooperation between decision procedures and also between the decision
procedures and the SAT-solver. We have seen many insights in Chapters 3
and 4.

In previous chapters, we looked at decision procedures as black boxes
that could give us the yes or no answer, and also any other extra functionality
that we thought necessary. In this chapter we will explain in details these
extra requirements.

5.1 Introduction

Decision procedures for SMT-solvers requires extra functionalities. Some of
the requirements are important for allowing the SMT-solver to be complete2

under some (combination of) theories. Others are important for efficiency,
that is strongly related to the capability of handling bigger and more com-
plex formulas. Here we summarize them before explaining the details in the
following sections.

1. Conflict set: explanation of a no answer.

1In this thesis decision procedures (DP), theory solvers (T -solvers) and theory reasoners
have similar meanings.

2For every problem the algorithm should eventually terminate with a sound result.

83

84 CHAPTER 5. EXTENDING A BASIC DECISION PROCEDURE

2. Equality generation: deduction of equality between variables and the
explanation of why such variables are equal.

3. Model-equality generation: extraction of a model and generation of
equalities from variables that have the same value in the model.

4. Lemmas: any valid formula that can be appended to the original for-
mula.

5. Theory propagation: information that can be deduced from the set of
known literals.

6. Incrementality: capability of receiving more information at any state
and be able to continue without restarting from scratch.

7. Backtrackability: capability of going back to some point in the past,
recovering the previous state, and allowing to continue receiving more
information.

5.2 Conflict set generation

Given a set of constraints, if the decision procedure detects that the problem
is unsatisfiable, we call conflict set any subset of these constraints that is
also unsatisfiable. The conflict set can be the whole set of constraints, but
generally it is better when it is smaller. Moreover, the conflict set is mostly
interesting when it is a minimal subset, i.e., when no constraints can be
removed without making the subset satisfiable.

As a simple example, given the following set of constraints,

{x − y ≤ 0, y − z ≤ 1, z − x ≤ −1, y − x ≤ −1} (5.1)

a decision procedure should be able to detect that the problem is unsatisfi-
able due to the (minimal) conflict set:

{x − y ≤ 0, y − x ≤ −1} (5.2)

Minimal conflict sets are important for automatic solvers. They allow
the solvers to prune the search space, speeding up the discovery of the
final solution. Pruning may work for any general solver and specially well
for a DPLL based solver, like we saw in the chapter about SAT-solvers
(Chapter 3).

To illustrate this, consider the Formula 5.3. It is a formula in CNF3 as
we are used to see in DPLL based solvers. The formula is unsatisfiable and

3Conjunctive Normal Form, i.e., conjunction of disjunctions

5.2. CONFLICT SET GENERATION 85

the total number of (naive) checks4 for concluding this is four. We can see
a possible static search tree5 representing this formula in Figure 5.1.

x > y ∧ y > x ∧ (z = x ∨ z = y) ∧ (z = y + x ∨ z = 0) (5.3)

However, a solver that uses the minimal conflict set for this case, (x >
y)∧(y > x), will be able to conclude the unsatisfiability with only one check.
Simply adding the negation of this minimal conflict set to Formula 5.3 would
make the problem propositionally6 unsatisfiable7.

Figure 5.1: Static search tree for the Formula 5.3. A check is represented
by the nodes along a path going from the root to one of the leaves. For this
tree, 4 checks are possible.

There may be several minimal conflict sets for the same problem. The
smallest is not necessary the best. Imagine two minimal conflict sets with
no variables in common. They will prune two independent subtrees of the
search space and the size of the subtrees is arbitrary.

A conflict set may also contain the explanation of how rules were ap-
plied to get to the status of unsatisfiability. We will call this explanation a
certificate. The rules, explanation and how detailed both of them are will
vary from decision procedure to decision procedure. The certificate could
be replayed later by an external prover for certifying that nothing is wrong.
This gives more credibility to the solver. Users can also stop using the solver
as an oracle and verify that the reasoning is correct when they want to.

To illustrate it, consider the Example 5.1. Giving names to the con-
straints we have:

l1 : x − y ≤ 0; l2 : y − z ≤ 1; l3 : z − x ≤ −1; l4 : y − x ≤ −1 (5.4)

4A check verifies that a propositionally satisfiable assignment is also theory consistent.
5Here we say it is static because it is built at the beginning, using the original unchanged

formula. One same formula can result in different search trees. It will depend on the order
the clauses and literals are analyzed. The paths in different search trees will be the same
unless techniques for pruning is applied.

6It is not necessary to look for theory inconsistency as there are no more propositional
assignments that makes the formula true.

7(x > y) ∧ (y > x) ∧ φ ∧ ¬((x > y) ∧ (y > x)) is unsatisfiable.

86 CHAPTER 5. EXTENDING A BASIC DECISION PROCEDURE

The certificate could be simply l1 + l4
8. Now one could find the contra-

diction by just replaying the certificate, in this case, adding literal l1 with
l4.

(Minimal) conflict sets, with or without certificates, are also useful for
the users. They can use them to understand if there is something wrong,
so they can reformulate the problem when necessary or conclude that the
result is as expected.

5.3 Equality generation

One of the main assumptions of the Nelson and Oppen combination frame-
work is the equality propagation between decision procedures. Every deci-
sion procedure in the framework should be able to detect equalities, so these
equalities may be propagated to the other decision procedures. That will
allow the solver to reasons about combined theories.

Without equality propagation, the isolated decision procedures may not
have enough information to conclude the unsatisfiability of some combina-
tion of theories. For example, given the formula φ:

φ : x − y ≤ 0 ∧ y − z ≤ 1 ∧ z − x ≤ −1 ∧ x − w ≤ −1 ∧ f(x) 6= f(y) (5.5)

The Nelson and Oppen scheme works by splitting the formula and send-
ing constraints to two decision procedures, one to deal with the arithmetic
theory and another one to deal with uninterpreted functions. A possible
scenario is shown in Table 5.1.

level DP for arithmetic DP for uninterpreted functions

0 x − y ≤ 0 f(x) 6= f(y)

y − z ≤ 1
z − x ≤ −1
x − w ≤ −1
x = y (detected)

1 x = y (new)

unsatisfiable

Table 5.1: Example of equality generation. Underlining is used to emphasize
the constraints involved in the conflict.

The Table 5.1 shows that, at the level 0, working alone, the decision
procedures cannot detect unsatisfiability. However, an equality is generated
and propagated to the other decision procedure. This new information al-
lows the decision procedure for uninterpreted function to conclude that the
set of literals is unsatisfiable.

8l1 + l4 ≡ (x− y ≤ 0) + (y − x ≤ −1) =⇒ x− y + y − x ≤ 0 − 1 =⇒ 0 ≤ −1.

5.4. MODEL-EQUALITY GENERATION 87

Once unsatisfiability is detected, we need to build a conflict set to give
back to the SAT-solver and allow the process to continue looking for a
satisfiable assignment. However, if the conflict contains an equality that
was generated by a decision procedure, this equality should not simply be
included in the conflict set, since the equality is an internal information that
did not exist in the assignment and it may not exist in the formula.

Instead, we add to the conflict set the original constraints that were
used to generate the equality. In the example the conflict set would be
x − y ≤ 0, y − z ≤ 1, z − x ≤ −1, f(x) 6= f(y). This avoids creating
new literals9 and allows solving the problem more directly, discarding the
previous assignment in the next iteration. When we add the conflict clause
to φ, we have10:

φ′ : x − y ≤ 0 ∧ y − z ≤ 1 ∧ z − x ≤ −1 ∧ x − w ≤ −1 ∧ f(x) 6= f(y)

∧(x − y > 0 ∨ y − z > 1 ∨ z − x > −1 ∨ f(x) = f(y)) (5.6)

φ′ does not have any more propositional assignments. Therefore we
conclude that φ is unsatisfiable at this point.

Putting the equality in the conflict set may create a new literal. We
would still be able to solve the problem but not in a direct way. In this case
we would first generate the conflict clause f(x) = f(y) ∨ x 6= y. We would
get:

φ′ : x − y ≤ 0 ∧ y − z ≤ 1 ∧ z − x ≤ −1 ∧ x − w ≤ −1 ∧ f(x) 6= f(y)

∧(f(x) = f(y) ∨ x 6= y) (5.7)

As a new literal is introduced in this clause, the next assignment would
be the same, except for x 6= y that will be included. In the next iteration the
conflict set x−y ≤ 0, y−z ≤ 1, z−x ≤ −1, x 6= y would be created. Adding
it to φ′ would finally make the problem propositionally unsatisfiable.

φ′′ : x − y ≤ 0 ∧ y − z ≤ 1 ∧ z − x ≤ −1 ∧ x − w ≤ −1 ∧ f(x) 6= f(y)

∧(f(x) = f(y) ∨ x 6= y)

∧(x − y > 0 ∨ y − z > 1 ∨ z − x > −1 ∨ x = y) (5.8)

5.4 Model-equality generation

When integer variables are present, the linear arithmetic theory is no longer
convex. A theory is non-convex when disjunction of literals can be deduced
but none of the literals alone can be, e.g., a decision procedure cannot affirm
that a constraint l1 is true, neither that a constraint l2 is true, but it can

9Creating new literals may increase the search tree, possibly making us to test more
assignments.

10We represent ¬(f(x) 6= f(y) ≡ f(x) = f(y), ¬(x− y ≤ 0) ≡ x− y > 0, ...

88 CHAPTER 5. EXTENDING A BASIC DECISION PROCEDURE

deduce that l1 ∨ l2 is true. Examples of non-convex theories are integer
difference logic and linear integer arithmetic.

To illustrate the non-convexity of integer arithmetic, consider this simple
example.

x ≥ 0 ∧ x ≤ 1 (5.9)

One cannot deduce that x = 0. Neither that x = 1. However, we can
state that x = 0 ∨ x = 1.

For such non-convex theories, just propagating the simple detected equal-
ities, as it was done previously, is not enough for completeness. One alterna-
tive proposed by Nelson and Oppen is to generate disjunction of equalities,
but it does not work in practice because of the difficulties of finding these
disjunctions. A better alternative that we will follow is to generate equalities
from a model, like we explained in Chapter 4.

To briefly remind how the process works, take a look at the following
example. It contains a set of arithmetic constraints.

x ≥ 0 ∧ x ≤ 1 ∧ y = x + 1 ∧ z = 2 (5.10)

In a model, each variable has a value associated to it. The two possible
models for this case are:

x = 0; y = 1; z = 2 (5.11)

x = 1; y = 2; z = 2 (5.12)

Out of the model in 5.12, we could extract the equality y = z. The
equality is not always true, but using it as a model-equality allows us to
achieve completeness. We just need to propagate the model-equalities like
normal equalities. By interacting with the SAT-solver, if there is a conflict
with a model, we can backtrack and try different ones until one of them is
accepted as valid or all of them are tried and stated as conflicting.

One important difference to normal equalities is that we do not have
an explanation for how the model-equalities were created. That is because
a model-equality is some kind of guess and not a deduced fact. Model
equalities will appear in conflict sets. This will possibly create and introduce
new literals in the formula of the SAT-solver, but the solver still can solve
the problem with extra interactions by performing like in the second part
of the Example 5.6 from the previous section. For a detailed explanation of
model-equalities, see Section 4.2.

5.5 Lemmas

In this framework, lemmas are a generic way of giving some fresh information
to the SAT-solver. So it can be considered as a way of interaction between

5.6. THEORY PROPAGATION 89

the decision procedures (or any other component of the SMT-solver) and
the SAT-solver.

Any tautology can be given to the SAT-solver as a lemma. But lemmas
will be interesting when they can speed up the process or help the decision
procedures to achieve completeness.

The speed up can be obtained by creating lemmas that will prune the
search space in the SAT-solver. An example is theory propagation lemmas,
that will be presented in Section 5.6. Conflict sets can also be considered
lemmas. The closer to a minimal subset the conflict sets are, the better the
gain with the performance we can obtain, as the information is more precise.

As an example of use of lemmas to achieve completeness, imagine one
arithmetic decision procedure that cannot handle disequalities (6=). It can
use lemmas to obtain some information that it can understand in the next
interaction with the SAT-solver. So if it receives x 6= y it can generate a
lemma like x 6= y =⇒ x > y∨x < y. A possible advantage of using lemmas,
is that they could be generated in a lazy way, just when/if necessary.

It is up to the components of the SMT-solver to decide when they want
to generate lemmas. However, they should be careful to not pollute or
overpopulate the number of clauses in the SAT-solver, as this can have a
negative influence over the performance.

5.6 Theory propagation

One technique that SMT-solvers can use to improve performance is theory
propagation (first presented by Nieuwenhuis and Oliveras [55]). The clas-
sical DPLL algorithm only deduces facts using propositional logic. Theory
propagation also reasons about theories to deduce facts.

The idea behind theory propagation is to use a theory reasoner (i.e.
a decision procedure) for guidance, instead of blindly deciding literals in
the SAT-solver. A theory reasoner could tell the SAT-solver which literals
are true among the current set of literals under the current assumptions.
Therefore, the SAT-solver can directly set these literals to true, not having
to decide (or guess) if they are true or false. In this way, the search space
of the SAT-solver can be reduced significantly.

One thing we should take in consideration is that from a set of con-
straints, possibly an infinite number of others can be deduced. Take for
instance x > 0. If we know that x is greater then 0, then we can easily
affirm that x is greater than −1, −2 , −3, ... It will be only interesting
to the solver to deduce the ones that are relevant to the problem, i.e., to
deduce literals that are also in the formula. Therefore, somehow, the theory
reasoner should be aware of all the literals from the problem in advance.

To illustrate theory propagation, consider the following example. We

90 CHAPTER 5. EXTENDING A BASIC DECISION PROCEDURE

want to find a satisfiable assignment for φ.

φ : z = 1∧y ≤ 0∧x ≥ 2∧(x ≥ 1∨y ≥ 0)∧(x−y ≤ 0∨x = y∨z+y ≤ 1) (5.13)

Looking at a static search tree for φ, we see 6 possible assignments in
which 4 are unsatisfiable. They are shown in Figure 5.2.

Figure 5.2: Static search tree for the Formula 5.13.

Using theory propagation, literals can be deduced, like (z = 1 ∧ y ≤
0 =⇒ z + y ≤ 1) or (x ≥ 2 =⇒ x ≥ 1). Deducing literals can reduce
the number of guesses the SAT-solver has to do. In this example, if we use
theory propagation, we can find a satisfiable assignment directly11.

Figure 5.3: Theory propagation: literals can be deduced from others.

Conflict sets can also be seen as some kind of theory propagation, a lazy
one. When a theory solver finds a problem with the current assignment, it
returns back a conflict set. This conflict set is a new clause that is incorpo-
rated into the formula and will force the SAT-solver not to take the same
wrong decision again.

In Figure 5.4, we can see that y ≤ 0 ∧ x ≥ 2 implies that x and y are
different. Incorporating this information in the formula would reduce the
search space by eliminating all the assignments that contain y ≤ 0 ∧ x ≥
2 ∧ x = y.

As a final remark, notice that theory propagation is very interesting when
it is inexpensive12 to ask for deduced information. When cost increases, it

11The assignment that is built guided by theory propagation has no inconsistency.
12Preferably constant time or very close to.

5.7. INCREMENTALITY AND BACKTRACKABILITY 91

Figure 5.4: Conflict sets can be seen as theory propagation. Here y ≤ 0∧x ≥
1 =⇒ x 6= y.

may not be a good idea to ask for such information at every iteration. Having
a partial13, but faster theory propagation may be also interesting. Doing full
or partial propagation, and all the time or once in a while, may influence
the performance of the solver [30]. Experimenting different strategies for
different benchmarks may yield quite different results.

5.7 Incrementality and backtrackability

Incrementality is the capability of receiving more information at any state
and be able to continue without restarting from scratch. For the decision
procedures, incrementality is important because they very often receive new
constraints that should be incorporated and processed with the old ones.

Incrementality comes very often with backtrackability. Backtrackability
is the capability of going back to some point in the past, recovering the
previous state, and allowing to continue receiving more information. Both
incrementality and backtrackability should be efficiently in terms of space
and time complexity.

There are several reasons for including an incremental and backtrackable
decision procedure:

1. Avoid unnecessary work. Decision procedures work with assignments
given by the SAT-solver that may contain lots of constraints. If a small
subset of these constraints makes the problem unsatisfiable, there is
no reason to continue working as the current assignment is also unsat-
isfiable. So the sooner we detect the unsatisfiability of the assignment,
the better it is for avoiding unnecessary processing of the remaining
constraints.

2. There is usually a very strong interaction with the SAT-solver. Since
for most problems, the unsatisfiability can be detected early, it is a
smart decision to test partial assignments to see if they are already
unsatisfiable. A lot of time can be saved avoiding to build complete
assignments in the cases that a partial assignment is already conflict-
ing. It is also interesting for pruning the search tree more efficiently.

13We do not need to find all logical consequences from the current set of constraints
that we have. We only look for logical consequences that are cheap to find.

92 CHAPTER 5. EXTENDING A BASIC DECISION PROCEDURE

Checking partial assignments means receiving the constraints by small
blocks, and it is there where incrementality plays an important role.

3. Consecutive set of constraints given to the decision procedures are usu-
ally very similar to each other. The SMT-solver may check for theory
consistency of several assignments until it finds a satisfiable assignment
or try them all and find out that the formula is unsatisfiable. Due to
the nature of the DPLL algorithm in the SAT-solver, consecutive as-
signments are usually very similar to each other. If there are literals
in consecutive assignments that are the same, there is no reason for
removing them all from a decision procedure to later give them all
back to it. So smart SMT-solvers will backtrack to a common point
of consecutive assignments and then just start giving the new literals
to the decision procedure. So in this case incrementality is important
as well as being backtrackable.

4. Once all the literals are given from the SAT-solver to a decision pro-
cedure, extra constraints, notably equalities and model equalities, can
still be propagated between the decision procedures. The reason is
that SMT-solvers are based on the Nelson and Oppen framework.
This propagation process can last for some iterations. Each time new
constraints are given, decision procedures should process them incre-
mentally for efficiency reasons. There should be no distinction in the
way decision procedures handle incrementality, i.e, the decision proce-
dure does not need to know if the new constraint comes from another
decision procedure or from the (new assignment of the) SAT-solver.

For illustrating the first three reasons, consider the following example.
Consider the propositional formula:

A ∧ B ∧ (C ∨ ¬D) ∧ (D ∨ E ∨ F) ∧ (¬E ∨ ¬F) (5.14)

We will look only at propositional level for simplicity. From Equa-
tion 5.14 we extract the static search tree shown in Figure 5.5.

There are 6 propositional satisfiable assignments from the formula that
are shown in Figure 5.5. They are all partial, meaning that there is at
least one literal that was not set to either true or false. If we consider the
total assignments, there are 12 propositionally satisfiable that can be seen
in Figure 5.6.

When working with partial assignments, if a conflict is found by a de-
cision procedure during a consistency check, additionally to stop the work
earlier, we avoid exploring a subtree possibly containing several other assign-
ments. Imagine that at some point the SMT-solver checks for the theory
consistency of the partial assignment Γ = {A,B,C} and then it finds out
that the assignment is theory inconsistent. If the SMT-solver learns that

5.7. INCREMENTALITY AND BACKTRACKABILITY 93

Figure 5.5: Static search tree reflecting propositional satisfiable assignments
from Equation 5.14.

Figure 5.6: Static search tree reflecting the propositional satisfiable total
assignments of Equation 5.14.

A ∧ B ∧ C is false14 and uses this information, it can prune more than half
of the tree, avoiding plenty of unnecessary checks.

Now imagine another scenario with the same formula where all the
assignments are unsatisfiable and the reason is always the entire set of
the literals from each assignment. You can notice that when checking
Γ1 = {A,B,C,D,E}, Γ2 = {A,B,C,D,¬F}, Γ3 = {A,B,C,E,¬F}, ...

14Meaning that ¬A ∨ ¬B ∨ ¬C is true.

94 CHAPTER 5. EXTENDING A BASIC DECISION PROCEDURE

an important subset of the assignment is the same. Going from one to the
other, backtracking to a common point and then restarting incrementally is
crucial to avoid reprocessing all the common literals of the assignments.

To illustrate the fourth reason, we take as example the Formula 5.15, that
has been already purified. We look for unsatisfiability using classical Nelson
and Oppen, like explained in Section 4.1, using three decision procedures:
one for arithmetic (DP A); one for uninterpreted function (DP UF); and
one for lists (DP L).

x ≤ y ∧ y ≤ v1 ∧ v2 = v3 − v4 ∧ v5 = 0

∧P (v2) = true ∧ P (v5) = false ∧ v3 = f(x) ∧ v4 = f(y)

∧v1 = car(cons(x, ℓ)) (5.15)

We are checking for satisfiability of the full assignment. None of the de-
cision procedures detects the unsatisfiability by itself, but when they prop-
agate new information they have deduced, the unsatisfiability is found. Ob-
serve that equalities are detected and propagated a few times. Each time,
the other decision procedures receive the new constraint and perform a new
consistency check. Here we once again see the importance of incrementality,
the constraint set the decision procedures are handling are the same except
for the new deduced equality.

level DP A DP UF DP L

0 x ≤ y P (v2) = true v1 = car(cons(x, ℓ))

y ≤ v1 P (v5) = false v1 = x (detected)

v2 = v3 − v4 v3 = f(x)
v5 = 0 v4 = f(y)

1 v1 = x (new) v1 = x (new)
x = y (detected)

2 x = y (new) x = y (new)
v3 = v4 (detected)

3 v3 = v4 (new) v3 = v4 (new)
v2 = v5 (detected)

4 v2 = v5 (new) v2 = v5 (new)
unsatisfiable

Table 5.2: Importance of incrementality in a Nelson and Oppen framework.
Equalities are deduced and propagated to the decision procedures until, in
this example, unsatisfiability is found. Underlining is used to emphasize the
constraints involved in the conflict.

5.8. CONCLUSION 95

5.8 Conclusion

As we have seen, building efficient decision procedures for SMT-solvers re-
quires much more than simply yes or no answers. In this chapter, it was
presented the details of these extra requirements describing exactly what we
expect from the decision procedures. Most of the motivations of these ex-
tra requirements come from the SAT-solver and the combination framework
based on Nelson and Oppen, that we have seen in previous chapters.

In the next chapters, we present how to build decision procedures for
fragments of arithmetic theory, fulfilling all these requirements. A first de-
cision procedure will be given for the low complexity fragment of difference
logic, followed by linear arithmetic.

96 CHAPTER 5. EXTENDING A BASIC DECISION PROCEDURE

Chapter 6

Deciding difference logic

Arithmetic is a very large theory. Problems involving arithmetic usually
contain only a subset of functions and symbols. Therefore, most of the
time we can limit ourselves to interpreting the problem in a well known
fragment of arithmetic. Several fragments have been extensively studied.
There are many decision procedures for them that have been constantly
used and extended for different areas.

In this chapter we present the arithmetic fragment of difference logic. It
is a decidable fragment with very low complexity. It can be used to solve
problems in many different areas.

We start by presenting the difference logic theory using graphs to model
the problems. Then we show the details to build a decision procedure for
difference logic.

6.1 Difference logic graph theory

In this section, we describe difference logic. We give the details of how it
can be understood using graph theory and show some properties necessary
for understanding the algorithms for the decision procedures that will be
presented in Section 6.2.

Difference Logic (DL) is the fragment of arithmetic that handles con-
straints of the type x−y ≤ c, where x and y are variables and c is a numerical
constant, and they can be integer or rational. It appears in many different
and important practical problems such as timed systems, scheduling prob-
lems, paths in digital circuits, see, e.g., [54]. They also are the predominant
kind of constraint in many problems involving arithmetic. One can see many
examples of industrial problems in the benchmarks of the SMT-LIB [59].

Difference logic is a well studied subject and it can be fully modeled
using graph theory. Therefore, solvers that are aware of these facts, can
make use of fast algorithms that are designed for graph theory and may
accomplish good performances. In this section, we focus on the description

97

98 CHAPTER 6. DECIDING DIFFERENCE LOGIC

and illustration of interesting properties necessary to our decision procedure.

6.1.1 Properties and Graph Representation

The classic difference logic problem deals only with constraints of the kind
x−y ≤ c. It can be interpreted in graph theory as an edge from y to x with
cost (or weight) c, see Figure 6.1, for both real and integer theory. That can
be read as node (or vertex) x should be at most node y + c.

Figure 6.1: Representation of the constraint x − y ≤ c using graphs.

There are other constraints that can be easily translated and integrated
to this graph model. Table 6.1 gives a few of the common constraints that
can be translated to DL.

constraint translated to

x − y ≥ c y − x ≤ −c

x − y = c x − y ≤ c and y − x ≤ −c

x ≤ y x − y ≤ 0

x ≥ y y − x ≤ 0

x = y x − y ≤ 0 and y − x ≤ 0

x ≤ c x − v0 ≤ c, where v0 is a unique extra variable with value 0

x ≥ c x − v0 ≥ c, where v0 is a unique extra variable with value 0

Table 6.1: Table of constraints

Strict inequalities can also be handled with minor changes. The method
shown in this section is presented here [31] and is used by many arithmetic
decision procedures.

We can always change a constraint like x − y < c to x − y ≤ c − δ.
The value of δ depends on the type of numerical variables presented in the
constraint. If they are all integers, δ is precisely 1, e.g., we can change
x − y < 1 to x − y ≤ 0 without any loss of precision. But if there are
rationals or reals in the constraint, δ has to be a very small value, small
enough to not change the result of evaluating the constraints.

It is a hard task to determine the value of δ in the general case. However,
we can always say that the value of δ is infinitely small non zero value.
Representing this value in the computer may not be possible, but we do
not actually need it. We can say that δ is 1

∞
, do the calculations using the

6.1. DIFFERENCE LOGIC GRAPH THEORY 99

symbol δ as a variable. The decision procedures will never need to evaluate
the real value of δ.

Instead of evaluating a number c as itself, we think of it as a pair (c, k)
equivalent to c + kδ. For example, translating x − y < c results in x − y ≤
(c, 1), while translating x− y ≤ c result in x− y ≤ (c, 0). The operations on
the pair are like the ones we use for equations (c + kδ), where c and k are
known and δ is a variable. Only a few operations will be necessary:

• (c1, k1) + (c2, k2) ≡ (c1 + c2, k1 + k2)

• (c1, k1) − (c2, k2) ≡ (c1 − c2, k1 − k2)

• c′ × (c, k) ≡ (c′ × c, c′ × k)

Additionally, we can also compare two pairs because we know the value
of δ. We know that:

• (c1, k1) ≤ (c2, k2) ≡ (c1 < c2) ∨ (c1 = c2 ∧ k1 ≤ k2)

After building a graph with the entire set of difference logic constraints
we can observe many interesting facts. The following subsections will de-
scribe the interesting ones for the case of satisfiability.

Dependency

If two variables x and y do not depend on each other, there will not be a
path from x to y, nor a path from y to x. In graph theory, a path from x
to y is a sequence of contiguous edges that connect x to y.

A variable x may depend on another variable y either directly or indi-
rectly. In the first case there will be an edge from x to y and thus a path
from x to y. In the second case, there will be a path from x to y that
represents a combination of the constraints in the path and the length (in
our case, the sum of the edges costs) indicates the relationship between the
variables.

For instance, take two constraints x − y ≤ −1 and y − z ≤ −2. The
combination of them (x−z ≤ −3) shows the indirect dependency between x
and z. The graph representation for this example can be seen in Figure 6.2.

Strongest constraint

As the name suggests, it is the strongest constraint that can be created (or
extracted) from a set of constraints, related to a pair of variables. If we find
that y − x ≤ c1 is the strongest constraint related to y and x, that means
that we cannot extract any other constraint y − x ≤ c2 where c2 < c1.

If there is a path from x to y, the shortest path len from x to y gives the
strongest constraint (y−x ≤ len) that it is possible to create from the given

100 CHAPTER 6. DECIDING DIFFERENCE LOGIC

-2

-1

Figure 6.2: Direct (x − y ≤ −1 and y − z ≤ −2) and indirect (x − z ≤ −3)
dependency of variables.

facts. Notice that the shortest path in our case is related to the sum of the
edges costs and not to the number of the edges. One can also interpret it
as y must be at most x + len.

For instance, the following set of constraints is represented by the graph
in Figure 6.3. They are

y − x ≤ −1, z − x ≤ −2, w − y ≤ −3, w − z ≤ 0, y − z ≤ 0.

The strongest constraint that can be built between x and w is w − x ≤ −5,
built from the shortest path from x to w (that goes through z and y).

-1

-3

0

-2 0

Figure 6.3: The strongest constraint related to two variables (vertices) can
be build from the shortest path between them. In the figure, we have three
strongest constraints (w − x ≤ −5, w − z ≤ −3 and y − x ≤ −2) that
are derived from the shortest path and are not given in the set of original
constraints.

Unsatisfiability

A set of constraints is unsatisfiable when it is possible to find a contradictory
subset of constraints like x − y ≤ −1 ∧ x − y ≥ 2. If there is no combina-
tion of constraints that can make the problem unsatisfiable, the problem is
satisfiable.

Theorem 3. There is a negative cycle in the graph if and only if the problem
is unsatisfiable.

6.1. DIFFERENCE LOGIC GRAPH THEORY 101

Proof. If there is a negative cycle in the graph then there is a path from a
vertex x to itself with negative weight. Therefore, we can get the implied
constraint x − x ≤ c, for some c < 0, which is a contradiction.

For the other half, in a system of inequalities of the kind x−y ≤ c, there
is a contradiction only if there is a subset of the inequalities that combined
lead to the inequality 0 ≤ c, for some c < 0. To reach this contradiction,
the variables should appear at least twice in the inequalities and the sum
of the coefficients of all variables should be 0. Based on these facts, for any
variable x present in this subset, the implied inequality x − x ≤ c, for some
c < 0, is valid. In the presented graph model, this means there is a path
from x to x with negative weight c < 0, i.e., a negative cycle.

The check for satisfiability is done by looking for negative cycles. In case
no negative cycle is detected the problem is satisfiable.

Figure 6.4 shows a scenario where there is a negative cycle. The proof
for the unsatisfiability (or conflict set) can be constructed from the edges
in the negative cycle. The combination of these constraints will lead to the
contradiction 0 ≤ −1.

2

-4

30

0

-1

Figure 6.4: Graph with a negative cycle. The set of constraints representing
it is unsatisfiable. The proof is the edges from the negative cycle: z−x ≤ 0,
y − z ≤ 0 and x − y ≤ −1. If we combine these constraints, by simply
summing them up, we obtain 0 ≤ −1.

There can be many negative cycles in a graph. Efficient algorithms for
finding negative cycles are not interested in finding the smallest one. But
any of the negative cycles used in a proof of unsatisfiability are minimal.
That means, if any of the constraints in the cycle is removed, the remaining
subset of constraints is not unsatisfiable anymore.

Equality between variables

Theorem 4. In a satisfiable problem, two variables x and y are equal if and
only if the shortest path from x to y costs 0 and the shortest path from y to
x also costs 0.

Proof. The (strongest) constraints representing these two shortest paths are
x − y ≤ 0 and y − x ≤ 0, and thus x − y = 0 (or x = y).

102 CHAPTER 6. DECIDING DIFFERENCE LOGIC

For the other half of the theorem, if we have two variables that are equal,
x and y, we have: (x = y) =⇒ (x−y = 0) =⇒ (x−y ≤ 0∧x−y ≥ 0) =⇒
(x − y ≤ 0 ∧ y − x ≤ 0). The later means there is a path from x to y and
from y to x with cost zero that can be either an original constraint of the
problem, or an implied constraint. In either way, they cannot be stronger
because otherwise the problem would be unsatisfiable.

Figure 6.5 shows an example where an equality is found using shortest
path information.

1

0

-1

Figure 6.5: Graph made from 3 constraints: z − x ≤ −1, y − z ≤ 1 and
x − y ≤ 0. An equality can be found in this graph: x = y.

x − y ≤ 0 ∧ y − x ≤ 0 =⇒ x = y is exactly the way back from under-
standing a constraint like x = y shown in Table 6.1. The difference is that
this information might be obtained indirectly and not as given constraints.

6.1.2 Conclusion

We presented difference logic and a way of representing this theory using
graphs. We showed some interesting properties that make easier to under-
stand a few algorithms for the decision procedures. We know, among other
things, that we can check for satisfiability using algorithms for negative cycle
detection. Additionally, the theorem of equality between variables will give
us enough knowledge to present an algorithm for finding equalities. In the
next section, we will use what we learn here to build a decision procedure
for difference logic.

6.2 Difference logic decision procedure

The previous section introduced the difference logic arithmetic fragment.
We saw some interesting properties and how to interpret this theory using
graphs.

In this section, we present a series of algorithms that when put all to-
gether can be used to build a decision procedure for difference logic. Many
of the following algorithms reflect our implementation in the veriT solver.
We show the strong and weak points of our decision procedure, and present
some alternatives for fulfilling the requirements.

6.2. DIFFERENCE LOGIC DECISION PROCEDURE 103

6.2.1 Satisfiability Checking

The first basic requirement for a decision procedure is be able to determine
if a set of constraints is satisfiable or not. We saw in Section 6.1.1 that
a set of constraints is unsatisfiable if and only if the graph built from the
constraints has a negative cycle.

The classical algorithm to check if a graph has a negative cycle is the
Bellman-Ford algorithm [8, 34]. The original algorithm is not incremental.
Our later proposed algorithm does not follow the same idea and is not based
on the Bellman-Ford algorithm. But the Bellman-Ford algorithm is the most
widely used algorithm for detecting negative cycles, so we show it in this
section for reference. A pseudo-code can be seen in Algorithm 4.

input : G =(V,E): Graph
input : source: V ertex ∈ V
output: hasNegativeCycle: Boolean
data : u, v: V ertex

// Initialize graph

foreach Vertex v in V do1

v.distance := ∞;2

v.predecessor := NULL ;3

end4

source.distance := 0;5

// Relax edges repeatedly

for i = 1 to V.Size() do6

foreach Edge e in E do7

u := e.source ;8

v := e.destination ;9

if v.distance > u.distance + e.weight then10

v.distance := u.distance + e.weight ;11

v.predecessor := u ;12

// Check for negative-weight cycles

if i = V.Size() then13

return hasNegativeCycle := true ;14

end15

end16

end17

end18

return hasNegativeCycle := false ;19

Algorithm 4: BellmanFord

The Bellman-Ford algorithm computes single-source shortest paths in a
graph. But it can additionally detect negative cycles by including a simple

104 CHAPTER 6. DECIDING DIFFERENCE LOGIC

check after the last iteration. It is a non incremental algorithm and runs
in O(|V ||E|), where |V | is the number of vertices and |E| is the number of
edges.

The idea of the Bellman-Ford algorithm is based on relaxing the esti-
mated distance between the source and all the other vertices. After the
cycle i from the for loop (line 4), v.distance will contain the shortest path
from source to v using at most i edges. After |V | − 1 cycles, the distances
from source to the vertices should be the shortest path. The exception is
when there is a negative cycle reachable from source. If we can still reduce
the distance by doing an extra iteration, it means there is a negative cycle.
In such cases, the shortest path can always be reduced by going through the
cycle an infinite number of times.

6.2.2 Incremental Satisfiability Checking

In this subsection we present an original incremental satisfiability check
algorithm, Algorithm 5. It can be implemented using a heap with complexity
O(|E′| log |V ′|), where |V ′| is the number of vertices that have their distance
changed in the algorithm and |E′| is the number of outgoing edges of the V ′

vertices.

Min-heaps are tree based data structures where the root represents al-
ways the smallest1 element of the tree and it has the property that if B
is a child of A then B ≥ A. The common operations of a heap are find
minimal, insert, delete, decrease value and merge. There are several differ-
ent implementation of heaps with varying complexities. Fibonacci heaps,
for instance, have amortized complexity Θ(1) for all operations, except for
delete which is O(log n).

Since the algorithm is incremental, it is executed for each new added
constraint. We can do this up to |E| times, stopping as soon as a conflict
is found. Another parameter of the complexity depends on the number
of vertices that have their distance changed during the algorithm. This is
hard to predict. But we know that in general, the stronger the new added
constraint is, the greater will be the chance of making relationships between
vertices stronger, and so, the higher will be the number of vertices with their
distance changed. However, in many cases, where the constraints are weak,
or the involved vertices are isolated from the rest of the graph, adding a
constraint will take constant time.

The idea of the algorithm is to search in the graph for the vertices that
may have their distances changed due to the last added edge. The distance
is the length of the shortest path from an arbitrary source vertex. For this
purpose and for simplicity, an artificial vertex can be created to be the source
vertex. It will connect to all the other vertices with a unidirectional edge of

1Max-heaps can be defined dually.

6.2. DIFFERENCE LOGIC DECISION PROCEDURE 105

input : G =(V,E): Graph
input : e: Edge
output: hasNegativeCycle: Boolean
data : impr: Number
data : dest, pred, newDest: V ertex
data : q: Heap < V ertex, V ertex,Number >

pred := e.source, dest := e.destination ;1

impr := (pred.distance + e.weight) - dest.distance ;2

// Initial check, improve means decrease the distance

if impr < 0 then3

q := NewHeap();4

q.InsertOrImprove(dest, pred, impr);5

// Improving Search

while not q.Empty() do6

dest, pred, impr := q.RemoveMin();7

dest.distance := dest.distance + impr ;8

dest.predecessor := pred ;9

foreach OutgoingEdge i in dest do10

newDest := i.destination ;11

impr := (dest.distance + i.weight) − newDest.distance ;12

if q.InsertOrImprove(newDest, dest, impr) = true13

then
if newDest = e.source then14

return hasNegativeCycle := true ;15

end16

end17

end18

end19

end20

return hasNegativeCycle := false ;21

Algorithm 5: IncrementalNegativeCycleDetection

weight 0. No vertex has edges going to this artificial vertex, so a negative
cycle will never be introduced in the graph. Therefore, we can state that
the original system will be unsatisfiable if, and only if, the slightly modified
one (with the artificial vertex) is.

The algorithm starts by checking if the new edge will improve the dis-
tance to the destination vertex. If it does, the search starts. The search is
done by greedily picking the vertex in the heap that will have its distance
improved the most. The improvement is the difference between the new and
old value of distance. It is assumed that, when a vertex v is improved, its

106 CHAPTER 6. DECIDING DIFFERENCE LOGIC

neighbors will have their improvement by at most the same as v. So, when
a greedily picked vertex has its distance improved, it is done by the path
that will improve the distance by the largest amount. Therefore, each vertex
should have their distance improved at most once. The exception is when
there is a negative cycle.

A negative cycle happens if and if only the e.source distance improves.
Because if e.source improves that means e.destination will improve again,
so a cycle is present.

Figures 6.6 to 6.10 illustrate the algorithm. The constraints {d − a ≤
1, c − a ≤ −1, b − a ≤ −1, e − b ≤ −1, e − c ≤ −2, f − e ≤ 4} have been
already processed and the figures show behavior of the Algorithm 5 for
the addition of the new constraint a − f ≤ −2. The graph is build as
explained in Section 6.1. Additionally, we show the distance information of
each variable in the squares and the state of the heap used in the algorithm.
The numbers next to the vertices in the heap indicate how much the vertex
can be improved taking in consideration all the paths going through the
previous selected vertices.

a

b

c

d

ef

0

0

0

-1

-1

-3

-2

1

-1

-1
-2

-1

0

4

a -2

Heap

Figure 6.6: Graph representation of an arbitrary example, initial state dur-
ing the insertion of the edge a− f ≤ −2. The dashed circles are the vertices
that have never been processed, i.e., they have never been chosen from the
heap. Bold circle is the vertex that is currently selected. The squares shows
the distance from the artificial vertex (not shown here).

At each step, the chosen vertex will have its distance improved. Then it
checks the vertices it can reach to verify if their distance can be improved.

When the source vertex f is reached for improvement, a negative cycle

6.2. DIFFERENCE LOGIC DECISION PROCEDURE 107

a

b

c

d

ef

0

-2

0

-1

-1

-3

-2

1

-1

-1
-2

-1

0

4

b -2

c -2

d -1

Heap

Figure 6.7: Graph representation of the state after the first iteration. a is
chosen and adds to the heap vertices b, c and d.

a

b

c

d

ef

0

-2

0

-3

-1

-3

-2

1

-1

-1
-2

-1

0

4

c -2

e -1

d -1

Heap

Figure 6.8: Graph representation of the state after the second iteration. b
or c could have been chosen, as they are the vertices that can have their
distance improved by the largest amount. b is chosen and adds to the heap
the vertex e.

is detected. Figure 6.10 shows the final state of this example.

108 CHAPTER 6. DECIDING DIFFERENCE LOGIC

a

b

c

d

ef

0

-2

0

-3

-3

-3

-2

1

-1

-1
-2

-1

0

4

e -2

d -1

Heap

Figure 6.9: Graph representation of the state after the third iteration. c is
chosen. e can be reached using a shorter path going through c, so the value
of e in the heap is updated.

The execution of the algorithm depends on the values in the edges. A
simple modification like changing the order in which edges are added may
influence the running time. It is not hard to build an example where the full
graph is explored for every new edge added, or the other way around, when
all new edges can be added in constant time. The optimal strategy would be
adding the edges in an order such that the destination vertex would have no
outgoing edges. In practice, the algorithm works very well and it is suitable
for sparse and dense problems. One can see some running experiments in
[27].

6.2.3 Conflict Set Construction

When unsatisfiability is detected, an explanation is necessary. The expla-
nation is the set of constraints that generated the conflict, as seen in Sec-
tion 5.2. A minimal conflict set can be obtained by the constraints that
form the negative cycle.

The algorithm for checking unsatisfiability keeps the predecessor of the
vertices while updating the shortest path distances and doing the search for
a negative cycle. So, if a negative cycle is detected, it is only necessary to
go through the cycle, by using the predecessor, and collect the constraints
associated to the edges. A pseudo-code for this is shown in Algorithm 6.

When a new edge is added, more than one negative cycle may arise. See
for instance, Figure 6.11. In this case, it is possible to return more than one

6.2. DIFFERENCE LOGIC DECISION PROCEDURE 109

a

b

c

d

ef

0

-2

0

-3

-3

-5

-2

1

-1

-1
-2

-1

0

4

f -1

d -1

Heap

Negative cycle
detected

Figure 6.10: Graph representation of the state after the fourth iteration.
e is chosen and adds f to the heap. f is the source of the edge that is
being added to the graph. As its distance can be improved we know there
is a negative cycle in the graph. Therefore, the current set of constraints is
unsatisfiable.

input : G =(V,E): Graph
input : e: Edge
output: s: Set of Constraints
data : v: V ertex

v := e.source ;1

s.Insert(e.constraints);2

while v 6= e.destination do3

s.Insert(Edge(v.predecessor, v).constraints);4

v := v.predecessor ;5

end6

return s ;7

Algorithm 6: CollectConflictSet

minimal conflict set. But the algorithm will return the first negative cycle
found.

6.2.4 Equality Generation

It was shown in Section 6.1.1 that, in our graph model, two variable x and
y are equal if and only if the length of the shortest path between x and y

110 CHAPTER 6. DECIDING DIFFERENCE LOGIC

0

0

0

0

0

-1

0

Figure 6.11: In this graph, representing the set of constraints {y − z ≤
0, z − x ≤ 0, w − x ≤ 0, t − w ≤ 0, v − t ≤ 0, y − v ≤ 0}, two negative cycles
are found after the edge x−y ≤ −1 is added. The cycles are {y, x, z, y} and
{y, x,w, t, v, y}. Any of them can be used to construct the conflict set.

and between y and x are 0.

Algorithm 7 shows how to generate equalities without explicitly calculat-
ing the shortest path between each pair of vertices in the graph. It assumes
that no negative cycle is present. The algorithm is based on the algorithm
by Lahiri and Musuvathi [42].

It is not an incremental algorithm, so it is better to use it at the end
after all the constraints have been added to the decision procedure. It can be
implemented with complexity O(|V | log |V |+ |E|), where |E| is the number
of edges in G and |V | is the number of vertices in G.

The algorithm starts by building the graph G′. That is done by collecting
the edges from G where the slack is equal to zero. An edge e has slack(e)
zero when e is part of a shortest path between the artificial variable and the
destination of e (e.destination). We define slack(e) by:

slack(e) = e.source.distance − e.destination.distance + e.weight

Any cycle C = [v1, v2, ..., vn] in G′ will have its length equal to zero. To
see that, let us first make some definitions:

• v1..vn are vertices

• For every i, we have vi is conected to vi+1 and vn is connected to v1

• w(vi, vi+1) is the weight of the edge between vi and vi+1. It is a
shortcut for Edge(vi, vi+1).weight

• d(vi) is the length of the shortest path between a vertex (the artificial
one) and vi. It is a shortcut for vi.distance

The length of a cycle C is the sum of the edge weights in the cycle:

Length(C) = w(v1, v2) + w(v2, v3) + ... + w(vn, v1);

6.2. DIFFERENCE LOGIC DECISION PROCEDURE 111

input : G =(V,E): Graph
output: s: Set of Equalities
data : G′: Graph
data : E′: Edge
data : eq: Equality
data : SCCs: Set of SCC

// Mount graph G′ from E′ and its vertices

foreach Edge e in E do1

if e.source.distance − e.destination.distance + e.weight = 02

then
E′.Insert(e);3

end4

end5

G′ := Graph(E′);6

// Look for equalities in each SCC

SCCs := G′.SCC();7

foreach SCC scc in SCCs do8

// sort vertices of scc by distance

Sort(scc.V, IncreasingDistance());9

for i = 1 to scc.V.Size()−1 do10

if scc.vi.distance = scc.vi+1.distance then11

eq := Equality(scc.vi, scc.vi+1);12

if NotGeneratedYet(eq) then13

s.Insert (eq);14

eq.SetPremises(FindPremises(G′, scc.vi,15

scc.vi+1));
end16

end17

end18

end19

return s ;20

Algorithm 7: GenerateEqualities

Adding the terms +d(vi) and −d(vi) will not change the result of the
length, because they cancel each other. So, doing this we have:

Length(C) = d(v1) − d(v1) + d(v2) − d(v2) + ... + d(vn−1) − d(vn−1) +
w(v1, v2) + w(v2, v3) + ... + w(vn, v1);

Now, we just rearrange the terms to see more precisely the next step and
obtain:

112 CHAPTER 6. DECIDING DIFFERENCE LOGIC

Length(C) = [d(v1) − d(v2) + w(v1, v2)] + [d(v2) − d(v3) + w(v2, v3)] + ... +
[d(vn) − d(v1) + w(vn, v1)];

We can see that [d(vi)−d(vi+1)+w(vi, vi+1)] is exactly the slack defined
before. We know that in G′, all the slacks are 0 because of the way G′ was
built. Therefore we have:

Length(C) = 0

The next step in the algorithm is to get the strongly connected compo-
nents (SCCs). A graph Gr is strongly connected if for all pairs of vertices u
and v from Gr there exists a path from u to v and also from v to u. We will
call the SCCs of a graph Gr the maximal2 strongly connected subgraphs of
Gr.

Any two vertices in a SCC of G′ will be in a cycle of length zero and the
path between them is also the shortest path in the original graph G. That
is the primary condition for two variables to be equal. They need to be in a
cycle of length zero. Based on that, every pair of vertices in each SCC are
potential candidates to be equal.

For checking if two variables v1 and vk are equal without having to
calculate the shortest path between every pair of variables, we can use the
distance information that we keep when looking for negative cycles. The
shortest paths between them have to be zero, so:

0 = w(v1, v2) + w(v2, v3) + ... + w(vk−1, vk);
0 = w(vk, vk+1) + ... + w(vn−1, vn) + w(vn, v1);

We know by the definition of slack that: slack(vi, vi+1) = d(vi)−d(vi+1)+
w(vi, vi+1). Knowing that the slacks in G′ are zero: w(vi, vi+1) = −d(vi) +
d(vi+1). Thus, developing the previous expressions:

0 = −d(v1) + d(v2) − d(v2) + ... + d(vk−1) − d(vk−1) + d(vk);
0 = −d(vk) + d(vk+1) − d(vk+1) + ... + d(vn) − d(vn) + d(v1);

Simplifying everything:

0 = −d(v1) + d(vk);
0 = −d(vk) + d(v1);

Therefore, in any SCC of G’, two variables v1 and vk are equal if they
have the same distance value, i.e., d(v1) = d(vk).

Summarizing, Algorithm 7 will look in each SCC of G′ for every pair
of vertices. If they have the same distance, an equality is found. If this
equality is new, it is added to the set of new equalities generated to be
returned. Additionally, the set of premises is associated to it.

2Maximal here means that if we include any other vertex from the graph to the SCC,
it will no longer be a strongly connected component.

6.2. DIFFERENCE LOGIC DECISION PROCEDURE 113

Strongly Connected Component Algorithm

Algorithm 8 shows a pseudo-code for finding the strongly connected com-
ponents (SCCs) of a graph. It is a classical algorithm and its complexity is
linear in the number of edges [67].

input : G =(V,E): Graph
output: s: Set of SCC
data : GT : Graph
data : ET : Edge

// Mount GT by creating new edges changing the source

and destination of E
foreach Edge e in E do1

ET .Insert(Edge(e.destination, e.source));2

end3

GT := Graph(V, ET);4

// First DFS

ResetVisitedFlags(V);5

foreach Vertex v in V do6

if v.visited = false then7

v.visited := true ;8

DFS(G, v);9

end10

end11

// Second DFS, by decreasing finish time of the first

DFS

Sort(V, DecreaseTime());12

ResetVisitedFlags(V);13

foreach Vertex v in the sorted V do14

if v.visited = false then15

v.visited := true ;16

// Do a DFS and creates a SCC from the vertices

visited in this iteration

s.Insert(DFS(GT , v));17

end18

end19

return s;20

Algorithm 8: FindStronglyConnectedComponents

It runs a series of depth first searches (DFS) using a graph G starting
from each vertex that has not been visited yet. Later, another series of DFS
is done, but now using the transpose set of edges ET and choosing the vertex
in decreasing order of “finished visit” time of the first DFS. In this second

114 CHAPTER 6. DECIDING DIFFERENCE LOGIC

series of DFS, all the vertices reachable on each DFS belong to the same
SCC.

Depth-First Search (DFS) Algorithm

Algorithm 9 shows how a depth-first search (DFS) works. The DFS is
a search algorithm that explores each branch as deeply as possible before
backtracking, see, e.g., [19]. Starting in a vertex v, it will mark as visited
every vertex reachable from v. Additionally, when a vertex u cannot continue
the search, i.e., all its neighbors were already visited, u will have a “finished
visit” time set.

input : G =(V,E): Graph
input : v: V ertex
output: s: Set of V ertex

foreach OutgoingEdge e in V do1

if e.destination.visited = false then2

e.destination.visited := true ;3

s = e.destination + DFS(G, e.destination);4

end5

end6

v.timeFinished := NextTime();7

// Return the set of visited vertices reacheable from v

return s ;8

Algorithm 9: DFS

Explanation of an equality

Given an equality between two variables, the premises of this equality are
the constraints that generated it. Two variables u and v are equal if the
length of the shortest paths from u to v and from v to u are 0.

Then, for constructing the set of premises, it is only necessary to extract
the constraints related to each edge in the shortest path between u and v
and between v and u. Algorithm 10 shows a pseudo-code for this.

It does two breadth-first searches (BFS). First starting from u and second
starting from v. That will save in G the predecessors corresponding to
(one of) the shortest paths between u and v and between v and u. Later,
this information is used to go through the paths and collect the constraints
associated to each edge in the paths.

An equality can have more than one minimal set of premises (see Fig-
ure 6.12 for an example). Using BFS to find the shortest path (number of
edges) will allow finding the minimum set of premises.

6.2. DIFFERENCE LOGIC DECISION PROCEDURE 115

input : G =(V,E): Graph
input : u, v: V ertex
output: s: Set of Constraints

// Update the predecessor

BFS(G, u, v);1

BFS(G, v, u);2

// Get the set of premises

s := GetConstraints(G, u, v) + GetConstraints(G, v, u);3

return s ;4

Algorithm 10: FindPremises

0

0

0

0

0 0

Figure 6.12: In this graph, representing a set of constraints, an equality
can be found after the edge (y, x, 0) is added. Two sets of premises can be
returned as a proof for x = y (there are two shortest paths with length 0):
{x−y ≤ 0, y−x ≤ 0} and {x−y ≤ 0, w−x ≤ 0, t−w ≤ 0, z−t ≤ 0, y−z ≤ 0}.

The BFS is a search algorithm that can be used to find the shortest
path (related to the shortest number of edges), see, e.g., [19]. It executes
the search by visiting all neighbors first and then visiting the neighbors of
the neighbors and so on, until it finds the goal. For this, it uses a queue
(FIFO - First In First Out). Algorithm 11 shows a pseudo-code. The goal
is to find the destination vertex.

Algorithm 12 shows a pseudo-code for getting the constraints in a path.
It is similar to the Algorithm 6 that gets the conflict set. It just follows the
path using the predecessor information that was previously recorded and
collect the constraints from the edges in the path.

6.2.5 Model-Equality Generation

In the previous section we saw how to generate equalities for difference
logic. If the domain of the variables is the real numbers, then generating
only equalities is enough for a decision procedure to be complete in a Nelson
and Oppen framework. But if we are working with integers, that is not
enough. We saw in Section 4.2 how model-equalities can be used to achieve
completeness and all the process involving them. In the current section

116 CHAPTER 6. DECIDING DIFFERENCE LOGIC

input : G =(V,E): Graph
input : source, destination: V ertex
data : q: Queue of V ertex
data : u: V ertex

source.predecessor := NULL ;1

q.Add (source);2

while q.Empty() = false do3

u := q.Remove();4

foreach OutgoingEdge e in u do5

if e.destination.visited = false then6

e.destination.visited := true ;7

e.destination.predecessor := u ;8

if e.destination = destination then9

return ;10

end11

q.Add(e.destination);12

end13

end14

end15

Algorithm 11: BFS

input : G =(V,E): Graph
input : source, destination: V ertex
output: s: Set of Constraints
data : pred: V ertex

while source 6= destination do1

pred := destination.predecessor ;2

s.Insert(Edge(pred, destination).constraints);3

destination := pred ;4

end5

return s ;6

Algorithm 12: GetConstraints

we focus on aspects for difference logic. We show how to generate model-
equalities for difference logic making use of the same data structures used
in the satisfiability check.

We start by taking a look at an example. Given the following set of
constraints {d−a ≤ 1, c−a ≤ −1, b−a ≤ −1, e−b ≤ −1, e−c ≤ −2, f −e ≤
4}, we build a graph from it, running the satisfiability check algorithm to
obtain the distance information. Figure 6.13 shows the graph, with the
distance information in the squares.

6.2. DIFFERENCE LOGIC DECISION PROCEDURE 117

a

b

c

d

ef

0

0

0

-1

-1

-3

1

-1

-1
-2

-1

0

4

Figure 6.13: Graph from {d−a ≤ 1, c−a ≤ −1, b−a ≤ −1, e−b ≤ −1, e−c ≤
−2, f − e ≤ 4}. No negative cycle detected.

The simplest way to build a consistent model out of this situation is to
use the current distance information from the data structure. There is no
extra cost for building the model, and we can simply generate the model-
equalities out of the variables that have the same value. From this example
we have the model shown in Table 6.2, from which we can generate the
model-equalities a = d = f and b = c. If the decision procedure is only
working with constraints of the kind {=,≤,≥, <,>}, all the constraints will
be represented in the graph and the model will be always consistent.

Model

Variable Value

a 0

b −1

c −1

d 0

e −3

f 0

Table 6.2: Arithmetic model from example of Figure 6.13.

Once generated, the model-equalities are propagated and if no other de-
cision procedure disagrees with the model, the process finishes. Otherwise,
the model-equalities will be removed and the model modified. A model is

118 CHAPTER 6. DECIDING DIFFERENCE LOGIC

wrong when one variable is equal to another when it should not be. The
decision procedure will handle this demand to modify the model by ac-
cepting constraints of the kind {6=}, disequalities. Disequalities cannot be
incorporated to the graph, so they will be treated separately.

The easiest way to handle disequalities in our case is, after the model
is built, when we are looking at the values of the variables to generate the
model-equalities, we also look at the disequalities. If two variables have the
same value, but there is a disequality between them, then the decision pro-
cedure generates a lemma that will later allow itself to indirectly incorporate
the disequality in the graph, and therefore, modify the conflicting model.

A disequality x 6= y can be arithmetically understood as a disjunction of
inequalities x < y ∨ x > y. Handling disjunctions in the decision procedure
would be complicated, but we know that a SAT-solver can handle them
very easily and efficiently. Also, by delegating this task to the SAT-solver we
automatically make use of efficient techniques such as learning, backtracking,
etc. So, for handling a disequality x 6= y, we generate a lemma of the kind
x 6= y =⇒ x < y ∨ x > y. By doing this, we know that in future
interactions with the SAT-solver, the difference logic decision procedure will
receive either x < y or x > y, and with this extra information, that can
be incorporated to the graph, it will correct the model, fixing the conflict
that there was with the disequality. This lazy process of creating lemmas to
handle split cases that could not be easily done by the decision procedures
is called splitting on demand, see [4].

What was described so far is how it is implemented in the veriT solver.
We have no cost for building the model and we can extract the model-
equalities in linear time. We can see a pseudo-code for this process in Algo-
rithms 13 and 14.

6.2.6 Generating fewer model-equalities

With some extra processing we can generate better models. We call a
model better if from it we have fewer model-equalities. Having fewer model-
equalities is better because it reduces the probability of having some decision
procedure disagreeing with one of model-equalities, potentially reducing the
time lost correcting the models. The ideas presented here are not yet im-
plemented but we think they will significantly improve the solver.

For having better models we need to change the values of the variables.
They will no longer necessarily be equal to the distance. The first obser-
vation we can make is that if there is nothing setting an upper bound to
a variable, then we can set the value of this variable as high as wanted. A
variable x has no upper bound limit if for all the constraints3 in the deci-
sion procedure there is no one of the kind x − v ≤ c, for any variable v or

3Considering that all the constraints were translated to constraints of the kind ≤.

6.2. DIFFERENCE LOGIC DECISION PROCEDURE 119

input : G =(V,E): Graph
input : D: Set of Disequalities
output: s: Set of ModelEqualities
data : values: Multimap of < V alue, V ariable >
data : v1, v2: V ariable
data : Meq: ModelEquality

foreach Variable var in V do1

values.Add(var.value, var);2

end3

foreach Value val in values do4

for i = 1 to values.Count(val)−1 do5

v1 := values.ElementOfAt(val,i);6

v2 := values.ElementOfAt(val,i +1);7

Meq := ModelEquality(v1, v2);8

if NotGeneratedYet(Meq) then9

s.Insert (Meq);10

end11

end12

end13

if VerifyModel(D, s) = CONFLICTING WITH DISEQUALITIES14

then
// The model needs to be corrected

return s := NULL;15

end16

return s ;17

Algorithm 13: GenerateModelEqualities

constant c. And we can still extend this observation, if a variable y has its
upper bound limited4 only by other variables with no upper bound, then we
can state that y has no upper bound limit either.

A similar analysis can be done for the lower bound. If there is nothing
setting a lower bound to a variable, then we can set the value of this variable
as low as necessary. A variable x has no lower bound limit if for all the
constraints in the decision procedure there is no one of the kind v − x ≤ c,
for any variable v or constant c. Extending the observation, if a variable y
has its lower bound limited5 only by other variables with no lower bound,
then we can state that y has no lower bound limit either.

In practice that means that any variable that has no upper or lower

4A variable y has its upper bound limited by variable v if there is a constraint y−v ≤ c

for some constant c.
5A variable y has its lower bound limited by variable v if there is a constraints v−y ≤ c

for some constant c.

120 CHAPTER 6. DECIDING DIFFERENCE LOGIC

input : D: Set of Disequalities
input : ME: Set of ModelEqualities
output: status: Status

status := NO CONFLICT ;1

foreach Disequality d in D do2

if d.v1.value = d.v2.value ∈ ME then3

// Generate a lemma to correct the model

GenerateLemma(d.v1 6= d.v2 =⇒ d.v1 < d.v2 ∨ d.v1 >4

d.v2);
status := CONFLICTING WITH DISEQUALITIES ;5

end6

end7

return status ;8

Algorithm 14: VerifyModel

bounds can have its value set to any number. Or, in other words, we do not
ever need to build model-equalities involving variables that have no upper
or lower bound limits.

We can also translate this first observation to the graph representation
we use for difference logic. A variable has no upper bound if the vertex
representing it has no incoming edges. Vertices with incoming edges that
comes only from other vertices with no upper bound limit have also no upper
bound limit. Similar can be done to the lower bound case. In the end, if
we remove all the vertices that have no upper or lower bound limit, we will
have only vertices that belongs to strongly connected components having at
least two vertices.

Following the reasoning, we can improve the difference logic model by
running the strongly connected components algorithm and ignoring the
strongly connected components that only have one vertex. Or, if one prefers,
set these vertices to some arbitrarily different values. We can see how we
can reduce the number of variables that we need to worry about when gen-
erating model-equalities in Figures 6.14 and 6.15. Figure 6.14 is the initial
graph representation of an arbitrary problem and Figure 6.15 shows the
reduced graph after running the strongly connected components algorithm
and ignoring the components with size one.

The graph formed from the strongly connected components6 is acyclic,
Figure 6.15 is an example. We can safely define a topological order7 for the
components, like shown in Figure 6.16.

The values of the variables in the same strongly connected component

6Each strongly connected component is interpreted as one vertex
7Topological order is a linear ordering of its vertices in which each vertex comes before

all vertices to which it has outgoing edges.

6.2. DIFFERENCE LOGIC DECISION PROCEDURE 121

Figure 6.14: Graph representation of an arbitrary problem.

Figure 6.15: Graph from Figure 6.14 after removing the strongly connected
components with one element. Each dashed circle represents a different
strongly connected component.

depend on each other, but we can define a range of values where they can
all fit. And since no variable is limited by a number8 we can set this range
in any interval between −∞ and ∞. This can also be seen in Figure 6.16.

The last observation is that the strongly connected components may only
limit each other by the upper or lower bound, but not both. Therefore, we
can use one topological ordering and shift the range of the components as

8Difference logic constraints have always two variables, there are no constraints of the
kind x ≤ c, where c is a constant.

122 CHAPTER 6. DECIDING DIFFERENCE LOGIC

we want, so that we have no overlap. Now that we are sure that variables
of different strongly connected components are set to values in different
ranges, the decision procedure may limit itself to look for model-equalities
only between variables of the same strongly connected component.

Range 1 Range 2 Range 3 Range 4 Range 5

Figure 6.16: Graph from Figure 6.15 after defining a topological ordering.
Each strongly connected component has a different range of values defined.

In practice, we do not need to worry about finding the ranges. We run the
strongly connected components algorithm and use the distance information
to look for model-equalities only between variables in the same component.
One difference to Algorithm 7, for generating equalities, is that the one for
equalities run over a modified graph, while the one for model-equalites runs
over the original graph. We can see a pseudo-code in Algorithm 15.

We have shown an algorithm for finding a better model. In practice we
did not modify the values of the variables. One can still try to modify the
values of the variables directly in the decision procedure for trying to reduce
even further the number of generated model-equalities, but should be careful
to not invalidate the model, and never skip a valid model before affirming the
problem is unsatisfiable. Future work is required to give better theoretical
foundation and to evaluate experimentally the benefit of this method.

6.2.7 Theory propagation

One of the good new features decision procedures may have in SMT-solvers
is theory propagation. If used wisely and the SAT-solver is well integrated
with the decision procedures, theory propagation may improve considerably
the efficiency of an SMT-solver. However, the operation to find implied
literals should not be costly.

Using the graph theory presented in this chapter, it is easy to know if a
difference logic literal is implied by a set of constraints. Let x−y ≤ c be the
literal that we want to verify. If in our graph there is a path that goes from
y to x with length c′, where c′ ≤ c, then x− y ≤ c is implied by the current
set of constraints. This can be done by using a single-source shortest path

6.2. DIFFERENCE LOGIC DECISION PROCEDURE 123

input : G =(V,E): Graph
input : D: Set of Disequalities
output: s: Set of ModelEqualities
data : values: Multimap of < V alue, V ariable >
data : v1, v2: V ariable
data : Meq: ModelEquality
data : SCCs: Set of SCC

SCCs := G.SCC();1

foreach SCC scc in SCCs do2

values := NULL ;3

foreach Variable var in scc.V do4

values.Add(var.value, var);5

end6

foreach Value val in values do7

for i = 1 to values.Count(val)−1 do8

v1 := values.ElementOfAt(val,i);9

v2 := values.ElementOfAt(val,i +1);10

Meq := ModelEquality(v1, v2);11

if NotGeneratedYet(Meq) then12

s.Insert (Meq);13

end14

end15

end16

end17

if VerifyModel(D, s) = CONFLICTING WITH DISEQUALITIES18

then
// The model needs to be corrected

return s := NULL;19

end20

return s ;21

Algorithm 15: GenerateModelEqualitiesImproved

algorithm, such as Dijkstra algorithm [29, 19], which can be implemented in
O(|E| + |V | log |V |).

If there are many literals that can be implied, the single-source shortest
path algorithm is going to be used many times. In this case, maybe it is
better to use an all-pairs shortest path algorithm, such as Floyd-Warshall
algorithm [71, 19], which can be implemented in O(|V |3).

However, the smartest strategy would be to adapt the incremental satis-
fiability check algorithm. The ideal would be to make it also produce, with
little or no extra cost, the information necessary to perform theory propaga-

124 CHAPTER 6. DECIDING DIFFERENCE LOGIC

tion. The Floyd-Warshall algorithm is a natural example. Although slower,
Floyd-Warshall algorithm can also be used to detect negative cycles and
therefore unsatisfiability. Using it to check satisfiability would simplify the
later check for implied literals significantly.

Although theory propagation has been used in a few solvers for a few
years, it has just been implemented in our solver veriT, for the decision pro-
cedure of uninterpreted functions. The next step would be to implement it
also for difference logic. The research direction would be to adapt the in-
cremental satisfiability check algorithm presented in this chapter to simplify
the later use of theory propagation.

6.3 Conclusion

Additionally to satisfiability check, there are many extra requirements to
build a decision procedure for an SMT-solver. We have seen in this chapter
all the details necessary to build a complete decision procedure for real and
integer difference logic, fulfilling all the requirements.

It was presented an original9 incremental algorithm for the satisfiability
check which produce enough information to simplify the task of many of
the extra requirements. This chapter also contributes with precise details of
how to generate model-equalities for difference logic and obtain a decision
procedure that can be used in a combination framework, producing complete
results.

The next chapter also presents the elements necessary to build a decision
procedure. This time, the linear arithmetic theory is the focus. We will show
how to build a decision procedure based on the simplex algorithm.

9It was designed in a period pre-thesis.

Chapter 7

Deciding linear arithmetic

We have seen previously, the elements necessary to build a decision pro-
cedure for the arithmetic fragment of difference logic. To go to the linear
arithmetic domain and obtain more expressiveness, the algorithms change
and are completely different from the ones of the difference logic theory.
They are naturally more elaborate and less efficient, but we are still able
to solve important size problems using decision procedures for linear arith-
metic.

With linear arithmetic we gain more expressiveness. In this fragment
we are allowed to use addition, subtraction and multiplication with no re-
striction, except for multiplication between variables. Another advantage is
to use as many variables per constraint as necessary, instead of only two of
difference logic.

We no longer work with graph theory as in difference logic. There are
two main families of algorithms for linear arithmetic that have been used in
current SMT-solvers, one based on the Fourier-Motzkin elimination method
[22] and one based on the simplex method [20]. In this chapter, we take
the direction of the simplex that has been shown in practice to be the most
efficient method for linear arithmetic decision procedures lately [30, 61, 28,
51, 2]. We are going to show an original variation of the simplex designed
and implemented in our SMT-solver veriT.

7.1 Introduction to the simplex method

The simplex method was created by George Dantzig in 1947 and is one of the
most popular methods for linear programming. The name of the algorithm
comes from the concept of simplex, that in geometry is a generalization of
the notion of a triangle or tetrahedron to arbitrary dimension (Figure 7.1
shows a tetrahedron).

Typically, the simplex method solves linear programing problems, where
we are supposed to maximize (or minimize) a function, restricted by some

125

126 CHAPTER 7. DECIDING LINEAR ARITHMETIC

Figure 7.1: A tetrahedron or 3-simplex.

inequality constraints. An example of a linear programing problem is:

Maximize: F = 3x + 2y + z

Subject to: 2x + y ≤ 18

2x + 3y ≤ 42

3x + y + 3z ≤ 24

x, y, z ≥ 0

x, y, z ∈ Q

From a geometrical point of view, each inequality makes a cut in the
hyperspace. In the intersections, we have the edges and vertices that will
form our geometrical convex object, a n-dimensional polytope, where n is
the number of variables. The simplex algorithm starts at a vertex in the
feasible region (the region delimited by the simplex) and walks along the
edges of simplex, moving to vertices with higher objective functions. When
it reaches the local maximum, by convexity it is also the global maximum,
so the algorithm stops. Figure 7.2 shows an example in three dimensions
(three variables). It shows how following the edges of a simplex we can find
the global maximum of a linear function F .

There are only two exceptions when looking for optimal solutions: prob-
lems with multiple optimal solutions and problems with no optimal solution.
Problems have multiple optimal solutions when the maximum of a problem
lies on an edge, instead of a single vertex. Problems have no optimal solu-
tion when there is no maximum because some variables are unbounded and
may have any arbitrarily large values. In this case, the “simplex” object
representing the problem has infinite size.

Since the first version, multiple variations of the simplex method ap-
peared, see e.g. [21, 47, 6, 60]. They were developed to reduce some lim-
itations with the constraint and variable inputs, to make a wider range of
problems solvable, to increase performance with smarter decision heuristics,
to increase numerical accuracy, etc. The implementations for SMT-solvers
are also based on different simplex versions. We cite as examples versions

7.2. THE PRIMAL SIMPLEX 127

Figure 7.2: Starting at the origin, in the feasible region, the maximum of F
is reached by following the vertices with higher function value.

based on dual simplex [30], primal simplex [61] and even using commercial
floating point tools [11, 33, 46].

Following, the basic primal simplex is presented. We show how the
method works before explaining the variation of the simplex we developed
for our SMT-solver veriT.

7.2 The primal simplex

Consider the linear programming problem with two variables and three con-
straints. We want to maximize the Z function (i.e, get the optimal solution),
subject to three constraints. Additionally, the simplex method imposes1 the
restriction on the bound of the variables, x, y ≥ 0.

Maximize: Z = 2x + 3y

Subject to: − x + y ≤ 5

x + 3y ≤ 35

x ≤ 20

x, y ≥ 0

The first step of the algorithm is to transform the problem to
a system of linear equations. We can do this by creating slack variables,
changing inequalities like x + y ≤ 0 to x + y + s1 = 0, where s1 ≥ 0. The
simplex method also imposes that all the new slack variables must be greater
or equal to zero. After the transformations, the system obtained is:

1Doing otherwise would imply in important modifications in the operations of the
primal simplex method.

128 CHAPTER 7. DECIDING LINEAR ARITHMETIC

Maximize: Z = 2x + 3y

Subject to: − x + y + s1 = 5

x + 3y + s2 = 35

x + s3 = 20

x, y, s1, s2, s3 ≥ 0

In the second step, a tableau is built from the system of equa-
tions. The tableau is in matrix form and represents the system of equations,
see Figure 7.3. It provides a cleaner view of the problem and we will use it
to perform the algorithms operations. The restriction x, y, s1, s2, s3 ≥ 0 is
omitted.

Figure 7.3: Initial tableau created from the translation of the system of
linear equations.

At this point we can define two sets for classifying the variables that we
will constantly refer to in the simplex operations: the basic variables and
the non-basic variables. Every equation in the tableau has exactly one basic
variable and the basic variable of an equation e only appears in e. The non-
basic variables have no such restriction. The idea is that the basic variables
are defined by a linear combination of non-basic variables.

We say that a variable is in the basis if it is a basic variable. Non-basic
variables may enter the basis making a basic variable to leave the basis when
performing pivot operations that will be explained later. In the tableau, the
variables in the basis are shown in the first column. They may also be
identifiable by checking the columns for variables that only appear in one of
the constraints (in one of the rows there is a 1 and in the remaining there are
only 0). The construction of the tableau makes it direct to set the variables
Z and si as the initial basic variables. Figure 7.4 highlights this.

At any point, we have a basic solution associated to the tableau. In a
basic solution, all non-basic variables are assigned to the value zero, and
the value of the basic variables can be obtained by dividing the value in the
rightmost column by the non-zero value in the variable column, in our case
always 1. The basic solution of the initial tableau can be seen in Figure 7.5.

7.2. THE PRIMAL SIMPLEX 129

B
as

ic
 v

a
ri

a
b
le

s

Figure 7.4: Identifying basic variables in the tableau.

Figure 7.5: Basic solution of the initial tableau, in Figure 7.3

Third step is to select the variable that will enter the basis.
We look at the numbers in the bottom row, the row of the maximization
function, and look for the most negative number. See Figure 7.6. If there
are no negative numbers in the bottom row, it means the optimal solution
was reached and the algorithm stops.

To see clearly the reason, rewrite the last row back to the equation form.
We obtain Z − 2x − 3y = 0, or, Z = 2x + 3y. Notice that to maximize the
value of Z, we need to increase the value of x or y, that are the variables
with negative numbers in the last row of the tableau. Variables with positive
numbers would need to be decreased. But as they are non-basic variables
(have value zero) and additionally have lower bound equal to zero, they
actually cannot be decreased. Therefore if there are no negative numbers
in the bottom row, the maximization function cannot be improved and the
algorithm stops.

The most negative number is related to the variable that has the poten-
tial to increase the most the maximization function in a single step. It is not
necessarily the path that will lead to the optimal solution the fastest, but it
is a general good greedy heuristic defined in the original simplex method.

The fourth step is to select the variable that will leave the
basis. We perform a test to determine which variable is limiting the most
the change of value of the entering variable, as we do not want to violate
the constraints. The test is as follows: we calculate ratios by dividing the
positive numbers in the column of the entering variable by the number in
the same row in the rightmost column. The variable with the lowest ratio is
the variable restricting the most the change of value of the entering variable
and will leave the basis, see Figure 7.7. If there is no positive entry the

130 CHAPTER 7. DECIDING LINEAR ARITHMETIC

Candidate variables

to enter the basis

Figure 7.6: Selecting the variable to enter the basis. y will be the variable
choose to enter.

solution is unbounded and the algorithm stops.

Remember that non-basic variables have value zero and basic variables
have their values calculated from the equations. The ratio test is simply
the calculation of the new value of the entering variable when we reduce
the value of the leaving variable to its minimum, i.e., zero. Therefore, the
lowest ratio is the maximum non violating value that the entering variable
may have. In the original simplex method, it is required to always stay
in the feasible region while searching for the optimal solution. Violating a
constraint means we leave the feasible region, or in a geometrical point of
view, we no longer are at a vertex of the simplex that represents the problem.

We do not use zero numbers in the ratio test because dividing by zero
means that the entering variable has no restriction and could have infinite
value. That is why if there is no positive entry in the ratio test the solution
is unbounded and the algorithm stops.

Ratio test

Entering variable

--

Figure 7.7: Selecting the variable to leave the basis: calculating the ratio.
s1 will be the variable chosen to leave.

The fifth step is to pivot. We do linear arithmetic combinations
to express the equations of the tableau in terms of the new set of basic
variables. The resulting tableau is shown in Figure 7.8. Variable y entered

7.2. THE PRIMAL SIMPLEX 131

the basis and variable s1 left the basis. The equations were rewritten so y
only appears in one constraint. The current solution has the value of the
maximization function Z 15. However, there is still room for improvement
as there is a negative number in the bottom row. We repeat steps 3-5
until no negative numbers are found in the bottom row.

Entering variable

New basic variable

Leaving variable

Figure 7.8: The resulting tableau after doing the pivot step. The basic
variable s1 was replaced by y and the equations had linear combinations
performed to remove y from them.

Repeating the steps 3-5 twice, we get the tableaux shown in Figure 7.9
and Figure 7.10.

Figure 7.9: The resulting tableau after replacing the basic variable s2 by the
non-basic variable x.

At this point, there are no longer negative variables in the bottom row,
so the algorithm stops. The solution associated to the last tableau shows
us that the optimal solution Z is 55 and that happens when variable x has
value 20 and variable y has value 5.

We can also see what is happening geometrically when running the sim-
plex method on this example. Fixing as the axis the variables x and y, we
can have a 2-dimensional representation of this same example in a Cartesian
plane. The initial state can be seen in Figure 7.11.

132 CHAPTER 7. DECIDING LINEAR ARITHMETIC

Figure 7.10: The resulting tableau after replacing the basic variable s3 by
the non-basic variable s1.

0
5 10 15 20

5

10

Figure 7.11: Geometric representation of the first tableau, the one of Fig-
ure 7.3.

The highlighted area, delimited by the constraints of the problem, is the
feasible region. The start vertex is (x = 0, y = 0) and we move toward
other vertices whenever we can maximize the objective function Z. The
maximization function can also been seen in the figure and its arrows point
to the direction where Z can be maximized.

The result of the first pivot can be seen in Figure 7.12. The variable y
is now a basic variable and has a value different from zero. The objective
function Z is now 15.

0
5 10 15 20

5

10

Figure 7.12: Geometric representation after the first pivot operation. Same
state of the tableau of the Figure 7.8.

The next pivot result in the the graph of Figure 7.13. The variable x
enters the basis and now has value 5. The value of variable y changes to 10
and Z goes to 40.

7.2. THE PRIMAL SIMPLEX 133

0
5 10 15 20

5

10

Figure 7.13: Geometric representation after the second pivot operation.
Same state of the tableau of the Figure 7.9.

The result of the last pivot can be seen in Figure 7.14. We reach the ver-
tex where Z has its maximum possible value when obeying the constraints.
The graph represents perfectly the final solution, where Z = 55 with x = 20
and y = 5.

0
5 10 15 20

5

10

Figure 7.14: Geometric representation of the final state, after the last pivot
operation. Same state of the tableau of the Figure 7.10.

This geometric representation can help understanding how the simplex
method works. Notice however, that not all the information can be found in
this graph representation. There is no information about the artificial slack
variables (we could have included extra axis to represent more variables).
The graph does not show which variables are in the basis. We know that
a variable is in the basis if it has value different from zero (by definition of
the primal simplex), but otherwise we cannot state the opposite.

One interesting observation comes from how the solution changes. Notice
that the direction that the solution moves depends on the current basis.
Every time there is a pivot, changing the basis, the solution can move in
another direction, going from one vertex to another.

One thing that may happen during the simplex method is degeneracy.
It happens when at some moment we have a basic variable with value zero.
This may make the ratio test value zero and as result, the value of the
maximization function after the pivot will not increase. Geometrically this
happens when there are two or more vertices in the same point in the space,
due to the intersection in the same point of three or more equations. De-
pending of which variables are chosen to enter and leave the basis, we may
change of vertex but remain in the same coordinate point. Adding the con-

134 CHAPTER 7. DECIDING LINEAR ARITHMETIC

straint y ≤ 10 to the previous problem, creates a degenerate point that we
can see in Figure 7.15.

0
5 10 15 20

5

10

Degenerate point

Figure 7.15: Degenerate point in the simplex.

Degeneracy happens with a certain frequency but it is not a serious issue
unless it causes cycling, returning to a state that it has been before. But
cycling does not happen often in practice. Nevertheless, there are methods
for avoiding cycling, like Bland’s rule [13]. Bland’s rule works by giving
an ordering to the variables and in case of ties in the minimum rate test,
choosing the “smallest” variable to leave the basis.

In this section we have seen the primal simplex method and some details
of interpretation. In the following section we are going to show how to create
a decision procedure for linear arithmetic based on the simplex method but
that has some important differences.

7.3 Incremental satisfiability check

In this section we show an original variation of the simplex algorithm. Our
goal is to adapt the simplex method and to build a decision procedure for
linear arithmetic. The first thing we need to adapt is the restrictions2 about
the constraints that are found in the primal simplex. Our procedure must:
have variables initially unbounded (and not initially lower bounded by zero);
and accept also equations and disequalities (and not only inequalities). The
second important adaptation is to make the procedure incremental: as we
have seen in Chapter 5, this is a fundamental requirement for efficiently in-
tegrating a decision procedure into an SMT-solver. In the following sections,
we will also see how to extract important information that is also required
like conflict set, model-equalities, etc.

Continuing with the differences, there is also an important relaxed re-
striction in comparison with the primal simplex: we no longer need to get
an optimal solution. Any feasible solution is enough to detect the satisfia-
bility. The simplex method works by improving the solution step-by-step,
only stopping when the optimal solution is found. The relaxed restriction is

2Some of the restrictions can already be easily relaxed in some variations of the simplex
or as pre-processing.

7.3. INCREMENTAL SATISFIABILITY CHECK 135

great because now the algorithm can stop even earlier, whenever a solution
satisfiable.

We explain the details of how it works and at the same time present an
example. Through this section, we check the satisfiability of the following
set of constraints.

− x + y ≤ 5

x + 3y ≥ 35

x ≥ 0

y ≤ 5

3x + 3y = 120

The algorithm incorporates one constraint at a time and if it finds a
conflict, it stops immediately. For each new constraint, there are several
steps that follow.

The first step is to verify if there are new variables. For each new
variable, we initialize the lower and upper bounds to minus and plus infinity,
respectively. We also initialize the current value of these new variables by
setting them to zero. In the case of the first constraint −x + y ≤ 5, we get
two new variables x and y. To help to keep track of the value and bounds
of the variables, we create a table that that will be shown as the example
continues. Its initial state is in Figure 7.16.

Bounds

Figure 7.16: Just after −x+y ≤ 5 is added to the problem, the new variables
x and y have value and bounds initialized.

We still have the idea of basic and non-basic variables. A basic variable
only appears in one constraint while a non-basic variable may appear in
several ones. Just created variables are always non-basic at the beginning.

The main difference to primal simplex is that a non-basic variable may
have a value different from zero. We do not have the restriction of lower
bound equals to zero anymore, so variables may have values decreased be-
yond zero. A basic variable continues to have its value calculated from the
non-basic variables, but as the non-basic variables may have values different
from zero, the calculation is not as direct as before.

The second step is to normalize the new constraint. We do it
by replacing the basic variables by their equivalent expressions containing

136 CHAPTER 7. DECIDING LINEAR ARITHMETIC

only non-basic variables. As we are processing the first constraint and still
do not have basic variables, the constraint −x+y ≤ 5 is already normalized
and therefore remains the same.

The third step is to set the new constraint as the objective
function and try to satisfy it. Briefly saying, we try to satisfy the new
objective function (which we may also call goal) by changing the values of the
variables and doing pivot operations when necessary. It is not very different
from the primal simplex, but due to a few changes we have incorporated,
some details are not the same.

Back to the example, because of the current values of the variables, the
goal is already satisfied. If we replace the values and evaluate the expression
−x + y ≤ 5, we obtain −0 + 0 ≤ 5 which is true.

One of the good aspects of our incremental algorithm is that in many
situations, like the previous one, the new constraint is already satisfied by
the current problem, so no costly operation is necessary for a complete check
of satisfiability. We will see more complex scenarios and details of step three
when we process the remaining constraints.

The fourth step is to incorporate the new constraint to the
current set of constraints. The way we do it will depend if it is an
equation, inequality or disequality.

If the constraint is a disequality, we just save it apart to use it later.
Disequalities cannot be directly incorporated into the simplex, so we will
only use them later for doing some final verifications.

If the constraint is an inequality, we create a slack variable to transform
the inequality into an equation before incorporating it. Then, we set a value
and a bound to the slack variable and choose the new slack variable as the
basic variable of the constraint. The current value of the new slack variable is
set to the difference between the evaluation of the variables and the constant
term. In the case of our example, the variables of the expression −x+y ≤ 5
evaluates to 0, so a new slack variable s1 is set to 5 and the lower bound to 0,
resulting in the new equation −x + y + s1 = 5. Notice that if the inequality
was −x + y ≥ 5, the resulting new equation would be x− y − s1 = −5, with
s1 > 0 and the value of s1 set to 5.

If the constraint is already an equation, we do not need to create a slack
variable. We just choose one of the variables to be the basic variable and
normalize the previous constraints (like in step two) to remove the new basic
variable from these constraints, if necessary.

There are two particular cases in this step. The first is if the constraint
contains only one variable, we can adjust the bounds of the variable ac-
cordingly and then discard the constraint. The second is if the constraint
contains no variable3, as it is a satisfying expression with no variable, we

3Additionally to user given constraints, this may occur because of operations like nor-
malization and/or pivoting. The result can be an objective function containing no variable,

7.3. INCREMENTAL SATISFIABILITY CHECK 137

can simply discard it.

The result of processing the first constraint can be seen in Figure 7.17.
It shows the constraint in the form of tableau, next to the table with the
bounds and values of the variables.

Bounds

Figure 7.17: The result of processing the constraint −x + y ≤ 5.

At the same time, we can see geometrically what this processing means in
a two dimensional graph shown in Figure 7.18. Simply adding the constraint
does not make our current position (x = 0, y = 0) invalid (out of the feasible
region). As we are not interested in finding the optimal solution, but just a
solution, the current solution (x = 0, y = 0) does not need to change.

0 5 10 15 20

5

10

Figure 7.18: Geometric representation of the problem after adding the con-
straint −x + y ≤ 5. The highlighted area represents the current feasible
region and the point at the origin indicates the current value of user vari-
ables x and y.

The problem so far is satisfiable, so we continue processing the con-
straints. The second constraint is once again an inequality, x + 3y ≥ 35.

In the step one, we find no new variable. In the step two, there are no
basic variables in the constraint x + 3y ≥ 35, so it is already normalized.

like e.g., the expression 0 = 0.

138 CHAPTER 7. DECIDING LINEAR ARITHMETIC

We go then to step three. The constraint x + 3y ≥ 35 is not currently
satisfied by the values of the variables as it evaluates to 0 ≥ 35. To try to
satisfy the new constraint, we will start a sequence of operations to change
the values of the variables, while respecting the previous constraints.

We set x + 3y ≥ 35 as our goal. That means we will try to maximize
the left side of the expression until it evaluates to the same value in the
right side. What we do now is similar to what we did in the primal simplex.
We perform a sequence of sub-steps in a loop until the new constraint is
satisfied or until we conclude there are no solution. The tableau reflecting
the current state of the algorithm is shown in Figure 7.19.

Bounds

Figure 7.19: The state of the tableau after the constraint x + 3y ≥ 35 was
added. We want to maximize the left side of the expression in the last row
so that it reaches the same value of the right side.

Sub-step 3.1 is determining a variable to enter the basis. We
look at the variables that are currently in the goal to determine which ones
we can change the value so that we can get closer to the goal. If none of
the variables in the goal can change its value we determine the
problem to be unsatisfiable. This happens if all the variables in the goal
are directly limited by their bounds. If variables cannot change their value
to satisfy the new constraint, we can conclude the problem has no solution
and therefore the algorithm stops. Otherwise, determining which variable
can change its value is done as following.

First, we check the sign of the coefficients to know if we need to increase
or decrease the value of each variable. In our example, both x and y have
positive coefficients and as we want to maximize, we need to increase their
values.

Ideally, we would pick the variable to enter the basis that can get us
fastest to the goal. In practice, calculating this information precisely would
be very costly, so we use a heuristic. In the primal simplex, we simply choose
the variable with the greatest coefficient. But in our case, as we now may
have upper limits to the variables, we do a bit differently.

We use the following heuristic test. For each variable in the goal, we
multiply the coefficient by the difference between the bound limit and the
current value of the variable. We pick the variable with the highest result
from the test. In case of a tie, we choose the variable with greatest coefficient.

Figure 7.20 shows the calculation to get these values for both variables

7.3. INCREMENTAL SATISFIABILITY CHECK 139

x and y. As both x and y are unbounded, they end up having the same
value. To break the tie, we choose y to enter the basis since it has a greater
coefficient in the goal.

Bounds

Entering
variable

test

Figure 7.20: Deciding which variable to enter the basis.

Sub-step 3.2 is determining a variable to leave the basis. The
basic variable chosen to leave the basis will be the one that is limiting the
most the change of value of the entering variable. The description of how
to determine it follows.

We perform a test involving each constraint. The test is similar to the
one in the primal simplex. The biggest difference is that now the calculation
is done taking into consideration that the variables may be unbounded or
have bounds different from zero. We describe here the test for the case
where we want to increase4 the value of the entering variable.

For each constraint that contains the entering variable, we first check
the signs of the coefficients in both entering and basic variable. We have to
compensate every change in the value of the entering variable by changing
also the value of the basic variable. In this way, we maintain the equations
valid, keeping our solution inside the feasible region. If the signs are the
same, the basic variable will also increase its value, and for the upcoming
calculus, we take in consideration the upper bound. Otherwise, if signs are
opposites, the basic variable will have its value decreased, and in this case
we pay attention to the lower bound.

For the calculation, in each constraint, we multiply the coefficient of the
basic variable cbv by the difference between the value vbv and the bound
bbv of the basic variable and divide the result by the coefficient of the en-
tering variable cev in the constraint. This calculation informs what would
be the value of the entering variable when replaced by each of the current
basic variables. The basic variable that leads to the smallest result in this
calculation will be the one chosen to leave the basis, as it is the variable
limiting the most the change of value of the entering variable and, as it was
explained before, we want to change the value of the entering variable, while
respecting all the constraints, the maximum possible. The new value of the
entering variable v′ev will be the sum of the old value vev and the result of

4It is very easy to adapt it for the case we want to decrease the value of the variable.

140 CHAPTER 7. DECIDING LINEAR ARITHMETIC

this calculation done with the leaving variable.

cev(vev − v′ev) = −cbv(vbv − v′bv) #Balance in the change of values

cev(vev − v′ev) = −cbv(vbv − bbv) #The new value of the BV is its bound

vev − v′ev = −cbv(vbv − bbv)/cev

v′ev = vev + (cbv(vbv − bbv)/cev) #The new value of the entering variable

In the case of our example, we only have one constraint so far. We know
that s1 will leave the basis, but we do the test to obtain the new value of
the entering and leaving variables. Figure 7.21 shows how the test is done.

Bounds
Leaving variable test

Figure 7.21: Deciding which variable to leave the basis and determining
what will be its new value.

Sub-step 3.3 is to update the values of the basic variables and do
a pivot operation. First, we go through all the constraints that contain the
entering variable and update the value of the basic variables in each of these
constraints. Then, we replace the leaving variable by the entering variable
in the basis. Finally, we do linear arithmetic combinations to express the
equations of the current problem in terms of the new set of basic variables,
exactly like it is done in the primal simplex.

Knowing the variation of the entering variable value, we can obtain the
new values of the basic variables by simple math. Similar to the previous
formula for calculating the value entering variable, for each constraint we
have:

v′bv = vbv + (cev(vev − v′ev)/cbv) (7.1)

In our example, we already know, from previous calculation, that s1

will have value zero. After adding y to the basis and removing s1 from it,
it remains to do a linear combination in the goal to replace y by its new
equivalent expression. The resulting tableau is shown in Figure 7.22.

We know that the goal will be satisfied when the value of its constant
term reaches 0. In the last pivot this value went from 35 to 20. We got
closer to a solution and to satisfy the new constraint, but we are not there
yet and therefore we need to repeat the step three.

Now we have variables x and s1 in the goal. We do the entering variable
test to determine which variable will enter the basis. The test is shown in

7.3. INCREMENTAL SATISFIABILITY CHECK 141

Bounds

Figure 7.22: The resulting tableau after the first pivot.

Figure 7.23. To increase the left side of the goal expression, the variable x
needs to increase its value, while s1 needs to decrease. In the test we see
that s1 is directly limited by its bound and cannot have its value decreased.
On the other side, x is unbounded and can have its value increased as much
as the constraints of the problem let, so x is chosen to enter the basis.

Bounds

Entering
variable

test

Figure 7.23: Deciding, between x and s1, which variable to enter the basis.

Next step is to determine by how much x is limited by the only constraint
we have by now and see what will be the new value of x. Figure 7.24 shows
the test. The test indicates that the value of x is not limited by the constraint
where y is basic variable. That means that we could change its value to as
much as we want.

Bounds
Leaving variable test

Figure 7.24: Determining how much the value of x can increase.

In practice, we just change the minimum to make the goal satisfied. We
know that to make the left side of the goal equal to the right side, we need
to increase it by 20. If the coefficient of x in the goal is 4, then is enough to
increase the value of x by 5.

If changing the value of the entering variable is enough to reach
the goal then we do not need to pivot and change the basic vari-
ables. However, we still need to update the values of the basic variables.

142 CHAPTER 7. DECIDING LINEAR ARITHMETIC

Once the values are updated, we add the goal to the set of constraints by cre-
ating a new slack variable. After that, we are done with the new constraint
and ready to receive another one.

In the example, the new value of x is 5, and that makes the new value of
y equal to 10. The slack variable created is s2. Setting the lower bound of s2

to 0, makes its coefficient equals to -1. Since the equation is balanced, the
value of s2 is initially 0. The resulting tableau can be seen in Figure 7.25.

Bounds

Figure 7.25: The final satisfying state of the tableau after the constraint
x + 3y ≥ 35 is processed.

We can see in the two dimension graph of Figure 7.26, the result of
processing the constraint x+3y ≥ 35. We went from the solution (x = 0, y =
0) to the solution (x = 5, y = 10) passing through the point (x = 0, y = 5).
The highlighted area is the new feasible region, now considering the first
two constraints.

0 5 10 15 20

5

10

-5-10-15-20

-5

-10

-15

-20

15

20

Figure 7.26: Resulting graph after processing and adding the constraint
x + 3y ≥ 35.

The new constraint to add is x ≥ 0. There is only one variable which is
already known, the variable x. x is not a basic variable, so the constraint
is already normalized. Additionally the constraint is already satisfied since
the value of x is 5.

7.3. INCREMENTAL SATISFIABILITY CHECK 143

It only remains to add this new constraint to the problem. As this is a
special case, with only one variable, we choose to not add it to the set of
constraint, but to change the lower bound of the variable x. Making this
information available directly in the bounds of the variable is preferable as
it makes the operations of the method faster and we also avoid to create
extra slack variables.

The new state of the tableau does not change, only the bounds table.
It can be seen in the Figure 7.27. The feasible region of the current set
continues the same of the Figure 7.26 as well as the solution point.

Bounds

Figure 7.27: The tableau and the value/bounds table after the constraint
x ≥ 0 is processed.

The next constraint to process is y ≤ 5. y is a known variable and is
in the basis. We normalize this constraint to replace y by its equivalent
expression, so the constraint becomes x − s1 ≤ 0. The evaluation of the
expression (5 ≤ 0) indicates it is not satisfied, so we proceed the operations
to change the values of the variables and satisfy the new constraint.

This time the left side of the inequality needs to decrease its value to
reach the same amount of the right side. We could proceed by performing
a minimization, doing just small modifications in the operations used in
the maximization to have a coherent method. However, it is simpler to
multiply the inequality by -1 and perform a maximization over the constraint
−x+ s1 ≥ 0. The current tableau, that we are going to work with, is shown
in Figure 7.28.

Bounds

Figure 7.28: The next goal was set to maximize −x + s1 to reach 0.

Doing the entering and leaving variable test, it is decided that s1 enters
the basis and s2 leaves the basis. The test can be seen in Figure 7.29. This
time, the current solution was not improved, but the algorithm continues as

144 CHAPTER 7. DECIDING LINEAR ARITHMETIC

there is still room for improvement.

Bounds

Entering
variable

test

Entering
variable

Leaving variable test
Leaving
variable

Figure 7.29: s1 enters the basis in the place of s2.

After the variable s1 enters the base, the next entering variable test
determines that variable x should now enter, as it can be seen in Figure 7.30.
The leaving variable test reveals that none of the constraints is limiting x,
so it can be increased as much as it is necessary. We increase x to 20, the
minimum necessary to satisfy the goal, and then update the value of the
basic variables. The result can be seen in Figure 7.31.

Although the satisfying process of the constraint y ≤ 5 was not direct
as of the constraint x ≥ 0, the constraint y ≤ 5 is also a special case where
there is only one variable. Therefore, we include this information not in the
tableau, but in the bounds table. In fact, if we are processing a constraint
and, at some moment, it contains only one variable, we can choose in the
end to change the bound of this variable instead of including this constraint
in the tableau.

Bounds

Entering
variable

test

Leaving variable test

Entering
variable

Figure 7.30: x would enter the basis, but since no other constraint is limiting
its increase, x has will have it value changed to 20 and will remain out of
the basis.

Geometrically, the result of processing the constraint y ≤ 5 can be seen
in Figure 7.32. The new cut in the feasible region, related to this constraint,
made the solution point move from (x = 5, y = 10) to (x = 20, y = 5).

The last constraint to process in our problem is the equation 3x + 3y =
120. There are no new variables. Normalizing the equation, we get 2x+s2 =

7.3. INCREMENTAL SATISFIABILITY CHECK 145

Bounds

Figure 7.31: Tableau and values of the variables satisfying the goal.

0 5 10 15 20

5

10

-5-10-15-20
-5

-10

-15

���

15

20

Figure 7.32: Resulting graph after processing y ≤ 5.

85. The evaluation of the equation, 40 = 85, indicates that the constraint
is not satisfied. As in the inequality case, we are going to maximize the left
side, initially 2x + s2, to reach the same value of the right side. Figure 7.33
shows the initial tableau.

Bounds

Figure 7.33: The next goal was set to maximize 2x + s2 to reach 85.

Doing the entering and leaving variable test, we find out that x can have
its value increased as much as necessary, as shown in Figure 7.34. We then
set the value of x to 42.5 and propagate the change by updating the basic
variables. The difference now is that as this constraint is not an inequality,
we can choose one of its variable to be the basic variable instead of creating

146 CHAPTER 7. DECIDING LINEAR ARITHMETIC

a new one. The extra step is that we need to normalize the other constraints
to remove the new basic variable. The final tableau is shown in Figure 7.35.

Bounds

Entering
variable

test

Leaving variable test

Entering
variable

Figure 7.34: x is chosen to change the value.

Bounds

Figure 7.35: The final tableau, after the constraints −x+y ≤ 5, x+3y ≥ 35,
x ≥ 0, y ≤ 5 and 3x + 3y = 120 were processed.

The new graph representing the problem and the solution is shown in
Figure 7.36. Notice that after the last equation was added the feasible region
got very restricted (in this graph, represented only by a line segment).

7.4 The unsatisfiable case

We have seen all the particular cases of the algorithm where the final status
is satisfiable. The remaining situation is when a new constraint makes the
problem unsatisfiable. Consider that a new constraint arrives to the same
problem:

x ≥ 50

We proceed as before. Normalizing the constraint we get −s2 ≥ 15 which
we set as the goal. s2 is currently the only candidate variable to change the
value to satisfy the goal. It needs to have its value decreased. However,
doing the entering test variable, we get that s2 cannot decrease its value
anymore. Its value is directly limited by its lower bound, as it shows the
test in Figure 7.37.

7.5. GENERATING THE CONFLICT SET 147

0 5 10 15 20

5

10

-5-10-15-20
-5

-10

-15

�	

15

20

25 30 35 40

Figure 7.36: The final graph in two dimensions, after the constraints −x +
y ≤ 5, x + 3y ≥ 35, x ≥ 0, y ≤ 5 and 3x + 3y = 120 were processed.

Bounds

Entering
variable

test

Figure 7.37: The only variable in the goal, s2, cannot have its value changed
to satisfy the goal.

If all of the variables in the goal cannot have their value changed because
they are directly limited by their bounds, it means we cannot satisfy the new
constraint and therefore the problem is unsatisfiable.

7.5 Generating the conflict set

The reason why the problem is unsatisfiable is because the variables in the
goal cannot have their value changed to make the goal satisfiable. That is
because all these variables are directly limited by their bounds. We want to
return the original set of constraints that reflects this explanation.

First, we save apart all linear arithmetic combinations we do with the
constraints during the algorithm, like in the normalization and the pivot
operations. We keep associated to each of the constraints a linear expression
that shows what were the linear combinations done so far to obtain this
constraint.

148 CHAPTER 7. DECIDING LINEAR ARITHMETIC

An illustrative example is shown in Figure 7.38. It is an extended tableau
of Figure 7.37 that also shows the explanation of the linear combinations.
For instance, the constraint in the first row of the tableau (6y − 3s2 = −15,
or equivalently, 6y ≥ −15) is obtained when we multiply the second user
constraint (x + 3y ≥ 35) by 3 and subtract the result by the fifth user given
constraint (3x + 3y = 120).

When we normalize the sixth constraint x ≥ 50, by multiplying this new
constraint by 2 and subtracting by the third row of the tableau, the same
is done with the side explanation. The explanation of the sixth constraint
becomes 2C6 − (−C2 + C5).

Bounds

Explanation

Explanation

Figure 7.38: Extended version of the tableau with the linear explanation of
the combinations.

The second side task we do to build the conflict set is to save also the
explanation of why the bound has some value different from +∞ or −∞.
For instance, in the Figure 7.38, x has lower bound equal to zero because of
the third constraint given by the user, x ≥ 0.

We do not need to worry about lower bound explanations of slack vari-
ables because they are crafted internal information. The reason why they
have lower bound equals to zero comes from the transformation of the in-
equalities into equations, and not because of the user given constraints.

So, for constructing the conflict set, if we know that the problem is
unsatisfiable because we cannot modify the values of the variables in the
goal to do a consistent evaluation, we simply construct the conflict set by
collecting the constraints in the explanation that led to goal expression plus
the constraints that explain the limitation of the bounds of the variables in
the goal. As we are maintaining this information updated, constructing the
conflict set is a straightforward task.

In the case of our last example, the conflict set is {C2, C5, C6} which is
{x + 3y ≥ 35, 3x + 3y = 120, x ≥ 50}. That is all the information that the
decision procedure needs to return. However, notice (although not required
by the decision procedure) that summing the exact explanation of the goal

7.6. BACKTRACKING 149

and the bounds we can precisely find the inconsistency:

(x + 3y ≥ 35)
+ −1× (3x + 3y = 120)
+ 2× (x ≥ 50)

(x + 3y ≥ 35)
+ (−3x − 3y = −120)
+ (2x ≥ 100)

0 ≥ 15

7.6 Backtracking

One of the good aspects of this original algorithm is that we do not need
to be in the vertex of a simplex before running it. This property simplifies
considerably the backtrack.

The backtrack needs to return the decision procedure to a state equiva-
lent to one before the constraint was added to the problem. In the case of
our proposed algorithm, two states are equivalent if they are both satisfiable
or both unsatisfiable, and all the information kept in the tables comes from
linear combinations of the same set of constraints. It is easy to fulfill this
requirement to backtrack as it is not necessary to return to the exactly same
solution as before, neither have to save the values of the variables to recover
them later.

When going from a satisfiable to an unsatisfiable solution, simply remov-
ing the last constraint will return the problem back to a satisfiable solution.
In the case of going from a satisfiable solution to another satisfiable solution,
removing the last constraint will not violate the current solution. That hap-
pens because when the algorithm is looking for a solution, it always respects
the previously added constraints. Therefore, if we simply remove the last
constraint, we are sure to return to a satisfiable solution.

We can see a graphical example of an arbitrary problem in Figure 7.39.
The state goes from satisfiable to unsatisfiable and then backtrack is per-
formed.

There is just one major detail while backtracking. Due to the combina-
tions performed during the algorithm, there may remain some trace of the
constraint that we want to remove in the other constraints. See, for instance,
that if we remove the sixth and the fifth constraints in Figure 7.38, it still
remains a trace of the fifth constraint C5 in the first and second rows.

The solution for this is simple though. Before removing a constraint
Ck, we go through all the other constraints and remove any trace they may
contain of Ck by doing a linear combination as shown by the explanation.
So in the example of Figure 7.38, before removing C5, we first subtract C5

from the first row, and two times C5 from the second row.

150 CHAPTER 7. DECIDING LINEAR ARITHMETIC

15 20

10

-10-15-20

-10

-15

-20

15

20

(a) At a satisfiable state.

0 5 10 15 20

5

10

-5-10-15-20
-5

-10

-15

��

15

20

(b) The solution moves to try to sat-
isfy the goal, but there is no feasible
solution.

15 20

10

-10-15-20

-10

-15

-20

15

20

(c) Removing the last constraint we
automatically go back to a feasible so-
lution, although different from (a).

-10-15-20

-15

-20

(d) Removing two more constraints,
the solution is no longer in an edge of
the simplex, but is still feasible.

Figure 7.39: Backtrack in action.

The remaining tasks while backtracking are direct, like restoring the
previous upper and lower bound, or undoing the registration of a variable
(if it happened to be created by the removed constraint).

7.7 Equality generation

Complete strategies for generating all equalities between variables are costly.
But some non expensive search can be done to find some equalities in a few
cases.

A low cost deduction can be done when two variables have the same value
and they cannot have another value because their lower bound are equal to

7.8. MODEL-EQUALITY GENERATION 151

their upper bound. This is the easiest way of detecting some equalities.

A not so low cost deduction can be done when comparing equations. If
isolating two variables on the left side of two different equations, one gets
the same right side in both equations, then the two variables are equal to
each other. For instance, we can deduce that x = y from the two following
constraints:

x = 3z − 4w + 5

y = 3z − 4w + 5

A high cost, but complete way of detecting equalities is to ask informa-
tion to the simplex. In a satisfiable state of the problem, for each pair of
variables (x, y) that have the same value, we set as the goal (in two differ-
ent runs) first x > y and then x < y. If in both cases the goal cannot be
satisfied, we can conclude that x = y.

These are some examples of equality detection that can be applied. The
first two strategies are applied in some SMT-solvers, like described by de
Moura and Nikolaj [25]. However, so far in our solver veriT, we only ap-
ply model-equality generation (as explained in the next section) to obtain
completeness.

7.8 Model-equality generation

Model-equalities are used to obtain completeness for a combination of the-
ories like explained in 4. Generating model-equalities is very simple and
direct in our case. We just look at the values of the variables and create
model-equalities between the variables that have the same value.

Because of the nature of the algorithm, the values in our model are
naturally more spread than, for instance, the values in the model of the
difference logic decision procedure. This makes the decision procedure for
linear arithmetic generate fewer model-equalities.

That is how it is implemented in our solver veriT. However, as the al-
gorithm works even if the solution is not in the vertex of the simplex, in
the case it is wished to reduce the number of model-equalities, some heuris-
tics could be used to change the values of the variables while respecting the
constraints, but this remains a task to experiment.

7.9 Disequalities and strict inequalities

Disequalities cannot be incorporated into the tableau, so they are stored
and checked later. The decision procedure for linear arithmetic can handle
the disequalities in the same way as the difference logic decision procedure
presented in Section 6.2.5.

152 CHAPTER 7. DECIDING LINEAR ARITHMETIC

The decision procedure checks for the model-equalities and generates
lemmas to modify the current model whenever there are conflicts between
the model and disequalities. For instance, if in our model we have x = y
and there exists the disequality x 6= y, then the decision procedure would
generate the lemma x 6= y =⇒ x < y ∨ x > y to incorporate in the
SAT-solver, that will in the next iteration modify the model.

Handling strict inequalities is done exactly like in the difference logic
case, explained in details in Section 6.1.1. We replace constraints like x+y <
c to x+y ≤ (c− δ) and change the way we represent the numbers to be able
to do mathematic operations with delta.

7.10 Integer variables

The way it was presented so far, the decision procedure is complete for
reals and can be used in combination with other decision procedures in an
SMT-solver. However it is not the case when there are integer variables.

The general strategy of simplex algorithms to handle integer variables
is to use branch-and-cut techniques [45], which is a mix of branch-and-
bound with cutting planes [36]. We run the simplex and whenever the final
solution gives a real value to an integer variable, cutting planes and branch-
and-bound techniques are alternately applied to eliminate this solution and
get a new one that hopefully will have an integer value.

The basic idea of cutting planes techniques is to generate a constraint
that will eliminate the current real solution and possible a few other ones,
but will not eliminate any valid integer solution. If the new solution is
not integer, it will continue to generate constraints (cuts) until an integer
solution is found.

Branch and bound works by creating case splits at integer variables with
real values, invalidating the current solution. As a simple example, let x be
an integer variable with invalid value 1.5, branch and bound will split and
try two scenarios, one adding the constraint x ≤ 1 and other adding the
constraint x ≥ 2. If in one of the scenarios an integer solution is found, the
solution is also valid to the original problem.

While branch and bound is simple, it may have termination issues when
variables are unbounded, so it is not enough to be used alone. Cutting
planes, on the other side, is a complete strategy, but it is not trivial to
generate the cuts. Modern strategies try to play both techniques at the
same time to find an integer solution.

A complete strategy for integer variables remains as a work to do in our
solver veriT. We still need to think about a way to adapt cutting planes to
our simplex variation. So far we have implemented the branch and bound
strategy and the greatest common divisor verification. Together, they very
often help to find an integer solution or identify that there are none.

7.11. CONCLUSION AND FUTURE WORK 153

The greatest common divisor (gcd) verification can be applied on single
constraints where all variables are integers. Assuming that all coefficients
in the constraint are integer, we know that this constraint cannot have an
integer solution if the constant term is not divisible by the greatest common
divisor of the coefficients of the variables5. Doing this test, for instance, it
is easy to know that an expression like 2x + 4y = 5 has no integer solution
because 5 cannot be divided by gcd(2, 4), which is 2.

7.11 Conclusion and future work

We presented in this chapter an original variation of the simplex algorithm
which is incremental, very flexible and can be used to build a decision pro-
cedure for linear arithmetic. We presented also the extra requirements nec-
essary to integrate this decision procedure in an SMT-solver. The decision
procedure can be used in combination with others in an SMT-solver and is
complete in the case of real variables.

There is still some remaining work to do. To get completeness when there
are integer variables, we need to explore the remaining idea of generating
cutting planes. It also remains to experiment mixing generation of equalities
and model-equalities, and see how much we can gain in efficiency. Finally,
theory propagation also remains a work to do.

On the veriT side, there are some remaining tasks to do too. We need
smarter and more aggressive pre and inter processing strategies to simplify
the problem and reduce the number of variables given to linear arithmetic
decision procedure.

Also on the computational side, we can rethink the problem to remove
the necessity to update and maintain the full table at each step. The algo-
rithm was explained in the form of tableau. Although it is the easiest way
to explain and it works well for small and middle size problems, the tableau
form is not computationally the best for large problems. As the problem
increases in the number of variables, originally sparse problems tend to be-
come dense. When we are maintaining a big dense tableau we are also doing
many operations that are not actually necessary. If we pay attention to the
operations we do to determine if the algorithm can continue, what variable
to enter or leave, etc. we are only looking at a few rows and columns. In the
revised simplex method [70], instead of maintaining the tableau updated, it
calculates these few rows and columns every time it is necessary. The calcu-
lation is heavy and it will not be explained here, but it is possible to calculate
these rows and columns only knowing the original tableau and the variables
that are currently in the basis. Commercial simplex implementations are
based on the revised simplex.

5In number theory, this is a generalization of Bézout’s identity, which is a linear dio-
phantine equation, and that was proved by Étienne Bézout (1730-1783).

154 CHAPTER 7. DECIDING LINEAR ARITHMETIC

Comparison with other decision procedures is delicate because the im-
plementations of linear arithmetic decision procedures available are usually
integrated in SMT-solvers and therefore they have many features that in-
terfere in the results. Features like theory propagation and also stronger
arithmetic pre-processing are missing in veriT which gives a disadvantage
and makes it hard to do a fair comparison between decision procedures.
Anyway, with our current implementation in a few crafted experiments, it
was possible to observe that it has good performance when the problem
does not increase the density during the execution of the algorithm. It
scales very well for the number of the constraints, being able to receive a
few thousands, but not as good when the number of variables increase, be-
ing limited by about a hundred. We believe that implementing the remarks
from the previous paragraphs can make veriT a top performance solver for
linear arithmetic problems.

Chapter 8

Conclusion

In this thesis, we presented methods and techniques to build cooperative
decision procedures in an original combination framework used in SMT-
solvers. The methods were for the arithmetic fragments of difference logic
and linear arithmetic but most of the concepts can be applied to other
theories.

In Chapter 3, we introduced an essential component of SMT-solvers,
the SAT-solver. We showed the basic algorithm which most of the modern
SAT-solvers are based on, a short description of advanced techniques, and
an example of how to encode a problem in SAT. The second part of this
chapter presented the SMT-solvers. We described its basic architecture and
how it works, ending with an example of how to encode in SMT.

In Chapter 4, we demonstrated how decision procedures from different
theories can be combined inside the SMT-solvers. We explained three ways
of combining decision procedures based on the Nelson and Oppen combina-
tion framework. We reveal the difficulties of combining non-convex theories,
and then we proposed an alternative method that extends the Nelson and
Oppen combination framework, using model-equalities to make the cooper-
ation between decision procedures easier and more precise.

In Chapter 5, we detailed the requirements to build efficient and cooper-
ative decision procedures for SMT-solvers. Most of the motivations of these
requirements come from the SAT-solver and the combination framework
based on Nelson and Oppen explained in Chapters 3 and 4.

In Chapter 6, we introduced difference logic and a way of represent-
ing this theory using graphs. We demonstrated some interesting properties
for the graph representation that help us to understand the algorithms to
build a decision procedure for difference logic. Then, we explained all the
details necessary to build a complete decision procedure for real and inte-
ger difference logic, fulfilling all the requirements seen before. It was also
demonstrated details of how to generate model-equalities for difference logic
and obtain a decision procedure that can also be used in a combination

155

156 CHAPTER 8. CONCLUSION

framework inside an SMT-solver.

In Chapter 7, we presented an original variation of the simplex algorithm
which is incremental, very flexible and can be used to build a decision pro-
cedure for linear arithmetic. We provided also the extra functionalities for
the requirements necessary to integrate this decision procedure in an SMT-
solver. The decision procedure can be used in combination with others in
an SMT-solver to produce complete results in the case of real variables.

Practically all the work presented in this thesis was implemented in our
SMT-solver veriT which is open-source, under the BSD license, and available
for download at www.verit-solver.org. The arithmetic module, which
includes the decision procedures for difference logic and linear arithmetic, is
implemented using the C language and has about 9,000 lines of code. The
source is available with the veriT solver.

A summary of the contributions of my thesis includes:

• An extension of the Nelson and Oppen combination framework to
combine decision procedures using model-equalities.

• A description of how to implement model-equalities for difference logic
theory.

• An open-source implementation of a difference logic decision proce-
dure, used by the veriT SMT-solver.

• An incremental algorithm based on the simplex used to check the
satisfiability of linear arithmetic constraints.

• The fulfillment of the requirements to build a complete decision pro-
cedure for real linear arithmetic, and partial for integers.

• An open-source implementation of a linear arithmetic decision proce-
dure, used by the veriT SMT-solver.

There are also remaining things to do and many research directions that
came from the results of this thesis. Varying from a few weeks work to
several months tasks, here are some of them:

• It would be interesting to see in practice how well our proposed com-
bination framework works with a variety of theories. We would like
to combine more and different theories and see how easy it would be
to generate model-equalities and how good would be the sharing of
information.

• Non-linear arithmetic is present in some verification problems. Despite
of complexity issues of the real case and undecidability of the integer

www.verit-solver.org

157

case, it would be desirable to have also a (semi1-)decision procedure for
non-linear arithmetic. However, the difficulties of this theory makes it
a large task.

• Another research direction is to experiment cooperating different arith-
metic decision procedures to increase the general efficiency of solving
problems. Identifying ways of using faster decision procedures to help
slower ones can be an interesting research topic.

• Our implementation of integer linear arithmetic is still not complete.
Adapting our algorithm to incorporate cutting planes techniques is
probably the solution.

• A huge part of the effort of implementing the simplex efficiently comes
from designing smart data structures. Applying the techniques from
the revised simplex method also boosts the simplex efficiency. This
is an important next step in the development of our variation of the
simplex algorithm.

• There are only a few ideas about theory propagation. Theory propa-
gation can help a lot solving some problems and it is definitely one of
the priorities for the near future.

1A semi-decision procedure is able to deduce satisfiability or unsatisfiability but is not
complete for both cases.

158 CHAPTER 8. CONCLUSION

Bibliography

[1] Smtcomp webpage. www.smtcomp.org, 2010.

[2] Greg J. Badros and Alan Borning. The cassowary linear arithmetic
constraint solving algorithm: Interface and implementation. Technical
report, ACM transactions on computer human interaction, 1998.

[3] Clark Barrett, Morgan Deters, Albert Oliveras, and Aaron Stump. De-
sign and results of the 3rd annual satisfiability modulo theories compe-
tition (SMT-COMP 2007). International Journal on Artificial Intelli-
gence Tools, 17(4):569–606, 2008.

[4] Clark Barrett, Robert Nieuwenhuis, Albert Oliveras, and Cesare
Tinelli. Splitting on demand in SAT modulo theories. In Miki Hermann
and Andrei Voronkov, editors, Proc. 13th Int’l Conf. on Logic for Pro-
gramming, Artificial Intelligence, and Reasoning (LPAR), volume 4246
of Lecture Notes in Computer Science, pages 512–526. Springer, 2006.

[5] Stump A. Tinelli C. Barrett, C. The SMT-LIB standard: Version 2.0.
Technical report, Department of Computer Science, The University of
Iowa, 2010.

[6] Richard H. Bartels and Gene H. Golub. The simplex method of linear
programming using LU decomposition. Commun. ACM, 12:266–268,
May 1969.

[7] Roberto J. Bayardo. Using CSP look-back techniques to solve real-
world SAT instances. pages 203–208. AAAI Press, 1997.

[8] Richard Bellman. On a routing problem. Quarterly of Applied Mathe-
matics, 16(1):87–90, 1958.

[9] D. Le Berre and L. Simon (Organizers). SAT 2009 competition.
http://www.satcompetition.org/2009/, 2009.

[10] Daniel Le Berre and Laurent Simon. Fifty-five solvers in vancouver:
The SAT 2004 competition. In Holger H. Hoos and David G. Mitchell,
editors, SAT (Selected Papers), volume 3542 of Lecture Notes in Com-
puter Science, pages 321–344. Springer, 2004.

159

160 BIBLIOGRAPHY

[11] Frédéric Besson. On using an inexact floating-point LP solver for de-
ciding linear arithmetic in an SMT solver. 8th International Workshop
on Satisfiability Modulo Theories, 2010.

[12] Per Bjesse, Tim Leonard, and Abdel Mokkedem. Finding bugs in an al-
pha microprocessor using satisfiability solvers. pages 454–464. Springer-
Verlag, 2001.

[13] R. Bland. New finite pivoting rules for the simplex method. Mathemat-
ics of Operations Research, 2:103–107, 1977.

[14] Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, and
Pascal Fontaine. veriT: An open, trustable and efficient SMT-solver.
In Renate A. Schmidt, editor, CADE, volume 5663 of Lecture Notes in
Computer Science, pages 151–156. Springer, 2009.

[15] Thierry Boy de la Tour. An optimality result for clause form translation.
J. Symb. Comput., 14:283–301, October 1992.

[16] Marco Bozzano, Roberto Bruttomesso, Ro Cimatti, Tommi Junttila,
Silvio Ranise, Peter Van Rossum, and Roberto Sebastiani. Efficient
satisfiability modulo theories via delayed theory combination. In In
Proc. CAV 2005, volume 3576 of LNCS, pages 335–349. Springer, 2005.

[17] Roberto Bruttomesso, Ro Cimatti, Anders Franzen, Alberto Griggio,
and Roberto Sebastiani. Delayed theory combination vs. nelson-oppen
for satisfiability modulo theories: A comparative analysis. In In Proc.
LPAR 06, volume 4246 of LNAI, pages 527–541. Springer, 2006.

[18] Stephen A. Cook. The complexity of theorem-proving procedures. In
STOC ’71: Proceedings of the third annual ACM symposium on Theory
of computing, pages 151–158, New York, NY, USA, 1971. ACM.

[19] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms, Second Edition. The MIT Press
and McGraw-Hill Book Company, 2001.

[20] G. B. Dantzig, A. Orden, and P. Wolfe. The generalized simplex method
for minimizing a linear form under linear inequality restraints. Pacific
J. Math., 5:183–195, 1955.

[21] George Dantzig. Linear Programming and Extensions. Princeton Uni-
versity Press, August 1998.

[22] George B. Dantzig and B. Curtis Eaves. Fourier-Motzkin elimination
and its dual. Journal of Combinatorial Theory (A), 14:288–297, 1973.

[23] Martin Davis, George Logemann, and Donald Loveland. A machine
program for theorem-proving. Commun. ACM, 5:394–397, July 1962.

BIBLIOGRAPHY 161

[24] Martin Davis and Hilary Putnam. A computing procedure for quantifi-
cation theory. J. ACM, 7:201–215, July 1960.

[25] Leonardo de Moura and Nikolaj Bjørner. Model-based theory combina-
tion. Electronic Notes in Theoretical Computer Science, 198(2):37–49,
2008.

[26] Diego Caminha B. de Oliveira, David Déharbe, and Pascal Fontaine.
Combining decision procedures by (model-)equality propagation. Elec-
tron. Notes Theor. Comput. Sci., 240:113–128, 2009.

[27] Diego Caminha Barbosa de Oliveira. Deciding difference logic in a
Nelson-Oppen combination framework. Master’s thesis, Federal Uni-
versity of Rio Grande do Norte, Natal, Brazil, 2007.

[28] David Detlefs, Greg Nelson, James, and B. Saxe. Simplify: A theorem
prover for program checking. Technical report, J. ACM, 2003.

[29] Edsger W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271, 1959.

[30] Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver
for DPLL(T). In Thomas Ball and Robert Jones, editors, Computer
Aided Verification, volume 4144 of Lecture Notes in Computer Science,
pages 81–94. Springer Berlin / Heidelberg, 2006.

[31] Bruno Dutertre and Leonardo De Moura. Integrating simplex with
DPLL(T). Technical report, CSL, SRI INTERNATIONAL, 2006.

[32] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico
Giunchiglia and Armando Tacchella, editors, Theory and Applications
of Satisfiability Testing, volume 2919 of Lecture Notes in Computer
Science, pages 333–336. Springer, 2003. 6th International Conference,
SAT 2003.

[33] Germain Faure, Robert Nieuwenhuis, Albert Oliveras, and Enric
Rodŕıguez-Carbonell. SAT modulo the theory of linear arithmetic:
Exact, inexact and commercial solvers. In Hans Kleine Büning and
Xishun Zhao, editors, Theory and Applications of Satisfiability Testing,
SAT 2008, volume 4996 of Lecture Notes in Computer Science, pages
77–90. Springer Berlin / Heidelberg, 2008.

[34] L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton
University Press, Princeton, 1962.

[35] Carla P. Gomes, Bart Selman, Ken McAloon, and Carol Tretkoff. Ran-
domization in backtrack search: Exploiting heavy-tailed profiles for
solving hard scheduling problems. In AIPS, pages 208–213, 1998.

162 BIBLIOGRAPHY

[36] R. E. Gomory. An algorithm for integer solutions to linear programs. In
R. L. Graves and P. Wolfe, editors, Recent Advances in Mathematical
Programming, pages 269–302. McGraw-Hill, New York, 1963.

[37] Robert G. Jeroslow and Jinchang Wang. Solving propositional satis-
fiability problems. Annals of Mathematics and Artificial Intelligence,
1:167–187, 1990.

[38] Henry A. Kautz and Bart Selman. Pushing the envelope: Planning,
propositional logic and stochastic search. In AAAI/IAAI, Vol. 2, pages
1194–1201, 1996.

[39] Haluk Konuk and Tracy Larrabee. Explorations of sequential atpg using
Boolean satisfiability. In In 11th VLSI Test Symposium, pages 85–90,
1993.

[40] Daniel Kroening and Ofer Strichman. Decision Procedures: An Algo-
rithmic Point of View. Springer Publishing Company, Incorporated, 1
edition, 2008.

[41] Oliver Kullmann. Fundaments of branching heuristics. In Armin Biere,
Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and
Applications, pages 205–244. IOS Press, 2009.

[42] Shuvendu K. Lahiri and Madanlal Musuvathi. An efficient nelson-oppen
decision procedure for difference constraints over rationals. Electr.
Notes Theor. Comput. Sci, 144(2):27–41, 2006.

[43] J. P. Marques-Silva and K. A. Sakallah. GRASP: A New Search Algo-
rithm for Satisfiability. In International Conference on Computer-Aided
Design (ICCAD’96), pages 220–227. IEEE Press, 1996.

[44] João P. Marques-silva and Karem A. Sakallah. Grasp: A search algo-
rithm for propositional satisfiability. IEEE Transactions on Computers,
48:506–521, 1999.

[45] J. E. Mitchell. Branch-and-cut algorithms for combinatorial optimiza-
tion problems. In P. M. Pardalos and M. G. C. Resende, editors, Hand-
book of Applied Optimization, pages 65–77. Oxford University Press,
January 2002.

[46] David Monniaux. On using floating-point computations to help an exact
linear arithmetic decision procedure. In Computer-aided verification
(CAV), volume 5643 of Lecture Notes in Computer Science, pages 570–
583. Springer Verlag, 2009.

BIBLIOGRAPHY 163

[47] Steven S. Morgan. A comparison of simplex method algorithms. Mas-
ter’s thesis, University of Florida, 1997.

[48] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff: Engineering an efficient SAT solver. In AN-
NUAL ACM IEEE DESIGN AUTOMATION CONFERENCE, pages
530–535. ACM, 2001.

[49] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff: Engineering an efficient SAT solver. In Pro-
ceedings of the 38th Design Automation Conference (DAC’01), pages
530–535, 2001.

[50] Alexander Nadel and Vadim Ryvchin. Assignment stack shrinking. In
SAT, pages 375–381, 2010.

[51] George Ciprian Necula. Compiling with proofs. PhD thesis, Pittsburgh,
PA, USA, 1998. AAI9918593.

[52] G. Nelson and D. Oppen. Simplification by cooperating decision pro-
cedures. ACM Transactions on Programming Languages and Systems,
1(2):245–257, 1979.

[53] G. Nelson and D. Oppen. Fast decision procedures based on congruence
closure. Journal of the ACM, 27(2):356–364, 1980.

[54] P. Niebert, M. Mahfoudh, E. Asarin, M. Bozga, N. Jain, and O. Maler.
Verification of timed automata via satisfiability checking. In Proc. For-
mal Techniques in Real-Time and FaultTolerant Systems FTRTFT’02,
volume 2469 of Lecture Notes in Computer Science, pages 225–244,
2002.

[55] Robert Nieuwenhuis and Albert Oliveras. DPLL(T) with exhaustive
theory propagation and its application to difference logic. In In CAV?05
LNCS 3576, pages 321–334. Springer, 2005.

[56] D. Oppen. Complexity, convexity and combinations of theories. Theo-
retical Computer Science, 12(3):291–302, November 1980.

[57] C. Sinz (Organizer). SAT-race 2010. http://baldur.iti.uka.de/sat-race-
2010/, 2010.

[58] S. Ranise and C. Tinelli. The SMT-LIB standard: Version 1.2. Techni-
cal report, Department of Computer Science, The University of Iowa,
2006.

[59] Silvio Ranise and Cesare Tinelli. The Satisfiability Modulo Theories
Library SMT-LIB). www.SMT-LIB.org, 2006.

164 BIBLIOGRAPHY

[60] J. K. Reid. A sparsity-exploiting variant of the bartels-golub decom-
position for linear programming bases. Mathematical Programming,
24:55–69, 1982. 10.1007/BF01585094.

[61] H. Rueß and N. Shankar. Solving linear arithmetic constraints. Techni-
cal Report Technical Report SRI-CSL-04-01, SRI International, 2004.

[62] S. J. Russell and P. Norvig. Artificial Inteligence: A modern Approach.
publisher, 2nd edition, 2002.

[63] João P. Marques Silva. The impact of branching heuristics in propo-
sitional satisfiability algorithms. In Proceedings of the 9th Portuguese
Conference on Artificial Intelligence: Progress in Artificial Intelligence,
EPIA ’99, pages 62–74, London, UK, 1999. Springer-Verlag.

[64] Niklas Sörensson and Armin Biere. Minimizing learned clauses. In
Proceedings of the 12th International Conference on Theory and Appli-
cations of Satisfiability Testing, SAT ’09, pages 237–243, Berlin, Hei-
delberg, 2009. Springer-Verlag.

[65] Richard M. Stallman and Gerald J. Sussman. Forward reasoning and
dependency-directed backtracking in a system for computer-aided cir-
cuit analysis. Artificial Intelligence, 9(2):135 – 196, 1977.

[66] P.R. Stephan, Robert K. Brayton, and Alberto L. Sangiovanni-
Vincentelli. Combinational test generation using satisfiability. Tech-
nical Report UCB/ERL M92/112, EECS Department, University of
California, Berkeley, 1992.

[67] R. E. Tarjan. Depth first search and linear graph algorithms. SIAM J.
Comput., 1(2):146–160, June 1972.

[68] Cesare Tinelli and Mehdi Harandi. A new correctness proof of the
Nelson-Oppen combination procedure. In Frontiers of Combining Sys-
tems, volume 3 of Applied Logic Series, pages 103–120. Kluwer Aca-
demic Publishers, 1996.

[69] Miroslav N. Velev. Effective use of boolean satisfiability procedures
in the formal verification of superscalar and vliw microprocessors. In
Journal of Symbolic Computation, pages 226–231, 2001.

[70] Harvey M. Wagner. A Comparison of the Original and Revised Simplex
Methods. OPERATIONS RESEARCH, 5(3):361–369, 1957.

[71] Stephen Warshall. A theorem on Boolean matrices. J. ACM, 9:11–12,
January 1962.

BIBLIOGRAPHY 165

[72] Hantao Zhang and Jieh Hsiang. Solving open quasigroup problems by
propositional reasoning. In In Proceedings of the International Com-
puter Symp, 1994.

[73] L. Zhang, C.F. Madigan, M.W. Moskewicz, and S. Malik. Efficient
conflict driven learning in Boolean satisfiability solver. In Proc. Int’l
Conf. on Computer Aided Design (ICCAD), pages 279–285, 2001.

[74] Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and Sharad
Malik. Efficient conflict driven learning in a boolean satisfiability solver.
In Proceedings of the 2001 IEEE/ACM international conference on
Computer-aided design, ICCAD ’01, pages 279–285, Piscataway, NJ,
USA, 2001. IEEE Press.

