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RESUME

RESUME

Les avancées récentes dans le domaine des matériaovants nécessitent le
développement de techniques de Controle Non Dest(GIND) et d’imagerie qui permettent
la quantification et la localisation de défauts moistructuraux dans une large variété de
matériaux, et cela durant leur fabrication et tol#ier durée de vie. Le contrGle de ces
matériaux, incluant entre autre les alliages, E®ms et les composites assure a la fois leur
qualité et leur fiabilité. La principale difficultgour la caractérisation d’'un processus de
détérioration d’une structure, provient du fait daematériau ne présente généralement que
peu de signes d’endommagement avant I'apparitiodéi@minations ou de macro-fissures.
Parmi les techniques actuelles de CND, les méthatiessonores sont considérées comme
des outils performants, et ont connu un essor dérable ces derniéres décennies.
Généralement, elles reposent sur des principeutique linéaire, et sont limitées a la
détection de défauts de grande taille.

Du fait d’une intense activité de recherche danddmaine de I'acoustique non linéaire,
un type de méthodes innovantes de CND, appeléesliig¢ar Elastic Wave Spectroscopy”
(NEWS), ont récemment été développées afin de wétede maniere précoce 'apparition
d’endommagement. Le concept de base des méthod¥gSNiEpose sur le fait que la
formation de défauts a I'intérieure d’'une structprgsse étre détectée immediatement par
laugmentation des parametres non linéaires. Debnenses études ont démontré de maniere
irréfutable que la forte non linéarité macroscopigqlu matériau était fortement liée a la
guantité de micro- imperfections, comme des fissune des liaisons faibles, qu'’il contient.
En effet, ces imperfections ont un comportemererent non linéaire, que méme une
excitation acoustique de faible amplitude produi uéponse macroscopique mesurable. Les
méthodes NEWS utilisées, dans un premier temps, lpalétermination globale de I'état de
fatigue de structure, ont été récemment étenduesdamager des défauts en utilisant des
techniques de vibrométrie laser, des ultrasonser&rou de la cartographie d’onde de
cisaillement. Depuis environ cing ans, I'idée denbmer les attraits des méthodes NEWS et
du Retournement Temporel Acoustique (RTA), qui mitufa possibilité de focaliser des
ondes ultrasonores, aussi bien dans le temps eggalte, et cela quelque soit la position de la
source et de I'hétérogenéité du milieu de propagata été proposée pour I'imagerie non
linéaire de défauts. Les principes d'imagerie novedire basés sur cette combinaison,
retournement temporel / effet non linéaires, petiédre classés en deux catégories que I'on
appelle généralement NEWS-TR et TR-NEWS commeitjuel la Figure 1.
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NEWS-TR TR-NEWS

__________________ Yoo '

| Time reverse direct signals

| Localized increase of stress |

- Pulse inversion filterin - ¢ ;
A, e . Nonlinear Analysis
i - Harmonic generation (2f....)
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"""""""""""""" - Pulse inversion

jmmmmmmmmmmee h . - Sidelobe energy investigation
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______________ it
: |

| Defect detection |

Fig. 1 Méthodes de detection de défauts basées sur omgr@ison du RTA et des méthodes NEWS.

Les méthodes NEWS-TR, pour lesquelles on filtrdodid les composantes non linéaires de
la réponse de I'échantillon a une excitation glebgbuis on utilise le processus de
retournement temporel, permettent de focaliserefée sur le défaut. Les méthodes TR-
NEWS, pour lesquelles les deux processus sontgésgpermettent d’augmenter localement
les contraintes. On peut ainsi regarder la répansdinéaire de I'échantillon a une excitation
de forte amplitude cette fois-ci localisée. Dansnlajorité des applications en CND de ce
concept, un systéme de RTA a un canal a été uéhséollant directement sur I'échantillon
une céramique piézoélectrique comme le montregargi2. Dans un premier temps on envoi
un signal source a l'aide d’'un transducteur piézaélue. La vitesse particulaire est mesurée
par un vibrometre laser en un point donné. Le sightenu est un signal multi réverbérant, si
on veut que le procéedé fonctionne. Puis on envsigeal retourné temporellement a I'aide du
méme transducteur. Enfin, si on mesure la viteastcplaire juste autour du méme point, on
constate que l'onde se focalise sur cette mémetigoset qu’elle se re-compresse
temporellement. L’échantillon doit alors étre ssdiinment petit pour pouvoir étre considére
comme réverbérant dans la bande de fréquenceseasli afin que la focalisation par RTA a
un canal fonctionne. Dans l'industrie aéronautiglés, structures sont fréquemment des
plagues de grandes dimensions fabriquées dans @€riamx composites fortement
atténuants. L'imagerie ultrasonore de ces strustporir des fins de contréle santé intégré a
souvent été réalisée a l'aide d’'onde de Lamb. Maiss de tels échantillons non réverbérants
la méthode de focalisation par RTA est difficilernapplicable.
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Fig. 2 Principe du Retournement Temporel (RT) & un canal pa focalisation d’une onde élastique dans un

échantillon solide réverbérant.

Dans cette these nous proposons de développeysieénse d’imagerie ultrasonore
innovante de micro- défauts basé sur l'utilisattonjointe de technique NEWS et du concept
de "transducteur a cavité chaotique”. Ce transduaterrespond a la combinaison d’une
céramique piézoélectrique collée sur une cavitéfatme chaotique et du principe de
retournement temporel comme le montre la Figur&’@de générée par la céramique se
propage dans la cavité. A chaque fois que l'ond&earsur linterface entre la cavité et
I'échantillon une partie de I'énergie reste dancdaité et subie des réflexions multiples.
L’autre partie de I'énergie est transmise danshiédillon. Ici méme si I'échantillon n’est pas
réverbérant, le processus utilise les modes propeesla cavité. Les avantages des
Transducteurs a cavité chaotique sont les suivahtsy a plus d’influence de la géométrie
de I'échantillon et on peut l'utiliser pour des anhllons non réverbérants. Par contre,
I'énergie transmise a I'échantillon sera moins ing@ate.

Chaotic cavity transducer

I'PZT Ceramic
Chaotic cavity

I
I
I
: Sample

Fig. 3 Principe des “transducteurs a cavité chaotique”.
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La faisabilité et les performances de ce nouveaterye sont explorées par des simulations
numériques. Des parametres optimaux d’utilisatioarpune implémentation expérimentale
sont proposés. Ainsi, une grande partie des travaemés dans le cadre de cette these se
rattache au domaine de la détection et de I'imagwei défauts par acoustique non linéaire, et
tout particulierement sur le développement d’outilsnériques permettant 'amélioration de
telles techniques d’imagerie.

Un schéma déléments finis de type Galerkin Disicon (GD), une combinaison
judicieuse des méthodes d’éléments finis et demwelufinis, est présentée. Différents flux
numeriques, comme le flux de Lax-Freidrich ou del@wv, et I'introduction de conditions
aux limites libres ou sans contraintes sont préserites principales contributions de cette
these au développement du code numérique sontotinttion de I'elastodynamique non
linéaire, et la possibilité d'utiliser des élémewpsadrilatéraux. De plus, un type de zone
absorbante parfaitement adaptée (PML), appeléeriiNBarfectly Matched Layer" (NPML),
pouvant étre facilement intégrée au code numeério@ea aussi été développé. Enfin, une
implémentation par sous domaine a été introduite @faméliorer I'efficacité du schéma
numerique lorsque les PML sont utilisées. Cellgpermettra d’autre part d'implémenter
facilement des problemes multi- physiques. Afinvaéder 'implémentation du schéma de
Galerkin Discontinu des configurations de test été réalisées. La premiere simulation
correspond au probleme de Lamb dans un matéritnopsolinéaire. Une source impose une
contrainte ponctuelle sur une interface libre. Degoepteurs sont positionnés a 850 et 1200
m de la source sur la méme interface. La Figureo#tra les fronts d’onde au temps 0.7
secondes. Maintenant si on compare les vitessescijaires horizontales et verticales
calculées pour les deux récepteurs avec des swdutamalytiques, on trouve que la
correspondance est excellente dans tous les cam&dm montre la Figure 5. D’autres
simulations de propagation dans un milieu anis@reglident encore I'implémentation du
schéma DG a l'aide de comparaisons avec des suduaioalytiques connues.

0

-1000

-2000 0
2000

4000

y (m)

X (m)
Fig. 4 Amplitude de la vitessg at = 0.7 scalculée avec un schéma RK-DG-FEM O5 utilisant ééments

triangulaire.
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Fig. 5 Comparaison d’une solution analytique de referen@x des resultants de simulation obtenus pour deu
récepteurs en utilisant un schema d'ordre 5 RK-IEBAFOS5. La premiéere colonne (a) et (b) sont pour le
récepteur 1 et la seconde colonne (c) et (d) pouédepteur 2. Dans ligne la figure de droite prtesk vitesse

particulaire horizontale et la figure de gaucheitasse particulaire verticale.

Dans le cas non linéaire, comme tres peu de résudtaalytiques sont disponibles, la
propagation d’'une onde plane a été considérée. laoarcette simulation, on a utilisé une
ligne source. On voit sur la Figure 6 les frontsmdle au temps 0.48 seconde. Sur la Figure 7,
les spectres des signaux calculés a des distarc@s@let 10 longueurs d’onde de la source
montrent qu’'une composante de I'onde transversarafipsur Vx. Cela correspond a un
couplage entre I'onde transverse et longitudin2lane part les composantes aux deuxiemes
harmoniques de Vx se déforment fortement au coartaropagation et leurs amplitudes
n‘augmentent pas en fonction de la distance, cooetngnt a ce qui est obtenu dans un fluide.
Les résultats obtenus sont en parfait accord amex de résultats de simulations numériques
publiés dans la littérature, et de solutions armggs approchées.
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~ 100 Source
= 100 | IR
-1500 =1000 =500 0 500 1000 L300
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Fig. 6 Amplitude de la vitesse pour une onde plane danmilieu non linéaire & = 0.48 s obtenue avec un
schéma RK-DG-FEM O5 utilisant des éléments quaérdaix.
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Fig. 7 Spectres des vitess€, (premiére ligne) et verticald/, (deuxiéme ligne) des signaux obtenus

numériquement pour la propagation d’'une onde ptimes un milieu non linéaire a des distances d@Be(lde

points), 6 (ligne pointillée) et 10 (ligne solidehgueures d’onde longitudinale.

Pour simuler la propagation dans un milieu infai semi infini, nous avons choisi
d’'introduire des PML. Les PML (Perfectly Matched yea) sont des zones a la fois
atténuantes et possédant la propriété d'étre pamiant adaptée en impédance avec le
domaine de calcul quelque soit I'angle d’incidertéa fréequence. Une nouvelle formulation
des C-PML, basée sur le systeme du deuxieme oenevent, a l'aide d’'une formulation
déplacement / contrainte, la propagation d’'ondasti€ues dans des solides anisotropes et
piézoélectriques, est introduite. Cette formulatsh implémentée dans un code commercial
d’éléments finis (COMSOL Multiphysics) et dans wde pseudo spectral. Les résultats de
simulation, pour des solides anisotropes et piéntdfjues, confirment I'excellente capacité
d’absorption des C-PML pour des simulations d’ondessurfaces et de domaines de calcul
allongés, comme le montre la Figure 8.
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Fig. 8 Model utilise pour la simulation de la propagatdandes de surface dans un solide isotrope aldreg.
C-PML sont positionnées sur la droite, la gauchie &#as du domaine de calcul. L'interface supégeast une
surface libre. Les positions de la source S etrquedcepteursR;, R,, Rs, Ry) sont aussi présentées. Les
évolutions temporelles des composantes horizontal@) et verticale u(b) du déplacement particulaire au
récepteurR, obtenues par une solution analytique (ligne splielenumériquement avec des C-PML (ligne
pointillée) et des PML (ligne de points) sont condes. (¢) and (d) sont des zooms de (a) et (bgctispment,

montrant le benefice d'utiliser des C-PML au lieuRML.

Dans toutes les implémentations présentées delIlC-Bes équations différentielles
aux dérivés partielles sont introduites pour faéreoluer dans le temps les variables
supplémentaires introduites par les C-PML. Ces ttmpm différentielles aux dérivés
partielles, du fait qu’elles contiennent des dés/épatiales, sont difficiles a introduire dans
le code DG développé, et tout particulierementgoisn flux numérigue de type Godunov est
utilisé. Pour palier a cette difficulté, les NPMbrg appliquées a la propagation d’ondes
élastiques dans les milieux anisotropes. Le praiciptérét de cette formulation de zone
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absorbante parfaitement adaptée est lié au faitlgusystéme d’équations reste sous une
forme identigue au systeme de départ, c’est-afditement hyperbolique, et que les flux
modifiés par les PML sont reliés aux flux physiqpes de simples équations différentielles
ordinaires. Ce dernier point réduit considérablemnteedifficulté et le temps de calcul. De plus,
ces NPML ont exactement les mémes propriétés d'ptieso que les C-PML, comme le
montre les Figures 9 et 10 qui présentent un caleybropagation d’onde élastique dans le
solide anisotrope dont les constantes sont dordaéesle tableau 1. On constate sur la Figure
9 que méme avec une dynamique de 100 dB les NPMdrbdnt parfaitement les ondes. De
plus si on calcul I'énergie contenue dans la zanealcul hors PML au cours du temps pour
les NPML et les C-PML on constate que les résubbatenus sont parfaitement identiques
(Figure 10). On voit donc que I'approximation fafieur la dérivation des NPML n’a pas
d’'impact sur leur qualité d’absorption.
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Fig. 9 Amplitude des déplacements obtenue lors la prdjmagd’'une onde élastique dans un milieu orthotrope
(milieu 1) aux instants (a) t =5 s, (b) t = 15 | t = 30 ps, and (d) t = 125 us. Les figurest &m échelle
logarithmique (dB) avec une amplitude de 10 nm cem@hérence.
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Fig. 10 Evolution temorelle de I'énergie dans le domaiaecdicul, hors PML, pour les C-PML (ligne pointd)é

et les NPML (ligne solide) pour un solide ortho&ofmilieu ), pour les mémes conditions que cellglisées

pour obtenir la Figure 9.

Tab. 1 Propriétés des matériaux orthotropes utilisésdesssimulations.

Material p (kg/m?) C11 (GPa) C, (GPa) C12 (GPa) Ces (GPa)
I 4000 40 200 38 20
1] 4000 40 200 75 20

Il est connu que pour certains matériaux anisesdps PML sont instables. Si on refait
les calculs précédents dans un matériau notéiltlaiot les constantes sont identiques au cas
précédent sauf pour C12. La figure 11 montre gqeeoledes entrant dans la PML sont

amplifiées au lieu d’étre atténuées.
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Fig. 11 Amplitude des déplacements obtenue lors la prdaged’'une onde élastique dans un milieu orthotrope
(milieu 1) aux instants (a) t =5 ps, (b) t = US, (c) t = 30 ps, and (d) t = 50 ps. Les figumd €n échelle
logarithmique (dB) avec une amplitude de 10 nm ceméfiérence. Des instabiltés apparaissent daiPligh..

En fait, il a été montré par Bécache que si onroggles courbes de lenteurs du matériau
(Figure 12) alors celles qui présentaient des gmpbur lesquelles les vitesses de phase et de
groupe étaient de signe inverse, correspondaides Zones d’instabilités des PML suivant

en bleu ow en violet.

0.5 6000

0.25 3000

: :
or 0 i
-0.25 -3000
05 -6000 \ ‘
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Fig. 12 Courbe de lenteur (a gauche) et fronts d'ondesit@r pour le mileiu Ill. Les lignes viollettes

correspondent a des directions d'incidence pouuleltes les NPLM suivant sont instables. Les lignes bleues

correspondent a des directions d'incidence poguieles les NPLM suivantsont instables.
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En suivant le concept de "MPML" introduit réecemmedans la littérature, nous considérons
un mélange de C-PML et de zone atténuante, end&antrla proportion de chacun de ces
deux types de zone absorbante afin de stabiliseZ{EML ou les NPML. Il est démontré que
ces C-PML stabilisées ne sont alors plus parfaiteragaptées en impédance au reste du
domaine de calcul. Une étude compléte de stat@Btémenée. Elle permet de donner une
interprétation physique du critére de stabilitéeolt précédemment dans la littérature pour les
"MPML" : Les vitesses de groupe et de phase dedBomcidente dans la PML doivent
posséder le méme signe. Sur la Figure 13 on vait lgucalcul de propagation d’onde
élastique dans le milieu Ill n’explose plus lorsdjoe utilise des MPML. Par contre le niveau
d’'ondes réfléchies est bien supérieur a celui abtavec seulement des C-PML dans le
milieu I.

_______________________________

y(cm)
.
y(cm)

(d) 10’ _____________________
":,,r'

y(cm)

X (cm) X (cm)
Fig. 13 Amplitude des déplacements obtenue lors la prdfmaged’une onde élastique dans un milieu orthotrope
(milieu 111) aux instants (a) t =5 ps, (b) t = US, (c) t = 30 ps, and (d) t = 125 us. Les figwast en échelle
logarithmique (dB) avec une amplitude de 10 nm ceméférence. Aucune instabilités n'apparaissent fesu
MPML utilisées.

Pour la simulation des ondes de Lamb, ces C-PMhilst@es permettent d’absorber les
modes inverses. Cette absorption se fait au déitidela longueur de la zone absorbante qui
doit alors étre d’au moins deux fois la longuewmdle la plus grande existante dans la plaque

11
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pour la plage de fréquence considérée. Dans céeaaseau de réflexion obtenu est -80dB
par rapport a I'énergie incidente.

Finalement, une étude numérique et expérimentatel'stilisation du concept de
"transducteur a cavité chaotique" pour la focalsatians un milieu solide, réverbérant ou
non, en utilisant une seule source est réalisée.niéthodes de retournement temporel, de
filtre inverse et de retournement temporel 1-bittgarésentées et comparées. Dans le but de
transmettre plus d’énergie dans le milieu et auderde rapport signal sur bruit, un signal
source modulé en fréquence est utilisé. L'utiizatde la méthode de filtrage inverse a la
place du retournement temporel permet lors du geusede focalisation de tirer avantage de
tous les modes propres de la cavité, y compris deuaible énergie qui sont peu exploités
par le retournement temporel. Cela améliore leoregression temporelle ainsi que le rapport

signal sur bruit (Figure 14).

Time Reversal (TR) Inverse Fitter (IF) |

Velocity (cm/s)
Velocity (cm/s)
[

Time (Ms) Time (ms)

Fig. 14 Comparaison des signaux de recompression tempotakaus pour la focalisation par (a) Retournement

Temporel (TR), (b) et Filtre Inverse (IF).

Un des principaux avantages de l'utilisation d'wsvité chaotique, démontré aussi bien
numériquement (Figure 15) qu’expérimentalement|eestippression des images fantémes et
des effets de bords généralement présents lorsrategsus de rétro- focalisation. Les
résultats expérimentaux obtenu dans un échantilearbérant d’acier démontre la capacité
du "transducteur a cavité chaotique" a focaliseroynpris sur les bords de I'échantillon

(Figure 16).

12
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0
X (mm)

Fig. 15 Vitesse particulairealculée a I'aide d’'un schéma RK-DG-FEM O4 a cinstants autour du temps de
recompression temporelle, pour une cavité chaotiueuivre. (a} = 149 ps, (b} = 149.3 us, (c) = 149.6 us,
(d)t=149.9 ps, and (¢ 150.5 ps.
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Fig. 16 Expérience de focalisation par Retournement TenhgdR) sur un point placé directement sur le bord

de I'échantillon. (a) Image 2D, (b) distributionasiale du signal focalise suivaxety a l'instant T = 0 us.
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Les expériences menées sur une plaque de compositeéverbérante, de 2 mm d’épaisseur,
démontrent un deuxieme intérét des cavités chaggiqua possibilité de focaliser dans un
échantillon non réverbérant comme le montre lafeidLr.

Tr=-2us Tr=0ps Tr=2ps

Fig. 17 Vitesse particulaire a différentes instants maritida processus de retro-focalisation dans la gaqu

composite non réverbérante a l'aide d’une cavit&x2x 12 cm.

Dans ce cas, I'échantillon ne contribue pas auga®us de focalisation qui est obtenu par des
ondes provenant directement du transducteur, ephunde toutes les directions entourant le
point focal comme c’est le cas pour un échantitirerbérant (Figure 18).

Piezoelectric
transduer

Fig. 18 Explication schématique du fonctionnement d'unarigducteur a cavité chaotique” place sur un

échantillon non réverbérant.

Nous avons aussi déemontré qu’'un "transducteurvéécahaotique” peut étre utilisé,
conjointement avec les méthodes d’inversion d’imjaul et de retournement temporel 1-bit,
afin de réaliser une image de non linéarités leéab (Figure 19).

2 Measurement of the
retrofocused signal

1 Emission of a pulse

(or a linear sweep)
P — .4 Extract the non-

U: ® linear information

Piezoelectric
transducer

m_?) Same process with an
inverted pulse or sweep

Fig. 19Principe de la méthodER-NEWS utilisant urf transducteur a cavité chaotigue
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L'image préliminaire, présentée sur la Figure 20nd fissure a la surface d’'un échantillon
d’acier montre les potentialités des "transducteairgavité chaotique" pour I'imagerie
ultrasonore non linéaire de défauts. De plus, Hrdmution principale de la fissure provient
de son extrémité, confirmant des résultats pulbbiésmment.

(a] Crack 1.2 (b)
) 1.0
g
3 0.8
g
2 0.6
= = 0.4
22
0.2
J L = 5 10 15 20
Axial distance (mm) Axial distance (mm)

Fig. 20Image of a crack at the surface of a steel saoipi@ined with a combination of TR-NEWS method and

“chaotic cavity transducer”.

Ainsi, en conclusion, nous pouvons dire que dbtse pose la premiere brique pour le
développement du concept de contréle santé infgggréne technique d’'imagerie ultrasonore
non linéaire utilisant des "transducteur a cavit@atique" pour la détection précoce de
'endommagement de structures solides.
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|NTRODUCTION

Recent advances in modern material technologyinedihe development of non-
destructive testing (NDT) and imaging techniquest tlallow the quantification and
localization of micro-structural damage in a widarigty of materials during their
manufacture and life cycle. The monitoring of thesaterials, including alloys, cements,
concretes and composites, ensures both their guadd durability. The aim of NDT is to
identify and locate physical defects which are geatable without causing any damage to
the material structure under test. Among the mestiINDT methods we can cite magnetic
field, eddy-current, radiography, thermal fieldpndtion, and ultrasonic methods. The first
two methods are generally used to detect surfaegkbrg or near surface defects in metallic
samples. The later four, more general, are usetbtect buried features as well as surface
breaking defects. They may also be employed whegriantitative analysis is required.
Unfortunately, these traditional NDT techniques afeen not sufficiently sensitive to the
presence of incipient and progressive damage. thdde¢ke main difficulty in the
characterization of a degradation process in strattmaterials relates to the fact that the
material exhibits very few measurable signs of dganarior to the onset of delaminations or
macro-cracks. In fact, traditional NDT techniques kot show any significant sign of
degradation before the first 80-90% of the fatigteewhich is in general too late to make any
modification or repair of the structure.

Over the cited NDT methods, ultrasonic technigo@ge been considered as excellent
tools and their applications have been increasapidly over the last few decades. They are
generally based on the principles of linear acoustihis includes effects of reflection,
scattering, transmission, and absorption of probeustic energy. The presence of any
structural or material inhomogeneities leads tosph@nd/or amplitude variations of received
signals while its frequency content is still thengaas the one of the emitted signals. So, such
systems are currently limited to the detectionawfé defects that produce significant linear
scatter. From the mechanical or acoustical pointi@#, the effects of damage on a structure
can be classified as linear or nonlinear. A ling@mage situation is defined as the case when
the initially linear-elastic structure remains kmeslastic after damage. Nonlinear damage is
defined as the case when the initially linear-etastructure behaves in a nonlinear manner
after the damage has been introduced. One exarhptanbnear damage is the formation of a
fatigue crack that subsequently opens and close®ruthe normal operating vibration
environment.

As a result of an intense worldwide research onlinear acoustics, dealing with the
investigation of the amplitude dependence of maltgvarameters such as wavespeed, or
attenuation under the action of small dynamic stigwer than 10), a set of innovative
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NDT methods, called Nonlinear Elastic Wave Spectpg (NEWS) techniques, have been
recently developed to probe for the existence ohafge with a superior sensitivity than
traditional technologies. The concept of NEWS-basethods is that the internal damage can
be measured directly with the instantaneous deteatf an increase in the nonlinearity
parameters. Moreover, a huge number of studies li@monstrated that the degree of
macroscopic nonlinear behaviour of a materialnsngly determined by the amount of micro-
inhomogeneous imperfections as defects or weaksthrad exist within the material. Indeed,
these imperfections have a so strong nonlineanik@ina even under acoustic excitation, that
become measurable on the macroscopic level. NEWSnigues developed include
modulation experiments by frequency mixing of twstidct frequency sound waves, studies
of the amplitude dependence of the resonance spectronlinear reverberation spectroscopy,
phase modulation and investigations of slow dyndmeicaviour. They have been applied for
the evaluation of adhesives, the investigation igfodations in pure metals, the study of
fatigue cracking, etc.

The most well known example of NEWS is that obaet-burst wave propagation which
is used to probe the generation of second harnfoegmiency components as a function of
distance or amplitude. This method, known as harmiomaging, has known a rapid growth,
since the mid 90’s, in ultrasonic medical imagitichas demonstrated a tremendous increase
of the contrast of the obtained images and speeklection capability. It is now available in
commercial echographic systems providing high régm images of tissues and organs.
Although these results have resulted in a growirtgrest in the nonlinear acoustic effects in
solids and have led to promising advances in tkkl fof non-destructive micro-damage
diagnostics, the development of such nonlineastsell imaging systems for solid materials is
still at the beginning. Further development of thasnlinear imaging methods will be part of
the topic of this thesis. Numerical simulationsngsnonlinear wave propagation models for
complex and heterogeneously damaged materials @eded to support advanced
practicability of these nonlinear ultrasonic imagitechniques.

NEWS methods have at first been applied for tlobal determination of the fatigue
state of a structure, and recently extended toaliation techniques for imaging defect’s
nonlinearity distributions using laser vibrometayrborne ultrasound, or shearography. In the
last five years, the concept of merging the besedit both NEWS and Time Reversal
Acoustic (TRA), which provides the ability to focudtrasonic waves in time and space,
regardless of the position of the initial sourcel aif the heterogeneity of the medium in
which the wave propagates, has been proposed ar todealize images of defects in solid
samples. In most NDT applications of this combimratia one channel TRA experiment has
been used in which a piezoelectric (PZT) ceramglugd directly to a sample. The sample is
generally small enough to be considered as mulgrimerant in the frequency range of
interest.
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In aeronautical industry, the structures often plege like components of large size
made in composite a highly attenuating medium. Wimeaging these large structures for
structural health monitoring, particular focus bagn made on the use of guided Lamb waves.
But such non-reverberant samples are difficult tokwith the one channel TRA method. So,
in this thesis we propose the development of aouative micro-damage imaging system
based on a combination of NEWS techniques and tchaavity transducer” concept. It
consists of a combination of a PZT ceramic glued tavity of chaotic shape on the hardware
side with the time reversal principle on the sofevside, as it has been done recently for 3D
imaging in fluid. The feasibility and capabilitied these new ideas will be explored by
numerical simulations, and optimal operational peters for experimental implementation
will be suggested based on the modelling suppat.&Slarge part of the research work
conducted in this thesis is concentrated on the aslonof nonlinear ultrasonic damage
detection and imaging, and more precisely in thesldgpment of numerical simulation tools
to help the improvement of such nonlinear imagireghuds.

The outline of the thesis is as follows:

In the first chapter of this thesis ultrasonic NEREhniques based on NEWS methods
and specially the ones which are combined with tnesersal process, are reviewed. The
nonlinear elastodynamic equations needed in thairefar of the thesis is then introduced,
and different kinds of nonlinearity models, inchagi “classical” and “non-classical”
nonlinearity are discussed, because for a larges @éelastic heterogeneous solid media, the
conventional five-constant elasticity theory is eoft insufficient to explain anomalous
nonlinear behaviours of these media. The comparisiomonlinear signatures of these
different kinds of nonlinearity for shock wave geateon and rod resonance is studied to help
the determination of the predominant nonlinear raa@m in specific experiment. An
introduction of the classical numerical methoddudimg Finite Difference Method, Finite
Volume Method (FVM), Finite Element Method (FEM)sdudo-Spectral method and
Discontinuous Galerkin Finite Element Method (DGMPHE focusing mainly on their
advantages and weaknesses is made.

As we want to simulate nonlinear elastic wave pgation in structures of complex
geometry, we need, in order to reduce the numbeelbto be used while maintaining a high
degree of accuracy, a high-order numerical methdal geometric flexibility. The second
chapter gives a presentation of the chosen Diswontis Galerkin Finite Element Method
(DG-FEM), an intelligent combination of the FEM aR¥M methods, utilizing a space of
basis and test functions that mimics the FEM methwaidsatisfying the equation in a sense
closer to the FVM method. Indeed, in contrast tassical FEM, within the DG-FEM
framework the solution can be discontinuous actbsselement interfaces, which allows
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incorporating the well-established numerical fluxdtions from the FVM framework. How
to implement the DG-FEM operators for nonlinearseldynamic in a general, flexible, and
robust manner is presented in detail. We discuss km in practice, assemble the
computational grid and compute all the entitiesunegl to enable the implementation of the
scheme, both for triangular and quadrilateral gridereover, different choices of numerical
fluxes are also discussed. The results of numesicalilations, based on the elastodynamic
system equation and compared with analytical swhstifor isotropic and anisotropic linear or
nonlinear medium, demonstrate the excellent pratiand extensive range of application of
the DG-FEM scheme. For each situation the resuthefsimulation is compared with an
analytical solution to valid all the implementatiohDG-FEM.

Numerical solutions of Partial Differential Equats for wave propagation require the
truncation of an unbounded media to fit into corepaitwith a limited memory and
computation time. For such problems, an Absorbimgiriglary Conditions is needed at the
truncated boundary to eliminate the reflectionsmfrthis boundary to the computational
domain. The third chapter of this thesis providesmaroduction of the Convolution Perfectly
Matched Layer (C-PML) absorbing boundary conditims} introduced in 1994 for simulating
electromagnetic waves in an unbounded media. Cklsi C-PML has been introduced in
first-order formulation of both electromagnetismdaalastodynamic. In this chapter, we
propose first to extend the C-PML absorbing layerthe second-order system describing
elastic waves in displacement formulation in am@gat solids. This second-order formulation
is described in frequency and time domains bothefastic solid and piezoelectric medium.
The efficiency of this second-order perfectly matthayer is then demonstrated based upon
2D benchmarks both for isotropic and anisotropitdsp and for bulk and surface wave
propagation. An another kind of PML, more adaptedhe developed DG-FEM scheme and
simpler to implement, named Nearly Perfectly Matthayer (NPML), also first proposed for
electromagnetism, is extended for nonlinear elgstachic. In some anisotropic media,
numerical instabilities appear in the PML limititige use of this absorbing layer. In order to
stabilize the absorbing layer, the “Multiaxial Rty Matched Layer” (“MPML”) has been
proposed. A complete study of the matching andildtalproperties of this “MPML” is
presented. All this theoretical work is finally iddted by numerical examples. A similar idea
is used in the case of guided waves for frequensltesre “inverse modes” with group and
phase velocities of opposite signs are excited reviplit field PML or C-PML do not work
satisfactorily. Examples of stabilized absorbingelaare also presented for such guided waves
case.

Finally, the fourth and last chapter of this tBesoncerns the application of “chaotic
cavity transducer” for the linear and nonlineasatawave imaging. The principles of the one
channel TR focalization are first presented. lt®rishing behavior is linked to the ergodic
property of the chaotic cavity, bearing the posisybto collect all information in only one
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point. To improve the use of one channel TR in N&dplication, we propose to use a
“chaotic cavity transducer”, consisting of a conatian of a PZT ceramic glued to a cavity of
chaotic shape on the hardware side with the timversal principle on the software side.
Three signal processing techniques are studieddardo improve both the signal to noise
ratio (contrast) and the quality of the focalizati€hirped excitation, Inverse Filter and 1 bit
processing. We demonstrate numerically and expeteiig that a transducer glued on a
chaotic cavity can be used as an array of transgues it has been done recently for 3D
imaging in fluid but for imaging applications in Igb medium, and more precisely to
nonlinear imaging of defects such as cracks. Is st case, the chaotic cavity transducer
focusing process is used in combination with thésgunversion method, by successively
focusing a pulse and its inverse, and subsequentiyming the two results to extract the
nonlinear response of the sample at the focal ipasiand so obtain an image of localized
nonlinearity.
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CHAPTER 1: INTRODUCTION TO NONLINEAR
NONDESTRUCTIVE TESTING AND | MAGING

1.1 Introduction

In this chapter a brief introduction to nonlineemdestructive testing and imaging and
specially the ones which use time reversal prosedidye reviewed. Because for a large class
of elastic heterogeneous solid media, the conwvealifive-constant elasticity theory is often
insufficient to explain anomalous nonlinear behavjdlifferent kind of nonlinearity models,
including “classical” and “non-classical” nonlinggrwill be discussed. The 2D and 3D
nonlinear elastodynamic equations, expressed iroresetvative form as needed by the
Discontinuous Galerkin numerical method presentedthe next chapter, will be then
introduced.

Given a reliable model of wave propagation, nuparsimulation in structures with
complex geometry is often a prerequisite for reatadnterpretation, which will turn to be
guidance for improving imaging systems. In ordeexplain the reasons of the choice of the
used numerical scheme, classical numerical sinmmatiethods, including Finite Difference
Method, Finite Volume Method (FVM), Finite Elemeiethod (FEM), Pseudo-Spectral
method and Discontinuous Galerkin Finite Elementhidd (DG-FEM), will be presented and
compared, focusing on their advantages and weadsiess

The comparison of nonlinear signatures of the ipusly presented kinds of
nonlinearity for shock wave generation and rod messce will be studied to help the
determination of the predominant nonlinear mechanisspecific experiments.

1.2 Nonlinear Nondestructive Testing and Imaging M#nods
1.2.1 NEWS Methods

In the last few years, a strong interest for nehdetive testing methods based on
nonlinear elastic effects in solid has grown, dniv® the request from industry for sensitive
guantification and localization of micro-structurdamage. Researchers have developed
innovative techniques that explicitly interrogate tmaterial’s micromechanical behavior and
its effect on wave propagation by investigating d@neplitude dependence of macroscopically
observable properties [101], [134], [189], [190191], [197]. Such techniques are termed

21



CHAPTER 1: INTRODUCTION TO NONLINEAR NONDESTRUCTIVE TESTING AND IMAGING

Nonlinear Elastic Wave Spectroscopy (NEWS) techesg he basis of all NEWS techniques
is to measure and analyze macroscopic signatusatting from a local violation of the linear
stress-strain relation at the micro-scale.

Several NEWS techniques have been developed toeptize existence of damage
induced nonlinearity. One of the most frequentlydgtd methods is harmonic analysis in the
frequency domain [50], [135], consisting of measgrithe second and higher harmonic
amplitude versus the strain amplitude of the funelatad, which provides quantitative
information about the nature of the nonlinearitynother technique consists of parametric
interactions between waves emitted in materiale $ample acts as a nonlinear frequency
mixer, so that sum and difference frequency waves aeated [1], [131]. In addition,
modulations of amplitude [189] and phase [197] hbgen investigated in order to evaluate
the classical nonlinear perturbation coefficigtcoming from the Taylor expansion of
stress-strain relation [87The study of resonance frequency provides key mn&bion about
nonlinear behavior. By plotting the frequency slai$t a function of the fundamental mode
strain amplitude, it is observed that resonancelitudp distortion increases significantly
with defect [191], [192]. Tests performed on a wideiety of materials subjected to different
micro-damage mechanisms of mechanical, chemicaktardhal origin, have shown that the
sensitivity of such nonlinear methods to the dedecof micro-scale features is far greater
than that obtained with linear acoustical methddsz!].

1.2.2 Linear and Nonlinear Ultrasonic Imaging Methals for NDT

The most frequently used imaging techniques baseithe analysis of ultrasonic signal
generation and propagation are surface-scan imaguadving laser vibrometry, air-coupled
ultrasonics and ultrasound thermography, ultrasdambgraphy; and time reversal (or wave
phase conjugation) techniques. Laser vibrometra iprecise technology for non-contact
vibration measurements, modal analysis and nomg#ste testing for many areas of
engineering. Linear laser vibrometry provides atresre sensitivity (pico-meter range) in
measuring and imaging vibration fields by evalugtihe laser light scattered back from the
vibrating object. Air-Coupled Ultrasound is anothestablished method for remote defect
imaging that has become a routine inspection tegcfenin nondestructive testing for a wide
range of materials and components [157]. A new ggio® of air-coupled ultrasonic
transducers covering a wide frequency range upwoNHz enables to image faint acoustic
fields scattered by tiny defects.

In addition to pure acoustic or ultrasonic scanmmgasurements, techniques based on
thermal-acoustic interaction have been successiudlgd in several NDT configurations:
SPATE [132] is a well known method for mechanidaéss measurement under static loads.
With higher frequency and efficient excitationjstalso possible to visualize the dissipated
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energy that is released due to nonlinear effeckss Technique is known as Ultrasound-
Excited Thermography (ULT). Basic investigation21? showed that the main advantage of
ULT is the defect selective indication of materfllws by using elastic nonlinearity in
defective material areas caused by friction orllgéacreased dissipation.

Multi-elements transducers are commonly used frasbnic medical imaging. They
offer a great flexibility in the realisation of imgas, and advanced imaging techniques have
been developed such as coded imaging, and dynafomading in reception. Most of these
methods are now starting to be transferred to tindasonic NDT applications, with the
development of dedicated electronic systems (MuttiXhe French society M2M).

In aeronautical industry, the main structures @ede like components of large size
often made in composite a highly attenuating mediwhen imaging these large structures
for structural health monitoring, particular fochigs been made on the use of guided Lamb
waves [13], [14], [204]. Generally one tris to geate a single Lamb mode to simplify the
measurement and understand how such wave is schtvgrvarious linear defects. In this
case the arrays are necessarily sparse with mtstest in reducing the spatial density of the
sensors in order to produce a cost effective system

Unfortunately, these traditional NDT techniquee aften not sufficiently sensitive to
the presence of incipient and progressive damageeed, the main difficulty in the
characterization of a degradation process in strattmaterials relates to the fact that the
material exhibits very few measurable signs of dganarior to the onset of delaminations or
macro-cracks. To overcome this limited sensitivity linear imaging methods, NEWS
methods have recently been extended to visualizatechniques for imaging defect’s
nonlinearity distributions using laser vibrometi{t74], airborne ultrasound175],
shearography161] or all optical photothermal and photoacoustiethods [82]. In the
airborne ultrasound method, the defects, actinpealized sources of nonlinear vibrations,
efficiently radiate higher harmonics into the sumding air.

1.2.3 TR and NEWS Combined Methods

Time Reversal (TR) [68]-[70] is now a well knowechnique which have been
developed in different fields including medical tdygy, diagnostic, and underwater acoustics,
due to its ability to provide spatial and tempdoealusing of an ultrasonic wave. Time-reversal
invariance in acoustics means that for every bofrsbunds(r,t) emitted from a source, and
which is reflected, refracted, or scattered by togeneities of the propagation medium, here
exists a set of waves(r,—t that precisely retrace all these complexes patlscanverge at
the original source, as if time were going backwardhis invariance is satisfied by the
eguation in non attenuating media. The TR proceadd to a spatial focusing and a temporal
compression. Spatial focusing means that the temersed field focuses back exactly at the
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source. Temporal compression means that the tirerged signal at the source is similar to
the signal previously emitted by the source. Ireotlords, the result of a TR process is that
waves recorded on the boundary are focused bagjaice and time on the acoustic source, or
on the scattering targets inside the region thaewaeting as sources. For classical linear TR
process, the returned signal focuses on the divage source position not on the defect [24],
[71]. The size of the focal spot depends on sosioe and form, and on the frequency of the
signal emitted. Concerning NDT applications, TR gesses have been applied in several
classical ultrasonic inspection methods: C-scar witmersed samples [40], Rayleigh and
Lamb waves propagation in plates and hollow cyliad®8], [99], [145], and structural health
monitoring [199], [172]. In these studies, it wdsown that the TR principle improves the
detection of flaws in heterogeneous materials fbrctv the microstructure displays a strong
speckle noise that is obstructing the observatibra alefect echo in classical ultrasonic
inspection. On the other hand, researchers haveuatered a serious limitation of the
traditional TR technique in the fact that only tekongest scatterer can be imaged. The
application of the so-called Décomposition de I'@péur de Retournement Temporel
(DORT) method [145], [146] and successive TR iterat [205], [130] may overcome this
feature to some extent and may enhance the detetiodfocusing selectively on weaker
scatterers. Using these advanced analysis andl gigyzessing techniques, flaws with sizes
even smaller than the wavelength can be detectédyily heterogeneous materials such as
titanium alloys [147], [21].

Experiment with NEWS techniques have demonstritatimicro-damage is first of all
a process of nonlinear scattering giving rise dteation of higher harmonics, rather than to
linear scattering effects. So, from this point a#w, the classical TR procedure should be
modified in such a way that the main signal treatimis concentrated on the nonlinear
components of the signals.

Following the laboratory studies of the NEWS taghes, we can underline two
important principles [112]: (1) the macroscopicatigserved nonlinear signatures originate
from zones with micro-damage and micromechanicalinear stress-strain relations; (2) the
nonlinear signatures are most efficiently generatethose locations where the strain within
the sample is prevailing. These two principles loarused as the basis for new micro-damage
visualization techniques based on nonlinear materiaperties. The NEWS methods allow
characterization of the nonlinear behavior, buytde not provide information about defect
localization. To overcome this problem, a methothlbming a Time Reversal (TR) process
and a nonlinear treatment has been proposed [PA33].[

For combining the nonlinearity based TR procesth whe NEWS methods, two
technologies have been proposed, depending on amhatinlinear treatment is performed
before or after the TR process. As presented irLHigthese two methodologies are defined as
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TR-NEWS, with nonlinear analysis as a post-treatnoértime reversal, and as NEWS-TR,
with nonlinear analysis as a pre-treatment of tiewversal [112].

NEWS-TR TR-NEWS

_____________________

R A l

| Time reverse direct signals

- Harmonic filtering (2f,...)

- Intermodulation filtering (f, + f.....) | Localized increase of stress |

L _]:l_ﬂ_sf: _i_n ver fi_o_n_ fl _lt_e_r Tg_ _________ Nonlinear Analism
{ - Harmonic generation (2f....)

- Intermodulation (f,+f....)
----------------------- - Pulse inversion

jmmmmmmmmmmee t _____________ - Sidelobe energy investigation
i Retro- focusmg on the defect | - Phase modulation

___________________________

| Defect detection |

Fig. 1.1 Defect detection methods based on a combinatidiRoind NEWS methods.

The TR-NEWS method, which consists in increasiagally the stress field using
properties of linear TR and subsequently applyioglinear analysis, has been experimentally
demonstrated by Sutiet al [176]. It seems to have a wide potential for aggion in solid
ultrasound imaging for nondestructive testing [11P84]. For TR-NEWS technology,
different experimental set-ups have been recemtpgsed [26], [81], [112], [176], [184]. In
these experiments, generally, two high frequengyads are used to excite the medium. Then,
an analysis of the intermodulation of the retroalared signals point by point on the imaged
area is made. In the experiment of Le Baal [112], a 1MHz signalf{) is first sent to a first
source, and the out of plane particle velocityasorded at a chosen location using a laser
vibrometer. A second signal with a 200 kHz freque(fg) is sent at a second source and
again a laser vibrometer records the signal atst#ree position. Both recorded signals are
then time reversed and reemitted from their comedmg original transducer at exactly the
same time. Doing so, the time reversal principlkesasure that both signals arrive at the
same time at the fixed point where the laser piggsthe out of plane vibration. The
intermodulation at the focused signal in time isrttanalyzed in terms of the sufit{z) and
difference f;-f2) spectrum components. This procedure is repeate@lf points on a line
crossing the flaw position. For an intact locatibie level of intermodulation is quite low.
However, for a micro-damaged zone the intermodaabiecomes very high. The nonlinearity
signatures contained in the sum and differenceurges have been obtained as function of
the distance to the crack. At the position of tlmack, the intermodulation signature is
evidently much larger than elsewhere. A contrasuah factor of 10 was obtained.
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Our TR-NEWS experiment has been realized on guatisteel sample combining a
“chaotic cavity transducer” and a PI filtering medh

The other alternative to classical TR, called NEWS consist in selecting only the
nonlinear or harmonic energy contained in the respaignals and returning merely this part
back into the medium by the time reversal procBgsng so, the time reversed signal will
focus on the micro-damaged area, which is wheren#lienonics were created, while linear
scatters will not show up at all [24], [77]. Thiethod has been described for the first time by
Bou Matar et al [23] and has only been validated experimentadigently [185]. The
nonlinear TR process has recently been demonsttatée highly valuable for ultrasound
imaging of damaging in solid [79], [77], [176], [2]L Moreover, similar ideas have already
been used in fluids where Wave Phase ConjugatioRGYMn nonlinear regime has been
demonstrated for nonlinear ultrasonic imaging [J@J1]. WPC is known as the spectral
representation of TR transformation. The WPC tegpimi which originated in the field of
nonlinear optics, has been adapted and appliedilfasonic research applications in the
1980’s by the scientific group of the Wave Rese&ehter of the General Physics Institute of
the Russian Academy of Sciences [33]. The origpabmetric method for acoustic WPC
producing a giant (>80 dB) amplification was elaied for the first time by this group [29].
The advantage of the parametric WPC technique isapability, by principle, to use a single
element time reversal mirror [29], [30].

In the NEWS-TR technology, two filtering methodavk been investigated to return
only the nonlinear parts (harmonics) of the reagisgnal, i.e., harmonic filtering and pulse
inversion (PI1) [71], [79]. For the harmonic filtag, one option consists of selecting only the
nonlinear or harmonic energy contained in the respaignals and returning only this part
back into the medium by the time reversal procBsdse inversion is an alternative filtering
procedure based on the fact that the phase inveddia pulsed excitation signal (I'§hase
shift) will lead to the exact inverted phase signdhin a linear medium [169]. But, this is not
the case in a nonlinear (or micro-damaged) mateli@ to the generation of harmonics.
Advantage of this information is taken by adding thsponse from two phase-inverted pulses
(positive and negative) and sending back the sutetoeceivers.

A numerical study of the comparison of the twopmeed filtering methods for NEWS-
TR technique, used for detecting defects with alinear hysteretic behavior, has been
conducted in 2D [79] and 3D [80]. Hysteretic noehnity exhibiting high level of odd
harmonics, the third harmonic signal is extractedhiese numerical simulations. The results
show that the higher the frequency, the greateritbeease in retro-focusing quality and
decreasing the source size reduces the retro-figuquality. The simulation results
demonstrate that the main difference between tlhese methods of filtering (harmonic
filtering and pulse inversion) are: (1) Pulse irsien filtering is better for the defect detection
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near the edge of the sample, all information reléatethe linear propagation in the medium is
eliminated with pulse inversion filtering contratp that with harmonic filtering; (2)
Harmonics filtering is more precise than pulse mian filtering when the defect is located
between the emitter and receiver, the higher thebiics frequency, the smaller the retro-
focusing spot size will be. An experiment of NEWRB-With a pulse inversion filtering has
been presented by Le Basal [112]. A not perfect, but encouraging result hasn obtained
with a one channel time reversal process in a PMj@&s material.

Recently a scale subtraction filtering method é&weal the nonlinearity has been
proposed164]. It seems to be a valuable alternative ts@uhversion as it is sensitive not
only to even harmonics but to both even and oddnbaics [165]. It has been recently
experimentally validated [28].

At this stage we can envisage the development bylaid experimental-numerical
approach for NEWS-TR. One can use real signal dawgs from a microdamaged object as
input to a numerical reconstruction procedure whictolves the filtering of nonlinear
components and back-propagation in a linear wawpawgation model. Indeed, it is important
to realize that — once the receiver signals haen laequired — the time-reversal process can
be performed numerically by computers using adeg(latear) material models. This allows
to “see inside” the sample, and to localize the Besusing region even if this region is not
located on one of the surfaces accessible to #msducers. The result of a preliminary test
realized on a 2974x95 cm PMMA sample with a laser made defect in itdde is displayed
on Fig. 1.2. An elastic wave is generated insidesiimple by applying an electric excitation
to a PZT ceramic directly glued on the sample. dlmeof plane particle velocity is measured
along one line (shown on Fig 1.2) with a laser eibeter with a 1mm step. This experimental
part of the test has been realized by P.Y. LeBaskariVvan Den Abeele. The experimental
data have then been filtered in order to consemdg the third harmonic of the central
frequency of the emitted pulse and time reversdte ®btained signals are numerically
backward propagated, using a 3D Pseudo Spectrairee[B0], to the source of nonlinearity.
The obtained result, on the surface of the sample/ituch the PZT ceramic is glued and the
laser measurements have been made, is display€igdr2(a). It appears that, due to a not
perfect gluing between the sample and the PZT derdhis latter is a source of nonlinearity.
The obtained result, on the plane of the defecglBi(a), shown only a small signal
propagating backward to the defect.
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Fig. 1.2 Experimental set-up and PMMA sample geometry usdtfie hybrid experimental-numerical NEWS-
TR approach.

1.3 Nonlinear Elasticity and Elastodynamic Equatios

In this part, different kinds of “classical” andidn-classical” nonlinearity will be
presented for elastic solid medium. A one-dimeraidmyperbolic equation model for a
compressional wave propagating in a heterogeneoedium will be introduced. The
fundamental nonlinear elastodynamic equations aspckin a conservative form, as needed
by the Discontinuous Galerkin numerical methodadtrced in the next chapter, will be
presented for 2D and 3D simulations.

1.3.1 Nonlinear 1D Propagation Model in Heterogeners Elastic Media

Consider a heterogeneous medium in which a comsipred wave propagates. This
propagation is modeled by the following one-dimenal hyperbolic system of equations:

ot p, 0z

or ov

— =K(t)—, 1.2
™ ()62 (1.2)
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where p, andK are respectively the density and the elastic medaf the material is the
particle velocity, and is the longitudinal stress. Here, the modulus

or

K=—, 1.3

P (1.3)

where ¢ is the strain, is considered as time dependentdaerdo introduce the nonlinearity,

which can be considered of different kind, e.g.dyatic and cubic, Bi-modular, Nazarov, or

PM space hysteretic, as described in the nextosecti

1.3.2 “Classical” and “Non-classical’ Nonlinear Elasticity

For homogeneous isotropic solid media, traditiynahe propagation and interaction of
acoustic waves is described in terms of the fivestant or nine constant elasticity theory
[110], [215], which is based on developing the &tasnergy as an analytic function of the
strain field, and in which quadratic or cubic catrens are applied to the linear Hooke’s law.
This is done by constructing the scalar invariaftghe strain tensor. For a 1D elastic solid
medium, longitudinal strai@ is related to the corresponding stress tensor oaemiz by
[142]

r(e) = E(e-T&?), (1.4)

where E is the elastic modulus and is a parameter used as a measure of medium
nonlinearity. For isotropic solids, within the framork of the “five-constant” elasticity theory
one has [142]

=§+(A+ B+C)'

15
2 pG (-5)

r
Here A, B and C are third-order Landau elastic moduli. In homogerse solids, such
nonlinearity is caused by the dependence of interoatar forces on the molecular
displacement, leading to typicll value of the order of unity (for example= 4.4 in steel).

However, for elastic heterogeneous solid medg, granular, rubber-like porous, rock,
cement, concrete, composites and crack-containiagtie media, the elastic nonlinear
behavior is significantly different from the “clasal” nonlinear behavior described by the
traditional nonlinear “five-constant” theory of Ldawu [110]. Amongst other things the
parameter of acoustic nonlinearityproves to be larger than in “ordinary” homogeneous
solids. The model of Egs. (1.4) and (1.5) can xpress the physical stress-strain relation of
these materials. The inner structure of such medigharacterized by presence of various
heterogeneities and defects whose size is largeaed with the inter-atom distance, but is
small with respect to the characteristic scalehefadcoustic perturbation. Moreover, acoustic
waves can interact in such micro-inhomogeneous anedich more intensively than in
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homogeneous media. Many theoretical and experirhezgaarches work have been done for
different heterogeneous medium and interpreted withrge amount of different models. In
the following we call this kind of nonlinearity “meclassical” nonlinearity for differentiating
them from the “classical” nonlinearity.

In this section, four kinds of nonlinearity wilelpresent, including “classical” quadratic
and cubic nonlinearity model and three “non-claamSinonlinearity models. Moreover, linear
and nonlinear attenuation are introduced in theeneyuation.

1.3.2.1 Quadratic and Cubic Nonlinearity

The “classical” quadratic nonlinearity was givey Bq. (1.4). This model can be
extended to cubic nonlinearity by introducing tbBdwing constitutive equation [75]:

r(e)=E(e-T&*-0?), (1.6)
wherelr and o are respectively quadratic and cubic nonlineaamp&ters. Then, according to
Eq. (1.3), the elastic modulus is:

K = EQL- 2 -3%?). (1.7)
Even if “Classical nonlinearity” corresponds tostltase, this model can be used to describe

some medium with strong nonlinearity, as for exarglastic medium with cylindrical pores
[142], [141].

1.3.2.2 Bi-modular Elasticity Nonlinearity

Nazarovet al [135] and Ostrovsky [142] have presented a “niassical” Bi-modular
model, which has different elastic moduli on conggren and on stretch. The equation of
state of this kind of media can be represented fig@wise linear function

r(s)— E.e, €>0 (1.8)
" |Eg, e<0’ '

where E, andE_ are the elastic moduli of the medium in compressamd in tension,

respectively, and, < E_.The corresponding stress-strain curve is plotieeig. 1.3.

T A
E.c

E¢

Fig. 1.3Stress-strain curve of the Bi-modular model.
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In this case, the modulus is simply given by:

E, >0
K= . (1.9)
E_ <0

This bi-modular model, witle, =0 <<E., has been widely used to simulate “clapping” csack
behaviour which has been experimentally observednigh amplitude waves (generally
low frequency) interact with small sized cracks3L332], [173].

1.3.2.3 Nazarov Model of Hysteretic Nonlinearity

In recent years, nonlinear wave process occurfingarious micro-inhomogeneous
media have been more and more often describeduatieqs of state containing an hysteretic
nonlinearity [134], [135], [137], [138], [85], [124[140]. Hysteretic properties are typical of
many micro-inhomogeneous media.

Nazarovet al [134], [135], [137], [138] have proposed two kindé models: an
inelastic hysteretic model and an elastic hysteretiodel, for hysteretic nonlinearity,
described by the following stress-strain relation:

7(£,€)=E(e-f(£,8)), (1.10)
where f (£,£) is a nonlinear function of strain and strain rate.

In the inelastic hysteretic model, the nonlineardtion has the form:

+&£2_ﬁ1+:82 gri’ £>O
f(e,8)=ae,e+] 2 j , (1.11)
_&52_'_:81 ﬁ2£§q’ £<0
2 4

Where|cr|£m <<1, ‘ﬁu‘fm <<1 and ‘,81,2‘»1. This equation involves three independent
nonlinear parameterg and S,,, which are responsible for the variations of thastc
modulus and for the nonlinear loss. We can see thhena =0 and S, + 5, =0, the
modification of the elastic modulus and the nordinkss are equal to zero and Eq. (1.11)
describes a quadratic nonlinearity, as the “fivestant” elasticity theory.

In the elastic hysteretic model, the nonlinearcfion has the form:

ylg”' e >0 £>0
"+ (y, +y,)eN e, £ >0 £<0
f(£,£) :1 y2 (J/l y2) m+ . ’ (112)
n|-ye", £ <0 £<0
ViE" = (Vs + V) Ene, £ <0 £>0
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wherely,,&,.| <<1, |Vsutm| <<1, |ia| >>1. &,, >0 and¢,_< Oare the last maximum and
minimum of strain at the considered position, resipely. There are five free parameters in
this model: the exponemtand four nonlinear hysteretic constants of theiomd/,_,. Egs.
(1.10) and (1.12) describe a broad class of metipending on the relation between these
parameters. When=2 andy, =-y, =-y, =y, =2, Eq. (1.12) will reduce to Eq. (1.4) for
“classical” quadratic nonlinearity. Experimentalv@stigations of nonlinear phenomena in
polycrystalline zinc show that typical valuerofor non-annealed and annealed zinc [136] is 2
and 3, respectively. A plot of the stress-strairveu =17(¢&,¢£), is given in Fig. 1.4.

TA

Fig. 1.4Stress-strain curve of the Nazarov elastic hystenetnlinearity model.

In this elastic model, the modulus becomes:

K=E@- f'(¢¢&), (1.13)
where
ylgn—l E >0 £>0
— gn—l + + gn_l n £ >O £<O
fr(glé-,): y2 (}/1 yZ) m+/ . ) (114)
—_ ysgn_l E < O E < O
Vi€ = (st y)ent/n £ <0 £>0

1.3.2.4 PM-Space Model of Hysteretic Nonlinearity

For “non-classical” hysteretic nonlinearity, Or{i40] Guyer and McCall [85], [124]
have introduced another model to express the sitems equation, including both hysteresis
and discrete points memory. This model proposdsearétical framework taking the elastic
properties of a macroscopic sample of materiatsult from the workings of a large number
of mesoscopic elastic elements. These Hystereéimé&ht Units (HEU) can individually have
complex hysteretic behavior and are responsibletier macroscopic linear and nonlinear
elastic behavior. The most important portion obtthieory is the Preisach-Mayergoyz space
(PM-space), which provides an infinite number e@ftestrelations by tracking the behavior of
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the individual elastic elements depending on theitatton and the pressure history. This
theory uses static stress-strain data to deterthmelensity of elastic elements in PM-space.
This density takes the place of the five constahtke traditional theory. From the density, the
dynamic elastic response of the system is detednifiee connection between static and
dynamic behavior, provided by the PM space pictyrelds a qualitative and quantitative

description of the relationship between the sttid dynamic moduli.

In this model, no analytical expression of thekbmlodulus is given. It is calculated by
summation of the strain contribution of a numeroumber of HEU. Each HEU is described
by two characteristic stress€s and P., corresponding to the transition between two state
when the stress is increased or decreased, resggctOne state corresponds to an “open”
state and the other one to a “closed” state. Optementation of the PM space model is based
on the multiscale approach developed by Van Denelslet al [193]. For each cell of the
calculation grid (representing a mesoscopic le¥elhe medium description)\o hysteretic
units are considered with different values of thie stresses characteristic. This representation
is commonly termed “PM-space” and can be describethematically by its density
distribution f (P, P, ), as shown on Fig. 1.5. Two kind of elementary érggic elements have
been considered here, as shown on Fig. 1.6.

C ool
Fig. 1.5PM space representation of the density of HEUhEht represents one HEU.

The first model (Fig. 1.6(a)) is the one introdubgdGuyeret al [85]. This is the simplest one,
and it can be shown that in this case the bulk nusds given by:

1_ 1 +6£H
K EQ+pr+dri+..) or '

(1.15)

where ¢, is the strain contribution of the hysteretic elatse andf and o are “classical’
guadratic and cubic nonlinear parameters. Thenstaiiation as a function of stress induced
by the HEUs can be calculated by:

0&,

=N TdPTde(P p)déu
T O_oo OPO C o'’ c

or '

(1.16)

where,, is the strain contribution of each individual HEU.
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Fig. 1.6 Elementary hysteretic elements used in the corntiputaf the PM space model. (a) “inelastic” two
states element, and (b) “elastic” two states elésaén each case, one state corresponds to anstgenand the

other one to a closed state, with a transitiorsstesssociatedp, andP, respectively.

For the first model, as shown in Fig. 1.6(a), whenstress increasés,/ot >0, then the
strain variation for each elementary HEU is givgn b

0¢€
atM =y(r-P.)  IfHEU Mis open
: (1.17)
08, _ _
p =0 If HEU M is closed

where d(x) is the delta Dirac function. Inserting Eq. (1.17)Eq. (1.16) we obtain the strain
variation induced by all the HEUs (inverse bulk miog contribution of all the HEUS) as:

0¢, =y[dR (P Q=y[dRf(P,1), (1.18)
or 2 5

with Q = 1 if the HEU is open, an@ = O if it is closedO,is the “open” coordinate of the

point A; in the PM space (see Fig. 1.7). Now, if the stamsreases)7/ot <0, the induced

strain variation, by each HEU, is:

o€
O'EA =yo(r-PR,) If HEU M is closed
: (1.19)
Ofm _ 0 If HEU M i
ot is open
and the overall strain variation:
ag +00 CZ
"=y [dRf(r,R)Q=y[dRf(z,R), (1.20)

with nowQ =1 if the HEU is closed, ard = O if it is open.C, is the “closed” coordinate of
the point A,in the PM-space. So, we have seen that the catlwulaf bulk modulus is
reduced to follow the limit between the open anosetl elements domains. The function
d¢,, /or=df_(r)/dr, wheref; is the fraction of the PM-space area occupiedlbyet! units,
corresponds to the fact that only hysteretic uttisnging of state (open to closed or closed to
open) at the actual stressontribute to the inverse of the bulk modulushi time.
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Fig. 1.7 Evolution of the PM space domain during cyclesahpression and rarefaction.

The second model (Fig. 1.6(b)) is an extensiothefmodel of Scalendeet al [162]
implemented in the LISA code, and shown in Fig. Ti8e bulk modulus is already given by
Eq. (1.15) where onlye¢, /07 need to be modified. Considering Fig. 1.6(b), #tmin
variation for each elementary HEU, if the stresadseasing, is now given by:

Oy =,0(r=F,) +i+(i—i]U(Pc -T7) If HEU M is open

ot K, K, K, (1.21)
agM :i If HEU M is closed

ot K,

whereu(x) is the step function, anl, and K, correspond respectively to the bulk modulus of
the HEUs in the open and closed states. Introdutiege expressions in Eq. (1.16), the strain
variation induced by all the HEUs becomes:

ag“-deyzf( r)Q+—J.dPJ.de(O, P)
2 R , (1.22)
1
+(E ]_jmdpjdpu(P -1)f(P,P.)Q
with Q = 1 if the HEU is open, ard = 0 if it is closed. Finally, we obtain:
% = [dry, (R, r)+K—dedef(o, P)
o e (1.23)

+(Ki depjdpf( )\ P)

1
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The first double integral term is the inverse o thulk modulus contribution when all the
HEUs are in the closed state. The second integmal is the modification of the inverse of the
bulk modulus due to open HEUSs, and the single mategrm is the additional contribution to
the inverse of the bulk modulus of the HEUs closahghe actual stress When the stress is

decreased, similar, the strain variation for edementary HEU is now given by:

agtM :yld(r—Fz,)+Ki+(Ki—KiJu(F; -T) If HEU M is closed
. 2 0t , (1.24)
og,, _ 1 .
=— If HEU M is open
ot K,
and the overall strain variation can be similathyaoned:
agH C2 1 Pc +o00
= |dRy,f(r,R)+— |dR, |dR.f(P,,P.
or = |RAF@ R+~ [dR [dRT(R,R)
° (1.25)

1 1 R G,
+[———jjdajdef(a,e>
KZ Kl —00 P,

where now, the first double integral term is theeirse of the bulk modulus contribution when
all the HEUSs are in the open state. The secongraltéerm is the modification of the inverse
of the bulk modulus due to closed HEUs, and theglsinntegral term is the additional
contribution to the inverse of the bulk modulustted HEUs opening at the actual stresin
both cases of increasing and decreasing stressatfaion ofds,, /07 can be calculated by
looking at the closing or opening HEUSs, respeciivbetween the actual and past value of the
stress.

In the case shown in Fig. 1.8 the following relas have to be used to simplify Eq. (1.23)
and Eq. (1.25)

P-P 1
=y=-L_9 "y =0,and— =0. 1.26
n=y K, Y, <, (1.26)
EMA
P K < <>
C/ 1 }/li["
VK, .
P P, ”

Fig. 1.8 Elementary hysteretic elements as proposed byfdali This case is a particular case of the “elast
to state element described in Figure 1.6(b) wh&n £/0. In this case the closed state corresponddriaee rigid

state.
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1.3.2.5 Nonlinear Attenuation

In some case, for example to explain Luxemburgk§effect [212], [213], not only the
bulk modulus depends nonlinearly on the strain dab the attenuation. To describe this
phenomenon, Nazarat al [136] have introduced the following stress / straation:

1(€) =E(e- f(£,8) +ap, L+ gle)é =1'+1", (1.27)

Introducing this constitutive equation in the eduabf motion we obtain the following system:

ov_ 1 0(r+7") (1.28)

ot p, az ' '

or'

oK)= 1.29

P (t ) (1.29)
with

ou
r"= apo(1+ gl— = j— = ap0(1+ glel’ )£ (1.30)

andK(t) is the elastic modulus given by one of the prewpdonlinear models.

1.3.2.6 Linear Attenuation

When the attenuation introduced by nonlinear éffecsmall, a linear attenuation needs
to be introduced in simulations, especially whenowmasider resonant rods. This attenuation,
and the dispersive effects associated are oftentifjed by the quality factoQ, which is, in
mang real material, independent of the frequenoyinifroduce a constafl in our simulations
we used the methodology introduced by Blaathl.[20]. For 1D, the viscoelastic hypothesis
can be described 4454]:

r =K(t) Dﬂ, (1.31)
0z

where the bulk modulus is given by:

K(t) = Kr[l—i(l—;—é‘]e‘t/r“ Ju(t), (1.32)

with K; the relaxed bulk modulus correspondingki¢t), 74 and 74 are the stress and strain
relaxation times for théth of theL standard linear solids connected in parallel ta@hdhe
viscoelastic properties of the considered solithenfrequency range of interest.

Taking the time derivative of Eq. (1.31) we obtain

or _ K@ v (1.33)
ot ot oz

with

37



CHAPTER 1: INTRODUCTION TO NONLINEAR NONDESTRUCTIVE TESTING AND IMAGING

OK —t/T S 1 d —t/7,
Dalerbon(gl e e

Introducing memory variableg Eq. (1.33) can be re-written as:

or o <&
—=K,'—+ > r, 1.35

where the following notations have been introduced:

K, '= Kr[l—i(l—;—djj, (1.36)

= Kr(i(l ] eV ]u(t)D—. (1.37)
Ty 0z

Ty

and

r can be calculated with a first order differenéglation:

o__ Nk ( 1 (1__D ov (1.38)
ot T, T, 0z’

obtained by time derivation of Eqg. (1.37). The frague evolution of theQ-factor
corresponding to this model[s54]:

1-L+ Z1+a)2rdra,

1+ wr}

Qlw) = = (1.39)
S a)(ra - Tal)
L1t

Now, to calculate the, and thery we used tha-method introduced by Blanagt al.[20],
[154], where we define thevariable as:

“la g (1.40)

(1.41)

Ther, =1/« are distributed logarithmically over the frequerrepge of interest following
the rule of thumb of about one per one-two octdf@sexample, 6 relaxations are needed to
realize simulations between 1 kHz and 1 MHz). WheronstanQ-factor Qo) is simulated,
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the formula given by Blancét al.[20], [154] (Egs. (21)-(23) in their paper) is usédthe case

of another frequency evolution , an optimization algorithm is used to minimize ove¢he
expression:

“ A
1= [(QH(@wr,7,)-Q* (W) dw, (1.42)
2

WhereQ Is the approximate@-factor given by Eq. (1.41).

Knowing 75 andr, the corresponding bulk modulus at a given frequen is:

1
K(w) =/ (w) o, RE — (1.43)
1+ zij%r"' T
=1t Ty

wherec, is the longitudinal wave velocity in the mediuno, 8vhen a resonant rod simulation
is made, the bulk modulus at the resonant frequaeey to be calculated by Eq. (1.43) for a
given longitudinal wave velocity. Parameters oladino simulate a consta@ factor of 80
between 1 kHz and 1 MHz are given in Table 1.1.

Tab. 1.1Parameters of the 7 relaxations needed to simalatastan@ factor of 80.

Ne 1 2 3 4 5 6 7
T, 39810 79610 15910 3.181C¢ 63710 12710 25510
T 1.3110°
K(100kHz) 3.657 16

The evolution ofQ as a function of frequency calculated with theseameters is shown
in Fig. 1.9. This constar® factor model corresponds to a linear frequencyeddpnce of the
attenuation (Fig. 1.10(a)) and to the dispersi@s@nted in Fig. 1.10(b).
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82

81y

80y

Q-factor

79

78 ‘ ‘ ‘ ‘
0 02 04 06 08 1
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Fig. 1.9 ObtainedQ-factor as a function of frequency, by thenethod with 7 relaxations, in the case of a

constanQ-factor of 80.
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Fig. 1.10(a) Attenuation and (b) phase velocity as a fumctf frequency for the consta@t factor of 80

medium.

1.3.3 Nonlinear Elastodynamic System of Equations

For nonlinear elastodynamic solid medium, witha%dical” and “non-classical”
nonlinearities, it is more judicious to discretitee fundamental elastodynamic equations
expressed in conservation form. The considered tiequaf motion can be written, with
Einstein’s convention of summation:

ov. OP
poa—t' :6_8.]-’ (1.44)

J

wherev, are the components of the particle velocity vectprare the components of the
Lagrangian position vectop, is the densityP; are the components of the Piola-Kirchoff
tensor, and is the time. These equations are completed bgdhstitutive relation:
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oW
R = oo (1.45)

[

whereW is the elastic energy density which depends orctimsidered nonlinear (or linear)
model of elasticity, an& is the deformation gradient:

ou,
Fij = 5” +£, (1.46)
i

wheredj is the Dirac delta function, anglare the component of the displacement vector. For
example, in the case of an anisotropic linear ielastlid the constitutive equations are given
by the Hooke’s law:

P =1, =Cuéu, (1.47)

whereCjy are the elastic constants. Finally, the systeotosed by the link between particle
velocity and deformations gradient:

oF, :
—1 = ﬂ ) (1.48)
ot oOa,

J

To resume, the system to be solved, in order taulsit® propagation of elastic waves in
nonlinear elastic solids, is written in the followgi conservation form:

0Qtx) _oF O JoF, =[x, y,Z] 1QOR?, (1.49)
ot ox ody 0z

Q is the global physical domain with boundai and

:00V1 H.l P12 PlS
pOVZ I:)21 P22 P23
p0V3 I:)31 P32 P33
Fi. v, 0 0
F., 0 v, 0
o=| ™= |, F= 2 F=| 9, F o= 2 (1.50)
F., “ 10 Y10 SN
Fs 0 V, 0
Fis 0 0 A
Fs, V, 0 0
Fo 0 v, 0
F,. Vv, 0 0

represent the state vector and the three compoattits flux, respectively.
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This system of equations is at the basis of @lnbhmerical simulations of linear and
nonlinear elastic wave propagation that have beafized with the Discontinuous Galerkin
Finite Element Method (DG-FEM) [63], [64], [94],038], [104], [148] presented in Chapter 2.

In the linear elastic case the the system of egus(1.49) can be rewritten in 2D as:

aQ(t,X):Aa_Q+Ba_Q, x =[x y]|OQOR?, (1.51)
ot 0X ay
where
[0 0 C, C, 0 0]
0 0 0 0 C, Cg
0 O 0O O O
A= YVPo , (1.52)
0 0 O 0O 0 O
0 0 O 0O 0 O
0 Yp, 0 0 0 O]
and
0 0 0 0 Cg Cgl
0 0 C, G, O 0
0 0 0O O 0 O
B = (1.53)
0O 2%p, 0O 0O O O
Yp, 0 0 0 0 O
0 0 0 0 0 O

The classical nonlinear case will be describeer lit chapter 2. Now, to introduce “non-
classical” nonlinearity, the methodology used irf. Ré9], and based on Kelvin notation, is
used. The elastic constant tensor is written invikehotation [52], [89] by pre and post
multiplying the Voigt matrix by

1 0 O
01 O] (1.54)
0 0 2
In the Kelvin notation the elastic coefficient tenthus becomes:
_ Cll C12 O
C,=/C, C, 0 |. (1.55)
0 0 2C

Using these notations, it can be shown that theg@neectors of the elastic constant tensor
correspond to 3 eigenstress / eigenstrain ve&tts
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. X, 1 X, 0
FO = 1,§@9=—=_| 1| 9=|0], (1.56)
J1+ X2 0 VI+XZ | 1

with the associated eigenvalues, a,and Zgs, respectively. The following notations have
been introduced:

1(C, C, 1
X, = _C_H(f_f-ﬂc;—zcnczz +cfl+4cfzj, (157)
1(C, C,.1
X, = _C_u(f-f +§Jc§2 —2cnczz+cfl+4cfzj, (1.58)
a, = % +% +%\/0222 -2C,,C,, +C}; +4C}; (1.59)
a, = %"'%_%\/C; -2C,,C,, +C}; +4C}; . (1.60)

These vectors represent directions where appliegsstand created strain are in the same
direction. In this case, it is possible to use ahthe scalar models described for 1D simulation,
for each of these 3 directions. Only the associaigenstiffness\® is modified and the
actualized elastic coefficient tensors in Voigtatmin used in equations similar to Egs. (1.51)
or (1.52) are obtained by:

Cp =D AWFWE®T (1.61)
k

Based on these Kelvin notations, the calculatiepssare as follows:

1. Calculation of the 2D Kelvin stress vector:

P

XX

- | P
P=|_ "5
P2

P2

2. Calculation of the stress projections along3feggenstress directions:

(1.62)

po=— % py LI p po- X p, L p FO-pl=p 2,(163)
J1+ X2 J1+ X2 N N 'S

3. Modification of each associated eigenvalifé using the considered nonlinear model.

4. Calculation of the modified elastic tensor gdime equations:

o X g X5

Cy = , 1.64

11 1+ X12 1+ x22 ( )

C,=E0 X 4g0 X (1.65)
1+ X; 1+ X

43



CHAPTER 1: INTRODUCTION TO NONLINEAR NONDESTRUCTIVE TESTING AND IMAGING

-0 1
Co 1+ X2 Tr X' (1.66)
g®
Cs = : (1.67)

Finally, we can note that a molecular dynamic mdusd been proposed in Ref. [201] to
calculate the stress-strain relation.

1.4 Numerical Simulation Methods

In many research domains, solving a Partial Déifeial Equation (PDE)
computationally is needed in order to simulate uhderlining physical process, and a large
number of different methods have been developethisr Among these are the widely used
Finite Difference Method (FDM), Finite Volume Metth¢FVM), and Finite Element Method
(FEM), which are all techniques used for long titnederive discrete representations of the
spatial derivative operators. Pseudo-Spectral ®&hod and Discontinuous Galerkin Finite
Element Method (DG-FEM) have been developed forawing the efficiency of calculation
and adding geometric flexibility. These methodsl Wi reviewed and the advantages and
weaknesses of these techniques will be discuss#tkifollowing subsections. To appreciate
these different methods, we consider the one-diraeak scalar conservation law for the
variableu(x,t)

o of
u, ot _ . soa 1.68
ot ox 9 (1.68)

where f (u)is the flux, g(x,t ) is some prescribed forcing source. This equasaompleted
by an appropriate set of initial conditions and fbary conditions on the bounda .

The construction of any numerical method for swdva partial differential equation
requires one to consider the two following choices:

- How can the solutiom(x,t pe represented by an approximate solutipfx,t ? )
- In which sense will the approximate solutiop(x,t satisfy the partial differential
equation?

These two choices separate the different methodglafine the properties of the methods. It
is instructive to seek a detailed understandinghese choices and how they impact the
schemes to appreciate how to address problemsiraitdtions associated with the classic
schemes.
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1.4.1 Finite Difference Method

The Finite Difference Method (FDM) was first intaced by Yee [210] in 1966 for the
study of electromagnetic scattering problems. Gribe@most attracting aspects of FDM is its
simplicity. It leads to very efficient semi-disceegpatial schemes. We begin with the simplest
and historically oldest method. In this approaclyrid x, (k = 1, 2..K) is laid down in 1D
space as shown in Fig. 1.11

Fig. 1.11Grid distribution of Finite Difference Method b1

The conservation law is approximated by differemeghods as

duh(xk't) + fh(xk+1lt) - fh(xk—l’t)
dt h +h

= g(X,t), (1.69)

whereu, and f, are the numerical approximations to the solutiod the flux, respectively,
and h, =x,,, — X, is the local grid size. The construction of aterdifference method requires
that, in the neighborhood of each grid pot the solution and the flux are assumed to be
well approximated by local polynomials

XX X ] s U (X)) = Za (O(x=x)", and f,(x,t) = Zh (OX=x%)", (1.70)

where the coefficients (t ®ndb (t )Jare found by requiring that the approximate functio
interpolates at the grid points . Inserting these local approximations into Eq68), the
residual will be obtained as following

XO[Xgs Xea] s Op(X1) = ot ox

—-g(xt). (2.72)
Thus, we need to specify in which way(x,t must satisfy the equation, which amounts to a
statement about the residudl (x,t . )f we have a total oK grid points and, thuskK
unknown grid point valuesy, (X, ,t 05 a natural choice to require that the residwaalishes
exactly at these grid points. This results in eyaltfinite difference equation of the type in
Eq. (1.69) for th& unknowns.

If the equation, which should be solved, is inosetorder formulation within the time
domain, the following second order finite differerformulation can be used

d 2uh (X'tk) — uy, (X’tk+1) - 2Uh (X’tk) +u, (X’tk—l)

e AL (1.72)

where At, =t,,, —t, is the time step of calculation. For us, to do $iaulation of elastic
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wave propagating in anisotropic solid medium, déscr in a second order wave equation,
with C-PML absorbing boundary condition, the prengdsecond order finite difference
formulation in time domain has been used [117].

The simplicity is one of the most appealing prdpsrof the FDM method. Moreover,
due to its features of robustness and powerfulriebas been used to many general problems
in a wide range of domains, e.g., acoustic [211§6], elastic wave [60], [61], [43], [48],
computational electrodynamics [210], [178], ancdbeoFurthermore, the explicit semidiscrete
form gives flexibility in the choice of timestepginmethods, e.g., Runge-Kutita5] and
Adams-Bashforth [76] time integrators can easily Used in the FDM scheme. Finally,
extension to higher order approximations by usintp@l polynomial approximation of
higher degree is relatively straightforward.

However, the reliance on the local one-dimensiguynomial approximation that is
the Achilles’ heel of the method, as that enfor@esmple dimension-by-dimension structure
in higher dimensions. Additional complications cadi®y the simple underlying structure are
introduced around boundaries and discontinuousnatdayers (e.g., discontinuous material
coefficients). This makes the native FDM ill-suiteddeal with complex geometries, both in
terms of general computational domains and intadisglontinuities as well as for local order
and grid size changes to reflect local featurat@fsolution.

1.4.2 Finite Volume Method

The Finite Volume Method (FVM) is a discretizatiorethod which is well suited for
the numerical simulation of various types (elliptmarabolic or hyperbolic, for instance) of
conservation laws. One important feature of FVMthat it can be used on arbitrary
geometries, using structured or unstructured meshesto the introduction of an element-
based discretization.

Grid distribution for the 1D FVM scheme is showrFig. 1.12:

Control volume boundaries

« . h
| - | ¢ | > x
v i B B R FOPE "

Control volume  Nodal points

Fig. 1.12Control volumes and nodal points of Finite Volumethod in 1D.

Each discretization cell is often called “contrallvme” and grids point located at the center
of each element. In its simplest form, the solubbicq. (1.68)u(x,t) is approximated on the
element by a constait (t) at the center of the elemenrt. This is introduced into Eq. (1.68)
to recover the cellwise residual
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ou, , of (4,
xOD,: Dh(x,t):a—t"+ ;xk)

-g(xt), (2.73)

where the element is defined B =[X ) Xayo] With X,pp = (X +X,;)/2. In the FVM
method we require that the cell average of theduggivanishes identically, leading to the
scheme:

hk%-'- fk+1/2 - fk—]/z =hg,, (1.74)
for each cell. Note that the approximation andgtieeme are purely local and, thus, imposes
no conditions on the grid structure. In particuldr cells can have different sizés. The flux
term reduces to a pure surface term by the udseeadlivergence theorem, or Gauss’ theorem.
This step introduces the need to evaluate the dlatethe boundaries. However, since the
unknowns are the cell averages of the numericaitisolu, , the evaluation of these fluxes is
not straightforward.

This reconstruction problem and the subsequerntiatian of the fluxes at the interfaces
can be addressed in many different ways and ttalslef this lead to different finite volume
methods. For example, a simple solution to thensiraction problem is to use

Ueigo = (U +0,)/2, fk+]/2 = f (uk+]/2) , (1.75)

and likewise forf,_,,. The local conservativity of the numerical fluxeghat the numerical
flux is conserved from one discretization cell t® meighbor. This feature makes the finite
volume method quite attractive when modeling protddor which the flux is of importance,
such as in fluid mechanics [196], or elastodynajh$8]. For linear problems and equidistant
grids these methods reduce to the finite differeme¢hod. However, one easily realizes that
the formulation is less restrictive in terms of tjrd structure, that is, the reconstruction of
solution values at the interfaces is a local pracedand generalizes straightforwardly to
unstructured grids in high dimensions, thus engpitiie desired geometric flexibility.

However, if we need to increase the order of amuof the method, a fundamental
problem emerges. Consider again the problem indimension. We wish to reconstruct the
solutionu, at the interface and we seek a local polynomig{x of the form

XO[Xy g2 Xeago] - Up(X) =a+bx. (1.76)
To recover the two coefficients, then, we require

[ uooax=ha . [*"u,(0dx =t (1.77)

Xk X

The reconstructed value of the solution, and therefore alsd (u,(x.,,)) can then be
evaluated.

To reconstruct the interface values at a higheu@cy we can continue as above and
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seek a local solution of the form
N .
U, () =D a8, (x=x)" . (1.78)
j

However, to find thé\ + 1 unknown coefficients, we will need informatifsom at leasiN +1
cells. In the simple one-dimensional case, thisleadone straightforwardly, as for the finite
difference scheme (i.e., by extending the sizenhefdtencil). However, the need for a high-
order reconstruction reintroduces the need forraiqodar grid structure and thus destroys the
geometric flexibility of the finite volume method higher dimensions. This defeats the initial
motivation for considering the finite volume methdadn unstructured grids this approach
requires a reconstruction based on genuinely naultite polynomials with general cell center
locations which is both complex and prone to siigbgroblems. So, the main limitation of
finite volume methods is found in its inability éxtend to higher-order accuracy on general
unstructured grids.

1.4.3 Finite Element Method

From the presentation of Finite Volume Method (FyMe realize that the problem
with the high-order reconstruction is that it mggan multiple elements as the numerical
approximationu, (x,t )is represented by cell averages only. One coulteimpted to take a
different approach and introduce more degreeseeidiom on the element. To pursue this idea,
Finite Element Method (FEM) should be present.

As the methods of FDM and FVM, the FEM is alsauanerical technique which gives
approximate solutions to differential equations tlm@delize problems arising in physics and
engineering. As in simple finite difference schemi® finite element method requires a
problem defined in geometric domain to be subdiisio a finite number of smaller regions
(mesh). In finite differences, the mesh consistsafs and columns of orthogonal lines,
however, in finite element method, each subdivisg®mnique and need not be orthogonal.
For example, triangles or quadrilaterals can bel useawo dimensions and tetrahedrons or
hexahedrons in three dimensions. Over each finkenent, the unknown variables are
approximated using known functions, these functiam@) be linear or higher-order
polynomial expansions that depend on the geometiocations used to define the finite
element shape. In contrast to finite differencecpdures (or finite volume method), the
governing equations in the finite element methadiategrated over each finite element and
the solution summed over the entire problem doma#is.a consequence of these operations,
a set of finite linear equations is obtained immerof a set of unknown parameters over each
element. Solution of these equations is achieveyumear algebra techniques.
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For solving the approximate solution of Eq. (1.68h FEM scheme, we redefine the
elementD, as the interval bounded by the grid poifxs,x,,, and with a total ofK
elements ani + 1 grid points as shown in Fig. 1.13.

Fig. 1.13Grid distribution of Finite Element Method in 1D.

Note that this is slightly different from the fisitvolume scheme where the element was
defined by staggered grid points [&$, X,,, . Iside the element, we assume that the local
solution is expressed in the form

xtD,: uh(x):ibmn(x), (1.79)

where we have introduced the use of a locally @efibasis functio (x .)In the simplest
case, we can take these basis functions to bealinea

—_ _ 1

XOD,! Uy (X) = U(X) L 4 U(x, ) — = 3 u(x,, )5 (X, (1.80)
K~ Xen w1~ X o

where the linear Lagrange polynomifl(x) is given as

X~ Xiear-i

7 (x) = (1.81)

Xk+i - Xk+1—i

With this local element-based model, each elemleates the nodes with one other element.
We have a global representationufas

K K
U, (X) = ZU(Xk)Nk (X) ZZUka (X), (1.82)
k=1 k=1
where the piecewise linear shape functidw,(x;) =9; is the basis function ang, =u(x, )

remain as the unknowns.

To recover the scheme to solve Eq. (1.68), wendedispace of test functiohs, and
require that the residual is orthogonal to all festtions in this space as

ou, of, _
J-Q(E-F& ghj%(x)dX—O. Og OV, . (1.83)

The details of the scheme are determined by hosvdpace of test functions is defined. A
classic choice, leading to a Galerkin scheme, igetpire that spaces spanned by the basis
functions and test functions are the same. Sineedsidual has to vanish for g| OV, , this
amounts to
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ou, of, _
L}(E+& gthj(x)dx—O, (1.84)

forj = 1... K. Straightforward manipulations yield the scheme

|\/|%+Sfh =Mg, , (1.85)
dt
where
M. = N (XN (x)d = OII\'"d
i = ], NGON 09dx, 8, = [ N, —Lax, (1.86)

reflect the globally defined mass matrix and s@ffa matrix, respectively.

This approach, which reflects the essence of tassic finite element method [97],
clearly allows different element sizes. Furthermose recall that a main motivation for
considering methods beyond the finite volume apgroaas the interest in higher-order
approximations. Such extensions are relatively Bmpthe finite element setting and can be
achieved by adding additional degrees of freedorthéoelement while maintaining shared
nodes along the faces of the elements [102]. Itiqudar, one can have different orders of
approximation in each element, thereby enablingllobanges in both size and order, known
as hp-adaptivity [54].

However, the above discussion also highlightsdiligatages of the classic continuous
finite element formulation. First, we see that tjlebally defined basis functions and the
requirement that the residual be orthogonal tostimae set of globally defined test functions
implies that the semidiscrete scheme becomes impld M must be inverted. For time
dependent problems, this is a clear disadvantaggpaed to finite difference and finite
volume methods.

Simulations with FEM scheme, for applications abn@olution Perfectly Matched
Layer in isotropic, anisotropic solids [117], pietectric media [25], [116], and plate [25],
[116], have been implemented within a commerciaViFbftware (COMSOL Multiphysics)
in the frequency domain. Details about this willdsesented in Chapter 3.

1.4.4 Pseudo-Spectral Method

The FDM scheme has been used in many researcbimgids by a huge number of
authors who appreciate its simplicity, robustness] powerfulness. However, numerical
examples have indicated that a spatial samplingitjeof at least 10 to 20 cells per minimum
wavelength is necessary to ensure that the FDM ymesl acceptable results to the
calculations of wave propagation on several wawgtlen For such kinds of problem, the
bigger the size of the modeled structure, the higie spatial sampling rate used in order to
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reduce the cumulative numerical dispersion errbis Tnakes FDM modeling of large scale
problems very challenging.

In order to efficiently solve this kind of problemseudo-Spectral (PS) algorithms have
been developed. These methods use either trigonorfgictions (Fourier Pseudo-Spectral),
[119] or Chebyshev polynomials (Chebyshev Pseudmeisal) [216] to approximate spatial
derivatives in order to greatly reduce the numériispersion error. When applied to single
domains having smooth internal media, PS methodgsdapon these functions have spectral
accuracy, meaning that the numerical dispersiooretlecreases exponentially with the
sampling density. Spectral accuracy also can beewasth for problems with multiple
inhomogeneity regions when PS algorithms are caoupléh appropriate boundary-patching
conditiong178].

In this part we will mainly present the FourieeBdo-Spectral (PS) method in which a
staggered grid will be used. In the Fourier PS sehecomputation of the variables spatial
derivatives is accomplished by tR&T algorithm. For example, the derivatigé(x)/0x in
Eq. (1.68) is computed by taking the Fourier transfof f(x) overx:

of (x) _ 2n

x N _Ax

p

FET [ jk, FFT[f ()], (1.87)

where N is the number of grid pointé)xis the spatial step of discritizatioRFT is a
forward Fourier transformEFT" is an inverse Fourier transforrk, is the wave number in
the x direction. Eq. (1.87) yields an approximation e spatial derivatives that has spectral
accuracy for which the error decreases exponentad N increase. The precision of
calculation can be satisfied with a discretizatioh only two grid cells per minimum
wavelength. The time-integration in the PS methanl lze realized with the Runge-Kutta [35]
and Adams-Bashfor76] integrators, as for FDM technique.

1.4.5 Discontinuous Galerkin Finite Element Method

The FEM has the properties of geometric flexipidind high-order accuracy, however,
its globally defined basis and test functions agsthe locality of the scheme and introduce
potential problems of stability for wave-dominajgblems. In the following paragraphs, an
intelligent combination of the finite element ar tfinite volume methods, utilizing a space
of basis and test functions that mimics the fieitement method but satisfying the equation in
a sense closer to the finite volume method, appeadéfer many of the desired properties.
This combination is exactly what leads to the Digcwous Galerkin Finite Element Method
(DG-FEM) which has been proposed first in [152] aasvay of solving the steady-state
neutron transport equation. The first analysisha$ tmethod was presented by Lesaint and
Raviart [113].
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To achieve the scheme of DG-FEM, we maintain taendion of elements as in the
FEM scheme such th@, =[x, X, . However, to ensure the locality of the scheme, we
duplicate the variables located at the noggsThe sketch of the geometry for DG-FEM in
one-dimensional is illustrated in Fig. 1.14.

: :h: ¢ ,(IDH: D Dk”:s +—»X

X X T X1 = X%, X = X X+
Fig. 1.14Geometry sketch of the DG-FEM in 1D.

Hence the vector of unknowns is defined as
u, =[u, U, U, Uy e Uey, Ug, U, Ul (1.88)

and is now K long rather tharK + 1 as in the finite element method. In each @séh
elements we assume that the local solution caxpessed as

— — 1
XOD,: US(X) = U gy, 2 =3y K () OV, (1.89)

kK~ M+ X1 ~ X im0
and likewise for the fluxf . The space of basis functions is definedvass O { ¢}, i.e.,
as the space of piecewise polynomial functionseNmtparticular that there is no restrictions
on the smoothness of the basis functions betwesnegits.

As in the finite element case, we now assume thatlocal solution can be well
represented by a linear approximatig]V, and form the local residual

k k

ouy , oty

xdD,: O,(xt)= 5t ax

-g(x1), (1.90)
for each element. Going back to the finite elemsciheme, we recall that the global
conditions on this residual are the source of thbaj nature of the operatoM andS in Eq.
(1.85). To overcome this, we require that the ngsids orthogonal to all test functions
@, 0V, , leading to

jDth(x,t)E'}(x)dxzo, (1.91)
for all the test functionaﬁ'}(x). The strictly local statement is a direct consegeeof
V, being a broken space and the fact that we havkcdigd solutions at all interface nodes.

There are two questions that should be considdfedt, the locality also appears
problematic as this statement does not allow oneetover a meaningful global solution.
Second, the points at the ends of the elementshaneed by two elements so how does one
ensure uniqueness of the solution at these points?
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These problems are overcome by observing thatabwe local statement is very
similar to that recovered in the finite volume noethFollowing this line of thinking, let us
use Gauss’ theorem to obtain the local statement

k

de*
fhkd—):—gzkjdx:—[ 1A o (1.92)

Oy i _

ok gt !
For the right-hand side term, it is easy to un@derdtby considering the simplest case where
ﬁ'j (x) is a constant, in which case we recover the fmile@me scheme in Eq. (1.74). Hence,
the main purpose of the term of the right-hand sde connect the elements. This is further
made clear by observing that both eleméntand elementD,, depend on the flux
evaluation at the point,,,, shared among the two elements. This situatiogieistical to the
reconstruction problem discussed previously forfihiée volume method where the interface
flux is recovered by combining the information béttwo cell averages appropriately.

According to the preceding analysis, it sufficedritroduce the numerical flux", as
the unique value to be used at the interface atairadd by combining information from both
elements. With this the following scheme will beaeered
ou’ dr’
it Gty L P (1.99
or, by applying Gauss’ theorem once again

[ 0000 (dx=[(Fy = 55T (1.94)

These two formulations are the Discontinuous GateHRinite Element Method (DG-FEM)
schemes for the scalar conservation law in weaksémmhg form, respectively. Note that the
choice of the numerical fluxX  is a central element of the scheme and is alsoenmree can
introduce knowledge of the dynamics of the problem.

To mimic the terminology of the finite element safe, the following two local element
wise schemes are obtained

d k
M, % = S) fa =M gy = = F (X)) 0 (Xea) + F X)L (X)), (1.95)
and
d k
My % + ijlf -M kgE = (fhk(xk+1) - f D(Xk+1))£k(xk+l) —( fhk(Xk) - f Ij(Xk))fk(xk) ,(1.96)

here we have the vectors of local unknown of fluxesf, and the source forceg , all
given on the nodes in each element. Given the cafin of unknowns at the element
interfaces, each vector i«dong. Furthermore, we hav& (x) :[E'{(x),...,f'fvp(x)]T and the
local matrices
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45 ()

M= [, 002509k, S =) 09— —ax.

(2.97)

While the structure of the DG-FEM is very simitarthat of the finite element method
(FEM), there are several fundamental differenaegalrticular, the mass matrix is local rather
than global and thus can be inverted at very Ildtst, yielding a semidiscrete scheme that is
explicit. Furthermore, by carefully designing thamrerical flux to reflect the underlying
dynamics, one has more flexibility than in the silasFEM to ensure stability for
wavedominated problems. Compared with the FVM, BD@-FEM overcomes the key
limitation on achieving high-order accuracy on gehgrids by enabling this through the
local element-based basis. This is all achievedlewmaintaining benefits such as local
conservation and flexibility in the choice of themerical flux.

The DG-FEM scheme has been widely used for Maxsvetjuation$46], [91], elastic
wave equations [103], [148], and piezoelectric ¢éigua[27], etc. For realizing the time-
integration within DG-FEM construction, the Rungetta [35] and ADER (arbitrary high
order derivativeqjL03], [148], time integration approaches have beggplied.

More details about the DG-FEM method will be preésd in Chaper 2, where a
numerical software based on it is described folinear elastic wave propagation phenomena.

1.5 Pseudo-Spectral Simulation of 1D Nonlinear Pramation in
Elastic Media

As described previously, for a large class of tedalseterogeneous solid media, the
conventional five-constant elasticity theory is eoft insufficient to explain anomalous
nonlinear behaviors of these media.

In this part, numerical simulations of “classicalid “non-classical” nonlinearities will
be presented with a 1D model describing a compresaki wave propagating in a
heterogeneous medium. The comparisons of nonlisigaatures of these different kinds of
nonlinearity for shock wave generation, and rodmasice will be studied. These results are
expected to be useful in helping to determine thed@minant nonlinear mechanism in
specific experiments.

1.5.1 The Elastic Wave Solver

In this part, we will first present the Pseudo-8pa (PS) algorithm used to solve the
system of equations Egs. (1.1)-(1.2), or Egs. (X1135) and (1.38) if attenuation needs to be
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included. When needed to simulate unbounded me@@an&olution Perfectly Matched Layer
(C-PML) is introduced.

1.5.1.1 The Pseudo-Spectral Method and the Free-Sace Implementation

The spatial derivatives involved in Egs. (1.12)1.are calculated by using a Pseudo-
Spectral (PS) method. To reduce numerical artifantsPseudo-Spectral simulation in
heterogeneous medium a staggered grid implementetiosed [76], [143]. For example, the
derivative d7/0z is computed by taking the Fourier transformzr¢t) over z, multiplying
each point in the resulting spectrum kg, e***'? and performing the inverse Fourier
transform:

ag(tZ) - FT"1[jkzeijAZ’2FT[T(Z)]], (198)

whereFT is a forward Fourier transfornkT! is an inverse Fourier transform, akgis the
wave number in thedirection.Az is the spatial step of the numerical grid.

The solver uses a staggered fourth order Adamsy@&adls method [76] by which stress
and particle velocity are updated at alternatinfytimae steps to integrate forward in time. To
circumvent wraparound inherent to FFT-based Ps&pmdwtral simulation, a Convolution
Perfectly Matched Layers (C-PML) boundary conditismised.

In Pseudo-Spectral simulation the introductiorireé-surface is not easy due to the non
local behavior of the spatial derivatives, evethi§ problem has been reduced by the use of
staggered grid. In the solver, a method of imadest, introduced by Levander [114] and
described in details by Robertsson [1B8F been used. The idea is as follows: the frdacur
is chosen such to be located orr aode. On this node = 0, the spatial derivatives are
calculated with particle velocity and stress conmgraa mirrored around the free surface as
even and odd functions respectively.

In the solver the C-PML zone is suppressed behifide surface, because no waves are
supposed to propagate, and so to be absorbed. tNefesss, in this case the effects of the
domain periodicity inherent in FFT-based calculasioeappear. For this reason the stress and
the particle velocity are smoothly reduced to aesimg an apodization window near the limits
of the numerical domain when a stress free boundgrsesent.

1.5.1.2 Application of C-PML Absorbing Boundary

In this part, we introduce the Convolution Peftieatched Layer (C-PML), to the 1D
nonlinear elastic motion equation. The C-PML meti®adntroduced based on a stretched-
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coordinate formulation of Eqgs. (1.1)-(1.2). For modetails see chapter 3. In the 1D
simulation, the choice of the complex stretchingalae is given by:

_ g.,(2)
S, —KZ(Z)+m. (199)

where the parameters,, o, anda,will be described with great details in chapterE3j.
(3.18)).

In the frequency domain and stretched-coordinptee, we cambtain the following

eguations:
af/=pisi%, (1.100)
0~z
jwi =K O Lov (1.101)
S, 0z

wherelis the Fourier transform of the variahleand O is a convolution. Egs. (1.100)-(1.101)
are next transformed back to the time domain. T fime domain equation, with memory
variables, is then:

ov 1 (or

_ = — 4+ , 1102
ot Pk, (02 Azj ( )
ﬂ:@(@Jr sz, (1.103)
ot  «, \0z

0A, o,0r (O

9 __ 900 1%, ' 1.104
ot K, 0z (KZ ZJAZ ( )
0B, __0,0v_ 9240 |B,. (1.105)
ot K, 0z | K,

where A, and B, are the memory variables and they are zero outs&l€-PML zones.

The C-PML offers a number of advantages over tadittonal implementation of the
PML. First, the application of the C-PML is, as smoin Eqs. (1.102)-(1.103), independent of
the host medium. Secondly, this is a nonsplittibgLRcorresponding to perturbations to the
original wave equations where the perturbed egusti@duce automatically to the original
wave equation outside the PML absorbing layers. tBe,fact that the C-PML treats the
boundary layers in the same way as the rest ofahgputational domain, greatly simplify the
computer implementation.

Now, the simulation results for different kindsrainlinearity will be presented, and we
will focus on the comparison of nonlinear signasuoé these different kinds of nonlinearity
for shock wave generation, and rod resonance.
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1.5.2 Shock Wave Simulation

Now, we will present the results of shock wave wgation, which have been realized
using the PS method, for different kinds of nordiriy. In all the 1D simulations, we assume
a bar discretized with 4096 elements, constitued ofaterial with density, = 260@/m°,
modulusKy = 10 GPa. A time stefit = 2.5 ns and spatial stegz = 0.15625 mm have been
used. The source signal, which will be used atldffiieside of the bar, is a sinusoid with
amplitude A, and frequencyf . To simulate a semi-infinite medium a C-PML bouryda
condition has been used at the right side of the ba

1.5.2.1 Quadratic and Cubic Nonlinearity

First, the results of simulation for “classicaliafiratic nonlinearity witH™ =40, 0 =0,
A, =2 MPa andf =50kHz will be presented. In Fig. 1.15(a)-(d), we plbe particle
velocity v at a distance of 2, 6, 10 and 15 wavelengthsemsely. From this figure we can
see the process of shock formation: the sinusaigdalal (a) becomes more and more steeper
as the wave propagates forward (d). Fig. 1.16easctirresponding frequency spectrum at the
distance of 15 wavelengths, from which we can $ee existence of both even and odd
harmonics.
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Fig. 1.15Particle velocity for “classical” quadratic nordiarity at a distance of (a) 2, (b) 6, (c) 10 and1(s!

wavelengths. From these figures we can see thegsarf shock front formation.
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Fig. 1.16 Corresponding frequency spectrum for “classicaliadratic nonlinearity at a distance of 15
wavelengths. From this figue we can see both eaemdbnic (100kHz, 200kHz, 300kHz, etc) and odd hamimo
(150kHz, 250kHz, 350kHz, etc).

Fig. 1.17 displays the results of simulation folassical” cubic nonlinearity witl =0,
0=5x10°, A =1MPa andf = 5&Hz at the distance of 15 wavelengths. In this case
shock front appears and only odd harmonics aresptges
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Fig. 1.17(a) Particle velocity for “classical” cubic nonliaety, and (b) the corresponding frequency spectatim
a distance of 15 wavelengths.

1.5.2.2 Bi-modular Elasticity

For the “non-classical” Bi-modular nonlinearityrailation, the following parameters ,
E. = 10 GPa andE. = 9.98 GPaA = 0.MPa andf = 5&Hz have been used. From Fig.
1.18(a), corresponding to the particle velocity atistance of only 2 wavelengths, we can see
already a wave jump. The calculations in such meali medium are very difficult to realize,
because contrary to the “classical’ quadratic obicunonlinearity, here, the harmonic
generation is not a cascade process. So, all tineomécs appear simultaneously, as shown on
the frequency spectrum of the calculated parti@oaity plotted on Fig. 1.18(b). Here,
mainly odd harmonics are generated during the wanopagation. These results are in
accordance with analytical predictions [135], [142]

58



CHAPTER 1: INTRODUCTION TO NONLINEAR NONDESTRUCTIVE TESTING AND IMAGING

(@) (b)

20r
10
0
-10
-20

-30

Particle Velocity (m/s)
Normalized Amplitude (dB)

-40

Jump q -50r

350 3‘70 3§O 4i0 450 450 100 360 560 760 960 1100
Time (us) Frequency (kHz)
Fig. 1.18(a) Particle velocity for “non-classical” Bi-modulaonlinearity, and (b) the corresponding frequency

spectrum.

1.5.2.3 Nazarov Model of Hysteretic Nonlinearity

Now the results of simulation for “non-classicazarov hysteretic nonlinearity will
be presented. The parameters we have used ardoaesfn=2, y, =y, =y, =y, =2x10°,
A, =01 MPa and = 50 kHz. Fig. 1.19(a)-(d) are the particle velpeit the same distances:
2, 6, 10 and 15 wavelengths. From these figurescare see both a shock front and a
triangularisation of the top of the particle vetgcwhen the wave propagates forward. For the
chosen case, where all the four nonlinear parameterequal, the frequency spectrum
displays only odd harmonics as shown on Fig. 1ce again, these results are in perfect

accordance with theoretical predictions [137], [[138
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Fig. 1.19Particle velocity for “non-classical” Nazarov hystic nonlinearity at a distance of (a) 2, (b) &, 10

and (d) 15 wavelengths.
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Fig. 1.20Frequency spectrum of “non-classical” Nazarov éngttc nonlinearity at a distance of 15 wavelengths
Only odd harmonics are generated during the prdjmaga

1.5.3 Rod Resonance Simulation

In this part rod resonance simulations will be sprded for different kinds of
nonlinearity. In this simulation, we assume a blteagthL = 250 mm, constituted of the
same material as the on previously used. A unifepatial stepAz = 6.1728 mm has been
used and the whole length is discreted into 45 gothts. The time step is chosen as
At =1/(776f) . The source signal used in the left side of theiba sinusoidal signal where
the amplitudéA is increased from 2 to 16384, and the frequehcig increased from 3859.2
kHz to 3956.5 kHz with a step of 3.1376 Hz. Thesprded results corresponds to the particle
velocity measured at the stress free boundaryeofdt.

1.5.3.1 Quadratic and Cubic Nonlinearity

First, we present the results of simulation foraSsical” quadratic and cubic
nonlinearity with T =4 and J=5x10° . Moreover, relaxation attenuation has been
introduced in order to obtain a finite amplitudetla¢ resonance frequency. The selected Q-
factor was 80 as described previously in paragfapi2. On Fig. 1.21(a), we plot the typical
resonance curves for the different amplitude oftakion. We can see the frequency shift with
the increasing source amplitude. It is importantemind that, contrary to what is believed,
both quadratic and cubic nonlinear terms contribatthis frequency shift. Here, as expected
the obtained dependence of this shift on the irgitdin is quadratic. Fig. 1.21(b) is the
normalized amplitude of resonance curves, wheres itlear that no extra-attenuation is
induced by this “classical” nonlinearity.
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Fig. 1.21(a) Resonance curves for “classical” quadratic euttic nonlinearity with relaxation attenuation, and

(b) the corresponding normalized resonance culvewisag no extra-attenuation process.

1.5.3.2 Bi-modular Elasticity

For the “nonclassical” Bi-modular nonlinearity sitation, relaxation attenuation has
also been introduced with the same Q-factor. THevitng two parameters€. = 10 GPa and
E. = 9.98 GPa have been used. Fig. 1.22(a) is thersat resonance curves and Fig. 1.22(b)
the corresponding normalized strain amplitude. \Afe see that all the curves are superposed,
that means that there is no frequency shift anaxtoa-attenuation for resonance in a Bi-
modular nonlinear medium.
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Fig. 1.22(a) Resonance curves for “non-classical” Bi-modulanlinearity with relaxation attenuation, and (b)

the corresponding normalized resonance curves,enfi@frequency shift and extra-attenuation appear.

1.5.3.3Nazarov Model of Hysteretic Nonlinearity

Now, we present the results of resonance simulat@ “non-classical” Nazarov
hysteretic nonlinearity. The parameters are asrbefe2 and y, =y, =y, = y, = 2x10°. Fig.
1.23(a) is the resonance curves and Fig. 1.23(@)ctrresponding normalized resonance
curves. Here, both frequency shift, with a lineapehdence on the input strain, and an extra-
attenuation also with a linear dependence on thetistrain are simultaneously obtained.

61



CHAPTER 1: INTRODUCTION TO NONLINEAR NONDESTRUCTIVE TESTING AND IMAGING

X 10° ‘ @ ‘ ‘ (0)

0.8

0.6r

1% ]

0.2

3780 3820 3860 3900 3940 3780 3820 3860 3900 3940
Frequency (Hz) Frequency (Hz)

Strain Normalise

Fig. 1.23(a) Resonance curves for “non-classical” Nazargstdretic nonlinearity with relaxation attenuation,

and (b) the corresponding normalized strain resomanrves.

All the obtained results are summarized in Tab. 1.2

Tab. 1.2Resume of the nonlinear signature of the four a®rsid kinds of nonlinearity.

Kind of Even Odd Frequency Extra
. . Shock . . . .
nonlinearity harmonics harmonics shift attenuation
Quadratic yes yes yes yes no
Cubic no no yes yes no
. yes i
Bi-modular immediatt yes no no
Hysteretic
(Nazarov yes no yes yes yes

1.6 Conclusion

We have first provided a quick introduction of tinear ultrasonic nondestructive
testing and imaging and especially the ones whiehcambined with time reversal process,
are reviewed. The nonlinear elastodynamic equati@ezled in the remainder of the thesis
has been introduced. Different kinds of nonlinganmhodels, including the “classical”
conventional five-constant elasticity theory andorirclassical” nonlinearity have been
discussed. An overview of the classical numericathods including Finite Difference
Method, Finite Volume Method, Finite Element Methodseudo-Spectral method and
Discontinuous Galerkin Finite Element Method (DGMPHE focusing mainly on their
advantages and weaknesses is made. Among thesedsi@-FEM will be the one chosen
to the numerical development made during the thekis to its ability to maintain a high
degree of accuracy with geometric flexibility.

In order to profoundly understand the nonlineaset properties of fatigued solids, 1D
simulations of nonlinear propagation of elastic waw heterogeneous media with different

62



CHAPTER 1: INTRODUCTION TO NONLINEAR NONDESTRUCTIVE TESTING AND IMAGING

kinds of nonlinearity have been numerically studi€kis study can help in the determination
of the predominant nonlinear mechanism in spe@kperiments. It was a first step in the
development of the proposed numerical tools desdrib the next two chapters and “chaotic
cavity transducer” imaging system presented irldeechapter.
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CHAPTER 2: THE NODAL DISCONTINUOUS
GALERKIN METHOD

2.1 Introduction

As presented in the first Chapter, the Finite &i#hce Method (FDM), Finite Element
Method (FEM) and Finite Volume Method (FVM) haveebewidely used to solve Partial
Differential Equations (PDE) in many computatiofialds to derive discrete representations
of the spatial derivative operators.

For FDM method, it leads to very efficient sensatete spatial schemes and its most
attracting aspects is its simplicity. Furthermotke explicit semi-discrete form gives
flexibility in the choice of time-stepping methodsich are supported by an extensive body
of theory [84], and are sufficiently robust andi@ént to be used for a large variety of
problems. The extensions to higher order approxanatcan be realized by using a local
approximation of the derivation operator of higldegree. However, for the FDM method,
additional complications caused by the simple uydey structure are introduced around
boundaries and discontinuous internal layers whish different material coefficients. This
makes it ill-suited to deal with complex geometriesth in terms of general computational
domains and internal discontinuities as well addoal order and grid size changes to reflect
local features of the solution.

The FVM is a method closely related to the FDM{ tanich introduce an element-
based discretization and with added geometriclfiétyi. In this method, we assume that the
whole calculation domain is represented by a cttlacof elements, typically triangles and
cubes, organized in an unstructured manner tah@l physical domain. For each cell, the
numerical approximation and the scheme are puceigl land, thus, impose no conditions on
the grid structure. In particular, all cells carvéalifferent sizes. By using the divergence
theorem, such as Gauss’ theorem, the flux termcesdto a pure surface term. There are
many different ways to get the evaluation of thexdéis at the interfaces and the details of
these methods lead to different finite volume mdgh¢ll5]. For linear problems and
equidistant grids these methods will be reducén¢oRDM. If, however, we want to increase
the order of accuracy of the FVM method, the need d high-order reconstruction
reintroduces the need for a particular grid stmecand thus destroys the geometric flexibility
of the FVM in higher dimensions. The main limitatiof FVM is its inability to extend to
higher-order accuracy on general unstructured grids
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For the FEM method, which use the unstaggered mpidt and share nodes along the
faces of the elements, by adding additional degoédseedom to the element, the higher-
order accuracy can be realized in higher dimensibmgparticular, one can have different
orders of approximation in each element, therebgblng local changes in both size and
order, known as hp-adaptivifg4]. However, for FEM method, the globally definbdsis
functions and the requirement that the residuabttrogonal to the same set of globally
defined test functions implies that the semi-dicischeme becomes implicit and the mass
matrix must be inverted. For time dependent probldims is a clear disadvantage compared
to the FDM and FVM methods. From the previous dis@n, we realize that to ensure
geometric flexibility and support for locally adagtresolution, we must strive for an element
based method where high-order accuracy is enabteddh the local approximation, as in the
FEM method. However, the global statement, whiclnisoduced by the globally defined
basis functions and test functions, destroys thalilty of the scheme and introduces potential
problems with the stability for wave-dominated gdesbs. That is precisely the regime where
the FVM method has some attractive features.

An intelligent combination of the FEM and FVM metls, utilizing a space of basis and
test functions that mimics the FEM method but $atig the equation in a sense closer to the
FVM method, appears to offer many of the desiremperties. This combination is exactly
what leads to the Discontinuous Galerkin Finitenigat Method (DG-FEM). In the DG-FEM
method, the points at the face of the elementslapécated and shared by two elements. The
interface flux connects the elements by combinimg information of the two cells. In the
structure of DG-FEM, the mass matrix is local rattman global as used in FEM and thus can
be inverted at very little cost, yielding an exfl®emi-discrete scheme. Compared with the
FVM, by using the local element-based basis, theHEM overcomes the key limitation on
achieving high-order accuracy on general gridscdntrast to classical FEM, with the DG-
FEM framework the solution can be discontinuousos&rthe element interfaces, which
allows incorporating the well-established numeritat functions from the FVM framework.

As we want to simulate nonlinear elastic wave pggtion in structures of complex
geometry, we need, in order to reduce the numbeeltf to be used while maintaining a high
degree of accuracy, a high-order numerical methitidl geometric flexibility. This last point
will be a great improvement to the Pseudo-Spestthéme we previously used. Our choice,
motivated by the previous discussion on the contpas advantages of the different
numerical methods, corresponds to the nodal DG-BEMme first introduced by Hesthaven
and Warburton [91] for electro-dynamic simulatio®reover, a numerical scheme based on
this method has been developed since then foga lasmber of fields as Maxwell eigenvalue
problem [92], left-handed medium [167], chaoticngport in turbulent flow [160], water-
wave and free surface flow [83], Boussinesq typga&qn [66], and piezoelectric transducer
[27]. It is now freely available at the followingiternet addressdsttp://www.caam.rice.
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edu/~timwar/Software(Matlab script) or http://www.nudg.org (C++ script), and well
documented [94], [93].

The introduction of nonlinear elasto-dynamics I{iding sources) in this software will
be now described in details, and validated on agpl@ave benchmark simulation.

2.2 Discontinuous Galerkin Finite Element Method Seeme in 2D

In this part, how to implement the DG-FEM operator a general, flexible, and robust
manner will be presented in detail. We will discussw to, in practice, assemble the
computational grid and compute all the entitiesunegl to enable the implementation of the
scheme, both for triangular and quadrilateral gridereover, different choices of numerical
fluxes will also be discussed. How this method dam used in numerical schemes
approximating the PDEs describing nonlinear elastathic is explained. The fundamental
elastodynamic equations have been presented isulbeection 1.3.3 of Chapter 1 within a
conservative form.

In 2D, the elastodynamic equations Eq. (1.49)lmrewritten as:

QX _ oF , 96

, x =[x, y|OQOR? 2.1
p ox |y [X Y] (2.1)

where Q is the global physical domain with boundaif2 and

pOVl I:)ll I:)12

PoVs Py Py

0= Fi. | Fo A | G = 0
F,, 0 A

F. 0 A

F,. A 0

2.2.1 General Formulation of Discontinuous GalerkirSchemes

In the discontinuous scheme, the global donfairs divided intoK non-overlapping
triangular element®*

K
Q0Q, =D . (2.2)
k=1

In the k-th element, the numerical solutioipf1 of Eq. (2.1) is approximatethrough an
interpolation
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QLX) DQL (LX) = Y Q5,00 = 2 Qs X )IF(X) = . QL IFK0) 2:3)

In the first formulation, known as the modal forgr,(x) is a local two-dimensional
polynomial basis of ordéX. In the alternative form, known as the nodal reprgation,| (x)

are two-dimensional Lagrange interpolation polyramibased on the grid poinkts. The
connection between these two forms is done throtigh definition of the expansion
coefficients@ﬁ. N, is the number of interpolation grid points in eaement, which is
equivalent to the number of expansion terms. Aarpulation is obtained by connecting these
grid points to a set of basis functions.

Multiplying Eq. (2.1) by a test function, the sarag the basis function in our case
(Galerkin Method), and integrating on each eleniZngields

I, 2t oa= [, o+ aGk)l (x)dx

= [, (@Rl +aehlr(x))dx_j (O e, A
D oy D oy

(2.4)

G)dx

According to the Green theorem, the first term qf £.4) in the right hand can be written as
a curl integral on the edg@®* of elementD*, and the following equation is obtained

ol (x) LR
% GX)dx, (2.5)

I, 22 o= [, (iR + kG0,

where dD“ is the edge of thB*, andA* =[n} n] is the normalized outward pointing
normal vector. Sinc€), may be discontinuous at an element boundary, weae the flux
(n§Fy +nyGr) = by a numerical fluxniFy +nsGy) =

90k \ al*(x al¥ (x
T, e 0ax= [, iy + iyt ooox- [ (LR + Behax,  26)

or

k
[, a‘?thli"(x)dx = [ (R +nGR) = (nkFy + nfG )1 (x)olx
oF oG @)
h h

e G+ oy M 0o
Egs. (2.6)-(2-7) are the weak and strong formutatiespectively, of the nodal discontinuous
Galerkin method in two spatial dimensions. Note tha strong form is derived directly from
the weak form through integration by parts. Sirfoe weak form does not allow a space of
nonsmooth test functions, we consider the stromgp fio the following. The last term of the
Eq. (2.7) in the right hand is the volume term.
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2.2.2 Defining Discontinuous Galerkin Operators o riangular Elements

As in the preceding presentation, the global dom@i is divided into K non-
overlapping triangular element®* . The number of interpolation pointd , for each
triangular element, has the following relation wiitie polynomial ordeN
_(N+D(N+2)

N, 5

(2.8)
The grid points, which the Lagrange interpolatisrbased on, are a set of local grid points
belonging to elemerk They define the vectors, =[x, %;,...,.xs  dndyy =[y5, V5, Yy |
Here, we consider the case where we interpolate tvét same number of grid poinits,, in

all the elements.

As sketched in Fig. 2.1, we introduce a mapphHg,connecting the general straight-
sided trianglex 0 D* with the standard straight-angle triangle, definsd

| ={r =(r,9)|(r,s)=-Lr +s<0}. (2.9)

YA SA

- Or+0s  (x,y)=w(r,s)
—_— 5

<—
(r,9) =w7(xy)

-1k

Fig. 2.1 The mapping between the reference straight-anglagie element and a general triangular shaped

element.

r ands are the coordinates in a reference standard tdadgsume thaD* is spanned by
the three verticeg(v;,v%,vE), counted counter-clockwise. These vertices armteelto the

reference trianglé through the linear mapping

k
X + + +
{ }=—r—sv'l‘+gv'§+s—lvk. (2.10)

v 2 2 2

It is important that the mapping is linear. This Has consequence that any two straight-sided
triangles are connected through an affine mappiigt is, it has a constant transformation
Jacobian. The metric for the mapping can be fouretty since

r 10
oxor _| X X f Ty , (2.11)
orox |Y, VYs|S. S, 01
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Here, the standard notation af which means thaa is differentiated with respect to has
been used. From Eq. (2.10) we can get

_Ys _ X __Y _%
=2, r=-28 g=-2, =2 2.12
N Y J J ¥l ( )
with the Jacobian
J=XYs XY, (2.13)

Ther,, r,, s,, s, andJ are constants due to the use of triangular elesneith straight
sides.

In the reference trianglg, it's very important how to find exactiN, points for
interpolation. Several different ways [41], [181}ave been done, leading to nodal
distributions with very similar behaviour. Here, wee the distributions proposed byS
Hesthaven [94], [90] (up to order 19), for whiclethodes along the edges are the one
dimensional Legendre-Guass-Lobatto points. Examgfl@®dal distributions in the reference
triangle are displayed on Fig. 2.2.

Q
¢} O o
o o 0% o
o o
o 0% © o
o o
o O o
o)
o o o o © © o
o o o o o o
o 0 © 0 ¢
o o
o o o
o] ¢} o © © O o 4
o o fe) o
o o
o o o o OOOOOOOOO
© © oo o0 o O O 0 o
o o o o o o o o o o o o Koo o o o o

Fig. 2.2Nodal distributions in the reference straight-argkengle element for polynomial ordeN = 4, 6, and
10.

Through the mapping, we are back in the positidmene we can focus on the
development of polynomials and operators definet. dio obtain a spectral scheme, we need
to define an orthogonal set of basis functions e reference triangle One kind of basis
functions i484]

W, (r,s) =+2P®» (a)Pj(Z“l'O) (b)(L-b)", for (i,j)=0andi+j<N, (2.14)
where
_ A1+ _ . , J, .
a—21 -1 b=s andm—|+(N+1)J+1—§(j—1) (2.15)
-s
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and P“#)(x) is then-th order Jacobi polynomial. & = 3 =0, then it becomes the Legendre
polynomial.

In the reference triangle, by interpolating, trensformation between modal and nodal
form can be achieved:

i=1\ j=1

> Qw9 Dz"(iéﬁw,» r .s)jlr(r,s) =3 QL. S)E9). (2.16)

From this equation and by interpolating the basifion, the two following relations can be
obtained in the matrix form,

Q, =VQ, and y(r,9=VTI(r,s) 2.17)

where we have defined the vectcurs[rl,rz,...,er]T ands:[sl,sz,...,sz]T, and introduce
the Vandermonde matrik = ¢, (r;, s . VT is the transpose of .

Even though we do not have the direct expressioth@fderivation of the Lagrange
interpolationl in nodal representation, we can calculate thevdeves in modal space and
transform the derivatives back to nodal space, umcghe derivatives of the basis function
y; can be obtained directly. On the reference elerhettte differentiation operator can be
computed from the following relations

:6I(r,s)

r ar :al(r,S) :(VT)—laW(r!S) . (218)

0s

D , and Dy

r S

=(VT)? a‘l’(;::'s)

r S

In the orthogonal basys, , the variables andb are functions of ands. From Eq. (2.14), we
obtained

0Yn(r,s) _0aody,(r,s) and 0Yn(r,s) _0aoy,(r,s) 0@,(r,s) (2.19)
or or 0a s ds oOa ob '

Using the chain rule, the differentiation matrixhgn obtained directly

i:ﬂD +§Dsandi:ﬂD +§D . (220)

r S

ox ox ' ox dy ody oy
By using the differentiation matrix Eq. (2.20), tbelculation of volume term will be obtained

as following

oF N 0G|
ox oy

=r,D,Fy +sDFy +r,D Gy +5s,D.Gy. (2.21)

The normal vectors belonging to the three facethefstandard triangleare n, = -S,
n, =(f+§)/\/§and n,=-r, wherer and S are unit vectors. Hence, the outward pointing
vectors at the surface of the elemets follow directly from the properties of the mapping
that are
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~ K Ur

Ak = 3r ~x _ Ur+0s
.

A K
n, _—||Dr +Ds{| andnj;

(2.22)

__Us
. k O,
Here, il is the Euclidian length of the vector. These carcbmputed directly using the Eq.
(2.12) from the physical coordinates ¥). The corresponding edge Jacobian for the mapping

is computed as

3t =[ork|, 3 =|or + 0| and 3fs =|0s'|. (2.23)

With these local Discontinuous Galerkin operatteBned on each triangle of the mesh,
the scheme in strong form becomes from Eq. (2.7):

N

;[ R0 (=

=1

NP

Z}Lk (r,D,Ff +s D +1,D,Gk +5,D.GI* (x)I¥(x)dx. (2.24)
<

(R +nSGE) = (R +nfG I (X)olx

Considering the local mass matrix of thth element:

M= [ OO O y)dx = 341, 9)1 (1, s)dr

N, , (2.25)
=34 3 (V) V) [ S (r,9)dr = 3K(M),
m,n=0
whereM =(VV 7)™ is the mass matrix on the standard triarglee obtain:
aQE —_ k k k k
i rD.F +sDF, +r,D.Gy+s DGy
t , (2.26)

M

-1
# 20 [ (SR + UGEY = (W + G (0

To calculate the surface integral o@B*, the integral over the facel* (i= 1, 2, 3) of the

triangle are evaluated with the use of a 1D intteggmn [“*° :

§. (R +nGhIdx = Y (R + G 1K lhdx =FYM . (2.27)
| n:O |

Here,x is assumed to be the trace along the edge whame dhe exactlyN +1 nodal points,
and M /¢ is the edge-mass matrix

M = .17 lndx = §, 1915 27dx = 915 (Vi Vip) ™, (2.28)
where J,; is the transformation Jacobian along the face raftie between the length of the

face inD, and inl, respectively. In this numerical scheme, the surfategral is an array
with the 3(N +1)K elements.
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Finally, we obtain the following local scheme @tk triangle of the mesh:

aa—QtE =rD,F+s D +r,D Gy +sDGy + z it MM (N 4y | (2.29)
As the operators, in the DG-FEM scheme, work pudeilyeach local element, we should
recover the global solution from thkdocal solutions. As in FVM the fluxes, called nuical
fluxesf”, can be used to transfer information between tements. The numerical fluxes,
used in the DG-FEM, are funded upon a theory whiak developed in the FVM and aims at
solving hyperbolic problems on conservative forrhdJL

2.2.3 Numerical Fluxes in the Discontinuous Galerki Method

In the discontinuous method, we have two poss#slito represent th®, at a
coordinate poink ,, belonging to an interface between two element [bcal fluxf¥, in
the elemenk, is only a function of the local valu@E_ :Q"(xp). The external value, at the
same spatial coordinate of an external boundatyenneighbouring elemem, is given as
Qf, = Q"(x,) . The numerical fluxes are typically functions bétinformation about the both,
f¥(Qf_,QF.). There are many different numerical fluxes thatehheen suggested in the
literature [94], [196], [115].

For example one can consider a numerical flux like

fk*(QE_'QEJr):f (Qh—);f (Qh+)

_n(FQr) +F(QR)) +n, (G(QR) +G(Qr,))
5 ,

(2.30)

which corresponds to a purely central flux. In ttése, we do not get any contributions from
the internal boundaries, which give a stabile sahéon linear hyperbolic problems. That is,
for a periodic case, the energy is constant athfooriginal equation.

An another kind of numerical flux is the Lax-Fnegh flux, which has the following
formulation

££(Q4,Qk) =1 (Q“');f Q) + A QL - QL)

_N(F@QL) +FQH)) +n, (G(Qy )+G(Qh+)) C Ak
2

A“IQh -Qr.), (2.31)

where C is the local maximum of the directional flux Jai@ob

0G
n,——+n,—.
] *0Q 7 aQ

max 2.32
QUQp- Qpe ( )
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C corresponds to maximal value of all the velocibéshe waves propagating in the medium.
The Lax-Freidrich flux ensures a monotone solutod can therefore be used in non-linear
hyperbolic problems [94].

The third considered numerical flux is a Godungpetof flux. It is generally based on
the resolution of the normal Riemann problem ahezedl edge. Such kind of numerical flux
has been introduced in the framework of a modal FEB4 scheme for the simulation of
linear elastic or viscoelastic waves in isotropid anisotropic solids by Kéaset al. in a
series of papers [103], [148], [104], [63], [64h. this case, the numerical flux always takes
information from where the waves are coming froimgttcorresponds to an upwind flux
expressed on a local coordinate system definecheyvéctor,i = (n,,n,), normal to the
considered interface between the current elemahibae of the three neighbouring triangles
and the corresponding tangential vectors. To ds, thme needs to rotate both the variable
vectorQ and the Hooke’s matrix with componerilg. To rotateQ to the local coordinate
system, it is multiplied by the inverse of the tima matrix T™ which reads as:

n, n 0 0 0 0
-n, n, 0 0 0 0
iz 00 moonponn,onn (2.33)
0 0 n n; -nn, -nn,
2 2
0 0 -nn, nn n; —-ny
2 2
| 0 0 -nn, nn - n. |

The rotation of the Hooke’s matr@ to this local coordinate system is done by apgyime
so-called Bond’s matrix method [6], [139]. The Hetk matrix C in the local system is
given by:

C=NCNT, (2.34)
whereN is the Bond’s matrix:
n’ n;  2nn

N=| n nZ -2nn |- (2.35)

X
-n,n, nn, n;-n

The numerical Godunov type flux, if only the fluommal to the interface is considered, is
then given by:

F<(QK, QL) = T*A(TH*Q¥, (2.36)

where A is the matrixA of Eqg. (1.52) in which the componer@s are rotated, and where for
upwind Q¥ is defined as:
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Q“=Qy  iff*>0
Qk=Q*  iff“<o. (2.37)
Q=0 if f*=0
This leads to the following numerical flux:
QA Q) = (TAT )" + THAIT2))Qk, + - (THA(T)* ~THA(TH)Qh
:%(TWTW +THAITQE - Qi) +H QL) (2.38)
So, the ternf* —f* encountered in the numerical DG-FEM scheme caxpeessed as:
- = TR+ AYT @5 - k). (2:39)

The main advantages of this flux are first the fmlty to extend it to a flux of higher order
of precision, using a wave-propagation approactieasribed in the book of Le Veque [115],
and second to offer a simple way to implement dpamdary condition. This last possibility
will be described in paragraph 2.3.1.

2.2.4 Discontinuous Galerkin Operators on Quadrila¢ral Element

In the preceding part, the DG-FEM scheme has lmesented for triangular cell
elements. This involved the introduction of the miag between the general triangular
element andhe straight-angle reference triangle, the nod#& $er the triangle and an
orthonormal polynomial basis that has been used Bference basis for interpolation and
differentiation. Here, we will go further and cotesi the use of quadrilateral mesh elements
in substitution to the triangular mesh elementat tb say the whole computational physical
domain,Q, is decomposed into quadrilateral cell elemdhjs

In this case, for solving the system of Eq. (21lthe discontinuous scheme, we assume

that Q can be tiled using non-overlappikgyuadrilateral eIemenBc';:

K
Q0Q,={JDy. (2.40)
k=1

In thek-th quadrilateral element, the numerical solut®@f of Eq. (2.1) can be approximated
through an interpolation as in the triangular eletveith the same representation as Eq. (2.3).
In this case, the number of grid poirits, in the local expansion has the following relation
with the order of interpolation polynomikll

N, =(N+1)(N+1), (2.41)
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As for triangular elements, we introduce a mapphg which connects the general
straight-sided quadrilaterakD*, with the standard quadrilateral, defined by

| ={r =(r,9)|(r,s)=-1(r,s) <1}, (2.42)

as sketched in Fig. 2.3.

YA SA

(xy) =W(r,9)
_—

r:\
T

(.9 =w7(xy)

A1k

Fig. 2.3 The mapping between the standard reference datzdal element and a general quadrilateral shaped

element.

The mapping relation between the standard quaerdband the general quadrilateral is then
given as

m _@-0A-9) i, @+NA-9) L, AHNA+Y) \, A-1)AFY) (2.43)
1 2 41 .

y 2 2 ? 2 :

in which(v¥,v5,v,v) are the vertex coordinates of tkeh general quadrilateral element.
In the standard quadrilateral, for interpolatione thvectors r :[rl,rz,...,er]T and
s:[sl,sz,...,sz]T have been defined and the positions of these wgidg the Legendre-
Gauss-Lobatto points as in the case of referenaegular element. This choice leaves the
possibility to combine the two different types ¢éraents. Examples of nodal distributions in
the reference quadrilateral are shown on Fig. 2.4.
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Fig. 2.4 Nodal distributions in the reference straight-argl@drilateral elemeritfor polynomial ordeN = 4, 6,
and 10.
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Ther, , r,, s, and the transformation Jacobiah are given by the same
expressions Egs. (2.12)-(2.13) as for triangulameints and are also constants due to the use
of quadrilateral elements with straight sides.Ha teference standard quadrilateral, we use
the following orthonormal interpolation basis funct[167]

S

X 1

Wy(r,9) =R (r)P(s)/ [y, for (,j)=0 andi+j<N, (2.44)
with
2,1
hi=G +1)(2j 1

The R®?(r) and P®%(s) are thei-th andj-th order Legendre polynomials, respectively. The
Vandermonde matrix is constructed by the basistiond/, =¢(r;,s ). The differentiation
operator and the differentiation matrix have thensdgormulations as Eqg. (2.18) and Eq.
(2.20), respectively. But because the interpolafiorctiony, is function of variables ands
directly, its derivatives are simply given, for tteference quadrilateral, by

W19 _9R(1) 0w .9 R (9

=PO9(r)
or or 0s ' or

P©%(s) and (2.45)

In the reference standard quadrilatétahe normal vectors belonging to its four faces

aren,=-s, n,=r, np=sandn, =-r , wherer and S are unit vectors. Hence, the
outward pointing vectors at the surface of the eIch'; have the following formulations

~ o dr

foo O o Os
S

A= US| sk Ur
© o]

e nk —
k , Ng _||Dr|| andn,

(2.46)

_DUs
. k |Os,
Here, ||l is the Euclidian length of the vector. The cormesting edge Jacobian for the

mapping is computed as

3 =35 =|0r|, anddjg =i =|0sY. (2.47)

For the numerical flux, local flux and volume tegntBe results are analogous to the one
already described in the case of triangular mesmehts.

2.2.5 Time-Stepping and Discrete Stability

A semi-discrete DG-FEM form has been obtained @ gpatial dimension from the
above analysis, that is, we have discretized ircesgiomain but kept continuous in time
domain. This means that in the used approach waetize the space and time domain
separately. Standard techniques can be used te #wvsemi-discrete DG-FEM scheme for
the time discretization. The quadrature-free Rukgéa Discontinuous Galerkin approach
developed for the semi-discrete equation by At&nShu [4] which used a three-stage TVD
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Runge-Kutta time integration meth@ib8]. An Arbitrary high order DERivatives (ADER)
[103], [148], [104], [63], [64] approach has begpked to the semi-discrete form of the DG-
FEM scheme in order to achieve an arbitrarily aaiutime discretization. Bordat al [27]
use a fourth-order low storage explicit Runge-KYtt8 ERK) method35] to discretize the
DG-FEM in time domain for piezoelectric material.

For us, in the following, the same fourth-ordew Istorage explicit Runge-Kutta
(LSERK) method will be used for discretiztion th&B-EM scheme in time domain. Now,
we make the notation of Eq. (2.1) as following

0Q, _
ot

0,@Qn1), (2.48)

where [, (Q,,t ) represents the right hand side of Eq. (2.1). TRERK scheme has the form

p@=qQn,

. kO =ak™ +At0, (", 1" +cAt),

i0[,...5]: o = pl 4 pk®,

QM =p®. .

This scheme has five stages and one extra storegldresach time-steft , while a standard
explicit fourth-order RK scheme uses four stages$ lzas four additional storage levels. The
LSERK scheme will therefore require less memory,ibctease the number of computations
in each step, as it has five stages. However, dd@ianal stage will give the LSERK scheme
a larger stability region. That is, it is more slalgind we can use larger time-steps, which will
reduce the number of computations. The time-stepasen from the following formula

N

At =2 min(arymin| T |, (2.50)
3 = @ vl

with ry = A/s the radius of the inscribed circle in the triarmguélements, wherdis the area

of the triangle and is half the triangle perimeter. Theis the longitudinal wave speed and

Ar, =r,,, -1, which is the distance between the neighbourind goints on the legs in the

i i+1

standard trianglé. The coefficients needed in the LSERK are given ip. Pal.

Tab. 2.1 Coefficients for the low-storage five-stage fouhder
explicit Runge-Kutta method (LSERK)

i aj b G
1 0 143299717477 0
95750804475¢
_ 56730180573 516183667717 143299717477
135753705087 1361206822357 95750804475¢
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_ 240426799893 172014632349 252626934429
20167466923¢ 20902069449¢ 68203639689¢
_ 355091868646 313456435837 200634551917
20915011738¢ 44814673133¢ 32243100677¢€
127580623668 227782119437 280232161338
84257045799 148821517481¢ 292431792251

2.3 Boundary Conditions

A large variety of physically meaningful boundacgnditions exists for an elastic
medium. However, the three most important kindbaindaries are: open boundaries, stress
free surface boundaries and fixed surface bourglarie

2.3.1 Open Boundaries

At the open boundaries, no waves are supposeeflert back into the computational
domain and those waves that are travelling out Ishibe able to pass the boundary without
reflections. There is a whole scientific commundgaling with non-reflective boundary
conditions, however, in this section we preseny anvery simple approach that so far yielded
satisfactory results, at least for our purposethé Discontinuous Galerkin Scheme. It is a
strict upwind method, i.e. outgoing waves at ammelet interface are only influenced by the
state in the element itself and not by the stathénneighbour. Indeed, since incoming waves
are not allowed, the respective flux contributiorusin vanish. Thus, a very simple
implementation of open boundary conditions can déxvdd using a Godunov type numerical
flux, and is given by:

(1 (@ Qb)) =T A= [A)(T ) Q. (2.51)
This leads to a terrh* —f* encountered in the numerical DG-FEM scheme wriisen

. voe. oo~ m e
(1 =)= =S T AANT QL (252)

This method, although giving satisfactory resuttisldulk waves, is generally less efficient in
absorbing surface waves. To circumvent this prolddherfectly Matched Layer well adapted
to the DG-FEM method has been developed as itb@illescribed in Chapter 3.

2.3.2 Stress Free and Fixed Surface Boundaries

On the free surface of an elastic medium, the abstress and the shear stresses with
respect to the boundary are determined by physmadtraints. At the outside of the elastic
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medium, there are no external forces that retdaetdarticles into their original position.
Therefore,
T, =R, +PF,n =0, (2.53)
T, =PByn, + Pyn, =0, (2.54)

whereT; are the components of the traction acting on théase. Equivalently, the normal
stress and the shear stress values at the freesuréve to be zero:

P =0, (2.55)
P, =0, (2.56)

where andy indicates the normal and tangential directiongyeesvely.

On the fixed surface of an elastic medium, all ¢tbenponents of the displacement (or
the particle velocity) have to be zero.

In contrast to classical continuous FE methodshaxe no direct control on the values
at the boundaries within the Discontinuous Galerkamework. However, the boundary
values can be imposed via the numerical flux, dBenFinite Volume framework.

Lax-Freidrich and Central Flux

On the six components of the numerical flux otlg first two are imposed (equal to
zero) in the case of a stress-free boundary. We khosen to calculate the four remaining
components with the image method [114], [155]. f6othe other components we just copy
the inside values to the virtual outside neighb&war. the free surface boundary condition the
resulting Lax-Freidrich numerical flux function iBq. (2.31) can be then formulated as
follows:

ff; (QE_ , QEJr) - nx(F(QE—) + I_FreeBCF((?E—)) + r]y (G (QE—) + rFreeBCG (QE—))
2 , (2.57)

+%ﬁk Q% -QY,)

with the matrixl;,c =diag(-1L -1, 1, 1 1 1. For the fixed-surface boundary
condition the resulting Lax-Freidrich numericalXlis the same as Eq. (2.57) just replacing
MreescPY Maeasc =diag@, 1L -1, -1, -1 -1). In the case of a central flx= 0 in Eq.
(2.57).

Godunov Flux

Considering that the numerical flux is based andblution of a Riemann-Problem at an
element interface and given some boundary extréggmblalues from inside the computational
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domain on a fixed surface, we must search correlpgrvirtual neighbour values outside the

computational domain. We prescribe a virtual congmbroutside the domain that has the
same magnitude but opposite sign. For the othepoaents we use the image method. Then,
the stress-free boundary in the case of Godunay iygmerical flux can be obtained with:

. 1 ~ = _
(F = reemc = 5 T A+ A cencT ) QL (2.58)

wherel..;c =diag©, 0, -2, 0, -2, —-2). Note that in this case, contrary to what
happens for the Lax-Friedrich flux, the matfix,.;. acts on the rotated components of@he
vector. In the case of a fixed bound&rpecomed . sc =diag(-2, -2, 0, 0, O, 0).

2.4 Sources

The consideration of source terms in numericaugtion is often a difficult task, but
indispensable when realistic simulation of an expent is expected. Here, two different
cases of source terms have been considered: consirapurces in space and point sources
that are characterized by a Delta distributiongace. In both cases the source time function
is continuous. The used method is able to deal wiimt sources at angosition in the
computational domain that does not necessarily teedincide with a grid point. Indeed, an
interpolation is performed by evaluation of thet fesictions at the source locations.

When considering a source te®nthe system of equations that need to be resolved
becomes:

aQ(t’X):a_F+a_G+S, x =[x, y|OQOR?. (2.59)
ot ox oy

As for the variabl&€, the source in thketh element is approximated through an interpohatio

S(t,x*) OS(t,x) = %sﬁi O14(x) . (2.60)

i=1

Multiplying Eq. (2.59) by the basis function andegrating on each elemebf yields for the
source term:

jDk SKIK(x)dx = J*MSF, (2.61)

Then following the steps described in the paragra@h? or 2.2.4 we obtain the following
local scheme on each triangle (or quadrilaterathefmesh:

k 3, 9k .
_a;h =r,D,Fy +sDFy +r,D .Gy +s DGy +Z‘3+'3M’1M1D(f K- +Sy. (2.62)
i=1
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Eq. (2.61) has been obtained because the sournentas discretized on the nodes of the grid.
But, when a point source, not placed on a nodahtp@ introduced the calculation of the
integral of Eq. (2.61) needs to be reconsideredv,Nee have

jDk SKE(x)dx = J kjlsa)a(r —1,,5= S (X)dx = IS (r,,S,) (2.63)

where (o, S)) are the coordinates of the point source in tHereace triangle. Using the
relation between the modal and nodal form of DG-FHke value of the Lagrange
interpolation polynomials at{, s) is calculated as

1 (. S0) =V ) 9015, ) - (2.64)

Therefore, for the introduction of a point sourtesi necessary to first find the triangle
containing the source, and then to find in the &sponding reference triangle its coordinates

(ro, So)-

Frequently, one needs to introduce sources dyr@ctlboundaries, for example in the
case of an impact or when a transducer is gluati®@sample. As for the boundary conditions
in a DG-FEM scheme these source terms are intradwée the numerical flux. In our
simulations, we often need to consider the casenvah&tress was imposed normally to a part
of a surface of the sample. For a surface withranabgiven byn = (ny, ny) the components
of the traction are:

T, =Rn, +R.n, =S =n,S(t), (2.65)

T,=P,n, +P,n =S, =nS(t), (2.66)
Here, S(t) is the time source function at the consideredipdihis simply corresponds to a
normal stress and a shear stress values at theurkieee given by:

Pee =S(1), (2.67)

P, =0. (2.68)

2.5 Numerical Validation: Comparison with Analytical Solutions

In this section, several simulations will be prase to demonstrate the performance of
the proposed DG-FEM scheme for the two kinds af gtements (triangle and quadrilateral).
Applications of DG-FEM will be made for both isgbio and anisotropic solid medium and
for linear and nonlinear elastic waves. For eathation the result of simulation will be
compared with an analytical solution to valid thgplementation of DG-FEM.
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2.5.1 Linear Isotropic Simulation of Lamb’s Problem

Here, for the application of DG-FEM scheme to ngpic medium, we present a
classical test case which uses a vertical for@e lemogeneous elastic half-space with a free
surface. This test is called Lamb’s Problem (Larb4), consisting in a vertical point force
acting on the free surface. The solution of LamBi®blem for a plane surface can be
computed analytically and can hence be used fopeoson with the DG-FEM framework
results meshed with triangular elements. We us&@®RTRAN code EX2DDIR of Ber{d 8]
to compute the exact solution of the seismic 2[paase from a vertical directional point
source in an elastic half space. The code EX2DBIRased on the Cagniard-de Hoop [51]
technique and allows the use of an arbitrary sodie function for displacements or
velocities.

The numerical model is as follows: the physicando has its origin (0, 0) at the left
upper corner and is 4000 m wide and has a heigh®@® m. The tilt angle of the free surface
is ¢=10". A directional point source, acting as a forceppadicular to this tilted surface, is
located at the free surface (1720.00, -2303.28p fageivers are located at (2557.1, -2450.9)
and (2901.8, -2511.7) such that the distances thensource along the surface are 850 m and
1200 m, respectively. The whole calculation domaonsists of 4007 triangular mesh
elements. For the homogeneous elastic medium,ateeeters of simulation were: the mass
density p, = 220&g/m°, the velocities oP-wave andSwave c, =3200m/s andc, =1847 .5
m/s, respectively. The source time function thacses the temporal variation of the point
source is a Ricker wavelet given by the followiogn:

S(t) = (05+a,(t —t,)?) @3 (2.69)

wheret, = 016 s is the source delay time aag=—(7f.)? is the constant determining the
amplitude, and the central frequency of the Riokavelet isf, = 72%z. By considering the
tilt angle ¢, the final resulting source vectsy(x, y,t adting on the governing Eq. (2.1) is

S, (% y,t) =(=sin(@), cos@), O, 0O, 0 0)S(t)D(x-x,). (2.70)

In this simulation, a fifth order RK-DG-FEM O5 smhe has been used with a
triangular elements mesh. The wave propagatiorbeas simulated until tim& = 1.0 s when
all the waves have already passed the two receiwsuse the Lax-Freidrich numerical flux
and stress free surface boundary condition. Thestrm of the velocity component of the
wave field att = 0.7 s is presented in Fig. 2.5, from which we saa the propagation of the
bulk waves in the medium and the Rayleigh wavénatsurface. In Fig. 2.6, we present the
results from the numerical simulations, as recotojedeceiver 1 and receiver 2, respectively,
together with the analytical solution provided bXZDDIR. For the first receiver, the
analytical and numerical solutions match well fbe ttwo vertical and horizontal particle
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velocities, while for the second receiver, the madt horizontal particle velocity is not as

good.

y (m)

2000

X (m)

4000

Fig. 2.5 Amplitude of the velocity att = 0.7 scalculated within RK-DG-FEM O5 scheme meshed angular

element.
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Fig. 2.6 Comparison of the analytical reference solutiothvgimulation results at the two receivers obtained

within the five order RK-DG-FEM O5 scheme meshedtriengular element. The first row (a) and (b) &oe

receiver 1 and the second row (c) and (d) are doeiver 2. In each row the right hand figure digplthe

horizontal particle velocity and the left hand figus the vertical particle velocity.
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In Fig. 2.7 we present the results of simulatiordenavith a seven order RK-DG-FEM with
the same number of total mesh element. We canhs¢ehte analytical and numerical match
well for the two receivers. This means that by @asing the order of interpolation, we will
get better result.

1. i i i i 1.0

-~ — Analytical -~ = Analytical
— NK-DG — NK-DG

Normalized Amplitude
Normalize Amplitude

) 0.2 0.4 0.6 0.8 10 0 0.2 0.4 0.6 0.8 10

Time (s) Time (s)
1 1.0
- =~ Analytical -~ = Analytical
© ~—RK-DG ° ~— NK-DG
g 05 g
2 = 0.57
Q. o
IS 1S
< <
g0 kS
8 S
£ g o0
S 5]
Z 05 z
(©) (d)
-0.5;
0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
Time (s) Time (s)

Fig. 2.7 Comparison of the analytical reference solutiothvgimulation results at the two receivers obtained
within the seven order RK-DG-FEM O7 scheme meshettiangular element. The first row (a) and (b) fme
receiver 1 and the second row (c) and (d) are doeiver 2. In each row the right hand figure digplthe

horizontal particle velocity and the left hand figus the vertical particle velocity.

In the following paragraphs, we present the resufithe simulation of Lamb’s Problem
obtained with a quadrilateral elements mesh. Theanical model is a rectangular zone (4000
m wide and 2500 m height) with origin (0, 0) at tef upper corner. The vertical directional
point source is located at the centre positionhef inderside stress free surface (2000.0, -
2500.0). One receiver is located at (2800.0, -2508uch that the distance from the source
along the surface is 800 m. The same material ancts function Eq. (2.69) have been used
with the same parameters as the one use in theotasangular elements. In this case, no tilt
angleg has been used. The source vedgx, y,t) acting on the governing Eq. (2.1) is then

s,(¢y,0)=(0, 1 0 0, 0 0) 3(t)B(x-Xx). 2.71)
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In this simulation, the tim& = 1.0 s and the whole physical domain has beerm&des
with 4000 quadrilateral elements. The Lax-Freidmaimerical flux and stress free surface
boundary condition have been used. The snapshbeafelocity component of the wave field
att = 0.8 s presented in Fig. 2.8, obtained with a seweler RK-DG-FEMD 7, shows the
propagation of both the bulk waves and the Rayleigive. In Fig. 2.9, the results of
numerical simulations, as recorded by the receit@yether with the analytical solution
provided by EX2DDIR have been plotted. The anatand numerical solutions match well
for the vertical and horizontal particle velocities

-500

-1000

y (m)

-1500

-2000

0 1000 2000 3000 4000

X (m)
Fig. 2.8 Amplitude of the velocityv att = 0.8 s within RK-DG-FEM O7 scheme meshed on qleteral

element.
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Fig. 2.9 Comparison of the analytical reference solutiothwesults of simulation at the receiver within the

seven order RK-DG-FEM O7 scheme meshed on quashdlatlement. The right hand figure displays the
horizontal particle velocity and the left hand figuisplays the vertical particle velocity.

2.5.2 Linear Simulation of Elastic Waves Propagatio in Anisotropic
Apatite Material
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In the preceding subsection, the simulation whk DG-FEM scheme for Lamb’s
problem has been presented, demonstrating the ggéatmance of the DG-FEM method for
isotropic materials. In this subsection, the resaftsimulation with anisotropic material will
be presented, and compared with an analyticaleebersolution.

A computational domain d33x33cm with the origin (0.0, 0.0) at the centre pomt i
meshed with 6802 triangular elements. The pointaguacting in theg-direction, located at
the centre (0.0, 0.0) of the physical domain, seifted zero-phase pulse defined by

s(t) = e 05t cos(f,(t—t,)), (2.72)

with t, = 7pns and a high cut-off frequencfy = O&Hz. The anisotropic solid is apatite
with the following propertiesC,, =167GPa,C,, =66GPa,C,, =140GPa,C,, =66 .3GPa
and density, = 320Rg/m>. The two receivers are located at (2.6, 0.0) &® 0.0) (cm) for
receiving the signal to make compare with analyscéution.

First, the results of simulation, which has beealized with a five order RK-DG-
FEMOS5 scheme using triangular elements, will be presknin this simulation, the total
calculation time has been chosen equallte32 p<in order that all the waves have
propagated through the two receivers. We use thkxeHaidrich numerical flux and a stress
free boundary condition on the four boundaries.. Rd.0 is the snapshot of the velocity
component of the wave field &&= 27 5s. It displays the form of wave-front curves he t
apatite material. In Fig. 2.11, we present the ie&rtparticle velocities, as recorded by
receiver 1 and receiver 2, respectively, togethigh the analytical solution which has been
proposed by Carcionet al [34] (see Annexe A). As the figures show, the parson
between numerical and analytical solution is excell

15

¥y (em)

-15

-15 o) 5 15
X (cm)

Fig. 2.10 Amplitude of the velocity att = 27.5us within RK-DG-FEM O5 scheme with triangular mesh
element.
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Fig. 2.11 Comparison of the analytical reference solutiothwesults of simulation at the receivers withie th
five order RK-DG-FEM O5 scheme meshed on triandgéament. The two figures (a) and (b) represent the

vertical particle velocity at the receiver 1 andespectively.

The same simulation has been reproduced with adider DG-FEM scheme using
6400 quadrilateral elements. Fig. 2.12 shows thiecat particle velocity obtained at the two
receviers, compared with the analytical referermat®n. These two figures show a good
match result between the simulation result and d@healytical solution, validating the
implementation of the DG-FEM scheme with quadrilattelements for anisotropic solid.
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Fig. 2.12 Comparison of the analytical reference solutiothwesults of simulation at the receivers withie th
five order RK-DG-FEM O5 scheme meshed on quadrddtelement. The two figures (a) and (b) represeat

vertical particle velocity at the receiver 1 andespectively.

2.5.3 Attenuation

In order to introduce thermo-viscous attenuatiorthe scheme, only the stress-strain
relationship needs to be modified. In this case,(E47) is replaced by:

B=1, =Cuéa M —. (2.73)

[ [

wheren,, are viscosity coefficients. As the attenuatiocassidered small enough, only the
linear part of the strain component is used inattenuation term. This leads to:
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o,

v (2.74)

P =1, =Cy & % =Ci € 1
Unfortunately, the spatial derivative appearing rniavthe stress-strain relationship needs to
be considered carefully. Indeed, instability capesy if only Eq. (2.74) is used in place of Eq.
(1.47) without any other modification of the schef84]. In order to stabilize the scheme, it
has been proned to introduce a numerical flux dauion. Following the methodology used
in the case of the heat equation [94], [9], eaammanent of the stress tensor is calculated
with:
3 3 K

P”E = Cya Fun *+/7a DMy, _Z;,%M M7 My = Vi), (2.75)
wherev, is a numerical flux term associated with th@ particle velocity component. This
introduction of the thermoviscuous attenuation seedly a modification of the DG-FEM
scheme in the flux term calculations.

We consider plane wave propagation in thelirection in an isotropic attenuating
elastodynamic medium. The thermoviscous model |eaulsthis case, to a quadratic
dependence of the attenuation parameter of botfitiatinal a, and transverse, waves as a
function of frequency:

a, = 2”2’7311 £2, (2.76)
PG

a, = 2”2’7366 £2, 2.77)
pOCt

Here, the Voigt notations have been used for tBeosdity coefficients, and andc; are the
longitudinal and transversal wave velocity, respety.

In the numerical simulation, a homogenous mediuth the following parametergy =
2000 kg/m, 1 = 4.96 GPay = 13.52 GPay1 = 17.1 MN s/m, and/ss = 4.7 MN s/, is
considered. A 300& 200 m computational domain, with its origin (00Q) at the centre
point, is meshed with 240 quadrilateral elementsoérce, consisting of compressional and
shear forces, is applied along a line locatex=at1000 m in order to generate a plane wave:

s, (t) = A, sin(2rft)e 72 5(x), (2.78)

s, (1) = A, sin(27t)e T 5(y) (2.79)
whereA, = 1000 andd, = 2000 are the amplitudes of the sources in doast andy, f = 1/T
= 20 Hz is the source frequency adds the Dirac function. Three receiveRs, Ry, Rz are
positioned at the positions (-400, 0), (200, 0) #h€600, 0), respectively. The distances

between the source and the three receivers area3d &0 longitudinal wavelengths. In this
simulation, the Lax-Freidrich numerical flux hassheused in the 5 order DG-FEM scheme.
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The total calculation time is 2 s. Symmetric bougdeonditions on the upper and bottom
borders, and 500 m thickness Nearly Perfectly Madchayer (NPML) boundary condition
on the left and right sides have been used. The INBMorbing boundary layer used here
will be presented in detail in part 3.4.

The horizontal Y and vertical  particle velocity components calculated at thedhr
receiver positions are displayed on Fig. 2.13. Frthmase time evolution curves, the
attenuation parameter evolution as a functionedency can be calculated with:

a=- 1 In(%(f)], (2.80)
X%\ S(f)

where S(f ) is the spectrum of the considered particle vejo@bmponent, Y for
longitudinal wave and y/for transverse wave, and the position of thé™ receiver. A
comparison the attenuation parameter evolutionfaaaion of frequency, calculated with Eq.
(2.80), and the expected value of the thermoviseonodel given by Eq. (2.76), is shown on
Fig. 2.13(b) for the longitudinal wave. Excellengreement is found, validating the
implementation of thermoviscous attenuation in B@-FEM scheme. Similar results have
been obtained for the transverse wave, as shoviigoi2.13(d).
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Fig. 2.13(a) Horizontal and (c) vertical particle velocgief the attenuated elastic plane wave at thevecBi
(dark solid line),R, (blue dashed line), ari&; (red dotted line). (b) Comparison of the frequedependence of
the longitudinal attenuation parameigr (Np/m) obtained by numerical simulation (solideljnand desired
(dashed line). (d) Comparison of the frequency ddpece of the transverse attenuation paramet@p/m)

obtained by numerical simulation (solid line) aresided (dashed line).
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2.5.4 Simulation of Wave Propagation in “Classical” Nonlinear
Elastodynamic Material

The simulations with the DG-FEM scheme for isottojbamb’s problem and
anisotropic apatite media have been presenteceipréreding subsections, demonstrating the
good performance of the DG-FEM method for linearset wave propagation in solids. In
this subsection, the simulation of nonlinear etagiastodynamic material with DG-FEM
scheme will be presented.

Up to now, only a few studies have been devotatiedD or 3D numerical simulation
of elastic wave propagation in nonlinear media. iKased the FDTD method to calculate
nonlinear spherical wave propagation. An extensiénthis method with flux-corrected
transport technique have been proposed to deal stétbp gradients and shocks or reduce
unphysical oscillations appearing during the cataohs due to the introduction of
nonlinearity in Ref. [218]. The FDTD method hasoalseen used for the simulation of
propagation of waves in pre-stressed materials. [B2f to its efficiency in solving large
scale problem a PS has been developed for act®jeof2nonlinear hysteretic media [207],
[208], [209]. During the AERONEWS European Strepr6ject, several numerical methods,
FDTD [193], [186], [194], Local Interaction Simuiah Approach (LISA) [77], [162], [53],
[163], [78], PS [23], [24], [79], [80], FEM [219]220], and mesh-free FEM Galerkin [8],
have been used to simulate hysteretic nonlineastielavave propagation in 2D and 3D,
mainly using the PM-space formalism.

2.5.4.1 Nonlinear Elastic Stress Tensor

For nonlinear elastodynamic solid media, the stremsorP; in Eg. (2.1) can be
expressed as follows:

F?j :(Cijkl +%Mijklmn ?Tm)%'
where x, is the n-th component of the position vectou,, is the mth component of
displacementCi andMijmn (@, J, k, I, m, n =1, 2, 3) are the components of the fourth-rank
or second-order elastic (SOE) linear tensor andlimesr elastic tensorMjumn Ccan be

expressed as:

(2.81)

— (~ (NLphysica) (NLgeometrial)
M ijKlmn — Cijklmn + Cijklmn ’ (282)
with
(NLphysica) — (NLgeometrgal) —
Cijklmn - Cijklmn and Cijklmn - CijIm 5kn + Cilnméjk + Ciklméjn ' (283)

where d is the Kronecker delta symbol, a@kmn the sixth-rank or third-order elastic (TOE)
nonlinear tensor. There are two types of nonlingagpresented in Eqg. (2.81), one is called
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geometrical nonlinearity which is expressed %" and accounts for the nonlinear
relationship between strain and displacement whete fdeformations are taken into account.
The other type of nonlinearityC{ ">, is “physical’, and corresponds to a nonlinear
stress-strain relationship of the medium. The Voigtation will be used for simplicity. For
example,C,,,, andC,,,,;, can be simply replaced iy, andC,,¢, respectively.

For 2D nonlinear transversely isotropic mediune, ¢bnstitutive stress tensor Eq. (2.81)
is given by:
Ch Ch Ch Chf
Ch C» Gy Cu
Ca Cx Ciu Ci
1 _le Cs Cs C§4_

=
[

N

, (2.84)

N

od U0 B-U ~U

ol ETI UL

1

where F; are the strains (displacement gradient) &jdare the effective nonlinear elastic
tensor which include the SOE linear ten€pi and TOE nonlinear tensor, a@fy-a°""
According to Ref. [218] they can be expressed as:

C;=C,+(C,,+3C,)F,+(C,,+C,)F,, (2.85)
C,=C,+(C,,+Cy)F,+(C,,+C,)F,,, (2.86)
C; = (Cleg +Cys + 2C,)F,, +(Cle + Coo) Fis s (2.87)
Cp = (Cies+ Cy)Foy +(Cles + C) Fos s (2.88)
C;,=C, +(C,,,+C,)F, +(Cp, +C)F,,, (2.89)
C,, =C,, +(C,,+C,)F, +(C,,, +3C,,)F,,, (2.90)
Css = (Cyes + C,n)Fyy +(Cops + Cog) Fis (2.91)
C5, = (Ches + Cig)Fyy +(Cogs + Cgs + 2C,,)F, - (2.92)
Cs, = (Crle + Ceg) Foy + (Cis + C) i (2.93)
C3, = (Cops + Ceg) Fyy + (Cogs + 3Css) Fis s (2.94)
Cs = Cy + (Cpee + Cog) Fiy +(Cogs + Co) oy (2.95)
C5, =Cie +(Cles + C))Fyy +(Cos + Cy + 2C) Fyy (2.96)
C;, = (Clge +3Cs)Fyy +(Cres + Co) Fi s (2.97)
Cy, =(Chs + Cy,)F,, +(Cos + Co) Fis (2.98)
Cri =Cye + (Cpys + 2C + C ) Fy + (Cogs + C,0) s (2.99)
Cy =Cys +(Cis + CLo)Fy +(Cope + Cop) o s (2.100)

These effective elastic nonlinear coefficients, eihdepend on strains, will be used in the
following numerical simulation.
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2.5.4.2 Simulation of Nonlinear Elastic Plane WavEropagation

First, a validation of the nonlinear elastic wa¥&-FEM scheme will be presented. As
only a few analytical results are available in tase of nonlinear elastic waves, we consider
plane wave propagation in tlelirection in a nonlinear elastodynamic mediumwhich the
stress and strain relationships are explicitly gilsg [209]:

H.l = CllFll + mllFli + 4}/C11F221, (2101)

P2 = (2Cs +4)CF)Fy - (2.102)

Here C,=A+2u, C=u and C, =4 whereA and i are the Lame constants, and
B=C,,/C, andy=C,,/C,, aretwo nonlinear parameters.

The numerical simulation is identical to the ongedi for the validation of the
attenuation implementation. The nonlinear pararsgtesndy are equal to 5000 and 4000,
respectively. A snapshot of the particle velocioynponent of the wave field at= 0.48 s is
plotted on Fig. 2.14. This figure shows the plaharacter of the propagating wave-front and
the absorption by the NPML of left going wave geted by the source.

Source
= 100 i
=, =100 B
=1500 =1000 =500 ] 500 1000 1500

X (m)
Fig. 2.14 Velocity amplitude of the plane wave tat 0.48 s obtained with RK-DG-FEM O5 scheme using

guadrilateral elements.

In Fig 2.15 we plot the horizontal and verticaltpe velocities of the nonlinear elastic plane
wave received at the second receif®r Normally, without nonlinearity th& component
contains only a compressional wave, while theomponent contains only a shear wave.
Because of the nonlinearity, thecomponent includes not only a wave with a compoess$
wave speed but also a wave with a shear wave spsethown on the upper right plot of Fig.
2.15. This is typical of nonlinear elastic wave gagation and indicates mode crossing [15].
In Fig 2.16, the spectra of the horizontal andigaltparticle velocities received at the three
different receivers are plotted. Since there iattenuation, the amplitude of the spectral peak
at the source frequency remains nearly unchang#dadistance, as expected. However, for
the harmonic waves (right spectra on Fig. 2.169, eliolution as a function of distance is
more complex than the linear increase predictechfplane wave in a fluid. All the obtained
results are perfectly identical to the one presemdigure 2a and 2b of Ref. [209]. As their
results have been successfully compared to an taradlyrediction [123], this simulation
validates our nonlinear implementation.
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Time (s) Time (s)
Fig. 2.15Horizontal (first line) and vertical (second lingrticle velocities of the nonlinear elastic plaveve at

the receiveR,. The expanded scale on the right shows the mamsiog process induced by nonlinearity.

5 Fondamental . Second Harmonic
1.2 : : : ‘ ‘ 5

0.8

0.6

0.4
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Spectrum: Vx (m)

Spectrum: Vy (m)
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Fig. 2.16Spectra of the horizont& (first line) and verticaV, (second line) particle velocities of the numerical

solutions of the propagation of an elastic planeenat distances of 3 (dotted line), 6 (dashed lare) 10 (solid
line) longitudinal wavelengths.
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2.5.4.3 Nonlinear Pulse Propagation

In the following numerical experiments, a compiotaél domain 0fLl100x1100m with
the origin (0.0, 0.0) at the centre point is meshét quadrilateral elements. The point source
time function is a Richer wavelet expressed in 2d9), acting in the andy directions, and
located at the centre (0.0, 0.0) of the computatidomain. The amplitude factor is 5000, the
source delay timé, = 002 s anda, =—(27f,)® with a peak frequenc§; = 30 Hz. The
receiver is located at the point (200, 0).

The properties of the simulated solid media apgegented by the following SOE and
TOE constants:

e« For the isotropic nonlinear medium (called BMINE,, =C,, =285 GPa,
C,=C, =95GPa,C,,=C,,,=-780GPa, C,,, =C,,, =-180 GPa andC, =
C,s = —150GPa;

o For the transversely isotropic nonlinear mediunilédaBMAIN): C,, = 285GPa,
C,, =6 GPa, C,, =30 GPa, C,, = 95GPa, C,,, =-780 GPa, C,,, = -850 GPa,
C,, =-16GPa,C ,, = -90GPa,C,, = - 10&Pa,C,, = — 154Pa.

The densities for both the isotropic and transvgrisetropic nonlinear medium are given by
0o = 275 kg/nT.

First, a simulation for the isotropic nonlineardi@was realized with a six order RK-
DG-FEM scheme meshed with 3600 quadrilateral elésnen this simulation, the total
calculation time wa3 = 0.18 s. The Lax-Freidrich numerical flux andfaoe free boundary
condition have also been used. Fig. 2.17 showsstvapshots of the velocity component of
the wave field at = 0.15 s and = 0.18 s, respectively. From these snapshots weea the
form of wave-front curves in the BMIN isotropic Horear material. The corresponding
received horizontal and vertical particle velostae plotted in Fig. 2.18.

5000 | | | | ] 5000

2500

é ] Q | é |
> >

250 E 1 -250r

250

-500- ‘ ‘ ‘ ] -500 ‘ , ‘ ]
-500 250 0 250 500 -500 250 0 250 500
X (m) x (m)

Fig. 2.17Amplitude of the particle velocity att = 0.15 s (left) and = 0.18 s (right) calculated with a RK-DG-

FEM O6 scheme using quadrilateral elements, foigbteopic nonlinear media.
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0.5

0.0

Normalized Amplitude
Normalized Amplitude

(b)
-0.5-

0 0.06 0.12 0.18 0 0.06 0.12 0.18
Time (s) Time (s)

Fig. 2.18Received signals for (a) the horizontal particdoeity and (b) vertical particle velocity calciddtwith

a six order RK-DG-FEM scheme for the isotropic moedr media.

A second simulation has been made with the saxerder RK-DG-FEM scheme and
the same number of quadrilateral elements, buttithis, for transversely isotropic nonlinear
medium. The snapshots of the velocity componeth@fwvave field at = 015s andt = 0.18
s are plotted in the Fig. 2.19. From these snapshietcan see the form of wave-front curves
in the BMAIN transversely isotropic nonlinear maakr The corresponding received
horizontal and vertical particle velocities aretf#d in the Fig. 2.20.

The obtained results are in perfect accordanck thi¢ one obtained in Ref. [218] but
without the need of using a flux-transport correctin order to limit spurious oscillation
induced by nonlinear effects. Nevertheless, it lsamoted that these examples show in fact
only a very low level of nonlinearity as the seraws is very short.

500 ‘ ‘ ‘ -] 500
2500 ~ ] 2500 /
E 9 E
> >
250 - ] 250 /
-5007 L L L L L | -5007 L L . L L L ]
500 250 0 250 500 500 250 0 250 500
X (m) x(m)

Fig. 2.19 Amplitude of the particle velocity att = 0.15 s (left) and = 0.18 s (right) calculated with a RK-DG-

FEM O6 scheme using quadrilateral elements, fotrmesversely isotropic nonlinear media.
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o) 0.06 0.12 0.18 -0 0.06 0.12 0.18
Time (s) Time (a)

Fig. 2.20Received signals for (a) the horizontal particdoeity and (b) vertical particle velocity calciddtwith

a six order RK-DG-FEM scheme for the transverssdyropic nonlinear media.

2.6 Conclusion

In this chapter, a nodal Discontinuous Galerkinitéi Element Method (DG-FEM)
scheme, which is an intelligent combination of thEM and FVM methods, has been
presented. Two kinds of operators, based on triangor quadrilateral mesh element,
respectively, have been developed for the weak sarahg form Discontinuous Galerkin
formulations. Different numerical fluxes, as thenttal and Lax-Freidrich fluxes, have been
used. Open boundary, surface-free boundary and fdaindary conditions have also been
discussed in this chapter. To realize time doméaardtiztion the DG-FEM scheme, a fourth-
order low storage explicit Runge-Kutta (LSERK) nuthhas been used.

The results of simulations for isotropic Lamb’slplem and elastic wave propagation in
apatite, an anisotropic medium, have authorizedalalation of the DG-FEM scheme, by
comparison to known analytical solutions.

As only a few analytical results are availableghe case of nonlinear elastic waves, a
plane wave propagation has been considered. Thanelt results compare perfectly to
previously publish numerical calculations and agprate analytical solutions.

The main contributions of the present PhD thesighis numerical scheme was to
extend it to nonlinear elasto-dynamic includingrseuterms, and to introduce the possibility
to use quadrilateral elements. Moreover a Perféddyched Layer (PML) type of absorbing
boundary condition well adapted to the DG-FEM schenalled Nearly Perfectly Matched
Layer (NPML), was also developed. This point wil iscussed in the next chapter. Finally,
a sub-domain implementation was developed to iser¢hae efficiency of the scheme when
PML are used. It will also enable to easily implemeén the future, multiphysics problems.
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CHAPTER 3: PML ABSORBING BOUNDARY
CONDITION

3.1 Introduction

Numerical solutions of Partial Differential Equats (PDE) for wave propagation
require the truncation of an unbounded media tmftt computers with a limited memory and
computation time. For such problems, an Absorbingriglary Conditions (ABC) is needed at
the truncated boundary to eliminate the reflectiboe this boundary to the computational
domain. Many kinds of ABCs have been found, fornegke, the ABCs of Clayton and
Engquist [45], Peng and Toksoz [144id Mur[133], etc. These ABCs, although successful
in many fields, provide only limited absorptionw@ves within a limited range of incidence
angles and limited frequencies [171].

In 1994, an implementation of Perfectly Matchedydra (PML) media [16] has
introduced by Berenger for electromagnetic wavegesthen, it has been proven to be one of
the most robust and efficient technique for thenteation of unbounded domaji4]. In
addition to be useful for electromagnetism simolatj73], [206], it was demonstrated to be
very efficient for acoustic [118,] [218Nhd elastic waves in isotropic [43], [&8]d anisotropic
solids [48]. It has been proven that theoreticabbgfore discretization, at the interface
between a computational medium and a perfectly megtenedium no reflection occurs, and
the incident waves from the computational medium @mpletely absorbed, regardless of
their incidence angle and frequency [16], [43]. Bitkeless, this property is lost when a
discretization is needed for numerical implementatiespecially in the case of oblique
incidence. One then needs to optimise the PML pai@m® in order to decrease parasitic
reflections [111], [47].

Convolution Perfectly Matched Layer (C-PML), fiptesented in electromagnetism by
Roden and Gedng¥56], and applied in the simulation of elastic waropagatiof60], [61],
[22], [107], has been shown to improve the behavaduhe discrete PML for grazing angles
encountered in the case of surface waves. The athiantage of C-PML over the classical
PML layer is that it is based on the un-split comgrats of the wave field, and lead to a more
stable scheme. Moreover, it is highly effectivalsorbing signals of long time-signat{&2],
surface waveld07] or in elongated domains of calculat[6d]. Classically, C-PML has been
introduced in first-order formulation of both elemhagnetism and elastodynamic. In this
chapter, we propose first to extend the C-PML dtiagrlayer to the second-order system
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describing elastic waves in displacement formutatioanisotropic solids, as it was done for
classical split PML106]. This second-order formulation will be debed in frequency and
time domains both for elastic solid [117] and pigeotric medium [25], [116]. In frequency
domain, this technique is easy to implement in cenuml software based on Finite Element
Method (FEM). The efficiency of this second-ordeerfpctly matched layer is then
demonstrated based upon 2D benchmarks both faomotand anisotropic solids, and for
bulk and surface wave propagation. The simulatiares realized with the commercially
available software Comsol Multiphysics in frequendloynain, and with a Pseudo-Spectral (PS)
method in time domain.

Another kind of PML called the Nearly Perfectly tdiaed Layer (NPML) [49], [95]
will be introduced. In electromagnetism, the domainwhich this PML has been first
developed, analytical and numerical results shaw tte NPML is equivalent to the standard
PML in Cartesian coordinates and performs ideniced them as an ABC while simpler
implementation [49].

In some anisotropic media, humerical instabilitggear in the C-PML [10], limiting
the use of this absorbing layer. In order to siabilhe absorbing layer, another PML has been
proposed by Meza-Fajardx al. [126] and referred to as the “Multiaxial Perfeciflatched
Layer” (“MPML"). A study of the matching and staityl properties of this last PML will be
presented. A similar idea was previously proposetié case of guided waves for frequencies
where “inverse modes” with group and phase velegitf opposite signs are excited [25],
where split field PML or C-PML don’t work satisfactly. Examples of stabilized absorbing
layers will also be presented for such guided waass.

3.2 C-PML for Second-Order Elastodynamic Wave Equabns
3.2.1 Wave Equations for Anisotropic Solid in 2D

Consider the propagation of 2D plane strain elagtives in an anisotropic elastic solid
medium. With Einstein’s convention of summatiore #guation of motion can be written:
62ui _ 1 aTij

1o 3.1
ot*  p, 0X (1)

wherei, | = 1, 2, p, is the densityy are the components of the position vectas, the time,
u,are the components of the particle displacementoveandz; are the components of the
stress tensor. For a linear elastic solid, the ttioise relation is given by the Hooke’s law:

Ty = Cyaéus (3.2)

whereCj are the elastic constants, and the linear apptatiam of the strain tensaris:
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g, = L[, 04 ) (3.3)
2\ 0% 0%,

In the case of a transverse isotropic medium @hest symmetry which can be considered in
2D), the following second-order system of equatsoobtained:

o'u, _ 1[0z, 07, (3.42)
o> p,\ ax ay )
02u2 :i %+& (3.4b)
o> p,\ Ox Ay )’
0 ou
[1= Cna_l:(l + Clza_y2 ) (3.4c)
ou ou
Iy, = Clza_xl + sza_y2 ' (3-4d)
0 ou
7, = Cse(a_l:; +6—X2] . (3.4€)

Here we have considered that= x andx, =y. This system will be used as the starting point
in the remainder of the chapter when consideringdiropic solids.

3.2.2 C-PML Elastic Wave Equations in Frequency Dofain

Here, the methodology used for the introductiol€e?ML zones for axisymetric active
solid medig22], is used for the system of Eqgs. (3.4). Fitaking Fourier transform of the
system, it is rewritten in the frequency domaineihthe following complex coordinate’s
transformatiof44] is used:

X :Jx'sx(x')dx, (3.5a)
y = [s,(y)dy, (3.5b)

wheres, and s, are the Complex Frequency Shifthed (CFS) stretcbeddinate metrics
proposed by Kuzuoglu and Mittra [109]:

_ o,.(x)
S, (X) = K, (X) +—ax 0+ o (3.6a)
g, (y)
= —r 3.6b
s,(Y) Ky(y)+ay(y)+jw (3.6b)

where,ox, ox, oy andoy are assumed to be positive and real, grahdx, are real ang 1. The
o,, andk,  are the so-called [74] attenuation factor usedHerattenuation of propagating
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waves, and scaling factor used for the attenuadiorvanescent waves, respectively. The
choice of the optimum spatial variation of thesaalades has been discussed in the literature
[178], [47]. Our choice will be described for eamtample in the numerical simulations parts
of the chapter. Ther, , are frequency-dependent terms that implement seBuarth-type
filter in the layer. The original split PML, introded for isotropic elastic waves propagation
by Chew and Liu [43] and for anisotropic solid bylliho and Tsogka [48], is retrieved
imposingaxy = 0 andxxy = 1. Using the complex coordinate variablesind y to replacex
andy in Egs. (3.4), and noting thayox =(/s,)d/0x and d/dy =(Y/s,)d/dy, we obtain the
following frequency-domain equations in Cartesianrdinates:

1 arﬂ 1 6712

- 3.7a
ol = s, 0x s 0y (3.72)
_tpyd, =002, 100 (3.7b)
s, 0X s, ay
£ =g, L% o 1% (3.7¢)
S, ox s, oy
R 1 dd 100
_C __l+ __2, 37d
22 1285( aX 22 Sy ay ( )
. 100, 100d
i.=C i S S’ , 3.7e
1 Gﬁ[sy dy s ax] (3.7€)

where( represents the Fourier transform of the variable

3.2.3 Interpretation of C-PML as an Anisotropic Soid Medium

In order to implement these C-PML in a commerdi@M software (COMSOL
Multiphysics), the resulting second-order C-PML waequations are interpreted as an
anisotropic medium, as it has already been dond’kL [217]. Multiplying Egs. (3.7) by
s,s, and introducing new stress tensi(i‘;r and densityp, (given by £,S,S,), we get the
following equations:

— a0, = aafil +%2 , (3.8a)
-’ o0, = aarf + aar;z , (3.8b)
f,=1,8,=Cy, SZ aa?(l + Clz% ' (3.8d)
Po=t,s = clz‘z_‘;‘(l . CZZ%%’ (3.86)
Po=ts, = Ce{:—;%—t} ¥ "OL;J | (3.8
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.. ad, s, ad
Lo =118, = Cee(—l ¥ —y—zj. (3.80)

oy s, 0x

This system of equation corresponds to the propagaif elastic waves in a “fictious”
anisotropic medium and can be written in the mdoin as:

Iy, Ci1 C12 0 0 _ulx
Iy - C12 Céz 0 0 u2y (3 9)
I, 0 0 Ci Cxullu ' '

A1 " ~
I 0 0 GCg G | Upy |

with 4, =00, /ox , G,, =ad,/dy , G,, =a4,/dy andl,, =au,/dx , the new effective elastic
stiffness constants a@g, =C,; S, /S,, Cys =Cq6 S, /S, Ces =Cgs S, /S, @andC,, =C,, 8, /s, . It
should be noted that this fictious anisotropic medihave a non symmetric stress tensor
(T, #7; wheni # j), and the complex-valued tensor of elastic constaatserves minor
symmetry properties, but not the major one.

We can easily extend this description of C-PMlamsotropic solid to 3D. In this case,
the general form of the propagation of elastic vsazen be described as:

- Wyl = g—;‘ , (3.10a)
7 =cl, STUL | (3.10b)
wherei, J, k, | = 1, 2 or 3. The effective elastic ten€rand the densityy, are given by:
Ciw =Cix m, (3.11a)
SS
Lo = PoSS,S, (3.11b)

The effective constants already obtained for 2Desibn can be easily derived from Eq. (3.11)
by considerings, = 1 andi, j, k, | = 1 or 2. Moreover, this “fictious” anisotropic impgetation
of C-PML or PML can be extended to piezoelectricdsd25], [7], [122].

3.2.4 C-PML Elastic Wave Equations in Time Domain

Now, to be able to obtain a C-PML formulation iimé domain, the resulting equations
are transformed back to time domain by inverse iEouransform. Due to the frequency
dependence of the CFS stretched-coordinate me#ricenvolution appears in the resulting
equations, as shown for example for Eq. (3.7a):

2
0 lil:i == 1 DaT11+|:—1 1 Dﬂ ' (3.12)
ot o S (o) S oy

X y
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whered and FY[.] are respectively the convolution and inverseii@r transform operators.
In order to eliminate the convolutions appearingBig. (3.12), we use the methodology
introduced by Roden and Gedney [156] in electroraagm, and extended by Bou Matr
al. [22] for elastic wave propagation in active (omhioear) media, by introducing memory
variables. The time evolution of each of these nrgnvariables is realized by a first order
differential equation. The obtained result canderitten as:

62u1 ( 10, iﬂ+i+iJ
pO y

> (3.13a)
ot K, OX K, 0y K, K

where the memory variable§, and B, are given by:
%“ arﬂ -B.A, (3.13b)
0B, ar
—r=-9,—2-8B,, 3.13c
ot Yy A\B, ( )

with 8, =0, /K., B, =0,,/K., +a,,. Making the same calculation for Egs. (3.7b)-
(3.7e), we obtain the following system equation<ePML in time domain for elastic wave
propagation in anisotropic solid:

azul :i iarll 1 arlz +A< +i
Po

. (3.14a)
ot K, OX Kk, 0y K, K,
0’u, _ 1( 107, 107, C Dy (3.14b)
ot> o, | K, Ox K oy /(X K, |
Cyou, C,0u, C C
=Ty 200y e TR E (3.14c)
K, OX K, 0y K, K,
C,0u C,o0u, C C
=2l 2T Y p o 2 F,, (3.14d)
K, OX K, 0y K, K,
_Cxou, Cgou  C C
=2y e TG e (3.14e)
K, ax K, ay K, K,

where the memory variables, By, C,, Dy, Ey, Fy, Gy, andHy are obtained by a first order
differential equations of the form (Appendix B):

0A, _ arﬂ
T -BA,, (3.15)

The memory variables will be zero outside the C-Padines, so the first order differential
eqguations of memory variables need only to be shilve small part of the calculation domain.

After introduction of Egs. (3.14c¢)-(3.14e) into E@8.14a)-(3.14b), the resulting system of
wave equations can be written as:
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°u, (0 ou ou 0 ou ou
1 | |Cc.—=2+Cc. 2|+ C..—2 —||=f,
Lo ot2 (ax( 1 g | 12 ayj ay( 5 3y % By j) 1
0°u, (0 ou du, ). 0 ou du
- —|C.,.—2+C,.—2 |+—|C,,—+C,,—2||= 1.,
Po ot (ax( 8 5y 66 ayj ay( 275x 2 oy D 2

where f, and f, are:

_K 9

K, OX|{ Kk, OX

_Ky o

(&%+&%+

Cos OU,

iEX +
K, Oy K,

C66 au1 + C66 G +

C12

y

K
CGG H

d

K, 0y K, OX

|

K, 0y K

X

Ky

)

_i K'x Ciy 0Uy + Klyclz ou, _iE _ip
ox| x, ox k, oy Kk = Kk,
_i KIXC66 auz_l_K.yC% au1_CeeG C66H +i+i
oy\ «, ox k, oy k. = Kk, ) K K,
_ KIX i C66 au2 + C66 aul + C66 Gx + C66 H
K, x| kK, Ox Kk, 0y K, K,
_K_Iyi C,, du, + C,, 0u, + Cp E, + C,, Fy
f K, 0y kK, OX Kk, Oy K, K,
2~ ’
_ 0 [k, Cg0u, + K'y Ces U, _Ces G Ces H
x| «, Ox kK, oy Kk, = K, '
_i K'XC12 aul +KIyC22 0U2 _C12 E _C22 = +Cx +_Y
ay\ «, ox k, oy Kk, = K, ) K, K,

(3.16a)

(3.16b)

(3.16¢)

(3.16d)

where we have introduced the notatio, =, , —1. This results shows that the C-PML

zone can be interpreted as the same anisotropitumeat the one in the calculation domain,

but in which volumetric source§ @ndfy) are present.

It is important to note that in time domain thenber of equations needed to be solved
increases in the C-PML zones. This can consideraldgease the burden of calculation.
Nevertheless, when active (or nonlinear) mediecarsidered, then time domain formulations
are needef22], and Egs. (3.16) have to be used.

3.2.5 Numerical Simulations

In this section, the excellent absorbing behawamifrboth formulations (frequency and
time domains) are demonstrated. The frequency dofoanulation has been implemented in
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a commercial FEM software (COMSOL Multiphysics)damPS code has been developed for
the time domain formulation. The choice of thesenarical schemes has been motivated by
the compromise in obtaining both efficient and aatei methods for the two different
formulations. Here, the DG-FEM scheme has not hsed because as explained later the C-
PML, even in first order formulation, is not wetlapted to this scheme.

3.2.5.1 Elastic Wave Propagation in an Unbounded d$ropic Solid

The numerical simulation presented in this sulbgecvas made for the elastic wave
propagation in an unbounded isotropic medium. Tdaesof computational domain and the
C-PML layer are given in Fig. 3.1. The simulatiomshbeen performed over a 880 grid,
which was surrounded by a C-PML layer having akiéss ofd = 10 cells, withAx = Ay =
0.6 mm.

I I
| CPML |
- - - 4 — ]
| |
| |
| |
| |
| |
| |
— —
S| U= P
& SN D
Ul I @]
| |
| |
| |
| |
| |
___'. ______________ +__
: CPML :
< 80A >

Fig. 3.12D physical domain 4848 mm surrounded by a A@-PML layer.

The parameters for the simulation were as follothe: density ig, = 250kg/m°, the
elastic constants ar€,;, =85GPa,C, =25GPa,C,, =85GPa,C,, = 30GPa. A 2D point
source with a 0.5 mm diameter was set up at thet §0j 0) with a time function given by
Ricker wavelet expressed as:

S(t) = (05+a,(t —t,)?) B (3.17)

where t, = 05 us is the source delay time, =(7f,)*, and f,= IMHz is the central
frequency.

In the stretched-coordinate metrics, the followspatial coordinates dependences are
used for the parameters of the C-PML layers inxtbgection:

K =1+ Kmax( X; XO] , (3.18a)

X
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m+n,
o, = amax(xd XOJ , (3.18b)
a, = amax(Wj , (3.18c)

with a,,, =27, and:
Opex = L+ 1, +10,) /C,,/ p, Dog(U/R,)/ (2d), (3.18d)

where theR, is the theoretical desired reflection coefficiemd x, andd are respectively
the starting position and thickness of the C-PMjeta. x,, o, anda, have the same form

as k, , o, and a,, respectively, just replacing by y. In the considered cases, as no

evanescent waves are presents, we Ajsge= . M0reover,«, = land o, = Oin the
computational domain, outside the C-PML zone. In phesented results a C-PML thickness
of ten grid elements around the boundarRRs=5x10"°, n; = 3,n, = 0 andnz = 1 have been

chosen.

For characterizing the performance of the C-PMjetaquantitatively, here, Egs. (3.8)
have been solved with COMSOL Multiphysics FEM saiter in frequency domain. Indeed,
as demonstrated by Castairggsal [37], very efficient simulations of linear pulpeopagation
in solids can be obtained with only a limited numbé frequency calculations. The time
evolution of the point source Eq. (3.17) is firguRer transformed, and Eqgs. (3.8) are then
solved for forty frequencies equally spaced ingbarce spectrum. Then the inverse Fourier
transform will be done within the Matlab softwai@ get the result in time domain. The
resulting snapshots are presented in Fig. 3.20kr different times: 3.13 us, 4.10 us, 8.01 ps
and 11.92 pus. They show that there is no visibliegton at the boundaries on a 50 dB
dynamic range, and illuminate the effective absabability of C-PML for the outgoing
energy.

105



CHAPTER 3: PML ABSORBING BOUNDARY CONDITION
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Fig. 3.2 Propagation of elastic waves in an unboundedapatrsolid medium with a 20 C-PML layer. In the
fist row the times of the two figures are 3.13 |eft and 4.10 us (right), and in the second row tilmes are
8.01 ps (left) and 11.92 us (right). The displagigdamic rang is 50 dB.

3.2.5.2 Lamb’s Problem Simulation

In order to further demonstrate the performanciefC-PML, here a classical test case
(Lamb’s Problem), which has been presented for [EBAHn the subsection 2.5.1 of chapter
2, will be applied using a vertical force in a hayaneous elastic half-space with a free
surface. The analytical solution can be obtaindt wiie same FORTRAN code EX2DDIR, to
make the comparison with the simulation results.

The same size of numerical model has been comsides in the subsection 2.5.1 of
chapter 2. The calculation domain and C-PML layergven in Fig. 3.3, with origin (0, 0) at
the left upper corner and the width and heighteff boundary are 4000 m and 2000 m,
respectively, and the tilt angle of the free sufa&@=10". The directional point source,
acting as a force perpendicular to this tilted &cef is located at the free surface (1720.00,
2303.28). One receiver is located at (2670.33, 0BE) and the distance from the source
along the surface is 965 m. The same Ricker wasgeletce, Eq. (3.17), has been used with
the following parameters: delay tinig = 032 s, amplitudea, = (7f,)* and central frequency
f. =3.625Hz. For the homogeneous elastic medium, the pasmeif simulation are:
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P, =2200 kg/m?, velocity of P-wave c, =3200m/s and velocitySwave c, =1847.5m/s.
The same spatial coordinates dependences Egs) @d8&8ised for the C-PML parameters
with now a,,, =57, n; = 3,n,=0,n3 = 1 and

Oax = (L1, +0,) &, Togl/R,)/ (2d) (3.19)
whereR, =107,
(0.0) 400, (4000,0)
gl o CMPL
2 | =
S | =
O Q

(1720.00, -2303.28)

(0,-2000)
(2670.33, -2470.85)

Source Receiver

Fig. 3.3Computational domain and C-PML layer used forltamb’s Problem.

Bulk waves

Rayleigh waves

Fig. 3.4Bulk waves and Rayleigh waves propagating in tamk's Problem.

In this simulation, we solved Egs. (3.8) againhw€OMSOL Multiphysics FEM
software in frequency domain. After Fourier tramsfoof the source function in frequency
domain, Egs. (3.8) is then solved for sixty frequies equally spaced in the source spectrum.
The result obtained at one frequency (10 Hz) iswshim Fig. 3.4, from which we can see the
propagation of the Bulk waves in the computatiad@inain and the Rayleigh waves on the
free surface boundary. For testing the efficienédyCePML layer, in Fig. 3.5 the time
evolutions of the normal (a) and tangential disptaent (b) components reconstructed by

107



CHAPTER 3: PML ABSORBING BOUNDARY CONDITION

inverse Fourier transform of the sixty frequencgpanses at the receiver, positioned at the
free surface, in the case of both C-PML (dashed)lind PML (dotted line) layers for
absorbing the surface wave, are displayed and cadpa the analytical solution (solid line).
We remind that the PML case correspondg.tg = 0.

The obtained results clearly demonstrated theeasm efficiency of the C-PML in
comparison of the PML in order to absorb the Raylevave. This is in perfect accordance
with previous results obtained with the C-PML fister velocity-stress formulation
implementation [60], [61], [107].

1.0 : 5
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© ) 4 [
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< < -8
3 3 1,25 1,65 205 245 285 3.25
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Time (s) Time (s)

Fig. 3.5 Comparison of C-PML results (dashed lines) wittalgtical solution (solid line) and PML results
(dotted line) of Lamb’s problem, (a) The normalplié&ement component, and (b) the tangential disphant

component.

3.2.5.3 Efficiency of C-PML for Elongated Domain ofSimulation

In order to demonstrate the improvement inducedhayuse of C-PML, instead of
classical PML, numerical simulations of elastic wgropagation in an elongated half space
of homogeneous isotropic medium, similar to thesopmposed by Drossaest al. [60], are
presented. The sketch of the used elongated catmuldomain (3750 m wide and 375 m
height, including the C-PML layers and correspogdim 200x 20 grid elements) is given in
Fig. 3.6, where the origin (0, 0) is at the leftpap corner. The properties of the elastic
medium have been chosen as follows; = 20@pm® and the Lame constants are
A = 06GPa andu = 0.3GPa. A directional point source, acting as a fgegyendicular to
the upper free surface, is located at (2870.0, GO)r receiving positionB;, Ry, Rz andRy
are chosen at the following locations: (2800.0,7-58 (1120.0, -42.5), (168.75, -18.75) and
(562.5, 0), respectively. The choice of these reogipositions has been realized in order to
demonstrate typical behaviour of the C-PML. Therseuime function that specifies the
temporal variation of the point source is a Rickewelet given by Eq. (3.17) witty =10s,

108



CHAPTER 3: PML ABSORBING BOUNDARY CONDITION
a, = (7f.)? and f_ = 1.0Hz. The C-PML parameters which have been used sufel@ws:
a.., =51, ,n=3n=0n=1and

e = (L4 1, +1,) B(A +20)/ p, DogUR,)/(2d) , (3.20)
where R, =5x107.

0.0) R, Souree (2870, 0) (3750.,0)
e ” . v 2
O, -R] :Ej £
L. ie]
1 PML 1 (=)
(0,-375)— < Hi a

150m 1

74

m
Fig. 3.6 Schematic of the model used in the example ofaserfvave in an elongated homogeneous isotropic

medium. The C-PML terminations are positioned atl#tit, right and bottom side of the simulation ddm The

top boundary is a stress free boundary. The s@anddour receiversR;, R, Rs, Ry) positions are also depicted.

The time evolution of the point source Eqg. (3.7)irst Fourier transformed, and Egs.
(3.8) is then solved for forty frequencies equalpaced in the source spectrum. The result
obtained at one frequency (3 Hz) is shown on Fig, Where both bulk waves in the physical
domain and Rayleigh waves on the free surface kmynchn be seen. In Fig. 3.8, the time
evolutions of the horizontal (a), (c) and vertichsplacements (b), (d) reconstructed by
inverse Fourier transform of the forty frequencgpenses at the fourth receiver, positioned at
the free surface, in the case of both C-PML (dadime) and PML (dotted line) layers for
absorbing the surface wave, are displayed and c@upga an analytical solution (solid line).
The FORTRAN code EX2DDIR of Bergt al. [18] has been used, as for the previous
example, to compute this exact solution of the 2Bponse from a vertical directional point
source in an isotropic elastic half space with ee fsurface. The obtained results clearly
demonstrated the increase efficiency of the C-PMlcamparison of the PML in order to
absorb the Rayleigh wave, even when a zoom (R8y(c3, (d)) is made around the end of this
surface wave. This is again in perfect accordanitie previous results obtained with the C-
PML first-order velocity-stress formulation implemation [60], [22], [107].

Rayleigh Waves\ Source ¢
"l'i"l"".'!"H'l!'l""l‘lll""'l!!l'l!!“‘!;”]"'l!!Il!‘

Bulk waves

Fig. 3.7 Displacement amplitude snapshot at frequency 3ardzhe model depicted on Fig. 3.6, showing the
propagation and absorption in the C-PML terminatiohboth bulk and Rayleigh waves.

The time evolutions of the horizontal (a), (c), &d vertical displacements (b), (d), (f)
for the three others receiver®( R, andRs) in the case of FEM simulation with C-PML
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(dashed line) are plotted on Fig. 3.9, and compaasdefore, with a FEM simulation with
PML (dotted line) and an analytical solution (sdlite). As in Fig. 3.8, it clearly appears on
Fig. 3.9 that the use of C-PML greatly improves sheface wave absorption efficiency of the
absorbing layer (seB, signal, where spurious oscillations of the hortabrdisplacement
component is observed in the case of PML), evehdfreceiver is positioned close to the
absorbing layer, as for tH& receiver. In the case of the first receiver, placethe bulk of
the sample where the contribution of surface waveegligible, the C-PML and PML have
the same absorbing efficiency and the overall ages¢ with the analytical solution is almost
perfect.
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Fig. 3.8 Time evolution of the horizontak fa) and the vertical,ub) components of the displacement vector at
the fourth receiveR, of the analytical solution of the problem (solidel) and the numerical solution with C-
PML (dashed line) and PML (dotted line). (c) an)l §ce zoom of (a) and (b) respectively, showinghbaefit

of using C-PML instead of PML.
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Fig. 3.9 Time evolution of the horizontal, left) and the vertical u(rigth) components of the displacement
vector at the first (top), second (middle), anddHhibottom) receiver of the analytical solutiontb&é problem
(solid line) and the numerical solution with C-PNtashed line) and PML (dotted line).

3.3 C-PML Formulation for Piezoelectric Solid

Although not directly linked to the main objectieé the thesis, the previous second
order C-PML formulation can been extended to theeaaf piezoelectric solid. This choice
has been motivated, in part, by the interest asbus®ther IEMN groups, as Microfluidique
and Ultrasons groups, for their own applications.
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Only few works are available in the literature dre tuse of PML for elastic wave
propagation in piezoelectric solids. Split field BMas the one introduced by Berenger [16],
has been first derived for angular spectrum [20@] BDTD [38] methods. In both papers,
instabilities appear in the PML for some of thesgr@ged simulations. This problem will be
addressed in more detail in parts 3.4 and 3.5. ,He&ee propose to improve these first
formulations by using un-split C-PML in stead ofisPML. This idea has been developed
simultaneously by other groups [7], [122], but oml\frequency domain calculations.

3.3.1 Wave Equations for Piezoelectric Solid in 2D

Consider the propagation of 2D plane strain elast@ves in a heterogeneous
piezoelectric solid media. In time domain, equaiaf motion, Hooke’s law and Maxwell
eqguations in the quasi-static approximation aremivy:

2
0 lil 1 (arll az—lsj (3213)
ot Po\ OX 0z
2
o"u, =_(6r13 argsj (3.21b)
ot P\ Ox 0z
oD, N oD, 0. (3.21c)
ox 0z
ou ou 0
1= Clla_)(l"'clsa_zs"' 16_20’ (3.21d)
ou, Ou 0
ou ou 0
33~ Clsa_xl"'cssa_;"' 36_20’ (3.21f)
17 ou, , du,
D =—¢ 2% +-3 3.21
1T TG s ( 0z  0Ox 5219
@ ou
D, = _533 e31 1 +e33 _ (3.21h)

whereu, is the particle displacemen, is the stress tensog, is the electric potential anD,

is the electric displacemer(, , g ande; are respectively the elastic stiffness constahts,
piezoelectric strain constants and the permittidgnstants (not confuse with the strain
notation used in chapter 2).

3.3.2 Formulation of C-PML in Frequency Domain

First, taking the Fourier transform of the systehen using the complex coordinates
transformation and stretched-coordinate metricaanisotropic elastic solid, the following
equations are obtained in the frequency domain:
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. 107, 19t
-fp0, = ——HLy =718 3.22a
Aol s, 0x s, 0z ( )

_10f, 102,

- pl, =— , 3.22b
Pota s, X s, 0z ( :
19D, , 19D _g (3.22¢)
s, 0X s, 0z
. 1 00 1 00 109
=C,—1+C. . —34 _ 3.22d
11 11 SX ax 13 SZ az eSl SZ az ( )
. 100, 190 109
f.=C | =14 =778 |+ —X 3.22e
13 44( s, 9z s, OXJ €5 s, ox ( )
. 1 90 1 9G 109
f.=C.—"14+C, . —"Bte "7 3.22
¥ TBs ox Ps, 0z s, 0z (3.220)
~ 1 0¢ 194, 1 ad,
D =g, £0P, o [ 10U 10Us) 3.22
! s, ox el{ s, 9z s, 0Xx (3.229)
B, =5, 199 1O o 10U (3.22h)

s, 0z ‘s, 0x s, 0z

As for the anisotropic solid, multiplying bg;s, and introducing the new variablé§
and p, (given by p,s,s,), we get the following equations which show thaPRL can be
interpreted as an anisotropic piezoelectric medium:

A1 A1
— az-ll + az—lS

-’ Py, = — : 3.23a
P = T ( )
07, 0T,
_wZ "G = 31 4 33, 3.23b
Pt = T o ( )
9, 9% 2, (3.23c)
ox 0z
Y 30 a0 Y
[1 =135, = CllS_xa_Xl + 0130_23 + %1a_f. (3.23d)
o s, dd ou g
[13=135,=C, S_Za_zl + C446_X3 + elsa—f, (3.23e)
, ad s, 00 s, 0
I3 =T3S, = C446_Zl +C44S_Xa_)f + elSs_Xa_f’ (3-23f)
Y ad s, 0u s, 0¢
T33 = T35S = C136_)(1 +C338_26_23 + esss_za_qza’ (3.239)
- s, 0@ ou, s,ad
Dy =-¢,~t—C+e | —+=2—1|, 3.23h
tots ox els( 0z s, Ox j ( )
By =, 220 1e, X ye 5 M (3.23i)

ox s, 0z
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Egs. (3.23d)-(3.23i) can be written in a matrixnfioas follows:

Ay T _ A

I Cc, C, 0 0 O e, | Y%«
5] [0 0 C, C, & 0 [Us
fw| |O 0 C, Ci, €& 0 |[U
Tw| |[Cy Cy O 0 0 €, [Usxl
[A)i 0 0 €s eis _‘9:;.1 0 é’x
_|5é_ & € 0 0 0 _‘gés__(zlz i

with 4, =90, /dx , G, =80, /0z, (,, =0, /0z , G, =80, /0x , @ =d@/ox andg, = d@/dz. The
new effectives elastic stiffnesses, piezoelectrizais and permittivities constant
are lel.l_CllSz/S 1'33 _C33 Sx/sz’ C£'14 :C44 S></Sz’ CZ4 :C44 Sz/sx’ e.l'.5 :e.l.5 Sz/sx’
€5 =€5S,/S,, 1= EnS,[S, €337 E5S,/S,.

For 3D, following the same procedure, it can bendlestrated that in this case, the
propagation of elastic waves is described in C-RiyL

af’
— 0 3.24a
Pol o, ( )
90} _ 0 (3.24b)
0%
. a0 g
I =Ci, —+€, — (3.24¢)
j Jkl j axk
~ ou.
D! = -5 22 6(0 vel, —, (3.24d)
X, 0X,
wherei, j, k, | = 1, 2 or 3. The effective elastic ten€0r piezoelectric strain matrig’,
permittivity matrix &' and densityp, are given by:
[ sxsysz
Cijkl = Cijkl g’ (3.25a)
€ =€ 55y (3.25b)
{] ] Ssk *
" sxsysz
& =& : (3.25¢)
SS;
10(') = IOOstySz (325d)

3.3.3 Formulation of C-PML in Time Domain

By using an inverse Fourier transform, we candia@e the system of equations EQs.
(3.22) back to time domain. As for anisotropic dslia convolution appears. It can be
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eliminated by introducing memory variables, andntheplaced by a first order differential

equation for each of these memory variables. Theltiag second-order system equations of
C-PML in time domain are given by:

0w, _1(107, 107, A B (3.26a)
i p\k, X K, 0z K, K,)
o2, _1 iarla 1 6T33+C + DB (3.26h)
o> plk, X k, 0z kK, kK,

19D, 1D, K, +5:0, (3.26¢)
K, OX K, 0Z K, K

_Cyou C,ou, e,0¢ E L F I, (3.26d)
K, 0X K, 0z K,0Z K, K ’

11
K

X z z

2 G0, Cuou  850¢ G H, Iy (3.26€)
Yok, X Kk, 0z K, OX K, K, K,
_Cpou  GCyou, €,0¢ B F I, (3.26f)
¥ Kk, 0Xx Kk, 0z K,0Z K, KZ K ’
D, =-fu0¢, 80 80t I H, G (3.26)
K, 0X k,0Z Kk, OX K, K, K
D3 = _@%+&%+%%_ JZ + X E F (326h)
kK,0z2 K, OX K, 0Z K, K, K

with each of the 12 introduced memory variablesresponds a first order differential
equation of the form (Appendix B):

GA arn
P -BA, (3.27)

Here the memory variables will be zero outside @EML zones. Then, introducing Egs.
(3.26d)-(3.26h) into Egs. (3.26a)-(3.26c¢), the sysbf equations to be solved becomes:

ywzi{@£+@3+f (3.28a)

o2 p\lox adz ™) .

d%u, _ 1(0dr, Odr

i)
0

D, aD, _

Doy Dac (3.28¢)

which is equivalent to the system of Egs.(3.21a248) with source termg$ ;. These source
terms are given by the following expressions:
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z KX z X
fo=| -9 Cufp Mg ) Cafp O _p ) B 0050 | (3505
P x|\ «, ox K, 0z K, 0z
iﬁ( %_G}ﬁ( ou Hj 3(,( _40_|j
0zl k, U “ox ) Kk, "oz °) ka Tox
+ALE
KX KZ
_K_Ixi %(%+Gj+%(%+H j+$(a_¢+| j
kK, ox\k, \ox ) k,\oz °) Kk \ox
_K. 0 C13(au1+Ej+%(%+Fj+3(a—¢+Jj
KdZK ox k,\0z *) k,\oz °
f,=| -2 C44(K' Oy ij+ﬂ(K-Z%—sz+%(K'x%—|Xj . (3.29D)
P ox\ «, ox K, 0z K, ox
0 Cl3(K'Xau1—Exj+%(Kzau3—sz+%3(/(za¢ sz
0z\ «, 0X K, z K, z
C, D
+ =X+
K, K

elS( 3+Gj elS( 1+Hj &(0_(0_'_')

ra 6x 0x K,\ 0z K \0x

+&_ i(%.ﬂzj_i_%(%_“:j 533(6¢+Jj
k,0zZ\ k \ox ) k,\0z *) «k,\0z

S A %( Kxau3+Gj ew(_,(zaulmj ‘911( 'Xa_¢—|xj . (3.29¢)
) x| k, ox K 0z K ox

z X

_i E( K' aul_|_Ej %3(_/( au3+Fj 833(/(' a_w_‘]j
0z\ k, *ox K, ‘9z k,\ ‘oz °
KoL
KX KZ

where, as it was done previously, we have introddlee notatiors”, ,=«, , —1.

X,Z

We can verify that if there is no piezoelectriciygs. (3.29) become the ones obtained
for anisotropic solid.
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3.3.4 Numerical Simulations
3.3.4.1 Simulation of Elastic Wave in an UnboundeRiezoelectric Medium

The simulation presented in this section was nfiadelastic wave propagation across a
(O, 0, 0) cut of a bismuth germanium oxide(BieG,) unbounded substrate. For this cubic
material the non zero constants a&e;= Cy,= 128 GPaC,= 25.5 GPaC;3= 30.5 GPag4
= e35= 0.99 C/M, e11= e33= 38 andpy = 9200 kg/m. & = 1/361 10° F/m is the electric
permittivity of vacuum. The simulation has beenfpened over a 8& 80 grid, which was
surrounded by a C-PML layer having a thickness®taélls, withAx = Az = 0.5 um. A 2D
circular source with a 0.15 pm diameter and 0.8 @Geétfdre frequency was set up at the point
(0,0) with a time evolution corresponding to a Rickvavelet expressed as in Eq. (3.17) with
parameters, = 2 ns,a,=(7f.)%, andf. = 0.8 GHz. In this simulation, the C-PML paramstier
the stretched-coordinate metrics are givenogyy = 2, Ny = 3,n2 = 0,n3 = 1 andomax has
the same expression as Eq. (3.18d), in which we haedr, = 10°.

For characterizing the absorbing ability of th&®IL layer, here, Egs. (3.23) have been
solved with COMSOL Multiphysics FEM software in duency domain. Here sixty
frequencies equally spaced in the source spectiava heen used. Then an inverse Fourier
transform has been done with Matlab software tatlgetesult in time domain. The snapshots
for four different times, 3.25 ns, 5.86 ns, 9.12amsl 13.02 ns, are displayed on Fig. 3.10.
They show the wave propagating away from the soantkbeing absorbed by the C-PML
layer, demonstrating the efficiency of the methibdhas to be noted that, for certain kinds of
piezoelectric substrates, instabilities can apgeaPML [38]. In fact, these instabilities
correspond to waves entering with group and phaeciies of opposite signs [10]. The
stability problem of C-PML will be discussed ingtohapter in parts of 3.5.
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Fig. 3.10Propagation of elastic waves in an unbounded@®G,, sample. In the fist row the times of the two
figures are 3.25 ns (left) and 5.86 ns (right), antthe second row the times are 9.12 ns (left) Eh182 ns (right).
The displayed dynamic range is 50 dB.

3.3.4.2 Surface Acoustic Wave Streaming System

In this subsection, the simulation of an integtaturface Acoustic Wave (SAW)
streaming system will be presented. In this systeign 3.11), a Rayleigh SAW is generated
using an interdigital transducer (IDT) source lad a X-cut LINbQ substrate, with an
interdigit of 50 um. Such waves are radiated on one half of the etludiicro-chambers
consisting in microlitre droplets situated betweehydrophobic substrate and a glass cover.
The simulated system corresponds to a real onelagmak in our laboratory by E. Galopin
(Micro-fluidic group) and O. Ducloux (previously d&tEMAC) [62]. The aim of this
simulation was to confirm the link between streagnpattern obtained experimentally and the
acoustic standing wave pattern created in the veaitgriet.
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Fig. 3.11 SAW streaming system developed by E. Galopin and@loux at IEMN, (a) Side view, (b) Top

view.

This SAW streaming system has been modelized iquéecy domain, using the
General Form Modes of COMSOL Multiphysics, by a mloavith three domains: the
piezoelectric substrate, the water droplet andgthes plate. The piezoelectric substrate has
been modelized using Egs. (3.23). Egs. (3.8) han hieed for the glass plate, but with no C-
PML. In the water droplet, the system of equatiohknear acoustic in fluids has been used:

o = —iDp, (3.30a)
ot P
% - o200V, (3.30b)

wherev is the particle velocity vectompis the pressure field and,, c, are the density and
sound speed respectively. The boundary conditiopsd ubetween the model and the
surrounding ambient air are stress free conditi@etween the solid and the water droplet
continuity of the normal stress and displacemewnehmeen assumed.

The pressure field inside the water droplet, whihhe component 7,,0f the stress
field inside the piezoelectric solids, obtained dotontinuous wave excitation at 20.5 MHz is
shown on Fig. 3.12. The propagation of the Rayleugive in the piezoelectric substrate can
easily be seen.
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Fig. 3.12 Pressure field created in a water droplet in atiméth a piezoelectric substrate where a Rayleigh

wave propagates.

This wave created in the water droplet a statiomeaye pattern with a characteristic length
given by the sound wavelength in water at the spwading frequency. In this case, it
corresponds to 7hm as shown on Fig. 3.13. Moreover, the form of ffastern is linked to
the form of the water droplet and the critical &ngf Rayleigh wave emission between the
LINbO3 substrate and water (dashed lines on Fig. 3.18% qualitatively corresponds to the
observations made by fluorescence microscopy omxperimental set-up, as it was done in
our laboratory, by Olivier Ducloux and Elisabethl@an [62], as shown on Fig. 3.14.

0

Fig. 3.13Zoom on the pressure field created in the wateplét showing the stationary waves pattern.

Fig. 3.14 Side view of the pattern induced in the water tebpy a 20.5 MHz surface wave and observed by

fluorescence with an optical microscope [62].
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3.4 Nearly Perfectly Matched Layer (NPML) for Elasic Solid

In the preceding two parts, the applications d?PI@L for anisotropic elastic solids and
piezoelectric media have been presented. The sedathonstrate the efficient ability of C-
PML for absorbing the outgoing energy of bulk waaes surface waves. But in all presented
implementations of C-PML supplementary PDE areoshiced to actualize the C-PML
variables. These PDE, as they contain spatial al@reyterms, are cumbersome and difficult to
introduce in our Discontinuous Galerkin schemesT$iparticularly true when a flux based on
physical considerations, like Godunov type fluxsed.

In this subsection, an another kind of PML nameshi Perfectly Matched Layer
(NPML), which has been proposed by Cummieal [49], [95] for electromagnetism and then
extended to acoustic [96], and which can overcdmed problems (as it will be shown), will
be extended for nonlinear elastodynamic.

3.4.1 Formulation of NPML for Elastic Wave Propagaton

Here, the methodology introduced by Cumraeal [49], [95] in electromagnetism is
used for the system of Eq. (2.1). First, it is ré&en in the frequency domain by taking its
Fourier transform. Then, the same complexes coatesntransformation with the same
stretched-coordinate metrics, as the one used BMC-implementation, is introduced. Eq.
(2.1) becomes:

Jafg :ia_F +ia_G (3.31)

s, 0X s, 0y
Here (¢) denotes the frequency domain of the consideretbuedeglecting the-dependence
of s, and they-dependence o Eq. (3.31) is rewritten as:

jQ=2 4+ (3.32)

where the following stretched fluxes have beerothiced:

E=F andé' =S8 (3.33)
SX

Sy

It is noted that the NPML performance is not akelcby the approximation used during its
derivation, due to the fact that NPML is really erfpctly matched laydd7]. Finally, the
resulting equations are transformed back to the ti@main by inverse Fourier transform and
the system to be solved becomes:

Q_oF 06" 3.34)
ot ox oy
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with
OF ([ Gevg =L OF O, (3.35a)
ot K, K, ot K,
o a
G Dyt o=t % D, (3.35h)
6t K, K, 0t K,

In the case where Eqgs. (3.35) are not solved byngeHDifference (FD) method, it can be
interesting to use an equivalent formulation wheeetime derivative of both stretched fluxes
F' and unstretched fluxds are not needed in the same equation. So, introngubie change
of variablesF" =k,F' —F andG" =k G'-G we arrive at the following equivalent system,
which needs to be solved in the NPML:

P F'+F aG +G
a_Qz KX + Ky

: (3.36)
ot 0x ay
with
aF" " U n
_z_ax “x (F +|:) (337&)
ot K,
6%:_% G"- 9y (G"+G). (3.37b)

y

The main advantage of this formulation is linkedthe fact thatij the obtained system of
equations (Eq. (3.34) or Eq. (3.36)) is in exadtly same form as the original system and so
strongly hyperbolic, andi] the introduced stretched fluxes are linked by Differential
Equations (ODES) to the physical fluxes. This lastatlvge can be particularly interesting for
Discontinuous Galerkin scheme, preserving the kigbdrallelisable capabilities of this
numerical method.

The 3D extension of the proposed NPML formulat®straight forward, and is given by:

" F"+F "
O(FX-'-FXJ a( y y] O(FZ-H:Z]
K
a_Q: Kx + y + K,

ot 0x oy 0z

, (3.38)

where
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PoVy R P2 Rs
pOVZ I:)21 I:)22 P23
IOOV3 I:)31 P32 P33
F. v, 0 0
F., 0 v, 0
Q= Fas | = 0 | F = 0 | F = A |
F., “ 10 Y 0 o,
Fs, 0 V, 0
Fis 0 0 A
Fsi, V, 0 0
F, 0 A 0
F,. Vv, 0 0

represent the state vector and the three compooérbe flux, respectively. The stretched
fluxes F, are updated by:
oF;
ot

Similar equations are used for the up dating-pfand F;, just replacing the indexbyy and
zrespectively.

=-a,F - (FI+F,). (3.39)

X

3.4.2 Comparison of NPML with C-PML

To demonstrate the efficiency of the proposed NPMeE will first compare it to C-
PML. The comparison has been made on the followiest case: propagation in a
homogeneous orthotropic solid medium. The propgrtdensity and elasticity coefficients, of
the different orthotropic materials, used in thendations presented in this, and in the
following paragraphs, are shown in Tab. 3.1. Thaiahof the material name has been made,
following Bécacheet al.[10], in order to simplify the comparison of ousudts with previous
ones[2], [10], [126]. Moreover, as only the NPML hasepeimplemented in the DG-FEM
scheme, the calculation has been made with a Psgpeictral code [79], [22].

In all cases, a 258 25 cm portion of an infinite solid has been diszesl on a 12&
128 elements grid (including the 10 elements NPMIC&’ML placed on each side), and a 5
ns time step was used.

Tab. 3.1Properties of the orthotropic materials used sttime domain simulations.

Material p (kg/m?) C11 (GPa) C, (GPa) C12 (GPa) Ces (GPa)
I 4000 40 200 38 20
i 4000 40 200 75 20
Y, 4000 300 60 99 15
Isotropic 1000 20 20 16 2
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The following source terns(x, y,t) is added in the right hand side of Eqg. (3.36):
S(X, y,t) = (05 +a,(t —t,)?) BxEe) (@70 /8 /r2) (3.40)

wherea, = (7f,)?, f.= BOKHz is the central frequency, =1/ f_ is the source delay time,
andro =5 mm. It corresponds to a Gaussian spatialibigion around the (0, 0) point which
is placed at the centre in all the simulations, tand Ricker wavelet time evolution. The same
spatial coordinate dependence (Eqs. 3.18) are fmethe NPML parameters with now
a,.=20m,np=2,n=1n3=1and:

O = A+, +1,) Q/C,,/ p, HogURy)/(2d) , (3.41)

where R, = 10",
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Fig. 3.15Snapshots of propagation of the displacement magnitudearttaotropic elastic medium, model |, at (a)
t=5us, (b) t =15 ps, (c) t = 30 us, and (d) t25 us. The snapshots are in dB scale with a reference

displacement amplitude of 10 nm.

The obtained snapshots, for elastic waves projegit an orthotropic medium (model |)
are displayed on Fig. 3.15 for four different tintests, 15 us, 30 us and 125 ps in dB scale
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with a reference displacement of 10 nm. The reshitav that the NPML work well for this
anisotropic medium and the level of spurious réifbecis very small, only a -90 dB reflected
pulse can be seen at the later time (Fig. 3.15(d)).

In order to quantify the efficiency of absorptiohNPML method, the evolution of the
total energy stored in the physical domain durimg simulation has been investigated. The
total energy at each time instant is computed adcgito the following expression:

1 2 .1
E=2 [ AV de + [ 7,600, (3.42)

where Q is the volume corresponding to the physical dor,nM Is magnitude of the
velocity vector,r; are the components of the stress tensor,garare the components of the
strain tensor. Fig. 3.16 displays the energy decdlie physical domain for the proposed C-
PML and NPML models. The wave field has left theygobal domain at about 60 us here.
This figure not only confirms that at later timeetenergy has decayed by a factot?1But
also demonstrates that no significant spuriougctafin appears before. Moreover, the same

10°

10°

Energy

10°

0 50 100 150 200
Time (us)
Fig. 3.16 Energy decay in computational domain for C-PMLsftzd line) and NPML (solid line) for the
orthotropic elastic medium, model I, in the samaditions as the ones used to obtain the snapshbtg.c8.15.

ability of energy absorption has been obtained wightwo methods for this anisotropic media,
confirming the fact that NPML is a true perfectlatthed layer.

Snapshots of the propagation of the amplitudéefdisplacement in the medium 1ll are
displayed for 4 different times (5, 15, 30 and 5) an Fig. 3.17. As in the case of the others
PML or C-PML implementations, some instabilitiegpagr (Fig. 3.17(c)-(d)) in the absorbing
layers. The energy decay in the computational dorwaithis simulation is shown on Fig. 3.18.
When the quasi-transversal wave penetrates in BMdLN(at time t = 35 us) the energy begins
to increase with time, corresponding to an instakeleaviour of the NPML.
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Fig. 3.17Snapshots of propagation of the displacement radmin an orthotropic elastic medium, model Iil, a
(@ t=5upus, (b) t =15 s, (c) t = 30 ps, andt(d) 50 ps. The snapshots are in dB scale withfexerece
displacement amplitude of 10 nm. Instabilities @veerved for the NPML terminations used in the &tion.
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Fig. 3.18Time evolution of the energy in the computaticsh@inain for NPML for the orthotropic elastic medium,

model Ill, in the same conditions as the ones ts@dtain the snapshots of Fig. 3.17.

As explained by Bécachet al [10], one of the incident elastic waves arriveshwihe
components of the group velocity and the slownessov, in the NPML direction, of opposite
signs. The slowness curves for the considered ojhic medium are represented in Fig. 3.19.
There are some wave vectdeSwhose extremities describe the purple line) fdnolw the
component in thex direction of the group velocity has an oppositeection than the
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component in the& direction of the phase velocity. In these dirawithe NPML are not stable.
Similarly, there are some wave vectérgwhose extremities describe the blue line) for the
component in they direction of the group velocity has an oppositeection than the
component in thg direction of the phase velocity.

0.5 6000

0.25 3000

Q

-0.25 -300Q

-6000
0.6  -0.3 0 03 0.6 2000 0 2000

-0.5

Fig. 3.19Slowness curves (left) and wave front (right) tlee orthotropic anisotropic medium (lll). Purplads
correspond to incident wave direction for which MeLM in thex direction is unstable. Blue lines correspond to

incident wave direction for which the NPLM in tiaelirection is unstable.

These instabilities are one of the major limitaion the use of PML for elastic waves
propagating in anisotropic solids and in plategnewn the case of an isotropic mediLir].
For anisotropic solids an absorbing layer calledPNL”, showing no instabilities, has
recently been developétR6]. But, contrary to what is claimed by the arththeir “MPML”
is not perfectly matched to the physical domain andesponds in fact to a mixture of
classical PML and of sponge lay@9], with a controllable ratio of these two kind$
absorbing layers. This mixture can easily be ex@dnd the case where C-PML or NPML is
used in place of PML. More details on the behavafuhese combined absorbing layers will
be given in the next part.
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*

Fig. 3.20Snapshots of propagation of the particle velogiggnitude in an isotropic elastic medium, at (a)2
ps, (b) t =3.5 s, (c) t =5 us, and (d) t = 10opwined with the RK-DG-FEM 04 scheme using quatnial
elements.

To conclude this part, an example of results olethi with the proposed NPML
formulation introduced in the DG-FEM scheme is préed. The NPML has been introduced
using a block implementation, each block correspantb a set of equations. This method is
very useful in configuration where one want to datela multi-physics problem. The interface
between the two blocks is considered as an extieoondary for each block, on which specific
boundary conditions depending on results obtaindgde other block need to be applied. In the
considered case, in one block (physical domainy &uqj. (2.1) is solved, and both Egs. (3.36)
and (3.37) in the second one (NPML domain). A&12 mm portion of an infinite solid has
been discretized on a 224 quadrilateral elements grid including the 4 NPklements
placed on each side. The material properties osimelated isotropic medium are given in
Tab. 3.1. The source is as before a Ricker wawvgtbt a central frequency of 900 kHz. The
snapshots of the particle velocity magnitude atZ gs, t = 3.5 us, t =5 ps, and t = 10 ps
obtained with a RK-DG-FEM 04 scheme are displayadr. 3.20. No reflection can be
noticed on the last snapshot demonstrating thditsabtf the NPML implementation. The time
evolution of the particle velocity components shawnFig. 3.21 at a receiver position (3.8, 0)
(mm) close to the NPML / physical domain interfacenfirms the excellent absorbing
behaviour of the proposed absorbing layer.
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Fig. 3.21 Time evolution of the normalized (a),\and (b) \} particle velocity components calculated at the

receiver position (3.8, 0) (mm).

3.5 Stabilized Absorbing Boundary Layer

In the preceding subsections, we have seen thatnigotropic solid medium the PML
are not always stable. This problem is the mainitdtion of PML in elastodynamic
applications. In this part, the Multiaxial Perfgdillatched Layer (“MPML”) [126] proposed to
stabilize PML will be first presented. We will theshow that this “MPML” is not perfectly
matched to the physical domain and correspondaadntd a mixture of classical PML and of
sponge layer. The stability of this MPML is studigdh the help of the method introduced by
Bécacheet al. [10] for PML. This analysis allows giving a phyaicinterpretation of the
stability criteria obtained by Meza-Fajardo and&ggorgiou [126]. All this theoretical work is
finally validated by numerical examples.

3.5.1 Formulation of Stabilized Absorbing BoundarylLayer

The introduction of the stabilized absorbing baanmydayer, the so-called “MPML”, is
in all points similar to the one of other PML, asP®IL or NPML. However, in the “MPML”
the attenuation parameters and o, of the stretching parametey and s, are now a
function of the two space variablesindy. Considering, as for NPML, Eqg. (2.1) in frequency
domain, and moving to the stretched coordinateamee to:

1 oF 1 oG
+

JER= S oy ox s (xy) oy

(3.43)

Coming back to time domain using an inverse Four@nsform, and introducing memory
variables we obtain:

0Q_10F 106, 1,15 (3.44)

otk 0x Kk, 0y K, K,

where
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OF _ OGN _[0,Y) e (3.45a)
ot K, OX Ky

o, (X o, (X
oG, __ o Y)G_G_ y(X.Y) +a, |G, (3.45b)
ot K, 0y K,

Eq. (3.44) is exactly the same equation as the brened for C-PML. The only difference is
the definition of theo, and o, parameters.

First, to compare our results to the formulatidrRef. [126], we consider the linear
elastodynamic caseF(= AQ andG = BQ), with xxy = 1 andaxy = 0. Then Eq. (3.44) and
Egs. (3.45) become:

9Q _ ,0Q _ p0Q
o A8 y +AQ +BQ,, (3.46)
with
0Q _ 0Q
' o, (X y)(—ax +Q1j, (3.473)
0Q, _ _ Q
=0, (x y)( % +sz- (3.47b)

Letting o, (x, y)Q, =—-AQ and o, (x Y)Q, =-BQ,, we arrive to a set of equations equivalent
to the one obtained by Meza-Fajardo and Papagiofy] for their “MPML”:

0Q 9Q
S, (Y)Q =AY, (3.48a)
0Q; 0Q
5 +0 (x y)Q, = ay (3.48b)

andQ=Q +Q,. In fact, as it will be demonstrated later, thiscalled “MPML” does not
correspond to a perfectly matched layer.

In order to give a new interpretation of these WP the attenuation parametesg, are
split up in x and y dependent componentsr,(x,Yy)=0,,(X)+0,(y 3gndo,(xy)=
o,(X)+0,(y). Introducing these parameters, Egs. (3.48) averitéen as:

21 d(x )Q + Q) = A2, (3.492)
% +d(xY)Q, +d, (1, =B, (3.49b)
t oy

where d(x,Y) = 0,,(Y) + 0, (X ), dy(X) =0, (¥) = 0,,(x) and d,(y) =0,,(y) - 0,,(y) have
been introduced. Wheti(x) = 0, €.9.0x{X) = ay(X), anddx(y) = 0, e.g.op(y) = oY), Egs.
(3.49) lead to the equations of the sponge laygreduced by Israeli and OrsZd@0]. Now,
whend(x,y) = 0, e.g.ox(Y) = ay(X) = 0, Eqgs. (3.49) become the equations obtainedtit
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PML. This shows that “MPML” is a mixture of PML argbonge layer, where the respective
ratios of the two types of absorbing layers are= O'yX(X)/O'XX(X) and p¥ = axy(y)/aw(y),

in the x andy direction respectively. As the sponge layers aeperfectly matched to the
physical domain, the obtained “MPML” are not petfiganatched layers. This conclusion
agrees with the fact that to obtain a perfectlyained layer for elastic wave, the projection of
the wave vectok in the direction perpendicular to the PML needéothe same in the PML
and in the physical domain, as demonstrated by Céedv Liu [43]. So, no modification
(attenuation term) can be introduced in this congpb@s it was the case in the “MPML”.

Eq. (3.44) is a generalisation of the “MPML” whicitcludes all the benefit of using C-
PML in place of “classical” PML. A similar idea hagen developed by Martet al.[120] and
implemented in a spectral-element scheme [105]. Sdrae stabilization procedure can be
introduced in the proposed NPML, leading to:

i) 4
K

Q_ K Uy 7. (3.50)
ot 0x oy

with
aiz_axp"_M(F"H:)' (3.51a)
ot K,

n g X,

9G" _ —a,G" _M(G" +G). (3.51b)
ot K

y
As all these stabilized absorbing boundary layessat truly matched to the physical domain
and correspond to a mixture of PML and sponge |ayer ratio between the two kinds of
absorbing layer need to be carefully chosen. Indéedproportion of sponge layer need to be
as small as possible, but enough to stabilize ME. A stability analysis will give us a mean
to determine the optimum choice of the ratio betwibe two kinds of absorbing layer.

3.5.2 Stability Analysis

To analyse the stability of these “MPML”, we use timethod introduced for PML by
Bécacheet al.[10], and used by Appeld and Kreiss [2] for C-PNiL.an anisotropic solid, the
dispersion equation can be written as:

F,(w,k) =det (k) - p,&’1) =0, (3.52)
where in the case of an orthotropic meditiifk) the Chrystoffel’s tensor in 2D is given by:

Cuk? +Ceek?  (Cp + c%)kikzj

) ; (3.53)
(C12 + CGG)k1k2 CG6k1 + CZZkZ

r(k) =(
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andl is the identity tensor. Using the same notatioMazga-Fajardo and Papagiorg{d26]:

c = CocCui c,= CocCaz c,= CutGCe c,= Cpo +Ces andc, = CiCyp — C122 —2C,Ces
P P Po Po P
the dispersion equation becomes:
Fo(w,k) = pgla” - o (KPc, + Kic,) +(Gk +Cks +ckZk2)] (3.54)

The four solutions of this dispersion equation @&) = ta, (k) and w(k) = +aw,s(k ) where

) = 2 e, e, 0 +kie) ke +ile, +ikie)), (355

and

) =, [, ke, ~ 0, ke = a0k, K, +igkie) (3.550)

corresponding to quasi-longitudin&®®) and quasi-transversaD§ waves propagating ink
directions.

The dispersion equation of “MPML” in thedirection can be obtained from Eqg. (3.54)
by replacingq by k,/s; andk; by k, /s :
Fupmix (@ K) = Fo(wyhi,k_iJ . (3.56)
S S,

Multiplying this equation byw- jo, — ja, e arrive at:

(w-ja,)
(w=jp’o, - ja,)

Fuew (@ K) = Fo(w(w_ jo,—ia) k(w=-ja,).k, (w-jo, - jax)J- (3.57)

7 : o a
— the phase velocitye =—* and d =—* the
K K] K

normalized attenuation and frequency shift parareeteespectively, of the C-PML, and

Introducing the following notationsy/, =

K :L, the dispersion equation becomes:

K
o
FMPMLX(VP,K,sFFo(vp(vp—je—m.Kl(vp—m, 2V, ~19) (vp—je—w)J
(V,—ip’e-jo)
L L (3.58)
:F{v ,K1(1— I£ ] ,Kz(l— be J J
P V,-jo V,-jo

The stability of the “MPML” system can be analysgdabperturbation analysis far<<1. We
expand, for the C-PML cas¥, in power of the attenuation parameter
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V,(K,&) =V, (K 0)+&a(K)+O(g?). (3.59)

This is equivalent to expanding the angular fregyew in power of the PML attenuation
coefficiento:

w(k,0) = wk) + oa(K) +O((g/w)?). (3.60)
To understand the physical interpretation of treity condition we will obtain by the

perturbation analysis, we consider a plane wavaresipn:

Del(@kot-kix-key) = gl (@k)t-kix-koy) gioa(K)t (3.61)

So, if Im{a(K)} <0, then joa(K )becomes positive and the PML amplifies the inc@min
wave, and so becomes instable.

Now, we expand Eq. (3.58) in power&drounde = 0:

FMPMLx(\/p’K)+£a(K)?‘;zg+ 9, j& “ + oF, jp*e %

, —+0(£?)=0. (3.62)
oK,  V,-jo 0K, V,—jo

The first term is equal to 0 due to Eq. (3.52), #meh Eqg. (3.62) leads, for the attenuation of a
plane wave propagating along the direckan the “MPML”", to:

a(K)z_[aFoj‘laFOj K, _(aFoj-laFo 0" K, | (3.63)
dw) K, V,—jo \dw) oK, V,-jo

To give a physical interpretation of the stabilitgndition, we need to link all the terms to a
physical quantity. In fact, in Eq. (3.63) only twahysical quantities appear: the slowness
vectorS and the group velocityy. which are given by:

K
S(K) = —, 3.64
(K) V. (3.64)
and

0a(K) oF,

oK) _| oK oF, )" oK
V (K) = —| Ky _ [ OF L 3.65
o0 =5 = oK) (awj oF, (3.65)

K, 9K,

respectively. Sog(K Fan be expressed in function of the componentieofyroup velocity
and the slowness vector:

vV, |
V,-jo

a(K)=(jS\Vy + Ip"SVy») (3.66)

It follows that:
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2

Vv
Im{a(K)} =(SVy, + pXSZng)VZ—jJZ, (3.67)

leading finally to the “MPML” stability condition:
S.Vgl

g2

(SVy, + P*SV,,) >0 or p*>max(- 0). (3.68)
First, whenp* = 0, in the pure C-PML or NPML case, the absordaygr is stable when the
slowness (or phase velocity) and the group velazitthe wave incoming in the PML are of
the same sign:

vV, >0. (3.69)

Unfortunately, this condition is not always verdiéor all the angle of incidence of the wave
impinging on the boundary between the physical doraad the PML in an anisotropic solid,
as shown on Fig. 3.22 for the orthotropic mediumlii this example, the waves arriving on
the PML with an angle of incidence higher than dabif will be amplified, in stead of being
absorbed. Moreover, Fig 3.22 is perfectly simiathe PML eigenderivatives @S modes
plotted on figure 7 of Ref. [126]. This shows tttz different stability analysis used by these
authors leads to exactly the same stability ceteHere, a clear physical interpretation is
given.

My

0 \2?), 4b 6I0 SIO
Angle of incidence (deg.)

Fig. 3.22Evolution as a function of the angle of the inaitiplane wave 0§,V (solid line),S,Vy, (dashed line),
andSVyq + SV, (dotted line) for the orthotropic medium I11.

Secondly, whemp* = 1, in the sponge layer case,S¥y + SV = 1, the absorbing layer is
always stable. This also leads to the fact th&\f; < 0, e.g.the PML is unstable, it exists
always a positive value @ such as§;\Vy + p* SV, = 0. This value op* corresponds to the
minimal value needed to stabilize the PML. In theceding example, medium llI, this value
is 0.25. So, when it is used in the “MPMLS,Vy + p* SV becomes positive for all angles
of incidence, as demonstrated on Fig. 3.23(a), tardabsorbing layer is stable. All these
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results are also true for PML in tg@irection, just replacing by y and 1 by 2 in the previous
formula. Evidently higher value gf* can be used, as for example 0.6 as shown on Fig.
3.23(b), but at the expense of an increase ofdfiection of incident wave on the layer, as it
will become clear now through the numerical examplethe next section.

0 20 40 60 80 0 20 40 60 80
Angle of incidence (deg.) Angle of incidence (deg.)

Fig. 3.23Evolution as a function of the angle of the incidplane wave of (& Vy + 0.25SV,, (solid line) and
0.255Vy + SV, (dashed line), and (I9,Vy + 0.6 SV, (solid line) and 0.6V, + SVy, (dashed line) for the

orthotropic medium 11

3.5.3 Numerical Simulations of MPML for Anisotropic Solid Medium

All simulations presented in this subsection aentatal to the ones described in part
3.4.2, only the orthotropic medium, in which thewaa propagate, changes.

Snapshots of the propagation of the amplitude @fdisplacement obtained for medium
[l with a ratio of 0.25 between the amplitude bétmaximal absorption of the sponge layer
and the C-PML[§" = p’ = 0.25) are displayed for 4 different times (5, 36 and 125 ps) on
Fig. 3.24. Here and in all the following figuresetsnapshots presented are in dB scale with a
reference displacement of 10 nm. The instabilitssexpected, have completely disappeared,
in comparison to Fig. 3.17, but at the expense sif@nger reflection of the waves impinging
the absorbing layer with a grazing angle (Fig. &4 This increase of the reflection is in
perfect accordance with the non perfectly matcheatacter of the fraction of sponge layer
introduced to stabilize the C-PML.
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Fig. 3.24Snapshots of propagation of the displacement maamin an orthotropic elastic medium, model Itl, a
(@ t=5us, (b) t =15 us, (c) t = 30 us, andt(¢) 125 us. The snapshots are in dB scale witbferance
displacement amplitude of 10 nm. No instability deserved for the “MPML” terminations used in the

simulation.

The energy decay in the computational domain fr ghmulation is shown on Fig. 3.25. For
p*=p’ = 0.25 the level of spurious reflection is arol¥. The obtained level of reflection is
higher than expected (chos&j value) and increase whept and/orp’ are increased, as
shown on the same figure fpf = p’ = 0.6 (solid line). All these behaviour are in feet
agreement with the theoretical analysis presemiie previous section.

10° (

107

Normalized energy

0 70 140 210
Time (us)
Fig. 3.25Energy decay in computational domain for “MPML't fine orthotropic elastic medium (I11), withf =

p’ = 0.25 (dashed line) ami = p’ = 0.6 (solid line). The energy is normalized wiéspect to its maximum value.
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To complete this study, we now look at a case wlhiee C-PML is stable, in order to
make a direct quantification of the imperfectionsoduced by the addition of a fraction of
sponge layer. On Fig. 3.26, snapshots of the patpagof the amplitude of the displacement
in the medium V are displayed for the same 4 dffietimes as in medium |, when C-PML
are used. From the point of view of the stabilitalysis, made with the perturbation method,
the application of PML to the medium V seems toenaw reason to be unstable (Fig. 3.27).
But numerical experiments have demonstrated [1@t tor this medium split PML
implementation are in fact not stable.

@ 7 ; ®) 7 ml &
1] Ittt 10 R A
' 10
3 5 20
T | €
S o i - S o 30
= =
5| 5 -40
' ! 50 : ! 50
o 0] L S 1) S .
10 -5 0 5 10 60 -0 -5 0 5 10 60
x (cm) X (cm)

-100

x (cm) x (cm)
Fig. 3.26 Snapshots of propagation of the displacement radmin an orthotropic elastic medium, model V, at
(@ t=5us, (b) t =15 us, (c) t = 30 us, andt(d) 125 ps. The snapshots are in dB scale witbference
displacement amplitude of 10 nm.
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Fig. 3.27Slowness curves (left) and wave front (right)tfoe orthotropic anisotropic medium (V).
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Here, contrary to the case of PML, no instabsitegppear, even at longer time. This
improved stability of the C-PML over the PML hasealdy been demonstrated theoretically by
Appel6 and Kreiss [2]. In fact, the “new absorblager” they proposed, is nothing else than a
new derivation of the C-PML introduced for elastiaves in Ref. [22]. It can be noted that it
has also been proven that the C-PML is efficientheacase of nonlinear wave absorpfii],

[3].

Energy decay in the physical domain has beeneplatt Fig. 3.28 for C-PML (solid line)
and “MPML” (dashed line), withp* = p’ = 0.25. In this example the spurious reflection
increases from Idwhenp* =p’ = 0 (C-PML) to 10 whenp* = p’ = 0.25.

10°
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Normalized Energy
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o,
[e2]

0 50 100 150
Time (us)
Fig. 3.28Energy decay in the physical domain of anisotrapédium (V) for C-PML (solid line) and “MPML”"

(dashed line). The energy is normalized with resfeeits maximum value.

3.5.4 Application to Propagation in Isotropic and Rezoelectric Plate

In this part, we will present the use of the diadil absorbing boundary layer
formulation for isotropic solid and piezoelectritages. It has been found that “classical”
implementations of PML (or C-PML) absorbing regiafen’t work satisfactorily for guided
waves for frequencies where “inverse modes” witbhugr and phase velocities of opposite
signs are excite[d1]. In frequency domain simulation, this leadaio erroneous selection of
the outgoing wave by the C-PML. This correspondh&oexistence of numerical instabilities
in time domain simulatiorj20]. One solution proposed to overcome this pnoblas been to
introduce complex elastic moduli, as in viscoetasmaterials, with an imaginary part,
representing attenuation, increasing with the di#ao the absorbing regions boundary [37].
This method, which can be used only in frequenayala simulation, corresponds to a kind of
“sponge layer” as already proposed in geophysi®$, [But at the expense of an increased
length of the absorbing zone [25], [116], [37]. Alegant way of preserving the use of short
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length PML has been introduced by Skel&bral [170], but at the expense of having now one
different PML for each propagating mode.

For overcoming the “inverse mode” problem, we dimropose to use the stabilized
absorbing layer withp* = 1, which corresponds, for a C-PML in thkedirection, to the
following complex coordinate’s transformation [28],16] in the plate medium:

X :Jx'sx(x')dx, (3.70a)

y=s,(x)y-. (3.70b)

3.5.4.1 Single Mode Propagation in a Solid Wavegued

In order to validate the absorption efficiencytloé stabilized absorbing layer, a single
mode Lamb wave (AO) pulse propagation in an alummmplate with a thickness jump was
simulated. The physic model is described in Fig@93The considered excitation pulse is a
Hanning windowed sinusoid:

s(t) = 05 Bin(277 1) [E1+ co{z?’tjj Eﬁec{%} | (3.71)
with f, = 200kHz andT =50ps.
______________ Nem _ _
Source
LM oo
6mmI| | | |¢4mm
CPML CPML

Fig. 3.29The model definition for the simulation of a siaghode A0 propagation in an aluminum plate with a

thickness jump.

Before the thickness jump, the normal displaceraettie surface of the plate at 114 mm
showing the direct AO pulse and the reflected walv&O pulse by the jump is presented on
Fig. 3.30(a). After the thickness jump (at the 364h), the transmitted pulse is shown on Fig.
3.30(b). No mode conversion can be noticed in &xample. The results are in excellent
agreement with the ones obtained by direct Finiéenént Time Domain simulatigt3], [14],
but with a considerable diminution of the needddudation time. Indeed, here the calculation

takes around 15 minutes for 50 frequencies on gatenwith a 2.4 GHz CPU.
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Fig. 3.30Normal displacements at the surface of the plateva in Fig 3.29 at (a) £ 114 mm and (b)E 364
mm from the source, when only the AO mode has leseited.

3.5.4.2 Multimode Propagation in a Solid Waveguide

In this subsection, 2D simulation of elastic guideaves in a 8 mm thick aluminum
plate has been done. In Fig. 3.31 the dispersioreswcalculated, in the frequency range [50-
550] kHz, with COMSOL Multiphysics compare favorahvith the ones obtained by an
analytical method.

Wavenumber (mr#)

100 150 200 50 N

(369 kHz) Frequency (kHz)" (379 kHz)
Fig. 3.31Comparison of the dispersion curves, for a 8 mmoktaiuminum plate, obtained by FEM simulations
and an analytical method (blue and black stars).

We consider now two frequencies (369 kHz and 372)Kdr which the excited S2 mode is

an inverse one. The wavenumber spectrum, obtanoad $ignals measured at the surface of
the plate between the S2 source and the stabil#esbrbing layer zone, are shown

respectively on Fig. 3.32 and Fig. 3.33.
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Excited inverse S2
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Fig. 3.32Wavenumber spectrum obtained from signals caledlat the surface of the plate between the 369

Nommalized amplitude

kHz S2 source and the stabilized absorbing layer.

In both case the same absorbing layer, with athetaken to be two times the longest
wavelength in the model, has been used. The chpseameters areo,  =32x10°,
a.. =2mx10" andk__ = Q The results show a reflection of the inverse Sien-80 dB
smaller than the incident energy. When the samerbiog layer length and parameters are
used with other modes excitations and/or diffefgaguencies similar results are always
obtained.
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Fig. 3.33Wavenumber spectrum obtained from signals calalilatéhe surface of the plate between the 379 kHz

S2 source and the stabilized absorbing layer.

3.5.4.3 Elastic Wave Propagation in a Piezoelectrigolid Waveguide

To show the efficiency of the proposed stabilizddorbing layer in 2D simulation of
elastic guided waves in piezoelectric medium, amr8 thick LiNbQ; piezoelectric plate is
considered. As in the preceding considered casejsbd absorbing layers must have, at least,
a length of two times the maximum wavelength of weves existing in the plate in the
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frequency range investigated. In Fig. 3.34 thealisipn curves calculated, in the frequency
range [100-500] kHz, with COMSOL Multiphysics arsmlayed. The inverse part of the S2
mode has, as expected, a negative wavenumberas ginthe wavenumber versus frequency
graph of Fig. 3.34.

0.3

=
=3

0.4

0.2

Wavenumber(1/mm)

02 1 L
100 200 300 400 300

Frequency(kHz)

Fig. 3.34Dispersion curves for an 8 mm thick LiNp@late obtained by FEM simulations.

3.6 Conclusion

In this chapter, we extended the C-PML implemeatatpreviously made for the first-
order velocity-stress formulation, to a second-pmlastic wave equation written in term of
displacements, both in frequency and time domaiftis new formulation has been
implemented in a commercial FEM software (Comsoltphbysics) and in an home made PS
code. The results of the simulations, in anisotr@mid piezoelectric solids, demonstrate that
C-PMLs have more absorbing efficiency in the casfesblique incidence and surface wave
than PMLs. But in all presented implementations @PML supplementary PDE are
introduced to actualize the C-PML variables. ThB&¥, as they contain spatial derivative
terms, are cumbersome and difficult to introduceun DG-FEM scheme when a Godunov
type flux is used.

To overcome this difficulty, the concept of NeaRerfectly Matched Layer (NPML)
has been applied to the elastic wave propagatingninanisotropic medium. The main
advantages of this formulation is linked to thet that the obtained system of equations is in
exactly the same form as the original system, ansti®ngly hyperbolic, and the introduced
stretched fluxes are linked by ODEs to the phydicaies. This last point reduces the burden
and time of calculation. Moreover, comparison oérgry decay shows that the NPML has the
same absorbing ability than C-PML.
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In the case of orthotropic material stability pels have appeared, as in the first-order
velocity-stress implementation. Following the “MPMimplementation of Meza-Fajardo and
Papageorgio{l26], we have introduced a mixture of C-PML andspbnge layer, with a
controllable ratio of these two kinds of absorblagers, in order to stabilize the C-PML or
NPML, and shown that this stabilized C-PML is ictfao perfectly matched to the physical
domain. A stability analysis, based on the methagh@sed by Becachet al.[10], has been
made. It gives a physical interpretation of théiity criteria obtained by Meza-Fajardo and
Papageorgiolil126]: the slowness (or phase velocity) and theugreelocity of the wave
incoming in the PML need to be of the same sign.

Moreover for Lamb waves simulations, this absorbaygr can absorb “inverse modes”
both in non-piezoelectric and piezoelectric platethe expense to have, at least, a length of
two times the maximum wavelength of the waves #gsh the plate in the frequency range
investigated. In this case the reflection inducgdtie C-PML is -80 dB smaller than the
incident energy.

Although not directly linked to the main objective$ the thesis, the second-order
equation C-PML implementation has opened the oppayt to begin fructuous
collaborations both in our laboratory and outsiger example, the good agreement between
simulations and experimental results for the irdegpt Surface Acoustic Wave (SAW)
streaming system, open to us the opportunity tonope¢ the system developed by the
Microfluidic group. A numerical study of an integgd high frequency (around 1 GHz)
ultrasonic system for a unique cell characteriratims begun in collaboration with the
Ultrasons group. Finally, the optimization for lax@maging application of a “chaotic cavity
transducer”, a concept we will describe in the Esdpter, is undertaken with the Koen Van
Den Abeele group in Kortrijk.
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CHAPTER 4: APPLICATION OF CHAOTIC CAVITY
TRANSDUCER TO LINEAR AND NONLINEAR
ELASTIC |MAGING

4.1 Introduction

Time Reversal Acoustic (TRA) provides the abilityfocus ultrasonic waves in time
and space, regardless of the position of the Insiimrce and of the heterogeneity of the
medium in which the wave propagates [68]-[70]. Tieishnique has attracted great scientific
and technological interests in different fields luging medical therapy, diagnostic,
nondestructive testing (NDT), and underwater acosi$?1]. In a standard TRA experiment,
waves generated by an acoustic source are firstpsored by an array of reversible
piezoelectric transducers located around the sparathen time reversed and reemitted by
the same transducers array. To improve the quallitiie focalization the transducers should
cover a closed surface around the medium in ordesbtain the wave front information
coming from all directions [36]. However, this idfitult to realize in practice, and time
reversal operation is usually performed on a licha@egular area, thus adversely affecting the
reversal and focusing quality. In contrast, it lh@en observed that multiple scatterj&g]
and multiple reflections, as in the case of a wala{128], [158], [159] or a cavit{p7], [58],
[59], tend to enhance the focusing quality bothr@solution and in amplitude. As a
consequence, the number of channels participatintigel time reversal process can be reduced,
even to only one channel as demonstrated by Dratger[57], [58], [59] and Finlket al [72]
in a silicon wafer chaotic cavity. This astonishibpghavior has been linked to the ergodic
property of the chaotic cavity, bearing the posisybto collect all information in only one
point. In addition, the amplitude at the focal sman be increased not only by an
amplification of the emitted signal, but also b #tmission of a longer recording of the time
reversed signal. Similar experiments in multiplatsring media have been done by Derode
et al [55], [56] and the observed resolution was om#hsof the theoretical limit for the
mirror's aperture. Indeed in this case, the effecfocusing aperture is widened due to the
increase of the length of paths involved in theesxpent. After the time reversal operation,
the whole multiple scattering properties of the radeehave as a coherent focusing source
with a large angular aperture, improving the fazation.

Recently, innovative ultrasonic methods have kimreloped to probe the existence of
damage (e.g., delaminations, micro-cracks or weklilesive bonds) by investigating various
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nonlinear signatures such as the generation of dvaos, the inter-modulation of frequency
components, the amplitude dependent shift in resmndrequencies, the slow dynamic
conditioning, etd192]. Such approaches are termed Nonlinear ElA8twe Spectroscopy
(NEWS) techniques. The basis of all NEWS techniqigesto measure and analyze
macroscopic signatures resulting from a local viokaof the linear stress-strain relation at
the microscalg85]-[86]. Tests performed on a wide variety of erals subjected to different
micro-damage mechanisms of mechanical, chemicakterdhal origin, have shown that the
sensitivity of such nonlinear methods to the deecof micro-scale features is far greater
than what can be obtained with linear acousticahoas. NEWS methods have at first been
applied for the global determination of the fatigiate of a structure, and recently extended
to visualization techniques for imaging defect'snimearity distributions using laser
vibrometry[174], airborne ultrasound75] or shearography61]. In the last five years, the
concept of merging the benefits of both NEWS and\ s been proposed in order to realize
images of defects in solid samplg/], [77], [79], [81], [177], [185]. In most NDT
applications of this combination, a one channel T&&eriment has been used in which a
piezoelectric (PZT) ceramic is glued directly tosample. The sample is generally small
enough to be considered as multi-reverberant irfrdguency range of interddf77], [185].
Non-reverberant samples such as composite platesstance are difficult to work with, and
for systems with a high degree of symmetry, sinmpleerberating properties may lead to the
concentration of virtual sources on a pattern wlithensions correlated to size of the sample
(or the transducer) resulting in spatial diffragtifigures and “phantom” images [79], [185].
In order to overcome the “phantom” image problend an extend the method to non-
reverberating sample, we propose to use a “chamtigty transducer”, consisting of a
combination of a PZT ceramic glued to a cavity b&atic shape on the hardware side with
the time reversal principle on the software siderdslwe apply it for elastic waves in solids,
and demonstrate that a transducer glued on a cheatity can be used as an array of
transducers, as it has been done recently for 3igimg in fluid [149], [129], but for imaging
applications in solid medium, and more preciselyntmlinear imaging of defects such as
cracks.

4.2 Principle of Chaotic Cavity Transducer
4.2.1 Principle of One Channel Time Reversal Acoust

Draegeret al [57], [58], [59] have shown that in a chaotic itgwnly one transducer is
needed in order to focus an elastic wave every evhieside a cavity. This astonishing
behavior has been linked to the ergodic properth@fchaotic cavity.

The experimental protocol classically used in orwefocalise an acoustic wave in a
chaotic solid sample is shown on Fig. 4.1. The 8tep of the experiment is the emission of a
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pulse source signal by the transducer. Then thelgavelocity at one position on the surface
of the sample is measured with a laser vibromatst,time reversed before reemission by the
transducer. The elastic wave generated then foaigbs position where the particle velocity
has been measured by the laser vibrometer botim@) talled time recompression, and space.

2 Measurement of Vz

1. Emission of a pulse with the vibrometer
(or a linear sweep),

Scanned aera

" red

PZT \/

3. Emission of the time
reversed received signal

Scanned aera

PZTW

Fig. 4.1Principle of one channel Time Reversal (TR) foadlan in a reverberant solid sample.

4 Measurement of the
retrofocused signale

An example of signals measured during the proceskown in Fig. 4.2. In this example a 2
periods sinusoidal signal at frequency 500 kHz msitted by a piezoelectric ceramic
transducer, and the signal measured by a laseomiter is displayed on Fig. 4.2(a). This
signal clearly corresponds to a long-lasting regeabng wave field, with a duration of 3 ms,
corresponding to 1500 periods at the centre freqguen the initial pulse. The retro-focused
signal measured at the same point, but after tewersal process and reemission, is shown on

Fig. 4.2 (b). A zoom displaying the time recompr@ssjuality obtained is presented on Fig.
4.2(c).
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Fig. 4.2(a) Direct multi-reverberant signal, (b) retro-fbzed signal, and (c) zoom of the time recomprassio

The shape of the obtained time-reversed sigrialeatarget position can be explained in
the following way: at the focusing time and at thisition all the frequency components of
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the signal add up coherently, whereas they addegherently at other times or other places.
In a chaotic cavity, the wave fielglcan be expressed as a superposition of eigenmigde}
which form an orthogonal basis:

P(x.1) = > 4, ()8, (1) (4.1)

In this case, a modal decomposition of the impusponsdiag(t) on the eigenmodes of the

cavity with eigenfrequencyy, is given by [57]:

sin(a,t)
w

n

ha () = >4, (AW, (B) =hga(t) if t>0. (4.2)
As shown on Fig. 4.3, where the spectrum of theatdimulti-reverberant signal of Fig. 4.2(a)
is displayed, a large number of eigenmodes are insih@ experiment. In a chaotic cavity, the
eigenmodes are generally not degeneraged. u= ) if and only if m = n) because for
neighbouring eigenfrequencieg-aw, tends to be small, but in chaotic cavity next hbmurs
tend to repulse each other. In this case, Draeg@} lias shown that, using this modal
decomposition, the following equation is verifieda chaotic cavity when the duratidi of
the time-reversed signal tends to infinity:

g (t) O hga(=t) = haa(t) O hgg(-1), (4.3)

and called it the cavity equation. Herecorresponds to a time domain convolution. Eq. (4.3)
demonstrates that the perfect time-reversal proeagsessed by, (—t), is perturbated by a
simple convolution by the backscattering impulsspomsehaa(t) of the sourcé\. Due to this,
the TR is not perfect here, and the retro-focusdslepis surrounded by sidelobes.

Normalized Amplitude

0.2 0.4 0.6 0.8 1.0 12
Frequency (MHz)

0.

Fig. 4.3Normalized spectrum of the long-lasting reverbesigmal of Fig. 4.2(a).
Now, when measuring the particle velocity arouheé fosition where the direct

reverberant signal has been measured, a focal egyu#ars. A 2D scan of the maximum
amplitude measured around this focal spot durimgrétro-focalisation process is displayed
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on Fig. 4.4. It can be shown that the shape ofai@ined directivity gives a statistical
estimator of the spatial field correlation functiadtue to the fact that TR process can be
interpreted as a spatial correlator [72].

Amplitude (V)

@ ° _ (b)

y (mm)

Er

s -4 2 0 2 4 6

X (mm)
Fig. 4.4 2D scan of the maximum amplitude measured arotmdfdcal point during the retro-focalisation

process in a reverberant steel plate. (a) Intepsityand (b) surface plot.

Noting h,y (t) the impulse response from poiAtto an observation poir’ different
from the pointB, where the interferometric measurement has beatenthe time-reversed
signal recreated &' at timet; = 0 can be written as:

5 (B'0) = [ g (e (-t)dt. (4.4)

Thus, the obtained directivity pattern of the tiregersed wave field is given by the cross
correlation of the Green’s functions, developedtmeigenmodes of the cavity:

5,(B'0) = Zws(A)wn(B)wn(B')% E(a). (4.5)

The summation is limited to a finite number of medas shown on Fig. 4.3, but as we do not
know the exact eigenmode distribution for each thamavity, we use a statistical approach
and consider the average over different realizatiprst summing over different cavity
realizations. So we replace in Eq. 4.5 the eigereaquloduct by their expectation values:

1

(s:(B'0) = > (2 (A, (B, (B)) 7 @) (4.6)
If B andB’ are sufficiently far apart fromA, not to be correlated, then:
(@2 (A, (B, (B) = (W2 (AN, (B, (B)). (4.7)
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Considering the random plane wave approximation, [[B08], [125], [203] that is the
amplitude of the eigenmodes has a Gaussian diEiUibL<¢I§> = o® whereo is a constant,
and a short range isotropic correlation functioregiin 2D by a Bessel function:

(W, (B, (B)) =3, (27trg — 15|/ A,) (4.8)

where/, is the wavelength correspondingdpwe obtain:

: o’
(8 (B10)) =2 3o (27tre: ~ el 1 4,) 5 E(). (4.9)
So, the spatial resolution obtained with the TRepss is simply an estimate of the correlation
length of the scattered wave field. So, it showddme independent of the array’s aperture. It
is to be noted that in 3D, the short range isotraqarrelation function is given by a sinus
cardinal function:

sin@rarg, — 15|/ A,)

BN ) == i,

(4.10)

4.2.2 An Instructive Experiment

In most application of one channel time reversaluatic experiment applied to non-
destructive testing a PZT ceramic is glued diredly a sample, small enough to be
considered as multi-reverberant in the considereshuencies range. Obviously, the
combination of traditional (or reciprocal) singleannel TRA for systems with a high degree
of symmetry, simple reverberating properties magultein spatial diffraction maxima and
“phantom” image$79], [185]. This limitation will be now demonstratehrough a first one
channel time reversal nonlinear experiment and a@&Derical simulation.

The experimental set-up used for this “classicalé channel time reversal experiment
in a reverberant sample is shown in Fig. 4.5. A &famic is glued with salol on the sample
(10x2.5x1.2 cm steel plate fabricated by the society ASQ@ng the European Strep project
AERONEWS), and a BMI heterodyne interferometer (SK8)1i8 used to detect the out of
plane particle velocityw). The PZT ceramic is driven by a pulse (a rectaargoiilse of 2 us
duration and 50 Hz of repetition frequency) geretaby an Agilent 33220A function
generator and amplified by an ENI 325 LA RF powemphiner. The mean frequency of the
system is around 250 kHz, which is the low freqydmit of the power amplifier.
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PZT Ceramic Measurement Point

- ll‘l”l 1 z

Fig. 4.5 Set-up for a “classical” one channel time reveesgleriment in a reverberant sample. Here, a PZT

ceramic is directly glued on a rectangularxt®.5x 1.2 cm steel plate, and the vibration measurenaetsnade

with a heterodyne interferometer.

The objective of this first experiment was to iraagcrack on the surface of the sample,
obtained by a three point bending fatigue techniguth the method proposed by Suénal.
[176], [184]. A one channel time reversal technigsieused to focus an elastic wave on
different points of the surface of the sample atbtire crack. The amplitude of the signal at
the second harmonic frequency is then extracted,aanimage of the nonlinear response of
the sample is made. The 2D map of the second hacraoplitude obtained around the crack
is displayed on Fig. 4.6. On the right of the figar measurement made along a width of the
sample, and crossing the crack is also shown. Tdek can easily be seen on this image, but
a symmetric image and an increase of the signgh@boundaries are obtained.

S st Crack

Second harmonic amplitude

5 10 15 20 25

Radial distance (mm)
Fig. 4.6 Part of a 2D map of the second harmonic amplitodasured after focusing of an elastic wave in

different points around a crack at the surface tdtigued steel plate using a one channel TR method one

slice along a width of the sample.

To understand if the “phantom” image and the iasesof the signal on the stress free
boundaries are linked to experimental uncertaintyoorespond to intrinsic physical problems
a 3D linear simulation of the experiments has beade. The geometry of the simulation is
shown in Fig. 4.7. It corresponds to wave propagaith a 2.5 1.2x10 cm steel sample with
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stress free boundaries. A point fortg (stress) is applied on the bottom free surfacthef
sample (Y = 1.2 cm) at the position (X =1 cm, L2 cm, Z = 1 cm). This point force has
the following time evolution:

T,(t) = Asin(27 (t—to))e_"[ﬂ 1—e_(;7vj , (4.11)

with the following parameter$:= 250 kHz t, = 0 ,A = 0.05 MPap = 2,t. = 0,sw= 3f, w=

2/f. The sample is an isotropic steel with dengity 8000 kg/m, Young modulusE = 184
GPa, and Poisson coefficiemt= 0.3. In the first phase of the process corredpmnto the
propagation of the direct wave generated by thatmmurce at the surface of the sample, the
normal particle velocity, on a point of the same free surface is recordenhglseveral ms.
The point coordinates are: X =0.7cm,Y =12 ¢erd Z = 6 cm.

Focal point
T,,atthe point (1,1.2,1)cm (X=0.7cm;Y =1.2cm; Z=6cm)

/

Y:1.2ch /X:Z.Scm
Origin (0,0,0) Z =10 cm
Fig. 4.7Geometry of simulation domain with characterisb€source, receivers and material.

The calculated 2D map of the maximum amplitudettierretro-focusing process is shown on
Fig. 4.8. Although the focal spot clearly emergédhe 2D map, a slice obtained along a
width and crossing the focus displays the same iifegions: increase of the signal on the
stress free boundaries and a small amplitude “pahimage.

25
20
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10 &

10 20 30 40 50 60 70 80 90 100

v, (m/s)
w

y (cm)

(53}
v
N

z (cm) 05 1 15 2
Radial distance y (cm)
Fig. 4.82D map of the maximum amplitude for retro-focusatgthe surface of the sample (left), and a slice

along a width (rigth).
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4.2.3 Chaotic Cavity Transducer

In order to overcome the “phantom” image problemd & extend the method to non-
reverberating sample, we propose to use a “chamigty transducer”, consisting of a
combination of a PZT ceramic glued to a cavity b&atic shape on the hardware side with
the time reversal principle on the software side.applied source signal to the PZT ceramic
generates a wave propagating in the cavity and sdmple medium. Each time the
propagating wave in the cavity arrives at the baupdetween the cavity and the sample,
part of the incident energy is reflected and cargsito engender multiple reflections on the
other boundaries of the cavity, whereas the otlat pf the energy is transmitted in the
sample as shown on Fig. 4.9.

A similar idea has been developed for 3D imagmg{uids[129]. Here, we apply it for
elastic waves in solids [26].

Chaotic cavity transducer
—reee——————————— |

PZT Ceramic |
' Chaotic cavity :
: Sample

I
I
I
L A——
[ A N e AN e . e

Fig. 4.9Principle of “chaotic cavity transducer”.

4.2.4 Signal Processing Methodology

As we have seen time reversal provides the pdisgitn focus elastic waves in solid
samples with only one channel when used in (or )wi&hmulti-reverberant cavity. But,
different kinds of signal processing methods camsed in order to improve both the Signal
to Noise Ratio (SNR) and the quality of the focatlian. In our study, three techniques have
been tested: Chirped excitation, Inverse Filter Aiat process.

4.2.4.1Chirp Excitation

Experimentally, due to the low energy in the putbe use of sinusoidal pulse signal for
impulse response measurement does not providegstemeived signal, leading to a poor
signal to noise ratio. So, for more robust measergraf the impulse response and to improve
the quality of focalization a pulse compressiorhteque with a linear sweep signal has been
used instead of the short sinusoidal pulse. Pusepcession is accomplished by taking the
intercorrelation of the measured waveform with tinee reversed input signal (chirp). There
are three primary reasons why pulse compressipatentially a useful technique:
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improvement of available bandwidth of the imagaystem;

coded waveform has the advantage of being adtiectusing cross-correlation
techniques, even when the received signal is vedtivb the noise;

high energy levels can be transferred into éise sample.

This last reason is particularly interesting in lvogar imaging of defect due to the fact that
the nonlinear crack response has generally a tbicedlehaviour, and a quadratic increase
when this threshold has been overcome. Variousstgpswept-frequency signals with large
Time-Bandwith Product (TBP) have been proposedpasxample chirp signal, Barker and
Golay codes, but it was found that the linear Feagy Modulated (FM) signal has the best
performances in view of SNR improvement and robesdrversus attenuation effects [127].
So, the pulse code we used is a chirp with lineareiasing or decreasing instantaneous
frequency:

B T T
s(t) = cos@rf .t + m1—t?), ——<t<—, 4.12
(t) @rt, T ) 2 2 (4.12)

wherefy is the center frequency, is the signal duration aridl is the total bandwidth that is
swept. Its instantaneous frequency is:

. B
ft)=fo+t. (4.13)

which is function of time and indicates the spdctrand in which the signal energy is
concentrated at the time instantThe parametek =B/T is referred to as the frequency
modulated slope or the rate of the frequency maeddlaweep. The signal sweeps linearly the
frequencies in the intervglf, — B/2, f, + B/2]. Moreover, if needed, a time domain window
apodizationA(t) can be used in order to reduce time domain didslevhich can appear in the
pulse compression process. Indeed rectangular dhwipelow leads to Fresnel ripples at the
frequency band edges.

The same process, as the one use for the sinusoigi@e signal, has been used with a
linear sweep source signal, with the following paegersT = 100 psf; = 200 kHz,f, = 1000
kHz (B =f, - f;). Comparison of the direct wave recorded signdlthe retro-focalized signal
obtained by using the sinusoidal pulse and theafirsgveep source signal are plotted on Fig.
4.10. It appears that the use of linear sweep saignal improves time recompression quality
and signal to noise ratio.
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0.4— \ \ \ 6 \ \ \
— Linear Sweep — Linear Sweep

— Sinusoid Pluse — Sinusoid Pulse
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Velocity (cm/s)
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-0.2r (a)
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Time (ms) Time (ms)
Fig. 4.10Comparison of (a) the direct wave recorded signdl(®) the time recompressed signal at the focus fo

two kinds of source signal: a sinusoidal pulse gfuline) and a linear sweep (black line).

In nonlinear methods such as harmonic generatioeyen parametric interactions, signals of
a few periods of duration are needed in stead sepBut as shown on Fig. 4.11(a), when 60
periods of a 600 kHz sinusoidal signal is usechassburce signal, the signal to noise ratio of
the obtained time recompressed signal is quite 10ws is linked to the small numbers of
eigenmodes used due to the limited frequency rafdiee source. Chirp excitation can also
here be a solution. Indeed, when a sweep, of 1@ugedion andmin = 200 kHz andax= 1.2
MHz, is used as the source signal, the time recessed signal although of 100 ps duration
presents a higher signal to noise ratio (Fig. A)1(Moreover, by taking the intercorrelation
of this signal with the time reversed input sigr@apulse can again be obtained.

100us| | d
— 0.4 | ‘H e ]
(2] —~
= 0.5; L
E, £ 02 ]
> N—r
= >
S o S ol WWMW‘WM
° o
> S
-0.5¢ 0.2 1
‘ -0.4; ‘ ‘ ‘ ‘ ‘ 1
4_ 35 4_4 445 4_5 4.55 435 4.4 445 45 455
Time (Ms) Time (Mms)

Fig. 4.11Time recompressed signal obtained with (a) 500perbf a 600 kHz sinusoidal signal, and (b) a sweep

of 100 ps duration anfg;, = 200 kHz and,.x= 1.2 MHz.
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4.2.4.2Time Reversal and Inverse Filter

The spatio-temporal inverse filter approach hasnbased by Tantest al [180] and
Aubry et al [5], and shown to improve the focusing qualitydéed, if linearity and spatial
reciprocity assumptions are valid in the mediume treceding time reversal process
corresponds to a spatial and temporal matched [il€&9] of the propagation. That is to say,
the time reversal process maximizes the output itudpl received signal at a given location
and a given time, and corresponds in our caseetsignal amplitude received at the focus at a
given time, for a given input energy.

The classical inverse filter is based on the isiogr of the propagation operator relating
an array of transducers to a set of control pdiBO]. This technique allows calculation, both
in space and time, of the set of temporal sigraalset emitted in order to optimally focus on a
chosen control point. The broadband inversion E®takes advantage of the singular value
decomposition of the propagation operator in theri€éo domain.

In our case, the Inverse Filter (IF) approach wittingle transducer coupled to a chaotic
and reverberant cavity consists in the inversionthef eigenmode energy [150]. The IF
approach performs an inversion of the energy oetgenmodes, and constructs the re-emitted
signal as a linear combination of all the eigennsoalethe cavity, weighted by this inversion.
Doing so, the focusing process takes advantagdl dhex modes including those with the
weakest energy which are poorly exploited in theetreversal focusing process.

On Fig. 4.12, a comparison between the time recesspd signal obtained with Time
Reversal (TR) and Inverse Filter (IF) methods aspldyed. As predicted, the amplitude of the
pulse obtained by IF is lower than with TR, butre expense of a better signal to noise ratio
and a shorter duration. These properties are linke@xpected, to the fact that the number of
eigenmodes used with IF method is higher than WRHFig. 4.13).

Time Reversal (TR) Inverse Fitter (IF) |

Velocity (cm/s)
Velocity (cm/s)
[

Time (Ms) Time (ms)

Fig. 4.12 Comparison of the time-recompression signal obthiaethe focus for (a) Time Reversal (TR), (b)

Inverse Filter (IF).
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Fig. 4.13 Comparison of the spectra of the time-recompressignal obtained with Time Reversal (TR) and

2

Inverse Filter (IF) methods.

4.2.4.3 1-bit Process

As demonstrated, a 1-bit process can be usedder ¢o increase the amplitude of the
retro-focalized wave. During classical time revemsainverse filter experiments, both the
instantaneous phase and amplitude information efd¢lceived signal are sent back. For a 1-
bit method, the time reversed or inverse filtengghal will be set tot1 depending on the sign
of signal: +1 amplitude is set if the sign is positive, othemyis1l amplitude is set. This
means that the instantaneous phase informatioremrés the zero crossing of the signal is
time reversed while the instantaneous amplitudermétion is ignored.

The previous experiment has been repeated witkbia ihverse filter with the same
parameter as for the inverse filter method. ConmggFig. 4.14(a) and Fig. 4.12(b), a 2.5dB
gain is obtained by using the 1-bit method. Thespen of the signal measured with the 1-bit
inverse filter is displayed on Fig. 4.14(b). As iR, only some eigenmodes are privileged in
the 1-bit process, leading to an increase of theetadion noise.

4F 3 I T | | T
z @ 2 ®) 1pit IF IF
E 2
= T 06
= 3
% ol -% 0.4/ ]
g % 0.2 \HH \M“M \W M i “‘\

4l 2 I !M

3 4 5 6 7 %2 04 06 08 1
Time (ms) Frequency (MHz)
Fig. 4.14 (a) Velocity at the focus point as a function ahéi for 1-bit Inverse Filter. (b) Comparison of the

1.2

spectra of the signals obtained with 1-bit Invefgeer (1bit IF) and Inverse Filter (IF) methods.
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4.2.5 Numerical Simulations of Chaotic Cavity Tranducer

To demonstrate and give a better understandinth@f“chaotic cavity transducer”
concept, a numerical simulation study has been firade with the developed DG-FEM
scheme, and will now be presented.

The form and size of the chaotic cavity simulateddisplayed in Fig. 4.15(b). It
corresponds to a 2D version of the cavity usedhm éxperiments presented later in the
chapter. The source signal is the Ricker wavele¢rgin Eq. (2.69) withtp = 0.5 ps,a =
(7£.)% andf. = 800 kHz and located in the middle of the tiltgzher side border. The cavity
material used in the experiments is copper witksstfree boundary condition on all the
cavity boundaries. So the following parameters Hasen used in the numerical simulation:
po = 8930 kg/m, C11 = Co, = 224.1 GPaCy, = 132.1 GPa an@ss = 46.0 GPa.
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Fig. 4.15(a) Received direct signal at the chosen focaltp@ir) snapshot of the particle velocity at theams of
time recompression, (c) retro-focalized signal, &tdzoom of (c) around the instant of time recoasggion

calculated, for a copper chaotic cavity, with a R&-FEM O4 scheme.

The chosen point of focalization is first positidnat (0.0, -5.0) (mm) inside the cavity
in order to verify the chaotic behavior of the desid cavity. The received particle velocity
signal at the focal point calculated with a RK-D&NF scheme of order 4 is shown on Fig.
4.15(a). It corresponds to a long-lasting revenbiesaynal. The total simulation time is 150 ps
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for this first step of the retro-focalization procee. Here the reflections on the stress-free
boundaries of the cavity continue until the endh&f simulation as no attenuation has been
introduced. Then, a time reversed version of tigea is reemitted by a source located as
before in the middle of the tilted upper side bordee can see, on the snapshot of the particle
velocity at the instant of time recompression (Eid.5(b)), that the spatial focalization point
is at the position where the direct signal was iveck confirming that a one channel time
reversal process focuses back exactly at the sotlitee chaotic behaviour of the designed
cavity seems to be adequate, as no “phantom” imagebe seen on Fig. 4.15(b). The retro-
focalized signal, calculated at the focal positisndisplayed on Fig. 4.15(c). It confirms the
time recompression and correlation noise inhererthé one channel time reversal process.
Indeed, in this numerical experiment this noisencarbe attributed to “thermal noise” or
experimental errors. The zoom of Fig. 4.15(d) shthvesquality of the time recompression.

Y (mm)

X (mm)

0 - K
X (mm) X (mm)
Fig. 4.16 Snapshots of the particle velocity at five instaarsund the time recompression, for a copper chaoti

cavity, calculated with a RK-DG-FEM O4 scheme.t(a)149 us, (b} = 149.3 us, (c) = 149.6 us, (d) = 149.9
us, and (e) = 150.5 ps.
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Fig. 4.16 shows snapshots of the particle veloaty five instants around the time
recompression for the copper chaotic cavity. Thesegpshots display the retro-focusing
process, showing that the focusing waves come &wary direction around the focal spot,
and diverge after passing through it.

Now, the preceding copper chaotic cavity is comr®d to be glued on a % mm
reverberating plate. The plate is first considdmete made of steep, = 7870 kg/m, Cy1 =
Cyx = 237 GPaCy; = 141 GPa andCss = 116 GPa. The same retro-focuzing process is
simulated using a fourth order RK-DG-FEM, but witie focusing point chosen in the steel
plate at a position with coordinates (0.0, -8.0)n)mAs in the previous numerical example, the
total calculation time, in the first step of the T&ro-focalization process, is 150 us. The
obtained snapshot of the particle velocity at th&tant of time recompression, Fig 4.17(a)
demonstrates the possibility of focusing in a samwgth a one channel TR method combined
with a chaotic cavity. It is to be noted that imstbase the reflection at the interface between
the cavity and the steel plate is rather small bseaheir constituting materials are very similar.
Fig. 4.17(b) shows that the quality of the timeorapression is nearly as good as the one
obtained directly inside the cavity. Only the lewélthe correlation noise is slightly bigger
when the cavity is glued on the steel sample. Is tase, the sample contributes to the
focusing process and the waves come from evergtadirearound the focal spot as shown on
Fig. 4.18 which displays snapshot of the particiogity at five instants around the time
recompression.
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Fig. 4.17(a) Snapshot of the particle velocity at the inst#rtime recompression, and (b) retro-focalizeghai

calculated, for a copper chaotic cavity glued oawerberating steel plate, with a RK-DG-FEM O4 sube
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Fig. 4.18 Snapshots of the particle velocity at five instaantsund the time recompression, for a copper chaoti

cavity glued on reverberating steel plate, caledatith a RK-DG-FEM O4 scheme. (& 149 us, (b) = 149.3
us, (c)t = 149.6 ps, (d) = 149.9 us, and (¢)= 150.5 ps.

Next, we want to see the influence of a higheradgnce mismatch between the cavity
and the sample on the retro-focusing process. 8aonsider the case where the cavity is still
made in copper, but glued this time on a compogltge with the following material
parametersp, = 1400 kg/m, C11 = 20.28 GPaC» = 20.52 GPaC, = 5.59 GPa an@gs =
5.87 GPa. In this simulation, the receiver is ledaat the point (0.0, -7.0) (mm), and the total
calculation time for the first step is 100 us. Witle same procedure as in the two preceding
calculations, we obtain the results plotted on Ei@9. These figures show that it is possible to
get a retro-focalization even on this medium withigh impedance mismatch.

160



CHAPTER 4: APPLICATION OF CHAOTIC CAVITY TRANSDUCERTO LINEAR AND NONLINEAR ELASTIC IMAGING

1.0
(b)

0.8f
8

2 0.6/
g

€ < 04
S k)
Ng 8

E 0.2r
2

0.0

-0.2r

-10 -5 0 5 10 0 50 100 150 200
X (mm) Time (us)

Fig. 4.19(a) Snapshot of the particle velocity at the instfrtime recompression, and (b) retro-focalizeghal

calculated, for a copper chaotic cavity glued @omposite plate of finite size, with a RK-DG-FEM Geheme.

Finally, the use of the “chaotic cavity transdticen non-reverberating sample is
studied. To simulate the non-reverberating samN@&IL absorbing layer is placed on three
of its boundaries. The remaining boundary is lefefwhere it is not in contact with the cavity.
So, the sample can be considered as a semi infimi#&ium. The snapshot of the particle
velocity at the instant of time recompression dma&l rietro-focalized signal calculated with a
fourth order RK-DG-FEM scheme are shown on Fig04.Phese results demonstrate the
ability of the “chaotic cavity transducer” to focesergy even in non-reverberating samples.
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Fig. 4.20(a) Snapshot of the particle velocity at the instfrtime recompression, and (b) retro-focalizeghal

calculated, for a copper chaotic cavity glued onoa reverberating composite plate, with a RK-DG-FEM

scheme.

Snapshots of the particle velocity at five instaartsund the time recompression are displayed
on Fig. 4.21. On these snapshots one can cleaglyhsed the wave does not come from all
around the focal point as in the case where thadtb cavity transducer” is glued on a
reverberant sample, but seems to propagate frontdkigy. A point, which can not be
measured experimentally, is the fact that in thesmiered case, where the sample presents a
high impedance mismatch with the cavity, the focggroperties is mainly linked to surface
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waves propagating at the interface between thetycavid the sample. Moreover, a careful

look at the snapshots brings to light a “phantootcal point, inside the cavity. Even if less

visible than in the first considered case, withe thaotic cavity alone, the waves seem to
come from every direction around this “phantom”dbsgpot.

Y (mm)

-10 5 0 5 10 -10 5 0 5 10
X (mm) X (mm)
Fig. 4.21 Snapshots of the particle velocity at five instaantsund the time recompression for a copper chaotic
cavity glued on a non reverberating composite sapgalculated with a RK-DG-FEM O4 scheme.t(@)97.3 us,

(b)t=98.3 us, (c) = 99.2 s, (d) = 100.4 ps, and (¢)= 101.4 us.

These first numerical results give some insigho ithe behavior of a “chaotic cavity
transducer” when used for imaging application ildso
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4.3 Experiments in a Reverberant Medium
4.3.1 Set-up of the Experiment

In the experiment discussed heré2x 25x1.0cm steel sample has been used. With
such boundary conditions, no information can esdape the system and a reverberant
acoustic field is created. The experiment is sedgpshown on Fig. 4.22. A single PZT
ceramic disk is glued to a chaotic cavity and, kEny, the cavity is glued onto the sample.
The cavity made in copper has been designed inrdaddnave the ergodic and mixing
properties. A source signal, generated by an arlitwave generator coupled to a power
amplifier, is applied to the PZT and generatesdilang waves propagating in the cavity and
radiating in the sample medium. In order to guaarthe synchronization of time reversal
waves, the arbitrary wave generator AWG2021 igyargd by an external trigger generator.
The surface velocity of sample medium has been uneddy a laser viborometer. The signal
is acquired through an oscilloscope LeCroy 9361e Téciprocal time reversal process and
the scanning of the laser are computer controliedabview.
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Fig. 4.22 Experimental set-up used for the demonstrationhef focusing properties of a “chaotic cavity
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transducer” in a reverberant sample.

4.3.2 Experimental Results

In this part, experimental results obtained witm&iReversal (TR) or Inverse Filter (IF)
methods will be presented. In all the experimeati#near sweep source signal has been used
with the following parameterst = 100 usf; = 200 kHz, and, = 1200 kHz. In the whole
process of each experiments, for the linear sweajcs signal, the convolution operation can
not only be done before the TR or IF process, l=at at the end of the whole process.
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First, the spatial recompression experiment ferdteel sample, obtained with the Time
Reversal (TR) method, will be presented. In thestfistep, the focalization procedure
presented in the previous paragraph is used to-fetalize on the chosen position on the
surface of the sample. Here, the convolution opmrdias been made before the TR process.
Then a 2D scan of 28l5 mm?, with a spatial step of 0.30 mm, of the whekl around the
focal spot is made. The obtained 2D map shown gn423(a) demonstrates the high quality
of the retro-focalization, with a spot size of 2 madius. Moreover, the spatial distributions
of focalized signal in the two axis directions (F23(b)) show no increase of the strain at
the stress free boundary (upper boundary on F&R(4)). These results confirm that a single
PZT ceramic with a chaotic cavity can be used &éisna reversal mirror (TRM) when the
sample is multi-reverberant.
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Fig. 4.23 Time Reversal (TR) recompression experiment. (a)s2Bn of the focalization points. (b) Spatial

distributions of focalized signal xandy axis directions at the time ¥ 0 ps.

Fig. 4.24 displays snapshots of the wave fielchatdurface of the sample around the focus
point. Here T= 0 us corresponds to the instant of time recosgioe. In the first and second
figures at T= -4 us and T= -2 us, respectively, we can see the wave prdijpagan the
centerward direction, as if there are many transdusurrounding the focalization point in all
the directions. The third figure shows that thergpehas focalized at . T= 0 ps in the
reference focal point. Then, the waves propagateydmm the center as shown on the fourth
and fifth figures at T= 2 us and 1= 4 us, respectively. These snapshots clearly shatithe
focusing wave come from all around the focus paditiis is due to the fact that, here, as the
sample is multi-reverberant, it contributes to thedro-focusing process as previously
demonstrated numerically.
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Tr=-2us

Tr=0ps

Tr=2us Tr=4ps

Fig. 4.24 Snapshots of the surface particle velocity arotivedfocal point at different time showing the TR

focalization process obtained with a “chaotic catiansducer”

Secondly, the same experiment obtained now wighltiverse Filter (IF) method in
place of the TR, will be presented. The 2D scarx@@mm? with a spatial step of 0.30 mm)
of the wave field around the focal spot is shown Fig. 4.25. The obtained 2D map
demonstrates the high quality of the retro-focaiora with the IF method, and the spatial
distribution of focalized signal in the two axigalitions shows no increase of the strain at the
stress free boundary as for the TR method. Fig dlbws the process of the focalization at
five different time T= -4 s, -2 us, 0 us, 2 us and 4 us. Here, cortvawhat Quieffinet al.
[150] have obtained in water with a chaotic cavihe focal spot size is not decreased by the
use of IF technique. Indeed, in both experimenth WR and IF the same 2 mm focal spot
radius has been obtained, and is an estimate ofdtrelation length of the scattered wave
field as demonstrated by de Rostyal.[72].
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Fig. 4.25 Inverse Filter (IF) recompression experiment. 28) scan of the focalization points. (b) Spatial

distributions of focalized signal mandy axis directions at the time ¥ 0 ps.
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Fig. 4.26 Snapshots of the surface particle velocity arotire focal point at different time showing the IF

focalization process obtained with a “chaotic catiansducer”.
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Now, to demonstrate the ability of the “chaotizibatransducer” to focus even on the
border of the material sample, the TR focalizagaperiment has been performed once again
with the steel sample, but this time, the retrasBieg point has been chosen directly on the
border of the sample. A 2D map of the maximum atugé measured on a surface ok15
mm?2 around the selected focal point (Fig. 4.27éa)l the spatial distribution of focalized
signal in two perpendicular directions (Fig. 4.9y @emonstrates the high quality of the retro-
focusing, with a spot size of 2 mm radius. Remhst,talso in this case, there is no increase of
the strain at the stress free boundary (upper ynon Fig. 4.27(a)) contrary to the case
when a PZT ceramic is directly glued on the revetieg sample. The focalization process is
displayed on Fig. 4.28 at the same five times abenpreceding experiments. As before, the
wave comes from all around the focus point. Allstheesults demonstrate that it is possible to
get a high quality focalization also on stress fieandaries of multi-reverberant samples with
a “chaotic cavity transducer”.

[y

— Y direction

5 - X direction

(@)
-3 0 5

o
@

I
P

0

Y (mm)
Normalized Amplitude
o
ES

o
[N

o
Q-

X (mm) ® Distan((:)e (mm) °
Fig. 4.27Time Reversal (TR) recompression experiment witbcais point on the border of the sample. (a) 2D
scan of the focalization on the border, (b) spatistributions of focalized signal xandy axis directions at the

time T, = 0 ps.
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Fig. 4.28 Snapshots of the surface particle velocity arothl focal point at different time showing the TR

focalization process obtained with a “chaotic oatiinsducer” on the border of the steel sample.

4.3.3 Contrast of the Retro-Focalized Signal

One of the more important parameters of the “dhatvity transducers” is the “signal-
to-noise” contrast. As proposed by Quieféinal. [150], this contrast is the ratio between the
energy of the signal at the recompression time T and the energy of the signal at all the
others times. The equation of the contrast carxpeessed as follows

C= (s(t = 0))2 = | peak (4.14)
(S(t 7 O)) Icorr. noise

A physical interpretation of the contrast in terofsinformation grains has been given by
Derodeet al [56]. An impulse response can be viewed as arrecce of decorrelated
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information grains of duration equal to the initilse one. The peak of recompression
results in the coherent sum of the information gaand the surrounding noise on their
incoherent sum. In the case of reverberating cathigy information grains can be identified
with the vibration eigenmodes of the cavity. Thuatrast theory, for time reversal focusing
in a cavity, can be developed using these vibragigenmode formalism. Several physical
parameters should be taken into account in thimddism:

- The absorption time, of the material describing the damping of the ilspuesponse;

- The Heisenberg tim&,, of the cavity which could be viewed as the modatsity of
the cavity, that is to say the number of eigenmags frequency unit, and which
depends on the volume of the cavity;

- The emission signal duration of the time reversetlowAT ;

- The statistic of the distribution of the eigenmaoamplitudesa and the frequency
bandwidthAQ.

The result, obtained by Quieffin [151] in his Phi3s#rtation, can be written as:

T, .AQ.shcz(ATj

T

a

(@ >2 shcz(mj S sh{ZAT] -1 Tz(t) 0 z(—t).b(tJdt
() r ) ar " T aT r T,

(4.15)

a a —00

From this expressiothree asymptotic behaviors can be considered., Rirsen the
duration of the time reversed windaW is less than the Heisenberg tirig and the
attenuation time,, the contrast becomes proportional to the durdiima and to the frequency
bandwidthAQ:

C=4JmAQAT,  (whenAT <<T,,7,) (4.16)

In this case, the contrast linearly increases thighdurationAT .

In the second situation, the Heisenberg time &s lthan the duratioAT and the
attenuation time. In this case, the contrast besgmeportional to the Heisenberg tinig:

2
a,2
C=4/mAQT, % (whenT, <<7,,AT) (4.17)
a
The third situation corresponds to the case wtierattenuation time is shorter than both

the Heisenberg time and the duratidi . The contrast becomes then proportional to the
attenuation time:

C=4/mAQur,. (whenr, <<T,,,AT) (4.18)
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Fig. 4.29 shows an example of the “signal-to-rniocentrast, measured in the case of
the copper chaotic cavity glued on ax225x 1.0 cm rectangular steel sample, as a function of
the duratiomAT of the time reversed or inverse filtered signal.ifaprovement by a factor of
three can be observed using the IF technique. Meealb evolution of the contrast as a
function of the duration of the time reversed wiwdbT is in accordance with the theoretical
description. WheAT is less than the Heisenberg timgof the cavity (which is related to the
modal density of the cavity) and less than the attaristic attenuation tims, the contrast
linearly increases witlAT. When AT is increased and becomes larger tfAgnor z;, a
saturation of the contrast appears. As a mattéaaif as the vibration eigenmodes represent
the only frequencies present in the cavity, antdhasfrequency bandwidth is limited by the
transducer that is used, the number of vibratiggerenodes of the cavity is limited as well,
and consequently the contrast saturates.
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Fig. 4.29Contrast of the retro-focalised signal for Time Beal (TR) and Inverse Filter (IF) processes, shgwi

the improvement by a factor of three for the inedilier technique.

To understand which is the limiting factor betwé&énandz,, an estimate of both of
these time needs to be calculated. Unfortunatslyha chaotic cavity is glued on the sample,
the absorption is not the main cause of decreasleeoénergy inside the cavity. Indeed, we
want that a non negligible part of the energy pgapes in the sample. In this case, the
attenuation time, of the cavity dependsn the sample material. So, only an estimate of the
Heisenberg time is accessible. The “breaking tioreHeisenberg time, which corresponds to
the time needed in order to resolve neighbouringespis given by:

oN

T, =—
Hooof

, (4.19)

whereN, the cumulative eigenfrequency density in a cleacdivity, is well represented by a
Weyl type formula [65], [125], [202]:
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N(f):ﬂ(%+i3jf3+ﬁz—3(g/q)z +3(a/0)* 2
4 c((c/c)*-D

S

:4W(£+ijf3+lsf2' (4.20)

3 (¢ ¢ c?

S

whereV andS are the volume and surface of the cavity, @and are velocities of longitudinal
wave and transverse wave, respectively. This amotitime Ty is required to allow two
modes separated by an average level spacing tevacB60° phase difference. Moreover, it
has also been argued [125] that this tifpes the time at which a ray description must fail.
Eq. (4.20) can be written as a function of the vievgths:

(4.21)

477&/(1 1] B
3 + +

N(f)=—/| =+ |+—-.
A A
The number of modes increases, for a given freqyaheve increase the volume and the
surface of the cavity, and if we decrease the veagths.

So, in obtaining the results of Fig. 4.29, theeramation, mainly due to the radiation
losses of the sample, appears to be the limitiogpfalndeed, for the considered copper cavity,
with a volume of 2.8 cthand a surface of 6.22 cm?, the estimated Heisgrifree Ty is 10 ms,
which is 10 times larger than the duration of treasured reverberating signal. As a result, for
large values oAAT the contrast simply becomes proportionalto

4.4 Experiments on a Non-Reverberant Medium

The combination of traditional single channel TRi&h non-reverberant samples poses
serious problems for the technique as the sampiratadbe used as a chaotic cavity. In this
case, the use of the “chaotic cavity transducen’lmma good solution to extend the possibility
to focus in such sample with a one channel TRAesyst

Here, the same experiments as the one done ipréeeding subsection for multi-
reverberating steel sample will be repeated foman2 thick non-reverberant composite plate
of large dimension30x 20x 0.2cm), as shown on Fig. 4.30.

Piezoelectric
transduer

Fig. 4.30“Chaotic cavity transducer” used with a 2 mm thidn-reverberant composite plate.
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We have used ax2x12 cm chaotic cavity glued on the composite plake chaotic behavior
of the rectangular cavity used is induced by hefemsely made in it. The 2 cm width edge is
the emitting edge of the “chaotic cavity transdiicés in the preceding reverberant sample
experiments, a sweep of 100 us durationfapd 200 kHz andmax = 1.2 MHz combined with
an inverse filter technique enable the focalizatwbrelastic wave everywhere in the sample.
The 2D scan of the amplitude of wave field around thosen focal spot, on a square of
15x15 mm?2 with a spatial step of 0.30 mm, is plotted-ig.4.31. This figure demonstrates
that the “chaotic cavity transducer” works also mon-reverberating samples, even if the
focalization quality is not as good as in the aafseverberating sample. Here, as the sample is
highly attenuating in the frequency range used, 8@ to 1.2 MHz, the surface particle
velocity is quite small and difficult to measurelwihe laser vibrometer.

T
(=

Y (mm)

-5 0 5
X (mm)
Fig. 4.312D scan of maximum amplitude measured duringéte4focalization process with the cavitik 2X 12

cm on the non-reverberant composite plate.

As displayed on Fig. 4.32 the process of retr@fiaation in this case of non-
reverberating sample is different form the one ioleté previously with the reverberant sample.
Indeed, here, as already seen in the numericallaiions the wave does not come from all
around the focal point, but seems to propagate thancavity.

Tr=-2us Tr=0ps Tr=2ps

Fig. 4.32Snapshots of the surface particle velocity ateddifit time showing the process of the retro-foatitin
in the non-reverberant composite plate with%2X 12 cm cavity.
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In fact, the behavior of the “chaotic cavity transdr” is now similar to the one we would
obtain with a multi-elements transducer as showikrign 4.33. The width of the focalization
area depends on three parameters: the width ofchhetic cavityD in the direction of
focalization, the distance between the cavity dreddahosen point or focal distan€eand the
wavelengthA of the dominant transmitted mode. The resolutioougl be expressed by the
following equation:

Ar=4E (4.22)
D

Piezoelectric
transduer

Fig. 4.33Schematic explanation of the behavior of the “ticazavity transducer” in a non-reverberating sampl

This behavior of the “chaotic cavity transducer” gsnilar to the one obtained at the
Laboratoire Ondes et Acoustique (LOA) in Paris wiised for 3D imaging in water [149],
[129]. So, their idea of “synthetic time-reversdBchnique [149], [150], [151] can be
developed for non-reverberating solid samples, spetially plates, even if this will be more
difficult due to anisotropic and dispersive effectsuch media. This, will suppress the need to
measure, with a laser vibrometer, the particlecigiat all the imaged points, which is one of
the main limitations for the development of NDT kpgtions of “chaotic cavity transducer”.
This method consists in the creation of a largetapevirtual Phased Array using a “Chaotic
Cavity Transducer” to focus at any point in the paras shown on Fig. 4.34. The multiple-
scattered field is measured at several pointsont fof the solid cavity. These signals are then
time reversed or inverse filtered and added witlaydecalculated in order to generate a plane
(Fig. 4.34(a)) or focused (Fig. 4.34(b)) wave. Hin#ghe obtained signal is remitted by the
transducer. Up to now, promising preliminary resuttave been obtained in Kortrijk in
collaboration with Koen Van Den Abeele on the samomposite plate, showing the validity of
the “synthetic time-reversal” technique for focigsin plate.

(b)

>R (- +A1)

Fig. 4.34Principle of multi-elements imaging with a “chaotavity transducer” in a non-reverberating sample:
All the virtual point sources are excited (a) inapl and a plane wave is emitted, and (b) with pHatsys

calculated to focus the wave on a chosen position.
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To develop a complete imaging system, subsequeaging can be done using a similar
“Chaotic Cavity Transducer” as a receiver.

4.5 Nonlinear Acoustic Imaging with Chaotic CavityTransducer

The chaotic cavity transducer focusing processbeansed, in combination with NEWS
techniques such as the pulse inversion method [1@6Jobtain an image of localized
nonlinearity. Indeed, as shown on Fig. 4.35, bycessively focusing a pulse (in black) and
its inverse (in blue), and subsequently summingtweeresults, we can extract the nonlinear
response of the sample at the focal position. Reygethe same process for a 2D array of
points at the surface of a sample, an image baseatwnolinear information can be obtained.
Similarly, a scale subtraction or harmonic filtgrimethod to reveal the nonlinearjiy64],
and a 1-Bit process to increase the amplitudeefétro-focused signal even further, could be
used.

2 Measurement of the
retrofocused signal

1. Emission of a pulse

. \
(oralmeqﬁsweep, 4 Extract the non-

v“_ U: ® linear information

Piezoelectric
transducer

M_3‘ Same process with an
inverted pulse or sweep

Fig. 4.35Principle of TR-NEWS with a chaotic cavity transduc

4.5.1 TR-NEWS Experiment with Chaotic Cavity Transdicer

The NEWS based TRA technique was applied to auaticracked steel sample
(12x2.5x1.0 cm) as shown on Fig 4.36. The same “chaotigycaransducer” as the one
already used in the reverberant sample experimanbaen used here. Two sweeps, of 100 ps
duration andmin = 200 kHz andmax = 1.2 MHz, with inverted signs and an inverseefilt-bit
reversal have been used to focus at the same guositipulse and its inverse. Nonlinear
response of the sample at this position is theraetdd with a pulse inversion analysis. This
process has been repeated on a surface>dd #im2 around the crack position with a step, in
both dimensions, of 1 mm.
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Chaotic cavity tranducer

Crack Fatigued steel plate
@ : / /
= ﬁ i 1.2cm

| > /Z.SCm

<
< >

12.0cm
Fig. 4.36 Schematic of the fatigue steel sample and thedthaavity transducer” used for the TR-NEWS

imaging of a crack.

The resulting distribution of the analyzed nordingy, corresponding to the sum of the
normal particle velocity induced by the two focusederted pulses, is shown in Fig. 4.37. On
the displayed image, the crack clearly appears.miam nonlinear contribution of the crack
seems to come from its tip, thereby confirming risults of Ulrichet al. [185]. Moreover, as
in the linear cases of the previous sections, aease of the induced vibrations can be noticed
on a boundary of the sample, here on the upperos$itte 2D scan displayed on Fig. 4.37.

1.2
(a] Crack (b)
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Fig. 4.37Image of a crack at the surface of a steel sawipiained with a combination of TR-NEWS method

and “chaotic cavity transducer”.

In order to improve our understanding of the iatéipn between an elastic wave and a
crack, a prototype sample made by nanotechnolathnigues has been realized. The sample
is a silicon wafer on which four 100 um grooves basn cut by a Focused lon Beam (FIB), as
shown on Fig. 4.38. The widths of the four notctedp f;, are 50, 100, 200 and 300 nm,
respectively. Here, 50 nm is the smallest widthweee able to obtain by FIB.
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Chaotic cavity transducer

Fig. 4.38(a) Schematic of the wafer sample with four 100 lang grooves made by FIB. (b)-(d) FIB Images
showing (b) the tip, (c) the width (50 nm) and {{tg@ depth (200 nm) of the groove with the smallgdth (f,).

The same NEWS based TRA technique has been usdd,thd same “chaotic cavity
transducer” and sweep parameters, to image theseicated cracks”. Unfortunately, on all
the attempts realized, the grooves made by FIB) éwe one with the smallest width (50 nm),
have never been detected by TR-NEWS method. Thidtreend to demonstrate that a real
crack, at least for the used frequency range, 280 to 1.2 MHz, can not be simply
represented as clapping interfaces. Indeed, thditadgs of the displacement induced in the
wafer, and measured by the laser interferometere wbkvays less than 50 nm, the minimum
distance between the two borders of the notches.gBwvisaged improvement in the realization
of a prototype sample is to use the FIB not to nthke‘crack”, but to initiate it [121]. In this
case, a notch is made by FIB and, afterwards, ckcwath a perfectly controlled position, is
initiated at this notch by oscillatory loading.

4.5.2 NEWS-TR Experiment with Chaotic Cavity Transdicer

The NEWS-TR application is based on signal rebmiting on the defect position
when only the nonlinear components of the recesrgdal are time reversed [77], [79], [185],
as shown on Fig. 4.39. This method, describedHerfirst time by Bou Mataet al. [23] in
2005, has only been validated experimentally régdfh85]. In this experimental validation,
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the obtained results display ‘phantom’ images aonhes points of particle displacement
increase on the stress free boundary close tordiok position.

2. Reception of the 3. Extraction of the nonlinear 1. Emission of a pulse
transmitted signal part of the received signal (or a linear sweep)

by filtering or P methods m_
\ Defect
Piezoeﬁl;c/tr}b@ NL V4
transducer — *PZT

. . 5. Scan with a vibrometer to image
4. Reemission of the time g

. R the position of retro-focalization
reversed nonlinear signal . . .
of the reemitted nonlinear signal
Piezoelectric

Defect and scanned aera
transduce

. g PE— /
|

Fig. 4.39Principle of NEWS-TR for defect imaging in a naverberant sample.

A preliminary experiment on the possibility of mgia “chaotic cavity transducer” for
NEWS-TR method in a non-reverberant sample has beetucted. The experiment has been
made on the 3830 cm? composite plate with axbx6 cm cavity. Here, no nonlinear
treatment, as pulse inversion for example, has hesa. The experiment has only been
designed in order to validate the use of a “chamiaty transducer” as a receiver as explained
on Fig. 4.40. A %5 mm2 PZT ceramic, used as a source of smallisiexcited by a sweef (
= 100 pusfmin = 200 kHz,fmax = 600 kHz). The signal measured by the PZT of“ttaotic
cavity transducer” is then numerically processadif(eerse filter is applied), and re-emitted
by the same “chaotic cavity transducer”. Finallgxscan of the out of plane particle velocity
around the position of the initial source is mad#huhe laser interferometer. This last step is
realized after removing the 65 mm?2 PZT ceramic to enable a correct vibrometric
measurement.

2. Reception of the 1. Emission a sweep by a 3. Emission of time 4. Image the velocity around
transmitted signal 5x5 mm?2 PZT ceramic reversed signal U the source with vibrometer
\ Scanned area
in 15x15 mm?

Piezoedlzyr'p/@ J Piezoe]jlﬁe?r'e/@ | g
transduCer - transduCer A

30cm 30cm
[ [

30cm 30cm g

A

Fig. 4.40Principle of the preliminary experiment on the gb#ity of using a “chaotic cavity transducer” for
NEWS-TR method in a non-reverberant sample. Therxegnt has been made on the composite plate with a

1X5X6 cm cavity.
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Snapshots of the particle velocity on a surfacel®t 15 mm2 around the source position
showing the process of retro-focalization on theree position are displayed on Fig. 4.41. The
snapshot at time, 7= 0 us shown that the wave emitted by the “chacdiaty transducer”
focused simultaneously on the two borders of th& Baurce. This demonstrates that the main
contribution of the 85 mm?2 PZT source corresponds to plate modes exuytéd border.

Tr=-4ps Tr=-2ps

o, -#5,"';’,;7‘
SR
w0

(NN
IW'MI' %ﬂ W

Fig. 4.41Snapshots of the surface particle velocity aedéht time showing the process of the retro-foasitin

on the position where the smalk5 mm?2 PZT ceramic source was glued.

4.6 Conclusion

In this chapter, a numerical and experimental ysthds been performed in order to
demonstrate the possibility of linear and nonlinadrasonic imaging of defects in solids
offered by the “chaotic cavity transducer” concefss. an extension of the classical time
reversal process, three signal processing techsilgaee be studied in order to improve both
the signal to noise ratio (contrast) and the quadit the focalization: Chirped excitation,
Inverse Filter and 1 bit processing. Chirp-codeditakon instead of single-carrier short
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pulses is studied in order to transmit more en@gytime on the defect without increasing
the peak intensity of the excitation. Moreover, thg@erimental results show that the used
bandwith and so the signal to noise contrast iseamed with this sweep excitation. Using
inverse filter method in stead of time reversad thcusing process takes advantage of all the
eigenmodes of the cavity including those with thealest energy which are poorly exploited
in the time reversal focusing process. This greatigroves the time recompression and the
signal to noise contrast.

One of the major advantages of using chaotic iegvihat has been demonstrated both
numerically and experimentally is the eliminatidnpbantom images and boundary effects in
the retro-focalization process. Experimental resolbtained in a small reverberating steel
sample have demonstrated without doubt the abilfityhe “chaotic cavity transducers” to
focus even on the border of the material sample.

Experiments performed on a 2 mm thick non-reveniercomposite plate with
relatively large dimensions (3020x 0.2 cm) have demonstrated a second advantage of
chaotic cavities: their potential to focus enengyon-reverberating samples. In this case, the
sample does not contribute to the focusing procasd the focusing is achieved by
propagating wave that solely come from the directd the transducer and not from every
direction around the focal spot, contrary to wisadbtained in a reverberant sample.

We have also demonstrated that the “chaotic catrdapsducer” can be used, in
combination with the pulse inversion and 1-bit noely to obtain an image of localized
nonlinearity. The preliminary image of a crackla¢ surface of a steel sample shows that the
benefit of using a chaotic cavity transducer, imbmation of TR and NEWS techniques, is
clearly found in breaking any obvious or hidden eyetry of the problem, leading to an
unambiguous retro-focusing. Moreover, the main imealr contribution of the crack appears
to come from its tip, thereby confirming previougbublished results. This opens the
possibility for high resolution imaging of nonlinedefects.

A last opportunity offered by the “chaotic cavityansducer” which needs to be
explored is the use of embedded transducers wdbtchemission characteristics in order to
perform Structural Health Monitoring (SHM). Obvidysthe first step will be to find the
minimum impedance mismatch needed in order thanalpedded transducer has a sufficient
reverberant behaviour to conserve its chaotic ptEse
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CONCLUSION

In this thesis, a new NDT imaging method usingmlgination of NEWS and “chaotic
cavity transducer” techniques has been developddeaperimentally validated on a fatigued
steel plate. In order to support the developmenthsf damage localization method, it has
been vital to develop a reliable, efficient, anstfaumerical DG-FEM scheme with validated
material constitutive models able to capture apdaduce the propagation of nonlinear waves
in objects of finite geometry and in the presenfcaicro-damage.

In order to profoundly understand the nonlineaset properties of fatigued solids, 1D
simulations of nonlinear propagation of elastic ean heterogeneous media with different
kinds of nonlinearity have been numerically studi€kis study can help in the determination
of the predominant nonlinear mechanism in speekperiment. This was a first step in the
development of the proposed numerical tools anddtih cavity transducer” imaging system.

A nodal Discontinuous Galerkin Finite Element M&th(DG-FEM) scheme, which is
an intelligent combination of the FEM and FVM medkp has been presented. Different
numerical fluxes, as the central and Lax-Freiddickx, have been used. Open boundary,
surface-free boundary and fixed boundary conditibage also been discussed. The main
contributions of the present thesis to this nuna¢rgscheme was to extend it to nonlinear
elasto-dynamic including source terms, and to duoe the possibility to use quadrilateral
elements. Moreover a Perfectly Matched Layer (PMbe of absorbing boundary condition
well adapted to the DG-FEM scheme, called Nearlfdedy Matched Layer (NPML), was
also developed. Finally, a sub-domain implementatiwas developed to increase the
efficiency of the scheme when PML are used. It aiflo enable to easily implement, in the
future, multiphysics problems. The results of siatioins for isotropic Lamb’s problem and
elastic wave propagation in apatite, an anisotropgclium, have authorized a validation of
the DG-FEM scheme, by comparison to known anallysohutions. In the nonlinear case, as
only a few analytical results are available, a plarmve propagation has been considered. The
obtained results compare perfectly to previoushyligh numerical calculations and
approximate analytical solutions.

A new C-PML formulation based on the second-ordgstems describing wave
propagation in displacement and stress formulakimranisotropic elastic and piezoelectric
solids has been introduced. This formulation hasnbamplemented in the commercial
software COMSOL Multiphysics and in a home madecB&e. The results of simulation, in
anisotropic and piezoelectric solids, have confadmie C-PML excellent absorbing
efficiency for long time simulation, surface wavasd elongated domain of calculation.
Although not directly linked to the main objectivekthe Thesis, the second-order equation
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C-PML implementation has opened the opportunithegin fructuous collaborations both in
our laboratory and outside. For example, the gogrbeanent between simulations and
experimental results for the integrated Surface usto Wave (SAW) streaming system,
opened to us the opportunity to optimize this systeveloped by the Microfluidic group. A

numerical study of an integrated high frequencyyad 1 GHz) ultrasonic system for a
unique cell characterization has begun in collatimmawith the Ultrasons group. Finally, the

optimization for linear imaging application of ahaotic cavity transducer”, a concept we will
described in the last chapter, is undertaken aghktoen Van Den Abeele group.

In all presented implementations of C-PML suppletasy PDE are introduced to
actualize the C-PML variables. These PDE, as thayain spatial derivative terms, are
cumbersome and difficult to introduce in the depeld DG-FEM scheme, and especially
when a Godunov type flux is used. To overcome dhiisculty, Nearly Perfectly Matched
Layer (NPML) has been applied to the elastic warg@gating in an anisotropic medium.
The main advantages of this formulation are linkedhe fact that the obtained system of
equations is in exactly the same form as the algigstem, and so strongly hyperbolic, and
the introduced stretched fluxes are linked by Ol&she physical fluxes. This last point
reduces the burden and time of calculation. Morea@mparison of energy decay shows that
the NPML has the same absorbing ability of C-PML.

In the case of orthotropic material stability deshs have appeared, as in the first-order
velocity-stress implementation. Following the “MPRNimplementation, we have introduced
a mixture of C-PML and of sponge layer, with a colble ratio of these two kinds of
absorbing layers, in order to stabilize the C-PMIN®ML, and shown that this stabilized C-
PML is in fact no perfectly matched to the physidaimain. A stability analysis has been
made. It gives a physical interpretation of thebiity criteria previously obtained in the
literature by Meza-Fajardo and Papageor{i@6]: the slowness (or phase velocity) and the
group velocity of the wave incoming in the PML needbe of the same sign. For Lamb
waves simulations, this absorbing layer has beemwsho absorb “inverse modes” both in
non-piezoelectric and piezoelectric plates at tkgease to have, at least, a length of two
times the maximum wavelength of the waves existinghe plate in the frequency range
investigated. In this case the reflection inducgdhe C-PML was -80 dB smaller than the
incident energy.

Finally, an experimental and numerical study of thse of the concept of “chaotic
cavity transducer” to focalize in reverberant amh-neverberant solid media with only one
source has been made. Classical time reversaksefdter and 1 Bit time reversal process
have been discussed and compared. In order tonsenet energy into the detect media and
improve the contrast of signal to noise ratio, reedir sweep source signal has been used.
Using inverse filter method in place of time rewarst was shown that the focusing process
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takes advantage of all the eigenmodes of the cawityding those with the weakest energy
which are poorly exploited in the time reversalusiag process. This has greatly improved
the time recompression and the signal to noiserasintOne of the main advantages of using
chaotic cavities that has been demonstrated bothencally and experimentally is the
elimination of phantom images and boundary effaatsthe retro-focalization process.
Experimental results obtained in a small reverlmgasteel sample have demonstrated
without doubt the ability of the “chaotic cavityatrsducers” to focus even on the border of the
material sample. Experiments performed on a 2 muok thon-reverberant composite plate
with relatively large dimensions (820x0.2 cm) have demonstrated a second advantage of
chaotic cavities: their potential to focus enengyon-reverberating samples. In this case, the
sample does not contribute to the focusing procass the focusing is achieved by
propagating wave that solely come from the directd the transducer and not from every
direction around the focal spot, contrary to wisabbtained in a reverberant sample.

We have also demonstrated that the “chaotic catrdpsducer” can be used, in
combination with the pulse inversion and 1-bit noely to obtain an image of localized
nonlinearity. The preliminary image of a crackla surface of a steel sample shows that the
benefit of using a chaotic cavity transducer, imbmation of TR and NEWS techniques, is
clearly found in breaking any obvious or hidden eyetry of the problem, leading to an
unambiguous retro-focusing. Moreover, the main ime@alr contribution of the crack appears
to come from its tip, thereby confirming previougbublished results. This opens the
possibility for high resolution imaging of nonlirredefects. A last opportunity offered by the
“chaotic cavity transducer” which needs to be ergdiois the use of embedded transducers
with chaotic emission characteristics in order ®&rfgrm Structural Health Monitoring
(SHM). Obviously, the first step will be to findeghminimum impedance mismatch needed in
order that an embedded transducer has a sufficear@rberant behaviour to conserve its
chaotic properties. Numerical simulations should gegformed to support and optimise
further the development of the proposed nonlineaustic technique.

So, in conclusion, we can expect that this thissas first step to the advanced concept
for smart maintenance by employing existing NEWs8ht®logy in the development of
ultrasonic nonlinear imaging systems using “chacaieity transducer” for early stage damage
detection.
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APPENDIX A: ANALYTICAL SOLUTION FOR THE
PROPAGATION OF ELASTIC WAVES IN UNBOUNDED
ANISOTROPIC SOLID

In this appendix the analytical solution for theogagation of an elastic wave in
unbounded anisotropic solid derived by Carcienal.[34] is presented.

Defining the dimensionless variable
y=y/t,

with
=Vt andV, =,/Cs/p0, -

The solution for class IV transversely isotropictenal along the symmetry axyss

U, (y,t) =u,,(y,t) =0, (A1)
0 ostst,
Uy, (Y51) = gl(y) il (A2)
t <t<t,
Fz(y) t>t
with
_ 1|1 2B8(a-y*)-(y-(B+Dy?) —(V—(/J’+1)V2)+\/B%
E - | = _ , A3
) anﬂ 4D }{ ~2(a-y)a-v?) } A
1)1 /a—‘2 > |
F(Y) = 2an/ﬁ+ 1-y? }[(V—(ﬁﬂ)y )+2\/,3(0—y -y )] , (A4)
and
0 ostst,
Uyy(y,t)= OGl(y) tp<t<ts, (A5)
t <t<t,
Gz(y) t>t
with

o 1[1_20-9)-(y=(B+DV") | -(r-(B+)y*)+/D |?
Gl(y)'an 4/D }{ -2Aa-y)a-y*) | (A0)
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L_ 111 1-y° 2 e
G,(Y) = 2m{\/ﬁ+1/a—§2 }[(V—(ﬂﬂ)y )+2Bla-y)A-y)

, (A7)
where

ts :y/\/CGG/pO , = y/\/czz/po ) t1:ts/371’

(A8)
with
5, =5+ D~ 280+ 1)+ 2 (BE ap- @+ B (5. (A9)
The quantityD(Yy) is given by
D(Y) =(y=(B+Dy*)* -4B(a-y*)1-¥"). (A10)
The definition of @, § and y are given by
a=C,,/Cs, B=C,/Cs , ¥=1+aB-(C,/C,, +1)°. (A11)
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APPENDIX B: C-PML MEMORY VARIABLES
EVOLUTION EQUATIONS

For completeness all the evolution equations efititroduced memory variables of C-
PML in anisotropic and piezoelectric solids areroeipiced here.

C-PML for elastic waves in anisotropic solids:

"ai; 5% -pA, (B.1)
0B, ar
—Y=-g 12 B,, B.2
a o ey BB (®2)
oC 6r12

: -B.C,. (B.3)
ot
dD, ar
—Y=-5—2-8D,, B.4
P "oy B,D, (B.4)
oE au1

* - B.E,, (B.5)
ot
6F
== —5, %% a 2B F,, (B.6)
0G 6u2

* __IBXGX' (B7)
ot 0
M, -B,H, (B.8)
o % ay ' '

C-PML for piezoelectric solids:
A __ a711

2 “BA, (8.9)
Bi-g 6”3 ~BE,. (B.10)
ey, aa s_pC,, (B.11)
aa[i =g, 6733 -B.D,, (B.12)
- —@% ~BE.. (B.13)
aath = —52% -B,F,, (B.14)
2-5%-p,, (B.15)
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RESUME

Dans cette these nous proposons de développeisténsy d’'imagerie ultrasonore innovante de
micro- défauts basé sur I'utilisation conjointetdehniques d’acoustique non linéaire et du condept
“transducteur a cavité chaotique". Ce transductemrespond a la combinaison d’'une céramique
piézoélectrique collée sur une cavité de forme titpa@ et du principe de retournement temporel. La
faisabilité et les performances de ce nouveau ystoNt explorées par des simulations numériques.

Des parametres optimaux d’utilisation pour une ém@ntation expérimentale sont proposés.

Une grande partie des travaux menés dans le delreette thése se concentre sur le
développement d’outils numériques permettant I'@mglion de telles techniques d’imagerie. Un
schéma d’éléments finis de type Galerkin Discon{fBD) est étendu a I'elastodynamique non linéaire.
Un type de zone absorbante parfaitement adaptpeléap”Nearly Perfectly Matched Layer" (NPML)
a aussi été développé. Dans le cas de matériabwtapes comme des problemes de stabilité
apparaissent, un mélange de NPML et de zone attemudont on contrdle la proportion respective,
est introduit afin de stabiliser les NPML.

Une validation expérimentale du concept de "traosslr a cavité chaotique" pour la
focalisation dans un milieu solide, réverbérantnoun, en utilisant une seule source est réaliség. Le
méthodes de retournement temporel et de filtre rgevesont présentées et comparées. La
démonstration expérimentale qu’'un "transducteuait€ chaotique" peut étre utilisé conjointement
avec les méthodes d’inversion d'impulsion afin daliser une image de non linéarités localisées est
présentée.

SUMMARY

In this thesis we propose the development of aovative micro-damage imaging system based
on a combination of Nonlinear Elastic Wave Speciopy techniques and “chaotic cavity transducer”
concept. It consists of a combination of a PZT weeeglued to a cavity of chaotic shape with theetim
reversal principle. The feasibility and capabittief these new ideas is explored by numerical
simulations, and optimal operational parameterseimerimental implementation are suggested based
on the modelling support.

A large part of the research work conducted ia thesis is concentrated on the development of
numerical simulation tools to help the improvemehtsuch nonlinear imaging methods. A nodal
Discontinuous Galerkin Finite Element Method (DGMBEscheme is extended to nonlinear elasto-
dynamic including source terms. A Perfectly MatcHemlyer absorbing boundary condition well
adapted to the DG-FEM scheme, called Nearly Pdyfdtatched Layer (NPML), is also developed.
In the case of orthotropic material as stabilitghgems appear, a mixture of NPML and sponge layer,
with a controllable ratio of these two kinds of atiBng layers, is introduced.

The experimental validation of “chaoctic cavityrisalucer” to focalize in reverberant and non-
reverberant solid media with only one source is en&lassical time reversal, inverse filter and . Bi
time reversal process are discussed and compahedeXperimental demonstration of the use of a
“chaotic cavity transducer”, in combination withetlpulse inversion and 1-bit methods, to obtain an
image of localized nonlinearity is made. This opéms possibility for high resolution imaging of
nonlinear defects.



