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GENERAL INTRODUCTION 
 

 

 

Manufacturing systems are a class of discrete event systems whose elements are 

interacting together to build products or to perform services. In order to improve the 

adaptability to the market and the quality of manufactured products and to allow their fast 

evolution, the implementation of flexible manufacturing cells is necessary. However, a 

large initial cost for the production resources and for the system control design is 

required.  

In the eighties, the concept of flexible manufacturing systems FMS has been 

introduced to develop new systems of manufacturing production able to produce small or 

average series of products.  An FMS is a discrete event system (event-driven) that 

includes the notion of flexibility. It is a production system that consists of a set of 

machines connected together via an automatic transportation system. Machines and 

transportation components such as robots are controlled by numerical controllers or CNC. 

In all cases, additional computers or programmable logical controllers PLC are used to 

coordinate the resources of the system. 

Information and knowledge exchanges in FMS are controlled communications 

(with shorter messages but to be exchanged rapidly). The cell controllers or computers 

have a lot of functions and are used to control all the operations of an FMS. The control 

system manage most of the activities within an FMS like parts transportation, 

synchronising the connection between machine and transportation system, issuing 

commands to each machine... 
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Such systems are integrating the modern communication and control functions in 

all levels of the system. Networking is extensively applied in industrial applications (local 

industrial networks). These applications include production systems and more particularly 

manufacturing plants. The connection of the system components/elements through a 

network reduces the system complexity and the resources cost. Moreover, it allows 

sharing the data efficiently. LANs and Internet are the most appropriate and economical 

choices for many system-applications. However, networks performances affect the 

application services in terms of time-dependent and packet losses.  

Thus, the control [Bubnicki05] of such systems is very important. Nowadays, a 

controlled system [Fadali09] [Paraskevopoulos02] [Burns01] is the combination of 

sensors, controllers, actuators and other components/elements distributed around media 

of communication, working together according to the user requirements. It is used to 

manage, command, direct or regulate the behaviour of devices or systems. Combining 

networks and control systems together reduces the cost and complexity of distributed 

systems greatly. It facilitates also the maintenance of the systems.  

The resulting of this combination is referred to as the networked control system 

NCS [Zhang01] [FWang08]. NCS are one of the main focuses in the research and 

industrial applications. Networked control systems are entirely distributed and networked 

control system used to provide data transmission between devices and to provide resource 

sharing and coordinating management. These benefits have made many industrial 

companies to apply networking technologies to manufacturing systems applications. 

However, there is a need to model such systems to verify some properties such as 

deadlocks, liveness, boundness and other performance issues. But, the classical modeling 

paradigm is generally based on a centralized viewpoint. Indeed, this kind of modeling 

does not take into account the fact that the system will be distributed when implemented 

over different machines, sensors, actors, etc. So, the properties that are obtained by the 

design stage are not necessary guaranteed at the implementation stage 

Another issue in such models is that reconfiguration [Lejri08] process is not 

always considered. Today, the reconfiguration capability is a major problem to improve 
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the functioning of industrial processes. Indeed, a main objective is to adapt quickly the 

system changes and evaluations: such as the possibility to upgrade the systems or the 

modifications of the underlying network protocols. 

A third problem is that these models does not take into account the underlying 

network and protocols in terms of performance and information exchange. Networks 

affect directly the manufacturing system. The behavior and design of manufacturing 

systems are affected by the underlying networks: particularly performance, mobility, 

availability and quality of service characteristics. For example, the use of Ethernet will 

not give the same results if we used Giga Ethernet for the same system. 

One way to overcome such problems is to model these systems in a distributed 

way. A distributed system model offers means to describe precisely all interesting forms 

of inconsistency as they occur. It takes into account each part in the system, available 

resources, and system changes together with the underlying network. Once this model is 

made, its application and implementation are easier since it has the same characteristic as 

the desired system.  

In this context, we propose in this work the modeling of manufacturing systems 

and their underling network protocols in a distributed model in the form of a client /server 

distributed system, figure 1. This approach has been originally proposed at the OSSc team 

to model the manufacturing system with colored Petri nets.  

Nevertheless, these systems are complex: massive distribution, high dynamics, 

faults, and high heterogeneity. Therefore, it is very necessary to model these systems in a 

way that provides higher degree of confidence and rigorous solutions. One way to cope 

with this challenge is the use of the component-based methodology which is consistent 

with the principle of distributed systems in which components are reusable and 

composable units of code. The component-based approach uses hierarchical and modular 

means to design and analyze systems. It defines that the system model can be assembled 

from components working together and the designer needs only to identify the good 

components that offer suitable services with regard to applications requirements. This 
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methodology allows the reusability and genericity of the components which reduces the 

cost of the systems development. 

 

Figure 1, Client/Server Distributed System 

Many methods and formalisms are used to model such systems. However, these 

formalisms are only used to model one view of the distributed systems. The main issue 

here is the ability to model both communication networks and their details and the 

distributed services of applications executed over these networks. In this thesis we 

propose to model them with High-Level Petri Nets which is a powerful formalism able to 

model both views. This ability comes from the ability of Petri nets formalism for 

modeling concurrent and distributed systems. 

Figure 2 shows the composition of a distributed model. The higher level represents 

the services F1, F2 and F3offered by the different machines M1, M2 and M3 in the 

system. It represents any other resource on the system O1, O2 and O3 such as the robots 

4 
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or a transfer unit. The low level represents the workstations that control the service or the 

resource. The messages exchanged over the network are made between these machines. 

The medium block represents the kind/class of network used by the system. The model is 

basically based on generic components (workstations, services, resources…). This can 

facilitate the upgrade of the system easily; each component is modified separately, and 

the impact of changing the communication protocol can be evaluated easily. 

 

Figure 2, Component-Based Distributed Model 

Yet, the presented work is not limited to manufacturing systems. On the contrary, 

it is valid for any type of DES distributed and networked control systems where services 

and applications are executed over the network. In this work we focus on the modeling of 

manufacturing systems controlled over a local industrial network. But since the 

communication protocols and services are modeled as blocks, this allows adapting the 

method to any type of protocol and any distributed service such as data base systems or 

transportation systems. 
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SCIENTIFIC WORKING TEAM 

The research work presented in this thesis has been realized within the Optimisation et 

Supervision des Systèmes complexes OSSc team. The OSSc team is one of the 

Laboratoire d'Automatique, Génie Informatique et Signal LAGIS [LAGIS09] (a research 

unit of the Centre National de la Recherche Scientifique CNRS) teams, located at l’Ecole 

Centrale de Lille.  

The team is working on two main themes of research: 

1- Quality of service for discrete event systems: This work aims to build DES models 

in order to develop or adapt the services delivered by the system to the user 

requirements. Various viewpoints can be considered such as the diagnostic of the 

system status; the check of its properties or its performance. It involves several 

application areas: production systems, computer networks, embedded systems and 

transportation. The modeling is based on Petri Nets. This mathematical formalism 

and its multiple and semantic extensions are suitable for analyzing the properties 

of models and the study of their performances.  

2- The piloting and reconfiguration of production systems: The work aims to 

optimize production systems behaviour in the presence of disturbances, both in the 

short term (piloting) and medium term (reconfiguration). Concerning the piloting, 

the work aims to maintain the system around a determined operating point by 

compensating disturbances. The problem addressed is related to the size of the 

production system. The reconfiguration process is triggered when the operating 

point can no longer be maintained. In this case, the knowledge of a new 

architecture helps to synthesize a new control to fill all or a part of the original 

objectives. The current works are based on the analysis on the fly of the 

reachability graph of the Petri net model of the system. To avoid the problem of 

combinational explosion, they relay on the use of solvers. 

We believe that Petri nets can be used to unify previous approaches to develop a 

methodology for comprehensive and integrated design. 

6 
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THESIS OUTLINE 

The thesis is organized as it follows: 

Chapter 1 introduces first the distributed control systems approaches, their application 

and architectures. This section shows the different types of distributed architectures that 

can be used to implement a distributed system-model. However, this part will not be 

covered in this thesis. In the second part we introduce the different models proposed to 

model the manufacturing systems. We focus more particularly on the approach proposed 

by the OSSc team. This approach will be used in the case study of chapter 4. 

Chapter 2 is divided in two parts. The first part introduces the architecture of a 

communications system, communication networks and protocols models. The second part 

focuses on the different methods and techniques used to model the protocols and services. 

We mainly focus on the use of Petri nets and their advantages over other methods. 

Chapter 3 first part summarises the different component-based modeling techniques, 

particularly formal methods. In the second part, we will describe the used modeling 

formalism: High-Level Petri Nets. In the third part, we specify the modeling technique 

used for building the patterns and components for communication networks. Finally, we 

apply our methodology on two illustrative examples: Ethernet and 802.11b DCF. 

Chapter 4 will introduce the different models and methods used to evaluate the 

performance in communication and distributed systems. The second part will give the 

simulation results of the communication protocols models presented in chapter 3. The last 

part will combine the modeling of communication protocols and the manufacturing 

system presented in chapter 1. The impact on the system performances of using different 

communication protocols will be analyzed. 
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1. INTRODUCTION 

In our days, industrial and commercial systems are integrating the modern 

communication and control functions in all levels of the system. Networking is 

extensively applied in industrial applications. These applications include production 

systems and more particularly manufacturing systems. The connection of the system 

elements through a network reduces the system complexity and the assets cost. Moreover, 

it allows sharing the data efficiently. LANs and Internet are the most appropriate and 

economical choices for many system-applications. However, networks performances can 

affect the application services in terms of time-dependent and packet losses.  

In the literature, many methods are proposed to model manufacturing systems. 

Schematically, most of these approaches distinguish two stages: a design stage where one 

generally uses a formal test to define the functionalities of the control software, and 

implementation stage where this software is translated into code depending on the 

language of the target industrial computer. But, the complexity of industrial 

manufacturing systems implies to split the original control software on different 

computers connected by one or several networks. In this case, as the properties of the 

original control software were checked with a centralized viewpoint in the design stage, 

they can no more be guaranteed after the implementation. An alternative way to model 

such systems is to use distributed models at the design stage. This approach allows the 

consideration of communication protocols and network used to exchange the messages 

and information between the different parts of the systems to perform a service.  

In this chapter we will introduce the different applications that can be used to 

implement a distributed system (at the implementation stage). However, in this thesis, the 

implementation stage will not be covered. Only the classical client/server approach will 

be used in the design stage. The second part of the chapter introduces the different models 

proposed to model the manufacturing systems. We will mainly focus on the distributed 

model approach proposed by the LAGIS/OSSc team to model manufacturing systems. 

This approach will be used for the case study in chapter 4. 
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2. DISTRIBUTED SYSTEMS: ARCHITECTURE AND 

APPLICATIONS 

2.1 OVERVIEW 

Distributed systems [Coulouris01] [Tari01] use multiple workstations communicating to 

each other via a common network. The underlying networks have been developed to 

enable many distributed systems to exchange and share resources and services. In the 

literature, different definitions of distributed systems have been given: 

 A distributed system is a collection of independent computers that appears to its 

users as a single coherent system [Tanenbaum95]. 

 A distributed system is one in which components located at networked computers 

communicate and coordinate their actions only by passing messages [Coulouris01]. 

 A distributed system is an information-processing system that contains a number of 

independent computers that cooperate with one another over a communications 

network in order to achieve a specific objective [Puder06]. 

A distributed application executes over a distributed system. In a distributed 

system, many autonomous elements are distributed over different hosts. These 

components/elements may be used exclusively by a single host and do not need to be 

homogeneous. Theoretically, the primitives offered by the network allow the elements to 

interact with each other and to request and give access to their services. 

Distributed objects are units that are designed to work together. These units can be 

in multiple computers connected via a network or in several processes inside the same 

computer. An object-based distributed system denotes that the object-based model is 

well-suited for the distributed system. A distributed object architecture DOA consists of a 

collection of interacting objects. Each object consists of a set of data and a set of methods. 

An object has a set of attributes that represent the state of the object. Attributes 

that are not accessible from other objects are considered as private or hidden attributes. 

Private attributes are used to achieve data abstraction. Data stored in hidden attributes can 
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only be accessed and modified by operations. Changing the hidden attributes will not 

affect other objects. This is particularly important if objects are designed and maintained 

in a distributed setting. Objects may export a set of operations that make known the state 

of attributes or that allow modifying their values. Other objects may request execution of 

an exported operation. Each attribute has a name. A name is used to identify an attribute 

within the context of an object. Attributes also have a type. The type determines the 

domain of the attribute. 

Service-oriented architecture SOA [Baker05] is a way of developing distributed 

systems where the components/elements of these systems are stand-alone services, where 

these services can execute on distributed computers. Service-oriented systems support the 

reusability of existing implementations and the modification of their run-time behaviour 

based on the execution environment; in service-oriented engineering, systems can be 

constructed by composing independent services that encapsulate reusable functions. 

The service-oriented architecture has also changed the image of the web from the 

presentation of information to computational infrastructure to satisfy the clients’ needs. 

Web services cover all the aspects of service-oriented architecture. They are platform and 

implementation-language independent and commonly adopted on XML-based standard. 

2.2 COMMUNICATIONS IN DISTRIBUTED SYSTEMS 

Since there is no shared memory in the distributed systems, nearly all the communications 

between processes are based on message passing. When process A wants to communicate 

with process B it first builds a message in its own address space, then it executes a system 

call that causes the system to send it over the network to B.  

2.2.1 CLIENT/SERVER ARCHITECTURE  

In client/server architecture [Tanenbaum95], an application is modeled as a set of 

services offered by servers, a group of cooperating processes, to the clients, figure 1.1. 

The client/server architecture is often based on a simple connectionless request/reply 

protocol. The client sends a request message to the server asking for some service. The 
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server does the work and returns the data requested or an error code. The two-tier client-

server architecture is the simplest client/server architecture. They are in two forms: 

Thin/Slim Client Model and Fat/Thick Client model. 

 

Figure 1.1, Client/Server Architecture 

The discovery solution in the client/server architecture is simple. The server has a 

port and network address known by the client. The clients connect to the server on its 

listen port. Once the connection is established, the client and server can communicate 

with each other. The network protocols, for example IP, do the work of sending the 

packet from the client to the server and back. The system calls can be invoked through the 

library procedures: send and receive.  

Client/server architecture has some advantages: 

 The client/server architecture allows the division of applications into a client part and 

a server part. 

 In the client/server architecture, the resources are used effectively when a huge 

number of clients are accessing a high-performance server. 

 Another advantage of the client/server architecture is the possibility for concurrency. 

However, the client/server architecture has a disadvantage that it does not exploit the 

computing power of the client efficiently as it does with the server. 
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2.2.2 PEER-TO-PEER ARCHITECTURE 

Peer-to-peer P2P [Subramanian05] [Verma04] architecture is decentralized 

systems where computations can be performed by any host on the network. The term 

peer-to-peer refers to the concept that there are no distinctions between clients and 

servers in a network of peers using appropriate information and communication systems. 

In P2P applications, systems are designed to benefit from the computational power 

available through a huge network of computers. In difference with the client/server 

architecture, P2P networks gives scalability, lower cost, self-organized and decentralized 

coordination of limited resources. Middleware may be implemented with a peer-to-peer 

or a client/server approach.  

The P2P architecture has the following characteristics: 

1- Decentralization: No central coordinating authority is necessary to coordinate the 

hosts in network, the use of resources or the communication between the peers in 

the network (communications between peers are direct). 

2- Distributed resources and services sharing: Each host can have/offer both client 

and server functionality; providing and consuming services or resources.  

3- Autonomy: Each host can alone decide when and to what degree its resources are 

available to other hosts. 

 

 Figure 1.2, Peer-To-Peer Architecture 
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In P2P architecture, every host could be aware of every other host, could make 

connection to it and could exchange data with it. However, this is impossible, so hosts are 

organized into “localities” with some hosts acting as bridges to other host localities, 

figure 1.2. One solution is the use of semi-decentralized architecture where a server is 

used to help establishing connection between peers in the network or to coordinate the 

results of a computation. For example, the network hosts can communicate with the 

server to observe the other available hosts. Once they are discovered, direct connection 

can be established and the connection to the server is unnecessary. 

2.3 IMPLEMENTING DISTRIBUTED SERVICES AND APPLICATIONS 

To implement a service or application, different methods can be used 

2.3.1 REMOTE PROCEDURE CALL RPC 

Remote Procedure Call RPC [Srinivasan95a] was invented in the early 1980s by 

Sun Microsystems as part of their Open Network Computing ONC platform. It was 

included in Sun OS. Sun submitted RPCs as a standard to the X/Open consortium and it 

was adopted as part of the Distributed Computing Environment DCE. Remote procedure 

call systems are the origin of object-oriented middleware.  

 

Figure 1.3, RPC Based System 
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Figure 1.3 shows the role of client and server in RPC. The client and server stub 

procedures are generated by an interface compiler from the interface definition of the 

service. The idea in RPC is to hide the message passing, and make the communications 

look like an ordinary procedure call. RPCs are operations that can be invoked remotely 

across different hardware and operating system platforms. In some systems, distributed 

object requests are implemented by RPCs. The server components that execute RPCs are 

called RPC programs. Servers may be clients of other servers to allow chain of RPCs.  

2.3.2 REMOTE METHOD INVOCATION RMI 

Java [Sun09a] is an object-oriented programming language developed by Sun 

Microsystems. Remote Method Invocation RMI [Sun09b], or Java Application 

Programming Interface “Java API”, was introduced in the version 1.1 of the Java 

Development Kit JDK. Java RMI was considered essentially as an object-oriented Java 

RPC. It extends the Java object model to provide support for distributed objects in the 

Java language. 

 Java RMI allows the invocation of methods of Java objects located in a Java 

Virtual Machine “Java VM” (a self-contained Java operating environment that simulates 

a separate computer) by a remote Java VM by using the same syntax as for the local 

invocation. The semantics of parameters in Java RMI are not the same as the distributed 

object model integrated into Java because the invoker (an object making a remote 

invocation) and the target (the implementer of a remote object) are remote from one 

another. 
 

import java.rmi.*; 

import java.util.Vector; 

public interface Profile extends Remote { 

 int getVersion() throws RemoteException; 

 GraphicalObject getAllState() throws RemoteException; 

} 

Figure 1.4, Interface in Java RMI 
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Remote interfaces in Java RMI are defined by extending an interface provided in 

the java.rmi package called Remote. Figure 1.4 shows an example of a remote interface. 

The GraphicalObject is a class that holds the state of a graphical object. Sun is providing 

higher-level services on top of RMI. An example of these services are the Enterprise 

JavaBeans [Matena03] which aim to provide component-based development support for 

server components and adding higher-level services, such as persistence, security and 

transactions. 

2.3.3 DISTRIBUTED COMPONENT OBJECT MODEL DCOM 

Component Object Model COM [Rofail99] [Eddon99] is the Microsoft standard 

for creating software components. Microsoft has presented the first version of COM in 

1993. COM supports the reusability since it allows building applications and systems 

from binary components supplied by different software suppliers. COM is a specification 

for the construction of binary-compatible software components; it adopts the structure of 

C++ virtual function tables “vtables”. This means that COM is not a library of code, a 

programming language, or a compiler.  

COM is designed to allow the interaction of heterogeneous objects in terms of 

programming languages. These needs have been solved by the Object Linking and 

Embedding OLE technology based on dynamic libraries DLL. In the second version of 

OLE, a generic object model has been introduced for applications that run on the same 

workstation. In the structure of the second version of OLE model, nothing prevents that 

the applications can be distributed. Thus, the implementation of the new middleware 

named Microsoft Distributed COM “DCOM” [Microsoft96] is appeared. DCOM 

provides a distributed framework based on object-oriented model. Dynamic Data 

Exchange DDE was the first Microsoft object technology in the middle of 1980s, then it 

has changed to OLE and finally to DCOM.  

The DCOM/COM technology support three methods of servers’ implementation: 

DLL, local shared objects by locally running applications and remote objects. The 

DCOM/COM model defines a pattern of access based on interfaces, common to all three 
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types of servers. In this context, COM is the implementation that supports local 

communications, and DCOM offers support for access to remote servers.  

 

Figure 1.5, Client/Server in Microsoft® DCOM/COM 

Client/Server dialogue in DCOM/COM technology can be in three ways, figure 1.5: 

1- If the client and server belong to the same addressing space, COM loads the server 

code and gives the client a pointer offering direct access to the server.  

2- If the server does not belong to same client addressing space, but locally on the 

workstation, the dialogue is done through local method calls LRPC (Lightweight 

Remote Procedure Call). 

3- Finally, if the server belongs to a remote address space, DCOM uses object-

oriented RPC (ORPC). 

2.3.4 COMMON OBJECT REQUEST BROKER ARCHITECTURE CORBA 

Common Object Request Broker Architecture CORBA is specified by the Object 

Management Group OMG [OMG09a]. CORBA is based on the concept of the Object 

Request Broker ORB. The OMG is a consortium primarily composed of the research and 

software industry. It was created in 1989 to support the adoption of standards for the 

development of distributed object applications.  
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The first specification published by the OMG was the Object Management 

Architecture OMA [OMA09]. The OMA defines the object model used in all the OMG 

technologies that offers the objects interoperability through heterogeneous environments. 

CORBA is the second stage of the OMG specifications. In version 1.1, 1991, CORBA has 

defined the interface definition language IDL, (figure 1.6). In version 2 of CORBA, 1996, 

the OMG made the interoperability its priority by defining the Internet Inter-ORB 

Protocol IIOP. In addition to the interoperability, many services were added.  

 

Figure 1.6, IDL CORBA 

CORBA [Tari01] architecture is independent from the programming language 

used, the machine type and the operating system. CORBA is composed mainly of the 

ORB which is the heart of the CORBA architecture and the objects supported by the 

ORB. ORB assures the transport of requests on the network. It is responsible for 

intercepting methods invocations, locating the objects, carrying the invocations 

parameters through the network and transmitting any return values of the methods. 

CORBA specification has rise in several variants, such as a specification for the Wireless 

CORBA and a specification for the real-time called RT-CORBA. The CORBA 

Component Model CCM is the main novelty of the version 3 of CORBA. 
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2.3.5 WEB SERVICES 

The development of World Wide Web [W3C09] [Lerner02] has allowed client 

computers to access to remote servers outside their own organization. Web Services 

[Erl05] are basically any software infrastructure that provides a service accessed remotely 

via the web. They are considered as a collection of operations that can be used by a client 

over the Internet. Each web service is identified by a Uniform Resource Identifier URI 

[W3C01]. Web services are client/server model. However, they are capable to play 

different roles according to the surrounding context, so they are not absolutely a client or 

a server. Services can be distributed on the Internet. To communicate, they exchange 

messages, expressed in the Extensible Markup Language XML and distributed by using 

Internet transport protocol such as TCP and HTTP. A service defines its needs from 

another service by setting out its needs in a message and sending it to that service 

Data Encoding: XML Technology (XML, XDS, XST, XSLT …) 

Support: WS-Security, WS-Addressing, WS-Reliable … 

Process: WS-BPEL, BPML 

Service Definition/Finding: UDDI, WSDL 

Web Services Calling/Messaging: SOAP, RNIF ... 
 

Transport: HTTP, SMTP, FTP … 

Figure 1.7, Web Service Standards 

Although the definition of web services is large and flexible, in practice the major part of 

Web services is based on HTTP, SOAP, WSDL and UDDI  [Newcomer03] [Cer02]. Web 

service protocols cover all the aspects of SOA from the service information exchange 

(SOAP) to programming language standards (WS-BPEL: a standard for a workflow 

language that is used to define process programs involving several different services). 

These standards are based on XML (figure 1.7), which is a human-machine notation that 

allows the definition of structured data, where text is tagged with a meaning identifier.  
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3. MODELING MANUFACTURING SYSTEMS 

3.1 MODELING FMS WITH PETRI NETS 

Modeling the manufacturing systems is not new. Different modeling formalisms are used 

to model FMS. Petri nets and Automata theory are of the most used techniques to 

describe the DES. [Peterson81] has introduced Petri nets to model and analyze the 

manufacturing systems. Other works like [Ramadge87] has also proposed to model and 

analyze controllable events DES. Later, [Lin90] has introduced a decentralized control 

model. [Zamaï98] has presented a hierarchical and modular architecture for real-time 

control and monitoring of FMS. [Cho99] has proposed a centralized and decentralized 

control model.  However, the most new modeling approaches are diverting towards the 

distributed modeling for the manufacturing systems [Petin05] [DaSilveira02b]. 

In the previous section we have introduced the different methods that are used to 

implement the distributed system design. In this section we will introduce the new 

techniques to model the manufacturing systems with Petri nets and other formalisms. We 

will meanly focus on the distributed approach model proposed by LAGIS/OSSc team.  

3.1.1 PETRI NETS OVERVIEW 

Petri nets have been proposed by C. A. Petri in 1962 in his PhD thesis “Communications 

with Automata” [Petri66]. Petri nets [Merlin76] [Murata89]  are a mathematical and 

graphical tool used for modeling, formal analysis, and design of different systems like 

computer networks, process control plants, communication protocols, production systems, 

asynchronous, distributed, parallel, and stochastic systems; mainly discrete event systems.  

As a graphical tool, Petri nets provide a powerful communication medium 

between the user and the designer. Instead of using ambiguous textual description, 

mathematical notation difficult to understand or complex requirements, Petri nets can be 

represented graphically. The graphical representation makes also Petri nets intuitively 

very appealing. They are really easy to understand and grasp. This is due to the fact that 
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Petri net diagrams resemble many of the informal drawings which designers make while 

they construct and analyze a system. 

A Petri net graph [JWang07] contains two types of nodes: Places “p” and 

Transitions “t”. Graphically, places are represented by circles, while transitions are 

represented by bars or rectangles, figure 1.8. Places and transitions are directly connected 

by arcs from places to transitions and from transitions to places with. A place P0 is 

considered as an input place of a transition t if there is an arc from P0 to t. A place P1 is 

considered an output place of a transition t if there is an arc from t to P1. By default the 

weight of an arc is 1. However, an arc may be annotated with a positive number k called 

weight (or multiplicity).  This value can be seen as k-parallel arcs. Places can contain 

tokens represented by dots. These tokens are the marking of places. The initial marking of 

places is represented in the initial marking vector m0. The graphical presentation of Petri 

nets shows the static properties of the systems, but they also have a dynamic properties 

resulting from the marking of a Petri net. 

 

Figure 1.8, A simple Petri Net 

As a mathematical tool, a Petri net model can be described by a set of linear 

algebraic equations, linear matrix algebra, or other mathematical models reflecting the 

behaviour of the system. This allows performing a formal analysis of the model and a 

formal check of the properties related to the behaviour of the system: deadlock, 

concurrent operations, repetitive activities…  

3.1.2 WHY PETRI NETS? 

A Discrete Event System DES [Cassandras08] [Ramadge89] is a discrete-state, 

event-driven, dynamic system. The state evolution of DES depends completely on the 
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occurrence of asynchronous discrete events over time. Figure 1.9 shows the states jumps 

in a DES from one discrete value to another whenever an event occurs during the time. 

Nearly all the DESs are complex and require a high degree of correctness. Information 

systems, networking protocols, banking systems, and manufacturing and production 

systems are falling into this classification. 

 

Figure 1.9, Discrete Event System 

One way of dealing with these problems is to model discrete event systems with Petri nets 

since: 

1- Due to their flexibility and the formalism power, Petri nets can express 

concurrency, asynchronous and parallel actions, nondeterministic choice, 

synchronization, distribution, causality and most system properties. All these 

features raise the modeling power to various types of system behaviour at 

different abstraction levels and provide an excellent formal framework for 

modeling a variety of systems. 

2‐ The simple graphical presentation of Petri nets model: the ease to visualize the 

state-flow of a system and to see dependencies between the parts of a system. This 

simplifies modeling and understanding systems because of its declarative, logic-

based modeling principles. 
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3- The mathematical basis: Most of the computer systems developments are 

determined by formal mathematical methods. The main element is linear algebra; 

therefore many properties like net analysis and verification are possible by 

theoretical means. 

4- Petri nets are supported by a variety of extensions and tools. These tools support 

the simulation of the model.  The resulting provides an abstract view of systems 

behaviour. 

5- The Petri net model permits the simultaneous occurrence of multiple events, 

without increasing the model complexity.  

6- Many other methods and formalisms can often be transformed into Petri nets 

supporting them with a formal semantics. 

3.2 THE ARIZONA STATE UNIVERSITY/INTEL APPROACH 

The work of at the Arizona state university/Intel [Sarjoughian05] proposes a 

simulation modeling combined with decision control for semiconductor supply-chain 

manufacturing.  The importance of this proposition is the benefits for the analysis, design, 

and operation of supply-chain network systems. The work proposes a discrete-event 

system specification with four types of modules: inventory, factory, shipping link, and 

customer modules with a common interface specification for control/decision commands, 

figure 1.10.  

 

Figure 1.10, Structural Composition of Inventory and Factory Models 
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The control model is generally used for the control of highly stochastic processes 

where selection of control actions is desired. In this model, the current and historical 

measurements of a process are used to predict its behaviour for future time instances. 

Figure 1.11 shows a model predictive control. The simulated system sends its current 

outputs to a system prediction model.  The system prediction model then computes future 

outputs (i.e., controlled outputs) for some number of time steps.  

 

Figure 1.11, The Model Predictive Control 

To compose models regard the less distinct syntax and semantics for each module, 

figure 1.12, a knowledge interchange broker is used. This structural specification 

provides well-defined structural information translation from the manufacturing process 

network model to the model predictive control and vice versa. 
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Figure 1.12, Composition of Manufacturing Process Network and MPC via KIB 

This approach supports systematic specification of interactions between process 

dynamics and control decisions. The model composition is used to embedding model 

interactions inside the process and control models as is required when using 

interoperability in combination with model exchange. 

3.3 THE NHIT (TAIWAN) APPROACH 

The National Huwei Institute of Technology [Tsai05] has proposed web-based 

model (figure 1.13) for distributed manufacturing control systems with problems such as 

process routing, allocating resources and scheduling work-pieces. The manufacturing 

parts and resources were presented by agent-based approaches. The supervision of the 

system is done by a web-based cell controller. This work presents the new evaluation of 

modeling with web-based technology. This new technology can support collaboration 

between geographically distributed work centres and makes the implementation easier. 

Agents are composed of sub modules responsible for negotiation between agents, 

executing the different operations of the agents and recognising and analysing errors.  

Agents represent the machines and resources in the system. Agents communicate together 

through a local network or Internet. Coordination and negotiation protocols CNP were 
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used for the decision-making of resource allocation and message exchanging, based on 

TCP/IP protocol. Figure 1.14 shows the description of the contract net protocol using 

unified model language agent. 

 

Figure 1.13, The architecture of a web-based distributed manufacturing control system 

 

Figure 1.14, the CNP described by a unified model language agent 

This work shows a new architecture for a web-based distributed manufacturing control 

system for the design of co-operative mechanisms for better system performance. 
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3.4 THE CRAN APPROACH 

The recent work of CRAN [Gouyon04] has proposed a product-driven control, 

hierarchical architecture.  This work is based on the “agile manufacturing”.  The 

modeling technique is based on two models of the systems: a control model for the 

operative part elements (OPE) and a behavioral specifications model of the control part 

(OPE). The control model is decomposed in two points of view: production resources and 

products, figure 1.15. 

The production control of the product is composed of (i) a routing control sub-

process to the different resources and (ii) an operation sub-process of the performing 

resource coordinated by the product. While the resource control is composed of: (i) a 

control sub-process that receives and deals with the messages send by the product and 

sends to product its actual status after transformation and (ii) an operating sub-process 

that transforms the sent messages of the control sub-process to physical action over the 

product. The products, according to their needs, will ask for resources operations. 

 

Figure 1.15, Product-Resource Model [Gouyon04] 

The modeling is realized with finite-state automata to allow modeling a process 

resource controlled by the product. It models the behaviour of the resource seen by the 

product through exchanged messages between them (request/report).  
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This work puts the product at the center of the process automation. It ensures the 

interoperability between the control of the resources of the manufacturing system and the 

product control through its routing on the system. 

3.5 THE  LAG/G-SCOP APPROACH 

The work of LAG/G-SCOP [Henry05] [Mendez02] [Zamaï06] proposes a control, 

supervision, and monitoring module. [Henry05] has proposed a coordination model for 

the functional chain. The model is composed of two levels: coordination level to manage 

and coordinate the local control/communication and functional chain level that groups all 

the elements of the operative part, figure 1.16. 

 

Figure 1.16, The LAG/G-SCOP Approach  [Henry05] 

A decision module is applied on the approach CERBERE of [Mendez02]. This 

module is charged to take all the required decisions to generate or select a control module, 

a resumption module or an urgency module (figure 1.17), depending on criteria (quality 

and production) and constraints (security in the operative part). To execute the requested 

services from the different functional chains, control rules are used. The control model 

has a set of the orders (request a service, report the end of a service, information sent from 

the environment) that it executes to impose some evolutions over the operative part and 

the products. These evolutions, that answer a request, must satisfy a set of security 

constraints. 
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Figure 1.17, Decision analysis [Henry05] 

A research technique is also used in the control model that aims to find the 

shortest path to make a product (initial state to final state) [Zamaï06]. This technique is 

achieved by transforming the proposed model into a states representation containing the 

set of executable operations and the legal parallelism between these operations and the 

one in progress. This representation is modeled in automata and Petri nets. 

This works have two objectives, the first one is to propose a modeling formalism for the 

control part and the second is the elaboration of a technique for the control synthesis. 

3.6 THE LAAS APPROAH 

The objective of the work developed by LAAS is to propose a generic, “heterarchical” 

and distributed architecture model for the manufacturing systems [DaSilveira02a] 

[DaSilveira02b]. The proposed “heterarchical” architecture is based on no client/server 

architecture for the communication between entities, no external higher levels of control 

to coordinate processes and the addition or modification of existent entities without 

significant structural changes. The work proposes an acquisition/routing block that deal 

with control, supervision and monitoring of the system, figure 1.18. The work proposes 

also a systematic procedure for distributing a centralized model of supervision and control 

[DaSilveira02b].  
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Figure 1.18, A generic module for control, supervision and monitoring [DaSilveira02b] 

To distribute a centralized model, the model is divided into “sub-models”. Each 

sub-model represents a resource or a set of resources and the relations with other 

resources. Two different models are used. The control model represents all constraints 

associated to the transformation of raw parts to finished products. While the process 

model represents the physical and functional characteristics of the process. An entity or a 

module has a process sub-model and a control sub-model.  

To achieve this distribution, the centralized Petri net model of two processes is 

transformed and split up to two Petri nets sub-models. To maintain the data coherence 

after distribution, a communication protocol is used. The proposed technique for the 

communication protocol is to centralize the decision part in one module called centralized 

decider module to optimize time.  

The work presented concerns the quantification of the redundancy inserted by the 

distribution methodology by proposing a systematic procedure, from a centralized process 

model (specified by Petri nets), to obtain a distributed model with partial redundancy.  

However, the intra-module and inter-modules communications are not detailed but 

assumed to be client/server protocol. Also, the work did not give a solution for the 

complexity associated to the process distribution as well as the coherence between entity 

models. 
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3.7 THE LAB-STICC APPROACH 

The research works developed at Lab-STICC concerns the design of 

reconfigurable DES systems such as manufacturing systems or electronic systems. These 

works are structured around three main ideas [Berruet07]:  reconfiguration of complex 

systems, a top-down methodology associated with “pivot” description languages for the 

co-design of systems, and a bottom-up methodology based on a component approach to 

allow rapid prototyping and the reuse of the code. 

1- Reconfiguration of complex systems: 

The reconfiguration consists on organizing the system to react in two cases: in 

case of a new demand of the system and in case of a reaction to a failure. To implement 

the reconfiguration process, they propose two key ideas. First they propose different point 

of views to describe a system. A system can be described according with a physical point 

of view or a logical point of view. For example, the logical sequence is a logical view of 

the architecture of a system. A second way to describe a system is the distinction between 

the architecture of a system and the configuration. The architecture defines the 

potentialities of a system. Its configuration defines a specific way to exploit the system.  

The second key idea to implement this concept is to propose the introduction of a 

configuration task in the structure of the supervision function of the control system (figure 

1.19). This introduction seems to be suitable with the context of the exploitation of the 

system. In this case, the decision task can select a new configuration. The role of the 

configuration task is to define the mode of resources that participate to the production and 

to define the operation that can be held by the system in this configuration.  

A drawback of this proposition is to not consider the role of the maintenance 

function to define a configuration. For us at LAGIS, we consider that a configuration 

results of a negotiation between the maintenance function and the planning function 

because the engagement of a resource in a production depends also on the maintenance 

planning of this resource.  
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Figure 1.19, Proposed Control Architecture [Berruet07] 

2- A top-down methodology for the design of complex systems: 

One of the conclusions of the Lab-STICC is the complexity of these systems leads 

to decompose their control function in different tasks that are studied and implemented 

separately. The consequence is that they used different models of the system to be 

controlled without any guarantee of coherence and in consequence, without guarantee of 

interoperability of these tasks. To deal with this problem, the Lab-STICC proposes to use 

a description language to build a reference and principal model of the system. Then, all 

the other models required by the design methodology or the different tasks of the control 

can be derived from this basic models using techniques such as extraction to focus on 

specific aspects of the system or enrichment to take into account additional viewpoints 

(Figure 1.20).  
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In this context, they use techniques of model translations to automate the 

translation from one model to the other. In this context and also taking into account a 

principle like co-design that is well-known in electronics area, they propose a top down 

approach that allow developing incrementally the operative part and the control function 

of manufacturing systems. In this methodology, they propose different techniques do 

make static and dynamic analyses of a system. For example, using model translation 

technique, they can build a model that enable to evaluate the criticality of the functions of 

a plant. Another translations, allow to derived other models suitable with dynamical 

analyses by the means of simulation (joint simulation [Lallican07] and reflexive 

simulation [Berruet07]) 

 

Figure 1.20, Synthesis of the process of model the management proposed by the Lab-

STICC [Delamotte05] 

3- A bottom-up methodology based on a component approach: 

In an effort to reuse and accelerating the design stage of a production system, till 

several years the Lab-STICC is developing a methodology for generating the control 

command of the transport system of reconfigurable systems. This methodology is based 

on the concept of component. In this approach, a component is characterized by a set of 

operations and a set of views. Each point of view of a component is associated with a 
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model. The main views are the operative part, the graphical view, the constraint view, the 

control part view, monitoring/supervision view.  

It may be noted that most of these views correspond to tasks of the control 

command. Indeed, the idea is for each view, to get a global model from the models 

associated with its different components. The construction of the system model is made 

by a bottom up approach from basic components defined in a component library. The 

composition of components is done according to different levels defining other types of 

components: support component, effective contextual component, enriched basic 

component, and system component. A component system includes all components of the 

system. The nature of each component depends on the type of its operations (basic, 

contextual, contextual effective) [Lallican07] and its position in the hierarchy of 

components. 

A major feature of this approach is the constraint view. It enables the designer to 

express constraints that must be checked during the integration of the component in a 

given system. The current constraints are taken into account functional and operational 

features, and also safety. One can think that in future they will integrate all requirements 

including also aspects of reliability and performance. These constraints allow linking the 

functional capacities of component with its state. So, they are taken into account for the 

generation of the model corresponding to any of previous views.  

This approach has been developed and supported by software for the generation of 

control function of DES transport system. Compared with the top-down approach, it 

assumes that the designer already has the plan instrumentation diagram of the plant. 

Consequently, it is limited to the generation of control models for system transitique. 

This approach seems to have also inspired other works such as the automation of 

the life environment of persons with reduced mobility [Belabbas07]. In these works, we 

find the concept of the component from the perspective of a black box with input and 

output interface that allow a rapid building of a control by aggregation of components 

(Figure 1.21). We will see in chapter III that the approach we propose is close to the main 
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general principle of this work. However, the Lab-STICC approach does not take into 

account underlying communication protocols. 

 

Figure 1.21, PN intellectual properties proposed by the Lab-STICC [Belabas07] 

3.8 THE LAGIS/OSSC APPROACH 

The LAGIS laboratory develops a consistent, progressive and complete design 

approach of FMS. This approach is implemented by modeling controllers’ components in 

Petri nets formalisms and in a client/server distributed architecture [Huvenoit93] 

[Toguyeni06] [Bourdeaud_huy06]. The idea here is to implement each operating 

sequence as a PN model where each place represents the state of a product with regard to 

its sequence of machining operations and also its location in the plant.  

The approach distinguishes two categories of controllers [Toguyeni06]: operating 

sequence that controls the different operations applied to a product and Graph of 

Coordination of Complex Resource GCCR that controls the operations applied to a 
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complex resource (a resource with several machining areas connected by transport 

resources). The aim of this decoupling is to reduce the complexity when designing the 

control of complex systems, figure 1.22: 

1- Process sequences: They describe the different operations to apply to raw parts to 

obtain a finished product. The Extended Operative Sequence describes the 

different ways to obtain a finished product from raw parts using the available 

machines of a plant. 

2- Resource Sharing: The resource sharing implies that resources are allocated to the 

requestors. Resources can be simple (mono service), or complex (multiple 

services). 

 

Figure 1.22, LAGIS Control System Architecture 

To illustrate the approach, we consider the example of figure 1.23. This workshop 

is made of three machining machines M1, M2 and M3. The arrows in this figure represent 

the reachability capacity of each robot R1 to R4. R4 performs transfer operations from 

FIFO IN (a buffer that permits the entry of parts in the plant) to Z1, and from Z1 to FIFO 

OUT. Z1 to Z4 are to transfer a part from a resource to another one. IS1 to IS6 are 

intermediary stock within the conveyor. For more information, please refer to 

[Toguyeni06]. 
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Figure 1.23, An Illustrative example of Manufacturing Plant with Flexibilities [Berruet98] 

To model the system, colored Petri nets are used:  

1- Extended Operating sequences: A resource operation is requested through a pair 

of Request/Acknowledge places, figure 1.24. The doublet <op, id> represents the 

type of operation to apply to a product and the identification of each product. The 

request place enables an asynchronous coordination with the CPN controller of the 

resource. 

 

Figure 1.24, Coordination between an operating sequence and a GCCR. 

2- Resource allocation: In flexible manufacturing plant, it is necessary to solve 

allocation problems. So, an allocator is needed corresponding to each resource. 
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The allocator can be modeled by CPN (or by other formalism), figure 1.25. The 

client/server technique permits the communicating between operating sequences 

with these allocators. The approach is also characterized by the use of pre-

allocation notion which is useful to increase the performance of the FMS by 

enabling objects’ transfer in masked time.  

 

Figure 1.25, Resource Allocation based on Client/Server Technique 

3- Graph of coordination of Complex Resources: The transport resources represent 

the direct access for a transfer between two physical areas: requestor and 

destination. The requestor sends a request to start the transfer. When the transfer 

finishes, the requestor area receives an end acknowledgment. However, a transfer 

cannot be done without the acceptance of the destination area (a free place at that 

area). 

Figure 1.26 shows an example of extended operating sequence. In the figure a 

product is performed on machine M2. The pre-allocation/allocation of resource is 

requested at each state. The “–” sign means the product before machining, and the “+” 

means the product is finished. 
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Figure 1.26, Extended Operating Sequence to perform service f2 on machine M2 

Figure 1.27 shows the transfer process between two physical areas P1 and P2 by a 

robot R. At the beginning the product arrives to the source area, P1. The source area sends 

a request to the transfer component (robot) to transfer the product to the destination area, 

P2. However, a free place in the destination area must be available to perform this 

transfer. If this is the case, the robot takes the product from the source area releasing up a 

free place in P1. The robot then puts the product on the destination area ending the 

transfer process. 

 

Figure 1.27, Transfer between two Areas [Bourey88] 
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Figure 1.28 shows the developed Petri net. Each area has four interfaces modeled 

represented as places: 

1- Place “CONS” models the number of free places in the destination area.  

2- Place “PROD” models the parts that are waiting in the source area.  

3- Place “REQ” models a request of evacuation of the current part.  

4- Finally, place “ACK” models a response of the process to confirm that the part is 

out of the area.  

The figures also shows the messages exchanged between the two physical areas and the 

robot, represented by P1 P2 sub net. 

 

Figure 1.28, Developed Petri Net of Figure 2.25 
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4. CONCLUSION 

In this chapter we have introduced different proposed approaches to model 

manufacturing system. The proposed models show the systems at the design stage where 

none of these models focused on the implementation stage.  In addition, these models do 

not take into account the underlying network during the design stage. However, different 

to the universities laboratories’ approaches (as the work in this thesis), the industrial 

companies are more and more interested in presenting the implementation of these 

models with web services, CORBA, RMI or DCOM where the code can be distributed 

over several computers [SOCRADES09] [Tsai05] [Schoop00].  

In this chapter, we have introduced the different techniques that can be used to 

build the design stage model in a distributed form. However, in the rest of this thesis for 

the design stage, we will focus on the classical client/server approach for the modeling of 

manufacturing systems. The implementation stage approaches presented in the first 

section of this chapter will not be treated in the rest of this work. In the next chapters we 

will focus on the modeling of communication protocols and the implementation of the 

LAGIS/OSSc approach in a client/server distributed model, chapter 4. We will also 

evaluate the impact of the underlying network on the system, chapter 3 and 4. 

In the next chapter, we will mainly focus on the modeling of the communication 

protocols underlying the manufacturing systems. Many formalisms are proposed such as 

UML, Timed Automata, and Petri Nets. Petri nets formalism is a powerful methodology 

for modeling manufacturing systems since it mainly allows the modeling of concurrent, 

distributed and parallel systems. This formalism has an outstanding mathematical basis as 

well as its graphical interface that allows easily the designer to study the behaviour of the 

model.  
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1. INTRODUCTION 

The modern advances in hardware technologies has played a big role in the rapid 

development of communication networks and distributed control systems. Distributed 

systems use networks for communication. Communication networks are generally built 

from various transmission media including wire cables, fiber and wireless channels, 

hardware devices including routers, switches, bridges, hubs, repeaters, and network 

interfaces and software components including protocol stacks, communication handlers 

and drivers.  

The collection of hardware and software components provides communication 

facilities for distributed systems. This collection forms the communication subsystem. 

The computer and other devices are referred to as hosts. A node is referred to any 

computer or network device attached to a network. The cooperation between 

communicating devices is governed by a set of rules called a protocol. Protocols form a 

major aspect for distributed systems design. A familiar example of distributed systems is 

Internet and its services.  

To evaluate protocols, modeling and simulation approaches and tools can be used 

and executed on computer. Different formalisms are used to model distributed services or 

communication systems (UML, Timed Automata, SDL, Petri Nets ...). However, Petri nets 

are one of the most appealing and used methods for modeling distributed systems. Petri 

nets were used initially to study the interconnection properties of concurrent and parallel 

activities. Thus, it is not surprising that we use them to model both protocols and 

distributed services. 

The underlying network of a manufacturing system is the industrial local network. So, 

we will mainly focus on this type of networks and mainly the LAN MAC sublayer 

protocols. In this chapter we will introduce the architecture of a communications system, 

communication networks and protocols models. In the second part, we focus on the 

different methods and techniques used to model protocols and services. We mainly focus 

on the use of Petri nets and their advantages over the other methods. 
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2. COMMUNICATION SYSTEMS ARCHITECTURE 

2.1 COMMUNICATION SYSTEMS OVERVIEW 

Communication systems [Gebali08] [Proakis02] are designed to send messages or 

information from a source that generates the messages to one or more destinations. In 

general, a communication system can be represented by the functional block diagram 

shown in figure 2.1. The original telecommunication system was developed for voice 

communications. Today communication networks include all types of voice, video and 

data communication over copper wire, optical fibers or wireless medium. 

 

Figure 2.1, Functional Diagram of Communication System 

With Internet, increasingly numbers of computer networks are now connected via 

the Internet. The concept of telecommunication system has increased the complexity 

significantly. These systems can be divided into different types based on their 

requirements: 

 Point-to-point Communication: In this type, communication takes place between 

two end points.  

 Point-to-multipoint Communication: In this type of communication, there is one 

sender and multiple recipients. 

 Broadcasting: In a broadcasting system, there is a central location from which 

information is sent to many recipients, as in the case of audio or video 
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broadcasting. In a broadcasting system, the listeners are passive, and there is no 

reverse communication path. 

 Simplex Communication: In simplex communication, communication is possible 

only in one direction. There is one sender and one receiver; the sender and 

receiver cannot change their roles. 

 Half-duplex Communication: Half-duplex communication is possible in both 

directions between two computers or persons, but one at a time. These types of 

systems require limited channel bandwidth, so they are low cost systems. 

 Full-duplex Communication: In a full-duplex communication system, the two 

parties can communicate simultaneously, as in a telephone system. The ability of 

the communication system to transport data in both directions defines the system 

as full-duplex.  

2.2 NETWORK LAYERING ARCHITECTURE 

Networks [Peterson03] [Mir07] [Stallings07] are organized into a hierarchy of 

layers where each layer has a well defined function and operates under specific protocols. 

The number of layers can vary from one network reference model to another but the goal 

of a layered structure remains common to all models, (figure 2.2). OSI model 

[Zimmermann80] is structured in a series of 7 layers, while the TCP/IP model includes 

only four layers. Each layer consists of hardware or software elements and provides a 

service to the layer immediately above it. 

OSI is a general model which is therefore applied to many kinds of networks. 

Each layer of a host will “talk” to the layer of the same level of the recipient host, (figure 

2.3). The set of rules that makes two layers of the same level can communicate is called 

protocol.  

However, the dialogue between two layers of level n is not direct from one layer 

to another layer. Instead, each layer of network communicates by local procedure calls 

with the layers above and below it. The sending layer (or layer n) transfers the 

information to the layer immediately below it (layer n-1).  Layer n-1 transfers the 
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information in its turn to the under layer until reaching the physical medium. The message 

is then transmitted in bits. It then goes upward the same layers of the recipient until it 

reaches layer n.  

 

Figure 2.2, OSI and TCP/IP Reference Models 

At the transmission, each layer adds a header in the message and sometimes a 

tailor to check transmissions’ errors. This feature will provide necessary information for 

the same layer of the recipient. This information may relate to the size of the message, its 

time-to-live and the source and destination addresses. At the reception, each layer reads 

the header reserved for it, processes the information, disguards this header and then 

transmits the message to the upper layer. All these operations are of course transparent to 

the user. Moreover, if the transport layer has limitations on a messages size with respect 

to the layer immediately above it (for example the network layer over the transport layer), 

this message will be fragmented, and then sent as several independent packets. Layering 

provides some important features: 

 Layering provides a more modular design. New service can be added easily only 

by modifying the functionality at one layer, and at all the other layers just reusing 

the functions provided by them. 
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 Networks are decomposed into more manageable layers, instead of implementing 

it in one layer that does everything. 

 

Figure 2.3, Network Layering 

2.3 PACKETS ENCAPSULATION MECHANISM 

Each layer uses Protocol Data Units (PDUs) to communicate and exchange 

information. The data transmitted from one host to another host should go down all the 

layers. Each layer adds a header (PDU attaches to the data) and the data are enclosed with 

protocol information. The data changes name at each level. From TCP/IP architecture 

viewpoint, the different names are 

 Data message at the application layer. 

 The message is then encapsulated in a segment in the transport layer.  

 Once the segment encapsulated in the Internet protocol layer, it is named 

datagram or packet.  

 It changes to frame at the network access layer. 

 Finally, the physical layer encodes these digits into a digital signal. 
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Figure 2.4, Data Encapsulation in TCP/IP architecture 

When the PDU in layer n is passed down to layer n-1, it becomes data in layer n-1. 

The layer n PDU is now referred to layer n-1 as its service data unit SDU. Layer n-1 

transports this SDU by placing it into its own PDU envelop. This process is called 

encapsulation [Dulaney09], (figure 2.4). 

2.4 PROTOCOLS AND INTERFACES 

Computer networks use well defined protocols to communicate. A protocol 

[Lammle08] is defined as a set of rules and formats controlling communications between 

processes at the same layer and agreed by all of the communication participants. 

Protocols’ rules specify the sender, the receiver and the message sent by the sender. Each 

participant plays a certain role. An application on a host wishing to transmit a message to 

another host may issue a call to a transport protocol. It passes it a message in the specified 

format. Each protocol is designed to achieve a certain goal. The goal can be expressed by 

one or more properties the execution of the protocol should satisfy. Properties are 

generally dependent on the environment in which the protocol is deployed. The definition 

of a protocol has two important parts to it [Jia05]: 
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1- A specification of the format of the data in the message, 

2- A specification of the sequence of messages that must be exchanged. 

As an example, the TCP header has a fixed length of 20 bytes, (figure 2.5). It may 

be followed by options. Each header field has its own information. For example, the fields 

source and destination port number identify the ends of the connection. The sequence 

number field specifies the sequence number of the sent data (within a TCP stream, each 

byte of data is numbered). The length of the options field is variable. 

 

Figure 2.5, TCP Header 

In TCP protocol, the flags field has in important role in the connection and 

transmission processes. A TCP connection is opened with the 3-way handshake that 

creates and negotiates the data connection, figure 2.6. At first, a synchronization packet 

(SYN flag is set to 1) is sent from the transmitter side to open a new connection, with a 

sequence number equals to m (initial sequence number of the transmitter). The recipient 

side receives this packet and sends again a synchronization acknowledgment where the 

SYN and ACK flags are set to 1. When the transmitter receives the recipient 

acknowledgement packet, it sends an acknowledgement packet to receiver but this time 

with ACK is set to 1 and SYN is set to zero indicating that the packet is monger a 

synchronization packet with m+1 sequence number. Once these messages are exchanged, 
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the transmitter can send its data to the recipient workstation. However, to end a 

connection, the transmitter sets the FIN flag to 1 indicating the end of transmission. 

 

Figure 2.6, TCP connection 

 

Figure 2.7, TCP/IP Protocol Suite 
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Protocols are basically a way to ensure that hosts are able to communicate with 

each other successfully. Protocols working together to guarantee effective communication 

are grouped into what is known as a protocol suite or protocol stack. A protocol suite, 

also called a protocol family, is the collection of protocols from many layers that forms 

the base of a useful network. The TCP/IP protocol suite [Kozierok05] or DARPA Internet 

Protocol suite [RFC1180], figure 2.7, is an example. 

 

Figure 2.8, IEEE norms for LAN networks 

The Media Access Control MAC [IEEE802] is a LAN sub-layer of the Data Link 

layer specified in the OSI model (layer 2), figure 2.8. It offers hardware addressing and 

channel access control mechanisms that facilitate for different networks hosts to 

communicate on a shared medium. Different MAC protocols are used for different shared 

networks. Common MAC layer standards are the Carrier Sense Multiple Access/Collision 

Detection CSMA/CD architecture [IEEE02] used in Ethernet (Token Ring uses token 

passing method, FDDI uses a dual-attached, counter-rotating token ring topology). 

Medium Access Controller implements the MAC protocols.  

The common MAC Layer standard for wireless networks is IEEE 802.11 standard 

[IEEE07] which offers many functions that support the operation of 802.11-based 
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WLANs. The Carrier Sense Multiple Access/Collision Avoidance CSMA/CA [Brenner97] 

is MAC layer standard used by the 802.11 family. The MAC layer maintains and 

manages communications between wireless workstations by coordinating access to the 

shared channel and using protocols that improve communications over the wireless 

medium.  

Since network architecture is based on layering, adjacent layers in the layer stack 

communicate vertically between them. This mechanism is called an interface. An 

interface between layers is the process by which data is passed from layer n+1 to layer n 

or conversely [Kozierok05]. In other words, a higher layer is allowed to use the services 

of the lower layers without necessitating knowledge of the implementation of these 

layers. This interface is the only way for layer n+1 to access the lower layer n and is 

called the layer n protocol service access point n-SAP. 

Moreover, one of the results of encapsulation is the need for an interface. This 

interface separates the outer view from the inner one. It encapsulates activities and hides a 

lot of the underlying implementation details. The outer view provides information about 

the functionality of representation. The inner view reveals the implementation details. The 

interface decreases the dependencies between representations. Implementations can be 

changed only if the outwardly visible functionality is preserved. 

The term interface is also used in other computer and networking domains, since 

its meaning refers to connecting several things together. For example, user interface 

handles the interactions between the program and the user. The component interfaces 

[Puder06] declare the services that a component offers and the parameters to be specified. 

They are used as an access point to the component functionality by other components. 

The mechanical and electrical interfaces such as RS232, RS449 and X.21 at the physical 

layer are also other examples. 

Other example is TCP/IP sockets, [Peterson03]. Sockets are the points where a 

local application process attaches to the network. The interface describes operations for 

creating a socket, attaching it to the network, sending/receiving messages through the 

socket, and closing it. 
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2.5 THE OSI REFERENCE MODEL 

The Open Systems Interconnection OSI [Zimmermann80] [ITUT94] architecture 

has been developed by the International Organization for Standardization (ISO) [ISO09] 

in 1977, to describe the operation and design of layered protocol architectures. This forms 

a valuable reference model and defines much of the language used in data 

communications. The OSI Reference Model is a hierarchical model, consisting of seven 

layers divided into two layer groups: 

 Upper Layers: Session, Presentation and Application Layers. 

This layers’ group defines how the end workstations applications can interact with 

the users, and communicate with each other (how applications running over the 

network can be implemented). 

 Lower Layers: Physical, Data Link, Network and Transport Layers. 

 This layers’ group defines how data is transmitted from end to end (formatting 

and transmitting data over the network). 

In the OSI model, each layer has some characteristics that define it, and also a variety of 

protocols associated with it. 

 The Physical Layer PHY: This layer is special since it represents the hardware 

and circuit that drive the network. It transmits data in sequences of bits by 

analogue signaling using amplitude or frequency modulation of electrical signals 

on cable circuits, light signals on fiber optic circuits, or other electromagnetic 

signals on radio and microwave circuits. In addition, it may detect errors by 

monitoring the quality of the received electrical or optical signals. RS485 and 

10Base-T are examples of two different physical links. 

 The Data Link Layer DLL: This layer is responsible for: 

a. Addressing since it provides access to media using the hardware address. 

b. Detecting and dealing with errors but it does not make any correction.  

The proposed protocol by ISO is HDLC (High Level Link Control). 
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 Network Layer: This layer defines how interconnected networks function. It is 

responsible also for providing logical addressing and packets routing (which 

routers to use to determine a path). The network layer performs the 

interconnection implementation of several nodes in a network. An example 

protocol of this level is X25 level 3. 

 Transport Layer: This layer is responsible for establishing connection between 

two hosts. Protocols in this layer are connection-oriented protocols for reliable 

delivery the TP4 protocol is comparable to Transmission Control Protocol TCP. In 

the connection-oriented mode, the transport layer is responsible for 

acknowledgments and retransmissions. 

 Session Layer: This layer maintains the separation of data for different 

applications. Its protocols concern the establishment of sessions between two or 

more users or distributed components.  

 Presentation Layer: This layer deals with special processes that must be done to 

data during the whole connection such as the encryption of data and data 

compression. It performs the representations of higher level objects. 

 Application Layer: This layer represents the user interface. At this layer users can 

use programs. As examples, two well-known protocols of application layer are 

FTAM for file transfer protocol or X400 for electronic mail.  In this layer 

protocols are made to satisfy the communication needs of a specific application 

such as the availability of resources for the intended communication. 

2.6 NETWORKS SIZES AND TYPES  

Computer networks [Mir07] [Stallings07] have grown rapidly. Networking is used 

in every aspect of life. In the 1970, the Internet was a research project. Today, the Internet 

has grown enormously and many users have high speed Internet access through cable 

modems, ADSL, or wireless technologies. In order to communicate between hosts in a 

network, a transmitter device must interface with the transmission system. However, there 

must be some forms of synchronization between transmitter and receiver to conform to 

the requirements of the transmission system.  
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2.6.1 WIRED LOCAL AREA NETWORKS LAN 

Local Area Network LAN [Tanenbaum03] is a network of small and medium size 

that covers a building or a company (within a limited geographical area up to a few 

kilometers), developed in the early 1980s. LANs are high-speed, low-error networks, 

except when message traffic is very high. Token ring, Ethernet, and FDDI are between 

the most popular LAN technologies. Ethernet is the dominant technology for wired 

LANs. It offered originally a bandwidth of 10 Mbps and after extended to 100 Mbps and 

10 Gbps. Ethernet IEEE 802.3, Token Bus MAP IEEE 802.4 and Token Ring IEEE 802.5 

are examples of wired LANs. LANs have three characteristics:  

1- Transmission Technology: twisted copper wire, coaxial cable, or fiber optics. 

2- Size: LANs are limited in size. However, this eases the management of networks. 

3- Topology: LANs use different topologies. Bus topology, Ring topology and Star 

topology, figure 2.9, are the most known and used topologies. Transmitter and 

receiver communicate over a shared medium. A transmission from any host is 

broadcast to and received by all other hosts. 

 

Figure 2.9, LAN Topologies 

LANs performance is suitable for the implementation of distributed systems and 

applications. More recently, examples of switched LANs have occurred. Switched-mode 

high-speed Ethernet has been developed to overcome the bandwidth and latency 

guarantees in original Ethernet. ATM LANs use simply an ATM network in a local area, in 

addition to fiber channel.  
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2.6.2 WIRELESS NETWORKS WLAN 

Wireless Local Area Networks WLANs [Sankar05] are local area networks that 

connect computers and devices to each other and also to the wired network. Connection in 

WLAN is without wires, using radio frequencies or light where signals propagate through 

space. This gives freedom in movement and the facility to extend applications to different 

parts of a building, city, or anywhere in the space. However, the limits of most wireless 

technologies usually make WLANs able to connect devices that are very close to each 

other (within a few hundred of meters at most). 

 

Figure 2.10, Wireless Network Modes 

The basic topologies in wireless LANs is shown in figure 2.10. In infrastructure 

mode, access points, wireless switch/hub, are used as an interface between the wired and 

the wireless LANs. In this mode, all wireless users transmit to an access point to 

communicate with other users on the wireless or wired LAN. In Ad hoc mode, each user 

in the wireless network communicates directly with others users, without a backbone 

network. WLAN performance enables higher-end applications to run easily. With data 

rates of up to 54 Mbps, a WLAN can satisfy any office or home network application. 

IEEE 802.11 is a WLAN standard which most systems implement and which is becoming 

very widespread. 
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2.6.3 WIDE AREA NETWORKS WAN 

Wide Area Networks WANs [Tanenbaum03] are used to connect devices or 

networks over a large geographical area. WANs carry messages at lower speeds between 

nodes. The communication medium is a set of interconnected switching nodes/circuits 

linking a set of switching elements which form what is called a subnet. Switching 

elements or routers, connecting two or more transmission lines, are specialized computers 

that manage communication and route messages or packets to their destination. Routers 

are not concerned with the content of the data. Transmission lines are the channels that 

carry information (bits) from one workstation to another. Transmission lines can be made 

of copper wire, optical fiber, or radio links. In general, the WAN contains numerous 

transmission lines, each one connecting a pair of equipments. However, it may happen 

that the network shared resources are saturated which is called data congestion. To 

overcome this problem, several algorithms for congestion avoidance exist and are 

implemented at the transmitters and receivers level. 

The largest existing network is the Internet. Internet covers the entire planet. It 

owns its name from the fact that it was the result of connecting multiple heterogeneous 

networks. It is a network of networks. There is a hierarchy in the Internet infrastructure. 

At the highest level, the backbones which are composed of fast routers and 

ccommunication lines at high data rates. At the medium level, the regional and national 

networks. Finally, at the lowest level, the LAN. WANs may be implemented using one of 

these technologies: circuit switching, packet switching, frame relay and ATM networks 

(Asynchronous Transfer Mode) which have assumed major roles. 
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3. COMMUNICATION PROTOCOLS MODELING METHODS 

In the previous we have showed the different communication architectures models. As we 

have mentioned before, in this thesis we are interested in modeling both communication 

protocols and distributed services. Modeling communication protocols and distributed 

systems is not new. Several formalisms, simulators and modeling tools exist. However, 

one of the main challenges in modeling nowadays is establishing a precise relationship 

within a wide range of available modeling formalisms and comparing their verification 

capabilities and descriptive power. Thus, we propose to unify the modeling of both, 

protocols and distributed systems, in one formalism. In this way, we eliminate the need to 

any transformation from one formalism to another and so facilitate the modeling process. 

Since time is an important factor in communication protocols, any formalism capable to 

model them in any level must include a concept of time. 

A formal model [Geoffrion89] [Broy07] is a mathematical and abstract 

representation. It is always close to the real system since it reflects a certain view of it. 

The Formal modeling consists of introducing system requirements (cost, security, 

manufacturing facilities, maintenance, evaluation, reliability and availability [Barger03]) 

into a small fragment. This introduction must be inside the chosen mathematical 

framework for the modeling process. The main purpose of a formal modeling is to clarify 

largely inexplicit information. During the construction of a formal model, many 

ambiguities must be removed. This consists in general of taking a decision or making a 

choice. A good model is initially a model that one can understand easily and can be 

explained simply. The procedures of verification must be simple and convincing.  

The basic steps used for building a model are the same in all the modeling 

methods. The details vary a little from one method to another. However, the 

understanding of the common steps, combined with the typical statements needed for the 

analysis, provides a framework in which the results from almost any method can be 

interpreted and understood. Three basic steps are used iteratively until an appropriate 

model for the system is developed: 
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1- Model Selection: In this step, schemes of the system, system knowledge and 

assumptions about the system are used to determine the form of the model to be fit 

to that system. 

2- Model Fitting: An appropriate model-fitting method is used to estimate the 

unknown parameters in the model. Then, the model is carefully evaluated to see if 

the underlying assumptions of the analysis appear possible. 

3- Model Validation: In this step, if the model validation identifies problems, the 

modeling process is repeated using information from the model validation step to 

fit an improved model. 

Two additional steps can be added to the basic sequence between model selection and 

model-fitting: the experimental design and the data collection. 

3.1 UNIFIED MODELING LANGUAGE UML 

Unified Modeling Language UML [UML09] is a graphical notation proposed by 

the Object Management Group OMG [OMG09], designed to represent, specify, build and 

document software systems. Its two main objectives are: 

 The object oriented modeling, 

 The use of abstract language comprehensible by man and machine interpretable.  

UML allows building several models of a system, each emphasizing different 

aspects: functional, static and dynamic organization. UML [Rumbaugh99] is considered 

as the successor of three modeling languages: Booch, Object-Oriented Software 

Engineering OOSE and Object Modeling Technique OMT.   

As a descriptive mechanism, UML makes distinction between the model and the 

diagram concepts. A model contains all the system elements and the diagram displays 

some types of a model elements. UML does not impose any design methodology, i.e. 

UML does not impose a particular way for the use of diagrams it offers, except the use of 

syntax rules defined in its specification. 

UML1.x, 2003, is based on a single meta-model. While UML2.0 [Haugen04], 

2005, has introduced new structures such as component, provided and required 
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interfaces, port, connector, protocols description machine and composite structure. It 

provides a component model that allows the definition of components and systems 

architecture to be developed. UML2.0 described 13 types of diagrams which allow 

capturing different aspects and views of the system, figure 2.11. 

 

Figure 2.11, UML 2.0 Diagrams 

One of the benefits obtained in using UML as an architecture description language ADL, 

especially UML2.0, is allowing users who have little knowledge in the field of formal 

specifications to realize and manipulate architectural description. UML is not directly 

associated to a method, it is only a specification language. The process that implements 

the toolbox UML is intentionally not specified. UML is one of the most popular 

methodologies.  The representation of process as a flow of activities, the graphical syntax, 

and the simple notations are the key factors of UML, figure 2.12(a) and (b). 
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In the figure 2.12(a), the three actors represent users and other external systems 

that interact with the described system, while the 9 use cases represent the scenarios of 

the system (request, ack, trap and condition). In figure 2.12(b) shows the sequence 

diagram of the request scenario, which includes the 5 types of requests (GetRequest, 

GetNextRequest, SetRequest, TestRequest, and TrapAck) described in the use-case 

diagram in Fig. 2.12(a) [Lee04]. 

 

(a) Use-case Diagram 

 

(b) Sequence Diagram 

Figure 2.12, SNMP Protocol in UML [Lee04] 
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However, UML has also weakness points: 

1- UML is based on informal semantics, language elements are not defined on the 

basis of mathematics. So, it is hard to verify the consistency semantics of a UML 

diagram mathematically, which is not the case of Petri nets [Bernardi02].  

2- UML provides 13 types of diagrams. However, if one uses two different types of 

diagrams to describe the same system in two different views, it is difficult to 

formally verify the consistency of the global model (for example UML dynamic 

diagrams [Engels02]). Hence, at the implementation level, it is essential to 

overcome this weakness. 

3- UML is not well suited for analyzing and modeling (temporal) behaviour in 

concurrent and distributed systems as Petri nets (highly used aspect) 

[Kristensen04] [Wu07]. In most of the recent research, UML is widely enhanced 

and supported by Petri nets to overcome different weakness aspects: the definition 

of an analysis model for temporal properties [Mallet06], time inscriptions in 

sequence diagrams [Eichner05], verifying dynamic behavioural modeling for real 

applications [Lee04].  

4- “A UML diagram, such as a class diagram, is typically not refined enough to 

provide all the relevant aspects of a specification” [UML09]. Thus, the formal 

Object Constraint Language OCL is used to describe expressions 

(operations/actions) on UML models. 

3.2 SPECIFICATION AND DESCRIPTION LANGUAGE SDL 

Specification and Description Language SDL [SDL09] [IEC09] is a formal 

notation evolved and standardized between 1976 and 1992 by International 

Telecommunication Union ITU-T. Originally focused on telecommunicating systems 

[Latkoski07] [Kim07] [Melia06], SDL is a high-level general-purpose description 

language with more application field such as dynamic distributed systems [Díaz08], 

event-driven systems and real-time systems [Drosos01]. SDL provides textual (Phrase 

Representation SDL/PR) and graphical (Graphic Representation SDL/GR) formats.  
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Based on Finite State Machines FSM [Lai02], SDL consists of a set of concurrent 

processes, extended with variables and data space, communicating by exchanging control 

signals or structured messages instead of shared memory. The system architecture is 

drafted by deploying building blocks and channels connecting them, figure 2.13. Many 

versions of SDL were released. SDL-2000 is the latest released version completely based 

on object-orientation. This version is accompanied by an SDL-UML-Profile. JADE (Java) 

[JADE99] and Cinderella SDL [Cinderella07] are existing tools supporting SDL.  

 

Figure 2.13, Important SDL Symbols 

Figure 2.14 shows the process in the Go-Back-N protocol which is nearly optimal 

for channels characterized by small propagation delays, and thus is widely used for 

control in many classical computer-communication networks.  

 

Figure 2.14, Go-Back-N Protocol in SDL 
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In the Go-Back-N protocol, the sender continuously transmits packets until the 

number of the sent packets “win” equals to the transmission window size W. Each packet 

contains a unique identifier, “ns”. It then starts a timer T. The receiver returns a positive 

acknowledgment with the identifier of the last correctly received packet “nr”. However, if 

the receiver does not send an acknowledgment or the acknowledgment is lost, before the 

timer end, it repeats the transmission of the packets (ns=nr). 

In figure 2.15, branch in the middle, the transmitter verifies if the number of sent 

packets is less than the transmission window (condition: win<W). If not, it sends a packet 

(output: pdu(ns)). It increments the value of sent packets “win” and the sequence number 

“ns” by one (N is the total number of packets to be sent). If the value of “win” equals to 

W, it starts the timer T (branch to the right). Otherwise, it continues transmitting. 

 

Figure 2.15, Transmitter side in Go-back-N in SDL 

Once win equals W, the timer T (branch to the right) is set to a certain value (in 

the example one unit of time) with priority input. During this time, the transmitter waits 

for an acknowledgement from the receiver (branch to the left). If the timer time is out 
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before the reception of an acknowledgement, “ns” is reset to nr (last correctly packet) and 

w to 1, restarting the transmission process (output: pdu(ns)). However, if an 

acknowledgment is received (branch to the left), win is reset to 0, ns is set to nr and the 

timer T is reset to 0. 

Figure 2.16 (a) shows the channel side which represents the medium to exchange 

the messages and acknowledgments between transmitter and receiver. Figure 2.16 (b) 

shows the receiver side. The receiver starts receiving data. If the sequence number of the 

received packet equals to the expected one (decision: ns=nr?), then it returns an 

acknowledgment of the last correctly received packet (nr=nr+1). Otherwise, it returns a 

negative acknowledgement with the current value of nr, and discards the erroneous 

packet.  

                 

      Figure 2.16, (a) Channel side        (b) Receiver Side   

SDL is a user-friendly language and a model-oriented specification. It has a high 

modeling capacity. However, SDL has some disadvantages [Werner06]:  

1- Most of the existing tools are commercial. 

2- In SDL, there is no verification calculus (no proofs). 

3- Temporal interval expression is not allowed in SDL, (necessary at the 

communication level, mainly for the clocks asynchrony). 
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4- Recent studies in the modeling and robustness analysis of multi-hop Internet 

signalling protocols have shown that SDL is not well suited to create certain 

network topologies [Werner05] [Melia06]. 

5- Although the graphical form of SDL is good for showing flow of control, it is 

completely inadequate for showing the flow of data. 

To overcome some problems in SDL, Petri nets are used as the formal model underlying 

an SDL model [Godary04] [Capellmann99], in addition to the translation of SDL 

specifications into different types of Petri nets [Nepomniaschy08] [Kryvyy08] [Aalto03].  

3.3 TIMED AUTOMATA 

Timed (finite) Automata TA [Alur92]  [Bengtsson04] is a formalism for modeling and 

verification of real time systems. The timed automata consist of a set of states, transitions 

between them and a set of stopwatches or clocks to measure the time. An automaton is a 

simple state machine or labeled transition system extended with real-valued variables. A 

timed automaton accepts a timed word (infinite sequence in which a real-valued time of 

occurrence is associated each variable). The variables model the logical clocks in the 

system. The transitions of the automaton put certain constraints on the clock values: a 

transition may be taken only if the current values of the clocks satisfy the associated 

constraints, or the condition on the clock called guard.  

Definition: A timed automaton is a tuple A = (Σ, S, X, T, I, F, V), where: 

 Σ is a finite alphabet of actions,  

 S is a finite set of states (locations, or nodes), 

 X is a finite set of clocks,  

 T  S × [C(X) × Σ × 2X] × S is a finite set of transitions (or edges), written as 

ݏ
  ௚,௔,஼   
ሱۛ ۛۛ ሮ ݏ or ′ݏ

  ௚,௔,஼ؔ଴   
ሱۛ ۛۛ ۛۛ ሮۛ  ,and C(X) is a set of clock constraints over X ,′ݏ

 I  S is the subset of initial states,  

 F  S is the subset of final states.  

 V: S  C(X) assigns invariants to states or location. 

A path in A is a finite sequence of consecutive transitions: 
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 P ൌ s଴
   ୥భ,ୟభ,C భ   
ሱۛ ۛۛ ۛۛ ۛሮ sଵ  …  s୮ିଵ

   ୥౦,ୟ౦,C౦   
ሱۛ ۛۛ ۛۛ ۛሮ s୮   

where {qi−1, gi, ai, Ci, qi} timed words  T for each 1 ≤ i ≤ p. 

The path is said to be accepting if it starts in an initial state, q0  I, and ends in a final 

state, qp  F.  

When its guard g is true, the transition can take place and assigning new values to 

clocks while emitting visible action. In some situations, states have invariants which must 

remain true as the automaton is in the state. Invariants are used most often to force the 

execution of a transition. The time scale is supposed to be continuous: the values of the 

clocks are real numbers. In addition, transitions are instantaneous.  

In figure 2.17, starting from state p where the value of the clock x is zero (p, [x = 

0]), delay may last for any nonnegative real number t to reach the valuation (p, [x = t]). 

This is called a time elapsing step. Being in state p and t ≤ 2, a discrete step can be 

performed by taking the transition a, since the guard x ≤ 2 is satisfied, reaching to the 

state q (q, [x = t]). In the state q delay may be for at most 5-t time units because of the 

invariant x ≤ 5 associated with the state q. As soon as the value of the clock x is at least 3, 

the discrete transition b can be taken and return to the initial state p (p, [x = 0]) because 

the value of the clock x is reset to 0 by taking this transition. 

 

Figure 2.17, Example of Timed Automata 

Timed Automata are used to model and analyze timeliness properties of embedded 

system architectures [Hendriks06], real-time systems [Larsen05] and communication 

protocols [Corin07] [Diaz06] as real-time components. UPPAAL [UPPAAL09] and 
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KRONOS [KRONOS02] [Yovine97] are two of the most well-known tools in TA. 

KRONOS is a tool that aims to assist the design of real-time systems and to provide a 

verification engine integrated into design environments. KRONOS is developed in France 

at Verimag laboratory, a joint laboratory of UJF, Ensimag and CNRS. It is free 

distributed tool used to model timed automata components and is expressed in the real-

time temporal logic TCLT, timed computation tree logic. However, KRONOS is textual 

and does not support a graphical design interface. In addition, the work on this tool was 

stopped in 2002 and no new development is done since that date.  

UPPAAL is developed by the Uppsala University and Aalborg University. 

UPPAAL is an open source toolbox for modeling, simulation, and verification of Timed 

Automata. It is a graphical, platform-independent interface, written in Java and extends 

FSMs by means of timers. Its model checker is used to verify some of the system 

properties. In timed automata, there are two classes of algorithms based on the notion of 

zones and implemented using data structures like the Difference Bounded Matrices DBM: 

the class of forward analysis algorithms and the class of backward analysis algorithms. 

UPPAAL implements only the forward analysis algorithms that permit the feature of 

bounded integer variables, for which backward analysis is inappropriate. Conversely, 

KRONOS implements the two kinds of algorithms. 

Figure 2.18 shows the Go-back-N protocol in UPPAAL. The upper part of the 

figure shows the transmission side. S1 is the initial state. The transmitter sends its data 

over the channel tx_ch to state S2 (the sign “!” is used to represent the emission of data 

and the sign “?” represents the reception of data). It receives data channel ch_tx from state 

S3, (figure 2.14). A retransmission, timeout or acknowledgments are all checked by the 

guards associated to the transitions. 

The lower part shows the channel and reception sides. The channel just forwards 

data and acknowledgments between the transmitter and the receiver. However, at the 

receiver side, committed states are used for S2 and S3 (the letter C inside the circle). 

These locations freeze time which means that delays are not allowed and the committed 

state must be left to the next state (a committed location if there are several ones). 
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Outgoing transitions of a committed state have priority and must be carried out 

immediately. The receiver receives data on the ch_rx channel and returns its 

acknowledgments on channel rx_ch. As SDL, UPPAAL is user-friendly platform. Its 

mean usage is for validation of hard temporal constraints. 

 

Figure 2.18, Go-Back-N Protocol in Timed Automata 

However, timed automata have some weakness points: 

1- “Timed automata” is not general purpose formalism (limits its application field to 

the hard timing constraints applications). 

2- Some timed automata tools like KRONOS lack the support for high level 

composable graphical patterns to support systematic design of complex systems 

[Dong04]. 
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3- Performance analyses are of quantitative measures (limited to the upper bounds) 

which make it unsuitable for systems that depend upon real-time considerations. 

4- UPPAAL and KRONOS implement the forward analysis algorithms, however 

according to [Bouyer03] the two implementations are not correct. 

3.4 SIMPLE PROMELA INTERPRETER SPIN 

SPIN [Bolognesi87] is a tool for specification, simulation, and validation of 

communication protocols. It uses a C-like specification notation ProMeLa or Process 

Meta Language; it is a textual notation for Extending Communicating Finite State 

Machine ECFSM. SPIN supports efficient model-checking, validation of consistency 

requirements, invariant assertions, and temporal properties expressed in an ad hoc Linear 

Temporal Logic. 

 

Figure 2.19, Processes Declaration in ProMeLa SPIN 

Figure 2.19 shows the declaration processes and the messages exchanged between 

both of them (input and result values). In SPIN, system components are processes whose 

internal behavior is described as a set of possible transitions and processes can 

communicate on channels. SPIN can perform simulation and logical validation on a 

ProMeLa file. Xspin or X-interface SPIN is the graphical version of SPIN, generating 

graphical FSMs.  SPIN main application domain is for validation of logical properties, 

with a good friendliness usage and modeling capacities. 
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However, SPIN has some disadvantages: 

1- No hierarchical structuring facilities,  

2- Worst-case complexity is exponential in number of processes, 

3- Performance analyses are not supported. 

3.5 PETRI NETS WITH TIME 

Historically, the application of Petri nets to communication protocols [Merlin76] 

[Diaz87] [Billington88] dates back to the earliest attempts to use formal techniques to 

solve problems specific to communication protocols. One of the extensions of Petri nets 

used to model communication protocols and real-time systems is the Time Petri nets TPN 

[Diaz91] [Berthomieu07] [Bucci05]. TPN is a powerful formalism used to model systems 

where time is the main constraint. They allow the description of the watch–dog 

mechanism (restricting and monitoring the time) which is not allowed in timed Petri nets 

[Ramchandani74]. Since transitions are labeled with time intervals in TPN, this makes it 

possible to model unpredictable timing where the exact durations of events are not 

known. They can also represent the timed Petri nets, just by making the two limits of the 

interval equal.  

Definition: A Time Petri Net is a six–tuple N= (P, T, Pre, Post, m0, τs), where: 

 P and T are the sets of nodes respectively called places and transitions (|P|=m, 

|T|=n) and P∩T=Ф; 

 Pre: P×TN and Post: T×PN are the weighted flow relation representing 

the arcs;  

 m0: PN is a mapping associating to each place pP, an integer m0(p) called 

the initial marking of the place p.  

 τs: T → R+ × (R+  {+∞}) is a function called Static Interval function, and,  

t  T, τs (ti) = [αt, βt], where αt and βt are rationals such that:  

0 ≤ αt < ∞ and 0 ≤ βt ≤ ∞ 

αt ≤ βt, if βt ≠ ∞ and αt < βt, if βt = ∞ 
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Time represented into intervals (the lift bound is called static earliest firing time or 

EFT and the right bound is called static latest firing time or LFT) makes it easy to model 

events with unknown occurring time. These limits are related to the date when ti was 

enabled for the last time. Let θ be the date when ti becomes enabled; then ti cannot be 

fired before θ + EFT and must fire no later than θ + LFT (if max is finite), except if the 

fire of another transition tj un-enables ti before it is fired. Transition firings have no 

durations. In addition, a transition t of a time Petri net is enabled at marking M if and 

only if Pre(p, t) ≤ M. If a transition ti is fireable at a state defined as S= {M, V}, where M 

is a marking and V is a dynamic firing interval set, where: 

V τs: T → R+ × (R+  {+∞}) 

Then the new marking M' is reachable from M: M'(p) = M(p) + C(P, ti), as usually in 

Petri nets. 

A transition tk is said to be newly enabled by the firing of a transition ti if M – 

Pre(p, t) + Post(p, t) enables tk and M – Pre(p, t) did not enable tk. If ti remains enabled 

after its firing then ti is newly enabled. The number of entries in vector V is given by the 

number of the transitions enabled by marking M. 

The transition firing in a Time Petri Net has two firing semantics. The first 

semantics is called the strong timing semantics STS, which imposes that any enabled 

transition t must be fired at its latest firing time at most unless it is disabled by the firing 

of a conflicting transition at a time no greater than the latest firing time of transition t 

LFTt. In other words, when the LFTti is reached, the transition must be fired and time 

cannot disable firing of the transition ti. This requires some form of global coordination of 

the net.  

On the contrary, when using the weak timing semantics WTS, the firing time of a 

transition is not constrained by firing conditions over other transitions. The decision about 

a transition firing is local and it can be fired only in its time interval. If it does not fire 

within its upper bound, then it cannot fire anymore. To be able to fire, it should be reset 

by being disabled once. WTS is nearer to the original untimed Petri nets. However, STS 
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is the most widely adopted one and Petri nets with STS are more powerful than Petri nets 

with WTS. 

Figure 2.20 shows an example of a time Petri net. A transmitter workstation 

attempts to send data to a receiving workstation. It waits a backoff of 5 units of time 

(transition tx_ch). The vector V= {tx_ch[5,5]} since one transition is enabled.  The firing 

of “tx_ch” puts a transition in place “Send Packet”. A packet can be lost due to external 

noise or interference. This is represented by the transition noise. Three transitions are 

enabled, so, V= {Noise[0,9], ch_rx[0,1], Retransmission Timer[10,10]}. However, 

transitions “ch_rx” and Noise can fire before transition “Retransmission Timer”  since 

their EFT and LFT are less than those of transition “Retransmission Timer” (0, 0<10; 1, 

9<10). So, one of them will fire first. The firing of one of them disables the other one. 

 

Figure 2.20, Time Petri Net Example 

 If transition Noise is fired, then V= {Retransmission Timer[10,10]}. This means 

that the packet is lost and it will be retransmitted after 10 units of time. Hence, the 

local timer on this transition continues incrementing which means that if transition 

“Noise” is fired after 4.15 units of time, transition “Retransmission Timer” will 

fire after 5.85 units of time (4.15+5.85=10). 
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 If transition “ch_rx” is fired, a token is put in place “Received Packet” and V= 

{Receiving Error[3,8], rx_ch[5,8], Retransmission Timer[10-θ,10-θ]}, where θ is 

the time before firing transition “ch_rx” and θ[0,1]. 

Again, transitions “rx_ch” and “Receiving Error” will fire before transition 

“Retransmission Timer”. However, transition “Receiving Error” can fire before transition 

“rx_ch”, since its EFT (3) is less than “rx_ch” EFT (5). In Tina [Tina09], TPN was 

improved with priority selection. Transition “rx_ch” has priority over transition 

“Receiving Error” if it is not fired before 5 units of time, which means that it can fire in 

an interval of [3,5[ units of time. This is useful to represent error checking, assuming that 

an error can be checked just after the reception of a packet. 

Now, if transition “Receiving Error” is fired, the packet must be retransmitted (as 

in point 1 above). On the other hand, firing “rx_ch” puts a token in place “ACK” and 

V={ch_tx[0,0], Retransmission Timer[10-θ-λ,10-θ-λ]}, where λ is the random time before 

firing transition “rx_ch” and λ[5,8]. The maximum value of θ+λ is 9 (8+1), this means 

that to fire transition “Retransmission Timer”, the local clock needs one more unit of 

time. However, transition “ch_tx” is immediate, so it must fire first according to strong 

timing semantics STS. 

To conclude, the use of Petri nets for modeling communication protocols has several 

advantages: 

1- Petri nets are simple formal definition, supporting powerful analysis capabilities, 

with powerful semantics that support execution and simulation, 

2- Their visually graphical interface makes Petri nets easy to realize and manipulate 

for a wide range of users, 

3- Petri nets with time allow to describe protocols in a very adequate way, 

particularly  by supporting directly the fundamental notions of concurrency and 

synchronization [JWang07] which are inherent to communication protocols, 

4- Time Petri nets are able to analyze temporal and stochastic properties [Masri08] 

[Moraes06], 
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5- Their analysis techniques prove many important structural properties 

[Billington04], 

6- There exist many verification techniques by simulation and free computer-aided 

tools based on Petri nets with time [Renew08] [CPN07], 

7- Successful use in many different application areas: complex, manufacturing and 

distributed systems [Moreno08] [Glabbeek08], real-time systems [Chen08] 

[Liu08], safety critical systems [Xu07], multimedia systems [ZWang07] … 

However, there are some weakness points: 

 The inflexibility to cope with system changes. 

 Petri nets lack computations expressiveness with tokens considered as black dots. 

This limits its modeling power since no value is transferred by communications. 

For example, in the figure 2.20 only one packet can be sent (one token in place 

“Data”) since it is not possible to send an acknowledgment without identifying the 

token that models the sent packet. 

 The locality of the Petri net semantics, firing transition only influences its local 

neighbours, reactions to external events and exceptions are difficult to model. 

 One of the basic problems in Petri Nets is that modeling a system needs many 

places and transitions. In other words, as the system size and complexity grow, the 

state-space of the Petri net grows exponentially, which could become too difficult 

to manage both graphically and analytically. 

Many extensions of Petri nets were suggested to overcome these problems. High-level 

Petri nets with object concepts offers practical support for Petri nets through the provision 

of flexible and powerful structuring primitives. Combining Petri nets with object-oriented 

concepts is an excellent solution to profit from the strengths of both approaches and 

eliminates nearly all these problems. 
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4. CONCLUSION 

A distributed system is a collection of computers connected to a network and data 

applications distributed on these computers. In the first part of this chapter, we have 

focused on the networking concepts and techniques that are the basis for distributed 

systems. Layered protocols are the base for communications in distributed systems. Two 

main reference models for computer networks are the OSI model and the TCP/IP model.  

In the next part we have focused on the methods used in modeling communication 

systems and distributed services. UML, Timed Automata and Petri nets are of the most 

used formalisms in this domain. Formal methods are a big supporting means for 

increasing correctness and reliability in system design and implementation. However, 

none of these formalisms were used to model both the communication protocols and the 

distributed services.  

Nevertheless, Petri nets provide a clear formalism for concurrency and 

distribution. Combining both Petri nets and Object-orientation concepts together allows 

benefiting from the strengths of both approaches. High-Level Petri nets HLPN, described 

in the following chapter, are considered as a special kind of Petri nets which allow the 

representation and manipulation of an object, a token. This powerful formalism allows 

modeling complex systems like the distributed systems and communication protocols. 

Since the manufacturing systems use the industrial local networks, the upcoming 

chapters will mainly focus on modeling the LAN MAC sublayer protocols, more 

particularly Ethernet and Wireless LAN. To build the model’s components, we will first 

analyse these protocols. Later, we will evaluate the complete model to verify some of its 

properties.
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1. INTRODUCTION 

Component-based engineering [Brown96] [Brereton00] has a huge importance for 

rigorous system design methodologies. It is based on the statement which is common to 

all engineering disciplines: complex systems can be obtained by assembling components 

[Gössler03], ideally commercial-off-the-shelf (COTS) [Carney00] [Weyuker98].  

Reusability and extensibility [Meyer97] are key factors that contribute to this 

success and importance. Component-based development aims at decreasing development 

time and costs by creating applications from reusable, easily connectible and 

exchangeable building blocks. Components are usually characterized by abstractions that 

ignore implementation details (the internal functionality) but describe the way these 

components can be connected together to complete the model through their connecting 

interfaces. In the context of utilisation, the main factor in building such components is the 

ability to make them reusable in different future models by a well-define internal 

functionality and connecting interfaces. 

From my opinion, one of the most efficient high-level formalisms used for 

modeling both network protocols and distributed services are the High-Level Petri Nets 

HLPN [Lakos95] [Kohler05]. Petri nets have become very popular for representing 

distributed computer systems because of their capability of clearly describing 

concurrency, conflicts, and synchronization of processes, and because they present a 

simple and elegant formalism for their description. They offer an excellent framework that 

can be used for the specification and performance evaluations of distributed systems and 

protocols [Masri08a]. Thus, Petri nets can be used to unify the modeling of service and 

protocols in a single formalism. 

HLPN fulfil all the requirements of communication systems distributed services. 

The graphical representation of the net gives the user an easier understanding of the 

modeled process. In addition, they support simulation which is one of the main methods 

used to verify properties of communication protocols. Simulation can be interactive, i.e. 

with user intervention, or automatic. Formal modeling usually gives a set of expressions 
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for its components describing the behaviour of the investigated system. It also provides 

precise descriptions of the component function and structure. 

In the first chapter, we have presented in Section 3.6 the modeling of the control 

functions of a manufacturing system. In this part we have emphasized the use of 

client/server approach to allow the distribution of resulting code on a distributed 

architecture of the control. In the following sections, we aim to model network protocols 

to be able to analyze their impact on the productivity of the manufacturing system with a 

selected architecture of the control. Since our control function is modeled with a High-

Level Petri Nets, we select the same formalism to be able to obtain a global model that 

integrates both services (here the modules of the control function) and the model of the 

network protocols. 

In this chapter, we will introduce the different component-based modeling 

properties, particularly with the formal methods techniques in which we are interested. In 

the second part, we will describe the used modeling formalism High-Level Petri Nets. In 

the third part, we will specify the methodology used for building the patterns and 

components for communication networks. Since we are interested more particularly in 

industrial networks, our modeling of network protocols will focus on the medium access 

control. In consequence, we will illustrate our methodology on two illustrative examples: 

Ethernet and DCF 802.11. 
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2. COMPONENT-BASED MODELING PROPERTIES 

Component-based methodology is a promising technique and implies method developed 

from the object-oriented design. It uses hierarchical and modular concepts to design and 

analyze systems. To reduce the cost of system developments, it makes use of 

independent, interactive, and reusable components. In component-based engineering 

research literature, several approaches [Gössler07] [Bastide04] [Heck03] [Cheesman01] 

[Penix98] have focused on the aspects of the development of components. However, 

reusing available, ready-to-use components decreases time-to-market for new systems 

and applications [Seyler02]. This may be done by selecting the appropriate components 

from the available components based on the needs and then assembling them to build a 

new component system-model. 

Different methods of component specification software exist; from the Interface 

Description Language IDL (Object Management Groups’ CORBA [OMG09a], java-

based components such as JavaBeans [Matena03] and Microsoft’s .Net [Thai02]), passing 

by the design-by-contract based (UML [UML09] [DSouza99]), to formal methods (Petri 

Nets [Chachkov01]). In spite of their widely difference in the details, they have a 

common concept: a component is a black box that is accessed through exposed 

interfaces. In this section we will precise the main features that a component-based 

method must verify. 

2.1 GENERICITY  

Genericity is used in component-based engineering to raise time-to-market, 

productivity, and quality in systems development. The term generic component refers to a 

component that implements a process or part of a process-set and that is adaptable to 

accommodate different needs. Genericity of a component is based on its independence 

compared to its type. This is an important concept for high-level methods because it can 

increase the level of abstraction of these methods. 

A generic component can be seen as a parameterable element. Parameters should 

be specified and a specific version of the component (an instance) will be created and 



Chapter 3 –MODELING COMMUNICATION PROTOCOLS WITH COMPONENT-BASED APPROACH 

   
83 

 

used. Another advantage is that a generic component can be represented as a generic 

factory that will create as many components as necessary for the application. Thus, the 

main objective of genericity is to integrate the component-based approaches with the 

technical approaches. 

2.2 MODULARITY 

Modular models are easier to design compared to similar complex models. 

“Modularity is having a complex system composed from smaller subsystems that can be 

managed independently yet function together as a whole” [Langlois02]. In another 

definition, “modularity is used to describe the use of common units to create product 

variants” [Huang98]. The objective of modularity is the ability to identify homogeneous, 

compatible, and independent entities to satisfy the needs of a system or an application. In 

many domains, modularity is essential to manage the design and the production of 

complex technology. 

Modular design aims at organizing complex systems as a set of components or 

modules. These components can be developed independently and then joined together. 

They can be separable or inseparable units [Foster95]. The decomposition of a system 

model into smaller modules has the following advantages: 

1- A modular model can be very near to the real system, since it reflects the 

hierarchical structure inherent to the system.  

2- It is possible to concentrate on each component as a small problem.  

3- Components which are too complex can lose some of their details and their 

interactions can be confused. A component can be divided into smaller components 

until each module is of manageable size.  

4- Modular model allows testing each component separately. 

5- Implementation changes and corrections on simple components can be done easily. 

6- Documentation in modular structure becomes also easier. 
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2.3 REUSABILITY 

The implication of reusability is that the available components must give enough 

information to ease the assembly of components into a new system [Geisterfer06]. The 

information must include dependency and configuration information. To make well 

decisions about selecting and reusing components, the following information is required: 

1- Operational specification: the semantic interaction of the component, 

2- Operation context: where and how the component will be used, 

3- Non-functional properties: describe the properties such as performance, security 

and reliability, 

4- Required interfaces and resources: the functionality and resources needed by the 

specified component to execute its provided functionality. 

Since all real systems are made of components, component-based systems are comprised 

of multiple components [Brown96] that: 

 are ready “off-the-shelf,” either from a commercial source (COTS) or reused from 

another system;  

 have significant combined functionality and complexity, 

 are self-contained and can be executed independently, 

 will be used “as is” without modification, 

 must be combined with other components to get the desired functionality. 

 

Figure 3.1, Basic Module Reusability 

All these benefits and more lead us to use the component-based approach to model 

the distribution of manufacturing systems and the underlying protocols. The reuse of 
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components is very important in the modeling level since most of the system parts and 

machines are the same. In addition, protocols share many properties. With the reuse of 

already modeled components, the time and modeling-cost are reduced. As we can see in 

figure 3.1, models are sharing some properties (the triangle). Once this part is modeled, it 

can be reused in any model that has a need to such component. 

2.4 COMPONENTS ABSTRACTION 

The modeled components are seen as black box where the internal functionality is hidden, 

while the interfaces represent the service that can be offered by this component. Every 

component or module is characterized by its internal hidden behaviour. Its interfaces are 

chosen to reveal as little as possible about its inner implementation.  

 Components abstraction is useful for reducing the designing complexity by 

decomposing a problem into connected components. Abstraction (or specification) 

describes the functional behavior of the components [Sametinger97], i.e. components are 

considered to be specific to an application. Abstraction focuses on the important 

characteristics of component upon the designer viewpoint. This definition supports the 

abstraction of data, hiding internal function, reusability and self-contained component 

behaviour descriptions [Edwards97]. 

 Thus, during the design of components we must focus on well-defining the service 

offered by the component by its interfaces and the parameters that can be adapted to the 

application requirements, rather than spending the time on describing its internal 

behaviour. This can be achieved by giving appropriate names to the interfaces and 

parameters and documenting these interfaces and parameters. 
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3. CHOOSING THE METHOD: HIGH-LEVEL PETRI NETS 

As we saw in the last sections, component-based approach can deeply support the 

reusability of ready-to-use components and the distribution in modeling manufacturing 

systems. The use of component-based technology in real-time systems progress has been 

the main object of recent research such as in the UML and high-level Petri Nets. 

Moreover, systems are required to be more flexible and dynamic and to be 

designed in less time. This point together with the fact that the design of complex system 

often represents a considerable investment forces for an increased reuse of flexible and 

configurable design elements. This is one of the central motivations for the use of 

component-based techniques. Components contain attributes representing the component 

state, and operations that access and manipulate the state. The inner behaviour of the 

component is kept hidden from the outside world and only the interfaces are visible. 

In this work we aim to model and evaluate the distributed services and protocols 

with the same modeling formalism. Time-dependence and data identification characterize 

these systems. One of the choices was UML because it is well-defined, powerful 

formalism and widely used in this domain [Bigand04]. However, UML lacks one 

important feature to achieve the desired needs which is the lack of a formal semantics and 

hence it is not possible to directly verify timing requirements which are necessary in 

communication systems.  

Another choice was to use Petri nets, (since pervious work of OSSc team 

concerning the manufacturing systems’ services is already made in ordinary and colored 

Petri nets). Petri nets are also a powerful formalism widely valid for the modeling of 

concurrent and distributed systems. Since many extensions and tools are available, mainly 

for time, identification of tokens and stochastic issues which are very important in the 

communication protocols and services. So, the integration of the previous work with our 

work for modeling the whole systems elements (services and protocols) will be easier (no 

need to make a transformation). 
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3.1 SELECTION CRITERIA 

Petri nets are mathematical formalism intended to be used for modeling, 

simulation and analysis of different kinds of systems. In computer science Petri nets are 

used for modeling a great number of either hardware and software systems, or various 

applications in computer networks. A special advantage of Petri nets is their graphical 

notation, which reduces the time to learn Petri nets and simplifies their use. However, this 

formalism has different extensions and tools. As we saw in chapter 2, communication 

protocols have some characteristics and requirements. Thus, the tool selection criteria 

were depending on these requirements: 

1- Time: Communication protocols are real-time demanding applications. Transmitting 

and receiving data, accessing to the channel, backoff and other needs depend on 

time. Time Petri nets allow this feature. 

2- Headers and Data fields: Data packets have many fields which may be modeled as 

tuples. This feature is supported in high-level Petri nets. 

3- Probabilistic and Stochastic Properties: Messages exchanged over the network may 

be lost or perturbed. Bit rate error is a function of noise which means that it is not 

fixed. The representation of such feature can be made by stochastic functions. 

Stochastic Petri nets have it in its definition.  

4- Sent and Received Packets: Messages exchange over the network needs the 

identification of packets. Colored Petri nets are made for this need. 

3.2 PROPERTIES OF OUR HIGH-LEVEL PETRI NETS 

3.2.1 DEFINITION 

In this subsection we will give a brief definition on the desired high-level Petri nets. This 

definition is not far from the definition of colored Petri nets [Jensen91]. However, we add 

to this definition time notation which is not identified. 

Definition: A High-Level Petri Net is a tuple N= (P, T, A, m0, Σ, Λ, G, E, D) 

where: 
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 Σ is a finite set of non-empty color sets. 

 Λ is a color function, Λ: P → Σ 

 G is a guard function, G: T → Boolean expression, where: 

t  T: [Type (G(t)) = Bexpr  Type (Var (G(t)))  Σ],  

where Type is the color type of the guard function, Bexpr is a Boolean function and 

Var is the variables of the guard function. 

 E is an arc expression function, E: A→E(a), where:  

a A: [Type(E(a)) = Λ(p(a))  Type (Var (E(a)))  Σ], p(a) is the place of arc a. 

 D is a delay function, D: E → TS, where TS is a delay/time stamp associated to 

the arc inscription with the annotation symbol “@”. 

The arc expression function can contain any sign and/or mathematical or logical 

functions of the programming language used with Petri nets, such as Java. The delay 

function can be associated to both output arcs (from places to transitions) and input arcs 

(from transitions to places). The implementation of this definition will be given by 

different examples in the following subsections. 

3.2.2 INSCRIPTIONS, GUARDS AND TUPLES 

Arcs are the connectors between places and transitions. Arcs can have arc 

inscriptions. When a transition fires, its arc expressions are evaluated and tokens are 

moved according to the result. Arc inscriptions can be simple, tuples or even 

mathematical operators. They can be also variables or constants. However, inscriptions do 

not have the same meaning on both input arc and output arc.  

Figure 3.2 shows different arc inscriptions.  In figure 3.2 (a), the arc inscription 

contains mathematical operation. The resulting of firing T1 is a token with value 8. While 

in (b) T2 can fire only if place P4 contains a token with value 5. Also tokens can be 

numbers or strings as in place P5. The resulting of firing T2 is a token with value “hello” 

in place P6. However in (c), T3 can fire with any value in place P7, but the resulting of 

this firing is a token with the value 5 put in place P9. Other Java signs can be also used 

like the “!” sign which means the not-equality, while “|” is an “or” sign.  
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Figure 3.2, Arc Inscriptions 

Not like the arc inscriptions, guard inscriptions are expressions that are prefixed 

with the reserved word guard associated to the transitions. A transition may only fire if all 

of its guard inscriptions evaluate to true. Guards are the conditions that must be satisfied 

to fire transitions. They can be used as if statements. 

 

Figure 3.3, Guard inscription 

Figure 3.3 shows an example of the guard inscription. To fire T1 both conditions 

must be true: y greater than 10 and x greater than y. The tokens with value 42 and 100 in 

place P1 satisfy the second condition. However, the value of token x is 50. So, only the 
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token with value 42 can be used to satisfy the first condition. The resulting of firing T1 is 

a token with value 50 + 42 = 92 put in place P3. Guards are also useful to identify the 

tokens.  

A tuple is denoted by a comma-separated list of expressions that is enclosed in 

square brackets. [1,“abc”,1.4] denotes a 3-tuple which has as its components the integer 1, 

the string “abc”, and the double precision float 1.4. Tuples are useful for storing a whole 

group of related values inside a single token and hence in a single place. A tuple, 

[[1,2],[3,4,5]], is a 2-tuple that has a 2-tuple as its first component and a 3-tuple as its 

second component. This might be useful if the components are hierarchically structured. 

 

Figure 3.4, Tuples 

Arc inscription can modify tokens and the structure of a tuple. Figure 3.4 shows an 

example of tuples. Tuples can be used to represent Protocol Data Unit PDU in 

communication protocols. 

3.2.3 STOCHASTIC AND PROBABILITY FUNCTION 

A stochastic process or random process is a collection of random variables. In 

Stochastic Petri nets, the function Г is a set of firing rates that maps the set transitions T 

into a probability density function f. The entry δiГ is an exponential distributed random 

variable, whose f is a negative exponential, associated with transition ti. 

F is a function that represents a probability distribution in terms of integrals such as: 
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ሺܽ݌ ൑ ݔ ൑ ܾሻ ൌ ׬ ݂ሺݔሻ ݀ݔ ൌ 1
௕

௔ , for any two numbers a and b  (3.1) 

The probabilistic measure P is a function transforming the random variables to the 

interval [0, 1] such that:  

 P(x) is non-negative for all real x.  

 The sum of P(x) over all the possible values that x can have is 1: 

∑ ௜ܲ ൌ 1௜          (3.2) 

Where i represents all the possible values of x and Pi is the probability at xi, 

consequence P(x)  [0, 1]. 

 

Figure 3.5, Probabilistic Process with the Random() Function 

Figure 3.5 shows a possible probabilistic process with the Random() function. The 

function represents the generating of a random variable that can be easily implanted in 

Java to create any type of random variable (class RandomVariable() in the package 

java.lang.object or any Java random function).  

In the figure, the firing of transition T generates a 2-tuple token [x, i] in place S. In 

this token, x models the type of the object and i is, for example, the type of the measure of 

a characteristic of this object. Let us assume that i is a random variable in the interval [0, 

1]. Because of the guards on the transitions, the token in place S can only enable one of 
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the three transitions T1, T2 and T3. The value of i equals to randomly generated value of 

this function. The firing of the enabled transition depends on the value of i: 

 If the value of i is less than 0.2, T1 can be fired and hence a token of value x is put 

in place D1. 

 If the value of i is greater than or equals to 0.2 and less than 0.55, then T2 is the 

enabled and the fired transition. 

 However, if the value of i is greater than or equal to 0.55 then T3 can be fired and 

hence the token x is put in place D3. 

3.2.4 TOKEN IDENTIFICATION 

Workstations exchanging messages put the source and destination addresses in the 

header of the message. The workstation which has the destination address can pick up the 

message. Token identification is very important to model this process. High-level Petri 

nets allow the identification of tokens. 

 

Figure 3.6, Token Identification 

The guard inscription on the transitions can be used to identity a token depending 

on its fields (in the input places). Consider the example in figure 3.6, a workstation, 

sensing the channel for reception, can only pick up the packet if its destination address is 

“1” (assumed to be its address). Other verifications can be done such as the identification 

of the contents of the packet if it is an acknowledgement packet or data packet. 
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3.2.5 TIMING 

Time notation is added to PN formalism to model time dependencies. A time 

stamp is attached to each token. Delays are associated to arc inscriptions in order to 

control the time stamps of token and the firing times of transitions. To add a delay to an 

arc, the symbol “@” and an expression representing the number of time units are added to 

the arc inscription. For example, the inscription x@5 indicates that the token must stay or 

will be available after 5 units of time.  

Delays at the input arcs (from places to transitions) mean that a token must remain 

available for given time before firing the transition (timed transition). However, delays at 

the output arcs specify that a token is only available after some time (immediate 

transitions). Delays can be created by a random number generator or depend on the result 

of an action. Delays may depend also on the token values to delay the input token itself, 

which means that [x, t]@t is legal. 

Timing adds another firing rule. Immediate transitions have more priority over 

timed transitions. To construct the vector of enabled transitions V(t) in the net, local 

remaining time of the tokens LRT in the input places with respect to the arrival time of 

token in the place is used. The time inscription at the output arcs of a place (input arc for 

a transition) only indicates the time a token must stay in that place before firing the 

transition. The time for each place is computed locally for each arc-transition delay, but to 

compute the effective remaining time t for each enabled transition, the maximum local 

remaining time for each input place of that transition is used: 

௧ߙ ൌ maxሼܴܶܮሺ݌௜ሻ,   ݌ ׊௜ א   ሽ      (3.3)ݐ°

Where °t is the set of input places of transition t, with LRT = 0 for the input arcs with no 

time inscription. 

Once V(t) is constructed, the transition with the minimum remaining time is first fired: 

FFiredሺtሻ= min {α௧೔
, such that  ݐ୧ א Vሺtሻ}     (3.4) 

      Where ti  V(t) is an enabled transition in the vector V(t). 
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Figure 3.7, Time Inscription on the Output Arcs 

In figure 3.7, transitions T1 and T2 are immediate. The inscription on the output 

arc between T1 and P2 indicates that the token is put (available) in place P2 after 10 units 

of time, but it is immediately removed from place P1. So, the arrival of a token to place 

P3 during the 10 units of time would not have any effect on the net since the token in 

place P1 has been already removed by the fire of T1.  This case is similar to the firing 

rules found in Timed Petri nets. 

 

Figure 3.8, Time Inscription on the Input Arcs 

In figure 3.8, transition T1 is enabled but cannot fire before 10 units of time, 

(tokens in place P1 must stay available for 10 units of time before firing T1). After firing 

T1, a token with value 5 is put in place P2. However, T2 is an immediate transition since 

time delays are not added to any of its input arcs. So, if a token is put in place P3 during 

the 10 units of time, it is fired immediately and transition T1 is no longer enabled. In this 
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special case, the firing of transition T1 is as the firing rule of a T-time Petri net with 

interval [10, 10]. 

 

Figure 3.9, Computing the Effective Firing Time 

Figure 3.9 shows the general case to find the fired transition. In the figure, the 

firing of T1 or T2 depends on the token arrival time in each input place (for T1: places P1 

and P3; for T2: places P3 and P5). If we assume that one token is put in each place at the 

same time, both T1 and T2 are enabled. To compute the effective firing time, we get:  

T1 = max {2, 7} = 7, T2 = max {3, 5} = 5 

FFired(t) = min {T1 = 7, T2 = 5} = T2 

So, T2 is the fired transition.  

However, if we assume that a token is put in place P1 3 units of time before the arrival of 

the other tokens, we get: 

T1 = max {2, 4} = 4, T2 = max {3, 5} = 5 

FFired(t) = min {T1 = 4, T2 = 5} = T1 

Here, we used the local remaining time for place P1 (7 – 3 = 4 units of time). Thus, the 

fired transition is T1 since the token in place P1 has already resided part of its staying 

time (time inscription on the arc). 
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4. BUILDING COMPONENTS TO MODEL LAN MAC 

PROTOCOLS 

As we have announced in the previous sections, the manufacturing systems uses the local 

industrial network to exchange messages between the workstations. So, before starting the 

construction of modeling components, we will analyze the data link layer protocols that 

we are interested in this thesis. These analyses will help us identify the basic behaviours 

common to different protocols. Each basic behaviour will be modeled in order to create a 

basic component. In our method, basic components are the initial brick of the library that 

will serve to model all the complete behaviour of the different protocols concerned in this 

study. 

4.1 ANALYZING THE DATA LINK LAYER PROTOCOLS 

The Data Link Layer DLL is the second layer in the OSI model (figure 2.2). In 

communication networks errors can occur. This means that some mechanisms can be used 

to detect and correct them. The data link layer makes errors processing by adding a 

checksum field at the end of each frame (FCS field, figure 2.4). This filed will help the 

receiver in comparing the recomputed checksum of the received packet with that in the 

FCS field to accept or drop the frame. 

The data link layer is often split in two sublayers: the logical link control LLC and 

the media access Control MAC (figure 3.10). This division is based on the architecture 

used in the IEEE 802 Project, which aims to facilitate the interoperability of different 

LAN technologies. LLC sublayer provides the functions needed to establish and control 

the logical links between local devices on a network. It offers services to the network 

layer and conceals the other details of the data link layer. This allows different 

technologies to work similarly with the higher layers. Most LAN technologies use the 

IEEE 802.2 LLC protocol. 

The MAC sublayer provides hardware addressing and channel access control 

mechanisms that enable hosts to communicate.  Different MAC protocols are used. The 
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data link layer defines most LAN and wireless LAN technologies: IEEE 802.2 LLC, IEEE 

802.3 Ethernet, IEEE 802.5 Token Ring, FDDI and CDDI, IEEE 802.11 WLAN. 

 

Figure 3.10, IEEE MAC Sublayer 

4.1.1 CHANNEL CHECK  

A workstation attempting to send data must at first check if the channel is free or 

not. FDDI and Token Ring technologies use token-passing protocol. Data is sent from 

one workstation to another around a physical ring. A workstation can only send its data if 

it possesses the token (a small frame).  

Ethernet uses the CSMA/CD Protocol.  The workstation must check if the channel 

is free or not. If the channel is busy, the workstation defers for 9.6 µs before rechecking 

the channel. If the channel is free, the workstation defers for a period of 9.6 µs before it 

starts its transmission. The IEEE 802.11 DCF uses the CSMA/CA protocol. To use the 

network, a workstation must before check if the channel is free for more than a period of 

time called Distributed Inter-Frame Space DIFS, figure 3.11. If so, the workstation starts 

a random backoff before starting its transmission.  

If the channel status is changed in both Ethernet and IEEE 802.11 deferring and backoff 

times, the workstation must restart the process of sensing the channel. 
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Figure 3.11, Channel Access in IEEE 802.11 DCF 

4.1.2 SENDING AND RECEIVING: DATA, ACKNOWLEDGMENTS AND JAM 

Workstations send and receive packets. These packets can be data packets, 

acknowledgment packets or JAM frame (a 32-bit frame, put in place of the correct MAC 

CRC). In Ethernet networks, workstations receive either data packet or a JAM after a 

collision. The destination workstation does not need to send an acknowledgment to the 

transmitter at the MAC layer. However, in wireless LANs, the destination workstation 

must send an acknowledgment to the transmitter after a successful reception of a packet, 

(figure 3.13). Otherwise, the transmitter will consider that its packet is lost or a collision 

is occurred, so it retransmits this packet causing an extra load on network worthlessly. 

In FDDI and Token Ring, the receiver must send an acknowledgment to the 

transmitter because it cannot free up the network by itself. When the transmitter receives 

the acknowledgment, it releases the free token back on the network. 

On the other hand, to send data, workstations need only to put the destination address in 

the packet. Since the medium is shared in most LAN technologies, all the workstations 

will see the packet. However, only the workstation that has the destination address reads 

the packet and the others will either forward it, or drop it. 
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4.1.3 RANDOM AND BINARY EXPONENTIAL BACKOFFS 

As we mentioned above, in communication networks errors can occur. This is due 

to many factors like the surrounding environment, noise and interference, or because of 

collisions. FDDI and Token Ring use the token-passing protocol. This guarantees the 

non-occurrence of collisions since only one workstation can send its data over the 

network at any particular time. 

However, Ethernet and IEEE 802.11 networks use the channel check and the inter-

frame space to decide the medium access. Thus, collisions may occur due to that more 

than one workstation transmits on the shared medium at the same time. In Ethernet, the 

maximum time needed to send the first bit from one end to the other end of a 10BaseT 

medium is 25.6 µs. During this time, another workstation(s) may attempt to send its data, 

as they think that the channel is free. 

As a result, a JAM signal is propagated over the shared medium informing the 

occurrence of a collision. Each workstation concerned by a collision starts a binary 

expositional backoff procedure, called BEB, to decide when it can do a new attempt to 

access the medium. The BEB algorithm computes randomly a waiting delay that increases 

with the number of the attempts Tn of the workstation. 

At the beginning Tn equals zero, (figure 3.12). Each time a collision occurs, the 

workstation increments Tn counter until it reaches 15. Before trying to transmit its data 

again, the workstation starts a BEB by taking a random value between 0 and 2X and 

multiplies it by 51.2 µs, where: 

X ൌ  ൜
Tn,       if    0 ൏ ܶ݊ ൑ 10
10,       if 10 ൏ ܶ݊ ൑ 15     (3.5) 

This helps in decreasing the possibility for a collision occurrence. In case of no collision, 

the workstation continues transmitting and when it is done it leaves the channel. 

However, If Tn reaches 15, (the load on the channel is very high), then the workstation 

aborts its transmission and tries it again later.   
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In wireless LANs, after a collision, no JAM signal is sent. However, if the 

workstation does not receive an acknowledgment after a period of time equals to Short 

IFS (SIFS, figure 3.11), it considers that a collision has occurred and starts a backoff 

procedure. For each retransmission attempt, the backoff grows exponentially as: 

STbackoff = R(0,CW) * Slot-time     (3.6) 

Where: 

 ST is the backoff time. 

 CW is the Contention Window. 

 R is a random function. 

In general, the initial (starting) value of CW (CWmin) is 16. After each unsuccessful 

transmission attempt, CW is doubled until a predefined maximum CWmax is reached 

(often 1024). 

 

Figure 3.12, Transmission in Ethernet 
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There are two major differences between Ethernet and IEEE 802.11 backoff processes: 

1- The wireless LAN starts a backoff procedure even at the first attempt to send its 

data (figure 3.13), while Ethernet does not. This is one of the mechanisms used to 

implement the Collision Avoidance feature of CSMA/CA. 

 

 Figure 3.13, Backoff mechanism in IEEE 802.11 DCF without RTS/CTS 

2- Ethernet starts its BEB algorithm after a collision (without conceding the status of 

the channel) and then restarts checking the channel to send its data. 

While in IEEE 802.11, the workstation checks first the channel status as in 

subsection 4.1.1, and then it decrements its backoff by: 

R ൌ ൜
R-1,              if the channel is free during one Slot time
R,                if the channel becomes busy                         

The design of CSMA protocol offers fair access in a shared medium. This means 

that all the workstations have a chance to use the network and workstations cannot 

capture the channel for ever.  

The remaining value of R is reused after the channel status becomes free for more 

than a DIFS period. The workstation starts sending its data when R equals zero, 

figure 3.14. 



4. BUILDING COMPONENTS TO MODEL LAN MAC PROTOCOLS 

 
102 

 
 

  

Figure 3.14, Medium Access Process for 802.11 Protocol 

4.1.4 THE CONNECTING MEDIUM  

In most LAN technologies, the medium is shared. Workstations connected to the network 

share the medium to send their data. The medium can have two characteristics: 

1- Workstation sense the medium to check if it is busy or not. Channel status change 

means that the medium is in use by a workstation sending its data. In FDDI and 

Token Ring, if the token is possessed by one workstation the medium is busy for 

the other workstations until is releases the token. The Carrier Sense portion of the 

CSMA protocol means that before transmitting, each workstation must wait until 

there is no signal on the channel. In wireless LAN channel, the channel becomes 

busy if the carrier sensing mechanism indicates that the channel is busy. 
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2- Collisions occur at the medium. Workstations transmit their data over the medium. 

In CSMA, if two or more workstations use the medium at the same time to send 

their data, a collision will occur due to many signals propagating over the 

medium. As a result, no one of these signals will be usable at its destination. In 

Ethernet, the channel becomes free after a collision after a maximum time of 51.2 

µs (two times the maximum time needed to send a bit from one end to other end 

on the channel) due to the use of collision detection technique. While in wireless 

LANs, the medium becomes free when the workstation with the longest packets 

finishes from transmitting. 

4.2 BUILDING PATTERNS COMPONENTS 

In our approach, we want to model reusable components. In this section, we will build the 

components that will be used to model the communication protocols. We specify 

interfaces to enable the assembling of these components to build other composite-

components. 

4.2.1 COMPONENTS INTERFACES 

The component interfaces declare the services that a component offers. They are 

used as an access point to the component functionality by other components. Since we use 

Petri nets to model the different component behaviours, we used places to be the input 

interfaces of components and the output interfaces are transitions. This choice is coherent 

with the traditional way to model asynchronous communication between processes 

modeled by Petri Nets. A producer component fires an output transition and puts tokens 

in the input places of consumer modules. The connection between transitions and input 

places between two blocks can be 1-to-many or many-to-1. 

As an example, figure 3.15 (a) shows a many-to-1 connection that is used to 

connect workstations output transitions to a medium input place since workstations put 

their data on the medium only. While figure 3.15 (b) shows a 1-to-many connection. This 

connection can be used to connect the medium output transitions to workstations input 

places, since all the workstations can see the signals propagating over the medium.  A 1-
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to-1 connection is possible when one workstation is connected to the medium. The light 

gray gates represent the connection part of the workstation and the light yellow gates 

represent the connectors on the medium module.  

        

Figure 3.15 (a) Many-to-1 connection, (b) 1-to-many connection

In our approach, the interfaces’ transitions put only tokens while places consume 

tokens. So external arcs cannot consume tokens from places, or be condition to fire 

transitions. However, some exceptions, where high dependency between components 

exists (like the dependency between the channel check and the backoff components) or 

when tokens will not be put in any place, may exist. 

This approach is very useful to deal with the complexity due to the size of a 

system. Indeed, if one has already a model of some workstations connected to the 

medium and wants to increase the size of its model, the insertion of new workstations can 

be done easily by adding an arc connecting an output transition to an input place.  

4.2.2 CHANNEL CHECK COMPONENT 

On a network, the workstation is the most active part; it detects signals and checks 

channel changes. When a workstation wants to transmit, it checks at first if the channel is 

idle, then it defers for a period of time before it sends its data. 

Figure 3.16 shows a channel check component. Elements in light gray represent 

the places and transitions used to build the component. Elements in dark gray represent 

the interfaces of the component. Initially, the channel is idle for all the workstation. This 

is represented by a token in place “Idle”. A workstation that wants to send data (a token in 
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place “Data send”) must first check the channel. In wireless LANs, the channel must be 

free for a period more than DIFS, while in Ethernet, it is 9.6 µs. This is represented by the 

@t’ at the arc between place “Idle” and transition “TF” (t’ equals 9.6 µs in Ethernet and 

50 µs in 802.11b). The workstation must wait before it starts transmitting, represented by 

a token put in place “sdata”. In Ethernet the wait “@t” equals to 9.6 µs, while in 802.11 it 

is equal to random value between CWmin and CWmax slots time. Place “Backoff/Deferring 

Time” and transition “FC” is used to decrement the backoff in wireless LAN, while for 

Ethernet, it can be left as it is in the figure (no dependence to that transition in the model). 

 

Figure 3.16, Channel Check Component 

Consequently, if the channel status is changed (a token is put in place “Busy”), the 

workstation can be in one of the following cases: 

 It is the transmitter (there is no more tokens in place “sdata”), then nothing is 

changed and the token in place “Busy” is consumed by transition T1; 

 It attempt to send or it has no data to send, then T2 is fired; 

 It is in the backoff/deferring phase, then T3 is fired (the workstation rechecks the 

channel again) and a token is put in place “BusyC” to stop decrementing the 

backoff. Hence, in wireless LAN, the workstation stops decrementing the backoff, 

but it keeps its remaining value. 

In the three cases the channel status is changed from idle to busy. 
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Initially, this component has one token with value 1 (representing the free 

channel) in place Idle. The use of this component is possible in any protocol that demands 

the sensing the channel before transmitting data. It represents also the status of the 

channel free or idle. Let us notice here that, for genericity, we use two parameters t’ and t 

to define the delay on the arc Idle-FT and arc Backoff/Deferring Time-Transmit 

4.2.3 RECEIVING AND SENDING ACK COMPONENT 

Workstations receive two types of packets: data packet and ACK/JAM frames. In 

Ethernet network, no acknowledgment is sent after the reception of packet. Therefore, the 

received packer can be either a data packet or a Jam frame. While in wireless LAN, FDDI 

and Token Ring, the received packet is either a data packet or an acknowledgment frame. 

 

Figure 3.17 Receiving and Sending ACK Component 

Figure 3.17 shows the receiving and sending acknowledgment component. One 

assumes that a token is put in place “Receive”. The fields of the token represents: the 

source address “Sr”, the destination address “Dr”, the received data “rdara” and the last 

field represents the lengths of the packet. The workstation checks at first the destination 

address “Dr” of the packet. The guard condition on transition “Address” checks if the 

received packet belongs to this workstation, a token is put in place “Data?”. Otherwise, 

the token in place “Receive” is eliminated by transition “Drop”. Hence, “Dr==1” is 
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considered as the own address of the workstation, while “Dr==0” is used to represent the 

multicast or JAM frame reception. 

Next, the guard condition of transition “ACK/JAM” is used to checks if the 

received frame is an ACK frame or a JAM frame (for Ethernet only). The “abc” in the 

guard can be modified according to the needs of the designer and the type of network. 

However, if the received packet is a data packet, transition “DA” is enabled. This 

transition is fired after a time equals to the time needed to receive the packet modeled by 

the “@time(Lr)” at the outgoing arc. This “@time(Lr)” is a function that returns the time 

corresponding to the length “Lr” of the packet. 

Let us notice here, the functions dynamicity can be used to model mobility of a 

wireless networks nodes. This can be done since the bit rate is a function of the signal 

strength and that the signal strength is a function of distance. This means if the source 

knows the location of the destination, then the distance can be computed, and hence the 

time needed to send a packet is determined. 

The last step is to represent the bit rate or receiving errors. The random function 

Random() is used to generate a random variable i. Assuming that the bit rate error is less 

than or equal to 10% of the transmitted/received packets. So, if the value of i is less than 

0.1, then the packet is discarded (the token in place RD is consumed by transition “BE”). 

Else, the packet is received correctly and then an acknowledgment is sent, by firing 

transition “SA”. This interface can be left unconnected in Ethernet. Again, the Random() 

function can be implemented by using any of the Java random functions. Also, as we can 

see in figure 3.17, the modification of tuples can be done easily, just by modifying the arc 

inscriptions according to our needs.  

As we saw above, this component has an important functionality since it is used to 

identify the received data (own or not), the type of the received data (JAM, ACK, data 

frame) and the process of sending an acknowledgment after a successful reception. Thus 

the use of this component is possible for the protocols demanding the identification of 

data and the send/receive process. 
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4.2.4 BACKOFF / BEB COMPONENT 

The third component is the backoff / BEB component shown in figure 3.18.  As we can 

see in the figure, retransmitting the packet depends on the value of n, (transitions T6 and 

T7). If the packet is correctly sent/received (a token is put in place “Done”), then n is 

reset to z (0 for Ethernet and 1 for wireless), for the next attempt to transmit, place N.  

 

Figure 3.18, Backoff / BEB Component 

Variable Value Ethernet IEEE 802.11b 

fun1(n) n<15 n<33 

fun2(n) n=n+1 n=n*2 

y 16 64 

z 0 1 

R(0, Q) random(0, 2X), X depends on n  random(0, CW) 

Fun(R) R*51.2µs 0 

ST(t) 0 Time slot (20µs) 

Table 3.1, Differences between Ethernet and IEEE 802.11b networks 

However, the component inscriptions depend on the type of the network. As an 

example, table 3.1 shows the differences between Ethernet and IEEE 802.11b networks. 

In addition to table 3.1, in Ethernet, places “FreeC” and “BusyCh” are not used (they can 

be left as it is), since the backoff decrement in Ethernet does not depend on the status of 
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the channel. While in 802.11b, this interface is very important in decrementing the 

backoff each time the channel is free for a slot time or the backoff is conserved if the 

channel status is changed to busy. The firing of transition TS represents the 

(re)transmission allowance of a packet (backoff equals to 0). 

The backoff component is useful for the protocols that may need a specific timing 

procedure since it can be related to another components (which the case of wireless: by 

checking channel always) or just for standalone use. 

4.2.5 MEDIUM COMPONENT 

Figure 3.19 shows the medium sharing component. A token is put in place 

“Receive” representing packet transmission over the medium. Firing M1 increment the 

variable x by 1 (initially x equals to zero, place “P5”). Once x equals to 1, the channel 

status is changed to busy or a transition “Busy” is fired (hence P7 contains only one token 

with value 0, so transition “Busy” is fired one time only).  

 

Figure 3.19, Medium Sharing Component 

The variable x is also used to count the number of workstations transmitting their 

data over the medium at the same time. If two or more workstations are sending at the 
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same time, this means that a collision is occurred, then transition “M4” is fired to remove 

the token modeling the frame to transmit. However, the firing of transition “M4” depends 

on the type of the network. Place “P1” represents the “data transfer” to the other 

workstations. However, if a token is put in place “P3”, then the channel can become free 

again and transition “M5” is fired; a token with value 0 (at the arc inscription between M5 

and P7) is put in place P7 and a token with value 1, (the arc inscription between M5 and 

P6) is put in place P6 (representing the free channel) enabling and firing the transition 

Idle. 

4.3 PROPERTIES ANALYSES OF THE BUILT COMPONENTS 

The basic properties of Petri nets include reachability, boundness, and liveness. 

Several methods are used to analyse Petri nets: reachability analysis, invariant analysis 

and reduction [Lewis98]. However, applying these methods on high level Petri nets is 

delicate and not easy. In literature, different methods are proposed to verify some 

properties. [Boukadi07] and [Hinz05] have proposed to use the state space method that 

consists of designing a graph with a node for each reachable marking and an arc for each 

occurring binding element. [Evangelista05] and [Liang06] have proposed reduction 

algorithms for the number of states in the model to verify some properties. However, 

most of these methods are complex and can be only used to verify some properties, but 

not all [Lakos02]. Another proposition is to subdivide the complete model [Khomenko03] 

into smaller parts. However, in [Petrucci05] study, the analyzed part does not guarantee 

the same results for the whole model.  

In this work, properties of the built components are not done. This is due to the 

inability of the used tool to perform these analyses. Supporting the tool with these 

capabilities is not an easy task. Another possibility is to transfer the model to basic Petri 

nets or any other modeling formalism. Again, transformation cannot be made easily. For 

the future work, this part must be covered by developing new modeling tool capable to 

perform such properties or by combining two (or more) modeling tools together to 

achieve this goal. 
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5. APPLICATION PROTOCOLS 

In this section, we will illustrate our modeling approach through two examples: IEEE 

802.3 Ethernet MAC protocol and IEEE 802.11 MAC protocol because both protocols are 

based on CSMA. One of the objectives is to illustrate the advantage of having generic 

components and the hierarchical composition that allows building composite-components. 

5.1 MODELING IEEE 802.3 ETHERNET PROTOCOL 

5.1.1 ETHERNET OVERVIEW 

Ethernet [Spurgeon00] is the most widely used LAN technology in the world. 

Ethernet was designed at its beginning at the Xerox Palo Alto Research Center PARC, in 

1973. The used protocol differs from the classical protocols like token control, where a 

station cannot send before it receives an authorization signal, the token. With Ethernet, 

before transmitting, a workstation must check the channel to ensure that there is no 

communication in progress, which is known as the CSMA/CD Protocol. 

Supplement Topology Medium Max Segments Nodes/Segment 

802.3 –1985 10Base5 Thick coax 500 100 

802.3a –1985 10Base2 Thin RG-58 coax 185 m 30 

802.3i –1990 10Base-T CAT 3/5 two-pair UTP 100 m 1024 

802.3j –1993 10Base-F Two-strand multimode fiber 2000 m 1024 

802.3u –1995 100Base-T CAT 5 two-pair UTP 100 m 1024 

802.3z –1998 1000Base-X 
Gigabit Ethernet variant 

mediums 
25–10000 m 1024 

Table 3.2, Ethernet Supplements 

The original 10 Mbps Ethernet standard was first published in 1980 by the Digital 

Equipment Corporation Intel-Xerox DECIntel-Xerox Vendor Consortium. This standard 

is called DIX Ethernet based on thick coaxial cable. The first Ethernet card appeared was 
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in 1982 called Ethernet II. In 1983, the Institute of Electrical and Electronics Engineers 

IEEE develops the Ethernet standard with 802.3 Ethernet identifiers [IEEE09], table 3.2. 

The IEEE standards have been adopted by the International Standards Organisation, and 

is standardised in a series of standards known as ISO 8802-3.  

The IEEE standard was first published in 1985 with the title IEEE 802.3 Carrier 

Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical 

Layer Specifications. At the same year it publishes the standard 802.3a or the Thin 

Ethernet. In 1987, fiber optics was used with the 802.3d standard. Despite the availability 

offered by other high-bandwidth networks like ATM and FDDI, Ethernet is very 

interesting because its low cost, maturity and stability.  

5.1.2 CSMA/CD MECHANISM 

In Ethernet network, to control which host is allowed to transmit at any given 

time, a protocol is necessary. The simplest protocol is known as ALOHA [Tanenbaum03]. 

ALOHA allows any host to transmit at any time, but conditions the hosts to add a 

checksum/CRC at the end of its transmitted frame to let the receiver to identify whether 

the packet was correctly received. So, ALOHA offers a best effort service, it therefore 

relies on ARQ protocols to retransmit any corrupted data.  

Ethernet uses CSMA, a refinement of ALOHA, to improve the performance when 

the medium is highly used. The Carrier Sense portion of the CSMA protocol refers to that 

before transmitting each host must wait until there is no signal on the channel. If another 

host is transmitting, there will be a signal on the channel. With Multiple Access all the 

Ethernet hosts have the same priority to use the network, and can attempt to access the 

channel at any time. The next portion of the access protocol is called Collision Detect. 

Since each host has equal opportunity to access the channel, it is possible that multiple 

hosts start transmitting their packets simultaneously. When this happens, the hosts sense 

the collision signal, JAM, which informs the hosts to stop transmitting. Each host will 

then choose a BEB time and retransmit their packets. Collisions are normal events on 

Ethernet and they are an indication that the CSMA/CD protocol functions as designed.  
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5.1.3 MODELING AN ETHERNET WORKSTATION 

An Ethernet workstation is the most active part in the network. In our approach, 

we want to model reusable components. In this section we will show the reusability of the 

modeled components above to model Ethernet workstation. These components are reused 

with the needed modifications to answer the specification of an Ethernet workstation. 

Figure 3.20 shows the detailed and complete module for the Ethernet workstation. As we 

can see in the figure, the three components: Backoff component, Channel Check 

component and Receive/Send component are reused to build the workstation. To 

complete the model and to bind the used components together, some additional places and 

transitions (in white) are used.  

 

 Figure 3.20, Hierarchical Design of an Ethernet Workstation Component based on 

Generic Basic Components 
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In the figure we can see that five interfaces were not connected:  

 The “FreeC” and “BusyCh” interfaces of the Backoff component, and the FC and 

BC interfaces of the Channel Check component, since Ethernet workstations 

decrement their backoff without the need to check whether the channel is idle. 

 The SA interface of the Receive/Send component, because in this part we do not 

model the service offered by an Ethernet workstation. However, in the next 

chapter we will use this interface to classify/identify the received packets. 

An important notice we can see also in the figure is that the whole component can be 

reused as one component for the Ethernet workstations to build a complete Ethernet 

network. In other words, this new component is seen as a composite-component with the 

black places and transitions as the interfaces of this new component. 

5.1.4 MODELING ETHERNET MEDIUM 

The second part in the Ethernet network is the medium where the workstations 

exchange the messages. Figure 3.21 details and completes the module for the Ethernet 

medium. The Medium Sharing component is reused to model Ethernet medium 

component. Several transitions and places (in white) are necessary to complete the model. 

 

Figure 3.21, Hierarchical Design of an Ethernet Medium 
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Transition M2 is used to model the collision part. If two or more workstations 

send their data during the period of 25.6µs over the channel (x is greater than 1) then a 

collision occurs. In this case, the conditions on transition M4 and transition M2 are 

satisfied enabling these two transitions. The firing of M2 will generate the JAM signal, or 

a token put in place P2. While M4 is used to eliminate all the signals on the medium, 

tokens in place P1. 

As the workstation component, the medium module can be reused as one component of 

the Ethernet medium to build a complete Ethernet network (Ethernet network with 

bridges for example). Thus, the black transitions and places are the new interfaces of the 

new complete component. 

5.2 MODELING IEEE 802.11B WLAN PROTOCOL 

The second application protocol is the DCF IEEE 802.11b WLAN protocol. 

5.2.1 IEEE 802.11 PROTOCOL OVERVIEW 

Wireless technology has become popular to access to internet and communication 

networks. The IEEE 802.11 [IEEE07] offers the possibility to assign part of the radio 

channel bandwidth to be used in wireless networks. The IEEE 802.11 protocol is a 

member of the IEEE 802 family, which is a series of specifications for local area network 

technologies, (figure 3.10). IEEE 802.11 is a wireless MAC protocol for Wireless Local 

Area Network WLAN, initially presented in 1997. The IEEE 802.11 standard defines 

Medium Access Protocol and Physical (PHY) frameworks (layer 2 in the OSI model) to 

provide wireless connectivity in WLAN. This independence between the MAC and PHY 

has enabled the addition of the higher data rate 802.11b, 802.11a, and 802.11g PHYs. The 

physical layer for each 802.11 type is the main differentiator between them. However, the 

MAC layer for each of the 802.11 PHYs is the same.  

Many other 802.11 variants have appeared also. In 2004, the 802.11e is an attempt 

enhancement of the 802.11 MAC to increase the quality of service. The 802.11i and 

802.11x were to enhance the security and authentication mechanisms of the 802.11 

standard. Many other variants like 802.11c, 802.11d, 802.11h. 
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IEEE 

standard 
Net Bit Rate 

Frequency 

band 
Notes 

802.11 1 Mbps – 2 Mbps 2.4 GHz 1997.  

802.11a Up to 54 Mbps 5 GHz 1999. Products not released until 2000. 

802.11b 5.5 Mbps – 11 Mbps 2.4 GHz 1999. The most common 802.11. 

802.11g Up to 54 Mbps 2.4 GHz 

2003. Applies the coding techniques of 

802.11a for higher speed in the 2.4 GHz 

band, while retaining backwards 

compatibility with existing 802.11b 

networks.  

802.11n Around 500 Mbps 2.4/5 GHz 

2009-2010. Build on the previous 

802.11 standards. max speed of 

600Mbps with the use of 2 spatial 

streams at a channel width of 40 MHz 

Table 3.3, IEEE 802.11 PHYs variants 

5.2.2 IEEE 802.11 OPERATION MODES 

Two operating modes can be used for setting up an IEEE 802.11network: the 

infrastructure mode and the ad hoc mode. In the ad hoc mode, hosts communicate 

directly with each other without intermediates. The mobile workstations located within 

the reach of each other create an IBSS or Independent Basic Service Set. In the 

infrastructure mode, all communications between mobile workstations or between the 

workstations and the outside network pass through an access point AP who takes the role 

of the relay. The coverage of an AP constitutes of a BSS or Basic Service Set.  

Access points can be linked together through a distribution system DS. The 

standard does not give specifications on the nature of this interconnection but it is usually 

a wired network (such as Ethernet). The whole interconnected wireless LAN including all 

the hosts, access points and the distribution system, is seen to the upper layers of the OSI 

model as a single 802 network, and is known as the Extended Service Set ESS, figure 

3.22.  
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Figure 3.22, Typical Architecture of the IEEE 802.11 LAN 

The IEEE 802.11 MAC layer defines two coordination functions to access the 

wireless medium: A distributed coordination function DCF and a centralized 

coordination function PCF (Point Coordination Function).  

5.2.2.1 POINT COORDINATION FUNCTION PCF 

PCF allows an 802.11 network to provide an enforced fair access to the medium. 

It is an optional part of the 802.11 specification. The access to the medium under the PCF 

looks like token-based medium access control schemes, with the access point holding the 

token. Direct communications between wireless workstations are not possible; they must 

all pass through the access point. As a result, half of the bandwidth is wasted. This 

method has been launched by the standard to meet the needs of users with real-time 

traffic. It is based on defining a contention free period CFP to be held alternately with the 

contention period CP managed by the DCF method. Alternating periods at regular 

intervals is known as the contention-free repetition interval. 

The contention period, figure 3.23, must be long enough for the transfer of at least one 

maximum-size packet and its associated acknowledgment. 
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Figure 3.23, Point Coordination Function PCF 

5.2.2.2 DISTRIBUTED COORDINATION FUNCTION DCF 

DCF [Bianchi00] is the fundamental access method used to support asynchronous 

data transfer on a best effort basis. As identified in the specification, all the workstations 

must support the DCF. The DCF is based on the CSMA/CA protocol. The reason is that 

even though the wireless LAN is a broadcast medium, the traditional CSMA/CD will not 

function properly because the workstation is unable to listen to the channel for collisions 

while transmitting, due to the big difference between transmitted and received power 

levels. To overcome this problem CSMA/CA protocol uses a positive acknowledgement 

mechanism. 

In IEEE 802.11, carrier sensing is performed at both the physical layer and the 

MAC sub-layer. On the physical layer, the carrier sensing is referred to as the physical 

carrier sensing which detects an activity in the channel via relative signal strength from 

other workstations. On the MAC sub-layer, carrier sensing is known as the virtual carrier 

sensing which is used by the source to inform all the workstations in the BSS for how 

long the channel will be used for successful transmission of a MAC protocol data unit.  

The source set the duration field in the MAC header of data packets (or in the Request to 
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Send RTS and in the Clear to Send CTS control frames, figure 3.24). The cannel is marked 

busy if either the physical or the virtual carrier sensing mechanism indicates that the 

channel is busy. 

 

Figure 3.24, DCF Transmission with RTS/CTS 

Priority access to the wireless medium is controlled through the use of Inter-

Frame Space IFS time intervals between the transmissions of packets. The IFS intervals 

are mandatory periods of idle time on the transmission medium. Three IFS intervals are 

specified in the standard: Short–IFS (SIFS), Point Coordination Function–IFS (PIFS) and 

Distributed Coordination Function–IFS (DIFS). The SIFS interval is the smallest 

followed by the PIFS followed by DIFS.  

5.2.3 MODELING A DCF IEEE 802.11B WORKSTATION 

In the last sections, we saw how the built components can be reused to model the 

IEEE 802.3 workstation module. Figure 3.25 shows the detailed and complete module for 

the DCF IEEE 802.11b workstation model by the reuse of ready-to-use components in the 

previous sections. 

The workstation sets the value of N to 1 (place “N”), sense the channel (transition 

“TF”), sends its data (place and transition “Send”) and waits for an acknowledgment 
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(place “Wait”). If no acknowledgment is received during the SIFS period or 10µs, 

Transition T11 will fire putting a token in place “Retransmit?” to check if the packet can 

be retransmitted (transition T6) or not (transition T7). As we can see in this figure, all the 

components are reused to composite the workstation module. All the interfaces were also 

used in this module. 

 

Figure 3.25, Hierarchical Design of a DCF IEEE 802.11b Workstation Component based 

on Generic Basic Components 
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5.2.4 MODELING THE WIRELESS MEDIUM 

Figure 3.26 shows a detailed and complete component of the wireless medium. In 

this model we used more functions to complete the modeling. The Math.max(L,R) 

function is used to compare the different packets lengths. Place P4 has a token with 

assumed value of 10 bytes as the smallest packet size. When many workstations send 

their data over the medium, a collision occurs. However, workstations continue 

transmitting even after the collision.  

 

Figure 3.26, Hierarchical Design of DCF IEEE 802.11b Medium 

Here, the Math.max(L,R) function compares the length of the sent packets L with 

the assumed value R. If the L is greater than R, it has the value of L, otherwise R keeps its 

value. We assumed also that all the workstations in the medium will know that the 

channel is busy during 9µs so no workstation transmits after this time. As a result R will 

have the value of the packet with the longest size L. The medium becomes idle after the 

end of this transmission. The firing of transition M6 will put a token in place P3 with the 

value of R which will be used to free up the channel (to fire transition Idle). 
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6. CONCLUSION 

Component-based methodology is a great technique and designing method derived 

from the object-oriented design. A component-based approach defines that a component 

designer does not need implementing the technical concerns several times. The designer 

only identifies the services required by a component, and makes sure that these services 

are available by the developed components. System models can be assembled from 

working together components, accessing each other through distinct component interfaces 

that hide the component implantation details.  

Since the functionality and the way to access the components are well-defined, 

pre-existing, ready-to-use components can be reused in several models. Our approach is 

based on the component-based technique and designing method to model communication 

protocols and distributed systems. HLPN permit the representation and manipulation of 

an object. Petri nets are a powerful formalism for modeling concurrency and distribution.  

Constructing a library of ready-to-use components can help in modeling new 

systems easily. To build such library, analyses, constraints and user requirements are the 

key factors to complete it. To examine and motivate the reusability of generic 

components which reduces the time and the cost needed to build new models, we have 

chosen wireless protocol IEEE 802.11b and Ethernet IEEE 802.3 as two application 

examples. As a result, our component-based design approach ease the development of 

generic components, supports their reusability, increases adaptability of service 

composites, and enables continuous extensibility of components functionality. In the next 

chapter we will verify the accuracy of our approach and evaluate the complete model with 

a study case of the manufacturing systems. 
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1. INTRODUCTION 

Performance evaluation [Haverkort98] [Fortier03] is often important in the design, 

development, and configuration of complex systems especially for computer and 

distributed systems [Masri09a]. A system may work properly, but it must also work 

efficiently. Performance evaluation deals with existing or planned systems, and aims to 

compare different configurations, or to find a favourable configuration of a system. Three 

techniques are used for evaluating the performance of a system: measurement, analytical 

models and simulation models. 

Measurement can offer the most exact and accurate results. The system is 

observed directly. However, measurement is often the most costly of the techniques since 

it is only possible if the system already exists. In some cases, measurements may not be 

accurate since it depends on the state of the system. For example, if network 

measurements are done during peak period, the observed results would be not the same if 

the measurements were done during a low use period of the network. 

Analytical models may provide exact answers. Analytical modeling uses simple 

mathematical expressions to obtain the performance results for a system. However, these 

results may not be accurate, because of their dependencies on the made assumptions in 

order to create the model. The behaviour of computer systems including processing 

periods, communication delays, and interactions over the communication channels is 

difficult to model. Analytical models are excellent to model small to medium systems that 

fulfil some requirements but it is not the case for industrial-sized, networked and 

distributed systems. 

However, simulation models can be used as an alternative choice to analytical 

techniques. Larger and more complex models can be built and analysed. Simulation 

models allow creating very detailed, potentially accurate models. However, developing 

the simulation model may consume a good amount of time, but once the model is built it 

takes a little time to get results. 
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In this chapter we will introduce the different models and methods used to 

evaluate the performance in communication and distributed systems. We will particularly 

focus on the simulation model approach (where we are interested in) and the advantages 

and disadvantages of this method over the other methods. The second part will be 

dedicated to the simulation results of the communication protocols models presented in 

chapter 3. A comparison with NS-2 simulator and other studies will be given to prove the 

accuracy and quality of our models. The last part will combine the modeling of 

communication protocols and the manufacturing system presented in chapter 1. The 

impact of using different communication protocols over this system will be verified. 

2. PERFORMANCE EVALUATION TECHNIQUES 

This section will focus on the analytical and simulation modeling techniques. 

2.1 ANALYTICAL MODELS 

Analytical modeling is one of the fast and cheapest techniques for evaluating the system 

performance. It is based on the modeling the systems under a form of parameters, 

variables and a set of mathematical formula that control their relations. With analytical 

models, one can model and evaluate the behavior of the system in the flexible manner. 

However, these techniques need many simplifications and hypotheses to obtain a coherent 

system. These simplifications and hypotheses are one of the major limits and challenges 

for the accuracy of the obtained results with the analytical techniques. Analytical 

techniques take different forms, from simple bounds analysis to the evaluation of complex 

Markov Chains.  

2.1.1 STOCHASTIC MODELS 

Stochastic models [Mieghem06] [Ethier86] are mathematical description 

represented by random variables with uncertain results and where one can only compute 

the probabilities of possible outcomes. In a stochastic model, the total behaviour of the 

system is expressed as a stochastic process in time. A stochastic process denoted as {X(t), 

tT },is a collection of random variables X(t) that change their value throughout the time t 
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which runs over an index set T. The set of all the possible values of X(t) is called state 

space. 

A Poisson process and Markov process are two stochastic processes. A Markov 

process is also a stochastic process with some additional properties: the future behaviour 

of the process depends only on the present value, but not on the states assumed in the 

past. A Markov process is called a Markov chain if its state space is discrete. 

Stochastic processes are distinguished by:  

 Their state space,  

 The index set T, 

 The dependence relations between the random variables X(t). 

Stochastic models are interesting when the process has a strong element of random 

motion. It gives also more information about statistical uncertainties involved in the 

process. The performance measures are expressed as functions of stochastic process. 

These functions can be more or less easy to determine depending on the type of the 

stochastic process and of the desired measures.  

2.1.2 QUEUEING MODELS 

The queueing theory [Cassandras08] [Mieghem06] is one of the most used 

methods for the performance evaluation in computer systems. It represents and analyzes 

resource-shared systems, such as production systems and communication systems. A 

queueing model is presented as a set of servers interacting together (which represents the 

systems resources) and a set of clients (represents the users sharing these resources). 

Graphically, this model is represented as a direct oriented graph with nodes representing 

the servers and the links between them represent the requests behaviour of the clients 

from these servers. In distributed systems, many clients attempt to access the shared 

resources.   

Because the request rates vary in time, waiting situations occur when more than one user 

wants to access a single resource. The idea of queueing systems is to model shared 

resources as service providing entities preceded by waiting queues, figure 4.1. 
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Figure 4.1, Single server model 

Queueing models have some characteristics: 

 The arrival process of clients. 

 The clients’ population. 

 The amount of waiting room. 

 The amount of service a client requests. 

 The service capacity. 

 The service discipline, such as: 

- FCFS or FIFO: First Come, First Served, 

- LCFS(-PR) or LIFO: Last Come, First Served, with or without Pre-emption, 

- RR: Round-Robin. 

The queueing theory makes use of a particular type of notation A/B/m/K so as to describe 

a system, where: 

 A is the arrival time distribution 

 B is the service time distribution 

 m is the number of present servers, m = 1, 2, . . . 

 K is the storage capacity of the queue, K = 1, 2. . . If the K position is not present, 

it means that K = ∞. 

Moreover, the distributions of A and B has some common notation: 

 M is Markovian (exponential) service time or arrival rate, 

 G is general service time or arrival rate,  

 D is the Deterministic case where the service and arrival times are fixed. 

Thus, queueing systems exist in several models: 
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 The M/M/1 system is a basic and simplest queue model. It consists of a Poisson 

arrivals process with exponential distribution of the service such as A(t) = 1 − e−λt 

and B(t) = 1 − e−μt, for some positive parameters λ (arrival rate) and μ (service rate), 

one server, infinite capacity and population, FCFS (FIFO) queue ordering discipline. 

 The M/M/1/K system: the same as M/M/1 system but with a finite queue size. 

 The M/M/C system: the same as M/M/1 but with multiple servers, C. 

 The M/G/1 system: the service time does not have the Markov property. 

 The G/M/1 system: the service time is random but the arrival process is non-

Markovian. 

Layered queueing networks LQN [Woodside95] is one of its extensions. It allows 

to model the client/server distributed architecture with concurrent interactions. In this 

extension, servers can become a client of other servers but it continues serving its own 

client. 

Performance can be evaluated in such models once the queueing model has been 

characterised completely. Several performance measures can be done: steady-state 

probability of having n clients in system, service rate of one server, total time spent in the 

waiting line by client n, the number of clients in queue at time t, long-run average time 

spent in system per client, and so on. 

Analytical models try to abstract details of a system and can be used at any stage 

of the systems design. They can directly present statistics for the modeled system. In 

addition, they represent a flexible modeling methodology with low time consumed in 

constructing the model. However, accuracy, trustability and believability of the obtained 

results of such models are not high since simplifications and hypotheses are needed to 

solve the systems equations which affect the results. In addition, the larger the system is, 

the more complex the model becomes. 

2.2 SIMULATION MODELS 

Real systems are very complex to accept analytical solutions. However, mathematical 

models may be still applicable but their problem is the need to have the tools able to solve 
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the equations of such models. Simulation [Fortier03] allows modeling and observing the 

system behaviour. It facilitates the understanding of the real system. Simulation allows 

the evaluation of a system model in an executable form, and the data of such process are 

used to calculate different measures of interest. Simulation is generally used because the 

complexity of most systems requires the use of simple mathematical ways for practical 

performance studies. This makes simulation as a tool for evaluation.  

The use of simulation for performance verification of distributed systems is highly 

used in the research because of its large modeling capacity. Analytical solutions for 

discrete event systems are mainly hard to acquire. This makes simulation a very attractive 

for their study. As an advantage over the analytical models, every system can be modeled, 

as many dynamic and complex interactions can be taken into consideration for the 

simulation. Moreover, in most of the cases the functioning and performance of a system 

can be verified with the same simulation environment. 

Another advantage of simulation methods is that they are generally reusable over 

different abstraction levels. In other words, the level of abstraction for the simulation can 

be customized to the necessary degree of accuracy. However, the major disadvantage of 

this technique is that it needs (in some cases) important and consistent calculation 

resources and time. Many communication networks, manufacturing, transportation, 

economics and space systems can be easily and satisfactorily analyzed with simulation 

models: increased requirement for better quality and utilization of resources, shorter time, 

and reduced costs, the impacts of failures, etc.  

In the case of distributed event systems, simulation is also used in several 

applications such as the design of manufacturing systems and communication networks: 

evaluating different protocols and network resources, or designing road networks to deal 

with traffic loads. Reminding that, these systems are all highly complex systems. So, 

building and experimenting the real system is in fact unrealistic. Concurrently, building 

such systems based on rough approximations is simply too “hazardous”. However, such 

systems are subject to possible use of approximations. In this case, simulation becomes a 

way to examine their accuracy before making any real confidence on them. 
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Simulation models are normally described as being either continuous or discrete 

(figure 4.2), where these terms involve the behaviour of system. In the continuous 

simulation models, the events change as time goes forward. However, in discrete-event 

simulation models, the time in the time-based models is assumed to go forward in fixed 

steps, but the number of events pet time step varies. While in the event-based models, a 

time step is limited to one event (each time an event occurs) [Haverkort98]. 

 

Figure 4.2, Simulations Classifying 

2.2.1 CONTINUOUS EVENT SIMULATION 

Continuous event simulation [Alony07] [Haverkort98] copes with the modeling of 

physical events / states such as processes, behaviours, or conditions, which can be 

expressed by a set of continuous variables changing with time.  In a continuous-event 

simulation, simulated time advances regularly by some fixed increment and at each 

simulated time the simulation checks if a change happens at that time. Generally, these 

physical events can be described by systems of differential equations with boundary 

conditions. In continuous systems, time is a continuous parameter, but the system can be 

observed at fixed time instances only, producing a discrete time parameter. Continuous-

event simulation is widely used in chemical, gas and fluid systems studies. 
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2.2.2 DISCRETE EVENT SIMULATION 

More suitable for our aims are the discrete-event simulations [Cassandras08] 

[Schriber05]. Discrete-event simulation is a powerful computing technique for 

understanding the behaviour of systems. In discrete-event simulations, the state changes 

occur at discrete steps in time. Discrete event simulation mainly used in more real 

environments such as communication networks and protocols [Lim08] [Weber07] 

[Kumar07] [Carothers06], manufacturing systems [Hong08] [Kumar09], material 

handling [Giordano06] [Gan06], etc. General purpose programming languages like 

C/C++ and Java and several simulators are based on the discrete event simulation such as 

NS-2 [NS208], OPNET [OPNET09], OMNet++ [OMNet09], IBM Cell SDK [IBM09], 

P2PSim [P2PSim05] and many other tools.  

The state or state variable changes are also called events. In such simulation, 

events take place one-by-one discretely in time. Distributed systems consist of objects and 

components that exchange variables and information data between them. These variables 

and data are subject to actions and conditions coming from the communication channels 

and/or the components interfaces. Such conditions or events may be in many forms such 

as the arrival and departure times, waiting time, stop points, service variables and 

handling and so on. The resulting of these events over the variables and data attributes 

provides information on how to deal with them.  

In communication networks, the arrival of packets only makes a workstation starts 

a receiving process event. If that packet does not belong to it, the workstation drops the 

packet and stops that service. Thus, the sensing of the channel (event) and the internal 

attributes (another event) were responsible in starting and ending a service. In addition 

these starting and ending of events may affect other events to occur and to be simulated. 

However, the modelling of such events needs a good definition, development and 

scheduling of these events. The needs and constraints, all the activities that could be 

performed, and the interaction between all the system-model elements and components 

must be taken into account and clearly be present in the model. Otherwise the resulting 

and measures of the simulation would not reflect the desired quantitative values attended 
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from realistic simulation. Our approach is made for the discrete event systems, so, a 

discrete event simulation could be made based on the event and attribute changes. This 

leads to give some characteristics for the discrete event simulation [Fishman01]: 

1- It enables the organization of theoretical observations about a system, 

2- It improves the understanding of a system, 

3- The speed to achieve the desired analysis, 

4- It is less costly than real systems measurements. 

However, the main disadvantage of discrete event simulation is the occurrence of 

two or more events at the same time. In this case the system must choose one of these 

events. Here, the results may not be the same if the simulation is repeated many times, 

since the simulator may choose another event than the one chosen in a previous 

simulation.  

The second disadvantage is that simulation must be repeated many times to get 

accurate (average) results. The detection of exceptional events during simulation is 

difficult since the simulator itself generates the events (depending on our modeling 

technique). However, this will be possible if the simulation is repeated several times. 

Again this will cost longer time to verify the system-model. 

2.3 COMPARISON BETWEEN THE DIFFERENT METHODS 

Table 4.1 shows a qualitative comparison between the different methods used to evaluate 

the systems performance. This comparison is based on the following criteria [Chhabra07] 

[Jain91]: 

1- Stage: Which performance evaluation technique should be used at any point in life 

cycle, 

2- Time required: The time consumed/required by a particular technique, 

3- Tools: Which analytic tools, simulators, measurement packages are used, 

4- Accuracy: It represents the degree to which the obtained results match the reality 

(evaluates the validity and reliability of the results obtained). 

5- Scalability: It represents the complexity degree to scale a particular technique 
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6- Trade-off evaluation: It represents the ability of a technique to study the different 

system configurations. 

7- Cost: This cost must not be considerable in term of time and money needed to 

perform the study.  

8- Flexibility: The under test system-model should be easy to modify and extend. The 

used evaluation technique should provide the possibility to integrate these 

considerations easily in the developed model. 

Criterion Analytical Simulation Measurement 

Stage Any Any Post prototype 

Time Required Small Medium Varies 

Tools Analysts Computer Languages Instrumentation 

Accuracy Low Moderate Varies 

Trade-off evaluation Easy Moderate Difficult 

Cost Small Medium High 

Scalability Low Medium High 

Flexibility High High Low 

Table 4.1, Comparison of the different Performance Evaluation Techniques 

Simulation seems to be the mostly used technique used to evaluate the 

performance of the computer systems. It represents a useful means to predict the 

performances of a system and compare them under many conditions and configurations. 

One major advantage of this technique is that even if the system is already implemented, 

it offers flexibility difficult to reach with measurement techniques.  

Our modeling formalism, Petri nets, combines both the analytical and simulation 

models which let the possibility to model system mathematically. However, 

communication networks and distributed systems are so complex that building and 

solving the equations’ system are too difficult and needs tools capable to perform this 

process.  
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3. PERFORMANCE EVALUATION OF NETWORK 

PROTOCOLS 

As we saw in the previous section, simulation is more appropriate to evaluate the 

performance in computer systems since it can give more accurate results and easier than 

the analytical methods. To evaluate the quality and accuracy of our model, we will show 

the simulation results of our model for the DCF IEEE 802.11b protocol part without 

RTS/CTS. We will show a comparison between the time needed to send packets over 

Ethernet and the DCF protocols. Next, to we will compare the results for IEEE 802.11b 

with the data given by NS-2 simulations performed in the same conditions, since it is one 

of the well-known and highly used simulators in the domain of communication networks. 

In addition, we compare them with the other studies about the IEEE 802.11b network 

[Anastasi05] and [Heusse03].  

3.1 CHOOSING THE TOOL 

Many tools and extensions of Petri nets exist such as PNtalk, PROD, QPME, 

CoopnBuilder, ALPHA/Sim, Artifex and other tools [PNW09]. However, the development 

of most of these tools has been stopped since long time, or they do not support our needs 

or these are commercial. Two main, free of charge tools were possible to cover the 

previous features “CPN Tools” [CPN07] and “Renew 2.1.1” [Renew08] [Kummer04].  

“CPN Tools” is a discrete-event modelling language combining Petri nets with 

the functional programming language Standard ML [Jensen07] developed and maintained 

by the CPN Group at the University of Aarhus. CPN Tools is a tool for editing, 

simulating and analysing colored Petri nets with GUI graphical interface. 

However, during simulation, “CPN Tools” has shown an important problem that does not 

apply to our timing needs. Figure 4.3 shows this feature in “CPN Tools”. In this example, 

the sender waits for an acknowledgement (a token in place “ACK?”) during 10 units of 

time, a token put in place “Receiving ACK”. However, if it does not receive an 

acknowledgment during this time it starts a collision procedure, T1 is fired. 
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However, during simulation this need never happens. The tool showed that since 

there is initially no token in place “Receive ACK”, then, even after the putting a token in 

that place, T0 would never be fired. Moreover, even if initially a token is put in place 

“Receive ACK” and in place “ACK?”, T1 stills a possible fired transition even T1 has 

timing of 10 units of time and T0 is immediate. This problem is not appropriate for our 

modeling methodology. When the sender receives an acknowledgement, the collision 

procedure is more possible. However, “CPN Tools” did not give us the possibility to 

model this feature. 

 

Figure 4.3, Timing in “CPN Tools” 

Another possible tool was “Renew 2.1.1”. “Renew” is a Java-based high-level 

Petri net discrete-event simulator that provides a flexible modeling approach based on 

reference nets [Moldt03], developed and maintained at the Theoretical Foundations 

Group of the University of Hamburg. Renew combines the Petri nets formalism with the 

Java Object-Oriented programming language. This combination has permitted modeling 

all the selection criteria defined previously and more, since it allows the use of nearly all 

the functions offered by Java. However, in this work we did not make use of the reference 

nets feature of this tool, but we were limited to the same classical features found in “CPN 

Tools” for modeling and simulation the system depending on our needs. 

Renew is available free of charge including the Java source code, allowing the 

insertion of new plug-ins. Its editor has: easy to use interface, minimal input for the user, 

direct relation to the functionality and provision of a high-level formalism, which 
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facilitates its use. Moreover, it is always up-to-date; the last version 2.1.1 is dated from 

July 2008. Simulations can be made with different plugged-into-application compilers; in 

our application we use the Timed Java Compiler. 

As a simulation tool, “Renew 2.1.1” allows the continuous and the step-by-step 

simulations. The later permits to check the system changes one-by-one and getting better 

understanding of the system-model such as deadlocks, unexpected event, warnings and so 

on. This allows to better reconstruct or modify the system-model easily and to find the 

errors one-by-one for better performance measures and systems design and 

implementation. Once the model goes straight forward, the continuous simulation can be 

performed. This allows getting the desire performance measurements more rapidly. 

Nevertheless, the tool “Renew 2.1.1” does not have a package (or a plug-in) able to 

perform these analytical verifications. 

3.2 SIMULATION AND RESULTS 

Our simulations are based on full-mesh dense networks with different numbers of 

workstations: 

1- The simulations were performed for different number of workstations sharing the 

medium.  

2- For each case, the simulations were repeated 100 times to get average measures. 

3- Each simulation assumes that all nodes transmit at 11Mbps  

4- All the nodes attempt to send data as soon as possible.  

5- Each node has 1000 packets (to get the average possible measures) with average 

packet length of 1150 bytes (packet length varied from 800 byte to 1500byte) 

6- All simulations are accomplished on Intel® Core™ 2 Duo Processor T2300, 2G of 

RAM. 

3.2.1 AVERAGE BANDWIDTH PER NODE 

The first result is the average bandwidth per workstation. Figure 4.4 shows the 

throughput of 802.11b nodes sharing a bandwidth of 11Mbps. As we can see in the figure, 

the bandwidth per node decreases logically with the increase of nodes number. In the 
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figure, when the number of nodes is small each workstation has more bandwidth from the 

shared effective bandwidth. However, when the number of the nodes on the network 

increases, the bandwidth is decreasing exponentially. This is due to the increased number 

of collisions on the network, and so more bandwidth will be lost.  

 

Figure 4.4, Bandwidth Variation with Number of Nodes 

The other factor is that CSMA gives fair timing to the machines to access the 

channel. Thus, workstations must wait longer time to have access to the channel. Another 

factor is after a collision, the workstations must double their contention window which 

means longer backoff time. So, more time is spent to decrement the backoff or less total 

bandwidth. 

3.2.2 COLLISIONS RATE PERCENTAGE 

The next step is to compute the collision rate percentage or errors versus the 

network utilization. Figure 4.5 shows how the collision rate increases when the number of 

workstations increases. As we can see in the figure, when the three workstations are 

sharing the medium, the collision rate is nearly 8%. However, when there are 12 

workstations sharing the medium, the collision rate reaches 23.2%. These results confirm 

the results obtained in the previous section and our explanation.  
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Figure 4.5, Collisions Rate Percentage 

As we can see, the collision rate is increasing linearly until certain point (8 

workstations). The reason is when more workstations attempt to send, more packets are 

on the shared channel and hence the probability that a collision occurs increases. 

However, when the number increases more, the collision rate increase becomes slower. 

The explanation for this slowly state is the backoff procedure.  With more workstations, 

the number of collisions increases, and the value of CW also increases (backoff time). On 

the other hand, this increment of backoff time decreases the probability of a collision, 

since workstations in collision must wait for longer time before attempting to send again. 

So, the collision rate increment becomes slower. 

3.2.3 TRANSMISSION TIME PER PACKET 

The next test is to measure the overall time needed to send a packet over Ethernet 

or DCF protocols (from sender side to receiver side). Figure 4.6 shows the time required 

to transmit one packet versus the number of nodes on the network. The transmission time 

increases linearly due to the increased number of sent packets on the network and 

collision rate.  

However, sending a packet over Ethernet requires less time than sending it over DCF. 

The figure shows that with three nodes on the network, DCF seems to be the same as 
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Ethernet. However, with the increase of nodes the difference becomes obvious. This is 

due to: 

1- A workstation attempting to use the channel in wireless networks needs to ensure 

that the channel is idle during a DIFS period or 50µs, while in Ethernet it only 

needs 9.6 µs. 

2- From the first attempt to transmit, wireless nodes starts a backoff procedure (Bavg 

= 8 * 20 µs) decremented only if the channel is idle, while in Ethernet, 

workstations defers only for 9.6 µs. 

3- After a collision, in wireless networks, the channel status becomes idle only when 

all the workstations finish their transmissions (no collision detection process), 

while in Ethernet the channel becomes idle after 51.2 µs (channel acquisition slot 

time). 

4- The backoff procedure used after each collision (Chapter 3, Section 4.1.3 and 

figures 3.13 and 3.15) in wireless networks doubles the contention window value 

which is already 8 times greater than the one used in Ethernet. This makes the 

backoff in wireless greater than Ethernet BEB even with slot time (20µs) less than 

the 51.2 µs used in Ethernet. 

 

Figure 4.6, Transmission Time per Packet 
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Table 4.2 shows the collision rate, the bandwidth per node, the time needed to send a 

packet and the total effective bandwidth. The total effective bandwidth decreases with the 

increased number of workstations on the medium and the increment of collision rate.  

No of Nodes Collision Rate BW/Node  Time/Packet Total Effective BW

3 7,95% 2.76 Mbps 3.541 ms 8.29 Mbps 

4 10,34% 2.06 Mbps 4.694 ms 8.25 Mbps 

8 18,70% 0.92 Mbps 10.15 ms 7.34 Mbps 

12 23,18% 0.58 Mbps 15.52 ms 6.97 Mbps 

Table 4.2, Different simulation results of 802.11b DCF Protocol 

3.3 COMPARISON WITH NS-2 SIMULATOR AND OTHER 

STUDIES 

To evaluate the quality and accuracy of our model, we have used the network simulator 

NS-2 as a helping tool since it is widely used to model communication protocols. The 

NS-2 simulator is a discrete-event network simulator that allows simulating many 

scenarios defined by the user. It is commonly used in the research due of its extensibility, 

since it is an open source model. NS2 is widely used in the simulation of routing and 

multicast protocols and ad-hoc network. The network can be represented / modeled by 

traffic sources, protocols, routers and links that connect them.  

The source code of NS-2 is written in C++ language for the internal functioning of 

the network components (core engine) and O-TCL scripts, which is the object-oriented 

version of TCL language, for the configuration and simulation scripts. The modeling of a 

network consists of different elements: 

 Nodes: They correspond to workstations (traffic generation) or routers. 

 Communication Links: They model the physical connection between two nodes. 

 Agents of communication: They represent the transport layer protocols (TCP and 

UDP). To establish communication between two nodes, we must attach an agent 

on each node, and connect them so that the communication can take place.  
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 Applications: They are responsible for generating traffic (file transfer, random 

traffic, etc.) and they use the communication agents. 

Each element in NS-2 model can be adapted to the users’ needs: the packet size, bit rate, 

maximum number of packet, etc. 

To carry out our comparison, the NS-2 model simulations were performed in the 

same conditions (a dense network and the workstations are in the same domain) and on 

the same computers. Figure 4.7 shows a sample declaration of a node with packet size of 

1150 bytes and 1000 packets for each node 

set udp(1) [new Agent/UDP] 

$udp(1) set prio_ 1 

set null01 [new Agent/LossMonitor] 

$ns_ attach-agent $node_(0) $udp(1) 

$ns_ connect $udp(1) $null01 

set cbr(0) [new Application/Traffic/CBR] 

$cbr(0) set packetSize_ 1150 ; 

$cbr(0) set rate_ 1Mb 

$cbr(0) set maxpkts_ 1000 

$cbr(0) attach-agent $udp($i) 

Figure 4.7, Sample code of NS-2 Model 

Figure 4.8 shows the results obtained from NS-2 and those from our model, 

(figure 4.3). As we can see the results of both simulations Renew and NS-2, are nearly 

identical which confirms the correctness of our model. Moreover, if we compare our 

obtained results with those in [Anastasi05]  and [Heusse03], we can get also the same 

results from both the simulation technique and the equation we obtained from the results. 

The other comparison is the effective simulation time. As we can see in figure 4.9, 

the simulation time increases in a linear way when the number of nodes increases 

(confirmed by the results in Figure 4.6). The figure shows that NS2 needs less time to 

perform the same simulation. However, NS2 does not support the step-by-step simulation 

to verify the system event by event. The second important issue is that it is not possible to 
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model distributed services with NS2 (no supporting package). However, with “Renew” as 

Petri nets editor and simulator, it is possible to combine both services and protocols in 

one global model. 

 

Figure 4.8, Comparison between Our model and NS-2 

 

Figure 4.9, Effective Simulation Time versus number of nodes 
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4. A CASE STUDY: EVALUATING PERFORMANCE OF A 

DISTRIBUTED MANUFACTURING SYSTEM 

In the last sections, we have shown the modeling part of the communication protocols. In 

this section we will show the modeling part that concerns the services. The illustrative 

example used in Chapter 1, figure 4.10, will be reused to model the services offered by a 

production system. The used modeling technique will be the same as the communication 

protocols, i.e. component-based methodology, where each part of the system is modeled 

in hierarchical composition: “service-workstation”, i.e. each service is modeled over a 

workstation. 

 

Figure 4.10, Manufacturing Plant with Flexibilities  

4.1 ANALYZING THE SYSTEM 

In chapter 1, we have shown the technique used to model the system, figures 1.10-13, 

which is based on transforming each place and transition to a complete Petri net figure 

1.11. In this chapter, we will not make use of the intermediate model step and we will 

distribute the services over different workstations (no centralized control). 
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4.1.1 SYSTEM COMPONENTS 

Figure 4.11 shows the complete system components used to transfer one product 

from IN/OUT area to any machine M1, M2 or M3. Z1 to Z4 represent the input and output 

areas for each machine and the IN/OUT area. 

 

Figure 4.11, Complete Area and Transfer Components 

The capacity of each is limited to one product. IS1 to IS6 areas represent the stock 

area before and after machining a product.  The capacity of each stock area is greater than 

one. R1 to R4 represent the robots used to make a transfer from a Z area to a machine or 

IN/OUT area and vice versa. Finally, T1 to T8 represent the transfer elements from and to 

a Z and an IS stock areas. 
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The component represents the service offered by a resource, a robot or a transfer 

component. Machines, Z’s and stock areas are considered as shared resources. The use of 

each of them needs a pre-allocation (chapter 1, section 3) made by a transfer component 

Ti or Ri. Each component-service is modeled as a Petri net over the workstation 

component model (Chapter 3) (workstation per service). In order to allocate a resource or 

machine, the request of a service is made by messages exchange over the network via the 

underlying workstations.  

4.1.2 EXCHANGED MESSAGES BETWEEN COMPONENTS 

In order to transfer a product from one area to another one, areas must allocate the 

required area/resource. Pre-allocation is passed through a transfer component. Transfer 

components check the possibility to allocate the destination area (depending on the 

capacity of each area). An acknowledgement is from the destination area when a place is 

free. During this time the source area and the transfer component are in waiting period 

(machines and Z areas do not perform any action during this time, while stock areas can 

receive products from other components). 

 

Figure 4.12, Product Transfer in Petri Nets 

Figure 4.12 shows the centralized model of a product transfer from S to D areas. 

In the figure, to transfer a product, the product must be available in area S (a token put in 
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place S/REQ), the transfer component must be also available (a token in place 

SD/NOP) and a free place in area D (a token in place D/CONS). These three tokens 

enable the transition SD/t1 and a token is then put in place SD/TRSF-START 

starting the transfer process. The transfer component takes the product from area S. the 

firing of transition SD/t2 and the put of a token in place S/ACK inform that a place is 

released up in area S. The transfer process continues by putting a token in place 

SD/TRSF-END. When the product arrives to area D (transition SD/t3), the transfer 

component becomes free again (a token is put in place SD/NOP) and an area is used in 

area D (a token is put in place D/PROD). 

 

Figure 4.13, Exchanged Messages over the Network for the Transfer 

Figure 4.13 shows the complete messages exchanged in case of implementation of 

the 3 processes (S, SD, and D) in 3 different computers. Each process plays a different 

role with regard to the client/server mechanism. S is always a client and D is always a 
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server. The role of SD varies depending on the message. At first, the source area S 

(workstation) sends a request message to the transfer workstation, SD (Ti or Ri), 

containing the destination workstation D. Ti (or Ri) sends a request to D, requesting a free 

place (Cons-D). If there is a free place, D will send a positive acknowledgment to Ti (or 

Ri), otherwise S and Ti (or Ri) will stay in a waiting period. 

Once Ti (or Ri) receives the acknowledgment, it sends two messages to S 

containing a positive acknowledgment and a request to release the product. When the 

product is released S sends an acknowledgment to Ti (or Ri) to start the transfer. When Ti 

(or Ri) takes the product, it sends an end message to S to free one its places (Cons-S). 

Finally, it sends a message to D asking the arrival of the product to its side. Once the 

product arrives to D, it sends an acknowledgement to Ti (or Ri) informing the end of the 

transfer. 

4.2 MODELING THE COMPONENTS 

The system contains two types of components: transfer or area components. A component 

is modeled by a workstation module and a service module. In this section we will show 

the Petri net module used to model the service of each component. In order to 

differentiate between the different workstations on the network, we used an addressing 

system for each workstation depending on its type. In this section we will model the 

physical transfer of a product represented be the dark gray interfaces of the service 

components. The transferred token between the different services represents the product. 

To make the transfer the message exchange procedure must be made before any transfer. 

4.2.1 AREA COMPONENTS 

When a Z, an IS or a machine receives a product (represented by a token), it starts 

a transfer procedure to transmit the product to its final destination. This token contains 

two fields: the final destination FD and the type of the product ID (will be used later to 

arrange the products after their arrival to the OUT area).  

An area sends and receives messages depending on whether it is the source or the 

destination. Figure 4.14 shows the part concerning a source area (example of IS1: address 



4. A CASE STUDY: EVALUATING PERFORMANCE OF A DISTRIBUTED MANUFACTURING SYSTEM 

 
148 

 
 

31). The gray places belong to the workstation itself, while the white ones model the 

service. When the area receives a product, a token put in place “From another Area”, it 

sends a transfer request to T2 (address 42) with the target area Z2 (address 22). The type 

of the product and its ID is contained in the token fields (in the example FD=12 and ID=1 

representing a service on machine M1). The product is kept in place “Wait” and it is 

realised only when the area receives an end acknowledgement (the guard on transition 

“t11”). A token is put in place Cons of that area.  

 

Figure 4.14, Part: Source Area  

If the area is a machine, a place and a transition are added between place “From another 

Area” and transition “t21” to represent the machining process, figure 4.15. MTime(ID) 

represents the time needed to machine a product before the token becomes available. 

 

Figure 4.15, Machining Time 

Figure 4.16 shows the other messages sent and received by an area in order to 

transfer a product. If the area is a source area, it receives two messages: the end message 

(transition t11, figure 4.14) and the request message to release the product (transition 51). 

It then sends an acknowledgment to the Ti (or Ri) (in our example, to T2, and the value 

“99” means not used field). 
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Figure 4.16, Messages Exchange for a Transfer from an Area 

However, if the area is the destination, it receives two messages: a message to 

allocate a free place (transition t50) and a request message for a successful product 

reception (transition t52). The capacity of an area (the number of tokens in place Cons) 

decides whether this request is possible by send a message to the source, or the source 

must wait until a place is released up. The inscription TTime at the arc connecting place 

p1 and transition t53 models the time need to receive a product from one area to another. 

 

Figure 4.17, Products Routing 
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Another characteristic added to such components is routing the product to the 

correct direction. All the Z areas have this feature. Figure 4.17 shows the routing of a 

product in Z1. The products found in that place need either to be machined, depending on 

their final destination (to machine M1: transition t72, or to machines M2 and M3: 

transition t73) or to be forward them to OUT area (transition t71). To forward a product to 

area OUT, it must be before machined. This condition is satisfied by a machine by 

changing the field FD to 11. Hence, to rearrange the products (in OUT area) the field ID 

remains the same. 

4.2.2 TRANSFER COMPONENT 

A transfer component is used to perform a transfer between two areas. Figure 4.18 

shows the complete messages sent and received by a transfer component. The component 

receives a request packet from an area (transition t60). In order to validate this request a 

token must be present in place “Cons”, representing the capacity of this component. It 

sends a message to the destination area requesting a free place. The component stays in a 

waiting period (place p60) until it receives acknowledgment packet from the destination 

area (transition t62). 

 

Figure 4.18, Transfer Component – Service Part 
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Once the acknowledgment arrives, the transfer component sends request (“release 

P?”) to the source area. To insure an excellent functionality of this module, a guard is 

associated to transition t63 to assure that the sender of the acknowledgment is the 

destination area. Again, the component stays another time in waiting period (place p62) 

until it receives the second acknowledgment.  

 

Figure 4.19, Hierarchical Service-Workstation Petri Net 
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When the acknowledgment arrives, transition t64 is enabled (condition: the sender 

must be the source), two messages are sent: to the sender releasing one place (the product 

is taken by the transfer component), and to the destination area requiring if the product 

has arrived. This second message is sent when the first message is sent (the TNext 

inscription on the arc between t64 and p63).  

Figure 4.19 shows a complete Petri Net model for Z1 area. While figure 4.20 show 

the service component with the different interfaces. In the figures, the when a product 

arrives to the area, a procedure of exchanged messages starts depending on the destination 

area until that product is transferred to its final destination. Hence, the workstation 

component is connection of the service and network (light gray interfaces), while the 

output interfaces of the service component (dark gray) is connected directly to their 

destination components. 

 

Figure 4.20, Service-Workstation Composite-Component  
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Figure 4.21, Sub-model for a transfer from Z1 to IS1 
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Figure 4.21, shows a sub-model for a transfer of a product from area Z1 to stock 

IS1 through the transfer element T1. In the figure, the modeled components are reused to 

build the whole system. This reuse is applicable for the other elements in the system. 

Some additional places and transitions are used to complete the system-model and to 

insure its functionality, table 4.3.  

Type No of Transitions No of Places 

Area Component 30 25 

Transfer Component 24 21 

Complete Model 748 652 

Table 4.3, Petri Nets Complexity 

4.3 SIMULATION AND RESULTS 

As in section 3, the system is evaluated by simulation. The simulation was performed on 

the same PCs used in section 3. The system is assumed to perform 100 different products. 

The simulation aims to see the impact of using different type of products and different 

protocols over the system. The transfer time is supposed to be 50 msec and the machining 

time to be 100 msec. These values have been chosen in milliseconds to really verify the 

impact of the underlying network on the system. Otherwise, if we use the real values in 

minutes, the impact of the underlying network would not be obvious with the example we 

have used. The number of simultaneous products per type is varied from 2 to 5 products. 

Each machine performs one function. Once the product is machined, the field FD 

is changed to “11”. However, to accomplish a service different paths are used for each 

machine:  

To perform f2: IN/OUT  Z1  IS5  Z3  M2  Z3  IS6  Z1  IN/OUT 

To perform f1: IN/OUT  Z1  IS1  Z2  M1  Z2  IS2  Z3  IS6  Z1 

  IN/OUT 

To perform f3: IN/OUT  Z1  IS5  Z3  IS3  Z4  M3  Z4  IS4  Z1 

  IN/OUT 
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The type of services on the system affects the number of exchanged messages and 

transactions on the network. For example, to perform the service f2, the number of 

transactions is 72 exchanged messages per product. However, to complete service f1 or 

f2, the number of exchanged messages is 90 messages per product. This is in the case of 

one product only on the system. However, when there are several products on the system, 

this number increases due to collisions. So, this number may reach 90~100 messages per 

product for service f2, and 110~120 messages per product for service f1 or f3. 

4.3.1 ONE PRODUCT 

The first simulation is to get an idea about the time needed to machine one product 

over the system. Table 4.4 shows the impact of changing the communication protocol in 

the system over the time needed to finish one product. An important difference appears 

between Ethernet at 10Mbps and 100Mbps. However, the 1Gbps does not create a big 

difference, since the machining and transfer times are the dominant in this case. 

Service 802.11b E-10Mbps E-100Mbps E-1Gbps 

f2 564.5 ms 567.6 ms 506.7 ms 500.7 ms 

f1 or f3 680.2 ms 684.5 ms 608.5 ms 600.9 ms 

Table 4.4, Time to Machine a Product 

The other interesting result is the time difference when the required service is f2, or f1 or 

f3. Since the path to finish the product is longer, the time needed to make the product is 

clearly longer. In this part, 11M 802.11b seems to be better than 10Mbps Ethernet. 

4.3.2 DIFFERENT PRODUCTS, SAME PROTOCOL 

The next results concern the impact of changing the type of products with keeping the 

same communication protocol. Figure 4.22 shows the time needed to make one product 

(100 products over 10Mbps Ethernet on the system). Here, the number of products to 

machines 1 and 3 are always equal.  

The first remark that we can get is the important time difference when one product 

is made over the system, and when 6, 9 or 15 simultaneous products exist at the system. 
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The second remark is the effect of changing the number of products to machine 2 (the 

overall number of products is always 100). Noting that: 

1- From 10 to ~30, the time needed was decreasing. This is due to that the congestion 

on Z3 decreased, since M1, M2 and M3 uses it to transfer the products from and 

to IN/OUT. 

2- On the other hand, when the number of products addressed to machine M2 

increased (more than 30 products), the time increased since the number of 

products fabricated is 1 after M1 and M3 finish their products (M1 and M3 each 

has less than 30 products to fabricate). As a result, the machining and transfer 

times become more important. 

 

Figure 4.22, Time per Product 

The figure shows also the impact of changing the number of simultaneous 

products attended to each machine. Increasing the number of products decreases the time 

needed to fabricate a product. This is explained since the more products are transferred at 
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the same time. However, entering 3 or 5 five products does not decrease the time. This is 

because the machines can fabricate one product only. So, entering more products will not 

affect the time. 

4.3.3 Same Products; Different Protocols 

The last results are the most important, since it shows the impact of changing the 

communication protocol over the system. Different remarks are found from the figure 

4.23: 

1- 802.11b protocol does not present a good choice. This result is conforming with 

the results of figure 4.6. This becomes clear when the number of simultaneous 

products increases (the number of exchanged messages increase also).  

 

Figure 4.23, Impact of changing the communication protocol in the system 
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2- A big time difference is noticed when using 100Mbps Ethernet (compared to 

10Mbps Ethernet and 802.11b). The number of messages is important. With 2 

simultaneous products of each type, the number of exchanged messages reaches 

500 to 600 exchanged messages. With 3 simultaneous products of each type, the 

number of exchanged messages reaches 900 to 1000 exchanged messages. While 

with 5 simultaneous products of each type, there are nearly 1400 to 1500 

exchanged messages on the network. 

The type and speed of protocols is very important since to exchange this huge 

number of messages on the network, the bit rate is very important and decreases 

obviously the time needed to exchange these messages between the different 

resource/workstation on the system. 

3- The use of 1Gbps Ethernet did not show a big difference with respect to 100Mbps 

Ethernet. However, this conclusion is not really correct. The impact of using Giga 

Ethernet can appear if the modeled system is larger (more machines, stock areas, 

resources, etc.).  

In that case, the number of exchanged messages over the network will be greater. 

Thus, the impact of using Giga Ethernet will become obvious since the time 

needed to send these messages will be shorter (for example, as the time difference 

between 10 and 100Mbps).  

However, in our model the number of modeled components is still medium (3 

machines, 4 resource areas and 6 stock areas). So, the machining and transfer 

times are dominant here when using Giga Ethernet compared to 100Mbps 

Ethernet. 
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5. CONCLUSION 

Performance evaluation is very important for the system development and configuration. 

Many measurements can be performed to analyze the performance of the system 

depending on the system itself. Simulation is the one of the most suitable technique for 

evaluating distributed systems because of its complexity. 

In this chapter we have shown the results obtained from simulating the system 

presented in chapter 3. The tool “Renew 2.1.1” allows modeling and simulating the 

system. However, the choose for this tool is just to perform our needs, and can replaced 

by any tool that has more performance, especially for analyzing the properties of the basic 

and composite components. 

The simulation results show the degree of accuracy, correctness and quality of our 

approach. The comparison with other results proves these features. We have also showed 

a complete service-workstation model for the manufacturing system presented in Chapter 

1. The obtained results are very interesting and show how temporal features of the 

distributed applications are affected when the underlying network protocol and service is 

changed especially between 10M Ethernet and both 100M Ethernet and wireless protocol. 

Thus, the obtained results are very encouraging and motivate to continue modeling 

new protocols (not only MAC layer but also from the upper layers: Network and 

Transport) and distributed systems such as Data Base Systems and transportation 

Systems. Our component-based modeling approach shows a high quality and easiness in 

modeling complex systems where another editors and simulators do not allow to model 

services and communication protocols in a single model and in a distributed form. 
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CONCLUSION AND PERSPECTIVES 
 

1. CONCLUSION 

Distributed systems are more and more present in our daily life. These systems are 

complex and can be distributed in one place or even everywhere in the world. The use of 

distributed allows sharing different and expensive resources by a several clients. Thus, the 

need to control the distributed systems is very important. New technologies play a big 

role to in the control process. These technologies underlie the distributed systems and are 

used to exchange messages between the different parts of the system.  

Manufacturing systems are one kind of these systems. They are a subclass of the 

discrete event systems DES. The need to model these systems before their 

implementation is important. The design stage allows verifying some of their properties. 

A well-designed model that takes into accounts all the requirements and constraints of a 

system can save cost and time.  

In this work, we have presented the problem of modeling manufacturing systems 

and the underlying communication protocols. However, modeling a huge and complex 

system implies to have also a big and complex model. So, we have proposed in this thesis 

a component-based modeling approach based on High-Level Petri Nets. This approach 

can meet the challenges of modeling the distributed systems and the communication 

networks. Genericity, modularity and reusability are the main and important 

characteristics of this approach since allows reusing ready-to-use components and easily 

fitting them to new system-models depending on the requirements of clients and 

applications. These advantages and more allow building complex system-models in an 

easier way.  

In chapter 1, we have shown different models proposed to model the 

manufacturing systems with Petri nets. However, the proposed models do not take into 
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account the underlying network and their impact on the performance of the system. They 

are also focusing only on the design stage, but they do not give solutions of how to 

implement the models on a distributed service environment which is the main difference 

between the industrial companies and the universities’ laboratories. 

In chapter 2, we have introduced the different methods used to model 

communication protocols. UML, Timed Automata and Petri nets are suitable and the most 

used to model the communication protocols. But, Petri nets, as a powerful formalism 

show a high capacity and ability to model concurrent, and more particularity discrete 

event systems. Petri nets have also many extensions and tools. These two reasons in 

addition to that the service part is already modeled in Petri nets (the LAGIS/OSSc team 

approach) have persuaded us to greatly choose Petri nets as a unifying formalism for the 

modeling of the whole system (both services and communication protocols). 

In chapter 3, we have shown our criteria to choose a Petri nets modeling tool. The 

high-level Petri nets contain nearly all the extensions of Petri nets and makes use of high-

level programming language. This combination makes easier to use Petri nets extensions 

in one tool, reduces the complexity and size of the model and adds the modularity and 

reusability features to already powerful formalism.  

We have also presented in chapter 3 our component-based modeling. The 

approach is based on building the system-model from smaller several components. This 

construction allows identifying each component separately. At the abstraction level, the 

overall component is seen as a black box hiding its internal implementation and behavior 

but offering only its interfaces and parameters that can be modified to be appropriate to 

the model needs. With this approach, addition, elimination, upgrade and modification of a 

component are possible to go with the systems requirements. 

To build the different component, we have first analyzed the communication 

protocols of the MAC layer since the manufacturing systems use the local industrial 

networks to manage its exchanged messages. These protocols intersect in many points: 

channel check, backoff procedure, data send and receive processes. These similarities 
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have allowed building one component for each process, which are reused to model the 

different illustrative protocols of Ethernet and DCF 802.11 protocol. 

The next step in this work was to evaluate and to verify the correctness and quality 

of our approach. In chapter 4, we have shown the different measures to evaluate the 

performance. Simulation is the most suitable in our case. The obtained results, compared 

to other studies and NS-2 simulator results, proved the correctness and precisions given 

by our approach.  

The last step was to show a complete service-protocol model. For this, we have 

chosen the case study of the manufacturing system presented in chapter 1. However, in 

chapter 4, we have presented a new model of the system where the services are 

distributed over different PCs, eliminating the need to have an intermediate model. Each 

service is modeled in a separate Petri net. The overall service-protocol component is 

composited of one service component over one workstation component. 

To complete the obtained results and verify the impact of the communication 

protocols over the productivity of the system, we have simulated the whole system. The 

simulation results show the direct impact and effects of the underlying network on the 

productivity of the system. They show the express relation between the network 

performance and the manufacturing system. Moreover, the obtained values are helpful 

and can be used in building and designing new systems, for example in our case the use 

1Giga Ethernet does not provide to the system important benefits in case it uses 100M 

Ethernet and the use of 10M Ethernet is better than using wireless networks even with 

11Mbps bandwidth. 

In this thesis, the approach that we have proposed shows a well-defined modeling 

technique able to manage the complexity in modeling distributed systems and 

communication protocols by decomposing the model into small manageable and reusable 

components. Petri nets formalism has shown a high ability to model and simulate 

complex systems. The originality of our approach comes from unifying the modeling of 

both services and protocols in one formalism and completing the missed part of the 
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communication protocols of the previously presented models for the manufacturing 

system. This is proven by the obtained results of this approach and the benefits that a 

designer can have by saving a lot of lost cost and time where decomposing a complex 

model is a useful demonstration for difficult problems. 

2. PERSPECTIVES 

2.1 ENRICHING THE COMPONENTS LIBRARY 

In this thesis we are interested in modeling manufacturing systems. This case 

study uses the local industrial network. For this reason, we have only presented LAN 

MAC sublayer protocols by representing two illustrative models for Ethernet and DCF 

802.11b wireless protocols. This limited representation does not even cover all the 

protocols in that layer. In addition, what we have covered is only one type of the 

distributed systems.  

However, as we have shown in the first chapter, distributed systems count as many 

as systems and distributed services and applications. The obtained results from our 

approach encourage generalizing this approach for new types of systems and applications 

like data base systems, ATM banking systems or transportation systems. This 

generalization requires to model new protocols since the modeled protocols does not 

allow doing that. The modeling of new protocols is not only limited to MAC sublayer 

protocols since such systems (data base or transportation) make use of the higher level 

layers protocols to perform their services. This implies and opens the door to model new 

components that can enrich the desired library and can help to cover more aspects in the 

distributed systems.  

However, distributed systems are usually heterogeneous. To resolve this problem, 

a middleware layer between the services and protocols, figure 5.1, can be used. The use of 

this layer implies also the modeling of new components for that layer. Here, we can 

mention the need to cover the implementation stage. In the first chapter we have shown 

the different types of middleware used to implement a distributed service. In the work, 
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our modeling approach is based on a classical client/server. However, the aspect of 

implementing this structure is never discussed. Thus, this work must be completed by 

covering the implementation aspect which is very important. 

 

Figure 5.1, Middleware for Distributed Systems 

With new protocols and middleware layer components, a real library of basic 

components can be created. Once these components are made, the modeling on new 

system-models becomes easier. Moreover, with middleware components, the results the 

can be obtained from simulating the whole system will be more accurate and reflects a 

better vision of the designed system. 

2.2 QUANTITATIVE VERIFICATION  

The thesis was based on using the simulation to verify some properties of the 

system. However, the work did not cover all the aspects of verifying some properties of 

the modeled components, especially for the unitary qualitative ones which is possible 

since we make use of Petri nets to model the system and since the components are small 

and can be verified easily. This aspect becomes more important once the components 

library is enriched with new components.  



PERSPECTIVES 

 
166 

 
 

The verification process does not stop here since the complete system model will 

be build from these small components. Here, simulation can be useful for some properties 

but the need to guarantee the verified properties of the small components for the complete 

model or composite is also important. 

2.3 TOWARDS A NEW SOFTWARE TOOL AND METHOD 

From the previous needs appears the need to develop a new tool and method 

capable to perform the previous issues. The new tool must contain all the necessary 

functions and facilities to model distributed systems and communication protocols. Such 

tool facilitates unify the modeling. The used tools in this work do not cover the analytical 

verification of the system (no supporting packages). The new tool can be enforced with 

such packages. 

In addition, this tool is not limited to model and simulate the system, but it can 

also be a helping tool for building the distributed systems by proposing the most 

appropriate components for the system or application to be modeled. For example, in this 

thesis we propose a workstation per service. This proposition may be costly and not the 

optimal solution. The proposed method can be useful to distribute the control/service part 

of the system on optimal workstation which can be more applicable and cheaper. 
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Résumé en Français : 

Le développement des réseaux informatiques a permis l'émergence de nouvelles 

applications bénéficiant de la puissance et de la flexibilité offertes par la distribution de 

leurs fonctions sur de multiples ordinateurs. Ainsi, les systèmes dits « distribués » sont de 

plus en plus utilisés. 

Dans cette thèse, nous nous intéressons plus particulièrement au contrôle par 

réseau des systèmes de production manufacturiers (SPM). Les systèmes de production 

manufacturiers sont une classe de systèmes à événements discrets dont les éléments 

interagissent ensemble pour construire des produits ou fournir des services.  

Du point de vue industriel, ces systèmes sont composés d’un grand nombre de 

constituants physiques de nature multiples : machines d’usinage, systèmes de transport, 

de supervision, etc. La complexité de ces systèmes est encore renforcée par la présence de 

« flexibilités », qui permettent d’utiliser les mêmes machines pour produire plusieurs 

types de pièces, ce qui amène à multiplier les gammes opératoires à considérer. Le 

contrôle de ces systèmes est alors très important. 

La mise en réseau est largement appliquée dans les applications industrielles. Les 

systèmes de production manufacturiers intègrent ainsi les réseaux de communications et 

les fonctions de contrôle à tous les niveaux. La connexion des éléments du système au 

travers d'un réseau réduit la complexité du système et le coût des ressources, et permet en 

outre de partager les données de manière efficace. Toutefois, la performance des réseaux 

de communication affecte les services offerts en termes de délais et de pertes de paquets. 

La modélisation des systèmes de production manufacturiers est très importante 

pour vérifier certaines propriétés telles que l’absence de blocages, la vivacité, etc. ainsi 

que pour effectuer des analyses de performance. De nombreux travaux de recherche ont 

été proposés pour modéliser les systèmes flexibles de production manufacturiers : 

1- L’approche du CRAN [Gouyon04] s’intéresse aux systèmes agiles. Elle traite 

l’interopérabilité entre contrôle des ressources et contrôle des produits.  
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2- L’approche du LAG/G-SCOP [Zamaï06]  s’intéresse aux systèmes manufacturiers 

reconfigurables (SMR) plus particulièrement la génération en ligne de lois de 

commande.  

3- L’approche du Lab-STICC [Berruet07] s’intéresse aux Systèmes reconfigurables. 

Elle propose la conception des systèmes de production manufacturiers par une 

approche composants.  

4- L’approche du NHIT (Taiwan) [Tsai05] s’intéresse à l’exploitation des web-

services pour le contrôle-commande. 

5- L’approche du LAGIC/OSSc sur laquelle nous fondons nos travaux s’intéresse à 

la prise en compte de l’aspect distribué de la commande dès la phase de 

conception [Toguyeni06], figure 1.  

 

Figure 1, Approche du LAGIS/OSSc 

Ces paradigmes classiques de modélisation sont généralement basés sur une vision 

centralisée. En effet, ce type de modélisation ne prend pas en compte le fait que le 

système sera distribué lors de l’implémentation et ne prend donc pas en compte 

l’architecture de communication. Aussi, les propriétés qui sont vérifiées lors la phase de 

conception ne sont pas nécessairement garanties après l’implémentation.  

Dans ce contexte, nous proposons dans cette thèse la modélisation des systèmes 

flexibles de production manufacturiers et des protocoles réseau sous-jacents en un modèle 
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distribué sous la forme d'un client/serveur. Cette approche a été initialement proposée par 

l’équipe OSSc pour modéliser le système de production manufacturiers avec les réseaux 

de Petri. Dans cette thèse nous nous proposons de les modéliser avec les réseaux de Petri 

de haut niveau, qui est une méthode puissante capable de modéliser les deux points de 

vue. Cette possibilité vient de la capacité des réseaux de Petri à modéliser les systèmes 

concurrents et distribués. 

Notre proposition : une approche par composants 

Une manière de surmonter ces problèmes est de modéliser ces systèmes pour un 

fonctionnement en mode distribué. Un modèle distribué offre les moyens de décrire 

précisément l'ensemble des formes possibles d'incohérence à mesure qu'elles surviennent. 

Il tient compte de chaque partie dans le système, les ressources disponibles, la 

reconfiguration du système et le réseau sous-jacent. Une fois le modèle construit, son 

application et son implémentation sont plus faciles, car il a les mêmes caractéristiques que 

le système désiré. Néanmoins, ces systèmes sont complexes: la distribution, les 

dynamiques élevées, et ses composants d’une grande hétérogénéité. Par conséquent, il est 

nécessaire de modéliser ces systèmes d'une manière qui assure un haut degré de confiance 

et la rigueur des solutions. 

Une façon de faire face à ce défi est l'utilisation de la méthodologie basée sur des 

composants qui est cohérente avec le principe des systèmes distribués dans lequel les 

composants sont réutilisables. L'approche par composants utilise les moyens génériques, 

modulaires et hiérarchiques de concevoir et d'analyser les systèmes. Elle prévoie que le 

modèle du système peut être assemblé à partir d'éléments travaillant ensemble,  le 

concepteur n'a donc besoin que d'identifier les bons composants qui offrent de services 

appropriés en ce qui concerne les exigences des applications. Cette méthode permet la 

réutilisation et la généricité des composants qui réduit le coût du développement des 

systèmes. 

L’approche par composants facilite et accélère la phase de modélisation. Cette 

dernière consiste à modéliser des composants élémentaires qui peuvent être réutilisés pour 
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construire des composants-composites. Ces composants sont génériques dans le sens où 

ils sont adaptatifs, paramétrables et réutilisables. Pour la réutilisation des composants 

élémentaires, nous proposons la construction d’une bibliothèque de composants de type 

commercial-off-the-shelf COTS [Carney00] [Weyuker98].  

Les systèmes flexibles de production manufacturiers utilisent les réseaux locaux 

industriels pour échanger les messages entre machines. Ce type de réseau utilise les 

protocoles de la deuxième couche du modèle OSI. Ces protocoles sont des protocoles 

MAC. Pour illustrer notre technique de modélisation, nous proposons de modéliser les 

protocoles Ethernet IEEE 802.3 et IEEE 802.11b DCF. 

La modélisation des components sera par les réseaux de Petri de haut niveau qui 

facilite la modélisation avec ses capacités de modéliser les comportements temporels, 

stochastiques et dynamiques. Ils donnent aussi la possibilité de identifier les jetons, ce qui 

très important pour la modélisation des protocoles informatique. 

Les réseaux de Petri de haut niveau : 

Plusieurs possibilités sont offertes pour le choix du formalisme de modélisation. 

Parmi ces choix nous avons comparé trois méthodes parmi les plus utilisées pour 

modéliser les services et protocoles de communication. Le tableau 1 montre les critères 

qu’on a considérés pour choisir le formalisme de modélisation. Dans cette thèse, nous 

nous intéressons aux techniques de modélisation formelle qui permettent des analyses 

poussées. Un autre besoin réside dans la capacité à modéliser des contraintes temporelles 

fortes. Le tableau montre bien que les réseaux de Petri sont les plus adapté à nos besoins.  

 Automate Temporisé UML RdP 

Méthode Formelle Semi-formelle Formelle 

Analyses formelles Oui Non Oui 

Modélisation 

temporelle 
Oui Récent Oui 

Applications Applications temporelles Usage général Usage général

Tableau 1, Formalismes de modélisation 
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Les réseaux de Petri ont été introduits par [Petri66]. Ils sont présentés comme un 

graphe biparti où le marquage des places représente l’état du système et les transitions des 

événements et actions. Pour relier places et transitons, on utilise les arcs. Les réseaux de 

Petri disposent de nombreuses extensions et abréviations. 

 

Figure 2, exemple d’un réseau de Petri 

Les réseaux de Petri de haut niveau ont pour principales caractéristiques : 

1- Des expressions sur les arcs et des gardes sur les transitions 

2- La possibilité de distinguer les jetons en leur associant des identifiants 

3- La capacité de modéliser des comportements temporels ou stochastiques 

Le besoin d’identification de flux de données est très important dans les réseaux 

informatiques. Parmi l’envoi de multiples paquets entre source et destination, 

l’identification un flux précis entre plusieurs flux de données est nécessaire comme c’est 

le cas par exemple pour un arrêt d’urgence d’un robot dans les systèmes de production 

manufacturiers. La solution qu’on propose est l’utilisation des  jetons caractérisés par des 

champs. 

 

Figure 3,  Expressions sur les arcs, gardes sur les transitions, identification des jetons 
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La figure 3 montre les expressions sur les arcs, les gardes sur les transitions, et 

l’identification des jetons. Dans la figure la seule transition franchissable est la transition 

avec le garde D==115, puisque le jeton a la valeur 115 dans son champ D. 

 

Figure 4, utilisation de fonctions dynamiques 

La notion de temps est nécessaire puisque les protocoles réseaux ont des 

contraintes temporelles. Pour cela on propose d’ajouter la notion de temps (@) sur les 

arcs. Nous proposons aussi l’utilisation des fonctions dynamiques où les arguments sont 

les champs des jetons. Cette nécessité est due au besoin de modélisation des 

comportements dynamiques comme la mobilité des machines (réseaux wifi et robots 

mobiles), figure 4. 

Démarche de modélisation : 

Pour la modélisation, nous proposons de construire des composants qui sont 

caractérisés par des services offerts, une implémentation « cachée » où le code est 

accessible mais le concepteur n’a pas besoin de le modifier et aussi par des interfaces qui 

définissent les paramètres à fournir et à produire. L’implémentation effective du 

composant est fonction du point de vue et les exigences considérées. 

Les interfaces choisies sont les places comme interfaces d’entrée et les transitions 

comme interfaces de sortie. Les places reçoivent autant de jetons que de composants 

producteurs et sont appropriées à la gestion de l’asynchronisme. Les transitions génèrent 

autant de jetons que de composants consommateurs. Ce choix permet de : 

 prendre en compte l’asynchronisme des calculateurs, 

 garantir le caractère générique des composants, 

 faciliter les connexions. 
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Figure 5, (a) interface de sortie   (b) interface d’entrée    

Construction des composants : 

Pour construire les composants il est nécessaire d’analyser les protocoles. La 

démarche d’analyse est une démarche descendante pour identifier les comportements 

élémentaires communs. Chaque comportement commun identifié sera ensuite associé à un 

composant élémentaire. Une fois ces composants construits, on propose une démarche 

ascendante à partir de ces composants élémentaires pour une construction hiérarchique 

de composant-composite.  

 

Figure 6, Protocoles MAC 

Pour l’illustrer les deux démarches, nous utilisons les deux protocoles MAC 

Ethernet IEEE 802.3 et IEEE 802.11b DCF, figure 6. Ces deux protocoles sont des 

protocoles de la même couche (protocoles MAC Data Link) qui se fondent sur le même 

principe de détection de porteuse (protocoles CSMA). Ils disposent de comportements 

communs comme : 
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 Vérifier le statut du canal pour l’envoi 

 Traiter des collisions 

 Traiter des données 

Trois composants élémentaire peuvent être trouvés sur la base des résultats de ces 

analyses: le composant channel/check, le composant Send/Receive modélisant l'envoi et 

la réception de données, d’accusé de réception et de JAM, et le composant Backoff/ BEB.  

 

Figure 7, Composant Send/receive 

Le composant Send/Receive est présenté en figure 7. Le composant représente la 

procédure de backoff et le traitement de collision. Avant un envoi, la machine met le 

nombre des tentatives (place N). Elle le garde dans la place « Attempts ». Solen ce 

nombre, elle choisi de manière aléatoire le backoff. Pour Ethernet il est entre 0 et 2X, X 

dépend de nombre des tentatives. Par contre pour Wifi il est entre 0 et CW (contention 

window). Pour décrémenter le backoff, le canal doit être libre (un jeton dans la place 

« FreeC »). Si le statut de canal change la machine arrête de décrémenter le backoff, par 

contre elle le garde jusqu’à ce que le statut redevienne libre. Ici, si le backoff devient 0, la 

machine peut envoyer son message.  

 Après l’envoi, si une collision se produit (un jeton dans la place « Retransmit? ») 

la machine doit incrémente le nombre des tentatives. Si le nombre des tentatives de 

dépasse pas le nombre maximal, elle doit le retransmettre le paquet. Sinon elle arrête de le 

transmettre et elle le jette. Le tableau 2 montre les différents paramètres à modifier lors de 

l’utilisation de ce composant  pour chaque protocole. 
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Variable IEEE 802.11b 10M Ethernet 100M Ethernet 

fun1(n) n<33 n<15 n<15 

fun2(n) n=n*2 n=n+1 n=n+1 

y 64 16 16 

z 1 0 0 

R(0, Q) Aléatoire(0, CW) 
Aléatoire(0, 2X), X 

dépend de n 

Aléatoire(0, 2X), X 

dépend de n 

Fun(R) 0 R*51.2µs R*5.12µs 

ST(t) 20µs 0 0 

Tableau 2, paramètres de généricité 

Modélisation ascendante : 

Pour continuer la modélisation, un assemblage des composants élémentaires est utilisé 

pour la construction de composants-composites. Cet assemblage consiste à sélectionner 

les composants élémentaires approprié au composant-composite. Il faut parfois ajouter 

des éléments de  RdP  pour finir l’assemblage, comme le montrent les figures 8 et 9. 

 

Figure 8, machine du protocole 802.11b DCF 
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Figure 9, machine du protocole Ethernet 

Validation expérimentale : 

Pour voir la correction et la qualité de notre approche, la validation de la modélisation des 

protocoles est très importante. Cette validation est faite par l’utilisation de simulation 

(tableau 3) et une comparaison des résultats obtenus par notre modèle avec ceux obtenus 

par d’autres méthodes. 

Critère Analytique Simulation Mesure 

Étape Tout Tout Aval 

Temps requis Moyen Moyen Variable 

Précision Basse Moyenne Variable 

Coût Faible Moyen Élevé 

« Scalabilité » Faible Moyen Élevé 

Flexibilité Élevé Élevé Faible 

Tableau 3, critères de choix d’une méthode pour la validation des modèles 
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L’outil le plus adapté à nos besoins est Renew : la modélisation de comportements 

temporels, stochastiques, dynamiques, et l’identification des jetons. 

Résultats de Simulation : 

La comparaison des résultats de simulation obtenus par Renew et par le simulateur NS-2 

(figure 10 et 11) permettent de valider notre approche. La figure 12 montre également le 

temps nécessaire pour simuler le modèle sur Renew et NS-2. 

 

Figure 10, Partage de bande passante 

 

Figure 11, Wifi et Ethernet 
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Figure 12, Temps de Simulation 

Cas d’étude : 

Un exemple illustratif est utilisé pour modéliser les services offerts par un système de 

production manufacturier, figure 13. La technique de modélisation utilisée a été la même 

que pour les protocoles de communication, c'est-à-dire à base d’approche par composants, 

où chaque partie du système est modélisé hiérarchiquement : un service par machine.  

 

Figure 13, Exemple d’un système de production manufacturier 
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La figure 14 montre les messages échangés pour faire un transfert 

 

Figure 14, messages échangés pour faire un transfert 

Conclusion : 

L’approche que nous proposons pour la modélisation des systèmes de productions 

manufacturiers en distribué dès la conception pour la prise en compte de l’architecture de 

communication. La modélisation s’intéresse aux couches basses correspondant aux 

réseaux locaux industriels. Pour la modélisation, nous avons adopté une approche par 

composants. Ces composants sont réutilisables de type COTS qui baisse le coût de 

développement pour la modélisation d’autres système. Ils facilitent aussi la modification 

et la mise à jour de modèle sans touché l’ensemble de modèle globale. La modélisation 

des composants était en fonction du point de vue qui peut être changé selon la nécessité 

des concepteurs. 

Les résultats que nous avons obtenus montrent la correction des modèles des protocoles et 

des composants élémentaires proposés. Ce qui amène à faire étendre notre approche aux 

différents systèmes distribués : bases de données, transport  … 



 

 
180 

 
 

 

 

 

 

 

 

 

 

 

 

 



BIBLIOGRAPHY 

  
181 

 

BIBLIOGRAPHY 
 

[Aalto03] A. Aalto, N. Husberg, and K. Varpaaniemi, “Automatic Formal Model 

Generation and Analysis of SDL.” Lecture Notes in Computer Science, Vol. 2708, pp. 

285-299, 2003. 

[Alony07] I. Alony and A. Munoz, “The Bullwhip Effect in Complex Supply Chains.” 

International Symposium on Communications and Information Technologies, ISCIT '07, 

pp. 1355-1360, 2007. 

[Alur92] R. Alur and D. Dill, “A Theory of Timed Automata.” Lecture Notes in Computer 

Science, Vol. 600, pp. 45-73, 1992. 

[Anastasi05] G. Anastasi, E. Borgia, M. Conti, and E. Gregori, “IEEE 802.11b Ad Hoc 

Networks: Performance Measurements.” Cluster Computing, Vol. 8, No. 2-3, 2005. 

[Baker05] S. Baker and S. Dobson, “Comparing service-oriented and distributed object 

architectures.” In Proceedings of the International Symposium on Distributed Objects and 

Applications, Lecture Notes in Computer Science, Vol. 3760, pp. 631–645, 2005. 

[Barger03] P. Barger, J. Thiriet, and M.  Robert, “Dependability analysis of a distributed 

control or measurement architecture”, Proceedings of the 20th IEEE Instrumentation and 

Measurement Technology Conference, IMTC '03, Vol. 1, pp. 473- 477, 2003. 

[Bastide04] R. Bastide and E. Barboni, “Component-Based Behavioural Modelling with 

High-Level Petri Nets.” In MOCA’04 Aahrus, Denmark, DAIMI, pp. 37-46, 2004. 

[Belabbas07] A. Belabbas, “Conception de systèmes de contrôle/commande 

reconfigurables pour l’assistance technique aux personnes handicapées.” PhD Thesis, 

University of Bretagne-Sud, 2007. 

[Bengtsson04] J. Bengtsson and W. Yi, “Timed Automata: Semantics, Algorithms and 

Tools.” Lecture Notes in Computer Science, Vol. 3098, p. 87–124, 2004. 

[Bernardi02] S. Bernardi, S. Donatelli, and J. Merseguer, “From UML Sequence 

Diagrams and Statecharts to analysable Petri Net models.” Proceedings of the 3rd 

international workshop on Software and performance , pp. 35-45, 2002. 



BIBLIOGRAPHY 

 
182 

 
 

[Berruet98] P. Berruet, “Contribution au recouvrement des Systèmes Flexibles de 

Production.” PdH thesis at Ecole Centrale de Lille, 1998. 

[Berruet05] P. Berruet, J. Lallican, A. Rossi, and J-L. Philippe, “A component based 

approach for the design of FMS control and supervision.” IEEE International Conference 

on Systems, Man and Cybernetics, Vol. 4, pp. 3005-3011, 2005. 

[Berruet07] P. Berruet, “Ingenerie de la Commande et Analyse des Systèmes 

Reconfigurables.” Habilitation to supervise the rechearch, University of Bretagne Sud, 

2007. 

[Berthomieu07] B. Berthomieu, F. Peres, and F. Vernadat, “Model-checking Bounded 

Prioritized Time Petri Nets.” In Proceedings of ATVA 2007. Springer Verlag, LNCS 

4762, 2007. 

[Bianchi00] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed 

Coordination Function.” IEEE Journal on Selected Areas in Communications, Vol. 18, 

No. 3, Mar. 2000. 

[Bigand04] M. Bigand, O. Korbaa and J-P. Bourey, “Integration of FMS performance 

evaluation models using patterns for an information system design”, Computers & 

Industrial Engineering, Vol. 46, No. 4, pp. 625-637, 2004. 

[Billington88] J. Billington, G. Wheeler, and M. Wilbur-Ham, “PROTEAN: A High-

Level Petri Net Tool for the Specification and Verification of Communication Protocols.” 

IEEE Transactions on Software Engineering , Vol. 14, No. 3, pp. 301-316, 1988. 

[Bolognesi87] T. Bolognesi and E. Brinskma, “Introduction to the ISO Specification 

Language LOTOS.” Computer Networks and ISDN Systems, Vol. 14, pp. 92-100, Apr. 

1987. 

[Billington04] J. Billington, G. Gallasch, and B. Han, “A Coloured Petri Net Approach to 

Protocol Verification .” Lectures on concurrency and Petri nets : advances in Petri nets, 

Vol. 3098, pp. 210-290, 2004. 

[Boukadi07] K. Boukadi, Ch. Ghedira, Z. Maamar, and D. Benslimane, “Specification 

and verification of views over composite web services using High Level Petri-Nets.”  In 

proceedings of the 9th International Conference on Enterprise Information Systems 

ICEIS, 2007. 



BIBLIOGRAPHY 

  
183 

 

[Bourdeaud_huy06] T. Bourdeaud’huy and A. Toguyéni, “Analysis of Reconfiguration 

Strategies Based On Petri Nets Models and Optimization Techniques.” 8th International 

Workshop on Discrete Event Systems, pp. 319-324, 2006. 

[Bourey88] J-P. Bourey, “Structuration de la partie procedurale du systeme de 

commande de cellules flexibles dans l'industrie manufacturibre.” PhD Thesis, University 

of Lille I, 1988. 

[Bouyer03] P. Bouyer, “Untameable Timed Automata! (Extended Abstract).” Lecture 

Notes in Computer Science, Vol. 2607, pp. 620-631, 2003. 

[Brenner97] P. Brenner, “A Technical Tutorial on the IEEE 802.11 Protocol.” 

BreezeCOM, 1997. 

[Brereton00] P. Brereton and D. Budgen, “Component-Based Systems: A Classification 

of Issues.” IEEE Computer, Vol. 33, No. 11, pp. 54-62, 2000. 

[Brown96] A. Brown and K. Wdlnau, “Engineering of Component-Based Systems.” 

Second IEEE International Conference on Engineering of Complex Computer Systems, 

1996. 

[Bubnicki05] Z. Bubnicki, “Modern Control Theory”. Springer-Verlag, 2005. 

[Bucci05] G. Bucci, L. Sassoli, and E. Vicario, “Correctness verification and 

performance analysis of real-time systems using stochastic preemptive time Petri nets.” 

IEEE Transactions on Software Engineering, Vol. 31, No. 11, 2005. 

[Burns01] R. Burns, “Advanced Control Engineering”. Butterworth-Heinemann, 2001. 

[Capellmann99] C. Capellmann, H. Dibold, and U. Herzog, “Using high-level petri nets 

in the field of intelligent networks.” Application of Petri Nets to Communication 

Networks, Advances in Petri Nets, Vol. 1605, pp. 1-36, 1999. 

[Carney00] D. Carney and F. Long, “What Do You Mean by COTS? Finally, a Useful 

Answer.” IEEE Software, 2000. 

[Carothers06] C. Carothers, R. Lafortune, W. Smith, and M. Gilder, “A Case Study in 

Modeling Large-Scale Peer-to-Peer File-Sharing Networks using Discrete Event 

Simulation .” Proceedings of the International Mediterranean Modeling Multiconference, 

p. 617–624, 2006. 



BIBLIOGRAPHY 

 
184 

 
 

[Cassandras08] C. Cassandras and S. Lafortune, “Introduction to Discrete Event 

Systems”, 2nd ed. Springer Science+Business Media, LLC, 2008. 

[Cerami02] E. Cerami, “Web Services Essentials Distributed Applications with XML-

RPC, SOAP, UDDI & WSDL”. O'Reilly & Associates, Inc., 2002. 

[Chachkov01] S. Chachkov and D. Buchs, “From formal specifications to ready-to-use 

software components: The concurrent object oriented Petri Net approach.” In 

Proceedings of the International Conference on Application of Concurrency to System 

Design, pp. 99-110, 2001. 

[Cheesman01] J. Cheesman and J. Daniels, “UML Components: A Simple Process for 

Specifying Component-Based Software”. Addison-Wesley, 2001. 

[Chen08] L. Chen, Z. Shao, G. Fan, and X. Wang, “Modeling and Analyzing Distributed 

Real-time and Embedded Systems with High-Level Petri Nets.” IEEE/ASME International 

Conference on Mechtronic and Embedded Systems and Applications, MESA 2008, pp. 

476-481, 2008. 

[Chhabra07] A. Chhabra and G. Singh, “Parametric Identification for Comparing 

Performance Evaluation Techniques in Parallel Systems.” Proceedings the 1st National 

Conference on Challenges and Opportunities in Information Technology, COIT, pp. 92-

97, 2007. 

[Cho99] K. Cho and J. Lim, “Mixed centralized/decentralized supervisory control of 

discrete events dynamic systems.” Automatica, Vol. 35, No. 1, pp. 121-128, 1999. 

[Cinderella07] Cinderella Official Website : http://www.cinderella.dk/ - 2007. 

[Corin07] R. Corin, S. Etalle, P. Hartel, and A. Mader, “Timed Analysis of Security 

Protocols.” Journal of Computer Security, Vol. 15, No. 6, pp. 619-645, 2007. 

[Coulouris01] G. Coulouris, J. Dollimore, and T. Kindberg, “Distributed Systems: 

Concepts and Design”, 3rd ed. Pearson Education, 2001. 

[CPN07] Computer Tool for Coloured Petri Nets . CPN Tools: 

http://wiki.daimi.au.dk/cpntools/cpntools.wiki - 2007. 

[DaSilveira02a] M. Da Silveira and M. Combacau, “Supervision and Control of 

Heterarchical Discrete Event Systems: The Laas Approach.” CBA - Congresso Brasileiro 

de Automática,, 2002. 



BIBLIOGRAPHY 

  
185 

 

[DaSilveira02b] M. Da Silveira, M. Combacau, and A. Subias, “From centralized to 

distributed models: A systematic procedure based on Petri nets.” SMC - IEEE 

International Conference, 2002. 

[DeLamotte05] F. De Lamotte, P. Berruet, and J.-L. Philippe, “Using model 

transformation for the analysis of the architecture of a reconfigurable system.” IMACS 

2005 world congress, 2005. 

[Diaz87] M. Diaz, “Petri Nets Based Models in the Specification and Verification of 

Protocols.” Lecture Notes In Computer Science, Vol. 255, pp. 135-170, 1987. 

[Diaz91] M. Diaz and B. Berthomieu, “Modeling and Verification of Time Dependent 

Systems Using Time Petri Nets.” IEEE Transactions on Software Engineering, Vol. 17, 

No. 3, 1991. 

[Diaz06] G. Diaz, J. Pardo, M. Cambronero, V. Valero, and F. Cuartero, “Verification of 

Web Services with Timed Automata.” Electronic Notes in Theoretical Computer Science, 

Vol. 157, No. 2, pp. 19-34, 2006. 

[Díaz08] M. Díaz, D. Garrido, L. Llopis, and J. Troya, “Designing distributed software 

with RT-CORBA and SDL.” Computer Standards & Interfaces, 2008. 

[Dong04] J. Dong, P. Hao, S. Qin, J. Sun, and W. Yi, “Timed patterns: TCOZ to Timed 

Automata.” Lecture Notes in Computer Science, ICFEM’04 , Vol. 483-498, p. 3308, 

2004. 

[Drosos01] C. Drosos, M. Zayadine, and D. Metafas, “Real-Time Communication 

Protocol Development Using SDL for an Embedded System On Chip Based on ARM 

Microcontroller.” 13th Euromicro Conference on Real-Time Systems, pp. 89-94, 2001. 

[DSouza99] D. D’Souza and A. Wills, “Objects, Components, and Frameworks with 

UML: The Catalysis Approach”. Addison-Wesley, 1999. 

[Dulaney09] E. Dulaney, “CompTIA Security+™ Study Guide”, 4th ed. Wiley 

Publishing, Inc., 2009. 

[Eddon99] G. Eddon and H. Eddon, “Inside COM+ Base Services”. Microsoft Press , 

1999. 

[Edwards97] S. Edwards, D. Gibson, B. Weide and S. Zhupanov, “Software Component 

Relationships”, In Proc. 8th Annual Workshop on Software Reuse, 1997. 



BIBLIOGRAPHY 

 
186 

 
 

[Eichner05] C. Eichner, H. Fleischhack, R. Meyer, S. U, and C. Stehno, “Compositional 

Semantics for UML 2.0 Sequence Diagrams Using Petri Nets.” Lecture Notes in 

Computer Science, Vol. 3530, pp. 133-148, 2005. 

[Engels02] G. Engels, J. Hausmann, R. Heckel, and S. Sauer, “Testing The Consistency of 

Dynamic UML Diagrams.” Proceedings of the 6th International Congress of Integrated 

Design and Process Technology , IDPT, 2002. 

[Erl05] T. Erl, “Service-Oriented Architecture: Concepts, Technology, and Design”. 

Prentice Hall PTR, 2005. 

[Ethier86] S. Ethier and T. Kurtz, “Markov Processes Characterization and 

Convergence”. John Wiley & Sons, Inc. , 1986. 

[Evangelista05] S. Evangelista, “High Level Petri Nets Analysis with Helena.” Lecture 

Notes in Computer Science, Vol. 3536/2005, pp. 455-464, 2005 

 [Fadali09] M. Fadali and A. Visioli, “Digital Control Engineering : Analysis and 

Design”. Elsevier Inc., 2009. 

[Fishman01] G. Fishman, “Discrete-Event Simulation: Modeling, Programming, and 

Analysis”. Springer Series in Operations Research, Springer-Verlag, 2001. 

[Fortier03] P. Fortier and H. Michel, “Computer Systems Performance Evaluation and 

Prediction”. Digital Press , 2003. 

[Foster95] I. Foster, “Designing and Building Parallel Programs: Concepts and Tools 

for Parallel Software Engineering”. Addison-Wesley Longman Publishing Co., Inc., 

1995. 

[FWang08] F. Wang and D. Liu, “Networked Control Systems: Theory and 

Applications”. Springer-Verlag London Limited, 2008. 

[Gan06] B. Gan, L. Chan, and S. Turner, “Interoperating Simulations of Automatic 

Material Handling Systems and Manufacturing Processes.” Proceedings of the Winter 

Simulation Conference, WSC 06, pp. 1129-1135, 2006. 

[Geisterfer06] C. Geisterfer and S. Ghosh, “Software Component Specification: A Study 

in Perspective of Component Selection and Reuse.” Fifth International Conference on 

Commercial-off-the-Shelf (COTS)-Based Software Systems, pp. 100-108, 2006. 



BIBLIOGRAPHY 

  
187 

 

[Giordano06] V. Giordano, J. Zhang, D. Naso, M. Wong, F. Lewis, and A. Carbotti, 

“Matrix-based discrete event control of automated material handling systems.” 

Proceedings of the 45th IEEE Conference on Decision & Control, 2006. 

[Glabbeek08] R. Glabbeek, U. Goltz, and J. Schicke, “On Synchronous and 

Asynchronous Interaction in Distributed Systems.” Proceedings of the 33rd international 

symposium on Mathematical Foundations of Computer Science, Vol. 5162, pp. 16-35, 

2008. 

[Godary04] K. Godary, I. Augé-Blum, and A. Mignotte, “SDL and timed petri nets 

versus UPPAAL for the validation of embedded architecture in automotive.” Forum on 

specification and Design Language, FDL, 2004. 

[Gössler03] G. Gössler and J. Sifakis, “Composition for Component-Based Modeling.” In 

Proceedings of the First International Symposium on Formal Methods for Components 

and Objects, FMCO 2002, Vol. LNCS 2852, pp. 443-466, 2003. 

[Gössler07] G. Gössler, S. Graf, M. Majster-Cederbaum, M. Martens, and J. Sifakis, “An 

Approach to Modelling and Verification of Component Based Systems.” Lecture Notes in 

Computer Science, SOFSEM 2007: Theory and Practice of Computer Science, Vol. 4362, 

pp. 295-308, 2007. 

[Gouyon04] D. Gouyon, “Product Driven Control of Manufacturing Execution Systems: 

synthesis techniques contribution.” PhD Thesis, Nancy-I, 2004. 

[Haugen04] Ø. Haugen, B. Møller-Pedersen, and T. Weigert, “Structural Modeling with 

Uml2.0: Classes, Interactions and State Machines.” UML for Real, pp. 53-76, 2004. 

[Haverkort98] B. Haverkort, “Performance of Computer Communication Systems: A 

Model-Based Approach”. John Wiley & Sons, Ltd, 1998. 

[Heck03] B. Heck, L. Wills, and G. Vachtsevanos, “Software Technology for 

Implementing Reusable, Distributed Control Systems.” IEEE Control Systems Magazine, 

Vol. 23, pp. 21-35, 2003. 

[Hendriks06] M. Hendriks and M. Verhoef, “Timed Automata Based Analysis of 

Embedded System Architectures.” 20th International Parallel and Distributed Processing 

Symposium, IPDPS, 2006. 



BIBLIOGRAPHY 

 
188 

 
 

[Henry05] S. Henry, “Synthèse de Lois de commande pour la configuration et la 

reconfiguration des systèmes industriels complexes.” Institut National Polytechnique de 

Grenoble - INPG, 2005. 

[Heusse03] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda, “Performance 

anomaly of 802.11 b.” INFOCOM, 2003. 

[Hinz05] S. Hinz, K. Schmidt and C. Stahl, “Transforming BPEL to Petri Nets.” Lecture 

Notes in Computer Science, Vol. 3649/2005, pp. 220-235, 2005. 

[Hong08] D. Hong and Y. Seo, “A Hybrid Simulation Model for Manufacturing Systems 

Using Event-State-Operation Transitions.” IEEE International Conference on Industrial 

Engineering and Engineering Management, IEEM, pp. 1413-1417, 2008. 

[Huang98] C. Huang and A. Kusiak, “Modularity in Design of Products and Systems.” 

IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 

Vol. 28, No. 1, 1998. 

[Huvenoit93] B. Huvenoit, E. Craye, and J. Bourey, “Implantation oriented methodology 

in design control of flexiblemanufacturing systems.” Proceedings of Computers in Design, 

Manufacturing, and Production, CompEuro 93, pp. 125-131, 1993. 

[IBM09] IBM Cell SDK. Cell Broadband Engine Resource Center: 

http://www.ibm.com/developerworks/power/cell/ - 2009. 

[IEC09] The International Engineering Constorium. Specification Description Language: 

http://www.iec.org/online/tutorials/acrobat/sdl.pdf - 2009. 

[IEEE02] IEEE Std 802.3™, “Carrier sense multiple access with collision detection 

(CSMA/CD) access method and physical layer specifications.” 2002. 

[IEEE07] IEEE Computer Society, “Wireless LAN Medium Access Control (MAC) and 

Physical Layer (PHY) Specifications.” IEEE Std. 802.11™, 2007. 

[IEEE09] IEEE. IEEE 802.3 Ethernet Working Group: 

 http://www.ieee802.org/3/ - 2009. 

[IEEE802] 802 - Overview & Architecture : http://www.ieee802.org/1/pages/802.html - 

2007. 

[ISO09] International Organization for Standardization : http://www.iso.org/iso/home.htm 

- 2009. 



BIBLIOGRAPHY 

  
189 

 

[ITUT94] International Telecommunication Union, ITU-T, “Open System 

Interconnection - Model and Notation.” ITU-T Recommendation X.200, 1994. 

[JADE99] JADE Official Website : http://homepages.dcc.ufmg.br/~coelho/jade.html - 

1999. 

[Jain91] R. Jain, “The Art of Computer Systems Performance Analysis: Techniques for 

Experimental Design, Measurement, Simulation, and Modeling ”. John Wiley & 

Sons,Inc., 1991. 

[Jensen91] Kurt Jensen, “Coloured Petri nets: A high level language for system design 

and analysis”, Lecture Notes in Computer Science, Vol. 483/1991, pp. 342-416, 1991. 

[Jia05] W. Jia and W. Zhou, “Distributed Network Systems: From Concepts to 

Implementations”. Springer Science + Business Media, Inc., 2005. 

[JWang07] J. Wang, “Petri nets for dynamic event-driven system modeling.” Handbook 

of Dynamic System Modeling, 2007. 

[Kamrani02] A. Kamrani and S. Salhieh, “Product Design for Modularity .” Springer, 

2002. 

[Khomenko03] V. Khomenko and M. Koutny, “Branching Processes of High-Level Petri 

Nets.” Proceeding of International Conference on Tools and Algorithms for the 

Construction and Analysis of Systems TACAS, Vol. 2619/2003, pp. 458-472, 2003. 

[Kim07] T. Kim, Q. Yang, S. Park, and Y. Shin, “SDL Design and Performance 

Evaluation of a Mobility Management Technique for 3GPP LTE Systems.” Lecture Notes 

in Computer Science, Vol. 4745, pp. 272-288, 2007. 

[Kohler05] M. Kohler and J. Ortmann, “Formal Aspects for Semantic Service Modeling 

Based on High-Level Petri Nets.” International Conference on Computational Intelligence 

for Modelling, Control and Automation, Vol. 1, pp. 107-112, 2005. 

[Kozierok05] C. Kozierok, “The TCP/IP Guide: A Comprehensive, Illustrated Internet 

Protocols Reference”, 3rd ed. No Starch Press, 2005. 

[Kristensen04] L. Kristensen, J. Jørgensen, and K. Jensen, “Application of Coloured 

Petri Nets in System Development.” Lecture Notes in Computer Science, Vol. 3098, pp. 

626-685, 2004. 

[KRONOS02] VERIMAG. The tool Kronos: 



BIBLIOGRAPHY 

 
190 

 
 

http://www-verimag.imag.fr/TEMPORISE/kronos/ - 2002. 

[Kryvyy08] S. Kryvyy and L. Matvyeyeva, “Algorithm of Translation of MSC-specified 

System into Petri Net.” Special Issue on Concurrency Specification and Programming 

(CS&P), Vol. 79, No. 3-4, pp. 431-445, 2008. 

[Kummer04] O. Kummer, et al., “An Extensible Editor and Simulation Engine for Petri 

Nets: Renew.” Lecture Notes in Computer Science, Vol. 3099, pp. 484-493, 2004. 

[Kumar07] P. Kumar and S. Radha, “Parallel Discrete Event Simulation of IEEE 802.11 

MAC Layer using Cell Processor.” International Conference on Emerging Trends in High 

Performance Architecture Algorithms & Computing, HiPAAC, 2007. 

[Kumar09] N. Kumar and R. Sridharan, “Simulation modelling and analysis of part and 

tool flow control decisions in a flexible manufacturing system .” Robotics and Computer-

Integrated Manufacturing, 2009. 

[LAGIS09] Le Laboratoire d'Automatique, Génie Informatique et Signal. LAGIS : 

http://lagis.ec-lille.fr/ - 2009. 

[Lai02] R. Lai, “A survey of communication protocol testing.” The Journal of Systems 

and Software, Vol. 62, No. 1, p. 21–46, 2002. 

[Lakos95] C. Lakos, “From Coloured Petri Nets to Object Petri Nets.” Lecture Notes in 

Computer Science, Vol. 935, PATPN, 1995. 

[Lakos02] C. Lakos, “The Challenge of Object Orientation for the Analysis of 

Concurrent Systems.” Lecture Notes in Computer Science, Vol. 2360, pp. 59-67, 2002. 

[Lallican07] J-L. Lallican, “Proposition d’une approche composant pour la conception de 

la commande des systèmes transitiques.” PhD Thesis  University of Bretagne-Sud, 2007. 

[Lammle08] T. Lammle, “CCENT: Cisco Certified Entry Networking Technician Study 

Guide”. Wiley Publishing, Inc.,, 2008. 

[Langlois02] R. Langlois, “Modularity in technology and organization.” Journal of 

Economic Behavior & Organization, Vol. 49, p. 19–37, 2002. 

[Larsen05] K. Larsen, M. Mikucionis, B. Nielsen, and A. Skou, “Testing real-time 

embedded software using UPPAAL-TRON: an industrial case study.” Proceedings of the 

5th ACM international conference on Embedded software , pp. 299-306, 2005. 



BIBLIOGRAPHY 

  
191 

 

[Latkoski07] P. Latkoski and L. Gavrilovska, “Analysis of Bluetooth Protocol in 

Presence of Bursty Traffic.” Journal of Communications, Vol. 2, No. 6, pp. 38-45, 2007. 

[Lee04] J. Lee and P. Hsu, “Design and Implementation of the SNMP Agentsfor Remote 

Monitoring and Control via UMLand Petri Nets.” IEEE transactions on control systems 

technology, Vol. 12, No. 2, pp. 293-302, 2004. 

[Lejri08] O. Lejri and M. Tagina, “Modeling Hybrid Reconfigurable Manufacturing 

Systems Using Petri Nets”, Communications of SIWN, Vol. 3, pp. 130-134, 2008. 

[Lerner02] M. Lerner, G. Vanecek, N. Vidovic, and D. Vrsalovic, “Middleware 

Networks Concept, Design and Deployment of Internet Infrastructure”. Kluwer Academic 

Publishers, 2002. 

[Lewis98] G. Lewis and C. Lakos, “Towards Incremental Analysis.” First IEEE 

Workshop on Formal Methods for Dependable Systems, FMDS'98, 1998. 

[Liang06] H. Liang, J. Dingel, and Z. Diskin, “A Comparative Survey of Scenario-based 

to State-based Model Synthesis Approaches.” Proceedings of the international workshop 

on Scenarios and state machines: models, algorithms, and tools, SCESM'06, pp. 5 – 12, 

2006. 

[Lim08] H. Lim, B. Wang, C. Fu, A. Phull, and D. Ma, “A Middleware Services 

Simulation Platform forWireless Sensor Networks.” The 28th International Conference on 

Distributed Computing Systems Workshops, ICDCS, pp. 168-173, 2008. 

[Lin90] F. Lin and W. Wonham, “Decentralized supervisory control of discrete event 

systems with partial observation.” IEEE transaction in Automatic Control, Vol. 35, pp. 

1330-1337, 1990. 

[Liu08] X. Liu, G. Yin, and Z. Zhang, “A kind of Object-Oriented Petri Net and its 

Application.” International Conference on Internet Computing in Science and 

Engineering, ICICSE '08, pp. 541-544, 2008. 

[Mallet06] F. Mallet, M. Peraldi-Frati, and C. André, “From UML to Petri Nets for non 

functional Property Verification.” First IEEE Symposium on Industrial Embedded 

Systems (IES'06), pp. 1-9, 2006. 



BIBLIOGRAPHY 

 
192 

 
 

[Masri08a] A. Masri, T. Bourdeaud'huy, and A. Toguyeni, “Performance Analysis of 

IEEE 802.11b Wireless Networks with Object Oriented Petri Nets”, Proceedings of First 

International Workshop on Formal Methods for Wireless Systems 

FMWS’08/CONCUR’08, Toronto, Canada, August 2008. (A special version for ENTCS 

is at August 2009). 

[Masri08] A. Masri, T. Bourdeaud'huy, and A. Toguyeni, “Network Protocol Modeling: 

A Time Petri Net Modular Approach.” 16th International Conference on Software, 

Telecommunications and Computer Networks, SoftCOM 2008, pp. 274-278, Split - 

Dubrovnik, Croatia, September 2008. 

[Masri09a] A. Masri, T. Bourdeaud'huy, and A. Toguyeni, “A Component Modular 

Modeling Approach Based on Object Oriented Petri Nets for the Performance Analysis of 

Distributed Discrete Event Systems”, The Fifth International Conference on Networking 

and Services ICNS’09 Valencia, Spain, April, 2009. (Best Paper Award) 

[Masri09b] A. Masri, T. Bourdeaud'huy, and A. Toguyeni, “A component-based 

approach based on High-Level Petri Nets for modeling Distributed Control Systems”, 

International Journal on Advances in Intelligent Systems, Vol. 2, No. 3, Online 

publication End September 2009. 

[Masri09] A. Masri, T. Bourdeaud'huy, and A. Toguyeni, “Performance Evaluation of 

Distributed Systems: A Component-Based Modeling Approach based on Object Oriented 

Petri Nets”.  In Book “Petri nets”, ISBN 978-953-7619-X-X, Publication End November 

2009. 

[Matena03] V. Matena, S. Krishnan, L. DeMichiel, and B. Stearns, “Applying Enterprise 

JavaBeans: Component-Based Development for the J2EE Platform”, 2nd ed. The Java 

Series. Addison-Wesley, 2003. 

[Melia06] T. Melia, R. Aguiar, A. Sarma, and D. Hogrefe, “Case study on the use of SDL 

for Specifying an IETF micro mobility protocol.” First International Conference on 

Communication System Software and Middleware, Comsware , 2006. 

[Mendez02] H. Mendez, “Synthèse de lois de surveillance pour les procédés industriels 

complexes.” Institut National Polytechnique de Grenoble - INPG , 2002. 



BIBLIOGRAPHY 

  
193 

 

[Merlin76] P. Merlin and D. Farber, “Recoverability of communication protocols: 

Implications of a theoretical study.” IEEE Tr. Comm., Vol. 24, No. 9, pp. 1036-1043, 

1976. 

[Meyer97] B. Meyer, “Object-Oriented Software Construction ”, 2nd ed. Prentice Hall, 

1997. 

[Microsoft96] Microsoft Corporation. DCOM Technical Overview: 

http://msdn.microsoft.com/en-us/library/ms809340.aspx - 0996. 

[Mieghem06] P. Mieghem, “Performance Analysis of Communications Networks and 

Systems ”. Cambridge University Press, 2006. 

[Mir07] N. Mir, “Computer and Communication Networks”. Prentice Hall, Inc, 2007. 

[Moldt03] D. Moldt and H. Rolke, “Pattern Based Workflow Design Using Reference 

Nets.” Lecture Notes in Computer Science, Vol. 2678, p. 246–260, 2003. 

[Moraes06] R. Moraes, P. Portugal, and F. Vasques, “A Stochastic Petri Net Model for 

the Simulation Analysis of the IEEE 802.11e EDCA Communication Protocol.” IEEE 

Conference on Emerging Technologies and Factory Automation, ETFA '06, pp. 38-45, 

2006. 

[Moreno08] R. Moreno, D. Tardioli, and J. Salcedo, “Distributed Implementation of 

Discrete Event Control Systems based on Petri Nets.” IEEE International Symposium on 

Industrial Electronics, ISIE 2008, pp. 1738-1745, 2008. 

[Murata89] T. Murata, “Petri nets: Properties, Analysis and Applications.” Proc. of the 

IEEE, Vol. 77, No. 4, 1989. 

[Nepomniaschy08] V. Nepomniaschy, D. Beloglazov, T. Churina, and M. Mashukov, 

“Using Coloured Petri Nets to Model and Verify Telecommunications Systems.” Lecture 

Notes in Computer Science, Vol. 5010, pp. 360-371, 2008. 

[Newcomer03] E. Newcomer, “Understanding Web Services: XML, WSDL, SOAP, and 

UDDI”. Addison Wesley, 2003. 

[NS208] NS2. Official Website : http://nsnam.isi.edu/nsnam/index.php/Main_Page - 

2008. 

[OMA09] Object Management Group OMG. Object Management Architecture:  

http://www.omg.org/oma/ - 2009. 



BIBLIOGRAPHY 

 
194 

 
 

[OMG09a] The Object Management Group OMG. CORBA Component Model CCM : 

http://www.omg.org/ - 2009. 

[OMG09] The Object Management Group. OMG : http://www.omg.org/ - 2009. 

[OMNet09] OMNeT++ Community Site. http://www.omnetpp.org/ - 2009. 

[OPNET09] OPNET Technologies, Inc. http://www.opnet.com/ - 2009. 

[P2PSim05] P2PSim. Simulator for Peer-To-Peer Protocols: 

http://pdos.csail.mit.edu/p2psim/index.html - 2005. 

[Pahl07] G. Pahl, W. Beitz, J. Feldhusen, and K. Grote, “Engineering Design A 

Systematic Approach”, 3rd ed. Springer-Verlag London Limited, 2007. 

[Paraskevopoulos02] P. Paraskevopoulos, “Modern Control Engineering”. Marcel 

Dekker, Inc., 2002. 

[Penix98] J. Penix and P. Alexander, “Using formal specifications for component 

retrieval and reuse.” In Proc. of the 31st Hawaii International Conference on System 

Sciences, Vol. 3, pp. 356-365, 1998. 

[Peterson03] L. Peterson and B. Davie, “Computer Networks: A Systems Approach”, 3rd 

ed. Morgan Kaufmann Publishers, 2003. 

[Peterson81] J. Peterson, “Petri Net Theory and the Modeling of Systems”. Prentice-hall 

International, 1981. 

[Petin05] J. Petin, P. Berruet, A. Toguyeni, and E. Zamaï, “Impact of information and 

communication emerging technologies in automation engineering : outline of the intica 

proj.” 1st Workshop on Networked Control System and Fault Tolerant Control, 2005. 

[Petri66] C. A. Petri, “Communication with Automata.” Technical Report RADC-TR-65-

377 Rome Air Dev. Center, New York, 1966. 

[Petrucci05] L. Petrucci, “Modularity and Petri Nets.” 7th International Symposium on 

Programming and Systems, ISPS, 2005. 

 [PNW09] Petri Nets World: http://www.petrinetz.de/ - 2009. 

[Puder06] A. Puder, K. Römer, and F. Pilhofer, “Distributed Systems Architecture: A 

Middleware Approach ”. Morgan Kaufmann Publishers, Elsevier Inc., 2006. 



BIBLIOGRAPHY 

  
195 

 

[Ramadge87] P. Ramadge and W. Wonham, “Supervisory control of a class of discrete 

event processes.” SIAM Journal on Control and Optimization, Vol. 25, No. 1, pp. 206-

230, 1987. 

[Ramadge89] P. Ramadge and W. Wonham, “The Control of Discrete Event Systems.” 

Proceedings of the IEEE, Vol. 77, No. 1, 1989. 

[Ramchandani74] C. Ramchandani, “Analysis of Asynchronous Concurrent Systems by 

Timed Petri Nets.” Project MAC, TR120, M.I.T., 1974. 

[Renew08] The Reference Net Workshop. Renew : http://www.renew.de/ - 2008. 

[RFC1180] T. Socolofsky and C. Kale, “ RFC 1180 - A TCP/IP Tutorial.” Spider 

Systems Limited, 1991. 

[Rofail99] A. Rofail and Y. Shohoud, “Mastering COM and COM+ ”. Sybex, Inc. , 1999. 

[Rumbaugh99] J. Rumbaugh, I. Jacobson, and G. Booch, “The Unified Modeling 

Language Reference Manual”. Addison Wesley, Inc., 1999. 

[Sametinger97] J. Sametinger, “Software engineering with reusable components”, 

Springer, 1997. 

[Sankar05] K. Sankar, S. Sundaralingam, A. Balinsky, and D. Miller, “Cisco Wireless 

LAN Security”. Cisco Press, 2005. 

[Sarjoughian05] H. Sarjoughian, W. Wang, K. Kempf, and H. Mittelmann, “Hybrid 

discrete event simulation with model predictive control for semiconductor supply-chain 

manufacturing.” Proceedings of the 37th Conference on Winter Simulation, pp. 256 – 

266, 2005. 

[Schoop00] R. Schoop and R. Neubert, “Agent-oriented material flow control system 

based on DCOM”, Third IEEE International Symposium on Object-Oriented Real-Time 

Distributed Computing, ISORC, pp. 342-345, 2000 

[Schriber05] T. Schriber and D. Brunner, “Inside discrete-event simulation software: 

How it works and why it matters.” Proceedings of the Winter Simulation Conference, pp. 

167-177, 2005. 

[SDL09] SDL Forum Society : http://www.sdl-forum.org/ - 2009. 

[Seyler02] F. Seyler and P. Aniorte, “A Component Meta Model for Reused-Based System 

Engineering.” Workshop in Software Model Engineering, Dresden, German, 2002. 



BIBLIOGRAPHY 

 
196 

 
 

[SOCRADES09] The SOCRADES Project: http://www.socrades.eu/Home/default.html - 

2009. 

[Spurgeon00] C. Spurgeon, “Ethernet The Definitive Guide”, 1st ed. O'Reilly & 

Associates, Inc, 2000. 

[Srinivasan95a] R. Srinivasan, “RFC1831 - RPC: Remote Procedure Call Protocol 

Specification Version 2.” Sun Microsystems, 1995. 

[Stallings07] W. Stallings, “Data and Computer Communications”, 8th ed. Prentice-Hall, 

Inc, 2007. 

[Subramanian05] R. Subramanian and B. Goodman, “Peer-to-Peer Computing: The 

Evolution of a Disruptive Technology”. Idea Group Publisher,, 2005. 

[Sun09a] Sun Developer Network (SDN). Java Sun : http://java.sun.com/ - 2009. 

[Sun09b] Sun Microsystems. JavaTM Remote Method Invocation (RMI): 

http://java.sun.com/j2se/1.3/docs/guide/rmi/ - 2009. 

[Tanenbaum03] A. Tanenbaum, “Computer Networks”, 4th ed. Prentice Hall, 2003. 

[Tanenbaum95] A. Tanenbaum, “Distributed Operating Systems”. Prentice Hall, 1995. 

[Tari01] Z. Tari and O. Bukhres, “Fundamentals of Distributed Object Systems: The 

CORBA Perspective”. John Wiley & Sons, Inc., 2001. 

[Thai02] T. Thai and H. Lam, “.NET Framework Essentials”, 2nd ed. O’Reilly Media, 

2002. 

[Tina09] Laas - CNRS. TIme Petri Nets : http://www.laas.fr/tina - 2009. 

[Toguyeni06] A. Toguyeni, “Design of Modular and Hierarchical Controllers for 

Reconfigurable Manufacturing Systems.” IMACS Multiconference on Computational 

Engineering in Systems Applications, Vol. 1, pp. 1004-1011, 2006. 

[Tsai05] M. Tsai and L. Lin, “Web-based distributed manufacturing control systems”, 

The International Journal of Advanced Manufacturing Technology , Vol. 25, No. 5-6, pp. 

608-618, 2005. 

[UML09] OMG. Unified modeling language UML : http://www.omg.org/uml - 2009. 

[UPPAAL09] UPPAAL Official Website : http://www.uppaal.com/ - 2009. 

[Verma04] D. Verma, “Legitimate Applications of Peer-to-Peer Networks”. John Wiley 

& Sons, Inc., 2004. 



BIBLIOGRAPHY 

  
197 

 

[Vojnar01]  T. Vojnar, “Towards Formal Analysis and Verification over State Spaces of 

Object-Oriented Petri Nets.”, PhD thesis, 2001. 

[W3C01] W3C. URIs, URLs, and URNs: Clarifications and Recommendations 1.0 : 

http://www.w3.org/TR/uri-clarification/ - 2001. 

[W3C09] W3C. World Wide Web : http://www.w3.org/ - 2009. 

[Weber07] D. Weber, J. Glaser, and S. Mahlknecht, “Discrete Event Simulation 

Framework for Power Aware Wireless Sensor Networks.” 5th IEEE International 

Conference on Industrial Informatics, Vol. 1, pp. 335-340, 2007. 

[Werner05] C. Werner, X. Fu, and D. Hogrefe, “Modeling Route Change in Soft-State 

Signaling Protocols Using SDL: A Case of RSVP.” Lecture Notes in Computer Science, 

Vol. 3530, pp. 174-186, 2005. 

[Werner06] C. Werner, S. Kraatz, and D. Hogrefe, “A UML Profile for Communicating 

Systems.” Lecture Notes in Computer Science, Vol. 4320, pp. 1-18, 2006. 

[Weyuker98] E. Weyuker, “Testing Component-Based Software: A CautionaryTale.” 

IEEE Software, Vol. 15, No. 5, pp. 54-59, 1998. 

[Woodside95] M. Woodside, J. Neilson, D. Petriu, and S. Majumdar, “The Stochastic 

Rendezvous Network Model for Performance of Synchronous Client-Server-like 

Distributed Software.” IEEE Transactions on Computers, Vol. 44, No. 1, pp. 20-34, 1995. 

[Wu07] Y. Wu, K. Zhang, X. Wang, and J. Tian, “Extending metadata with scenarios in 

adaptive distributed system.” Journal of Network and Computer Applications, Vol. 30, 

No. 4, pp. 1283-1294, 2007. 

[Xu07] T. Xu and T. Tang, “The modeling and Analysis of Data Communication System 

(DCS) in Communication Based Train Control (CBTC) with Colored Petri Nets.” Eighth 

International Symposium on Autonomous Decentralized Systems, ISADS '07, pp. 83-92, 

2007. 

[Yovine97] S. Yovine, “KRONOS: a verification tool for real-time systems.” 

International Journal on Software Tools for Technology Transfer (STTT), Vol. 1, No. 1-2, 

pp. 123-133, 1997. 



BIBLIOGRAPHY 

 
198 

 
 

[Zamaï98] E. C.-S. A. Zamaï and M. Combacau, “An architecture for control and 

monitoring of discrete events systems.” Computers in Industry, Vol. 36, No. 1 - 2, pp. 95-

100, 1998. 

[Zamaï06] E. Zamaï, “Contribution à la ConduiteRéactive de Flux en Contexte 

incertain.” Institut National Polytechnique de Grenoble - INPG, 2006. 

[Zhang01] W. Zhang, M. Branicky, and S. Phillips, “Stability of Networked Control 

Systems.” IEEE Control Systems Magazine, Vol. 21, pp. 84-99, 2001. 

[Zimmermann80] H. Zimmermann, “OS1 Reference Model-The IS0 Model of 

Architecture for Open Systems Interconnection.” IEEE Transactions on Communications, 

Vol. COM-28, No. 4, 1980. 

[ZWang07] Z. Wang, X. Peng, and Z. Ji, “Interactive multimedia synchronization model 

based on Petri Nets.” Wuhan University Journal of Natural Sciences, Vol. 12, No. 6, pp. 

1019-1023, 2007. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 
 
 

Abstract: Manufacturing systems belong to the class of distributed discrete event 
systems. Their size requires distributing the software to control them on architecture of 
several industrial computers connected by networks. In this context, it becomes crucial to 
be able to evaluate the impact of a specific architecture on the manufacturing systems 
services both in terms of performance and quality.  The performance of the underlying 
network can notably affect the productivity of the system. In traditional methodology 
proposed in literature, this aspect is not taken into account in the design stage. Thus, 
modeling such systems is important to verify some properties at that stage. In this thesis, 
we propose a component-based modeling approach with High Level Petri nets based 
method for modeling some network protocols in order to evaluate the manufacturing 
systems as being distributed systems. The selection of Petri nets is justified by their 
expression power with regard to the modeling of distributed and concurrent systems. 
Component-based approach can decrease modeling complexity and encourages 
genericity, modularity and reusability of ready-to-use components. This allows building 
new models easily and reducing the systems development cost. Moreover, this can help in 
better managing services and protocols and to easily change/modify a system element. 
Finally, this modeling enables us to evaluate discrete event systems by means of 
centralized simulations. 
Key-words: Communication Networks, Distributed Systems, Protocols, Manufacturing 
Systems, High-Level Petri Nets, Component-based Modeling 

Résumé : Les systèmes de production manufacturiers sont une classe des systèmes 
à événements discrets. Leur taille nécessite de distribuer le logiciel de contrôle sur une 
architecture industrielle de plusieurs ordinateurs reliés en réseau. Dans ce contexte, il 
devient essentiel d'être capable d'évaluer l'impact d'une architecture réseau spécifique sur 
les services des systèmes manufacturiers en termes de la performance et la qualité. Les 
performances du réseau sous-jacent peuvent notamment nuire à la productivité du 
système. Dans la méthodologie traditionnelle proposée dans la littérature, cet aspect n'est 
pas pris en compte au niveau conception. Cependant, la modélisation de tels systèmes est 
importante pour vérifier certaines propriétés. Dans cette thèse, nous proposons une 
approche de modélisation par composants à l’aide des réseaux de Petri haut niveau pour 
la modélisation de certains protocoles de réseaux afin d'évaluer les systèmes 
manufacturiers comme étant des systèmes distribués. La sélection des réseaux de Petri est 
justifiée par leur pouvoir d'expression en ce qui concerne la modélisation des systèmes 
distribués et concurrents. L’approche par composants permet de diminuer la complexité 
de la modélisation et encourage la généricité, la modularité et la réutilisabilité des 
composants prêt-à-utiliser. Cela permet de construire facilement de nouveaux modèles et 
de réduire les coûts de développement de systèmes. En outre, cela peut aider à une 
meilleure gestion des services et des protocoles et à changer facilement/modifier un 
élément du système. Notre modélisation permet enfin d'évaluer ces systèmes par le biais 
de simulations centralisées. 

Mots-clés : Réseaux de Communication, Systèmes Distribués, Protocoles, Systèmes de 
Production Manufacturés, Réseaux de Petri Haut Niveau, Modélisations par Composants. 
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