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Contribution a I'’extension de I'approche
énergétique a la représentation des

systemes a parametres distribués

Tout phénomene, qu’il soit biologique, géologique ou mécanique
peut étre décrit a 'aide des lois de la physique en termes d’équations
différentielles, algébriques ou intégrales, mettant en relation différentes
variables physiques.

L’étude des phénomenes physiques implique deux taches
importantes : la formulation d’'un modele mathématique et une analyse
numérique pour le modele considéré.

La conception du modeéle mathématique nécessite de bonnes
connaissances dans les domaines concernés (lois de la physique), et, tres
souvent, sur certains outils mathématiques. C’est une tache difficile et
parfois longue, qui demande du temps et des efforts afin d’obtenir un
modele réaliste qui est capable de satisfaire les demandes de
|'utilisateur.

Les résultats, sous forme d’équations différentielles pour I'étude
dynamique, établissent un lien entre les variables nécessaires a la
compréhension et/ou la conception des systéemes. Dans
I'accomplissement de cette tdche, des hypotheses concernant le
fonctionnement du processus sont faites. Dans la simulation numérique

nous utilisons des algorithmes numériques et I'ordinateur pour évaluer



le modele mathématique et faire l'estimation des caractéristiques du
processus.

L’approche bond graph a une place importante parmi les
approches utilisées pour la représentation des systémes. Cest un
langage graphique qui utilise le principe d’analogie, pour différents
domaines physiques, permettant la modélisation et la simulation. Il est
basé sur I'étude des échanges de puissance au sein du systéme et entre le
systeme et son environnement.

Souvent on suppose que le systeme a modéliser est a parametres
localisés. Mais si cette hypothése n’est pas vérifiée, des outils spécifiques
seront utilisés.

Les systémes a parametres distribués ont en général un nombre
réduit d’entrées et de sorties, mais I'espace d’état est de dimension
infinie. La représentation mathématique est faite a 'aide d’équations
différentielles partielles (EDP). La forme (parabolique, hyperbolique)
des équations détermine les propriétés du modele (en termes de
stabilité, contrélabilité, observabilité etc.).

Les objectives de la thése sont de montrer comment les systémes
a parametres distribués peuvent étre modélisés par un modele bond
graph, qui est par sa nature un modele a parametres localisés. Deux
approches sont possibles:

- la premiere approche consiste a utiliser une technique
d’approximation qui discrétise le modele dans le domaine spatial,
en supposant que les phénomenes physiques distribués peuvent
étre considérés comme homogenes dans certaines parties de
I'espace, donc localisés. Différents modeles bond graphs peuvent
étre obtenus en fonction de la technique utilisée.

- la deuxieme approche consiste a déterminer la solution des EDP
qui dépend du temps et de I'espace, puis a approximer cette

solution avec différents outils numériques.



Le premier chapitre rappelle quelques méthodes classiques
utilisées pour l'approximation des EDP et les modeles bond graphs
correspondants.

Obtenir une solution exacte pour une EDP est une tache difficile.
Des méthodes d’approximation existent, elles peuvent étre classées en
deux grandes familles : les méthodes d’approximation des équations (ex.
volumes finis) et les méthodes d’approximation des solutions (ex.
éléments finis).

La méthode des éléments finis [STR 04], [GUE 63], [GER 87] est
une méthode ou les dérivées partielles sont remplacées par des
quotients qui utilisent les valeurs de la solution en certains points
particuliers du domaine. Le résultat est un systéme d'équations
algébriques qui peut étre résolu si les conditions aux frontiéres sont
fixes.

Les méthodes variationnelles [WAN 07], [GER 87] sont des
méthodes ou les équations aux dérivées partielle sont représentées sous

une forme intégrale et les solutions sont approchées par une

combinaison linéaire ZQQ, ou @ sont les fonctions d’approximation et

b les coefficients inconnus. A titre d’exemples, on peut citer la méthode

des résidus pondérés, la méthode de Galerkin, la méthode de Ritz. Le
principal désavantage de ces méthodes concerne la difficulté a
sélectionner les fonctions d’approximation. Il n'y a pas de procédure
unique pour les construire et cela devient tres difficile quand le domaine
a une géométrie complexe et les conditions aux frontieres compliquées.

La méthode des éléments finis est similaire aux méthodes
spectrales ; la différence majeure réside dans le choix des fonctions
d’approximation. Les éléments finis découpent l'intervalle spatial en

sous intervalles, et prennent @(X) comme des fonctions locales sous

forme polynomiale non nulle avec un degré fixe. Les méthodes spectrales

utilisent des fonctions de base globales ou les ¢(x) sont polynomiales

avec un haut degré qui sont non nulles sur tout le domaine sauf en

quelques points isolés.



Vi

Les méthodes spectrales produisent des équations algébriques
avec des matrices pleines, et I'ordre élevé des fonctions de base donne

une grande précision. Les éléments finis produisent des matrices bandes.

Le deuxiéme chapitre présente I'approche port-Hamiltonienne et
son extension aux systemes a parametres distribués est proposée.

Quelques résultats de la littérature sont rappelés pour les
systémes dissipatifs et non dissipatifs. Nous proposons un nouveau
résultat pour la modélisation bond graph de I’équation du télégraphiste
dans le cas avec phénomenes dissipatifs.

Le systéme port Hamiltonien a été utilisé pour la représentation
des systéemes a parametres distribués. Sur 'exemple de I'équation du
télégraphiste, on a montré [Che 09] que si on utilise une forme spéciale
de discrétisation pour l'espace, on fait le calcul seulement pour un
élément local et puis en concaténant les éléments on peut calculer la
ligne de transmission entiere.

Le systeme port-Hamiltonien est dérivé de la fonction d’énergie
(Hamiltonien) qui peut étre prise comme fonction de Lyapunov, utilisée
pour la commande.

La modélisation du trafic routier a été choisie comme le champ

d’application de nos travaux.

Le troisieme chapitre présente un résumé des différents types des
modeles de trafic routier trouvés dans la littérature. Nous avons mis en
ceuvre certains d’entre eux et comparé les résultats obtenus par
simulation pour quelques modeéles et quelques algorithmes.

Le modele LWR [Lig 55], [Ric 56] a été considéré pendant de
nombreuses années comme un des meilleurs modeles proposés pour la
représentation du trafic routier. Mais dans les derniéres années quelques
auteurs ont mis en évidence des problémes., et proposé de nouveaux
modeles. Nous avons retenu quelques modeles macroscopiques par

lesquels ceux de Zhang, Aw et Rascle [Aw 00].
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A l'aide de simulations on a montré les avantages et les
inconvénients de ces modeéles, et déterminé les méthodes numériques les

mieux adaptées a la discrétisation des modéles.

Dans le chapitre quatre, on a proposé une approche originale par
'extension de la représentation bond graph développée dans le domaine
des Computational Fluid Dynamics pour la modélisation des flux de

trafic, en utilisant le modele de Jiang [Jia 02] .

Les principaux résultats que nous avons obtenus sont:

- la construction d’'un modele bond graph a parametres distribués

ou toutes les variables sont distribuées ;

- la dérivation du modele d’état a partir du modele bond graph

comme un modele ODE de dimension infinie.

Ce modele bond graph doit étre discrétisé pour la simulation. Un
modele bond graph générique est proposé pour chaque partie de
I'espace (appelé « section »), qui doit étre reproduit un nombre suffisant
de fois pour obtenir une solution stable.

On a développé une approche théorique de l'approche bond
graph pour représenter le modele a deux équations EDP, une pour la
densité et 'autre pour la vitesse. Les équations d’état sont exprimées en
termes de variables d’état, associées aux valeurs nodales de masse et de
vitesse.

L’ensemble des variables de 'effort et de flux généralisés a été
déduit a l'aide de considérations énergétiques, tandis que les équations
d’état ont été obtenues conformément a la formulation Petrov-Galerkin
pour les phénomenes liés a la masse et la formulation Galerkin pour ceux
liés a la vitesse; en conséquence, les outils de calcul développés pour la
méthode de éléments finis, aussi que pour d‘autres méthodes
numériques, peuvent étre utilisés pour résoudre les équations d’état

obtenues.
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Concernant I'approche CFD, il y a encore quelques problémes a

résoudre:

développer un algorithme de calcul qui gere les singularités dans les
matrices ;

déterminer le nombre approprié de sections a utiliser pour avoir une
solution stabilisée ;

étudier plus précisément la vitesse, et comparer les résultats
obtenus avec ceux déduits du modele LWR dans différents scénarios.

Les développements futurs concernant les flux de trafic sont vastes

et complexes ;

le modele bond graph pour CFD proposé considere une seule route,
maintenant il doit étre étendu a des croisements;

la route est supposée composée d'une seule voie. Les modeles
peuvent étre étendus a deux voies comme une autoroute ;

nous supposons avoir le méme type de véhicules. Ceci peut étre
étendu en considérant différents types de véhicules, avec des
vitesses différentes ;

la route est supposée étre sans rampe d’acces. Nous pouvons
considérer le cas ou on a une rampe en entrée et/or en sortie ;

le modele est un modele de circuit ouvert, sans perturbations. Une
stratégie de contrdle, lié aux objectifs de flux de trafic, peut étre
étudiée. On peut utiliser le modele d’espace d’état dérivée de bond

graph pour cela.
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Introduction

Introduction

Virtually every phenomenon in nature, whether biological,
geological, or mechanical, can be described with the aid of the laws of
physics, in terms of algebraic, differential, or integral equations relating
various quantities of interest.

The study of physical phenomena involves two major tasks: to
formulate a mathematical model and to make a numerical analysis for
the considered model.

The conception of a mathematical model requires background in
related subjects (e.g. laws of physics) and, most often, certain
mathematical tools. It is a difficult and sometimes long task, which
request time and effort in order to obtain a realistic model capable to
satisfy the user demands.

The results, as differential equations for dynamic study, relate
quantities of interest in the understanding and/or design of the physical
process. In the achievement of this task, assumptions concerning how
process works are made. In numerical simulation we use numerical
algorithms and computer to evaluate the mathematical model and

estimate the characteristics of the process.
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représentation des systémes a parametres distribués

Among the system representation approaches, the bond graph
has an important place. It is a unified graphical language, using the
analogy principle, for different physical domains allowing modeling and
simulation. It is based on power exchanges inside the system and
between the system and its environment.

It is often assumed that the system to be modeled as lumped
parameters. But if this assumption is not verified, specific tools have to
be used.

The distributed parameter systems do not have in general a great
number of inputs and outputs, but the state space is of infinite
dimension. The mathematical representation of these systems is made
using partial differential equations (PDE). The form (parabolic,
hyperbolic) of equations determines the properties of the model (in
terms of stability, controllability, observability etc.).

The objectives of the thesis were to show how distributed
parameter systems can be modeled using a bond graph model, which is
by its nature itself a lumped parameter model. Two ways are possible.
They are summarized in figure 1:

- the first approach consists in using an approximation technique to
discretize the model in the space domain, assuming that physical
distributed phenomena can be considered as homogenous in
some parts of space, and thus lumped. Different bond graph
models can be obtained depending on the technique used.

- the second approach consists in determining a solution of the PDE
depending on space and time, and thus to approximate this

solution by means of different kinds of tools.
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Partial differential equations
for distributed parameter systems

[ ' I
Space Model
Discretization Resolution

Variable AAraC
s algebrical
separation
structure
Solution Whitney
Discretization forms

Bond Graph
representations

Fig. 1. Two approaches to go from PDE models to bond graph models

In the first chapter we recall the classical methods used for
approximation of partial differential equations and the corresponding
Bond Graph model.

The second chapter presents the port-Hamiltonian approach for
distributed parameter systems.

Some results from the literature are recalled for non dissipative
and dissipative systems. We propose a new result for the bond graph
modeling of the telegrapher’s equation in the case of dissipative
phenomena.

The modeling of traffic flow was chosen as application field.

In the third chapter, we make a summary of the different types of
models found in the literature. We implement some of them and
compare the obtained simulation results for several models and several

numerical algorithms.
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représentation des systémes a parametres distribués

The fourth chapter proposes an original approach extending
Computational Fluid Dynamics bond graph representation to traffic flow.
The main results of this method are:

- construction of a “distributed parameter bond graph” where all

the variables are distributed variables;

- derivation from the bond graph of a state model under as an

infinite dimensional ODE model.

This bond graph model has to be discretized for simulation. A
“generic” bond graph model of each space subpart (called “section”) is
proposed, which has to be reproduced the number of times sufficient to
obtain a stabilized simulated solution.

Implementation of traffic flow CFD models is made using MATLAB
software.

A bibliography and appendices are placed at the end of the report.
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Chapter 1. Classical methods for solving PDE models

Chapter 1. Classical methods for solving PDE

models

1.1. Introduction

Every physical system is composed of elements, dynamically
interacting and exchanging power and informations.

The energy and information exchanges between components can
be represented in a graphical way, which contains all is necessary to
obtain the dynamical evolution of the model. The bond graph [KAR 90],
[DAU 00] approach follows this concept.

In the bond graph representation, the power transfer between
elements is represented by bonds. Through a bond, an element exchange
power with the rest of the system; power is for all the physical domains
the product of two complementary variables (effort and flow) as shown
figure 1.1.

Interconnections between subsystems can be done at nodes
where power can be exchanged between subsystems. Such places are
called ports, and physical subsystems with one or more ports are called
multiports. A system with a single port is called a 1-port, a system with

two ports is called as 2-ports, and so on.
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Efforte Flow f
Electrical Voltage [V] Current [A]
Mechanics Force [N] Velocity [m/s]
Translational
Rotational Torque [N*m] Angular Velocity
[rad/sec]
i 2
Hydraulic Pressure [N/m'] Volume Flow rate
[m3 /sec]
Chemical Chemical Potential Molar Flow rate
[J]/mole] [mole/sec]
Thermodynamic Temperature Entropy Flow rate
[K] dS/dt [W/K]

Fig.1.1. Effort/flow definitions in different engineering domains

In every system (mechanical, electrical, chemical or hydraulical
domain), generalized effort variable and a generalized flow variable are
defined the product of which being the power exchanged between
elements.

Distributed parameter systems are represented using partial
differential equations (PDE).

Partial differential equations are differential equations containing
independent variables (spatial variables to which we add time in
evolution phenomena cases) and dependent variable.

One of the problems in the study of distributed parameter models
is to find the solution of the equations, and in most cases this solution is
found as an approximation of the initial problem with respect to some

properties.
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Continuum physical equations

with PDE
‘HI.WHE.HH..
Discrete approximation Integral form
of original equations of original equations
| |
) I
Exact solution Approximate solution
of approximation equations of exact equations
E.quation Solution
approximation method approximation method

Fig.1.2. Different approaches used for solving PDE

In simulation, to obtain an exact solution of the problem is a very
difficult task. Approximation methods are instead used to find a solution.
There are two classes of approximation: the approximation of the
equations (finite difference volumes) and the approximation of the
solution (variational methods, finite elements methods).

In the finite difference methods [STR 04], [GUE 63], [GER 87] the
partial derivatives of the variables are replaced by difference quotients
which involve the values of the solution at discrete mesh points of the
domain. The result is an algebraic equation system which is solved once
boundary conditions are fixed.

In the variational methods [WAN 07], [GER 87] the partial
differential equation is represented in an equivalent weighted-integral

form and the approximate solution is assumed to be a linear combination

ZQW, with approximation functions @ and undetermined
i



Contribution a I’extension de I'approche énergétique a la
représentation des systémes a parametres distribués

coefficientsby. The coefficients b are determined such that the integral

statement equivalent to the original partial differential equation is
satisfied. The variational methods as Galerkin, Rayleigh-Ritz and least-
squares, differ one from another by the choice of the integral form,
weight function and/or approximation functions.

The finite element methods [RED 93], [AGO 85], [LEW 91], [SAB 86]
represent the domain as a collection of geometrically simple sub
domains, called finite elements. Then, over each element, the
approximation functions are derived using the basic idea that any
continuous function can be represented by a linear combination of
algebraic polynomials. The algebraic relations among the undetermined
coefficients are obtained by satisfying the governing equations, often in a
weighted-integral sense, over each element.

In this chapter we will present a classical approach which will

consist in a discretization followed by a bond graph representation.

1.2. Partial differential equations

A system is assumed to be an entity separable from the rest of the
universe (the environment of the system) by means of a physical or
conceptual boundary. The exchange of information and power with the
environment is realized through the boundary. A system is decomposed
into interacting parts. These are considered as subsystems and have a
lower complexity level than the system.

The modeling procedure consists in trying to obtain one or more
models that represent in a way the system comportment. The models are
abstract entities which help us to understand, analyze and predict the
system behavior. Each model must be homogenous to the system,
meaning that it must have the same number of inputs and outputs.

The model structure consists in a parameter vector, a number of
inputs and a number of outputs that depend of hypotheses made. The

model obtained is a specific vision of the studied system. There are some
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approximation methods that need to ignore some parameters in order to
avoid singularities and some complexity, meaning that it is possible to
find models that contain less parameters than we need. The choice of the
model depends also of the study to be made. For example, a spectral
model is not good for a stationary study, but is good for a frequency
study with a sufficient large frequency band but not very large to avoid
noise and numerical errors. These are very important in distributed
parameter system study because modeling and numerical errors
improve the level of approximations used to pass from partial
differential equations (PDE) to ordinary differential equations (ODE).

A model represented by PDE consists in:

-a space domain Qrepresented by the space vector X ={X1,X2,...,Xn} in

R", with boundary 0Q ;
-atime interval | = [O,tf };
-one evolution equation of a variable u(x,t) in Qx| :

% = M [u(xB] +v(x.1) (1.1

where Vv(X,t) denotes the input variable, which can be distributed or
lumped.

-boundary conditions on 0Q x| to be imposed, and written as: B[u(x,t)] ;
-initial conditions on Q to be defined: P[u(X,O)] ;

M, B, P are operators (linear, differential...).

Partial differential equations (PDE) are classified according to
their order, boundary condition type, and degree of linearity (yes, no or
quasi). Most PDEs encountered in science and engineering are of second
order, i.e. the highest derivative term is a second order partial derivative.

There are three type of PDE: elliptic, parabolic and hyperbolic.
ou, ., 9% o ( ou auj

aax12 2b +Cc— =F| x,X

Xoy Uy—,— 1.2
ox0x,  0X, 2! ox, ' 0x, (1.2)
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where the coefficients g,b,c are functions of the independent variables X
and X, only, or constant (one spatial variable can be replaced by time t).
The three canonical forms are determined by the following criterion:
-elliptic (example: Laplace’s equation)

b’ -ac<0 (1.3)

-parabolic (example: diffusion equation)
b’-ac=0 (1.4)

-hyperbolic (example: wave equation)

b’ -ac>0 (1.5)

These classifications serve as a rough guide to the information
flow in the domain. For instance, in elliptic equations, information from
the boundaries is propagated instantaneously to all interior points. Thus,
elliptic equations are termed “non-local”, meaning that information from
far away influences the given position, versus “local”, where only
information from nearby influences the field variable. In parabolic
systems, information “diffuses”, i.e. it spreads out in all directions. In
hyperbolic systems, information “propagates”, i.e. there is a demarcation
between regions that have already received the information, regions that
will receive the information, and possibly regions that will never receive
the information. If the system is linear or quasi-linear (i.e. some
coefficient depends on the dependent variable or a lower order partial
derivative than that it multiplies), this classification system and the
intuition about how information is transported serves as a robust guide
to second order models. For nonlinear models, however, nonlinearity
can destroy the information transport structure. In nonlinear models,
information may be “bound”, i.e. never transferred, beyond given
attractors, or it may be created from noise (one view) or lost (a different

view) by forgetting initial conditions in a given window in time.
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1.3. Solving PDE

One method to solve these equations is to reformulate them, to
find an approximate solution which is the closest to the real solution and
this can be achieved using the best approximation.

There are a number of approximation methods which can be
classified in three categories: exact solution method, spectral methods
(TAU, collocation method), space domain discretization methods (the
finite differences, the finite elements). These methods are also classified
into strong and weak formulation. We will use the stationary case for
sake of simplicity.

Let consider equation (1.6):

Au=f OxOQ,t0l (1.6)

with boundary conditions:

Bu=g OxU0Q,t0l (1.7)

where Aand B are partial differential operators:

A= > a,0° (1.8)
lajsn+1
with a = (a,,a,,....,a,,,) ON".
We write:
n+l
la]=> a, (1.9)
j=1
and
lal
9°u 9 (1.10)

OXAOXE .. XM

If we find a solution which satisfies eq. (1.6), and in the same time
eq.(1.7) in all points X in Q and 0Q, and OtJ1, we say that we have a
strong formulation.

But this is only possible when u is a function without

discontinuities. When u admits discontinuities we cannot find the



Contribution a I’extension de I'approche énergétique a la
représentation des systémes a parametres distribués

derivatives in that points. So we must solve in another way the problem
using the weak form.

This consists in using a function w, named weight function, which
multiplies the equation and then integrate over the domain. Making this,
we have a problem equivalent to the initial one, but now we seek the
solution in a functional space which is smaller than the original.

We try to seek the solution in a class of functions, considering

u(x,t) as an element of the Hilbert space (H). On the space H is defined
the internal product (u,v}, that associates with each pair (u,V)D H a
real number:

(uv)=] uvdQ (1.11)

Definition [Der 05] . Let wlOH with supportin Q (the closed set

of points where wW(X) # 0 is contained in Q). Then an element u(x,t) is a
weak solution of the eq. (1.6) if and only if

(Au,w) =(f,w) (1.12)

The class of weak solutions is larger than the class of strong
solutions because eq.(1.12) imposed only to the two integrals to be equal

in Q.

The development of weighted-integral statement of a differential
equation is made to have N linearly independent algebraic relations

among the coefficient b, of the approximation:
N
u=Uy, => b ()@ (x)+g(x) (1.13)
j=1

This is accomplished by choosing N linearly independent weight

functions in the integral statement.
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1.3.1. The method of weighted residual

Let consider

Au=f in Q (1.14)
where A is a partial differential operator, acting on the dependent

variable u and fis a known function of the independent variables.

The function u must also satisfy the boundary conditions
associated with the operator equation.

The solution u is approximated by the expression:
N
U, =Y. b@a+gq (1.15)
i=1

Substituting uy in (1.14) gives f, = Au, . The difference Au, - f,

called the residual of the approximation, is nonzero:
N
R(X,%,b,) = Auy - f = A[ijq +qq)j— f#£0 (1.16)
=1

The parameters b;are determined by the requiring that the

residual R(X;,X,,b;) is vanishing in the weighted-integral sense:
[ & (%) R(x,%,b)dd, =0 (i=12,..,N) (1.17)

where Q is a two dimensional space domain and ¢, are weight
functions, which, in general, are not the same as the approximation

functions ¢. The set {l//,} must be linearly independent in order to have

(1.17) solvable.
Because (1.17) does not contain the natural and essential

boundary conditions, @is required to satisfy all specified boundary
conditions, and ¢ are required to satisfy the homogenous form of all

specified boundary conditions of the problem.

The main method is the Galerkin method as presented here after.
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In this method the weight functions ¢, is chosen equal to the

approximation functions @:
2 Ab =F (1.18)

where
A =] aAgdxdx, R =] @[ f - Agldxd.

One physical application where this method is applied is the
principle of virtual power, where the goal is to withdraw the variation of
total energy, meaning to verify that the total energy is equal to the sum
of internal and external energy.

When the weight functions are not equal to the approximation

functions ¢, # @, we have the Petrov-Galerkin method. When A4 is linear,

(1.17) becomes

i[ [ Aquldxz}bj = [ wlf - Ag]dxdx, (1.19)

or

2 Ab =F (1.20)

1.3.2. The method of separation of variables

1.3.2.1. Principle

Let consider the equation:

Au(x,t) + Au(xt) = f(xt) xOQ,t=0 (1.21)
G(x,Hu(x,t) =0, xO0Q,t>0 (1.22)
u(x,0) =u,(x), x0OQ (1.23)

where

Aand A are partial differential operators for t and X, = X here.
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We are looking for a solution of the form:

u(x,t) =b(t) LA x) (1.24)
where b(t) is a function of time and ¢(X) is a function of space.

Replacing u(x,t) from (1.24) in (1.21), in homogeneous case, we

obtain:
[AB®] @x) +[A@Ax)] b(t) =0 (1.25)
For the (tx) couples where b(t) #0and ¢(x) # 0 it is possible to
write:
L1 Ab®)] = -2 [A@»)] (1.26)
b(t) AX)

Because each part depends only on t and x, we can consider them
as being equal to a constant, which is defined by convention as —A°:

1 -1 _ 2
@[Ab(t)] =0 [A@x)]=-1 (1.27)
We have:
[ Ab(t)] +b(t)A* =0 (1.28)
[A@AX)] +A°@x) =0 (1.29)

The general solution must satisfy both equations. Eq. (1.29) gives
us possibility to find interesting base functions named proper functions,

which have the property to be orthogonal.

(9.0)=[ @a(0g()dx=0 i# ] (1.30)
0%y
If, for example, A@X) = GF' equation (1.29) has as solution:
X
@A X) =Ccog(rx) + Dsin(rx) (1.31)
where
2
r’= A (1.32)
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The coefficients C, D are found using the boundary conditions. Because
@(X) is a periodic function we have infinity of solutions:

@(x) =Ccog(r;x) +Dsin(r,x) i=12,..,0 (1.33)
@ are the proper functions or basis functions.

Consider the non homogenous form of (1.21) and apply the

approximation (1.24)

2 #Ab+ 2 (Ag)b = (1) (1.34)
i=0 i=0
where @are the proper functions of the A with the proper values
A? =ra. Multiplying eq. (1.34) by @and integrating on the spatial

domain we obtain:

2(@.4) A+ 2 A% (@.4)h = (4, () (1.35)

Using the orthogonality, it leads to a time differential equation

system:

Rqoj(x),qoj(x)ﬂAbj (t) +[arj2<¢zj,¢zj>] b(t)=(g. f(t.X)  (136)

1.3.2.2. Bond Graph representation

In a mechanical system, if we consider b as a general coordinate,
the construction of the bond graph depends on the A form: when it

contains an algebraic expression we have a potential energy, when it
contains a derivative we have dissipation and when it contains a second
derivative we have a kinetic energy [Der 05].

Consider the compressed bar model show in figure 1.3. as:

2 2
pSE+ r8g+ ESa ¢

e 5 Fva F(t)o(x-L)=0 (1.37)

£0,1)=0 %(L,t)zo (1.38)
0Xx
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with

S -the section; L- the length; E-Young’s modulus; p- mass density; r-

resistance.
A X;=
&(x.t)
—
0 I
2 S
e | et —
z F(t)
XX
=

Fig.1.3. Fixed-forced bar

We begin by temporarily setting the force F(t) to zero, and

assuming that £(X,t) can be separated into a product of the form:
$(xt) = b(t)@A(x) (1.39)

Introducing (1.39) into (1.37) and applying the separation of

variables principle, we obtain:

2
Ed—f =-)? (1.40)
P@ dx
with the result
d’p_p .
—Z + = )p=0 141
o T E @ (1.41)
The solution is:
@A X) = C cos(kx) + D sin(kx) (1.42)

with
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k2=£A2
E

If we apply the boundary conditions (1.38) we obtain:

¢(0,t) =b(t)@(0) =0

or
@0)=0
and
% (Ly=2(Lyb =0
ox dx
or
d
d—i(L) =0
Applying (1.44) and (1.45) to (1.42) yields
C=0
and
DkcoskL =0
We let,
coskL =0

with the result
kL= (2 —1)%’, i=123..

Then,

¢((x)=Dsin((2i—1)7—2T%j i=12.., 0

(1.43)

(1.44)

(1.45)

(1.46)

(1.47)

(1.48)

(1.49)

(1.50)
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If we consider that the force is a point force acting in x=L, we can

write eq. (1.36) as:

pS(3.9)° dqtz(t) +rS(@, %)

-F(t)o(x-L)g(x)=0

dh (t)
dt

+ES(g.¢)b () (1.51)

In expression (1.51) we can identify acceleration per length unit,
friction force per length unit, stiffness force per length unit and external
force per length unit and surface.

It is possible to write:

d*b() , , db(t)
da> ' dt

m +kh(t)-F(®g(L)=0 (1.52)

where

m = pS((z{, qq) -the modal masses;
r= rS(qq, ¢(> -the modal dissipation;
k = ES<¢(,¢{> -the modal stiffness.

Due to mode orthogonality, eq. (1.52) is decoupled, and each b (t)
can be solved separately, and then combined with the mode shapes
@(x).

Eq. (1.52) represents the energetically representation of one

proper mode of the system.

Let define the modal momentum as
p =mh (1.53)
and the modal displacement as

g =h (1.54)

Then, eq.(1.52) can be written as

Sp =-1p -ka + FOa(L) (1.55)

and
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daq

i _ B
L= —L 1.56
& (1.56)

For an i, we have an effort balance at the 1-junctions, and each
external force is projected on the mode by its own proper function. The

C, R and I correspond to the acceleration, friction and stiffness

phenomena.
O
q.
[ ! #iL
L R 19 + TF 5eF{
piL
Imj

Fig.1.4. One proper mode representation

Fig. 1.5. shows a bond graph that would duplicate these modal

equations for i =12,.... Each external force is projected on the mode

through the corresponding proper function (TF-modulus ¢*).

TE (L) cemmmm e —— e FEg(L) W osm—eessisie TF: (L)

| e

Se:l'(L.1)

Fig.1.5. Compressed bar Bond Graph representation
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1.3.3. Spectral methods

1.3.3.1. Principle

These methods are based on the approximation of the solution

under the form:
Uy =X hg(x) (1.57)

The problem with this type of methods is to find the good choice

of the base functions ¢ in the domain Q. It is interesting to have a
orthogonality property between the base functions ¢ and the test
functions w . This property is then used in simplification of the problem.

It is obvious that we would like our basis sets to have a number of
properties: easy to compute, rapid convergence and completeness,
which means that any solution can be represented to arbitrarily high
accuracy by taking the truncation N to be sufficiently large.

Depending on the choice of the test function we have:

-the Tau method where the test functions are the same as the base
functions, but they do not satisfy the boundary conditions as in the
Galerkin method;

-the collocation method, where the test functions are equal to
delta functions at special points, called collocation points. This method is
developed hereafter.

The collocation method is also a weighted residual method, used

to solve PDEs. Consider a function u(x,t) defined over a spatial domain
Q, and the space and time evolution of u(x,t) governed by a PDE:
Au(x,t) =0 (1.58)

where A is a differential operator.

We seek to approximate the solution of eq. (1.58) by:
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Uy (1) = 2 B (O9(x) (1.59)

We form the residual of A, R(X,t):
R(x,t) = Auy (x,t) (1.60)
R(x,t) is a continuous function of X and t. The approximate solution is

found for the average value of R(X,t) over Q to be zero. We perform this

using the weighted function ¢(x).
[ R DA =0 (1.61)

We can evaluate the average by using a discrete set of p points,

X;,] =1..p, called collocation points:
p
D WX)R(%,1) =0 (1.62)
i=1

We choose ¢/(x) to be Dirac delta functions at this particular set

of points.

p
D (% —x)R(%,1)=0, j=1.p (1.63)

i=1
or

R(x;,1)=0, j=1..p (1.64)

1.3.3.2. Bond Graph representation

For the compressed bar,

2 2
0¢ 1159 +Es2¢ -
ot? ot ox?

0S F(t,L)S=0 (1.65)

if we assume that there are N points X,X,,...,X, in Q where we

calculate the value of &, using the collocation method, the approximation

O
& is written as:
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£= gn(tmm (1.66)
where by are the solutions of equations:
> BO0K) =6, D=1 (167)
or in matrix form:
®b=¢ (1.68)

C=(Z(><1),Z(x2) ........ Z(xN))T.

From here we have:
b = Z”ij((xj)l i=1..,N (1.69)

where 77, are elements of .

Thus, the approximation is:
C(xh)= Z[w(x)(zmaxj)ﬂ (1.70)
i=1 j=1
Introducing the approximation in eq.(1.65), we obtain:
N 2( _ N N ¢ (x.
ZIW(X) [Zﬂ., at(zx‘ )JpS} + Z[W(X)(Z”” #] rS]
i j=1 i=1 j=1 (171)
z{a “(x) (znij((xj )j ES} =F(x 1S
j=1

i=1

Multiplying (1.71) by ¢,(X), we obtain:

i{@m[im, azgt(zx)}ps}Z{(w m{iﬂu Za(t )JrS] w7

i=1 j=1 i

+Z[< . %Xgm{(xi)jES}=<F(L,t)8,¢e-n>

Because of orthogonality of ¢, we can write:
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z atZ

j:

N [’7;,, [GZZ(Xj ) m, + afa(txj) r +Z(X1)ka =F(t)dp (L) (1.73)

where
m, = pS(@,(x),%, (X))

r, =1S(@,(x),,(%)
Ky = ESY (0,02, 4,(%)

(1.74)

Eq. (1.73) describes the projection of effort applied at point L on

a mode.
represent the mass, the friction and stiffness

The values m.,r,, kp

coefficients.
The bond graph figure 1.6. represents the projection of effort

F(L) on different modes in collocation points.
For the construction of the bond graph we use the same concept

as for the separation of variable method with the difference that here we

have a sum of p modes.

Ry, Ry, - - — = Ry

sz cisl
4

Rins 2
| mJlAc:k;l, 1 m.EAc:L’,; IZ‘"'F ik Im), Cigl |m,J cikl o ml ekl
i * fla * la A
1\T / | 1\T / - 1\T /
————————— 0

Fig.1.6. The bond graph representation for collocation method
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1.3.4. Finite element method

1.3.4.1. Principle

The finite element method is a method where the domain is
represented as a collection of simple domains, called finite elements, so
the approximation functions needed for the approximation of the
solution are constructed over each element. The finite element method is
not the only method that uses the discretization of the domain; there are
also the finite difference method and finite volume method. The finite
element method differs from other methods by the manner in which the

approximation functions are constructed.

Finite element method has three basic features:

1) Division of the domain into parts, which allows the
representation of the complex domains as a collection of geometrically
simple domains that enables a systematic derivation of the
approximation functions.

2) Derivation of approximation functions over each element; the
approximation function are polynomials that are derived using
interpolation.

3) Assembly of elements; the assembly of elements represents a
discrete analog of the original domain, and the set of equations a

numerical analog of the mathematical model of the problem.

These features are closely related: the geometry of the element
must be chosen such that the approximation functions can be uniquely
derived. The approximation functions depend on the geometry and on
the number and location of points, called nodes, in the element and
quantities to be interpolated. In finite element method is used the weak
formulation instead of weighted formulation; in this case we have a

relaxation of the conditions on the approximations. With the weak
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formulation we pass from a punctual formulation, where the dependent
variable is an application defined on the space of continuum derivable
functions, named classical formulation, to a formulation where we

rewrite the relations between functions through integrals.

Once the approximation functions have been derived, the
procedure to obtain algebraic relations among the unknown coefficients

is exactly the same as that used in the weighted-residual method.

The domain of the problem consists in all points between x=0

and x=L:Q=(0,L). The domain Q is divided into a set of elements,

each element having a specifical length and being located between the
borders of the domain. The collection of these elements forms the finite
element mesh of the domain. The division of the domain is made for two
reasons: to represent the geometry of the domain, and to approximate
over each element the solution in order to obtain a better representation
of the solution over the entire domain.

The approximation over each element is simpler than the
approximation over the entire domain.

Because the solution must satisfy the boundary conditions of the
problem, the choice of the approximation functions, especially when
there are discontinuities in the geometry of the problem, is under severe
restrictions.

To connect the elements at the common nodes and impose
continuity of the solution there, the endpoints of each element is
identified and called element nodes. Depending on the degree of the
approximation polynomial used to represent the solution, additional
nodes inside the element may be identified.

The number of elements depends mainly on the element type (cf.
figure 1.7.) and accuracy desired. When the finite element method is
used to solve a problem, it is necessary to investigate the convergence of
the solution by gradually refining the mesh and comparing the solution

with those obtained by higher order elements. The order of an element
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refers to the degree of the polynomial used to represent the solution

over the element.

oA DN

Dimension 1 Dimension 2 Dimension 3
Fig.1.7. Types of finite element

We consider an element Q° =(x,,X;) whose endpoints have the

coordinates X = X,and X = X;.

| ¢ >
¢ 5 >| < 5
S ® XX,
X o °|
x=0 =1,

Fig.1.8. A finite element in 1 dimensional

The polynomial approximation of the solution on element Q° is of

the form:

U= U (1.75)

where uje are the values of the solution at the nodes of the finite element

and 4[/]? are the approximation functions over the element.

In order to be convergent to the actual solution u as the number
of elements is increased, the approximation solution U® must fulfill

certain requirements:

1) to be continuous over the element, and differentiable, as required by

the weak form. 2) to be a complete polynomial, i.e., to include all lower
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order terms up to the highest order used. This is required in order to
capture all possible states, i.e. constant, linear and so on.

3) to be an interpolant of the primary variables at the nodes of the finite
element. This is necessary in order to satisfy the essential boundary
conditions of the element.

The simplest polynomial that can be chosen as approximation is:

U®=a+bx (1.76)

where a and b are constants.
This expression satisfies the first two requirements. To satisfy the

third one:

U®(x,) =u; U®(Xg)=U; (1.77)
Introducing this in equation (1.76) we obtain:

Ue(x) =|l(af + Bx)us +|1(a§ + Bex)us (1.78)

e e

where

o= % =% a7 = (1) X A7 = (<1)' 1 X0 = %40 %6 = %

That is,
U2(x) = g (U8 +@E(0uS = jZ:,w?(x)uje (1.79)
where
wE(%) = :__; wi(x) = :__’; (1.80)

This is a representation in terms of the global coordinates x (i.e.,

the coordinate of the problem) and only for an element domain Q°. If we

want to express them in terms of a coordinate X with origin fixed at node

1 of the element, ¢°,i =1,2of (1.80) take the forms:

WE(R) :1—|Z WE(R) =

e

IZ (1.81)

where X represents the local or element coordinate (figure 1.9.).
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Xe

— xkN

™

_)E

Fig.1.9. Local interpolation function

5 is equal to 1 at node 1 and zero at node 2, and ¢; is equal to 1 at node

2 and equal to zero at node 1.

The global interpolation function ®, (figure 1.10.) can be defined

in terms of the element interpolation functions according to the global

node I.

AN

2 -1 I I+

-1
o :{1/12 for X _ < X=X
! [

W, for X <X<X,

Fig. 1.10. Global interpolation function

This type of interpolation functions derived using the dependent
unknown- not its derivatives- at the nodes are called the Lagrange family
of interpolation functions.

To have a better approximation instead of using a linear

polynomial we can use a quadratic one:

U®(x) =a+bx+cx® (1.82)

which requires to have three nodes on element in order to evaluate u(x)

at the nodes. Two nodes as endpoints and another one placed at any

interior point (figure 1.11.).
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Fig. 1.11. One dimensional Lagrange quadratic element and its interpolation function

Ue(X) =S (XU + s (X)us + s (X)us = Z(,l/f(x)uje (1.83)

with

ex) = | 1- X |[1-2X
wi=(1-%(1-2%)

YE(R) = 4%(1—%) (1.84)

erx) = - X[1-2X
w0 =-x(1 h)
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All Lagrange family of interpolation functions satisfies the
following properties:
0 if 1#]

l/’,?(xi):a_ij:{l it iz

(1.85)

n n dwe

DWi(x)=1 hence > —-=0

=1 j=1 dX
For two dimensional problems we have the same basic step as in
one dimensional case. The analysis is more complicated because now we
have partial differential equations over geometrically complex region.
The boundary of two-dimensional domain is, in general, a curve. We seek
not only to approximate the solution on the domain but also to
approximate the domain itself. The finite elements consist in triangles,
rectangles, quadrilaterals, that allow unique derivation of the

interpolation functions.

We introduce the approximation solution in equation and obtain

the system of equations:

(ke Jup={}+{c} (1.86)
where the matrix [Ke]is called the coefficient matrix. The vector { f e} is
the source vector. Equation (1.86) contains 2n unknowns: (ufugu,‘f)

and (Qf,Q;, ..... ,Qﬁ) called primary and secondary element nodal

degrees of freedom; hence it cannot be solved without having n
additional conditions.

These are provided by the boundary conditions and by balance of

the secondary variable Q° at nodes common to several elements.

The finite element methods are the most used for numerical
approximation. These methods, from a mathematical point of view, are
very easy to handle, easy to adapt to any type of geometry of the domain

and to changes in boundary conditions, and from a physical point of
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view, facilitate the results interpretation. This method is not suitable for

solving non linear equations.
1.3.4.2. Bond Graph representation

Let’s consider the Bernoulli beam flexion problem where

dissipative energy is neglected [DER 05].
A y

\ F(L.1)

—>

AN

|

|

|

|

|

|

|

|

|

|

|
<=

| [#2]

|

|

|

|

|

e

Fig.1.12. Fixed-forced Bernoulli beam flexion

The equation of the problem is:

9*u(x
ox*

el (x) 24D ,OSazlg(t)z('t) = F(xt) (1.87)

The boundary conditions are:
ou
—(0t)=0
™ (0.1)

M (L,t) = El a—Zl:(L,t) =0 (1.88)
0X

T(L,t)= Ela—ﬂ;(L,t):F(t)
ox

where: S-represents the uniform cross-sectional area, p-is the mass

density; E is the Young’s modulus, I- is the area moment of inertia and L
the length.
On each element using a shape function we approximate the

solution u(x,t).
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f(x,q)=f(Xu,8,.....U.,6,,) (1.89)

where q:[ul,é?l, ...... ,um,HM]T is the vector of nodal variables of the

element, U is the transverse displacement vector, € is the angular
displacement vector.

The velocity is approximated as:

v(x,t) = g—;q (1.90)

In each element we calculate the kinetic and potential energies.

The kinetic energy is:

1 1, .
E, —EjopS(x)wdx—Eq M (%, Q)4 (1.91)
1 of | of
with M :—J' PS(X)| — | —dx.
270 0q) dq
The deformation energy is:
1 0°u d°u 1
E,==| El(X)——dx==q K(X, 1.92
0 =5 ], Bl 5 —Zdx=>a'K(x,d)q (1.92)

2¢\" 52
with K :J'O' EI(x)(%) %dx.

The virtual work done when considering the mass forces and
forces applied on the beam being reduced to a force Fdx per length

element dx, is:

0

5r:J'OIFT5udx=UI FTZ—;dXJJCF WToq (1.93)

where Adu is the virtual displacement field, and W the generalized forces.
Considering an interpolation polynomial base N the element

approximation can be written as:

f(x,q)=N'q (1.94)
Introducing in the kinetic energy equation we obtain:

_ 1. 1o
E. —EIOpS(x)wdx—Eq Mq (1.95)
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where M = J.; OS(X)N"Ndx = [M ’ } is the mass matrix.

After integration in a case with 2 elements we obtain:

156 220 54 -13
_p9l220 4% 13 -3°

. (1.96)
420|154 13 156 -22|
-13 -3% -221 4°
Similarly the stiffness matrix is obtained:
1 _ 0°ud®u 1
E, ==| Bl ——dx==q'K 1.97
‘ ZIO e 20 (1:97)
¢l 0°NTO°N
where K = .[O El Wydx = [K”]
12 6l -12 6l
El|6l 47 -6 27
Ke = (198)
#|-12 -6 12 -6l
6l 21> -6l 47
The virtual work of the external forces is:
Jr:j;FTdudx:(I;FTNdx)éq: W g (1.99)

where Ju is the virtual displacement field, and W the generalized
forces:

I:l

_ | T -
w_jOF Ndx = (1.100)

where F, I, are the nodal equivalent forces and torque.
Using the Lagrange equations in the nodal basis where q is a

generalized coordinate, W, the generalized forces in u configuration:

d( oL oL :
| = |-===0 with L=E.-E 1.101
dt[aqj aq Q ° (1.104)
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we obtain:
2
M % +Kg=W (1.102)

The Bond Graph representation of eq (1.102) is presented in the
figure 1.13. Because we have a second order derivative it means that we
have a kinetic energy thus an I element, and because we have an
algebraic expression, it means that we have a potential energy thus a C

element. The matrices M and K are full matrices.

M

Se:\ 1 CK

Fig.1.13. Representation multi bond graph

As example we have the representation for 2 elements using the

Hermite polynomial as shape function, in figure 1.14.:

[156 221 54 -131

I' psi|22 AP 131 -3F

= 420|154 13 156 =221

-3 -3 -2 A

g |

F, A1 12 6 -12 6l
&1 : ;
I, A1 C: E|6l 4P -6l oF
Se: F i * Plam -w i e
I s 6 28 -6 4P

Fig.1.14. Bond graph representation of the entire beam

The representation of the entire beam is obtained by assembling
the elementary mass and stiffness matrices using the implicit continuity
conditions and energy balance at all nodes to obtain the final matrices

before expressing the bond graph representation, as in figure 1.15.
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Fig.1.15. Bond graph with assembled matrix

When the number of elements changes, the whole matrices must

be again evaluated.

1.3.5. Finite difference method

1.3.5.1. Principle

The finite difference techniques [STR 04], [GUE 63] are based upon
the approximations that permit replacing partial differential equations
by finite difference equations. These finite difference approximations are
algebraic in form, and the solutions are related to grid points.

Consider the prototype for all hyperbolic partial differential
equations in the one way wave equation:

ou ou
— 4 a_ =
ot 0Xx

where a is a constant, t represents time, and x represents the spatial

(1.103)

variable.

If we impose the initial value at t =0:

u(0, x) = uy(x) (1.104)

the solution of (1.103) will be:
u(t,x) =u,(x—at) (1.105)
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We consider a grid of points in the (t, X) plane. Let consider h and
k be positive numbers and the point (tn,xm) = (nk,mh) for arbitrary n
and m. For a function v defined on the grid we write V., for the value of v

at point (t,,x,). We are interested in grids with small values of h and k

(figure 1.16.).

Fig.1.16. Grid points

The basic idea of the finite difference method is to replace
derivatives by finite differences.

This can be done in many ways. As example:

L Ut ko xy) ~ulty, %) Ut + K Xy) Ut K. X)) 9060
Kk 2k

ou
—(t,
at(nXm)

Using this approximation we obtain the following finite difference
schemes for equation (1.103) [STR 04]:

1) Implicit scheme

n+l _ \,n n+l _ \,n+l

m “Vm 4 gV TV (1.107)
K h

2) Explicit scheme

n+1 n n n
: - -V
Forward-time forward-space: n ” m+a m*lh m=0 (1.108)
n+l _ N n n

Forward-time backward-space: - c D +a-m " ml=0 (1.109)
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n+l _ N VA
Forward-time central-space scheme: — " m+a m+12h ml=0 (1.110)
n+l _ ,n-1 V="
Leapfrog scheme: m__Mm +g-ml_ml=Q (1.111)
2k 2h
a 1
Vr'; t- 5 (V:Hl + V:1—l) v ="
Lax-Friedrichs scheme: " +a m+12h ml =0 (1.112)

Another used scheme is the Lax-Wendroff scheme. To obtain the

Lax-Wendroff scheme for the wave equation we start with the Taylor

series in time for u(t +K, X) where u is a solution to the inhomogeneous

one way wave equation (1.103) :

ou k? 9%u
u(t +k, x) = u(t, x) + k—(t, X) + — —(t, x) + O(k® 1.113
( )()at()zatz()() (1.113)
We use:
ou__ ou, . (1.114)
ot 0X
and
2 2 2
a—l::—a—a = +ﬂ:aza—l:—aﬂ+ﬂ (1.115)
ot otox ot 1) ox ot
to obtain
21,2 2
(t+k, ) = u(t, )~ ak 2 1,50+ 25 T 1, )
2 oX 2 2 0X (1.116)
+ kf _£i+k_i+o(k3)
2 Ox 2 ot

Replacing the derivatives in x by second-order accurate

differences and of / ot by a forward difference, we obtain:
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u(t,x+h) —u(t,x—h)

u(t +k, x) = u(t,x) —ak

2h
N a’k? u(t,x +h) —2u(t, x) + u(t, x - h) N
2 h?
+g[ f(t+k,x)+ f(t,x)] (1.117)
_ak? [ f(t,x+h) = f(t,x=h)]
2 2h
+0(kh?) + O(Kk®)

The Lax-Wendroff scheme is:

N a’A?
Vl:l’1+ =Vy——- (V:n+l - V:w—l) t—— (V:n+l —2vy + V:w—l) +
) i 2 (1.118)
+§( fot+ fr:)_T( fes = fn?—l)
or, equivalently

V:1+l — V:] +a Vrrr]1+1 — Vrr:1—1 _ a’k Vrr:1+1 — 2V:] + Vrrr]w—1 —

. 22k 2 h* ) (1.119)
=St fn) = (= )

where A=k/h must satisfy the Courant-Friedrichs-Lewy (CFL)
condition in order to be stable:

lad|<1 (1.120)

The CFL condition can be rewritten as

A7 zlal (1.121)

which can be interpreted as stating that the numerical speed of
propagation must be greater than or equal to the speed of propagation of
the partial differential equation.

When we have to solve an initial boundary value problem we
must use the boundary conditions required by the partial differential
equations in order to determine the finite difference solution.

When, for example we use the Lax-Wendorff scheme, the scheme
can be applied only at the interior grid points and not at the boundary

points. This is because the scheme requires grid points to the left and
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n+1l

right of (tn, Xm) when computing v~ and at the boundaries either X,

m
or X, is nota grid point. Assuming that a is positive, the value of vj is

supplied by the boundary data as required by the partial differential
equation. At X,,, where X,, is the last grid point, we must use some

n+1l

means other than the scheme to compute v,,".

For example:

n+l __ n+1
Vv = Vna
n+l _ 2 n+1 —- n+1 1 122
VM = &Vua "V (1. )
n+l _ n
VM - VM -1

The finite difference method is the first numerical method used in
numerical approximation. This method allows modifying the number
and the form of the grid used in spatial decomposition. It is very useful in

numerical approximation.
1.3.5.2. Bond Graph representation

Consider the compressing bar equation with the boundary

conditions [Der 05]:

02 9E 3%
s9¢ 11s% +Es?C _E(tL)s=0
PS o TS5 TESG e TFL)

; (1.123)
&(t,00=0 a—f(t, L)=0

We make the following approximation using the backward
difference for the second derivative, considering that the space is

represented through a uniform grid with the fixed length Ax:

d*& 1
— | = =28 ¢ 1.124
(dxz ji (AX)Z (gtl+l §(| + g(I—l) ( )

Equation (1.123) becomes:

0°¢. 0& ES
AX—L + rSAX—+—(&.. —2& + &, ) = F (1) SAX 1.125
PIX ot (Gam28 48 =R (1.125)
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m 2E'+I’ E

P 5 +k(&,,—2& + &) = F (1)SAX (1.126)

Writing the Newton'’s law for an element:

62

So(x+aX)— So(X) = pSaXx—- e (1.127)
and
E _ _
o(x) = ELEC9 = £(x=ex)] (1.128)
AX
When aX - 0, considering So = F we can write:
d
F.-F=—p 1.129
i+1 i dt pl ( )
and
F =E—Sq (1.130)
AX
where
p = pSaxé (1.131)
is the momentum of the i element, and
G =¢ ~ <4 (1.132)

is the relative displacement between the ith and the (i-1)th element.

Equation (1.126) becomes:

k(g —qi_l)+r%+ m—=- Z (1.133)

ot ot*

For i fixed we have the following representation (figure 1.17.) for

one element:
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Fig.1.17. One element representation

The corresponding bond graph for the entire bar is in figure 1.18.
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Fig.1.18. Bond Graph representation for difference finite

The generalized momentum corresponding to inertial part can be
expressed in function of generalized displacement at each point. In the

one dimensional linear case it gives:
dp rp
—=k,,(q,) k(g)——+ 1.134
dt k|+1(q|+1) k| (ql) m ( )

The same representation for the potential part is:

dg _p_Py

(1.135)
d m m,

1.3.6. Finite volume method

1.3.6.1. Principle

The finite volume method approximates the partial differential

equation over a control volume surrounding the grid node, rather than at
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the node itself as finite difference method. The discretization equations
are obtained by integrating the partial differential equation over control
volumes surrounding the grid nodes, after introducing necessary
simplifications and assumptions. It often leads to the same discretization
equations as the Taylor series method, however it is more flexible. It
bears much commonality with the Galerkin Finite-element method but is
easier to implement. In the finite volume method the integration domain
is covered by control volumes; each control volume engulfs one grid
node, which lies on a grid mesh. With gradient type boundary conditions,
we need to solve over a control volume surrounding boundary point, but
there is no need to introduce external imaginary nodes.

Let consider the case of heat conduction:

i(ka—Tj+i 9T l_o (1.136)
ox\_ ox /) oyl oy
which for kOR reduces to:
2: 2:
k 6_12'+0_'I2' =0 (1.137)
ox~ oy

Integrating over a regular control-volume:

TT{57 57T T(5F o

g g aXZ ayZ g g 2
(1.138)
y+Ay x+Ax az.l_
+ [ ] k| == |dxdy=0
NG

The first term may be integrated in x-direction as follows:
y+Ay x+Ax 2 y+hy
j j k a—T2 dxdy:j (ka—Tj —(ka—Tj dy (1.139)
% 0x Y OX Jyinx ox J,

To continue with integration we will assume that the quantities

between brackets do not vary with y. We have:

y+Ay x+4x 2
j j k a—T2 dxdy = (ka—Tj Ay—(ka—Tj Ay (1.140)
0x OX Jyonx ox J,

y X
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Then we use a central-difference formula to evaluate the gradient

at the control volume, giving:

y+Ay x+Ax 2
aT T‘+1‘_T" T"_T‘—1'
k| — |dxd k=l LAy —| k=0 1Ay (1,141

y X
We follow the same step for the second member of the equation
(1.138) assuming no variation of the partial derivative in x-direction:

yryxrbx (52 T..,-T. T.-T.
J' j LIPS dy =| | k=21l | Ax —| k=1L JAx | (1.142)
ay? Ay Ay

y X

Substituting (1.141) and (1.142) in (1.138) we have:

T,.-T T -T,,.
ku Ay — k"l—"l'l A
(1.143)

PRSIV (U IITE W P
Ay Ay

1.3.6.2. Bond Graph representation

Consider the bar equation with boundary conditions:

0°¢ o< 25
PS— +IS— — —F(x,t)S=0
ot a o (1.144)

0t)=0 —(L,t)=0
() at ( )
Let consider the case where F(x,t)=0. We define a volume control

like in the figure 1.19.

\
-————— — — — —
i+1/2

1 1
1 ]
| AX 1

Fig.1.19. Volume control

Equation (1.144) becomes:

jps +j rs9¢ +j ES—f—O (1.145)
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Eq. (1.145) becomes:
22\ *
(Esgj —(Esgj + pS(a—ij +r8(gj AV =0 (1.146)
0X i1y 0X Ji_y ot ot

&Y . (%) |
5t and 5 are the average values of the first and second

derivative inside the control volume. We can consider several

approximations of them:

(gj A (ifj :i‘; (1.147)
ot ot ot ot

or

(gj 1(06ys ) (0%6) _1( 0600 F6uia) () 14g
a) 20 ot at o" ) 2( ot* o’ '

It is also necessary to approximate the value of & at face i —1/2

and i+1/2. We chose a linear approximation. The central difference

approximation:
(ESEJ —Es$iTéa (1.149)
0X )iy aX
and
(Esgj - gséu S (1.150)
0X i1y aX

Using the approximations (1.147), (1.149) and (1.150), eq.
(1.146) becomes:

ES(Eiﬂ_Ei _fi _Ei—lj+|:psﬁ+r8%j|SAX:O (1151)

aX aX ot? ot
or
2
§(fi+1—2£i +fi_l)+,oszAx%+ rszAx% =0 (1.152)
AX

The displacement between the ith and the (i-1)th element:



Contribution a I’extension de I'approche énergétique a la

représentation des systémes a parametres distribués

q=¢-¢, (1.153)
and the momentum of the i element:
P = pSaxé (1.154)
Equation (1.152) becomes:
0%

k(g —qi_1)+r%+m 2L=0 (1.155)

ot ot

The corresponding bond graph is in figure 1.20.

Im lom, b 4y

Fig.1.20. Bond Graph representation for difference finite

The finite volumes method is a method used to solve the
nonlinear conservation equations. Finite volume methods are very
robust and efficient for practical computation when applied to the direct
simulation of complex physics. This is particularly the case in

computational fluid dynamics.

1.4. Conclusion

The spectral methods use a weighted-integral statement in order

to calculate b,. They produce a sufficient and necessary number of

algebraic equations that are equivalent to minimizing the error
introduced in the approximation of the differential equation in a
weighted-integral sense.

The main disadvantage, from the practical point of view, is the
difficulty encountered in selecting the approximation functions. There is

not a unique procedure for constructing them and it becomes more
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difficult when the domain is geometrically complex and the boundary
conditions complicated.

To solve a problem with the variable separation method, Karnopp
and all [KAR 90], proposed to split the domain into a sufficient number
of modes and to replace the neglected others with an equivalent stiffness
not to lose the static comportment of the system. Doing that the solution
is no more an exact one and the method enters in the spectral method
group of approximation problem.

Finite element methods are similar in philosophy to spectral
algorithms; the major difference is that finite elements chop the interval

in x into a number of sub-intervals, and choose the @(x) to be local

functions which are polynomials of fixed degree which are non-zero only
over a couple of sub-intervals. In contrast, spectral methods use global

basis functions in which @(x) is a polynomial (or trigonometric

polynomial) of high degree which is non-zero, except at isolated points,
over the entire computational domain.

When more accuracy is needed, the finite element method has
three different strategies: to subdivide each element so as to improve
resolution uniformly over the whole domain; to subdivide only in
regions of steep gradients where high resolution is needed; to keep the
subdomains fixed while increasing p, the degree of the polynomials in
each subdomain.

Finite elements have two advantages: they convert differential
equations into matrix equations that are sparse because only a handful of
basis functions are non-zero in a given sub-interval; in multi-
dimensional problems, the little sub-intervals become little triangles or
tetrahedra which can be fitted to irregularly-shaped bodies like the shell
of an automobile. Their disadvantage is low accuracy (for a given
number of degrees of freedom N) because each basis function is a

polynomial of low degree.
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Spectral methods generate algebraic equations with full matrices,
but in compensation, the high order of the basis functions gives high
accuracy for a given N. When fast iterative matrix-solvers are used,
spectral methods can be much more efficient than finite element or finite
difference methods for many classes of problems. However, they are
most useful when the geometry of the problem is fairly smooth and

regular.
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Chapter 2. Port-Hamiltonian systems

2.1. Introduction

Usually, distributed parameter systems are complex systems
which raise problems in simulation and control. The most important
problem consists due to their infinite dimension model. Another
problem is a numerical one and proceeds from the fact that the
numerical methods for partial differential equations usually assume the
boundary conditions to be given, while more often the interactions of
distributed components take place through the boundary.

Starting from these problems and trying to solve them, an
approach that uses the same principles as in bond graph formalism was
developed. This approach assumes that the system can be represented as
the result of interaction between elements which are characterized by an
energetic behavior. The elements interact with the environment through
ports and the product between the input and output signals are
represented by the instantaneous power. The exchange of power
between components and between the system and his environment can
be mathematical represented by a Dirac structure in finite dimensional
case or by a Stokes-Dirac structure in infinite dimensional one, whose
the most important properties is its conservativity. The dynamics of the
model are specified when an energy function (Hamiltonian) and the

space of energy variables are defined. The Dirac structure together with



DTN contribution a I'extension de I'approche énergétique a la
représentation des systémes a parametres distribués

the energy function and the energy variables are the base of port
Hamiltonian formalism [Sch 02], [Sch 05].

In this chapter we will make a presentation of the formalism, and
then we will present through an application the extension of
telegrapher’s equations in the infinite dimensional case with dissipation

[Che 07], [Che 09].
2.2. The principle of least action

The most natural representation of dynamic systems is in terms

of energy.

In 1744, Maupertius presented the fact that all the physical
phenomena are governed by the same fundamental principle: nature
always chooses the way which needs the “least effort”; it is called “the

least action principle”.

One domain in which this principle is applied is classical
mechanics with the equation of motion for particles. Let consider a

particle with g the coordinate, t the time and ((t) is the trajectory.

Suppose that we know the particle’s position at time t, and t,:

q(t)=q,

2.1
q(t,) =q, -

i.e.,, q(t) is subjected to essential boundary conditions. The question is:
which trajectory q(t) would the particle take to go through points g, and
0, exactly at times t, and t,?

The principle of least action states that the real trajectory of the

particle is the one that minimizes (or maximizes) the action functional,

s[a(t)]= j: L(t,q(t), o) )t (2.2)
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where L (t, q(t), ('](t)) is the Lagrangian of the system,

L(aq) =5 m(40)* -V () 3

where: mis the mass, (t) is the velocity and V(q) is the potential

energy.
The real trajectory of the particle must have 0S =0 (Annex 1), and

hence satisfies the Euler-Lagrange equations,

dfo) o 24
dt\og) aq

When the Lagrangian takes the form of eq. (2.3), this leads to the

following equation of motion,

me(t) =—‘;—V (2.5)
q

which is identical to the Newton’s equation of motion. In general, if the

system has n degrees of freedom, @,.....,q,, the Lagrange’s equations of
motion are
4 i —izo for al 1=12,..,n. (2.6)
dt\ oq ) oq

2.3. Hamiltonian formalism

Hamiltonian formulation gives us not n second order equations as
in (2.6), but 2n first order equations.

From Euler-Lagrange equations:

d(aL . _oL . _
a(a—q(czl(t),q(t),t)] 5 (90, 4.0 =0 (27)
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we consider

oL oL

p(t) = 2 = p(t) = B (2.8)

where p(t) represents the momentum or the impulse of a mass.
To express these equations in function of g and p instead of g and

g, we introduce the Hamiltonian

H (g, p) = pa-L(q,q) (2.9)

for one degree of freedom, and

H(a,p) =D, p4 - L(a.9) (2.10)
i=1
for n degrees of freedom.

H(q,p) is the Legendre transformation of L(q,q).

Hereafter are recalled the Hamiltonian equations of motion:

_oH
aq

- oH
=%

p =
(2.12)

In general, H represents the total energy stored in the model.
This representation can be found from the Poisson bracket. This is

defined for two functions F and G in the phase space like:

OF 0G OF 0G

FGl=—»——2-—" "2 2.12
{F.c} dq 0p 0Jp dq (212

The properties of the Poisson bracket are:
1)it is skew-symmetric {F ,G} = —{G, F}

2)it satisfies the Jacobi identity:

{[F{GH}} +{G{H F}}+{H{F.G}}=0
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The canonical equations of mechanics are [Arn 89] :

'p:{ p,H} :—%_H
" q (2.13)
q={aH}=30

2.3.1. Port Hamiltonian representation

In engineering a fundamental concept is the notion of “open
system” [Ort 01], which is a system with a direct interface with its
environment. This concept is used in the representation of the system as
a grid interconnecting components [Sch 02]. The network modeling
assumes that the system has external variables, which can be
interconnected to other open systems. In order to have this property, the

canonical equations are modified and an exterior force is added [Sch 95].

2.3.1.1. Finite dimension
a) Without dissipation
When there are external forces F, the canonical equations

become:

oH
p={p.H}=-"+F
(p.H} =~

" (2.14)
q :{q' H} :a_p

By calculating the power balance it leads to:
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dH(g.p) _(OH) . (OH),
dt ap oq

O (R
SCIORCE

:qTF

All these equations are suitable for representing mechanical
systems.

For control design purpose, F can be considered as inputs (the
forces that act on the system). We consider a system with inputs and
outputs and we choose y as outputs, in such manner that the product
y'F is a power. With these, we can work using the concept of energy
and we can use by analogy this concept in other domains.

We take:

_OH

» (2.16)

Note :the variation of energy versus time in a conservative
Hamiltonian system is equal to the supplied power.

The representation with collocated inputs and outputs is:

. _OH n n
q:é)_(q’p)’ qUR", pUR
p

) oH m
p= —a(q, p)+B(qu, ulR (2.17)

y=BT(q)"’a—$(q, o) (=B"(q)¢), yOR™

where B is the input matrix, Bu is the set of generalized forces obtained
from inputs u=F. This representation is called the port-Hamiltonian

system.
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The power consumed in the system is %—Tand is equal to the

power supplied to the system as shown in the following equations:

W =y'u (2.18)
The system is power conservative.
Note: y being chosen in order to have as the product between it
and the vector of inputs an instantaneous power, thus we have a
similarity with the bond graph representation.
The work space is of dimension (2*n) and is the phase space.
Another modality to write the eq. (2.17) can be obtained if we

consider a vector X =(X,,....,X,) of local coordinates for a n-dimensional

state space manifold on R?:

H
x=|4] oH_)od (2.19)

o] " |on

op

X = J(x)%—H(x) +g(x)u, xOR*,udR™
X

oH (2.20)
y=9'0)5 (). yOR"
X
where J(x) is a (2n x 2n) skew-symmetric matrix
J(X)=-3"(x)
10 I, 10, (2.22)
Wl o] swg]

The system represented by eq. (2.20) having the matrix J
satisfying eq. (2.21), is called a “port-Hamiltonian system” and is

represented in figure 2.1.
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ower- u
il B : ports
storage conservative <
elements interconnection v

Fig.2.1. Port-Hamiltonian system without dissipation
b) Dissipative systems

To take into account the energy dissipation phenomena

(resistance, etc..) we introduce the variables U, to define a new input
u .

vector as . To keep the same number of inputs and outputs, we
R

introduce the variables Yy in the output vector as

oH
" (02 (x)
{y } = gﬁl‘ (2.22)
Yr MERE
X
The model (2.20) becomes:
%= 300 28 (0 + 90U + g (XU,
ox
y= gT(x)‘;—H(x) (2.23)
X

e = gL(x)%—H(x)
X

where Uy, Y, represent the connections with the dissipative part. If we

do not have any energy storage, the component is of algebraic type:

u;, = —-F(yg), where the (-) sign is due to convention for dissipative

phenomena.
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The power which will be transformed into stored energy is thus:

d_H:(a_HjTX (aHj (J(X)_+g(x)u+gR(X)u j

dt 16)4 oX
oHY - oH (oHY oH ' (2.24)
=l — | IX)—+| — +| —
(217 3002 (24 gt 2] o
=0 =y'u =YRUR

But, u, =-F(yg), so we have:

dH

E - y u- yRF(yR) (2-25)

with yiF(yg)=0.
In the linear case, we can write the relation u; = —Sy;, for some

semi-positive symmetric matrix S=S' > 0.

%= J(x)%—:(X)Jf 9(x)U- g () Yr

" (2.26)
y=9' (020
X
Using Y, = gR(X) (X) it leads to:
k=300 (9 + 900U~ (S S0
X [)4
(2.27)
L OH
y=g" (950
X
Finally, it leads to:
*=[309 - RO ST+ g
X (2.28)

y= gT(x)%—H(x)
X

with R(X) = gx(X)Sgr(X).
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This is the representation of a port-Hamiltonian system with
dissipation.

The power-balance has the form:

dH S a_H ! a_H T
M o =yu-( 2] roxw 2 < yu (229

We can see the system from a network modelling perspective like
being constituted by a set of energy-storage elements, a set of energy-
dissipating or resistive elements, and a set of ports, interconnected to

each other by a power-conservative interconnection (see figure 2.2).

dissipative
elements

energy- power—l OTtS B
storage conservative
elements interconnection -y'

Fig.2.2. Port-Hamiltonian system with dissipation

c) Effort-flow representation

Let us consider a state space n-dimensional (LI ) where the energy
variables arex,X,,.,X,, and the total energy H:U - R. The
representation of power-conservative interconnection can be done by a
constant Dirac structure D (Appendices B) defined on a finite-
dimensional linear space F or more often by a Dirac structure modulated

by the state variables x.
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In the first case the linear space F contains the space of flows

fclinked to the energy-storage elements (Fg), the space of flows fg
linked to the dissipative elements (F), and the space of external flows
f, linked to the environment ( F,). We have the dual space F", with the
corresponding space of efforts e, connected to the energy-storage
elements (F), the space of efforts €, connected to the resistive
elements (F}), and the space of efforts e, connected to the environment
of the system (F.).

For the energy-storage element, the flow variables are given by:
fo=—X (2.30)

and the effort variables by:

= oH (X) (2.31)
ox

The minus sign is introduced in order to have a consistent sign
convention.
For the resistive elements we consider here only the linear case,

so the variables effort and flow are related as
fr =—Reg (2.32)

for some matrix R=R" > 0. It results in what it is called an implicit port-
Hamiltonian system (with dissipation) related to a constant Dirac

structure:
. oH
(fS:—X, fR:—ReR,fp,es:a(X),eR,eijD (2.33)

In the finite dimensional case the Dirac structure can be used to

formalize Hamiltonian systems as implicit Hamiltonian system.
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Using the representation of energy accumulation [Baa 08] (figure

2.3.):

£~

R€;

Fig.2.3. System representation

2.3.1.2. Infinite dimension

In the infinite-dimensional physical systems, the Dirac structure
has a special form called Stokes-Dirac structure, and to represent the
systems as a port-Hamiltonian one, the distributed parameter system is
formulated as a system of conservation laws, coupled with a set of

closure equations.

a) Port-based formulation for b-dimensional spatial

domain

Consider a b-dimensional manifold Q with (b-1)-dimensional

boundary 0Q. Denote by A*(Q) the vector space of k-forms on Q and
by A¥(0Q) the vector space of k-forms on boundary. Be A =0, ,A*(Q)

the algebra of differential forms over Q and recall that it is endowed
with an exterior product [] and an exterior derivation d (Annex 1).
In [Sch 05] it has been shown that a system of conservation laws is

defined by a set of conserved quantities

Y, OAS(Q),i 0{4,...,N},N ON, k ON defining the state space
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oy,
—=L+df =g 2.34
at I g| ( )

where B OA™(Q) denote the set of fluxes and g, JA"(Q) denote the
set of distributed interaction forms. Finally, the fluxes £ are defined by

the closure equations which appear from the description of the canonical

interaction of two physical domains with x[JQ:
B =M(y,x), i=1...,N (2.35)

The integral form of the conservation laws yields the following

balance equations
0 —
ot J-Qyi +.[09’8i _Lz 9 (2'36)

Let consider the conserved quantities Yy,0A%Q) and

Y, OAP(Q), part of a system of two conservation laws, which are

differential forms with the degrees p and g on a b-dimensional spatial

domain Q and p+g=b+1. The closure equations generated by a Hamilton

density function ¥ :AP(Q)xAY(Q)xQ - A°(Q) resulting in the total

Hamiltonian H = Ig?f UR are given by:

oH

('B p]:g[o Hyj %, (2.37)
B, 1 0 J|oH

3y,

with r = pq+Ll¢ D{—l, +1} . These form a system of two conservation laws

with canonical interdomain coupling.
As in the one dimensional case we define the power variables. As
we saw before the Hamiltonian is the total stored energy of the system.

The state variables Yy,,i =1..b are called the energy variables and the
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L N oH .
variational derivatives Sv are called the co-energy variables or power
Yi
variables.

We define the vector of effort variables

oH
e oy
Pl= P (2.38)
&) |oH
oY,
and the vector of flow variables
f %,
( "]= ot (2.39)
o) | Y
ot

The flow and effort variables are power-conjugated as their

product is the time-variation of the Hamiltonian function:

9 d
d_sz OH 9%, , OH 9% =[ (e,0f,+e,0f,)  (240)
dt Jaldy, ot Jy, ot ) JatP P

One may write the time-variation of the Hamiltonian using the
conservation laws, the closure relations, the properties of the exterior

derivative and Stokes' theorem (Appendices B):

ilTT = [ (e8,0(-d8,) + (=)' B, D&(-d,))
= —gjg(ﬁq 0dB, + (=D (-1)*™* 8, 0d3, )
= —ejg([fq 0dg, +(-1)°B, 0dB,)
=-¢[ B, 08,

(2.41)

We define flow and effort variables on the boundary of the system
as the restriction of the flux variables to the boundary 0Q of the domain

Q:
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( f"’] = ['B o bo ] (2.42)
& B, ba

They are also power conjugated variables.
We can define an interconnection structure between two systems
of conservation laws by the equations of differential forms defined on

the boundary 0Q, together with the conservation laws and closure

[f"]:g(o (_1)rdj(e"] (2.43)
fq d O €,

The power-conjugated variables make this interconnection power

equations.

continuous because the variables satisfy the power continuity relation

from (2.40) and (2.41):

.[z(ePDfP-'_qufq)"'ng f, g =0 (2.44)

b) Port Hamiltonian for distributed-parameter systems

with boundary energy flow

This is the case where we are interested only by what happened
at the boundary level.

In the case of a distributed-parameter system with boundary
energy flow we present a definition with respect to a Stokes-Dirac
structure (Annexes 1).

We consider a b-dimensional manifold Q with boundary0Q, and

let D be a Stokes Dirac structure.

Let consider

H#:AP(Q)xAY(Q)xQ - A°(Q)
H ::J-Q?fDR
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a Hamiltonian density with total energy H.

For

b_
5,H OA""(Q)
b_
5HOA™(Q)
defined differential forms, (Jp H,oH ) OAPP(Q)x A" (Q) can be seen
as variational derivatives of H at (up : uq) OAP(Q)xAY Q).

The Hamiltonian time variation is:

dH ou ou
—=||dHO=L+5H O 2.45
dt L{ P oo Gt} (245)

] du  du
The rates of the energy variables a—tp,a—tq are connected to D by:

— aup
=L
ot (2.46)
__ 9y
d ot
We set
e =0 H
PP (2.47)
&, =9,H

It results the definition of boundary port-Hamiltonian system
defined on a n-dimensional manifold, with state space A"(Q)*xA%(Q) ,

with a Stokes-Dirac structure D, and a Hamilton H:
| da,

ot |_|0 (-1'd JpH
~ da, d 0 o,H

Lot

1,1 [1 0 IH|s
_eaHo —(—1)”“*} OH o

(2.48)
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Because any Dirac structure is power-conservative, it results that

in the Stokes-Dirac structure D, any ( fp, fq, f, €,,€,,6 ) satisfies:

J.Q[ePDfP-I-qufq]-l-J.aQeo 0f,=0 (2.49)

When the system interacts with its environment through
dissipative components and inputs that affect the power balance of the

system, the space is augmented for some m-manifolds S with the flows

denoting the externally supplied distributed control flow f¢OQ%(S),

and the efforts corresponding to a power exchange € 0Q"(S).

The Stokes Dirac structure is now:
[ f -n'dlle
o cvdfe] g,
_1‘q d 0 &,
_fa}:[l 0 } ez (250)
&) [0 (D" elx
e
eq

with G a linear map:

G
G= [G] 1AY(S) -~ APQXA(Q) (250)
with dual map
G"= (G}, G;): AP(Q X AH(Q) — AT(S) (252)
satisfying
[[e 0G,(f,) +&,0G,(f,)]=] [Gy(e,) +G(e)|Of,  (2593)

The external variables are now:

f,,€, - the boundary external variables
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f4,€, - the distributed external variables.

The power balance:
dH
Ezj«me" 0f, +[ e Of, (2.54)

with the first term denoting the power flow through boundary, and the
second the distributed power flow.
The energy dissipation can be incorporated by terminating some

ports with resistive relation.

Let R: A"?(S) — AY(S) be a map satisfying:
jsed OR(e,) 20, Oe, OA9(S) (2.55)

The port-Hamiltonian system with dissipation defined with
respect to the Dirac structure satisfies the power inequality:
dH _

dt 20 o, _.[sed UR(e,) = J.ageﬁ 0, (256)

2.4. Transmission line application

2.4.1. Without dissipation

In the 1880s, Oliver Heaviside, developed the transmission line
model. Starting from this model have been found the telegrapher’s
equations, a pair of linear differential equations, which describe on an
electrical transmission line the voltage and current with distance and

time.

T i T l\ T l\ T J B I
1] 11 1] 1T |

Fig.2.4. Transmission line

——
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This approach can be applied to high-frequency transmission
lines and is important for designing high-voltage energy transmission
lines. The model obtained shows up that the electromagnetic waves can
be reflected on the wire, and that wave patterns can appear along the
line.

If we consider a long transmission line, we can split the line into
segments of small dimension dx and we can consider the currents being

quasi-steady.

When the elements r (resistance) and g (conductance) are very small,
their influence can be neglected, and we have the lossless transmission
line model, where we have the dependence on ! (inductance) and c

(capacitance):

0 _ 0.
—V(x,t) = Iatl(x,t)

%X ’ (2.57)
—i(Xx,t) =—c—Vv(xt
F™ (x,t) m (x,t)
When the effects of r and g are not negligible we have:
aiv(x,t) =l agi(x,t) —=ri(x,t)
X t (2.58)

0. 0

—i(xt) = —c=v(x,t) — gv(xt

oy (6D = ~Co VX ) = gv(x.1)
2.4.2. With dissipation

Let us consider a transmission line with Q =[0,1] O R and define
the energy variables as the charge density q=q(t,x) JA(Q) and the

magnetic flux density @=¢(t,x) OA'(Q) where A'(Q) denotes the 1-

forms space. The energy density (or the Hamiltonian density) H at time ¢

in the homogeneous transmission line is given as:
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H (g0 = %[q(t, X) D*—C'(t(; %)+ gt %) D*—w(tl' X)} (2.59)

where [ and c represent respectively inductance and capacitance density
and where () is the wedge product and (*) is the Hodge star operator,

defined as
*(D): N(D) - A"*(D) (2.60)

where D is an open in Q (a Riemannian manifold). In order to
introduce the energy variables, we write the power balance of the

transmission line starting with total energy

dH(qqo) jdH(qqo) Oq OH(g,9 0(0 (2.61)
o Tt

where variational derivatives are given by

oH(q,¢) _,1

> ECI(LX)
- (3 » 1 (2.62)
7 = *l_ﬂt, x)

We introduce the conjugate energy variables flow (1-form) and

effort (0-forms) as follows:

aq(t X) _ ot x)

f,(t,x f (t,x) =——
o(t,X) = o(LX) == 069

e (%) - Ddh(q, D o (0 =rNa0

aq op

The equation (2.61) becomes,
dH (9.9 _

T_jgeq Of,+e,0f, (2.64)

In addition, we have the telegraph equations written in terms of

conjugate variables and differential forms.
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We have two cases:

1) Without dissipation [Gol 02]:

f,=—de
{ roo (2.65)
f,=—de,

2) With dissipation
We propose in our paper [Che 09] to extend to dissipative systems the

study made for undissipative ones:

B . (2.66)
f,=—de,—a(*e,)

- —_ *
{ f,=-de,-r(*e,)
r and g represent respectively resistance and conductance density and d

is the usual exterior-derivative.

Substitution in the equation (2.61) gives:

1)
(ij_:l - .[Q S D(_dew) T D(_deq)
= .[Q[_eq Ude,-¢, Ddeq] (2.67)
= —J-Qd (e¢ Deq)
= _J-ageq He,
2)
= IQ[_eq Ddetp - efP Ddeq:l _L)I:eq Dg(*eq) * e(p Dr(*e(p):l (2'68)

- —de (ew Deq) _jg[eq Og(*e,) +€,0r(*e,)]
= _LQ = Dew—jg (e, 0g(*e,) +e,0r(*e,))

where 0Q :{O,]} represents the boundary set of Q. We have the

following structure:
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1)

[e0f,+e,0f,+ &0f,=0 (2.69)

2)

[ e0f,+e,0f,+[ q0f +| e 0f,+e,0f,=0 (270

where g, = eq‘ag and f, = eq,‘m define the restriction of flow and effort on
0Q,
f,=1(%e,) :Iiga(t,x) OAYQ), f, =g(*e) :%q(t,x) OAYQ), and

€dq=€q Cdg=€y

The two last terms of the left side of equation (2.70) represent the
power flow at the boundary and the dissipation power in a transmission

line. In this way, equation (2.66) becomes

f,=-de, - f,,

j (2.71)
f,=-de,— fy

The resulting port-Hamiltonian systems are:

1)
fw 0 -d eq
= (2.72)
f, -d 0)le,
&) (1 0 0 0)&(t0)
€& | |0 1 0 0| el
= (D (2.73)
f| |0 0 1 0} e,t0)
f,) \0 0 0 1){e, )
2)

1 W
= - (2.74)
f, -d 0)(e, 0 1)| fg

fd(p _(r* 0)\(6&,

[quj-[o g*](eq} 279
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€ ) (1 0 0 0)&(t0)
e.| [0 1 0 0 el
= (D (2.76)
fo| |0 0 1 0,0
f,) 0 0 0 1) e

bo and b; denote, respectively, the left and right boundary.

Note :

In terms of current and voltage, the transmission line with

dissipation satisfies the following equation:

%_T = v(t,0)i(t,0) - v(t,1)i(t,1) - J'Q[gvz(t, X) +1i%(t,X) | (2.77)

where i(t, X) :*%qa(t, x) and v(t, X) :*%q(t, X)

2.4.3. Spatial discretization

For the dissipation case, we will carry out a separation of
variables and we will use the Whitney forms which make it possible to
preserve the properties of the p-forms at the time of a spatial
discretization [Bos 91].

For linear interpolation of 0-forms to the whole space, we can use

the linear interpolation basis. With each vertex Vv, is associated a basis
denoted as ¢ :

¢ =1 atv, ¢ =0 atv, 2y (2.78)
while ¢ linearly goes to zero in the one-ring neighborhood of v,. These

functions are the barycentric coordinates, introduced by Mébius in 1827
as mass point to define a coordinate-free geometry.
If we denote a vertex v; by o;, with this basis we have:

1ifi
[,8.=],0.=], 4~ {O|f|¢1 (2.79)



Contribution a I'’extension de I'approche énergétique a la
représentation des systémes a parametres distribués

For the 1-forms interpolation we use the Whitney 1-form

associated with an edge o;; between v, and v; .

¢a’ij = ¢id¢j _¢jd¢i (2.80)
We have:
1 ifi=kand j=I
[ 4, =1-1ifi=land j=k (2.81)
! 0 otherwise

This is zero when at least one vertex is not on the edge. Along the

edge g;, we have ¢ +¢, =1. Thus:

$,=0 #,=0

[, %=, (d0-8)-(-g)dp)=[" (-dp)=1 (282

Next we make the spatial discretization of the telegrapher’s
equations. The transmission line is split into m cells. Due to spatial
compositionality (i.e. interconnection of two transmission lines via a
common boundary once again gives a transmission line), we need to
perform discretization to only one cell. That is to say the cell delimited

by space Q_ =[a, ]. One considers a cell (with the length (-a)), and we
denote the spatial manifold Q_ =[a, £] .

We express the boundary variables as functions of the efforts:

6 (1) =€ (t.a) &,(t) =&(Lh)

(2.83)
foa (D) =€ (t,a)  f5(t) =e,(t,B)

We consider the size of a sufficiently small cell, to be able to make

the following approximations to represent flows inside the cell:

f,(t,%) = f2(t) Dw, (%)

f,(t,%) = (1) Ow,(x) (289

1 1 1 . . far .
where “w,,"w, JA*(Q,) are the 1-form satisfying the conditions:

jQ 'w,(x)=1 and jQ W, (x) =1 (2.85)
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In the same way, the efforts ,(t,x) and e,(t,x), inside the cell,

are approximated by :

6,(t:X) = € () I, () + €2 (0 ! () o5
e,(t,x) = € (t) W, (x) + & (t) T, (X)
where wi,w?,wy,ws OA°(Q,) are the 0-forms satisfying the conditions:

W@ =1 W(B)=0 wi(@)=0 Wi(f)=1

(2.87)
Wi(@) =1 wi(B)=0 wi(@)=0 Wi(B)=1

1 11-";[3{.'] 11f{xj 1

Fig. 2.5. A Whitney 0-form

This Whitney 0-form, as shown figure 2.5., makes it possible to

have the following relations:
W () +W/(x)=1 and w5 (x)+w(x)=1 (2.88)

By substitution of (2.84) and (2.86) in (2.71) and by taking into

account (2.75) we obtain:

f22 () 'w,(X) = =€ (t)dw (X) — € (t)dw? (X)

1 (€5(t)(*w5 (X)) + € (1) (w2 (X))
£ (1) w, (x) = —€5 (t)dw; (x) — € (t)dws ()

- g (e MW (x) + €L OW (X))

(2.89)

In order to determine the dynamic equations inside a cell, we

integrate the equations above:
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O], W0 = -0 dwg () -l dwi ()

-reg (M), (W) -ref (] (wp(x) (2.90)
P Of, W0 =-e O dw; () -efO], dwy(x)

~ge/ (O], (W 00) -~ gef ()] (g (x)

Using the relations (2.85) and the properties
—_ * —_
jQ dw = jagw and  (*w) = wdx (2.91)

where wis a 0-form and (*w) is a 1-form,

V\/Z:vvg:;_l’i,andwf:wf:;_c; (292)
the Whitney 0-form leads to the following relations:
[2f a 1 a
FEUEEAOREAORMCAORLAQ)
(2.93)

() = €50 - e (1) =5 0, (€ () + € (1)

where 1, =r(f-a)and g,, =9(f-0a).

We arrive to the following spatial discretization representation of

this typical cell:

fba (t) 1 O O O

Fos(t) 0 1 0 o |[&®

€, (1) 0 0 1 0 | e

= (2.94)

€,(1) 0 0 0 1 |lef)

f;’ﬁ (t) —.5raﬁ _.5raﬁ 1 -1 eﬁ(t)

q
fqa/i’ (1) 1 -1 —.590,’8 —.590,/3

It remains to check that this is a port Hamiltonian system
corresponding to a cell which preserves the Dirac structure. This

corresponds to an instantaneous conservation of the power (net power).
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P, :ch e, Of, +ch e, 0 f¢+J.aQCeD Of, (2.95)

One replacese,(t,X), e,(t,x), f,(t,x) and f,(t,x) by their

approximations from (2.84) and (2.86) to obtain the following

expression:

Po, = [, (efwg +efwy ) 17w, + [ (egwf +efwy) 7w, (2.96)
* € Top = 6 T

or

e G R R L R I L
+ €, fop — € Fon

Before developing calculations, we establish initially some
relations between the various 1-forms brought into play.

Combination of equations (2.89) and (2.93) gives :

(e - =21, (e + &), =~ —efck —r (e () + € (w) oo
(6 =€ =5 s (& + )" w, = ~efch — et~ (< () + )

From them it results:

'w, = —dwf = dw?

(2.99)
lWq = —dwj = dwg

In addition, the use of the Whitney forms enables us to have the

following relation:

w, =W dwd —wEdwg = wg tw, W tw, = (W +wE) tw, = tw, (2.100)

We take y = J'Q WS ‘w, , which leads to:
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.[chéglwq =1-y
jﬂcwg w,=1-y (2.101)

Bly, —
Jo w5 W, =y
Indeed,

o W, + [, = <[ wiag [ wodwg = =] d(wgwg)

. ¢ (2.102)
=~ (W (BW(B) - Wi (@)W (a)) =1

q 4

The equation (2.97) becomes:

B, = (ve + (1= ))ef) 17 +((L- )5 + yeb) £+, — 6, Ty (2103)

We say that
= e? =l
% i B =5 (2.104)
f, =€ f,=¢€
what makes it possible to write the equations (2.93) in the form:
f%(t)=g, — N f_+f
) =€y enﬂ Eraﬁ( ba b;;)
1 (2.105)
fqaﬂ(t) = fbg - fbﬁ _E gaﬁ(ena + enﬁ)
For the efforts of the cell:
egﬁ=yem+(1‘y)eogetegﬂ =(1-y) fba+yfb,8 (2.106)
the instantaneous power is written then:
R, =(e”[f7)=et P +ef 17 +q, M, -6, f, (2.107)

where
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e’ =(ef & & 8

(2.108)
fr=(f 17 g, f)

From (2.105) and (2.106), it gives:
10 0 0 )& (00 y-1 -y\ 7~
01 - -1(|e”*| |00 O 0 | f*

v O+ 9 1=0 (2.109)
00 -1 1 || |10 5r, 5l fy
0 0 59, 59,)le,) \01 -1 1 )f,

FG,B Eaﬂ

with y=1/2 in the case of the approximations of Whitney for the 0-forms
and the 1-forms. We denote the space of admissible efforts by e, and the
domain of admissible flows by f, such that the following relation is

satisfied by:
D ={(f,e)OR*:E¥e” +F”{ = (2.110)

D is a Dirac structure with respect to the bilinear form if and only

if the following two conditions are satisfied:
rank[ E¥ F%]=4 E¥(F?)+F?(E”)=0 (2111
After computation we show that this is true and the two
conditions are satisfied.

2.4.4. Constitutive equations

To complete calculations, we will determine the expressions of
the charge q45(t) and the magnetic flux gp(t) and their variations on the

cell level.



Contribution a I'’extension de I'approche énergétique a la
représentation des systémes a parametres distribués

@t %) = @ (1) W(X)

. (2.112)
q(t, X) = (1) W(X)
The total energy of the cell is given by
1 * 1 *
haﬂ(%ﬁ,qaﬂ)=gjz—cqaﬂlwﬂqaﬂ( W)+ [ o e WO (W)
t)  of,(t
SCACICTION] JEere (2113)
2l 2c Q
_ (1), ()
2, 2,
with
|
C N —— [ P 2114
# T o (B-a) (2114)
and
C
c,=——=c(f-a 2.115
T (B-a) (2115)
In addition, we have the following bonds:
aq(tl X) dqaﬁ 1 ap 1
= w(x) = f 7% (t) w(X 2.116
ot ot (x) = f," (1) W(X) ( )
Then
d
qaﬁ - fqaﬁ(t)
dt (2.117)

dg,
—E = (¢
dt o (1
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o (1) = oh,, _ %
& =75,
q Caﬂ
(2.118)
o (1) = oh,, _ s
g (=——-
o |,
and from equation (2.106) we have :
o 1
eqﬁ = E (em + enﬂ)
1 (2.119)
egﬂ ZE( fba + fbﬂ)
The dynamics of the cell are given then by:
dg, @,
£ = € "G " lap =
dt | g
(2.120)
% = o g ﬁ
it br ~ 'bg ~ Yap C.p

The electrical representation of the transmission line at element

level is presented in the next figure.

' Tis
Jo Patava — v

+ ’;Ull'r' r K

€ I S €
ba gr.',".l' [] —— E“” B

Fig.2.6. Elementary components representation of the transmission line

The corresponding bond graph representation [Nak 03] is the

following :
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R:7, G:€.y
T
e, - & Esp
; -1 | 0 . A
.lllrr'w ||IrA“. -T- .Jrn,n'
-
il 2,

el

Fig.2.7. Bond Graph representation

It is known that the connection of two Dirac structures gives a
Dirac structure. Thus the whole transmission line can be reconstructed

by the connection of a fixed number of cells in advance.

2.5. Conclusion

The port Hamiltonian system has been used in the representation
of the distributed parameter systems. Through the example of the
telegrapher’s equation, we have shown [Che 09] that using a special form
of discretization for the space we made the calculation only on one
element, considered as local and then concatenating the elements we can
calculate the entire line of transmission.

The port Hamiltonian system is derived from the energy function
(Hamiltonian), which is usually a good Lyapunov function, used in

control.
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Chapter 3. Traffic flow models

3.1. Introduction

“Because of congestion, there is a serious risk that Europe will lose
economic competitiveness. The most recent study on the subject showed
that the external costs of road traffic congestion alone amount to 0,5% of
Community GDP. Traffic forecasts for the next 10 years show that if
nothing is done, road congestion will increase significantly by 2010. The
costs attributable to congestion will also increase by 142% to reach 80

billion a year, which is approximately 1% of Community GDP.” [Pap 03]

In the context of economic globalization the need of circulation
for goods and peoples has known a new growth. This growth in mobility

is the principal cause for apparition of congestions.

The delays caused by congestions have an important impact over
capacity of people life. The driver which is in a congestion has problems
of stress, noise etc, driving to a growth of accident chance. This thing
may be considered as an indirect cost (health problems). The
congestions involve big losses of combustible. Hereby, in the world
context, when the combustible price is higher and higher, this means a
decrease of buying capacity. From ecological point of view, the

congestions have a negative effect because they lead to a growth of



TR Contribution a I'extension de 'approche énergétique a la
représentation des systémes a parameétres distribués

pollutions caused by the exhaust gases, which involves an exponential

growth of economical and ecological costs.

The traffic congestion problems are socio-economical problems
that need a solution which can be fast put into effect. The fastest and
most easily is to build new infrastructures that are very expensive and
reduce the available environmental space. Another solution for
congestion decrease is to encourage the people to use public traffic
infrastructure and to use train and ship for goods transport. But for
doing this we need to ensure the way for train or ship. These imply also

expensive costs.

Traffic flow theories try to describe in a mathematical way the
flow theory for a better and a more easily way of understanding, using
the interactions between the vehicles and their operators (mobile
components and infrastructure). The infrastructure consists in all the
highway system and its operational elements: signage, control devices,
markings, etc.

All these theories lead to models and tools used in the design and
operation of streets and highways. First study of traffic flow was made in
the 1930’s with the application of probability theory to the description of
road traffic by Adams [Ada 36]. Also, Bruce D. Greenshields at the Yale
Bureau of Highway Traffic studied the models relating volume and speed
[Gre 35] and investigation of performance of traffic at intersections [Gre
47].

In the 50’s theoretical developments based on a variety of
approaches, such as car-following, traffic wave theory (hydrodynamic
analogy) and queuing theory was developed. Between them we can
include the works made by Wardrop [Wan 52], Pipes [Pip 53], Lighthill
and Whitham [Lig 55], Richards [Ric 56], Chandler et al. [Cha 58].

In the 70’s another approach had been introduced, considering
the analogy with the fluid flow in fluid mechanics in Payne[Pay 71],
Whitham [Whi 74].
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In the last decades the domain knew a vast development, the
authors trying to improve the existent models as Aw and Rascle [Aw 00],
Zhang [Zha 02], Goatin [Goa 06], or to propose other models that are
suitable for the new demands of the traffic as Zhang [Zha 98], Colombo
[Col 02].

In this chapter we will present a classification of the models used
in traffic flow representation followed by a short presentation of the

principal schemes used in numerical simulation, and some results.

3.2. Model classification

The traffic models can be classified in function of some factors as:
detail level, independent variables type, application scale, and processes
representation [Hoo 01].

The detail level classification is a classification viewed from the
level of the information about the vehicle where we are interested to
arrive.

From a detail level point of view the models can be group as:

- submicroscopic models which describe the space-time behavior
of each vehicle and their driver at the individual level and also the
functioning of specific parts of the vehicle.

- microscopic models which describe also the space-time behavior
of the vehicle and the drivers at the individual level.

- mesoscopic models which describe the behavior of individuals
represented by groups of traffic entities, the activities and interactions of
which are described at a low detail level. Some mesosocopic models are
analog to the models used in gas-kinetic theory.

- macroscopic models are models where the traffic flow is seen as
a flow without distinguishing its constituent parts. For the

representation are used the flow-rate, density and velocity, and the
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models can be classified according to the number of partial differential

equations on the one hand and the order on the other hand.

When we want to simulate the traffic flow we must be aware that
we have different conditions when we talk about a simulation of a
highway or of an entire city. Thus, we must take in account the

application scale which will be used: a lane, a highway, a city etc.

Usually, the traffic models describe dynamical systems. Thus, we
can have: continuous models or discrete models in function of the

moment when changes appear in the traffic system state.

In the suite we will make a short presentation of the microscopic
and mesoscopic models then we will present the macroscopic models

which are interesting for us.

3.3. Microscopic and mesoscopic models

The microscopic models are the models that arrive at a high level
of detail for the vehicles, taking in account the vehicles as separable
entities, their comportment in time and space and the interactions
between them.

The first direction in research used the so-called follow the leader
models. In this category we can include the safe-distance models
developed by Pipes [Pip 53], Forbes [For 58], Pignataro [Pig 73],
Leutzbach [Leu 88], Jespen [Jes 98], Dijker [Dij 98] and the stimulus-
response car-following models developed by Chandler [Cha 58], Gazis
[Gaz 61], Montroll [Mon 61], Payne [Pay 71].

Another directions used the cellular automata models developed
by Nagel [Nag 1996], [Nag 98], Wu and Brilon [Wu 99], Esser [Ess 99]
and the particle models developed by Eastwood [Eas 88], Van Aerde [Aer
94], Hoogendoorn and Bovy [Hoo 00].
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The mesoscopic flow models describe the comportment of the
vehicles in an aggregate-term using the probability distribution
functions by example.

The most known models used to model the traffic flow at this
level of detail are the headway distribution models developed by Buckley
[Buc 68], Branston [Bra 76], Hoogendoorn and Bovy [Hoo 98], the
cluster models developed by Prigogine [Pri 61], Prigogine and Herman
[Pri 71], Botma [Bot 78] and the gas-kinetic continuum models
developed by Prigogine and Herman [Pri 71], Paveri-Fontana [Pav 75],
Nelson [Nel 95], Helbing [Hel 97], Klar and Wegener [Kla 98],
Hoogendoorn and Bovy [Hoo 00].

3.3. Macroscopic models

The macroscopic traffic flow models are designed in a similar way
to flow models of continuous media (fluid or gases) and use as
macroscopic variables: density, velocity and vehicle flow.

The dynamics of the system are represented using partial
differential equations (PDE). The independent variables of a continuous
macroscopic flow model are location x and time instant .

Consider a segment of highway [X, Xx+dx). Density p = p0(xt)
represents the expected number of vehicles on the roadway segment
[X, X+dx) per unit length at instant ¢, the flow q=q(x,t) represents the
expected number of vehicles flowing past x during [t,t +dt) per time unit

and the velocity v=v(x,t) represents the expected velocity of the

vehicles.
First model of traffic flow was proposed by Lighthill and Whitham
[Lig 55] and Richards [Ric 56] (LWR).

Consider a section of highway between X, and X,(X,>X)). At

time t the density on this section will be p(x,t). The traffic flows that
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enter into the section will be at a rate of q(x;,t)and the flow that exits
will be at a rate of q(X,,t).

If one supposes that it is a highway without entrances and exits,

the number of vehicles must be conserved between X and X, at any

time t.

%L p(x.t)dx+a(x,,t)=a(x,t)=0 (3.1)

LWR model also assumes for a homogenous highway:

q(x,t) = Q(p(x.1)) (3.2)

where Q is a differentiable nonnegative function, that is zero if 0 =0 or
P = P This is assumed to be true when flow and density vary with x

and/or t.

Eq. (3.1)can be equivalently expressed as:

6_p+@20 (3.3)
ot ox

If 0 has a jump discontinuity at (x,t), eq (3.3) is not more true,
but the conservation principle still applies. At discontinuities a special
kind of traffic waves appears and they are called shock waves (red light,
accident). Because of them the solution of (3.3) has to be expanded to

include the so-called weak solution. This is a function (p,q)(x,t) that is
the solution of equation (3.3) everywhere except on a path x(t) where
(0,9)(x,t) are discontinuous, but the integral form of the conservation

law is respected.

The velocity of the jump, u, is:

u=[a]/[p] =[Q(p)]/[F] (3.4)

where brackets denote the change in the enclosed variable across the
discontinuity. Eq. (3.4) is also known as the Rankine-Hugonoit condition
[LeV 92].

On substituting (3.2) into (3.3) we obtain a single quasilinear
partial differential equation in p:

p , dAN WP _,

3.5
at  dp ox (3:5)
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which taken together with (3.4) defines the evolution of traffic flow over
a specific road section, given a suitable set of initial/boundary
conditions.
The LWR model assumes that the velocity depends only on the
density:
v(p) = (1—ijvmax (3.6)

max

where V__ is the maximal speed.
The corresponding fundamental diagram in the plane (,o,,ov) isin

the figure 3.1. When there are not vehicles on the road the flow is equal
to zero. It becomes to grow with density, but with a slower slope, until it
arrives to the maximal flow. Starting from here the flow begins to
decrease when the density grows. Continue until becomes zero at the
maximal density, situation where the traffic is stopped because of

congestion and the velocity is zero.

o)y

O p max p

Fig.3.1. The fundamental diagram

Nevertheless, this diagram does not qualitatively match

experimental data observed by Kerner [Ker 00], and presented below.
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free flow ’ cang ested flow
q (vehicles /)

(D)

0 QDT 40 60 p(vehlcles]
( free)
P max

Fig.3.2. Experimental data [Ker 00]

When we have a light traffic and the passing is allowed, the queue
of vehicle disperses from the front and back in a way that it is not
predicted by the LWR theory. This comes from the fact that the LWR
model does not take in consideration that there is a distribution of
desired velocities across vehicles, in addition to a variation of the desired
velocity for each vehicle.

When the passing is restricted, the LWR model has better results
but also has some deficiencies related to the velocity of vehicle when
passes through a shock, predicting an instantaneously speed change, and
does not predict instabilities of the stop-and-go type.

To solve these problems, two directions have been followed. One
in the kinetic theory with the capturing of dispersion effects by
incorporating a velocity distribution and one that tried to describe what
happening inside a shock using a high-order refinement of the LWR

model.

Payne [Pay 71] and Whitham [Whi 74] used the second approach
and considered the traffic flow as fluid flow in fluid mechanics.

Payne [Pay 71] proposed the continuum traffic flow model by a
coupled system of two partial differential equations. He extended the
LWR model by a partial differential equation describing the dynamics of
the velocity v.
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_ W /r—(c2] 5\ %P
E+V&_(Ve(p) v)IT (cO/,o)aX (3.7)

where ¢, =¢ /7 >0 is the anticipation constant, with { =-dV./dp.

The second term of the left part, describing the changes due to
inflowing and out flowing vehicles is the convection term. The first term
of the right part describing the tendency of traffic flow to relax to an
equilibrium velocity is the relaxation term and the second term of the
right part, describing the drivers’ anticipation on spatially changing
traffic conditions downstream is the anticipation term.

But this approach is not realistic because there are essential
differences between traffic and fluids. In the traffic flow a car is an
anisotropic particle that responds to front stimuli, and in the fluid case a
fluid particle responds to stimuli from the front and from behind. The
traffic shock only encompasses a few vehicles, and in the traffic flow the
vehicle, unlike molecules, have personalities that remain unchanged by

motion.

Zhang [Zha 98] proposed another model starting from PW model,

where only one term was different. The sound speed ¢, in the PW model
was replaced by c(p) = pV.'(p):

2 —
N, v, C(p)ap _Vi(p) -V G8)

ot  ox L O0X r

The model does not solve all the problems, but the effects if the

gas-like behavior decays exponentially at a rate of exp(-t/7).
We write the equation in the vector form:
ouU ouU
—+AU)—=5s(U 3.9
5 A5 =sU) (3.9)
where A is the Jacobian matrix and the eigenvalues of the A control the
properties of the system.

We consider the PW-like model which has the same properties as

Zhang model:
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v P
u:[f] AV=| ) | V)= M)-v)T) (310)
0

The eigenvalues are A, =v+c(p) and A,=v-c(p). From

A, <A,results that the model is strictly hyperbolic which means that the
information travel at finite speeds, and discontinuities or shocks in the
state variable U arise in the solution under certain conditions.

As we can see the second eigenvalue A, is larger than v because
c(p)<0. This means that the waves associated with second
characteristic reach vehicles from behind. This is not what one would
expect to see in real traffic.

This is a gas-like traffic behavior; to solve the problem of the
characteristic speed that exceeds vehicle speed, Zhang replaced
c*(p)/ p by zero in the Jacobian matrix.

The new model proposed [Zha 02] is:

ov ov ov
Y v =—(pZ 3.11
o Vax T PG (3.11)

where ¢(0) = pV.(p) is the traffic sound at which the traffic disturbance

are propagated relative to a moving traffic stream.

Now we can write the non-equilibrium traffic model in a vector

form
I[PV P 19[Pg (3.12)
ot\v 0 v+c(p))ox\v
The eigenvalues of the flux Jacobian matrix are
A, =v

We have A, <A, and the eigenvectors

r —[l ] r —(1j (3.14)
) o '

The model is strictly hyperbolic. The characteristics speed

maximum is equal or smaller than traffic speed.
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The first “second order” model proposed by Payne [Pay 71] and
Whitham [Whi 74], was corrected by Aw and Rascle [Aw 00] replacing in

the momentum equation, the space derivative of “pressure” by the

0
convective derivative —+VvV—

ox
6_,0 +_0(,0v) =0
gt ox ) (3.15)
— (v+p(0)) +v—(v+p(p)) =0
ot 0x
where p is a smooth increasing function with the prototype:
p(p)=p", y>0 (3.16)
If we set U :=(p,V), we can write the conservative form as:
0 0
—U+AU)—U=0 3.17
3 AU) ™ (3.17)
where
v p
A(U)=( ' ] (3.18)
0 v-pp'(p)
The eigenvalues are:
A=v=-pp'(p)sA,=v (3.19)
The eigenvectors are:
1 1
rl=( . j r2=( ] (3.20)
-p'(0) 0

But this model has a problem near the vacuum; when the density
is close to zero, the solution does not depend continuously on the initial
data. Another problem arises when the road is empty. The maximal

speed reached by vehicles depends on the initial data, which is wrong.

In [Col 02], there is proposed a traffic flow model described by:

(p!q)D/\free
ap 0

5 T o (P (9)) =0 (3.21)

v, (p) = (1_Lj v

max
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and

(£,9) DA g

%—f+%(pwc(p.q))=0
09 9/ _ _ (3.22)
= (0~ Q) (p.0]=0

v.(p.0) = (PLJ B

Iomax p
where p is the vehicle density, v is the car speed, q is a weighted flow,

Pnax and V are respectively the maximal vehicle density and speed and
Q is the weighted flow at the equilibrium value.

The set A and A

cong free

A e ={(2.0) D[0,0,0] X[ 04 v, (0)2V, q=p ¥}  (3.23)

A cong = {(p,q)D[O,pmaX] x[0,+oo[ Vv, ()=V, ,Q —Q < a-Q < Q _Q}
Iomax p pmax
where V,; <V and V_<V are threshold speed constants and the

are defined by

parameters Q'D]O,Q[,Q+D]Q,+00[ depend on environmental

conditions.
If we assume that the following conditions are satisfied:
o<V, <V, <V
0<Q =Q=Q"
%q (3.24)

V. = \4 _Q+/10max
f 1_(Q+ _Q)/(pmaxv)

(1— Q jEEQ+—1j<1
pmaxv Q

the model is a model where the vehicles may have only positive speed,

the density at a red traffic light is the maximum possible and the vehicles
stop only at maximum density.
When there is a light traffic the solution to the Riemann problem is

quantitative different of the LWR model, in this case we have a phase-
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transition wave followed by a rarefaction wave instead of only a single

shock wave in the LWR case.

To solve the problems of the Aw and Rascle [Aw 00] model,
Goatin [Goa 06] proposed to couple the AR model with the LWR
equation, by introducing a transition dynamics from free to congested

flow.

For the free flow:
(P V) DA,

9, opv) _, (3.25)
ot ox
V=V, (0)

For the free phase there is only one independent variable, the

density 0. The velocity Vv, is a function of 0 and is chosen to be a linear

function:

v, (p) = (kijvmax (3.26)

max

For the congested flow:

(P V)OA,
0_/0+ o(pv) _ 0
ot [)4

A(p(v+p(p))) , 9(pV(V+ p(P)) _
ot ox

P(0) =V« IN(0/ Prras)

(3.27)

For the congested phase we have two variables: density pand
velocity v, or the conservative variables © and z=pv+pop(0).

Function p represents the driver reactions to the state of traffic in front

of him.

Starting from the fact that it is impossible to have a queue form on

a highway if you don’t have cars, it is possible to assume that if the initial
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data are in the free flow zone or in the congested zone, solution will

remain there. Two domains result:

{(P,V)D[O,Rf,ee]X[Vfree ,V] V=V, (p)} ;
{(2.V) D[OR X[ 0V, ] :p €)= v+ P (0)< PR}

where V>V, >V

free cong *

Q free
(3.28)
Qoong

The parameter rD]O,R[ represents the

dimension of the congested region. R, is the maximal density in the

free

free-flow region must satisfy:

Vfree + p(Rfree) = p(R) (329)

To have this condition, must be assumed that
V. <V (3.30)
In this model the vehicles may have only positive speed, but the
density at a red traffic light is not the maximum possible and the vehicle

don’t stop only at maximum density.

Jiang [Jia 02] proposed an anisotropic macroscopic continuum

model which consists in two partial differential equations as follows:

9 o) _ (3.31)
ot 0X
N Velp) v Y (3.32)
ot ox T 0X

where Vv denotes the average vehicle velocity, pis the vehicle density.

The right-hand side of the velocity eq. (3.32) contains a relaxation term
reflecting the process when the driver adjusts the speed of vehicle to the

equilibrium velocity V,(p) in the relaxation time interval 7, and an

anticipation term representing the process when the driver reacts to the

traffic ahead with the propagation speed of small disturbance c,.

If we write the eq. (3.31) and (3.32) as

WU A g (3.33)
ot 0X

with
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o w2 ] o

The eigenvalues of the matrix A are derived from:
det|A—/1I|= 0 (3.35)
where | is the identity matrix. We have A, =v, A, =v—c,. Since ¢, 20, it
follows that the characteristic speed dx/dt are always less than or equal
to the macroscopic flow velocity v, which demonstrates the fundamental
principle that vehicle flows are anisotropic and responded only to front

stimuli.

In the process of modeling traffic flow, it is important to take in
consideration also some important components of the road. We must
study very carefully what happens at the intersection, looking from both
possible situations: having a merge or a diverge. The problem of the
merge has been studied by Daganzo [Dag 95], Holden and Risebro [Hol
95] and Lebacque [Leb 96]. In their model, Holden and Risebro have
studied the traffic through a merge by an optimization problem. Daganzo

and Lebacque based their models on locally supply and demand.

Starting from the LWR model, which analyzes the traffic evolution

using the variables: p,V,(, and which in discrete representation used in

numerical methods cut the road in equal segments named cells,
Lebacque [Leb 96] and Daganzo [Dag 95] have developed a new method
used to solve the problems which appear in this representation. In the
LWR model, the number of the cars inside one cell is equal to the number
of cars that enter minus the number of the cars that exit from this cell; in
the Daganzo model the terms of sending flow and receiving flow are
used. Lebacque [Leb 96] is the first who used the terms “supply” and
“demand”. “The supply” is the flow rate when the traffic condition is

overcritical and the flow capacity of the cell when is under-critical; “the
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demand” is the flow capacity when the traffic condition is overcritical

and its flow rate when is under critical.

To solve the boundary problem they used either the solution of
the Riemann problem at the boundary or the demand-supply method
where it calculates the supply and the demand for each cell, then chooses

the minimum between them as boundary flow.

Daganzo added a condition to this method: because the outflow is
smaller than or equal to the demand and the entrance flow is smaller of
equal than supply, the total inflow is equal to the minimum between the
sum of the outflows and the supply of the cell. So, what must be done is
to assure o distribution of the flow for all the upstream cells. The
attribution scheme of distribution functions is called the distribution

scheme.

Lebacque proposed another modality. He considered that the
supply of a downstream cell is distributed as virtual supply to the
upstream cells. The outflows of these cells are equal to the minimum
between the demand and the virtual supply, and the inflow in the

downstream cell is equal with the outflows sum.

But to choose the appropriate distribution function, it must take
into consideration some factors. Daganzo [Dag 95] and Lebacque [Leb
96] suggested considering: these to be proportional with the number of
lane (Lebacque); to introduce priority and to consider that the upstream

cells are priorities (Daganzo).

3.4. Numerical methods

In the belief that the behavior of freeway traffic at a given point in
time-space is only affected by the state of the system in a neighborhood
of that point, some researchers have examined the possibility of

representing traffic phenomena by partial differential equations (PDEs).
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One method to solve the LWR problem is to use the method of
characteristics. The characteristics are curves in the plane space-time
that start from one point where the initial conditions are known, with

the property that the density along the curves does not change if p(x,t)

is perturbed at any point not on the curves. The characteristic curves
cannot intersect as result from definition. If they meet they must
terminate at the meeting point, where a shock arises.

For the LWR model when the initial/boundary conditions are
well-posed a family of characteristic curves exists and every point not on
a shock is reached from exactly one characteristic that extends backward
in time to some initial boundary point. The characteristic curves, define
the path of disturbance, because any modification that appear at any
point it must propagate only on characteristic that passes through that
point.

The solution can be obtain for a special kind of problem called
Riemann problem which implies two constant density separated by a
jump [LeV 92].

p x<0
1=0)=
p(xt=0) { .

The solution of the Riemann problem can be either a shock, when

(3.36)

r

it is a density growing (fig. 3.3):

pox<s

Y xod (3.37)

P(x.1) ={
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X "
(O
C
c 9«

S

Fig.3.3. Shock wave

or a rarefaction wave, when the density profile decreases. The
characteristics of the initial state are divergent, so we have a number of
solutions, and the physical one is chosen using the entropy criterion,

which in the traffic flow corresponds to a range of characteristics (fig.

3.4).
o x<ct
o(x,t) = (q')_l(?xj ct<xsct (3.38)
0. x>ct

where ¢, =q(o,,).
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o

Fig.3.4. Rarefaction waves

Another method used is the approximation of the conservation
laws using numerical methods. These are in general methods that consist
in a time-dimension discretization.

Consider the case of simple linear equation:

WU Moy xORt>0 (3.39)
ot 0X
u(x,0)=u,(x), xOR (3.40)

where a>0.

We discretize the (x,t) —-plane by the mesh (x,t,) with

x =ih(i0Z), t,=nk(nON,) (3.41)

and h,k > 0.

For simplicity we take h=k.

There are some schemes that can be used in simulation for find
the solution of equation (3.39). About some of them we have discussed in
Chapter 1. Here we give some examples of the methods that are usually

used in solving the macroscopic traffic flow models.
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GodunovV’s first order upwind scheme:

@ _ uin+l —- uin
ot at (3.42)
ou - u'—ul
0X aX
and the scheme become
uin+1 =u —c(u' -uly) (3.43)
Lax-Friedrichs scheme:
n+l 1 n 1 n
u = E 1+ C)ui—l + E - C)ui+1 (3.44)
Lax-Wendroff Scheme:
= 2 Oy + (-~ Se (-l (3.45)
FTCS Scheme:
W= e ) (3.46)

3.5. Implementation

For simulation we have considered three models: LWR model, AR
model and Zhang model, and we made simulation applying different
numerical methods, all based on finite differences. The road length (100

km) has been split into 1000 sections.

3.5.1. Riemann problem in the LWR model

At t =0, the density is a square signal with maximum value at 350

veh/km, as shown figure 3.5. At t =0", the front begins to move to the
right (switching to green of a traffic light). On figure 3.5. is shown the

shape of the car front after 10 sec.
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veh/km
400 T T T T
: «— [ (t=0 sec)
300 2 |
200 - | O (t=10sec) 1
N o
100 | | i
b
0 | A '(-I 1 ! | e g
0 20 = ) i 60 a0 100

Fig.3.5. LWR solution using the Lax-Friedrichs method

In the back of the car front we have a displacement of vehicles
which is not true in reality (no back motion), this problem being one of
the drawbacks of the LWR method. It is due to the fact that

P = Pt =108). As soon as p(X,t) will be less than p,.,, this problem

will disappear.

3.5.2. Influence of the choice of a numerical method on
LWR model

We make a comparison between the Lax-Friedrichs and FTCS

method. Figure 3.6. (a) shows the initial conditions of po(x,t=0). At
t =0, the car front begins to move to the right. Figure 3.6. (b) and (c)
show the shape of the front car at t =5sec using the two different

numerical methods.

veh/km
80

0+ t=0 sec -

60 —

50— —

401 -

30— —

20
101 =
0 | | 1 | | | | | 1
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vel/km
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60 &
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veh/km
80 T
70— =5 sec -
60 —
50— —
40 —
30+ —
20
10— —
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c)

Fig.3.6. Comparisons of density with Lax-Friedrichs and FTCS for LWR

(a-initial conditions, b-Lax-Friedrichs, c- FTCS)

It appears that the Lax-Friedrichs method gives better results (no

discontinuity).

3.5.3. Comparison of 1-equation model and 2-equation
models

We consider three models: 1-equation model LWR and 2-equation
models AR and Zhang. At t=0, we have the initial conditions as shown

figure 3.7 for density (a) and velocity (b).
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veh/km Density
110 T T
100 — -
o0 =0 sec _
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Fig. 3.7. Initial conditions (a- density, b- velocity)

Applying the Lax-Friedrichs numerical method, we obtain the
results presented in the following figures:
Figure 3.8. a) t=1 sec. We have the same drawbacks (motion at the

back of the front).

veh/km Lax-Friedrichs: density

D T T T T

100 ) -
o Zhang -+ EIsE ]

LWR  —

8O- AR 7
70 -
60 ] N
50.

401~ .
30|~ N
20 .
0 .

0 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
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veh/km Lax-Friedrichs: density
110 T T
g — t=19 sec 7
& Zhang —. 7
80— My —
0l - T +— LWR _
60— ; ; T . i -
50 AR "
401 —
30— —
20 =
10+ —
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0 10 20 30 40 50 60 70 80 90 100
km

Fig. 3.8. Simulation density results

Figure 3.8. b) t=19 sec. Globally the results are better obtained for
the LWR model. The AR model presents an important displacement of
the back car front. The Zhang model presents a displacement of the back

front and also an accumulation of vehicle in the back of the queue.

km/h Lax-Friedrichs: velocity

T T T

100 — —
=19 sec
LWR
80— l —
60— —
B _ % e M —
20— —
Zhang

(o) -

| | | | | | | | |

0 10 20 30 40 50 60 70 80 90 100
km

Fig. 3.9. Simulation velocity results

For the velocity, it appears from figure 3.9 that it is algebraically
related to density in the LWR model, and that is behaves independently

in the other two.

3.5.4. Comparison of LWR and Jiang models

Consider the LWR model discretized using the Lax-Friedrichs
scheme and the model proposed by Jiang [Jia 02]. This model will be

used in chapter 4 as starting mathematical model for CFD
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representation. This model was discretized in using [Jia 02] the

following scheme:
n+l n, ol afon_on al nf on n
="+ —p" (V' -V )+ —V (o -V 3.47
o=+ = (W =)+ v (00 - ) (3.47)
for the density, and for velocity:

-if the traffic is heavy (V' <c,)

e o o)) =S (o) @48)
-if the traffic in light (V"' = ¢,)
=2 o= () - S (=) (349

where ¢, is the propagation speed of the disturbance, T is the relaxation

time, i represents the road section and j represents time.
At t=0, the initial conditions are presented in figure 3.9. At time

t =0, the car front begins to move to the right.

veh'km Density
400 T T
380 — =0 see —
300 — —
250 — —
200 — —
150 — —
100 — —
0+ —
0 | b } | | | ik ah ah
10 20 30 40 50 60 70 0 90 100
km
a)
km/h Veloci
200 < m‘w I
180 t=0sec —|
160 — —
140— —
120 —]
100 —
80 —
60— —
401 -
20— —
0 | | | b | | |
0 10 20 30 40 50 60 70 80 90 100
km.

Fig.3.9. Initial conditions (a-density, b-velocity)
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Figure 3.10 and figure 3.11., show the shape of the density and

velocity of the car front after 9 sec.

veh/km Density
400
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~
S
o
S
@
S

70 80

Fig.3.10. Comparison between Jiang and LWR model (density)

It appears that the Jiang model gives better result in the back of
the front. In the front of the queue, the behavior of the two models is
different. It would be interesting to have experimental data to be able to

conclude which model is physically more consistent.

km/h 1
. ‘ Velo‘mty
- Lwr

160~ Jiang ++++++
140

120
100
80
60 —

=9 sec

40—

znt i
0 | | | )

0 10 20 30 40 50 60

| | |
70 80 90 1

=)

Fig. 3.11. Comparison between Jiang and LWR models (velocity)

At the velocity level there is an algebraically relation with the

density in the LWR model. In the Jiang model the velocity behaves
independently.

3.6. Conclusions

In this chapter we have presented a few models used in

macroscopic traffic flow representation, starting with the well known
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LWR model and arriving to new models developed by Zhang or Aw and
Rascle. The LWR model is a model which has been used for a long period
of time in simulation and it was considered as the best model for the
representation of the traffic flow. But in the latest years some
researchers showed that this model has some drawbacks. Thus, new
models have been developed trying to eliminate the inadvertences with
the real life situation.

Through simulation of the models found in the literature we have
seen the advantages and drawbacks of each of them. In the meantime, we
have tried to see which numerical method (based on finite difference) is
more appropriate to be used in discretization of the models.

In the next chapter, we will show how the Jiang’s model [Jia 02]

can be represented using CFD technique.
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Chapter 4. Transport equations modeled by CFD

4.1. Introduction

As seen in the previous chapter, starting with the models of
Lighthill and Whitham [Lig 55], Richards [Ric 56], continuing with Payne
[Pay 71] and more recently Zhang [Zha 02], the study of traffic flow had
known an important development. The proposed models and the

modality of approach vary from one author to another.

The models where the dynamic part is consider only for the
vehicle density have a few drawbacks like: the velocity is determined by
a equilibrium speed density, no fluctuation of speed around the
equilibrium is allowed, thus the model is not suitable for the description
of non-equilibrium situations like stop-and-go, etc. To overcome these
drawbacks a new type of models were proposed, considering two

dynamical equations, one for vehicle density and one for vehicle velocity.

One way for modeling these systems is by using the classical
approximation methods like Lax-Friedrichs, FTCS, Godunov etc [Str 04],
[Ago 85].

In moving fluids, the transport of mass, momentum and energy

are represented using the differential equations. In the early 1960s was
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developed the Computational Fluid Dynamics (CFD) [And 95], [Dat 05],
[Hir 07], [Jiy 08] with the objective to find the numerical solution for
these equations. Today, CFD is extensively used in basic applied
research, in design of engineering equipment, and in calculation of

environmental and geophysical phenomena.

In the recent years, there was a development of CFD using the
bond graph approach [Bal 06]. Starting from this approach in this
chapter we will present a new way of modeling the traffic flow, using
computational fluid dynamics. Some simulations will be done to validate

the model.

4.1.1. Two-equation traffic models

Two-equation traffic models consider one-dimensional flow with

one continuity equation for vehicle density ,o(x, t) :

Jdp 0
—_—+— =0 4.1
ot +6x(pv) (41)

and one transport equation for vehicle velocity v ( X,t) . For the velocity

equation, different models appearing in the literature can be written as:

ﬂ+v@:£+e—X 4.2)
ot oxX 1 T

where 7T is the reactive time, Ve(,o) is the equilibrium velocity

distribution and G is a source term.

4.2. Power balance per unit volume

4.2.1. Kinetic energy

In the two-equation model, total energy corresponds to Kinetic

energy. The kinetic energy density T, is:
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T, = % PV (4.3)

The following potentials (kinetic energy per unit vehicle and

vehicle momentum density) are defined as:

K= T, _ 1v2 (4.4)
o 2
oT,
=—Y=pv 4.5
a=5, =" (4.5)
These potentials satisfy Maxwell’s relations:
9k _0q, _,, (4.6)
ov dp

The time derivative of the kinetic energy density can be written

as.
T _ ap _ ov
NV ="y R 4.7
a o Yo (4.7)

4.2.2. Balance equations

The balance equations are power density equations
corresponding to each one of the terms that contributes to the time
derivative of the total energy density.

Multiplying Eq. (4.1) by «, the density balance equation results:

W _ 9 (,n=-2 9K
Ko = Kax(pv) aX(va)+pv o (4.8)

Multiplying Eq. (4.2) by q,, the velocity balance equation results:

ov Vv V2 ov
—=pV|2+G |-p—-pV — 4.9
qvatp[r jpr'oax 49)

Since

oK = v% (4.10)
0X 0Xx
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it can be seen that the last term in Eq. (4.8) and (4.9) is a coupling term.

4.3. Discretization

4.3.1. Description of the flow fields

In order to formulate the model at the discrete level, it is
necessary to specify the description of the fields corresponding to the
independent variables in the domain Q, as shown in Fig. 4.1. As it is
done in the Finite Element Method [Whi 99], this description is made in

terms of a finite set of nodal values and interpolation functions:

Q

Fig. 4.1. Domain Q with boundaries

p(x)=X. A0 (¥)=2" 0 (a.11)
v(x,t):ivm () @a(x)=v'.q (4.12)

where 0 and V are time-dependent nodal vectors and ¢, and ¢ are

nodal vectors of interpolation or shape functions, with the properties:

i @, (x)=1 Ox0Q (4.13)
i @ (x)=1 DxOQ (4.14)
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For simplicity in the treatment of the boundary conditions, it is
also required for the interpolation function to be equal to unity at the

reference node, and to be equal to zero at the rest of the nodes, this is:

Dk (x,) =, for adensity node located at position x, (4.15)
B (X,) = 8, for avelocity nodelocated at position x, (4.16)

In Eq. (4.15), 9,,, is the Kronecker’s delta (J,,, =1if k=n, J,,=0

otherwise).

The representation of the flow fields in terms of nodal values and
interpolation functions allows to define the corresponding values at any
position, so it is possible to calculate univocally all the integrals
corresponding to the state equations; this is not evident for other
methodologies like Finite Differences or Finite Volumes, where only
nodal values are defined and additional considerations must be made in
order to integrate the differential equations. Besides, the chosen
representation can make use of the considerable amount of
computational tools already available for the popular Finite Element

Method.

4.3.2. Integrated variables

A nodal vector of mass is defined, related to the nodal vector of
density as:
m=Q,.p (4.17)

where the diagonal volume matrix Q, associated to the density is

defined as:

[ijkn =Q,, 4, (4.18)

pk

where:
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Q=[x (4.19)
The system mass m is related to the corresponding nodal vector
as follows:

m:J'Q,odx:Zp:mk (4.20)
k=1

4.4. System integration
4.4.1. Kinetic energy

The system kinetic energy T is defined as:

T= jQ T, dx (4.21)

From Eq. (4.12) and (4.21), it can be easily shown that the system

kinetic energy can be expressed as the following bilinear form:

T=-v.M.v (4.22)

where M is the system inertia matrix (size n,, symmetric and regular):

(M), = [ 2B B O (4.23)

The following potentials are defined:

oT -1

ﬁ(\_/)=ﬁzﬁ .(jQK@dx) (4.24)
_aT _ _

q(m,v) -a—y—fgqvﬁdX—M-\_/ (4.25)

where K and ( are correspondingly nodal vectors of kinetic energy per

unit vehicle and vehicle momentum.
As in the continuum formulation, it can be shown that the

Maxwell relations also holds for the nodal vectors of potentials:
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0K :(ﬂj:ﬁ_l-(fﬂﬁﬂdx) (4.26)

It is important to notice that Eq. (4.25) defines, in the bond graph
terminology, a modulated multibond transformer relating the nodal
vectors of velocity and vehicle momentum, as shown in Fig. 4.2.

According to the power conservation across the transformer, the

generalized effort F is given by:

v

— MTF ——
v 4

Fig. 4.2. Modulated transformer relating nodal vectors of velocity and vehicle

|1

momentum.

E=M.v (4.27)

According to Eq. (4.25), the nodal vector of vehicle momentum
can be regarded as a system integral of the local values weighted by the
velocity interpolation function. It can be easily shown that the system
vehicle momentum Q can be obtained as:

n,
Q:jqudx:qu (4.28)

m=1

According to Eq. (4.24), the nodal vector K can be regarded as a

system domain average of the corresponding local values, weighted by
the interpolation functions. Therefore, it is important to realize that the
values of the nodal vectors may be different from the corresponding
values calculated with the local variables at the nodal positions.

The time derivative of the system kinetic energy can be written

as:
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=K .m+q.y (4.29

It can also be shown that the volume integrals of the right side

term of Eq. (4.7) can be calculated as:

jQ K‘Z—fdx=§._m (4.30)
d .
[ an—‘t’dx =q.v (4.31)

4.4.2. System C -field

Equation (4.21), constitutive relations (4.24) and (4.25) and
Maxwell relation (4.26) define a multibond IC -field associated to the
system kinetic energy, as shown in Fig. 4.3. The generalized effort

variables are K and V, while the generalized flow variables are

correspondingly m and q .

K

//IC \\

4 m

<<

Fig. 4.3. System |C -field representing kinetic energy storage.

In Fig. 4.3, the generalized effort and flow of the multibonds
connected to the capacitive and inertial ports are nodal vectors whose
elements are scalar variables; these types of multibonds are equivalent

to n single bonds, as shown in Fig. 4.4.
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| R
R

f /

(a) (b}

Fig. 4.4. Multibond with nodal vector of scalar variables (a), equivalent to N single

bonds (b).

4.4.3 Resistance field

The | -element of the resistance force is:

Fo =, p%@, dx (4.32)

The discretization for the velocity field is:

V(%)= 3 v, (t) 2 (¥) (433)

m=1

Substituting, we have:

n

ny
I:RI = Z Vm ( Q g%l %m de = I:le Vm (434)
m=1

m=1
where:

I:le = J-Q g%I %m dX (435)

This represents a R-field with resistance causality (efforts are a

function of flows), as shown in Figure 5. In this case, the coefficients F,
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of the linear relation (4.34) are modulated by the density. The matrix
relation for the field is:

Fr=Fq.v (4.36)

(B

where the elements of the square matrix F; are defined by (4.35).

l FRI

| 7
Vi

Mk

| 7
Vi

| ‘F Rn,

| /
9

Fig.4.5. Resistance field

4.5. State equations

4.5.1. Mass port

Nodal density weight functions W, (X, t) are introduced, with the

following properties:

Sw,(xt)=1  OxO0Q,Ct (4.37)
k=1

w,, (x,,t) =, for adensity nodelocated at position X, (4.38)

The nodal density weight functions are introduced to satisfy the
power interchanged by the system through the boundary conditions, as

well as to share the importance of different power terms among
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neighboring nodes. These functions can be used to introduce schemes in
the numerical solution.
As it is done in the Petrov-Galerkin method [Cuv 86], each term of

the mass balance equation (4.8) is multiplied by the test function w,,;

then, the resulting terms are integrated over the domain Q and Green’s

theorem is applied whenever necessary, obtaining:

K.m=W" +W, +W, (4.39)

where the different nodal vectors of power are:

W = —[(%va)L—(%va)o} (4.40)
ow
W, :jﬂa—ypkpvdx (4.41)
_ 2 0V
W =), W, PV &dx (4.42)

Alternatively, it can be written:

m= mg)+ﬁ3 +@ (443)

where the different nodal vectors of mass rates are:

i = KW (4.44)
e = K7W, (4.45)
i = K7W, (4.46)

1
(K)kj=—_IQKWk%jdX (4.47)

<= (K),, (4.48)
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Taking into account Eq. (4.48) it can be verified that the product

K’ (th,, where m, is any nodal vector of mass rate, recovers the

corresponding power term integrated in the system. So, the product

K"’ recovers the power due to the flux of free kinetic energy
through the system boundary, while KTH_’hB is a power term that
vanishes, because of Eq.(4.37). Notice that i, may be nonzero only for

the nodes located at the system boundary. Making the product of K

times Eq.(4.43), it can be easily shown that the integral density balance

equation is satisfied, this is:

9Py = - ov
-[Q KEdX = (KpV)L+(KpV)O+IQpV2& dX+jQ/(pvdX (449)

4.5.2. Velocity port

As it is done in the Galerkin method [Cuv 86], the momentum

conservation equation is multiplied by the test function ¢, and

integrated over the domain Q, obtaining:

M.y=F +F,-F,-F (4.50)
where:

Fe=[ p| -2 |g (4.51)
e P T )R :
F.= jQ pGg dx (4.52)
Fo= [ o~ g (4.53)
R PR :
F :j pv@ dx (4.54)
_K Q axﬂ )

Alternatively, it can be written:

U=M"(Fe+Fo - Fa-F (455
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Adding the nodal components of Eq. (4.50) it can be easily shown

that the integral velocity equation is satisfied, this is:

p— = ( Vic- vg\):)dx (4.56)

Since the interpolation function were chosen as test functions, the

product iT.\_/, where F, is any nodal vector of force, recovers the

corresponding power term integrated in the system. Making the product
of Eq. (4.50) times V, it can be easily shown that the integral velocity

balance equation is satisfied, this is:

-V ov
qu—dx jpv( . +G- vax)dx (4.57)

4.6. Coupling matrices

Once defined the generalized effort and flow variables, it is
necessary to represent the power coupling, appearing in the balance
equations, to a discretized level. This representation is performed
through a coupling matrix, which relates generalized nodal variables
whose product gives rise to power terms appearing in a pair of
multiports. Since the nodal vectors may have different size, the coupling
matrix is rectangular, thus setting a restriction in the allowable

causalities.

4.6.1. Coupling between the velocity and mass ports

From Eq. (4.46) and (4.54):

:[ﬁ_l.&].\_/ (4.58)
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N
i=[gl.MK] K (4.59)
where M, is arectangular matrix (n, rows and n, columns) defined as:

j kqg,m,ov dx (4.60)

Eq. (4.58) and (4.59) define a multibond transformer modulated

by the state variables, as shown in Fig. 4.6.

; 4
Iy KM, K

7 MTF ——

% 1,

Fig. 4.6. Modulated transformer coupling the velocity and mass ports.

4.7. System Bond Graph

The system Bond Graph is shown in Fig. 4.7. Kinetic energy

storing is represented by a |C - field.

At the O-junction with common K all the nodal mass rates are
added; in this way, the flow balance represents the mass conservation
equations for the nodal mass values. At the 1-junction with common v

all the nodal forces are added; in this way, the effort balance represents

the momentum conservation equations for the nodal velocity values.
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Sf

—JMIFI— 0 —§,
) m| | K -
BT F
S.—A 1 —Apy1r—AIC
. q

R

Fig. 4.7. Bond graph for the two-equation traffic flow model.

4.8. Initial and boundary conditions

4.8.1. Initial conditions

In order to solve the state equations, it is needed to set initial and

boundary conditions. The nodal initial values may be readily specified as:

m(t=0)=m, (4.61)

v(t=0)=v, (4.62)

Alternatively, if spatial functions ,oo(x) and VO(X) are specified

for the initial time for density and velocity, the nodal values must be
determined in order to conserve the system mass and momentum. In

this case, it can be easily shown that:
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My, = [ 0 (%) g A (4.63)

Q

(4.64)

4.8.2. Boundary conditions

The boundary conditions establish relationships among the
variables corresponding to the nodes located at the system boundary
and can be regarded (in the bond graph methodology) as the input
variables. It is necessary, for the model being mathematically well
defined, that the boundary conditions allow determining the causality
for all the bonds in the resulting bond graph. The boundary conditions
are introduced through the bonds corresponding to the superficial

source terms mi’.

It is worth noting that, since the interpolation functions are zero
at the boundary for inner nodes, causality is assigned by definition at
these bonds. Thus, zero-flow sources are connected to an inner r'n(BrQ, and
these bonds could be removed from the graph.

Since the two-equation model is second order, it is possible to
establish boundary conditions in both Xx=0 and Xx=L, being possible
the treatment of problems in which boundary conditions are established

at both ends (stop-and-go problems).
4.9. Integrated variables

We set linear shape functions for density and velocity, as well as
linear weight functions for density. For simplicity, we consider

n,=n,=n and regular grid of spacing h for an inner node (1<I<n),

and g for the first and last nodes.
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4.9.1. Shape and weight functions

4.9.1.1. Inner node
For an inner node, we consider the following shape and weight

functions (see Figure 4.8):

Dyi-a . v 11 Dy -
“0’ * “0’ .

P L 4

-1 e L l+1 X
<ol hy
<« h h

Fig.4. 8. Shape and weight functions for an inner node
(shape function is shown in continuous line).

0 X< -h
1+2 —he<x<0
h
G =@ =W, =y 1 x=0 (4.65)
1-— O<x<h
0 x=h
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0 X< -h

— -h<x<0
6% :0@, _ awp, _
[1)4 0Xx 0Xx

-— 0<x<h

0 x=h

As:
p:Z:qul
1=1

V=2 Vg,
1=1
it is obtained, for —-h< x<h:

X X
_,0|—1E+p| (1+Fj —h<x<0

p=
X X
p|(1_ﬁ)+:0|+1ﬁ 0<x<h
—v|_1§+v,(1+§j -h<x<0
h h
V=
vl(l—zjﬂ/lﬂZ O0<x<h
h h
As:
0o _<& 09,
ax’ép' X
ov 4 a%|
—_ = V_
X Zzl“ ' ax

itis obtained, for —-h< x<h:

(4.66)

(4.67)

(4.68)

(4.69)

(4.70)

(4.71)

(4.72)
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P M -h<x<0
a_/? -] h (4.73)
X M O<x<h
h
v AMs _hex<0
== h (4.74)
X M O0<x<h
h
4.9.1.2. First node
For the first node (see Figure 4.9) it results:
N
1 Dy o, Dy
0...
0.’..
“‘
= R,
h
<— —>
"
h
Fig. 4.9. Shape and weight functions for the first node
(shape function is shown in continuous line)
X
1-— 0<x<h
Gy =Ry =W, = h (4.75)
0 x=h
dg, 0@, ow, |-X  0<x<h
D =—2=J (4.76)
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p=pl(1-ﬁj+pzﬁ 0<x<h

v:vl(l—ﬁj+v2% O0<x<h

0x h
NV goy<n
0x h

4.9.1.3. Last node

For the last node (see Figure 4.10) it results:

6. /1
¢V I’l:;]o’ %o

*

.
h

\/

v

Fig. 4.10. Shape and weight functions for the last node
(shape function is shown in continuous line).

0 x<-h

= =W._ =
%n %n on 5 —h<x<0

(4.77)

(4.78)

(4.79)

(4.80)

(4.81)
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0 x<-h

0 0 0

Gon - O~ Mon _ | 4 (4.82)
0x 0x 0X n -h<x<0
X X
p:_pn—lﬁ+pn(1+ﬁj —h<x<0 (483)
v:—vn_11+vn (1+1j -h<x<0 (4.84)
h h

9P _ Po=Pos -h<x<0 (4.85)

0X h

ov _V, -V,

A B § -h<x<0 (4.86)

0x h

4.9.2. Diagonal volume matrix
Q, =h (I<l<n) (4.87)
_o -1
Q=0 =5 (4.88)
4.9.3. Nodal vector of mass
m=hp (I<l<n) (4.89)
1
m = > hp, (4.90)
1

m ==hp, (4.91)
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4.9.4. Inertia matrix

For the inner node, we have:

: h
My = I_hp%ﬂ% dx = E(pl—l + :0|) (4.92)
h h
M, =[] pdox=12 (0,60 +01) (4.93)
h h
My = [/, PB X = (0 + A1) (4.94)

For the first and last nodes, we have:

h h

M., =[] pddx =2 (30, + ) (495
h h
M,, = .[o PRRAX = T (0. +p,) (4.96)
h h

Msn = [, P8 = 1 (01 + ) (4.97)

—[° pzdx ="
M., = j_hqun X = E(p”'l +3p,) (4.98)

The nodal vector of vehicle momentum results, for an inner node:

q = M|—1,|V|—1 + I\/||,|V| + M|+1,|V|+1 (4.99)

For the first and last nodes, we have:

ql = M l,lVl + M 1,2V2 (4100)

4, =M Voat MV, (4.101)

n-1,n"n-1
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4.9.5. Nodal vectors of potentials

The nodal vector of kinetic energy per unit vehicle results, for an

inner node:
101
:EJ._hEVZ%ldX:
2
=5j01 v Ly |1+2]] 1+ 2 | dx (4.102)
h'-n2| "*h "\" h h
2
+1 hl v, 1—5 +VI+Z 1—5 ax
h'o 2 h 'h h
1
K, = 24(v F VLV, BV + 20, VY, ) (4.103)

For the first and the last nodes, we have:

2

K ==
lh

%ldx— 2(3\/2+2vv +V. ) (4.104)

K, ——j —v %ndx— (vn AR +3v2) (4.105)

4.9.6. State equations, mass port

4.9.6.1. Matrix K

For an inner node (1<l <n):
101
_1| J' KW, @, dX:EJ-_hEVZWp'_ledX (4.106)

As w,, =1-w,, for (-h<x<0),itresults:

,ol—1
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(K)|—1,| :1.[0 1V2 (1_Wﬂl )gopldx =

hi-n2
2
Sl
h h h h

1 01{
= — p— _VI—

1
(K)I’I :E(V'Z‘l+3v|—1v| +12V|2 +3V|V|+1+V|2+1)

1 11,
(K)o ‘Q_pIJ-QKWpIﬂ%I dx‘ﬁj-o 5V Worn dx

As W, =1-w, for (0< x<h),itresults:

11
(K)|+1,| :EL §V2(1_Wp|)¢p| dx
2
B v.(l—f}v.ﬂf z(l_zjdx
hJo 2 h h| h h
(K)|+1,| :1_20(3V|2+4V|V|+1+3V|i1j

It is verified:

For the first node:

(4.107)

(4.108)

(4.109)

(4.110)

(4.111)

(4.112)

(4.113)

(4.114)
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1 2 h1l
(K)m:_Q jQKWpl%ldx:—jo Evzwpppldx
1

, h
2 1 2 2 (4-115)
h
_2ml Vl(l_zjwzz (1_§j i
hlo 2 h h h
1 2 2
(K),,= 55 (69 +3uv, +12) (4.116)
1 2 h1l
(K)z,1:Q IgKWpZ%ldx:ﬁ.[cJEVZWPZ%ldX
pl
4117
A M ey I G e
(K)2,1=6—10(3V12 +Avy, +303) (4.118)
It is verified:
(K),,*(K),, =K (4.119)

For the last node:

1 2 01
(K)n’n = Q_an.Q KW, @, dx= FI—hEVZWP”%“ dx

0
=—j = —vn_l§+vn (1+§j (1+5j dx
h-h2 h h h
(K )n,n = 3_]6 (Vr?—l + 3vn—lvn + 6V§) (4121)
_ 1 _2p01,
(K)n—l,n - Q_an-Q Kan—l wpn dX - EJ._hEV W,On—l%n dX
201
:ﬁf_hgvz(l—wpn)wpn dx (4.122)
2
= Ejo 1 _Vn—lz +v, (1+Zj (—Zj(l+§j dx
h/-n2 h h h h
(K )n—l,n = 6_]6 (3V§—l + 4'Vn—lvn + 3V§) (4123)
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It is verified:

(K)n—l,n+(K)n,n= K (4124)

4.9.6.2. Nodal vector W,"

For an inner node (1<l <n):
W, =0 (4.125)

For the first and last nodes:

1
WD =k, p v, = 5P, v; (4.126)

WD =k p v = —% o,V (4.127)

4.9.6.3. Nodal vector W,

For an inner node (1<l <n):

= Sl

-h a
_1lp01) X X, X
_EJ'_hE{ :Q—lﬁ"'pl (1+Ej}{ |/|_lh+VI (l+ hj} dx (4.128)
3
101l X X X
Ao

1
W, = 4_0 (4V|3—1 +3 |2—1V| +2, —1V|2 + V|3) P

1
+oo (4l + 22w + 30 WP =By, 2wl -vs ) e (4129)

1
+4_0 (_V|3 - 2I/|2V| A~ I/|2+1 a 4V|3+1) P
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For the first and last nodes:

1 1

2,01/3dx
ox
(4.130)
__1 hl 1- dx
=75k 12}
We,; = i(_41/13 - 3V12V2 - 2V1V§ - V;)pl
. 40 (4.131)
+4_O(_V13 - 2Viv, = 3Vi - 4v23) JoX
-jo al /(,Ovdx-jo M 1 %dx
e “lnax 2
3 (4.132)
Lrodl_ X4 1+ 2] || -v +v[1+2 dx
_EJ.hZ pn—lh P E n-1 n E
W, = 1 (4vd, +viy, +2v, V2 +ve ) Lo
40 (4.133)

1
# (V2,4 2020, + 30,0+ 4 p,

4.9.6.4. Nodal vector W

For an inner node (1<l <n):

h ov
W, :J'_h w, pVZ&dX

- (v _hV|—1) I_‘)h(1+%j[_pl_lﬁ+pl (14-%)}{_\/'_1%“/' (1+EH dx (4.134)

e LEH ECR
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1
W, =25l =V (3, +4vv +3% ) oy,

1

— - V2. +6 12v?
sl =) (2 + vy +12¢) w139
vy —vi) (120 + 6., + 2%, ) | o

1
+E(VI+1 v ) (3V|2 +tAV, t 3V|2+1) P
For the first and last nodes:

h ov
W,, :jo WplpVZ&dX

=) ol X\ () x (X, X
= jo(l hj[,ol(l hj+p2th1(1 hj+v2h} dx (4.136)

1
Wi = & (Vz - Vl) (12\/12 +6v,Vv, + 2V§) o
1 (4.137)
+%(V2 - V1) (3\/12 +4vy, + 3V§) P,

2
_ (v —hvn_l) [ (1+ %)[_ pn_l% ‘p, (“%H[_Vﬁ% v, (1+%H dx (4.138)

WKn = i (Vn - Vn—l) (3Vr21—1 + 4Vn—lvn + 3Vr21) P
. 60 (4.139)
+E (Vn - Vn—l) (2V§—1 +6V, .V, + 12Vr21 ) Pn
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4.9.7. State equations, velocity port

4.9.7.1. Nodal vector Fe

We consider as a constat. For an inner node (1<l <n):

h v
Foi = j_h ,O—W,, dx

X X X
j { O~ +p,(1+hﬂ{—vl_lﬁﬂ/,(1+Ej}(l+ﬁjdx (4.140)
1n X X X X X
i {,Q (PEJ’LQHEMM (kﬁjﬂ/mﬂ(l_ﬁj dx
F :L(p +0 )V +L(p +60, + 0., )V +L(p +01)V (4.141)
RI 121_ 1-1 | 1-1 12T 1-1 | 1+1 | 12T | 1+1 1+1

For the first and last nodes:

h v
FRl :IO :0_@1 dx

y y y (4.142)
__I {pl( j+,o2 h}{vl(l_ﬁj-wzﬁ}(l_ﬁjdx

h h

|:Rl:ET(3,01+,02)|/1+E(,01+,02)|/2 (4.143)
0oV
RN :_[_hp_%n dx
(4.144)
__J' { pn_l (1+ hﬂ{ Vn—l%-'-vn (1+Eﬂ(1+%)dx

h h

FRn :_(pn—1+pn)vn—l+_(pn—1+3'0n)vn (4.145)
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4.9.7.2. Nodal vector F.

We assume as the equilibrium relation:

Vo (0) =V, (1— Lj (4.146)
pmax

where v, and p. are positive constants.

For an inner node (1<l <n):

h v,
FEI :j_h p?@l dx

Vo (0, X o1, x XU, %
T —h{ p"lh+'0'(1+ thl pmJ p"1h+p'(1+ hm(“ hjdx

(4.147)
Ve [0 X X, 1 _X X _X
hv,
Bl = 121.;1)( I:Iomax (2:0| 4 18p +2p +1) - :0|2—1 — 20,40 (4.148)

- 6p|2 ~20Pn~ :0|2+1}

For the first and last nodes:

h Vv,
FEl =j0 p?@ldx

= Vina [ _X X1 _X X=X
== .[o{pl(l hj+p2hHl pmax{pl(l hj+p2h}}(1 hjdx(4.149)

hv
= _12T/r;:ax [pmax (4p1 + 2,02) - 3,012 - 2,01p2 + pzz} (4150)

El

o vV
Feo = [, -2 R0 X

Vv 0 X X 1 X X X
— Ymax - 2y 1+=2 1-——| — —+ 1+— 1+— |dx(4.151
= [ [y ea (193] o] g e 193] o+ ocessn
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— hvmax : B ~
o T2, [ Ao (2001 +40,) = PL1 =200, =307 ] (4152)

4.9.7.3. Nodal vector Fs for the SG model

In the speed gradient (SG) model [Jia 02]:

c=c%Y (4.153)
[1)4

where C (assumed constant) is the propagation speed of small

perturbations.

For an inner node (1<l <n):

h 0V
Foi = J‘_hpc&% dx

e v Ce ER
M V[ (1o Xy XX
+01Tjo {pl (1 hj+p|+lh}(1 hjdx

1 1 1
Foi = =5 ClA 2 Vis =00 = AV +£(26, + a)v 1 (4.155)

(4.154)

For the first and last nodes:

h v
Fo: = .[0 pc&@l dx

SVt (1o X4 XX
—cho[pl(l hj+'02h}(l hjdx (4.156)

1 1
FGl:_gc(zpl+:02)V1+6C(2101+'02)V2 (4'157)

0 ov
I:Gn = J.—h pc&%n dx
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V, =V, ° X X X
= C—h J-_h|:_pn—1_h *+ 0, (1+ hﬂ(l-l- hjdx (4.158)
1 1 A
Fon = ——6 c(,on_l + 210n)vn—l +—c(,0n_1 + 2,0,1)Vn (4.159)

4.9.7.4. Nodal vector F,

For an inner node (1<l <n):

h ov
Fei = _th&% dx

R RN

(4.160)
Vi, =V, ph X X X x|, x
+TJ-{P|(1 Ejﬂi’mﬂ{‘ﬁ(l Ej“’mﬂ(l Fjdx

1
Fa == Ualaa+ Al +u (o +30) My
1
rolalAa o) (aa AL vala el (16

1
+E|:V| (3:0| +p|+1)+v|+1(p| +:0|+1):|V|+1

For the first and last nodes:

h oV
Fea :jo pv&%dx

v, I’_]Vl f;[pl(l'ﬁj +p2ﬂ[vl(1_%j +v2ﬂ(1—ﬁjdx (4.162)

1
Fe, = -E[Vl (30, + 2,) +V, (o, + 2,) vy

. (4.163)
+E[Vl (30, + 2,) +V, (0, + 2,) ]V,



Chapter 4. Transport equations modeled by CFD

_ (o ov
Fen —j_hpv&@n dx

_Vn_Vn—l 0 _ 5 5 _ Z 5 5
_—h j_h[ P h + 0, (1+ hﬂ[ Vi h +v, (1+ hﬂ(l-'- hjdx (4.164)

1
Fen = _E[Vn—l (pn—1 + pn) +tV, (Ion—l + 3'0“)] V-1
(4.165)

1
+E[Vn_1 (Pt 00) Y, (001 +30,) [V,

4.10. Implementation

Considers the following parameters:
h=100m; p,, =0.25veh/m;v_. =33m/s;7=10s;c=11m/s (4.166)
where h - the length of the section;

¢ - the propagation speed of small perturbations;

T - the reactive time;

Prax» Virex - the maximal values for density and velocity.

a) Comparison CFD and finite difference approach

In order to compare the time evolution of density and velocity
obtained from the 2-equation method using CFD approach and finite
difference numerical method, we have chosen Matlab as simulation

medium.
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Scenario 1: rarefaction wave

Data:
P =0.18veh/m; p... =0.0veh/m;
Vigr = 3MYS; Vg, =30 NV'S;
veh/m Density
02 T T
0.18 —
0.16 — —
014~ FD —
02— CFD  ++++++ N
01— —
008 — —
006 — —
004 -
002 — —
0 | | | 1 | | | | | |
10 20 30 40 50 60 70 80 90 100
(x200m)
m/s velocity
30 T I
R — b — —
20~ CFD FEEETE |
15 -
= -
o |
0 | | | | | | | | | |
10 20 30 40 50 60 70 80 90 100
(x200m)
a)
veh/m Density
02 T T
018
016 —
014— FD
B~ CFD  +rrrer
01
008 —
0.06—
004
0.02 —
o | ! | ! | |
10 20 20 40 50 60 70 80 90 100
(x200m)
m/s velacity
30— T
25— D —
2 CFD PR
15—
10—
s
0 | | | | | | | | | |
10 20 30 40 50 60 70 80 90 100
(x200m)

Fig. 4.11. Comparison CFD- FD: rarefaction wave.

a) initial conditions
b) values att=60s
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We consider the rarefaction wave, which appears in the case of a

stop and go situation (red color) with the initial conditions presented in

figure 4.11. a). The color change into green and the vehicles start to

move to the right. We observe that after 60 seconds the shapes of the

density and velocity are the same in finite differences (FD) as also in

Computational Fluid Dynamic (CFD) approach (fig. 4.11. b)).

Scenario 2: shock wave

Data:

veh/m
02

P = 0.0veh/m; o, = 0.15veh/m;

4.168
Vir = 30NYS; Vg =751V (4169

Densite

018
016
0.14
012

01

FD ——
CFD  t+erer

0.08
0.06
0.04
002

o
o

20

30

30 40 50 60 70 80 90

iy
S}

Vitesse

25— D -

2l CFD e

30 40 60 70 80 90 100

50
(x200m)
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veh/m Densite
02

I
018 — —
0.16 — q
B e e
014 FD / + .
012 CFD  +eer / i
01 +
008 —
006 i
004 —
002 — i 5
0 | | | | | | | P | |
0 10 20 30 40 50 60 70 80 90 100
(x200m)
m/s Vitesse
30
T T T Tars T
%
25— + —
FD —
20~ CFD SR \ 5, —
15 + |
o
10 % —
R S e R
5l
0 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
(x200m)

Fig.4.12. Comparison CFD- FD: shock wave.
c) initial conditions
d) valuesatt=40s

When we have a queue of vehicles that produce in the back a
shock wave, with initial conditions presented in figure 4.12.a), after 40
second we obtain the graphic from figure 4.12.b). We have almost the
same shape for the density and velocity in both cases with a little bump
in the back of the front in the CFD approach. The bump appears due to

the linear approximations used that have a C; continuity near the

discontinuity. To overcome this problem artificial diffusivity is used [Bes
85].
1
1+e”
(Pa=£1)
pmax

U=
(4.169)

i :2,...,np -1

y:

where n, represent the number of elements.

We adjust the value of At in order to get the right velocity of
propagation of shock wave [Jia 02].

U= Q(pz) ~ q(pl)

(4.170)
P>~ P



Chapter 4. Transport equations modeled by CFD

A smaller At will determine a smaller bump with diffusion in the
back front and a velocity smaller than the propagation velocity of shock
wave. A higher At will determine a higher bump, without diffusion in the
back front and a higher velocity.

We can say that the model obtained by CFD approach satisfies the

main characteristics that a traffic flow model must fulfill.

b) Problems in the development of simulation

In simulation we met some problems concerning the apparition of
singular matrices. In fluid dynamics, the field where the CFD approach is
used, the density is considers to be different from zero on every segment
so the matrices are matrices that have the entire diagonal element
different from zero. In our application we met situation where we do not
have vehicles on some sections thus the corresponding elements in the

matrices are equal to zero conducting to singular matrices.

Kiy Kip Oeeeveeeeveeeeeeeeeeesesseen o w7 [

0 00 Ouooeeeeeeeeeeeeeeeeee, 0 |m g
............................................... .=l (4.171)
Ororeeeeeeeeeeeeee K oKk .
[T Kot Ko Il W

To overcome this problem we apply the following steps:

1) we find the lines with all elements equal to zero and put one
on the diagonal;

2) we put the value from the previous step in the right vector of
the system.
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Ky Kip O o m] [

0 10 Ouoceveeereeeeseereeenns 0 m,| (W)
............................................... =], (4.172)
Oneeeveeeerenneneeee K ook ok

[ Kz Kon ][ | w

c) Further development

As a further development we propose a structure composed by a
number of elements that are concatenated to obtain the structure of the

entire road.

The decomposed structure of the entire road in bond graph
representation is illustrated in fig. 4.13, where we chose only three cells.
In theory, the number of cells should be infinite to have a perfect
representation of the distributed phenomena. Each section has the same

structure which can be called “generic”.

Fig.4.13. Three sections model

At the section level the structure is represented in fig. 4.14, where

can be found the different bond graph elements presented before.
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k1

{MTF ™

mbg in | 1t

— ¢
SigralLiniterl Atterete [ /V
MTF ke e MSe « ks . o
MTF T MSel
R

R
Fig. 4.14. Bond Graph structure for one section

The models will be simulated using 20 sim software.

4.11. Conclusions

This chapter addresses the theoretical development of a bond
graph approach for representing the two-equation traffic model. The
state equations are obtained in terms of the state variables, which result
from nodal values of mass and velocity.

The set of generalized effort and flow variables was derived based
on energy considerations, while the state equations are obtained as a
Petrov-Galerkin formulation for the mass port and a Galerkin
formulation for the velocity port; as a consequence, the computational
tools developed for the Finite Element Method, as well for other
numerical methods, can be used to solve the resulting state equations.

The state model derived from CFD approach can be used for
control designing purpose. It is of infinite dimension and has to be
reduced to a finite one. The reduced dimension can be determined by
simulating the model with an increasing number of sections, until the

results will be stabilized.
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Some limitations in the simulation have been pointed out. They
are due to the fact that some singularities appear in the matrices to be
inverted, due to null values of density or velocity which may occur
during the simulation. Specific algorithms have to be developed to solve

this problem and allow simulations in all cases.
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Conclusions - Future developments

Modeling and simulation of distributed parameter systems are
heavy tasks. Approximations have to be performed either on the PDE
model itself or on its solution for simulation purpose.

The objectives of the thesis were to combine PDE models and
bond graph approach, with application to traffic flow.

In chapter 1, some classical methods used for approximation of
partial differential equations are recalled and the corresponding bond
graph model is designed. For each of them advantages and drawbacks
are presented.

In the second chapter, the port-Hamiltonian approach for
distributed parameter system is presented.

The port Hamiltonian system has been used in the representation
of the distributed parameter systems. Through the example of the
telegrapher’s equation, we have shown [Che 09] that using a special form
of discretization for space we made the calculation only on one element,
considered as local and then concatenating the elements we can
calculate the entire line of transmission.

The port Hamiltonian system is derived from the energy function
(Hamiltonian), which is usually a good Lyapunov function, used in
control.

In the third chapter, the main models used for traffic flow
representation are presented and some of them are implemented in

simulation. A comparison is done on one hand on different numerical

)
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methods applied on the first class of models (1-equation model) and on
the other hand between 1-equation and 2- equation models.

In chapter 4, we have proposed an original approach extending
Computational Fluid Dynamics bond graph representation to traffic flow,
using Jiang’s model [Jia 02].

A theoretical development of a bond graph approach for
representing the two-equation traffic model was developed. The state
equations were obtained in terms of the state variables, which resulted
from nodal values of mass and velocity.

The set of generalized effort and flow variables was derived based
on energy considerations, while the state equations are obtained as a
Petrov-Galerkin formulation for the mass port and a Galerkin
formulation for the velocity port; as a consequence, the computational
tools developed for the Finite Element Method, as well for other
numerical methods, can be used to solve the resulting state equations.

Regarding the CFD approach, some work are still to be done:

- development of a solver algorithm dealing with singularities in
matrices;

- determination of the right number of sections to use to have a
stabilized solution;

- more precise study on velocity and comparison with LWR model in

different scenarios.

Further developments in the area of traffic flow study are wide

and promising:

- the proposed CFD bond graph model concerns a road, it has now to
be extended to crossing sections;

- the road is supposed to be single line. It could be extended to two
line road as highway;

- we supposed that we have the same type of vehicles. It could be
extended considering different types of vehicles, with different

velocities;
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the road is supposed to be without ramp. We can study the case
where we have a entry/exit ramp;

the model is an open loop model, with no perturbations. A control
strategy [Nak 05a], [Nak 05b], [Nak 07], linked to traffic flow
objectives, has to be studied. The state space model derived from

bond graph can be used.
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Appendices 1
1.1. The weak formulation [Red 93]

The development of weighted-integral statement of a differential
equation is made to have N linearly independent algebraic relations
among the coefficient b of the approximation:

N
u=Uy =2 ha(x)+g(x) (A.1.1)
i=1

This is accomplished by choosing N linearly independent weight
functions in the integral statement.

To develop the weak form there are three steps that must be
followed:

1) To express the original equation in the weighted-integral or
weighted-residual statement.
We make this by moving all expressions to one side, multiplying
the entire equation by a function w, called the weight function and
integrating over the domain Q = (O, L) .
If we consider the equation (A.1.2):
—E(EA(X)EJ =q(x) OxOQ (A.1.2)
dx dx
du

u(0) = uy, EAd_ =Q, (A.1.3)

x=L

we have:

L d du
0=| w|——| EA(X)— |—q |dx A.1.4
jo[dx( 0% q} (A14)

The integral statement allows us to choose N linearly independent

functions for w and obtain N equations for b,b,,.....b,. The weight

function can be any nonzero integral function.
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2) The approximation functions ¢ must be of the form that make
U, differentiable as many times as called for in the original differential

equation and satisfies the specified boundary conditions.
If the differentiation is distributed between the approximate

solution U and the weight function w, the resulting integral form will
require weaken continuity conditions on @, and hence the weighted-

integral statement is called the weak form. The weak formulation has
two characteristics: it requires weaker continuity of the dependent
variable and the natural boundary conditions of the problem are

included in the weak form, and therefore the approximate solution U, is

required to satisfy only the essential boundary conditions of the
problem.

Integrating first term by parts we obtain:

Lo e

TV TN P du
_IO(dx EA(X) o ijdx {WEA(X) dx}

(A.1.5)

L

0

To identify the natural and essential boundary conditions we
must do the following:

After completing step 2, we must examine all boundary terms of
the integral statement, which will involve both the dependent variable
and the weight function.

Coefficient of the weight function and its derivative on the

boundary expression constitutes the natural boundary conditions NBC.
In our case (EA(X)%J .
dx

The dependent variable of the problem, expressed in the same
form as the weight function appearing in the boundary term, constitutes
the essential boundary conditions (EBC).

The weak form is:
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j(EA(x)d—Wﬂ—wqjd [WEA(X)%}
dx |,
{023 s
dx dx }
x=0 (A.1.6)

—(wEA(x)%nxj

=[Gt v;Ljdx—(wQ)o—(wQ)L

where n, -cosine of the angle between the x axis and the normal to the

boundary.
3) To impose in the weak formulation the boundary conditions of
the problem under consideration.

w(0) = 0 because u(0)=u,

=Q,, (A.1.6) reduces to

x=L

Since w(0) =0and Q(L) = (EA(X) %)

the expression:
0= j (EA( )d—""@—qudx w(L)Q, (A.1.7)

With the weak formulation we pass from a punctual formulation,
where u is an application defined on the space of continuum derivable
functions, named classical formulation, to a formulation where we
rewrite the relations between functions through integrals.

The weak formulation uses an approximation of the unknown
variable using a base of functions, named base functions or form
functions in finite element approximation or projection function in the
case of spectral methods. It simplifies the problem giving equivalent to
initial problem new equations.

When we have a problem with multiple dimensions, to reduce the
derivation order of one unity, we apply the Green formula, which is the
generalization for multiple dimensions of the integration by parts

formula:
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[o2a0=—f Lo+ [ wnalea) 10

where n, is the normal to 0Q in the X direction.

The integration by parts form is:
ju—dx— - de+[uw] (A.1.9)

Starting from the weak formulation, the approximation methods
like finite elements and spectral methods give a general approximation

of the variable u using the two relations and put the approximation

N
under the form uN(x,t)=Zh(t)¢((x), where ¢ are used as basis

i=0
functions.
The new unknowns are now the by which are found solving the
new system:
Kb =F (A.1.10)

where K and F depend by ¢ and w.
1.2. The Bond Graph [Kar 90]

A bond graph is composed of bonds (half arrows and elements).
The bonds carry 2 variables, effort variable e and flow variable f whose
product P=efis the instantaneous power carried by the bond.
Passive elements

They can be elements which dissipate energy as heat or store

energy.

The 1-port resistor is represented by R:
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e
f

R

There is a static relation between effort and flow variables. It is a
energy dissipative element.

The constitutive relation between e and fis:

®.(e,)=0 or e-RIf=0in the linear ca

(A.1.11)
Power= &Jf

An electrical resistor, a mechanical damper or dashpot, porous

plug in fluid lines, and other analogous passive elements can be

represented using this element.

The 1-port capacitor is represented by C:

e
f=dq/dt

C

There is a static constitutive relation between an effort (e) and a

displacement (q). It is an element which stores and gives up energy

without loss.

t
q= j_m folt (A.1.12)

CDC(e,j fdt) =0 (A.1.13)

In physical terms, the analogy is a spring, a torsion bar, an

electrical capacitor, a gravity tank or an accumulator.

The 1-port inertial is represented by I:

e=dp/dt
f

It is a storage energy element, characterized by a static

constitutive law between the flow (f) and the momentum (p).

193




Contribution a l'extension de l'approche énergétique a la
représentation des systémes a parametres distribués

t
p= j_w edt (A.1.14)

®, Uedt, f): 0 (A.1.15)

It is used to model inductance in electrical systems and mass or

inertia effects in mechanical or fluid systems.
Active elements

The source is used to supply power to the model and impresses

either an effort or a flow. We have effort source (S,) and flow source
(S ):

Se ——
Sp ——~
Junction elements

They are used to connect passive and active elements. They are
power conservative.

The 2-port transformer element is represented by TF:

<, C»
TF
£ - f
The constitutive laws to dimension the modulus m are:
G =me (A.1.16)
f, =mf,

It can represent an electrical transformer, a rigid lever or a

hydraulic ram.
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In the same class of elements we find the 2-port gyrator
represented by GY:
S C2
GY
f g
The constitutive laws to dimension r are:
=rf
a=rm (A.1.17)
& =rf;

It is used in motor models or for physical domain change without

power loss.

The 0-jonction or common effort junction it is characterized by
the properties:
-the efforts on all bonds are identical;

-the algebraic sum of all flows always vanishes.

n (A.1.18)

The 1-jonction of common flow junction has the properties:
-all the bond has the same flow;
-the algebraic sum of all efforts always vanishes.
f="1,=...=1,
n (A.1.19)

2.6=0

i=1
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Appendices 2
2.1. The Dirac structure [Sch 05]

In the port-Hamiltonian system formalism, the physical system
can be express in terms of energy exchange, as a network, with the
elements interconnected and these connections are non dissipative, with
the power balance through connection equal to zero. This is represented
by a Dirac structure.

If we consider two dual linear spaces: F a /-dimensional one, and
F" its dual, the product space F xF" is considered to be the space of
power variables.

The power is defined by
P=(f7f), (f,f)OFxF" (A.1.20)

where ( f D| f) is the dual product.

F is called the space of flows f, and F" the space of efforts e. The

power of an element (f,e)JF xF" is denoted as < e| f>.
If F is endowed with an inner product structure <, >, then F“can

be naturally identified with F in such a way that
<e|f>=<e,f> fOF,edF =F.

On F xF" can be seen that there exist a canonically defined
symmetric bilinear form
< (fl’el)1(f2'82) >F><FD::< € | f2> t<e, |f1> (A.1.21)
for f OF,g OF"i=1,2
If consider a linear subspace, with dimension p:

SOF xF’ (A.1.22)
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its orthogonal complement with respect to the bilinear form <,>_ . on

F xF",is denoted as
S'OFxF' (A.1.23)
and has dimension2/-p. (dim(FxF")=2¢, and <,>_.-is a non-

degenerate form.)

Definition. A constant Dirac structure on F is a linear subspace
D OF xF" such that D =D"_
Result that the dimension of D on a /-dimensional linear space is
equal to /.
Let (f,e)0D =D". Then
0=<(f,e),(f.e)>_ =2<el|f> (A.1.24)
Thus forall (f,e)JD we obtain
<e|f>=0 (A.1.25)
Hence a Dirac structure D on F defines a power-conserving

relation between the power variables (f,e)JF xF".

Different matrix representations of a Dirac structure.

Let F be a /-dimensional space. We define a constant Dirac

structure D 0 F xF". Then D can be represented as

1. (Kernel and Image representation )

D={(f, OF xF"| Ff + Ee=0} (A.1.26)
for ¢ x ¢ matrices F and E satisfying
EF"+FE' =0
(A.1.27)
rank[F |E] = ¢

Equivalently,
D={(f,@ OF xF"| f =E"A,e=F"A,A0R"} (A.1.28)
2. (Constrained input-output representation)

D={(f,§ OF xF"| f =Je+GA, G e=0} (A.1.29)
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for an /x/ skew-symmetric matrix /, and a matrix G such that

ImG ={f|(f,0)0D}.Furthermore, KerJ ={e|(0,e) 0D} .

3. (Hybrid input-output representation)

Let D be given as in 1. Suppose rankF =/*(< /). Select /*

independent columns of F, and group them into a matrix F'. Write

ft e
(possibly after permutation) F = [Fl | E2], f= [ f 2] e:[ 2}. Then the
€

matrix [Fl | E2] can be shown to be invertible, and

o-([LEL0) e

with J := —[Fl | Ezj_l[F 2 |El] skew-symmetric.

2.2. Stokes-Dirac structures [Sch 05]

Let Z be an n-dimensional smooth manifold with smooth (n-1)-

dimensional boundary 9Z, representing the space of spatial variables.

Denote by Qk(Z), k =0,1,....n, the space of exterior k-forms on Z,
and by Qk(GZ), k=0,1,.....n— 7 the space of k-forms on dZ. (Note that
Q°(Z), respectively Q°(0Z) , is the space of smooth functions on Z,
respectively 0Z.) Clearly, Q*(Z) and Q*(0Z) are (infinite-dimensional)
linear spaces (over R ). Furthermore, there is a natural pairing between
Q*(Z) and Q"*(Z) given by

(Bla) = jz f0a (OR) (A.1.31)
with a0Q"(Z2),0Q"*(Z), where Lis the usual wedge product of

differential forms yielding the n-form S Ua . In fact, the pairing (A.1.31)
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is non-degenerate in the sense that if <,8|a> =0forall a, respectively for
all £, then =0, respectively a =0.
Similarly, there is a pairing between Q*(0Z) and Q"**(9Z) given
by
(Bla)=] BDa (A.1.32)
with a0Q*(0Z), 0Q"*(0Z). Now let us define the linear space
T, = QP(2)xQY(Z)xQ"*(02) (A.1.33)
for any pair p,q of positive integers satisfying
p+gq=n+1 (A.1.34)
and correspondingly let us define
E,q:=Q""(2)xQ"(Z2)xQ""(02) (A.1.35)
Then the pairing (A.1.31) and (A.1.32) yields a (non-degenerate)

pairing between ¥, and E_ . Symmetrization of this pairing yields the

following bilinear form on %, , XE with valuesin R:
(f;, fq fo €56 eo) (fpz,fqz,fb ,epz,eq2,eoa>>.:
[[&0f+eDf7+el0f +ef0f]] (A.1.36)
2 2 1
+f [§0f+e 01
where for i =1,2
f, 0Q(2), f,0Q%2)
e 0Q"P(2),€,0Q"(2) (A.1.37)
f.0Q""(02),e 0Q"%(9Z)
The spaces of differential forms QP(Z) and Q%(Z) will represent
the energy variables of two different physical energy domains
interacting with each other, while Q" ?(0Z) and Q" %(0Z) will denote

the boundary variables whose (wedge) product represents the boundary

energy flow.
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Theorem. Consider #,, and E_, given in (A.1.33), (A.1.35) with
p, q satisfying (A.1.34), and bilinear form <,> given by (A.1.36). Define
the following linear subspace D of %, . XE_

D :{( fp’ fQ’ fb’ep ’eq ’e")D?FF;q X Epyq |
[ f -1yd]le
P |0 DS , (A.1.38)

fa] [d 0 e

_fb}_[l 0 } e, oz

&) [0 -1 &lx
where |,, denotes restriction to the boundary 0Z, and r:=pq+1. Then
D = D", thatis, D is a Dirac structure.
2.3. Differential forms [Des 06], [Cou 90]

A differential form is an integrand, i.e., a quantity that can be
integrated. It is the dx in jdx and the dx dy in jdx dy. More precisely,
consider a smooth function F(x) over an interval in R . Now, define f{x)
to be its derivative, that is,

dF
f(x)=— A.1.39
(%) =4 (A1.39)

Rewriting this last equation (using slightly abusive notations for

simplicity) yields dF = f(x)dx, which leads to:
b b
L dF = j f(x)dx = F(b) - F(a) (A.1.40)

This last equation is known as the Newton-Leibnitz formula, or
the first fundamental theorem of calculus. The integrand f{x)dx is called a
1-form, because it can only be integrated over any 1-dimensional (1D)
real interval. Similarly, for a function G(x,y,z), we have:

dG :a—de+a—Gdy+a—Gdz (A.1.41)
0X ay 0z
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which can be integrated over any 1D curve in R?, and is also a 1-form.
More generally, a k-form can be described as an entity ready to be
integrated on a kD (sub)region. Note that forms are valued zero on

(sub)regions that are of higher or lower order dimension than the

original space; for example, 4-forms are zero on R?®.

Let consider the n-dimensional Euclidean space R", nON and let
M be an open region M O R"; M is also called a n-manifold. The vector

space T,M consists of all the (tangent) vectors at a point XM and can

be identified with R" itself. A k-form WX is a rank-k, skew-symmetric,
tensor field over M. That is, at each point X[IM , it is a multi-linear map
that takes k tangent vectors as input and returns a real number:

WCTM.L.XTM - R (A.1.42)

which changes of sign when you switch two variables.

There are seven operators in Exterior Calculus:
- d: the exterior derivatives, that extends the notion of the

differential of a function to differential forms;

- %: the Hodge star, that transforms k-forms into (n-k)-forms;

- : the wedge product, that extends the notion of exterior product

to forms;

- and : the sharp and flat operators, that, given a metric,
transforms a 1-form into a vector and vice-versa;

- I, : the interior product with respect to a vector field X (also

called contraction operator), a concept dual to the exterior product;

- L, : the Lie derivative with respect to a vector field X, that extends

the notion of directional derivative.
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A k-simplex is a generic term to describe the simplest mesh
element of dimension k- hence the name.

Let consider a three-dimensional mesh in space. This mesh is
made of a series of adjacent tetrahedral. The vertices are said to form a
0-simplex. The edges form a 1-simplex; the faces form a 2-simplex. The
adjacent tetrahedrals form a 3-simplex.

Formally, a k-simplex o, is the non-degenerate convex hull of k+1
geometrically distinct points Vv,....,v, OR" with n>Kk. In other words, it

is the intersection of all convex sets containing (VO, ....,Vk) ; namely:

Uk:{xDR”

X= Z_(}a'vi with o' = 0and Z;a' = 1} (A.1.43)

The entities v,,....,v, are called the vertices and k is called the

dimension of the k-simplex, which we will denote as:
g, ={Vovp.- Vi } (A.1.44)
An n-dimensional discrete manifold M is an n-dimensional
simplicial complex that satisfies the following condition: for each
simplex, the union of all the incident n-simplices forms an n-dimensional
ball (i.e., a disk in 2D, a ball in 3D, etc.), or half a ball if the simplex is on
the boundary. As a consequence, each (n-1)-simplex has exactly two

adjacent n-simplices - or only one if it is on a boundary.

Stokes’ Theorem. d applied to an arbitrary form w is evaluated

on an arbitrary simplex o as follows:

L dw = LUW (A.1.45)

The wedge product [is an operation used to construct higher

degree forms from lower degree ones. Let consider a a 1-form and [ a

2-form on a subset T [ R”. Their wedge product a 08 is a 3-formon T.
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Given a inner product denoted <,>, defined as the product of two
k — formOdQ*(M), which will measure in a way, the projection of one
onto other, the operator %, called the Hodge star, maps a k-form to a
complementary (n-k)-form:
2: Q" (M) - Q"% (M) (A.1.46)
and is defined to satisfy the following equality:
alf=<apB>u" (A.1.47)

for any pair of k-form a and S (4" is the volume form).

2.4. Interpolation [Des 06]
2.4.1. Interpolating 0-forms

For linear interpolation of 0-forms to the whole space, we can use
the vertex-based linear interpolation basis, the hat function in Finite

Element literature. With each vertex Vv, is associated a basis denoted as
¢

¢ =1 atv, ¢=0 atv, 2y (A.1.48)
while @ linearly goes to zero in the one-ring neighborhood of v,. This

function are the barycentric coordinates, introduced by Mébius in 1827
as mass point to define a coordinate-free geometry.

If we denote a vertex v, by g;, with this basis we have:

[,0.=] 6.1, 4 ={; . i‘:jj (A.1.49)

2.4.2. Interpolating 1-forms

For the 1-forms interpolation we use the Whitney 1-form

associated with an edge o;; between v, and v; .

¢a’ij = ¢id¢j _¢jd¢i (A.1.50)
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We have:
1 ifi=kand j=I
[ 4, =1-1ifi=land j=k (A.1.51)
' 0 otherwise

This is zero when at least one vertex is not on the edge. Along the

edge 0;, we have ¢, + ¢, =1. Thus:

ij?

J, 80 =107 (0a0-0)--p ) =" (-dg)=1 (a152)

#=1

2.5. Functionals [Kan 06]
An integral expression of the form:

du

I(u):I:F(x,u,u')dx, u=u(x), u'=dx (A.1.53)

where the integrand F(x,u,u’)dx is a given function with the argument x, u

and du/dx, is called a functional. The value | (u) of the integral depends
on u; hence the notation |(u) is appropriate. However, for a given u,
I (u) represents a scalar value. Mathematically, a functional is an

operator | mapping u into a scalar | (u).

2.5.1. The variational symbol
Consider the function F=F(x,u,u’). For an arbitrary fixed value of

the independent variable x, F depends on u and u’. The change v in u,
where 4 is a constant and v is a function, is called the variation of u and

is denoted by ou:
ou = v (A.1.54)

The operator J is called the variational symbol. The variation
ou of a function u represents an admissible change in the function u(x)
at a fixed value of the independent variable x. If u is specified at a point,
the variation of u is zero there because the specified value cannot be
varied, thus the variation of a function u should satisfy the homogenous

form of the boundary conditions for u. The variation du in u is a virtual
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change. Associated with this change in u, there is a change in F. In
analogy with the total differential of a function of two variables, the first
variation of F at u is defined by

oF oF

OF =—Jdu+—23au’ (A.1.55)
ou ou'
Note the analogy between the first variation (above) and the total
differential of F,
dF =9 ax+ 9% qu+ L au (A.1.56)
X ou ou'

Since x is not varied during the variation of u to u+ du, dx=0 and
the analogy between dF and dF becomes apparent. That is, d acts as a
differential operator with respect to dependent variables. It can easily be
verified that the laws of variation of sums, products, ratios, powers, and
so forth are completely analogous to the corresponding laws of

differentiation. For example, if F, = F,(u) and F, = F,(u) then

O(F, = F,)=0F, £ JF, (A.1.57)

O(FF,) = F,0F, +FJF, (A.1.58)

5(ij = LZFP_FZ (A.1.59)
FZ FZ

3| (R)"|=n(R)"oF, (A.1.60)

Furthermore, the variational operator can commute with
differential and integral operators:
d d
(o=
dx dx

dv , , du
(v) = vl ou' = 5(&j (A.1.61)

8 u(x)x = [ Su(x)adx (A.1.62)
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2.5.2. Functional derivative

For a function with multiple arguments, f(X,X,,......X, ), if the

differential df can be written as,

df =i:gi(x1,x2,....,xn Xax (A.1.63)

then the function g;(X,...,X,) is called the (partial) derivative of f with

respectto X, fori=1,..n,

g—;: 0, (X,.sX,) (A.1.64)
Similarly, if the variation of a functional
[y00] = [T F(y(x), y'()dx (A.1.65)
can be written as,
Jl = j:g(x)ay(x)dx (A.1.66)
then the functional derivative of I is
53(')() =g(x) (A.1.67)

The functional derivative of a functional | [y(x)] is a function g(x).

2.6. The variational derivative [Sch 05]

Consider a density function # :A'(Q)xQ - A"(Q)where

VD{l,..,n}. The variational derivative of the functional H =J-A7fDR
. v . . . JH n-v .
with respect to YOA"(Q) is the differential form J_yDA (Q) which

satisfies for all AyOOAY(Q) and ¢0R:
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H(y+&y) = J'Q?f(y+£Ay) = jg?f(y) +ng{55—3 DAy} +0(£%) (A.1.68)

where # 1 AY(Q)xQ - A"(Q),vD{1,..n} is a density function.
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