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RESUME 

 

 Les avancées récentes dans le domaine des matériaux innovants nécessitent le 

développement de techniques de Contrôle Non Destructif (CND) et d’imagerie qui permettent 

la quantification et la localisation de défauts micro-structuraux dans une large variété de 

matériaux, et cela durant leur fabrication et toute leur durée de vie. Le contrôle de ces 

matériaux, incluant entre autre les alliages, les bétons et les composites assure à la fois leur 

qualité et leur fiabilité. La principale difficulté, pour la caractérisation d’un processus de 

détérioration d’une structure, provient du fait que le matériau ne présente généralement que 

peu de signes d’endommagement avant l’apparition de délaminations ou de macro-fissures. 

Parmi les techniques actuelles de CND, les méthodes ultrasonores sont considérées comme 

des outils performants, et ont connu un essor considérable ces dernières décennies. 

Généralement, elles reposent sur des principes d’acoustique linéaire, et sont limitées à la 

détection de défauts de grande taille. 

 Du fait d’une intense activité de recherche dans le domaine de l’acoustique non linéaire, 

un type de méthodes innovantes de CND, appelées "Nonlinear Elastic Wave Spectroscopy" 

(NEWS), ont récemment été développées afin de détecter de manière précoce l’apparition 

d’endommagement. Le concept de base des méthodes NEWS repose sur le fait que la 

formation de défauts à l’intérieure d’une structure puisse être détectée immédiatement par 

l’augmentation des paramètres non linéaires. De nombreuses études ont démontré de manière 

irréfutable que la forte non linéarité macroscopique du matériau était fortement liée à la 

quantité de micro- imperfections, comme des fissures ou des liaisons faibles, qu’il contient. 

En effet, ces imperfections ont un comportement tellement non linéaire, que même une 

excitation acoustique de faible amplitude produit une réponse macroscopique mesurable. Les 

méthodes NEWS utilisées, dans un premier temps, pour la détermination globale de l’état de 

fatigue de structure, ont été récemment étendues afin d’imager des défauts en utilisant des 

techniques de vibrométrie laser, des ultrasons aériens ou de la cartographie d’onde de 

cisaillement. Depuis environ cinq ans, l’idée de combiner les attraits des méthodes NEWS et 

du Retournement Temporel Acoustique (RTA), qui fournit la possibilité de focaliser des 

ondes ultrasonores, aussi bien dans le temps que l’espace, et cela quelque soit la position de la 

source et de l’hétérogénéité du milieu de propagation, a été proposée pour l’imagerie non 

linéaire de défauts. Les principes d’imagerie non linéaire basés sur cette combinaison, 

retournement temporel / effet non linéaires, peuvent être classés en deux catégories que l’on 

appelle généralement NEWS-TR et TR-NEWS comme l’indique la Figure 1. 
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Fig. 1 Méthodes de detection de défauts basées sur une combinaison du RTA et des méthodes NEWS. 

 

Les méthodes NEWS-TR, pour lesquelles on filtre d’abord les composantes non linéaires de 

la réponse de l’échantillon à une excitation globale, puis on utilise le processus de 

retournement temporel, permettent de focaliser l’énergie sur le défaut. Les méthodes TR-

NEWS, pour lesquelles les deux processus sont inversés, permettent d’augmenter localement 

les contraintes. On peut ainsi regarder la réponse non linéaire de l’échantillon à une excitation 

de forte amplitude cette fois-ci localisée. Dans la majorité des applications en CND de ce 

concept, un système de RTA à un canal a été utilisé en collant directement sur l’échantillon 

une céramique piézoélectrique comme le montre la Figure 2. Dans un premier temps on envoi 

un signal source à l’aide d’un transducteur piézoélectrique. La vitesse particulaire est mesurée 

par un vibromètre laser en un point donné. Le signal obtenu est un signal multi réverbérant, si 

on veut que le procédé fonctionne. Puis on envoi le signal retourné temporellement à l’aide du 

même transducteur. Enfin, si on mesure la vitesse particulaire juste autour du même point, on 

constate que l’onde se focalise sur cette même position et qu’elle se re-compresse 

temporellement. L’échantillon doit alors être suffisamment petit pour pouvoir être considéré 

comme réverbérant dans la bande de fréquences utilisées, afin que la focalisation par RTA à 

un canal fonctionne. Dans l’industrie aéronautique, les structures sont fréquemment des 

plaques de grandes dimensions fabriquées dans des matériaux composites fortement 

atténuants. L’imagerie ultrasonore de ces structures pour des fins de contrôle santé intégré a 

souvent été réalisée à l’aide d’onde de Lamb. Mais dans de tels échantillons non réverbérants 

la méthode de focalisation par RTA est difficilement applicable. 
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Fig. 2 Principe du Retournement Temporel (RT) à un canal pour la focalisation d’une onde élastique dans un 

échantillon solide réverbérant. 

 

 Dans cette thèse nous proposons de développer un système d’imagerie ultrasonore 

innovante de micro- défauts basé sur l’utilisation conjointe de technique NEWS et du concept 

de "transducteur à cavité chaotique". Ce transducteur correspond à la combinaison d’une 

céramique piézoélectrique collée sur une cavité de forme chaotique et du principe de 

retournement temporel comme le montre la Figure 3. L’onde générée par la céramique se 

propage dans la cavité. A chaque fois que l’onde arrive sur l’interface entre la cavité et 

l’échantillon une partie de l’énergie reste dans la cavité et subie des réflexions multiples. 

L’autre partie de l’énergie est transmise dans l’échantillon. Ici même si l’échantillon n’est pas 

réverbérant, le processus utilise les modes propres de la cavité. Les avantages des 

Transducteurs à cavité chaotique sont les suivants : il n’y a plus d’influence de la géométrie 

de l’échantillon et on peut l’utiliser pour des échantillons non réverbérants. Par contre, 

l’énergie transmise à l’échantillon sera moins importante. 

 

 
Fig. 3 Principe des “transducteurs à cavité chaotique”. 
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La faisabilité et les performances de ce nouveau système sont explorées par des simulations 

numériques. Des paramètres optimaux d’utilisation pour une implémentation expérimentale 

sont proposés. Ainsi, une grande partie des travaux menés dans le cadre de cette thèse se 

rattache au domaine de la détection et de l’imagerie de défauts par acoustique non linéaire, et 

tout particulièrement sur le développement d’outils numériques permettant l’amélioration de 

telles techniques d’imagerie. 

 Un schéma d’éléments finis de type Galerkin Discontinu (GD), une combinaison 

judicieuse des méthodes d’éléments finis et de volumes finis, est présentée. Différents flux 

numériques, comme le flux de Lax-Freidrich ou de Godunov, et l’introduction de conditions 

aux limites libres ou sans contraintes sont présentés. Les principales contributions de cette 

thèse au développement du code numérique sont l’introduction de l’elastodynamique non 

linéaire, et la possibilité d’utiliser des éléments quadrilatéraux. De plus, un type de zone 

absorbante parfaitement adaptée (PML), appelée "Nearly Perfectly Matched Layer" (NPML), 

pouvant être facilement intégrée au code numérique DG a aussi été développé. Enfin, une 

implémentation par sous domaine a été introduite afin d’améliorer l’efficacité du schéma 

numérique lorsque les PML sont utilisées. Celle-ci permettra d’autre part d’implémenter 

facilement des problèmes multi- physiques. Afin de valider l’implémentation du schéma de 

Galerkin Discontinu des configurations de test ont été réalisées. La première simulation 

correspond au problème de Lamb dans un matériau isotrope linéaire. Une source impose une 

contrainte ponctuelle sur une interface libre. Deux récepteurs sont positionnés à 850 et 1200 

m de la source sur la même interface. La Figure 4 montre les fronts d’onde au temps 0.7 

secondes. Maintenant si on compare les vitesses particulaires horizontales et verticales 

calculées pour les deux récepteurs avec des solutions analytiques, on trouve que la 

correspondance est excellente dans tous les cas comme le montre la Figure 5. D’autres 

simulations de propagation dans un milieu anisotrope valident encore l’implémentation du 

schéma DG à l’aide de comparaisons avec des solutions analytiques connues. 

 
Fig. 4 Amplitude de la vitesse v à t = 0.7 s calculée avec un schéma RK-DG-FEM O5 utilisant des éléments 

triangulaire. 
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Fig. 5 Comparaison d’une solution analytique de reference avec des resultants de simulation obtenus pour deux 

récepteurs en utilisant un schema d’ordre 5 RK-DG-FEM O5. La première colonne (a) et (b) sont pour le 

récepteur 1 et la seconde colonne (c) et (d) pour le récepteur 2. Dans ligne la figure de droite présente la vitesse 

particulaire horizontale et la figure de gauche la vitesse particulaire verticale. 

 

Dans le cas non linéaire, comme très peu de résultats analytiques sont disponibles, la 

propagation d’une onde plane a été considérée. Pour faire cette simulation, on a utilisé une 

ligne source. On voit sur la Figure 6 les fronts d’onde au temps 0.48 seconde. Sur la Figure 7, 

les spectres des signaux calculés à des distances de 3, 6 et 10 longueurs d’onde de la source 

montrent qu’une composante de l’onde transverse apparaît sur Vx. Cela correspond à un 

couplage entre l’onde transverse et longitudinale. D’une part les composantes aux deuxièmes 

harmoniques de Vx se déforment fortement au cours de la propagation et leurs amplitudes 

n’augmentent pas en fonction de la distance, contrairement à ce qui est obtenu dans un fluide. 

Les résultats obtenus sont en parfait accord avec ceux de résultats de simulations numériques 

publiés dans la littérature, et de solutions analytiques approchées. 
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Source

 
Fig. 6 Amplitude de la vitesse pour une onde plane dans un milieu non linéaire à t = 0.48 s obtenue avec un 

schéma RK-DG-FEM O5 utilisant des éléments quadrilatéraux. 
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Fig. 7 Spectres des vitesse Vx (première ligne) et verticale Vy (deuxième ligne) des signaux obtenus 

numériquement pour la propagation d’une onde plane dans un milieu non linéaire à des distances de 3 (ligne de 

points), 6 (ligne pointillée) et 10 (ligne solide) longueures d’onde longitudinale. 

 

 Pour simuler la propagation dans un milieu infini ou semi infini, nous avons choisi 

d’introduire des PML. Les PML (Perfectly Matched Layer) sont des zones à la fois 

atténuantes et possédant la propriété d’être parfaitement adaptée en impédance avec le 

domaine de calcul quelque soit l’angle d’incidence et la fréquence. Une nouvelle formulation 

des C-PML, basée sur le système du deuxième ordre décrivant, à l’aide d’une formulation 

déplacement / contrainte, la propagation d’ondes élastiques dans des solides anisotropes et 

piézoélectriques, est introduite. Cette formulation est implémentée dans un code commercial 

d’éléments finis (COMSOL Multiphysics) et dans un code pseudo spectral. Les résultats de 

simulation, pour des solides anisotropes et piézoélectriques, confirment l’excellente capacité 

d’absorption des C-PML pour des simulations d’ondes de surfaces et de domaines de calcul 

allongés, comme le montre la Figure 8. 
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Fig. 8 Model utilise pour la simulation de la propagation d’ondes de surface dans un solide isotrope alongé. Les 

C-PML sont positionnées sur la droite, la gauche et le bas du domaine de calcul. L’interface supérieure est une 

surface libre. Les positions de la source S et quatre récepteurs (R1, R2, R3, R4) sont aussi présentées. Les 

évolutions temporelles des composantes horizontale u1 (a) et verticale u2 (b) du déplacement particulaire au 

récepteur R4 obtenues par une solution analytique (ligne solide) et numériquement avec des C-PML (ligne 

pointillée) et des PML (ligne de points) sont comparées. (c) and (d) sont des zooms de (a) et (b) respectivement, 

montrant le benefice d’utiliser des C-PML au lieu de PML. 

 

 Dans toutes les implémentations présentées des C-PML, des équations différentielles 

aux dérivés partielles sont introduites pour faire évoluer dans le temps les variables 

supplémentaires introduites par les C-PML. Ces équations différentielles aux dérivés 

partielles, du fait qu’elles contiennent des dérivées spatiales, sont difficiles à introduire dans 

le code DG développé, et tout particulièrement lorsqu’un flux numérique de type Godunov est 

utilisé. Pour palier à cette difficulté, les NPML sont appliquées à la propagation d’ondes 

élastiques dans les milieux anisotropes. Le principal intérêt de cette formulation de zone 
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absorbante parfaitement adaptée est lié au fait que le système d’équations reste sous une 

forme identique au système de départ, c’est-à-dire fortement hyperbolique, et que les flux 

modifiés par les PML sont reliés aux flux physiques par de simples équations différentielles 

ordinaires. Ce dernier point réduit considérablement la difficulté et le temps de calcul. De plus, 

ces NPML ont exactement les mêmes propriétés d’absorption que les C-PML, comme le 

montre les Figures 9 et 10 qui présentent un calcul de propagation d’onde élastique dans le 

solide anisotrope dont les constantes sont données dans le tableau 1. On constate sur la Figure 

9 que même avec une dynamique de 100 dB les NPML absorbent parfaitement les ondes. De 

plus si on calcul l’énergie contenue dans la zone de calcul hors PML au cours du temps pour 

les NPML et les C-PML on constate que les résultats obtenus sont parfaitement identiques 

(Figure 10). On voit donc que l’approximation faite pour la dérivation des NPML n’a pas 

d’impact sur leur qualité d’absorption. 
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Fig. 9 Amplitude des déplacements obtenue lors la propagation d’une onde élastique dans un milieu orthotrope 

(milieu I) aux instants (a) t = 5 µs, (b) t = 15 µs, (c) t = 30 µs, and (d) t = 125 µs. Les figures sont en échelle 

logarithmique (dB) avec une amplitude de 10 nm comme référence. 
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Fig. 10 Evolution temorelle de l’énergie dans le domaine de calcul, hors PML, pour les C-PML (ligne pointillée) 

et les NPML (ligne solide) pour un solide orthotrope (milieu I), pour les mêmes conditions que celles utilisées 

pour obtenir la Figure 9. 

 

Tab. 1 Propriétés des matériaux orthotropes utilisés lors des simulations. 

Material ρ    (kg/m3) C11 (GPa) C22 (GPa) C12 (GPa) C66 (GPa) 

I 4000 40 200 38 20 

III 4000 40 200 75 20 

 

 Il est connu que pour certains matériaux anisotropes les PML sont instables. Si on refait 

les calculs précédents dans un matériau noté III ici dont les constantes sont identiques au cas 

précédent sauf pour C12. La figure 11 montre que les ondes entrant dans la PML sont 

amplifiées au lieu d’être atténuées. 
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Fig. 11 Amplitude des déplacements obtenue lors la propagation d’une onde élastique dans un milieu orthotrope 

(milieu III) aux instants (a) t = 5 µs, (b) t = 15 µs, (c) t = 30 µs, and (d) t = 50 µs. Les figures sont en échelle 

logarithmique (dB) avec une amplitude de 10 nm comme référence. Des instabiltés apparaîssent dans les NPML. 

 

En fait, il a été montré par Bécache que si on regardait les courbes de lenteurs du matériau 

(Figure 12) alors celles qui présentaient des parties pour lesquelles les vitesses de phase et de 

groupe étaient de signe inverse, correspondaient à des zones d’instabilités des PML suivant x 

en bleu ou y en violet. 
 

-2000 0 2000

-6000

-3000

0

3000

6000

-0.6 -0.3 0 0.3 0.6
-0.50

-0.25

0

0.25

0.50

-2000 0 2000

-6000

-3000

0

3000

6000

-0.6 -0.3 0 0.3 0.6
-0.50

-0.25

0

0.25

0.50

 

Fig. 12 Courbe de lenteur (à gauche) et fronts d’ondes (droite) pour le mileiu III. Les lignes viollettes 

correspondent à des directions d’incidence pour lesquelles les NPLM suivant x sont instables. Les lignes bleues 

correspondent à des directions d’incidence pour lesquelles les NPLM suivant y sont instables. 
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En suivant le concept de "MPML" introduit récemment dans la littérature, nous considérons 

un mélange de C-PML et de zone atténuante, en contrôlant la proportion de chacun de ces 

deux types de zone absorbante afin de stabiliser les C-PML ou les NPML. Il est démontré que 

ces C-PML stabilisées ne sont alors plus parfaitement adaptées en impédance au reste du 

domaine de calcul. Une étude complète de stabilité est menée. Elle permet de donner une 

interprétation physique du critère de stabilité obtenu précédemment dans la littérature pour les 

"MPML" : Les vitesses de groupe et de phase de l’onde incidente dans la PML doivent 

posséder le même signe. Sur la Figure 13 on voit que le calcul de propagation d’onde 

élastique dans le milieu III n’explose plus lorsque l’on utilise des MPML. Par contre le niveau 

d’ondes réfléchies est bien supérieur à celui obtenu avec seulement des C-PML dans le  

milieu I. 
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Fig. 13 Amplitude des déplacements obtenue lors la propagation d’une onde élastique dans un milieu orthotrope 

(milieu III) aux instants (a) t = 5 µs, (b) t = 15 µs, (c) t = 30 µs, and (d) t = 125 µs. Les figures sont en échelle 

logarithmique (dB) avec une amplitude de 10 nm comme référence. Aucune instabilités n’apparaîssent pour les 

MPML utilisées. 

Pour la simulation des ondes de Lamb, ces C-PML stabilisées permettent d’absorber les 

modes inverses. Cette absorption se fait au détriment de la longueur de la zone absorbante qui 

doit alors être d’au moins deux fois la longueur d’onde la plus grande existante dans la plaque 
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pour la plage de fréquence considérée. Dans ce cas le niveau de réflexion obtenu est -80dB 

par rapport à l’énergie incidente. 

 Finalement, une étude numérique et expérimentale sur l’utilisation du concept de 

"transducteur à cavité chaotique" pour la focalisation dans un milieu solide, réverbérant ou 

non, en utilisant une seule source est réalisée. Les méthodes de retournement temporel, de 

filtre inverse et de retournement temporel 1-bit sont présentées et comparées. Dans le but de 

transmettre plus d’énergie dans le milieu et augmenter le rapport signal sur bruit, un signal 

source modulé en fréquence est utilisé. L’utilisation de la méthode de filtrage inverse à la 

place du retournement temporel permet lors du processus de focalisation de tirer avantage de 

tous les modes propres de la cavité, y compris ceux de faible énergie qui sont peu exploités 

par le retournement temporel. Cela améliore la re-compression temporelle ainsi que le rapport 

signal sur bruit (Figure 14). 
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Fig. 14 Comparaison des signaux de recompression temporelle obtenus pour la focalisation par (a) Retournement 

Temporel (TR), (b) et Filtre Inverse (IF). 

 

Un des principaux avantages de l’utilisation d’une cavité chaotique, démontré aussi bien 

numériquement (Figure 15) qu’expérimentalement, est la suppression des images fantômes et 

des effets de bords généralement présents lors du processus de rétro- focalisation. Les 

résultats expérimentaux obtenu dans un échantillon réverbérant d’acier démontre la capacité 

du "transducteur à cavité chaotique" à focaliser y compris sur les bords de l’échantillon 

(Figure 16). 
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Fig. 15 Vitesse particulaire calculée à l’aide d’un schéma RK-DG-FEM O4 à cinq instants autour du temps de 

recompression temporelle, pour une cavité chaotique en cuivre. (a) t = 149 µs, (b) t = 149.3 µs, (c) t = 149.6 µs, 

(d) t = 149.9 µs, and (e) t = 150.5 µs. 
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Fig. 16 Expérience de focalisation par Retournement Temporel (TR) sur un point placé directement sur le bord 

de l’échantillon. (a) Image 2D, (b) distribution spatiale du signal focalise suivant x et y à l’instant Tr = 0 µs. 
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Les expériences menées sur une plaque de composite non réverbérante, de 2 mm d’épaisseur, 

démontrent un deuxième intérêt des cavités chaotiques : la possibilité de focaliser dans un 

échantillon non réverbérant comme le montre la Figure 17. 

 

     

Fig. 17 Vitesse particulaire à différentes instants montrant le processus de retro-focalisation dans la plaque 

composite non réverbérante à l’aide d’une cavité de 1×2×12 cm. 

Dans ce cas, l’échantillon ne contribue pas au processus de focalisation qui est obtenu par des 

ondes provenant directement du transducteur, et non plus de toutes les directions entourant le 

point focal comme c’est le cas pour un échantillon réverbérant (Figure 18). 

 

R∆

 
 

Fig. 18 Explication schématique du fonctionnement d’un “transducteur à cavité chaotique” place sur un 

échantillon non réverbérant. 

 

 Nous avons aussi démontré qu’un "transducteur à cavité chaotique" peut être utilisé, 

conjointement avec les méthodes d’inversion d’impulsion et de retournement temporel 1-bit, 

afin de réaliser une image de non linéarités localisées (Figure 19). 

 

 

Fig. 19 Principe de la méthode TR-NEWS utilisant un “ transducteur à cavité chaotique” . 
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L’image préliminaire, présentée sur la Figure 20, d’une fissure à la surface d’un échantillon 

d’acier montre les potentialités des "transducteurs à cavité chaotique" pour l’imagerie 

ultrasonore non linéaire de défauts. De plus, la contribution principale de la fissure provient 

de son extrémité, confirmant des résultats publiés récemment. 

 
Fig. 20 Image of a crack at the surface of a steel sample obtained with a combination of TR-NEWS method and 

“chaotic cavity transducer”. 

 

 Ainsi, en conclusion, nous pouvons dire que cette thèse pose la première brique pour le 

développement du concept de contrôle santé intégré par une technique d’imagerie ultrasonore 

non linéaire utilisant des "transducteur à cavité chaotique" pour la détection précoce de 

l’endommagement de structures solides. 
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INTRODUCTION  

 

 Recent advances in modern material technology require the development of non-

destructive testing (NDT) and imaging techniques that allow the quantification and 

localization of micro-structural damage in a wide variety of materials during their 

manufacture and life cycle. The monitoring of these materials, including alloys, cements, 

concretes and composites, ensures both their quality and durability. The aim of NDT is to 

identify and locate physical defects which are unacceptable without causing any damage to 

the material structure under test. Among the most used NDT methods we can cite magnetic 

field, eddy-current, radiography, thermal field, vibration, and ultrasonic methods. The first 

two methods are generally used to detect surface breaking or near surface defects in metallic 

samples. The later four, more general, are used to detect buried features as well as surface 

breaking defects. They may also be employed where a quantitative analysis is required. 

Unfortunately, these traditional NDT techniques are often not sufficiently sensitive to the 

presence of incipient and progressive damage. Indeed, the main difficulty in the 

characterization of a degradation process in structural materials relates to the fact that the 

material exhibits very few measurable signs of damage prior to the onset of delaminations or 

macro-cracks. In fact, traditional NDT techniques do not show any significant sign of 

degradation before the first 80-90% of the fatigue life which is in general too late to make any 

modification or repair of the structure. 

 Over the cited NDT methods, ultrasonic techniques have been considered as excellent 

tools and their applications have been increasing rapidly over the last few decades. They are 

generally based on the principles of linear acoustic. This includes effects of reflection, 

scattering, transmission, and absorption of probe acoustic energy. The presence of any 

structural or material inhomogeneities leads to phase and/or amplitude variations of received 

signals while its frequency content is still the same as the one of the emitted signals. So, such 

systems are currently limited to the detection of large defects that produce significant linear 

scatter. From the mechanical or acoustical point of view, the effects of damage on a structure 

can be classified as linear or nonlinear. A linear damage situation is defined as the case when 

the initially linear-elastic structure remains linear-elastic after damage. Nonlinear damage is 

defined as the case when the initially linear-elastic structure behaves in a nonlinear manner 

after the damage has been introduced. One example of nonlinear damage is the formation of a 

fatigue crack that subsequently opens and closes under the normal operating vibration 

environment. 

 As a result of an intense worldwide research on nonlinear acoustics, dealing with the 

investigation of the amplitude dependence of material parameters such as wavespeed, or 

attenuation under the action of small dynamic strain (lower than 10-4), a set of innovative 
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NDT methods, called Nonlinear Elastic Wave Spectroscopy (NEWS) techniques, have been 

recently developed to probe for the existence of damage with a superior sensitivity than 

traditional technologies. The concept of NEWS-based methods is that the internal damage can 

be measured directly with the instantaneous detection of an increase in the nonlinearity 

parameters. Moreover, a huge number of studies have demonstrated that the degree of 

macroscopic nonlinear behaviour of a material is strongly determined by the amount of micro-

inhomogeneous imperfections as defects or weak bonds that exist within the material. Indeed, 

these imperfections have a so strong nonlinear behaviour, even under acoustic excitation, that 

become measurable on the macroscopic level. NEWS techniques developed include 

modulation experiments by frequency mixing of two distinct frequency sound waves, studies 

of the amplitude dependence of the resonance spectrum, nonlinear reverberation spectroscopy, 

phase modulation and investigations of slow dynamic behaviour. They have been applied for 

the evaluation of adhesives, the investigation of dislocations in pure metals, the study of 

fatigue cracking, etc. 

 The most well known example of NEWS is that of a tone-burst wave propagation which 

is used to probe the generation of second harmonic frequency components as a function of 

distance or amplitude. This method, known as harmonic imaging, has known a rapid growth, 

since the mid 90’s, in ultrasonic medical imaging. It has demonstrated a tremendous increase 

of the contrast of the obtained images and speckle reduction capability. It is now available in 

commercial echographic systems providing high resolution images of tissues and organs. 

Although these results have resulted in a growing interest in the nonlinear acoustic effects in 

solids and have led to promising advances in the field of non-destructive micro-damage 

diagnostics, the development of such nonlinearity based imaging systems for solid materials is 

still at the beginning. Further development of these nonlinear imaging methods will be part of 

the topic of this thesis. Numerical simulations using nonlinear wave propagation models for 

complex and heterogeneously damaged materials are needed to support advanced 

practicability of these nonlinear ultrasonic imaging techniques. 

 NEWS methods have at first been applied for the global determination of the fatigue 

state of a structure, and recently extended to visualization techniques for imaging defect’s 

nonlinearity distributions using laser vibrometry, airborne ultrasound, or shearography. In the 

last five years, the concept of merging the benefits of both NEWS and Time Reversal 

Acoustic (TRA), which provides the ability to focus ultrasonic waves in time and space, 

regardless of the position of the initial source and of the heterogeneity of the medium in 

which the wave propagates, has been proposed in order to realize images of defects in solid 

samples. In most NDT applications of this combination, a one channel TRA experiment has 

been used in which a piezoelectric (PZT) ceramic is glued directly to a sample. The sample is 

generally small enough to be considered as multi-reverberant in the frequency range of 

interest. 
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 In aeronautical industry, the structures often are plate like components of large size 

made in composite a highly attenuating medium. When imaging these large structures for 

structural health monitoring, particular focus has been made on the use of guided Lamb waves. 

But such non-reverberant samples are difficult to work with the one channel TRA method. So, 

in this thesis we propose the development of an innovative micro-damage imaging system 

based on a combination of NEWS techniques and “chaotic cavity transducer” concept. It 

consists of a combination of a PZT ceramic glued to a cavity of chaotic shape on the hardware 

side with the time reversal principle on the software side, as it has been done recently for 3D 

imaging in fluid. The feasibility and capabilities of these new ideas will be explored by 

numerical simulations, and optimal operational parameters for experimental implementation 

will be suggested based on the modelling support. So, a large part of the research work 

conducted in this thesis is concentrated on the domain of nonlinear ultrasonic damage 

detection and imaging, and more precisely in the development of numerical simulation tools 

to help the improvement of such nonlinear imaging methods. 

 

The outline of the thesis is as follows: 

 In the first chapter of this thesis ultrasonic NDT techniques based on NEWS methods 

and specially the ones which are combined with time reversal process, are reviewed. The 

nonlinear elastodynamic equations needed in the remainder of the thesis is then introduced, 

and different kinds of nonlinearity models, including “classical” and “non-classical” 

nonlinearity are discussed, because for a large class of elastic heterogeneous solid media, the 

conventional five-constant elasticity theory is often insufficient to explain anomalous 

nonlinear behaviours of these media. The comparison of nonlinear signatures of these 

different kinds of nonlinearity for shock wave generation and rod resonance is studied to help 

the determination of the predominant nonlinear mechanism in specific experiment. An 

introduction of the classical numerical methods including Finite Difference Method, Finite 

Volume Method (FVM), Finite Element Method (FEM), Pseudo-Spectral method and 

Discontinuous Galerkin Finite Element Method (DG-FEM), focusing mainly on their 

advantages and weaknesses is made. 

 As we want to simulate nonlinear elastic wave propagation in structures of complex 

geometry, we need, in order to reduce the number of cell to be used while maintaining a high 

degree of accuracy, a high-order numerical method with geometric flexibility. The second 

chapter gives a presentation of the chosen Discontinuous Galerkin Finite Element Method 

(DG-FEM), an intelligent combination of the FEM and FVM methods, utilizing a space of 

basis and test functions that mimics the FEM method but satisfying the equation in a sense 

closer to the FVM method. Indeed, in contrast to classical FEM, within the DG-FEM 

framework the solution can be discontinuous across the element interfaces, which allows 
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incorporating the well-established numerical flux functions from the FVM framework. How 

to implement the DG-FEM operators for nonlinear elastodynamic in a general, flexible, and 

robust manner is presented in detail. We discuss how to, in practice, assemble the 

computational grid and compute all the entities required to enable the implementation of the 

scheme, both for triangular and quadrilateral grids. Moreover, different choices of numerical 

fluxes are also discussed. The results of numerical simulations, based on the elastodynamic 

system equation and compared with analytical solutions, for isotropic and anisotropic linear or 

nonlinear medium, demonstrate the excellent precision and extensive range of application of 

the DG-FEM scheme. For each situation the result of the simulation is compared with an 

analytical solution to valid all the implementation of DG-FEM. 

 Numerical solutions of Partial Differential Equations for wave propagation require the 

truncation of an unbounded media to fit into computers with a limited memory and 

computation time. For such problems, an Absorbing Boundary Conditions is needed at the 

truncated boundary to eliminate the reflections from this boundary to the computational 

domain. The third chapter of this thesis provides an introduction of the Convolution Perfectly 

Matched Layer (C-PML) absorbing boundary condition, first introduced in 1994 for simulating 

electromagnetic waves in an unbounded media. Classically, C-PML has been introduced in 

first-order formulation of both electromagnetism and elastodynamic. In this chapter, we 

propose first to extend the C-PML absorbing layer to the second-order system describing 

elastic waves in displacement formulation in anisotropic solids. This second-order formulation 

is described in frequency and time domains both for elastic solid and piezoelectric medium. 

The efficiency of this second-order perfectly matched layer is then demonstrated based upon 

2D benchmarks both for isotropic and anisotropic solids, and for bulk and surface wave 

propagation. An another kind of PML, more adapted to the developed DG-FEM scheme and 

simpler to implement, named Nearly Perfectly Matched Layer (NPML), also first proposed for 

electromagnetism, is extended for nonlinear elastodynamic. In some anisotropic media, 

numerical instabilities appear in the PML limiting the use of this absorbing layer. In order to 

stabilize the absorbing layer, the “Multiaxial Perfectly Matched Layer” (“MPML”) has been 

proposed. A complete study of the matching and stability properties of this “MPML” is 

presented. All this theoretical work is finally validated by numerical examples. A similar idea 

is used in the case of guided waves for frequencies where “inverse modes” with group and 

phase velocities of opposite signs are excited, where split field PML or C-PML do not work 

satisfactorily. Examples of stabilized absorbing layer are also presented for such guided waves 

case. 

 Finally, the fourth and last chapter of this thesis concerns the application of “chaotic 

cavity transducer” for the linear and nonlinear elastic wave imaging. The principles of the one 

channel TR focalization are first presented. Its astonishing behavior is linked to the ergodic 

property of the chaotic cavity, bearing the possibility to collect all information in only one 
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point. To improve the use of one channel TR in NDT application, we propose to use a 

“chaotic cavity transducer”, consisting of a combination of a PZT ceramic glued to a cavity of 

chaotic shape on the hardware side with the time reversal principle on the software side. 

Three signal processing techniques are studied in order to improve both the signal to noise 

ratio (contrast) and the quality of the focalization: Chirped excitation, Inverse Filter and 1 bit 

processing. We demonstrate numerically and experimentally that a transducer glued on a 

chaotic cavity can be used as an array of transducers, as it has been done recently for 3D 

imaging in fluid but for imaging applications in solid medium, and more precisely to 

nonlinear imaging of defects such as cracks. In this last case, the chaotic cavity transducer 

focusing process is used in combination with the pulse inversion method, by successively 

focusing a pulse and its inverse, and subsequently summing the two results to extract the 

nonlinear response of the sample at the focal position, and so obtain an image of localized 

nonlinearity. 
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CHAPTER 1: INTRODUCTION TO NONLINEAR 

NONDESTRUCTIVE TESTING AND IMAGING  

 

1.1 Introduction 

 In this chapter a brief introduction to nonlinear nondestructive testing and imaging and 

specially the ones which use time reversal process, will be reviewed. Because for a large class 

of elastic heterogeneous solid media, the conventional five-constant elasticity theory is often 

insufficient to explain anomalous nonlinear behaviour, different kind of nonlinearity models, 

including “classical” and “non-classical” nonlinearity will be discussed. The 2D and 3D 

nonlinear elastodynamic equations, expressed in a conservative form as needed by the 

Discontinuous Galerkin numerical method presented in the next chapter, will be then 

introduced. 

 Given a reliable model of wave propagation, numerical simulation in structures with 

complex geometry is often a prerequisite for real data interpretation, which will turn to be 

guidance for improving imaging systems. In order to explain the reasons of the choice of the 

used numerical scheme, classical numerical simulation methods, including Finite Difference 

Method, Finite Volume Method (FVM), Finite Element Method (FEM), Pseudo-Spectral 

method and Discontinuous Galerkin Finite Element Method (DG-FEM), will be presented and 

compared, focusing on their advantages and weaknesses. 

 The comparison of nonlinear signatures of the previously presented kinds of 

nonlinearity for shock wave generation and rod resonance will be studied to help the 

determination of the predominant nonlinear mechanism in specific experiments. 
 
 
 

1.2 Nonlinear Nondestructive Testing and Imaging Methods 

1.2.1 NEWS Methods 

 In the last few years, a strong interest for nondestructive testing methods based on 

nonlinear elastic effects in solid has grown, driven by the request from industry for sensitive 

quantification and localization of micro-structural damage. Researchers have developed 

innovative techniques that explicitly interrogate the material’s micromechanical behavior and 

its effect on wave propagation by investigating the amplitude dependence of macroscopically 

observable properties [101], [134], [189], [190], [191], [197]. Such techniques are termed 
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Nonlinear Elastic Wave Spectroscopy (NEWS) techniques. The basis of all NEWS techniques 

is to measure and analyze macroscopic signatures resulting from a local violation of the linear 

stress-strain relation at the micro-scale.  

 Several NEWS techniques have been developed to probe the existence of damage 

induced nonlinearity. One of the most frequently studied methods is harmonic analysis in the 

frequency domain [50], [135], consisting of measuring the second and higher harmonic 

amplitude versus the strain amplitude of the fundamental, which provides quantitative 

information about the nature of the nonlinearity. Another technique consists of parametric 

interactions between waves emitted in materials. The sample acts as a nonlinear frequency 

mixer, so that sum and difference frequency waves are created [1], [131]. In addition, 

modulations of amplitude [189] and phase [197] have been investigated in order to evaluate 

the classical nonlinear perturbation coefficient β  coming from the Taylor expansion of 

stress-strain relation [87]. The study of resonance frequency provides key information about 

nonlinear behavior. By plotting the frequency shift as a function of the fundamental mode 

strain amplitude, it is observed that resonance amplitude distortion increases significantly 

with defect [191], [192]. Tests performed on a wide variety of materials subjected to different 

micro-damage mechanisms of mechanical, chemical and thermal origin, have shown that the 

sensitivity of such nonlinear methods to the detection of micro-scale features is far greater 

than that obtained with linear acoustical methods [134]. 

 
 
1.2.2 Linear and Nonlinear Ultrasonic Imaging Methods for NDT 

 The most frequently used imaging techniques based on the analysis of ultrasonic signal 

generation and propagation are surface-scan imaging involving laser vibrometry, air-coupled 

ultrasonics and ultrasound thermography, ultrasound tomography; and time reversal (or wave 

phase conjugation) techniques. Laser vibrometry is a precise technology for non-contact 

vibration measurements, modal analysis and non-destructive testing for many areas of 

engineering. Linear laser vibrometry provides an extreme sensitivity (pico-meter range) in 

measuring and imaging vibration fields by evaluating the laser light scattered back from the 

vibrating object. Air-Coupled Ultrasound is another established method for remote defect 

imaging that has become a routine inspection technique in nondestructive testing for a wide 

range of materials and components [157]. A new generation of air-coupled ultrasonic 

transducers covering a wide frequency range up to few MHz enables to image faint acoustic 

fields scattered by tiny defects. 

In addition to pure acoustic or ultrasonic scanning measurements, techniques based on 

thermal-acoustic interaction have been successfully used in several NDT configurations: 

SPATE [132] is a well known method for mechanical stress measurement under static loads. 

With higher frequency and efficient excitation, it is also possible to visualize the dissipated 
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energy that is released due to nonlinear effects. This technique is known as Ultrasound-

Excited Thermography (ULT). Basic investigations [221] showed that the main advantage of 

ULT is the defect selective indication of material flaws by using elastic nonlinearity in 

defective material areas caused by friction or locally increased dissipation. 

 Multi-elements transducers are commonly used in ultrasonic medical imaging. They 

offer a great flexibility in the realisation of images, and advanced imaging techniques have 

been developed such as coded imaging, and dynamical focusing in reception. Most of these 

methods are now starting to be transferred to linear ultrasonic NDT applications, with the 

development of dedicated electronic systems (MultiX of the French society M2M). 

 In aeronautical industry, the main structures are plate like components of large size 

often made in composite a highly attenuating medium. When imaging these large structures 

for structural health monitoring, particular focus has been made on the use of guided Lamb 

waves [13], [14], [204]. Generally one tris to generate a single Lamb mode to simplify the 

measurement and understand how such wave is scattered by various linear defects. In this 

case the arrays are necessarily sparse with much interest in reducing the spatial density of the 

sensors in order to produce a cost effective system. 

 Unfortunately, these traditional NDT techniques are often not sufficiently sensitive to 

the presence of incipient and progressive damage. Indeed, the main difficulty in the 

characterization of a degradation process in structural materials relates to the fact that the 

material exhibits very few measurable signs of damage prior to the onset of delaminations or 

macro-cracks. To overcome this limited sensitivity of linear imaging methods, NEWS 

methods have recently been extended to visualization techniques for imaging defect’s 

nonlinearity distributions using laser vibrometry [174], airborne ultrasound [175], 

shearography [161] or all optical photothermal and photoacoustic methods [82]. In the 

airborne ultrasound method, the defects, acting as localized sources of nonlinear vibrations, 

efficiently radiate higher harmonics into the surrounding air. 
 
 
1.2.3 TR and NEWS Combined Methods 

 Time Reversal (TR) [68]-[70] is now a well known technique which have been 

developed in different fields including medical therapy, diagnostic, and underwater acoustics, 

due to its ability to provide spatial and temporal focusing of an ultrasonic wave. Time-reversal 

invariance in acoustics means that for every burst of sound ),( trs  emitted from a source, and 

which is reflected, refracted, or scattered by heterogeneities of the propagation medium, here 

exists a set of waves ),( trs −  that precisely retrace all these complexes paths and converge at 

the original source, as if time were going backwards. This invariance is satisfied by the 

equation in non attenuating media. The TR process leads to a spatial focusing and a temporal 

compression. Spatial focusing means that the time-reversed field focuses back exactly at the 
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source. Temporal compression means that the time reversed signal at the source is similar to 

the signal previously emitted by the source. In other words, the result of a TR process is that 

waves recorded on the boundary are focused back in space and time on the acoustic source, or 

on the scattering targets inside the region that were acting as sources. For classical linear TR 

process, the returned signal focuses on the direct wave source position not on the defect [24], 

[71]. The size of the focal spot depends on source size and form, and on the frequency of the 

signal emitted. Concerning NDT applications, TR processes have been applied in several 

classical ultrasonic inspection methods: C-scan with immersed samples [40], Rayleigh and 

Lamb waves propagation in plates and hollow cylinders [98], [99], [145], and structural health 

monitoring [199], [172]. In these studies, it was shown that the TR principle improves the 

detection of flaws in heterogeneous materials for which the microstructure displays a strong 

speckle noise that is obstructing the observation of a defect echo in classical ultrasonic 

inspection. On the other hand, researchers have encountered a serious limitation of the 

traditional TR technique in the fact that only the strongest scatterer can be imaged. The 

application of the so-called Décomposition de l’Opérateur de Retournement Temporel 

(DORT) method [145], [146] and successive TR iterations [205], [130] may overcome this 

feature to some extent and may enhance the detection by focusing selectively on weaker 

scatterers. Using these advanced analysis and signal processing techniques, flaws with sizes 

even smaller than the wavelength can be detected in highly heterogeneous materials such as 

titanium alloys [147], [21]. 

 Experiment with NEWS techniques have demonstrated that micro-damage is first of all 

a process of nonlinear scattering giving rise to the creation of higher harmonics, rather than to 

linear scattering effects. So, from this point of view, the classical TR procedure should be 

modified in such a way that the main signal treatment is concentrated on the nonlinear 

components of the signals. 

 Following the laboratory studies of the NEWS techniques, we can underline two 

important principles [112]: (1) the macroscopically observed nonlinear signatures originate 

from zones with micro-damage and micromechanical nonlinear stress-strain relations; (2) the 

nonlinear signatures are most efficiently generated at those locations where the strain within 

the sample is prevailing. These two principles can be used as the basis for new micro-damage 

visualization techniques based on nonlinear material properties. The NEWS methods allow 

characterization of the nonlinear behavior, but they do not provide information about defect 

localization. To overcome this problem, a method combining a Time Reversal (TR) process 

and a nonlinear treatment has been proposed [23], [176]. 

 For combining the nonlinearity based TR process with the NEWS methods, two 

technologies have been proposed, depending on whether nonlinear treatment is performed 

before or after the TR process. As presented in Fig 1.1, these two methodologies are defined as 
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TR-NEWS, with nonlinear analysis as a post-treatment of time reversal, and as NEWS-TR, 

with nonlinear analysis as a pre-treatment of time reversal [112]. 
 

 
 

Fig. 1.1 Defect detection methods based on a combination of TR and NEWS methods. 

 

 The TR-NEWS method, which consists in increasing locally the stress field using 

properties of linear TR and subsequently applying nonlinear analysis, has been experimentally 

demonstrated by Sutin et al. [176]. It seems to have a wide potential for application in solid 

ultrasound imaging for nondestructive testing [112], [184]. For TR-NEWS technology, 

different experimental set-ups have been recently proposed [26], [81], [112], [176], [184]. In 

these experiments, generally, two high frequency signals are used to excite the medium. Then, 

an analysis of the intermodulation of the retro-focalized signals point by point on the imaged 

area is made. In the experiment of Le Bas et al. [112], a 1MHz signal (f1) is first sent to a first 

source, and the out of plane particle velocity is recorded at a chosen location using a laser 

vibrometer. A second signal with a 200 kHz frequency (f2) is sent at a second source and 

again a laser vibrometer records the signal at the same position. Both recorded signals are 

then time reversed and reemitted from their corresponding original transducer at exactly the 

same time. Doing so, the time reversal principle makes sure that both signals arrive at the 

same time at the fixed point where the laser picks up the out of plane vibration. The 

intermodulation at the focused signal in time is then analyzed in terms of the sum (f1+f2) and 

difference (f1-f2) spectrum components. This procedure is repeated for all points on a line 

crossing the flaw position. For an intact location the level of intermodulation is quite low. 

However, for a micro-damaged zone the intermodulation becomes very high. The nonlinearity 

signatures contained in the sum and difference frequencies have been obtained as function of 

the distance to the crack. At the position of the crack, the intermodulation signature is 

evidently much larger than elsewhere. A contrast about a factor of 10 was obtained. 
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 Our TR-NEWS experiment has been realized on a fatigue steel sample combining a 

“chaotic cavity transducer” and a PI filtering method. 

 The other alternative to classical TR, called NEWS-TR, consist in selecting only the 

nonlinear or harmonic energy contained in the response signals and returning merely this part 

back into the medium by the time reversal process. Doing so, the time reversed signal will 

focus on the micro-damaged area, which is where the harmonics were created, while linear 

scatters will not show up at all [24], [77]. This method has been described for the first time by 

Bou Matar et al. [23] and has only been validated experimentally recently [185]. The 

nonlinear TR process has recently been demonstrated to be highly valuable for ultrasound 

imaging of damaging in solid [79], [77], [176], [219]. Moreover, similar ideas have already 

been used in fluids where Wave Phase Conjugation (WPC) in nonlinear regime has been 

demonstrated for nonlinear ultrasonic imaging [30], [31]. WPC is known as the spectral 

representation of TR transformation. The WPC technique, which originated in the field of 

nonlinear optics, has been adapted and applied for ultrasonic research applications in the 

1980’s by the scientific group of the Wave Research Center of the General Physics Institute of 

the Russian Academy of Sciences [33]. The original parametric method for acoustic WPC 

producing a giant (>80 dB) amplification was elaborated for the first time by this group [29]. 

The advantage of the parametric WPC technique is its capability, by principle, to use a single 

element time reversal mirror [29], [30]. 

 In the NEWS-TR technology, two filtering methods have been investigated to return 

only the nonlinear parts (harmonics) of the received signal, i.e., harmonic filtering and pulse 

inversion (PI) [71], [79]. For the harmonic filtering, one option consists of selecting only the 

nonlinear or harmonic energy contained in the response signals and returning only this part 

back into the medium by the time reversal process. Pulse inversion is an alternative filtering 

procedure based on the fact that the phase inversion of a pulsed excitation signal (180o phase 

shift) will lead to the exact inverted phase signal within a linear medium [169]. But, this is not 

the case in a nonlinear (or micro-damaged) material due to the generation of harmonics. 

Advantage of this information is taken by adding the response from two phase-inverted pulses 

(positive and negative) and sending back the sum to the receivers. 

 A numerical study of the comparison of the two proposed filtering methods for NEWS-

TR technique, used for detecting defects with a nonlinear hysteretic behavior, has been 

conducted in 2D [79] and 3D [80]. Hysteretic nonlinearity exhibiting high level of odd 

harmonics, the third harmonic signal is extracted in these numerical simulations. The results 

show that the higher the frequency, the greater the increase in retro-focusing quality and 

decreasing the source size reduces the retro-focusing quality. The simulation results 

demonstrate that the main difference between these two methods of filtering (harmonic 

filtering and pulse inversion) are: (1) Pulse inversion filtering is better for the defect detection 
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near the edge of the sample, all information related to the linear propagation in the medium is 

eliminated with pulse inversion filtering contrary to that with harmonic filtering; (2) 

Harmonics filtering is more precise than pulse inversion filtering when the defect is located 

between the emitter and receiver, the higher the harmonics frequency, the smaller the retro-

focusing spot size will be. An experiment of NEWS-TR with a pulse inversion filtering has 

been presented by Le Bas et al. [112]. A not perfect, but encouraging result has been obtained 

with a one channel time reversal process in a PMMA glass material. 

 Recently a scale subtraction filtering method to reveal the nonlinearity has been 

proposed [164]. It seems to be a valuable alternative to pulse inversion as it is sensitive not 

only to even harmonics but to both even and odd harmonics [165]. It has been recently 

experimentally validated [28]. 

 At this stage we can envisage the development of a hybrid experimental-numerical 

approach for NEWS-TR. One can use real signal recordings from a microdamaged object as 

input to a numerical reconstruction procedure which involves the filtering of nonlinear 

components and back-propagation in a linear wave propagation model. Indeed, it is important 

to realize that – once the receiver signals have been acquired – the time-reversal process can 

be performed numerically by computers using adequate (linear) material models. This allows 

to “see inside” the sample, and to localize the best focusing region even if this region is not 

located on one of the surfaces accessible to the transducers. The result of a preliminary test 

realized on a 27×74×95 cm PMMA sample with a laser made defect in its middle is displayed 

on Fig. 1.2. An elastic wave is generated inside the sample by applying an electric excitation 

to a PZT ceramic directly glued on the sample. The out of plane particle velocity is measured 

along one line (shown on Fig 1.2) with a laser vibrometer with a 1mm step. This experimental 

part of the test has been realized by P.Y. LeBas and K. Van Den Abeele. The experimental 

data have then been filtered in order to conserve only the third harmonic of the central 

frequency of the emitted pulse and time reversed. The obtained signals are numerically 

backward propagated, using a 3D Pseudo Spectral scheme [80], to the source of nonlinearity. 

The obtained result, on the surface of the sample on which the PZT ceramic is glued and the 

laser measurements have been made, is displayed on Fig1.2(a). It appears that, due to a not 

perfect gluing between the sample and the PZT ceramic, this latter is a source of nonlinearity. 

The obtained result, on the plane of the defect, Fig1.2(a), shown only a small signal 

propagating backward to the defect. 
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Fig. 1.2 Experimental set-up and PMMA sample geometry used in the hybrid experimental-numerical NEWS-

TR approach. 
 
 
 

1.3 Nonlinear Elasticity and Elastodynamic Equations 

 In this part, different kinds of “classical” and “non-classical” nonlinearity will be 

presented for elastic solid medium. A one-dimensional hyperbolic equation model for a 

compressional wave propagating in a heterogeneous medium will be introduced. The 

fundamental nonlinear elastodynamic equations expressed in a conservative form, as needed 

by the Discontinuous Galerkin numerical method introduced in the next chapter, will be 

presented for 2D and 3D simulations. 
 
 
1.3.1 Nonlinear 1D Propagation Model in Heterogeneous Elastic Media 

 Consider a heterogeneous medium in which a compressional wave propagates. This 

propagation is modeled by the following one-dimensional hyperbolic system of equations: 
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where 0ρ  and K are respectively the density and the elastic modulus of the material, v is the 

particle velocity, and τ is the longitudinal stress. Here, the modulus 

 
ε
τ

∂
∂=K ,  (1.3) 

where ε is the strain, is considered as time dependent in order to introduce the nonlinearity, 

which can be considered of different kind, e.g. quadratic and cubic, Bi-modular, Nazarov, or 

PM space hysteretic, as described in the next section. 
 
 
1.3.2 “Classical” and “Non-classical” Nonlinear Elasticity 

 For homogeneous isotropic solid media, traditionally, the propagation and interaction of 

acoustic waves is described in terms of the five-constant or nine constant elasticity theory 

[110], [215], which is based on developing the elastic energy as an analytic function of the 

strain field, and in which quadratic or cubic corrections are applied to the linear Hooke’s law. 

This is done by constructing the scalar invariants of the strain tensor. For a 1D elastic solid 

medium, longitudinal strain ε  is related to the corresponding stress tensor component τ  by 

[142] 

 )()( 2εεετ Γ−= E ,  (1.4) 

where E is the elastic modulus and Γ  is a parameter used as a measure of medium 

nonlinearity. For isotropic solids, within the framework of the “five-constant” elasticity theory 

one has [142] 
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CBA

ρ
+++=Γ . (1.5) 

Here A, B and C are third-order Landau elastic moduli. In homogeneous solids, such 

nonlinearity is caused by the dependence of intermolecular forces on the molecular 

displacement, leading to typical Γ  value of the order of unity (for example Γ = 4.4 in steel). 

 However, for elastic heterogeneous solid media, e.g., granular, rubber-like porous, rock, 

cement, concrete, composites and crack-containing elastic media, the elastic nonlinear 

behavior is significantly different from the “classical” nonlinear behavior described by the 

traditional nonlinear “five-constant” theory of Landau [110]. Amongst other things the 

parameter of acoustic nonlinearityΓ  proves to be larger than in “ordinary” homogeneous 

solids. The model of Eqs. (1.4) and (1.5) can not express the physical stress-strain relation of 

these materials. The inner structure of such media is characterized by presence of various 

heterogeneities and defects whose size is large compared with the inter-atom distance, but is 

small with respect to the characteristic scale of the acoustic perturbation. Moreover, acoustic 

waves can interact in such micro-inhomogeneous media much more intensively than in 
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homogeneous media. Many theoretical and experimental researches work have been done for 

different heterogeneous medium and interpreted with a large amount of different models. In 

the following we call this kind of nonlinearity “non-classical” nonlinearity for differentiating 

them from the “classical” nonlinearity. 

 In this section, four kinds of nonlinearity will be present, including “classical” quadratic 

and cubic nonlinearity model and three “non-classical” nonlinearity models. Moreover, linear 

and nonlinear attenuation are introduced in the wave equation. 
 
 
1.3.2.1 Quadratic and Cubic Nonlinearity  

 The “classical” quadratic nonlinearity was given by Eq. (1.4). This model can be 

extended to cubic nonlinearity by introducing the following constitutive equation [75]: 

 )()( 32 δεεεετ −Γ−= E ,  (1.6) 

where Γ and δ are respectively quadratic and cubic nonlinear parameters. Then, according to 

Eq. (1.3), the elastic modulus is: 

 )321( 2δεε −Γ−= EK .  (1.7) 

Even if “Classical nonlinearity” corresponds to this case, this model can be used to describe 

some medium with strong nonlinearity, as for example elastic medium with cylindrical pores 

[142], [141]. 
 
 
1.3.2.2 Bi-modular Elasticity Nonlinearity 

 Nazarov et al. [135] and Ostrovsky [142] have presented a “non-classical” Bi-modular 

model, which has different elastic moduli on compression and on stretch. The equation of 

state of this kind of media can be represented by a piecewise linear function 
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where +E  and −E  are the elastic moduli of the medium in compression and in tension, 

respectively, and −+ < EE .The corresponding stress-strain curve is plotted in Fig. 1.3. 
 

ε

τ
ε+E

ε−E

 
Fig. 1.3 Stress-strain curve of the Bi-modular model.  
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In this case, the modulus is simply given by: 
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This bi-modular model, with E+ ≈0 << E-, has been widely used to simulate “clapping” cracks, 

behaviour which has been experimentally observed when high amplitude waves (generally 

low frequency) interact with small sized cracks [153], [32], [173]. 
 
 
1.3.2.3 Nazarov Model of Hysteretic Nonlinearity  

 In recent years, nonlinear wave process occurring in various micro-inhomogeneous 

media have been more and more often described by equations of state containing an hysteretic 

nonlinearity [134], [135], [137], [138], [85], [124], [140]. Hysteretic properties are typical of 

many micro-inhomogeneous media. 

 Nazarov et al. [134], [135], [137], [138] have proposed two kinds of models: an 

inelastic hysteretic model and an elastic hysteretic model, for hysteretic nonlinearity, 

described by the following stress-strain relation: 

 )),((),( εεεεετ && fE −= ,  (1.10) 

where ( )εε &,f  is a nonlinear function of strain and strain rate. 

 In the inelastic hysteretic model, the nonlinear function has the form: 
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where 1<<mεα , 12,1 <<mεβ  and 12,1 >>β . This equation involves three independent 

nonlinear parameters α  and 2,1β , which are responsible for the variations of the elastic 

modulus and for the nonlinear loss. We can see that, when 0=α  and 021 =+ ββ , the 

modification of the elastic modulus and the nonlinear loss are equal to zero and Eq. (1.11) 

describes a quadratic nonlinearity, as the “five-constant” elasticity theory. 

 In the elastic hysteretic model, the nonlinear function has the form: 
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where 12,1 <<+mεγ , 14,3 <<−mεγ , 141 >>−γ . 0>+mε  and 0<−mε  are the last maximum and 

minimum of strain at the considered position, respectively. There are five free parameters in 

this model: the exponent n and four nonlinear hysteretic constants of the medium 41−γ . Eqs. 

(1.10) and (1.12) describe a broad class of media, depending on the relation between these 

parameters. When 2=n  and Γ==−=−= 24321 γγγγ , Eq. (1.12) will reduce to Eq. (1.4) for 

“classical” quadratic nonlinearity. Experimental investigations of nonlinear phenomena in 

polycrystalline zinc show that typical value of n for non-annealed and annealed zinc [136] is 2 

and 3, respectively. A plot of the stress-strain curve ),( εεττ &= , is given in Fig. 1.4. 
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Fig. 1.4 Stress-strain curve of the Nazarov elastic hysteretic nonlinearity model. 

 

 In this elastic model, the modulus becomes: 

 )),('1( εε &fEK −= , (1.13) 

where 
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1.3.2.4 PM-Space Model of Hysteretic Nonlinearity 

 For “non-classical” hysteretic nonlinearity, Ortin [140] Guyer and McCall [85], [124] 

have introduced another model to express the stress-strain equation, including both hysteresis 

and discrete points memory. This model proposes a theoretical framework taking the elastic 

properties of a macroscopic sample of material to result from the workings of a large number 

of mesoscopic elastic elements. These Hysteretic Element Units (HEU) can individually have 

complex hysteretic behavior and are responsible for the macroscopic linear and nonlinear 

elastic behavior. The most important portion of this theory is the Preisach-Mayergoyz space 

(PM-space), which provides an infinite number of state relations by tracking the behavior of 
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the individual elastic elements depending on the excitation and the pressure history. This 

theory uses static stress-strain data to determine the density of elastic elements in PM-space. 

This density takes the place of the five constants of the traditional theory. From the density, the 

dynamic elastic response of the system is determined. The connection between static and 

dynamic behavior, provided by the PM space picture, yields a qualitative and quantitative 

description of the relationship between the static and dynamic moduli. 

 In this model, no analytical expression of the bulk modulus is given. It is calculated by 

summation of the strain contribution of a numerous number of HEU. Each HEU is described 

by two characteristic stresses oP  and cP , corresponding to the transition between two states 

when the stress is increased or decreased, respectively. One state corresponds to an “open” 

state and the other one to a “closed” state. Our implementation of the PM space model is based 

on the multiscale approach developed by Van Den Abeele et al. [193]. For each cell of the 

calculation grid (representing a mesoscopic level of the medium description), N0 hysteretic 

units are considered with different values of the two stresses characteristic. This representation 

is commonly termed “PM-space” and can be described mathematically by its density 

distribution ),( co PPf , as shown on Fig. 1.5. Two kind of elementary hysteretic elements have 

been considered here, as shown on Fig. 1.6. 

 

 
Fig. 1.5 PM space representation of the density of HEU. Each dot represents one HEU. 

 

The first model (Fig. 1.6(a)) is the one introduced by Guyer et al. [85]. This is the simplest one, 

and it can be shown that in this case the bulk modulus is given by: 
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where Hε  is the strain contribution of the hysteretic elements, and β and δ are “classical” 

quadratic and cubic nonlinear parameters. The strain variation as a function of stress induced 

by the HEUs can be calculated by: 
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where Mε is the strain contribution of each individual HEU. 
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Fig. 1.6 Elementary hysteretic elements used in the computation of the PM space model. (a) “inelastic” two 

states element, and (b) “elastic” two states elements. In each case, one state corresponds to an open state and the 

other one to a closed state, with a transition stress associated, Po and Pc respectively. 

 

 For the first model, as shown in Fig. 1.6(a), when the stress increases, 0>∂∂ tτ , then the 

strain variation for each elementary HEU is given by: 
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where )(xδ  is the delta Dirac function. Inserting Eq. (1.17) in Eq. (1.16) we obtain the strain 

variation induced by all the HEUs (inverse bulk modulus contribution of all the HEUs) as: 
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with Ω = 1 if the HEU is open, and Ω = 0 if it is closed. 2O is the “open” coordinate of the 

point A2 in the PM space (see Fig. 1.7). Now, if the stress decreases, 0<∂∂ tτ , the induced 

strain variation, by each HEU, is: 
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and the overall strain variation: 
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with now Ω = 1 if the HEU is closed, and Ω = 0 if it is open. 2C  is the “closed” coordinate of 

the point 2A in the PM-space. So, we have seen that the calculation of bulk modulus is 

reduced to follow the limit between the open and closed elements domains. The function 

τττε ddfcH )(=∂∂ , where fc is the fraction of the PM-space area occupied by closed units, 

corresponds to the fact that only hysteretic units changing of state (open to closed or closed to 

open) at the actual stress τ contribute to the inverse of the bulk modulus at this time. 
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Fig. 1.7 Evolution of the PM space domain during cycles of compression and rarefaction. 

 

 The second model (Fig. 1.6(b)) is an extension of the model of Scalenderi et al. [162] 

implemented in the LISA code, and shown in Fig. 1.8. The bulk modulus is already given by 

Eq. (1.15) where only τε ∂∂ H  need to be modified. Considering Fig. 1.6(b), the strain 

variation for each elementary HEU, if the stress is increasing, is now given by: 
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(1.21) 

where u(x) is the step function, and 1K and 2K  correspond respectively to the bulk modulus of 

the HEUs in the open and closed states. Introducing these expressions in Eq. (1.16), the strain 

variation induced by all the HEUs becomes: 
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with Ω = 1 if the HEU is open, and Ω = 0 if it is closed. Finally, we obtain: 
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The first double integral term is the inverse of the bulk modulus contribution when all the 

HEUs are in the closed state. The second integral term is the modification of the inverse of the 

bulk modulus due to open HEUs, and the single integral term is the additional contribution to 

the inverse of the bulk modulus of the HEUs closing at the actual stress τ. When the stress is 

decreased, similar, the strain variation for each elementary HEU is now given by: 
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(1.24) 

and the overall strain variation can be similarly obtained: 
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where now, the first double integral term is the inverse of the bulk modulus contribution when 

all the HEUs are in the open state. The second integral term is the modification of the inverse 

of the bulk modulus due to closed HEUs, and the single integral term is the additional 

contribution to the inverse of the bulk modulus of the HEUs opening at the actual stress τ. In 

both cases of increasing and decreasing stress, the variation of τε ∂∂ H  can be calculated by 

looking at the closing or opening HEUs, respectively, between the actual and past value of the 

stress. 

 In the case shown in Fig. 1.8 the following relations have to be used to simplify Eq. (1.23) 

and Eq. (1.25) 

1
1 K

PP oc −== γγ , 02 =γ , and 0
1

2
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K

. (1.26) 
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Fig. 1.8 Elementary hysteretic elements as proposed by Scalenderi This case is a particular case of the “elastic” 

to state element described in Figure 1.6(b) when 1/K2 = 0. In this case the closed state corresponds to a true rigid 

state. 
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1.3.2.5 Nonlinear Attenuation 

 In some case, for example to explain Luxemburg-Gorky effect [212], [213], not only the 

bulk modulus depends nonlinearly on the strain but also the attenuation. To describe this 

phenomenon, Nazarov et al. [136] have introduced the following stress / strain relation: 

 ''')1()),(()( 0 ττεεαρεεεετ +=++−= &&
s

gfE ,  (1.27) 

Introducing this constitutive equation in the equation of motion we obtain the following system: 
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and K(t) is the elastic modulus given by one of the preceding nonlinear models. 
 
 
1.3.2.6 Linear Attenuation 

 When the attenuation introduced by nonlinear effects is small, a linear attenuation needs 

to be introduced in simulations, especially when we consider resonant rods. This attenuation, 

and the dispersive effects associated are often quantified by the quality factor Q, which is, in 

mang real material, independent of the frequency. To introduce a constant Q in our simulations 

we used the methodology introduced by Blanch et al. [20]. For 1D, the viscoelastic hypothesis 

can be described as  [154]: 
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where the bulk modulus is given by: 
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with Kr the relaxed bulk modulus corresponding to )(tK , τσl and τεl are the stress and strain 

relaxation times for the l-th of the L standard linear solids connected in parallel to model the 

viscoelastic properties of the considered solid in the frequency range of interest. 

 Taking the time derivative of Eq. (1.31) we obtain: 
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with 
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Introducing memory variables r l, Eq. (1.33) can be re-written as: 
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where the following notations have been introduced: 
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r l can be calculated with a first order differential equation: 
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obtained by time derivation of Eq. (1.37). The frequency evolution of the Q-factor 

corresponding to this model is [154]: 
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Now, to calculate the τσl and the τεl we used the τ-method introduced by Blanch et al. [20], 

[154], where we define the τ variable as: 
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with this new parameter, the Q-factor is given by: 
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The ll ωτ σ 1=  are distributed logarithmically over the frequency range of interest following 

the rule of thumb of about one per one-two octaves (for example, 6 relaxations are needed to 

realize simulations between 1 kHz and 1 MHz). When a constant Q-factor (Q0) is simulated, 
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the formula given by Blanch et al. [20], [154] (Eqs. (21)-(23) in their paper) is used. In the case 

of another frequency evolution of Q, an optimization algorithm is used to minimize over τ the 

expression: 

 ωωττω
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ω
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where Q̂  is the approximated Q-factor given by Eq. (1.41). 

 Knowing τσl and τ, the corresponding bulk modulus at a given frequency ω0 is: 
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where lc  is the longitudinal wave velocity in the medium. So, when a resonant rod simulation 

is made, the bulk modulus at the resonant frequency need to be calculated by Eq. (1.43) for a 

given longitudinal wave velocity. Parameters obtained to simulate a constant Q factor of 80 

between 1 kHz and 1 MHz are given in Table 1.1. 

 
 

Tab. 1.1 Parameters of the 7 relaxations needed to simulate a constant Q factor of 80. 

N° 1 2 3 4 5 6 7 

lστ  3.98 10-4 7.96 10-5 1.59 10-5 3.18 10-6 6.37 10-7 1.27 10-7 2.55 10-8 

      τ 1.31 10-2 

K(100kHz) 3.657 106 

 
 

The evolution of Q as a function of frequency calculated with these parameters is shown 

in Fig. 1.9. This constant Q factor model corresponds to a linear frequency dependence of the 

attenuation (Fig. 1.10(a)) and to the dispersion presented in Fig. 1.10(b). 
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Fig. 1.9 Obtained Q-factor as a function of frequency, by the τ-method with 7 relaxations, in the case of a 

constant Q-factor of 80. 
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Fig. 1.10 (a) Attenuation and (b) phase velocity as a function of frequency for the constant Q factor of 80 

medium. 

 
 
1.3.3 Nonlinear Elastodynamic System of Equations 

 For nonlinear elastodynamic solid medium, with “classical” and “non-classical” 

nonlinearities, it is more judicious to discretize the fundamental elastodynamic equations 

expressed in conservation form. The considered equation of motion can be written, with 

Einstein’s convention of summation: 
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=
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0ρ , (1.44) 

where iv are the components of the particle velocity vector, aj are the components of the 

Lagrangian position vector, 0ρ  is the density, Pij are the components of the Piola-Kirchoff 

tensor, and t is the time. These equations are completed by the constitutive relation: 



CHAPTER 1: INTRODUCTION TO NONLINEAR NONDESTRUCTIVE TESTING AND IMAGING 

 41 

 
ij

ij F

W
P

∂
∂= 0ρ , (1.45) 

where W is the elastic energy density which depends on the considered nonlinear (or linear) 

model of elasticity, and F is the deformation gradient: 
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where δij is the Dirac delta function, and ui are the component of the displacement vector. For 

example, in the case of an anisotropic linear elastic solid the constitutive equations are given 

by the Hooke’s law: 

 klijklijij CP ετ == , (1.47) 

where Cijkl are the elastic constants. Finally, the system is closed by the link between particle 

velocity and deformations gradient: 
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To resume, the system to be solved, in order to simulate propagation of elastic waves in 

nonlinear elastic solids, is written in the following conservation form: 
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Ω  is the global physical domain with boundary Ω∂  and 
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represent the state vector and the three components of the flux, respectively. 



CHAPTER 1: INTRODUCTION TO NONLINEAR NONDESTRUCTIVE TESTING AND IMAGING 

 42 

 This system of equations is at the basis of all the numerical simulations of linear and 

nonlinear elastic wave propagation that have been realized with the Discontinuous Galerkin 

Finite Element Method (DG-FEM) [63], [64], [94], [103], [104], [148] presented in Chapter 2. 

 In the linear elastic case the the system of equations (1.49) can be rewritten in 2D as: 
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and 
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 The classical nonlinear case will be described later in chapter 2. Now, to introduce “non-

classical” nonlinearity, the methodology used in Ref. [79], and based on Kelvin notation, is 

used. The elastic constant tensor is written in Kelvin notation [52], [89] by pre and post 

multiplying the Voigt matrix by 
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In the Kelvin notation the elastic coefficient tensor thus becomes: 
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Using these notations, it can be shown that the 3 eigenvectors of the elastic constant tensor 

correspond to 3 eigenstress / eigenstrain vectors )(~ kε : 
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with the associated eigenvalues 1α , 2α and 2C66, respectively. The following notations have 

been introduced: 
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These vectors represent directions where applied stress and created strain are in the same 

direction. In this case, it is possible to use any of the scalar models described for 1D simulation, 

for each of these 3 directions. Only the associated eigenstiffness )(kΛ  is modified and the 

actualized elastic coefficient tensors in Voigt notation used in equations similar to Eqs. (1.51) 

or (1.52) are obtained by: 
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 Based on these Kelvin notations, the calculation steps are as follows: 

 1. Calculation of the 2D Kelvin stress vector: 
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 2. Calculation of the stress projections along the 3 eigenstress directions: 
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 3. Modification of each associated eigenvalue )(iE  using the considered nonlinear model. 

 4. Calculation of the modified elastic tensor using the equations: 
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Finally, we can note that a molecular dynamic model has been proposed in Ref. [201] to 

calculate the stress-strain relation. 
 
 
 

1.4 Numerical Simulation Methods 

 In many research domains, solving a Partial Differential Equation (PDE) 

computationally is needed in order to simulate the underlining physical process, and a large 

number of different methods have been developed for this. Among these are the widely used 

Finite Difference Method (FDM), Finite Volume Method (FVM), and Finite Element Method 

(FEM), which are all techniques used for long time to derive discrete representations of the 

spatial derivative operators. Pseudo-Spectral (PS) Method and Discontinuous Galerkin Finite 

Element Method (DG-FEM) have been developed for improving the efficiency of calculation 

and adding geometric flexibility. These methods will be reviewed and the advantages and 

weaknesses of these techniques will be discussed in the following subsections. To appreciate 

these different methods, we consider the one-dimensional scalar conservation law for the 

variable ),( txu  

 g
x

f

t

u =
∂
∂+

∂
∂

, Ω∈x  (1.68) 

where )(uf  is the flux, ),( txg  is some prescribed forcing source. This equation is completed 

by an appropriate set of initial conditions and boundary conditions on the boundaryΩ∂ .  

 The construction of any numerical method for solving a partial differential equation 

requires one to consider the two following choices: 

• How can the solution ),( txu  be represented by an approximate solution ),( txuh ? 

• In which sense will the approximate solution ),( txuh  satisfy the partial differential 

equation? 

These two choices separate the different methods and define the properties of the methods. It 

is instructive to seek a detailed understanding of these choices and how they impact the 

schemes to appreciate how to address problems and limitations associated with the classic 

schemes. 
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1.4.1 Finite Difference Method 

 The Finite Difference Method (FDM) was first introduced by Yee [210] in 1966 for the 

study of electromagnetic scattering problems. One of the most attracting aspects of FDM is its 

simplicity. It leads to very efficient semi-discrete spatial schemes. We begin with the simplest 

and historically oldest method. In this approach, a grid kx (k = 1, 2…K) is laid down in 1D 

space as shown in Fig. 1.11 
 

1x 2x Kx

h
x

 
Fig. 1.11 Grid distribution of Finite Difference Method in 1D. 

 

The conservation law is approximated by difference methods as 

 ),(
),(),(),(

1

11 txg
hh

txftxf
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kk
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where hu  and hf  are the numerical approximations to the solution and the flux, respectively, 

and kkk xxh −= +1  is the local grid size. The construction of a finite difference method requires 

that, in the neighborhood of each grid point kx , the solution and the flux are assumed to be 

well approximated by local polynomials 
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))((),(
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where the coefficients )(tai  and )(tbi are found by requiring that the approximate function 

interpolates at the grid points kx . Inserting these local approximations into Eq. (1.68), the 

residual will be obtained as following 

 ],[ 11 +−∈ kk xxx :   ),(),( txg
x

f

t

u
tx hh

h −
∂
∂+

∂
∂=ℜ . (1.71) 

Thus, we need to specify in which way ),( txuh  must satisfy the equation, which amounts to a 

statement about the residual ),( txhℜ . If we have a total of K grid points and, thus, K 

unknown grid point values, ),( txu kh  is a natural choice to require that the residual vanishes 

exactly at these grid points. This results in exactly K finite difference equation of the type in 

Eq. (1.69) for the K unknowns. 

 If the equation, which should be solved, is in second order formulation within the time 

domain, the following second order finite difference formulation can be used 

 
2

11
2

2 ),(),(2),(),(

k

khkhkhkh

t

txutxutxu

dt

txud

∆
+−

= −+ , (1.72) 

where kkk ttt −=∆ +1  is the time step of calculation. For us, to do the simulation of elastic 
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wave propagating in anisotropic solid medium, described in a second order wave equation, 

with C-PML absorbing boundary condition, the preceding second order finite difference 

formulation in time domain has been used [117]. 

 The simplicity is one of the most appealing properties of the FDM method. Moreover, 

due to its features of robustness and powerfulness, it has been used to many general problems 

in a wide range of domains, e.g., acoustic [211], [166], elastic wave [60], [61], [43], [48], 

computational electrodynamics [210], [178], and so on. Furthermore, the explicit semidiscrete 

form gives flexibility in the choice of timestepping methods, e.g., Runge-Kutta [35] and 

Adams-Bashforth [76] time integrators can easily be used in the FDM scheme. Finally, 

extension to higher order approximations by using a local polynomial approximation of 

higher degree is relatively straightforward.  

 However, the reliance on the local one-dimensional polynomial approximation that is 

the Achilles’ heel of the method, as that enforces a simple dimension-by-dimension structure 

in higher dimensions. Additional complications caused by the simple underlying structure are 

introduced around boundaries and discontinuous internal layers (e.g., discontinuous material 

coefficients). This makes the native FDM ill-suited to deal with complex geometries, both in 

terms of general computational domains and internal discontinuities as well as for local order 

and grid size changes to reflect local features of the solution. 
 
 
1.4.2 Finite Volume Method 

 The Finite Volume Method (FVM) is a discretization method which is well suited for 

the numerical simulation of various types (elliptic, parabolic or hyperbolic, for instance) of 

conservation laws. One important feature of FVM is that it can be used on arbitrary 

geometries, using structured or unstructured meshes, due to the introduction of an element-

based discretization. 

 Grid distribution for the 1D FVM scheme is shown in Fig. 1.12: 
 

1x 2x kx

h
x

 
Fig. 1.12 Control volumes and nodal points of Finite Volume Method in 1D. 

 

Each discretization cell is often called “control volume” and grids point located at the center 

of each element. In its simplest form, the solution of Eq. (1.68) ),( txu  is approximated on the 

element by a constant )(tuk  at the center of the element kx . This is introduced into Eq. (1.68) 

to recover the cellwise residual 
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u
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h −
∂

∂+
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∂=ℜ , (1.73) 

where the element is defined as ],[D 2121 +−= kkk xx  with 2)( 121 ++ += kkk xxx . In the FVM 

method we require that the cell average of the residual vanishes identically, leading to the 

scheme: 

 kkkk
k

k ghff
dt

ud
h =−+ −+ 2121 ,  (1.74) 

for each cell. Note that the approximation and the scheme are purely local and, thus, imposes 

no conditions on the grid structure. In particular, all cells can have different sizes kh . The flux 

term reduces to a pure surface term by the use of the divergence theorem, or Gauss’ theorem. 

This step introduces the need to evaluate the fluxes at the boundaries. However, since the 

unknowns are the cell averages of the numerical solution hu , the evaluation of these fluxes is 

not straightforward. 

 This reconstruction problem and the subsequent evaluation of the fluxes at the interfaces 

can be addressed in many different ways and the details of this lead to different finite volume 

methods. For example, a simple solution to the reconstruction problem is to use 

 2)( 121 kkk uuu += ++ ,  )( 2121 ++ = kk uff , (1.75) 

and likewise for 21−kf . The local conservativity of the numerical fluxes is that the numerical 

flux is conserved from one discretization cell to its neighbor. This feature makes the finite 

volume method quite attractive when modeling problems for which the flux is of importance, 

such as in fluid mechanics [196], or elastodynamic [198]. For linear problems and equidistant 

grids these methods reduce to the finite difference method. However, one easily realizes that 

the formulation is less restrictive in terms of the grid structure, that is, the reconstruction of 

solution values at the interfaces is a local procedure and generalizes straightforwardly to 

unstructured grids in high dimensions, thus ensuring the desired geometric flexibility. 

 However, if we need to increase the order of accuracy of the method, a fundamental 

problem emerges. Consider again the problem in one dimension. We wish to reconstruct the 

solution hu  at the interface and we seek a local polynomial, )(xuh  of the form 

 ],[ 2321 +−∈ kk xxx :  bxaxuh +=)( . (1.76) 

To recover the two coefficients, then, we require 

 ∫
+

−

=21

21

)(
k

k

x

x kkh uhdxxu ,    ∫
+

+
++=23

21
11)(

k

k

x

x kkh uhdxxu . (1.77) 

The reconstructed value of the solution hu , and therefore also ))(( 211+xuf h can then be 

evaluated.  

 To reconstruct the interface values at a higher accuracy we can continue as above and 
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seek a local solution of the form 

 ∑ −=
N

j

j
kjh xxaxu )()( . (1.78) 

However, to find the N + 1 unknown coefficients, we will need information from at least N +1 

cells. In the simple one-dimensional case, this can be done straightforwardly, as for the finite 

difference scheme (i.e., by extending the size of the stencil). However, the need for a high-

order reconstruction reintroduces the need for a particular grid structure and thus destroys the 

geometric flexibility of the finite volume method in higher dimensions. This defeats the initial 

motivation for considering the finite volume method. On unstructured grids this approach 

requires a reconstruction based on genuinely multivariate polynomials with general cell center 

locations which is both complex and prone to stability problems. So, the main limitation of 

finite volume methods is found in its inability to extend to higher-order accuracy on general 

unstructured grids. 
 
 
1.4.3 Finite Element Method 

 From the presentation of Finite Volume Method (FVM), we realize that the problem 

with the high-order reconstruction is that it must span multiple elements as the numerical 

approximation ),( txuh  is represented by cell averages only. One could be tempted to take a 

different approach and introduce more degrees of freedom on the element. To pursue this idea, 

Finite Element Method (FEM) should be present. 

 As the methods of FDM and FVM, the FEM is also a numerical technique which gives 

approximate solutions to differential equations that modelize problems arising in physics and 

engineering. As in simple finite difference schemes, the finite element method requires a 

problem defined in geometric domain to be subdivided into a finite number of smaller regions 

(mesh). In finite differences, the mesh consists of rows and columns of orthogonal lines, 

however, in finite element method, each subdivision is unique and need not be orthogonal. 

For example, triangles or quadrilaterals can be used in two dimensions and tetrahedrons or 

hexahedrons in three dimensions. Over each finite element, the unknown variables are 

approximated using known functions, these functions can be linear or higher-order 

polynomial expansions that depend on the geometrical locations used to define the finite 

element shape. In contrast to finite difference procedures (or finite volume method), the 

governing equations in the finite element method are integrated over each finite element and 

the solution summed over the entire problem domain.  As a consequence of these operations, 

a set of finite linear equations is obtained in terms of a set of unknown parameters over each 

element. Solution of these equations is achieved using linear algebra techniques. 
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 For solving the approximate solution of Eq. (1.68) with FEM scheme, we redefine the 

element kD  as the interval bounded by the grid points ],[ 1+kk xx  and with a total of K 

elements and K + 1 grid points as shown in Fig. 1.13. 
 

1x 2x 1+Kx

h
x

 
Fig. 1.13 Grid distribution of Finite Element Method in 1D. 

 

Note that this is slightly different from the finite volume scheme where the element was 

defined by staggered grid points as ],[ 1+kk xx . Inside the element, we assume that the local 

solution is expressed in the form 

 kx D∈ :   )()(
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n
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p
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= , (1.79) 

where we have introduced the use of a locally defined basis function )(xnϕ . In the simplest 

case, we can take these basis functions to be linear: 
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where the linear Lagrange polynomial )(xk
il  is given as 
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With this local element-based model, each element shares the nodes with one other element. 

We have a global representation of hu as 

 ∑∑
==

==
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k
kkh xNuxNxuxu

11

)()()()( , (1.82) 

where the piecewise linear shape function,  ijji xN δ=)(  is the basis function and )( kk xuu =  

remain as the unknowns. 

 To recover the scheme to solve Eq. (1.68), we define a space of test functions hV , and 

require that the residual is orthogonal to all test functions in this space as 

 0)( =






 −
∂
∂+

∂
∂

∫Ω dxxg
x

f

t

u
hh

hh φ .   hh V∈∀φ . (1.83) 

The details of the scheme are determined by how this space of test functions is defined. A 

classic choice, leading to a Galerkin scheme, is to require that spaces spanned by the basis 

functions and test functions are the same. Since the residual has to vanish for all hh V∈φ , this 

amounts to 
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for j = 1… K. Straightforward manipulations yield the scheme 

 hh
h

dt

d
MgSf

u
M =+ , (1.85) 

where 

 ∫Ω= dxxNxN jiij )()(M ,  dx
dx

dN
xN j

iij ∫Ω= )(S , (1.86) 

reflect the globally defined mass matrix and stiffness matrix, respectively. 

 This approach, which reflects the essence of the classic finite element method [97], 

clearly allows different element sizes. Furthermore, we recall that a main motivation for 

considering methods beyond the finite volume approach was the interest in higher-order 

approximations. Such extensions are relatively simple in the finite element setting and can be 

achieved by adding additional degrees of freedom to the element while maintaining shared 

nodes along the faces of the elements [102]. In particular, one can have different orders of 

approximation in each element, thereby enabling local changes in both size and order, known 

as hp-adaptivity [54]. 

 However, the above discussion also highlights disadvantages of the classic continuous 

finite element formulation. First, we see that the globally defined basis functions and the 

requirement that the residual be orthogonal to the same set of globally defined test functions 

implies that the semidiscrete scheme becomes implicit and M  must be inverted. For time 

dependent problems, this is a clear disadvantage compared to finite difference and finite 

volume methods. 

 Simulations with FEM scheme, for applications of Convolution Perfectly Matched 

Layer in isotropic, anisotropic solids [117], piezoelectric media [25], [116], and plate [25], 

[116], have been implemented within a commercial FEM software (COMSOL Multiphysics) 

in the frequency domain. Details about this will be presented in Chapter 3. 
 
 
1.4.4 Pseudo-Spectral Method 

 The FDM scheme has been used in many researching domains by a huge number of 

authors who appreciate its simplicity, robustness, and powerfulness. However, numerical 

examples have indicated that a spatial sampling density of at least 10 to 20 cells per minimum 

wavelength is necessary to ensure that the FDM produces acceptable results to the 

calculations of wave propagation on several wavelengths. For such kinds of problem, the 

bigger the size of the modeled structure, the higher the spatial sampling rate used in order to 
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reduce the cumulative numerical dispersion error. This makes FDM modeling of large scale 

problems very challenging. 

 In order to efficiently solve this kind of problem, Pseudo-Spectral (PS) algorithms have 

been developed. These methods use either trigonometric functions (Fourier Pseudo-Spectral), 

[119] or Chebyshev polynomials (Chebyshev Pseudo-Spectral) [216] to approximate spatial 

derivatives in order to greatly reduce the numerical dispersion error. When applied to single 

domains having smooth internal media, PS methods based upon these functions have spectral 

accuracy, meaning that the numerical dispersion error decreases exponentially with the 

sampling density. Spectral accuracy also can be achieved for problems with multiple 

inhomogeneity regions when PS algorithms are coupled with appropriate boundary-patching 

conditions [178].  

 In this part we will mainly present the Fourier Pseudo-Spectral (PS) method in which a 

staggered grid will be used. In the Fourier PS scheme, computation of the variables spatial 

derivatives is accomplished by the FFT algorithm. For example, the derivative xxf ∂∂ )(  in 

Eq. (1.68) is computed by taking the Fourier transform of )(xf  over x: 

 [ ])]([
2)( 1 xfFFTjkFFT

xNx

xf
x

p

−

∆
=

∂
∂ π

,  (1.87) 

where pN  is the number of grid points, x∆ is the spatial step of discritization, FFT is a 

forward Fourier transform, FFT-1 is an inverse Fourier transform, xk  is the wave number in 

the x direction. Eq. (1.87) yields an approximation to the spatial derivatives that has spectral 

accuracy for which the error decreases exponentially as pN increase. The precision of 

calculation can be satisfied with a discretization of only two grid cells per minimum 

wavelength. The time-integration in the PS method can be realized with the Runge-Kutta [35] 

and Adams-Bashforth [76] integrators, as for FDM technique. 
 
 
1.4.5 Discontinuous Galerkin Finite Element Method 

 The FEM has the properties of geometric flexibility and high-order accuracy, however, 

its globally defined basis and test functions destroy the locality of the scheme and introduce 

potential problems of stability for wave-dominated problems. In the following paragraphs, an 

intelligent combination of the finite element and the finite volume methods, utilizing a space 

of basis and test functions that mimics the finite element method but satisfying the equation in 

a sense closer to the finite volume method, appears to offer many of the desired properties. 

This combination is exactly what leads to the Discontinuous Galerkin Finite Element Method 

(DG-FEM) which has been proposed first in [152] as a way of solving the steady-state 

neutron transport equation. The first analysis of this method was presented by Lesaint and 

Raviart [113]. 
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 To achieve the scheme of DG-FEM, we maintain the definition of elements as in the 

FEM scheme such that ],[D 1+= kkk xx . However, to ensure the locality of the scheme, we 

duplicate the variables located at the nodes kx . The sketch of the geometry for DG-FEM in 

one-dimensional is illustrated in Fig. 1.14. 
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Fig. 1.14 Geometry sketch of the DG-FEM in 1D. 

 

Hence the vector of unknowns is defined as 

 [ ]TKKKKh uuuuuuuu 113221 ,,,....,,,,u +−= , (1.88) 

and is now 2K long rather than K + 1 as in the finite element method. In each of these 

elements we assume that the local solution can be expressed as 
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and likewise for the flux k
hf . The space of basis functions is defined as 1

01 }{V ==⊕= i
k
i

K
kh l , i.e., 

as the space of piecewise polynomial functions. Note in particular that there is no restrictions 

on the smoothness of the basis functions between elements. 

 As in the finite element case, we now assume that the local solution can be well 

represented by a linear approximation hhu V∈  and form the local residual 
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for each element. Going back to the finite element scheme, we recall that the global 

conditions on this residual are the source of the global nature of the operators M  and S  in Eq. 

(1.85). To overcome this, we require that the residual is orthogonal to all test functions 

hh V∈φ , leading to 

 ∫ =ℜ
k

dxxtx k
jhD

0)(),( l , (1.91) 

for all the test functions )(xk
jl . The strictly local statement is a direct consequence of 

hV being a broken space and the fact that we have duplicated solutions at all interface nodes. 

 There are two questions that should be considered. First, the locality also appears 

problematic as this statement does not allow one to recover a meaningful global solution. 

Second, the points at the ends of the elements are shared by two elements so how does one 

ensure uniqueness of the solution at these points? 
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 These problems are overcome by observing that the above local statement is very 

similar to that recovered in the finite volume method. Following this line of thinking, let us 

use Gauss’ theorem to obtain the local statement 
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For the right-hand side term, it is easy to understand by considering the simplest case where 

)(xk
jl  is a constant, in which case we recover the finite volume scheme in Eq. (1.74). Hence, 

the main purpose of the term of the right-hand side is to connect the elements. This is further 

made clear by observing that both element KD and element 1D +K  depend on the flux 

evaluation at the point 1+kx , shared among the two elements. This situation is identical to the 

reconstruction problem discussed previously for the finite volume method where the interface 

flux is recovered by combining the information of the two cell averages appropriately. 

 According to the preceding analysis, it suffices to introduce the numerical flux ∗f , as 

the unique value to be used at the interface and obtained by combining information from both 

elements. With this the following scheme will be recovered 
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or, by applying Gauss’ theorem once again, 
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These two formulations are the Discontinuous Galerkin Finite Element Method (DG-FEM) 

schemes for the scalar conservation law in weak and strong form, respectively. Note that the 

choice of the numerical flux ∗f  is a central element of the scheme and is also where one can 

introduce knowledge of the dynamics of the problem. 

 To mimic the terminology of the finite element scheme, the following two local element 

wise schemes are obtained 
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and 
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here we have the vectors of local unknown k
hu , of fluxes k

hf , and the source forces khg , all 

given on the nodes in each element. Given the duplication of unknowns at the element 

interfaces, each vector is 2K long. Furthermore, we have Tk
N

kk xxx
p

)](),...,([)( 1 lll =   and the 

local matrices 
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 While the structure of the DG-FEM is very similar to that of the finite element method 

(FEM), there are several fundamental differences. In particular, the mass matrix is local rather 

than global and thus can be inverted at very little cost, yielding a semidiscrete scheme that is 

explicit. Furthermore, by carefully designing the numerical flux to reflect the underlying 

dynamics, one has more flexibility than in the classic FEM to ensure stability for 

wavedominated problems. Compared with the FVM, the DG-FEM overcomes the key 

limitation on achieving high-order accuracy on general grids by enabling this through the 

local element-based basis. This is all achieved while maintaining benefits such as local 

conservation and flexibility in the choice of the numerical flux. 

 The DG-FEM scheme has been widely used for Maxwell’s equations [46], [91], elastic 

wave equations [103], [148], and piezoelectric equations [27], etc. For realizing the time-

integration within DG-FEM construction, the Runge-Kutta [35] and ADER (arbitrary high 

order derivatives) [103], [148], time integration approaches have been applied. 

 More details about the DG-FEM method will be presented in Chaper 2, where a 

numerical software based on it is described for nonlinear elastic wave propagation phenomena. 
 
 
 

1.5 Pseudo-Spectral Simulation of 1D Nonlinear Propagation in 

Elastic Media 

 As described previously, for a large class of elastic heterogeneous solid media, the 

conventional five-constant elasticity theory is often insufficient to explain anomalous 

nonlinear behaviors of these media. 

 In this part, numerical simulations of “classical” and “non-classical” nonlinearities will 

be presented with a 1D model describing a compressional wave propagating in a 

heterogeneous medium. The comparisons of nonlinear signatures of these different kinds of 

nonlinearity for shock wave generation, and rod resonance will be studied. These results are 

expected to be useful in helping to determine the predominant nonlinear mechanism in 

specific experiments. 

 
 
1.5.1 The Elastic Wave Solver 

 In this part, we will first present the Pseudo-Spectral (PS) algorithm used to solve the 

system of equations Eqs. (1.1)-(1.2), or Eqs. (1.1), (1.35) and (1.38) if attenuation needs to be 
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included. When needed to simulate unbounded media a Convolution Perfectly Matched Layer 

(C-PML) is introduced. 

 

 
1.5.1.1 The Pseudo-Spectral Method and the Free-Surface Implementation 

 The spatial derivatives involved in Eqs. (1.1)-(1.2), are calculated by using a Pseudo-

Spectral (PS) method. To reduce numerical artifacts in Pseudo-Spectral simulation in 

heterogeneous medium a staggered grid implementation is used [76], [143]. For example, the 

derivative z∂∂τ  is computed by taking the Fourier transform of )(zτ  over z, multiplying 

each point in the resulting spectrum by 2/zjk
z

zejk ∆ , and performing the inverse Fourier 

transform: 

 [ ])]([
)( 2/1 zFTejkFT

t

z zjk
z

z ττ ∆−=
∂

∂
, (1.98) 

where FT is a forward Fourier transform, FT-1 is an inverse Fourier transform, and kz is the 

wave number in the z direction. ∆z is the spatial step of the numerical grid. 

 The solver uses a staggered fourth order Adams–Bashforth method [76] by which stress 

and particle velocity are updated at alternating half time steps to integrate forward in time. To 

circumvent wraparound inherent to FFT-based Pseudo-Spectral simulation, a Convolution 

Perfectly Matched Layers (C-PML) boundary condition is used.  

 In Pseudo-Spectral simulation the introduction of free-surface is not easy due to the non 

local behavior of the spatial derivatives, even if this problem has been reduced by the use of 

staggered grid. In the solver, a method of images, first introduced by Levander [114] and 

described in details by Robertsson [155] has been used. The idea is as follows: the free surface 

is chosen such to be located on a τ node. On this node τ = 0, the spatial derivatives are 

calculated with particle velocity and stress components mirrored around the free surface as 

even and odd functions respectively. 

 In the solver the C-PML zone is suppressed behind a free surface, because no waves are 

supposed to propagate, and so to be absorbed. Nevertheless, in this case the effects of the 

domain periodicity inherent in FFT-based calculations reappear. For this reason the stress and 

the particle velocity are smoothly reduced to zero using an apodization window near the limits 

of the numerical domain when a stress free boundary is present. 
 
 
1.5.1.2 Application of C-PML Absorbing Boundary 

 In this part, we introduce the Convolution Perfectly Matched Layer (C-PML), to the 1D 

nonlinear elastic motion equation. The C-PML method is introduced based on a stretched-
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coordinate formulation of Eqs. (1.1)-(1.2). For more details see chapter 3. In the 1D 

simulation, the choice of the complex stretching variable is given by: 

 
ωα

σκ
jz

z
zs

z

z
zz +

+=
)(

)(
)( . (1.99) 

where the parameters zκ , zσ  and zα will be described with great details in chapter 3 (Eqs. 

(3.18)).  

 In the frequency domain and stretched-coordinate space, we can obtain the following 

equations: 
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where û is the Fourier transform of the variable u and ⊗ is a convolution. Eqs. (1.100)-(1.101) 

are next transformed back to the time domain. The final time domain equation, with memory 

variables, is then: 
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where zA and zB  are the memory variables and they are zero outside the C-PML zones.  

 The C-PML offers a number of advantages over the traditional implementation of the 

PML. First, the application of the C-PML is, as shown in Eqs. (1.102)-(1.103), independent of 

the host medium. Secondly, this is a nonsplitting PML corresponding to perturbations to the 

original wave equations where the perturbed equations reduce automatically to the original 

wave equation outside the PML absorbing layers. So, the fact that the C-PML treats the 

boundary layers in the same way as the rest of the computational domain, greatly simplify the 

computer implementation. 

 Now, the simulation results for different kinds of nonlinearity will be presented, and we 

will focus on the comparison of nonlinear signatures of these different kinds of nonlinearity 

for shock wave generation, and rod resonance. 
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1.5.2 Shock Wave Simulation 

 Now, we will present the results of shock wave simulation, which have been realized 

using the PS method, for different kinds of nonlinearity. In all the 1D simulations, we assume 

a bar discretized with 4096 elements, constitued of a material with density 26000 =ρ kg/m3, 

modulus K0 = 10 GPa. A time step t∆  = 2.5 ns and spatial step z∆  = 0.15625 mm have been 

used. The source signal, which will be used at the left side of the bar, is a sinusoid with 

amplitude 0A  and frequency f . To simulate a semi-infinite medium a C-PML boundary 

condition has been used at the right side of the bar. 

 
 
1.5.2.1 Quadratic and Cubic Nonlinearity 

 First, the results of simulation for “classical” quadratic nonlinearity with 40=Γ , 0=δ , 

20 =A  MPa and 50=f kHz will be presented. In Fig. 1.15(a)-(d), we plot the particle 

velocity v at a distance of 2, 6, 10 and 15 wavelengths, respectively. From this figure we can 

see the process of shock formation: the sinusoidal signal (a) becomes more and more steeper 

as the wave propagates forward (d). Fig. 1.16 is the corresponding frequency spectrum at the 

distance of 15 wavelengths, from which we can see the existence of both even and odd 

harmonics. 
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Fig. 1.15 Particle velocity for “classical” quadratic nonlinearity at a distance of (a) 2, (b) 6, (c) 10 and (d) 15 

wavelengths. From these figures we can see the process of shock front formation. 
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Fig. 1.16 Corresponding frequency spectrum for “classical” quadratic nonlinearity at a distance of 15 

wavelengths. From this figue we can see both even harmonic (100kHz, 200kHz, 300kHz, etc) and odd harmonic 

(150kHz, 250kHz, 350kHz, etc). 

 

 Fig. 1.17 displays the results of simulation for “classical” cubic nonlinearity with 0=Γ , 
5105×=δ , 10 =A  MPa and 50=f kHz at the distance of 15 wavelengths. In this case, no 

shock front appears and only odd harmonics are presents. 
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Fig. 1.17 (a) Particle velocity for “classical” cubic nonlinearity, and (b) the corresponding frequency spectrum at 

a distance of 15 wavelengths. 

 
 
1.5.2.2 Bi-modular Elasticity 

 For the “non-classical” Bi-modular nonlinearity simulation, the following parameters , 

E+ = 10 GPa and E- = 9.98 GPa, 1.00 =A  MPa and 50=f kHz have been used. From Fig. 

1.18(a), corresponding to the particle velocity at a distance of only 2 wavelengths, we can see 

already a wave jump. The calculations in such nonlinear medium are very difficult to realize, 

because contrary to the “classical” quadratic or cubic nonlinearity, here, the harmonic 

generation is not a cascade process. So, all the harmonics appear simultaneously, as shown on 

the frequency spectrum of the calculated particle velocity plotted on Fig. 1.18(b). Here, 

mainly odd harmonics are generated during the wave propagation. These results are in 

accordance with analytical predictions [135], [142]. 
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Fig. 1.18 (a) Particle velocity for “non-classical” Bi-modular nonlinearity, and (b) the corresponding frequency 

spectrum. 

 
1.5.2.3 Nazarov Model of Hysteretic Nonlinearity 

 Now the results of simulation for “non-classical” Nazarov hysteretic nonlinearity will 

be presented. The parameters we have used are as follows: 2=n , 3
4321 102×==== γγγγ , 

1.00 =A  MPa and f = 50 kHz. Fig. 1.19(a)-(d) are the particle velocity at the same distances: 

2, 6, 10 and 15 wavelengths. From these figures we can see both a shock front and a 

triangularisation of the top of the particle velocity, when the wave propagates forward. For the 

chosen case, where all the four nonlinear parameter are equal, the frequency spectrum 

displays only odd harmonics as shown on Fig. 1.20. Once again, these results are in perfect 

accordance with theoretical predictions [137], [138]. 
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Fig. 1.19 Particle velocity for “non-classical” Nazarov hysteretic nonlinearity at a distance of (a) 2, (b) 6, (c) 10 

and (d) 15 wavelengths. 
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Fig. 1.20 Frequency spectrum of “non-classical” Nazarov hysteretic nonlinearity at a distance of 15 wavelengths.  

Only odd harmonics are generated during the propagation. 

 
 
1.5.3 Rod Resonance Simulation 

 In this part rod resonance simulations will be presented for different kinds of 

nonlinearity. In this simulation, we assume a bar of length L = 250 mm, constituted of the 

same material as the on previously used. A uniform spatial step z∆  = 6.1728 mm has been 

used and the whole length is discreted into 45 grid points. The time step is chosen as 

)776(1 ft =∆ . The source signal used in the left side of the bar is a sinusoidal signal where 

the amplitude A is increased from 2 to 16384, and the frequency f  is increased from 3859.2 

kHz to 3956.5 kHz with a step of 3.1376 Hz. The presented results corresponds to the particle 

velocity measured at the stress free boundary of the rod. 
 
 
1.5.3.1 Quadratic and Cubic Nonlinearity 

 First, we present the results of simulation for “classical” quadratic and cubic 

nonlinearity with 4=Γ  and 5105×=δ . Moreover, relaxation attenuation has been 

introduced in order to obtain a finite amplitude at the resonance frequency. The selected Q-

factor was 80 as described previously in paragraph 1.3.2. On Fig. 1.21(a), we plot the typical 

resonance curves for the different amplitude of excitation. We can see the frequency shift with 

the increasing source amplitude. It is important to remind that, contrary to what is believed, 

both quadratic and cubic nonlinear terms contribute to this frequency shift. Here, as expected 

the obtained dependence of this shift on the input strain is quadratic. Fig. 1.21(b) is the 

normalized amplitude of resonance curves, where it is clear that no extra-attenuation is 

induced by this “classical” nonlinearity. 
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Fig. 1.21 (a) Resonance curves for “classical” quadratic and cubic nonlinearity with relaxation attenuation, and 

(b) the corresponding normalized resonance curves showing no extra-attenuation process. 

 
 
1.5.3.2 Bi-modular Elasticity 

 For the “nonclassical” Bi-modular nonlinearity simulation, relaxation attenuation has 

also been introduced with the same Q-factor. The following two parameters, E+ = 10 GPa and 

E- = 9.98 GPa have been used. Fig. 1.22(a) is the obtained resonance curves and Fig. 1.22(b) 

the corresponding normalized strain amplitude. We can see that all the curves are superposed, 

that means that there is no frequency shift and no extra-attenuation for resonance in a Bi-

modular nonlinear medium. 
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Fig. 1.22 (a) Resonance curves for “non-classical” Bi-modular nonlinearity with relaxation attenuation, and (b) 

the corresponding normalized resonance curves, where no frequency shift and extra-attenuation appear. 

 
 
1.5.3.3 Nazarov Model of Hysteretic Nonlinearity 

 Now, we present the results of resonance simulation for “non-classical” Nazarov 

hysteretic nonlinearity. The parameters are as before 2=n  and 3
4321 102×==== γγγγ . Fig. 

1.23(a) is the resonance curves and Fig. 1.23(b) the corresponding normalized resonance 

curves. Here, both frequency shift, with a linear dependence on the input strain, and an extra-

attenuation also with a linear dependence on the input strain are simultaneously obtained.  
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Fig. 1.23 (a) Resonance curves for “non-classical” Nazarov hysteretic nonlinearity with relaxation attenuation, 

and (b) the corresponding normalized strain resonance curves. 

 

All the obtained results are summarized in Tab. 1.2. 

 
Tab. 1.2 Resume of the nonlinear signature of the four considered kinds of nonlinearity. 

Kind of 
nonlinearity  

Shock 
Even 

harmonics 

Odd 
harmonics 

Frequency 
shift 

Extra 
attenuation 

Quadratic yes yes yes yes no 

Cubic no no yes yes no 

Bi-modular yes 
immediate 

yes - no no 

Hysteretic 
(Nazarov) 

yes no yes yes yes 

 
 
 

1.6 Conclusion 

 We have first provided a quick introduction of nonlinear ultrasonic nondestructive 

testing and imaging and especially the ones which are combined with time reversal process, 

are reviewed. The nonlinear elastodynamic equations needed in the remainder of the thesis 

has been introduced. Different kinds of nonlinearity models, including the “classical” 

conventional five-constant elasticity theory and “non-classical” nonlinearity have been 

discussed. An overview of the classical numerical methods including Finite Difference 

Method, Finite Volume Method, Finite Element Method, Pseudo-Spectral method and 

Discontinuous Galerkin Finite Element Method (DG-FEM), focusing mainly on their 

advantages and weaknesses is made. Among these methods DG-FEM will be the one chosen 

to the numerical development made during the thesis, due to its ability to maintain a high 

degree of accuracy with geometric flexibility. 

 In order to profoundly understand the nonlinear elastic properties of fatigued solids, 1D 

simulations of nonlinear propagation of elastic wave in heterogeneous media with different 
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kinds of nonlinearity have been numerically studied. This study can help in the determination 

of the predominant nonlinear mechanism in specific experiments. It was a first step in the 

development of the proposed numerical tools described in the next two chapters and “chaotic 

cavity transducer” imaging system presented in the last chapter. 
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CHAPTER 2: THE NODAL DISCONTINUOUS 

GALERKIN METHOD  

 

2.1 Introduction 

 As presented in the first Chapter, the Finite Difference Method (FDM), Finite Element 

Method (FEM) and Finite Volume Method (FVM) have been widely used to solve Partial 

Differential Equations (PDE) in many computational fields to derive discrete representations 

of the spatial derivative operators. 

 For FDM method, it leads to very efficient semi-discrete spatial schemes and its most 

attracting aspects is its simplicity. Furthermore, the explicit semi-discrete form gives 

flexibility in the choice of time-stepping methods which are supported by an extensive body 

of theory [84], and are sufficiently robust and efficient to be used for a large variety of 

problems. The extensions to higher order approximations can be realized by using a local 

approximation of the derivation operator of higher degree. However, for the FDM method, 

additional complications caused by the simple underlying structure are introduced around 

boundaries and discontinuous internal layers which use different material coefficients. This 

makes it ill-suited to deal with complex geometries, both in terms of general computational 

domains and internal discontinuities as well as for local order and grid size changes to reflect 

local features of the solution.  

 The FVM is a method closely related to the FDM, but which introduce an element-

based discretization and with added geometric flexibility. In this method, we assume that the 

whole calculation domain is represented by a collection of elements, typically triangles and 

cubes, organized in an unstructured manner to fill the physical domain. For each cell, the 

numerical approximation and the scheme are purely local and, thus, impose no conditions on 

the grid structure. In particular, all cells can have different sizes. By using the divergence 

theorem, such as Gauss’ theorem, the flux term reduces to a pure surface term. There are 

many different ways to get the evaluation of the fluxes at the interfaces and the details of 

these methods lead to different finite volume methods [115]. For linear problems and 

equidistant grids these methods will be reduce to the FDM. If, however, we want to increase 

the order of accuracy of the FVM method, the need for a high-order reconstruction 

reintroduces the need for a particular grid structure and thus destroys the geometric flexibility 

of the FVM in higher dimensions. The main limitation of FVM is its inability to extend to 

higher-order accuracy on general unstructured grids. 
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 For the FEM method, which use the unstaggered grid point and share nodes along the 

faces of the elements, by adding additional degrees of freedom to the element, the higher-

order accuracy can be realized in higher dimensions. In particular, one can have different 

orders of approximation in each element, thereby enabling local changes in both size and 

order, known as hp-adaptivity [54]. However, for FEM method, the globally defined basis 

functions and the requirement that the residual be orthogonal to the same set of globally 

defined test functions implies that the semi-discrete scheme becomes implicit and the mass 

matrix must be inverted. For time dependent problems, this is a clear disadvantage compared 

to the FDM and FVM methods. From the previous discussion, we realize that to ensure 

geometric flexibility and support for locally adapted resolution, we must strive for an element 

based method where high-order accuracy is enabled through the local approximation, as in the 

FEM method. However, the global statement, which is introduced by the globally defined 

basis functions and test functions, destroys the locality of the scheme and introduces potential 

problems with the stability for wave-dominated problems. That is precisely the regime where 

the FVM method has some attractive features. 

 An intelligent combination of the FEM and FVM methods, utilizing a space of basis and 

test functions that mimics the FEM method but satisfying the equation in a sense closer to the 

FVM method, appears to offer many of the desired properties. This combination is exactly 

what leads to the Discontinuous Galerkin Finite Element Method (DG-FEM). In the DG-FEM 

method, the points at the face of the elements are duplicated and shared by two elements. The 

interface flux connects the elements by combining the information of the two cells. In the 

structure of DG-FEM, the mass matrix is local rather than global as used in FEM and thus can 

be inverted at very little cost, yielding an explicit semi-discrete scheme. Compared with the 

FVM, by using the local element-based basis, the DG-FEM overcomes the key limitation on 

achieving high-order accuracy on general grids. In contrast to classical FEM, with the DG-

FEM framework the solution can be discontinuous across the element interfaces, which 

allows incorporating the well-established numerical flux functions from the FVM framework. 

 As we want to simulate nonlinear elastic wave propagation in structures of complex 

geometry, we need, in order to reduce the number of cells to be used while maintaining a high 

degree of accuracy, a high-order numerical method with geometric flexibility. This last point 

will be a great improvement to the Pseudo-Spectral scheme we previously used. Our choice, 

motivated by the previous discussion on the comparatives advantages of the different 

numerical methods, corresponds to the nodal DG-FEM scheme first introduced by Hesthaven 

and Warburton [91] for electro-dynamic simulations. Moreover, a numerical scheme based on 

this method has been developed since then for a large number of fields as Maxwell eigenvalue 

problem [92], left-handed medium [167], chaotic transport in turbulent flow [160], water-

wave and free surface flow [83], Boussinesq type equation [66], and piezoelectric transducer 

[27]. It is now freely available at the following internet addresses http://www.caam.rice. 
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edu/~timwar/Software (Matlab script) or http://www.nudg.org (C++ script), and well 

documented [94], [93]. 

 The introduction of nonlinear elasto-dynamics (including sources) in this software will 

be now described in details, and validated on a plane wave benchmark simulation. 

 
 

2.2 Discontinuous Galerkin Finite Element Method Scheme in 2D 

 In this part, how to implement the DG-FEM operators in a general, flexible, and robust 

manner will be presented in detail. We will discuss how to, in practice, assemble the 

computational grid and compute all the entities required to enable the implementation of the 

scheme, both for triangular and quadrilateral grids. Moreover, different choices of numerical 

fluxes will also be discussed. How this method can be used in numerical schemes 

approximating the PDEs describing nonlinear elastodynamic is explained. The fundamental 

elastodynamic equations have been presented in the subsection 1.3.3 of Chapter 1 within a 

conservative form.  

 In 2D, the elastodynamic equations Eq. (1.49) can be rewritten as: 
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2.2.1 General Formulation of Discontinuous Galerkin Schemes  

 In the discontinuous scheme, the global domain Ω  is divided into K non-overlapping 

triangular elements kD  

 U
K

k

k
h D

1=

=Ω≅Ω . (2.2) 

In the k-th element, the numerical solution khQ  of Eq. (2.1) is approximated through an 

interpolation 
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In the first formulation, known as the modal form, )(xnψ  is a local two-dimensional 

polynomial basis of order N. In the alternative form, known as the nodal representation, )(xl k
i  

are two-dimensional Lagrange interpolation polynomials based on the grid points ix . The 

connection between these two forms is done through the definition of the expansion 

coefficients k
nQ̂ . pN  is the number of interpolation grid points in each element, which is 

equivalent to the number of expansion terms. An interpolation is obtained by connecting these 

grid points to a set of basis functions. 

 Multiplying Eq. (2.1) by a test function, the same as the basis function in our case 

(Galerkin Method), and integrating on each element Dk yields 
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According to the Green theorem, the first term of Eq. (2.4) in the right hand can be written as 

a curl integral on the edges kD∂ of element kD , and the following equation is obtained 
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where kD∂  is the edge of the kD , and ][ˆ k
y

k
x

k nn=n  is the normalized outward pointing 

normal vector. Since hQ  may be discontinuous at an element boundary, we replace the flux 
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h
k
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k
h

k
x nn fGF =+ )(  by a numerical flux **)( kk
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or 
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Eqs. (2.6)-(2-7) are the weak and strong formulation, respectively, of the nodal discontinuous 

Galerkin method in two spatial dimensions. Note that the strong form is derived directly from 

the weak form through integration by parts. Since the weak form does not allow a space of 

nonsmooth test functions, we consider the strong form in the following. The last term of the 

Eq. (2.7) in the right hand is the volume term. 
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2.2.2 Defining Discontinuous Galerkin Operators on Triangular Elements 

 As in the preceding presentation, the global domain Ω  is divided into K non-

overlapping triangular elements kD . The number of interpolation points pN , for each 

triangular element, has the following relation with the polynomial order N 

 
2

)2)(1( ++= NN
N p . (2.8) 

The grid points, which the Lagrange interpolation is based on, are a set of local grid points 

belonging to element k. They define the vectors ],...,,[ 21
k
N

kkk
h p

xxx=x  and ],...,,[ 21
k
N

kkk
h p

yyy=y . 

Here, we consider the case where we interpolate with the same number of grid points pN , in 

all the elements. 

 As sketched in Fig. 2.1, we introduce a mapping, Ψ , connecting the general straight-

sided  triangle, kD∈x  with the standard straight-angle triangle, defined as 

 }0;1),(|),({ ≤+−≥== srsrsrrI . (2.9) 
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Fig. 2.1 The mapping between the reference straight-angle triangle element I  and a general triangular shaped 

element. 

 

r  and s are the coordinates in a reference standard triangle. Assume that kD  is spanned by 
the three vertices, ),,( 321

kkk vvv , counted counter-clockwise. These vertices are related to the 

reference triangle I  through the linear mapping 
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It is important that the mapping is linear. This has the consequence that any two straight-sided 

triangles are connected through an affine mapping. That is, it has a constant transformation 

Jacobian. The metric for the mapping can be found directly since 
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Here, the standard notation of ab which means that a is differentiated with respect to b has 

been used. From Eq. (2.10) we can get 
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with the Jacobian 

 rssr yxyxJ −= . (2.13) 

The xr , yr , xs , ys  and J  are constants due to the use of triangular elements with straight 

sides. 

 In the reference triangle I , it’s very important how to find exactly pN  points for 

interpolation. Several different ways [41], [181] have been done, leading to nodal 

distributions with very similar behaviour. Here, we use the distributions proposed by J. S. 

Hesthaven [94], [90] (up to order 19), for which the nodes along the edges are the one 

dimensional Legendre-Guass-Lobatto points. Examples of nodal distributions in the reference 

triangle are displayed on Fig. 2.2. 

 

N = 4 N = 6 N = 10N = 4 N = 6 N = 10

 
Fig. 2.2 Nodal distributions in the reference straight-angle triangle element I  for polynomial order N = 4, 6, and 

10. 

 

 Through the mapping, we are back in the position where we can focus on the 

development of polynomials and operators defined on I . To obtain a spectral scheme, we need 

to define an orthogonal set of basis functions on the reference triangle I . One kind of basis 

functions is [84] 
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and )(),( xPn
βα  is the n-th order Jacobi polynomial. If 0== βα , then it becomes the Legendre 

polynomial. 

 In the reference triangle, by interpolating, the transformation between modal and nodal 

form can be achieved: 
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From this equation and by interpolating the basis function, the two following relations can be 

obtained in the matrix form, 

 QVQ ˆ=h , and  ),(),( srlVsrψ T= , (2.17) 

where we have defined the vectors T
NP

rrr ],...,,[ 21=r  and T
NP

sss ],...,,[ 21=s , and introduce 

the Vandermonde matrix ),( iij srψ=V . TV  is the transpose of V . 

 Even though we do not have the direct expression of the derivation of the Lagrange 

interpolation l  in nodal representation, we can calculate the derivatives in modal space and 

transform the derivatives back to nodal space, because the derivatives of the basis function 

jψ  can be obtained directly. On the reference element I , the differentiation operator can be 

computed from the following relations 
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In the orthogonal basismψ , the variables a and b are functions of r and s. From Eq. (2.14), we 

obtained 
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Using the chain rule, the differentiation matrix is then obtained directly 
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By using the differentiation matrix Eq. (2.20), the calculation of volume term will be obtained 

as following 

 k
hsy

k
hry

k
hsx

k
hrx

k
h

k
h srsr

yx
GDGDFDFD

GF +++=
∂

∂+
∂

∂
. (2.21) 

 The normal vectors belonging to the three faces of the standard triangle I are s
r−=1n , 

2)(2 sr
rr +=n and r

r−=3n , where r
r

and s
r

 are unit vectors. Hence, the outward pointing 

vectors at the surface of the elements kD  follow directly from the properties of the mapping, 

that are 
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Here, ⋅  is the Euclidian length of the vector. These can be computed directly using the Eq. 

(2.12) from the physical coordinates (x, y). The corresponding edge Jacobian for the mapping 

is computed as 
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 With these local Discontinuous Galerkin operators defined on each triangle of the mesh, 

the scheme in strong form becomes from Eq. (2.7): 
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Considering the local mass matrix of the k-th element: 
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where 1)( −= TVVM  is the mass matrix on the standard triangle I , we obtain: 
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To calculate the surface integral over kD∂ , the integral over the faces kif (i= 1, 2, 3) of the 

triangle are evaluated with the use of a 1D interpolation Dkl 1, : 
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Here, x is assumed to be the trace along the edge where there are exactly 1+N  nodal points, 
and ki

DM1  is the edge-mass matrix 
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where DJ1  is the transformation Jacobian along the face, the ratio between the length of the 

face in kD  and in I, respectively. In this numerical scheme, the surface integral is an array 

with the KN )1(3 +  elements. 
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 Finally, we obtain the following local scheme on each triangle of the mesh: 
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As the operators, in the DG-FEM scheme, work purely on each local element, we should 

recover the global solution from the k local solutions. As in FVM the fluxes, called numerical 

fluxes *f , can be used to transfer information between the elements. The numerical fluxes, 

used in the DG-FEM, are funded upon a theory which was developed in the FVM and aims at 

solving hyperbolic problems on conservative form [115]. 
 
 
2.2.3 Numerical Fluxes in the Discontinuous Galerkin Method 

 In the discontinuous method, we have two possibilities to represent the hQ  at a 

coordinate point px , belonging to an interface between two elements. The local flux kf , in 

the element k, is only a function of the local values )( p
kk

h xQQ =− . The external value, at the 

same spatial coordinate of an external boundary in the neighbouring element n, is given as 
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h xQQ =+ . The numerical fluxes are typically functions of the information about the both, 
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+− QQf . There are many different numerical fluxes that have been suggested in the 

literature [94], [196], [115]. 

 For example one can consider a numerical flux like 

 
2

)()(
),(*

k
h

kk
h

k
k
h

k
h

k +−
+−

+= QfQf
QQf   

                        
2

))()(())()(( k
h

k
hy

k
h

k
hx nn +−+− +++

=
QGQGQFQF

, (2.30) 

which corresponds to a purely central flux. In this case, we do not get any contributions from 

the internal boundaries, which give a stabile scheme for linear hyperbolic problems. That is, 

for a periodic case, the energy is constant as for the original equation. 

 An another kind of numerical flux is the Lax-Freidrich flux, which has the following 

formulation 
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where C  is the local maximum of the directional flux Jacobian 
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C corresponds to maximal value of all the velocities of the waves propagating in the medium. 

The Lax-Freidrich flux ensures a monotone solution and can therefore be used in non-linear 

hyperbolic problems [94]. 

 The third considered numerical flux is a Godunov type of flux. It is generally based on 

the resolution of the normal Riemann problem at each cell edge. Such kind of numerical flux 

has been introduced in the framework of a modal DG-FEM scheme for the simulation of 

linear elastic or viscoelastic waves in isotropic and anisotropic solids by Käser et al. in a 

series of papers [103], [148], [104], [63], [64]. In this case, the numerical flux always takes 

information from where the waves are coming from, that corresponds to an upwind flux 

expressed on a local coordinate system defined by the vector, ),( yx nn=n
r

, normal to the 

considered interface between the current element and one of the three neighbouring triangles 

and the corresponding tangential vectors. To do this, one needs to rotate both the variable 

vector Q and the Hooke’s matrix with components Cijkl. To rotate Q to the local coordinate 

system, it is multiplied by the inverse of the rotation matrix T-1 which reads as: 
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The rotation of the Hooke’s matrix C to this local coordinate system is done by applying the 

so-called Bond’s matrix method [6], [139]. The Hooke’s matrix C
~

 in the local system is 

given by: 

 TNCNC =~
, (2.34) 

where N is the Bond’s matrix: 
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The numerical Godunov type flux, if only the flux normal to the interface is considered, is 

then given by: 
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where A
~

 is the matrix A of Eq. (1.52) in which the components Cij are rotated, and where for 

upwind kQ̂  is defined as: 
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This leads to the following numerical flux: 
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So, the term kk ff −*  encountered in the numerical DG-FEM scheme can be expressed as: 
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The main advantages of this flux are first the possibility to extend it to a flux of higher order 

of precision, using a wave-propagation approach as described in the book of Le Veque [115], 

and second to offer a simple way to implement open boundary condition. This last possibility 

will be described in paragraph 2.3.1. 
 
 
2.2.4 Discontinuous Galerkin Operators on Quadrilateral Element 

 In the preceding part, the DG-FEM scheme has been presented for triangular cell 

elements. This involved the introduction of the mapping between the general triangular 

element and the straight-angle reference triangle, the nodal sets for the triangle and an 

orthonormal polynomial basis that has been used as a reference basis for interpolation and 

differentiation. Here, we will go further and consider the use of quadrilateral mesh elements 

in substitution to the triangular mesh elements, that to say the whole computational physical 

domain, Ω , is decomposed into quadrilateral cell elements k
qD .  

 In this case, for solving the system of Eq. (2.1) in the discontinuous scheme, we assume 

that Ω  can be tiled using non-overlapping K quadrilateral elementsk
qD : 

 U
K

k

k
qh D

1=

=Ω≅Ω . (2.40) 

In the k-th quadrilateral element, the numerical solution k
hQ  of Eq. (2.1) can be approximated 

through an interpolation as in the triangular element with the same representation as Eq. (2.3). 

In this case, the number of grid points pN  in the local expansion has the following relation 

with the order of interpolation polynomial N 

 )1)(1( ++= NNN p , (2.41) 
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 As for triangular elements, we introduce a mapping, Ψ , which connects the general 

straight-sided quadrilateral, k
qDx∈ , with the standard quadrilateral, defined by 

 }1),(;1),(|),({ ≤−≥== srsrsrrI , (2.42) 

as sketched in Fig. 2.3. 
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Fig. 2.3. The mapping between the standard reference quadrilateral element I  and a general quadrilateral shaped 

element. 

 

The mapping relation between the standard quadrilateral and the general quadrilateral is then 

given as 
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in which ),,,( k
4321 vvvv kkk  are the vertex coordinates of the k-th general quadrilateral element. 

In the standard quadrilateral, for interpolation the vectors T
NP

rrr ],...,,[ 21=r  and 
T

NP
sss ],...,,[ 21=s  have been defined and the positions of these grid using the Legendre-

Gauss-Lobatto points as in the case of reference triangular element. This choice leaves the 

possibility to combine the two different types of elements. Examples of nodal distributions in 

the reference quadrilateral are shown on Fig. 2.4. 
 

N = 4 N = 6 N = 10N = 4 N = 6 N = 10

 
Fig. 2.4 Nodal distributions in the reference straight-angle quadrilateral element I for polynomial order N = 4, 6, 

and 10. 
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 The xr , yr , xs , ys  and the transformation Jacobian J  are given by the same 

expressions Eqs. (2.12)-(2.13) as for triangular elements and are also constants due to the use 

of quadrilateral elements with straight sides. In the reference standard quadrilateral, we use 

the following orthonormal interpolation basis function [167] 

 jijiq sPrPsr ,
)0,0()0,0( )()(),( γψ = ,  for 0),( ≥ji  and ,Nji ≤+  (2.44) 
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The )()0,0( rPi and )()0,0( sPj  are the i-th and j-th order Legendre polynomials, respectively. The 

Vandermonde matrix is constructed by the basis function ),( iiqjq srψ=V . The differentiation 

operator and the differentiation matrix have the same formulations as Eq. (2.18) and Eq. 

(2.20), respectively. But because the interpolation function qψ  is function of variables r and s 

directly, its derivatives are simply given, for the reference quadrilateral, by 
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. (2.45) 

 In the reference standard quadrilateral I , the normal vectors belonging to its four faces 

are s
r−=1n , r

r=2n , s
r=3n and r

r−=4n , where r
r

and s
r

 are unit vectors. Hence, the 

outward pointing vectors at the surface of the elements k
qD  have the following formulations 
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k

k

r

r
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∇=3n̂  and 

k
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s

s

∇
∇−=4n̂ . (2.46) 

Here, ⋅  is the Euclidian length of the vector. The corresponding edge Jacobian for the 

mapping is computed as 

 kk
D

k
D rJJ ∇== 31

11 ,  and kk
D

k
D sJJ ∇== 42

11 . (2.47) 

For the numerical flux, local flux and volume terms, the results are analogous to the one 

already described in the case of triangular mesh elements. 
 
 
2.2.5 Time-Stepping and Discrete Stability 

 A semi-discrete DG-FEM form has been obtained on the spatial dimension from the 

above analysis, that is, we have discretized in space domain but kept continuous in time 

domain. This means that in the used approach we discretize the space and time domain 

separately. Standard techniques can be used to solve the semi-discrete DG-FEM scheme for 

the time discretization. The quadrature-free Runge-kutta Discontinuous Galerkin approach 

developed for the semi-discrete equation by Atkins & Shu [4] which used a three-stage TVD 
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Runge-Kutta time integration method [168]. An Arbitrary high order DERivatives (ADER) 

[103], [148], [104], [63], [64] approach has been applied to the semi-discrete form of the DG-

FEM scheme in order to achieve an arbitrarily  accurate time discretization. Bordal et al. [27]  

use a fourth-order low storage explicit Runge-Kutta (LSERK) method [35] to discretize the 

DG-FEM in time domain for piezoelectric material. 

 For us, in the following, the same fourth-order low storage explicit Runge-Kutta 

(LSERK) method will be used for discretiztion the DG-FEM scheme in time domain. Now, 

we make the notation of Eq. (2.1) as following 

 ),( t
t hh

h Q
Q ℜ=
∂

∂
, (2.48) 

where ),( thh Qℜ  represents the right hand side of Eq. (2.1). The LSERK scheme has the form 

 n
hQ=(0) p , 
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This scheme has five stages and one extra storage level in each time-step t∆ , while a standard 

explicit fourth-order RK scheme uses four stages and has four additional storage levels. The 

LSERK scheme will therefore require less memory, but increase the number of computations 

in each step, as it has five stages. However, the additional stage will give the LSERK scheme 

a larger stability region. That is, it is more stabile and we can use larger time-steps, which will 

reduce the number of computations. The time-step is chosen from the following formula 

 

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

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∆=∆

Ω= ||v
t
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D
i

N

i

r
r min)(min

3

2
1

, (2.50) 

with sAD =r  the radius of the inscribed circle in the triangular elements, where A is the area 

of the triangle and s is half the triangle perimeter. The lv is the longitudinal wave speed and 

iii rr −=∆ +1r , which is the distance between the neighbouring grid points on the legs in the 

standard triangle I . The coefficients needed in the LSERK are given in Tab. 2.1. 

 
Tab. 2.1 Coefficients for the low-storage five-stage fourth–order 

explicit Runge-Kutta method (LSERK) 

 i   ai bi ci 

1 0   
7559575080441

4771432997174
              0 

2 
0871357537059

735673018057−    
23571361206829

7175161836677     
7559575080441

4771432997174  
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 3 
2382016746695

3932404267990−    
4982090206949

5491720146321     
8966820363962

4292526269341  

4 
3852091501179

6463550918686−    
3384481467310

5373134564353     
7763224310063

3172006345519  

 5 
998425704576

6681275806237−    
48191488215175

4372277821191     
2512924317926

1382802321613  

 
 
 

2.3 Boundary Conditions 

 A large variety of physically meaningful boundary conditions exists for an elastic 

medium. However, the three most important kinds of boundaries are: open boundaries, stress 

free surface boundaries and fixed surface boundaries. 
 
 
2.3.1 Open Boundaries 

 At the open boundaries, no waves are supposed to reflect back into the computational 

domain and those waves that are travelling out should be able to pass the boundary without 

reflections. There is a whole scientific community dealing with non-reflective boundary 

conditions, however, in this section we present only a very simple approach that so far yielded 

satisfactory results, at least for our purposes in the Discontinuous Galerkin Scheme. It is a 

strict upwind method, i.e. outgoing waves at an element interface are only influenced by the 

state in the element itself and not by the state in the neighbour. Indeed, since incoming waves 

are not allowed, the respective flux contribution must vanish. Thus, a very simple 

implementation of open boundary conditions can be derived using a Godunov type numerical 

flux, and is given by: 

 k
h

kkOpenBCk
h

k
h

k
−

−
+− −= QTAATQQf ))(

~~
(

2

1
)),(( 1*  (2.51) 

This leads to a term kk ff −*  encountered in the numerical DG-FEM scheme written as: 

 k
h

kkOpenBCkk
−

−+−=− QTAATff ))(
~~

(
2

1
)( 1*  (2.52) 

This method, although giving satisfactory results for bulk waves, is generally less efficient in 

absorbing surface waves. To circumvent this problem a Perfectly Matched Layer well adapted 

to the DG-FEM method has been developed as it will be described in Chapter 3. 
 
 
2.3.2 Stress Free and Fixed Surface Boundaries 

 On the free surface of an elastic medium, the normal stress and the shear stresses with 

respect to the boundary are determined by physical constraints. At the outside of the elastic 
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medium, there are no external forces that retract the particles into their original position. 

Therefore, 

 012111 =+= yx nPnPT , (2.53) 

 022212 =+= yx nPnPT , (2.54) 

where Ti are the components of the traction acting on the surface. Equivalently, the normal 

stress and the shear stress values at the free surface have to be zero: 

 0=ξξP , (2.55) 

 0=ξηP , (2.56) 

where ξ and η indicates the normal and tangential directions, respectively. 

 On the fixed surface of an elastic medium, all the components of the displacement (or 

the particle velocity) have to be zero. 

 In contrast to classical continuous FE methods we have no direct control on the values 

at the boundaries within the Discontinuous Galerkin framework. However, the boundary 

values can be imposed via the numerical flux, as in the Finite Volume framework.  

 
 
Lax-Freidrich and Central Flux 

 On the six components of the numerical flux only the first two are imposed (equal to 

zero) in the case of a stress-free boundary. We have chosen to calculate the four remaining 

components with the image method [114], [155]. So, for the other components we just copy 

the inside values to the virtual outside neighbour. For the free surface boundary condition the 

resulting Lax-Freidrich numerical flux function in Eq. (2.31) can be then formulated as 

follows: 

 

)(ˆ
2

2

))()(())()((
),(*

k
h

k
h

k

k
hFreeBC

k
hy

k
hFreeBC

k
hxk

h
k
h

k
LF

C

nn

+−

−−−−
+−

−⋅+

Γ++Γ+
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QQn

QGQGQFQF
QQf

, (2.57) 

with the matrix )1,1,1,1,1,1( −−=Γ diagFreeBC . For the fixed-surface boundary 

condition the resulting Lax-Freidrich numerical flux is the same as Eq. (2.57) just replacing 

FreeBCΓ by )1,1,1,1,1,1( −−−−=Γ diagFixedBC . In the case of a central flux C = 0 in Eq. 

(2.57). 

 

 
Godunov Flux 

 Considering that the numerical flux is based on the solution of a Riemann-Problem at an 

element interface and given some boundary extrapolated values from inside the computational 
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domain on a fixed surface, we must search corresponding virtual neighbour values outside the 

computational domain. We prescribe a virtual component outside the domain that has the 

same magnitude but opposite sign. For the other components we use the image method. Then, 

the stress-free boundary in the case of Godunov type numerical flux can be obtained with: 

 k
h

k
FreeBC

k
FreeBC

kk
−

−Γ+=− QTAATff )()
~~

(
2

1
)( 1* , (2.58) 

where )2,2,0,2,0,0( −−−=Γ diagFreeBC . Note that in this case, contrary to what 

happens for the Lax-Friedrich flux, the matrix FreeBCΓ  acts on the rotated components of the Q 

vector. In the case of a fixed boundary Γ becomes )0,0,0,0,2,2( −−=Γ diagFixedBC . 
 
 
 

2.4 Sources 

 The consideration of source terms in numerical simulation is often a difficult task, but 

indispensable when realistic simulation of an experiment is expected. Here, two different 

cases of source terms have been considered: continuous sources in space and point sources 

that are characterized by a Delta distribution in space. In both cases the source time function 

is continuous. The used method is able to deal with point sources at any position in the 

computational domain that does not necessarily need to coincide with a grid point. Indeed, an 

interpolation is performed by evaluation of the test functions at the source locations. 

 When considering a source term S, the system of equations that need to be resolved 

becomes: 

 S
GFxQ +

∂
∂+

∂
∂=

∂
∂

yxt

t ),(
,        2],[ RΩx ∈∈= yx . (2.59) 

As for the variable Q, the source in the k-th element is approximated through an interpolation 
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Multiplying Eq. (2.59) by the basis function and integrating on each element Dk yields for the 

source term: 

 k
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iD

k
h MJd

k
SxxlS =∫ )( , (2.61) 

Then following the steps described in the paragraph 2.2.2 or 2.2.4 we obtain the following 

local scheme on each triangle (or quadrilateral) of the mesh: 
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Eq. (2.61) has been obtained because the source term was discretized on the nodes of the grid. 

But, when a point source, not placed on a nodal point, is introduced the calculation of the 

integral of Eq. (2.61) needs to be reconsidered. Now, we have 

 ),()()(),()()( 0000 srtJdssrrtJd k
i

kk
iI

kk
iD

k
hk

lSxxlδSxxlS =−−= ∫∫ , (2.63) 

where (r0, s0) are the coordinates of the point source in the reference triangle. Using the 

relation between the modal and nodal form of DG-FEM, the value of the Lagrange 

interpolation polynomials at (r0, s0) is calculated as 

 ),()(),( 00
1

00 srVsr Tk
i ψ−=l . (2.64) 

Therefore, for the introduction of a point source it is necessary to first find the triangle 

containing the source, and then to find in the corresponding reference triangle its coordinates 

(r0, s0). 

 Frequently, one needs to introduce sources directly on boundaries, for example in the 

case of an impact or when a transducer is glued on the sample. As for the boundary conditions 

in a DG-FEM scheme these source terms are introduced via the numerical flux. In our 

simulations, we often need to consider the case when a stress was imposed normally to a part 

of a surface of the sample. For a surface with a normal given by n = (nx, ny) the components 

of the traction are: 

 )(112111 tnSnPnPT xyx S==+= , (2.65) 

 )(222212 tnSnPnPT yyx S==+= , (2.66) 

Here, S(t) is the time source function at the considered point. This simply corresponds to a 

normal stress and a shear stress values at the free surface given by: 

 )(tP S=ξξ , (2.67) 

 0=ξηP . (2.68) 

 
 
 

2.5 Numerical Validation: Comparison with Analytical Solutions 

 In this section, several simulations will be presented to demonstrate the performance of 

the proposed DG-FEM scheme for the two kinds of grid elements (triangle and quadrilateral). 

Applications of DG-FEM will be made for both isotropic and anisotropic solid medium and 

for linear and nonlinear elastic waves. For each situation the result of simulation will be 

compared with an analytical solution to valid the implementation of DG-FEM.  
 
 
 
 



CHAPTER 2: THE NONDAL DISCONTINUOUS GALERKIN  METHOD 

 82 

2.5.1 Linear Isotropic Simulation of Lamb’s Problem 

 Here, for the application of DG-FEM scheme to isotropic medium, we present a 

classical test case which uses a vertical force in a homogeneous elastic half-space with a free 

surface. This test is called Lamb’s Problem (Lamb 1904), consisting in a vertical point force 

acting on the free surface. The solution of Lamb’s Problem for a plane surface can be 

computed analytically and can hence be used for comparison with the DG-FEM framework 

results meshed with triangular elements. We use the FORTRAN code EX2DDIR of Berg [18] 

to compute the exact solution of the seismic 2D response from a vertical directional point 

source in an elastic half space. The code EX2DDIR is based on the Cagniard-de Hoop [51] 

technique and allows the use of an arbitrary source time function for displacements or 

velocities. 

 The numerical model is as follows: the physical domain has its origin (0, 0) at the left 

upper corner and is 4000 m wide and has a height of 2000 m. The tilt angle of the free surface 

is o10=φ . A directional point source, acting as a force perpendicular to this tilted surface, is 

located at the free surface (1720.00, -2303.28). Two receivers are located at (2557.1, -2450.9) 

and (2901.8, -2511.7) such that the distances from the source along the surface are 850 m and 

1200 m, respectively. The whole calculation domain consists of 4007 triangular mesh 

elements. For the homogeneous elastic medium, the parameters of simulation were: the mass 

density 22000 =ρ kg/m3, the velocities of P-wave and S-wave 3200=pc m/s and 5.1847=sc  

m/s, respectively. The source time function that specifies the temporal variation of the point 

source is a Ricker wavelet given by the following form: 

 
2

1 )(2
1 ))(5.0()( Dtta

D ettats −⋅⋅−+= , (2.69) 

where 16.0=Dt s is the source delay time and 2
1 )( cfa π−=  is the constant determining the 

amplitude, and the central frequency of the Ricker wavelet is 25.7=cf Hz. By considering the 

tilt angle φ , the final resulting source vector ),,( tyxsp acting on the governing Eq. (2.1) is 

 )()()0,0,0,0),cos(),sin((),,( 0xxtstyxsp −⋅⋅′−= δφφ . (2.70) 

 In this simulation, a fifth order RK-DG-FEM O5 scheme has been used with a 

triangular elements mesh. The wave propagation has been simulated until time T = 1.0 s when 

all the waves have already passed the two receivers. We use the Lax-Freidrich numerical flux 

and stress free surface boundary condition. The snapshot of the velocity component of the 

wave field at t = 0.7 s is presented in Fig. 2.5, from which we can see the propagation of the 

bulk waves in the medium and the Rayleigh wave at the surface. In Fig. 2.6, we present the 

results from the numerical simulations, as recorded by receiver 1 and receiver 2, respectively, 

together with the analytical solution provided by EX2DDIR. For the first receiver, the 

analytical and numerical solutions match well for the two vertical and horizontal particle 
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velocities, while for the second receiver, the match of horizontal particle velocity is not as 

good. 

 
Fig. 2.5 Amplitude of the velocity v at t = 0.7 s calculated within RK-DG-FEM O5 scheme meshed on triangular 

element. 
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Fig. 2.6 Comparison of the analytical reference solution with simulation results at the two receivers obtained 

within the five order RK-DG-FEM O5 scheme meshed on triangular element. The first row (a) and (b) are for 

receiver 1 and the second row (c) and (d) are for receiver 2. In each row the right hand figure displays the 

horizontal particle velocity and the left hand figure is the vertical particle velocity.  
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In Fig. 2.7 we present the results of simulation made with a seven order RK-DG-FEM with 

the same number of total mesh element. We can see that the analytical and numerical match 

well for the two receivers. This means that by increasing the order of interpolation, we will 

get better result. 
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Fig. 2.7 Comparison of the analytical reference solution with simulation results at the two receivers obtained 

within the seven order RK-DG-FEM O7 scheme meshed on triangular element. The first row (a) and (b) are for 

receiver 1 and the second row (c) and (d) are for receiver 2. In each row the right hand figure displays the 

horizontal particle velocity and the left hand figure is the vertical particle velocity. 

 

 In the following paragraphs, we present the results of the simulation of Lamb’s Problem 

obtained with a quadrilateral elements mesh. The numerical model is a rectangular zone (4000 

m wide and 2500 m height) with origin (0, 0) at the left upper corner. The vertical directional 

point source is located at the centre position of the underside stress free surface (2000.0, -

2500.0). One receiver is located at (2800.0, -2500.0) such that the distance from the source 

along the surface is 800 m. The same material and source function Eq. (2.69) have been used 

with the same parameters as the one use in the case of triangular elements. In this case, no tilt 

angleφ  has been used. The source vector ),,( tyxsp acting on the governing Eq. (2.1) is then 

 ( ) )()(0,0,0,0,1,0),,( 0xxtstyxsp −⋅⋅′= δ . (2.71) 
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 In this simulation, the time T = 1.0 s and the whole physical domain has been meshed 

with 4000 quadrilateral elements. The Lax-Freidrich numerical flux and stress free surface 

boundary condition have been used. The snapshot of the velocity component of the wave field 

at t = 0.8 s presented in Fig. 2.8, obtained with a seven order RK-DG-FEMΟ 7, shows the 

propagation of both the bulk waves and the Rayleigh wave. In Fig. 2.9, the results of 

numerical simulations, as recorded by the receiver, together with the analytical solution 

provided by EX2DDIR have been plotted. The analytical and numerical solutions match well 

for the vertical and horizontal particle velocities. 

 

 
Fig. 2.8 Amplitude of the velocity v at t = 0.8 s within RK-DG-FEM O7 scheme meshed on quadrilateral 

element. 
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Fig. 2.9 Comparison of the analytical reference solution with results of simulation at the receiver within the 

seven order RK-DG-FEM O7 scheme meshed on quadrilateral element. The right hand figure displays the 

horizontal particle velocity and the left hand figure displays the vertical particle velocity. 

 
 

2.5.2 Linear Simulation of Elastic Waves Propagation in Anisotropic 
Apatite Material 
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 In the preceding subsection, the simulation with the DG-FEM scheme for Lamb’s 

problem has been presented, demonstrating the good performance of the DG-FEM method for 

isotropic materials. In this subsection, the results of simulation with anisotropic material will 

be presented, and compared with an analytical reference solution. 

 A computational domain of 3333× cm with the origin (0.0, 0.0) at the centre point is 

meshed with 6802 triangular elements. The point source, acting in the y-direction, located at 

the centre (0.0, 0.0) of the physical domain, is a shifted zero-phase pulse defined by 

 ))(cos()( 00
))(5.0( 2

0
2

0 ttfets ttf −= −− π , (2.72) 

with 70 =t µs and a high cut-off frequency 5.00 =f MHz. The anisotropic solid is apatite 

with the following properties: 16711 =C GPa, 6612 =C GPa, 14022 =C GPa, 3.6666 =C  GPa 

and density 32000 =ρ kg/m3. The two receivers are located at (2.6, 0.0) and (7.8, 0.0) (cm) for 

receiving the signal to make compare with analytical solution.  

 First, the results of simulation, which has been realized with a five order RK-DG-

FEMΟ 5 scheme using triangular elements, will be presented. In this simulation, the total 

calculation time has been chosen equal to 0.32=T  µs in order that all the waves have 

propagated through the two receivers. We use the Lax-Freidrich numerical flux and a stress 

free boundary condition on the four boundaries. Fig. 2.10 is the snapshot of the velocity 

component of the wave field at 5.27=t  µs. It displays the form of wave-front curves in the 

apatite material. In Fig. 2.11, we present the vertical particle velocities, as recorded by 

receiver 1 and receiver 2, respectively, together with the analytical solution which has been 

proposed by Carcione et al. [34] (see Annexe A). As the figures show, the comparison 

between numerical and analytical solution is excellent. 

 

 
Fig. 2.10 Amplitude of the velocity v at t = 27.5µs within RK-DG-FEM O5 scheme with triangular mesh 

element. 
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Fig. 2.11 Comparison of the analytical reference solution with results of simulation at the receivers within the 

five order RK-DG-FEM O5 scheme meshed on triangle element. The two figures (a) and (b) represent the 

vertical particle velocity at the receiver 1 and 2, respectively. 

 The same simulation has been reproduced with a five order DG-FEM scheme using 

6400 quadrilateral elements. Fig. 2.12 shows the vertical particle velocity obtained at the two 

receviers, compared with the analytical reference solution. These two figures show a good 

match result between the simulation result and the analytical solution, validating the 

implementation of the DG-FEM scheme with quadrilateral elements for anisotropic solid. 
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Fig. 2.12 Comparison of the analytical reference solution with results of simulation at the receivers within the 

five order RK-DG-FEM O5 scheme meshed on quadrilateral element. The two figures (a) and (b) represent the 

vertical particle velocity at the receiver 1 and 2, respectively. 

 
 
2.5.3 Attenuation 

 In order to introduce thermo-viscous attenuation in the scheme, only the stress-strain 

relationship needs to be modified. In this case, Eq. (1.47) is replaced by: 

 
t

CP kl
ijklklijklijij ∂

∂+== εηετ , (2.73) 

where ijklη  are viscosity coefficients. As the attenuation is considered small enough, only the 

linear part of the strain component is used in the attenuation term. This leads to: 
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Unfortunately, the spatial derivative appearing now in the stress-strain relationship needs to 

be considered carefully. Indeed, instability can appear if only Eq. (2.74) is used in place of Eq. 

(1.47) without any other modification of the scheme [94]. In order to stabilize the scheme, it 

has been proned to introduce a numerical flux contribution. Following the methodology used 

in the case of the heat equation [94], [9], each component of the stress tensor is calculated 

with: 

 )( *
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111 ii
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hl
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hij vvnMM
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J
vDFCP −−+= ∑

=

− ηη , (2.75) 

where *
lv  is a numerical flux term associated with the l-th particle velocity component. This 

introduction of the thermoviscuous attenuation needs only a modification of the DG-FEM 

scheme in the flux term calculations. 

 We consider plane wave propagation in the x direction in an isotropic attenuating 

elastodynamic medium. The thermoviscous model leads, in this case, to a quadratic 

dependence of the attenuation parameter of both longitudinal lα  and transverse tα  waves as a 

function of frequency: 

 2
3

0

11
22

f
cl

l ρ
ηπα = , (2.76) 

 2
3

0

66
22

f
ct

t ρ
ηπα = , (2.77) 

Here, the Voigt notations have been used for the viscosity coefficients, and cl and ct are the 

longitudinal and transversal wave velocity, respectively. 

 In the numerical simulation, a homogenous medium with the following parameters, ρ0 = 

2000 kg/m3, λ = 4.96 GPa, µ = 13.52 GPa, η11 = 17.1 MN s/m2, and η66 = 4.7 MN s/m2, is 

considered. A 3000 × 200 m computational domain, with its origin (0.0, 0.0) at the centre 

point, is meshed with 240 quadrilateral elements. A source, consisting of compressional and 

shear forces, is applied along a line located at x = -1000 m in order to generate a plane wave: 

 )()2sin()(
2)26( xeftAts TTt

xx δπ −−= ,  (2.78) 

 )()2sin()(
2)26( yeftAts TTt

yy δπ −−= , (2.79) 

where Ax = 1000 and Ay = 2000 are the amplitudes of the sources in directions x and y, f = 1/T 

= 20 Hz is the source frequency and δ is the Dirac function. Three receivers R1, R2, R3 are 

positioned at the positions (-400, 0), (200, 0) and (1000, 0), respectively. The distances 

between the source and the three receivers are 3, 6 and 10 longitudinal wavelengths. In this 

simulation, the Lax-Freidrich numerical flux has been used in the 5 order DG-FEM scheme. 
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The total calculation time is 2 s. Symmetric boundary conditions on the upper and bottom 

borders, and 500 m thickness Nearly Perfectly Matched Layer (NPML) boundary condition 

on the left and right sides have been used. The NPML absorbing boundary layer used here 

will be presented in detail in part 3.4. 

 The horizontal Vx and vertical Vy particle velocity components calculated at the three 

receiver positions are displayed on Fig. 2.13. From these time evolution curves, the 

attenuation parameter evolution as a function of frequency can be calculated with: 

 








−
−=

)(

)(
ln

1

1

3

13 fS

fS

xx
α , (2.80) 

where )( fSi  is the spectrum of the considered particle velocity component, Vx for 

longitudinal wave and Vy for transverse wave, and xi the position of the i th receiver. A 

comparison the attenuation parameter evolution as a function of frequency, calculated with Eq. 

(2.80), and the expected value of the thermoviscous model given by Eq. (2.76), is shown on 

Fig. 2.13(b) for the longitudinal wave. Excellent agreement is found, validating the 

implementation of thermoviscous attenuation in the DG-FEM scheme. Similar results have 

been obtained for the transverse wave, as shown on Fig. 2.13(d). 
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Fig. 2.13 (a) Horizontal and (c) vertical particle velocities of the attenuated elastic plane wave at the receiver R1 

(dark solid line), R2 (blue dashed line), and R3 (red dotted line). (b) Comparison of the frequency dependence of 

the longitudinal attenuation parameter αl (Np/m) obtained by numerical simulation (solid line) and desired 

(dashed line). (d) Comparison of the frequency dependence of the transverse attenuation parameter αt (Np/m) 

obtained by numerical simulation (solid line) and desired (dashed line). 
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2.5.4 Simulation of Wave Propagation in “Classical” Nonlinear 
Elastodynamic Material 

 The simulations with the DG-FEM scheme for isotropic Lamb’s problem and 

anisotropic apatite media have been presented in the preceding subsections, demonstrating the 

good performance of the DG-FEM method for linear elastic wave propagation in solids. In 

this subsection, the simulation of nonlinear elastic elastodynamic material with DG-FEM 

scheme will be presented. 

 Up to now, only a few studies have been devoted to the 2D or 3D numerical simulation 

of elastic wave propagation in nonlinear media. Kosik used the FDTD method to calculate 

nonlinear spherical wave propagation. An extension of this method with flux-corrected 

transport technique have been proposed to deal with steep gradients and shocks or reduce 

unphysical oscillations appearing during the calculations due to the introduction of 

nonlinearity in Ref. [218]. The FDTD method has also been used for the simulation of 

propagation of waves in pre-stressed materials [42]. Due to its efficiency in solving large 

scale problem a PS has been developed for active [22] or nonlinear hysteretic media [207], 

[208], [209]. During the AERONEWS European Strep 6 project, several numerical methods, 

FDTD [193], [186], [194], Local Interaction Simulation Approach (LISA) [77], [162], [53], 

[163], [78], PS [23], [24], [79], [80], FEM [219], [220], and mesh-free FEM Galerkin [8], 

have been used to simulate hysteretic nonlinear elastic wave propagation in 2D and 3D, 

mainly using the PM-space formalism. 
 
 
2.5.4.1 Nonlinear Elastic Stress Tensor 

 For nonlinear elastodynamic solid media, the stress tensor ijP  in Eq. (2.1) can be 

expressed as follows: 

  
l

k

n

m
ijklmnijklij x

u

x

u
MCP

∂
∂

∂
∂+= )

2

1
( ,  (2.81) 

where xn is the n-th component of the position vector, um is the m-th component of 

displacements, Cijkl and Mijklmn (i, j, k, l, m, n = 1, 2, 3) are the components of the fourth-rank 

or second-order elastic (SOE) linear tensor and nonlinear elastic tensor, Mijklmn can be 

expressed as: 

 )()( calNLgeometri
ijklmn

NLphysical
ijklmnijklmn CCM += ,  (2.82) 

with 

 ijklmn
NLphysical

ijklmn CC =)(  and jniklmjkilnmknijlm
calNLgeometri

ijklmn CCCC δδδ ++=)( , (2.83) 

where δ  is the Kronecker delta symbol, and Cijklmn the sixth-rank or third-order elastic (TOE) 

nonlinear tensor. There are two types of nonlinearity represented in Eq. (2.81), one is called 
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geometrical nonlinearity which is expressed by )( calNLgeometri
ijklmnC , and accounts for the nonlinear 

relationship between strain and displacement when finite deformations are taken into account. 

The other type of nonlinearity, )(NLphysical
ijklmnC , is “physical”, and corresponds to a nonlinear 

stress-strain relationship of the medium. The Voigt notation will be used for simplicity. For 

example, 1122C   and 112212C  can be simply replaced by 12C  and 126C , respectively. 

 For 2D nonlinear transversely isotropic medium, the constitutive stress tensor Eq. (2.81) 

is given by: 
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where Fij  are the strains (displacement gradient) and e
ijC  are the effective nonlinear elastic 

tensor which include the SOE linear tensor Cijkl and TOE nonlinear tensor, and )( calNLgeometri
ijklmnC . 

According to Ref. [218] they can be expressed as: 

 221211211111111111 )()3( FCCFCCCCe ++++= , (2.85) 

 221212211661121212 )()( FCCFCCCCe ++++= , (2.86) 

 126616621126616613 )()2( FCCFCCCCe ++++= , (2.87) 

 1211166216616614 )()( FCCFCCCe +++= , (2.88) 

 226612211121121221 )()( FCCFCCCCe ++++= , (2.89) 

 222222211121222222 )3()( FCCFCCCCe ++++= , (2.90) 

 1266266212226623 )()( FCCFCCCe +++= , (2.91) 

 121266266216626624 )2()( FCCCFCCCe ++++= . (2.92) 

 1211166216616631 )()( FCCFCCCe +++= , (2.93) 

 1266266216626632 )3()( FCCFCCCe +++= , (2.94) 

 221226611661666633 )()( FCCFCCCCe ++++= , (2.95) 

 22661226611111666634 )2()( FCCCFCCCCe +++++= , (2.96) 

 1266166216616641 )()3( FCCFCCCe +++= , (2.97) 

 1266266212226642 )()( FCCFCCCe +++= , (2.98) 

 22222661112661666643 )()2( FCCFCCCCCe +++++= , (2.99) 

 226626611121666644 )()( FCCFCCCCe ++++= , (2.100) 

These effective elastic nonlinear coefficients, which depend on strains, will be used in the 

following numerical simulation. 
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2.5.4.2 Simulation of Nonlinear Elastic Plane Wave Propagation  

 First, a validation of the nonlinear elastic wave DG-FEM scheme will be presented. As 

only a few analytical results are available in the case of nonlinear elastic waves, we consider 

plane wave propagation in the x direction in a nonlinear elastodynamic medium, in which the 

stress and strain relationships are explicitly given by [209]: 

 2
2111

2
1111111111 4 FCFCFCP γβ ++= , (2.101) 

 2111116612 )42( FFCCP γ+= . (2.102) 

Here µλ 211 +=C , µ=66C  and λ=12C  where λ  and µ  are the Lame constants, and 

11111 CC=β  and 11166 CC=γ  are two nonlinear parameters.  

 The numerical simulation is identical to the one used for the validation of the 

attenuation implementation. The nonlinear parameters β and γ are equal to 5000 and 4000, 

respectively. A snapshot of the particle velocity component of the wave field at t = 0.48 s is 

plotted on Fig. 2.14. This figure shows the plane character of the propagating wave-front and 

the absorption by the NPML of left going wave generated by the source. 

Source

 
Fig. 2.14 Velocity amplitude of the plane wave at t = 0.48 s obtained with RK-DG-FEM O5 scheme using 

quadrilateral elements. 

 

In Fig 2.15 we plot the horizontal and vertical particle velocities of the nonlinear elastic plane 

wave received at the second receiver R2. Normally, without nonlinearity the x component 

contains only a compressional wave, while the y component contains only a shear wave. 

Because of the nonlinearity, the x component includes not only a wave with a compressional 

wave speed but also a wave with a shear wave speed, as shown on the upper right plot of Fig. 

2.15. This is typical of nonlinear elastic wave propagation and indicates mode crossing [15]. 

In Fig 2.16, the spectra of the horizontal and vertical particle velocities received at the three 

different receivers are plotted. Since there is no attenuation, the amplitude of the spectral peak 

at the source frequency remains nearly unchanged with distance, as expected. However, for 

the harmonic waves (right spectra on Fig. 2.16), the evolution as a function of distance is 

more complex than the linear increase predicted for a plane wave in a fluid. All the obtained 

results are perfectly identical to the one presented in figure 2a and 2b of Ref. [209]. As their 

results have been successfully compared to an analytical prediction [123], this simulation 

validates our nonlinear implementation. 
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Fig. 2.15 Horizontal (first line) and vertical (second line) particle velocities of the nonlinear elastic plane wave at 

the receiver R2. The expanded scale on the right shows the mode crossing process induced by nonlinearity. 
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Fig. 2.16 Spectra of the horizontal Vx (first line) and vertical Vy (second line) particle velocities of the numerical 

solutions of the propagation of an elastic plane wave at distances of 3 (dotted line), 6 (dashed line) and 10 (solid 

line) longitudinal wavelengths. 
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2.5.4.3 Nonlinear Pulse Propagation 

 In the following numerical experiments, a computational domain of 11001100× m with 

the origin (0.0, 0.0) at the centre point is meshed with quadrilateral elements. The point source 

time function is a Richer wavelet expressed in Eq. (2.69), acting in the x and y directions, and 

located at the centre (0.0, 0.0) of the computational domain. The amplitude factor is 5000, the 

source delay time 02.0=Dt  s and 2
1 )2( cfa π−=  with a peak frequency fc = 30 Hz. The 

receiver is located at the point (200, 0). 

 The properties of the simulated solid media are represented by the following SOE and 

TOE constants:  

� For the isotropic nonlinear medium (called BMIN): 5.282211 == CC GPa, 

5.96612 == CC GPa, 780222111 −== CC GPa, 180122112 −== CC GPa and =166C  

266C  150−= GPa; 

� For the transversely isotropic nonlinear medium (called BMAIN): 5.2811 =C GPa, 

612 =C GPa, 3022 =C GPa, 5.966 =C GPa, 780111 −=C GPa, 850222 −=C GPa, 

16112 −=C GPa, 90122 −=C GPa, 108166 −=C GPa, 154266 −=C GPa. 

The densities for both the isotropic and transversely isotropic nonlinear medium are given by 

75.20 =ρ  kg/m3. 

 First, a simulation for the isotropic nonlinear media was realized with a six order RK-

DG-FEM scheme meshed with 3600 quadrilateral elements. In this simulation, the total 

calculation time was T = 0.18 s. The Lax-Freidrich numerical flux and surface free boundary 

condition have also been used. Fig. 2.17 shows two snapshots of the velocity component of 

the wave field at t = 0.15 s and t = 0.18 s, respectively. From these snapshots we can see the 

form of wave-front curves in the BMIN isotropic nonlinear material. The corresponding 

received horizontal and vertical particle velocities are plotted in Fig. 2.18. 
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Fig. 2.17 Amplitude of the particle velocity v at t = 0.15 s (left) and t = 0.18 s (right) calculated with a RK-DG-

FEM O6 scheme using quadrilateral elements, for the isotropic nonlinear media. 
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Fig. 2.18 Received signals for (a) the horizontal particle velocity and (b) vertical particle velocity calculated with 

a six order RK-DG-FEM scheme for the isotropic nonlinear media.  

 

 A second simulation has been made with the same six order RK-DG-FEM scheme and 

the same number of quadrilateral elements, but this time, for transversely isotropic nonlinear 

medium. The snapshots of the velocity component of the wave field at 15.0=t s and t = 0.18 

s are plotted in the Fig. 2.19. From these snapshots we can see the form of wave-front curves 

in the BMAIN transversely isotropic nonlinear material. The corresponding received 

horizontal and vertical particle velocities are plotted in the Fig. 2.20. 

 The obtained results are in perfect accordance with the one obtained in Ref. [218] but 

without the need of using a flux-transport correction in order to limit spurious oscillation 

induced by nonlinear effects. Nevertheless, it can be noted that these examples show in fact 

only a very low level of nonlinearity as the sent wave is very short. 
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Fig. 2.19 Amplitude of the particle velocity v at t = 0.15 s (left) and t = 0.18 s (right) calculated with a RK-DG-

FEM O6 scheme using quadrilateral elements, for the transversely isotropic nonlinear media. 
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Fig. 2.20 Received signals for (a) the horizontal particle velocity and (b) vertical particle velocity calculated with 

a six order RK-DG-FEM scheme for the transversely isotropic nonlinear media. 

 
 
 

2.6 Conclusion 

 In this chapter, a nodal Discontinuous Galerkin Finite Element Method (DG-FEM) 

scheme, which is an intelligent combination of the FEM and FVM methods, has been 

presented. Two kinds of operators, based on triangular or quadrilateral mesh element, 

respectively, have been developed for the weak and strong form Discontinuous Galerkin 

formulations. Different numerical fluxes, as the central and Lax-Freidrich fluxes, have been 

used. Open boundary, surface-free boundary and fixed boundary conditions have also been 

discussed in this chapter. To realize time domain discretiztion the DG-FEM scheme, a fourth-

order low storage explicit Runge-Kutta (LSERK) method has been used. 

 The results of simulations for isotropic Lamb’s problem and elastic wave propagation in 

apatite, an anisotropic medium, have authorized a validation of the DG-FEM scheme, by 

comparison to known analytical solutions. 

 As only a few analytical results are available in the case of nonlinear elastic waves, a 

plane wave propagation has been considered. The obtained results compare perfectly to 

previously publish numerical calculations and approximate analytical solutions. 

 The main contributions of the present PhD thesis to this numerical scheme was to 

extend it to nonlinear elasto-dynamic including source terms, and to introduce the possibility 

to use quadrilateral elements. Moreover a Perfectly Matched Layer (PML) type of absorbing 

boundary condition well adapted to the DG-FEM scheme, called Nearly Perfectly Matched 

Layer (NPML), was also developed. This point will be discussed in the next chapter. Finally, 

a sub-domain implementation was developed to increase the efficiency of the scheme when 

PML are used. It will also enable to easily implement, in the future, multiphysics problems. 
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CHAPTER 3: PML  ABSORBING BOUNDARY 

CONDITION  

 

3.1 Introduction 

 Numerical solutions of Partial Differential Equations (PDE) for wave propagation 

require the truncation of an unbounded media to fit into computers with a limited memory and 

computation time. For such problems, an Absorbing Boundary Conditions (ABC) is needed at 

the truncated boundary to eliminate the reflections from this boundary to the computational 

domain. Many kinds of ABCs have been found, for example, the ABCs of Clayton and 

Engquist [45], Peng and Toksoz [144] and Mur [133], etc. These ABCs, although successful 

in many fields, provide only limited absorption to waves within a limited range of incidence 

angles and limited frequencies [171]. 

 In 1994, an implementation of Perfectly Matched Layer (PML) media [16] has 

introduced by Berenger for electromagnetic waves. Since then, it has been proven to be one of 

the most robust and efficient technique for the termination of unbounded domain [74]. In 

addition to be useful for electromagnetism simulation [73], [206], it was demonstrated to be 

very efficient for acoustic [118,] [211] and elastic waves in isotropic [43], [88] and anisotropic 

solids [48]. It has been proven that theoretically, before discretization, at the interface 

between a computational medium and a perfectly matched medium no reflection occurs, and 

the incident waves from the computational medium are completely absorbed, regardless of 

their incidence angle and frequency [16], [43]. Nevertheless, this property is lost when a 

discretization is needed for numerical implementation, especially in the case of oblique 

incidence. One then needs to optimise the PML parameters in order to decrease parasitic 

reflections [111], [47]. 

 Convolution Perfectly Matched Layer (C-PML), first presented in electromagnetism by 

Roden and Gedney [156], and applied in the simulation of elastic wave propagation [60], [61], 

[22], [107], has been shown to improve the behaviour of the discrete PML for grazing angles 

encountered in the case of surface waves. The main advantage of C-PML over the classical 

PML layer is that it is based on the un-split components of the wave field, and lead to a more 

stable scheme. Moreover, it is highly effective at absorbing signals of long time-signature [12], 

surface waves [107] or in elongated domains of calculation [61]. Classically, C-PML has been 

introduced in first-order formulation of both electromagnetism and elastodynamic. In this 

chapter, we propose first to extend the C-PML absorbing layer to the second-order system 
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describing elastic waves in displacement formulation in anisotropic solids, as it was done for 

classical split PML [106]. This second-order formulation will be described in frequency and 

time domains both for elastic solid [117] and piezoelectric medium [25], [116]. In frequency 

domain, this technique is easy to implement in commercial software based on Finite Element 

Method (FEM). The efficiency of this second-order perfectly matched layer is then 

demonstrated based upon 2D benchmarks both for isotropic and anisotropic solids, and for 

bulk and surface wave propagation. The simulations are realized with the commercially 

available software Comsol Multiphysics in frequency domain, and with a Pseudo-Spectral (PS) 

method in time domain. 

 Another kind of PML called the Nearly Perfectly Matched Layer (NPML) [49], [95] 

will be introduced. In electromagnetism, the domain in which this PML has been first 

developed, analytical and numerical results show that the NPML is equivalent to the standard 

PML in Cartesian coordinates and performs identically to them as an ABC while simpler 

implementation [49]. 

 In some anisotropic media, numerical instabilities appear in the C-PML [10], limiting 

the use of this absorbing layer. In order to stabilize the absorbing layer, another PML has been 

proposed by Meza-Fajardo et al. [126] and referred to as the “Multiaxial Perfectly Matched 

Layer” (“MPML”). A study of the matching and stability properties of this last PML will be 

presented. A similar idea was previously proposed in the case of guided waves for frequencies 

where “inverse modes” with group and phase velocities of opposite signs are excited [25], 

where split field PML or C-PML don’t work satisfactorily. Examples of stabilized absorbing 

layers will also be presented for such guided waves case. 

 
 
 

3.2 C-PML for Second-Order Elastodynamic Wave Equations 

3.2.1 Wave Equations for Anisotropic Solid in 2D  

 Consider the propagation of 2D plane strain elastic waves in an anisotropic elastic solid 

medium. With Einstein’s convention of summation, the equation of motion can be written: 

 
j

iji

xt

u

∂
∂

=
∂
∂ τ

ρ0
2

2 1
, (3.1) 

where i, j = 1, 2, 0ρ  is the density, xj are the components of the position vector, t is the time, 

iu are the components of the particle displacement vector, and τij are the components of the 

stress tensor. For a linear elastic solid, the constitutive relation is given by the Hooke’s law: 

 klijklij C ετ = , (3.2) 

where Cijkl are the elastic constants, and the linear approximation of the strain tensor εεεε is: 
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In the case of a transverse isotropic medium (the lowest symmetry which can be considered in 

2D), the following second-order system of equation is obtained: 
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Here we have considered that x1 = x and x2 = y. This system will be used as the starting point 

in the remainder of the chapter when considering anisotropic solids. 

 
 
3.2.2 C-PML Elastic Wave Equations in Frequency Domain 

Here, the methodology used for the introduction of C-PML zones for axisymetric active 

solid media [22], is used for the system of Eqs. (3.4). First, taking Fourier transform of the 

system, it is rewritten in the frequency domain. Then, the following complex coordinate’s 

transformation [44] is used: 

 ∫=
x

x dxxsx
0

')'(~ , (3.5a) 

 ∫=
y

y dyysy
0

')'(~ , (3.5b) 

where sx and sy are the Complex Frequency Shifthed (CFS) stretched-coordinate metrics 

proposed by Kuzuoglu and Mittra [109]: 
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where, αx, σx, αy and σy are assumed to be positive and real, and κx and κy are real and ≥ 1. The 

yx,σ  and yx,κ  are the so-called [74] attenuation factor used for the attenuation of propagating 
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waves, and scaling factor used for the attenuation of evanescent waves, respectively. The 

choice of the optimum spatial variation of these variables has been discussed in the literature 

[178], [47]. Our choice will be described for each example in the numerical simulations parts 

of the chapter. The yx,α  are frequency-dependent terms that implement a Butterworth-type 

filter in the layer. The original split PML, introduced for isotropic elastic waves propagation 

by Chew and Liu [43] and for anisotropic solid by Collino and Tsogka [48], is retrieved 

imposing αx,y = 0 and κx,y = 1. Using the complex coordinate variables x~  and y~ to replace x  

and y  in Eqs. (3.4), and noting that xsx x ∂∂=∂∂ )1(~  and ysy y ∂∂=∂∂ )1(~ , we obtain the 

following frequency-domain equations in Cartesian coordinates: 
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where û  represents the Fourier transform of the variable u. 
 
 
3.2.3 Interpretation of C-PML as an Anisotropic Solid Medium 

 In order to implement these C-PML in a commercial FEM software (COMSOL 

Multiphysics), the resulting second-order C-PML wave equations are interpreted as an 

anisotropic medium, as it has already been done for PML [217]. Multiplying Eqs. (3.7) by 

yxss  and introducing new stress tensor ijτ ′ˆ  and density 0ρ ′  (given by yxss0ρ ), we get the 
following equations: 
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This system of equation corresponds to the propagation of elastic waves in a “fictious” 

anisotropic medium and can be written in the matrix form as: 
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with xuu x ∂∂= 11 ˆˆ , yuu y ∂∂= 22 ˆˆ , yuu y ∂∂= 11 ˆˆ and xuu x ∂∂= 22 ˆˆ , the new effective elastic 

stiffness constants are ,1111 xy ssCC =′ ,6666 yx ssCC =′ xy ssCC 6666 =′′ and yx ssCC 2222 =′ . It 

should be noted that this fictious anisotropic medium have a non symmetric stress tensor 

( jiij ττ ˆˆ ≠  when i ≠ j), and the complex-valued tensor of elastic constants conserves minor 

symmetry properties, but not the major one. 

 We can easily extend this description of C-PML in anisotropic solid to 3D. In this case, 

the general form of the propagation of elastic waves can be described as: 
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where i, j, k, l = 1, 2 or 3. The effective elastic tensorC′  and the density 0ρ′  are given by: 

ki

zyx
ijklijkl ss

sss
CC =′ ,  (3.11a) 

zyx sss00 ρρ =′ . (3.11b) 

The effective constants already obtained for 2D situation can be easily derived from Eq. (3.11) 

by considering sz = 1 and i, j, k, l = 1 or 2. Moreover, this “fictious” anisotropic interpretation 

of C-PML or PML can be extended to piezoelectric solids [25], [7], [122]. 
 
 
3.2.4 C-PML Elastic Wave Equations in Time Domain 

 Now, to be able to obtain a C-PML formulation in time domain, the resulting equations 

are transformed back to time domain by inverse Fourier transform. Due to the frequency 

dependence of the CFS stretched-coordinate metrics, a convolution appears in the resulting 

equations, as shown for example for Eq. (3.7a): 
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where ⊗  and F-1[.] are respectively the convolution and inverse Fourier transform operators. 

In order to eliminate the convolutions appearing in Eq. (3.12), we use the methodology 

introduced by Roden and Gedney [156] in electromagnetism, and extended by Bou Matar et 

al. [22] for elastic wave propagation in active (or nonlinear) media, by introducing memory 

variables. The time evolution of each of these memory variables is realized by a first order 

differential equation. The obtained result can be rewritten as: 
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where the memory variables xA  and yB  are given by: 
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with yxyxyx k ,,, σδ =  , yxyxyxyx k ,,,, ασβ += . Making the same calculation for Eqs. (3.7b)-

(3.7e), we obtain the following system equations of C-PML in time domain for elastic wave 

propagation in anisotropic solid: 
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where the memory variables Ax, By, Cx, Dy, Ex, Fy, Gx, and Hy are obtained by a first order 

differential equations of the form (Appendix B): 

 xxx
x A

xt

A βτδ −
∂

∂−=
∂

∂ 11 , (3.15) 

The memory variables will be zero outside the C-PML zones, so the first order differential 

equations of memory variables need only to be solved in a small part of the calculation domain. 

After introduction of Eqs. (3.14c)-(3.14e) into Eqs. (3.14a)-(3.14b), the resulting system of 

wave equations can be written as: 
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where 1f  and 2f  are: 

 





































++













−−

∂
∂+

∂
∂

∂
∂−














−−

∂
∂+

∂
∂

∂
∂−














++

∂
∂+

∂
∂

∂
∂−














++

∂
∂+

∂
∂

∂
∂−

=

y

y

x

x
y

y
x

xy

y

x

x

y
y

x
xy

y

x

x

y
y

x
xyxy

y

y
y

x
xyxx

x

BA
H

C
G

C

y

uC

x

uC

y

F
C

E
C

y

uC

x

uC

x

H
C

G
C

y

uC

x

uC

y

F
C

E
C

y

uC

x

uC

x

f

κκκκκ
κ

κ
κ

κκκ
κ

κ
κ

κκκκκ
κ

κκκκκ
κ

6666166266

1211212111

6666166266

1211212111

1

''

''

'

'

, (3.16c) 

 





































++













−−

∂
∂+

∂
∂

∂
∂−














−−

∂
∂+

∂
∂

∂
∂−














++

∂
∂+

∂
∂

∂
∂−














++

∂
∂+

∂
∂

∂
∂−

=

y

y

x

x
y

y
x

xy

y

x

x

y
y

x
xy

y

x

x

y
y

x
xyxy

y

y
y

x
xyxx

x

DC
F

C
E

C

y

uC

x

uC

y

H
C

G
C

y

uC

x

uC

x

F
C

E
C

y

uC

x

uC

y

H
C

G
C

y

uC

x

uC

x

f

κκκκκ
κ

κ
κ

κκκ
κ

κ
κ

κκκκκ
κ

κκκκκ
κ

2212222112

6666166266

2212222112

6666166266

2

''

''

'

'

, (3.16d) 

where we have introduced the notation 1' ,, −= yxyx κκ . This results shows that the C-PML 

zone can be interpreted as the same anisotropic medium as the one in the calculation domain, 

but in which volumetric sources (f1 and f2) are present. 

 It is important to note that in time domain the number of equations needed to be solved 

increases in the C-PML zones. This can considerably increase the burden of calculation. 

Nevertheless, when active (or nonlinear) media are considered, then time domain formulations 

are needed [22], and Eqs. (3.16) have to be used. 

 
 
3.2.5 Numerical Simulations 

 In this section, the excellent absorbing behaviours of both formulations (frequency and 

time domains) are demonstrated. The frequency domain formulation has been implemented in 
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a commercial FEM software (COMSOL Multiphysics), and a PS code has been developed for 

the time domain formulation. The choice of these numerical schemes has been motivated by 

the compromise in obtaining both efficient and accurate methods for the two different 

formulations. Here, the DG-FEM scheme has not been used because as explained later the C-

PML, even in first order formulation, is not well adapted to this scheme. 
 
 
3.2.5.1 Elastic Wave Propagation in an Unbounded Isotropic Solid 

 The numerical simulation presented in this subsection was made for the elastic wave 

propagation in an unbounded isotropic medium. The scale of computational domain and the 

C-PML layer are given in Fig. 3.1. The simulation has been performed over a 80 × 80 grid, 

which was surrounded by a C-PML layer having a thickness of d = 10 cells, with ∆x = ∆y = 

0.6 mm. 

 

C
P

M
L

C
P

M
L

 

Fig. 3.1 2D physical domain 48×48 mm surrounded by a 10∆ C-PML layer. 

 

 The parameters for the simulation were as follows: the density is 25000 =ρ kg/m3, the 

elastic constants are 8511 =C GPa, 2512 =C GPa, 8522 =C GPa, 3066 =C GPa. A 2D point 

source with a 0.5 mm diameter was set up at the point (0, 0) with a time function given by 

Ricker wavelet expressed as: 

 
2

1 )(2
1 ))(5.0()( Dtta

D ettats −⋅⋅−+= . (3.17) 

where 5.0=Dt µs is the source delay time, 2
1 )( cfa π= , and 1=cf MHz is the central 

frequency. 

 In the stretched-coordinate metrics, the following spatial coordinates dependences are 

used for the parameters of the C-PML layers in the x direction: 

 
1

0
max1

n

x
x d

xx







 −+= κκ , (3.18a) 



CHAPTER 3: PML ABSORBING BOUNDARY CONDITION 

 105 

 
21

0
max

nn

x
x d

xx
+








 −= σσ ,  (3.18b) 

 
3

0
max

n

x

x
x d

xxd







 +−= αα , (3.18c) 

with cfπα 2max =  and: 

 )2()1log()1( 001121max dRCnn ⋅⋅++= ρσ , (3.18d) 

where the 0R  is the theoretical desired reflection coefficient and 0x  and d  are respectively 

the starting position and thickness of the C-PML layer . ,yκ  yσ  and yα  have the same form 

as ,xκ  xσ  and xα , respectively, just replacing x by y. In the considered cases, as no 

evanescent waves are presents, we use 0max =κ . Moreover, 1, =yxκ  and 0, =yxσ  in the 

computational domain, outside the C-PML zone. In the presented results a C-PML thickness 

of ten grid elements around the boundaries, 5
0 105 −×=R , n1 = 3, n2 = 0 and n3 = 1 have been 

chosen. 

 For characterizing the performance of the C-PML layer quantitatively, here, Eqs. (3.8) 

have been solved with COMSOL Multiphysics FEM software in frequency domain. Indeed, 

as demonstrated by Castaings et al. [37], very efficient simulations of linear pulse propagation 

in solids can be obtained with only a limited number of frequency calculations. The time 

evolution of the point source Eq. (3.17) is first Fourier transformed, and Eqs. (3.8) are then 

solved for forty frequencies equally spaced in the source spectrum. Then the inverse Fourier 

transform will be done within the Matlab software to get the result in time domain. The 

resulting snapshots are presented in Fig. 3.2 for four different times: 3.13 µs, 4.10 µs, 8.01 µs 

and 11.92 µs. They show that there is no visible reflection at the boundaries on a 50 dB 

dynamic range, and illuminate the effective absorbing ability of C-PML for the outgoing 

energy. 
 
 
 
 
 
 



CHAPTER 3: PML ABSORBING BOUNDARY CONDITION 

 106 

   

   
Fig. 3.2 Propagation of elastic waves in an unbounded isotropic solid medium with a 10∆ C-PML layer. In the 

fist row the times of the two figures are 3.13 µs (left) and 4.10 µs (right), and in the second row the times are 

8.01 µs (left) and 11.92 µs (right). The displayed dynamic rang is 50 dB. 

 
 
3.2.5.2 Lamb’s Problem Simulation 

 In order to further demonstrate the performance of the C-PML, here a classical test case 

(Lamb’s Problem), which has been presented for DG-FEM in the subsection 2.5.1 of chapter 

2, will be applied using a vertical force in a homogeneous elastic half-space with a free 

surface. The analytical solution can be obtained with the same FORTRAN code EX2DDIR, to 

make the comparison with the simulation results. 

 The same size of numerical model has been considered as in the subsection 2.5.1 of 

chapter 2. The calculation domain and C-PML layer are given in Fig. 3.3, with origin (0, 0) at 

the left upper corner and the width and height of left boundary are 4000 m and 2000 m, 

respectively, and the tilt angle of the free surface is o10=φ . The directional point source, 

acting as a force perpendicular to this tilted surface, is located at the free surface (1720.00, -

2303.28). One receiver is located at (2670.33, -2470.85) and the distance from the source 

along the surface is 965 m. The same Ricker wavelet source, Eq. (3.17), has been used with 

the following parameters: delay time 32.0=Dt  s, amplitude 2
1 )( cfa π=  and central frequency 

625.3=cf Hz. For the homogeneous elastic medium, the parameters of simulation are: 
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22000 =ρ  kg/m3, velocity of P-wave 3200=pc m/s and velocity S-wave 5.1847=sc  m/s. 

The same spatial coordinates dependences Eqs. (3.18) are used for the C-PML parameters 

with now cfπα 5max = , n1 = 3, n2 = 0, n3 = 1 and 

 )2()1log()1( 021max dRcnn p ⋅⋅++=σ ,  (3.19) 

where 5
0 10−=R . 
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Fig. 3.3 Computational domain and C-PML layer used for the Lamb’s Problem. 

 
 

 
Fig. 3.4 Bulk waves and Rayleigh waves propagating in the Lamb’s Problem. 

 

 In this simulation, we solved Eqs. (3.8) again with COMSOL Multiphysics FEM 

software in frequency domain. After Fourier transform of the source function in frequency 

domain, Eqs. (3.8) is then solved for sixty frequencies equally spaced in the source spectrum. 

The result obtained at one frequency (10 Hz) is shown in Fig. 3.4, from which we can see the 

propagation of the Bulk waves in the computational domain and the Rayleigh waves on the 

free surface boundary. For testing the efficiency of C-PML layer, in Fig. 3.5 the time 

evolutions of the normal (a) and tangential displacement (b) components reconstructed by 
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inverse Fourier transform of the sixty frequency responses at the receiver, positioned at the 

free surface, in the case of both C-PML (dashed line) and PML (dotted line) layers for 

absorbing the surface wave, are displayed and compared to the analytical solution (solid line). 

We remind that the PML case corresponds to αmax = 0. 

 The obtained results clearly demonstrated the increase efficiency of the C-PML in 

comparison of the PML in order to absorb the Rayleigh wave. This is in perfect accordance 

with previous results obtained with the C-PML first-order velocity-stress formulation 

implementation [60], [61], [107]. 
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Fig. 3.5  Comparison of C-PML results (dashed lines) with analytical solution (solid line) and PML results 

(dotted line) of Lamb’s problem, (a) The normal displacement component, and (b) the tangential displacement 

component. 

 
 
3.2.5.3 Efficiency of C-PML for Elongated Domain of Simulation 

 In order to demonstrate the improvement induced by the use of C-PML, instead of 

classical PML, numerical simulations of elastic wave propagation in an elongated half space 

of homogeneous isotropic medium, similar to the ones proposed by Drossaert et al. [60], are 

presented. The sketch of the used elongated calculation domain (3750 m wide and 375 m 

height, including the C-PML layers and corresponding to 200 ×  20 grid elements) is given in 

Fig. 3.6, where the origin (0, 0) is at the left upper corner. The properties of the elastic 

medium have been chosen as follows: 20000 =ρ kg/m3 and the Lame constants are 

6.0=λ GPa and 3.0=µ GPa. A directional point source, acting as a force perpendicular to 

the upper free surface, is located at (2870.0, 0.0). Four receiving positions R1, R2, R3 and R4 

are chosen at the following locations: (2800.0, -187.5), (1120.0, -42.5), (168.75, -18.75) and 

(562.5, 0), respectively. The choice of these receiving positions has been realized in order to 

demonstrate typical behaviour of the C-PML. The source time function that specifies the 

temporal variation of the point source is a Ricker wavelet given by Eq. (3.17) with 0.1=Dt s, 
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2
1 )( cfa π=  and 0.1=cf Hz. The C-PML parameters which have been used are as follows: 

cfπα 5max = , n1 = 3, n2 = 0, n3 = 1 and  
 

 )2()1log()2()1( 0021max dRnn ⋅+⋅++= ρµλσ ,  (3.20) 

where 5
0 105 −×=R . 
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Fig. 3.6 Schematic of the model used in the example of surface wave in an elongated homogeneous isotropic 

medium. The C-PML terminations are positioned at the left, right and bottom side of the simulation domain. The 

top boundary is a stress free boundary. The source and four receivers (R1, R2, R3, R4) positions are also depicted. 

 

 The time evolution of the point source Eq. (3.17) is first Fourier transformed, and Eqs. 

(3.8) is then solved for forty frequencies equally spaced in the source spectrum. The result 

obtained at one frequency (3 Hz) is shown on Fig. 3.7, where both bulk waves in the physical 

domain and Rayleigh waves on the free surface boundary can be seen. In Fig. 3.8, the time 

evolutions of the horizontal (a), (c) and vertical displacements (b), (d) reconstructed by 

inverse Fourier transform of the forty frequency responses at the fourth receiver, positioned at 

the free surface, in the case of both C-PML (dashed line) and PML (dotted line) layers for 

absorbing the surface wave, are displayed and compared to an analytical solution (solid line). 

The FORTRAN code EX2DDIR of Berg et al. [18] has been used, as for the previous 

example, to compute this exact solution of the 2D response from a vertical directional point 

source in an isotropic elastic half space with a free surface. The obtained results clearly 

demonstrated the increase efficiency of the C-PML in comparison of the PML in order to 

absorb the Rayleigh wave, even when a zoom (Fig. 3.8 (c), (d)) is made around the end of this 

surface wave. This is again in perfect accordance with previous results obtained with the C-

PML first-order velocity-stress formulation implementation [60], [22], [107]. 
 

 
Fig. 3.7 Displacement amplitude snapshot at frequency 3 Hz for the model depicted on Fig. 3.6, showing the 

propagation and absorption in the C-PML terminations of both bulk and Rayleigh waves. 

 

 The time evolutions of the horizontal (a), (c), (e) and vertical displacements (b), (d), (f) 

for the three others receivers (R1, R2 and R3) in the case of FEM simulation with C-PML 
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(dashed line) are plotted on Fig. 3.9, and compared, as before, with a FEM simulation with 

PML (dotted line) and an analytical solution (solid line). As in Fig. 3.8, it clearly appears on 

Fig. 3.9 that the use of C-PML greatly improves the surface wave absorption efficiency of the 

absorbing layer (see R2 signal, where spurious oscillations of the horizontal displacement 

component is observed in the case of PML), even if the receiver is positioned close to the 

absorbing layer, as for the R3 receiver. In the case of the first receiver, placed in the bulk of 

the sample where the contribution of surface wave is negligible, the C-PML and PML have 

the same absorbing efficiency and the overall agreement with the analytical solution is almost 

perfect. 
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Fig. 3.8 Time evolution of the horizontal u1 (a) and the vertical u2 (b) components of the displacement vector at 

the fourth receiver R4 of the analytical solution of the problem (solid line) and the numerical solution with C-

PML (dashed line) and PML (dotted line). (c) and (d) are zoom of (a) and (b) respectively, showing the benefit 

of using C-PML instead of PML. 
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Fig. 3.9 Time evolution of the horizontal u1 (left) and the vertical u2 (rigth) components of the displacement 

vector at the first (top), second (middle), and third (bottom) receiver of the analytical solution of the problem 

(solid line) and the numerical solution with C-PML (dashed line) and PML (dotted line). 

 
 
 

3.3 C-PML Formulation for Piezoelectric Solid 

Although not directly linked to the main objective of the thesis, the previous second 

order C-PML formulation can been extended to the case of piezoelectric solid. This choice 

has been motivated, in part, by the interest aroused in other IEMN groups, as Microfluidique 

and Ultrasons groups, for their own applications. 
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Only few works are available in the literature on the use of PML for elastic wave 

propagation in piezoelectric solids. Split field PML, as the one introduced by Berenger [16], 

has been first derived for angular spectrum [200] and FDTD [38] methods. In both papers, 

instabilities appear in the PML for some of the presented simulations. This problem will be 

addressed in more detail in parts 3.4 and 3.5. Here, we propose to improve these first 

formulations by using un-split C-PML in stead of split PML. This idea has been developed 

simultaneously by other groups [7], [122], but only in frequency domain calculations. 
 
 
3.3.1 Wave Equations for Piezoelectric Solid in 2D 

 Consider the propagation of 2D plane strain elastic waves in a heterogeneous 

piezoelectric solid media. In time domain, equations of motion, Hooke’s law and Maxwell 

equations in the quasi-static approximation are given by: 
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where iu  is the particle displacement, ijτ  is the stress tensor, φ  is the electric potential and iD  

is the electric displacement. ijC , ije and ijε  are respectively the elastic stiffness constants, the 

piezoelectric strain constants and the permittivity constants (not confuse with the strain 

notation used in chapter 2). 
 
 
3.3.2 Formulation of C-PML in Frequency Domain 

 First, taking the Fourier transform of the system, then using the complex coordinates 

transformation and stretched-coordinate metrics as for anisotropic elastic solid, the following 

equations are obtained in the frequency domain: 
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 As for the anisotropic solid, multiplying by zxss  and introducing the new variables ijτ ′ˆ  

and 0ρ ′  (given by zxss0ρ ), we get the following equations which show that C-PML can be 

interpreted as an anisotropic piezoelectric medium: 
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Eqs. (3.23d)-(3.23i) can be written in a matrix form as follows: 
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with xuu x ∂∂= 11 ˆˆ , zuu z ∂∂= 33 ˆˆ , zuu z ∂∂= 11 ˆˆ , xuu x ∂∂= 33 ˆˆ , xx ∂∂= φφ ˆˆ and zz ∂∂= φφ ˆˆ . The 

new effectives elastic stiffnesses, piezoelectric strain and permittivities constant 

are ,1111 xz ssCC =′ ,3333 zx ssCC =′ ,4444 zx ssCC =′  ,4444 xz ssCC =′′  ,1515 xz ssee =′  

,3333 zx ssee =′  ,1111 xz ssεε =′  .3333 zx ssεε =′  

 For 3D, following the same procedure, it can be demonstrated that in this case, the 

propagation of elastic waves is described in C-PML by: 
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where i, j, k, l = 1, 2 or 3. The effective elastic tensorC′ , piezoelectric strain matrix e′ , 

permittivity matrix ε ′  and density 0ρ ′  are given by: 
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3.3.3 Formulation of C-PML in Time Domain 

 By using an inverse Fourier transform, we can translate the system of equations Eqs. 

(3.22) back to time domain. As for anisotropic solids a convolution appears. It can be 



CHAPTER 3: PML ABSORBING BOUNDARY CONDITION 

 115 

eliminated by introducing memory variables, and then replaced by a first order differential 

equation for each of these memory variables. The resulting second-order system equations of 

C-PML in time domain are given by: 
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with each of the 12 introduced memory variables corresponds a first order differential 

equation of the form (Appendix B): 

 xxx
x A

xt

A βτδ −
∂

∂−=
∂

∂ 11 , (3.27) 

Here the memory variables will be zero outside the C-PML zones. Then, introducing Eqs. 

(3.26d)-(3.26h) into Eqs. (3.26a)-(3.26c), the system of equations to be solved becomes: 
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which is equivalent to the system of Eqs.(3.21a)-(3.21c) with source terms pif . These source 

terms are given by the following expressions: 
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where, as it was done previously, we have introduced the notation 1' ,, −= zxzx κκ . 

 We can verify that if there is no piezoelectricity Eqs. (3.29) become the ones obtained 

for anisotropic solid. 
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3.3.4 Numerical Simulations  

3.3.4.1 Simulation of Elastic Wave in an Unbounded Piezoelectric Medium  

 The simulation presented in this section was made for elastic wave propagation across a 

(0, 0, 0) cut of a bismuth germanium oxide (Bi12GeO20) unbounded substrate. For this cubic 

material the non zero constants are: C11 = C22 = 128 GPa, C44 = 25.5 GPa, C13 = 30.5 GPa, e14 

= e36 = 0.99 C/m2, ε11 = ε33 = 38ε0 and ρ0  = 9200 kg/m3. ε0 = 1/36π 10-9 F/m is the electric 

permittivity of vacuum. The simulation has been performed over a 80 × 80 grid, which was 

surrounded by a C-PML layer having a thickness of 10 cells, with ∆x = ∆z = 0.5 µm. A 2D 

circular source with a 0.15 µm diameter and 0.8 GHz centre frequency was set up at the point 

(0,0) with a time evolution corresponding to a Ricker wavelet expressed as in Eq. (3.17) with 

parameters tD = 2 ns, a1=(πfc)
2, and fc = 0.8 GHz. In this simulation, the C-PML parameters in 

the stretched-coordinate metrics are given by: αmax = 2πfc, n1 = 3, n2 = 0, n3 = 1 and σmax has 

the same expression as Eq. (3.18d), in which we have used R0 = 10-6. 

 For characterizing the absorbing ability of the C-PML layer, here, Eqs. (3.23) have been 

solved with COMSOL Multiphysics FEM software in frequency domain. Here sixty 

frequencies equally spaced in the source spectrum have been used. Then an inverse Fourier 

transform has been done with Matlab software to get the result in time domain. The snapshots 

for four different times, 3.25 ns, 5.86 ns, 9.12 ns and 13.02 ns, are displayed on Fig. 3.10. 

They show the wave propagating away from the source and being absorbed by the C-PML 

layer, demonstrating the efficiency of the method. It has to be noted that, for certain kinds of 

piezoelectric substrates, instabilities can appear in PML [38]. In fact, these instabilities 

correspond to waves entering with group and phase velocities of opposite signs [10]. The 

stability problem of C-PML will be discussed in this chapter in parts of 3.5. 
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Fig. 3.10 Propagation of elastic waves in an unbounded Bi12GeO20 sample. In the fist row the times of the two 

figures are 3.25 ns (left) and 5.86 ns (right), and in the second row the times are 9.12 ns (left) and 13.02 ns (right). 

The displayed dynamic range is 50 dB. 

 
 
3.3.4.2 Surface Acoustic Wave Streaming System 

 In this subsection, the simulation of an integrated Surface Acoustic Wave (SAW) 

streaming system will be presented. In this system (Fig. 3.11), a Rayleigh SAW is generated 

using an interdigital transducer (IDT) source laid on a X-cut LiNbO3 substrate, with an 

interdigit of 50 µm. Such waves are radiated on one half of the studied micro-chambers 

consisting in microlitre droplets situated between a hydrophobic substrate and a glass cover. 

The simulated system corresponds to a real one developed in our laboratory by E. Galopin 

(Micro-fluidic group) and O. Ducloux (previously at LEMAC) [62]. The aim of this 

simulation was to confirm the link between streaming pattern obtained experimentally and the 

acoustic standing wave pattern created in the water droplet. 
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Fig. 3.11 SAW streaming system developed by E. Galopin and O. Ducloux at IEMN, (a) Side view, (b) Top 

view. 

 

 This SAW streaming system has been modelized in frequency domain, using the 

General Form Modes of COMSOL Multiphysics, by a model with three domains: the 

piezoelectric substrate, the water droplet and the glass plate. The piezoelectric substrate has 

been modelized using Eqs. (3.23). Eqs. (3.8) has been used for the glass plate, but with no C-

PML. In the water droplet, the system of equations of linear acoustic in fluids has been used: 

 p
t

∇−=
∂
∂

0

1

ρ
v

, (3.30a) 

 v⋅∇−=
∂
∂ 2

00ct

p ρ , (3.30b) 

where v  is the particle velocity vector, p is the pressure field and 0ρ , 0c  are the density and 

sound speed respectively. The boundary conditions used between the model and the 

surrounding ambient air are stress free conditions. Between the solid and the water droplet 

continuity of the normal stress and displacement have been assumed. 

 The pressure field inside the water droplet, which is the component 33τ− of the stress 

field inside the piezoelectric solids, obtained for a continuous wave excitation at 20.5 MHz is 

shown on Fig. 3.12. The propagation of the Rayleigh wave in the piezoelectric substrate can 

easily be seen. 
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Fig. 3.12 Pressure field created in a water droplet in contact with a piezoelectric substrate where a Rayleigh 

wave propagates. 

 

This wave created in the water droplet a stationary wave pattern with a characteristic length 

given by the sound wavelength in water at the corresponding frequency. In this case, it 

corresponds to 75 µm as shown on Fig. 3.13. Moreover, the form of this pattern is linked to 

the form of the water droplet and the critical angle of Rayleigh wave emission between the 

LiNbO3 substrate and water (dashed lines on Fig. 3.13). This qualitatively corresponds to the 

observations made by fluorescence microscopy on the experimental set-up, as it was done in 

our laboratory, by Olivier Ducloux and Elisabeth Galopin [62], as shown on Fig. 3.14. 
 

 
Fig. 3.13 Zoom on the pressure field created in the water droplet showing the stationary waves pattern. 

 

 
 

Fig. 3.14 Side view of the pattern induced in the water droplet by a 20.5 MHz surface wave and observed by 

fluorescence with an optical microscope [62]. 
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3.4 Nearly Perfectly Matched Layer (NPML) for Elastic Solid 

 In the preceding two parts, the applications of C-PML for anisotropic elastic solids and 

piezoelectric media have been presented. The results demonstrate the efficient ability of C-

PML for absorbing the outgoing energy of bulk waves and surface waves. But in all presented 

implementations of C-PML supplementary PDE are introduced to actualize the C-PML 

variables. These PDE, as they contain spatial derivative terms, are cumbersome and difficult to 

introduce in our Discontinuous Galerkin scheme. This is particularly true when a flux based on 

physical considerations, like Godunov type flux, is used. 

 In this subsection, an another kind of PML named Nearly Perfectly Matched Layer 

(NPML), which has been proposed by Cummer et al. [49], [95] for electromagnetism and then 

extended to acoustic [96], and which can overcome these problems (as it will be shown), will 

be extended for nonlinear elastodynamic. 
 
 
3.4.1 Formulation of NPML for Elastic Wave Propagation 

 Here, the methodology introduced by Cummer et al. [49], [95] in electromagnetism is 

used for the system of Eq. (2.1). First, it is rewritten in the frequency domain by taking its 

Fourier transform. Then, the same complexes coordinates transformation with the same 

stretched-coordinate metrics, as the one used in C-PML implementation, is introduced. Eq. 

(2.1) becomes: 

 
ysxs

j
yx ∂

∂+
∂
∂= GF

Q
ˆ1ˆ1ˆω . (3.31) 

Here )ˆ(•  denotes the frequency domain of the considered vector. Neglecting the x-dependence 

of sx and the y-dependence of sy Eq. (3.31) is rewritten as: 

 
yx

j
∂

′∂+
∂

′∂= GF
Q

ˆˆ
ˆω , (3.32) 

where the following stretched fluxes have been introduced: 

 
xs

F
F

ˆ
ˆ =′  and 

ys

G
G

ˆ
ˆ =′ . (3.33) 

It is noted that the NPML performance is not affected by the approximation used during its 

derivation, due to the fact that NPML is really a perfectly matched layer [17]. Finally, the 

resulting equations are transformed back to the time domain by inverse Fourier transform and 

the system to be solved becomes: 

 
yxt ∂

′∂+
∂

′∂=
∂
∂ GFQ

, (3.34) 
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In the case where Eqs. (3.35) are not solved by a Finite Difference (FD) method, it can be 

interesting to use an equivalent formulation where the time derivative of both stretched fluxes 

F′  and unstretched fluxes F are not needed in the same equation. So, introducing the change 

of variables FFF −′=′′ xk  and GGG −′=′′ yk  we arrive at the following equivalent system, 

which needs to be solved in the NPML: 
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with 
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x

x
xt κ

σα , (3.37a) 

 )( GGG
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∂

′′∂

y

y
yt κ

σ
α . (3.37b) 

The main advantage of this formulation is linked to the fact that (i) the obtained system of 

equations (Eq. (3.34) or Eq. (3.36)) is in exactly the same form as the original system and so 

strongly hyperbolic, and (ii ) the introduced stretched fluxes are linked by Ordinary Differential 

Equations (ODEs) to the physical fluxes. This last advantage can be particularly interesting for 

Discontinuous Galerkin scheme, preserving the highly parallelisable capabilities of this 

numerical method. 

 The 3D extension of the proposed NPML formulation is straight forward, and is given by: 
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where 
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represent the state vector and the three components of the flux, respectively. The stretched 

fluxes xF ′′  are updated by: 

 ( )xx
x

x
xx

x

t
FFF

F +′′−′′−=
∂

′′∂
κ
σα . (3.39) 

Similar equations are used for the up dating of yF ′′  and zF ′′ , just replacing the index x by y and 

z respectively. 
 
 
3.4.2 Comparison of NPML with C-PML 

 To demonstrate the efficiency of the proposed NPML, we will first compare it to C-

PML. The comparison has been made on the following test case: propagation in a 

homogeneous orthotropic solid medium. The properties, density and elasticity coefficients, of 

the different orthotropic materials, used in the simulations presented in this, and in the 

following paragraphs, are shown in Tab. 3.1. The choice of the material name has been made, 

following Bécache et al. [10], in order to simplify the comparison of our results with previous 

ones [2], [10], [126]. Moreover, as only the NPML has been implemented in the DG-FEM 

scheme, the calculation has been made with a Pseudo-Spectral code [79], [22]. 

 In all cases, a 25 ×  25 cm portion of an infinite solid has been discretized on a 128 ×  

128 elements grid (including the 10 elements NPML or C-PML placed on each side), and a 5 

ns time step was used. 

Tab. 3.1 Properties of the orthotropic materials used in the time domain simulations. 

Material ρ    (kg/m3) C11 (GPa) C22 (GPa) C12 (GPa) C66 (GPa) 

I 4000 40 200 38 20 

III 4000 40 200 75 20 

V 4000 300 60 99 15 

Isotropic 1000 20 20 16 2 
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The following source term ),,( tyxs  is added in the right hand side of Eq. (3.36): 

 ( ) ).())(5.0(),,( 2
0

)(72
1

2
0

222
1 reettatyxs ryxtta

D
D +−−⋅⋅−+= , (3.40) 

where 2
1 )( cfa π= , 501=cf KHz is the central frequency, cD ft /1=  is the source delay time, 

and r0 = 5 mm. It corresponds to a Gaussian spatial distribution around the (0, 0) point which 

is placed at the centre in all the simulations, and to a Ricker wavelet time evolution. The same 

spatial coordinate dependence (Eqs. 3.18) are used for the NPML parameters with now 

πα 20max = , n1 = 2, n2 = 1, n3 = 1 and: 

 )2()1log()1( 001121max dRCnn ⋅⋅++= ρσ , (3.41) 

where 0R  = 10-12. 
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Fig. 3.15 Snapshots of propagation of the displacement magnitude in an orthotropic elastic medium, model I, at (a) 

t = 5 µs, (b) t = 15 µs, (c) t = 30 µs, and (d) t = 125 µs. The snapshots are in dB scale with a reference 

displacement amplitude of 10 nm. 

 

 The obtained snapshots, for elastic waves propagation in an orthotropic medium (model I) 

are displayed on Fig. 3.15 for four different times 5 µs, 15 µs, 30 µs and 125 µs in dB scale 
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with a reference displacement of 10 nm. The results show that the NPML work well for this 

anisotropic medium and the level of spurious reflection is very small, only a -90 dB reflected 

pulse can be seen at the later time (Fig. 3.15(d)). 

 In order to quantify the efficiency of absorption of NPML method, the evolution of the 

total energy stored in the physical domain during the simulation has been investigated. The 

total energy at each time instant is computed according to the following expression: 

 Ω+Ω= ∫∫ ΩΩ
ddE ijij ετρ

2

1

2

1 2
v , (3.42) 

where Ω  is the volume corresponding to the physical domain, v  is magnitude of the 

velocity vector, ijτ  are the components of the stress tensor, and ijε  are the components of the 

strain tensor. Fig. 3.16 displays the energy decay in the physical domain for the proposed C-

PML and NPML models. The wave field has left the physical domain at about 60 µs here. 

This figure not only confirms that at later time the energy has decayed by a factor 1012, but 

also demonstrates that no significant spurious reflection appears before. Moreover, the same 
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Fig. 3.16 Energy decay in computational domain for C-PML (dashed line) and NPML (solid line) for the 

orthotropic elastic medium, model I, in the same conditions as the ones used to obtain the snapshots of Fig. 3.15. 

 

ability of energy absorption has been obtained with the two methods for this anisotropic media, 

confirming the fact that NPML is a true perfectly matched layer. 

 Snapshots of the propagation of the amplitude of the displacement in the medium III are 

displayed for 4 different times (5, 15, 30 and 50 µs) on Fig. 3.17. As in the case of the others 

PML or C-PML implementations, some instabilities appear (Fig. 3.17(c)-(d)) in the absorbing 

layers. The energy decay in the computational domain for this simulation is shown on Fig. 3.18. 

When the quasi-transversal wave penetrates in the NPML (at time t = 35 µs) the energy begins 

to increase with time, corresponding to an instable behaviour of the NPML. 
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Fig. 3.17 Snapshots of propagation of the displacement magnitude in an orthotropic elastic medium, model III, at 

(a) t = 5 µs, (b) t = 15 µs, (c) t = 30 µs, and (d) t = 50 µs. The snapshots are in dB scale with a reference 

displacement amplitude of 10 nm. Instabilities are observed for the NPML terminations used in the simulation. 
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Fig. 3.18 Time evolution of the energy in the computational domain for NPML for the orthotropic elastic medium, 

model III, in the same conditions as the ones used to obtain the snapshots of Fig. 3.17. 

 

As explained by Bécache et al. [10], one of the incident elastic waves arrives with the 

components of the group velocity and the slowness vector, in the NPML direction, of opposite 

signs. The slowness curves for the considered orthotropic medium are represented in Fig. 3.19. 

There are some wave vectors k (whose extremities describe the purple line) for which the 

component in the x direction of the group velocity has an opposite direction than the 
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component in the x direction of the phase velocity. In these directions the NPML are not stable. 

Similarly, there are some wave vectors k (whose extremities describe the blue line) for the 

component in the y direction of the group velocity has an opposite direction than the 

component in the y direction of the phase velocity. 
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Fig. 3.19 Slowness curves (left) and wave front (right) for the orthotropic anisotropic medium (III). Purple lines 

correspond to incident wave direction for which the NPLM in the x direction is unstable. Blue lines correspond to 

incident wave direction for which the NPLM in the y direction is unstable. 

 

 These instabilities are one of the major limitations in the use of PML for elastic waves 

propagating in anisotropic solids and in plates, even in the case of an isotropic medium [11]. 

For anisotropic solids an absorbing layer called “MPML”, showing no instabilities, has 

recently been developed [126]. But, contrary to what is claimed by the authors their “MPML” 

is not perfectly matched to the physical domain and corresponds in fact to a mixture of 

classical PML and of sponge layer [39], with a controllable ratio of these two kinds of 

absorbing layers. This mixture can easily be extended to the case where C-PML or NPML is 

used in place of PML. More details on the behaviour of these combined absorbing layers will 

be given in the next part. 
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Fig. 3.20 Snapshots of propagation of the particle velocity magnitude in an isotropic elastic medium, at (a) t = 2 

µs, (b) t = 3.5 µs, (c) t = 5 µs, and (d) t = 10 µs obtained with the RK-DG-FEM O4 scheme using quadrilateral 

elements. 

 

 To conclude this part, an example of results obtained with the proposed NPML 

formulation introduced in the DG-FEM scheme is presented. The NPML has been introduced 

using a block implementation, each block corresponding to a set of equations. This method is 

very useful in configuration where one want to simulate a multi-physics problem. The interface 

between the two blocks is considered as an exterior boundary for each block, on which specific 

boundary conditions depending on results obtained in the other block need to be applied. In the 

considered case, in one block (physical domain) only Eq. (2.1) is solved, and both Eqs. (3.36) 

and (3.37) in the second one (NPML domain). A 12×12 mm portion of an infinite solid has 

been discretized on a 24× 24 quadrilateral elements grid including the 4 NPML elements 

placed on each side. The material properties of the simulated isotropic medium are given in 

Tab. 3.1. The source is as before a Ricker wavelet with a central frequency of 900 kHz. The 

snapshots of the particle velocity magnitude at t = 2 µs, t = 3.5 µs, t = 5 µs, and t = 10 µs 

obtained with a RK-DG-FEM O4 scheme are displayed on Fig. 3.20. No reflection can be 

noticed on the last snapshot demonstrating the validity of the NPML implementation. The time 

evolution of the particle velocity components shown on Fig. 3.21 at a receiver position (3.8, 0) 

(mm) close to the NPML / physical domain interface, confirms the excellent absorbing 

behaviour of the proposed absorbing layer. 
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Fig. 3.21 Time evolution of the normalized (a) Vx and (b) Vy particle velocity components calculated at the 

receiver position (3.8, 0) (mm). 

 
 
 

3.5 Stabilized Absorbing Boundary Layer 

 In the preceding subsections, we have seen that for anisotropic solid medium the PML 

are not always stable. This problem is the main limitation of PML in elastodynamic 

applications. In this part, the Multiaxial Perfectly Matched Layer (“MPML”) [126] proposed to 

stabilize PML will be first presented. We will then show that this “MPML” is not perfectly 

matched to the physical domain and corresponds in fact to a mixture of classical PML and of 

sponge layer. The stability of this MPML is studied with the help of the method introduced by 

Bécache et al. [10] for PML. This analysis allows giving a physical interpretation of the 

stability criteria obtained by Meza-Fajardo and Papageorgiou [126]. All this theoretical work is 

finally validated by numerical examples. 

 
 
3.5.1 Formulation of Stabilized Absorbing Boundary Layer 

 The introduction of the stabilized absorbing boundary layer, the so-called “MPML”, is 

in all points similar to the one of other PML, as C-PML or NPML. However, in the “MPML” 

the attenuation parameters xσ  and yσ  of the stretching parameter xs  and ys  are now a 

function of the two space variables x and y. Considering, as for NPML, Eq. (2.1) in frequency 

domain, and moving to the stretched coordinates we arrive to: 

 
y
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yxsx
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yxs
Qj

yx ∂
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∂
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1ˆω . (3.43) 

Coming back to time domain using an inverse Fourier transform, and introducing memory 

variables we obtain: 

 21

1111
GF

y
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∂
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, (3.44) 

where 
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Eq. (3.44) is exactly the same equation as the one obtained for C-PML. The only difference is 

the definition of the xσ  and yσ  parameters. 

 First, to compare our results to the formulation of Ref. [126], we consider the linear 

elastodynamic case ( AQF =  and BQG = ), with κx,y = 1 and αx,y = 0. Then Eq. (3.44) and 

Eqs. (3.45) become: 
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Letting 11),( AQQyxx −=′σ  and 22),( BQQyxy −=′σ , we arrive to a set of equations equivalent 

to the one obtained by Meza-Fajardo and Papagiorgiou [126] for their “MPML”: 
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and 21 QQQ ′+′= . In fact, as it will be demonstrated later, this so-called “MPML” does not 

correspond to a perfectly matched layer. 

 In order to give a new interpretation of these “MPML” the attenuation parameters σx,y are 

split up in x and y dependent components: )()(),( yxyx xyxxx σσσ +=  and =),( yxyσ  

)()( yx yyyx σσ + . Introducing these parameters, Eqs. (3.48) are re-written as: 
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where )()(),( xyyxd yxxy σσ += , )()()(1 xxxd yxxx σσ −=  and )()()(2 yyyd xyyy σσ −=  have 

been introduced. When d1(x) = 0, e.g. σxx(x) = σyx(x), and d2(y) = 0, e.g. σyy(y) = σxy(y), Eqs. 

(3.49) lead to the equations of the sponge layers introduced by Israeli and Orszag [100]. Now, 

when d(x,y) = 0, e.g. σxy(y) = σyx(x) = 0, Eqs. (3.49) become the equations obtained for split 
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PML. This shows that “MPML” is a mixture of PML and sponge layer, where the respective 

ratios of the two types of absorbing layers are )()( xxp xxyx
x σσ=  and )()( yyp yyxy

y σσ= , 

in the x and y direction respectively. As the sponge layers are not perfectly matched to the 

physical domain, the obtained “MPML” are not perfectly matched layers. This conclusion 

agrees with the fact that to obtain a perfectly matched layer for elastic wave, the projection of 

the wave vector k in the direction perpendicular to the PML need to be the same in the PML 

and in the physical domain, as demonstrated by Chew and Liu [43]. So, no modification 

(attenuation term) can be introduced in this component as it was the case in the “MPML”. 

 Eq. (3.44) is a generalisation of the “MPML” which includes all the benefit of using C-

PML in place of “classical” PML. A similar idea has been developed by Martin et al. [120] and 

implemented in a spectral-element scheme [105]. The same stabilization procedure can be 

introduced in the proposed NPML, leading to: 
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As all these stabilized absorbing boundary layers are not truly matched to the physical domain 

and correspond to a mixture of PML and sponge layer, the ratio between the two kinds of 

absorbing layer need to be carefully chosen. Indeed, the proportion of sponge layer need to be 

as small as possible, but enough to stabilize the PML. A stability analysis will give us a mean 

to determine the optimum choice of the ratio between the two kinds of absorbing layer. 
 
 
3.5.2 Stability Analysis 

 To analyse the stability of these “MPML”, we use the method introduced for PML by 

Bécache et al. [10], and used by Appelö and Kreiss [2] for C-PML. In an anisotropic solid, the 

dispersion equation can be written as: 

 0))(det(),( 2
00 =−Γ= IF ωρω kk , (3.52) 

where in the case of an orthotropic medium, Γ(k) the Chrystoffel’s tensor in 2D is given by: 
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and I is the identity tensor. Using the same notation as Meza-Fajardo and Papagiorgiou [126]: 
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the dispersion equation becomes: 
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The four solutions of this dispersion equation are )()( kk QPωω ±=  and )()( kk QSωω ±=  where 
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corresponding to quasi-longitudinal (QP) and quasi-transversal (QS) waves propagating in ±k 

directions. 

 The dispersion equation of “MPML” in the x direction can be obtained from Eq. (3.54) 

by replacing k1 by x
xsk1  and k2 by x

ysk2 : 
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Multiplying this equation by )( xx jj ασω −−  we arrive at: 
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Introducing the following notations, 
k
ω=pV  the phase velocity, 

k
xσε =  and 

k
xαδ =  the 

normalized attenuation and frequency shift parameters, respectively, of the C-PML, and 

k
k

K = , the dispersion equation becomes: 
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The stability of the “MPML” system can be analysed by a perturbation analysis for ε <<1. We 

expand, for the C-PML case, Vp in power of the attenuation parameter ε: 
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 )()()0,(),( 2εεαε OVV pp ++= KKK . (3.59) 

This is equivalent to expanding the angular frequency ω in power of the PML attenuation 

coefficient σ: 

 ))(()()(),( 2ωσσαωσω Okk ++= K . (3.60) 

To understand the physical interpretation of the stability condition we will obtain by the 

perturbation analysis, we consider a plane wave expansion: 

 tjykxktkjykxktkj eDeDe )())(()),(( 2121 Kσαωσω −−−− = . (3.61) 

So, if 0)}(Im{ <Kα , then )(Kσαj  becomes positive and the PML amplifies the incoming 

wave, and so becomes instable. 

 Now, we expand Eq. (3.58) in power of ε around ε = 0: 
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The first term is equal to 0 due to Eq. (3.52), and then Eq. (3.62) leads, for the attenuation of a 

plane wave propagating along the direction k in the “MPML”, to: 
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To give a physical interpretation of the stability condition, we need to link all the terms to a 

physical quantity. In fact, in Eq. (3.63) only two physical quantities appear: the slowness 

vector S and the group velocity Vg. which are given by: 

 
pV

K
KS =)( , (3.64) 

and 

 

2

0

1

0
1

0

2

1

)(

)(
)(

)(

K

F
K

F
F

K

K
g

∂
∂
∂
∂










∂
∂−=

∂
∂

∂
∂

=
∂

∂=
−

ωω

ω
ω

K

K

K
K

KV , (3.65) 

respectively. So, )(Kα  can be expressed in function of the components of the group velocity 

and the slowness vector: 
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It follows that: 
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leading finally to the “MPML” stability condition: 
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First, when px = 0, in the pure C-PML or NPML case, the absorbing layer is stable when the 

slowness (or phase velocity) and the group velocity of the wave incoming in the PML are of 

the same sign: 

 011 >gVS . (3.69) 

Unfortunately, this condition is not always verified for all the angle of incidence of the wave 

impinging on the boundary between the physical domain and the PML in an anisotropic solid, 

as shown on Fig. 3.22 for the orthotropic medium III. In this example, the waves arriving on 

the PML with an angle of incidence higher than about 40° will be amplified, in stead of being 

absorbed. Moreover, Fig 3.22 is perfectly similar to the PML eigenderivatives of QS modes 

plotted on figure 7 of Ref. [126]. This shows that the different stability analysis used by these 

authors leads to exactly the same stability criteria. Here, a clear physical interpretation is 

given. 

Angle of incidence (deg.)Angle of incidence (deg.)  
Fig. 3.22 Evolution as a function of the angle of the incident plane wave of S1Vg1 (solid line), S2Vg2 (dashed line), 

and S1Vg1 + S2Vg2 (dotted line) for the orthotropic medium III. 

 

Secondly, when px = 1, in the sponge layer case, as S1Vg1 + S2Vg2 = 1, the absorbing layer is 

always stable. This also leads to the fact that if S1Vg1 < 0, e.g. the PML is unstable, it exists 

always a positive value of px such as S1Vg1 + px S2Vg2 = 0. This value of px corresponds to the 

minimal value needed to stabilize the PML. In the preceding example, medium III, this value 

is 0.25. So, when it is used in the “MPML”, S1Vg1 + px S2Vg2 becomes positive for all angles 

of incidence, as demonstrated on Fig. 3.23(a), and the absorbing layer is stable. All these 
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results are also true for PML in the y direction, just replacing x by y and 1 by 2 in the previous 

formula. Evidently higher value of px can be used, as for example 0.6 as shown on Fig. 

3.23(b), but at the expense of an increase of the reflection of incident wave on the layer, as it 

will become clear now through the numerical examples of the next section. 
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Fig. 3.23 Evolution as a function of the angle of the incident plane wave of (a) S1Vg1 + 0.25 S2Vg2 (solid line) and 

0.25 S1Vg1 + S2Vg2 (dashed line), and (b) S1Vg1 + 0.6 S2Vg2 (solid line) and 0.6 S1Vg1 + S2Vg2 (dashed line) for the 

orthotropic medium III. 

 
 
3.5.3 Numerical Simulations of MPML for Anisotropic Solid Medium 

All simulations presented in this subsection are identical to the ones described in part 

3.4.2, only the orthotropic medium, in which the waves propagate, changes. 

Snapshots of the propagation of the amplitude of the displacement obtained for medium 

III with a ratio of 0.25 between the amplitude of the maximal absorption of the sponge layer 

and the C-PML (px = py = 0.25) are displayed for 4 different times (5, 15, 30 and 125 µs) on 

Fig. 3.24. Here and in all the following figures, the snapshots presented are in dB scale with a 

reference displacement of 10 nm. The instabilities, as expected, have completely disappeared, 

in comparison to Fig. 3.17, but at the expense of a stronger reflection of the waves impinging 

the absorbing layer with a grazing angle (Fig. 3.24(d)). This increase of the reflection is in 

perfect accordance with the non perfectly matched character of the fraction of sponge layer 

introduced to stabilize the C-PML. 

 



CHAPTER 3: PML ABSORBING BOUNDARY CONDITION 

 136 

 

y(
cm

)

x (cm)

y(
cm

)

x (cm)

y(
cm

)

x (cm)

y(
cm

)

x (cm)

(a) (b)

(c) (d)

 
Fig. 3.24 Snapshots of propagation of the displacement magnitude in an orthotropic elastic medium, model III, at 

(a) t = 5 µs, (b) t = 15 µs, (c) t = 30 µs, and (d) t = 125 µs. The snapshots are in dB scale with a reference 

displacement amplitude of 10 nm. No instability is observed for the “MPML” terminations used in the 

simulation. 

The energy decay in the computational domain for this simulation is shown on Fig. 3.25. For 

px = py = 0.25 the level of spurious reflection is around 10-5. The obtained level of reflection is 

higher than expected (chosen R0 value) and increase when px and/or py are increased, as 

shown on the same figure for px = py = 0.6 (solid line). All these behaviour are in perfect 

agreement with the theoretical analysis presented in the previous section. 
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Fig. 3.25 Energy decay in computational domain for “MPML” for the orthotropic elastic medium (III), with px = 

py = 0.25 (dashed line) and px = py = 0.6 (solid line). The energy is normalized with respect to its maximum value. 
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 To complete this study, we now look at a case where the C-PML is stable, in order to 

make a direct quantification of the imperfections introduced by the addition of a fraction of 

sponge layer. On Fig. 3.26, snapshots of the propagation of the amplitude of the displacement 

in the medium V are displayed for the same 4 different times as in medium I, when C-PML 

are used. From the point of view of the stability analysis, made with the perturbation method, 

the application of PML to the medium V seems to have no reason to be unstable (Fig. 3.27). 

But numerical experiments have demonstrated [10] that for this medium split PML 

implementation are in fact not stable. 
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Fig. 3.26 Snapshots of propagation of the displacement magnitude in an orthotropic elastic medium, model V, at 

(a) t = 5 µs, (b) t = 15 µs, (c) t = 30 µs, and (d) t = 125 µs. The snapshots are in dB scale with a reference 

displacement amplitude of 10 nm. 
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Fig. 3.27 Slowness curves (left) and wave front (right) for the orthotropic anisotropic medium (V). 
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 Here, contrary to the case of PML, no instabilities appear, even at longer time. This 

improved stability of the C-PML over the PML has already been demonstrated theoretically by 

Appelö and Kreiss [2]. In fact, the “new absorbing layer” they proposed, is nothing else than a 

new derivation of the C-PML introduced for elastic waves in Ref. [22]. It can be noted that it 

has also been proven that the C-PML is efficient in the case of nonlinear wave absorption [22], 

[3]. 

 Energy decay in the physical domain has been plotted in Fig. 3.28 for C-PML (solid line) 

and “MPML” (dashed line), with px = py = 0.25. In this example the spurious reflection 

increases from 10-6 when px = py = 0 (C-PML) to 10-4 when px = py = 0.25. 
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Fig. 3.28 Energy decay in the physical domain of anisotropic medium (V) for C-PML (solid line) and “MPML” 

(dashed line). The energy is normalized with respect to its maximum value. 

 
 

3.5.4 Application to Propagation in Isotropic and Piezoelectric Plate 

 In this part, we will present the use of the stabilized absorbing boundary layer 

formulation for isotropic solid and piezoelectric plates. It has been found that “classical” 

implementations of PML (or C-PML) absorbing regions don’t work satisfactorily for guided 

waves for frequencies where “inverse modes” with group and phase velocities of opposite 

signs are excited [11]. In frequency domain simulation, this lead to an erroneous selection of 

the outgoing wave by the C-PML. This corresponds to the existence of numerical instabilities 

in time domain simulations [10]. One solution proposed to overcome this problem has been to 

introduce complex elastic moduli, as in viscoelastic materials, with an imaginary part, 

representing attenuation, increasing with the distance to the absorbing regions boundary [37]. 

This method, which can be used only in frequency domain simulation, corresponds to a kind of 

“sponge layer” as already proposed in geophysics [39], but at the expense of an increased 

length of the absorbing zone [25], [116], [37]. An elegant way of preserving the use of short 
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length PML has been introduced by Skelton et al. [170], but at the expense of having now one 

different PML for each propagating mode. 

 For overcoming the “inverse mode” problem, we simply propose to use the stabilized 

absorbing layer with px = 1, which corresponds, for a C-PML in the x  direction, to the 

following complex coordinate’s transformation [25], [116] in the plate medium: 

 ∫=
x

x dxxsx
0

')'(~ , (3.70a) 

 yxsy y )(~ = . (3.70b) 

 
 

3.5.4.1 Single Mode Propagation in a Solid Waveguide 

 In order to validate the absorption efficiency of the stabilized absorbing layer, a single 

mode Lamb wave (A0) pulse propagation in an aluminium plate with a thickness jump was 

simulated. The physic model is described in Fig. 3.29. The considered excitation pulse is a 

Hanning windowed sinusoid: 
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with 200=cf kHz and 50=T µs. 

 

Fig. 3.29 The model definition for the simulation of a single mode A0 propagation in an aluminum plate with a 

thickness jump. 

 
 Before the thickness jump, the normal displacement at the surface of the plate at 114 mm 

showing the direct A0 pulse and the reflected wave of A0 pulse by the jump is presented on 

Fig. 3.30(a). After the thickness jump (at the 364 mm), the transmitted pulse is shown on Fig. 

3.30(b). No mode conversion can be noticed in this example. The results are in excellent 

agreement with the ones obtained by direct Finite Element Time Domain simulation [13], [14], 

but with a considerable diminution of the needed calculation time. Indeed, here the calculation 

takes around 15 minutes for 50 frequencies on a computer with a 2.4 GHz CPU. 
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Fig. 3.30 Normal displacements at the surface of the plate shown in Fig 3.29 at (a) l1 = 114 mm and (b) l2 = 364 

mm from the source, when only the A0 mode has been excited. 

 
 
3.5.4.2 Multimode Propagation in a Solid Waveguide 

 In this subsection, 2D simulation of elastic guided waves in a 8 mm thick aluminum 

plate has been done. In Fig. 3.31 the dispersion curves calculated, in the frequency range [50-

550] kHz, with COMSOL Multiphysics compare favorably with the ones obtained by an 

analytical method. 
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Fig. 3.31 Comparison of the dispersion curves, for a 8 mm thick aluminum plate, obtained by FEM simulations 

and an analytical method (blue and black stars). 

 

We consider now two frequencies (369 kHz and 379 kHz) for which the excited S2 mode is 

an inverse one. The wavenumber spectrum, obtained from signals measured at the surface of 

the plate between the S2 source and the stabilized absorbing layer zone, are shown 

respectively on Fig. 3.32 and Fig. 3.33. 
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Fig. 3.32 Wavenumber spectrum obtained from signals calculated at the surface of the plate between the 369 

kHz S2 source and the stabilized absorbing layer. 

 

 In both case the same absorbing layer, with a length taken to be two times the longest 

wavelength in the model, has been used. The chosen parameters are: 5
max 102.3 ×=σ , 

4
max 102 ×= πα  and 0max =k . The results show a reflection of the inverse S2 mode -80 dB 

smaller than the incident energy. When the same absorbing layer length and parameters are 

used with other modes excitations and/or different frequencies similar results are always 

obtained. 
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Fig. 3.33 Wavenumber spectrum obtained from signals calculated at the surface of the plate between the 379 kHz 

S2 source and the stabilized absorbing layer. 

 
 
3.5.4.3 Elastic Wave Propagation in a Piezoelectric Solid Waveguide 

 To show the efficiency of the proposed stabilized absorbing layer in 2D simulation of 

elastic guided waves in piezoelectric medium, an 8 mm thick LiNbO3 piezoelectric plate is 

considered. As in the preceding considered case, the used absorbing layers must have, at least, 

a length of two times the maximum wavelength of the waves existing in the plate in the 
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frequency range investigated. In Fig. 3.34 the dispersion curves calculated, in the frequency 

range [100-500] kHz, with COMSOL Multiphysics are displayed. The inverse part of the S2 

mode has, as expected, a negative wavenumber as shown in the wavenumber versus frequency 

graph of Fig. 3.34. 

 

 

Fig. 3.34 Dispersion curves for an 8 mm thick LiNbO3 plate obtained by FEM simulations. 

 
 
 

3.6 Conclusion 

In this chapter, we extended the C-PML implementation, previously made for the first-

order velocity-stress formulation, to a second-order elastic wave equation written in term of 

displacements, both in frequency and time domains. This new formulation has been 

implemented in a commercial FEM software (Comsol Multiphysics) and in an home made PS 

code. The results of the simulations, in anisotropic and piezoelectric solids, demonstrate that 

C-PMLs have more absorbing efficiency in the cases of oblique incidence and surface wave 

than PMLs. But in all presented implementations of C-PML supplementary PDE are 

introduced to actualize the C-PML variables. These PDE, as they contain spatial derivative 

terms, are cumbersome and difficult to introduce in our DG-FEM scheme when a Godunov 

type flux is used. 

To overcome this difficulty, the concept of Nearly Perfectly Matched Layer (NPML) 

has been applied to the elastic wave propagating in an anisotropic medium. The main 

advantages of this formulation is linked to the fact that the obtained system of equations is in 

exactly the same form as the original system, and so strongly hyperbolic, and the introduced 

stretched fluxes are linked by ODEs to the physical fluxes. This last point reduces the burden 

and time of calculation. Moreover, comparison of energy decay shows that the NPML has the 

same absorbing ability than C-PML. 
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In the case of orthotropic material stability problems have appeared, as in the first-order 

velocity-stress implementation. Following the “MPML” implementation of Meza-Fajardo and 

Papageorgiou [126], we have introduced a mixture of C-PML and of sponge layer, with a 

controllable ratio of these two kinds of absorbing layers, in order to stabilize the C-PML or 

NPML, and shown that this stabilized C-PML is in fact no perfectly matched to the physical 

domain. A stability analysis, based on the method proposed by Becache et al. [10], has been 

made. It gives a physical interpretation of the stability criteria obtained by Meza-Fajardo and 

Papageorgiou [126]: the slowness (or phase velocity) and the group velocity of the wave 

incoming in the PML need to be of the same sign. 

Moreover for Lamb waves simulations, this absorbing layer can absorb “inverse modes” 

both in non-piezoelectric and piezoelectric plates at the expense to have, at least, a length of 

two times the maximum wavelength of the waves existing in the plate in the frequency range 

investigated. In this case the reflection induced by the C-PML is -80 dB smaller than the 

incident energy. 

Although not directly linked to the main objectives of the thesis, the second-order 

equation C-PML implementation has opened the opportunity to begin fructuous 

collaborations both in our laboratory and outside. For example, the good agreement between 

simulations and experimental results for the integrated Surface Acoustic Wave (SAW) 

streaming system, open to us the opportunity to optimize the system developed by the 

Microfluidic group. A numerical study of an integrated high frequency (around 1 GHz) 

ultrasonic system for a unique cell characterization has begun in collaboration with the 

Ultrasons group. Finally, the optimization for linear imaging application of a “chaotic cavity 

transducer”, a concept we will describe in the last chapter, is undertaken with the Koen Van 

Den Abeele group in Kortrijk. 
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4.1 Introduction 

 Time Reversal Acoustic (TRA) provides the ability to focus ultrasonic waves in time 

and space, regardless of the position of the initial source and of the heterogeneity of the 

medium in which the wave propagates [68]-[70]. This technique has attracted great scientific 

and technological interests in different fields including medical therapy, diagnostic, 

nondestructive testing (NDT), and underwater acoustics [71]. In a standard TRA experiment, 

waves generated by an acoustic source are firstly measured by an array of reversible 

piezoelectric transducers located around the source, and then time reversed and reemitted by 

the same transducers array. To improve the quality of the focalization the transducers should 

cover a closed surface around the medium in order to obtain the wave front information 

coming from all directions [36]. However, this is difficult to realize in practice, and time 

reversal operation is usually performed on a limited angular area, thus adversely affecting the 

reversal and focusing quality. In contrast, it has been observed that multiple scattering [55] 

and multiple reflections, as in the case of a waveguide [128], [158], [159] or a cavity [57], [58], 

[59], tend to enhance the focusing quality both in resolution and in amplitude. As a 

consequence, the number of channels participating in the time reversal process can be reduced, 

even to only one channel as demonstrated by Draeger et al.  [57], [58], [59] and Fink et al. [72] 

in a silicon wafer chaotic cavity. This astonishing behavior has been linked to the ergodic 

property of the chaotic cavity, bearing the possibility to collect all information in only one 

point. In addition, the amplitude at the focal spot can be increased not only by an 

amplification of the emitted signal, but also by the emission of a longer recording of the time 

reversed signal. Similar experiments in multiple scattering media have been done by Derode 

et al. [55], [56] and the observed resolution was one-sixth of the theoretical limit for the 

mirror’s aperture. Indeed in this case, the effective focusing aperture is widened due to the 

increase of the length of paths involved in the experiment. After the time reversal operation, 

the whole multiple scattering properties of the media behave as a coherent focusing source 

with a large angular aperture, improving the focalization. 

 Recently, innovative ultrasonic methods have been developed to probe the existence of 

damage (e.g., delaminations, micro-cracks or weak adhesive bonds) by investigating various 
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nonlinear signatures such as the generation of harmonics, the inter-modulation of frequency 

components, the amplitude dependent shift in resonance frequencies, the slow dynamic 

conditioning, etc [192]. Such approaches are termed Nonlinear Elastic Wave Spectroscopy 

(NEWS) techniques. The basis of all NEWS techniques is to measure and analyze 

macroscopic signatures resulting from a local violation of the linear stress-strain relation at 

the microscale [85]-[86]. Tests performed on a wide variety of materials subjected to different 

micro-damage mechanisms of mechanical, chemical and thermal origin, have shown that the 

sensitivity of such nonlinear methods to the detection of micro-scale features is far greater 

than what can be obtained with linear acoustical methods. NEWS methods have at first been 

applied for the global determination of the fatigue state of a structure, and recently extended 

to visualization techniques for imaging defect’s nonlinearity distributions using laser 

vibrometry [174], airborne ultrasound [175] or shearography [161]. In the last five years, the 

concept of merging the benefits of both NEWS and TRA has been proposed in order to realize 

images of defects in solid samples [67], [77], [79], [81], [177], [185]. In most NDT 

applications of this combination, a one channel TRA experiment has been used in which a 

piezoelectric (PZT) ceramic is glued directly to a sample. The sample is generally small 

enough to be considered as multi-reverberant in the frequency range of interest [177], [185]. 

Non-reverberant samples such as composite plates for instance are difficult to work with, and 

for systems with a high degree of symmetry, simple reverberating properties may lead to the 

concentration of virtual sources on a pattern with dimensions correlated to size of the sample 

(or the transducer) resulting in spatial diffraction figures and “phantom” images [79], [185]. 

In order to overcome the “phantom” image problem and to extend the method to non-

reverberating sample, we propose to use a “chaotic cavity transducer”, consisting of a 

combination of a PZT ceramic glued to a cavity of chaotic shape on the hardware side with 

the time reversal principle on the software side. Here, we apply it for elastic waves in solids, 

and demonstrate that a transducer glued on a chaotic cavity can be used as an array of 

transducers, as it has been done recently for 3D imaging in fluid [149], [129], but for imaging 

applications in solid medium, and more precisely to nonlinear imaging of defects such as 

cracks. 
 
 

4.2 Principle of Chaotic Cavity Transducer 

4.2.1 Principle of One Channel Time Reversal Acoustic 

 Draeger et al. [57], [58], [59] have shown that in a chaotic cavity only one transducer is 

needed in order to focus an elastic wave every where inside a cavity. This astonishing 

behavior has been linked to the ergodic property of the chaotic cavity. 

 The experimental protocol classically used in order to focalise an acoustic wave in a 

chaotic solid sample is shown on Fig. 4.1. The first step of the experiment is the emission of a 
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pulse source signal by the transducer. Then the particle velocity at one position on the surface 

of the sample is measured with a laser vibrometer, and time reversed before reemission by the 

transducer. The elastic wave generated then focuses at the position where the particle velocity 

has been measured by the laser vibrometer both in time, called time recompression, and space. 
 

 

 
 

Fig. 4.1 Principle of one channel Time Reversal (TR) focalization in a reverberant solid sample. 

An example of signals measured during the process is shown in Fig. 4.2. In this example a 2 

periods sinusoidal signal at frequency 500 kHz is emitted by a piezoelectric ceramic 

transducer, and the signal measured by a laser vibrometer is displayed on Fig. 4.2(a). This 

signal clearly corresponds to a long-lasting reverberating wave field, with a duration of 3 ms, 

corresponding to 1500 periods at the centre frequency of the initial pulse. The retro-focused 

signal measured at the same point, but after time reversal process and reemission, is shown on 

Fig. 4.2 (b). A zoom displaying the time recompression quality obtained is presented on Fig. 

4.2(c). 

 

0 1 2 3 4
-0.2

-0.1

0

0.1

0.2

Time (ms)

V
e

lo
ci

ty
 (

cm
/s

)

(a)

     
0 1 2 3 4

-3

-2

-1

0

1

2

3

Time (ms)

V
e

lo
ci

ty
 (

cm
/s

)

(b)

    
1.96 1.98 2.0 2.02 2.04 2.06

-2

-1

0

1

2

Time (ms)

V
e

lo
ci

ty
 (

cm
/s

)

(c)

 

Fig. 4.2 (a) Direct multi-reverberant signal, (b) retro-focalized signal, and (c) zoom of the time recompression. 

 The shape of the obtained time-reversed signal at the target position can be explained in 

the following way: at the focusing time and at this position all the frequency components of 
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the signal add up coherently, whereas they add up incoherently at other times or other places. 

In a chaotic cavity, the wave field φ can be expressed as a superposition of eigenmodes )(xnψ  

which form an orthogonal basis: 

 )()(),( tt n
n

n ϕψϕ ∑= xx . (4.1) 

In this case, a modal decomposition of the impulse response hAB(t) on the eigenmodes of the 

cavity with eigenfrequency ωn is given by [57]: 

 )(
)sin(

)()()( th
t

BAth BA
n

n
n

n
nAB ==∑ ω

ωψψ    if   t > 0. (4.2) 

As shown on Fig. 4.3, where the spectrum of the direct multi-reverberant signal of Fig. 4.2(a) 

is displayed, a large number of eigenmodes are used in the experiment. In a chaotic cavity, the 

eigenmodes are generally not degenerated (e.g. ωm=ωn if and only if m = n) because for 

neighbouring eigenfrequencies ωm-ωn tends to be small, but in chaotic cavity next neighbours 

tend to repulse each other. In this case, Draeger [59] has shown that, using this modal 

decomposition, the following equation is verified in a chaotic cavity when the duration ∆T of 

the time-reversed signal tends to infinity: 

 )()()()( thththth BBAABAAB −⊗=−⊗ , (4.3) 

and called it the cavity equation. Here ⊗ corresponds to a time domain convolution. Eq. (4.3) 

demonstrates that the perfect time-reversal process, expressed by )( thBB − , is perturbated by a 

simple convolution by the backscattering impulse response hAA(t) of the source A. Due to this, 

the TR is not perfect here, and the retro-focused pulse is surrounded by sidelobes. 
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Fig. 4.3 Normalized spectrum of the long-lasting reverberant signal of Fig. 4.2(a). 

 

 Now, when measuring the particle velocity around the position where the direct 

reverberant signal has been measured, a focal spot appears. A 2D scan of the maximum 

amplitude measured around this focal spot during the retro-focalisation process is displayed 
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on Fig. 4.4. It can be shown that the shape of the obtained directivity gives a statistical 

estimator of the spatial field correlation function, due to the fact that TR process can be 

interpreted as a spatial correlator [72]. 
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Fig. 4.4 2D scan of the maximum amplitude measured around the focal point during the retro-focalisation 

process in a reverberant steel plate. (a) Intensity plot and (b) surface plot. 

 

 Noting )(th BA ′  the impulse response from point A to an observation point B′ different 

from the point B, where the interferometric measurement has been made, the time-reversed 

signal recreated at B′  at time t1 = 0 can be written as: 

 dtththBs ABABtr ∫ −= )()()0,'( ' . (4.4) 

Thus, the obtained directivity pattern of the time-reversed wave field is given by the cross 

correlation of the Green’s functions, developed on the eigenmodes of the cavity: 

 )(
1

)'()()()0,'( 2
2

n
n

nn
n

ntr EBBABs ω
ω

ψψψ∑= . (4.5) 

The summation is limited to a finite number of modes, as shown on Fig. 4.3, but as we do not 

know the exact eigenmode distribution for each chaotic cavity, we use a statistical approach 

and consider the average over different realizations just summing over different cavity 

realizations. So we replace in Eq. 4.5 the eigenmodes product by their expectation values: 

 )(
1

)'()()()0,'( 2
2

n
nn

nnntr EBBABs ω
ω

ψψψ∑= . (4.6) 

If B and B’ are sufficiently far apart from A, not to be correlated, then: 

 )'()()()'()()( 22 BBABBA nnnnnn ψψψψψψ = . (4.7) 
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Considering the random plane wave approximation [19], [108], [125], [203] that is the 

amplitude of the eigenmodes has a Gaussian distribution, 22 σψ =n  where σ is a constant, 

and a short range isotropic correlation function given in 2D by a Bessel function: 

 )/2()'()( '0 nBBnn rrJBB λπψψ −= , (4.8) 

where λn is the wavelength corresponding to ωn,we obtain: 

 )()/2()0,'(
2

2

'0 n
nn

nBBtr ErrJBs ω
ω
σλπ∑ −= . (4.9) 

So, the spatial resolution obtained with the TR process is simply an estimate of the correlation 

length of the scattered wave field. So, it should become independent of the array’s aperture. It 

is to be noted that in 3D, the short range isotropic correlation function is given by a sinus 

cardinal function: 
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4.2.2 An Instructive Experiment 

 In most application of one channel time reversal acoustic experiment applied to non-

destructive testing a PZT ceramic is glued directly on a sample, small enough to be 

considered as multi-reverberant in the considered frequencies range. Obviously, the 

combination of traditional (or reciprocal) single channel TRA for systems with a high degree 

of symmetry, simple reverberating properties may result in spatial diffraction maxima and 

“phantom” images [79], [185]. This limitation will be now demonstrated through a first one 

channel time reversal nonlinear experiment and a 3D numerical simulation. 

 The experimental set-up used for this “classical” one channel time reversal experiment 

in a reverberant sample is shown in Fig. 4.5. A PZT ceramic is glued with salol on the sample 

(10×2.5×1.2 cm steel plate fabricated by the society ASCO during the European Strep project 

AERONEWS), and a BMI heterodyne interferometer (SH-130) is used to detect the out of 

plane particle velocity (vz). The PZT ceramic is driven by a pulse (a rectangular pulse of 2 µs 

duration and 50 Hz of repetition frequency) generated by an Agilent 33220A function 

generator and amplified by an ENI 325 LA RF power amplifier. The mean frequency of the 

system is around 250 kHz, which is the low frequency limit of the power amplifier. 
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Fig. 4.5 Set-up for a “classical” one channel time reversal experiment in a reverberant sample. Here, a PZT 

ceramic is directly glued on a rectangular 10 × 2.5 × 1.2 cm steel plate, and the vibration measurements are made 

with a heterodyne interferometer. 

 

 The objective of this first experiment was to image a crack on the surface of the sample, 

obtained by a three point bending fatigue technique, with the method proposed by Sutin et al. 

[176], [184]. A one channel time reversal technique is used to focus an elastic wave on 

different points of the surface of the sample around the crack. The amplitude of the signal at 

the second harmonic frequency is then extracted, and an image of the nonlinear response of 

the sample is made. The 2D map of the second harmonic amplitude obtained around the crack 

is displayed on Fig. 4.6. On the right of the figure a measurement made along a width of the 

sample, and crossing the crack is also shown. The crack can easily be seen on this image, but 

a symmetric image and an increase of the signal on the boundaries are obtained. 
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Fig. 4.6 Part of a 2D map of the second harmonic amplitude measured after focusing of an elastic wave in 

different points around a crack at the surface of a fatigued steel plate using a one channel TR method, and one 

slice along a width of the sample. 

 

 To understand if the “phantom” image and the increase of the signal on the stress free 

boundaries are linked to experimental uncertainty or correspond to intrinsic physical problems 

a 3D linear simulation of the experiments has been made. The geometry of the simulation is 

shown in Fig. 4.7. It corresponds to wave propagation in a 2.5×1.2×10 cm steel sample with 
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stress free boundaries. A point force Tzz (stress) is applied on the bottom free surface of the 

sample (Y = 1.2 cm) at the position (X = 1 cm, Y = 1.2 cm, Z = 1 cm). This point force has 

the following time evolution: 
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with the following parameters: f = 250 kHz , t0 = 0 , A = 0.05 MPa, p = 2, tc = 0, sw = 3/f; w = 

2/f. The sample is an isotropic steel with density ρ = 8000 kg/m3, Young modulus E = 184 

GPa, and Poisson coefficient ν  = 0.3. In the first phase of the process corresponding to the 

propagation of the direct wave generated by the point source at the surface of the sample, the 

normal particle velocity vz on a point of the same free surface is recorded during several ms. 

The point coordinates are: X = 0.7 cm, Y = 1.2 cm and Z = 6 cm. 
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Fig. 4.7 Geometry of simulation domain with characteristics of source, receivers and material. 

 

The calculated 2D map of the maximum amplitude for the retro-focusing process is shown on 

Fig. 4.8. Although the focal spot clearly emerges of the 2D map, a slice obtained along a 

width and crossing the focus displays the same imperfections: increase of the signal on the 

stress free boundaries and a small amplitude “phantom” image. 
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Fig. 4.8 2D map of the maximum amplitude for retro-focusing at the surface of the sample (left), and a slice 

along a width (rigth). 
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4.2.3 Chaotic Cavity Transducer 

 In order to overcome the “phantom” image problem and to extend the method to non-

reverberating sample, we propose to use a “chaotic cavity transducer”, consisting of a 

combination of a PZT ceramic glued to a cavity of chaotic shape on the hardware side with 

the time reversal principle on the software side. An applied source signal to the PZT ceramic 

generates a wave propagating in the cavity and the sample medium. Each time the 

propagating wave in the cavity arrives at the boundary between the cavity and the sample, 

part of the incident energy is reflected and continues to engender multiple reflections on the 

other boundaries of the cavity, whereas the other part of the energy is transmitted in the 

sample as shown on Fig. 4.9. 

 A similar idea has been developed for 3D imaging in fluids [129]. Here, we apply it for 

elastic waves in solids [26]. 
 

 
Fig. 4.9 Principle of “chaotic cavity transducer”. 

 
 
4.2.4 Signal Processing Methodology 

 As we have seen time reversal provides the possibility to focus elastic waves in solid 

samples with only one channel when used in (or with) a multi-reverberant cavity. But, 

different kinds of signal processing methods can be used in order to improve both the Signal 

to Noise Ratio (SNR) and the quality of the focalization. In our study, three techniques have 

been tested: Chirped excitation, Inverse Filter and 1 bit process. 
 
 
4.2.4.1 Chirp Excitation  

 Experimentally, due to the low energy in the pulse, the use of sinusoidal pulse signal for 

impulse response measurement does not provide strong received signal, leading to a poor 

signal to noise ratio. So, for more robust measurement of the impulse response and to improve 

the quality of focalization a pulse compression technique with a linear sweep signal has been 

used instead of the short sinusoidal pulse. Pulse compression is accomplished by taking the 

intercorrelation of the measured waveform with the time reversed input signal (chirp). There 

are three primary reasons why pulse compression is potentially a useful technique: 
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•    improvement of available bandwidth of the imaging system; 

•    coded waveform has the advantage of being detectable using cross-correlation 

techniques, even when the received signal is well below the noise; 

•    high energy levels can be transferred into the test sample. 

This last reason is particularly interesting in nonlinear imaging of defect due to the fact that 

the nonlinear crack response has generally a threshold behaviour, and a quadratic increase 

when this threshold has been overcome. Various types of swept-frequency signals with large 

Time-Bandwith Product (TBP) have been proposed, as for example chirp signal, Barker and 

Golay codes, but it was found that the linear Frequency Modulated (FM) signal has the best 

performances in view of SNR improvement and robustness versus attenuation effects [127]. 

So, the pulse code we used is a chirp with linear increasing or decreasing instantaneous 

frequency: 

 )2cos()( 2
0 t

T

B
tfts ππ += ,  

22

T
t

T ≤≤− , (4.12) 

where f0 is the center frequency, T is the signal duration and B is the total bandwidth that is 

swept. Its instantaneous frequency is: 

 t
T

B
ftf += 0)( . (4.13) 

which is function of time and indicates the spectral band in which the signal energy is 

concentrated at the time instant t. The parameter TBk =  is referred to as the frequency 

modulated slope or the rate of the frequency modulated sweep. The signal sweeps linearly the 

frequencies in the interval ]2,2[ 00 BfBf +− . Moreover, if needed, a time domain window 

apodization A(t) can be used in order to reduce time domain sidelobes which can appear in the 

pulse compression process. Indeed rectangular shaped window leads to Fresnel ripples at the 

frequency band edges. 

 The same process, as the one use for the sinusoidal source signal, has been used with a 

linear sweep source signal, with the following parameters T = 100 µs, f1 = 200 kHz, f2 = 1000 

kHz (B = f2 - f1). Comparison of the direct wave recorded signal and the retro-focalized signal 

obtained by using the sinusoidal pulse and the linear sweep source signal are plotted on Fig. 

4.10. It appears that the use of linear sweep source signal improves time recompression quality 

and signal to noise ratio. 
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Fig. 4.10 Comparison of (a) the direct wave recorded signal and (b) the time recompressed signal at the focus for 

two kinds of source signal: a sinusoidal pulse (purple line) and a linear sweep (black line). 

 

In nonlinear methods such as harmonic generation, or even parametric interactions, signals of 

a few periods of duration are needed in stead of pulse. But as shown on Fig. 4.11(a), when 60 

periods of a 600 kHz sinusoidal signal is used as the source signal, the signal to noise ratio of 

the obtained time recompressed signal is quite low. This is linked to the small numbers of 

eigenmodes used due to the limited frequency range of the source. Chirp excitation can also 

here be a solution. Indeed, when a sweep, of 100 µs duration and fmin = 200 kHz and fmax = 1.2 

MHz, is used as the source signal, the time recompressed signal although of 100 µs duration 

presents a higher signal to noise ratio (Fig. 4.11(b)). Moreover, by taking the intercorrelation 

of this signal with the time reversed input signal, a pulse can again be obtained. 
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Fig. 4.11 Time recompressed signal obtained with (a) 50 periods of a 600 kHz sinusoidal signal, and (b) a sweep 

of 100 µs duration and fmin = 200 kHz and fmax = 1.2 MHz. 
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4.2.4.2 Time Reversal and Inverse Filter 

 The spatio-temporal inverse filter approach has been used by Tanter et al. [180] and 

Aubry et al. [5], and shown to improve the focusing quality. Indeed, if linearity and spatial 

reciprocity assumptions are valid in the medium, the preceding time reversal process 

corresponds to a spatial and temporal matched filter [179] of the propagation. That is to say, 

the time reversal process maximizes the output amplitude received signal at a given location 

and a given time, and corresponds in our case to the signal amplitude received at the focus at a 

given time, for a given input energy. 

 The classical inverse filter is based on the inversion of the propagation operator relating 

an array of transducers to a set of control point [180]. This technique allows calculation, both 

in space and time, of the set of temporal signals to be emitted in order to optimally focus on a 

chosen control point. The broadband inversion process takes advantage of the singular value 

decomposition of the propagation operator in the Fourier domain. 

 In our case, the Inverse Filter (IF) approach with a single transducer coupled to a chaotic 

and reverberant cavity consists in the inversion of the eigenmode energy [150]. The IF 

approach performs an inversion of the energy of the eigenmodes, and constructs the re-emitted 

signal as a linear combination of all the eigenmodes of the cavity, weighted by this inversion. 

Doing so, the focusing process takes advantage of all the modes including those with the 

weakest energy which are poorly exploited in the time reversal focusing process. 

 On Fig. 4.12, a comparison between the time recompressed signal obtained with Time 

Reversal (TR) and Inverse Filter (IF) methods are displayed. As predicted, the amplitude of the 

pulse obtained by IF is lower than with TR, but at the expense of a better signal to noise ratio 

and a shorter duration. These properties are linked, as expected, to the fact that the number of 

eigenmodes used with IF method is higher than with TR (Fig. 4.13). 
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Fig. 4.12 Comparison of the time-recompression signal obtained at the focus for (a) Time Reversal (TR), (b) 

Inverse Filter (IF). 
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Fig. 4.13 Comparison of the spectra of the time-recompression signal obtained with Time Reversal (TR) and 

Inverse Filter (IF) methods. 

 
 
4.2.4.3 1-bit Process 

 As demonstrated, a 1-bit process can be used in order to increase the amplitude of the 

retro-focalized wave. During classical time reversal or inverse filter experiments, both the 

instantaneous phase and amplitude information of the received signal are sent back. For a 1-

bit method, the time reversed or inverse filtered signal will be set to 1±  depending on the sign 

of signal: 1+  amplitude is set if the sign is positive, otherwise, 1−  amplitude is set. This 

means that the instantaneous phase information present in the zero crossing of the signal is 

time reversed while the instantaneous amplitude information is ignored. 

 The previous experiment has been repeated with a 1-bit inverse filter with the same 

parameter as for the inverse filter method. Comparing Fig. 4.14(a) and Fig. 4.12(b), a 2.5dB 

gain is obtained by using the 1-bit method. The spectrum of the signal measured with the 1-bit 

inverse filter is displayed on Fig. 4.14(b). As for TR, only some eigenmodes are privileged in 

the 1-bit process, leading to an increase of the correlation noise. 
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Fig. 4.14 (a) Velocity at the focus point as a function of time for 1-bit Inverse Filter. (b) Comparison of the 

spectra of the signals obtained with 1-bit Inverse Filter (1bit IF) and Inverse Filter (IF) methods. 
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4.2.5 Numerical Simulations of Chaotic Cavity Transducer 

 To demonstrate and give a better understanding of the “chaotic cavity transducer” 

concept, a numerical simulation study has been first made with the developed DG-FEM 

scheme, and will now be presented. 

The form and size of the chaotic cavity simulated is displayed in Fig. 4.15(b). It 

corresponds to a 2D version of the cavity used in the experiments presented later in the 

chapter. The source signal is the Ricker wavelet given in Eq. (2.69) with tD = 0.5 µs, a1 = 

(πfc)
2 and fc = 800 kHz and located in the middle of the tilted upper side border. The cavity 

material used in the experiments is copper with stress-free boundary condition on all the 

cavity boundaries. So the following parameters have been used in the numerical simulation: 

ρ0 = 8930 kg/m3, C11 = C22 = 224.1 GPa, C12 = 132.1 GPa and C66 = 46.0 GPa. 
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Fig. 4.15 (a) Received direct signal at the chosen focal point, (b) snapshot of the particle velocity at the instant of 

time recompression, (c) retro-focalized signal, and (d) zoom of (c) around the instant of time recompression 

calculated, for a copper chaotic cavity, with a RK-DG-FEM O4 scheme. 

The chosen point of focalization is first positioned at (0.0, -5.0) (mm) inside the cavity 

in order to verify the chaotic behavior of the designed cavity. The received particle velocity 

signal at the focal point calculated with a RK-DG-FEM scheme of order 4 is shown on Fig. 

4.15(a). It corresponds to a long-lasting reverberant signal. The total simulation time is 150 µs 
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for this first step of the retro-focalization procedure. Here the reflections on the stress-free 

boundaries of the cavity continue until the end of the simulation as no attenuation has been 

introduced. Then, a time reversed version of this signal is reemitted by a source located as 

before in the middle of the tilted upper side border. We can see, on the snapshot of the particle 

velocity at the instant of time recompression (Fig. 4.15(b)), that the spatial focalization point 

is at the position where the direct signal was received, confirming that a one channel time 

reversal process focuses back exactly at the source. The chaotic behaviour of the designed 

cavity seems to be adequate, as no “phantom” image can be seen on Fig. 4.15(b). The retro-

focalized signal, calculated at the focal position, is displayed on Fig. 4.15(c). It confirms the 

time recompression and correlation noise inherent to the one channel time reversal process. 

Indeed, in this numerical experiment this noise cannot be attributed to “thermal noise” or 

experimental errors. The zoom of Fig. 4.15(d) shows the quality of the time recompression. 
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Fig. 4.16 Snapshots of the particle velocity at five instants around the time recompression, for a copper chaotic 

cavity, calculated with a RK-DG-FEM O4 scheme. (a) t = 149 µs, (b) t = 149.3 µs, (c) t = 149.6 µs, (d) t = 149.9 

µs, and (e) t = 150.5 µs. 
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Fig. 4.16 shows snapshots of the particle velocity at five instants around the time 

recompression for the copper chaotic cavity. Theses snapshots display the retro-focusing 

process, showing that the focusing waves come from every direction around the focal spot, 

and diverge after passing through it. 

 Now, the preceding copper chaotic cavity is considered to be glued on a 27×  6 mm 

reverberating plate. The plate is first considered to be made of steel: 0ρ  = 7870 kg/m3, C11 = 

C22 = 237 GPa, C12 = 141 GPa and C66 = 116 GPa. The same retro-focuzing process is 

simulated using a fourth order RK-DG-FEM, but with the focusing point chosen in the steel 

plate at a position with coordinates (0.0, -8.0) (mm). As in the previous numerical example, the 

total calculation time, in the first step of the TR retro-focalization process, is 150 µs. The 

obtained snapshot of the particle velocity at the instant of time recompression, Fig 4.17(a) 

demonstrates the possibility of focusing in a sample with a one channel TR method combined 

with a chaotic cavity. It is to be noted that in this case the reflection at the interface between 

the cavity and the steel plate is rather small because their constituting materials are very similar. 

Fig. 4.17(b) shows that the quality of the time recompression is nearly as good as the one 

obtained directly inside the cavity. Only the level of the correlation noise is slightly bigger 

when the cavity is glued on the steel sample. In this case, the sample contributes to the 

focusing process and the waves come from every direction around the focal spot as shown on 

Fig. 4.18 which displays snapshot of the particle velocity at five instants around the time 

recompression. 
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Fig. 4.17 (a) Snapshot of the particle velocity at the instant of time recompression, and (b) retro-focalized signal 

calculated, for a copper chaotic cavity glued on a reverberating steel plate, with a RK-DG-FEM O4 scheme. 
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Fig. 4.18 Snapshots of the particle velocity at five instants around the time recompression, for a copper chaotic 

cavity glued on reverberating steel plate, calculated with a RK-DG-FEM O4 scheme. (a) t = 149 µs, (b) t = 149.3 

µs, (c) t = 149.6 µs, (d) t = 149.9 µs, and (e) t = 150.5 µs. 

 

 Next, we want to see the influence of a higher impedance mismatch between the cavity 

and the sample on the retro-focusing process. So, we consider the case where the cavity is still 

made in copper, but glued this time on a composite plate with the following material 

parameters: 0ρ  = 1400 kg/m3, C11 = 20.28 GPa, C22 = 20.52 GPa, C12 = 5.59 GPa and C66 = 

5.87 GPa. In this simulation, the receiver is located at the point (0.0, -7.0) (mm), and the total 

calculation time for the first step is 100 µs. With the same procedure as in the two preceding 

calculations, we obtain the results plotted on Fig. 4.19. These figures show that it is possible to 

get a retro-focalization even on this medium with a high impedance mismatch. 
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Fig. 4.19 (a) Snapshot of the particle velocity at the instant of time recompression, and (b) retro-focalized signal 

calculated, for a copper chaotic cavity glued on a composite plate of finite size, with a RK-DG-FEM O4 scheme. 

 

 Finally, the use of the “chaotic cavity transducer” on non-reverberating sample is 

studied. To simulate the non-reverberating sample a NPML absorbing layer is placed on three 

of its boundaries. The remaining boundary is left free where it is not in contact with the cavity. 

So, the sample can be considered as a semi infinite medium. The snapshot of the particle 

velocity at the instant of time recompression and the retro-focalized signal calculated with a 

fourth order RK-DG-FEM scheme are shown on Fig. 4.20. These results demonstrate the 

ability of the “chaotic cavity transducer” to focus energy even in non-reverberating samples. 
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Fig. 4.20 (a) Snapshot of the particle velocity at the instant of time recompression, and (b) retro-focalized signal 

calculated, for a copper chaotic cavity glued on a non reverberating composite plate, with a RK-DG-FEM O4 

scheme. 

 

Snapshots of the particle velocity at five instants around the time recompression are displayed 

on Fig. 4.21. On these snapshots one can clearly see that the wave does not come from all 

around the focal point as in the case where the “chaotic cavity transducer” is glued on a 

reverberant sample, but seems to propagate from the cavity. A point, which can not be 

measured experimentally, is the fact that in the considered case, where the sample presents a 

high impedance mismatch with the cavity, the focusing properties is mainly linked to surface 
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waves propagating at the interface between the cavity and the sample. Moreover, a careful 

look at the snapshots brings to light a “phantom” focal point, inside the cavity. Even if less 

visible than in the first considered case, within the chaotic cavity alone, the waves seem to 

come from every direction around this “phantom” focal spot. 
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Fig. 4.21 Snapshots of the particle velocity at five instants around the time recompression for a copper chaotic 

cavity glued on a non reverberating composite sample, calculated with a RK-DG-FEM O4 scheme. (a) t = 97.3 µs, 

(b) t = 98.3 µs, (c) t = 99.2 µs, (d) t = 100.4 µs, and (e) t = 101.4 µs. 

 

 These first numerical results give some insight into the behavior of a “chaotic cavity 

transducer” when used for imaging application in solids. 
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4.3 Experiments in a Reverberant Medium 

4.3.1 Set-up of the Experiment 

 In the experiment discussed here a 0.15.212 ×× cm steel sample has been used. With 

such boundary conditions, no information can escape from the system and a reverberant 

acoustic field is created. The experiment is setup as shown on Fig. 4.22. A single PZT 

ceramic disk is glued to a chaotic cavity and, similarly, the cavity is glued onto the sample. 

The cavity made in copper has been designed in order to have the ergodic and mixing 

properties. A source signal, generated by an arbitrary wave generator coupled to a power 

amplifier, is applied to the PZT and generates travelling waves propagating in the cavity and 

radiating in the sample medium. In order to guarantee the synchronization of time reversal 

waves, the arbitrary wave generator AWG2021 is triggered by an external trigger generator. 

The surface velocity of sample medium has been measured by a laser vibrometer. The signal 

is acquired through an oscilloscope LeCroy 9361. The reciprocal time reversal process and 

the scanning of the laser are computer controlled by Labview. 
 

 

 
Fig. 4.22 Experimental set-up used for the demonstration of the focusing properties of a “chaotic cavity 

transducer” in a reverberant sample. 

 
 
4.3.2 Experimental Results 

 In this part, experimental results obtained with Time Reversal (TR) or Inverse Filter (IF) 

methods will be presented. In all the experiments, a linear sweep source signal has been used 

with the following parameters: T = 100 µs, f1 = 200 kHz, and f2 = 1200 kHz. In the whole 

process of each experiments, for the linear sweep source signal, the convolution operation can 

not only be done before the TR or IF process, but also at the end of the whole process. 
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 First, the spatial recompression experiment for the steel sample, obtained with the Time 

Reversal (TR) method, will be presented. In the first step, the focalization procedure 

presented in the previous paragraph is used to retro-focalize on the chosen position on the 

surface of the sample. Here, the convolution operation has been made before the TR process. 

Then a 2D scan of 15×15 mm², with a spatial step of 0.30 mm, of the wave field around the 

focal spot is made. The obtained 2D map shown on Fig. 4.23(a) demonstrates the high quality 

of the retro-focalization, with a spot size of 2 mm radius. Moreover, the spatial distributions 

of focalized signal in the two axis directions (Fig. 4.23(b)) show no increase of the strain at 

the stress free boundary (upper boundary on Fig. 4.23(a)). These results confirm that a single 

PZT ceramic with a chaotic cavity can be used as a time reversal mirror (TRM) when the 

sample is multi-reverberant. 
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Fig. 4.23 Time Reversal (TR) recompression experiment. (a) 2D scan of the focalization points. (b) Spatial 

distributions of focalized signal in x and y axis directions at the time Tr = 0 µs. 

 

Fig. 4.24 displays snapshots of the wave field at the surface of the sample around the focus 

point. Here Tr = 0 µs corresponds to the instant of time recompression. In the first and second 

figures at Tr = -4 µs and Tr = -2 µs, respectively, we can see the wave propagating in the 

centerward direction, as if there are many transducers surrounding the focalization point in all 

the directions. The third figure shows that the energy has focalized at Tr = 0 µs in the 

reference focal point. Then, the waves propagate away from the center as shown on the fourth 

and fifth figures at Tr = 2 µs and Tr = 4 µs, respectively. These snapshots clearly show that the 

focusing wave come from all around the focus point. This is due to the fact that, here, as the 

sample is multi-reverberant, it contributes to the retro-focusing process as previously 

demonstrated numerically. 
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Fig. 4.24 Snapshots of the surface particle velocity around the focal point at different time showing the TR 

focalization process obtained with a “chaotic cavity transducer”. 

 Secondly, the same experiment obtained now with the Inverse Filter (IF) method in 

place of the TR, will be presented. The 2D scan (15×15 mm² with a spatial step of 0.30 mm) 

of the wave field around the focal spot is shown on Fig. 4.25. The obtained 2D map 

demonstrates the high quality of the retro-focalization with the IF method, and the spatial 

distribution of focalized signal in the two axis directions shows no increase of the strain at the 

stress free boundary as for the TR method. Fig. 4.26 shows the process of the focalization at 

five different time Tr = -4 µs, -2 µs, 0 µs, 2 µs and 4 µs. Here, contrary to what Quieffin et al. 

[150] have obtained in water with a chaotic cavity, the focal spot size is not decreased by the 

use of IF technique. Indeed, in both experiments with TR and IF the same 2 mm focal spot 

radius has been obtained, and is an estimate of the correlation length of the scattered wave 

field as demonstrated by de Rosny et al. [72]. 
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Fig. 4.25 Inverse Filter (IF) recompression experiment. (a) 2D scan of the focalization points. (b) Spatial 

distributions of focalized signal in x and y axis directions at the time Tr = 0 µs. 

 

   

 

   
Fig. 4.26 Snapshots of the surface particle velocity around the focal point at different time showing the IF 

focalization process obtained with a “chaotic cavity transducer”. 
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 Now, to demonstrate the ability of the “chaotic cavity transducer” to focus even on the 

border of the material sample, the TR focalization experiment has been performed once again 

with the steel sample, but this time, the retro-focusing point has been chosen directly on the 

border of the sample. A 2D map of the maximum amplitude measured on a surface of 15×15 

mm² around the selected focal point (Fig. 4.27(a)) and the spatial distribution of focalized 

signal in two perpendicular directions (Fig. 4.27(b)) demonstrates the high quality of the retro-

focusing, with a spot size of 2 mm radius. Remark that, also in this case, there is no increase of 

the strain at the stress free boundary (upper boundary on Fig. 4.27(a)) contrary to the case 

when a PZT ceramic is directly glued on the reverberating sample. The focalization process is 

displayed on Fig. 4.28 at the same five times as in the preceding experiments. As before, the 

wave comes from all around the focus point. All these results demonstrate that it is possible to 

get a high quality focalization also on stress free boundaries of multi-reverberant samples with 

a “chaotic cavity transducer”. 
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Fig. 4.27 Time Reversal (TR) recompression experiment with a focus point on the border of the sample. (a) 2D 

scan of the focalization on the border, (b) spatial distributions of focalized signal in x and y axis directions at the 

time Tr = 0 µs. 
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Fig. 4.28 Snapshots of the surface particle velocity around the focal point at different time showing the TR 

focalization process obtained with a “chaotic cavity transducer” on the border of the steel sample. 

 
 
4.3.3 Contrast of the Retro-Focalized Signal 

 One of the more important parameters of the “chaotic cavity transducers” is the “signal-

to-noise” contrast. As proposed by Quieffin et al. [150], this contrast is the ratio between the 

energy of the signal at the recompression time Tr = 0 and the energy of the signal at all the 

others times. The equation of the contrast can be expressed as follows 
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A physical interpretation of the contrast in terms of information grains has been given by 

Derode et al. [56]. An impulse response can be viewed as a recurrence of decorrelated 
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information grains of duration equal to the initial pulse one. The peak of recompression 

results in the coherent sum of the information grains and the surrounding noise on their 

incoherent sum. In the case of reverberating cavity, the information grains can be identified 

with the vibration eigenmodes of the cavity. Thus a contrast theory, for time reversal focusing 

in a cavity, can be developed using these vibration eigenmode formalism. Several physical 

parameters should be taken into account in this formalism: 

- The absorption time aτ  of the material describing the damping of the impulse response; 

- The Heisenberg time HT  of the cavity which could be viewed as the modal density of  

the cavity, that is to say the number of eigenmodes per frequency unit, and which 

depends on the volume of the cavity; 

- The emission signal duration of the time reversed window T∆ ; 

- The statistic of the distribution of the eigenmode amplitudes α  and the frequency 

bandwidth ∆Ω . 

The result, obtained by Quieffin [151] in his PhD dissertation, can be written as: 
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 From this expression three asymptotic behaviors can be considered. First, when the 

duration of the time reversed windowT∆  is less than the Heisenberg time HT  and the 

attenuation timeaτ , the contrast becomes proportional to the duration time and to the frequency 

bandwidth ∆Ω : 

 TC ∆∆Ω= ..4 π ,       (when aHTT τ,<<∆ ) (4.16) 

In this case, the contrast linearly increases with the duration T∆ . 

 In the second situation, the Heisenberg time is less than the duration T∆  and the 

attenuation time. In this case, the contrast becomes proportional to the Heisenberg time HT : 

 
4

22

..4
α
α

π HTC ∆Ω= .       (when TT aH ∆<< ,τ ) (4.17) 

 The third situation corresponds to the case where the attenuation time is shorter than both 

the Heisenberg time and the duration T∆ . The contrast becomes then proportional to the 

attenuation time: 

 aC τπ ..4 ∆Ω= .         (when TTHa ∆<< ,τ ) (4.18) 
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 Fig. 4.29 shows an example of the “signal-to-noise” contrast, measured in the case of 

the copper chaotic cavity glued on a 12×2.5×1.0 cm rectangular steel sample, as a function of 

the duration ∆T of the time reversed or inverse filtered signal. An improvement by a factor of 

three can be observed using the IF technique. The overall evolution of the contrast as a 

function of the duration of the time reversed window ∆T is in accordance with the theoretical 

description. When ∆T is less than the Heisenberg time TH of the cavity (which is related to the 

modal density of the cavity) and less than the characteristic attenuation time τa, the contrast 

linearly increases with ∆T. When ∆T is increased and becomes larger than TH or τa, a 

saturation of the contrast appears. As a matter of fact, as the vibration eigenmodes represent 

the only frequencies present in the cavity, and as the frequency bandwidth is limited by the 

transducer that is used, the number of vibration eigenmodes of the cavity is limited as well, 

and consequently the contrast saturates. 
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Fig. 4.29 Contrast of the retro-focalised signal for Time Reversal (TR) and Inverse Filter (IF) processes, showing 

the improvement by a factor of three for the inverse filter technique. 

 

 To understand which is the limiting factor between TH and τa, an estimate of both of 

these time needs to be calculated. Unfortunately, as the chaotic cavity is glued on the sample, 

the absorption is not the main cause of decrease of the energy inside the cavity. Indeed, we 

want that a non negligible part of the energy propagates in the sample. In this case, the 

attenuation time τa of the cavity depends on the sample material. So, only an estimate of the 

Heisenberg time is accessible. The “breaking time” or Heisenberg time, which corresponds to 

the time needed in order to resolve neighbouring modes, is given by: 

 
f

N
TH ∂

∂= ,  (4.19) 

where N, the cumulative eigenfrequency density in a chaotic cavity, is well represented by a 

Weyl type formula [65], [125], [202]: 
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where V and S are the volume and surface of the cavity, and cl, ct are velocities of longitudinal 

wave and transverse wave, respectively. This amount of time TH is required to allow two 

modes separated by an average level spacing to achieve 360° phase difference. Moreover, it 

has also been argued [125] that this time TH is the time at which a ray description must fail. 

Eq. (4.20) can be written as a function of the wavelengths: 
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The number of modes increases, for a given frequency, if we increase the volume and the 

surface of the cavity, and if we decrease the wavelengths. 

 So, in obtaining the results of Fig. 4.29, the attenuation, mainly due to the radiation 

losses of the sample, appears to be the limiting factor. Indeed, for the considered copper cavity, 

with a volume of 2.8 cm3 and a surface of 6.22 cm², the estimated Heisenberg time TH is 10 ms, 

which is 10 times larger than the duration of the measured reverberating signal. As a result, for 

large values of ∆T the contrast simply becomes proportional to τa. 
 
 
 

4.4 Experiments on a Non-Reverberant Medium 

 The combination of traditional single channel TRA with non-reverberant samples poses 

serious problems for the technique as the sample cannot be used as a chaotic cavity. In this 

case, the use of the “chaotic cavity transducer” can be a good solution to extend the possibility 

to focus in such sample with a one channel TRA system. 

 Here, the same experiments as the one done in the preceding subsection for multi-

reverberating steel sample will be repeated for a 2 mm thick non-reverberant composite plate 

of large dimension ( 2.02030 ×× cm), as shown on Fig. 4.30. 
 

 
 

Fig. 4.30 “Chaotic cavity transducer” used with a 2 mm thick non-reverberant composite plate. 
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We have used a 1×2×12 cm chaotic cavity glued on the composite plate. The chaotic behavior 

of the rectangular cavity used is induced by holes sparsely made in it. The 2 cm width edge is 

the emitting edge of the “chaotic cavity transducer”. As in the preceding reverberant sample 

experiments, a sweep of 100 µs duration and fmin = 200 kHz and fmax = 1.2 MHz combined with 

an inverse filter technique enable the focalization of elastic wave everywhere in the sample. 

The 2D scan of the amplitude of wave field around the chosen focal spot, on a square of 

15×15 mm² with a spatial step of 0.30 mm, is plotted in Fig.4.31. This figure demonstrates 

that the “chaotic cavity transducer” works also on non-reverberating samples, even if the 

focalization quality is not as good as in the case of reverberating sample. Here, as the sample is 

highly attenuating in the frequency range used, 200 kHz to 1.2 MHz, the surface particle 

velocity is quite small and difficult to measure with the laser vibrometer. 
 

 
Fig. 4.31 2D scan of maximum amplitude measured during the retro-focalization process with the cavity 1×2×12 

cm on the non-reverberant composite plate. 

 

 As displayed on Fig. 4.32 the process of retro-focalization in this case of non-

reverberating sample is different form the one obtained previously with the reverberant sample. 

Indeed, here, as already seen in the numerical simulations the wave does not come from all 

around the focal point, but seems to propagate from the cavity. 
 

     
Fig. 4.32 Snapshots of the surface particle velocity at different time showing the process of the retro-focalization 

in the non-reverberant composite plate with a 1×2×12 cm cavity. 
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In fact, the behavior of the “chaotic cavity transducer” is now similar to the one we would 

obtain with a multi-elements transducer as shown on Fig. 4.33. The width of the focalization 

area depends on three parameters: the width of the chaotic cavity D in the direction of 

focalization, the distance between the cavity and the chosen point or focal distance F, and the 

wavelength λ  of the dominant transmitted mode. The resolution should be expressed by the 

following equation: 

 
D

F
R λ=∆ . (4.22) 

 

R∆

 
 

Fig. 4.33 Schematic explanation of the behavior of the “chaotic cavity transducer” in a non-reverberating sample. 

 

This behavior of the “chaotic cavity transducer” is similar to the one obtained at the 

Laboratoire Ondes et Acoustique (LOA) in Paris when used for 3D imaging in water [149], 

[129]. So, their idea of “synthetic time-reversal” technique [149], [150], [151] can be 

developed for non-reverberating solid samples, and specially plates, even if this will be more 

difficult due to anisotropic and dispersive effects in such media. This, will suppress the need to 

measure, with a laser vibrometer, the particle velocity at all the imaged points, which is one of 

the main limitations for the development of NDT applications of “chaotic cavity transducer”. 

This method consists in the creation of a large aperture virtual Phased Array using a “Chaotic 

Cavity Transducer” to focus at any point in the sample as shown on Fig. 4.34. The multiple-

scattered field is measured at several points in front of the solid cavity. These signals are then 

time reversed or inverse filtered and added with delays calculated in order to generate a plane 

(Fig. 4.34(a)) or focused (Fig. 4.34(b)) wave. Finally the obtained signal is remitted by the 

transducer. Up to now, promising preliminary results have been obtained in Kortrijk in 

collaboration with Koen Van Den Abeele on the same composite plate, showing the validity of 

the “synthetic time-reversal” technique for focusing in plate. 
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Fig. 4.34 Principle of multi-elements imaging with a “chaotic cavity transducer” in a non-reverberating sample: 

All the virtual point sources are excited (a) in phase and a plane wave is emitted, and (b) with phase delays 

calculated to focus the wave on a chosen position. 
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To develop a complete imaging system, subsequent imaging can be done using a similar 

“Chaotic Cavity Transducer” as a receiver. 
 
 
 

4.5 Nonlinear Acoustic Imaging with Chaotic Cavity Transducer  

 The chaotic cavity transducer focusing process can be used, in combination with NEWS 

techniques such as the pulse inversion method [195], to obtain an image of localized 

nonlinearity. Indeed, as shown on Fig. 4.35, by successively focusing a pulse (in black) and 

its inverse (in blue), and subsequently summing the two results, we can extract the nonlinear 

response of the sample at the focal position. Repeating the same process for a 2D array of 

points at the surface of a sample, an image based on nonlinear information can be obtained. 

Similarly, a scale subtraction or harmonic filtering method to reveal the nonlinearity [164], 

and a 1-Bit process to increase the amplitude of the retro-focused signal even further, could be 

used. 
 

 

Fig. 4.35 Principle of TR-NEWS with a chaotic cavity transducer. 

 
 
4.5.1 TR-NEWS Experiment with Chaotic Cavity Transducer 

 The NEWS based TRA technique was applied to a fatigue cracked steel sample 

(12× 2.5× 1.0 cm) as shown on Fig 4.36. The same “chaotic cavity transducer” as the one 

already used in the reverberant sample experiment has been used here. Two sweeps, of 100 µs 

duration and fmin = 200 kHz and fmax = 1.2 MHz, with inverted signs and an inverse filter 1-bit 

reversal have been used to focus at the same position a pulse and its inverse. Nonlinear 

response of the sample at this position is then extracted with a pulse inversion analysis. This 

process has been repeated on a surface of 20×6 mm² around the crack position with a step, in 

both dimensions, of 1 mm. 
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Fig. 4.36 Schematic of the fatigue steel sample and the “chaotic cavity transducer” used for the TR-NEWS 

imaging of a crack. 

 

 The resulting distribution of the analyzed nonlinearity, corresponding to the sum of the 

normal particle velocity induced by the two focused inverted pulses, is shown in Fig. 4.37. On 

the displayed image, the crack clearly appears. The main nonlinear contribution of the crack 

seems to come from its tip, thereby confirming the results of Ulrich et al. [185]. Moreover, as 

in the linear cases of the previous sections, no increase of the induced vibrations can be noticed 

on a boundary of the sample, here on the upper side of the 2D scan displayed on Fig. 4.37. 
 

 
Fig. 4.37 Image of a crack at the surface of a steel sample obtained with a combination of TR-NEWS method 

and “chaotic cavity transducer”. 

 

 In order to improve our understanding of the interaction between an elastic wave and a 

crack, a prototype sample made by nanotechnology techniques has been realized. The sample 

is a silicon wafer on which four 100 µm grooves has been cut by a Focused Ion Beam (FIB), as 

shown on Fig. 4.38. The widths of the four notches, f1 to f4, are 50, 100, 200 and 300 nm, 

respectively. Here, 50 nm is the smallest width we were able to obtain by FIB. 
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Fig. 4.38 (a) Schematic of the wafer sample with four 100 µm long grooves made by FIB. (b)-(d) FIB Images 

showing (b) the tip, (c) the width (50 nm) and (d) the depth (200 nm) of the groove with the smallest width (f1). 

 

The same NEWS based TRA technique has been used, with the same “chaotic cavity 

transducer” and sweep parameters, to image these “fabricated cracks”. Unfortunately, on all 

the attempts realized, the grooves made by FIB, even the one with the smallest width (50 nm), 

have never been detected by TR-NEWS method. This result tend to demonstrate that a real 

crack, at least for the used frequency range, 200 kHz to 1.2 MHz, can not be simply 

represented as clapping interfaces. Indeed, the amplitudes of the displacement induced in the 

wafer, and measured by the laser interferometer, were always less than 50 nm, the minimum 

distance between the two borders of the notches. One envisaged improvement in the realization 

of a prototype sample is to use the FIB not to make the “crack”, but to initiate it [121]. In this 

case, a notch is made by FIB and, afterwards, a crack, with a perfectly controlled position, is 

initiated at this notch by oscillatory loading. 
 
 
4.5.2 NEWS-TR Experiment with Chaotic Cavity Transducer 

 The NEWS-TR application is based on signal retro-focusing on the defect position 

when only the nonlinear components of the received signal are time reversed [77], [79], [185], 

as shown on Fig. 4.39. This method, described for the first time by Bou Matar et al. [23] in 

2005, has only been validated experimentally recently [185]. In this experimental validation, 
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the obtained results display ‘phantom’ images and some points of particle displacement 

increase on the stress free boundary close to the crack position. 
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Fig. 4.39 Principle of NEWS-TR for defect imaging in a non-reverberant sample. 

 A preliminary experiment on the possibility of using a “chaotic cavity transducer” for 

NEWS-TR method in a non-reverberant sample has been conducted. The experiment has been 

made on the 30× 30 cm² composite plate with a 1× 5× 6 cm cavity. Here, no nonlinear 

treatment, as pulse inversion for example, has been used. The experiment has only been 

designed in order to validate the use of a “chaotic cavity transducer” as a receiver as explained 

on Fig. 4.40. A 5×5 mm² PZT ceramic, used as a source of small size, is excited by a sweep (T 

= 100 µs, fmin = 200 kHz, fmax = 600 kHz). The signal measured by the PZT of the “chaotic 

cavity transducer” is then numerically processed (an inverse filter is applied), and re-emitted 

by the same “chaotic cavity transducer”. Finally, a 2D scan of the out of plane particle velocity 

around the position of the initial source is made with the laser interferometer. This last step is 

realized after removing the 5× 5 mm² PZT ceramic to enable a correct vibrometric 

measurement. 

1515×

55×

 

Fig. 4.40 Principle of the preliminary experiment on the possibility of using a “chaotic cavity transducer” for 

NEWS-TR method in a non-reverberant sample. The experiment has been made on the composite plate with a 

1×5×6 cm cavity. 
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Snapshots of the particle velocity on a surface of 15× 15 mm² around the source position 

showing the process of retro-focalization on the source position are displayed on Fig. 4.41. The 

snapshot at time Tr = 0 µs shown that the wave emitted by the “chaotic cavity transducer” 

focused simultaneously on the two borders of the PZT source. This demonstrates that the main 

contribution of the 5×5 mm² PZT source corresponds to plate modes excited by its border. 
 

   

 

   
Fig. 4.41 Snapshots of the surface particle velocity at different time showing the process of the retro-focalization 

on the position where the small 5×5 mm² PZT ceramic source was glued. 

 
 
 

4.6 Conclusion 

 In this chapter, a numerical and experimental study has been performed in order to 

demonstrate the possibility of linear and nonlinear ultrasonic imaging of defects in solids 

offered by the “chaotic cavity transducer” concept. As an extension of the classical time 

reversal process, three signal processing techniques have be studied in order to improve both 

the signal to noise ratio (contrast) and the quality of the focalization: Chirped excitation, 

Inverse Filter and 1 bit processing. Chirp-coded excitation instead of single-carrier short 
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pulses is studied in order to transmit more energy per time on the defect without increasing 

the peak intensity of the excitation. Moreover, the experimental results show that the used 

bandwith and so the signal to noise contrast is increased with this sweep excitation. Using 

inverse filter method in stead of time reversal, the focusing process takes advantage of all the 

eigenmodes of the cavity including those with the weakest energy which are poorly exploited 

in the time reversal focusing process. This greatly improves the time recompression and the 

signal to noise contrast. 

 One of the major advantages of using chaotic cavities that has been demonstrated both 

numerically and experimentally is the elimination of phantom images and boundary effects in 

the retro-focalization process. Experimental results obtained in a small reverberating steel 

sample have demonstrated without doubt the ability of the “chaotic cavity transducers” to 

focus even on the border of the material sample. 

 Experiments performed on a 2 mm thick non-reverberant composite plate with 

relatively large dimensions (30× 20× 0.2 cm) have demonstrated a second advantage of 

chaotic cavities: their potential to focus energy in non-reverberating samples. In this case, the 

sample does not contribute to the focusing process and the focusing is achieved by 

propagating wave that solely come from the direction of the transducer and not from every 

direction around the focal spot, contrary to what is obtained in a reverberant sample. 

 We have also demonstrated that the “chaotic cavity transducer” can be used, in 

combination with the pulse inversion and 1-bit methods, to obtain an image of localized 

nonlinearity. The preliminary image of a crack at the surface of a steel sample shows that the 

benefit of using a chaotic cavity transducer, in combination of TR and NEWS techniques, is 

clearly found in breaking any obvious or hidden symmetry of the problem, leading to an 

unambiguous retro-focusing. Moreover, the main nonlinear contribution of the crack appears 

to come from its tip, thereby confirming previously published results. This opens the 

possibility for high resolution imaging of nonlinear defects. 

 A last opportunity offered by the “chaotic cavity transducer” which needs to be 

explored is the use of embedded transducers with chaotic emission characteristics in order to 

perform Structural Health Monitoring (SHM). Obviously, the first step will be to find the 

minimum impedance mismatch needed in order that an embedded transducer has a sufficient 

reverberant behaviour to conserve its chaotic properties. 
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CONCLUSION  

 

 In this thesis, a new NDT imaging method using a combination of NEWS and “chaotic 

cavity transducer” techniques has been developed and experimentally validated on a fatigued 

steel plate. In order to support the development of this damage localization method, it has 

been vital to develop a reliable, efficient, and fast numerical DG-FEM scheme with validated 

material constitutive models able to capture and reproduce the propagation of nonlinear waves 

in objects of finite geometry and in the presence of micro-damage. 

 In order to profoundly understand the nonlinear elastic properties of fatigued solids, 1D 

simulations of nonlinear propagation of elastic wave in heterogeneous media with different 

kinds of nonlinearity have been numerically studied. This study can help in the determination 

of the predominant nonlinear mechanism in specific experiment. This was a first step in the 

development of the proposed numerical tools and “chaotic cavity transducer” imaging system. 

 A nodal Discontinuous Galerkin Finite Element Method (DG-FEM) scheme, which is 

an intelligent combination of the FEM and FVM methods, has been presented. Different 

numerical fluxes, as the central and Lax-Freidrich flux, have been used. Open boundary, 

surface-free boundary and fixed boundary conditions have also been discussed. The main 

contributions of the present thesis to this numerical scheme was to extend it to nonlinear 

elasto-dynamic including source terms, and to introduce the possibility to use quadrilateral 

elements. Moreover a Perfectly Matched Layer (PML) type of absorbing boundary condition 

well adapted to the DG-FEM scheme, called Nearly Perfectly Matched Layer (NPML), was 

also developed. Finally, a sub-domain implementation was developed to increase the 

efficiency of the scheme when PML are used. It will also enable to easily implement, in the 

future, multiphysics problems. The results of simulations for isotropic Lamb’s problem and 

elastic wave propagation in apatite, an anisotropic medium, have authorized a validation of 

the DG-FEM scheme, by comparison to known analytical solutions. In the nonlinear case, as 

only a few analytical results are available, a plane wave propagation has been considered. The 

obtained results compare perfectly to previously publish numerical calculations and 

approximate analytical solutions. 

 A new C-PML formulation based on the second-order systems describing wave 

propagation in displacement and stress formulation for anisotropic elastic and piezoelectric 

solids has been introduced. This formulation has been implemented in the commercial 

software COMSOL Multiphysics and in a home made PS code. The results of simulation, in 

anisotropic and piezoelectric solids, have confirmed the C-PML excellent absorbing 

efficiency for long time simulation, surface waves and elongated domain of calculation. 

Although not directly linked to the main objectives of the Thesis, the second-order equation 
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C-PML implementation has opened the opportunity to begin fructuous collaborations both in 

our laboratory and outside. For example, the good agreement between simulations and 

experimental results for the integrated Surface Acoustic Wave (SAW) streaming system, 

opened to us the opportunity to optimize this system developed by the Microfluidic group. A 

numerical study of an integrated high frequency (around 1 GHz) ultrasonic system for a 

unique cell characterization has begun in collaboration with the Ultrasons group. Finally, the 

optimization for linear imaging application of a “chaotic cavity transducer”, a concept we will 

described in the last chapter, is undertaken with the Koen Van Den Abeele group. 

 In all presented implementations of C-PML supplementary PDE are introduced to 

actualize the C-PML variables. These PDE, as they contain spatial derivative terms, are 

cumbersome and difficult to introduce in the developed DG-FEM scheme, and especially 

when a Godunov type flux is used. To overcome this difficulty, Nearly Perfectly Matched 

Layer (NPML) has been applied to the elastic wave propagating in an anisotropic medium. 

The main advantages of this formulation are linked to the fact that the obtained system of 

equations is in exactly the same form as the original system, and so strongly hyperbolic, and 

the introduced stretched fluxes are linked by ODEs to the physical fluxes. This last point 

reduces the burden and time of calculation. Moreover, comparison of energy decay shows that 

the NPML has the same absorbing ability of C-PML. 

 In the case of orthotropic material stability problems have appeared, as in the first-order 

velocity-stress implementation. Following the “MPML” implementation, we have introduced 

a mixture of C-PML and of sponge layer, with a controllable ratio of these two kinds of 

absorbing layers, in order to stabilize the C-PML or NPML, and shown that this stabilized C-

PML is in fact no perfectly matched to the physical domain. A stability analysis has been 

made. It gives a physical interpretation of the stability criteria previously obtained in the 

literature by Meza-Fajardo and Papageorgiou [126]: the slowness (or phase velocity) and the 

group velocity of the wave incoming in the PML need to be of the same sign. For Lamb 

waves simulations, this absorbing layer has been shown to absorb “inverse modes” both in 

non-piezoelectric and piezoelectric plates at the expense to have, at least, a length of two 

times the maximum wavelength of the waves existing in the plate in the frequency range 

investigated. In this case the reflection induced by the C-PML was -80 dB smaller than the 

incident energy. 

 Finally, an experimental and numerical study of the use of the concept of “chaotic 

cavity transducer” to focalize in reverberant and non-reverberant solid media with only one 

source has been made. Classical time reversal, inverse filter and 1 Bit time reversal process 

have been discussed and compared. In order to sent more energy into the detect media and 

improve the contrast of signal to noise ratio, a linear sweep source signal has been used. 

Using inverse filter method in place of time reversal, it was shown that the focusing process 
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takes advantage of all the eigenmodes of the cavity including those with the weakest energy 

which are poorly exploited in the time reversal focusing process. This has greatly improved 

the time recompression and the signal to noise contrast. One of the main advantages of using 

chaotic cavities that has been demonstrated both numerically and experimentally is the 

elimination of phantom images and boundary effects in the retro-focalization process. 

Experimental results obtained in a small reverberating steel sample have demonstrated 

without doubt the ability of the “chaotic cavity transducers” to focus even on the border of the 

material sample. Experiments performed on a 2 mm thick non-reverberant composite plate 

with relatively large dimensions (30×20×0.2 cm) have demonstrated a second advantage of 

chaotic cavities: their potential to focus energy in non-reverberating samples. In this case, the 

sample does not contribute to the focusing process and the focusing is achieved by 

propagating wave that solely come from the direction of the transducer and not from every 

direction around the focal spot, contrary to what is obtained in a reverberant sample. 

 We have also demonstrated that the “chaotic cavity transducer” can be used, in 

combination with the pulse inversion and 1-bit methods, to obtain an image of localized 

nonlinearity. The preliminary image of a crack at the surface of a steel sample shows that the 

benefit of using a chaotic cavity transducer, in combination of TR and NEWS techniques, is 

clearly found in breaking any obvious or hidden symmetry of the problem, leading to an 

unambiguous retro-focusing. Moreover, the main nonlinear contribution of the crack appears 

to come from its tip, thereby confirming previously published results. This opens the 

possibility for high resolution imaging of nonlinear defects. A last opportunity offered by the 

“chaotic cavity transducer” which needs to be explored is the use of embedded transducers 

with chaotic emission characteristics in order to perform  Structural Health Monitoring 

(SHM). Obviously, the first step will be to find the minimum impedance mismatch needed in 

order that an embedded transducer has a sufficient reverberant behaviour to conserve its 

chaotic properties. Numerical simulations should be performed to support and optimise 

further the development of the proposed nonlinear acoustic technique. 

 So, in conclusion, we can expect that this thesis is a first step to the advanced concept 

for smart maintenance by employing existing NEWS technology in the development of 

ultrasonic nonlinear imaging systems using “chaotic cavity transducer” for early stage damage 

detection. 
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APPENDIX A:  ANALYTICAL SOLUTION FOR THE 

PROPAGATION OF ELASTIC WAVES IN UNBOUNDED 

ANISOTROPIC SOLID  

 

 In this appendix the analytical solution for the propagation of an elastic wave in 

unbounded anisotropic solid derived by Carcione et al. [34] is presented. 

 

Defining the dimensionless variable 

 τyy = ,  

with  

 tVs=τ  and 066 ρCVs = . 

The solution for class IV transversely isotropic material along the symmetry axis y is  
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where 

 066 ρCytS = ,   022 ρCyt p = ,   11 ytt s= , (A8) 

with  
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The quantity )(yD  is given by 

 )1)((4))1(()( 2222 yyyyD −−−+−= αββγ . (A10) 

The definition of  α , β  and γ  are given by  

 6622 CC=α ,  6611 CC=β  ,  2
4412 )1(1 +−+= CCαβγ . (A11) 
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APPENDIX B: C-PML  MEMORY VARIABLES 

EVOLUTION EQUATIONS  

 

 For completeness all the evolution equations of the introduced memory variables of C-

PML in anisotropic and piezoelectric solids are reproduced here. 

 

C-PML for elastic waves in anisotropic solids: 
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C-PML for piezoelectric solids: 
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RESUME 

 Dans cette thèse nous proposons de développer un système d’imagerie ultrasonore innovante de 

micro- défauts basé sur l’utilisation conjointe de techniques d’acoustique non linéaire et du concept de 

"transducteur à cavité chaotique". Ce transducteur correspond à la combinaison d’une céramique 

piézoélectrique collée sur une cavité de forme chaotique et du principe de retournement temporel. La 

faisabilité et les performances de ce nouveau système sont explorées par des simulations numériques. 

Des paramètres optimaux d’utilisation pour une implémentation expérimentale sont proposés. 

 Une grande partie des travaux menés dans le cadre de cette thèse se concentre sur le 

développement d’outils numériques permettant l’amélioration de telles techniques d’imagerie. Un 

schéma d’éléments finis de type Galerkin Discontinu (GD) est étendu à l’elastodynamique non linéaire. 

Un type de zone absorbante parfaitement adaptée, appelée "Nearly Perfectly Matched Layer" (NPML) 

a aussi été développé. Dans le cas de matériaux orthotropes comme des problèmes de stabilité 

apparaissent, un mélange de NPML et de zone atténuante, dont on contrôle la proportion respective, 

est introduit afin de stabiliser les NPML.  

 Une validation expérimentale du concept de "transducteur à cavité chaotique" pour la 

focalisation dans un milieu solide, réverbérant ou non, en utilisant une seule source est réalisée. Les 

méthodes de retournement temporel et de filtre inverse sont présentées et comparées. La 

démonstration expérimentale qu’un "transducteur à cavité chaotique" peut être utilisé conjointement 

avec les méthodes d’inversion d’impulsion afin de réaliser une image de non linéarités localisées est 
présentée. 

 
SUMMARY  

 In this thesis we propose the development of an innovative micro-damage imaging system based 

on a combination of Nonlinear Elastic Wave Spectroscopy techniques and “chaotic cavity transducer” 

concept. It consists of a combination of a PZT ceramic glued to a cavity of chaotic shape with the time 

reversal principle. The feasibility and capabilities of these new ideas is explored by numerical 

simulations, and optimal operational parameters for experimental implementation are suggested based 

on the modelling support. 

 A large part of the research work conducted in this thesis is concentrated on the development of 

numerical simulation tools to help the improvement of such nonlinear imaging methods. A nodal 

Discontinuous Galerkin Finite Element Method (DG-FEM) scheme is extended to nonlinear elasto-

dynamic including source terms. A Perfectly Matched Layer absorbing boundary condition well 

adapted to the DG-FEM scheme, called Nearly Perfectly Matched Layer (NPML), is also developed. 

In the case of orthotropic material as stability problems appear, a mixture of NPML and sponge layer, 

with a controllable ratio of these two kinds of absorbing layers, is introduced. 

 The experimental validation of “chaotic cavity transducer” to focalize in reverberant and non-

reverberant solid media with only one source is made. Classical time reversal, inverse filter and 1 Bit 

time reversal process are discussed and compared. The experimental demonstration of the use of a 

“chaotic cavity transducer”, in combination with the pulse inversion and 1-bit methods, to obtain an 

image of localized nonlinearity is made. This opens the possibility for high resolution imaging of 

nonlinear defects. 


