
HAL Id: tel-00578841
https://theses.hal.science/tel-00578841

Submitted on 22 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards the distribution control of manufacturing
systems : a component-based approach for taking into
account the communication architecture in modeling

Aladdin Masri

To cite this version:
Aladdin Masri. Towards the distribution control of manufacturing systems : a component-based ap-
proach for taking into account the communication architecture in modeling. Other. Ecole Centrale
de Lille, 2009. English. �NNT : 2009ECLI0012�. �tel-00578841�

https://theses.hal.science/tel-00578841
https://hal.archives-ouvertes.fr

N° d’ordre : 102

ÉCOLE CENTRALE DE LILLE

Thèse

Présentée en vue d'obtenir le grade de

DOCTEUR

En

Spécialité : Automatique et Informatique Industrielle

Par

Aladdin MASRI

Doctorat délivré par l’Ecole Centrale de Lille

Vers le Contrôle Commande Distribué des Systèmes de Production

Manufacturiers: Approche Composant pour la prise en compte de

l’Architecture de Communication dans la Modélisation

Soutenue le 10 Juillet 2009 devant le jury d'examen:

Président : Jean-Pierre BOUREY, Professeur à l'École Centrale de Lille

Rapporteur : Moncef TAGINA, Professeur à l’Université de Manouba, Tunisie

Rapporteur : Pascal BERRUET, Professeur à l’IUT de Lorient

Membre : Pavol BARGER, Maître de Conférences à l’Université de Technologie de

Compiègne

Directeur de thèse : Armand TOGUYENI, Professeur à l'École Centrale de Lille

Co-directeur de thèse : Thomas BOURDEAUD'HUY, Maître de Conférences à l'École

Centrale de Lille

Thèse préparée au sein du Laboratoire LAGIS
École Doctorale SPI 072

Order No: 102

ÉCOLE CENTRALE DE LILLE

PhD Thesis

Presented to obtain the degree of

Doctor of Philosophy

In

Speciality: Automation Control and Computer Engineering

By

Aladdin Masri

PhD degree delivered by École Centrale de Lille

Towards the Distributed Control of Manufacturing Systems:

A Component-Based Approach for taking into account the

Communication Architecture in Modeling

Defended on 10 July 2009 in presence of the Board of Examiners:

President: Jean-Pierre Bourey, Professor at École Centrale de Lille

Reviewer: Moncef Tagina, Professor at University of Manouba, Tunisia

Reviewer: Pascal Berruet, Professor at IUT of Lorient

Examiner: Pavol Barger, Assistant Professor at University of Technology of

Compiègne

Thesis Supervisor: Armand Toguyeni, Professor at École Centrale de Lille

Co-supervisor: Thomas Bourdeaud'huy, Assistant Professor at École Centrale de Lille

PhD Thesis prepared in the LAGIS Laboratory

Science for engineers Doctoral School SPI 072

To the memorial of my parents,

To my Family,

To my wife and my two little daughters Hala and Dana

ii

iii

الْعِلْمَ دَرَجَاتٍ ۚ وَاللَّهُ يَرْفَعِ اللَّهُ الَّذِينَ آمَنُوا مِنكُمْ وَالَّذِينَ أُوتُوا "

]11:المجادلة" [بِمَا تَعْمَلُونَ خَبِيرٌ

“God raises those among you who believe and those who acquire

knowledge to higher ranks. God is fully Cognizant of everything

you do”. [Al-Mujadila:11], The Holy Quran

« Allah élèvera en degrés ceux d'entre vous qui auront cru et ceux

qui auront reçu le savoir. Allah est parfaitement Connaisseur de ce

que vous faites ». [Al-Mujadila:11], Le Saint Coran

iv

v

Acknowledgment

First of all, I would like to thank Prof. Armand Toguyeni and Dr. Thomas Bourdeaud'huy

with whom I had the opportunity and pleasure to work during these three years. I also

thank them for their encouragement and rigorous advices at scientific and personal levels

which have resulted in the production of this work.

I present my sincere thanks to Prof. Jean-Pierre Bourey who did me the honor of chairing

the board of examiners.

Then, I wish to express my deep gratitude to Professor Moncef Tagina and Professor

Pascal Berruet for the interest they have shown to my work by agreeing to be the

reporters of this thesis.

I also wish to thank Dr Pavol Barger for agreeing to review this thesis and be part of the

board of examiners.

I express my sincere thanks to my colleagues and all the members of Ecole Contrale de

Lille and the OSSc team for their friendly humour and availability.

I want to express my thanks to my family, particularly my wife and my two little

daughters Hala and Dana, who have always supported and encouraged me. Without them

I would not be able to accomplish this work.

Finally, I would like to say that without the Grace of Allah, I would never arrive here.

So, thanks to Allah first.

vi

vii

GENERAL INTRODUCTION ... 1

Chapter 1: MODELING DISTRIBUTED CONTROL SYSTEMS ... 9

1. INTRODUCTION ... 10

2. DISTRIBUTED SYSTEMS: ARCHITECTURE AND APPLICATIONS 11

2.1 OVERVIEW .. 11

2.2 COMMUNICATIONS IN DISTRIBUTED SYSTEMS .. 12

2.2.1 CLIENT/SERVER ARCHITECTURE .. 12

2.2.2 PEER-TO-PEER ARCHITECTURE .. 14

2.3 IMPLEMENTING DISTRIBUTED SERVICES AND APPLICATIONS 15

2.3.1 REMOTE PROCEDURE CALL RPC ... 15

2.3.2 REMOTE METHOD INVOCATION RMI ... 16

2.3.3 DISTRIBUTED COMPONENT OBJECT MODEL DCOM 17

2.3.4 COMMON OBJECT REQUEST BROKER ARCHITECTURE CORBA 18

2.3.5 WEB SERVICES .. 20

3. MODELING MANUFACTURING SYSTEMS .. 21

3.1 MODELING FMS WITH PETRI NETS .. 21

3.1.1 PETRI NETS OVERVIEW ... 21

3.1.2 WHY PETRI NETS? ... 22

3.2 THE ARIZONA STATE UNIVERSITY/INTEL APPROACH 24

3.3 THE NHIT (TAIWAN) APPROACH .. 26

3.4 THE CRAN APPROACH .. 28

3.5 THE LAG/G-SCOP APPROACH .. 29

3.6 THE LAAS APPROACH ... 30

3.7 THE LAB-STICC APPROACH ... 32

3.8 THE LAGIS/OSSC APPROACH ... 36

4. CONCLUSION .. 42

Chapter 2: COMMUNICATION SYSTEMS AND MODELING TECHNIQUES 43

1. INTRODUCTION ... 44

2. COMMUNICATION SYSTEMS ARCHITECTURE .. 45

viii

2.1 COMMUNICATION SYSTEMS OVERVIEW .. 45

2.2 NETWORK LAYERING ARCHITECTURE .. 46

2.3 PACKETS ENCAPSULATION MECHANISM ... 48

2.4 PROTOCOLS AND INTERFACES ... 49

2.5 THE OSI REFERENCE MODEL .. 54

2.6 NETWORKS SIZES AND TYPES .. 55

2.6.1 WIRED LOCAL AREA NETWORKS LAN .. 56

2.6.2 WIRELESS NETWORKS WLAN .. 57

2.6.3 WIDE AREA NETWORKS WAN .. 58

3. COMMUNICATION PROTOCOLS MODELING METHODS ... 59

3.1 UNIFIED MODELING LANGUAGE UML .. 60

3.2 SPECIFICATION AND DESCRIPTION LANGUAGE SDL .. 63

3.3 TIMED AUTOMATA ... 67

3.4 SIMPLE PROMELA INTERPRETER SPIN ... 71

3.5 PETRI NETS WITH TIME .. 72

4. CONCLUSION .. 77

Chapter 3: MODELING COMMUNICATION PROTOCOLS WITH COMPONENT-BASED

APPROACH .. 79

1. INTRODUCTION .. 80

2. COMPONENT-BASED MODELING PROPERTIES .. 82

2.1 GENERICITY .. 82

2.2 MODULARITY ... 83

2.3 REUSABILITY .. 84

2.4 COMPONENTS ABSTRACTION ... 85

3. CHOOSING THE METHOD: HIGH-LEVEL PETRI NETS .. 86

3.1 SELECTION CRITERIA ... 87

3.2 PROPERTIES OF OUR HIGH-LEVEL PETRI NETS ... 87

3.2.1 DEFINITION .. 87

3.2.2 INSCRIPTIONS, GUARDS AND TUPLES .. 88

ix

3.2.3 STOCHASTIC AND PROBABILITY FUNCTION ... 90

3.2.4 TOKEN IDENTIFICATION .. 92

3.2.5 TIMING ... 93

4. BUILDING COMPONENTS TO MODEL LAN MAC PROTOCOLS 96

4.1 ANALYZING THE DATA LINK LAYER PROTOCOLS .. 96

4.1.1 CHANNEL CHECK .. 97

4.1.2 SENDING AND RECEIVING: DATA, ACKNOWLEDGMENTS AND JAM 98

4.1.3 RANDOM AND BINARY EXPONENTIAL BACKOFFS 99

4.1.4 THE CONNECTING MEDIUM .. 102

4.2 BUILDING PATTERNS COMPONENTS ... 103

4.2.1 COMPONENTS INTERFACES ... 103

4.2.2 CHANNEL CHECK COMPONENT .. 104

4.2.3 RECEIVING AND SENDING ACK COMPONENT .. 104

4.2.4 BACKOFF / BEB COMPONENT ... 108

4.2.5 MEDIUM COMPONENT ... 109

4.3 Proporties ANALYSES OF THE BUILT COMPONENTS .. 110

5. APPLICATION PROTOCOLS ... 111

5.1 MODELING IEEE 802.3 ETHERNET PROTOCOL ... 111

5.1.1 ETHERNET OVERVIEW .. 111

5.1.2 CSMA/CD MECHANISM ... 112

5.1.3 MODELING AN ETHERNET WORKSTATION ... 113

5.1.4 MODELING ETHERNET MEDIUM ... 114

5.2 MODELING IEEE 802.11B WLAN PROTOCOL .. 115

5.2.1 IEEE 802.11 PROTOCOL OVERVIEW .. 115

5.2.2 IEEE 802.11 OPERATION MODES .. 116

5.2.2.1 POINT COORDINATION FUNCTION PCF .. 117

5.2.2.2 DISTRIBUTED COORDINATION FUNCTION DCF 118

5.2.3 MODELING A DCF IEEE 802.11B WORKSTATION 119

5.2.4 MODELING THE WIRELESS MEDIUM .. 121

x

6. CONCLUSION .. 122

Chapter 4: PERFORMANCE EVALUATION OF DISTRIBUTED SYSTEMS 123

1. INTRODUCTION .. 124

2. PERFORMANCE EVALUATION TECHNIQUES .. 125

2.1 ANALYTICAL MODELS ... 125

2.1.1 STOCHASTIC MODELS .. 125

2.1.2 QUEUEING MODELS ... 126

2.2 SIMULATION MODELS .. 128

2.2.1 CONTINUOUS EVENT SIMULATION .. 130

2.2.2 DISCRETE EVENT SIMULATION ... 131

2.3 COMPARISON BETWEEN THE DIFFERENT METHODS .. 132

3. PERFORMANCE EVALUATION OF NETWORK PROTOCOLS 134

3.1 CHOOSING THE TOOL ... 134

3.2 SIMULATION AND RESULTS .. 136

3.2.1 AVERAGE BANDWIDTH PER NODE .. 136

3.2.2 COLLISIONS RATE PERCENTAGE ... 137

3.2.3 TRANSMISSION TIME PER PACKET .. 138

3.3 COMPARISON WITH NS-2 SIMULATOR AND OTHER STUDIES 140

4. A CASE STUDY: EVALUATING PERFORMANCE OF A DISTRIBUTED MANUFACTURING

SYSTEM ... 143

4.1 ANALYZING THE SYSTEM ... 143

4.1.1 SYSTEM COMPONENTS ... 144

4.1.2 EXCHANGED MESSAGES BETWEEN COMPONENTS 145

4.2 MODELING THE COMPONENTS ... 147

4.2.1 AREA COMPONENTS ... 147

4.2.2 TRANSFER COMPONENT ... 150

4.3 SIMULATION AND RESULTS .. 154

4.3.1 ONE PRODUCT .. 155

4.3.2 DIFFERENT PRODUCTS, SAME PROTOCOL ... 155

xi

4.3.3 Same Products; Different Protocols .. 157

5. CONCLUSION .. 159

CONCLUSION AND PERSPECTIVES .. 161

1. CONCLUSION .. 161

2. PERSPECTIVES .. 164

2.1 ENRICHING THE COMPONENTS LIBRARY ... 164

2.2 QUANTITATIVE VERIFICATION ... 165

2.3 TOWARDS A NEW SOFTWARE TOOL ... 166

RÉSUMÉ EN FRANÇAIS ... 167

BIBLIOGRAPHY ... 181

GENERAL INTRODUCTION

1

GENERAL INTRODUCTION

Manufacturing systems are a class of discrete event systems whose elements are

interacting together to build products or to perform services. In order to improve the

adaptability to the market and the quality of manufactured products and to allow their fast

evolution, the implementation of flexible manufacturing cells is necessary. However, a

large initial cost for the production resources and for the system control design is

required.

In the eighties, the concept of flexible manufacturing systems FMS has been

introduced to develop new systems of manufacturing production able to produce small or

average series of products. An FMS is a discrete event system (event-driven) that

includes the notion of flexibility. It is a production system that consists of a set of

machines connected together via an automatic transportation system. Machines and

transportation components such as robots are controlled by numerical controllers or CNC.

In all cases, additional computers or programmable logical controllers PLC are used to

coordinate the resources of the system.

Information and knowledge exchanges in FMS are controlled communications

(with shorter messages but to be exchanged rapidly). The cell controllers or computers

have a lot of functions and are used to control all the operations of an FMS. The control

system manage most of the activities within an FMS like parts transportation,

synchronising the connection between machine and transportation system, issuing

commands to each machine...

INTRODUCTION

2

Such systems are integrating the modern communication and control functions in

all levels of the system. Networking is extensively applied in industrial applications (local

industrial networks). These applications include production systems and more particularly

manufacturing plants. The connection of the system components/elements through a

network reduces the system complexity and the resources cost. Moreover, it allows

sharing the data efficiently. LANs and Internet are the most appropriate and economical

choices for many system-applications. However, networks performances affect the

application services in terms of time-dependent and packet losses.

Thus, the control [Bubnicki05] of such systems is very important. Nowadays, a

controlled system [Fadali09] [Paraskevopoulos02] [Burns01] is the combination of

sensors, controllers, actuators and other components/elements distributed around media

of communication, working together according to the user requirements. It is used to

manage, command, direct or regulate the behaviour of devices or systems. Combining

networks and control systems together reduces the cost and complexity of distributed

systems greatly. It facilitates also the maintenance of the systems.

The resulting of this combination is referred to as the networked control system

NCS [Zhang01] [FWang08]. NCS are one of the main focuses in the research and

industrial applications. Networked control systems are entirely distributed and networked

control system used to provide data transmission between devices and to provide resource

sharing and coordinating management. These benefits have made many industrial

companies to apply networking technologies to manufacturing systems applications.

However, there is a need to model such systems to verify some properties such as

deadlocks, liveness, boundness and other performance issues. But, the classical modeling

paradigm is generally based on a centralized viewpoint. Indeed, this kind of modeling

does not take into account the fact that the system will be distributed when implemented

over different machines, sensors, actors, etc. So, the properties that are obtained by the

design stage are not necessary guaranteed at the implementation stage

Another issue in such models is that reconfiguration [Lejri08] process is not

always considered. Today, the reconfiguration capability is a major problem to improve

GENERAL INTRODUCTION

3

the functioning of industrial processes. Indeed, a main objective is to adapt quickly the

system changes and evaluations: such as the possibility to upgrade the systems or the

modifications of the underlying network protocols.

A third problem is that these models does not take into account the underlying

network and protocols in terms of performance and information exchange. Networks

affect directly the manufacturing system. The behavior and design of manufacturing

systems are affected by the underlying networks: particularly performance, mobility,

availability and quality of service characteristics. For example, the use of Ethernet will

not give the same results if we used Giga Ethernet for the same system.

One way to overcome such problems is to model these systems in a distributed

way. A distributed system model offers means to describe precisely all interesting forms

of inconsistency as they occur. It takes into account each part in the system, available

resources, and system changes together with the underlying network. Once this model is

made, its application and implementation are easier since it has the same characteristic as

the desired system.

In this context, we propose in this work the modeling of manufacturing systems

and their underling network protocols in a distributed model in the form of a client /server

distributed system, figure 1. This approach has been originally proposed at the OSSc team

to model the manufacturing system with colored Petri nets.

Nevertheless, these systems are complex: massive distribution, high dynamics,

faults, and high heterogeneity. Therefore, it is very necessary to model these systems in a

way that provides higher degree of confidence and rigorous solutions. One way to cope

with this challenge is the use of the component-based methodology which is consistent

with the principle of distributed systems in which components are reusable and

composable units of code. The component-based approach uses hierarchical and modular

means to design and analyze systems. It defines that the system model can be assembled

from components working together and the designer needs only to identify the good

components that offer suitable services with regard to applications requirements. This

INTRODUCTION

2

methodology allows the reusability and genericity of the components which reduces the

cost of the systems development.

Figure 1, Client/Server Distributed System

Many methods and formalisms are used to model such systems. However, these

formalisms are only used to model one view of the distributed systems. The main issue

here is the ability to model both communication networks and their details and the

distributed services of applications executed over these networks. In this thesis we

propose to model them with High-Level Petri Nets which is a powerful formalism able to

model both views. This ability comes from the ability of Petri nets formalism for

modeling concurrent and distributed systems.

Figure 2 shows the composition of a distributed model. The higher level represents

the services F1, F2 and F3offered by the different machines M1, M2 and M3 in the

system. It represents any other resource on the system O1, O2 and O3 such as the robots

4

GENERAL INTRODUCTION

5

or a transfer unit. The low level represents the workstations that control the service or the

resource. The messages exchanged over the network are made between these machines.

The medium block represents the kind/class of network used by the system. The model is

basically based on generic components (workstations, services, resources…). This can

facilitate the upgrade of the system easily; each component is modified separately, and

the impact of changing the communication protocol can be evaluated easily.

Figure 2, Component-Based Distributed Model

Yet, the presented work is not limited to manufacturing systems. On the contrary,

it is valid for any type of DES distributed and networked control systems where services

and applications are executed over the network. In this work we focus on the modeling of

manufacturing systems controlled over a local industrial network. But since the

communication protocols and services are modeled as blocks, this allows adapting the

method to any type of protocol and any distributed service such as data base systems or

transportation systems.

INTRODUCTION

2

SCIENTIFIC WORKING TEAM

The research work presented in this thesis has been realized within the Optimisation et

Supervision des Systèmes complexes OSSc team. The OSSc team is one of the

Laboratoire d'Automatique, Génie Informatique et Signal LAGIS [LAGIS09] (a research

unit of the Centre National de la Recherche Scientifique CNRS) teams, located at l’Ecole

Centrale de Lille.

The team is working on two main themes of research:

1- Quality of service for discrete event systems: This work aims to build DES models

in order to develop or adapt the services delivered by the system to the user

requirements. Various viewpoints can be considered such as the diagnostic of the

system status; the check of its properties or its performance. It involves several

application areas: production systems, computer networks, embedded systems and

transportation. The modeling is based on Petri Nets. This mathematical formalism

and its multiple and semantic extensions are suitable for analyzing the properties

of models and the study of their performances.

2- The piloting and reconfiguration of production systems: The work aims to

optimize production systems behaviour in the presence of disturbances, both in the

short term (piloting) and medium term (reconfiguration). Concerning the piloting,

the work aims to maintain the system around a determined operating point by

compensating disturbances. The problem addressed is related to the size of the

production system. The reconfiguration process is triggered when the operating

point can no longer be maintained. In this case, the knowledge of a new

architecture helps to synthesize a new control to fill all or a part of the original

objectives. The current works are based on the analysis on the fly of the

reachability graph of the Petri net model of the system. To avoid the problem of

combinational explosion, they relay on the use of solvers.

We believe that Petri nets can be used to unify previous approaches to develop a

methodology for comprehensive and integrated design.

6

GENERAL INTRODUCTION

7

THESIS OUTLINE

The thesis is organized as it follows:

Chapter 1 introduces first the distributed control systems approaches, their application

and architectures. This section shows the different types of distributed architectures that

can be used to implement a distributed system-model. However, this part will not be

covered in this thesis. In the second part we introduce the different models proposed to

model the manufacturing systems. We focus more particularly on the approach proposed

by the OSSc team. This approach will be used in the case study of chapter 4.

Chapter 2 is divided in two parts. The first part introduces the architecture of a

communications system, communication networks and protocols models. The second part

focuses on the different methods and techniques used to model the protocols and services.

We mainly focus on the use of Petri nets and their advantages over other methods.

Chapter 3 first part summarises the different component-based modeling techniques,

particularly formal methods. In the second part, we will describe the used modeling

formalism: High-Level Petri Nets. In the third part, we specify the modeling technique

used for building the patterns and components for communication networks. Finally, we

apply our methodology on two illustrative examples: Ethernet and 802.11b DCF.

Chapter 4 will introduce the different models and methods used to evaluate the

performance in communication and distributed systems. The second part will give the

simulation results of the communication protocols models presented in chapter 3. The last

part will combine the modeling of communication protocols and the manufacturing

system presented in chapter 1. The impact on the system performances of using different

communication protocols will be analyzed.

Chapter 1

MODELING DISTRIBUTED CONTROL

SYSTEMS

1. INTRODUCTION

10

1. INTRODUCTION

In our days, industrial and commercial systems are integrating the modern

communication and control functions in all levels of the system. Networking is

extensively applied in industrial applications. These applications include production

systems and more particularly manufacturing systems. The connection of the system

elements through a network reduces the system complexity and the assets cost. Moreover,

it allows sharing the data efficiently. LANs and Internet are the most appropriate and

economical choices for many system-applications. However, networks performances can

affect the application services in terms of time-dependent and packet losses.

In the literature, many methods are proposed to model manufacturing systems.

Schematically, most of these approaches distinguish two stages: a design stage where one

generally uses a formal test to define the functionalities of the control software, and

implementation stage where this software is translated into code depending on the

language of the target industrial computer. But, the complexity of industrial

manufacturing systems implies to split the original control software on different

computers connected by one or several networks. In this case, as the properties of the

original control software were checked with a centralized viewpoint in the design stage,

they can no more be guaranteed after the implementation. An alternative way to model

such systems is to use distributed models at the design stage. This approach allows the

consideration of communication protocols and network used to exchange the messages

and information between the different parts of the systems to perform a service.

In this chapter we will introduce the different applications that can be used to

implement a distributed system (at the implementation stage). However, in this thesis, the

implementation stage will not be covered. Only the classical client/server approach will

be used in the design stage. The second part of the chapter introduces the different models

proposed to model the manufacturing systems. We will mainly focus on the distributed

model approach proposed by the LAGIS/OSSc team to model manufacturing systems.

This approach will be used for the case study in chapter 4.

Chapter 1 – MODELING DISTRIBUTED CONTROL SYSTEMS

11

2. DISTRIBUTED SYSTEMS: ARCHITECTURE AND

APPLICATIONS

2.1 OVERVIEW

Distributed systems [Coulouris01] [Tari01] use multiple workstations communicating to

each other via a common network. The underlying networks have been developed to

enable many distributed systems to exchange and share resources and services. In the

literature, different definitions of distributed systems have been given:

 A distributed system is a collection of independent computers that appears to its

users as a single coherent system [Tanenbaum95].

 A distributed system is one in which components located at networked computers

communicate and coordinate their actions only by passing messages [Coulouris01].

 A distributed system is an information-processing system that contains a number of

independent computers that cooperate with one another over a communications

network in order to achieve a specific objective [Puder06].

A distributed application executes over a distributed system. In a distributed

system, many autonomous elements are distributed over different hosts. These

components/elements may be used exclusively by a single host and do not need to be

homogeneous. Theoretically, the primitives offered by the network allow the elements to

interact with each other and to request and give access to their services.

Distributed objects are units that are designed to work together. These units can be

in multiple computers connected via a network or in several processes inside the same

computer. An object-based distributed system denotes that the object-based model is

well-suited for the distributed system. A distributed object architecture DOA consists of a

collection of interacting objects. Each object consists of a set of data and a set of methods.

An object has a set of attributes that represent the state of the object. Attributes

that are not accessible from other objects are considered as private or hidden attributes.

Private attributes are used to achieve data abstraction. Data stored in hidden attributes can

2. DISTRIBUTED SYSTEMS: ARCHITECTURE AND APPLICATIONS

12

only be accessed and modified by operations. Changing the hidden attributes will not

affect other objects. This is particularly important if objects are designed and maintained

in a distributed setting. Objects may export a set of operations that make known the state

of attributes or that allow modifying their values. Other objects may request execution of

an exported operation. Each attribute has a name. A name is used to identify an attribute

within the context of an object. Attributes also have a type. The type determines the

domain of the attribute.

Service-oriented architecture SOA [Baker05] is a way of developing distributed

systems where the components/elements of these systems are stand-alone services, where

these services can execute on distributed computers. Service-oriented systems support the

reusability of existing implementations and the modification of their run-time behaviour

based on the execution environment; in service-oriented engineering, systems can be

constructed by composing independent services that encapsulate reusable functions.

The service-oriented architecture has also changed the image of the web from the

presentation of information to computational infrastructure to satisfy the clients’ needs.

Web services cover all the aspects of service-oriented architecture. They are platform and

implementation-language independent and commonly adopted on XML-based standard.

2.2 COMMUNICATIONS IN DISTRIBUTED SYSTEMS

Since there is no shared memory in the distributed systems, nearly all the communications

between processes are based on message passing. When process A wants to communicate

with process B it first builds a message in its own address space, then it executes a system

call that causes the system to send it over the network to B.

2.2.1 CLIENT/SERVER ARCHITECTURE

In client/server architecture [Tanenbaum95], an application is modeled as a set of

services offered by servers, a group of cooperating processes, to the clients, figure 1.1.

The client/server architecture is often based on a simple connectionless request/reply

protocol. The client sends a request message to the server asking for some service. The

Chapter 1 – MODELING DISTRIBUTED CONTROL SYSTEMS

13

server does the work and returns the data requested or an error code. The two-tier client-

server architecture is the simplest client/server architecture. They are in two forms:

Thin/Slim Client Model and Fat/Thick Client model.

Figure 1.1, Client/Server Architecture

The discovery solution in the client/server architecture is simple. The server has a

port and network address known by the client. The clients connect to the server on its

listen port. Once the connection is established, the client and server can communicate

with each other. The network protocols, for example IP, do the work of sending the

packet from the client to the server and back. The system calls can be invoked through the

library procedures: send and receive.

Client/server architecture has some advantages:

 The client/server architecture allows the division of applications into a client part and

a server part.

 In the client/server architecture, the resources are used effectively when a huge

number of clients are accessing a high-performance server.

 Another advantage of the client/server architecture is the possibility for concurrency.

However, the client/server architecture has a disadvantage that it does not exploit the

computing power of the client efficiently as it does with the server.

2. DISTRIBUTED SYSTEMS: ARCHITECTURE AND APPLICATIONS

14

2.2.2 PEER-TO-PEER ARCHITECTURE

Peer-to-peer P2P [Subramanian05] [Verma04] architecture is decentralized

systems where computations can be performed by any host on the network. The term

peer-to-peer refers to the concept that there are no distinctions between clients and

servers in a network of peers using appropriate information and communication systems.

In P2P applications, systems are designed to benefit from the computational power

available through a huge network of computers. In difference with the client/server

architecture, P2P networks gives scalability, lower cost, self-organized and decentralized

coordination of limited resources. Middleware may be implemented with a peer-to-peer

or a client/server approach.

The P2P architecture has the following characteristics:

1- Decentralization: No central coordinating authority is necessary to coordinate the

hosts in network, the use of resources or the communication between the peers in

the network (communications between peers are direct).

2- Distributed resources and services sharing: Each host can have/offer both client

and server functionality; providing and consuming services or resources.

3- Autonomy: Each host can alone decide when and to what degree its resources are

available to other hosts.

 Figure 1.2, Peer-To-Peer Architecture

Chapter 1 – MODELING DISTRIBUTED CONTROL SYSTEMS

15

In P2P architecture, every host could be aware of every other host, could make

connection to it and could exchange data with it. However, this is impossible, so hosts are

organized into “localities” with some hosts acting as bridges to other host localities,

figure 1.2. One solution is the use of semi-decentralized architecture where a server is

used to help establishing connection between peers in the network or to coordinate the

results of a computation. For example, the network hosts can communicate with the

server to observe the other available hosts. Once they are discovered, direct connection

can be established and the connection to the server is unnecessary.

2.3 IMPLEMENTING DISTRIBUTED SERVICES AND APPLICATIONS

To implement a service or application, different methods can be used

2.3.1 REMOTE PROCEDURE CALL RPC

Remote Procedure Call RPC [Srinivasan95a] was invented in the early 1980s by

Sun Microsystems as part of their Open Network Computing ONC platform. It was

included in Sun OS. Sun submitted RPCs as a standard to the X/Open consortium and it

was adopted as part of the Distributed Computing Environment DCE. Remote procedure

call systems are the origin of object-oriented middleware.

Figure 1.3, RPC Based System

2. DISTRIBUTED SYSTEMS: ARCHITECTURE AND APPLICATIONS

16

Figure 1.3 shows the role of client and server in RPC. The client and server stub

procedures are generated by an interface compiler from the interface definition of the

service. The idea in RPC is to hide the message passing, and make the communications

look like an ordinary procedure call. RPCs are operations that can be invoked remotely

across different hardware and operating system platforms. In some systems, distributed

object requests are implemented by RPCs. The server components that execute RPCs are

called RPC programs. Servers may be clients of other servers to allow chain of RPCs.

2.3.2 REMOTE METHOD INVOCATION RMI

Java [Sun09a] is an object-oriented programming language developed by Sun

Microsystems. Remote Method Invocation RMI [Sun09b], or Java Application

Programming Interface “Java API”, was introduced in the version 1.1 of the Java

Development Kit JDK. Java RMI was considered essentially as an object-oriented Java

RPC. It extends the Java object model to provide support for distributed objects in the

Java language.

 Java RMI allows the invocation of methods of Java objects located in a Java

Virtual Machine “Java VM” (a self-contained Java operating environment that simulates

a separate computer) by a remote Java VM by using the same syntax as for the local

invocation. The semantics of parameters in Java RMI are not the same as the distributed

object model integrated into Java because the invoker (an object making a remote

invocation) and the target (the implementer of a remote object) are remote from one

another.

import java.rmi.*;

import java.util.Vector;

public interface Profile extends Remote {

 int getVersion() throws RemoteException;

 GraphicalObject getAllState() throws RemoteException;

}

Figure 1.4, Interface in Java RMI

Chapter 1 – MODELING DISTRIBUTED CONTROL SYSTEMS

17

Remote interfaces in Java RMI are defined by extending an interface provided in

the java.rmi package called Remote. Figure 1.4 shows an example of a remote interface.

The GraphicalObject is a class that holds the state of a graphical object. Sun is providing

higher-level services on top of RMI. An example of these services are the Enterprise

JavaBeans [Matena03] which aim to provide component-based development support for

server components and adding higher-level services, such as persistence, security and

transactions.

2.3.3 DISTRIBUTED COMPONENT OBJECT MODEL DCOM

Component Object Model COM [Rofail99] [Eddon99] is the Microsoft standard

for creating software components. Microsoft has presented the first version of COM in

1993. COM supports the reusability since it allows building applications and systems

from binary components supplied by different software suppliers. COM is a specification

for the construction of binary-compatible software components; it adopts the structure of

C++ virtual function tables “vtables”. This means that COM is not a library of code, a

programming language, or a compiler.

COM is designed to allow the interaction of heterogeneous objects in terms of

programming languages. These needs have been solved by the Object Linking and

Embedding OLE technology based on dynamic libraries DLL. In the second version of

OLE, a generic object model has been introduced for applications that run on the same

workstation. In the structure of the second version of OLE model, nothing prevents that

the applications can be distributed. Thus, the implementation of the new middleware

named Microsoft Distributed COM “DCOM” [Microsoft96] is appeared. DCOM

provides a distributed framework based on object-oriented model. Dynamic Data

Exchange DDE was the first Microsoft object technology in the middle of 1980s, then it

has changed to OLE and finally to DCOM.

The DCOM/COM technology support three methods of servers’ implementation:

DLL, local shared objects by locally running applications and remote objects. The

DCOM/COM model defines a pattern of access based on interfaces, common to all three

2. DISTRIBUTED SYSTEMS: ARCHITECTURE AND APPLICATIONS

18

types of servers. In this context, COM is the implementation that supports local

communications, and DCOM offers support for access to remote servers.

Figure 1.5, Client/Server in Microsoft® DCOM/COM

Client/Server dialogue in DCOM/COM technology can be in three ways, figure 1.5:

1- If the client and server belong to the same addressing space, COM loads the server

code and gives the client a pointer offering direct access to the server.

2- If the server does not belong to same client addressing space, but locally on the

workstation, the dialogue is done through local method calls LRPC (Lightweight

Remote Procedure Call).

3- Finally, if the server belongs to a remote address space, DCOM uses object-

oriented RPC (ORPC).

2.3.4 COMMON OBJECT REQUEST BROKER ARCHITECTURE CORBA

Common Object Request Broker Architecture CORBA is specified by the Object

Management Group OMG [OMG09a]. CORBA is based on the concept of the Object

Request Broker ORB. The OMG is a consortium primarily composed of the research and

software industry. It was created in 1989 to support the adoption of standards for the

development of distributed object applications.

Chapter 1 – MODELING DISTRIBUTED CONTROL SYSTEMS

19

The first specification published by the OMG was the Object Management

Architecture OMA [OMA09]. The OMA defines the object model used in all the OMG

technologies that offers the objects interoperability through heterogeneous environments.

CORBA is the second stage of the OMG specifications. In version 1.1, 1991, CORBA has

defined the interface definition language IDL, (figure 1.6). In version 2 of CORBA, 1996,

the OMG made the interoperability its priority by defining the Internet Inter-ORB

Protocol IIOP. In addition to the interoperability, many services were added.

Figure 1.6, IDL CORBA

CORBA [Tari01] architecture is independent from the programming language

used, the machine type and the operating system. CORBA is composed mainly of the

ORB which is the heart of the CORBA architecture and the objects supported by the

ORB. ORB assures the transport of requests on the network. It is responsible for

intercepting methods invocations, locating the objects, carrying the invocations

parameters through the network and transmitting any return values of the methods.

CORBA specification has rise in several variants, such as a specification for the Wireless

CORBA and a specification for the real-time called RT-CORBA. The CORBA

Component Model CCM is the main novelty of the version 3 of CORBA.

2. DISTRIBUTED SYSTEMS: ARCHITECTURE AND APPLICATIONS

20

2.3.5 WEB SERVICES

The development of World Wide Web [W3C09] [Lerner02] has allowed client

computers to access to remote servers outside their own organization. Web Services

[Erl05] are basically any software infrastructure that provides a service accessed remotely

via the web. They are considered as a collection of operations that can be used by a client

over the Internet. Each web service is identified by a Uniform Resource Identifier URI

[W3C01]. Web services are client/server model. However, they are capable to play

different roles according to the surrounding context, so they are not absolutely a client or

a server. Services can be distributed on the Internet. To communicate, they exchange

messages, expressed in the Extensible Markup Language XML and distributed by using

Internet transport protocol such as TCP and HTTP. A service defines its needs from

another service by setting out its needs in a message and sending it to that service

Data Encoding: XML Technology (XML, XDS, XST, XSLT …)

Support: WS-Security, WS-Addressing, WS-Reliable …

Process: WS-BPEL, BPML

Service Definition/Finding: UDDI, WSDL

Web Services Calling/Messaging: SOAP, RNIF ...

Transport: HTTP, SMTP, FTP …

Figure 1.7, Web Service Standards

Although the definition of web services is large and flexible, in practice the major part of

Web services is based on HTTP, SOAP, WSDL and UDDI [Newcomer03] [Cer02]. Web

service protocols cover all the aspects of SOA from the service information exchange

(SOAP) to programming language standards (WS-BPEL: a standard for a workflow

language that is used to define process programs involving several different services).

These standards are based on XML (figure 1.7), which is a human-machine notation that

allows the definition of structured data, where text is tagged with a meaning identifier.

Chapter 1 – MODELING DISTRIBUTED CONTROL SYSTEMS

21

3. MODELING MANUFACTURING SYSTEMS

3.1 MODELING FMS WITH PETRI NETS

Modeling the manufacturing systems is not new. Different modeling formalisms are used

to model FMS. Petri nets and Automata theory are of the most used techniques to

describe the DES. [Peterson81] has introduced Petri nets to model and analyze the

manufacturing systems. Other works like [Ramadge87] has also proposed to model and

analyze controllable events DES. Later, [Lin90] has introduced a decentralized control

model. [Zamaï98] has presented a hierarchical and modular architecture for real-time

control and monitoring of FMS. [Cho99] has proposed a centralized and decentralized

control model. However, the most new modeling approaches are diverting towards the

distributed modeling for the manufacturing systems [Petin05] [DaSilveira02b].

In the previous section we have introduced the different methods that are used to

implement the distributed system design. In this section we will introduce the new

techniques to model the manufacturing systems with Petri nets and other formalisms. We

will meanly focus on the distributed approach model proposed by LAGIS/OSSc team.

3.1.1 PETRI NETS OVERVIEW

Petri nets have been proposed by C. A. Petri in 1962 in his PhD thesis “Communications

with Automata” [Petri66]. Petri nets [Merlin76] [Murata89] are a mathematical and

graphical tool used for modeling, formal analysis, and design of different systems like

computer networks, process control plants, communication protocols, production systems,

asynchronous, distributed, parallel, and stochastic systems; mainly discrete event systems.

As a graphical tool, Petri nets provide a powerful communication medium

between the user and the designer. Instead of using ambiguous textual description,

mathematical notation difficult to understand or complex requirements, Petri nets can be

represented graphically. The graphical representation makes also Petri nets intuitively

very appealing. They are really easy to understand and grasp. This is due to the fact that

3. MODELING MANUFACTURING SYSTEMS

22

Petri net diagrams resemble many of the informal drawings which designers make while

they construct and analyze a system.

A Petri net graph [JWang07] contains two types of nodes: Places “p” and

Transitions “t”. Graphically, places are represented by circles, while transitions are

represented by bars or rectangles, figure 1.8. Places and transitions are directly connected

by arcs from places to transitions and from transitions to places with. A place P0 is

considered as an input place of a transition t if there is an arc from P0 to t. A place P1 is

considered an output place of a transition t if there is an arc from t to P1. By default the

weight of an arc is 1. However, an arc may be annotated with a positive number k called

weight (or multiplicity). This value can be seen as k-parallel arcs. Places can contain

tokens represented by dots. These tokens are the marking of places. The initial marking of

places is represented in the initial marking vector m0. The graphical presentation of Petri

nets shows the static properties of the systems, but they also have a dynamic properties

resulting from the marking of a Petri net.

Figure 1.8, A simple Petri Net

As a mathematical tool, a Petri net model can be described by a set of linear

algebraic equations, linear matrix algebra, or other mathematical models reflecting the

behaviour of the system. This allows performing a formal analysis of the model and a

formal check of the properties related to the behaviour of the system: deadlock,

concurrent operations, repetitive activities…

3.1.2 WHY PETRI NETS?

A Discrete Event System DES [Cassandras08] [Ramadge89] is a discrete-state,

event-driven, dynamic system. The state evolution of DES depends completely on the

Chapter 1 – MODELING DISTRIBUTED CONTROL SYSTEMS

23

occurrence of asynchronous discrete events over time. Figure 1.9 shows the states jumps

in a DES from one discrete value to another whenever an event occurs during the time.

Nearly all the DESs are complex and require a high degree of correctness. Information

systems, networking protocols, banking systems, and manufacturing and production

systems are falling into this classification.

Figure 1.9, Discrete Event System

One way of dealing with these problems is to model discrete event systems with Petri nets

since:

1- Due to their flexibility and the formalism power, Petri nets can express

concurrency, asynchronous and parallel actions, nondeterministic choice,

synchronization, distribution, causality and most system properties. All these

features raise the modeling power to various types of system behaviour at

different abstraction levels and provide an excellent formal framework for

modeling a variety of systems.

2‐ The simple graphical presentation of Petri nets model: the ease to visualize the

state-flow of a system and to see dependencies between the parts of a system. This

simplifies modeling and understanding systems because of its declarative, logic-

based modeling principles.

3. MODELING MANUFACTURING SYSTEMS

24

3- The mathematical basis: Most of the computer systems developments are

determined by formal mathematical methods. The main element is linear algebra;

therefore many properties like net analysis and verification are possible by

theoretical means.

4- Petri nets are supported by a variety of extensions and tools. These tools support

the simulation of the model. The resulting provides an abstract view of systems

behaviour.

5- The Petri net model permits the simultaneous occurrence of multiple events,

without increasing the model complexity.

6- Many other methods and formalisms can often be transformed into Petri nets

supporting them with a formal semantics.

3.2 THE ARIZONA STATE UNIVERSITY/INTEL APPROACH

The work of at the Arizona state university/Intel [Sarjoughian05] proposes a

simulation modeling combined with decision control for semiconductor supply-chain

manufacturing. The importance of this proposition is the benefits for the analysis, design,

and operation of supply-chain network systems. The work proposes a discrete-event

system specification with four types of modules: inventory, factory, shipping link, and

customer modules with a common interface specification for control/decision commands,

figure 1.10.

Figure 1.10, Structural Composition of Inventory and Factory Models

Chapter 1 – MODELING DISTRIBUTED CONTROL SYSTEMS

25

The control model is generally used for the control of highly stochastic processes

where selection of control actions is desired. In this model, the current and historical

measurements of a process are used to predict its behaviour for future time instances.

Figure 1.11 shows a model predictive control. The simulated system sends its current

outputs to a system prediction model. The system prediction model then computes future

outputs (i.e., controlled outputs) for some number of time steps.

Figure 1.11, The Model Predictive Control

To compose models regard the less distinct syntax and semantics for each module,

figure 1.12, a knowledge interchange broker is used. This structural specification

provides well-defined structural information translation from the manufacturing process

network model to the model predictive control and vice versa.

3. MODELING MANUFACTURING SYSTEMS

26

Figure 1.12, Composition of Manufacturing Process Network and MPC via KIB

This approach supports systematic specification of interactions between process

dynamics and control decisions. The model composition is used to embedding model

interactions inside the process and control models as is required when using

interoperability in combination with model exchange.

3.3 THE NHIT (TAIWAN) APPROACH

The National Huwei Institute of Technology [Tsai05] has proposed web-based

model (figure 1.13) for distributed manufacturing control systems with problems such as

process routing, allocating resources and scheduling work-pieces. The manufacturing

parts and resources were presented by agent-based approaches. The supervision of the

system is done by a web-based cell controller. This work presents the new evaluation of

modeling with web-based technology. This new technology can support collaboration

between geographically distributed work centres and makes the implementation easier.

Agents are composed of sub modules responsible for negotiation between agents,

executing the different operations of the agents and recognising and analysing errors.

Agents represent the machines and resources in the system. Agents communicate together

through a local network or Internet. Coordination and negotiation protocols CNP were

Chapter 1 – MODELING DISTRIBUTED CONTROL SYSTEMS

27

used for the decision-making of resource allocation and message exchanging, based on

TCP/IP protocol. Figure 1.14 shows the description of the contract net protocol using

unified model language agent.

Figure 1.13, The architecture of a web-based distributed manufacturing control system

Figure 1.14, the CNP described by a unified model language agent

This work shows a new architecture for a web-based distributed manufacturing control

system for the design of co-operative mechanisms for better system performance.

3. MODELING MANUFACTURING SYSTEMS

28

3.4 THE CRAN APPROACH

The recent work of CRAN [Gouyon04] has proposed a product-driven control,

hierarchical architecture. This work is based on the “agile manufacturing”. The

modeling technique is based on two models of the systems: a control model for the

operative part elements (OPE) and a behavioral specifications model of the control part

(OPE). The control model is decomposed in two points of view: production resources and

products, figure 1.15.

The production control of the product is composed of (i) a routing control sub-

process to the different resources and (ii) an operation sub-process of the performing

resource coordinated by the product. While the resource control is composed of: (i) a

control sub-process that receives and deals with the messages send by the product and

sends to product its actual status after transformation and (ii) an operating sub-process

that transforms the sent messages of the control sub-process to physical action over the

product. The products, according to their needs, will ask for resources operations.

Figure 1.15, Product-Resource Model [Gouyon04]

The modeling is realized with finite-state automata to allow modeling a process

resource controlled by the product. It models the behaviour of the resource seen by the

product through exchanged messages between them (request/report).

Chapter 1 – MODELING DISTRIBUTED CONTROL SYSTEMS

29

This work puts the product at the center of the process automation. It ensures the

interoperability between the control of the resources of the manufacturing system and the

product control through its routing on the system.

3.5 THE LAG/G-SCOP APPROACH

The work of LAG/G-SCOP [Henry05] [Mendez02] [Zamaï06] proposes a control,

supervision, and monitoring module. [Henry05] has proposed a coordination model for

the functional chain. The model is composed of two levels: coordination level to manage

and coordinate the local control/communication and functional chain level that groups all

the elements of the operative part, figure 1.16.

Figure 1.16, The LAG/G-SCOP Approach [Henry05]

A decision module is applied on the approach CERBERE of [Mendez02]. This

module is charged to take all the required decisions to generate or select a control module,

a resumption module or an urgency module (figure 1.17), depending on criteria (quality

and production) and constraints (security in the operative part). To execute the requested

services from the different functional chains, control rules are used. The control model

has a set of the orders (request a service, report the end of a service, information sent from

the environment) that it executes to impose some evolutions over the operative part and

the products. These evolutions, that answer a request, must satisfy a set of security

constraints.

3. MODELING MANUFACTURING SYSTEMS

30

Figure 1.17, Decision analysis [Henry05]

A research technique is also used in the control model that aims to find the

shortest path to make a product (initial state to final state) [Zamaï06]. This technique is

achieved by transforming the proposed model into a states representation containing the

set of executable operations and the legal parallelism between these operations and the

one in progress. This representation is modeled in automata and Petri nets.

This works have two objectives, the first one is to propose a modeling formalism for the

control part and the second is the elaboration of a technique for the control synthesis.

3.6 THE LAAS APPROAH

The objective of the work developed by LAAS is to propose a generic, “heterarchical”

and distributed architecture model for the manufacturing systems [DaSilveira02a]

[DaSilveira02b]. The proposed “heterarchical” architecture is based on no client/server

architecture for the communication between entities, no external higher levels of control

to coordinate processes and the addition or modification of existent entities without

significant structural changes. The work proposes an acquisition/routing block that deal

with control, supervision and monitoring of the system, figure 1.18. The work proposes

also a systematic procedure for distributing a centralized model of supervision and control

[DaSilveira02b].

Chapter 1 – MODELING DISTRIBUTED CONTROL SYSTEMS

31

Figure 1.18, A generic module for control, supervision and monitoring [DaSilveira02b]

To distribute a centralized model, the model is divided into “sub-models”. Each

sub-model represents a resource or a set of resources and the relations with other

resources. Two different models are used. The control model represents all constraints

associated to the transformation of raw parts to finished products. While the process

model represents the physical and functional characteristics of the process. An entity or a

module has a process sub-model and a control sub-model.

To achieve this distribution, the centralized Petri net model of two processes is

transformed and split up to two Petri nets sub-models. To maintain the data coherence

after distribution, a communication protocol is used. The proposed technique for the

communication protocol is to centralize the decision part in one module called centralized

decider module to optimize time.

The work presented concerns the quantification of the redundancy inserted by the

distribution methodology by proposing a systematic procedure, from a centralized process

model (specified by Petri nets), to obtain a distributed model with partial redundancy.

However, the intra-module and inter-modules communications are not detailed but

assumed to be client/server protocol. Also, the work did not give a solution for the

complexity associated to the process distribution as well as the coherence between entity

models.

3. MODELING MANUFACTURING SYSTEMS

32

3.7 THE LAB-STICC APPROACH

The research works developed at Lab-STICC concerns the design of

reconfigurable DES systems such as manufacturing systems or electronic systems. These

works are structured around three main ideas [Berruet07]: reconfiguration of complex

systems, a top-down methodology associated with “pivot” description languages for the

co-design of systems, and a bottom-up methodology based on a component approach to

allow rapid prototyping and the reuse of the code.

1- Reconfiguration of complex systems:

The reconfiguration consists on organizing the system to react in two cases: in

case of a new demand of the system and in case of a reaction to a failure. To implement

the reconfiguration process, they propose two key ideas. First they propose different point

of views to describe a system. A system can be described according with a physical point

of view or a logical point of view. For example, the logical sequence is a logical view of

the architecture of a system. A second way to describe a system is the distinction between

the architecture of a system and the configuration. The architecture defines the

potentialities of a system. Its configuration defines a specific way to exploit the system.

The second key idea to implement this concept is to propose the introduction of a

configuration task in the structure of the supervision function of the control system (figure

1.19). This introduction seems to be suitable with the context of the exploitation of the

system. In this case, the decision task can select a new configuration. The role of the

configuration task is to define the mode of resources that participate to the production and

to define the operation that can be held by the system in this configuration.

A drawback of this proposition is to not consider the role of the maintenance

function to define a configuration. For us at LAGIS, we consider that a configuration

results of a negotiation between the maintenance function and the planning function

because the engagement of a resource in a production depends also on the maintenance

planning of this resource.

Chapter 1 – MODELING DISTRIBUTED CONTROL SYSTEMS

33

Figure 1.19, Proposed Control Architecture [Berruet07]

2- A top-down methodology for the design of complex systems:

One of the conclusions of the Lab-STICC is the complexity of these systems leads

to decompose their control function in different tasks that are studied and implemented

separately. The consequence is that they used different models of the system to be

controlled without any guarantee of coherence and in consequence, without guarantee of

interoperability of these tasks. To deal with this problem, the Lab-STICC proposes to use

a description language to build a reference and principal model of the system. Then, all

the other models required by the design methodology or the different tasks of the control

can be derived from this basic models using techniques such as extraction to focus on

specific aspects of the system or enrichment to take into account additional viewpoints

(Figure 1.20).

3. MODELING MANUFACTURING SYSTEMS

34

In this context, they use techniques of model translations to automate the

translation from one model to the other. In this context and also taking into account a

principle like co-design that is well-known in electronics area, they propose a top down

approach that allow developing incrementally the operative part and the control function

of manufacturing systems. In this methodology, they propose different techniques do

make static and dynamic analyses of a system. For example, using model translation

technique, they can build a model that enable to evaluate the criticality of the functions of

a plant. Another translations, allow to derived other models suitable with dynamical

analyses by the means of simulation (joint simulation [Lallican07] and reflexive

simulation [Berruet07])

Figure 1.20, Synthesis of the process of model the management proposed by the Lab-

STICC [Delamotte05]

3- A bottom-up methodology based on a component approach:

In an effort to reuse and accelerating the design stage of a production system, till

several years the Lab-STICC is developing a methodology for generating the control

command of the transport system of reconfigurable systems. This methodology is based

on the concept of component. In this approach, a component is characterized by a set of

operations and a set of views. Each point of view of a component is associated with a

Chapter 1 – MODELING DISTRIBUTED CONTROL SYSTEMS

35

model. The main views are the operative part, the graphical view, the constraint view, the

control part view, monitoring/supervision view.

It may be noted that most of these views correspond to tasks of the control

command. Indeed, the idea is for each view, to get a global model from the models

associated with its different components. The construction of the system model is made

by a bottom up approach from basic components defined in a component library. The

composition of components is done according to different levels defining other types of

components: support component, effective contextual component, enriched basic

component, and system component. A component system includes all components of the

system. The nature of each component depends on the type of its operations (basic,

contextual, contextual effective) [Lallican07] and its position in the hierarchy of

components.

A major feature of this approach is the constraint view. It enables the designer to

express constraints that must be checked during the integration of the component in a

given system. The current constraints are taken into account functional and operational

features, and also safety. One can think that in future they will integrate all requirements

including also aspects of reliability and performance. These constraints allow linking the

functional capacities of component with its state. So, they are taken into account for the

generation of the model corresponding to any of previous views.

This approach has been developed and supported by software for the generation of

control function of DES transport system. Compared with the top-down approach, it

assumes that the designer already has the plan instrumentation diagram of the plant.

Consequently, it is limited to the generation of control models for system transitique.

This approach seems to have also inspired other works such as the automation of

the life environment of persons with reduced mobility [Belabbas07]. In these works, we

find the concept of the component from the perspective of a black box with input and

output interface that allow a rapid building of a control by aggregation of components

(Figure 1.21). We will see in chapter III that the approach we propose is close to the main

3. MODELING MANUFACTURING SYSTEMS

36

general principle of this work. However, the Lab-STICC approach does not take into

account underlying communication protocols.

Figure 1.21, PN intellectual properties proposed by the Lab-STICC [Belabas07]

3.8 THE LAGIS/OSSC APPROACH

The LAGIS laboratory develops a consistent, progressive and complete design

approach of FMS. This approach is implemented by modeling controllers’ components in

Petri nets formalisms and in a client/server distributed architecture [Huvenoit93]

[Toguyeni06] [Bourdeaud_huy06]. The idea here is to implement each operating

sequence as a PN model where each place represents the state of a product with regard to

its sequence of machining operations and also its location in the plant.

The approach distinguishes two categories of controllers [Toguyeni06]: operating

sequence that controls the different operations applied to a product and Graph of

Coordination of Complex Resource GCCR that controls the operations applied to a

Chapter 1 – MODELING DISTRIBUTED CONTROL SYSTEMS

37

complex resource (a resource with several machining areas connected by transport

resources). The aim of this decoupling is to reduce the complexity when designing the

control of complex systems, figure 1.22:

1- Process sequences: They describe the different operations to apply to raw parts to

obtain a finished product. The Extended Operative Sequence describes the

different ways to obtain a finished product from raw parts using the available

machines of a plant.

2- Resource Sharing: The resource sharing implies that resources are allocated to the

requestors. Resources can be simple (mono service), or complex (multiple

services).

Figure 1.22, LAGIS Control System Architecture

To illustrate the approach, we consider the example of figure 1.23. This workshop

is made of three machining machines M1, M2 and M3. The arrows in this figure represent

the reachability capacity of each robot R1 to R4. R4 performs transfer operations from

FIFO IN (a buffer that permits the entry of parts in the plant) to Z1, and from Z1 to FIFO

OUT. Z1 to Z4 are to transfer a part from a resource to another one. IS1 to IS6 are

intermediary stock within the conveyor. For more information, please refer to

[Toguyeni06].

3. MODELING MANUFACTURING SYSTEMS

38

Figure 1.23, An Illustrative example of Manufacturing Plant with Flexibilities [Berruet98]

To model the system, colored Petri nets are used:

1- Extended Operating sequences: A resource operation is requested through a pair

of Request/Acknowledge places, figure 1.24. The doublet <op, id> represents the

type of operation to apply to a product and the identification of each product. The

request place enables an asynchronous coordination with the CPN controller of the

resource.

Figure 1.24, Coordination between an operating sequence and a GCCR.

2- Resource allocation: In flexible manufacturing plant, it is necessary to solve

allocation problems. So, an allocator is needed corresponding to each resource.

Chapter 1 – MODELING DISTRIBUTED CONTROL SYSTEMS

39

The allocator can be modeled by CPN (or by other formalism), figure 1.25. The

client/server technique permits the communicating between operating sequences

with these allocators. The approach is also characterized by the use of pre-

allocation notion which is useful to increase the performance of the FMS by

enabling objects’ transfer in masked time.

Figure 1.25, Resource Allocation based on Client/Server Technique

3- Graph of coordination of Complex Resources: The transport resources represent

the direct access for a transfer between two physical areas: requestor and

destination. The requestor sends a request to start the transfer. When the transfer

finishes, the requestor area receives an end acknowledgment. However, a transfer

cannot be done without the acceptance of the destination area (a free place at that

area).

Figure 1.26 shows an example of extended operating sequence. In the figure a

product is performed on machine M2. The pre-allocation/allocation of resource is

requested at each state. The “–” sign means the product before machining, and the “+”

means the product is finished.

3. MODELING MANUFACTURING SYSTEMS

40

Figure 1.26, Extended Operating Sequence to perform service f2 on machine M2

Figure 1.27 shows the transfer process between two physical areas P1 and P2 by a

robot R. At the beginning the product arrives to the source area, P1. The source area sends

a request to the transfer component (robot) to transfer the product to the destination area,

P2. However, a free place in the destination area must be available to perform this

transfer. If this is the case, the robot takes the product from the source area releasing up a

free place in P1. The robot then puts the product on the destination area ending the

transfer process.

Figure 1.27, Transfer between two Areas [Bourey88]

Chapter 1 – MODELING DISTRIBUTED CONTROL SYSTEMS

41

Figure 1.28 shows the developed Petri net. Each area has four interfaces modeled

represented as places:

1- Place “CONS” models the number of free places in the destination area.

2- Place “PROD” models the parts that are waiting in the source area.

3- Place “REQ” models a request of evacuation of the current part.

4- Finally, place “ACK” models a response of the process to confirm that the part is

out of the area.

The figures also shows the messages exchanged between the two physical areas and the

robot, represented by P1 P2 sub net.

Figure 1.28, Developed Petri Net of Figure 2.25

4. CONCLUSION

42

4. CONCLUSION

In this chapter we have introduced different proposed approaches to model

manufacturing system. The proposed models show the systems at the design stage where

none of these models focused on the implementation stage. In addition, these models do

not take into account the underlying network during the design stage. However, different

to the universities laboratories’ approaches (as the work in this thesis), the industrial

companies are more and more interested in presenting the implementation of these

models with web services, CORBA, RMI or DCOM where the code can be distributed

over several computers [SOCRADES09] [Tsai05] [Schoop00].

In this chapter, we have introduced the different techniques that can be used to

build the design stage model in a distributed form. However, in the rest of this thesis for

the design stage, we will focus on the classical client/server approach for the modeling of

manufacturing systems. The implementation stage approaches presented in the first

section of this chapter will not be treated in the rest of this work. In the next chapters we

will focus on the modeling of communication protocols and the implementation of the

LAGIS/OSSc approach in a client/server distributed model, chapter 4. We will also

evaluate the impact of the underlying network on the system, chapter 3 and 4.

In the next chapter, we will mainly focus on the modeling of the communication

protocols underlying the manufacturing systems. Many formalisms are proposed such as

UML, Timed Automata, and Petri Nets. Petri nets formalism is a powerful methodology

for modeling manufacturing systems since it mainly allows the modeling of concurrent,

distributed and parallel systems. This formalism has an outstanding mathematical basis as

well as its graphical interface that allows easily the designer to study the behaviour of the

model.

Chapter 2

COMMUNICATION SYSTEMS AND

MODELING TECHNIQUES

1. INTRODUCTION

44

1. INTRODUCTION

The modern advances in hardware technologies has played a big role in the rapid

development of communication networks and distributed control systems. Distributed

systems use networks for communication. Communication networks are generally built

from various transmission media including wire cables, fiber and wireless channels,

hardware devices including routers, switches, bridges, hubs, repeaters, and network

interfaces and software components including protocol stacks, communication handlers

and drivers.

The collection of hardware and software components provides communication

facilities for distributed systems. This collection forms the communication subsystem.

The computer and other devices are referred to as hosts. A node is referred to any

computer or network device attached to a network. The cooperation between

communicating devices is governed by a set of rules called a protocol. Protocols form a

major aspect for distributed systems design. A familiar example of distributed systems is

Internet and its services.

To evaluate protocols, modeling and simulation approaches and tools can be used

and executed on computer. Different formalisms are used to model distributed services or

communication systems (UML, Timed Automata, SDL, Petri Nets ...). However, Petri nets

are one of the most appealing and used methods for modeling distributed systems. Petri

nets were used initially to study the interconnection properties of concurrent and parallel

activities. Thus, it is not surprising that we use them to model both protocols and

distributed services.

The underlying network of a manufacturing system is the industrial local network. So,

we will mainly focus on this type of networks and mainly the LAN MAC sublayer

protocols. In this chapter we will introduce the architecture of a communications system,

communication networks and protocols models. In the second part, we focus on the

different methods and techniques used to model protocols and services. We mainly focus

on the use of Petri nets and their advantages over the other methods.

Chapter 2 – COMMUNICATION SYSTEMS AND MODELING TECHNIQUES

45

2. COMMUNICATION SYSTEMS ARCHITECTURE

2.1 COMMUNICATION SYSTEMS OVERVIEW

Communication systems [Gebali08] [Proakis02] are designed to send messages or

information from a source that generates the messages to one or more destinations. In

general, a communication system can be represented by the functional block diagram

shown in figure 2.1. The original telecommunication system was developed for voice

communications. Today communication networks include all types of voice, video and

data communication over copper wire, optical fibers or wireless medium.

Figure 2.1, Functional Diagram of Communication System

With Internet, increasingly numbers of computer networks are now connected via

the Internet. The concept of telecommunication system has increased the complexity

significantly. These systems can be divided into different types based on their

requirements:

 Point-to-point Communication: In this type, communication takes place between

two end points.

 Point-to-multipoint Communication: In this type of communication, there is one

sender and multiple recipients.

 Broadcasting: In a broadcasting system, there is a central location from which

information is sent to many recipients, as in the case of audio or video

2. COMMUNICATION SYSTEMS ARCHITECTURE

46

broadcasting. In a broadcasting system, the listeners are passive, and there is no

reverse communication path.

 Simplex Communication: In simplex communication, communication is possible

only in one direction. There is one sender and one receiver; the sender and

receiver cannot change their roles.

 Half-duplex Communication: Half-duplex communication is possible in both

directions between two computers or persons, but one at a time. These types of

systems require limited channel bandwidth, so they are low cost systems.

 Full-duplex Communication: In a full-duplex communication system, the two

parties can communicate simultaneously, as in a telephone system. The ability of

the communication system to transport data in both directions defines the system

as full-duplex.

2.2 NETWORK LAYERING ARCHITECTURE

Networks [Peterson03] [Mir07] [Stallings07] are organized into a hierarchy of

layers where each layer has a well defined function and operates under specific protocols.

The number of layers can vary from one network reference model to another but the goal

of a layered structure remains common to all models, (figure 2.2). OSI model

[Zimmermann80] is structured in a series of 7 layers, while the TCP/IP model includes

only four layers. Each layer consists of hardware or software elements and provides a

service to the layer immediately above it.

OSI is a general model which is therefore applied to many kinds of networks.

Each layer of a host will “talk” to the layer of the same level of the recipient host, (figure

2.3). The set of rules that makes two layers of the same level can communicate is called

protocol.

However, the dialogue between two layers of level n is not direct from one layer

to another layer. Instead, each layer of network communicates by local procedure calls

with the layers above and below it. The sending layer (or layer n) transfers the

information to the layer immediately below it (layer n-1). Layer n-1 transfers the

Chapter 2 – COMMUNICATION SYSTEMS AND MODELING TECHNIQUES

47

information in its turn to the under layer until reaching the physical medium. The message

is then transmitted in bits. It then goes upward the same layers of the recipient until it

reaches layer n.

Figure 2.2, OSI and TCP/IP Reference Models

At the transmission, each layer adds a header in the message and sometimes a

tailor to check transmissions’ errors. This feature will provide necessary information for

the same layer of the recipient. This information may relate to the size of the message, its

time-to-live and the source and destination addresses. At the reception, each layer reads

the header reserved for it, processes the information, disguards this header and then

transmits the message to the upper layer. All these operations are of course transparent to

the user. Moreover, if the transport layer has limitations on a messages size with respect

to the layer immediately above it (for example the network layer over the transport layer),

this message will be fragmented, and then sent as several independent packets. Layering

provides some important features:

 Layering provides a more modular design. New service can be added easily only

by modifying the functionality at one layer, and at all the other layers just reusing

the functions provided by them.

2. COMMUNICATION SYSTEMS ARCHITECTURE

48

 Networks are decomposed into more manageable layers, instead of implementing

it in one layer that does everything.

Figure 2.3, Network Layering

2.3 PACKETS ENCAPSULATION MECHANISM

Each layer uses Protocol Data Units (PDUs) to communicate and exchange

information. The data transmitted from one host to another host should go down all the

layers. Each layer adds a header (PDU attaches to the data) and the data are enclosed with

protocol information. The data changes name at each level. From TCP/IP architecture

viewpoint, the different names are

 Data message at the application layer.

 The message is then encapsulated in a segment in the transport layer.

 Once the segment encapsulated in the Internet protocol layer, it is named

datagram or packet.

 It changes to frame at the network access layer.

 Finally, the physical layer encodes these digits into a digital signal.

Chapter 2 – COMMUNICATION SYSTEMS AND MODELING TECHNIQUES

49

Figure 2.4, Data Encapsulation in TCP/IP architecture

When the PDU in layer n is passed down to layer n-1, it becomes data in layer n-1.

The layer n PDU is now referred to layer n-1 as its service data unit SDU. Layer n-1

transports this SDU by placing it into its own PDU envelop. This process is called

encapsulation [Dulaney09], (figure 2.4).

2.4 PROTOCOLS AND INTERFACES

Computer networks use well defined protocols to communicate. A protocol

[Lammle08] is defined as a set of rules and formats controlling communications between

processes at the same layer and agreed by all of the communication participants.

Protocols’ rules specify the sender, the receiver and the message sent by the sender. Each

participant plays a certain role. An application on a host wishing to transmit a message to

another host may issue a call to a transport protocol. It passes it a message in the specified

format. Each protocol is designed to achieve a certain goal. The goal can be expressed by

one or more properties the execution of the protocol should satisfy. Properties are

generally dependent on the environment in which the protocol is deployed. The definition

of a protocol has two important parts to it [Jia05]:

2. COMMUNICATION SYSTEMS ARCHITECTURE

50

1- A specification of the format of the data in the message,

2- A specification of the sequence of messages that must be exchanged.

As an example, the TCP header has a fixed length of 20 bytes, (figure 2.5). It may

be followed by options. Each header field has its own information. For example, the fields

source and destination port number identify the ends of the connection. The sequence

number field specifies the sequence number of the sent data (within a TCP stream, each

byte of data is numbered). The length of the options field is variable.

Figure 2.5, TCP Header

In TCP protocol, the flags field has in important role in the connection and

transmission processes. A TCP connection is opened with the 3-way handshake that

creates and negotiates the data connection, figure 2.6. At first, a synchronization packet

(SYN flag is set to 1) is sent from the transmitter side to open a new connection, with a

sequence number equals to m (initial sequence number of the transmitter). The recipient

side receives this packet and sends again a synchronization acknowledgment where the

SYN and ACK flags are set to 1. When the transmitter receives the recipient

acknowledgement packet, it sends an acknowledgement packet to receiver but this time

with ACK is set to 1 and SYN is set to zero indicating that the packet is monger a

synchronization packet with m+1 sequence number. Once these messages are exchanged,

Chapter 2 – COMMUNICATION SYSTEMS AND MODELING TECHNIQUES

51

the transmitter can send its data to the recipient workstation. However, to end a

connection, the transmitter sets the FIN flag to 1 indicating the end of transmission.

Figure 2.6, TCP connection

Figure 2.7, TCP/IP Protocol Suite

2. COMMUNICATION SYSTEMS ARCHITECTURE

52

Protocols are basically a way to ensure that hosts are able to communicate with

each other successfully. Protocols working together to guarantee effective communication

are grouped into what is known as a protocol suite or protocol stack. A protocol suite,

also called a protocol family, is the collection of protocols from many layers that forms

the base of a useful network. The TCP/IP protocol suite [Kozierok05] or DARPA Internet

Protocol suite [RFC1180], figure 2.7, is an example.

Figure 2.8, IEEE norms for LAN networks

The Media Access Control MAC [IEEE802] is a LAN sub-layer of the Data Link

layer specified in the OSI model (layer 2), figure 2.8. It offers hardware addressing and

channel access control mechanisms that facilitate for different networks hosts to

communicate on a shared medium. Different MAC protocols are used for different shared

networks. Common MAC layer standards are the Carrier Sense Multiple Access/Collision

Detection CSMA/CD architecture [IEEE02] used in Ethernet (Token Ring uses token

passing method, FDDI uses a dual-attached, counter-rotating token ring topology).

Medium Access Controller implements the MAC protocols.

The common MAC Layer standard for wireless networks is IEEE 802.11 standard

[IEEE07] which offers many functions that support the operation of 802.11-based

Chapter 2 – COMMUNICATION SYSTEMS AND MODELING TECHNIQUES

53

WLANs. The Carrier Sense Multiple Access/Collision Avoidance CSMA/CA [Brenner97]

is MAC layer standard used by the 802.11 family. The MAC layer maintains and

manages communications between wireless workstations by coordinating access to the

shared channel and using protocols that improve communications over the wireless

medium.

Since network architecture is based on layering, adjacent layers in the layer stack

communicate vertically between them. This mechanism is called an interface. An

interface between layers is the process by which data is passed from layer n+1 to layer n

or conversely [Kozierok05]. In other words, a higher layer is allowed to use the services

of the lower layers without necessitating knowledge of the implementation of these

layers. This interface is the only way for layer n+1 to access the lower layer n and is

called the layer n protocol service access point n-SAP.

Moreover, one of the results of encapsulation is the need for an interface. This

interface separates the outer view from the inner one. It encapsulates activities and hides a

lot of the underlying implementation details. The outer view provides information about

the functionality of representation. The inner view reveals the implementation details. The

interface decreases the dependencies between representations. Implementations can be

changed only if the outwardly visible functionality is preserved.

The term interface is also used in other computer and networking domains, since

its meaning refers to connecting several things together. For example, user interface

handles the interactions between the program and the user. The component interfaces

[Puder06] declare the services that a component offers and the parameters to be specified.

They are used as an access point to the component functionality by other components.

The mechanical and electrical interfaces such as RS232, RS449 and X.21 at the physical

layer are also other examples.

Other example is TCP/IP sockets, [Peterson03]. Sockets are the points where a

local application process attaches to the network. The interface describes operations for

creating a socket, attaching it to the network, sending/receiving messages through the

socket, and closing it.

2. COMMUNICATION SYSTEMS ARCHITECTURE

54

2.5 THE OSI REFERENCE MODEL

The Open Systems Interconnection OSI [Zimmermann80] [ITUT94] architecture

has been developed by the International Organization for Standardization (ISO) [ISO09]

in 1977, to describe the operation and design of layered protocol architectures. This forms

a valuable reference model and defines much of the language used in data

communications. The OSI Reference Model is a hierarchical model, consisting of seven

layers divided into two layer groups:

 Upper Layers: Session, Presentation and Application Layers.

This layers’ group defines how the end workstations applications can interact with

the users, and communicate with each other (how applications running over the

network can be implemented).

 Lower Layers: Physical, Data Link, Network and Transport Layers.

 This layers’ group defines how data is transmitted from end to end (formatting

and transmitting data over the network).

In the OSI model, each layer has some characteristics that define it, and also a variety of

protocols associated with it.

 The Physical Layer PHY: This layer is special since it represents the hardware

and circuit that drive the network. It transmits data in sequences of bits by

analogue signaling using amplitude or frequency modulation of electrical signals

on cable circuits, light signals on fiber optic circuits, or other electromagnetic

signals on radio and microwave circuits. In addition, it may detect errors by

monitoring the quality of the received electrical or optical signals. RS485 and

10Base-T are examples of two different physical links.

 The Data Link Layer DLL: This layer is responsible for:

a. Addressing since it provides access to media using the hardware address.

b. Detecting and dealing with errors but it does not make any correction.

The proposed protocol by ISO is HDLC (High Level Link Control).

Chapter 2 – COMMUNICATION SYSTEMS AND MODELING TECHNIQUES

55

 Network Layer: This layer defines how interconnected networks function. It is

responsible also for providing logical addressing and packets routing (which

routers to use to determine a path). The network layer performs the

interconnection implementation of several nodes in a network. An example

protocol of this level is X25 level 3.

 Transport Layer: This layer is responsible for establishing connection between

two hosts. Protocols in this layer are connection-oriented protocols for reliable

delivery the TP4 protocol is comparable to Transmission Control Protocol TCP. In

the connection-oriented mode, the transport layer is responsible for

acknowledgments and retransmissions.

 Session Layer: This layer maintains the separation of data for different

applications. Its protocols concern the establishment of sessions between two or

more users or distributed components.

 Presentation Layer: This layer deals with special processes that must be done to

data during the whole connection such as the encryption of data and data

compression. It performs the representations of higher level objects.

 Application Layer: This layer represents the user interface. At this layer users can

use programs. As examples, two well-known protocols of application layer are

FTAM for file transfer protocol or X400 for electronic mail. In this layer

protocols are made to satisfy the communication needs of a specific application

such as the availability of resources for the intended communication.

2.6 NETWORKS SIZES AND TYPES

Computer networks [Mir07] [Stallings07] have grown rapidly. Networking is used

in every aspect of life. In the 1970, the Internet was a research project. Today, the Internet

has grown enormously and many users have high speed Internet access through cable

modems, ADSL, or wireless technologies. In order to communicate between hosts in a

network, a transmitter device must interface with the transmission system. However, there

must be some forms of synchronization between transmitter and receiver to conform to

the requirements of the transmission system.

2. COMMUNICATION SYSTEMS ARCHITECTURE

56

2.6.1 WIRED LOCAL AREA NETWORKS LAN

Local Area Network LAN [Tanenbaum03] is a network of small and medium size

that covers a building or a company (within a limited geographical area up to a few

kilometers), developed in the early 1980s. LANs are high-speed, low-error networks,

except when message traffic is very high. Token ring, Ethernet, and FDDI are between

the most popular LAN technologies. Ethernet is the dominant technology for wired

LANs. It offered originally a bandwidth of 10 Mbps and after extended to 100 Mbps and

10 Gbps. Ethernet IEEE 802.3, Token Bus MAP IEEE 802.4 and Token Ring IEEE 802.5

are examples of wired LANs. LANs have three characteristics:

1- Transmission Technology: twisted copper wire, coaxial cable, or fiber optics.

2- Size: LANs are limited in size. However, this eases the management of networks.

3- Topology: LANs use different topologies. Bus topology, Ring topology and Star

topology, figure 2.9, are the most known and used topologies. Transmitter and

receiver communicate over a shared medium. A transmission from any host is

broadcast to and received by all other hosts.

Figure 2.9, LAN Topologies

LANs performance is suitable for the implementation of distributed systems and

applications. More recently, examples of switched LANs have occurred. Switched-mode

high-speed Ethernet has been developed to overcome the bandwidth and latency

guarantees in original Ethernet. ATM LANs use simply an ATM network in a local area, in

addition to fiber channel.

Chapter 2 – COMMUNICATION SYSTEMS AND MODELING TECHNIQUES

57

2.6.2 WIRELESS NETWORKS WLAN

Wireless Local Area Networks WLANs [Sankar05] are local area networks that

connect computers and devices to each other and also to the wired network. Connection in

WLAN is without wires, using radio frequencies or light where signals propagate through

space. This gives freedom in movement and the facility to extend applications to different

parts of a building, city, or anywhere in the space. However, the limits of most wireless

technologies usually make WLANs able to connect devices that are very close to each

other (within a few hundred of meters at most).

Figure 2.10, Wireless Network Modes

The basic topologies in wireless LANs is shown in figure 2.10. In infrastructure

mode, access points, wireless switch/hub, are used as an interface between the wired and

the wireless LANs. In this mode, all wireless users transmit to an access point to

communicate with other users on the wireless or wired LAN. In Ad hoc mode, each user

in the wireless network communicates directly with others users, without a backbone

network. WLAN performance enables higher-end applications to run easily. With data

rates of up to 54 Mbps, a WLAN can satisfy any office or home network application.

IEEE 802.11 is a WLAN standard which most systems implement and which is becoming

very widespread.

2. COMMUNICATION SYSTEMS ARCHITECTURE

58

2.6.3 WIDE AREA NETWORKS WAN

Wide Area Networks WANs [Tanenbaum03] are used to connect devices or

networks over a large geographical area. WANs carry messages at lower speeds between

nodes. The communication medium is a set of interconnected switching nodes/circuits

linking a set of switching elements which form what is called a subnet. Switching

elements or routers, connecting two or more transmission lines, are specialized computers

that manage communication and route messages or packets to their destination. Routers

are not concerned with the content of the data. Transmission lines are the channels that

carry information (bits) from one workstation to another. Transmission lines can be made

of copper wire, optical fiber, or radio links. In general, the WAN contains numerous

transmission lines, each one connecting a pair of equipments. However, it may happen

that the network shared resources are saturated which is called data congestion. To

overcome this problem, several algorithms for congestion avoidance exist and are

implemented at the transmitters and receivers level.

The largest existing network is the Internet. Internet covers the entire planet. It

owns its name from the fact that it was the result of connecting multiple heterogeneous

networks. It is a network of networks. There is a hierarchy in the Internet infrastructure.

At the highest level, the backbones which are composed of fast routers and

ccommunication lines at high data rates. At the medium level, the regional and national

networks. Finally, at the lowest level, the LAN. WANs may be implemented using one of

these technologies: circuit switching, packet switching, frame relay and ATM networks

(Asynchronous Transfer Mode) which have assumed major roles.

Chapter 2 – COMMUNICATION SYSTEMS AND MODELING TECHNIQUES

59

3. COMMUNICATION PROTOCOLS MODELING METHODS

In the previous we have showed the different communication architectures models. As we

have mentioned before, in this thesis we are interested in modeling both communication

protocols and distributed services. Modeling communication protocols and distributed

systems is not new. Several formalisms, simulators and modeling tools exist. However,

one of the main challenges in modeling nowadays is establishing a precise relationship

within a wide range of available modeling formalisms and comparing their verification

capabilities and descriptive power. Thus, we propose to unify the modeling of both,

protocols and distributed systems, in one formalism. In this way, we eliminate the need to

any transformation from one formalism to another and so facilitate the modeling process.

Since time is an important factor in communication protocols, any formalism capable to

model them in any level must include a concept of time.

A formal model [Geoffrion89] [Broy07] is a mathematical and abstract

representation. It is always close to the real system since it reflects a certain view of it.

The Formal modeling consists of introducing system requirements (cost, security,

manufacturing facilities, maintenance, evaluation, reliability and availability [Barger03])

into a small fragment. This introduction must be inside the chosen mathematical

framework for the modeling process. The main purpose of a formal modeling is to clarify

largely inexplicit information. During the construction of a formal model, many

ambiguities must be removed. This consists in general of taking a decision or making a

choice. A good model is initially a model that one can understand easily and can be

explained simply. The procedures of verification must be simple and convincing.

The basic steps used for building a model are the same in all the modeling

methods. The details vary a little from one method to another. However, the

understanding of the common steps, combined with the typical statements needed for the

analysis, provides a framework in which the results from almost any method can be

interpreted and understood. Three basic steps are used iteratively until an appropriate

model for the system is developed:

3. COMMUNICATION PROTOCOLS MODELING METHODS

60

1- Model Selection: In this step, schemes of the system, system knowledge and

assumptions about the system are used to determine the form of the model to be fit

to that system.

2- Model Fitting: An appropriate model-fitting method is used to estimate the

unknown parameters in the model. Then, the model is carefully evaluated to see if

the underlying assumptions of the analysis appear possible.

3- Model Validation: In this step, if the model validation identifies problems, the

modeling process is repeated using information from the model validation step to

fit an improved model.

Two additional steps can be added to the basic sequence between model selection and

model-fitting: the experimental design and the data collection.

3.1 UNIFIED MODELING LANGUAGE UML

Unified Modeling Language UML [UML09] is a graphical notation proposed by

the Object Management Group OMG [OMG09], designed to represent, specify, build and

document software systems. Its two main objectives are:

 The object oriented modeling,

 The use of abstract language comprehensible by man and machine interpretable.

UML allows building several models of a system, each emphasizing different

aspects: functional, static and dynamic organization. UML [Rumbaugh99] is considered

as the successor of three modeling languages: Booch, Object-Oriented Software

Engineering OOSE and Object Modeling Technique OMT.

As a descriptive mechanism, UML makes distinction between the model and the

diagram concepts. A model contains all the system elements and the diagram displays

some types of a model elements. UML does not impose any design methodology, i.e.

UML does not impose a particular way for the use of diagrams it offers, except the use of

syntax rules defined in its specification.

UML1.x, 2003, is based on a single meta-model. While UML2.0 [Haugen04],

2005, has introduced new structures such as component, provided and required

Chapter 2 – COMMUNICATION SYSTEMS AND MODELING TECHNIQUES

61

interfaces, port, connector, protocols description machine and composite structure. It

provides a component model that allows the definition of components and systems

architecture to be developed. UML2.0 described 13 types of diagrams which allow

capturing different aspects and views of the system, figure 2.11.

Figure 2.11, UML 2.0 Diagrams

One of the benefits obtained in using UML as an architecture description language ADL,

especially UML2.0, is allowing users who have little knowledge in the field of formal

specifications to realize and manipulate architectural description. UML is not directly

associated to a method, it is only a specification language. The process that implements

the toolbox UML is intentionally not specified. UML is one of the most popular

methodologies. The representation of process as a flow of activities, the graphical syntax,

and the simple notations are the key factors of UML, figure 2.12(a) and (b).

3. COMMUNICATION PROTOCOLS MODELING METHODS

62

In the figure 2.12(a), the three actors represent users and other external systems

that interact with the described system, while the 9 use cases represent the scenarios of

the system (request, ack, trap and condition). In figure 2.12(b) shows the sequence

diagram of the request scenario, which includes the 5 types of requests (GetRequest,

GetNextRequest, SetRequest, TestRequest, and TrapAck) described in the use-case

diagram in Fig. 2.12(a) [Lee04].

(a) Use-case Diagram

(b) Sequence Diagram

Figure 2.12, SNMP Protocol in UML [Lee04]

Chapter 2 – COMMUNICATION SYSTEMS AND MODELING TECHNIQUES

63

However, UML has also weakness points:

1- UML is based on informal semantics, language elements are not defined on the

basis of mathematics. So, it is hard to verify the consistency semantics of a UML

diagram mathematically, which is not the case of Petri nets [Bernardi02].

2- UML provides 13 types of diagrams. However, if one uses two different types of

diagrams to describe the same system in two different views, it is difficult to

formally verify the consistency of the global model (for example UML dynamic

diagrams [Engels02]). Hence, at the implementation level, it is essential to

overcome this weakness.

3- UML is not well suited for analyzing and modeling (temporal) behaviour in

concurrent and distributed systems as Petri nets (highly used aspect)

[Kristensen04] [Wu07]. In most of the recent research, UML is widely enhanced

and supported by Petri nets to overcome different weakness aspects: the definition

of an analysis model for temporal properties [Mallet06], time inscriptions in

sequence diagrams [Eichner05], verifying dynamic behavioural modeling for real

applications [Lee04].

4- “A UML diagram, such as a class diagram, is typically not refined enough to

provide all the relevant aspects of a specification” [UML09]. Thus, the formal

Object Constraint Language OCL is used to describe expressions

(operations/actions) on UML models.

3.2 SPECIFICATION AND DESCRIPTION LANGUAGE SDL

Specification and Description Language SDL [SDL09] [IEC09] is a formal

notation evolved and standardized between 1976 and 1992 by International

Telecommunication Union ITU-T. Originally focused on telecommunicating systems

[Latkoski07] [Kim07] [Melia06], SDL is a high-level general-purpose description

language with more application field such as dynamic distributed systems [Díaz08],

event-driven systems and real-time systems [Drosos01]. SDL provides textual (Phrase

Representation SDL/PR) and graphical (Graphic Representation SDL/GR) formats.

3. COMMUNICATION PROTOCOLS MODELING METHODS

64

Based on Finite State Machines FSM [Lai02], SDL consists of a set of concurrent

processes, extended with variables and data space, communicating by exchanging control

signals or structured messages instead of shared memory. The system architecture is

drafted by deploying building blocks and channels connecting them, figure 2.13. Many

versions of SDL were released. SDL-2000 is the latest released version completely based

on object-orientation. This version is accompanied by an SDL-UML-Profile. JADE (Java)

[JADE99] and Cinderella SDL [Cinderella07] are existing tools supporting SDL.

Figure 2.13, Important SDL Symbols

Figure 2.14 shows the process in the Go-Back-N protocol which is nearly optimal

for channels characterized by small propagation delays, and thus is widely used for

control in many classical computer-communication networks.

Figure 2.14, Go-Back-N Protocol in SDL

Chapter 2 – COMMUNICATION SYSTEMS AND MODELING TECHNIQUES

65

In the Go-Back-N protocol, the sender continuously transmits packets until the

number of the sent packets “win” equals to the transmission window size W. Each packet

contains a unique identifier, “ns”. It then starts a timer T. The receiver returns a positive

acknowledgment with the identifier of the last correctly received packet “nr”. However, if

the receiver does not send an acknowledgment or the acknowledgment is lost, before the

timer end, it repeats the transmission of the packets (ns=nr).

In figure 2.15, branch in the middle, the transmitter verifies if the number of sent

packets is less than the transmission window (condition: win<W). If not, it sends a packet

(output: pdu(ns)). It increments the value of sent packets “win” and the sequence number

“ns” by one (N is the total number of packets to be sent). If the value of “win” equals to

W, it starts the timer T (branch to the right). Otherwise, it continues transmitting.

Figure 2.15, Transmitter side in Go-back-N in SDL

Once win equals W, the timer T (branch to the right) is set to a certain value (in

the example one unit of time) with priority input. During this time, the transmitter waits

for an acknowledgement from the receiver (branch to the left). If the timer time is out

3. COMMUNICATION PROTOCOLS MODELING METHODS

66

before the reception of an acknowledgement, “ns” is reset to nr (last correctly packet) and

w to 1, restarting the transmission process (output: pdu(ns)). However, if an

acknowledgment is received (branch to the left), win is reset to 0, ns is set to nr and the

timer T is reset to 0.

Figure 2.16 (a) shows the channel side which represents the medium to exchange

the messages and acknowledgments between transmitter and receiver. Figure 2.16 (b)

shows the receiver side. The receiver starts receiving data. If the sequence number of the

received packet equals to the expected one (decision: ns=nr?), then it returns an

acknowledgment of the last correctly received packet (nr=nr+1). Otherwise, it returns a

negative acknowledgement with the current value of nr, and discards the erroneous

packet.

 Figure 2.16, (a) Channel side (b) Receiver Side

SDL is a user-friendly language and a model-oriented specification. It has a high

modeling capacity. However, SDL has some disadvantages [Werner06]:

1- Most of the existing tools are commercial.

2- In SDL, there is no verification calculus (no proofs).

3- Temporal interval expression is not allowed in SDL, (necessary at the

communication level, mainly for the clocks asynchrony).

Chapter 2 – COMMUNICATION SYSTEMS AND MODELING TECHNIQUES

67

4- Recent studies in the modeling and robustness analysis of multi-hop Internet

signalling protocols have shown that SDL is not well suited to create certain

network topologies [Werner05] [Melia06].

5- Although the graphical form of SDL is good for showing flow of control, it is

completely inadequate for showing the flow of data.

To overcome some problems in SDL, Petri nets are used as the formal model underlying

an SDL model [Godary04] [Capellmann99], in addition to the translation of SDL

specifications into different types of Petri nets [Nepomniaschy08] [Kryvyy08] [Aalto03].

3.3 TIMED AUTOMATA

Timed (finite) Automata TA [Alur92] [Bengtsson04] is a formalism for modeling and

verification of real time systems. The timed automata consist of a set of states, transitions

between them and a set of stopwatches or clocks to measure the time. An automaton is a

simple state machine or labeled transition system extended with real-valued variables. A

timed automaton accepts a timed word (infinite sequence in which a real-valued time of

occurrence is associated each variable). The variables model the logical clocks in the

system. The transitions of the automaton put certain constraints on the clock values: a

transition may be taken only if the current values of the clocks satisfy the associated

constraints, or the condition on the clock called guard.

Definition: A timed automaton is a tuple A = (Σ, S, X, T, I, F, V), where:

 Σ is a finite alphabet of actions,

 S is a finite set of states (locations, or nodes),

 X is a finite set of clocks,

 T  S × [C(X) × Σ × 2X] × S is a finite set of transitions (or edges), written as

ݏ
 ௚,௔,஼
ሱۛ ۛۛ ሮ ݏ or ′ݏ

 ௚,௔,஼ؔ଴
ሱۛ ۛۛ ۛۛ ሮۛ ,and C(X) is a set of clock constraints over X ,′ݏ

 I  S is the subset of initial states,

 F  S is the subset of final states.

 V: S  C(X) assigns invariants to states or location.

A path in A is a finite sequence of consecutive transitions:

3. COMMUNICATION PROTOCOLS MODELING METHODS

68

 P ൌ s଴
 ୥భ,ୟభ,C భ
ሱۛ ۛۛ ۛۛ ۛሮ sଵ … s୮ିଵ

 ୥౦,ୟ౦,C౦
ሱۛ ۛۛ ۛۛ ۛሮ s୮

where {qi−1, gi, ai, Ci, qi} timed words  T for each 1 ≤ i ≤ p.

The path is said to be accepting if it starts in an initial state, q0  I, and ends in a final

state, qp  F.

When its guard g is true, the transition can take place and assigning new values to

clocks while emitting visible action. In some situations, states have invariants which must

remain true as the automaton is in the state. Invariants are used most often to force the

execution of a transition. The time scale is supposed to be continuous: the values of the

clocks are real numbers. In addition, transitions are instantaneous.

In figure 2.17, starting from state p where the value of the clock x is zero (p, [x =

0]), delay may last for any nonnegative real number t to reach the valuation (p, [x = t]).

This is called a time elapsing step. Being in state p and t ≤ 2, a discrete step can be

performed by taking the transition a, since the guard x ≤ 2 is satisfied, reaching to the

state q (q, [x = t]). In the state q delay may be for at most 5-t time units because of the

invariant x ≤ 5 associated with the state q. As soon as the value of the clock x is at least 3,

the discrete transition b can be taken and return to the initial state p (p, [x = 0]) because

the value of the clock x is reset to 0 by taking this transition.

Figure 2.17, Example of Timed Automata

Timed Automata are used to model and analyze timeliness properties of embedded

system architectures [Hendriks06], real-time systems [Larsen05] and communication

protocols [Corin07] [Diaz06] as real-time components. UPPAAL [UPPAAL09] and

Chapter 2 – COMMUNICATION SYSTEMS AND MODELING TECHNIQUES

69

KRONOS [KRONOS02] [Yovine97] are two of the most well-known tools in TA.

KRONOS is a tool that aims to assist the design of real-time systems and to provide a

verification engine integrated into design environments. KRONOS is developed in France

at Verimag laboratory, a joint laboratory of UJF, Ensimag and CNRS. It is free

distributed tool used to model timed automata components and is expressed in the real-

time temporal logic TCLT, timed computation tree logic. However, KRONOS is textual

and does not support a graphical design interface. In addition, the work on this tool was

stopped in 2002 and no new development is done since that date.

UPPAAL is developed by the Uppsala University and Aalborg University.

UPPAAL is an open source toolbox for modeling, simulation, and verification of Timed

Automata. It is a graphical, platform-independent interface, written in Java and extends

FSMs by means of timers. Its model checker is used to verify some of the system

properties. In timed automata, there are two classes of algorithms based on the notion of

zones and implemented using data structures like the Difference Bounded Matrices DBM:

the class of forward analysis algorithms and the class of backward analysis algorithms.

UPPAAL implements only the forward analysis algorithms that permit the feature of

bounded integer variables, for which backward analysis is inappropriate. Conversely,

KRONOS implements the two kinds of algorithms.

Figure 2.18 shows the Go-back-N protocol in UPPAAL. The upper part of the

figure shows the transmission side. S1 is the initial state. The transmitter sends its data

over the channel tx_ch to state S2 (the sign “!” is used to represent the emission of data

and the sign “?” represents the reception of data). It receives data channel ch_tx from state

S3, (figure 2.14). A retransmission, timeout or acknowledgments are all checked by the

guards associated to the transitions.

The lower part shows the channel and reception sides. The channel just forwards

data and acknowledgments between the transmitter and the receiver. However, at the

receiver side, committed states are used for S2 and S3 (the letter C inside the circle).

These locations freeze time which means that delays are not allowed and the committed

state must be left to the next state (a committed location if there are several ones).

3. COMMUNICATION PROTOCOLS MODELING METHODS

70

Outgoing transitions of a committed state have priority and must be carried out

immediately. The receiver receives data on the ch_rx channel and returns its

acknowledgments on channel rx_ch. As SDL, UPPAAL is user-friendly platform. Its

mean usage is for validation of hard temporal constraints.

Figure 2.18, Go-Back-N Protocol in Timed Automata

However, timed automata have some weakness points:

1- “Timed automata” is not general purpose formalism (limits its application field to

the hard timing constraints applications).

2- Some timed automata tools like KRONOS lack the support for high level

composable graphical patterns to support systematic design of complex systems

[Dong04].

Chapter 2 – COMMUNICATION SYSTEMS AND MODELING TECHNIQUES

71

3- Performance analyses are of quantitative measures (limited to the upper bounds)

which make it unsuitable for systems that depend upon real-time considerations.

4- UPPAAL and KRONOS implement the forward analysis algorithms, however

according to [Bouyer03] the two implementations are not correct.

3.4 SIMPLE PROMELA INTERPRETER SPIN

SPIN [Bolognesi87] is a tool for specification, simulation, and validation of

communication protocols. It uses a C-like specification notation ProMeLa or Process

Meta Language; it is a textual notation for Extending Communicating Finite State

Machine ECFSM. SPIN supports efficient model-checking, validation of consistency

requirements, invariant assertions, and temporal properties expressed in an ad hoc Linear

Temporal Logic.

Figure 2.19, Processes Declaration in ProMeLa SPIN

Figure 2.19 shows the declaration processes and the messages exchanged between

both of them (input and result values). In SPIN, system components are processes whose

internal behavior is described as a set of possible transitions and processes can

communicate on channels. SPIN can perform simulation and logical validation on a

ProMeLa file. Xspin or X-interface SPIN is the graphical version of SPIN, generating

graphical FSMs. SPIN main application domain is for validation of logical properties,

with a good friendliness usage and modeling capacities.

3. COMMUNICATION PROTOCOLS MODELING METHODS

72

However, SPIN has some disadvantages:

1- No hierarchical structuring facilities,

2- Worst-case complexity is exponential in number of processes,

3- Performance analyses are not supported.

3.5 PETRI NETS WITH TIME

Historically, the application of Petri nets to communication protocols [Merlin76]

[Diaz87] [Billington88] dates back to the earliest attempts to use formal techniques to

solve problems specific to communication protocols. One of the extensions of Petri nets

used to model communication protocols and real-time systems is the Time Petri nets TPN

[Diaz91] [Berthomieu07] [Bucci05]. TPN is a powerful formalism used to model systems

where time is the main constraint. They allow the description of the watch–dog

mechanism (restricting and monitoring the time) which is not allowed in timed Petri nets

[Ramchandani74]. Since transitions are labeled with time intervals in TPN, this makes it

possible to model unpredictable timing where the exact durations of events are not

known. They can also represent the timed Petri nets, just by making the two limits of the

interval equal.

Definition: A Time Petri Net is a six–tuple N= (P, T, Pre, Post, m0, τs), where:

 P and T are the sets of nodes respectively called places and transitions (|P|=m,

|T|=n) and P∩T=Ф;

 Pre: P×TN and Post: T×PN are the weighted flow relation representing

the arcs;

 m0: PN is a mapping associating to each place pP, an integer m0(p) called

the initial marking of the place p.

 τs: T → R+ × (R+  {+∞}) is a function called Static Interval function, and,

t  T, τs (ti) = [αt, βt], where αt and βt are rationals such that:

0 ≤ αt < ∞ and 0 ≤ βt ≤ ∞

αt ≤ βt, if βt ≠ ∞ and αt < βt, if βt = ∞

Chapter 2 – COMMUNICATION SYSTEMS AND MODELING TECHNIQUES

73

Time represented into intervals (the lift bound is called static earliest firing time or

EFT and the right bound is called static latest firing time or LFT) makes it easy to model

events with unknown occurring time. These limits are related to the date when ti was

enabled for the last time. Let θ be the date when ti becomes enabled; then ti cannot be

fired before θ + EFT and must fire no later than θ + LFT (if max is finite), except if the

fire of another transition tj un-enables ti before it is fired. Transition firings have no

durations. In addition, a transition t of a time Petri net is enabled at marking M if and

only if Pre(p, t) ≤ M. If a transition ti is fireable at a state defined as S= {M, V}, where M

is a marking and V is a dynamic firing interval set, where:

V τs: T → R+ × (R+  {+∞})

Then the new marking M' is reachable from M: M'(p) = M(p) + C(P, ti), as usually in

Petri nets.

A transition tk is said to be newly enabled by the firing of a transition ti if M –

Pre(p, t) + Post(p, t) enables tk and M – Pre(p, t) did not enable tk. If ti remains enabled

after its firing then ti is newly enabled. The number of entries in vector V is given by the

number of the transitions enabled by marking M.

The transition firing in a Time Petri Net has two firing semantics. The first

semantics is called the strong timing semantics STS, which imposes that any enabled

transition t must be fired at its latest firing time at most unless it is disabled by the firing

of a conflicting transition at a time no greater than the latest firing time of transition t

LFTt. In other words, when the LFTti is reached, the transition must be fired and time

cannot disable firing of the transition ti. This requires some form of global coordination of

the net.

On the contrary, when using the weak timing semantics WTS, the firing time of a

transition is not constrained by firing conditions over other transitions. The decision about

a transition firing is local and it can be fired only in its time interval. If it does not fire

within its upper bound, then it cannot fire anymore. To be able to fire, it should be reset

by being disabled once. WTS is nearer to the original untimed Petri nets. However, STS

3. COMMUNICATION PROTOCOLS MODELING METHODS

74

is the most widely adopted one and Petri nets with STS are more powerful than Petri nets

with WTS.

Figure 2.20 shows an example of a time Petri net. A transmitter workstation

attempts to send data to a receiving workstation. It waits a backoff of 5 units of time

(transition tx_ch). The vector V= {tx_ch[5,5]} since one transition is enabled. The firing

of “tx_ch” puts a transition in place “Send Packet”. A packet can be lost due to external

noise or interference. This is represented by the transition noise. Three transitions are

enabled, so, V= {Noise[0,9], ch_rx[0,1], Retransmission Timer[10,10]}. However,

transitions “ch_rx” and Noise can fire before transition “Retransmission Timer” since

their EFT and LFT are less than those of transition “Retransmission Timer” (0, 0<10; 1,

9<10). So, one of them will fire first. The firing of one of them disables the other one.

Figure 2.20, Time Petri Net Example

 If transition Noise is fired, then V= {Retransmission Timer[10,10]}. This means

that the packet is lost and it will be retransmitted after 10 units of time. Hence, the

local timer on this transition continues incrementing which means that if transition

“Noise” is fired after 4.15 units of time, transition “Retransmission Timer” will

fire after 5.85 units of time (4.15+5.85=10).

Chapter 2 – COMMUNICATION SYSTEMS AND MODELING TECHNIQUES

75

 If transition “ch_rx” is fired, a token is put in place “Received Packet” and V=

{Receiving Error[3,8], rx_ch[5,8], Retransmission Timer[10-θ,10-θ]}, where θ is

the time before firing transition “ch_rx” and θ[0,1].

Again, transitions “rx_ch” and “Receiving Error” will fire before transition

“Retransmission Timer”. However, transition “Receiving Error” can fire before transition

“rx_ch”, since its EFT (3) is less than “rx_ch” EFT (5). In Tina [Tina09], TPN was

improved with priority selection. Transition “rx_ch” has priority over transition

“Receiving Error” if it is not fired before 5 units of time, which means that it can fire in

an interval of [3,5[units of time. This is useful to represent error checking, assuming that

an error can be checked just after the reception of a packet.

Now, if transition “Receiving Error” is fired, the packet must be retransmitted (as

in point 1 above). On the other hand, firing “rx_ch” puts a token in place “ACK” and

V={ch_tx[0,0], Retransmission Timer[10-θ-λ,10-θ-λ]}, where λ is the random time before

firing transition “rx_ch” and λ[5,8]. The maximum value of θ+λ is 9 (8+1), this means

that to fire transition “Retransmission Timer”, the local clock needs one more unit of

time. However, transition “ch_tx” is immediate, so it must fire first according to strong

timing semantics STS.

To conclude, the use of Petri nets for modeling communication protocols has several

advantages:

1- Petri nets are simple formal definition, supporting powerful analysis capabilities,

with powerful semantics that support execution and simulation,

2- Their visually graphical interface makes Petri nets easy to realize and manipulate

for a wide range of users,

3- Petri nets with time allow to describe protocols in a very adequate way,

particularly by supporting directly the fundamental notions of concurrency and

synchronization [JWang07] which are inherent to communication protocols,

4- Time Petri nets are able to analyze temporal and stochastic properties [Masri08]

[Moraes06],

3. COMMUNICATION PROTOCOLS MODELING METHODS

76

5- Their analysis techniques prove many important structural properties

[Billington04],

6- There exist many verification techniques by simulation and free computer-aided

tools based on Petri nets with time [Renew08] [CPN07],

7- Successful use in many different application areas: complex, manufacturing and

distributed systems [Moreno08] [Glabbeek08], real-time systems [Chen08]

[Liu08], safety critical systems [Xu07], multimedia systems [ZWang07] …

However, there are some weakness points:

 The inflexibility to cope with system changes.

 Petri nets lack computations expressiveness with tokens considered as black dots.

This limits its modeling power since no value is transferred by communications.

For example, in the figure 2.20 only one packet can be sent (one token in place

“Data”) since it is not possible to send an acknowledgment without identifying the

token that models the sent packet.

 The locality of the Petri net semantics, firing transition only influences its local

neighbours, reactions to external events and exceptions are difficult to model.

 One of the basic problems in Petri Nets is that modeling a system needs many

places and transitions. In other words, as the system size and complexity grow, the

state-space of the Petri net grows exponentially, which could become too difficult

to manage both graphically and analytically.

Many extensions of Petri nets were suggested to overcome these problems. High-level

Petri nets with object concepts offers practical support for Petri nets through the provision

of flexible and powerful structuring primitives. Combining Petri nets with object-oriented

concepts is an excellent solution to profit from the strengths of both approaches and

eliminates nearly all these problems.

Chapter 2 – COMMUNICATION SYSTEMS AND MODELING TECHNIQUES

77

4. CONCLUSION

A distributed system is a collection of computers connected to a network and data

applications distributed on these computers. In the first part of this chapter, we have

focused on the networking concepts and techniques that are the basis for distributed

systems. Layered protocols are the base for communications in distributed systems. Two

main reference models for computer networks are the OSI model and the TCP/IP model.

In the next part we have focused on the methods used in modeling communication

systems and distributed services. UML, Timed Automata and Petri nets are of the most

used formalisms in this domain. Formal methods are a big supporting means for

increasing correctness and reliability in system design and implementation. However,

none of these formalisms were used to model both the communication protocols and the

distributed services.

Nevertheless, Petri nets provide a clear formalism for concurrency and

distribution. Combining both Petri nets and Object-orientation concepts together allows

benefiting from the strengths of both approaches. High-Level Petri nets HLPN, described

in the following chapter, are considered as a special kind of Petri nets which allow the

representation and manipulation of an object, a token. This powerful formalism allows

modeling complex systems like the distributed systems and communication protocols.

Since the manufacturing systems use the industrial local networks, the upcoming

chapters will mainly focus on modeling the LAN MAC sublayer protocols, more

particularly Ethernet and Wireless LAN. To build the model’s components, we will first

analyse these protocols. Later, we will evaluate the complete model to verify some of its

properties.

Chapter 3

MODELING COMMUNICATION

PROTOCOLS WITH COMPONENT-

BASED APPROACH

1. INTRODUCTION

80

1. INTRODUCTION

Component-based engineering [Brown96] [Brereton00] has a huge importance for

rigorous system design methodologies. It is based on the statement which is common to

all engineering disciplines: complex systems can be obtained by assembling components

[Gössler03], ideally commercial-off-the-shelf (COTS) [Carney00] [Weyuker98].

Reusability and extensibility [Meyer97] are key factors that contribute to this

success and importance. Component-based development aims at decreasing development

time and costs by creating applications from reusable, easily connectible and

exchangeable building blocks. Components are usually characterized by abstractions that

ignore implementation details (the internal functionality) but describe the way these

components can be connected together to complete the model through their connecting

interfaces. In the context of utilisation, the main factor in building such components is the

ability to make them reusable in different future models by a well-define internal

functionality and connecting interfaces.

From my opinion, one of the most efficient high-level formalisms used for

modeling both network protocols and distributed services are the High-Level Petri Nets

HLPN [Lakos95] [Kohler05]. Petri nets have become very popular for representing

distributed computer systems because of their capability of clearly describing

concurrency, conflicts, and synchronization of processes, and because they present a

simple and elegant formalism for their description. They offer an excellent framework that

can be used for the specification and performance evaluations of distributed systems and

protocols [Masri08a]. Thus, Petri nets can be used to unify the modeling of service and

protocols in a single formalism.

HLPN fulfil all the requirements of communication systems distributed services.

The graphical representation of the net gives the user an easier understanding of the

modeled process. In addition, they support simulation which is one of the main methods

used to verify properties of communication protocols. Simulation can be interactive, i.e.

with user intervention, or automatic. Formal modeling usually gives a set of expressions

Chapter 3 –MODELING COMMUNICATION PROTOCOLS WITH COMPONENT-BASED APPROACH

81

for its components describing the behaviour of the investigated system. It also provides

precise descriptions of the component function and structure.

In the first chapter, we have presented in Section 3.6 the modeling of the control

functions of a manufacturing system. In this part we have emphasized the use of

client/server approach to allow the distribution of resulting code on a distributed

architecture of the control. In the following sections, we aim to model network protocols

to be able to analyze their impact on the productivity of the manufacturing system with a

selected architecture of the control. Since our control function is modeled with a High-

Level Petri Nets, we select the same formalism to be able to obtain a global model that

integrates both services (here the modules of the control function) and the model of the

network protocols.

In this chapter, we will introduce the different component-based modeling

properties, particularly with the formal methods techniques in which we are interested. In

the second part, we will describe the used modeling formalism High-Level Petri Nets. In

the third part, we will specify the methodology used for building the patterns and

components for communication networks. Since we are interested more particularly in

industrial networks, our modeling of network protocols will focus on the medium access

control. In consequence, we will illustrate our methodology on two illustrative examples:

Ethernet and DCF 802.11.

2. COMPONENT-BASED MODELING PROPERTIES

82

2. COMPONENT-BASED MODELING PROPERTIES

Component-based methodology is a promising technique and implies method developed

from the object-oriented design. It uses hierarchical and modular concepts to design and

analyze systems. To reduce the cost of system developments, it makes use of

independent, interactive, and reusable components. In component-based engineering

research literature, several approaches [Gössler07] [Bastide04] [Heck03] [Cheesman01]

[Penix98] have focused on the aspects of the development of components. However,

reusing available, ready-to-use components decreases time-to-market for new systems

and applications [Seyler02]. This may be done by selecting the appropriate components

from the available components based on the needs and then assembling them to build a

new component system-model.

Different methods of component specification software exist; from the Interface

Description Language IDL (Object Management Groups’ CORBA [OMG09a], java-

based components such as JavaBeans [Matena03] and Microsoft’s .Net [Thai02]), passing

by the design-by-contract based (UML [UML09] [DSouza99]), to formal methods (Petri

Nets [Chachkov01]). In spite of their widely difference in the details, they have a

common concept: a component is a black box that is accessed through exposed

interfaces. In this section we will precise the main features that a component-based

method must verify.

2.1 GENERICITY

Genericity is used in component-based engineering to raise time-to-market,

productivity, and quality in systems development. The term generic component refers to a

component that implements a process or part of a process-set and that is adaptable to

accommodate different needs. Genericity of a component is based on its independence

compared to its type. This is an important concept for high-level methods because it can

increase the level of abstraction of these methods.

A generic component can be seen as a parameterable element. Parameters should

be specified and a specific version of the component (an instance) will be created and

Chapter 3 –MODELING COMMUNICATION PROTOCOLS WITH COMPONENT-BASED APPROACH

83

used. Another advantage is that a generic component can be represented as a generic

factory that will create as many components as necessary for the application. Thus, the

main objective of genericity is to integrate the component-based approaches with the

technical approaches.

2.2 MODULARITY

Modular models are easier to design compared to similar complex models.

“Modularity is having a complex system composed from smaller subsystems that can be

managed independently yet function together as a whole” [Langlois02]. In another

definition, “modularity is used to describe the use of common units to create product

variants” [Huang98]. The objective of modularity is the ability to identify homogeneous,

compatible, and independent entities to satisfy the needs of a system or an application. In

many domains, modularity is essential to manage the design and the production of

complex technology.

Modular design aims at organizing complex systems as a set of components or

modules. These components can be developed independently and then joined together.

They can be separable or inseparable units [Foster95]. The decomposition of a system

model into smaller modules has the following advantages:

1- A modular model can be very near to the real system, since it reflects the

hierarchical structure inherent to the system.

2- It is possible to concentrate on each component as a small problem.

3- Components which are too complex can lose some of their details and their

interactions can be confused. A component can be divided into smaller components

until each module is of manageable size.

4- Modular model allows testing each component separately.

5- Implementation changes and corrections on simple components can be done easily.

6- Documentation in modular structure becomes also easier.

2. COMPONENT-BASED MODELING PROPERTIES

84

2.3 REUSABILITY

The implication of reusability is that the available components must give enough

information to ease the assembly of components into a new system [Geisterfer06]. The

information must include dependency and configuration information. To make well

decisions about selecting and reusing components, the following information is required:

1- Operational specification: the semantic interaction of the component,

2- Operation context: where and how the component will be used,

3- Non-functional properties: describe the properties such as performance, security

and reliability,

4- Required interfaces and resources: the functionality and resources needed by the

specified component to execute its provided functionality.

Since all real systems are made of components, component-based systems are comprised

of multiple components [Brown96] that:

 are ready “off-the-shelf,” either from a commercial source (COTS) or reused from

another system;

 have significant combined functionality and complexity,

 are self-contained and can be executed independently,

 will be used “as is” without modification,

 must be combined with other components to get the desired functionality.

Figure 3.1, Basic Module Reusability

All these benefits and more lead us to use the component-based approach to model

the distribution of manufacturing systems and the underlying protocols. The reuse of

Chapter 3 –MODELING COMMUNICATION PROTOCOLS WITH COMPONENT-BASED APPROACH

85

components is very important in the modeling level since most of the system parts and

machines are the same. In addition, protocols share many properties. With the reuse of

already modeled components, the time and modeling-cost are reduced. As we can see in

figure 3.1, models are sharing some properties (the triangle). Once this part is modeled, it

can be reused in any model that has a need to such component.

2.4 COMPONENTS ABSTRACTION

The modeled components are seen as black box where the internal functionality is hidden,

while the interfaces represent the service that can be offered by this component. Every

component or module is characterized by its internal hidden behaviour. Its interfaces are

chosen to reveal as little as possible about its inner implementation.

 Components abstraction is useful for reducing the designing complexity by

decomposing a problem into connected components. Abstraction (or specification)

describes the functional behavior of the components [Sametinger97], i.e. components are

considered to be specific to an application. Abstraction focuses on the important

characteristics of component upon the designer viewpoint. This definition supports the

abstraction of data, hiding internal function, reusability and self-contained component

behaviour descriptions [Edwards97].

 Thus, during the design of components we must focus on well-defining the service

offered by the component by its interfaces and the parameters that can be adapted to the

application requirements, rather than spending the time on describing its internal

behaviour. This can be achieved by giving appropriate names to the interfaces and

parameters and documenting these interfaces and parameters.

3. CHOOSING THE METHOD: HIGH-LEVEL PETRI NETS

86

3. CHOOSING THE METHOD: HIGH-LEVEL PETRI NETS

As we saw in the last sections, component-based approach can deeply support the

reusability of ready-to-use components and the distribution in modeling manufacturing

systems. The use of component-based technology in real-time systems progress has been

the main object of recent research such as in the UML and high-level Petri Nets.

Moreover, systems are required to be more flexible and dynamic and to be

designed in less time. This point together with the fact that the design of complex system

often represents a considerable investment forces for an increased reuse of flexible and

configurable design elements. This is one of the central motivations for the use of

component-based techniques. Components contain attributes representing the component

state, and operations that access and manipulate the state. The inner behaviour of the

component is kept hidden from the outside world and only the interfaces are visible.

In this work we aim to model and evaluate the distributed services and protocols

with the same modeling formalism. Time-dependence and data identification characterize

these systems. One of the choices was UML because it is well-defined, powerful

formalism and widely used in this domain [Bigand04]. However, UML lacks one

important feature to achieve the desired needs which is the lack of a formal semantics and

hence it is not possible to directly verify timing requirements which are necessary in

communication systems.

Another choice was to use Petri nets, (since pervious work of OSSc team

concerning the manufacturing systems’ services is already made in ordinary and colored

Petri nets). Petri nets are also a powerful formalism widely valid for the modeling of

concurrent and distributed systems. Since many extensions and tools are available, mainly

for time, identification of tokens and stochastic issues which are very important in the

communication protocols and services. So, the integration of the previous work with our

work for modeling the whole systems elements (services and protocols) will be easier (no

need to make a transformation).

Chapter 3 –MODELING COMMUNICATION PROTOCOLS WITH COMPONENT-BASED APPROACH

87

3.1 SELECTION CRITERIA

Petri nets are mathematical formalism intended to be used for modeling,

simulation and analysis of different kinds of systems. In computer science Petri nets are

used for modeling a great number of either hardware and software systems, or various

applications in computer networks. A special advantage of Petri nets is their graphical

notation, which reduces the time to learn Petri nets and simplifies their use. However, this

formalism has different extensions and tools. As we saw in chapter 2, communication

protocols have some characteristics and requirements. Thus, the tool selection criteria

were depending on these requirements:

1- Time: Communication protocols are real-time demanding applications. Transmitting

and receiving data, accessing to the channel, backoff and other needs depend on

time. Time Petri nets allow this feature.

2- Headers and Data fields: Data packets have many fields which may be modeled as

tuples. This feature is supported in high-level Petri nets.

3- Probabilistic and Stochastic Properties: Messages exchanged over the network may

be lost or perturbed. Bit rate error is a function of noise which means that it is not

fixed. The representation of such feature can be made by stochastic functions.

Stochastic Petri nets have it in its definition.

4- Sent and Received Packets: Messages exchange over the network needs the

identification of packets. Colored Petri nets are made for this need.

3.2 PROPERTIES OF OUR HIGH-LEVEL PETRI NETS

3.2.1 DEFINITION

In this subsection we will give a brief definition on the desired high-level Petri nets. This

definition is not far from the definition of colored Petri nets [Jensen91]. However, we add

to this definition time notation which is not identified.

Definition: A High-Level Petri Net is a tuple N= (P, T, A, m0, Σ, Λ, G, E, D)

where:

3. CHOOSING THE METHOD: HIGH-LEVEL PETRI NETS

88

 Σ is a finite set of non-empty color sets.

 Λ is a color function, Λ: P → Σ

 G is a guard function, G: T → Boolean expression, where:

t  T: [Type (G(t)) = Bexpr  Type (Var (G(t)))  Σ],

where Type is the color type of the guard function, Bexpr is a Boolean function and

Var is the variables of the guard function.

 E is an arc expression function, E: A→E(a), where:

a A: [Type(E(a)) = Λ(p(a))  Type (Var (E(a)))  Σ], p(a) is the place of arc a.

 D is a delay function, D: E → TS, where TS is a delay/time stamp associated to

the arc inscription with the annotation symbol “@”.

The arc expression function can contain any sign and/or mathematical or logical

functions of the programming language used with Petri nets, such as Java. The delay

function can be associated to both output arcs (from places to transitions) and input arcs

(from transitions to places). The implementation of this definition will be given by

different examples in the following subsections.

3.2.2 INSCRIPTIONS, GUARDS AND TUPLES

Arcs are the connectors between places and transitions. Arcs can have arc

inscriptions. When a transition fires, its arc expressions are evaluated and tokens are

moved according to the result. Arc inscriptions can be simple, tuples or even

mathematical operators. They can be also variables or constants. However, inscriptions do

not have the same meaning on both input arc and output arc.

Figure 3.2 shows different arc inscriptions. In figure 3.2 (a), the arc inscription

contains mathematical operation. The resulting of firing T1 is a token with value 8. While

in (b) T2 can fire only if place P4 contains a token with value 5. Also tokens can be

numbers or strings as in place P5. The resulting of firing T2 is a token with value “hello”

in place P6. However in (c), T3 can fire with any value in place P7, but the resulting of

this firing is a token with the value 5 put in place P9. Other Java signs can be also used

like the “!” sign which means the not-equality, while “|” is an “or” sign.

Chapter 3 –MODELING COMMUNICATION PROTOCOLS WITH COMPONENT-BASED APPROACH

89

Figure 3.2, Arc Inscriptions

Not like the arc inscriptions, guard inscriptions are expressions that are prefixed

with the reserved word guard associated to the transitions. A transition may only fire if all

of its guard inscriptions evaluate to true. Guards are the conditions that must be satisfied

to fire transitions. They can be used as if statements.

Figure 3.3, Guard inscription

Figure 3.3 shows an example of the guard inscription. To fire T1 both conditions

must be true: y greater than 10 and x greater than y. The tokens with value 42 and 100 in

place P1 satisfy the second condition. However, the value of token x is 50. So, only the

3. CHOOSING THE METHOD: HIGH-LEVEL PETRI NETS

90

token with value 42 can be used to satisfy the first condition. The resulting of firing T1 is

a token with value 50 + 42 = 92 put in place P3. Guards are also useful to identify the

tokens.

A tuple is denoted by a comma-separated list of expressions that is enclosed in

square brackets. [1,“abc”,1.4] denotes a 3-tuple which has as its components the integer 1,

the string “abc”, and the double precision float 1.4. Tuples are useful for storing a whole

group of related values inside a single token and hence in a single place. A tuple,

[[1,2],[3,4,5]], is a 2-tuple that has a 2-tuple as its first component and a 3-tuple as its

second component. This might be useful if the components are hierarchically structured.

Figure 3.4, Tuples

Arc inscription can modify tokens and the structure of a tuple. Figure 3.4 shows an

example of tuples. Tuples can be used to represent Protocol Data Unit PDU in

communication protocols.

3.2.3 STOCHASTIC AND PROBABILITY FUNCTION

A stochastic process or random process is a collection of random variables. In

Stochastic Petri nets, the function Г is a set of firing rates that maps the set transitions T

into a probability density function f. The entry δiГ is an exponential distributed random

variable, whose f is a negative exponential, associated with transition ti.

F is a function that represents a probability distribution in terms of integrals such as:

Chapter 3 –MODELING COMMUNICATION PROTOCOLS WITH COMPONENT-BASED APPROACH

91

ሺܽ݌ ൑ ݔ ൑ ܾሻ ൌ ׬ ݂ሺݔሻ ݀ݔ ൌ 1
௕

௔ , for any two numbers a and b (3.1)

The probabilistic measure P is a function transforming the random variables to the

interval [0, 1] such that:

 P(x) is non-negative for all real x.

 The sum of P(x) over all the possible values that x can have is 1:

∑ ௜ܲ ൌ 1௜ (3.2)

Where i represents all the possible values of x and Pi is the probability at xi,

consequence P(x)  [0, 1].

Figure 3.5, Probabilistic Process with the Random() Function

Figure 3.5 shows a possible probabilistic process with the Random() function. The

function represents the generating of a random variable that can be easily implanted in

Java to create any type of random variable (class RandomVariable() in the package

java.lang.object or any Java random function).

In the figure, the firing of transition T generates a 2-tuple token [x, i] in place S. In

this token, x models the type of the object and i is, for example, the type of the measure of

a characteristic of this object. Let us assume that i is a random variable in the interval [0,

1]. Because of the guards on the transitions, the token in place S can only enable one of

3. CHOOSING THE METHOD: HIGH-LEVEL PETRI NETS

92

the three transitions T1, T2 and T3. The value of i equals to randomly generated value of

this function. The firing of the enabled transition depends on the value of i:

 If the value of i is less than 0.2, T1 can be fired and hence a token of value x is put

in place D1.

 If the value of i is greater than or equals to 0.2 and less than 0.55, then T2 is the

enabled and the fired transition.

 However, if the value of i is greater than or equal to 0.55 then T3 can be fired and

hence the token x is put in place D3.

3.2.4 TOKEN IDENTIFICATION

Workstations exchanging messages put the source and destination addresses in the

header of the message. The workstation which has the destination address can pick up the

message. Token identification is very important to model this process. High-level Petri

nets allow the identification of tokens.

Figure 3.6, Token Identification

The guard inscription on the transitions can be used to identity a token depending

on its fields (in the input places). Consider the example in figure 3.6, a workstation,

sensing the channel for reception, can only pick up the packet if its destination address is

“1” (assumed to be its address). Other verifications can be done such as the identification

of the contents of the packet if it is an acknowledgement packet or data packet.

Chapter 3 –MODELING COMMUNICATION PROTOCOLS WITH COMPONENT-BASED APPROACH

93

3.2.5 TIMING

Time notation is added to PN formalism to model time dependencies. A time

stamp is attached to each token. Delays are associated to arc inscriptions in order to

control the time stamps of token and the firing times of transitions. To add a delay to an

arc, the symbol “@” and an expression representing the number of time units are added to

the arc inscription. For example, the inscription x@5 indicates that the token must stay or

will be available after 5 units of time.

Delays at the input arcs (from places to transitions) mean that a token must remain

available for given time before firing the transition (timed transition). However, delays at

the output arcs specify that a token is only available after some time (immediate

transitions). Delays can be created by a random number generator or depend on the result

of an action. Delays may depend also on the token values to delay the input token itself,

which means that [x, t]@t is legal.

Timing adds another firing rule. Immediate transitions have more priority over

timed transitions. To construct the vector of enabled transitions V(t) in the net, local

remaining time of the tokens LRT in the input places with respect to the arrival time of

token in the place is used. The time inscription at the output arcs of a place (input arc for

a transition) only indicates the time a token must stay in that place before firing the

transition. The time for each place is computed locally for each arc-transition delay, but to

compute the effective remaining time t for each enabled transition, the maximum local

remaining time for each input place of that transition is used:

௧ߙ ൌ maxሼܴܶܮሺ݌௜ሻ, ݌ ׊௜ א ሽ (3.3)ݐ°

Where °t is the set of input places of transition t, with LRT = 0 for the input arcs with no

time inscription.

Once V(t) is constructed, the transition with the minimum remaining time is first fired:

FFiredሺtሻ= min {α௧೔
, such that ݐ୧ א Vሺtሻ} (3.4)

 Where ti  V(t) is an enabled transition in the vector V(t).

3. CHOOSING THE METHOD: HIGH-LEVEL PETRI NETS

94

Figure 3.7, Time Inscription on the Output Arcs

In figure 3.7, transitions T1 and T2 are immediate. The inscription on the output

arc between T1 and P2 indicates that the token is put (available) in place P2 after 10 units

of time, but it is immediately removed from place P1. So, the arrival of a token to place

P3 during the 10 units of time would not have any effect on the net since the token in

place P1 has been already removed by the fire of T1. This case is similar to the firing

rules found in Timed Petri nets.

Figure 3.8, Time Inscription on the Input Arcs

In figure 3.8, transition T1 is enabled but cannot fire before 10 units of time,

(tokens in place P1 must stay available for 10 units of time before firing T1). After firing

T1, a token with value 5 is put in place P2. However, T2 is an immediate transition since

time delays are not added to any of its input arcs. So, if a token is put in place P3 during

the 10 units of time, it is fired immediately and transition T1 is no longer enabled. In this

Chapter 3 –MODELING COMMUNICATION PROTOCOLS WITH COMPONENT-BASED APPROACH

95

special case, the firing of transition T1 is as the firing rule of a T-time Petri net with

interval [10, 10].

Figure 3.9, Computing the Effective Firing Time

Figure 3.9 shows the general case to find the fired transition. In the figure, the

firing of T1 or T2 depends on the token arrival time in each input place (for T1: places P1

and P3; for T2: places P3 and P5). If we assume that one token is put in each place at the

same time, both T1 and T2 are enabled. To compute the effective firing time, we get:

T1 = max {2, 7} = 7, T2 = max {3, 5} = 5

FFired(t) = min {T1 = 7, T2 = 5} = T2

So, T2 is the fired transition.

However, if we assume that a token is put in place P1 3 units of time before the arrival of

the other tokens, we get:

T1 = max {2, 4} = 4, T2 = max {3, 5} = 5

FFired(t) = min {T1 = 4, T2 = 5} = T1

Here, we used the local remaining time for place P1 (7 – 3 = 4 units of time). Thus, the

fired transition is T1 since the token in place P1 has already resided part of its staying

time (time inscription on the arc).

4. BUILDING COMPONENTS TO MODEL LAN MAC PROTOCOLS

96

4. BUILDING COMPONENTS TO MODEL LAN MAC

PROTOCOLS

As we have announced in the previous sections, the manufacturing systems uses the local

industrial network to exchange messages between the workstations. So, before starting the

construction of modeling components, we will analyze the data link layer protocols that

we are interested in this thesis. These analyses will help us identify the basic behaviours

common to different protocols. Each basic behaviour will be modeled in order to create a

basic component. In our method, basic components are the initial brick of the library that

will serve to model all the complete behaviour of the different protocols concerned in this

study.

4.1 ANALYZING THE DATA LINK LAYER PROTOCOLS

The Data Link Layer DLL is the second layer in the OSI model (figure 2.2). In

communication networks errors can occur. This means that some mechanisms can be used

to detect and correct them. The data link layer makes errors processing by adding a

checksum field at the end of each frame (FCS field, figure 2.4). This filed will help the

receiver in comparing the recomputed checksum of the received packet with that in the

FCS field to accept or drop the frame.

The data link layer is often split in two sublayers: the logical link control LLC and

the media access Control MAC (figure 3.10). This division is based on the architecture

used in the IEEE 802 Project, which aims to facilitate the interoperability of different

LAN technologies. LLC sublayer provides the functions needed to establish and control

the logical links between local devices on a network. It offers services to the network

layer and conceals the other details of the data link layer. This allows different

technologies to work similarly with the higher layers. Most LAN technologies use the

IEEE 802.2 LLC protocol.

The MAC sublayer provides hardware addressing and channel access control

mechanisms that enable hosts to communicate. Different MAC protocols are used. The

Chapter 3 –MODELING COMMUNICATION PROTOCOLS WITH COMPONENT-BASED APPROACH

97

data link layer defines most LAN and wireless LAN technologies: IEEE 802.2 LLC, IEEE

802.3 Ethernet, IEEE 802.5 Token Ring, FDDI and CDDI, IEEE 802.11 WLAN.

Figure 3.10, IEEE MAC Sublayer

4.1.1 CHANNEL CHECK

A workstation attempting to send data must at first check if the channel is free or

not. FDDI and Token Ring technologies use token-passing protocol. Data is sent from

one workstation to another around a physical ring. A workstation can only send its data if

it possesses the token (a small frame).

Ethernet uses the CSMA/CD Protocol. The workstation must check if the channel

is free or not. If the channel is busy, the workstation defers for 9.6 µs before rechecking

the channel. If the channel is free, the workstation defers for a period of 9.6 µs before it

starts its transmission. The IEEE 802.11 DCF uses the CSMA/CA protocol. To use the

network, a workstation must before check if the channel is free for more than a period of

time called Distributed Inter-Frame Space DIFS, figure 3.11. If so, the workstation starts

a random backoff before starting its transmission.

If the channel status is changed in both Ethernet and IEEE 802.11 deferring and backoff

times, the workstation must restart the process of sensing the channel.

4. BUILDING COMPONENTS TO MODEL LAN MAC PROTOCOLS

98

Figure 3.11, Channel Access in IEEE 802.11 DCF

4.1.2 SENDING AND RECEIVING: DATA, ACKNOWLEDGMENTS AND JAM

Workstations send and receive packets. These packets can be data packets,

acknowledgment packets or JAM frame (a 32-bit frame, put in place of the correct MAC

CRC). In Ethernet networks, workstations receive either data packet or a JAM after a

collision. The destination workstation does not need to send an acknowledgment to the

transmitter at the MAC layer. However, in wireless LANs, the destination workstation

must send an acknowledgment to the transmitter after a successful reception of a packet,

(figure 3.13). Otherwise, the transmitter will consider that its packet is lost or a collision

is occurred, so it retransmits this packet causing an extra load on network worthlessly.

In FDDI and Token Ring, the receiver must send an acknowledgment to the

transmitter because it cannot free up the network by itself. When the transmitter receives

the acknowledgment, it releases the free token back on the network.

On the other hand, to send data, workstations need only to put the destination address in

the packet. Since the medium is shared in most LAN technologies, all the workstations

will see the packet. However, only the workstation that has the destination address reads

the packet and the others will either forward it, or drop it.

Chapter 3 –MODELING COMMUNICATION PROTOCOLS WITH COMPONENT-BASED APPROACH

99

4.1.3 RANDOM AND BINARY EXPONENTIAL BACKOFFS

As we mentioned above, in communication networks errors can occur. This is due

to many factors like the surrounding environment, noise and interference, or because of

collisions. FDDI and Token Ring use the token-passing protocol. This guarantees the

non-occurrence of collisions since only one workstation can send its data over the

network at any particular time.

However, Ethernet and IEEE 802.11 networks use the channel check and the inter-

frame space to decide the medium access. Thus, collisions may occur due to that more

than one workstation transmits on the shared medium at the same time. In Ethernet, the

maximum time needed to send the first bit from one end to the other end of a 10BaseT

medium is 25.6 µs. During this time, another workstation(s) may attempt to send its data,

as they think that the channel is free.

As a result, a JAM signal is propagated over the shared medium informing the

occurrence of a collision. Each workstation concerned by a collision starts a binary

expositional backoff procedure, called BEB, to decide when it can do a new attempt to

access the medium. The BEB algorithm computes randomly a waiting delay that increases

with the number of the attempts Tn of the workstation.

At the beginning Tn equals zero, (figure 3.12). Each time a collision occurs, the

workstation increments Tn counter until it reaches 15. Before trying to transmit its data

again, the workstation starts a BEB by taking a random value between 0 and 2X and

multiplies it by 51.2 µs, where:

X ൌ ൜
Tn, if 0 ൏ ܶ݊ ൑ 10
10, if 10 ൏ ܶ݊ ൑ 15 (3.5)

This helps in decreasing the possibility for a collision occurrence. In case of no collision,

the workstation continues transmitting and when it is done it leaves the channel.

However, If Tn reaches 15, (the load on the channel is very high), then the workstation

aborts its transmission and tries it again later.

4. BUILDING COMPONENTS TO MODEL LAN MAC PROTOCOLS

100

In wireless LANs, after a collision, no JAM signal is sent. However, if the

workstation does not receive an acknowledgment after a period of time equals to Short

IFS (SIFS, figure 3.11), it considers that a collision has occurred and starts a backoff

procedure. For each retransmission attempt, the backoff grows exponentially as:

STbackoff = R(0,CW) * Slot-time (3.6)

Where:

 ST is the backoff time.

 CW is the Contention Window.

 R is a random function.

In general, the initial (starting) value of CW (CWmin) is 16. After each unsuccessful

transmission attempt, CW is doubled until a predefined maximum CWmax is reached

(often 1024).

Figure 3.12, Transmission in Ethernet

Chapter 3 –MODELING COMMUNICATION PROTOCOLS WITH COMPONENT-BASED APPROACH

101

There are two major differences between Ethernet and IEEE 802.11 backoff processes:

1- The wireless LAN starts a backoff procedure even at the first attempt to send its

data (figure 3.13), while Ethernet does not. This is one of the mechanisms used to

implement the Collision Avoidance feature of CSMA/CA.

 Figure 3.13, Backoff mechanism in IEEE 802.11 DCF without RTS/CTS

2- Ethernet starts its BEB algorithm after a collision (without conceding the status of

the channel) and then restarts checking the channel to send its data.

While in IEEE 802.11, the workstation checks first the channel status as in

subsection 4.1.1, and then it decrements its backoff by:

R ൌ ൜
R-1, if the channel is free during one Slot time
R, if the channel becomes busy

The design of CSMA protocol offers fair access in a shared medium. This means

that all the workstations have a chance to use the network and workstations cannot

capture the channel for ever.

The remaining value of R is reused after the channel status becomes free for more

than a DIFS period. The workstation starts sending its data when R equals zero,

figure 3.14.

4. BUILDING COMPONENTS TO MODEL LAN MAC PROTOCOLS

102

Figure 3.14, Medium Access Process for 802.11 Protocol

4.1.4 THE CONNECTING MEDIUM

In most LAN technologies, the medium is shared. Workstations connected to the network

share the medium to send their data. The medium can have two characteristics:

1- Workstation sense the medium to check if it is busy or not. Channel status change

means that the medium is in use by a workstation sending its data. In FDDI and

Token Ring, if the token is possessed by one workstation the medium is busy for

the other workstations until is releases the token. The Carrier Sense portion of the

CSMA protocol means that before transmitting, each workstation must wait until

there is no signal on the channel. In wireless LAN channel, the channel becomes

busy if the carrier sensing mechanism indicates that the channel is busy.

Chapter 3 –MODELING COMMUNICATION PROTOCOLS WITH COMPONENT-BASED APPROACH

103

2- Collisions occur at the medium. Workstations transmit their data over the medium.

In CSMA, if two or more workstations use the medium at the same time to send

their data, a collision will occur due to many signals propagating over the

medium. As a result, no one of these signals will be usable at its destination. In

Ethernet, the channel becomes free after a collision after a maximum time of 51.2

µs (two times the maximum time needed to send a bit from one end to other end

on the channel) due to the use of collision detection technique. While in wireless

LANs, the medium becomes free when the workstation with the longest packets

finishes from transmitting.

4.2 BUILDING PATTERNS COMPONENTS

In our approach, we want to model reusable components. In this section, we will build the

components that will be used to model the communication protocols. We specify

interfaces to enable the assembling of these components to build other composite-

components.

4.2.1 COMPONENTS INTERFACES

The component interfaces declare the services that a component offers. They are

used as an access point to the component functionality by other components. Since we use

Petri nets to model the different component behaviours, we used places to be the input

interfaces of components and the output interfaces are transitions. This choice is coherent

with the traditional way to model asynchronous communication between processes

modeled by Petri Nets. A producer component fires an output transition and puts tokens

in the input places of consumer modules. The connection between transitions and input

places between two blocks can be 1-to-many or many-to-1.

As an example, figure 3.15 (a) shows a many-to-1 connection that is used to

connect workstations output transitions to a medium input place since workstations put

their data on the medium only. While figure 3.15 (b) shows a 1-to-many connection. This

connection can be used to connect the medium output transitions to workstations input

places, since all the workstations can see the signals propagating over the medium. A 1-

4. BUILDING COMPONENTS TO MODEL LAN MAC PROTOCOLS

104

to-1 connection is possible when one workstation is connected to the medium. The light

gray gates represent the connection part of the workstation and the light yellow gates

represent the connectors on the medium module.

Figure 3.15 (a) Many-to-1 connection, (b) 1-to-many connection

In our approach, the interfaces’ transitions put only tokens while places consume

tokens. So external arcs cannot consume tokens from places, or be condition to fire

transitions. However, some exceptions, where high dependency between components

exists (like the dependency between the channel check and the backoff components) or

when tokens will not be put in any place, may exist.

This approach is very useful to deal with the complexity due to the size of a

system. Indeed, if one has already a model of some workstations connected to the

medium and wants to increase the size of its model, the insertion of new workstations can

be done easily by adding an arc connecting an output transition to an input place.

4.2.2 CHANNEL CHECK COMPONENT

On a network, the workstation is the most active part; it detects signals and checks

channel changes. When a workstation wants to transmit, it checks at first if the channel is

idle, then it defers for a period of time before it sends its data.

Figure 3.16 shows a channel check component. Elements in light gray represent

the places and transitions used to build the component. Elements in dark gray represent

the interfaces of the component. Initially, the channel is idle for all the workstation. This

is represented by a token in place “Idle”. A workstation that wants to send data (a token in

Chapter 3 –MODELING COMMUNICATION PROTOCOLS WITH COMPONENT-BASED APPROACH

105

place “Data send”) must first check the channel. In wireless LANs, the channel must be

free for a period more than DIFS, while in Ethernet, it is 9.6 µs. This is represented by the

@t’ at the arc between place “Idle” and transition “TF” (t’ equals 9.6 µs in Ethernet and

50 µs in 802.11b). The workstation must wait before it starts transmitting, represented by

a token put in place “sdata”. In Ethernet the wait “@t” equals to 9.6 µs, while in 802.11 it

is equal to random value between CWmin and CWmax slots time. Place “Backoff/Deferring

Time” and transition “FC” is used to decrement the backoff in wireless LAN, while for

Ethernet, it can be left as it is in the figure (no dependence to that transition in the model).

Figure 3.16, Channel Check Component

Consequently, if the channel status is changed (a token is put in place “Busy”), the

workstation can be in one of the following cases:

 It is the transmitter (there is no more tokens in place “sdata”), then nothing is

changed and the token in place “Busy” is consumed by transition T1;

 It attempt to send or it has no data to send, then T2 is fired;

 It is in the backoff/deferring phase, then T3 is fired (the workstation rechecks the

channel again) and a token is put in place “BusyC” to stop decrementing the

backoff. Hence, in wireless LAN, the workstation stops decrementing the backoff,

but it keeps its remaining value.

In the three cases the channel status is changed from idle to busy.

4. BUILDING COMPONENTS TO MODEL LAN MAC PROTOCOLS

106

Initially, this component has one token with value 1 (representing the free

channel) in place Idle. The use of this component is possible in any protocol that demands

the sensing the channel before transmitting data. It represents also the status of the

channel free or idle. Let us notice here that, for genericity, we use two parameters t’ and t

to define the delay on the arc Idle-FT and arc Backoff/Deferring Time-Transmit

4.2.3 RECEIVING AND SENDING ACK COMPONENT

Workstations receive two types of packets: data packet and ACK/JAM frames. In

Ethernet network, no acknowledgment is sent after the reception of packet. Therefore, the

received packer can be either a data packet or a Jam frame. While in wireless LAN, FDDI

and Token Ring, the received packet is either a data packet or an acknowledgment frame.

Figure 3.17 Receiving and Sending ACK Component

Figure 3.17 shows the receiving and sending acknowledgment component. One

assumes that a token is put in place “Receive”. The fields of the token represents: the

source address “Sr”, the destination address “Dr”, the received data “rdara” and the last

field represents the lengths of the packet. The workstation checks at first the destination

address “Dr” of the packet. The guard condition on transition “Address” checks if the

received packet belongs to this workstation, a token is put in place “Data?”. Otherwise,

the token in place “Receive” is eliminated by transition “Drop”. Hence, “Dr==1” is

Chapter 3 –MODELING COMMUNICATION PROTOCOLS WITH COMPONENT-BASED APPROACH

107

considered as the own address of the workstation, while “Dr==0” is used to represent the

multicast or JAM frame reception.

Next, the guard condition of transition “ACK/JAM” is used to checks if the

received frame is an ACK frame or a JAM frame (for Ethernet only). The “abc” in the

guard can be modified according to the needs of the designer and the type of network.

However, if the received packet is a data packet, transition “DA” is enabled. This

transition is fired after a time equals to the time needed to receive the packet modeled by

the “@time(Lr)” at the outgoing arc. This “@time(Lr)” is a function that returns the time

corresponding to the length “Lr” of the packet.

Let us notice here, the functions dynamicity can be used to model mobility of a

wireless networks nodes. This can be done since the bit rate is a function of the signal

strength and that the signal strength is a function of distance. This means if the source

knows the location of the destination, then the distance can be computed, and hence the

time needed to send a packet is determined.

The last step is to represent the bit rate or receiving errors. The random function

Random() is used to generate a random variable i. Assuming that the bit rate error is less

than or equal to 10% of the transmitted/received packets. So, if the value of i is less than

0.1, then the packet is discarded (the token in place RD is consumed by transition “BE”).

Else, the packet is received correctly and then an acknowledgment is sent, by firing

transition “SA”. This interface can be left unconnected in Ethernet. Again, the Random()

function can be implemented by using any of the Java random functions. Also, as we can

see in figure 3.17, the modification of tuples can be done easily, just by modifying the arc

inscriptions according to our needs.

As we saw above, this component has an important functionality since it is used to

identify the received data (own or not), the type of the received data (JAM, ACK, data

frame) and the process of sending an acknowledgment after a successful reception. Thus

the use of this component is possible for the protocols demanding the identification of

data and the send/receive process.

4. BUILDING COMPONENTS TO MODEL LAN MAC PROTOCOLS

108

4.2.4 BACKOFF / BEB COMPONENT

The third component is the backoff / BEB component shown in figure 3.18. As we can

see in the figure, retransmitting the packet depends on the value of n, (transitions T6 and

T7). If the packet is correctly sent/received (a token is put in place “Done”), then n is

reset to z (0 for Ethernet and 1 for wireless), for the next attempt to transmit, place N.

Figure 3.18, Backoff / BEB Component

Variable Value Ethernet IEEE 802.11b

fun1(n) n<15 n<33

fun2(n) n=n+1 n=n*2

y 16 64

z 0 1

R(0, Q) random(0, 2X), X depends on n random(0, CW)

Fun(R) R*51.2µs 0

ST(t) 0 Time slot (20µs)

Table 3.1, Differences between Ethernet and IEEE 802.11b networks

However, the component inscriptions depend on the type of the network. As an

example, table 3.1 shows the differences between Ethernet and IEEE 802.11b networks.

In addition to table 3.1, in Ethernet, places “FreeC” and “BusyCh” are not used (they can

be left as it is), since the backoff decrement in Ethernet does not depend on the status of

Chapter 3 –MODELING COMMUNICATION PROTOCOLS WITH COMPONENT-BASED APPROACH

109

the channel. While in 802.11b, this interface is very important in decrementing the

backoff each time the channel is free for a slot time or the backoff is conserved if the

channel status is changed to busy. The firing of transition TS represents the

(re)transmission allowance of a packet (backoff equals to 0).

The backoff component is useful for the protocols that may need a specific timing

procedure since it can be related to another components (which the case of wireless: by

checking channel always) or just for standalone use.

4.2.5 MEDIUM COMPONENT

Figure 3.19 shows the medium sharing component. A token is put in place

“Receive” representing packet transmission over the medium. Firing M1 increment the

variable x by 1 (initially x equals to zero, place “P5”). Once x equals to 1, the channel

status is changed to busy or a transition “Busy” is fired (hence P7 contains only one token

with value 0, so transition “Busy” is fired one time only).

Figure 3.19, Medium Sharing Component

The variable x is also used to count the number of workstations transmitting their

data over the medium at the same time. If two or more workstations are sending at the

4. BUILDING COMPONENTS TO MODEL LAN MAC PROTOCOLS

110

same time, this means that a collision is occurred, then transition “M4” is fired to remove

the token modeling the frame to transmit. However, the firing of transition “M4” depends

on the type of the network. Place “P1” represents the “data transfer” to the other

workstations. However, if a token is put in place “P3”, then the channel can become free

again and transition “M5” is fired; a token with value 0 (at the arc inscription between M5

and P7) is put in place P7 and a token with value 1, (the arc inscription between M5 and

P6) is put in place P6 (representing the free channel) enabling and firing the transition

Idle.

4.3 PROPERTIES ANALYSES OF THE BUILT COMPONENTS

The basic properties of Petri nets include reachability, boundness, and liveness.

Several methods are used to analyse Petri nets: reachability analysis, invariant analysis

and reduction [Lewis98]. However, applying these methods on high level Petri nets is

delicate and not easy. In literature, different methods are proposed to verify some

properties. [Boukadi07] and [Hinz05] have proposed to use the state space method that

consists of designing a graph with a node for each reachable marking and an arc for each

occurring binding element. [Evangelista05] and [Liang06] have proposed reduction

algorithms for the number of states in the model to verify some properties. However,

most of these methods are complex and can be only used to verify some properties, but

not all [Lakos02]. Another proposition is to subdivide the complete model [Khomenko03]

into smaller parts. However, in [Petrucci05] study, the analyzed part does not guarantee

the same results for the whole model.

In this work, properties of the built components are not done. This is due to the

inability of the used tool to perform these analyses. Supporting the tool with these

capabilities is not an easy task. Another possibility is to transfer the model to basic Petri

nets or any other modeling formalism. Again, transformation cannot be made easily. For

the future work, this part must be covered by developing new modeling tool capable to

perform such properties or by combining two (or more) modeling tools together to

achieve this goal.

Chapter 3 –MODELING COMMUNICATION PROTOCOLS WITH COMPONENT-BASED APPROACH

111

5. APPLICATION PROTOCOLS

In this section, we will illustrate our modeling approach through two examples: IEEE

802.3 Ethernet MAC protocol and IEEE 802.11 MAC protocol because both protocols are

based on CSMA. One of the objectives is to illustrate the advantage of having generic

components and the hierarchical composition that allows building composite-components.

5.1 MODELING IEEE 802.3 ETHERNET PROTOCOL

5.1.1 ETHERNET OVERVIEW

Ethernet [Spurgeon00] is the most widely used LAN technology in the world.

Ethernet was designed at its beginning at the Xerox Palo Alto Research Center PARC, in

1973. The used protocol differs from the classical protocols like token control, where a

station cannot send before it receives an authorization signal, the token. With Ethernet,

before transmitting, a workstation must check the channel to ensure that there is no

communication in progress, which is known as the CSMA/CD Protocol.

Supplement Topology Medium Max Segments Nodes/Segment

802.3 –1985 10Base5 Thick coax 500 100

802.3a –1985 10Base2 Thin RG-58 coax 185 m 30

802.3i –1990 10Base-T CAT 3/5 two-pair UTP 100 m 1024

802.3j –1993 10Base-F Two-strand multimode fiber 2000 m 1024

802.3u –1995 100Base-T CAT 5 two-pair UTP 100 m 1024

802.3z –1998 1000Base-X
Gigabit Ethernet variant

mediums
25–10000 m 1024

Table 3.2, Ethernet Supplements

The original 10 Mbps Ethernet standard was first published in 1980 by the Digital

Equipment Corporation Intel-Xerox DECIntel-Xerox Vendor Consortium. This standard

is called DIX Ethernet based on thick coaxial cable. The first Ethernet card appeared was

5. APPLICATION PROTOCOLS

112

in 1982 called Ethernet II. In 1983, the Institute of Electrical and Electronics Engineers

IEEE develops the Ethernet standard with 802.3 Ethernet identifiers [IEEE09], table 3.2.

The IEEE standards have been adopted by the International Standards Organisation, and

is standardised in a series of standards known as ISO 8802-3.

The IEEE standard was first published in 1985 with the title IEEE 802.3 Carrier

Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical

Layer Specifications. At the same year it publishes the standard 802.3a or the Thin

Ethernet. In 1987, fiber optics was used with the 802.3d standard. Despite the availability

offered by other high-bandwidth networks like ATM and FDDI, Ethernet is very

interesting because its low cost, maturity and stability.

5.1.2 CSMA/CD MECHANISM

In Ethernet network, to control which host is allowed to transmit at any given

time, a protocol is necessary. The simplest protocol is known as ALOHA [Tanenbaum03].

ALOHA allows any host to transmit at any time, but conditions the hosts to add a

checksum/CRC at the end of its transmitted frame to let the receiver to identify whether

the packet was correctly received. So, ALOHA offers a best effort service, it therefore

relies on ARQ protocols to retransmit any corrupted data.

Ethernet uses CSMA, a refinement of ALOHA, to improve the performance when

the medium is highly used. The Carrier Sense portion of the CSMA protocol refers to that

before transmitting each host must wait until there is no signal on the channel. If another

host is transmitting, there will be a signal on the channel. With Multiple Access all the

Ethernet hosts have the same priority to use the network, and can attempt to access the

channel at any time. The next portion of the access protocol is called Collision Detect.

Since each host has equal opportunity to access the channel, it is possible that multiple

hosts start transmitting their packets simultaneously. When this happens, the hosts sense

the collision signal, JAM, which informs the hosts to stop transmitting. Each host will

then choose a BEB time and retransmit their packets. Collisions are normal events on

Ethernet and they are an indication that the CSMA/CD protocol functions as designed.

Chapter 3 –MODELING COMMUNICATION PROTOCOLS WITH COMPONENT-BASED APPROACH

113

5.1.3 MODELING AN ETHERNET WORKSTATION

An Ethernet workstation is the most active part in the network. In our approach,

we want to model reusable components. In this section we will show the reusability of the

modeled components above to model Ethernet workstation. These components are reused

with the needed modifications to answer the specification of an Ethernet workstation.

Figure 3.20 shows the detailed and complete module for the Ethernet workstation. As we

can see in the figure, the three components: Backoff component, Channel Check

component and Receive/Send component are reused to build the workstation. To

complete the model and to bind the used components together, some additional places and

transitions (in white) are used.

 Figure 3.20, Hierarchical Design of an Ethernet Workstation Component based on

Generic Basic Components

5. APPLICATION PROTOCOLS

114

In the figure we can see that five interfaces were not connected:

 The “FreeC” and “BusyCh” interfaces of the Backoff component, and the FC and

BC interfaces of the Channel Check component, since Ethernet workstations

decrement their backoff without the need to check whether the channel is idle.

 The SA interface of the Receive/Send component, because in this part we do not

model the service offered by an Ethernet workstation. However, in the next

chapter we will use this interface to classify/identify the received packets.

An important notice we can see also in the figure is that the whole component can be

reused as one component for the Ethernet workstations to build a complete Ethernet

network. In other words, this new component is seen as a composite-component with the

black places and transitions as the interfaces of this new component.

5.1.4 MODELING ETHERNET MEDIUM

The second part in the Ethernet network is the medium where the workstations

exchange the messages. Figure 3.21 details and completes the module for the Ethernet

medium. The Medium Sharing component is reused to model Ethernet medium

component. Several transitions and places (in white) are necessary to complete the model.

Figure 3.21, Hierarchical Design of an Ethernet Medium

Chapter 3 –MODELING COMMUNICATION PROTOCOLS WITH COMPONENT-BASED APPROACH

115

Transition M2 is used to model the collision part. If two or more workstations

send their data during the period of 25.6µs over the channel (x is greater than 1) then a

collision occurs. In this case, the conditions on transition M4 and transition M2 are

satisfied enabling these two transitions. The firing of M2 will generate the JAM signal, or

a token put in place P2. While M4 is used to eliminate all the signals on the medium,

tokens in place P1.

As the workstation component, the medium module can be reused as one component of

the Ethernet medium to build a complete Ethernet network (Ethernet network with

bridges for example). Thus, the black transitions and places are the new interfaces of the

new complete component.

5.2 MODELING IEEE 802.11B WLAN PROTOCOL

The second application protocol is the DCF IEEE 802.11b WLAN protocol.

5.2.1 IEEE 802.11 PROTOCOL OVERVIEW

Wireless technology has become popular to access to internet and communication

networks. The IEEE 802.11 [IEEE07] offers the possibility to assign part of the radio

channel bandwidth to be used in wireless networks. The IEEE 802.11 protocol is a

member of the IEEE 802 family, which is a series of specifications for local area network

technologies, (figure 3.10). IEEE 802.11 is a wireless MAC protocol for Wireless Local

Area Network WLAN, initially presented in 1997. The IEEE 802.11 standard defines

Medium Access Protocol and Physical (PHY) frameworks (layer 2 in the OSI model) to

provide wireless connectivity in WLAN. This independence between the MAC and PHY

has enabled the addition of the higher data rate 802.11b, 802.11a, and 802.11g PHYs. The

physical layer for each 802.11 type is the main differentiator between them. However, the

MAC layer for each of the 802.11 PHYs is the same.

Many other 802.11 variants have appeared also. In 2004, the 802.11e is an attempt

enhancement of the 802.11 MAC to increase the quality of service. The 802.11i and

802.11x were to enhance the security and authentication mechanisms of the 802.11

standard. Many other variants like 802.11c, 802.11d, 802.11h.

5. APPLICATION PROTOCOLS

116

IEEE

standard
Net Bit Rate

Frequency

band
Notes

802.11 1 Mbps – 2 Mbps 2.4 GHz 1997.

802.11a Up to 54 Mbps 5 GHz 1999. Products not released until 2000.

802.11b 5.5 Mbps – 11 Mbps 2.4 GHz 1999. The most common 802.11.

802.11g Up to 54 Mbps 2.4 GHz

2003. Applies the coding techniques of

802.11a for higher speed in the 2.4 GHz

band, while retaining backwards

compatibility with existing 802.11b

networks.

802.11n Around 500 Mbps 2.4/5 GHz

2009-2010. Build on the previous

802.11 standards. max speed of

600Mbps with the use of 2 spatial

streams at a channel width of 40 MHz

Table 3.3, IEEE 802.11 PHYs variants

5.2.2 IEEE 802.11 OPERATION MODES

Two operating modes can be used for setting up an IEEE 802.11network: the

infrastructure mode and the ad hoc mode. In the ad hoc mode, hosts communicate

directly with each other without intermediates. The mobile workstations located within

the reach of each other create an IBSS or Independent Basic Service Set. In the

infrastructure mode, all communications between mobile workstations or between the

workstations and the outside network pass through an access point AP who takes the role

of the relay. The coverage of an AP constitutes of a BSS or Basic Service Set.

Access points can be linked together through a distribution system DS. The

standard does not give specifications on the nature of this interconnection but it is usually

a wired network (such as Ethernet). The whole interconnected wireless LAN including all

the hosts, access points and the distribution system, is seen to the upper layers of the OSI

model as a single 802 network, and is known as the Extended Service Set ESS, figure

3.22.

Chapter 3 –MODELING COMMUNICATION PROTOCOLS WITH COMPONENT-BASED APPROACH

117

Figure 3.22, Typical Architecture of the IEEE 802.11 LAN

The IEEE 802.11 MAC layer defines two coordination functions to access the

wireless medium: A distributed coordination function DCF and a centralized

coordination function PCF (Point Coordination Function).

5.2.2.1 POINT COORDINATION FUNCTION PCF

PCF allows an 802.11 network to provide an enforced fair access to the medium.

It is an optional part of the 802.11 specification. The access to the medium under the PCF

looks like token-based medium access control schemes, with the access point holding the

token. Direct communications between wireless workstations are not possible; they must

all pass through the access point. As a result, half of the bandwidth is wasted. This

method has been launched by the standard to meet the needs of users with real-time

traffic. It is based on defining a contention free period CFP to be held alternately with the

contention period CP managed by the DCF method. Alternating periods at regular

intervals is known as the contention-free repetition interval.

The contention period, figure 3.23, must be long enough for the transfer of at least one

maximum-size packet and its associated acknowledgment.

5. APPLICATION PROTOCOLS

118

Figure 3.23, Point Coordination Function PCF

5.2.2.2 DISTRIBUTED COORDINATION FUNCTION DCF

DCF [Bianchi00] is the fundamental access method used to support asynchronous

data transfer on a best effort basis. As identified in the specification, all the workstations

must support the DCF. The DCF is based on the CSMA/CA protocol. The reason is that

even though the wireless LAN is a broadcast medium, the traditional CSMA/CD will not

function properly because the workstation is unable to listen to the channel for collisions

while transmitting, due to the big difference between transmitted and received power

levels. To overcome this problem CSMA/CA protocol uses a positive acknowledgement

mechanism.

In IEEE 802.11, carrier sensing is performed at both the physical layer and the

MAC sub-layer. On the physical layer, the carrier sensing is referred to as the physical

carrier sensing which detects an activity in the channel via relative signal strength from

other workstations. On the MAC sub-layer, carrier sensing is known as the virtual carrier

sensing which is used by the source to inform all the workstations in the BSS for how

long the channel will be used for successful transmission of a MAC protocol data unit.

The source set the duration field in the MAC header of data packets (or in the Request to

Chapter 3 –MODELING COMMUNICATION PROTOCOLS WITH COMPONENT-BASED APPROACH

119

Send RTS and in the Clear to Send CTS control frames, figure 3.24). The cannel is marked

busy if either the physical or the virtual carrier sensing mechanism indicates that the

channel is busy.

Figure 3.24, DCF Transmission with RTS/CTS

Priority access to the wireless medium is controlled through the use of Inter-

Frame Space IFS time intervals between the transmissions of packets. The IFS intervals

are mandatory periods of idle time on the transmission medium. Three IFS intervals are

specified in the standard: Short–IFS (SIFS), Point Coordination Function–IFS (PIFS) and

Distributed Coordination Function–IFS (DIFS). The SIFS interval is the smallest

followed by the PIFS followed by DIFS.

5.2.3 MODELING A DCF IEEE 802.11B WORKSTATION

In the last sections, we saw how the built components can be reused to model the

IEEE 802.3 workstation module. Figure 3.25 shows the detailed and complete module for

the DCF IEEE 802.11b workstation model by the reuse of ready-to-use components in the

previous sections.

The workstation sets the value of N to 1 (place “N”), sense the channel (transition

“TF”), sends its data (place and transition “Send”) and waits for an acknowledgment

5. APPLICATION PROTOCOLS

120

(place “Wait”). If no acknowledgment is received during the SIFS period or 10µs,

Transition T11 will fire putting a token in place “Retransmit?” to check if the packet can

be retransmitted (transition T6) or not (transition T7). As we can see in this figure, all the

components are reused to composite the workstation module. All the interfaces were also

used in this module.

Figure 3.25, Hierarchical Design of a DCF IEEE 802.11b Workstation Component based

on Generic Basic Components

Chapter 3 –MODELING COMMUNICATION PROTOCOLS WITH COMPONENT-BASED APPROACH

121

5.2.4 MODELING THE WIRELESS MEDIUM

Figure 3.26 shows a detailed and complete component of the wireless medium. In

this model we used more functions to complete the modeling. The Math.max(L,R)

function is used to compare the different packets lengths. Place P4 has a token with

assumed value of 10 bytes as the smallest packet size. When many workstations send

their data over the medium, a collision occurs. However, workstations continue

transmitting even after the collision.

Figure 3.26, Hierarchical Design of DCF IEEE 802.11b Medium

Here, the Math.max(L,R) function compares the length of the sent packets L with

the assumed value R. If the L is greater than R, it has the value of L, otherwise R keeps its

value. We assumed also that all the workstations in the medium will know that the

channel is busy during 9µs so no workstation transmits after this time. As a result R will

have the value of the packet with the longest size L. The medium becomes idle after the

end of this transmission. The firing of transition M6 will put a token in place P3 with the

value of R which will be used to free up the channel (to fire transition Idle).

6. CONCLUSION

122

6. CONCLUSION

Component-based methodology is a great technique and designing method derived

from the object-oriented design. A component-based approach defines that a component

designer does not need implementing the technical concerns several times. The designer

only identifies the services required by a component, and makes sure that these services

are available by the developed components. System models can be assembled from

working together components, accessing each other through distinct component interfaces

that hide the component implantation details.

Since the functionality and the way to access the components are well-defined,

pre-existing, ready-to-use components can be reused in several models. Our approach is

based on the component-based technique and designing method to model communication

protocols and distributed systems. HLPN permit the representation and manipulation of

an object. Petri nets are a powerful formalism for modeling concurrency and distribution.

Constructing a library of ready-to-use components can help in modeling new

systems easily. To build such library, analyses, constraints and user requirements are the

key factors to complete it. To examine and motivate the reusability of generic

components which reduces the time and the cost needed to build new models, we have

chosen wireless protocol IEEE 802.11b and Ethernet IEEE 802.3 as two application

examples. As a result, our component-based design approach ease the development of

generic components, supports their reusability, increases adaptability of service

composites, and enables continuous extensibility of components functionality. In the next

chapter we will verify the accuracy of our approach and evaluate the complete model with

a study case of the manufacturing systems.

Chapter 4

PERFORMANCE EVALUATION OF

DISTRIBUTED SYSTEMS

1. INTRODUCTION

124

1. INTRODUCTION

Performance evaluation [Haverkort98] [Fortier03] is often important in the design,

development, and configuration of complex systems especially for computer and

distributed systems [Masri09a]. A system may work properly, but it must also work

efficiently. Performance evaluation deals with existing or planned systems, and aims to

compare different configurations, or to find a favourable configuration of a system. Three

techniques are used for evaluating the performance of a system: measurement, analytical

models and simulation models.

Measurement can offer the most exact and accurate results. The system is

observed directly. However, measurement is often the most costly of the techniques since

it is only possible if the system already exists. In some cases, measurements may not be

accurate since it depends on the state of the system. For example, if network

measurements are done during peak period, the observed results would be not the same if

the measurements were done during a low use period of the network.

Analytical models may provide exact answers. Analytical modeling uses simple

mathematical expressions to obtain the performance results for a system. However, these

results may not be accurate, because of their dependencies on the made assumptions in

order to create the model. The behaviour of computer systems including processing

periods, communication delays, and interactions over the communication channels is

difficult to model. Analytical models are excellent to model small to medium systems that

fulfil some requirements but it is not the case for industrial-sized, networked and

distributed systems.

However, simulation models can be used as an alternative choice to analytical

techniques. Larger and more complex models can be built and analysed. Simulation

models allow creating very detailed, potentially accurate models. However, developing

the simulation model may consume a good amount of time, but once the model is built it

takes a little time to get results.

Chapter 4 –PERFORMANCE EVALUATION OF DISTRIBUTED SYSTEMS

125

In this chapter we will introduce the different models and methods used to

evaluate the performance in communication and distributed systems. We will particularly

focus on the simulation model approach (where we are interested in) and the advantages

and disadvantages of this method over the other methods. The second part will be

dedicated to the simulation results of the communication protocols models presented in

chapter 3. A comparison with NS-2 simulator and other studies will be given to prove the

accuracy and quality of our models. The last part will combine the modeling of

communication protocols and the manufacturing system presented in chapter 1. The

impact of using different communication protocols over this system will be verified.

2. PERFORMANCE EVALUATION TECHNIQUES

This section will focus on the analytical and simulation modeling techniques.

2.1 ANALYTICAL MODELS

Analytical modeling is one of the fast and cheapest techniques for evaluating the system

performance. It is based on the modeling the systems under a form of parameters,

variables and a set of mathematical formula that control their relations. With analytical

models, one can model and evaluate the behavior of the system in the flexible manner.

However, these techniques need many simplifications and hypotheses to obtain a coherent

system. These simplifications and hypotheses are one of the major limits and challenges

for the accuracy of the obtained results with the analytical techniques. Analytical

techniques take different forms, from simple bounds analysis to the evaluation of complex

Markov Chains.

2.1.1 STOCHASTIC MODELS

Stochastic models [Mieghem06] [Ethier86] are mathematical description

represented by random variables with uncertain results and where one can only compute

the probabilities of possible outcomes. In a stochastic model, the total behaviour of the

system is expressed as a stochastic process in time. A stochastic process denoted as {X(t),

tT },is a collection of random variables X(t) that change their value throughout the time t

2. PERFORMANCE EVALUATION TECHNIQUES

126

which runs over an index set T. The set of all the possible values of X(t) is called state

space.

A Poisson process and Markov process are two stochastic processes. A Markov

process is also a stochastic process with some additional properties: the future behaviour

of the process depends only on the present value, but not on the states assumed in the

past. A Markov process is called a Markov chain if its state space is discrete.

Stochastic processes are distinguished by:

 Their state space,

 The index set T,

 The dependence relations between the random variables X(t).

Stochastic models are interesting when the process has a strong element of random

motion. It gives also more information about statistical uncertainties involved in the

process. The performance measures are expressed as functions of stochastic process.

These functions can be more or less easy to determine depending on the type of the

stochastic process and of the desired measures.

2.1.2 QUEUEING MODELS

The queueing theory [Cassandras08] [Mieghem06] is one of the most used

methods for the performance evaluation in computer systems. It represents and analyzes

resource-shared systems, such as production systems and communication systems. A

queueing model is presented as a set of servers interacting together (which represents the

systems resources) and a set of clients (represents the users sharing these resources).

Graphically, this model is represented as a direct oriented graph with nodes representing

the servers and the links between them represent the requests behaviour of the clients

from these servers. In distributed systems, many clients attempt to access the shared

resources.

Because the request rates vary in time, waiting situations occur when more than one user

wants to access a single resource. The idea of queueing systems is to model shared

resources as service providing entities preceded by waiting queues, figure 4.1.

Chapter 4 –PERFORMANCE EVALUATION OF DISTRIBUTED SYSTEMS

127

Figure 4.1, Single server model

Queueing models have some characteristics:

 The arrival process of clients.

 The clients’ population.

 The amount of waiting room.

 The amount of service a client requests.

 The service capacity.

 The service discipline, such as:

- FCFS or FIFO: First Come, First Served,

- LCFS(-PR) or LIFO: Last Come, First Served, with or without Pre-emption,

- RR: Round-Robin.

The queueing theory makes use of a particular type of notation A/B/m/K so as to describe

a system, where:

 A is the arrival time distribution

 B is the service time distribution

 m is the number of present servers, m = 1, 2, . . .

 K is the storage capacity of the queue, K = 1, 2. . . If the K position is not present,

it means that K = ∞.

Moreover, the distributions of A and B has some common notation:

 M is Markovian (exponential) service time or arrival rate,

 G is general service time or arrival rate,

 D is the Deterministic case where the service and arrival times are fixed.

Thus, queueing systems exist in several models:

2. PERFORMANCE EVALUATION TECHNIQUES

128

 The M/M/1 system is a basic and simplest queue model. It consists of a Poisson

arrivals process with exponential distribution of the service such as A(t) = 1 − e−λt

and B(t) = 1 − e−μt, for some positive parameters λ (arrival rate) and μ (service rate),

one server, infinite capacity and population, FCFS (FIFO) queue ordering discipline.

 The M/M/1/K system: the same as M/M/1 system but with a finite queue size.

 The M/M/C system: the same as M/M/1 but with multiple servers, C.

 The M/G/1 system: the service time does not have the Markov property.

 The G/M/1 system: the service time is random but the arrival process is non-

Markovian.

Layered queueing networks LQN [Woodside95] is one of its extensions. It allows

to model the client/server distributed architecture with concurrent interactions. In this

extension, servers can become a client of other servers but it continues serving its own

client.

Performance can be evaluated in such models once the queueing model has been

characterised completely. Several performance measures can be done: steady-state

probability of having n clients in system, service rate of one server, total time spent in the

waiting line by client n, the number of clients in queue at time t, long-run average time

spent in system per client, and so on.

Analytical models try to abstract details of a system and can be used at any stage

of the systems design. They can directly present statistics for the modeled system. In

addition, they represent a flexible modeling methodology with low time consumed in

constructing the model. However, accuracy, trustability and believability of the obtained

results of such models are not high since simplifications and hypotheses are needed to

solve the systems equations which affect the results. In addition, the larger the system is,

the more complex the model becomes.

2.2 SIMULATION MODELS

Real systems are very complex to accept analytical solutions. However, mathematical

models may be still applicable but their problem is the need to have the tools able to solve

Chapter 4 –PERFORMANCE EVALUATION OF DISTRIBUTED SYSTEMS

129

the equations of such models. Simulation [Fortier03] allows modeling and observing the

system behaviour. It facilitates the understanding of the real system. Simulation allows

the evaluation of a system model in an executable form, and the data of such process are

used to calculate different measures of interest. Simulation is generally used because the

complexity of most systems requires the use of simple mathematical ways for practical

performance studies. This makes simulation as a tool for evaluation.

The use of simulation for performance verification of distributed systems is highly

used in the research because of its large modeling capacity. Analytical solutions for

discrete event systems are mainly hard to acquire. This makes simulation a very attractive

for their study. As an advantage over the analytical models, every system can be modeled,

as many dynamic and complex interactions can be taken into consideration for the

simulation. Moreover, in most of the cases the functioning and performance of a system

can be verified with the same simulation environment.

Another advantage of simulation methods is that they are generally reusable over

different abstraction levels. In other words, the level of abstraction for the simulation can

be customized to the necessary degree of accuracy. However, the major disadvantage of

this technique is that it needs (in some cases) important and consistent calculation

resources and time. Many communication networks, manufacturing, transportation,

economics and space systems can be easily and satisfactorily analyzed with simulation

models: increased requirement for better quality and utilization of resources, shorter time,

and reduced costs, the impacts of failures, etc.

In the case of distributed event systems, simulation is also used in several

applications such as the design of manufacturing systems and communication networks:

evaluating different protocols and network resources, or designing road networks to deal

with traffic loads. Reminding that, these systems are all highly complex systems. So,

building and experimenting the real system is in fact unrealistic. Concurrently, building

such systems based on rough approximations is simply too “hazardous”. However, such

systems are subject to possible use of approximations. In this case, simulation becomes a

way to examine their accuracy before making any real confidence on them.

2. PERFORMANCE EVALUATION TECHNIQUES

130

Simulation models are normally described as being either continuous or discrete

(figure 4.2), where these terms involve the behaviour of system. In the continuous

simulation models, the events change as time goes forward. However, in discrete-event

simulation models, the time in the time-based models is assumed to go forward in fixed

steps, but the number of events pet time step varies. While in the event-based models, a

time step is limited to one event (each time an event occurs) [Haverkort98].

Figure 4.2, Simulations Classifying

2.2.1 CONTINUOUS EVENT SIMULATION

Continuous event simulation [Alony07] [Haverkort98] copes with the modeling of

physical events / states such as processes, behaviours, or conditions, which can be

expressed by a set of continuous variables changing with time. In a continuous-event

simulation, simulated time advances regularly by some fixed increment and at each

simulated time the simulation checks if a change happens at that time. Generally, these

physical events can be described by systems of differential equations with boundary

conditions. In continuous systems, time is a continuous parameter, but the system can be

observed at fixed time instances only, producing a discrete time parameter. Continuous-

event simulation is widely used in chemical, gas and fluid systems studies.

Chapter 4 –PERFORMANCE EVALUATION OF DISTRIBUTED SYSTEMS

131

2.2.2 DISCRETE EVENT SIMULATION

More suitable for our aims are the discrete-event simulations [Cassandras08]

[Schriber05]. Discrete-event simulation is a powerful computing technique for

understanding the behaviour of systems. In discrete-event simulations, the state changes

occur at discrete steps in time. Discrete event simulation mainly used in more real

environments such as communication networks and protocols [Lim08] [Weber07]

[Kumar07] [Carothers06], manufacturing systems [Hong08] [Kumar09], material

handling [Giordano06] [Gan06], etc. General purpose programming languages like

C/C++ and Java and several simulators are based on the discrete event simulation such as

NS-2 [NS208], OPNET [OPNET09], OMNet++ [OMNet09], IBM Cell SDK [IBM09],

P2PSim [P2PSim05] and many other tools.

The state or state variable changes are also called events. In such simulation,

events take place one-by-one discretely in time. Distributed systems consist of objects and

components that exchange variables and information data between them. These variables

and data are subject to actions and conditions coming from the communication channels

and/or the components interfaces. Such conditions or events may be in many forms such

as the arrival and departure times, waiting time, stop points, service variables and

handling and so on. The resulting of these events over the variables and data attributes

provides information on how to deal with them.

In communication networks, the arrival of packets only makes a workstation starts

a receiving process event. If that packet does not belong to it, the workstation drops the

packet and stops that service. Thus, the sensing of the channel (event) and the internal

attributes (another event) were responsible in starting and ending a service. In addition

these starting and ending of events may affect other events to occur and to be simulated.

However, the modelling of such events needs a good definition, development and

scheduling of these events. The needs and constraints, all the activities that could be

performed, and the interaction between all the system-model elements and components

must be taken into account and clearly be present in the model. Otherwise the resulting

and measures of the simulation would not reflect the desired quantitative values attended

2. PERFORMANCE EVALUATION TECHNIQUES

132

from realistic simulation. Our approach is made for the discrete event systems, so, a

discrete event simulation could be made based on the event and attribute changes. This

leads to give some characteristics for the discrete event simulation [Fishman01]:

1- It enables the organization of theoretical observations about a system,

2- It improves the understanding of a system,

3- The speed to achieve the desired analysis,

4- It is less costly than real systems measurements.

However, the main disadvantage of discrete event simulation is the occurrence of

two or more events at the same time. In this case the system must choose one of these

events. Here, the results may not be the same if the simulation is repeated many times,

since the simulator may choose another event than the one chosen in a previous

simulation.

The second disadvantage is that simulation must be repeated many times to get

accurate (average) results. The detection of exceptional events during simulation is

difficult since the simulator itself generates the events (depending on our modeling

technique). However, this will be possible if the simulation is repeated several times.

Again this will cost longer time to verify the system-model.

2.3 COMPARISON BETWEEN THE DIFFERENT METHODS

Table 4.1 shows a qualitative comparison between the different methods used to evaluate

the systems performance. This comparison is based on the following criteria [Chhabra07]

[Jain91]:

1- Stage: Which performance evaluation technique should be used at any point in life

cycle,

2- Time required: The time consumed/required by a particular technique,

3- Tools: Which analytic tools, simulators, measurement packages are used,

4- Accuracy: It represents the degree to which the obtained results match the reality

(evaluates the validity and reliability of the results obtained).

5- Scalability: It represents the complexity degree to scale a particular technique

Chapter 4 –PERFORMANCE EVALUATION OF DISTRIBUTED SYSTEMS

133

6- Trade-off evaluation: It represents the ability of a technique to study the different

system configurations.

7- Cost: This cost must not be considerable in term of time and money needed to

perform the study.

8- Flexibility: The under test system-model should be easy to modify and extend. The

used evaluation technique should provide the possibility to integrate these

considerations easily in the developed model.

Criterion Analytical Simulation Measurement

Stage Any Any Post prototype

Time Required Small Medium Varies

Tools Analysts Computer Languages Instrumentation

Accuracy Low Moderate Varies

Trade-off evaluation Easy Moderate Difficult

Cost Small Medium High

Scalability Low Medium High

Flexibility High High Low

Table 4.1, Comparison of the different Performance Evaluation Techniques

Simulation seems to be the mostly used technique used to evaluate the

performance of the computer systems. It represents a useful means to predict the

performances of a system and compare them under many conditions and configurations.

One major advantage of this technique is that even if the system is already implemented,

it offers flexibility difficult to reach with measurement techniques.

Our modeling formalism, Petri nets, combines both the analytical and simulation

models which let the possibility to model system mathematically. However,

communication networks and distributed systems are so complex that building and

solving the equations’ system are too difficult and needs tools capable to perform this

process.

3. PERFORMANCE EVALUATION OF NETWORK PROTOCOLS

134

3. PERFORMANCE EVALUATION OF NETWORK

PROTOCOLS

As we saw in the previous section, simulation is more appropriate to evaluate the

performance in computer systems since it can give more accurate results and easier than

the analytical methods. To evaluate the quality and accuracy of our model, we will show

the simulation results of our model for the DCF IEEE 802.11b protocol part without

RTS/CTS. We will show a comparison between the time needed to send packets over

Ethernet and the DCF protocols. Next, to we will compare the results for IEEE 802.11b

with the data given by NS-2 simulations performed in the same conditions, since it is one

of the well-known and highly used simulators in the domain of communication networks.

In addition, we compare them with the other studies about the IEEE 802.11b network

[Anastasi05] and [Heusse03].

3.1 CHOOSING THE TOOL

Many tools and extensions of Petri nets exist such as PNtalk, PROD, QPME,

CoopnBuilder, ALPHA/Sim, Artifex and other tools [PNW09]. However, the development

of most of these tools has been stopped since long time, or they do not support our needs

or these are commercial. Two main, free of charge tools were possible to cover the

previous features “CPN Tools” [CPN07] and “Renew 2.1.1” [Renew08] [Kummer04].

“CPN Tools” is a discrete-event modelling language combining Petri nets with

the functional programming language Standard ML [Jensen07] developed and maintained

by the CPN Group at the University of Aarhus. CPN Tools is a tool for editing,

simulating and analysing colored Petri nets with GUI graphical interface.

However, during simulation, “CPN Tools” has shown an important problem that does not

apply to our timing needs. Figure 4.3 shows this feature in “CPN Tools”. In this example,

the sender waits for an acknowledgement (a token in place “ACK?”) during 10 units of

time, a token put in place “Receiving ACK”. However, if it does not receive an

acknowledgment during this time it starts a collision procedure, T1 is fired.

Chapter 4 –PERFORMANCE EVALUATION OF DISTRIBUTED SYSTEMS

135

However, during simulation this need never happens. The tool showed that since

there is initially no token in place “Receive ACK”, then, even after the putting a token in

that place, T0 would never be fired. Moreover, even if initially a token is put in place

“Receive ACK” and in place “ACK?”, T1 stills a possible fired transition even T1 has

timing of 10 units of time and T0 is immediate. This problem is not appropriate for our

modeling methodology. When the sender receives an acknowledgement, the collision

procedure is more possible. However, “CPN Tools” did not give us the possibility to

model this feature.

Figure 4.3, Timing in “CPN Tools”

Another possible tool was “Renew 2.1.1”. “Renew” is a Java-based high-level

Petri net discrete-event simulator that provides a flexible modeling approach based on

reference nets [Moldt03], developed and maintained at the Theoretical Foundations

Group of the University of Hamburg. Renew combines the Petri nets formalism with the

Java Object-Oriented programming language. This combination has permitted modeling

all the selection criteria defined previously and more, since it allows the use of nearly all

the functions offered by Java. However, in this work we did not make use of the reference

nets feature of this tool, but we were limited to the same classical features found in “CPN

Tools” for modeling and simulation the system depending on our needs.

Renew is available free of charge including the Java source code, allowing the

insertion of new plug-ins. Its editor has: easy to use interface, minimal input for the user,

direct relation to the functionality and provision of a high-level formalism, which

3. PERFORMANCE EVALUATION OF NETWORK PROTOCOLS

136

facilitates its use. Moreover, it is always up-to-date; the last version 2.1.1 is dated from

July 2008. Simulations can be made with different plugged-into-application compilers; in

our application we use the Timed Java Compiler.

As a simulation tool, “Renew 2.1.1” allows the continuous and the step-by-step

simulations. The later permits to check the system changes one-by-one and getting better

understanding of the system-model such as deadlocks, unexpected event, warnings and so

on. This allows to better reconstruct or modify the system-model easily and to find the

errors one-by-one for better performance measures and systems design and

implementation. Once the model goes straight forward, the continuous simulation can be

performed. This allows getting the desire performance measurements more rapidly.

Nevertheless, the tool “Renew 2.1.1” does not have a package (or a plug-in) able to

perform these analytical verifications.

3.2 SIMULATION AND RESULTS

Our simulations are based on full-mesh dense networks with different numbers of

workstations:

1- The simulations were performed for different number of workstations sharing the

medium.

2- For each case, the simulations were repeated 100 times to get average measures.

3- Each simulation assumes that all nodes transmit at 11Mbps

4- All the nodes attempt to send data as soon as possible.

5- Each node has 1000 packets (to get the average possible measures) with average

packet length of 1150 bytes (packet length varied from 800 byte to 1500byte)

6- All simulations are accomplished on Intel® Core™ 2 Duo Processor T2300, 2G of

RAM.

3.2.1 AVERAGE BANDWIDTH PER NODE

The first result is the average bandwidth per workstation. Figure 4.4 shows the

throughput of 802.11b nodes sharing a bandwidth of 11Mbps. As we can see in the figure,

the bandwidth per node decreases logically with the increase of nodes number. In the

Chapter 4 –PERFORMANCE EVALUATION OF DISTRIBUTED SYSTEMS

137

figure, when the number of nodes is small each workstation has more bandwidth from the

shared effective bandwidth. However, when the number of the nodes on the network

increases, the bandwidth is decreasing exponentially. This is due to the increased number

of collisions on the network, and so more bandwidth will be lost.

Figure 4.4, Bandwidth Variation with Number of Nodes

The other factor is that CSMA gives fair timing to the machines to access the

channel. Thus, workstations must wait longer time to have access to the channel. Another

factor is after a collision, the workstations must double their contention window which

means longer backoff time. So, more time is spent to decrement the backoff or less total

bandwidth.

3.2.2 COLLISIONS RATE PERCENTAGE

The next step is to compute the collision rate percentage or errors versus the

network utilization. Figure 4.5 shows how the collision rate increases when the number of

workstations increases. As we can see in the figure, when the three workstations are

sharing the medium, the collision rate is nearly 8%. However, when there are 12

workstations sharing the medium, the collision rate reaches 23.2%. These results confirm

the results obtained in the previous section and our explanation.

0

0,6

1,2

1,8

2,4

3

0 2 4 6 8 10 12

Bandwidth
(Mbps)

No of Nodes

3. PERFORMANCE EVALUATION OF NETWORK PROTOCOLS

138

Figure 4.5, Collisions Rate Percentage

As we can see, the collision rate is increasing linearly until certain point (8

workstations). The reason is when more workstations attempt to send, more packets are

on the shared channel and hence the probability that a collision occurs increases.

However, when the number increases more, the collision rate increase becomes slower.

The explanation for this slowly state is the backoff procedure. With more workstations,

the number of collisions increases, and the value of CW also increases (backoff time). On

the other hand, this increment of backoff time decreases the probability of a collision,

since workstations in collision must wait for longer time before attempting to send again.

So, the collision rate increment becomes slower.

3.2.3 TRANSMISSION TIME PER PACKET

The next test is to measure the overall time needed to send a packet over Ethernet

or DCF protocols (from sender side to receiver side). Figure 4.6 shows the time required

to transmit one packet versus the number of nodes on the network. The transmission time

increases linearly due to the increased number of sent packets on the network and

collision rate.

However, sending a packet over Ethernet requires less time than sending it over DCF.

The figure shows that with three nodes on the network, DCF seems to be the same as

5%

10%

15%

20%

25%

0 2 4 6 8 10 12

Collision
Persentage

No of Nodes

Chapter 4 –PERFORMANCE EVALUATION OF DISTRIBUTED SYSTEMS

139

Ethernet. However, with the increase of nodes the difference becomes obvious. This is

due to:

1- A workstation attempting to use the channel in wireless networks needs to ensure

that the channel is idle during a DIFS period or 50µs, while in Ethernet it only

needs 9.6 µs.

2- From the first attempt to transmit, wireless nodes starts a backoff procedure (Bavg

= 8 * 20 µs) decremented only if the channel is idle, while in Ethernet,

workstations defers only for 9.6 µs.

3- After a collision, in wireless networks, the channel status becomes idle only when

all the workstations finish their transmissions (no collision detection process),

while in Ethernet the channel becomes idle after 51.2 µs (channel acquisition slot

time).

4- The backoff procedure used after each collision (Chapter 3, Section 4.1.3 and

figures 3.13 and 3.15) in wireless networks doubles the contention window value

which is already 8 times greater than the one used in Ethernet. This makes the

backoff in wireless greater than Ethernet BEB even with slot time (20µs) less than

the 51.2 µs used in Ethernet.

Figure 4.6, Transmission Time per Packet

0

4

8

12

16

0 2 4 6 8 10 12 14

Time
(msec)

No of Nodes

Ethernet
Wifi

3. PERFORMANCE EVALUATION OF NETWORK PROTOCOLS

140

Table 4.2 shows the collision rate, the bandwidth per node, the time needed to send a

packet and the total effective bandwidth. The total effective bandwidth decreases with the

increased number of workstations on the medium and the increment of collision rate.

No of Nodes Collision Rate BW/Node Time/Packet Total Effective BW

3 7,95% 2.76 Mbps 3.541 ms 8.29 Mbps

4 10,34% 2.06 Mbps 4.694 ms 8.25 Mbps

8 18,70% 0.92 Mbps 10.15 ms 7.34 Mbps

12 23,18% 0.58 Mbps 15.52 ms 6.97 Mbps

Table 4.2, Different simulation results of 802.11b DCF Protocol

3.3 COMPARISON WITH NS-2 SIMULATOR AND OTHER

STUDIES

To evaluate the quality and accuracy of our model, we have used the network simulator

NS-2 as a helping tool since it is widely used to model communication protocols. The

NS-2 simulator is a discrete-event network simulator that allows simulating many

scenarios defined by the user. It is commonly used in the research due of its extensibility,

since it is an open source model. NS2 is widely used in the simulation of routing and

multicast protocols and ad-hoc network. The network can be represented / modeled by

traffic sources, protocols, routers and links that connect them.

The source code of NS-2 is written in C++ language for the internal functioning of

the network components (core engine) and O-TCL scripts, which is the object-oriented

version of TCL language, for the configuration and simulation scripts. The modeling of a

network consists of different elements:

 Nodes: They correspond to workstations (traffic generation) or routers.

 Communication Links: They model the physical connection between two nodes.

 Agents of communication: They represent the transport layer protocols (TCP and

UDP). To establish communication between two nodes, we must attach an agent

on each node, and connect them so that the communication can take place.

Chapter 4 –PERFORMANCE EVALUATION OF DISTRIBUTED SYSTEMS

141

 Applications: They are responsible for generating traffic (file transfer, random

traffic, etc.) and they use the communication agents.

Each element in NS-2 model can be adapted to the users’ needs: the packet size, bit rate,

maximum number of packet, etc.

To carry out our comparison, the NS-2 model simulations were performed in the

same conditions (a dense network and the workstations are in the same domain) and on

the same computers. Figure 4.7 shows a sample declaration of a node with packet size of

1150 bytes and 1000 packets for each node

set udp(1) [new Agent/UDP]

$udp(1) set prio_ 1

set null01 [new Agent/LossMonitor]

$ns_ attach-agent $node_(0) $udp(1)

$ns_ connect $udp(1) $null01

set cbr(0) [new Application/Traffic/CBR]

$cbr(0) set packetSize_ 1150 ;

$cbr(0) set rate_ 1Mb

$cbr(0) set maxpkts_ 1000

$cbr(0) attach-agent $udp($i)

Figure 4.7, Sample code of NS-2 Model

Figure 4.8 shows the results obtained from NS-2 and those from our model,

(figure 4.3). As we can see the results of both simulations Renew and NS-2, are nearly

identical which confirms the correctness of our model. Moreover, if we compare our

obtained results with those in [Anastasi05] and [Heusse03], we can get also the same

results from both the simulation technique and the equation we obtained from the results.

The other comparison is the effective simulation time. As we can see in figure 4.9,

the simulation time increases in a linear way when the number of nodes increases

(confirmed by the results in Figure 4.6). The figure shows that NS2 needs less time to

perform the same simulation. However, NS2 does not support the step-by-step simulation

to verify the system event by event. The second important issue is that it is not possible to

3. PERFORMANCE EVALUATION OF NETWORK PROTOCOLS

142

model distributed services with NS2 (no supporting package). However, with “Renew” as

Petri nets editor and simulator, it is possible to combine both services and protocols in

one global model.

Figure 4.8, Comparison between Our model and NS-2

Figure 4.9, Effective Simulation Time versus number of nodes

0

0,5

1

1,5

2

2,5

3

0 2 4 6 8 10 12 14

Bandwidth
(Mbps)

No of Nodes

Renew

NS-2

0

6

12

18

0 2 4 6 8 10 12 14

Time
(minutes)

No of Nodes

Renew

NS2

Chapter 4 –PERFORMANCE EVALUATION OF DISTRIBUTED SYSTEMS

143

4. A CASE STUDY: EVALUATING PERFORMANCE OF A

DISTRIBUTED MANUFACTURING SYSTEM

In the last sections, we have shown the modeling part of the communication protocols. In

this section we will show the modeling part that concerns the services. The illustrative

example used in Chapter 1, figure 4.10, will be reused to model the services offered by a

production system. The used modeling technique will be the same as the communication

protocols, i.e. component-based methodology, where each part of the system is modeled

in hierarchical composition: “service-workstation”, i.e. each service is modeled over a

workstation.

Figure 4.10, Manufacturing Plant with Flexibilities

4.1 ANALYZING THE SYSTEM

In chapter 1, we have shown the technique used to model the system, figures 1.10-13,

which is based on transforming each place and transition to a complete Petri net figure

1.11. In this chapter, we will not make use of the intermediate model step and we will

distribute the services over different workstations (no centralized control).

4. A CASE STUDY: EVALUATING PERFORMANCE OF A DISTRIBUTED MANUFACTURING SYSTEM

144

4.1.1 SYSTEM COMPONENTS

Figure 4.11 shows the complete system components used to transfer one product

from IN/OUT area to any machine M1, M2 or M3. Z1 to Z4 represent the input and output

areas for each machine and the IN/OUT area.

Figure 4.11, Complete Area and Transfer Components

The capacity of each is limited to one product. IS1 to IS6 areas represent the stock

area before and after machining a product. The capacity of each stock area is greater than

one. R1 to R4 represent the robots used to make a transfer from a Z area to a machine or

IN/OUT area and vice versa. Finally, T1 to T8 represent the transfer elements from and to

a Z and an IS stock areas.

Chapter 4 –PERFORMANCE EVALUATION OF DISTRIBUTED SYSTEMS

145

The component represents the service offered by a resource, a robot or a transfer

component. Machines, Z’s and stock areas are considered as shared resources. The use of

each of them needs a pre-allocation (chapter 1, section 3) made by a transfer component

Ti or Ri. Each component-service is modeled as a Petri net over the workstation

component model (Chapter 3) (workstation per service). In order to allocate a resource or

machine, the request of a service is made by messages exchange over the network via the

underlying workstations.

4.1.2 EXCHANGED MESSAGES BETWEEN COMPONENTS

In order to transfer a product from one area to another one, areas must allocate the

required area/resource. Pre-allocation is passed through a transfer component. Transfer

components check the possibility to allocate the destination area (depending on the

capacity of each area). An acknowledgement is from the destination area when a place is

free. During this time the source area and the transfer component are in waiting period

(machines and Z areas do not perform any action during this time, while stock areas can

receive products from other components).

Figure 4.12, Product Transfer in Petri Nets

Figure 4.12 shows the centralized model of a product transfer from S to D areas.

In the figure, to transfer a product, the product must be available in area S (a token put in

4. A CASE STUDY: EVALUATING PERFORMANCE OF A DISTRIBUTED MANUFACTURING SYSTEM

146

place S/REQ), the transfer component must be also available (a token in place

SD/NOP) and a free place in area D (a token in place D/CONS). These three tokens

enable the transition SD/t1 and a token is then put in place SD/TRSF-START

starting the transfer process. The transfer component takes the product from area S. the

firing of transition SD/t2 and the put of a token in place S/ACK inform that a place is

released up in area S. The transfer process continues by putting a token in place

SD/TRSF-END. When the product arrives to area D (transition SD/t3), the transfer

component becomes free again (a token is put in place SD/NOP) and an area is used in

area D (a token is put in place D/PROD).

Figure 4.13, Exchanged Messages over the Network for the Transfer

Figure 4.13 shows the complete messages exchanged in case of implementation of

the 3 processes (S, SD, and D) in 3 different computers. Each process plays a different

role with regard to the client/server mechanism. S is always a client and D is always a

Chapter 4 –PERFORMANCE EVALUATION OF DISTRIBUTED SYSTEMS

147

server. The role of SD varies depending on the message. At first, the source area S

(workstation) sends a request message to the transfer workstation, SD (Ti or Ri),

containing the destination workstation D. Ti (or Ri) sends a request to D, requesting a free

place (Cons-D). If there is a free place, D will send a positive acknowledgment to Ti (or

Ri), otherwise S and Ti (or Ri) will stay in a waiting period.

Once Ti (or Ri) receives the acknowledgment, it sends two messages to S

containing a positive acknowledgment and a request to release the product. When the

product is released S sends an acknowledgment to Ti (or Ri) to start the transfer. When Ti

(or Ri) takes the product, it sends an end message to S to free one its places (Cons-S).

Finally, it sends a message to D asking the arrival of the product to its side. Once the

product arrives to D, it sends an acknowledgement to Ti (or Ri) informing the end of the

transfer.

4.2 MODELING THE COMPONENTS

The system contains two types of components: transfer or area components. A component

is modeled by a workstation module and a service module. In this section we will show

the Petri net module used to model the service of each component. In order to

differentiate between the different workstations on the network, we used an addressing

system for each workstation depending on its type. In this section we will model the

physical transfer of a product represented be the dark gray interfaces of the service

components. The transferred token between the different services represents the product.

To make the transfer the message exchange procedure must be made before any transfer.

4.2.1 AREA COMPONENTS

When a Z, an IS or a machine receives a product (represented by a token), it starts

a transfer procedure to transmit the product to its final destination. This token contains

two fields: the final destination FD and the type of the product ID (will be used later to

arrange the products after their arrival to the OUT area).

An area sends and receives messages depending on whether it is the source or the

destination. Figure 4.14 shows the part concerning a source area (example of IS1: address

4. A CASE STUDY: EVALUATING PERFORMANCE OF A DISTRIBUTED MANUFACTURING SYSTEM

148

31). The gray places belong to the workstation itself, while the white ones model the

service. When the area receives a product, a token put in place “From another Area”, it

sends a transfer request to T2 (address 42) with the target area Z2 (address 22). The type

of the product and its ID is contained in the token fields (in the example FD=12 and ID=1

representing a service on machine M1). The product is kept in place “Wait” and it is

realised only when the area receives an end acknowledgement (the guard on transition

“t11”). A token is put in place Cons of that area.

Figure 4.14, Part: Source Area

If the area is a machine, a place and a transition are added between place “From another

Area” and transition “t21” to represent the machining process, figure 4.15. MTime(ID)

represents the time needed to machine a product before the token becomes available.

Figure 4.15, Machining Time

Figure 4.16 shows the other messages sent and received by an area in order to

transfer a product. If the area is a source area, it receives two messages: the end message

(transition t11, figure 4.14) and the request message to release the product (transition 51).

It then sends an acknowledgment to the Ti (or Ri) (in our example, to T2, and the value

“99” means not used field).

Chapter 4 –PERFORMANCE EVALUATION OF DISTRIBUTED SYSTEMS

149

Figure 4.16, Messages Exchange for a Transfer from an Area

However, if the area is the destination, it receives two messages: a message to

allocate a free place (transition t50) and a request message for a successful product

reception (transition t52). The capacity of an area (the number of tokens in place Cons)

decides whether this request is possible by send a message to the source, or the source

must wait until a place is released up. The inscription TTime at the arc connecting place

p1 and transition t53 models the time need to receive a product from one area to another.

Figure 4.17, Products Routing

4. A CASE STUDY: EVALUATING PERFORMANCE OF A DISTRIBUTED MANUFACTURING SYSTEM

150

Another characteristic added to such components is routing the product to the

correct direction. All the Z areas have this feature. Figure 4.17 shows the routing of a

product in Z1. The products found in that place need either to be machined, depending on

their final destination (to machine M1: transition t72, or to machines M2 and M3:

transition t73) or to be forward them to OUT area (transition t71). To forward a product to

area OUT, it must be before machined. This condition is satisfied by a machine by

changing the field FD to 11. Hence, to rearrange the products (in OUT area) the field ID

remains the same.

4.2.2 TRANSFER COMPONENT

A transfer component is used to perform a transfer between two areas. Figure 4.18

shows the complete messages sent and received by a transfer component. The component

receives a request packet from an area (transition t60). In order to validate this request a

token must be present in place “Cons”, representing the capacity of this component. It

sends a message to the destination area requesting a free place. The component stays in a

waiting period (place p60) until it receives acknowledgment packet from the destination

area (transition t62).

Figure 4.18, Transfer Component – Service Part

Chapter 4 –PERFORMANCE EVALUATION OF DISTRIBUTED SYSTEMS

151

Once the acknowledgment arrives, the transfer component sends request (“release

P?”) to the source area. To insure an excellent functionality of this module, a guard is

associated to transition t63 to assure that the sender of the acknowledgment is the

destination area. Again, the component stays another time in waiting period (place p62)

until it receives the second acknowledgment.

Figure 4.19, Hierarchical Service-Workstation Petri Net

4. A CASE STUDY: EVALUATING PERFORMANCE OF A DISTRIBUTED MANUFACTURING SYSTEM

152

When the acknowledgment arrives, transition t64 is enabled (condition: the sender

must be the source), two messages are sent: to the sender releasing one place (the product

is taken by the transfer component), and to the destination area requiring if the product

has arrived. This second message is sent when the first message is sent (the TNext

inscription on the arc between t64 and p63).

Figure 4.19 shows a complete Petri Net model for Z1 area. While figure 4.20 show

the service component with the different interfaces. In the figures, the when a product

arrives to the area, a procedure of exchanged messages starts depending on the destination

area until that product is transferred to its final destination. Hence, the workstation

component is connection of the service and network (light gray interfaces), while the

output interfaces of the service component (dark gray) is connected directly to their

destination components.

Figure 4.20, Service-Workstation Composite-Component

Chapter 4 –PERFORMANCE EVALUATION OF DISTRIBUTED SYSTEMS

153

Figure 4.21, Sub-model for a transfer from Z1 to IS1

4. A CASE STUDY: EVALUATING PERFORMANCE OF A DISTRIBUTED MANUFACTURING SYSTEM

154

Figure 4.21, shows a sub-model for a transfer of a product from area Z1 to stock

IS1 through the transfer element T1. In the figure, the modeled components are reused to

build the whole system. This reuse is applicable for the other elements in the system.

Some additional places and transitions are used to complete the system-model and to

insure its functionality, table 4.3.

Type No of Transitions No of Places

Area Component 30 25

Transfer Component 24 21

Complete Model 748 652

Table 4.3, Petri Nets Complexity

4.3 SIMULATION AND RESULTS

As in section 3, the system is evaluated by simulation. The simulation was performed on

the same PCs used in section 3. The system is assumed to perform 100 different products.

The simulation aims to see the impact of using different type of products and different

protocols over the system. The transfer time is supposed to be 50 msec and the machining

time to be 100 msec. These values have been chosen in milliseconds to really verify the

impact of the underlying network on the system. Otherwise, if we use the real values in

minutes, the impact of the underlying network would not be obvious with the example we

have used. The number of simultaneous products per type is varied from 2 to 5 products.

Each machine performs one function. Once the product is machined, the field FD

is changed to “11”. However, to accomplish a service different paths are used for each

machine:

To perform f2: IN/OUT  Z1  IS5  Z3  M2  Z3  IS6  Z1  IN/OUT

To perform f1: IN/OUT  Z1  IS1  Z2  M1  Z2  IS2  Z3  IS6  Z1

  IN/OUT

To perform f3: IN/OUT  Z1  IS5  Z3  IS3  Z4  M3  Z4  IS4  Z1

  IN/OUT

Chapter 4 –PERFORMANCE EVALUATION OF DISTRIBUTED SYSTEMS

155

The type of services on the system affects the number of exchanged messages and

transactions on the network. For example, to perform the service f2, the number of

transactions is 72 exchanged messages per product. However, to complete service f1 or

f2, the number of exchanged messages is 90 messages per product. This is in the case of

one product only on the system. However, when there are several products on the system,

this number increases due to collisions. So, this number may reach 90~100 messages per

product for service f2, and 110~120 messages per product for service f1 or f3.

4.3.1 ONE PRODUCT

The first simulation is to get an idea about the time needed to machine one product

over the system. Table 4.4 shows the impact of changing the communication protocol in

the system over the time needed to finish one product. An important difference appears

between Ethernet at 10Mbps and 100Mbps. However, the 1Gbps does not create a big

difference, since the machining and transfer times are the dominant in this case.

Service 802.11b E-10Mbps E-100Mbps E-1Gbps

f2 564.5 ms 567.6 ms 506.7 ms 500.7 ms

f1 or f3 680.2 ms 684.5 ms 608.5 ms 600.9 ms

Table 4.4, Time to Machine a Product

The other interesting result is the time difference when the required service is f2, or f1 or

f3. Since the path to finish the product is longer, the time needed to make the product is

clearly longer. In this part, 11M 802.11b seems to be better than 10Mbps Ethernet.

4.3.2 DIFFERENT PRODUCTS, SAME PROTOCOL

The next results concern the impact of changing the type of products with keeping the

same communication protocol. Figure 4.22 shows the time needed to make one product

(100 products over 10Mbps Ethernet on the system). Here, the number of products to

machines 1 and 3 are always equal.

The first remark that we can get is the important time difference when one product

is made over the system, and when 6, 9 or 15 simultaneous products exist at the system.

4. A CASE STUDY: EVALUATING PERFORMANCE OF A DISTRIBUTED MANUFACTURING SYSTEM

156

The second remark is the effect of changing the number of products to machine 2 (the

overall number of products is always 100). Noting that:

1- From 10 to ~30, the time needed was decreasing. This is due to that the congestion

on Z3 decreased, since M1, M2 and M3 uses it to transfer the products from and

to IN/OUT.

2- On the other hand, when the number of products addressed to machine M2

increased (more than 30 products), the time increased since the number of

products fabricated is 1 after M1 and M3 finish their products (M1 and M3 each

has less than 30 products to fabricate). As a result, the machining and transfer

times become more important.

Figure 4.22, Time per Product

The figure shows also the impact of changing the number of simultaneous

products attended to each machine. Increasing the number of products decreases the time

needed to fabricate a product. This is explained since the more products are transferred at

170

180

190

200

210

220

230

240

0 20 40 60 80 100

No of products for M2

2

3

5

Time to make one
product (msec)

Chapter 4 –PERFORMANCE EVALUATION OF DISTRIBUTED SYSTEMS

157

the same time. However, entering 3 or 5 five products does not decrease the time. This is

because the machines can fabricate one product only. So, entering more products will not

affect the time.

4.3.3 Same Products; Different Protocols

The last results are the most important, since it shows the impact of changing the

communication protocol over the system. Different remarks are found from the figure

4.23:

1- 802.11b protocol does not present a good choice. This result is conforming with

the results of figure 4.6. This becomes clear when the number of simultaneous

products increases (the number of exchanged messages increase also).

Figure 4.23, Impact of changing the communication protocol in the system

130

150

170

190

210

1 2 3 4 5 6

No of products of the
same type on the system

802.11b

E10M

E100M

EG

Time to make one
product (msec)

4. A CASE STUDY: EVALUATING PERFORMANCE OF A DISTRIBUTED MANUFACTURING SYSTEM

158

2- A big time difference is noticed when using 100Mbps Ethernet (compared to

10Mbps Ethernet and 802.11b). The number of messages is important. With 2

simultaneous products of each type, the number of exchanged messages reaches

500 to 600 exchanged messages. With 3 simultaneous products of each type, the

number of exchanged messages reaches 900 to 1000 exchanged messages. While

with 5 simultaneous products of each type, there are nearly 1400 to 1500

exchanged messages on the network.

The type and speed of protocols is very important since to exchange this huge

number of messages on the network, the bit rate is very important and decreases

obviously the time needed to exchange these messages between the different

resource/workstation on the system.

3- The use of 1Gbps Ethernet did not show a big difference with respect to 100Mbps

Ethernet. However, this conclusion is not really correct. The impact of using Giga

Ethernet can appear if the modeled system is larger (more machines, stock areas,

resources, etc.).

In that case, the number of exchanged messages over the network will be greater.

Thus, the impact of using Giga Ethernet will become obvious since the time

needed to send these messages will be shorter (for example, as the time difference

between 10 and 100Mbps).

However, in our model the number of modeled components is still medium (3

machines, 4 resource areas and 6 stock areas). So, the machining and transfer

times are dominant here when using Giga Ethernet compared to 100Mbps

Ethernet.

Chapter 4 –PERFORMANCE EVALUATION OF DISTRIBUTED SYSTEMS

159

5. CONCLUSION

Performance evaluation is very important for the system development and configuration.

Many measurements can be performed to analyze the performance of the system

depending on the system itself. Simulation is the one of the most suitable technique for

evaluating distributed systems because of its complexity.

In this chapter we have shown the results obtained from simulating the system

presented in chapter 3. The tool “Renew 2.1.1” allows modeling and simulating the

system. However, the choose for this tool is just to perform our needs, and can replaced

by any tool that has more performance, especially for analyzing the properties of the basic

and composite components.

The simulation results show the degree of accuracy, correctness and quality of our

approach. The comparison with other results proves these features. We have also showed

a complete service-workstation model for the manufacturing system presented in Chapter

1. The obtained results are very interesting and show how temporal features of the

distributed applications are affected when the underlying network protocol and service is

changed especially between 10M Ethernet and both 100M Ethernet and wireless protocol.

Thus, the obtained results are very encouraging and motivate to continue modeling

new protocols (not only MAC layer but also from the upper layers: Network and

Transport) and distributed systems such as Data Base Systems and transportation

Systems. Our component-based modeling approach shows a high quality and easiness in

modeling complex systems where another editors and simulators do not allow to model

services and communication protocols in a single model and in a distributed form.

160

CONCLUSION AND PERSPECTIVES

161

CONCLUSION AND PERSPECTIVES

1. CONCLUSION

Distributed systems are more and more present in our daily life. These systems are

complex and can be distributed in one place or even everywhere in the world. The use of

distributed allows sharing different and expensive resources by a several clients. Thus, the

need to control the distributed systems is very important. New technologies play a big

role to in the control process. These technologies underlie the distributed systems and are

used to exchange messages between the different parts of the system.

Manufacturing systems are one kind of these systems. They are a subclass of the

discrete event systems DES. The need to model these systems before their

implementation is important. The design stage allows verifying some of their properties.

A well-designed model that takes into accounts all the requirements and constraints of a

system can save cost and time.

In this work, we have presented the problem of modeling manufacturing systems

and the underlying communication protocols. However, modeling a huge and complex

system implies to have also a big and complex model. So, we have proposed in this thesis

a component-based modeling approach based on High-Level Petri Nets. This approach

can meet the challenges of modeling the distributed systems and the communication

networks. Genericity, modularity and reusability are the main and important

characteristics of this approach since allows reusing ready-to-use components and easily

fitting them to new system-models depending on the requirements of clients and

applications. These advantages and more allow building complex system-models in an

easier way.

In chapter 1, we have shown different models proposed to model the

manufacturing systems with Petri nets. However, the proposed models do not take into

CONCLUSION

162

account the underlying network and their impact on the performance of the system. They

are also focusing only on the design stage, but they do not give solutions of how to

implement the models on a distributed service environment which is the main difference

between the industrial companies and the universities’ laboratories.

In chapter 2, we have introduced the different methods used to model

communication protocols. UML, Timed Automata and Petri nets are suitable and the most

used to model the communication protocols. But, Petri nets, as a powerful formalism

show a high capacity and ability to model concurrent, and more particularity discrete

event systems. Petri nets have also many extensions and tools. These two reasons in

addition to that the service part is already modeled in Petri nets (the LAGIS/OSSc team

approach) have persuaded us to greatly choose Petri nets as a unifying formalism for the

modeling of the whole system (both services and communication protocols).

In chapter 3, we have shown our criteria to choose a Petri nets modeling tool. The

high-level Petri nets contain nearly all the extensions of Petri nets and makes use of high-

level programming language. This combination makes easier to use Petri nets extensions

in one tool, reduces the complexity and size of the model and adds the modularity and

reusability features to already powerful formalism.

We have also presented in chapter 3 our component-based modeling. The

approach is based on building the system-model from smaller several components. This

construction allows identifying each component separately. At the abstraction level, the

overall component is seen as a black box hiding its internal implementation and behavior

but offering only its interfaces and parameters that can be modified to be appropriate to

the model needs. With this approach, addition, elimination, upgrade and modification of a

component are possible to go with the systems requirements.

To build the different component, we have first analyzed the communication

protocols of the MAC layer since the manufacturing systems use the local industrial

networks to manage its exchanged messages. These protocols intersect in many points:

channel check, backoff procedure, data send and receive processes. These similarities

CONCLUSION AND PERSPECTIVES

163

have allowed building one component for each process, which are reused to model the

different illustrative protocols of Ethernet and DCF 802.11 protocol.

The next step in this work was to evaluate and to verify the correctness and quality

of our approach. In chapter 4, we have shown the different measures to evaluate the

performance. Simulation is the most suitable in our case. The obtained results, compared

to other studies and NS-2 simulator results, proved the correctness and precisions given

by our approach.

The last step was to show a complete service-protocol model. For this, we have

chosen the case study of the manufacturing system presented in chapter 1. However, in

chapter 4, we have presented a new model of the system where the services are

distributed over different PCs, eliminating the need to have an intermediate model. Each

service is modeled in a separate Petri net. The overall service-protocol component is

composited of one service component over one workstation component.

To complete the obtained results and verify the impact of the communication

protocols over the productivity of the system, we have simulated the whole system. The

simulation results show the direct impact and effects of the underlying network on the

productivity of the system. They show the express relation between the network

performance and the manufacturing system. Moreover, the obtained values are helpful

and can be used in building and designing new systems, for example in our case the use

1Giga Ethernet does not provide to the system important benefits in case it uses 100M

Ethernet and the use of 10M Ethernet is better than using wireless networks even with

11Mbps bandwidth.

In this thesis, the approach that we have proposed shows a well-defined modeling

technique able to manage the complexity in modeling distributed systems and

communication protocols by decomposing the model into small manageable and reusable

components. Petri nets formalism has shown a high ability to model and simulate

complex systems. The originality of our approach comes from unifying the modeling of

both services and protocols in one formalism and completing the missed part of the

PERSPECTIVES

164

communication protocols of the previously presented models for the manufacturing

system. This is proven by the obtained results of this approach and the benefits that a

designer can have by saving a lot of lost cost and time where decomposing a complex

model is a useful demonstration for difficult problems.

2. PERSPECTIVES

2.1 ENRICHING THE COMPONENTS LIBRARY

In this thesis we are interested in modeling manufacturing systems. This case

study uses the local industrial network. For this reason, we have only presented LAN

MAC sublayer protocols by representing two illustrative models for Ethernet and DCF

802.11b wireless protocols. This limited representation does not even cover all the

protocols in that layer. In addition, what we have covered is only one type of the

distributed systems.

However, as we have shown in the first chapter, distributed systems count as many

as systems and distributed services and applications. The obtained results from our

approach encourage generalizing this approach for new types of systems and applications

like data base systems, ATM banking systems or transportation systems. This

generalization requires to model new protocols since the modeled protocols does not

allow doing that. The modeling of new protocols is not only limited to MAC sublayer

protocols since such systems (data base or transportation) make use of the higher level

layers protocols to perform their services. This implies and opens the door to model new

components that can enrich the desired library and can help to cover more aspects in the

distributed systems.

However, distributed systems are usually heterogeneous. To resolve this problem,

a middleware layer between the services and protocols, figure 5.1, can be used. The use of

this layer implies also the modeling of new components for that layer. Here, we can

mention the need to cover the implementation stage. In the first chapter we have shown

the different types of middleware used to implement a distributed service. In the work,

PERSPECTIVES

165

our modeling approach is based on a classical client/server. However, the aspect of

implementing this structure is never discussed. Thus, this work must be completed by

covering the implementation aspect which is very important.

Figure 5.1, Middleware for Distributed Systems

With new protocols and middleware layer components, a real library of basic

components can be created. Once these components are made, the modeling on new

system-models becomes easier. Moreover, with middleware components, the results the

can be obtained from simulating the whole system will be more accurate and reflects a

better vision of the designed system.

2.2 QUANTITATIVE VERIFICATION

The thesis was based on using the simulation to verify some properties of the

system. However, the work did not cover all the aspects of verifying some properties of

the modeled components, especially for the unitary qualitative ones which is possible

since we make use of Petri nets to model the system and since the components are small

and can be verified easily. This aspect becomes more important once the components

library is enriched with new components.

PERSPECTIVES

166

The verification process does not stop here since the complete system model will

be build from these small components. Here, simulation can be useful for some properties

but the need to guarantee the verified properties of the small components for the complete

model or composite is also important.

2.3 TOWARDS A NEW SOFTWARE TOOL AND METHOD

From the previous needs appears the need to develop a new tool and method

capable to perform the previous issues. The new tool must contain all the necessary

functions and facilities to model distributed systems and communication protocols. Such

tool facilitates unify the modeling. The used tools in this work do not cover the analytical

verification of the system (no supporting packages). The new tool can be enforced with

such packages.

In addition, this tool is not limited to model and simulate the system, but it can

also be a helping tool for building the distributed systems by proposing the most

appropriate components for the system or application to be modeled. For example, in this

thesis we propose a workstation per service. This proposition may be costly and not the

optimal solution. The proposed method can be useful to distribute the control/service part

of the system on optimal workstation which can be more applicable and cheaper.

RÉSUMÉ EN FRANÇAIS

Résumé en Français :

Le développement des réseaux informatiques a permis l'émergence de nouvelles

applications bénéficiant de la puissance et de la flexibilité offertes par la distribution de

leurs fonctions sur de multiples ordinateurs. Ainsi, les systèmes dits « distribués » sont de

plus en plus utilisés.

Dans cette thèse, nous nous intéressons plus particulièrement au contrôle par

réseau des systèmes de production manufacturiers (SPM). Les systèmes de production

manufacturiers sont une classe de systèmes à événements discrets dont les éléments

interagissent ensemble pour construire des produits ou fournir des services.

Du point de vue industriel, ces systèmes sont composés d’un grand nombre de

constituants physiques de nature multiples : machines d’usinage, systèmes de transport,

de supervision, etc. La complexité de ces systèmes est encore renforcée par la présence de

« flexibilités », qui permettent d’utiliser les mêmes machines pour produire plusieurs

types de pièces, ce qui amène à multiplier les gammes opératoires à considérer. Le

contrôle de ces systèmes est alors très important.

La mise en réseau est largement appliquée dans les applications industrielles. Les

systèmes de production manufacturiers intègrent ainsi les réseaux de communications et

les fonctions de contrôle à tous les niveaux. La connexion des éléments du système au

travers d'un réseau réduit la complexité du système et le coût des ressources, et permet en

outre de partager les données de manière efficace. Toutefois, la performance des réseaux

de communication affecte les services offerts en termes de délais et de pertes de paquets.

La modélisation des systèmes de production manufacturiers est très importante

pour vérifier certaines propriétés telles que l’absence de blocages, la vivacité, etc. ainsi

que pour effectuer des analyses de performance. De nombreux travaux de recherche ont

été proposés pour modéliser les systèmes flexibles de production manufacturiers :

1- L’approche du CRAN [Gouyon04] s’intéresse aux systèmes agiles. Elle traite

l’interopérabilité entre contrôle des ressources et contrôle des produits.

RÉSUMÉ EN FRANÇAIS

168

2- L’approche du LAG/G-SCOP [Zamaï06] s’intéresse aux systèmes manufacturiers

reconfigurables (SMR) plus particulièrement la génération en ligne de lois de

commande.

3- L’approche du Lab-STICC [Berruet07] s’intéresse aux Systèmes reconfigurables.

Elle propose la conception des systèmes de production manufacturiers par une

approche composants.

4- L’approche du NHIT (Taiwan) [Tsai05] s’intéresse à l’exploitation des web-

services pour le contrôle-commande.

5- L’approche du LAGIC/OSSc sur laquelle nous fondons nos travaux s’intéresse à

la prise en compte de l’aspect distribué de la commande dès la phase de

conception [Toguyeni06], figure 1.

Figure 1, Approche du LAGIS/OSSc

Ces paradigmes classiques de modélisation sont généralement basés sur une vision

centralisée. En effet, ce type de modélisation ne prend pas en compte le fait que le

système sera distribué lors de l’implémentation et ne prend donc pas en compte

l’architecture de communication. Aussi, les propriétés qui sont vérifiées lors la phase de

conception ne sont pas nécessairement garanties après l’implémentation.

Dans ce contexte, nous proposons dans cette thèse la modélisation des systèmes

flexibles de production manufacturiers et des protocoles réseau sous-jacents en un modèle

RÉSUMÉ EN FRANÇAIS

169

distribué sous la forme d'un client/serveur. Cette approche a été initialement proposée par

l’équipe OSSc pour modéliser le système de production manufacturiers avec les réseaux

de Petri. Dans cette thèse nous nous proposons de les modéliser avec les réseaux de Petri

de haut niveau, qui est une méthode puissante capable de modéliser les deux points de

vue. Cette possibilité vient de la capacité des réseaux de Petri à modéliser les systèmes

concurrents et distribués.

Notre proposition : une approche par composants

Une manière de surmonter ces problèmes est de modéliser ces systèmes pour un

fonctionnement en mode distribué. Un modèle distribué offre les moyens de décrire

précisément l'ensemble des formes possibles d'incohérence à mesure qu'elles surviennent.

Il tient compte de chaque partie dans le système, les ressources disponibles, la

reconfiguration du système et le réseau sous-jacent. Une fois le modèle construit, son

application et son implémentation sont plus faciles, car il a les mêmes caractéristiques que

le système désiré. Néanmoins, ces systèmes sont complexes: la distribution, les

dynamiques élevées, et ses composants d’une grande hétérogénéité. Par conséquent, il est

nécessaire de modéliser ces systèmes d'une manière qui assure un haut degré de confiance

et la rigueur des solutions.

Une façon de faire face à ce défi est l'utilisation de la méthodologie basée sur des

composants qui est cohérente avec le principe des systèmes distribués dans lequel les

composants sont réutilisables. L'approche par composants utilise les moyens génériques,

modulaires et hiérarchiques de concevoir et d'analyser les systèmes. Elle prévoie que le

modèle du système peut être assemblé à partir d'éléments travaillant ensemble, le

concepteur n'a donc besoin que d'identifier les bons composants qui offrent de services

appropriés en ce qui concerne les exigences des applications. Cette méthode permet la

réutilisation et la généricité des composants qui réduit le coût du développement des

systèmes.

L’approche par composants facilite et accélère la phase de modélisation. Cette

dernière consiste à modéliser des composants élémentaires qui peuvent être réutilisés pour

RÉSUMÉ EN FRANÇAIS

170

construire des composants-composites. Ces composants sont génériques dans le sens où

ils sont adaptatifs, paramétrables et réutilisables. Pour la réutilisation des composants

élémentaires, nous proposons la construction d’une bibliothèque de composants de type

commercial-off-the-shelf COTS [Carney00] [Weyuker98].

Les systèmes flexibles de production manufacturiers utilisent les réseaux locaux

industriels pour échanger les messages entre machines. Ce type de réseau utilise les

protocoles de la deuxième couche du modèle OSI. Ces protocoles sont des protocoles

MAC. Pour illustrer notre technique de modélisation, nous proposons de modéliser les

protocoles Ethernet IEEE 802.3 et IEEE 802.11b DCF.

La modélisation des components sera par les réseaux de Petri de haut niveau qui

facilite la modélisation avec ses capacités de modéliser les comportements temporels,

stochastiques et dynamiques. Ils donnent aussi la possibilité de identifier les jetons, ce qui

très important pour la modélisation des protocoles informatique.

Les réseaux de Petri de haut niveau :

Plusieurs possibilités sont offertes pour le choix du formalisme de modélisation.

Parmi ces choix nous avons comparé trois méthodes parmi les plus utilisées pour

modéliser les services et protocoles de communication. Le tableau 1 montre les critères

qu’on a considérés pour choisir le formalisme de modélisation. Dans cette thèse, nous

nous intéressons aux techniques de modélisation formelle qui permettent des analyses

poussées. Un autre besoin réside dans la capacité à modéliser des contraintes temporelles

fortes. Le tableau montre bien que les réseaux de Petri sont les plus adapté à nos besoins.

 Automate Temporisé UML RdP

Méthode Formelle Semi-formelle Formelle

Analyses formelles Oui Non Oui

Modélisation

temporelle
Oui Récent Oui

Applications Applications temporelles Usage général Usage général

Tableau 1, Formalismes de modélisation

RÉSUMÉ EN FRANÇAIS

171

Les réseaux de Petri ont été introduits par [Petri66]. Ils sont présentés comme un

graphe biparti où le marquage des places représente l’état du système et les transitions des

événements et actions. Pour relier places et transitons, on utilise les arcs. Les réseaux de

Petri disposent de nombreuses extensions et abréviations.

Figure 2, exemple d’un réseau de Petri

Les réseaux de Petri de haut niveau ont pour principales caractéristiques :

1- Des expressions sur les arcs et des gardes sur les transitions

2- La possibilité de distinguer les jetons en leur associant des identifiants

3- La capacité de modéliser des comportements temporels ou stochastiques

Le besoin d’identification de flux de données est très important dans les réseaux

informatiques. Parmi l’envoi de multiples paquets entre source et destination,

l’identification un flux précis entre plusieurs flux de données est nécessaire comme c’est

le cas par exemple pour un arrêt d’urgence d’un robot dans les systèmes de production

manufacturiers. La solution qu’on propose est l’utilisation des jetons caractérisés par des

champs.

Figure 3, Expressions sur les arcs, gardes sur les transitions, identification des jetons

RÉSUMÉ EN FRANÇAIS

172

La figure 3 montre les expressions sur les arcs, les gardes sur les transitions, et

l’identification des jetons. Dans la figure la seule transition franchissable est la transition

avec le garde D==115, puisque le jeton a la valeur 115 dans son champ D.

Figure 4, utilisation de fonctions dynamiques

La notion de temps est nécessaire puisque les protocoles réseaux ont des

contraintes temporelles. Pour cela on propose d’ajouter la notion de temps (@) sur les

arcs. Nous proposons aussi l’utilisation des fonctions dynamiques où les arguments sont

les champs des jetons. Cette nécessité est due au besoin de modélisation des

comportements dynamiques comme la mobilité des machines (réseaux wifi et robots

mobiles), figure 4.

Démarche de modélisation :

Pour la modélisation, nous proposons de construire des composants qui sont

caractérisés par des services offerts, une implémentation « cachée » où le code est

accessible mais le concepteur n’a pas besoin de le modifier et aussi par des interfaces qui

définissent les paramètres à fournir et à produire. L’implémentation effective du

composant est fonction du point de vue et les exigences considérées.

Les interfaces choisies sont les places comme interfaces d’entrée et les transitions

comme interfaces de sortie. Les places reçoivent autant de jetons que de composants

producteurs et sont appropriées à la gestion de l’asynchronisme. Les transitions génèrent

autant de jetons que de composants consommateurs. Ce choix permet de :

 prendre en compte l’asynchronisme des calculateurs,

 garantir le caractère générique des composants,

 faciliter les connexions.

RÉSUMÉ EN FRANÇAIS

173

Figure 5, (a) interface de sortie (b) interface d’entrée

Construction des composants :

Pour construire les composants il est nécessaire d’analyser les protocoles. La

démarche d’analyse est une démarche descendante pour identifier les comportements

élémentaires communs. Chaque comportement commun identifié sera ensuite associé à un

composant élémentaire. Une fois ces composants construits, on propose une démarche

ascendante à partir de ces composants élémentaires pour une construction hiérarchique

de composant-composite.

Figure 6, Protocoles MAC

Pour l’illustrer les deux démarches, nous utilisons les deux protocoles MAC

Ethernet IEEE 802.3 et IEEE 802.11b DCF, figure 6. Ces deux protocoles sont des

protocoles de la même couche (protocoles MAC Data Link) qui se fondent sur le même

principe de détection de porteuse (protocoles CSMA). Ils disposent de comportements

communs comme :

RÉSUMÉ EN FRANÇAIS

174

 Vérifier le statut du canal pour l’envoi

 Traiter des collisions

 Traiter des données

Trois composants élémentaire peuvent être trouvés sur la base des résultats de ces

analyses: le composant channel/check, le composant Send/Receive modélisant l'envoi et

la réception de données, d’accusé de réception et de JAM, et le composant Backoff/ BEB.

Figure 7, Composant Send/receive

Le composant Send/Receive est présenté en figure 7. Le composant représente la

procédure de backoff et le traitement de collision. Avant un envoi, la machine met le

nombre des tentatives (place N). Elle le garde dans la place « Attempts ». Solen ce

nombre, elle choisi de manière aléatoire le backoff. Pour Ethernet il est entre 0 et 2X, X

dépend de nombre des tentatives. Par contre pour Wifi il est entre 0 et CW (contention

window). Pour décrémenter le backoff, le canal doit être libre (un jeton dans la place

« FreeC »). Si le statut de canal change la machine arrête de décrémenter le backoff, par

contre elle le garde jusqu’à ce que le statut redevienne libre. Ici, si le backoff devient 0, la

machine peut envoyer son message.

 Après l’envoi, si une collision se produit (un jeton dans la place « Retransmit? »)

la machine doit incrémente le nombre des tentatives. Si le nombre des tentatives de

dépasse pas le nombre maximal, elle doit le retransmettre le paquet. Sinon elle arrête de le

transmettre et elle le jette. Le tableau 2 montre les différents paramètres à modifier lors de

l’utilisation de ce composant pour chaque protocole.

RÉSUMÉ EN FRANÇAIS

175

Variable IEEE 802.11b 10M Ethernet 100M Ethernet

fun1(n) n<33 n<15 n<15

fun2(n) n=n*2 n=n+1 n=n+1

y 64 16 16

z 1 0 0

R(0, Q) Aléatoire(0, CW)
Aléatoire(0, 2X), X

dépend de n

Aléatoire(0, 2X), X

dépend de n

Fun(R) 0 R*51.2µs R*5.12µs

ST(t) 20µs 0 0

Tableau 2, paramètres de généricité

Modélisation ascendante :

Pour continuer la modélisation, un assemblage des composants élémentaires est utilisé

pour la construction de composants-composites. Cet assemblage consiste à sélectionner

les composants élémentaires approprié au composant-composite. Il faut parfois ajouter

des éléments de RdP pour finir l’assemblage, comme le montrent les figures 8 et 9.

Figure 8, machine du protocole 802.11b DCF

RÉSUMÉ EN FRANÇAIS

176

Figure 9, machine du protocole Ethernet

Validation expérimentale :

Pour voir la correction et la qualité de notre approche, la validation de la modélisation des

protocoles est très importante. Cette validation est faite par l’utilisation de simulation

(tableau 3) et une comparaison des résultats obtenus par notre modèle avec ceux obtenus

par d’autres méthodes.

Critère Analytique Simulation Mesure

Étape Tout Tout Aval

Temps requis Moyen Moyen Variable

Précision Basse Moyenne Variable

Coût Faible Moyen Élevé

« Scalabilité » Faible Moyen Élevé

Flexibilité Élevé Élevé Faible

Tableau 3, critères de choix d’une méthode pour la validation des modèles

RÉSUMÉ EN FRANÇAIS

177

L’outil le plus adapté à nos besoins est Renew : la modélisation de comportements

temporels, stochastiques, dynamiques, et l’identification des jetons.

Résultats de Simulation :

La comparaison des résultats de simulation obtenus par Renew et par le simulateur NS-2

(figure 10 et 11) permettent de valider notre approche. La figure 12 montre également le

temps nécessaire pour simuler le modèle sur Renew et NS-2.

Figure 10, Partage de bande passante

Figure 11, Wifi et Ethernet

0

0,5

1

1,5

2

2,5

3

0 2 4 6 8 10 12 14

Bande
passante
(Mbps)

Nœuds

Re…
NS-2

0

4

8

12

16

0 2 4 6 8 10 12 14

Temps
(msec)

Nœuds

Ethernet
Wifi

RÉSUMÉ EN FRANÇAIS

178

Figure 12, Temps de Simulation

Cas d’étude :

Un exemple illustratif est utilisé pour modéliser les services offerts par un système de

production manufacturier, figure 13. La technique de modélisation utilisée a été la même

que pour les protocoles de communication, c'est-à-dire à base d’approche par composants,

où chaque partie du système est modélisé hiérarchiquement : un service par machine.

Figure 13, Exemple d’un système de production manufacturier

0

6

12

18

0 2 4 6 8 10 12 14

Temps
(minutes)

Noeuds

Renew

NS2

RÉSUMÉ EN FRANÇAIS

179

La figure 14 montre les messages échangés pour faire un transfert

Figure 14, messages échangés pour faire un transfert

Conclusion :

L’approche que nous proposons pour la modélisation des systèmes de productions

manufacturiers en distribué dès la conception pour la prise en compte de l’architecture de

communication. La modélisation s’intéresse aux couches basses correspondant aux

réseaux locaux industriels. Pour la modélisation, nous avons adopté une approche par

composants. Ces composants sont réutilisables de type COTS qui baisse le coût de

développement pour la modélisation d’autres système. Ils facilitent aussi la modification

et la mise à jour de modèle sans touché l’ensemble de modèle globale. La modélisation

des composants était en fonction du point de vue qui peut être changé selon la nécessité

des concepteurs.

Les résultats que nous avons obtenus montrent la correction des modèles des protocoles et

des composants élémentaires proposés. Ce qui amène à faire étendre notre approche aux

différents systèmes distribués : bases de données, transport …

180

BIBLIOGRAPHY

181

BIBLIOGRAPHY

[Aalto03] A. Aalto, N. Husberg, and K. Varpaaniemi, “Automatic Formal Model

Generation and Analysis of SDL.” Lecture Notes in Computer Science, Vol. 2708, pp.

285-299, 2003.

[Alony07] I. Alony and A. Munoz, “The Bullwhip Effect in Complex Supply Chains.”

International Symposium on Communications and Information Technologies, ISCIT '07,

pp. 1355-1360, 2007.

[Alur92] R. Alur and D. Dill, “A Theory of Timed Automata.” Lecture Notes in Computer

Science, Vol. 600, pp. 45-73, 1992.

[Anastasi05] G. Anastasi, E. Borgia, M. Conti, and E. Gregori, “IEEE 802.11b Ad Hoc

Networks: Performance Measurements.” Cluster Computing, Vol. 8, No. 2-3, 2005.

[Baker05] S. Baker and S. Dobson, “Comparing service-oriented and distributed object

architectures.” In Proceedings of the International Symposium on Distributed Objects and

Applications, Lecture Notes in Computer Science, Vol. 3760, pp. 631–645, 2005.

[Barger03] P. Barger, J. Thiriet, and M. Robert, “Dependability analysis of a distributed

control or measurement architecture”, Proceedings of the 20th IEEE Instrumentation and

Measurement Technology Conference, IMTC '03, Vol. 1, pp. 473- 477, 2003.

[Bastide04] R. Bastide and E. Barboni, “Component-Based Behavioural Modelling with

High-Level Petri Nets.” In MOCA’04 Aahrus, Denmark, DAIMI, pp. 37-46, 2004.

[Belabbas07] A. Belabbas, “Conception de systèmes de contrôle/commande

reconfigurables pour l’assistance technique aux personnes handicapées.” PhD Thesis,

University of Bretagne-Sud, 2007.

[Bengtsson04] J. Bengtsson and W. Yi, “Timed Automata: Semantics, Algorithms and

Tools.” Lecture Notes in Computer Science, Vol. 3098, p. 87–124, 2004.

[Bernardi02] S. Bernardi, S. Donatelli, and J. Merseguer, “From UML Sequence

Diagrams and Statecharts to analysable Petri Net models.” Proceedings of the 3rd

international workshop on Software and performance , pp. 35-45, 2002.

BIBLIOGRAPHY

182

[Berruet98] P. Berruet, “Contribution au recouvrement des Systèmes Flexibles de

Production.” PdH thesis at Ecole Centrale de Lille, 1998.

[Berruet05] P. Berruet, J. Lallican, A. Rossi, and J-L. Philippe, “A component based

approach for the design of FMS control and supervision.” IEEE International Conference

on Systems, Man and Cybernetics, Vol. 4, pp. 3005-3011, 2005.

[Berruet07] P. Berruet, “Ingenerie de la Commande et Analyse des Systèmes

Reconfigurables.” Habilitation to supervise the rechearch, University of Bretagne Sud,

2007.

[Berthomieu07] B. Berthomieu, F. Peres, and F. Vernadat, “Model-checking Bounded

Prioritized Time Petri Nets.” In Proceedings of ATVA 2007. Springer Verlag, LNCS

4762, 2007.

[Bianchi00] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed

Coordination Function.” IEEE Journal on Selected Areas in Communications, Vol. 18,

No. 3, Mar. 2000.

[Bigand04] M. Bigand, O. Korbaa and J-P. Bourey, “Integration of FMS performance

evaluation models using patterns for an information system design”, Computers &

Industrial Engineering, Vol. 46, No. 4, pp. 625-637, 2004.

[Billington88] J. Billington, G. Wheeler, and M. Wilbur-Ham, “PROTEAN: A High-

Level Petri Net Tool for the Specification and Verification of Communication Protocols.”

IEEE Transactions on Software Engineering , Vol. 14, No. 3, pp. 301-316, 1988.

[Bolognesi87] T. Bolognesi and E. Brinskma, “Introduction to the ISO Specification

Language LOTOS.” Computer Networks and ISDN Systems, Vol. 14, pp. 92-100, Apr.

1987.

[Billington04] J. Billington, G. Gallasch, and B. Han, “A Coloured Petri Net Approach to

Protocol Verification .” Lectures on concurrency and Petri nets : advances in Petri nets,

Vol. 3098, pp. 210-290, 2004.

[Boukadi07] K. Boukadi, Ch. Ghedira, Z. Maamar, and D. Benslimane, “Specification

and verification of views over composite web services using High Level Petri-Nets.” In

proceedings of the 9th International Conference on Enterprise Information Systems

ICEIS, 2007.

BIBLIOGRAPHY

183

[Bourdeaud_huy06] T. Bourdeaud’huy and A. Toguyéni, “Analysis of Reconfiguration

Strategies Based On Petri Nets Models and Optimization Techniques.” 8th International

Workshop on Discrete Event Systems, pp. 319-324, 2006.

[Bourey88] J-P. Bourey, “Structuration de la partie procedurale du systeme de

commande de cellules flexibles dans l'industrie manufacturibre.” PhD Thesis, University

of Lille I, 1988.

[Bouyer03] P. Bouyer, “Untameable Timed Automata! (Extended Abstract).” Lecture

Notes in Computer Science, Vol. 2607, pp. 620-631, 2003.

[Brenner97] P. Brenner, “A Technical Tutorial on the IEEE 802.11 Protocol.”

BreezeCOM, 1997.

[Brereton00] P. Brereton and D. Budgen, “Component-Based Systems: A Classification

of Issues.” IEEE Computer, Vol. 33, No. 11, pp. 54-62, 2000.

[Brown96] A. Brown and K. Wdlnau, “Engineering of Component-Based Systems.”

Second IEEE International Conference on Engineering of Complex Computer Systems,

1996.

[Bubnicki05] Z. Bubnicki, “Modern Control Theory”. Springer-Verlag, 2005.

[Bucci05] G. Bucci, L. Sassoli, and E. Vicario, “Correctness verification and

performance analysis of real-time systems using stochastic preemptive time Petri nets.”

IEEE Transactions on Software Engineering, Vol. 31, No. 11, 2005.

[Burns01] R. Burns, “Advanced Control Engineering”. Butterworth-Heinemann, 2001.

[Capellmann99] C. Capellmann, H. Dibold, and U. Herzog, “Using high-level petri nets

in the field of intelligent networks.” Application of Petri Nets to Communication

Networks, Advances in Petri Nets, Vol. 1605, pp. 1-36, 1999.

[Carney00] D. Carney and F. Long, “What Do You Mean by COTS? Finally, a Useful

Answer.” IEEE Software, 2000.

[Carothers06] C. Carothers, R. Lafortune, W. Smith, and M. Gilder, “A Case Study in

Modeling Large-Scale Peer-to-Peer File-Sharing Networks using Discrete Event

Simulation .” Proceedings of the International Mediterranean Modeling Multiconference,

p. 617–624, 2006.

BIBLIOGRAPHY

184

[Cassandras08] C. Cassandras and S. Lafortune, “Introduction to Discrete Event

Systems”, 2nd ed. Springer Science+Business Media, LLC, 2008.

[Cerami02] E. Cerami, “Web Services Essentials Distributed Applications with XML-

RPC, SOAP, UDDI & WSDL”. O'Reilly & Associates, Inc., 2002.

[Chachkov01] S. Chachkov and D. Buchs, “From formal specifications to ready-to-use

software components: The concurrent object oriented Petri Net approach.” In

Proceedings of the International Conference on Application of Concurrency to System

Design, pp. 99-110, 2001.

[Cheesman01] J. Cheesman and J. Daniels, “UML Components: A Simple Process for

Specifying Component-Based Software”. Addison-Wesley, 2001.

[Chen08] L. Chen, Z. Shao, G. Fan, and X. Wang, “Modeling and Analyzing Distributed

Real-time and Embedded Systems with High-Level Petri Nets.” IEEE/ASME International

Conference on Mechtronic and Embedded Systems and Applications, MESA 2008, pp.

476-481, 2008.

[Chhabra07] A. Chhabra and G. Singh, “Parametric Identification for Comparing

Performance Evaluation Techniques in Parallel Systems.” Proceedings the 1st National

Conference on Challenges and Opportunities in Information Technology, COIT, pp. 92-

97, 2007.

[Cho99] K. Cho and J. Lim, “Mixed centralized/decentralized supervisory control of

discrete events dynamic systems.” Automatica, Vol. 35, No. 1, pp. 121-128, 1999.

[Cinderella07] Cinderella Official Website : http://www.cinderella.dk/ - 2007.

[Corin07] R. Corin, S. Etalle, P. Hartel, and A. Mader, “Timed Analysis of Security

Protocols.” Journal of Computer Security, Vol. 15, No. 6, pp. 619-645, 2007.

[Coulouris01] G. Coulouris, J. Dollimore, and T. Kindberg, “Distributed Systems:

Concepts and Design”, 3rd ed. Pearson Education, 2001.

[CPN07] Computer Tool for Coloured Petri Nets . CPN Tools:

http://wiki.daimi.au.dk/cpntools/cpntools.wiki - 2007.

[DaSilveira02a] M. Da Silveira and M. Combacau, “Supervision and Control of

Heterarchical Discrete Event Systems: The Laas Approach.” CBA - Congresso Brasileiro

de Automática,, 2002.

BIBLIOGRAPHY

185

[DaSilveira02b] M. Da Silveira, M. Combacau, and A. Subias, “From centralized to

distributed models: A systematic procedure based on Petri nets.” SMC - IEEE

International Conference, 2002.

[DeLamotte05] F. De Lamotte, P. Berruet, and J.-L. Philippe, “Using model

transformation for the analysis of the architecture of a reconfigurable system.” IMACS

2005 world congress, 2005.

[Diaz87] M. Diaz, “Petri Nets Based Models in the Specification and Verification of

Protocols.” Lecture Notes In Computer Science, Vol. 255, pp. 135-170, 1987.

[Diaz91] M. Diaz and B. Berthomieu, “Modeling and Verification of Time Dependent

Systems Using Time Petri Nets.” IEEE Transactions on Software Engineering, Vol. 17,

No. 3, 1991.

[Diaz06] G. Diaz, J. Pardo, M. Cambronero, V. Valero, and F. Cuartero, “Verification of

Web Services with Timed Automata.” Electronic Notes in Theoretical Computer Science,

Vol. 157, No. 2, pp. 19-34, 2006.

[Díaz08] M. Díaz, D. Garrido, L. Llopis, and J. Troya, “Designing distributed software

with RT-CORBA and SDL.” Computer Standards & Interfaces, 2008.

[Dong04] J. Dong, P. Hao, S. Qin, J. Sun, and W. Yi, “Timed patterns: TCOZ to Timed

Automata.” Lecture Notes in Computer Science, ICFEM’04 , Vol. 483-498, p. 3308,

2004.

[Drosos01] C. Drosos, M. Zayadine, and D. Metafas, “Real-Time Communication

Protocol Development Using SDL for an Embedded System On Chip Based on ARM

Microcontroller.” 13th Euromicro Conference on Real-Time Systems, pp. 89-94, 2001.

[DSouza99] D. D’Souza and A. Wills, “Objects, Components, and Frameworks with

UML: The Catalysis Approach”. Addison-Wesley, 1999.

[Dulaney09] E. Dulaney, “CompTIA Security+™ Study Guide”, 4th ed. Wiley

Publishing, Inc., 2009.

[Eddon99] G. Eddon and H. Eddon, “Inside COM+ Base Services”. Microsoft Press ,

1999.

[Edwards97] S. Edwards, D. Gibson, B. Weide and S. Zhupanov, “Software Component

Relationships”, In Proc. 8th Annual Workshop on Software Reuse, 1997.

BIBLIOGRAPHY

186

[Eichner05] C. Eichner, H. Fleischhack, R. Meyer, S. U, and C. Stehno, “Compositional

Semantics for UML 2.0 Sequence Diagrams Using Petri Nets.” Lecture Notes in

Computer Science, Vol. 3530, pp. 133-148, 2005.

[Engels02] G. Engels, J. Hausmann, R. Heckel, and S. Sauer, “Testing The Consistency of

Dynamic UML Diagrams.” Proceedings of the 6th International Congress of Integrated

Design and Process Technology , IDPT, 2002.

[Erl05] T. Erl, “Service-Oriented Architecture: Concepts, Technology, and Design”.

Prentice Hall PTR, 2005.

[Ethier86] S. Ethier and T. Kurtz, “Markov Processes Characterization and

Convergence”. John Wiley & Sons, Inc. , 1986.

[Evangelista05] S. Evangelista, “High Level Petri Nets Analysis with Helena.” Lecture

Notes in Computer Science, Vol. 3536/2005, pp. 455-464, 2005

 [Fadali09] M. Fadali and A. Visioli, “Digital Control Engineering : Analysis and

Design”. Elsevier Inc., 2009.

[Fishman01] G. Fishman, “Discrete-Event Simulation: Modeling, Programming, and

Analysis”. Springer Series in Operations Research, Springer-Verlag, 2001.

[Fortier03] P. Fortier and H. Michel, “Computer Systems Performance Evaluation and

Prediction”. Digital Press , 2003.

[Foster95] I. Foster, “Designing and Building Parallel Programs: Concepts and Tools

for Parallel Software Engineering”. Addison-Wesley Longman Publishing Co., Inc.,

1995.

[FWang08] F. Wang and D. Liu, “Networked Control Systems: Theory and

Applications”. Springer-Verlag London Limited, 2008.

[Gan06] B. Gan, L. Chan, and S. Turner, “Interoperating Simulations of Automatic

Material Handling Systems and Manufacturing Processes.” Proceedings of the Winter

Simulation Conference, WSC 06, pp. 1129-1135, 2006.

[Geisterfer06] C. Geisterfer and S. Ghosh, “Software Component Specification: A Study

in Perspective of Component Selection and Reuse.” Fifth International Conference on

Commercial-off-the-Shelf (COTS)-Based Software Systems, pp. 100-108, 2006.

BIBLIOGRAPHY

187

[Giordano06] V. Giordano, J. Zhang, D. Naso, M. Wong, F. Lewis, and A. Carbotti,

“Matrix-based discrete event control of automated material handling systems.”

Proceedings of the 45th IEEE Conference on Decision & Control, 2006.

[Glabbeek08] R. Glabbeek, U. Goltz, and J. Schicke, “On Synchronous and

Asynchronous Interaction in Distributed Systems.” Proceedings of the 33rd international

symposium on Mathematical Foundations of Computer Science, Vol. 5162, pp. 16-35,

2008.

[Godary04] K. Godary, I. Augé-Blum, and A. Mignotte, “SDL and timed petri nets

versus UPPAAL for the validation of embedded architecture in automotive.” Forum on

specification and Design Language, FDL, 2004.

[Gössler03] G. Gössler and J. Sifakis, “Composition for Component-Based Modeling.” In

Proceedings of the First International Symposium on Formal Methods for Components

and Objects, FMCO 2002, Vol. LNCS 2852, pp. 443-466, 2003.

[Gössler07] G. Gössler, S. Graf, M. Majster-Cederbaum, M. Martens, and J. Sifakis, “An

Approach to Modelling and Verification of Component Based Systems.” Lecture Notes in

Computer Science, SOFSEM 2007: Theory and Practice of Computer Science, Vol. 4362,

pp. 295-308, 2007.

[Gouyon04] D. Gouyon, “Product Driven Control of Manufacturing Execution Systems:

synthesis techniques contribution.” PhD Thesis, Nancy-I, 2004.

[Haugen04] Ø. Haugen, B. Møller-Pedersen, and T. Weigert, “Structural Modeling with

Uml2.0: Classes, Interactions and State Machines.” UML for Real, pp. 53-76, 2004.

[Haverkort98] B. Haverkort, “Performance of Computer Communication Systems: A

Model-Based Approach”. John Wiley & Sons, Ltd, 1998.

[Heck03] B. Heck, L. Wills, and G. Vachtsevanos, “Software Technology for

Implementing Reusable, Distributed Control Systems.” IEEE Control Systems Magazine,

Vol. 23, pp. 21-35, 2003.

[Hendriks06] M. Hendriks and M. Verhoef, “Timed Automata Based Analysis of

Embedded System Architectures.” 20th International Parallel and Distributed Processing

Symposium, IPDPS, 2006.

BIBLIOGRAPHY

188

[Henry05] S. Henry, “Synthèse de Lois de commande pour la configuration et la

reconfiguration des systèmes industriels complexes.” Institut National Polytechnique de

Grenoble - INPG, 2005.

[Heusse03] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda, “Performance

anomaly of 802.11 b.” INFOCOM, 2003.

[Hinz05] S. Hinz, K. Schmidt and C. Stahl, “Transforming BPEL to Petri Nets.” Lecture

Notes in Computer Science, Vol. 3649/2005, pp. 220-235, 2005.

[Hong08] D. Hong and Y. Seo, “A Hybrid Simulation Model for Manufacturing Systems

Using Event-State-Operation Transitions.” IEEE International Conference on Industrial

Engineering and Engineering Management, IEEM, pp. 1413-1417, 2008.

[Huang98] C. Huang and A. Kusiak, “Modularity in Design of Products and Systems.”

IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans,

Vol. 28, No. 1, 1998.

[Huvenoit93] B. Huvenoit, E. Craye, and J. Bourey, “Implantation oriented methodology

in design control of flexiblemanufacturing systems.” Proceedings of Computers in Design,

Manufacturing, and Production, CompEuro 93, pp. 125-131, 1993.

[IBM09] IBM Cell SDK. Cell Broadband Engine Resource Center:

http://www.ibm.com/developerworks/power/cell/ - 2009.

[IEC09] The International Engineering Constorium. Specification Description Language:

http://www.iec.org/online/tutorials/acrobat/sdl.pdf - 2009.

[IEEE02] IEEE Std 802.3™, “Carrier sense multiple access with collision detection

(CSMA/CD) access method and physical layer specifications.” 2002.

[IEEE07] IEEE Computer Society, “Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) Specifications.” IEEE Std. 802.11™, 2007.

[IEEE09] IEEE. IEEE 802.3 Ethernet Working Group:

 http://www.ieee802.org/3/ - 2009.

[IEEE802] 802 - Overview & Architecture : http://www.ieee802.org/1/pages/802.html -

2007.

[ISO09] International Organization for Standardization : http://www.iso.org/iso/home.htm

- 2009.

BIBLIOGRAPHY

189

[ITUT94] International Telecommunication Union, ITU-T, “Open System

Interconnection - Model and Notation.” ITU-T Recommendation X.200, 1994.

[JADE99] JADE Official Website : http://homepages.dcc.ufmg.br/~coelho/jade.html -

1999.

[Jain91] R. Jain, “The Art of Computer Systems Performance Analysis: Techniques for

Experimental Design, Measurement, Simulation, and Modeling ”. John Wiley &

Sons,Inc., 1991.

[Jensen91] Kurt Jensen, “Coloured Petri nets: A high level language for system design

and analysis”, Lecture Notes in Computer Science, Vol. 483/1991, pp. 342-416, 1991.

[Jia05] W. Jia and W. Zhou, “Distributed Network Systems: From Concepts to

Implementations”. Springer Science + Business Media, Inc., 2005.

[JWang07] J. Wang, “Petri nets for dynamic event-driven system modeling.” Handbook

of Dynamic System Modeling, 2007.

[Kamrani02] A. Kamrani and S. Salhieh, “Product Design for Modularity .” Springer,

2002.

[Khomenko03] V. Khomenko and M. Koutny, “Branching Processes of High-Level Petri

Nets.” Proceeding of International Conference on Tools and Algorithms for the

Construction and Analysis of Systems TACAS, Vol. 2619/2003, pp. 458-472, 2003.

[Kim07] T. Kim, Q. Yang, S. Park, and Y. Shin, “SDL Design and Performance

Evaluation of a Mobility Management Technique for 3GPP LTE Systems.” Lecture Notes

in Computer Science, Vol. 4745, pp. 272-288, 2007.

[Kohler05] M. Kohler and J. Ortmann, “Formal Aspects for Semantic Service Modeling

Based on High-Level Petri Nets.” International Conference on Computational Intelligence

for Modelling, Control and Automation, Vol. 1, pp. 107-112, 2005.

[Kozierok05] C. Kozierok, “The TCP/IP Guide: A Comprehensive, Illustrated Internet

Protocols Reference”, 3rd ed. No Starch Press, 2005.

[Kristensen04] L. Kristensen, J. Jørgensen, and K. Jensen, “Application of Coloured

Petri Nets in System Development.” Lecture Notes in Computer Science, Vol. 3098, pp.

626-685, 2004.

[KRONOS02] VERIMAG. The tool Kronos:

BIBLIOGRAPHY

190

http://www-verimag.imag.fr/TEMPORISE/kronos/ - 2002.

[Kryvyy08] S. Kryvyy and L. Matvyeyeva, “Algorithm of Translation of MSC-specified

System into Petri Net.” Special Issue on Concurrency Specification and Programming

(CS&P), Vol. 79, No. 3-4, pp. 431-445, 2008.

[Kummer04] O. Kummer, et al., “An Extensible Editor and Simulation Engine for Petri

Nets: Renew.” Lecture Notes in Computer Science, Vol. 3099, pp. 484-493, 2004.

[Kumar07] P. Kumar and S. Radha, “Parallel Discrete Event Simulation of IEEE 802.11

MAC Layer using Cell Processor.” International Conference on Emerging Trends in High

Performance Architecture Algorithms & Computing, HiPAAC, 2007.

[Kumar09] N. Kumar and R. Sridharan, “Simulation modelling and analysis of part and

tool flow control decisions in a flexible manufacturing system .” Robotics and Computer-

Integrated Manufacturing, 2009.

[LAGIS09] Le Laboratoire d'Automatique, Génie Informatique et Signal. LAGIS :

http://lagis.ec-lille.fr/ - 2009.

[Lai02] R. Lai, “A survey of communication protocol testing.” The Journal of Systems

and Software, Vol. 62, No. 1, p. 21–46, 2002.

[Lakos95] C. Lakos, “From Coloured Petri Nets to Object Petri Nets.” Lecture Notes in

Computer Science, Vol. 935, PATPN, 1995.

[Lakos02] C. Lakos, “The Challenge of Object Orientation for the Analysis of

Concurrent Systems.” Lecture Notes in Computer Science, Vol. 2360, pp. 59-67, 2002.

[Lallican07] J-L. Lallican, “Proposition d’une approche composant pour la conception de

la commande des systèmes transitiques.” PhD Thesis University of Bretagne-Sud, 2007.

[Lammle08] T. Lammle, “CCENT: Cisco Certified Entry Networking Technician Study

Guide”. Wiley Publishing, Inc.,, 2008.

[Langlois02] R. Langlois, “Modularity in technology and organization.” Journal of

Economic Behavior & Organization, Vol. 49, p. 19–37, 2002.

[Larsen05] K. Larsen, M. Mikucionis, B. Nielsen, and A. Skou, “Testing real-time

embedded software using UPPAAL-TRON: an industrial case study.” Proceedings of the

5th ACM international conference on Embedded software , pp. 299-306, 2005.

BIBLIOGRAPHY

191

[Latkoski07] P. Latkoski and L. Gavrilovska, “Analysis of Bluetooth Protocol in

Presence of Bursty Traffic.” Journal of Communications, Vol. 2, No. 6, pp. 38-45, 2007.

[Lee04] J. Lee and P. Hsu, “Design and Implementation of the SNMP Agentsfor Remote

Monitoring and Control via UMLand Petri Nets.” IEEE transactions on control systems

technology, Vol. 12, No. 2, pp. 293-302, 2004.

[Lejri08] O. Lejri and M. Tagina, “Modeling Hybrid Reconfigurable Manufacturing

Systems Using Petri Nets”, Communications of SIWN, Vol. 3, pp. 130-134, 2008.

[Lerner02] M. Lerner, G. Vanecek, N. Vidovic, and D. Vrsalovic, “Middleware

Networks Concept, Design and Deployment of Internet Infrastructure”. Kluwer Academic

Publishers, 2002.

[Lewis98] G. Lewis and C. Lakos, “Towards Incremental Analysis.” First IEEE

Workshop on Formal Methods for Dependable Systems, FMDS'98, 1998.

[Liang06] H. Liang, J. Dingel, and Z. Diskin, “A Comparative Survey of Scenario-based

to State-based Model Synthesis Approaches.” Proceedings of the international workshop

on Scenarios and state machines: models, algorithms, and tools, SCESM'06, pp. 5 – 12,

2006.

[Lim08] H. Lim, B. Wang, C. Fu, A. Phull, and D. Ma, “A Middleware Services

Simulation Platform forWireless Sensor Networks.” The 28th International Conference on

Distributed Computing Systems Workshops, ICDCS, pp. 168-173, 2008.

[Lin90] F. Lin and W. Wonham, “Decentralized supervisory control of discrete event

systems with partial observation.” IEEE transaction in Automatic Control, Vol. 35, pp.

1330-1337, 1990.

[Liu08] X. Liu, G. Yin, and Z. Zhang, “A kind of Object-Oriented Petri Net and its

Application.” International Conference on Internet Computing in Science and

Engineering, ICICSE '08, pp. 541-544, 2008.

[Mallet06] F. Mallet, M. Peraldi-Frati, and C. André, “From UML to Petri Nets for non

functional Property Verification.” First IEEE Symposium on Industrial Embedded

Systems (IES'06), pp. 1-9, 2006.

BIBLIOGRAPHY

192

[Masri08a] A. Masri, T. Bourdeaud'huy, and A. Toguyeni, “Performance Analysis of

IEEE 802.11b Wireless Networks with Object Oriented Petri Nets”, Proceedings of First

International Workshop on Formal Methods for Wireless Systems

FMWS’08/CONCUR’08, Toronto, Canada, August 2008. (A special version for ENTCS

is at August 2009).

[Masri08] A. Masri, T. Bourdeaud'huy, and A. Toguyeni, “Network Protocol Modeling:

A Time Petri Net Modular Approach.” 16th International Conference on Software,

Telecommunications and Computer Networks, SoftCOM 2008, pp. 274-278, Split -

Dubrovnik, Croatia, September 2008.

[Masri09a] A. Masri, T. Bourdeaud'huy, and A. Toguyeni, “A Component Modular

Modeling Approach Based on Object Oriented Petri Nets for the Performance Analysis of

Distributed Discrete Event Systems”, The Fifth International Conference on Networking

and Services ICNS’09 Valencia, Spain, April, 2009. (Best Paper Award)

[Masri09b] A. Masri, T. Bourdeaud'huy, and A. Toguyeni, “A component-based

approach based on High-Level Petri Nets for modeling Distributed Control Systems”,

International Journal on Advances in Intelligent Systems, Vol. 2, No. 3, Online

publication End September 2009.

[Masri09] A. Masri, T. Bourdeaud'huy, and A. Toguyeni, “Performance Evaluation of

Distributed Systems: A Component-Based Modeling Approach based on Object Oriented

Petri Nets”. In Book “Petri nets”, ISBN 978-953-7619-X-X, Publication End November

2009.

[Matena03] V. Matena, S. Krishnan, L. DeMichiel, and B. Stearns, “Applying Enterprise

JavaBeans: Component-Based Development for the J2EE Platform”, 2nd ed. The Java

Series. Addison-Wesley, 2003.

[Melia06] T. Melia, R. Aguiar, A. Sarma, and D. Hogrefe, “Case study on the use of SDL

for Specifying an IETF micro mobility protocol.” First International Conference on

Communication System Software and Middleware, Comsware , 2006.

[Mendez02] H. Mendez, “Synthèse de lois de surveillance pour les procédés industriels

complexes.” Institut National Polytechnique de Grenoble - INPG , 2002.

BIBLIOGRAPHY

193

[Merlin76] P. Merlin and D. Farber, “Recoverability of communication protocols:

Implications of a theoretical study.” IEEE Tr. Comm., Vol. 24, No. 9, pp. 1036-1043,

1976.

[Meyer97] B. Meyer, “Object-Oriented Software Construction ”, 2nd ed. Prentice Hall,

1997.

[Microsoft96] Microsoft Corporation. DCOM Technical Overview:

http://msdn.microsoft.com/en-us/library/ms809340.aspx - 0996.

[Mieghem06] P. Mieghem, “Performance Analysis of Communications Networks and

Systems ”. Cambridge University Press, 2006.

[Mir07] N. Mir, “Computer and Communication Networks”. Prentice Hall, Inc, 2007.

[Moldt03] D. Moldt and H. Rolke, “Pattern Based Workflow Design Using Reference

Nets.” Lecture Notes in Computer Science, Vol. 2678, p. 246–260, 2003.

[Moraes06] R. Moraes, P. Portugal, and F. Vasques, “A Stochastic Petri Net Model for

the Simulation Analysis of the IEEE 802.11e EDCA Communication Protocol.” IEEE

Conference on Emerging Technologies and Factory Automation, ETFA '06, pp. 38-45,

2006.

[Moreno08] R. Moreno, D. Tardioli, and J. Salcedo, “Distributed Implementation of

Discrete Event Control Systems based on Petri Nets.” IEEE International Symposium on

Industrial Electronics, ISIE 2008, pp. 1738-1745, 2008.

[Murata89] T. Murata, “Petri nets: Properties, Analysis and Applications.” Proc. of the

IEEE, Vol. 77, No. 4, 1989.

[Nepomniaschy08] V. Nepomniaschy, D. Beloglazov, T. Churina, and M. Mashukov,

“Using Coloured Petri Nets to Model and Verify Telecommunications Systems.” Lecture

Notes in Computer Science, Vol. 5010, pp. 360-371, 2008.

[Newcomer03] E. Newcomer, “Understanding Web Services: XML, WSDL, SOAP, and

UDDI”. Addison Wesley, 2003.

[NS208] NS2. Official Website : http://nsnam.isi.edu/nsnam/index.php/Main_Page -

2008.

[OMA09] Object Management Group OMG. Object Management Architecture:

http://www.omg.org/oma/ - 2009.

BIBLIOGRAPHY

194

[OMG09a] The Object Management Group OMG. CORBA Component Model CCM :

http://www.omg.org/ - 2009.

[OMG09] The Object Management Group. OMG : http://www.omg.org/ - 2009.

[OMNet09] OMNeT++ Community Site. http://www.omnetpp.org/ - 2009.

[OPNET09] OPNET Technologies, Inc. http://www.opnet.com/ - 2009.

[P2PSim05] P2PSim. Simulator for Peer-To-Peer Protocols:

http://pdos.csail.mit.edu/p2psim/index.html - 2005.

[Pahl07] G. Pahl, W. Beitz, J. Feldhusen, and K. Grote, “Engineering Design A

Systematic Approach”, 3rd ed. Springer-Verlag London Limited, 2007.

[Paraskevopoulos02] P. Paraskevopoulos, “Modern Control Engineering”. Marcel

Dekker, Inc., 2002.

[Penix98] J. Penix and P. Alexander, “Using formal specifications for component

retrieval and reuse.” In Proc. of the 31st Hawaii International Conference on System

Sciences, Vol. 3, pp. 356-365, 1998.

[Peterson03] L. Peterson and B. Davie, “Computer Networks: A Systems Approach”, 3rd

ed. Morgan Kaufmann Publishers, 2003.

[Peterson81] J. Peterson, “Petri Net Theory and the Modeling of Systems”. Prentice-hall

International, 1981.

[Petin05] J. Petin, P. Berruet, A. Toguyeni, and E. Zamaï, “Impact of information and

communication emerging technologies in automation engineering : outline of the intica

proj.” 1st Workshop on Networked Control System and Fault Tolerant Control, 2005.

[Petri66] C. A. Petri, “Communication with Automata.” Technical Report RADC-TR-65-

377 Rome Air Dev. Center, New York, 1966.

[Petrucci05] L. Petrucci, “Modularity and Petri Nets.” 7th International Symposium on

Programming and Systems, ISPS, 2005.

 [PNW09] Petri Nets World: http://www.petrinetz.de/ - 2009.

[Puder06] A. Puder, K. Römer, and F. Pilhofer, “Distributed Systems Architecture: A

Middleware Approach ”. Morgan Kaufmann Publishers, Elsevier Inc., 2006.

BIBLIOGRAPHY

195

[Ramadge87] P. Ramadge and W. Wonham, “Supervisory control of a class of discrete

event processes.” SIAM Journal on Control and Optimization, Vol. 25, No. 1, pp. 206-

230, 1987.

[Ramadge89] P. Ramadge and W. Wonham, “The Control of Discrete Event Systems.”

Proceedings of the IEEE, Vol. 77, No. 1, 1989.

[Ramchandani74] C. Ramchandani, “Analysis of Asynchronous Concurrent Systems by

Timed Petri Nets.” Project MAC, TR120, M.I.T., 1974.

[Renew08] The Reference Net Workshop. Renew : http://www.renew.de/ - 2008.

[RFC1180] T. Socolofsky and C. Kale, “ RFC 1180 - A TCP/IP Tutorial.” Spider

Systems Limited, 1991.

[Rofail99] A. Rofail and Y. Shohoud, “Mastering COM and COM+ ”. Sybex, Inc. , 1999.

[Rumbaugh99] J. Rumbaugh, I. Jacobson, and G. Booch, “The Unified Modeling

Language Reference Manual”. Addison Wesley, Inc., 1999.

[Sametinger97] J. Sametinger, “Software engineering with reusable components”,

Springer, 1997.

[Sankar05] K. Sankar, S. Sundaralingam, A. Balinsky, and D. Miller, “Cisco Wireless

LAN Security”. Cisco Press, 2005.

[Sarjoughian05] H. Sarjoughian, W. Wang, K. Kempf, and H. Mittelmann, “Hybrid

discrete event simulation with model predictive control for semiconductor supply-chain

manufacturing.” Proceedings of the 37th Conference on Winter Simulation, pp. 256 –

266, 2005.

[Schoop00] R. Schoop and R. Neubert, “Agent-oriented material flow control system

based on DCOM”, Third IEEE International Symposium on Object-Oriented Real-Time

Distributed Computing, ISORC, pp. 342-345, 2000

[Schriber05] T. Schriber and D. Brunner, “Inside discrete-event simulation software:

How it works and why it matters.” Proceedings of the Winter Simulation Conference, pp.

167-177, 2005.

[SDL09] SDL Forum Society : http://www.sdl-forum.org/ - 2009.

[Seyler02] F. Seyler and P. Aniorte, “A Component Meta Model for Reused-Based System

Engineering.” Workshop in Software Model Engineering, Dresden, German, 2002.

BIBLIOGRAPHY

196

[SOCRADES09] The SOCRADES Project: http://www.socrades.eu/Home/default.html -

2009.

[Spurgeon00] C. Spurgeon, “Ethernet The Definitive Guide”, 1st ed. O'Reilly &

Associates, Inc, 2000.

[Srinivasan95a] R. Srinivasan, “RFC1831 - RPC: Remote Procedure Call Protocol

Specification Version 2.” Sun Microsystems, 1995.

[Stallings07] W. Stallings, “Data and Computer Communications”, 8th ed. Prentice-Hall,

Inc, 2007.

[Subramanian05] R. Subramanian and B. Goodman, “Peer-to-Peer Computing: The

Evolution of a Disruptive Technology”. Idea Group Publisher,, 2005.

[Sun09a] Sun Developer Network (SDN). Java Sun : http://java.sun.com/ - 2009.

[Sun09b] Sun Microsystems. JavaTM Remote Method Invocation (RMI):

http://java.sun.com/j2se/1.3/docs/guide/rmi/ - 2009.

[Tanenbaum03] A. Tanenbaum, “Computer Networks”, 4th ed. Prentice Hall, 2003.

[Tanenbaum95] A. Tanenbaum, “Distributed Operating Systems”. Prentice Hall, 1995.

[Tari01] Z. Tari and O. Bukhres, “Fundamentals of Distributed Object Systems: The

CORBA Perspective”. John Wiley & Sons, Inc., 2001.

[Thai02] T. Thai and H. Lam, “.NET Framework Essentials”, 2nd ed. O’Reilly Media,

2002.

[Tina09] Laas - CNRS. TIme Petri Nets : http://www.laas.fr/tina - 2009.

[Toguyeni06] A. Toguyeni, “Design of Modular and Hierarchical Controllers for

Reconfigurable Manufacturing Systems.” IMACS Multiconference on Computational

Engineering in Systems Applications, Vol. 1, pp. 1004-1011, 2006.

[Tsai05] M. Tsai and L. Lin, “Web-based distributed manufacturing control systems”,

The International Journal of Advanced Manufacturing Technology , Vol. 25, No. 5-6, pp.

608-618, 2005.

[UML09] OMG. Unified modeling language UML : http://www.omg.org/uml - 2009.

[UPPAAL09] UPPAAL Official Website : http://www.uppaal.com/ - 2009.

[Verma04] D. Verma, “Legitimate Applications of Peer-to-Peer Networks”. John Wiley

& Sons, Inc., 2004.

BIBLIOGRAPHY

197

[Vojnar01] T. Vojnar, “Towards Formal Analysis and Verification over State Spaces of

Object-Oriented Petri Nets.”, PhD thesis, 2001.

[W3C01] W3C. URIs, URLs, and URNs: Clarifications and Recommendations 1.0 :

http://www.w3.org/TR/uri-clarification/ - 2001.

[W3C09] W3C. World Wide Web : http://www.w3.org/ - 2009.

[Weber07] D. Weber, J. Glaser, and S. Mahlknecht, “Discrete Event Simulation

Framework for Power Aware Wireless Sensor Networks.” 5th IEEE International

Conference on Industrial Informatics, Vol. 1, pp. 335-340, 2007.

[Werner05] C. Werner, X. Fu, and D. Hogrefe, “Modeling Route Change in Soft-State

Signaling Protocols Using SDL: A Case of RSVP.” Lecture Notes in Computer Science,

Vol. 3530, pp. 174-186, 2005.

[Werner06] C. Werner, S. Kraatz, and D. Hogrefe, “A UML Profile for Communicating

Systems.” Lecture Notes in Computer Science, Vol. 4320, pp. 1-18, 2006.

[Weyuker98] E. Weyuker, “Testing Component-Based Software: A CautionaryTale.”

IEEE Software, Vol. 15, No. 5, pp. 54-59, 1998.

[Woodside95] M. Woodside, J. Neilson, D. Petriu, and S. Majumdar, “The Stochastic

Rendezvous Network Model for Performance of Synchronous Client-Server-like

Distributed Software.” IEEE Transactions on Computers, Vol. 44, No. 1, pp. 20-34, 1995.

[Wu07] Y. Wu, K. Zhang, X. Wang, and J. Tian, “Extending metadata with scenarios in

adaptive distributed system.” Journal of Network and Computer Applications, Vol. 30,

No. 4, pp. 1283-1294, 2007.

[Xu07] T. Xu and T. Tang, “The modeling and Analysis of Data Communication System

(DCS) in Communication Based Train Control (CBTC) with Colored Petri Nets.” Eighth

International Symposium on Autonomous Decentralized Systems, ISADS '07, pp. 83-92,

2007.

[Yovine97] S. Yovine, “KRONOS: a verification tool for real-time systems.”

International Journal on Software Tools for Technology Transfer (STTT), Vol. 1, No. 1-2,

pp. 123-133, 1997.

BIBLIOGRAPHY

198

[Zamaï98] E. C.-S. A. Zamaï and M. Combacau, “An architecture for control and

monitoring of discrete events systems.” Computers in Industry, Vol. 36, No. 1 - 2, pp. 95-

100, 1998.

[Zamaï06] E. Zamaï, “Contribution à la ConduiteRéactive de Flux en Contexte

incertain.” Institut National Polytechnique de Grenoble - INPG, 2006.

[Zhang01] W. Zhang, M. Branicky, and S. Phillips, “Stability of Networked Control

Systems.” IEEE Control Systems Magazine, Vol. 21, pp. 84-99, 2001.

[Zimmermann80] H. Zimmermann, “OS1 Reference Model-The IS0 Model of

Architecture for Open Systems Interconnection.” IEEE Transactions on Communications,

Vol. COM-28, No. 4, 1980.

[ZWang07] Z. Wang, X. Peng, and Z. Ji, “Interactive multimedia synchronization model

based on Petri Nets.” Wuhan University Journal of Natural Sciences, Vol. 12, No. 6, pp.

1019-1023, 2007.

Abstract: Manufacturing systems belong to the class of distributed discrete event
systems. Their size requires distributing the software to control them on architecture of
several industrial computers connected by networks. In this context, it becomes crucial to
be able to evaluate the impact of a specific architecture on the manufacturing systems
services both in terms of performance and quality. The performance of the underlying
network can notably affect the productivity of the system. In traditional methodology
proposed in literature, this aspect is not taken into account in the design stage. Thus,
modeling such systems is important to verify some properties at that stage. In this thesis,
we propose a component-based modeling approach with High Level Petri nets based
method for modeling some network protocols in order to evaluate the manufacturing
systems as being distributed systems. The selection of Petri nets is justified by their
expression power with regard to the modeling of distributed and concurrent systems.
Component-based approach can decrease modeling complexity and encourages
genericity, modularity and reusability of ready-to-use components. This allows building
new models easily and reducing the systems development cost. Moreover, this can help in
better managing services and protocols and to easily change/modify a system element.
Finally, this modeling enables us to evaluate discrete event systems by means of
centralized simulations.
Key-words: Communication Networks, Distributed Systems, Protocols, Manufacturing
Systems, High-Level Petri Nets, Component-based Modeling

Résumé : Les systèmes de production manufacturiers sont une classe des systèmes
à événements discrets. Leur taille nécessite de distribuer le logiciel de contrôle sur une
architecture industrielle de plusieurs ordinateurs reliés en réseau. Dans ce contexte, il
devient essentiel d'être capable d'évaluer l'impact d'une architecture réseau spécifique sur
les services des systèmes manufacturiers en termes de la performance et la qualité. Les
performances du réseau sous-jacent peuvent notamment nuire à la productivité du
système. Dans la méthodologie traditionnelle proposée dans la littérature, cet aspect n'est
pas pris en compte au niveau conception. Cependant, la modélisation de tels systèmes est
importante pour vérifier certaines propriétés. Dans cette thèse, nous proposons une
approche de modélisation par composants à l’aide des réseaux de Petri haut niveau pour
la modélisation de certains protocoles de réseaux afin d'évaluer les systèmes
manufacturiers comme étant des systèmes distribués. La sélection des réseaux de Petri est
justifiée par leur pouvoir d'expression en ce qui concerne la modélisation des systèmes
distribués et concurrents. L’approche par composants permet de diminuer la complexité
de la modélisation et encourage la généricité, la modularité et la réutilisabilité des
composants prêt-à-utiliser. Cela permet de construire facilement de nouveaux modèles et
de réduire les coûts de développement de systèmes. En outre, cela peut aider à une
meilleure gestion des services et des protocoles et à changer facilement/modifier un
élément du système. Notre modélisation permet enfin d'évaluer ces systèmes par le biais
de simulations centralisées.

Mots-clés : Réseaux de Communication, Systèmes Distribués, Protocoles, Systèmes de
Production Manufacturés, Réseaux de Petri Haut Niveau, Modélisations par Composants.

	Cover-fr
	Cover
	titre
	ThesisAladdinMasri-1507
	resume

