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Contribution à l’extension de l’approche 

énergétique à la représentation des 

systèmes à paramètres distribués 

 

 

Tout phénomène, qu’il soit biologique, géologique ou mécanique 

peut être décrit à l’aide des lois de la physique en termes d’équations 

différentielles, algébriques ou intégrales, mettant en relation différentes 

variables physiques.  

 L’étude des phénomènes physiques implique deux tâches 

importantes : la formulation d’un modèle mathématique et une analyse 

numérique pour le modèle considéré. 

  La conception du modèle mathématique nécessite de bonnes 

connaissances  dans les domaines concernés (lois de la physique), et, très 

souvent, sur certains outils mathématiques. C’est une tâche difficile et 

parfois longue, qui demande du temps et des efforts afin d’obtenir un 

modèle réaliste qui est capable de satisfaire les demandes de 

l’utilisateur.     

 Les résultats, sous forme d’équations différentielles pour l’étude 

dynamique, établissent un lien entre les variables nécessaires à la 

compréhension et/ou la conception des systèmes. Dans 

l’accomplissement de cette tâche, des hypothèses concernant le 

fonctionnement du processus sont faites. Dans la simulation numérique 

nous utilisons des algorithmes numériques et l’ordinateur pour évaluer 
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le modèle mathématique et faire l’estimation des caractéristiques du 

processus.    

L’approche bond graph a une place importante parmi les 

approches utilisées pour la représentation des systèmes. C’est un 

langage graphique qui utilise le principe d’analogie, pour différents 

domaines physiques, permettant la modélisation et la simulation. Il est 

basé sur l’étude des échanges de puissance au sein du système et entre le 

système et son environnement.  

Souvent on suppose que le système à modéliser est à paramètres 

localisés. Mais si cette hypothèse n’est pas vérifiée, des outils spécifiques 

seront utilisés.   

  Les systèmes à paramètres distribués ont en général un nombre 

réduit d’entrées et de sorties, mais l’espace d’état est de dimension 

infinie. La représentation mathématique est faite à l’aide d’équations 

différentielles partielles (EDP). La forme (parabolique, hyperbolique) 

des équations détermine les propriétés du modèle (en termes de 

stabilité, contrôlabilité, observabilité etc.).    

Les objectives de la thèse sont de montrer comment les systèmes 

à paramètres distribués peuvent être modélisés par un modèle bond 

graph, qui est par sa nature un modèle  à paramètres localisés. Deux 

approches sont possibles: 

- la première approche consiste à utiliser une technique 

d’approximation qui discrétise le modèle dans le domaine spatial, 

en supposant que les phénomènes physiques distribués peuvent 

être considérés comme homogènes dans certaines parties de 

l’espace, donc localisés. Différents modèles bond graphs peuvent 

être obtenus en fonction de la technique utilisée. 

- la deuxième approche consiste à déterminer la solution des EDP 

qui dépend du temps et de l’espace,  puis à approximer  cette  

solution avec différents outils numériques.  
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Le premier chapitre rappelle quelques méthodes classiques 

utilisées pour l’approximation des EDP et les modèles bond graphs 

correspondants. 

Obtenir une solution exacte pour une EDP est une tâche difficile. 

Des méthodes d’approximation existent, elles peuvent être classées en 

deux grandes familles : les méthodes d’approximation des équations (ex. 

volumes finis)  et les méthodes d’approximation des  solutions (ex. 

éléments finis).   

La méthode des éléments finis [STR 04], [GUE 63], [GER 87] est 

une méthode où les dérivées partielles sont remplacées par des 

quotients qui utilisent les valeurs de la solution en certains points 

particuliers du domaine. Le résultat est un système d’équations 

algébriques qui peut être résolu si les conditions aux frontières sont 

fixes.  

Les méthodes variationnelles [WAN 07], [GER 87] sont des 

méthodes où les équations aux dérivées partielle sont représentées sous 

une forme intégrale et les solutions sont approchées par une 

combinaison linéaire i i
i

bφ∑ , où iφ  sont les fonctions d’approximation et 

ib  les coefficients inconnus.  A titre d’exemples, on peut citer la méthode 

des résidus pondérés, la méthode de Galerkin, la méthode de Ritz. Le 

principal désavantage de ces méthodes concerne la difficulté à 

sélectionner les fonctions d’approximation. Il n’y a pas de procédure 

unique pour les construire et cela devient très difficile quand le domaine 

a une géométrie complexe et les conditions  aux frontières compliquées. 

 La méthode des éléments finis est similaire aux méthodes 

spectrales ; la différence majeure réside dans le choix des fonctions 

d’approximation. Les éléments finis découpent l’intervalle spatial en 

sous intervalles, et prennent ( )i xφ  comme des fonctions locales sous 

forme polynomiale non nulle avec un degré fixe. Les méthodes spectrales 

utilisent des fonctions de base globales où les ( )i xφ  sont polynomiales 

avec un haut degré qui sont non nulles sur tout le domaine sauf en 

quelques points isolés.        
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 Les méthodes spectrales produisent des équations algébriques 

avec des matrices pleines, et l’ordre élevé des fonctions de base donne 

une grande précision. Les éléments finis produisent des matrices bandes.     

 

Le deuxième chapitre présente l’approche port-Hamiltonienne et 

son extension aux systèmes à paramètres distribués est proposée.   

 Quelques résultats de la littérature sont rappelés pour les 

systèmes dissipatifs et non dissipatifs. Nous proposons un nouveau 

résultat pour la modélisation bond graph de l’équation du télégraphiste 

dans le cas avec phénomènes dissipatifs.   

Le système port Hamiltonien a été utilisé pour la représentation  

des systèmes à paramètres distribués. Sur l’exemple de l’équation du 

télégraphiste, on a montré [Che 09]  que si on utilise une forme spéciale 

de discrétisation pour l’espace, on fait le calcul seulement pour un 

élément local et puis en concaténant les éléments on peut calculer la 

ligne de transmission entière. 

Le système port-Hamiltonien est dérivé de la fonction d’énergie 

(Hamiltonien) qui peut être prise comme fonction de Lyapunov, utilisée 

pour la commande. 

La modélisation du trafic routier a été choisie comme le champ 

d’application de nos travaux. 

 

Le troisième chapitre présente un résumé des différents types des 

modèles  de trafic routier trouvés dans la littérature. Nous avons mis en 

œuvre certains d’entre eux et comparé les résultats obtenus par 

simulation pour quelques modèles et quelques algorithmes.    

Le modèle LWR [Lig 55], [Ric 56] a été considéré pendant de 

nombreuses années comme un des meilleurs modèles proposés pour la 

représentation du trafic routier. Mais dans les dernières années quelques 

auteurs ont mis en évidence des problèmes., et proposé de nouveaux 

modèles. Nous avons retenu quelques modèles macroscopiques par 

lesquels ceux de Zhang, Aw et Rascle [Aw 00]. 
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A l’aide de simulations on a montré les avantages et les 

inconvénients de ces modèles, et déterminé les méthodes numériques les 

mieux adaptées à la discrétisation des modèles. 

 

Dans le chapitre quatre, on a proposé une approche originale par 

l’extension de la représentation bond graph développée dans le domaine 

des Computational Fluid Dynamics pour la modélisation des flux de 

trafic, en utilisant le modèle de Jiang [Jia 02] . 

 

Les principaux résultats que nous avons obtenus sont: 

- la construction d’un modèle bond graph à paramètres distribués 

où toutes les variables sont distribuées ; 

-  la dérivation du modèle d’état à partir du modèle bond graph 

comme un modèle ODE de dimension infinie. 

Ce modèle bond graph doit être discrétisé pour la simulation. Un 

modèle bond graph générique est proposé pour chaque partie de 

l’espace (appelé « section »), qui doit être reproduit  un nombre suffisant 

de fois pour obtenir une solution stable.  

On a développé une approche théorique de l’approche bond 

graph pour représenter le modèle à deux équations EDP, une pour la 

densité et l’autre pour la vitesse. Les équations d’état sont exprimées en 

termes de variables d’état, associées aux valeurs nodales de masse et de 

vitesse.  

L’ensemble des variables de l’effort et de flux généralisés a été 

déduit à l’aide de considérations énergétiques, tandis que les équations 

d’état ont été obtenues conformément à la formulation  Petrov-Galerkin 

pour les phénomènes liés à la masse et la formulation Galerkin pour ceux 

liés à la vitesse; en conséquence, les outils de calcul développés pour la 

méthode de éléments finis, aussi que pour d‘autres méthodes 

numériques, peuvent être utilisés pour résoudre les équations d’état 

obtenues. 
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Concernant l’approche CFD, il y a encore quelques problèmes à 

résoudre:  

- développer un algorithme de calcul qui gère les singularités dans les 

matrices ; 

- déterminer le nombre approprié de sections à utiliser pour avoir une 

solution stabilisée ; 

- étudier plus précisément la vitesse, et comparer les résultats 

obtenus avec ceux déduits du modèle LWR dans différents scénarios. 

Les développements futurs concernant les flux de trafic  sont vastes 

et complexes ; 

- le modèle bond graph pour CFD proposé considère une seule route, 

maintenant il doit être étendu à des croisements; 

- la route est supposée composée d’une seule voie. Les modèles 

peuvent être étendus à deux voies comme une autoroute ; 

- nous supposons avoir le même type de véhicules. Ceci peut être 

étendu en considérant différents types de véhicules, avec des 

vitesses différentes ; 

- la route est supposée être sans rampe d’accès. Nous pouvons 

considérer le cas où on a une rampe en entrée et/or  en sortie ; 

- le modèle est un modèle de circuit ouvert, sans perturbations. Une 

stratégie de contrôle, lié aux objectifs de flux de trafic, peut être 

étudiée. On peut utiliser le modèle d’espace d’état dérivée de bond 

graph pour cela.   
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Introduction 

 

 

 

 

 

Virtually every phenomenon in nature, whether biological, 

geological, or mechanical, can be described with the aid of the laws of 

physics, in terms of algebraic, differential, or integral equations relating 

various quantities of interest. 

 The study of physical phenomena involves two major tasks: to 

formulate a mathematical model and to make a numerical analysis for 

the considered model. 

 The conception of a mathematical model requires background in 

related subjects (e.g. laws of physics) and, most often, certain 

mathematical tools. It is a difficult and sometimes long task, which 

request time and effort in order to obtain a realistic model capable to 

satisfy the user demands.  

The results, as differential equations for dynamic study, relate 

quantities of interest in the understanding and/or design of the physical 

process. In the achievement of this task, assumptions concerning how 

process works are made. In numerical simulation we use numerical 

algorithms and computer to evaluate the mathematical model and 

estimate the characteristics of the process. 
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Among the system representation approaches, the bond graph 

has an important place. It is a unified graphical language, using the 

analogy principle, for different physical domains allowing modeling and 

simulation. It is based on power exchanges inside the system and 

between the system and its environment.  

It is often assumed that the system to be modeled as lumped 

parameters. But if this assumption is not verified, specific tools have to 

be used. 

 The distributed parameter systems do not have in general a great 

number of inputs and outputs, but the state space is of infinite 

dimension. The mathematical representation of these systems is made 

using partial differential equations (PDE). The form (parabolic, 

hyperbolic) of equations determines the properties of the model (in 

terms of stability, controllability, observability etc.).   

 The objectives of the thesis were to show how distributed 

parameter systems can be modeled using a bond graph model, which is 

by its nature itself a lumped parameter model. Two ways are possible. 

They are summarized in figure 1: 

- the first approach consists in using an approximation technique to 

discretize the model in the space domain, assuming that physical 

distributed phenomena can be considered as homogenous in 

some parts of space, and thus lumped. Different bond graph 

models can be obtained depending on the technique used. 

- the second approach consists in determining a solution of the PDE 

depending on space and time, and thus to approximate this 

solution by means of different kinds of tools. 
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Fig. 1. Two approaches to go from PDE models to bond graph models 

 

 In the first chapter we recall the classical methods used for 

approximation of partial differential equations and the corresponding 

Bond Graph model.   

 The second chapter presents the port-Hamiltonian approach for 

distributed parameter systems. 

 Some results from the literature are recalled for non dissipative 

and dissipative systems. We propose a new result for the bond graph 

modeling of the telegrapher’s equation in the case of dissipative 

phenomena. 

 The modeling of traffic flow was chosen as application field. 

 In the third chapter, we make a summary of the different types of 

models found in the literature. We implement some of them and 

compare the obtained simulation results for several models and several 

numerical algorithms. 
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 The fourth chapter proposes an original approach extending 

Computational Fluid Dynamics bond graph representation to traffic flow. 

The main results of this method are: 

- construction of a “distributed parameter bond graph” where all 

the variables are distributed variables; 

- derivation from the bond graph of a state model under as an 

infinite dimensional ODE model. 

This bond graph model has to be discretized for simulation. A 

“generic” bond graph model of each space subpart (called “section”) is 

proposed, which has to be reproduced the number of times sufficient to 

obtain a stabilized simulated solution. 

Implementation of traffic flow CFD models is made using MATLAB 

software. 

A bibliography and appendices are placed at the end of the report. 
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Chapter 1. Classical methods for solving PDE 

models 

 

1.1. Introduction 

 

 

 

Every physical system is composed of elements, dynamically 

interacting and exchanging power and informations.  

The energy and information exchanges between components can 

be represented in a graphical way, which contains all is necessary to 

obtain the dynamical evolution of the model. The bond graph [KAR 90], 

[DAU 00] approach follows this concept. 

 In the bond graph representation, the power transfer between 

elements is represented by bonds. Through a bond, an element exchange 

power with the rest of the system; power is for all the physical domains 

the product of two complementary variables (effort and flow) as shown 

figure 1.1. 

Interconnections between subsystems can be done at nodes 

where power can be exchanged between subsystems. Such places are 

called ports, and physical subsystems with one or more ports are called 

multiports. A system with a single port is called a 1-port, a system with 

two ports is called as 2-ports, and so on. 
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 Effort e Flow f 

Electrical Voltage [V] Current [A] 

Mechanics 

Translational 

Force [N] Velocity [m/s] 

Rotational Torque [N*m] Angular Velocity 

[rad/sec] 

Hydraulic 
Pressure [N/m

2
] 

Volume Flow rate 
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3
/sec] 

Chemical Chemical Potential 

[J/mole] 

Molar Flow rate 

[mole/sec] 

Thermodynamic Temperature 

[K] 

Entropy Flow rate 

dS/dt [W/K] 

 
Fig.1.1. Effort/flow definitions in different engineering domains 

 

In every system (mechanical, electrical, chemical or hydraulical 

domain), generalized effort variable and a generalized flow variable are 

defined the product of which being the power exchanged between 

elements.  

Distributed parameter systems are represented using partial 

differential equations (PDE). 

Partial differential equations are differential equations containing 

independent variables (spatial variables to which we add time in 

evolution phenomena cases) and dependent variable. 

One of the problems in the study of distributed parameter models 

is to find the solution of the equations, and in most cases this solution is 

found as an approximation of the initial problem with respect to some 

properties.  
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Fig.1.2. Different approaches used for solving PDE   

 

In simulation, to obtain an exact solution of the problem is a very 

difficult task. Approximation methods are instead used to find a solution. 

There are two classes of approximation: the approximation of the 

equations (finite difference volumes) and the approximation of the 

solution (variational methods, finite elements methods).  

 In the finite difference methods [STR 04], [GUE 63], [GER 87] the 

partial derivatives of the variables are replaced by difference quotients 

which involve the values of the solution at discrete mesh points of the 

domain. The result is an algebraic equation system which is solved once 

boundary conditions are fixed. 

 In the variational methods [WAN 07], [GER 87] the partial 

differential equation is represented in an equivalent weighted-integral 

form and the approximate solution is assumed to be a linear combination 

i i
i

bφ∑ , with approximation functions iφ  and undetermined 
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coefficients ib . The coefficients ib  are determined such that the integral 

statement equivalent to the original partial differential equation is 

satisfied. The variational methods as Galerkin, Rayleigh-Ritz and least-

squares, differ one from another by the choice of the integral form, 

weight function and/or approximation functions. 

 The finite element methods [RED 93], [AGO 85], [LEW 91], [SAB 86] 

represent the domain as a collection of geometrically simple sub 

domains, called finite elements. Then, over each element, the 

approximation functions are derived using the basic idea that any 

continuous function can be represented by a linear combination of 

algebraic polynomials. The algebraic relations among the undetermined 

coefficients are obtained by satisfying the governing equations, often in a 

weighted-integral sense, over each element. 

In this chapter we will present a classical approach which will 

consist in a discretization followed by a bond graph representation.  

 

1.2. Partial differential equations 

 

A system is assumed to be an entity separable from the rest of the 

universe (the environment of the system) by means of a physical or 

conceptual boundary. The exchange of information and power with the 

environment is realized through the boundary. A system is decomposed 

into interacting parts. These are considered as subsystems and have a 

lower complexity level than the system. 

The modeling procedure consists in trying to obtain one or more 

models that represent in a way the system comportment. The models are 

abstract entities which help us to understand, analyze and predict the 

system behavior. Each model must be homogenous to the system, 

meaning that it must have the same number of inputs and outputs.  

The model structure consists in a parameter vector, a number of 

inputs and a number of outputs that depend of hypotheses made. The 

model obtained is a specific vision of the studied system. There are some 
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approximation methods that need to ignore some parameters in order to 

avoid singularities and some complexity, meaning that it is possible to 

find models that contain less parameters than we need. The choice of the 

model depends also of the study to be made. For example, a spectral 

model is not good for a stationary study, but is good for a frequency 

study with a sufficient large frequency band but not very large to avoid 

noise and numerical errors. These are very important in distributed 

parameter system study because modeling and numerical errors 

improve the level of approximations used to pass from partial 

differential equations (PDE) to ordinary differential equations (ODE). 

A model represented by PDE consists in: 

-a space domain Ω represented by the space vector { }1 2, ,..., nx x x x=  in 

n
ℝ , with boundary ∂Ω ; 

-a time interval 0, fI t =   ; 

-one evolution equation of a variable ( , )u x t  in IΩ × : 

 [ ]( , )
( , ) ( , )

u x t
M u x t v x t

t

∂ = +
∂

 (1.1) 

where ( , )v x t  denotes the input variable, which can be distributed or 

lumped.  

-boundary conditions on I∂Ω × to be imposed, and written as: [ ]( , )B u x t ; 

-initial conditions on Ω to be defined: [ ]( ,0)P u x ; 

M, B, P are operators (linear, differential…). 

  

Partial differential equations (PDE) are classified according to 

their order, boundary condition type, and degree of linearity (yes, no or 

quasi). Most PDEs encountered in science and engineering are of second 

order, i.e. the highest derivative term is a second order partial derivative. 

There are three type of PDE: elliptic, parabolic and hyperbolic.  

 
2 2 2

1 22 2
1 1 2 2 1 2

2 , , , ,
u u u u u

a b c F x x u
x x x x x x

 ∂ ∂ ∂ ∂ ∂+ + =  ∂ ∂ ∂ ∂ ∂ ∂ 
 (1.2) 
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where the coefficients a,b,c are functions of the independent variables 1x  

and 2x  only, or constant (one spatial variable can be replaced by time t). 

The three canonical forms are determined by the following criterion: 

-elliptic (example: Laplace’s equation) 

 2 0b ac− <  (1.3) 

-parabolic (example: diffusion equation) 

 2 0b ac− =  (1.4) 

-hyperbolic (example: wave equation) 

 2 0b ac− >  (1.5) 

These classifications serve as a rough guide to the information 

flow in the domain. For instance, in elliptic equations, information from 

the boundaries is propagated instantaneously to all interior points. Thus, 

elliptic equations are termed “non-local”, meaning that information from 

far away influences the given position, versus “local”, where only 

information from nearby influences the field variable. In parabolic 

systems, information “diffuses”, i.e. it spreads out in all directions. In 

hyperbolic systems, information “propagates”, i.e. there is a demarcation 

between regions that have already received the information, regions that 

will receive the information, and possibly regions that will never receive 

the information. If the system is linear or quasi-linear (i.e. some 

coefficient depends on the dependent variable or a lower order partial 

derivative than that it multiplies), this classification system and the 

intuition about how information is transported serves as a robust guide 

to second order models. For nonlinear models, however, nonlinearity 

can destroy the information transport structure. In nonlinear models, 

information may be “bound”, i.e. never transferred, beyond given 

attractors, or it may be created from noise (one view) or lost (a different 

view) by forgetting initial conditions in a given window in time. 
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1.3. Solving PDE  

 

One method to solve these equations is to reformulate them, to 

find an approximate solution which is the closest to the real solution and 

this can be achieved using the best approximation. 

There are a number of approximation methods which can be 

classified in three categories: exact solution method, spectral methods 

(TAU, collocation method), space domain discretization methods (the 

finite differences, the finite elements). These methods are also classified 

into strong and weak formulation. We will use the stationary case for 

sake of simplicity.   

Let consider equation (1.6): 

 ,Au f x t I= ∀ ∈Ω ∈  (1.6) 

with boundary conditions: 

 ,Bu g x t I= ∀ ∈∂Ω ∈  (1.7) 

where A and B  are partial differential operators: 

 
1n

A a α
α

α ≤ +

= ∂∑  (1.8) 

with 1 2 1( , ,...., ) n
nα α α α += ∈ℕ . 

We write: 

 
1

1

n

j
j

α α
+

=

=∑  (1.9) 

and 

 
11 2

1 2 .... n n
n

u
x x x t

α
α

α αα α +

∂∂ =
∂ ∂ ∂ ∂

 (1.10) 

If we find a solution which satisfies eq. (1.6), and in the same time 

eq.(1.7) in all points x  in Ω  and ∂Ω , and t I∀ ∈ , we say that we have a 

strong formulation. 

 But this is only possible when u  is a function without 

discontinuities. When u  admits discontinuities we cannot find the 
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derivatives in that points. So we must solve in another way the problem 

using the weak form. 

 This consists in using a function w , named weight function, which 

multiplies the equation and then integrate over the domain. Making this, 

we have a problem equivalent to the initial one, but now we seek the 

solution in a functional space which is smaller than the original. 

 We try to seek the solution in a class of functions, considering 

( , )u x t  as an element of the Hilbert space (H). On the space H is defined 

the internal product ,u v , that associates with each pair ( ),u v H∈  a 

real number: 

 ,u v uvd
Ω

= Ω∫  (1.11) 

Definition [Der 05] . Let w H∈  with support in Ω  (the closed set 

of points where ( ) 0w x ≠  is contained in Ω ). Then an element ( , )u x t  is a 

weak solution of the eq. (1.6) if and only if  

 , ,Au w f w=  (1.12) 

The class of weak solutions is larger than the class of strong 

solutions because eq.(1.12) imposed only to the two integrals to be equal 

in Ω .    

 

The development of weighted-integral statement of a differential 

equation is made to have N linearly independent algebraic relations 

among the coefficient jb of the approximation: 

 0
1

( ) ( ) ( )
N

N j j
j

u U b t x xφ φ
=

≈ = +∑  (1.13) 

This is accomplished by choosing N linearly independent weight 

functions in the integral statement. 
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1.3.1. The method of weighted residual 

 

 Let consider 

 Au f in= Ω  (1.14) 

where A is a partial differential operator, acting on the dependent 

variable u and f is a known function of the independent variables. 

 The function u must also satisfy the boundary conditions 

associated with the operator equation. 

 The solution u is approximated by the expression: 

 0
1

N

N j j
j

u b φ φ
=

= +∑  (1.15) 

 Substituting Nu in (1.14) gives N Nf Au≡ . The difference NAu f− , 

called the residual of the approximation, is nonzero: 

 1 2 0
1

( , , ) 0
N

j N j j
j

R x x b Au f A b fφ φ
=

 
≡ − = + − ≠ 

 
∑  (1.16) 

The parameters jb are determined by the requiring that the 

residual 1 2( , , )jR x x b  is vanishing in the weighted-integral sense:  

 ( ) ( )1 2 1 2 1 2, , , 0 ( 1,2,...., )i jx x R x x b dx dx i Nψ
Ω

= =∫  (1.17) 

where Ω  is a two dimensional space domain and iψ are weight 

functions, which, in general, are not the same as the approximation 

functions iφ . The set { }iψ must be linearly independent in order to have 

(1.17) solvable. 

 Because (1.17) does not contain the natural and essential 

boundary conditions, 0φ is required to satisfy all specified boundary 

conditions, and jφ are required to satisfy the homogenous form of all 

specified boundary conditions of the problem. 

 The main method is the Galerkin method as presented here after. 
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In this method the weight functions iψ is chosen equal to the 

approximation functions iφ : 

 
1

N

ij j i
j

A b F
=

=∑  (1.18) 

where  

[ ]1 2 0 1 2ij i j i iA A dx dx F f A dx dxφ φ φ φ
Ω Ω

= = −∫ ∫ . 

 One physical application where this method is applied is the 

principle of virtual power, where the goal is to withdraw the variation of 

total energy, meaning to verify that the total energy is equal to the sum 

of internal and external energy. 

When the weight functions are not equal to the approximation 

functions i iψ φ≠ , we have the Petrov-Galerkin method. When A is linear, 

(1.17) becomes 

 [ ]1 2 0 1 2
1

N

i j j i
j

A dx dx b f A dx dxψ φ ψ φ
Ω Ω

=

  = −
 ∑ ∫ ∫  (1.19) 

or 

 
1

N

ij j i
j

A b F
=

=∑  (1.20) 

 

1.3.2. The method of separation of variables 

 

1.3.2.1. Principle 

 

Let consider the equation: 

 ( , ) ( , ) ( , ) , 0t xAu x t A u x t f x t x t+ = ∈Ω ≥  (1.21) 

 ( , ) ( , ) 0, , 0G x t u x t x t= ∈∂Ω >  (1.22) 

 0( ,0) ( ),u x u x x= ∈Ω  (1.23) 

where 

  tA and xA are partial differential operators for t and 1x x=  here. 
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We are looking for a solution of the form: 

 ( , ) ( ) ( )u x t b t xφ= ⋅  (1.24) 

where ( )b t  is a function of time and ( )xφ  is a function of space. 

Replacing ( , )u x t  from (1.24) in  (1.21), in homogeneous case, we 

obtain: 

 [ ] [ ]( ) ( ) ( ) ( ) 0t xAb t x A x b tφ φ+ =  (1.25) 

 For the (t,x) couples where ( ) 0b t ≠ and ( ) 0xφ ≠  it is possible to 

write: 

 [ ] [ ]1 1
( ) ( )

( ) ( )t xAb t A x
b t x

φ
φ

= −  (1.26) 

Because each part depends only on t and x, we can consider them 

as being equal to a constant, which is defined by convention as 2λ− : 

 [ ] [ ] 21 1
( ) ( )

( ) ( )t xAb t A x
b t x

φ λ
φ

= − = −  (1.27) 

  We have: 

 [ ] 2( ) ( ) 0tAb t b t λ+ =  (1.28) 

 [ ] 2( ) ( ) 0xA x xφ λ φ+ =  (1.29) 

The general solution must satisfy both equations. Eq. (1.29) gives 

us possibility to find interesting base functions named proper functions, 

which have the property to be orthogonal. 

 , ( ) ( ) 0i j i jx x dx i jφ φ φ φ
Ω

= = ≠∫  (1.30) 

If, for example, 
2

2
( )xA x

x

φφ α ∂=
∂

, equation (1.29) has as solution: 

 ( ) cos( ) sin( )x C x D xφ τ τ= +  (1.31) 

where 

 
2

2 λτ
α

=  (1.32) 
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The coefficients ,C D  are found using the boundary conditions. Because 

( )xφ  is a periodic function we have infinity of solutions: 

 ( ) cos( ) sin( ) 1,2,...,i i ix C x D x iφ τ τ= + = ∞  (1.33) 

iφ  are the proper functions or basis functions. 

 Consider the non homogenous form of (1.21) and apply the 

approximation (1.24) 

 ( )
0 0

( , )i t i x i i
i i

Ab A b f t xφ φ
∞ ∞

= =

+ =∑ ∑  (1.34) 

where iφ are the proper functions of the xA with the proper values 

2 2
i iλ τ α= . Multiplying eq. (1.34) by jφ and integrating on the spatial 

domain we obtain: 

 
2, , , ( , )j i t i i j i i j

i i

Ab b f t xφ φ λ φ φ φ+ =∑ ∑  (1.35) 

Using the orthogonality, it leads to a time differential equation 

system: 

 
2( ), ( ) ( ) , ( ) , ( , )j j t j j j j j jx x Ab t b t f t xφ φ ατ φ φ φ   + =     (1.36) 

 

1.3.2.2. Bond Graph representation 

 

In a mechanical system, if we consider ib as a general coordinate, 

the construction of the bond graph depends on the tA  form: when it 

contains an algebraic expression we have a potential energy, when it 

contains a derivative we have dissipation and when it contains a second 

derivative we have a kinetic energy [Der 05]. 

 Consider the compressed bar model show in figure 1.3. as: 

 
2 2

2 2
( ) ( ) 0S rS ES F t x L

t t x

ξ ξ ξρ δ∂ ∂ ∂+ + − − =
∂ ∂ ∂

 (1.37) 

 (0, ) 0 ( , ) 0t L t
x

ξξ ∂= =
∂

 (1.38) 
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with 

S –the section; L- the length; E-Young’s modulus; ρ - mass density; r- 

resistance. 

 

Fig.1.3. Fixed-forced bar 

 

 We begin by temporarily setting the force F(t) to zero, and 

assuming that ( , )x tξ can be separated into a product of the form: 

 ( , ) ( ) ( )x t b t xξ φ=  (1.39) 

 Introducing (1.39) into (1.37) and applying the separation of 

variables principle, we obtain: 

 
2

2
2

E d

dx

φ λ
ρφ

= −  (1.40) 

with the result 

 
2

2
2

0
d

dx E

φ ρ λ φ+ =  (1.41) 

The solution is: 

 ( ) cos( ) sin( )x C kx D kxφ = +  (1.42) 

with 
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2 2k

E

ρ λ=  (1.43) 

 If we apply the boundary conditions (1.38) we obtain: 

(0, ) ( ) (0) 0t b tξ φ= =  

or 

 (0) 0φ =  (1.44) 

and 

( , ) ( ) ( ) 0
d

L t L b t
x dx

ξ φ∂ = =
∂

 

or 

 ( ) 0
d

L
dx

ξ =  (1.45) 

Applying (1.44) and (1.45) to (1.42) yields 

 0C =  (1.46) 

and 

 cos 0Dk kL =  (1.47) 

We let, 

 cos 0kL =  (1.48) 

with the result 

 (2 1) , 1,2,3...
2ik L i i
π= − =  (1.49) 

Then, 

 ( ) sin (2 1) 1,2...,
2i

x
x D i i

L

πφ  = − = ∞ 
 

 (1.50) 
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If we consider that the force is a point force acting in x=L, we can 

write eq. (1.36) as: 

 

2

2

( ) ( )
, , , ( )

( ) ( ) ( ) 0

i i
i i i i i i i

i

d b t db t
S rS ES b t

dt dt
F t x L x

ρ φ φ φ φ φ φ

δ φ

+ +

− − =
 (1.51) 

 In expression (1.51) we can identify acceleration per length unit, 

friction force per length unit, stiffness force per length unit and external 

force per length unit and surface. 

 It is possible to write: 

 
2

2

( ) ( )
( ) ( ) ( ) 0i i

i i i i i

d b t db t
m r k b t F t L

dt dt
φ+ + − =  (1.52) 

where 

,i i im Sρ φ φ= -the modal masses; 

,i i ir rS φ φ= -the modal dissipation; 

,i i ik ES φ φ= -the modal stiffness. 

 Due to mode orthogonality, eq. (1.52) is decoupled, and each ( )ib t  

can be solved separately, and then combined with the mode shapes 

( )i xφ .  

 Eq. (1.52) represents the energetically representation of one 

proper mode of the system.  

 Let define the modal momentum as 

 i i ip m b= ɺ  (1.53) 

and the modal displacement as 

 i iq b=  (1.54) 

Then, eq.(1.52) can be written as 

 ( ) ( )i i i i i i

d
p r p k q F t L

dt
φ= − − +  (1.55) 

and 
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 i i

i

dq p

dt m
=  (1.56) 

For an i, we have an effort balance at the 1-junctions, and each 

external force is projected on the mode by its own proper function. The 

C, R and I correspond to the acceleration, friction and stiffness 

phenomena.  

 

Fig.1.4. One proper mode representation 

 

Fig. 1.5. shows a bond graph that would duplicate these modal 

equations for 1,2,...i = . Each external force is projected on the mode 

through the corresponding proper function (TF-modulus 1
iφ − ). 

 

 

Fig.1.5. Compressed bar Bond Graph representation 
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1.3.3. Spectral methods 

 

1.3.3.1. Principle 

 

These methods are based on the approximation of the solution 

under the form: 

 ( )N i i
i

u b xφ=∑  (1.57) 

The problem with this type of methods is to find the good choice 

of the base functions iφ  in the domain Ω .  It is interesting to have a 

orthogonality property between the base functions iφ  and the test 

functions iw . This property is then used in simplification of the problem. 

It is obvious that we would like our basis sets to have a number of 

properties: easy to compute, rapid convergence and completeness, 

which means that any solution can be represented to arbitrarily high 

accuracy by taking the truncation N to be sufficiently large. 

Depending on the choice of the test function we have:  

-the Tau method where the test functions are the same as the base 

functions, but they do not satisfy the boundary conditions as in the 

Galerkin method;  

-the collocation method, where the test functions are equal to 

delta functions at special points, called collocation points. This method is 

developed hereafter. 

 The collocation method is also a weighted residual method, used 

to solve PDEs. Consider a function ( , )u x t  defined over a spatial domain 

Ω , and the space and time evolution of ( , )u x t  governed by a PDE: 

 ( , ) 0Au x t =  (1.58) 

where A is a differential operator. 

 We seek to approximate the solution of eq. (1.58) by: 
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1

( , ) ( ) ( )
N

N i i
i

u x t b t xφ
=

=∑  (1.59) 

 We form the residual of A , ( , )R x t : 

 ( , ) ( , )NR x t Au x t=  (1.60) 

( , )R x t  is a continuous function of x  and t . The approximate solution is 

found for the average value of ( , )R x t  over Ω  to be zero. We perform this 

using the weighted function ( )xψ . 

 ( ) ( , ) 0x R x t dxψ
Ω

=∫  (1.61) 

 We can evaluate the average by using a discrete set of p  points, 

, 1..jx j p= , called collocation points: 

 
1

( ) ( , ) 0
p

i i
i

x R x tψ
=

=∑  (1.62) 

    We choose ( )ixψ  to be Dirac delta functions at this particular set 

of points. 

 
1

( ) ( , ) 0, 1...
p

i j i
i

x x R x t j pδ
=

− = =∑  (1.63) 

or 

 ( , ) 0, 1...jR x t j p= =  (1.64) 

 

1.3.3.2. Bond Graph representation 

 

For the compressed bar, 

 
2 2

2 2
( , ) 0S rS ES F t L S

t t x

ζ ζ ζρ ∂ ∂ ∂+ + − =
∂ ∂ ∂

 (1.65) 

 if we assume that there are N points 1 2, ,...., Nx x x  in Ω  where we 

calculate the value of ξ , using the collocation method, the approximation 

ξ
∧

 is written as: 
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1

( ) ( )
N

i i
i

b t xξ φ
∧

=

=∑  (1.66) 

where ib  are the solutions of equations: 

 
1

( ) ( ) ( ), 1,...,
N

i i k k
i

b t x x k Nφ ξ
=

= ∀ =∑  (1.67) 

 or in matrix form: 

 ⋅ =Φ b ζ  (1.68) 

where ( )
, 1,....,

( )i j i j N
xφ

=
=Φ ; ( )1 2, ,....,

T

Nb b b=b ; 

( ) ( ) ( )( )1 2, ,......,
T

Nx x xζ ζ ζ=ζ . 

From here we have: 

 ( ), 1,...,i ij jb x i Nη ζ= =∑  (1.69) 

where ijη  are elements of 1−Φ . 

 Thus, the approximation is:  

 
1 1

( , ) ( ) ( )
N N

i ij j
i j

x t x xζ φ η ζ
∧

= =

  
=   

   
∑ ∑  (1.70) 

 Introducing the approximation in eq.(1.65), we obtain: 

( ) ( )

( )

2

2
1 1 1 1

2

2
1 1

( ) ( )

( )
( , )

N N N N
j j

i ij i ij
i j i j

N N
i

ij j
i j

x x
x S x rS

t t

x
x ES F x t S

x

ζ ζ
φ η ρ φ η

φ η ζ

= = = =

= =

      ∂ ∂
   +   

   ∂ ∂         

  ∂+ =  ∂   

∑ ∑ ∑ ∑

∑ ∑

 (1.71) 

 Multiplying (1.71) by ( )p xφ , we obtain: 

 

( ) ( )

( )

2

2
1 1 1 1

2

2
1 1

, ,

, ( , ) ,

N N N N
j j

i p ij i p ij
i j i j

N N
i

p ij j m
i j

x x
S rS

t t

x ES F L t S
x

ζ ζ
φ φ η ρ φ φ η

φ φ η ζ φ

= = = =

= =

      ∂ ∂
      +

   ∂ ∂         

  ∂+ =  ∂   

∑ ∑ ∑ ∑

∑ ∑

 (1.72) 

 Because of orthogonality of iφ , we can write: 
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( ) ( ) ( )

2

2
1

( ) ( )
N

j j

pj p p j p m
j

x x
m r x k F t L

t t

ζ ζ
η ζ φ

=

  ∂ ∂
 + + = ⋅ 

 ∂ ∂   
∑  (1.73) 

where  

 

( ), ( )

( ), ( )

( ), ( )

p p p

p p p

p m p p

m S x x

r rS x x

k ES x x

ρ φ φ

φ φ

γ φ φ

=

=

=

 (1.74) 

Eq. (1.73) describes the projection of effort applied at point L  on 

a mode.  

The values , ,p p pm r k  represent the mass, the friction and stiffness 

coefficients. 

The bond graph figure 1.6. represents the projection of effort 

( )F L  on different modes in collocation points. 

 For the construction of the bond graph we use the same concept 

as for the separation of variable method with the difference that here we 

have a sum of p modes. 

 

 

 

Fig.1.6. The bond graph representation for collocation method 
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1.3.4. Finite element method 

 

1.3.4.1. Principle 

 

The finite element method is a method where the domain is 

represented as a collection of simple domains, called finite elements, so 

the approximation functions needed for the approximation of the 

solution are constructed over each element. The finite element method is 

not the only method that uses the discretization of the domain; there are 

also the finite difference method and finite volume method.  The finite 

element method differs from other methods by the manner in which the 

approximation functions are constructed. 

 

Finite element method has three basic features: 

1) Division of the domain into parts, which allows the 

representation of the complex domains as a collection of geometrically 

simple domains that enables a systematic derivation of the 

approximation functions. 

2) Derivation of approximation functions over each element; the 

approximation function are polynomials that are derived using 

interpolation. 

3) Assembly of elements; the assembly of elements represents a 

discrete analog of the original domain, and the set of equations a 

numerical analog of the mathematical model of the problem. 

  

These features are closely related: the geometry of the element 

must be chosen such that the approximation functions can be uniquely 

derived. The approximation functions depend on the geometry and on 

the number and location of points, called nodes, in the element and 

quantities to be interpolated. In finite element method is used the weak 

formulation instead of weighted formulation; in this case we have a 

relaxation of the conditions on the approximations. With the weak 
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formulation we pass from a punctual formulation, where the dependent 

variable is an application defined on the space of continuum derivable 

functions, named classical formulation, to a formulation where we 

rewrite the relations between functions through integrals. 

Once the approximation functions have been derived, the 

procedure to obtain algebraic relations among the unknown coefficients 

is exactly the same as that used in the weighted-residual method. 

  

 The domain of the problem consists in all points between 0x =  

and x L= : (0, )LΩ = . The domain Ω  is divided into a set of elements, 

each element having a specifical length and being located between the 

borders of the domain. The collection of these elements forms the finite 

element mesh of the domain. The division of the domain is made for two 

reasons: to represent the geometry of the domain, and to approximate 

over each element the solution in order to obtain a better representation 

of the solution over the entire domain. 

 The approximation over each element is simpler than the 

approximation over the entire domain. 

 Because the solution must satisfy the boundary conditions of the 

problem, the choice of the approximation functions, especially when 

there are discontinuities in the geometry of the problem, is under severe 

restrictions. 

 To connect the elements at the common nodes and impose 

continuity of the solution there, the endpoints of each element is 

identified and called element nodes. Depending on the degree of the 

approximation polynomial used to represent the solution, additional 

nodes inside the element may be identified. 

 The number of elements depends mainly on the element type (cf. 

figure 1.7.) and accuracy desired. When the finite element method is 

used to solve a problem, it is necessary to investigate the convergence of 

the solution by gradually refining the mesh and comparing the solution 

with those obtained by higher order elements. The order of an element 
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refers to the degree of the polynomial used to represent the solution 

over the element. 

 

 

Fig.1.7. Types of finite element 

 

 We consider an element ( , )e
A Bx xΩ =  whose endpoints have the 

coordinates Ax x= and Bx x= . 

 

Fig.1.8. A finite element in 1 dimensional 

  

 The polynomial approximation of the solution on element eΩ  is of 

the form: 

 
1

( )
n

e e e
j j

j

U u xψ
=

=∑  (1.75) 

where e
ju are the values of the solution at the nodes of the finite element 

and e
jψ are the approximation functions over the element. 

 In order to be convergent to the actual solution u as the number 

of elements is increased, the approximation solution eU  must fulfill 

certain requirements: 

1) to be continuous over the element, and differentiable, as required by 

the weak form. 2) to be a complete polynomial, i.e., to include all lower 
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order terms up to the highest order used. This is required in order to 

capture all possible states, i.e. constant, linear and so on. 

3) to be an interpolant of the primary variables at the nodes of the finite 

element. This is necessary in order to satisfy the essential boundary 

conditions of the element. 

 The simplest polynomial that can be chosen as approximation is: 

    

 
eU a bx= +  (1.76) 

where a and b are constants. 

 This expression satisfies the first two requirements. To satisfy the 

third one: 

 1 2( ) ( )e e e e
A BU x u U x u= =  (1.77) 

 Introducing this in equation (1.76) we obtain: 

 ( ) ( )1 1 1 2 2 2

1 1
( )e e e e e e e

e e

U x x u x u
l l

α β α β= + + +  (1.78) 

where 

( ) ( ) 1 2; 1 ; 1 ; ;
i ie e e e e

e B A i i i A Bl x x x x x x xα β= − = − = − = = . 

That is, 

 
2

1 1 2 2
1

( ) ( ) ( ) ( )e e e e e e e
j j

j

U x x u x u x uψ ψ ψ
=

= + =∑  (1.79) 

where 

 1 2( ) ( )e eB A

B A B A

x x x x
x x

x x x x
ψ ψ− −= =

− −
 (1.80) 

 This is a representation in terms of the global coordinates x (i.e., 

the coordinate of the problem) and only for an element domain eΩ . If we 

want to express them in terms of a coordinate x with origin fixed at node 

1 of the element,  , 1,2e
i iψ = of (1.80) take the forms: 

 1 2( ) 1 ( )e e

e e

x x
x x

l l
ψ ψ= − =  (1.81) 

where x represents the local or element coordinate (figure 1.9.). 
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Fig.1.9. Local interpolation function 

 

1
eψ is equal to 1 at node 1 and zero at node 2, and 2

eψ is equal to 1 at node 

2 and equal to zero at node 1. 

 The global interpolation function IΦ (figure 1.10.) can be defined 

in terms of the element interpolation functions according to the global 

node I. 

 

 

1
2 1

1 1

I
I I

I I
I I

for x x x

for x x x

ψ
ψ

−
−

+

 ≤ ≤Φ = 
≤ ≤

 

Fig. 1.10. Global interpolation function 

 

 This type of interpolation functions derived using the dependent 

unknown- not its derivatives- at the nodes are called the Lagrange family 

of interpolation functions. 

 To have a better approximation instead of using a linear 

polynomial we can use a quadratic one: 

 
2( )eU x a bx cx= + +  (1.82) 

which requires to have three nodes on element in order to evaluate ( )u x  

at the nodes. Two nodes as endpoints and another one placed at any 

interior point (figure 1.11.). 
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Fig. 1.11. One dimensional Lagrange quadratic element and its interpolation function 

 1 1 2 2 3 3
1

( ) ( ) ( ) ( ) ( )
n

e e e e e e e e e
j j

j

U x x u x u x u x uψ ψ ψ ψ
=

= + + =∑  (1.83) 

with 

 

1

2

3

2
( ) 1 1

( ) 4 1

2
( ) 1

e

e

e

x x
x

h h

x x
x

h h

x x
x

h h

ψ

ψ

ψ

  = − −  
  

 = − 
 

 = − − 
 

 (1.84) 
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 All Lagrange family of interpolation functions satisfies the 

following properties: 

 

1 1

0
( )

1

( ) 1 0

e
j i ij

en n
je

j
j j

if i j
x

if i j

d
x hence

dx

ψ δ

ψ
ψ

= =

≠
= =  =

= =∑ ∑
 (1.85) 

 For two dimensional problems we have the same basic step as in 

one dimensional case. The analysis is more complicated because now we 

have partial differential equations over geometrically complex region. 

The boundary of two-dimensional domain is, in general, a curve. We seek 

not only to approximate the solution on the domain but also to 

approximate the domain itself. The finite elements consist in triangles, 

rectangles, quadrilaterals, that allow unique derivation of the 

interpolation functions.  

 

 We introduce the approximation solution in equation and obtain 

the system of equations: 

 { } { } { }e e e eK u f Q  = +   (1.86) 

where the matrix eK   is called the coefficient matrix. The vector { }ef  is 

the source vector. Equation (1.86) contains 2n unknowns: ( )1 2, ,...,e e e
nu u u  

and ( )1 2, ,.....,e e e
nQ Q Q  called primary and secondary element nodal 

degrees of freedom; hence it cannot be solved without having n 

additional conditions. 

 These are provided by the boundary conditions and by balance of 

the secondary variable e
iQ  at nodes common to several elements. 

 The finite element methods are the most used for numerical 

approximation. These methods, from a mathematical point of view, are 

very easy to handle, easy to adapt to any type of geometry of the domain 

and to changes in boundary conditions, and from a physical point of 
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view, facilitate the results interpretation. This method is not suitable for 

solving non linear equations. 

 

1.3.4.2. Bond Graph representation 

 

Let’s consider the Bernoulli beam flexion problem where 

dissipative energy is neglected [DER 05]. 

 

Fig.1.12. Fixed-forced Bernoulli beam flexion 

 

The equation of the problem is: 

 ( )
4 2

4 2

( , ) ( , )
( , )

u x t u x t
EI x S F x t

x t
ρ∂ ∂+ =

∂ ∂
 (1.87) 

The boundary conditions are: 

 
2

2

3

3

(0, ) 0

( , ) ( , ) 0

( , ) ( , ) ( )

u
t

x

u
M L t EI L t

x

u
T L t EI L t F t

x

∂ =∂


∂ = = ∂
 ∂= = ∂

 (1.88) 

where: S-represents the uniform cross-sectional area, ρ -is the mass 

density; E is the Young’s modulus, I- is the area moment of inertia and L 

the length.  

On each element using a shape function we approximate the 

solution ( , )u x t . 
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 1 1 1 1( , ) ( , , ,......, , )n nf x q f x u uθ θ+ +=  (1.89) 

where [ ]1 1 1 1, ,......, ,
T

n nq u uθ θ+ +=  is the vector of nodal variables of the 

element, u  is the transverse displacement vector, θ  is the angular 

displacement vector. 

 The velocity is approximated as: 

 ( , )
f

v x t q
q

∂=
∂
ɺ  (1.90) 

 In each element we calculate the kinetic and potential energies. 

 The kinetic energy is: 

 
0

1 1
( ) ( , )

2 2

l T
cE S x vvdx q M x q qρ= =∫ ɺ ɺ  (1.91) 

with 
0

1
( )

2

T
l f f

M S x dx
q q

ρ  ∂ ∂=  ∂ ∂ 
∫ . 

 The deformation energy is: 

 
2 2

2 20

1 1
( ) ( , )

2 2

l
T

d

u u
E EI x dx q K x q q

x x

∂ ∂= =
∂ ∂∫  (1.92) 

with 
2 2

2 20
( )

T
l f f

K EI x dx
x x

 ∂ ∂=  ∂ ∂ 
∫ . 

 The virtual work done when considering the mass forces and 

forces applied on the beam being reduced to a force Fdx  per length 

element dx, is:   

 
0 0

l l
T T Tf

F udx F dx q q
q

δτ δ δ δ ∂= = = Ψ ∂ 
∫ ∫ ɺ ɺ  (1.93) 

where uδ  is the virtual displacement field, and Ψ the generalized forces. 

 Considering an interpolation polynomial base N the element 

approximation can be written as:  

 ( , ) Tf x q = N q  (1.94) 

Introducing in the kinetic energy equation we obtain: 

 
0

1 1
( )

2 2

l T
cE S x vvdx q Mqρ= =∫ ɺ ɺ  (1.95) 
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where 
0

( )
l

T
ijM S x N Ndx Mρ  = =  ∫  is the mass matrix. 

 After integration in a case with 2 elements we obtain: 

 

2 2

2 2

156 22 54 13

22 4 13 3

54 13 156 22420

13 3 22 4

e

l l

l l l lSl
M

l l

l l l l

ρ

− 
 − =
 −
 
− − −  

 (1.96) 

Similarly the stiffness matrix is obtained: 

 
2 2

2 20

1 1

2 2

l
T

d

u u
E EI dx q Kq

x x

∂ ∂= =
∂ ∂∫  (1.97) 

where 
2 2

2 20

Tl

ij

N N
K EI dx K

x x

∂ ∂
 = =  ∂ ∂∫ . 

 

2 2

3

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

e

l l

l l l lEI
K

l ll

l l l l

− 
 − =
 − − −
 

−  

 (1.98) 

The virtual work of the external forces is: 

 ( )0 0

l l
T T TF udx F Ndx q qδτ δ δ δ= = = Ψ∫ ∫ ɺ ɺ  (1.99) 

where uδ  is the virtual displacement field, and Ψ  the generalized 

forces: 

 

1

1

0

1

1

.

.

l
T

n

n

F

F Ndx

F +

+

 
 Π
 
 

Ψ = =  
 
 
 
Π 

∫  (1.100) 

where ,i iF Π  are the nodal equivalent forces and torque. 

 Using the Lagrange equations in the nodal basis where iq  is a 

generalized coordinate, iΨ  the generalized forces in iu  configuration: 

 i c d
i i

d L L
Q with L E E

dt q q

 ∂ ∂− = = − ∂ ∂ ɺ
 (1.101) 
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we obtain: 

 
2

2

d q
M Kq

dt
+ = Ψ  (1.102) 

 The Bond Graph representation of eq (1.102) is presented in the 

figure 1.13. Because we have a second order derivative it means that we 

have a kinetic energy thus an I element, and because we have an 

algebraic expression, it means that we have a potential energy thus a C 

element. The matrices M and K are full matrices. 

  

 

Fig.1.13. Representation multi bond graph 

 

As example we have the representation for 2 elements using the 

Hermite polynomial as shape function, in figure 1.14.: 

 

Fig.1.14. Bond graph representation of the entire beam 

 

The representation of the entire beam is obtained by assembling 

the elementary mass and stiffness matrices using the implicit continuity 

conditions and energy balance at all nodes to obtain the final matrices 

before expressing the bond graph representation, as in figure 1.15. 
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Fig.1.15. Bond graph with assembled matrix 

 

When the number of elements changes, the whole matrices must 

be again evaluated.   

 

1.3.5. Finite difference method 

 

1.3.5.1. Principle 

 

The finite difference techniques [STR 04], [GUE 63] are based upon 

the approximations that permit replacing partial differential equations 

by finite difference equations. These finite difference approximations are 

algebraic in form, and the solutions are related to grid points. 

Consider the prototype for all hyperbolic partial differential 

equations in the one way wave equation: 

 0
u u

a
t x

∂ ∂+ =
∂ ∂

 (1.103) 

where a is a constant, t represents time, and x represents the spatial 

variable. 

 If we impose the initial value at 0t = : 

 0(0, ) ( )u x u x=  (1.104) 

the solution of (1.103) will be: 

 0( , ) ( )u t x u x at= −  (1.105) 
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We consider a grid of points in the ( ),t x  plane. Let consider h and 

k be positive numbers and the point ( ) ( ), ,n mt x nk mh=  for arbitrary n 

and m. For a function v defined on the grid we write n
mv  for the value of v 

at point ( ),n mt x . We are interested in grids with small values of h and k 

(figure 1.16.). 

 

Fig.1.16. Grid points 

 

The basic idea of the finite difference method is to replace 

derivatives by finite differences. 

This can be done in many ways. As example: 

( , ) ( , ) ( , ) ( , )
( , )

2
n m n m n m n m

n m

u u t k x u t x u t k x u t k x
t x

t k k

∂ + − + − −
∂

≃ ≃ (1.106) 

Using this approximation we obtain the following finite difference 

schemes for equation (1.103) [STR 04]: 

1) Implicit scheme 

 
1 1 1

1 0
n n n n
m m m mv v v v

a
k h

+ + +
+− −+ =  (1.107) 

2) Explicit scheme 

Forward-time forward-space:     
1

1 0
n n n n
m m m mv v v v

a
k h

+
+− −+ =  (1.108) 

Forward-time backward-space:  
1

1 0
n n n n
m m m mv v v v

a
k h

+
−− −+ =  (1.109) 
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Forward-time central-space scheme:  
1

1 1 0
2

n n n n
m m m mv v v v

a
k h

+
+ −− −+ =  (1.110) 

Leapfrog scheme:           
1 1

1 1 0
2 2

n n n n
m m m mv v v v

a
k h

+ −
+ −− −+ =  (1.111) 

Lax-Friedrichs scheme:  
( )1

1 1
1 1

1
2 0

2

n n n
n nm m m
m m

v v v v v
a

k h

+
+ −

+ −
− + −+ =  (1.112) 

 Another used scheme is the Lax-Wendroff scheme. To obtain the 

Lax-Wendroff scheme for the wave equation we start with the Taylor 

series in time for ( ),u t k x+  where u is a solution to the inhomogeneous 

one way wave equation (1.103) : 

 
2 2

3
2

( , ) ( , ) ( , ) ( , ) ( )
2

u k u
u t k x u t x k t x t x O k

t t

∂ ∂+ = + + +
∂ ∂

 (1.113) 

 We use: 

 
u u

a f
t x

∂ ∂= − +
∂ ∂

 (1.114) 

and 

 
2 2 2

2
2 2

u u f u f f
a a a

t t x t x x t

∂ ∂ ∂ ∂ ∂ ∂= − + = − +
∂ ∂ ∂ ∂ ∂ ∂ ∂

 (1.115) 

to obtain 

 

2 2 2

2

2 2
3

( , ) ( , ) ( , ) ( , )
2

( )
2 2

u a k u
u t k x u t x ak t x t x

x x

ak f k f
kf O k

x t

∂ ∂+ = − +
∂ ∂
∂ ∂+ − + +
∂ ∂

 (1.116) 

 Replacing the derivatives in x by second-order accurate 

differences and f t∂ ∂ by a forward difference, we obtain: 
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 [ ]
[ ]

2 2

2

2

2 3

( , ) ( , )
( , ) ( , )

2

( , ) 2 ( , ) ( , )

2

( , ) ( , )
2

( , ) ( , )

2 2

( ) ( )

u t x h u t x h
u t k x u t x ak

h

a k u t x h u t x u t x h

h
k

f t k x f t x

f t x h f t x hak

h

O kh O k

+ − −+ = −

+ − + −+ +

+ + +

+ − −
−

+ +

 (1.117) 

 The Lax-Wendroff scheme is: 

 
( ) ( )

( ) ( )

2 2
1

1 1 1 1

1
1 1

2
2 2

2 4

n n n n n n n
m m m m m m m

n n n n
m m m m

a a
v v v v v v v

k ak
f f f f

λ λ

λ

+
+ − + −

+
+ −

= − − + − + +

+ + − −
 (1.118) 

or, equivalently 

 

( ) ( )

1 2
1 1 1 1

2

1
1 1

2

2 2
1

2 4

n n n n n n n
m m m m m m m

n n n n
m m m m

v v v v a k v v v
a

k h h
ak

f f f f
h

+
+ − + −

+
+ −

− − − ++ − =

= + − −
 (1.119) 

where k hλ =  must satisfy the Courant-Friedrichs-Lewy (CFL) 

condition in order to be stable: 

 1aλ ≤  (1.120) 

  The CFL condition can be rewritten as 

 
1 aλ − ≥  (1.121) 

which can be interpreted as stating that the numerical speed of 

propagation must be greater than or equal to the speed of propagation of 

the partial differential equation. 

When we have to solve an initial boundary value problem we 

must use the boundary conditions required by the partial differential 

equations in order to determine the finite difference solution. 

 When, for example we use the Lax-Wendorff scheme, the scheme 

can be applied only at the interior grid points and not at the boundary 

points. This is because the scheme requires grid points to the left and 
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right of ( ),n mt x  when computing 1n
mv +  and at the boundaries either 1mx −  

or 1mx +  is not a grid point. Assuming that a is positive, the value of 0
nv  is 

supplied by the boundary data as required by the partial differential 

equation. At Mx , where Mx  is the last grid point, we must use some 

means other than the scheme to compute 1n
Mv + . 

 For example: 

 

1 1
1

1 1 1
1 2

1
1

2

n n
M M

n n n
M M M

n n
M M

v v

v v v

v v

+ +
−

+ + +
− −

+
−

=

= −

=

 (1.122) 

 The finite difference method is the first numerical method used in 

numerical approximation. This method allows modifying the number 

and the form of the grid used in spatial decomposition. It is very useful in 

numerical approximation.   

 

1.3.5.2. Bond Graph representation 

 

 Consider the compressing bar equation with the boundary 

conditions [Der 05]: 

 

2 2

2 2
( , ) 0

( ,0) 0 ( , ) 0

S rS ES F t L S
t t x

t t L
t

ξ ξ ξρ

ξξ

∂ ∂ ∂+ + − =
∂ ∂ ∂

∂= =
∂

 (1.123) 

We make the following approximation using the backward 

difference for the second derivative, considering that the space is 

represented through a uniform grid with the fixed length x∆ : 

 
( )

( )
2

1 122

1
2i i i

i

d

dx x

ξ ξ ξ ξ+ −
  ≈ − +  ∆ 

 (1.124) 

Equation (1.123) becomes: 

 ( )
2

1 12
2 ( )i i

i i i i

ES
S x rS x F t S x

t t x

ξ ξρ ξ ξ ξ+ −
∂ ∂∆ + ∆ + − + = ∆
∂ ∂ ∆

 (1.125) 
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 ( )
2

1 12
2 ( )i i

i i i im r k F t S x
t t

ξ ξ ξ ξ ξ+ −
∂ ∂+ + − + = ∆
∂ ∂

 (1.126) 

 Writing the Newton’s law for an element: 

 
2

2
( ) ( )S x x S x S x

t

ξσ σ ρ ∂+ − =
∂

△ △  (1.127) 

and 

 
[ ]( ) ( )

( )
E x x x

x
x

ξ ξ
σ

− −
=

△

△
 (1.128) 

When 0x →△ , considering S Fσ = we can write: 

 1i i i

d
F F p

dt+ − =  (1.129) 

and 

 i i

ES
F q

x
=
△

 (1.130) 

where 

 i ip S xρ ξ= ɺ△  (1.131) 

is the momentum of the i element, and 

 1i i iq ξ ξ −= −  (1.132) 

is the relative displacement between the ith and the (i-1)th element.  

Equation (1.126) becomes: 

 
2

1 2
( ) 0i i

i ik q q r m
t t

ζ ζ
−

∂ ∂− + + =
∂ ∂

 (1.133) 

For i fixed we have the following representation (figure 1.17.) for 

one element: 
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Fig.1.17. One element representation 

 

The corresponding bond graph for the entire bar is in figure 1.18. 

 

 

Fig.1.18. Bond Graph representation for difference finite 

 

The generalized momentum corresponding to inertial part can be 

expressed in function of generalized displacement at each point. In the 

one dimensional linear case it gives: 

 1 1( ) ( )i i i
i i i i

i

dp r p
k q k q

dt m+ += − −  (1.134) 

 The same representation for the potential part is: 

 1

1

i i i

i i

dq p p

dt m m
−

−

= −  (1.135) 

      

1.3.6. Finite volume method 

 

1.3.6.1. Principle 

 

The finite volume method approximates the partial differential 

equation over a control volume surrounding the grid node, rather than at 
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the node itself as finite difference method. The discretization equations 

are obtained by integrating the partial differential equation over control 

volumes surrounding the grid nodes, after introducing necessary 

simplifications and assumptions. It often leads to the same discretization 

equations as the Taylor series method, however it is more flexible. It 

bears much commonality with the Galerkin Finite-element method but is 

easier to implement. In the finite volume method the integration domain 

is covered by control volumes; each control volume engulfs one grid 

node, which lies on a grid mesh. With gradient type boundary conditions, 

we need to solve over a control volume surrounding boundary point, but 

there is no need to introduce external imaginary nodes. 

Let consider the case of heat conduction: 

 0
T T

k k
x x y y

 ∂ ∂ ∂ ∂  + =   ∂ ∂ ∂ ∂   
 (1.136) 

which for k ∈ℝ  reduces to: 

 
2 2

2 2 0
T T

k
x y

 ∂ ∂+ = ∂ ∂ 
 (1.137) 

Integrating over a regular control-volume: 

 

2 2 2

2 2 2

2

2
0

y y y yx x x x

y x y x

y y x x

y x

T T T
k dxdy k dxdy

x y x

T
k dxdy

y

+∆ +∆+∆ +∆

+∆ +∆

   ∂ ∂ ∂+ =   ∂ ∂ ∂   

 ∂+ = ∂ 

∫ ∫ ∫ ∫

∫ ∫

 (1.138) 

 The first term may be integrated in x-direction as follows: 

 
2

2

y y y yx x

x x xy x y

T T T
k dxdy k k dy

x x x

+∆ +∆+∆

+∆

  ∂ ∂ ∂   = −      ∂ ∂ ∂      
∫ ∫ ∫  (1.139) 

 To continue with integration we will assume that the quantities 

between brackets do not vary with y. We have: 

 
2

2

y y x x

x x xy x

T T T
k dxdy k y k y

x x x

+∆ +∆

+∆

  ∂ ∂ ∂   = ∆ − ∆      ∂ ∂ ∂      
∫ ∫  (1.140) 
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Then we use a central-difference formula to evaluate the gradient 

at the control volume, giving:   

 
2

1, , , 1,
2

y y x x
i j i j i j i j

y x

T T T TT
k dxdy k y k y

x x x

+∆ +∆
+ −− −      ∂ = ∆ − ∆      ∂ ∆ ∆      

∫ ∫ (1.141) 

 We follow the same step for the second member of the equation 

(1.138) assuming no variation of the partial derivative in x-direction: 

 
2

, 1 , , , 1
2

y y x x
i j i j i j i j

y x

T T T TT
k dxdy k x k x

y y y

+∆ +∆
+ −− −      ∂ = ∆ − ∆      ∂ ∆ ∆      

∫ ∫  (1.142) 

 Substituting (1.141) and (1.142) in (1.138) we have: 

 

1, , , 1,

, 1 , , , 1 0

i j i j i j i j

i j i j i j i j

T T T T
k y k y

x x

T T T T
k x k x

y y

+ −

+ −

− −    ∆ − ∆    ∆ ∆    

− −    + ∆ − ∆ =    ∆ ∆    

 (1.143) 

 

1.3.6.2.  Bond Graph representation 

 

Consider the bar equation with boundary conditions: 

 

2 2

2 2
( , ) 0

(0, ) 0 ( , ) 0

S rS ES F x t S
t t x

t L t
t

ξ ξ ξρ

ξξ

∂ ∂ ∂+ + − =
∂ ∂ ∂

∂= =
∂

 (1.144) 

 Let consider the case where F(x,t)=0. We define a volume control 

like in the figure 1.19.  

 

Fig.1.19. Volume control 

Equation (1.144) becomes: 

 
2 2

2 2
0

V V V
S rS ES

t t x

ξ ξ ξρ ∂ ∂ ∂+ + =
∂ ∂ ∂∫ ∫ ∫△ △ △

 (1.145) 
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  Eq. (1.145) becomes: 

 

* *2

2
1 2 1 2

0
i i

ES ES S rS V
x x t t

ξ ξ ξ ξρ
+ −

  ∂ ∂ ∂ ∂     − + + =       ∂ ∂ ∂ ∂        
△  (1.146) 

*

t

ξ∂ 
 ∂ 

and 

*2

2t

ξ ∂
 ∂ 

 are the average values of the first and second 

derivative inside the control volume. We can consider several 

approximations of them: 

 

** 2 2

2 2
i i

t t t t

ξ ξ ξ ξ ∂ ∂ ∂ ∂  = =   ∂ ∂ ∂ ∂   
 (1.147) 

or 

** 2 22
1 2 1 2 1 2 1 2

2 2 2

1 1

2 2
i i i i

t t t t t t

ξ ξ ξ ξξ ξ− + − + ∂ ∂ ∂ ∂  ∂ ∂  = + = +       ∂ ∂ ∂ ∂ ∂ ∂       
 (1.148) 

 It is also necessary to approximate the value of ξ  at face 1 2i −  

and 1 2i + . We chose a linear approximation. The central difference 

approximation: 

 1

1 2

i i

i

ES ES
x x

ξ ξ ξ −

−

∂ −  = ∂  △
 (1.149) 

and 

 1

1 2

i i

i

ES ES
x x

ξ ξ ξ+

+

∂ −  = ∂  △
 (1.150) 

Using the approximations (1.147), (1.149) and (1.150), eq. 

(1.146) becomes: 

 
2

1 1
2 0i i i i i iES S rS S x

x x t t

ξ ξ ξ ξ ξ ξρ+ −  − − ∂ ∂ − + + =   ∂ ∂   
△

△ △
 (1.151) 

or 

 ( )
2

2 2
1 1 2

2 0i i
i i i

ES
S x rS x

x t t

ξ ξξ ξ ξ ρ+ −
∂ ∂− + + + =
∂ ∂

△ △
△

 (1.152) 

The displacement between the ith and the (i-1)th element: 
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 1i i iq ξ ξ −= −  (1.153) 

 and the momentum of the i element:  

 i ip S xρ ξ= ɺ△  (1.154) 

 Equation (1.152) becomes: 

 ( )
2

1 2
0i i

i ik q q r m
t t

ξ ξ
−

∂ ∂− + + =
∂ ∂

 (1.155) 

The corresponding bond graph is in figure 1.20. 

 

Fig.1.20. Bond Graph representation for difference finite 

 

The finite volumes method is a method used to solve the 

nonlinear conservation equations. Finite volume methods are very 

robust and efficient for practical computation when applied to the direct 

simulation of complex physics. This is particularly the case in 

computational fluid dynamics. 

 

1.4. Conclusion 

 

The spectral methods use a weighted-integral statement in order 

to calculate jb . They produce a sufficient and necessary number of 

algebraic equations that are equivalent to minimizing the error 

introduced in the approximation of the differential equation in a 

weighted-integral sense. 

 The main disadvantage, from the practical point of view, is the 

difficulty encountered in selecting the approximation functions. There is 

not a unique procedure for constructing them and it becomes more 
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difficult when the domain is geometrically complex and the boundary 

conditions complicated. 

 To solve a problem with the variable separation method, Karnopp 

and all [KAR 90], proposed to split the domain into a sufficient number 

of modes and to replace the neglected others with an equivalent stiffness 

not to lose the static comportment of the system. Doing that the solution 

is no more an exact one and the method enters in the spectral method 

group of approximation problem.   

Finite element methods are similar in philosophy to spectral 

algorithms; the major difference is that finite elements chop the interval 

in x into a number of sub-intervals, and choose the ( )i xφ  to be local 

functions which are polynomials of fixed degree which are non-zero only 

over a couple of sub-intervals. In contrast, spectral methods use global 

basis functions in which ( )i xφ  is a polynomial (or trigonometric 

polynomial) of high degree which is non-zero, except at isolated points, 

over the entire computational domain. 

 When more accuracy is needed, the finite element method has 

three different strategies: to subdivide each element so as to improve 

resolution uniformly over the whole domain; to subdivide only in 

regions of steep gradients where high resolution is needed; to keep the 

subdomains fixed while increasing p, the degree of the polynomials in 

each subdomain. 

Finite elements have two advantages: they convert differential 

equations into matrix equations that are sparse because only a handful of 

basis functions are non-zero in a given sub-interval; in multi-

dimensional problems, the little sub-intervals become little triangles or 

tetrahedra which can be fitted to irregularly-shaped bodies like the shell 

of an automobile. Their disadvantage is low accuracy (for a given 

number of degrees of freedom N) because each basis function is a 

polynomial of low degree.  
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Spectral methods generate algebraic equations with full matrices, 

but in compensation, the high order of the basis functions gives high 

accuracy for a given N. When fast iterative matrix–solvers are used, 

spectral methods can be much more efficient than finite element or finite 

difference methods for many classes of problems. However, they are 

most useful when the geometry of the problem is fairly smooth and 

regular. 
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Chapter 2. Port-Hamiltonian systems 
 

 

 

  

2.1. Introduction 

 
 

 

Usually, distributed parameter systems are complex systems 

which raise problems in simulation and control. The most important 

problem consists due to their infinite dimension model. Another 

problem is a numerical one and proceeds from the fact that the 

numerical methods for partial differential equations usually assume the 

boundary conditions to be given, while more often the interactions of 

distributed components take place through the boundary.  

Starting from these problems and trying to solve them, an 

approach that uses the same principles as in bond graph formalism was 

developed. This approach assumes that the system can be represented as 

the result of interaction between elements which are characterized by an 

energetic behavior. The elements interact with the environment through 

ports and the product between the input and output signals are 

represented by the instantaneous power. The exchange of power 

between components and between the system and his environment can 

be mathematical represented by a Dirac structure in finite dimensional 

case or by a Stokes-Dirac structure in infinite dimensional one, whose 

the most important properties is its conservativity. The dynamics of the 

model are specified when an energy function (Hamiltonian) and the 

space of energy variables are defined. The Dirac structure together with 
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the energy function and the energy variables are the base of port 

Hamiltonian formalism [Sch 02], [Sch 05].  

In this chapter we will make a presentation of the formalism, and 

then we will present through an application the extension of 

telegrapher’s equations in the infinite dimensional case with dissipation 

[Che 07], [Che 09]. 

 

2.2. The principle of least action 

 

The most natural representation of dynamic systems is in terms 

of energy.  

 

In 1744, Maupertius presented the fact that all the physical 

phenomena are governed by the same fundamental principle: nature 

always chooses the way which needs the “least effort”; it is called “the 

least action principle”.  

 

One domain in which this principle is applied is classical 

mechanics with the equation of motion for particles. Let consider a 

particle with q  the coordinate, t  the time and ( )q t  is the trajectory. 

Suppose that we know the particle’s position at time 1t  
and 2t : 

 
( )1 1

2 2( )

q t q

q t q

=
=

 (2.1) 

i.e., ( )q t  is subjected to essential boundary conditions. The question is: 

which trajectory ( )q t  would the particle take to go through points 1q  and 

2q  exactly at times 1t  and 2t ? 

The principle of least action states that the real trajectory of the 

particle is the one that minimizes (or maximizes) the action functional, 

 ( ) ( )( )2

1

, , ( )
t

t
S q t L t q t q t dt=   ∫ ɺ  (2.2) 
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where ( ), ( ), ( )L t q t q tɺ  is the Lagrangian of the system, 

 ( ) ( )21
, ( ) ( )

2
L q q m q t V q= −ɺ ɺ  (2.3) 

where: m is the mass, ( )q tɺ  is the velocity and ( )V q  is the potential 

energy.  

The real trajectory of the particle must have 0Sδ = (Annex 1), and 

hence satisfies the Euler-Lagrange equations, 

 0
d L L

dt q q

 ∂ ∂− = ∂ ∂ ɺ
 (2.4) 

When the Lagrangian takes the form of eq. (2.3), this leads to the 

following equation of motion, 

 ( )
V

mq t
q

∂= −
∂

ɺɺ  (2.5) 

which is identical to the Newton’s equation of motion. In general, if the 

system has n  degrees of freedom, 1,....., nq q , the Lagrange’s equations of 

motion are 

 0 for all 1,2,..., .
i i

d L L
i n

dt q q

 ∂ ∂− = = ∂ ∂ ɺ
 (2.6) 

 

2.3. Hamiltonian formalism 

 

Hamiltonian formulation gives us not n second order equations as 

in (2.6), but 2n first order equations. 

From Euler-Lagrange equations: 

 ( ( ), ( ), ) ( ( ), ( ), ) 0
d L L

q t q t t q t q t t
dt q q

 ∂ ∂− = ∂ ∂ 
ɺ ɺ

ɺ
 (2.7) 
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we consider 

 ( ) ( )
L L

p t p t
q q

∂ ∂= ⇒ =
∂ ∂

ɺ
ɺ

 (2.8) 

where p(t) represents the momentum or the impulse of a mass. 

To express these equations in function of q and p instead of q and 

qɺ , we introduce the Hamiltonian  

 ( , ) ( , )H q p pq L q q= −ɺ ɺ  (2.9) 

for one degree of freedom, and 

 
1

( , ) ( , )
n

i i
i

H q p p q L q q
=

= −∑ ɺ ɺ  (2.10) 

for n degrees of freedom. 

H(q,p) is the Legendre transformation of ( , )L q qɺ . 

Hereafter are recalled the Hamiltonian equations of motion: 

 

H
p

q

H
q

p

∂ = − ∂
 ∂ =
 ∂

ɺ

ɺ

 (2.11) 

In general, H represents the total energy stored in the model. 

This representation can be found from the Poisson bracket. This is 

defined for two functions F and G in the phase space like: 

 { },
F G F G

F G
q p p q

∂ ∂ ∂ ∂= −
∂ ∂ ∂ ∂

 (2.12) 

The properties of the Poisson bracket are: 

1)it is skew-symmetric { } { }, ,F G G F= −  

2)it satisfies the Jacobi identity: 

{ }{ } { }{ } { }{ }, , , , , , 0F G H G H F H F G+ + =  
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 The canonical equations of mechanics are [Arn 89] : 

 

{ }

{ }

,

,

H
p p H

q

H
q q H

p

∂ = = − ∂
 ∂ = =
 ∂

ɺ

ɺ

 (2.13) 

 

2.3.1. Port Hamiltonian representation 

 

In engineering a fundamental concept is the notion of “open 

system” [Ort 01], which is a system with a direct interface with its 

environment. This concept is used in the representation of the system as 

a grid interconnecting components [Sch 02]. The network modeling 

assumes that the system has external variables, which can be 

interconnected to other open systems. In order to have this property, the 

canonical equations are modified and an exterior force is added [Sch 95]. 

 

2.3.1.1. Finite dimension  

a) Without dissipation 

When there are external forces F, the canonical equations 

become: 

 

{ }

{ }

,

,

H
p p H F

q

H
q q H

p

∂ = = − + ∂
 ∂ = =
 ∂

ɺ

ɺ

 (2.14) 

By calculating the power balance it leads to:   
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( , )
T T

T T

T T T

T

dH q p H H
p q

dt p q

H H H
F q

p q q

H H H H
F q

p q p q

q F

   ∂ ∂= +   ∂ ∂   

      ∂ ∂ ∂= − + +      ∂ ∂ ∂      

       ∂ ∂ ∂ ∂= − + +       ∂ ∂ ∂ ∂       

=

ɺ ɺ

ɺ

ɺ

ɺ

 (2.15) 

All these equations are suitable for representing mechanical 

systems. 

For control design purpose, F can be considered as inputs (the 

forces that act on the system). We consider a system with inputs and 

outputs and we choose y as outputs, in such manner that the product 

Ty F  is a power. With these, we can work using the concept of energy 

and we can use by analogy this concept in other domains. 

We take:  

 
H

y
p

∂=
∂

 (2.16) 

Note :the variation of energy versus time in a conservative 

Hamiltonian system is equal to the supplied power. 

 The representation with collocated inputs and outputs is: 

 

( , ), ,

( , ) ( ) ,

( ) ( , ) ( ( ) ),

n n

m

T T m

H
q q p q p

p

H
p q p B q u u

q

H
y B q q p B q q y

p

∂= ∈ ∈
∂

∂= − + ∈
∂

∂= = ∈
∂

ɺ ℝ ℝ

ɺ ℝ

ɺ ℝ

 (2.17) 

where B is the input matrix, Bu is the set of generalized forces obtained 

from inputs u=F. This representation is called the port-Hamiltonian 

system. 
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The power consumed in the system is 
dH

dt
and is equal to the 

power supplied to the system as shown in the following equations: 

 
( , ) TdH q p

y u
dt

=  (2.18) 

The system is power conservative. 

Note:  y being chosen in order to have as the product between it 

and the vector of inputs an instantaneous power, thus we have a 

similarity with the bond graph representation.  

The work space is of dimension (2*n) and is the phase space. 

Another modality to write the eq. (2.17) can be obtained if we 

consider a vector 1( ,...., )nx x x=  of local coordinates for a n-dimensional 

state space manifold on 2ℝ : 

 

H

q qH
x

p Hx

p

∂ 
 ∂  ∂
 = =  ∂∂   
 ∂ 

ɺ
ɺ

ɺ
 (2.19) 

 

2( ) ( ) ( ) , ,

( ) ( ),

n m

T m

H
x J x x g x u x u

x
H

y g x x y
x

∂ = + ∈ ∈ ∂
 ∂ = ∈
 ∂

ɺ ℝ ℝ

ℝ

 (2.20) 

where J(x) is a (2n x 2n) skew-symmetric matrix 

 

( ) ( )

0 0
( ) ( )

0

T

n n

n n

J x J x

I
J x g x

I B

= −

   
= =   −   

 (2.21) 

The system represented by eq. (2.20) having the matrix J  

satisfying eq. (2.21),  is called a “port-Hamiltonian system” and is 

represented in figure 2.1. 
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Fig.2.1. Port-Hamiltonian system without dissipation 

 

b) Dissipative systems 

 
To take into account the energy dissipation phenomena 

(resistance, etc..) we introduce the variables Ru  to define a new input 

vector as 
R

u

u

 
 
 

. To keep the same number of inputs and outputs, we 

introduce the variables Ry  in the output vector as 

 
( ) ( )

( ) ( )

T

TR
R

H
g x xy x

y H
g x x

x

∂ 
   ∂=    ∂   
 ∂ 

 (2.22) 

The model (2.20) becomes: 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

R R

T

T
R R

H
x J x x g x u g x u

x
H

y g x x
x
H

y g x x
x

∂= + +
∂
∂=
∂
∂=
∂

ɺ

 (2.23) 

where ,R Ru y  represent the connections with the dissipative part. If we 

do not have any energy storage, the component is of algebraic type: 

( )R Ru F y= − , where the (-) sign is due to convention for dissipative 

phenomena. 
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The power which will be transformed into stored energy is thus: 

 

0

( ) ( ) ( )

( ) ( ) ( )

T T
R R

T T

R R

T T T

R R

y u y u

dH H H H
x J x g x u g x u

dt x x x

H H H H
J x g x u g x u

x x x x
= = =

∂ ∂ ∂     = = + +     ∂ ∂ ∂     

∂ ∂ ∂ ∂     = + +     ∂ ∂ ∂ ∂     

ɺ

������� ������� �������

 (2.24) 

But, ( )R Ru F y= − , so we have: 

 ( )T T
R R

dH
y u y F y

dt
= −  (2.25) 

with ( ) 0T
R Ry F y ≥ . 

In the linear case, we can write the relation R Ru Sy= − , for some 

semi-positive symmetric matrix 0TS S= ≥ . 

 
( ) ( ) ( ) ( )

( ) ( )

R R

T

H
x J x x g x u g x Sy

x
H

y g x x
x

∂= + −
∂
∂=
∂

ɺ

 (2.26) 

Using ( ) ( )T
R R

H
y g x x

x

∂=
∂

, it leads to: 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

T
R R

T

H H
x J x x g x u g x Sg x x

x x
H

y g x x
x

∂ ∂= + −
∂ ∂
∂=
∂

ɺ

 (2.27) 

Finally, it leads to: 

 
[ ]( ) ( ) ( ) ( )

( ) ( )T

H
x J x R x x g x u

x
H

y g x x
x

∂= − +
∂

∂=
∂

ɺ

 (2.28) 

with ( ) ( ) ( )T
R RR x g x Sg x= . 
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This is the representation of a port-Hamiltonian system with 

dissipation. 

The power-balance has the form: 

 ( ( )) ( ( )
T

T TdH H H
x t y u R x t y u

dt x x

∂ ∂ = − ≤ ∂ ∂ 
 (2.29) 

We can see the system from a network modelling perspective like 

being constituted by a set of energy-storage elements, a set of energy-

dissipating or resistive elements, and a set of ports, interconnected to 

each other by a power-conservative interconnection (see figure 2.2). 

 

Fig.2.2. Port-Hamiltonian system with dissipation 

 

c) Effort-flow representation 

 

Let us consider a state space n-dimensional (ℵ) where the energy 

variables are 1 2, ,.., nx x x , and the total energy :H ℵ→ℝ . The 

representation of power-conservative interconnection can be done by a 

constant Dirac structure D (Appendices B) defined on a finite-

dimensional linear space F or more often by a Dirac structure modulated 

by the state variables x. 
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In the first case the linear space F contains the space of flows 

Sf linked to the energy-storage elements ( SF ), the space of flows Rf  

linked to the dissipative elements ( RF ), and the space of external flows 

Pf  linked to the environment ( PF ). We have the dual space F ∗ , with the 

corresponding space of efforts Se  connected to the energy-storage 

elements ( SF∗
), the space of efforts Re  connected to the resistive 

elements ( RF∗
), and the space of efforts Pe  connected to the environment 

of the system ( PF∗
). 

For the energy-storage element, the flow variables are given by: 

 Sf x= − ɺ  (2.30) 

and the effort variables by: 

 ( )S

H
e x

x

∂=
∂

 (2.31) 

  

The minus sign is introduced in order to have a consistent sign 

convention. 

For the resistive elements we consider here only the linear case, 

so the variables effort and flow are related as 

 ReR Rf = −  (2.32) 

for some matrix 0TR R= ≥ . It results in what it is called an implicit port-

Hamiltonian system (with dissipation) related to a constant Dirac 

structure: 

 , Re , , ( ), ,S R R P S R P

H
f x f f e x e e D

x

∂ = − = − = ∈ ∂ 
ɺ  (2.33) 

In the finite dimensional case the Dirac structure can be used to 

formalize Hamiltonian systems as implicit Hamiltonian system. 
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Using the representation of energy accumulation [Baa 08] (figure 

2.3.): 

 

Fig.2.3. System representation 

 

2.3.1.2. Infinite dimension  

 

In the infinite-dimensional physical systems, the Dirac structure 

has a special form called Stokes-Dirac structure, and to represent the 

systems as a port-Hamiltonian one, the distributed parameter system is 

formulated as a system of conservation laws, coupled with a set of 

closure equations. 

 

a) Port-based formulation for b-dimensional spatial 

domain 

 

Consider a b-dimensional manifold Ω  with (b-1)-dimensional 

boundary ∂Ω . Denote by ( )kΛ Ω  the vector space of k-forms on Ω  and 

by ( )kΛ ∂Ω  the vector space of k-forms on boundary. Be 0 ( )k
k≥Λ = ⊕ Λ Ω  

the algebra of differential forms over Ω  and recall that it is endowed 

with an exterior product ∧  and an exterior derivation d (Annex 1). 

In [Sch 05] it has been shown that a system of conservation laws is 

defined by a set of conserved quantities 

( ), {1,...., }, ,ik
i iy i N N k∈ Λ Ω ∈ ∈ ∈ℕ ℕ   defining the state space 

1,...., ( )ik
i NY == ⊗ Λ Ω  . They satisfy a set of conservation laws 
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 i
i i

y
d g

t
β∂ + =

∂
 (2.34) 

where 
1( )ik

iβ −∈Λ Ω  denote the set of fluxes and ( )ik
ig ∈Λ Ω  denote the 

set of distributed interaction forms. Finally, the fluxes iβ  are defined by 

the closure equations which appear from the description of the canonical 

interaction of two physical domains with x ∈Ω : 

 ( , ), 1,....,i iM y x i Nβ = =  (2.35) 

The integral form of the conservation laws yields the following 

balance equations 

 i i iy g
t

β
Ω ∂Ω Ω

∂ + =
∂ ∫ ∫ ∫  (2.36) 

Let consider the conserved quantities ( )q
qy ∈ Λ Ω  and 

( )p
py ∈ Λ Ω , part of a system of two conservation laws, which are 

differential forms with the degrees p and q on a b-dimensional spatial 

domain Ω  and p+q=b+1. The closure equations generated by a Hamilton 

density function : ( ) ( ) ( )p q bΛ Ω × Λ Ω × Ω → Λ ΩH  resulting in the total 

Hamiltonian H
Ω

= ∈∫ ℝH  are given by: 

 
0 ( 1)

1 0

r
p p

q

q

H

y

H

y

δ
β δ

ε
β δ

δ

 
    −  =        
 
 

 (2.37) 

with { }1, 1, 1r pq ε= + ∈ − + . These form a system of two conservation laws 

with canonical interdomain coupling. 

As in the one dimensional case we define the power variables. As 

we saw before the Hamiltonian is the total stored energy of the system. 

The state variables , 1...iy i b=  are called the energy variables and the 
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variational derivatives 
i

H

y

δ
δ

 are called the co-energy variables or power 

variables. 

We define the vector of effort variables 

 
p p

q

q

H

e y

e H

y

δ
δ
δ
δ

 
    =     
 
 

 (2.38) 

and the vector of flow variables 

 

p

p

q q

y
f t
f y

t

∂ 
   ∂ =   ∂  
 ∂ 

 (2.39) 

 The flow and effort variables are power-conjugated as their 

product is the time-variation of the Hamiltonian function:  

 ( )p q
p p q q

p q

y ydH H H
e f e f

dt y t y t

δ δ
δ δΩ Ω

 ∂ ∂
= ∧ + ∧ = ∧ + ∧  ∂ ∂ 
∫ ∫  (2.40) 

One may write the time-variation of the Hamiltonian using the 

conservation laws, the closure relations, the properties of the exterior 

derivative and Stokes' theorem (Appendices B): 

 

( )
( )
( )

1 ( 1)

( ) ( 1) ( )

( 1) ( 1)

( 1)

r
q p p q

pq p q
q p q p

q
q p q p

q p

dH
d d

dt

d d

d d

εβ β β ε β

ε β β β β

ε β β β β

ε β β

Ω

+ −

Ω

Ω

∂Ω

= ∧ − + − ∧ −

= − ∧ + − − ∧

= − ∧ + − ∧

= − ∧

∫

∫

∫

∫

 (2.41) 

We define flow and effort variables on the boundary of the system 

as the restriction of the flux variables to the boundary ∂Ω of the domain 

Ω : 
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|

|
q

p

f

e

β
β

∂Ω∂

∂ ∂Ω

  
=        

 (2.42) 

They are also power conjugated variables. 

We can define an interconnection structure between two systems 

of conservation laws by the equations of differential forms defined on 

the boundary ∂Ω , together with the conservation laws and closure 

equations. 

 
0 ( 1)

0

r
p p

q q

f ed

f ed
ε

    −
=       

    
 (2.43) 

The power-conjugated variables make this interconnection power 

continuous because the variables satisfy the power continuity relation 

from (2.40) and (2.41): 

 ( ) 0p p q qZ Z
e f e f f eε ∂ ∂∂

∧ + ∧ + ∧ =∫ ∫  (2.44) 

 

b) Port Hamiltonian for distributed-parameter systems 

with boundary energy flow 

 

This is the case where we are interested only by what happened 

at the boundary level. 

In the case of a distributed-parameter system with boundary 

energy flow we present a definition with respect to a Stokes-Dirac 

structure (Annexes 1).  

We consider a b-dimensional manifold Q  with boundary Q∂ , and 

let D be a Stokes Dirac structure. 

Let consider  

 : ( ) ( ) ( )p q bQ Q Q QΛ × Λ × → ΛH  

:H
Ω

= ∈∫ ℝH  
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a Hamiltonian density with total energy H. 

 For 

( )

( )

b p
p

b q
q

H Q

H Q

δ

δ

−

−

∈ Λ

∈ Λ
 

defined differential forms, ( ), ( ) ( )b p b q
p qH H Q Qδ δ − −∈ Λ × Λ  can be seen 

as variational derivatives of H at ( ), ( ) ( )p q
p qu u Q Q∈ Λ × Λ . 

The Hamiltonian time variation is: 

 p q
p qZ

u udH
H H

dt t t
δ δ

∂ ∂ = ∧ + ∧ ∂ ∂ 
∫  (2.45) 

The rates of the energy variables ,p qu u

t t

∂ ∂
∂ ∂

 are connected to D by: 

 

p
p

q
q

u
f

t
u

f
t

∂
= −

∂
∂

= −
∂

 (2.46) 

We set 

 
p p

q q

e H

e H

δ
δ

=

=
 (2.47) 

It results the definition of boundary port-Hamiltonian system 

defined on a n-dimensional manifold, with state space ( ) ( )p qQ QΛ × Λ  , 

with a Stokes-Dirac structure D, and a Hamilton H: 

 

0 ( 1)

0

1 0

0 ( 1)

p
r

p

q q

p Z

n q
q Z

Hdt
Hd

t

Hf

e H

α
δ

α δ

δ
δ

∂∂
−

∂ ∂

∂ −    −∂ =    ∂     − ∂ 

   
=     − −      

 (2.48) 



 

75 Chapter 2. Port-Hamiltonian systems 
 

Because any Dirac structure is power-conservative, it results that 

in the Stokes-Dirac structure D, any ( ), , , , ,p q p qf f f e e e∂ ∂  satisfies: 

 0p p q qe f e f e f∂ ∂Ω ∂Ω
 ∧ + ∧ + ∧ = ∫ ∫  (2.49) 

When the system interacts with its environment through 

dissipative components and inputs that affect the power balance of the 

system, the space is augmented for some m-manifolds S with the flows 

denoting the externally supplied distributed control flow ( )d df S∈Ω , 

and the efforts corresponding to a power exchange ( )d b de S−∈Ω . 

The Stokes Dirac structure is now: 

 

0 ( 1)
( )

0

1 0

0 ( 1)

r
p p

d
q q

p Z

b q
q Z

p

d
q

f ed
G f

f ed

ef

e e

e
e G

e

∂∂
−

∂ ∂

∗

    −
= +    
    

   
=     − −      

 
= −  

 

 (2.50) 

with G a linear map: 

 : ( ) ( ) ( )
p d p q

q

G
G S Q Q

G

 
= Λ → Λ × Λ  
 

 (2.51) 

with dual map 

 ( ), : ( ) ( ) ( )b p b q b d
p qG G G Q Q S∗ ∗ ∗ − − −= Λ × Λ → Λ  (2.52) 

satisfying 

 ( ) ( ) ( ) ( )p p d q q d p p q q dZ S
e G f e G f G e G e f∗ ∗  ∧ + ∧ = + ∧   ∫ ∫  (2.53) 

The external variables are now: 

,f e∂ ∂ - the boundary external variables 
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,d df e - the distributed external variables. 

The power balance: 

 d dS

dH
e f e f

dt ∂ ∂∂Ω
= ∧ + ∧∫ ∫  (2.54) 

with the first term denoting the power flow through boundary, and the 

second the distributed power flow. 

The energy dissipation can be incorporated by terminating some 

ports with resistive relation.  

Let : ( ) ( )b d dR S S−Λ → Λ  be a map satisfying: 

 ( ) 0, ( )b d
d d dS

e R e e S−∧ ≥ ∀ ∈ Λ∫  (2.55) 

The port-Hamiltonian system with dissipation defined with 

respect to the Dirac structure satisfies the power inequality: 

 ( )d dS

dH
e f e R e e f

dt ∂ ∂ ∂ ∂∂Ω ∂Ω
= ∧ − ∧ ≤ ∧∫ ∫ ∫  (2.56) 

 

2.4. Transmission line application 

2.4.1. Without dissipation 

 

In the 1880s, Oliver Heaviside, developed the transmission line 

model. Starting from this model have been found the telegrapher’s 

equations, a pair of linear differential equations, which describe on an 

electrical transmission line the voltage and current with distance and 

time.  

 

 

Fig.2.4. Transmission line 

 



 

77 Chapter 2. Port-Hamiltonian systems 
 

This approach can be applied to high-frequency transmission 

lines and is important for designing high-voltage energy transmission 

lines. The model obtained shows up that the electromagnetic waves can 

be reflected on the wire, and that wave patterns can appear along the 

line.   

If we consider a long transmission line, we can split the line into 

segments of small dimension dx and we can consider the currents being 

quasi-steady.   

 

 When the elements r (resistance) and g (conductance) are very small, 

their influence can be neglected, and we have the lossless transmission 

line model, where we have the dependence on l (inductance) and c 

(capacitance): 

  

 
( , ) ( , )

( , ) ( , )

v x t l i x t
x t

i x t c v x t
x t

∂ ∂= −
∂ ∂
∂ ∂= −
∂ ∂

 (2.57) 

  

 When the effects of r and g are not negligible we have: 

 
( , ) ( , ) ( , )

( , ) ( , ) ( , )

v x t l i x t ri x t
x t

i x t c v x t gv x t
x t

∂ ∂= − −
∂ ∂
∂ ∂= − −
∂ ∂

 (2.58) 

 

2.4.2. With dissipation 

 

Let us consider a transmission line with [0,1]Ω = ⊂ ℝ and define 

the energy variables as the charge density 1( , ) ( )q q t x= ∈ Λ Ω  and the 

magnetic flux density 1( , ) ( )t xφ φ= ∈ Λ Ω  where 1( )Λ Ω  denotes the 1-

forms space. The energy density (or the Hamiltonian density) H at time t 

in the homogeneous transmission line is given as: 
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1 ( , ) ( , )

( , ) ( , ) * ( , ) *
2

q t x t x
H q q t x t x

c l

φφ φ = ∧ + ∧  
 (2.59) 

 

where l and c represent respectively inductance and capacitance density 

and where  (^) is the wedge product and (*) is the Hodge star operator, 

defined as  

 *( ) : ( ) ( )k n k−Λ → ΛD D D  (2.60) 

where D  is an open in Ω  (a Riemannian manifold). In order to 

introduce the energy variables, we write the power balance of the 

transmission line starting with total energy  

 
( , ) ( , ) ( , )dH q H q q H q

dt q t t

φ δ φ δ φ φ
δ δφΩ

∂ ∂= ∧ + ∧
∂ ∂∫  (2.61) 

where variational derivatives are given by  

 

( , ) 1
* ( , )

( , ) 1
* ( , )

H q
q t x

q c

H q
t x

l

δ φ
δ

δ φ φ
δφ

=

=
 (2.62) 

We introduce the conjugate energy variables flow (1-form) and 

effort (0-forms) as follows: 

 

 

( , ) ( , )
( , ) ( , )

( , ) ( , )
( , ) ( , )

q

q

q t x t x
f t x f t x

t t
h q h q

e t x e t x
q

φ

φ

φ

δ φ δ φ
δ δφ

∂ ∂= =
∂ ∂

= ∗ = ∗
 (2.63) 

The equation (2.61) becomes,  

 
( , )

q q

dH q
e f e f

dt φ φ
φ

Ω
= ∧ + ∧∫  (2.64) 

In addition, we have the telegraph equations written in terms of 

conjugate variables and differential forms. 
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We have two cases: 

 

 

 1) Without dissipation [Gol 02]: 

 
q

q

f de

f de

φ

φ

= −
 = −

 (2.65) 

2) With dissipation 

 We propose in our paper [Che 09] to extend to dissipative systems the 

study made for undissipative ones: 

 
(* )

(* )
q

q q

f de r e

f de g e

φ φ

φ

= − −
 = − −

 (2.66) 

r and g represent  respectively resistance and conductance density and d 

is the usual exterior-derivative. 

Substitution in the equation (2.61) gives: 

1) 

 

( ) ( )

( )

q q

q q

q

q

dH
e de e de

dt

e de e de

d e e

e e

φ φ

φ φ

φ

φ

Ω

Ω

Ω

∂Ω

= ∧ − + ∧ −

 = − ∧ − ∧ 

= − ∧

= − ∧

∫

∫

∫

∫

 (2.67) 

 
2) 

 

( ) ( )

( )

(* ) (* )

(* ) (* )

(* ) (* )

( (* ) (* ))

q q q

q q q q

q q q

q q q

dH
e de g e e de r e

dt

e de e de e g e e r e

d e e e g e e r e

e e e g e e r e

φ φ φ

φ φ φ φ

φ φ φ

φ φ φ

Ω

Ω Ω

Ω Ω

∂Ω Ω

= ∧ − − + ∧ − −

   = − ∧ − ∧ − ∧ + ∧   

 = − ∧ − ∧ + ∧ 

= − ∧ − ∧ + ∧

∫

∫ ∫

∫ ∫

∫ ∫

 (2.68) 

where { }0,1∂Ω =  represents the boundary set of Ω . We have the 

following structure: 
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1) 

 0q q b be f e f e fφ φΩ ∂Ω
∧ + ∧ + ∧ =∫ ∫  (2.69) 

 

2) 

 0q q b b dq dq d de f e f e f e f e fφ φ φ φΩ ∂Ω Ω
∧ + ∧ + ∧ + ∧ + ∧ =∫ ∫ ∫  (2.70) 

where b qe e
∂Ω

=  and bf eφ ∂Ω
=  define the restriction of flow and effort on 

∂Ω , 

1 1(* ) ( , ) ( ), (* ) ( , ) ( )d dq q

r g
f r e t x f g e q t x

l cφ φ φ= = ∈ Λ Ω = = ∈Λ Ω , and 

edq=eq, edφ=eφ.  

 

The two last terms of the left side of equation (2.70) represent the 

power flow at the boundary and the dissipation power in a transmission 

line. In this way, equation (2.66) becomes  

 
q d

q dq

f de f

f de f

φ φ

φ

= − −

= − −
 (2.71) 

The resulting port-Hamiltonian systems are: 

1) 

 
0

0
q

q

f ed

f d e

φ

φ

   − =       −    
 (2.72) 

 

0

1

0

1

( ,0)1 0 0 0
( ,1)0 1 0 0

0 0 1 0 ( ,0)

0 0 0 1 ( ,1)

b

b

b

b

q

q

e e t

e e t

f e t

e tf

φ

φ

    
    
    =    
          

 (2.73) 

2) 

 
0 1 0

0 0 1
q d

q dq

f e fd

f d e f

φ φ

φ

     −   = −             −        
 (2.74) 

 
* 0

0 *
d

dq q

f er

f g e

φ φ    =           
 (2.75) 
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0

1

0

1

( ,0)1 0 0 0
( ,1)0 1 0 0

0 0 1 0 ( ,0)

0 0 0 1 ( ,1)

b

b

b

b

q

q

e e t

e e t

f e t

e tf

φ

φ

    
    
    =    
          

 (2.76) 

b0 and b1 denote, respectively, the left and right boundary. 

 

Note : 

In terms of current and voltage, the transmission line with 

dissipation satisfies the following equation: 

 2 2( ,0) ( ,0) ( ,1) ( ,1) ( , ) ( , )
dH

v t i t v t i t gv t x ri t x
dt Ω

 = − − + ∫  (2.77) 

where 
1 1

( , ) * ( , ) and ( , ) * ( , )i t x t x v t x q t x
l c
φ= =  

 

2.4.3. Spatial discretization 

 

For the dissipation case, we will carry out a separation of 

variables and we will use the Whitney forms which make it possible to 

preserve the properties of the p-forms at the time of a spatial 

discretization [Bos 91].  

 For linear interpolation of 0-forms to the whole space, we can use 

the linear interpolation basis. With each vertex iv  is associated a basis 

denoted as iϕ : 

 1 , 0i i i j iat v at v vϕ ϕ= = ≠  (2.78) 

while iϕ  linearly goes to zero in the one-ring neighborhood of iv . These 

functions are the barycentric coordinates, introduced by Möbius in 1827 

as mass point to define a coordinate-free geometry. 

 If we denote a vertex jv  by jσ , with this basis we have: 

 
1

0i i
j j j

v iv

if i j

if i jσσ σ
ϕ ϕ ϕ

== = =  ≠
∫ ∫ ∫  (2.79) 
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 For the 1-forms interpolation we use the Whitney 1-form 

associated with an edge ijσ  between iv  and jv .   

 
ij i j j id dσϕ ϕ ϕ ϕ ϕ= −  (2.80) 

 We have: 

 

1

1

0
ij

kl

if i k and j l

if i l and j k

otherwise
σσ

ϕ
= =

= − = =



∫  (2.81) 

 This is zero when at least one vertex is not on the edge. Along the 

edge ijσ , we have 1i jϕ ϕ+ = . Thus: 

 ( )0 0

1 1
(1 ) (1 ) ( ) 1

i i

ij
ij i i

i i i i id d d
ϕ ϕ

σσ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ

= =

= =
= − − − = − =∫ ∫ ∫  (2.82) 

Next we make the spatial discretization of the telegrapher’s 

equations. The transmission line is split into m cells. Due to spatial 

compositionality (i.e. interconnection of two transmission lines via a 

common boundary once again gives a transmission line), we need to 

perform discretization to only one cell. That is to say the cell delimited 

by space [ , ]c α βΩ = . One considers a cell (with the length (β-α)), and we 

denote the spatial manifold [ , ]c α βΩ = . 

We express the boundary variables as functions of the efforts: 

 
( ) ( , ) ( ) ( , )

( ) ( , ) ( ) ( , )
b q b q

b b

e t e t e t e t

f t e t f t e t

α β

α φ β φ

α β
α β

= =

= =
 (2.83) 

 We consider the size of a sufficiently small cell, to be able to make 

the following approximations to represent flows inside the cell:  

 
1

1

( , ) ( ) ( )

( , ) ( ) ( )

q q qf t x f t w x

f t x f t w x

αβ

αβ
φ φ φ

≈ ⋅

≈ ⋅
 (2.84) 

where 1 1 1, ( )q cw wφ ∈ Λ Ω are the 1-form satisfying the conditions: 

 1 1( ) 1 and ( ) 1
c c

qw x w xφΩ Ω
= =∫ ∫  (2.85) 
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In the same way, the efforts ( , )qe t x
 
and ( , )e t xφ , inside the cell, 

are approximated by : 

 
( , ) ( ) ( ) ( ) ( )

( , ) ( ) ( ) ( ) ( )

q q q q qe t x e t w x e t w x

e t x e t w x e t w x

α α β β

α α β β
φ φ φ φ φ

= ⋅ + ⋅

= ⋅ + ⋅
 (2.86) 

where 0, , , ( )q q cw w w wα β α β
φ φ ∈ Λ Ω  are the 0-forms satisfying the conditions: 

 
( ) 1 ( ) 0 ( ) 0 ( ) 1

( ) 1 ( ) 0 ( ) 0 ( ) 1

q q q qw w w w

w w w w

α α β β

α α β β
φ φ φ φ

α β α β

α β α β

= = = =

= = = =
 (2.87) 

 

Fig. 2.5. A Whitney 0-form 

 

This Whitney 0-form, as shown figure 2.5., makes it possible to 

have the following relations: 

 ( ) ( ) 1 and ( ) ( ) 1q qw x w x w x w xα β α β
φ φ+ = + =  (2.88) 

By substitution of (2.84) and (2.86) in (2.71) and by taking into 

account (2.75) we obtain: 

 
( )

( )

1

1

( ) ( ) ( ) ( ) ( ) ( )

( )(* ( )) ( )(* ( ))

( ) ( ) ( ) ( ) ( ) ( )

( )(* ( )) ( )(* ( ))

q q q q

q q

q q q q

f t w x e t dw x e t dw x

r e t w x e t w x

f t w x e t dw x e t dw x

g e t w x e t w x

αβ α α β β
φ φ

α α β β
φ φ φ φ

αβ α α β β
φ φ φ φ

α α β β

= − −

− +

= − −

− +

 (2.89) 

In order to determine the dynamic equations inside a cell, we 

integrate the equations above: 
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1

1

( ) ( ) ( ) ( ) ( ) ( )

( ) (* ( )) ( ) (* ( ))

( ) ( ) ( ) ( ) ( ) ( )

( ) (* ( )) ( ) (* ( ))

c c c

c c

c c c

c c

q q q q

q q

q q q q

f t w x e t dw x e t dw x

re t w x re t w x

f t w x e t dw x e t dw x

ge t w x ge t w x

αβ α α β β
φ φ

α α β β
φ φ φ φ

αβ α α β β
φ φ φ φ

α α β β

Ω Ω Ω

Ω Ω

Ω Ω Ω

Ω Ω

= − −

− −

= − −

− −

∫ ∫ ∫

∫ ∫

∫ ∫ ∫

∫ ∫

 (2.90) 

Using the relations (2.85) and the properties 

 

 and (* )dw w w wdx
Ω ∂Ω

= =∫ ∫  (2.91) 

  

where w is a 0-form and (*w) is a 1-form, 

 andq q

x x
w w w wα α β β

φ φ
β α

α β β α
− −= = = =
− −

 (2.92) 

  

the Whitney 0-form leads to the following relations: 

 

1
( ) ( ) ( ) ( ( ) ( ))

2
1

( ) ( ) ( ) ( ( ) ( ))
2

q q

q q q

f t e t e t r e t e t

f t e t e t g e t e t

αβ α β α β
φ αβ φ φ

αβ α β α β
φ φ αβ

= − − +

= − − +
 (2.93) 

where ( ) and ( )r r g gαβ αββ α β α= − = − . 

We arrive to the following spatial discretization representation of 

this typical cell: 

 

( ) 1 0 0 0
( ) ( )0 1 0 0
( ) ( )0 0 1 0
( ) 0 0 0 1 ( )

.5 .5 1 1( ) ( )
1 1 .5 .5( )

b

b

b

b
q

q

q

f t

f t e t

e t e t

e t e t
r rf t e t

g gf t

α
α

β φ

β
α φ

αβ

αβ βαβ αβφ

αβ αβ αβ

   
        
    
  =   
    
    − − −       − − −  

 (2.94) 

 It remains to check that this is a port Hamiltonian system 

corresponding to a cell which preserves the Dirac structure. This 

corresponds to an instantaneous conservation of the power (net power). 
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c

c c c
q q b bP e f e f e fφ φΩ Ω Ω ∂Ω

= ∧ + ∧ + ∧∫ ∫ ∫  (2.95) 

One replaces ( , )qe t x , ( , )e t xφ , ( , )qf t x  and ( , )f t xφ  by their 

approximations from (2.84) and (2.86) to obtain the following 

expression: 

 
( ) ( )1 1

c
c c

q q q q q q

b b b b

P e w e w f w e w e w f w

e f e f

α α β β αβ α α β β αβ
φ φ φ φ φ φ

β β α α

Ω Ω Ω
= + + +

+ −
∫ ∫  (2.96) 

or 

 ( ) ( )1 1 1 1

c
c c c c

q q q q q q q

b b b b

P e w w e w w f e w w e w w f

e f e f

α α β β αβ α α β β αβ
φ φ φ φ φ φ φ

β β α α

Ω Ω Ω Ω Ω
= + + +

+ −

∫ ∫ ∫ ∫ (2.97) 

Before developing calculations, we establish initially some 

relations between the various 1-forms brought into play.   

 Combination of equations (2.89) and (2.93) gives : 

 
( )

( )

1

1

1
( ( )) (* ) (* )

2
1

( ( )) (* ) (* )
2

q q q q q q

q q q q q q q

e e r e e w e dw e dw r e w e w

e e g e e w e dw e dw g e w e w

α β α β α α β β α α β α
αβ φ φ φ φ φ φ φ

α β α β α α β β α α β α
φ φ αβ φ φ φ φ

− − + = − − − +

− − + = − − − +
(2.98) 

From them it results: 

 
1

1

q q

q

w dw dw

w dw dw

α β
φ

α β
φ φ

= − =

= − =
 (2.99) 

In addition, the use of the Whitney forms enables us to have the 

following relation: 

 1 1 1 1 1( )q q q q q q q q qw w dw w dw w w w w w w w wα β β α α β α β
φ φ φ φ= − = + = + =  (2.100) 

We take 1

c
q qw wαγ

Ω
= ∫ , which leads to:  
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1 1
c

q qw wβ γ
Ω

= −∫  

 1 1
c

w wα
φ φ γ

Ω
= −∫  (2.101) 

     

1

c

w wβ
φ φ γ

Ω
=∫  

Indeed,  

 
( )

1 1 ( )

( ) ( ) ( ) ( ) 1

c c c c c
q q q q q

q q

w w w w w dw w dw d w w

w w w w

α α α α α α α α
φ φ φ φ φ

α α α α
φ φβ β α α

Ω Ω Ω Ω Ω
+ = − − = −

= − − =

∫ ∫ ∫ ∫ ∫
 (2.102) 

The equation (2.97) becomes: 

 ( ) ( )(1 ) (1 )
c q q q b b b bP e e f e e f e f e fα β αβ α β αβ

φ φ φ β β α αγ γ γ γΩ = + − + − + + − (2.103) 

We say that 

 
b q b q

b b

e e e e

f e f e

α β
α β

α β
α φ β φ

= =

= =
 (2.104) 

what makes it possible to write the equations (2.93)  in the form: 

 

1
( ) ( )

2
1

( ) ( )
2

b b b b

q b b b b

f t e e r f f

f t f f g e e

αβ
φ α β αβ α β

αβ
α β αβ α β

= − − +

= − − +
 (2.105) 

For the efforts of the cell:  

 (1 ) et (1 )q b b b be e e e f fαβ αβ
α β φ α βγ γ γ γ= + − = − +  (2.106) 

the instantaneous power is written then: 

 
c qq b b b bP e f e f e f e f e f

φ

αβ αβ αβ αβ αβ αβ
φ β β α αΩ = = + + −  (2.107) 

where 
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( )
( )q

t

q b b

b b

e e e e e

f f f f f
φ

αβ αβ αβ
φ α β

αβ αβ αβ
α β

=

=
 (2.108) 

 

From (2.105) and (2.106), it gives: 

 

1 0 0 0 0 0 1

0 1 1 0 0 0 0
0

0 0 1 1 1 0 .5 .5

0 0 .5 .5 0 1 1 1

q q

b b

b b

EF

e f

e f

e fr r

g g e f

αβ αβ
φ φ
αβ αβ

α ααβ αβ

αβ αβ β β

αβαβ

γ γ
γ γ

   − −   
      − −       + =
    −  
         −      ��������������������

 (2.109) 

with γ=1/2 in the case of the approximations of Whitney for the 0-forms 

and the 1-forms. We denote the space of admissible efforts by e, and the 

domain of admissible flows by f, such that the following relation is 

satisfied by: 

 ( ){ }4, : 0D f e E e F fαβ αβ αβ αβ= ∈ + =ℝ  (2.110) 

D is a Dirac structure with respect to the bilinear form if and only 

if the following two conditions are satisfied: 

 4 ( ) ( ) 0t trank E F E F F Eαβ αβ αβ αβ αβ αβ  = + =   (2.111) 

After computation we show that this is true and the two 

conditions are satisfied. 

 

2.4.4. Constitutive equations  

  

To complete calculations, we will determine the expressions of 

the charge qαβ(t) and the magnetic flux φαβ(t) and their variations on the 

cell level. 
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( , ) ( ) ( )
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αβ

αβ

φ φ=

=
 (2.112) 

 

 

 

The total energy of the cell is given by 
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2 2
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2 2
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∫ ∫

∫  (2.113) 

with 

 
1 1

( )
(* )

c

l
l l

w w
αβ β α

Ω

= = −
∧∫

 (2.114) 

and 

 
1 1

( )
(* )

c

c
c c

w w
αβ β α

Ω

= = −
∧∫

 (2.115) 

In addition, we have the following bonds: 

 1 1( , )
( ) ( ) ( )q

dqq t x
w x f t w x

t dt
αβ αβ∂ = =

∂
 (2.116) 

Then 

 
( )

( )

q

dq
f t

dt
d

f t
dt

αβ αβ

αβ αβ
φ

φ

=

=
 (2.117) 
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q
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h
e t

l

αβ αβαβ

αβ

αβ αβαβ
φ

αβ

φ
φ

∂
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∂
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= =
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 (2.118) 

 

 

 

 

and from equation (2.106) we have : 

 
( )

( )

1

2
1

2

q b b

b b

e e e

e f f

αβ
α β

αβ
φ α β

= +

= +
 (2.119) 

The dynamics of the cell are given then by: 

 

b b

b b

d
e e r

dt l

dq q
f f g

dt c

αβ αβ
α β αβ

αβ

αβ αβ
α β αβ

αβ

φ φ
= − −

= − −
 (2.120) 

The electrical representation of the transmission line at element 

level is presented in the next figure. 

 

Fig.2.6. Elementary components representation of the transmission line 

 

The corresponding bond graph representation [Nak 03]  is the 

following : 
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Fig.2.7. Bond Graph representation 

 

It is known that the connection of two Dirac structures gives a 

Dirac structure.  Thus the whole transmission line can be reconstructed 

by the connection of a fixed number of cells in advance.   

 

2.5. Conclusion 

 

The port Hamiltonian system has been used in the representation 

of the distributed parameter systems. Through the example of the 

telegrapher’s equation, we have shown [Che 09] that using a special form 

of discretization for the space we made the calculation only on one 

element, considered as local and then concatenating the elements we can 

calculate the entire line of transmission. 

The port Hamiltonian system is derived from the energy function 

(Hamiltonian), which is usually a good Lyapunov function, used in 

control. 
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Chapter 3. Traffic flow models 

 

 

3.1. Introduction 

 

 

 

“Because of congestion, there is a serious risk that Europe will lose 

economic competitiveness. The most recent study on the subject showed 

that the external costs of road traffic congestion alone amount to 0,5% of 

Community GDP. Traffic forecasts for the next 10 years show that if 

nothing is done, road congestion will increase significantly by 2010. The 

costs attributable to congestion will also increase by 142% to reach 80 

billion a year, which is approximately 1% of Community GDP.” [Pap 03] 

In the context of economic globalization the need of circulation 

for goods and peoples has known a new growth. This growth in mobility 

is the principal cause for apparition of congestions.   

The delays caused by congestions have an important impact over 

capacity of people life. The driver which is in a congestion has problems 

of stress, noise etc, driving to a growth of accident chance. This thing 

may be considered as an indirect cost (health problems). The 

congestions involve big losses of combustible. Hereby, in the world 

context, when the combustible price is higher and higher, this means a 

decrease of buying capacity. From ecological point of view, the 

congestions have a negative effect because they lead to a growth of 
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pollutions caused by the exhaust gases, which involves an exponential 

growth of economical and ecological costs. 

The traffic congestion problems are socio-economical problems 

that need a solution which can be fast put into effect. The fastest and 

most easily is to build new infrastructures that are very expensive and 

reduce the available environmental space.  Another solution for 

congestion decrease is to encourage the people to use public traffic 

infrastructure and to use train and ship for goods transport. But for 

doing this we need to ensure the way for train or ship. These imply also 

expensive costs. 

Traffic flow theories try to describe in a mathematical way the 

flow theory for a better and a more easily way of understanding, using 

the interactions between the vehicles and their operators (mobile 

components and infrastructure). The infrastructure consists in all the 

highway system and its operational elements: signage, control devices, 

markings, etc. 

All these theories lead to models and tools used in the design and 

operation of streets and highways. First study of traffic flow was made in 

the 1930’s with the application of probability theory to the description of 

road traffic by Adams [Ada 36]. Also, Bruce D. Greenshields at the Yale 

Bureau of Highway Traffic studied the models relating volume and speed 

[Gre 35] and investigation of performance of traffic at intersections [Gre 

47]. 

In the 50’s theoretical developments based on a variety of 

approaches, such as car-following, traffic wave theory (hydrodynamic 

analogy) and queuing theory was developed. Between them we can 

include the works made by Wardrop [Wan 52], Pipes [Pip 53], Lighthill 

and Whitham [Lig 55], Richards [Ric 56], Chandler et al. [Cha 58]. 

In the 70’s another approach had been introduced, considering 

the analogy with the fluid flow in fluid mechanics in Payne[Pay 71], 

Whitham [Whi 74]. 
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In the last decades the domain knew a vast development, the 

authors trying to improve the existent models as Aw and Rascle [Aw 00], 

Zhang [Zha 02], Goatin [Goa 06], or to propose other models that are 

suitable for the new demands of the traffic as Zhang [Zha 98], Colombo 

[Col 02].    

In this chapter we will present a classification of the models used 

in traffic flow representation followed by a short presentation of the 

principal schemes used in numerical simulation, and some results. 

 

3.2. Model classification 

 

The traffic models can be classified in function of some factors as: 

detail level, independent variables type, application scale, and processes 

representation [Hoo 01]. 

The detail level classification is a classification viewed from the 

level of the information about the vehicle where we are interested to 

arrive. 

 From a detail level point of view the models can be group as: 

- submicroscopic models which describe the space-time behavior 

of each vehicle and their driver at the individual level and also the 

functioning of specific parts of the vehicle. 

- microscopic models which describe also the space-time behavior 

of the vehicle and the drivers at the individual level. 

- mesoscopic models which describe the behavior of individuals 

represented by groups of traffic entities, the activities and interactions of 

which are described at a low detail level. Some mesosocopic models are 

analog to the models used in gas-kinetic theory. 

- macroscopic models are models where the traffic flow is seen as 

a flow without distinguishing its constituent parts. For the 

representation are used the flow-rate, density and velocity, and the 



 

98 Contribution à l’extension de l’approche énergétique à la 
représentation des systèmes à paramètres distribués 

models can be classified according to the number of partial differential 

equations on the one hand and the order on the other hand. 

 

When we want to simulate the traffic flow we must be aware that 

we have different conditions when we talk about a simulation of a 

highway or of an entire city. Thus, we must take in account the 

application scale which will be used: a lane, a highway, a city etc. 

 

Usually, the traffic models describe dynamical systems. Thus, we 

can have: continuous models or discrete models in function of the 

moment when changes appear in the traffic system state. 

 

In the suite we will make a short presentation of the microscopic 

and mesoscopic models then we will present the macroscopic models 

which are interesting for us.  

 

3.3. Microscopic and mesoscopic models 

 

The microscopic models are the models that arrive at a high level 

of detail for the vehicles, taking in account the vehicles as separable 

entities, their comportment in time and space and the interactions 

between them. 

The first direction in research used the so-called follow the leader 

models. In this category we can include the safe-distance models 

developed by Pipes [Pip 53], Forbes [For 58], Pignataro [Pig 73], 

Leutzbach [Leu 88], Jespen [Jes 98], Dijker [Dij 98] and the stimulus-

response car-following models developed by Chandler [Cha 58], Gazis 

[Gaz 61], Montroll [Mon 61], Payne [Pay 71]. 

Another directions used the cellular automata models developed 

by Nagel [Nag 1996], [Nag 98], Wu and Brilon [Wu 99], Esser [Ess 99] 

and the particle models developed by Eastwood [Eas 88], Van Aerde [Aer 

94], Hoogendoorn and Bovy [Hoo 00]. 
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  The mesoscopic flow models describe the comportment of the 

vehicles in an aggregate-term using the probability distribution 

functions by example.  

 The most known models used to model the traffic flow at this 

level of detail are the headway distribution models developed by Buckley 

[Buc 68], Branston [Bra 76], Hoogendoorn and Bovy [Hoo 98], the 

cluster models developed by Prigogine [Pri 61], Prigogine and Herman 

[Pri 71], Botma [Bot 78] and the gas-kinetic continuum models 

developed by Prigogine and Herman [Pri 71], Paveri-Fontana [Pav 75], 

Nelson [Nel 95], Helbing [Hel 97], Klar and Wegener [Kla 98], 

Hoogendoorn and Bovy [Hoo 00].   

  

3.3. Macroscopic models 

 

 The macroscopic traffic flow models are designed in a similar way 

to flow models of continuous media (fluid or gases) and use as 

macroscopic variables: density, velocity and vehicle flow. 

The dynamics of the system are represented using partial 

differential equations (PDE). The independent variables of a continuous 

macroscopic flow model are location x and time instant t. 

Consider a segment of highway [ , )x x dx+ . Density ( , )x tρ ρ=  

represents the expected number of vehicles on the roadway segment 

[ , )x x dx+  per unit length at instant t, the flow ( , )q q x t= represents the 

expected number of vehicles flowing past x during [ , )t t dt+  per time unit 

and the velocity ( , )v v x t=  represents the expected velocity of the 

vehicles.  

First model of traffic flow was proposed by Lighthill and Whitham 

[Lig 55] and Richards [Ric 56] (LWR). 

 Consider a section of highway between 1x  and 2x ( 2 1x x> ). At 

time t the density on this section will be ( , )x tρ . The traffic flows that 
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enter into the section will be at a rate of 1( , )q x t and the flow that exits 

will be at a rate of 2( , )q x t . 

If one supposes that it is a highway without entrances and exits, 

the number of vehicles must be conserved between 1x  and 2x  at any 

time t. 

 
2

1
2 1( , ) ( , ) ( , ) 0

x

x
x t dx q x t q x t

t
ρ∂ + − =

∂ ∫
 (3.1) 

LWR model also assumes for a homogenous highway: 

 ( , ) ( ( , ))q x t Q x tρ=  (3.2) 
where Q is a differentiable nonnegative function, that is zero if 0ρ =  or 

maxρ ρ= . This is assumed to be true when flow and density vary with x 

and/or t. 

 Eq. (3.1) can be equivalently expressed as: 

 0
q

t x

ρ∂ ∂+ =
∂ ∂

 (3.3) 

If ρ  has a jump discontinuity at ( , )x t , eq (3.3) is not more true, 

but the conservation principle still applies. At discontinuities a special 

kind of traffic waves appears and they are called shock waves (red light, 

accident). Because of them the solution of (3.3) has to be expanded to 

include the so-called weak solution. This is a function ( , )( , )q x tρ  that is 

the solution of equation (3.3) everywhere except on a path ( )x t  where 

( , )( , )q x tρ  are discontinuous, but the integral form of the conservation 

law is respected.   

The velocity of the jump, u, is: 

 [ ] [ ] [ ] [ ]/ ( ) /u q Qρ ρ ρ= =  (3.4) 

where brackets denote the change in the enclosed variable across the 

discontinuity. Eq. (3.4) is also known as the Rankine-Hugonoit condition 

[LeV 92]. 

On substituting (3.2) into (3.3) we obtain a single quasilinear 

partial differential equation in ρ : 

 
( )

0
dQ

t d x

ρ ρ ρ
ρ

∂ ∂+ =
∂ ∂

 (3.5) 
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which taken together with (3.4) defines the evolution of traffic flow over 

a specific road section, given a suitable set of initial/boundary 

conditions.  

 The LWR model assumes that the velocity depends only on the 

density: 

 max
max

( ) 1v V
ρρ

ρ
 

= − 
 

 (3.6) 

where maxV  is the maximal speed. 

 The corresponding fundamental diagram in the plane ( ), vρ ρ  is in 

the figure 3.1. When there are not vehicles on the road the flow is equal 

to zero. It becomes to grow with density, but with a slower slope, until it 

arrives to the maximal flow. Starting from here the flow begins to 

decrease when the density grows. Continue until becomes zero at the 

maximal density, situation where the traffic is stopped because of 

congestion and the velocity is zero. 

 

Fig.3.1. The fundamental diagram 

 

Nevertheless, this diagram does not qualitatively match 

experimental data observed by Kerner [Ker 00], and presented below.   
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Fig.3.2. Experimental data [Ker 00] 

  

When we have a light traffic and the passing is allowed, the queue 

of vehicle disperses from the front and back in a way that it is not 

predicted by the LWR theory. This comes from the fact that the LWR 

model does not take in consideration that there is a distribution  of 

desired velocities across vehicles, in addition to a variation of the desired 

velocity for each vehicle. 

 When the passing is restricted, the LWR model has better results 

but also has some deficiencies related to the velocity of vehicle when 

passes through a shock, predicting an instantaneously speed change, and 

does not predict instabilities of the stop-and-go type. 

  To solve these problems, two directions have been followed. One 

in the kinetic theory with the capturing of dispersion effects by 

incorporating a velocity distribution and one that tried to describe what 

happening inside a shock using a high-order refinement of the LWR 

model. 

 

Payne [Pay 71] and Whitham [Whi 74] used the second approach 

and considered the traffic flow as fluid flow in fluid mechanics.  

Payne [Pay 71] proposed the continuum traffic flow model by a 

coupled system of two partial differential equations. He extended the 

LWR model by a partial differential equation describing the dynamics of 

the velocity v. 
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 ( ) ( )2
0( ) / /e

v v
v V v c

t x x

ρρ τ ρ∂ ∂ ∂+ = − −
∂ ∂ ∂

 (3.7) 

where 2
0 / 0c ζ τ= >  is the anticipation constant, with edV dζ ρ= − . 

The second term of the left part, describing the changes due to 

inflowing and out flowing vehicles is the convection term. The first term 

of the right part describing the tendency of traffic flow to relax to an 

equilibrium velocity is the relaxation term and the second term of the 

right part, describing the drivers’ anticipation on spatially changing 

traffic conditions downstream is the anticipation term. 

But this approach is not realistic because there are essential 

differences between traffic and fluids. In the traffic flow a car is an 

anisotropic particle that responds to front stimuli, and in the fluid case a 

fluid particle responds to stimuli from the front and from behind. The 

traffic shock only encompasses a few vehicles, and in the traffic flow the 

vehicle, unlike molecules, have personalities that remain unchanged by 

motion. 

 

Zhang [Zha 98] proposed another model starting from PW model, 

where only one term was different. The sound speed 0c  in the PW model 

was replaced by ( ) '( )ec Vρ ρ ρ= : 

 
2( ) ( )ev v c V v

v
t x x

ρ ρ ρ
ρ τ

∂ ∂ ∂ −+ + =
∂ ∂ ∂

 (3.8) 

The model does not solve all the problems, but the effects if the 

gas-like behavior decays exponentially at a rate of exp( )t τ− . 

We write the equation in the vector form: 

 ( ) ( )
U U

A U s U
t x

∂ ∂+ =
∂ ∂

 (3.9) 

where A is the Jacobian matrix and the eigenvalues of the A control the 

properties of the system. 

We consider the PW-like model which has the same properties as 

Zhang model: 
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 ( )2( ) ( ) 0, ( ( ) )( )
T

e

v

U A U s U V vc
v v

ρ
ρ

ρ τρ
ρ

 
   = = = −      

 

 (3.10) 

The eigenvalues are 1 ( )v cλ ρ= +  and 2 ( )v cλ ρ= − . From 

1 2λ λ< results that the model is strictly hyperbolic which means that the 

information travel at finite speeds, and discontinuities or shocks in the 

state variable U arise in the solution under certain conditions. 

 As we can see the second eigenvalue 2λ  is larger than v because 

( ) 0c ρ < . This means that the waves associated with second 

characteristic reach vehicles from behind. This is not what one would 

expect to see in real traffic. 

This is a gas-like traffic behavior; to solve the problem of the 

characteristic speed that exceeds vehicle speed, Zhang replaced 

2( ) /c ρ ρ  by zero in the Jacobian matrix. 

The new model proposed [Zha 02] is: 

 ( )
v v v

v c
t x x

ρ∂ ∂ ∂+ = −
∂ ∂ ∂

 (3.11) 

where '( ) ( )ec Vρ ρ ρ=  is the traffic sound at which the traffic disturbance 

are propagated relative to a moving traffic stream. 

 Now we can write the non-equilibrium traffic model in a vector 

form 

 0
0 ( )

v

v v c vt x

ρ ρ ρ
ρ

     ∂ ∂+ =     +∂ ∂     
 (3.12) 

 The eigenvalues of the flux Jacobian matrix are 

 
'

1

2

( )ev V

v

λ ρ ρ
λ

= +
=

 (3.13) 

 We have 1 2λ λ<  and the eigenvectors 

 1 2'

1 1

0( )e

r r
V ρ
   = =   

  
 (3.14) 

 The model is strictly hyperbolic. The characteristics speed 

maximum is equal or smaller than traffic speed.  
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The first “second order” model proposed by Payne [Pay 71] and 

Whitham [Whi 74], was corrected by Aw and Rascle [Aw 00] replacing in 

the momentum equation, the space derivative of “pressure” by the 

convective derivative v
t x

∂ ∂+
∂ ∂

.   

 

( )
0

( ( )) ( ( )) 0

v

t x

v p v v p
t x

ρ ρ

ρ ρ

∂ ∂+ =
∂ ∂
∂ ∂+ + + =
∂ ∂

 (3.15) 

where p is a smooth increasing function with the prototype: 

 ( ) , 0p γρ ρ γ= >  (3.16) 
 If we set : ( , )U vρ= , we can write the conservative form as: 

 ( ) 0U A U U
t x

∂ ∂+ =
∂ ∂

 (3.17) 

where 

 ( )
0 '( )

v
A U

v p

ρ
ρ ρ

 =  − 
 (3.18) 

 The eigenvalues are: 

 1 2'( )v p vλ ρ ρ λ= − ≤ =  (3.19) 

The eigenvectors are: 

 1 21 1

'( ) 0
r r

p ρ
   = =   −   

 (3.20) 

But this model has a problem near the vacuum; when the density 

is close to zero, the solution does not depend continuously on the initial 

data. Another problem arises when the road is empty. The maximal 

speed reached by vehicles depends on the initial data, which is wrong. 

 

In [Col 02], there is proposed a traffic flow model described by: 

 

( )

( )

max

,

( ) 0

( ) 1

free

f

f

q

v
t x

v V

ρ
ρ ρ ρ

ρρ
ρ


 ∈ Λ

∂ ∂+ ⋅ = ∂ ∂
  

= − ⋅  
 

 (3.21) 
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and 

 

( )

( )

( )

max

,

( , ) 0

( , ) 0

( , ) 1

cong

c

c

c

q

v q
t x
q

q Q v q
t x

q
v q

ρ
ρ ρ ρ

ρ

ρρ
ρ ρ

∈ Λ


∂ ∂ + ⋅ =
 ∂ ∂
∂ ∂ + − ⋅ =   ∂ ∂


  = − ⋅   

 (3.22) 

where ρ  is the vehicle density, v  is the car speed, q  is a weighted flow, 

maxρ  and V  are respectively the maximal vehicle density and speed and 

Q  is the weighted flow at the equilibrium value. 

 The set congΛ  and freeΛ  are defined by 

 ( ) [ ] [ [{ }max, 0, 0, : ( ) ,free f fq v V q Vρ ρ ρ ρΛ = ∈ × +∞ ≥ = ⋅  (3.23) 

 ( ) [ ] [ [max
max max

, 0, 0, : ( ) ,cong c c

Q Q q Q Q Q
q v Vρ ρ ρ

ρ ρ ρ

− + − − −Λ = ∈ × +∞ ≤ ≤ ≤ 
 

 

where fV V<  and cV V<  are threshold speed constants and the 

parameters ] [ ] [0, , ,Q Q Q Q− +∈ ∈ +∞  depend on environmental 

conditions. 

 If we assume that the following conditions are satisfied: 

 

( ) ( )

max

max

max

max

0

0

1

1

1 1 1

c f

f

V V V

Q Q Q

Q Q

V

V Q
V

Q Q V

Q Q

V Q

ρ
ρ

ρ

ρ

− +

+

+

+

+ +

< < <

< ≤ ≤

− <

−=
− −

   − ⋅ − <   
  

 (3.24) 

the model is a model where the vehicles may have only positive speed, 

the density at a red traffic light is the maximum possible and the vehicles 

stop only at maximum density. 

When there is a light traffic the solution to the Riemann problem is 

quantitative different of the LWR model, in this case we have a phase-
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transition wave followed by a rarefaction wave instead of only a single 

shock wave in the LWR case.  

   

To solve the problems of the Aw and Rascle [Aw 00] model, 

Goatin [Goa 06] proposed to couple the AR model with the LWR 

equation, by introducing a transition dynamics from free to congested 

flow. 

For the free flow: 

 

( , )

( )
0

( )

f

f

v

v

t x
v v

ρ
ρ ρ

ρ

∈ Λ

∂ ∂+ =
∂ ∂
=

 (3.25) 

For the free phase there is only one independent variable, the 

density ρ . The velocity fv  is a function of ρ  and is chosen to be a linear 

function: 

 max
max

( ) 1fv V
ρρ

ρ
 

= − 
 

 (3.26) 

For the congested flow: 

 

max

( , )

( )
0

( ( ( ))) ( ( ( )))
0

( ) ln( )

c

ref

v

v

t x
v p v v p

t x
p V

ρ
ρ ρ

ρ ρ ρ ρ

ρ ρ ρ

∈ Λ
∂ ∂ + = ∂ ∂
∂ + ∂ + + =
 ∂ ∂

=

 (3.27) 

For the congested phase we have two variables: density ρ and 

velocity v , or the conservative variables ρ  and ( )z v pρ ρ ρ= + . 

Function p represents the driver reactions to the state of traffic in front 

of him. 

Starting from the fact that it is impossible to have a queue form on 

a highway if you don’t have cars, it is possible to assume that if the initial 
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data are in the free flow zone or in the congested zone, solution will 

remain there. Two domains result: 

 
( ){ }
( ) [ ]{ }

, 0, , : ( ) ;

, 0, 0, : ( ) ( ) ( )

free free free f

cong cong

v R V V v v

v R V p r v p p R

ρ ρ

ρ ρ

   Ω = ∈ × =   

 Ω = ∈ × ≤ + ≤ 

 (3.28) 

where free congV V V> > . The parameter ] [0,r R∈  represents the 

dimension of the congested region. freeR  is the maximal density in the 

free-flow region must satisfy: 

 ( ) ( )free freeV p R p R+ =  (3.29) 

To have this condition, must be assumed that 

 refV V<  (3.30) 

In this model the vehicles may have only positive speed, but the 

density at a red traffic light is not the maximum possible and the vehicle 

don’t stop only at maximum density.  

 

Jiang [Jia 02] proposed an anisotropic macroscopic continuum 

model which consists in two partial differential equations as follows: 

 
( )

0
v

t x

ρρ ∂∂ + =
∂ ∂

 (3.31) 

 0

( )ev v V v v
v c

t x x

ρ
τ

∂ ∂ − ∂+ = +
∂ ∂ ∂

 (3.32) 

where v  denotes the average vehicle velocity, ρ is the vehicle density. 

The right-hand side of the velocity eq. (3.32) contains a relaxation term 

reflecting the process when the driver adjusts the speed of vehicle to the 

equilibrium velocity ( )eV ρ  in the relaxation time interval τ , and an 

anticipation term representing the process when the driver reacts to the 

traffic ahead with the propagation speed of small disturbance 0c .  

 If we write the eq. (3.31) and (3.32) as 

 
U U

A E
t x

∂ ∂+ =
∂ ∂

 (3.33) 

with 
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 ( )0

0
, ,

0 ( ) /

v
U A E

v c V vv

ρρ
ρ τ

   = = =     − −     
 (3.34) 

 

 The eigenvalues of the matrix A  are derived from: 

 det 0A Iλ− =  (3.35) 

where I  is the identity matrix. We have 1 2 0,v v cλ λ= = − . Since 0 0c ≥ , it 

follows that the characteristic speed /dx dt  are always less than or equal 

to the macroscopic flow velocity v , which demonstrates the fundamental 

principle that vehicle flows are anisotropic and responded only to front 

stimuli. 

 

In the process of modeling traffic flow, it is important to take in 

consideration also some important components of the road. We must 

study very carefully what happens at the intersection, looking from both 

possible situations: having a merge or a diverge. The problem of the 

merge has been studied by Daganzo [Dag 95], Holden and Risebro [Hol 

95] and Lebacque [Leb 96]. In their model, Holden and Risebro have 

studied the traffic through a merge by an optimization problem. Daganzo 

and Lebacque based their models on locally supply and demand. 

 Starting from the LWR model, which analyzes the traffic evolution 

using the variables: , ,v qρ , and which in discrete representation used in 

numerical methods cut the road in equal segments named cells, 

Lebacque [Leb 96] and Daganzo [Dag 95] have developed a new method 

used to solve the problems which appear in this representation. In the 

LWR model, the number of the cars inside one cell is equal to the number 

of cars that enter minus the number of the cars that exit from this cell; in 

the Daganzo model the terms of sending flow and receiving flow are 

used. Lebacque [Leb 96] is the first who used the terms “supply” and 

“demand”. “The supply” is the flow rate when the traffic condition is 

overcritical and the flow capacity of the cell when is under-critical; “the 
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demand” is the flow capacity when the traffic condition is overcritical 

and its flow rate when is under critical. 

 To solve the boundary problem they used either the solution of 

the Riemann problem at the boundary or the demand-supply method 

where it calculates the supply and the demand for each cell, then chooses 

the minimum between them as boundary flow.  

 Daganzo added a condition to this method: because the outflow is 

smaller than or equal to the demand and the entrance flow is smaller of 

equal than supply, the total inflow is equal to the minimum between the 

sum of the outflows and the supply of the cell. So, what must be done is 

to assure o distribution of the flow for all the upstream cells. The 

attribution scheme of distribution functions is called the distribution 

scheme. 

Lebacque proposed another modality. He considered that the 

supply of a downstream cell is distributed as virtual supply to the 

upstream cells. The outflows of these cells are equal to the minimum 

between the demand and the virtual supply, and the inflow in the 

downstream cell is equal with the outflows sum. 

But to choose the appropriate distribution function, it must take 

into consideration some factors. Daganzo [Dag 95] and Lebacque [Leb 

96] suggested considering: these to be proportional with the number of 

lane (Lebacque); to introduce priority and to consider that the upstream 

cells are priorities (Daganzo). 

 

3.4. Numerical methods 

 

In the belief that the behavior of freeway traffic at a given point in 

time-space is only affected by the state of the system in a neighborhood 

of that point, some researchers have examined the possibility of 

representing traffic phenomena by partial differential equations (PDEs). 
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One method to solve the LWR problem is to use the method of 

characteristics. The characteristics are curves in the plane space-time 

that start from one point where the initial conditions are known, with 

the property that the density along the curves does not change if ( , )x tρ  

is perturbed at any point not on the curves. The characteristic curves 

cannot intersect as result from definition. If they meet they must 

terminate at the meeting point, where a shock arises. 

For the LWR model when the initial/boundary conditions are 

well-posed a family of characteristic curves exists and every point not on 

a shock is reached from exactly one characteristic that extends backward 

in time to some initial boundary point. The characteristic curves, define 

the path of disturbance, because any modification that appear at any 

point it must propagate only on characteristic that passes through that 

point. 

The solution can be obtain for a special kind of problem called 

Riemann problem which implies two constant density separated by a 

jump [LeV 92]. 

 
0

( , 0)
0

l

r

x
x t

x

ρ
ρ

ρ
<

= =  >
 (3.36) 

 The solution of the Riemann problem can be either a shock, when 

it is a density growing (fig. 3.3): 

 ( , ) l

r

x st
x t

x st

ρ
ρ

ρ
<

=  >
 (3.37) 
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Fig.3.3. Shock wave 

 

or a rarefaction wave, when the density profile decreases. The 

characteristics of the initial state are divergent, so we have a number of 

solutions, and the physical one is chosen using the entropy criterion, 

which in the traffic flow corresponds to a range of characteristics (fig. 

3.4). 

 ( ) 1
( , ) '

l l

l r

r r

x c t

x
x t q c t x c t

t

x c t

ρ

ρ

ρ

−

<

  = ≤ ≤  

 
 >

 (3.38) 

  where , ,( )r l r lc q ρ= .  
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Fig.3.4. Rarefaction waves 

 

Another method used is the approximation of the conservation 

laws using numerical methods. These are in general methods that consist 

in a time-dimension discretization. 

Consider the case of simple linear equation: 

 0, , 0
u u

a x t
t x

∂ ∂+ = ∈ >
∂ ∂

ℝ  (3.39) 

 0( ,0) ( ),u x u x x= ∈ℝ  (3.40) 

where 0a > . 

 We discretize the (x,t) –plane by the mesh ( , )i nx t  with 

 ( )0( ),i nx ih i t nk n= ∈ = ∈ℤ ℕ  (3.41) 

and , 0h k > . 

 For simplicity we take h=k.  

 There are some schemes that can be used in simulation for find 

the solution of equation (3.39). About some of them we have discussed in 

Chapter 1. Here we give some examples of the methods that are usually 

used in solving the macroscopic traffic flow models.     
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Godunov’s first order upwind scheme: 

 

1

1

n n
i i

n n
i i

u u u

t t

u u u

x x

+

−

∂ −=
∂
∂ −=
∂

△

△

 (3.42) 

and the scheme become 

 1
1( )n n n n

i i i iu u c u u+
−= − −  (3.43) 

Lax-Friedrichs scheme: 

 1
1 1

1 1
(1 ) (1 )

2 2
n n n
i i iu c u c u+

− += + + −  (3.44) 

Lax-Wendroff Scheme: 

 1 2
1 1

1 1
(1 ) (1 ) (1 )

2 2
n n n n
i i i iu c c u c u c c u+

− += + + − − −  (3.45) 

FTCS Scheme: 

 1
1 1

1
( )

2
n n n n
i i i iu u c u u+

+ −= + −  (3.46) 

 

3.5. Implementation 

 

For simulation we have considered three models: LWR model, AR 

model and Zhang model, and we made simulation applying different 

numerical methods, all based on finite differences. The road length (100 

km) has been split into 1000 sections. 

 

3.5.1. Riemann problem in the LWR model 

 

At 0t = , the density is a square signal with maximum value at 350 

veh/km, as shown figure 3.5. At 0t += , the front begins to move to the 

right (switching to green of a traffic light). On figure 3.5. is shown the 

shape of the car front after 10 sec. 
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Fig.3.5. LWR solution using the Lax-Friedrichs method 

 

In the back of the car front we have a displacement of vehicles 

which is not true in reality (no back motion), this problem being one of 

the drawbacks of the LWR method. It is due to the fact that 

max( 10 )t sρ ρ= = . As soon as ( , )x tρ  will be less than maxρ , this problem 

will disappear. 

 

3.5.2. Influence of the choice of a numerical method on 

LWR model 

 

We make a comparison between the Lax-Friedrichs and FTCS 

method. Figure 3.6. (a) shows the initial conditions of ( , 0)x tρ = . At 

0t += , the car front begins to move to the right. Figure 3.6. (b) and (c) 

show the shape of the front car at 5 sect =  using the two different 

numerical methods. 

 

a) 
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b) 

 

c) 

Fig.3.6. Comparisons of density with Lax-Friedrichs and FTCS for LWR  

(a-initial conditions, b-Lax-Friedrichs, c- FTCS)  

 

It appears that the Lax-Friedrichs method gives better results (no 

discontinuity). 

 

3.5.3. Comparison of 1-equation model and 2-equation 

models  

 

We consider three models: 1-equation model LWR and 2-equation 

models AR and Zhang. At t=0, we have the initial conditions as shown 

figure 3.7 for density (a) and velocity (b).  
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a) 

 

b) 

Fig. 3.7. Initial conditions (a- density, b- velocity) 

 

Applying the Lax-Friedrichs numerical method, we obtain the 

results presented in the following figures: 

Figure 3.8. a) t=1 sec. We have the same drawbacks (motion at the 

back of the front). 

 

a) 
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b) 

 Fig. 3.8. Simulation density results 

 

Figure 3.8. b) t=19 sec. Globally the results are better obtained for 

the LWR model. The AR model presents an important displacement of 

the back car front. The Zhang model presents a displacement of the back 

front and also an accumulation of vehicle in the back of the queue.  

 

 

Fig. 3.9. Simulation velocity results  

 

 For the velocity, it appears from figure 3.9 that it is algebraically 

related to density in the LWR model, and that is behaves independently 

in the other two. 

 

3.5.4. Comparison of LWR and Jiang models 

 

Consider the LWR model discretized using the Lax-Friedrichs 

scheme and the model proposed by Jiang [Jia 02]. This model will be 

used in chapter 4 as starting mathematical model for CFD 
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representation. This model was discretized in  using [Jia 02] the 

following scheme: 

 ( ) ( )1
1 1

n n n n n n n n
i i i i i i i i

t t
v v v v

x x
ρ ρ ρ ρ+

+ −= + − + −△ △

△ △
 (3.47) 

for the density, and for velocity:  

-if the traffic is heavy ( 0
n
iv c< ) 

 ( )( ) ( )1
0 1

n n n n n n
i i i i i i eq

t t
v v c v v v v v

x T
+

+= + − − − −△ △

△
 (3.48) 

-if the traffic in light ( 0
n
iv c≥ ) 

 ( )( ) ( )1
0 1

n n n n n n
i i i i i i eq

t t
v v c v v v v v

x T
+

−= + − − − −△ △

△
 (3.49) 

where 0c  is the propagation speed of the disturbance, T  is the relaxation 

time, i represents the road section and j represents time.  

At t=0, the initial conditions are presented in figure 3.9. At time 

0t += , the car front begins to move to the right. 

 

 

a) 

 

b) 

Fig.3.9. Initial conditions (a-density, b-velocity) 
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Figure 3.10 and figure 3.11., show the shape of the density and 

velocity of the car front after 9 sec. 

 

 

Fig.3.10. Comparison between Jiang and LWR model (density) 

 

 It appears that the Jiang model gives better result in the back of 

the front. In the front of the queue, the behavior of the two models is 

different. It would be interesting to have experimental data to be able to 

conclude which model is physically more consistent. 

 

 

Fig. 3.11. Comparison between Jiang and LWR models (velocity) 

 

At the velocity level there is an algebraically relation with the 

density in the LWR model. In the Jiang model  the velocity behaves 

independently. 

 

3.6. Conclusions  

 

In this chapter we have presented a few models used in 

macroscopic traffic flow representation, starting with the well known 
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LWR model and arriving to new models developed by Zhang or Aw and 

Rascle. The LWR model is a model which has been used for a long period 

of time in simulation and it was considered as the best model for the 

representation of the traffic flow. But in the latest years some 

researchers showed that this model has some drawbacks. Thus, new 

models have been developed trying to eliminate the inadvertences with 

the real life situation. 

Through simulation of the models found in the literature we have 

seen the advantages and drawbacks of each of them. In the meantime, we 

have tried to see which numerical method (based on finite difference) is 

more appropriate to be used in discretization of the models.  

In the next chapter, we will show how the Jiang’s model [Jia 02] 

can be represented using CFD technique. 
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Chapter 4. Transport equations modeled by CFD  
 

 

 

4.1. Introduction 

 

 

 

As seen in the previous chapter, starting with the models of 

Lighthill and Whitham [Lig 55], Richards [Ric 56], continuing with Payne 

[Pay 71] and more recently Zhang [Zha 02], the study of traffic flow had 

known an important development. The proposed models and the 

modality of approach vary from one author to another. 

The models where the dynamic part is consider only for the 

vehicle density have a few drawbacks like: the velocity is determined by 

a equilibrium speed density, no fluctuation of speed around the 

equilibrium is allowed, thus the model is not suitable for the description 

of non-equilibrium situations like stop-and-go, etc. To overcome these 

drawbacks a new type of models were proposed, considering two 

dynamical equations, one for vehicle density and one for vehicle velocity. 

One way for modeling these systems is by using the classical 

approximation methods like Lax-Friedrichs, FTCS, Godunov etc [Str 04], 

[Ago 85].  

In moving fluids, the transport of mass, momentum and energy 

are represented using the differential equations. In the early 1960s was 
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developed the Computational Fluid Dynamics (CFD) [And 95], [Dat 05], 

[Hir 07], [Jiy 08] with the objective to find the numerical solution for 

these equations. Today, CFD is extensively used in basic applied 

research, in design of engineering equipment, and in calculation of 

environmental and geophysical phenomena. 

In the recent years, there was a development of CFD using the 

bond graph approach [Bal 06]. Starting from this approach in this 

chapter we will present a new way of modeling the traffic flow, using 

computational fluid dynamics. Some simulations will be done to validate 

the model. 

4.1.1. Two-equation traffic models 

 

Two-equation traffic models consider one-dimensional flow with 

one continuity equation for vehicle density ( )x tρ , : 

 ( ) 0v
t x

ρ ρ∂ ∂+ =
∂ ∂

 (4.1) 

and one transport equation for vehicle velocity ( )v x t, . For the velocity 

equation, different models appearing in the literature can be written as: 

 ev v v v
v G

t x τ τ
∂ ∂+ = + −
∂ ∂

 (4.2) 

where τ  is the reactive time, ( )ev ρ  is the equilibrium velocity 

distribution and G  is a source term.  

 

4.2. Power balance per unit volume  

 

4.2.1. Kinetic energy 

 

In the two-equation model, total energy corresponds to kinetic 

energy. The kinetic energy density vT  is:  
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21

2vT vρ=  (4.3) 

The following potentials (kinetic energy per unit vehicle and 

vehicle momentum density) are defined as:  

 
21

2
vT

vκ
ρ

∂= =
∂

 (4.4) 

 v
v

T
q v

v
ρ∂= =

∂
 (4.5) 

These potentials satisfy Maxwell’s relations:  

 vq
v

v

κ
ρ

∂ ∂= =
∂ ∂

 (4.6) 

The time derivative of the kinetic energy density can be written 

as: 

 v
v

T v
q

t t t

ρκ∂ ∂ ∂= +
∂ ∂ ∂

 (4.7) 

 

4.2.2. Balance equations  

 

The balance equations are power density equations 

corresponding to each one of the terms that contributes to the time 

derivative of the total energy density.  

Multiplying Eq. (4.1) by κ , the density balance equation results:  

 ( ) ( )v v v
t x x x

ρ κκ κ ρ κ ρ ρ∂ ∂ ∂ ∂= − = − +
∂ ∂ ∂ ∂

 (4.8) 

Multiplying Eq. (4.2) by vq , the velocity balance equation results:  

 

2
2e

v

v v v v
q v G v

t x
ρ ρ ρ

τ τ
∂ ∂ = + − − ∂ ∂ 

 (4.9) 

Since  

 
v

v
x x

κ∂ ∂=
∂ ∂

 (4.10) 
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it can be seen that the last term in Eq. (4.8) and (4.9) is a coupling term.  

4.3. Discretization 

 

4.3.1. Description of the flow fields 

 

In order to formulate the model at the discrete level, it is 

necessary to specify the description of the fields corresponding to the 

independent variables in the domain Ω , as shown in Fig. 4.1. As it is 

done in the Finite Element Method [Whi 99], this description is made in 

terms of a finite set of nodal values and interpolation functions:  

 

 

 

 

Fig. 4.1. Domain Ω  with boundaries 

 ( ) ( ) ( )
1

n
T

k k
k

x t t x
ρ

ρ ρρρ ρ φ φ
=

, = = .∑  (4.11) 

 ( ) ( ) ( )
1

vn
T

m v m v
m

v x t v t x vφ φ
=

, = = .∑  (4.12) 

where ρ  and v  are time-dependent nodal vectors and ρφ  and vφ  are 

nodal vectors of interpolation or shape functions, with the properties:  

 ( )
1

1
n

k
k

x x
ρ

ρφ
=

= ∀ ∈Ω∑  (4.13) 

 ( )
1

1
vn

v m
m

x xφ
=

= ∀ ∈Ω∑  (4.14) 

L  x  0  

Ω  
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For simplicity in the treatment of the boundary conditions, it is 

also required for the interpolation function to be equal to unity at the 

reference node, and to be equal to zero at the rest of the nodes, this is:  

 ( ) for a density node located at positionk n k n nx xρφ δ=  (4.15) 

 ( ) for a velocity node located at positionv m n m n nx xφ δ=  (4.16) 

In Eq. (4.15), k nδ  is the Kronecker’s delta ( 1k nδ =  if k n= , 0k nδ =  

otherwise).  

The representation of the flow fields in terms of nodal values and 

interpolation functions allows to define the corresponding values at any 

position, so it is possible to calculate univocally all the integrals 

corresponding to the state equations; this is not evident for other 

methodologies like Finite Differences or Finite Volumes, where only 

nodal values are defined and additional considerations must be made in 

order to integrate the differential equations. Besides, the chosen 

representation can make use of the considerable amount of 

computational tools already available for the popular Finite Element 

Method.  

 

4.3.2. Integrated variables 

 

A nodal vector of mass is defined, related to the nodal vector of 

density as:  

 m ρ ρ= Ω .  (4.17) 

where the diagonal volume matrix ρΩ  associated to the density is 

defined as:  

 k k nk nρ ρ δ 
 
 
Ω = Ω  (4.18) 

where:  
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 k k dxρ ρφ
Ω

Ω = ∫  (4.19) 

 

The system mass m  is related to the corresponding nodal vector 

as follows:  

 
1

n

k
k

m dx m
ρ

ρ
Ω

=

= =∑∫  (4.20) 

 

4.4. System integration 

 

4.4.1. Kinetic energy 

 

The system kinetic energy T  is defined as:  

 vT T dx
Ω

= ∫  (4.21) 

From Eq. (4.12) and (4.21), it can be easily shown that the system 

kinetic energy can be expressed as the following bilinear form:  

 
1

2
TT M vv= . .  (4.22) 

where M  is the system inertia matrix (size Vn , symmetric and regular):  

 ( ) v m v nmn
dxM ρ φ φ

Ω
= ∫  (4.23) 

The following potentials are defined:  

 ( ) ( )1T
K v dx

m
ρ ρκ φ

−

Ω

∂ Ω= = .
∂ ∫  (4.24) 

 ( ) v v

T
q m v q dx M v

v
φ

Ω

∂, = = = .
∂ ∫  (4.25) 

where K  and q  are correspondingly nodal vectors of kinetic energy per 

unit vehicle and vehicle momentum.  

As in the continuum formulation, it can be shown that the 

Maxwell relations also holds for the nodal vectors of potentials:  
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 ( )1
T

v

qK
v dx

v m
ρ ρφ φ

−

Ω

∂ ∂ Ω= = . ∂ ∂ 
∫  (4.26) 

It is important to notice that Eq. (4.25) defines, in the bond graph 

terminology, a modulated multibond transformer relating the nodal 

vectors of velocity and vehicle momentum, as shown in Fig. 4.2. 

According to the power conservation across the transformer, the 

generalized effort F  is given by:  

 

  

 

 

 

 

Fig. 4.2. Modulated transformer relating nodal vectors of velocity and vehicle 

momentum. 

 

 F M v= . ɺ  (4.27) 

According to Eq. (4.25), the nodal vector of vehicle momentum 

can be regarded as a system integral of the local values weighted by the 

velocity interpolation function. It can be easily shown that the system 

vehicle momentum Q  can be obtained as:  

 
1

Vn

v m
m

Q q dx q
Ω

=

= =∑∫  (4.28) 

According to Eq. (4.24), the nodal vector K  can be regarded as a 

system domain average of the corresponding local values, weighted by 

the interpolation functions. Therefore, it is important to realize that the 

values of the nodal vectors may be different from the corresponding 

values calculated with the local variables at the nodal positions.  

The time derivative of the system kinetic energy can be written 

as:  

MTF
F  

v  

vɺ  

q  

M  
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TT qT m vK= . + .ɺ ɺ ɺ  (4.29) 

 

It can also be shown that the volume integrals of the right side 

term of Eq. (4.7) can be calculated as:  

 
Tdx mK

t

ρκ
Ω

∂ = .
∂∫ ɺ  (4.30) 

 
T

v

v
qq dx v

tΩ

∂ = .
∂∫ ɺ  (4.31) 

 

4.4.2. System IC -field 

 

Equation (4.21), constitutive relations (4.24) and (4.25) and 

Maxwell relation (4.26) define a multibond IC -field associated to the 

system kinetic energy, as shown in Fig. 4.3. The generalized effort 

variables are K  and vɺ , while the generalized flow variables are 

correspondingly mɺ  and q  .  

 

 

 

 

 

Fig. 4.3. System IC -field representing kinetic energy storage. 

 

In Fig. 4.3, the generalized effort and flow of the multibonds 

connected to the capacitive and inertial ports are nodal vectors whose 

elements are scalar variables; these types of multibonds are equivalent 

to n  single bonds, as shown in Fig. 4.4.  

IC  

K  

mɺ  

vɺ  

q  
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Fig. 4.4. Multibond with nodal vector of scalar variables (a), equivalent to n  single 

bonds (b). 

 

4.4.3 Resistance field 

 

The l -element of the resistance force is:  

 R l v l

v
F dxρ φ

τΩ
= ∫  (4.32) 

The discretization for the velocity field is:  

 ( ) ( ) ( )
1

vn

m v m
m

v x t v t xφ
=

, =∑  (4.33) 

Substituting, we have:  

 
1 1

v vn n

R l m v l v m Rlm m
m m

F v dx F v
ρ φ φ
τΩ

= =

 = = 
 

∑ ∑∫  (4.34) 

where:  

 R lm v l v mF dx
ρ φ φ
τΩ

= ∫  (4.35) 

This represents a R -field with resistance causality (efforts are a 

function of flows), as shown in Figure 5. In this case, the coefficients R lmF  
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of the linear relation (4.34) are modulated by the density. The matrix 

relation for the field is:  

 R RF F v= .  (4.36) 

where the elements of the square matrix RF  are defined by (4.35).  

 

Fig.4.5. Resistance field 

 

4.5. State equations 

 

4.5.1. Mass port 

 

Nodal density weight functions ( )kw x tρ ,  are introduced, with the 

following properties:  

 ( )
1

1
n

k
k

w x t x t
ρ

ρ
=

, = ∀ ∈Ω,∀∑  (4.37) 

 ( ) for a density node located at positionk n k n nw x t xρ δ, =  (4.38) 

The nodal density weight functions are introduced to satisfy the 

power interchanged by the system through the boundary conditions, as 

well as to share the importance of different power terms among 
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neighboring nodes. These functions can be used to introduce schemes in 

the numerical solution.  

As it is done in the Petrov-Galerkin method [Cuv 86], each term of 

the mass balance equation (4.8) is multiplied by the test function kwρ ; 

then, the resulting terms are integrated over the domain Ω  and Green’s 

theorem is applied whenever necessary, obtaining:  

 
( )

B B KK m W W WΓ. = + +ɺ  (4.39) 

where the different nodal vectors of power are:  

 ( ) ( )( )

0
B

L
W w v w vρ ρκ ρ κ ρΓ  = − −  

 (4.40) 

 B

w
W v dx

x

ρ κ ρ
Ω

∂
=

∂∫  (4.41) 

 
2

K

v
W w v dx

xρ ρ
Ω

∂=
∂∫  (4.42) 

Alternatively, it can be written:  

 ( )
B B Km m m mΓ= + +ɺ ɺ ɺ ɺ  (4.43) 

where the different nodal vectors of mass rates are:  

 
1 ( )( )

B BK Wm
− ΓΓ = .ɺ  (4.44) 

 
1

B BK Wm
−= .ɺ  (4.45) 

 
1

K KK Wm
−= .ɺ  (4.46) 

The square matrix K  (size nρ ) is defined as:  

 ( ) 1
k jk j

j

w dxK ρ ρ
ρ

κ φ
Ω

=
Ω ∫  (4.47) 

The nodal vector K  is related to the corresponding matrix as:  

 ( )
1

n

j k j
k

K K
ρ

=

=∑  (4.48) 
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Taking into account Eq. (4.48) it can be verified that the product 

T
XmK ⋅ ɺ , where Xmɺ  is any nodal vector of mass rate, recovers the 

corresponding power term integrated in the system. So, the product 

( )T
BmK Γ⋅ ɺ  recovers the power due to the flux of free kinetic energy 

through the system boundary, while 
T

BmK ⋅ ɺ  is a power term that 

vanishes, because of Eq.(4.37). Notice that ( )
B km Γ
ɺ  may be nonzero only for 

the nodes located at the system boundary. Making the product of K  

times Eq.(4.43), it can be easily shown that the integral density balance 

equation is satisfied, this is:  

 ( ) ( ) 2

0L

v
dx v dx vdxv v

t x

ρκ ρ κρκ ρ κ ρ
Ω Ω Ω

∂ ∂= − + + +
∂ ∂∫ ∫ ∫  (4.49) 

 

4.5.2. Velocity port 

 

As it is done in the Galerkin method [Cuv 86], the momentum 

conservation equation is multiplied by the test function v mφ  and 

integrated over the domain Ω , obtaining:  

 E G R KM v F F F F. = + − −ɺ  (4.50) 

where:  

 e
E v

v
F dxρ φ

τΩ

 =  
 

∫  (4.51) 

 G vF G dxρ φ
Ω

= ∫  (4.52) 

 R v

v
F dxρ φ

τΩ
= ∫  (4.53) 

 K v

v
F v dx

x
ρ φ

Ω

∂=
∂∫  (4.54) 

Alternatively, it can be written:  

 
1

E G R KMv F F F F
−  

 
 

= . + − −ɺ  (4.55) 
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Adding the nodal components of Eq. (4.50) it can be easily shown 

that the integral velocity equation is satisfied, this is:  

 ev v v v
dx G v dx

t x
ρ ρ

τΩ Ω

∂ − ∂ = + − ∂ ∂ 
∫ ∫  (4.56) 

Since the interpolation function were chosen as test functions, the 

product 
T

XF v. , where XF  is any nodal vector of force, recovers the 

corresponding power term integrated in the system. Making the product 

of Eq. (4.50) times v , it can be easily shown that the integral velocity 

balance equation is satisfied, this is: 

 e
v

v v v v
q dx v G v dx

t x
ρ

τΩ Ω

∂ − ∂ = + − ∂ ∂ 
∫ ∫  (4.57) 

 

4.6.  Coupling matrices 

 

Once defined the generalized effort and flow variables, it is 

necessary to represent the power coupling, appearing in the balance 

equations, to a discretized level. This representation is performed 

through a coupling matrix, which relates generalized nodal variables 

whose product gives rise to power terms appearing in a pair of 

multiports. Since the nodal vectors may have different size, the coupling 

matrix is rectangular, thus setting a restriction in the allowable 

causalities. 

 

4.6.1.  Coupling between the velocity and mass ports 

 

From Eq. (4.46) and (4.54):  

 
1

K KK M vm
 −
 
 
 

= . .ɺ  (4.58) 
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1

T

K KKF M K
 −
 
 
 

= . .  (4.59) 

where KM  is a rectangular matrix ( nρ  rows and Vn  columns) defined as:  

 ( )K k v mk m

v
M w v dx

xρ φ ρ
Ω

∂=
∂∫  (4.60) 

Eq. (4.58) and (4.59) define a multibond transformer modulated 

by the state variables, as shown in Fig. 4.6.  

 

Fig. 4.6. Modulated transformer coupling the velocity and mass ports. 

 

4.7. System Bond Graph 

 

The system Bond Graph is shown in Fig. 4.7. Kinetic energy 

storing is represented by a IC - field.  

At the 0 -junction with common K  all the nodal mass rates are 

added; in this way, the flow balance represents the mass conservation 

equations for the nodal mass values. At the 1 -junction with common v  

all the nodal forces are added; in this way, the effort balance represents 

the momentum conservation equations for the nodal velocity values.  
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Fig. 4.7. Bond graph for the two-equation traffic flow model. 

 

4.8. Initial and boundary conditions 

 

4.8.1. Initial conditions 

 

In order to solve the state equations, it is needed to set initial and 

boundary conditions. The nodal initial values may be readily specified as:  

 ( ) 00m t m= =  (4.61) 

 ( ) 00v t v= =  (4.62) 

 

Alternatively, if spatial functions ( )0 xρ  and ( )0v x  are specified 

for the initial time for density and velocity, the nodal values must be 

determined in order to conserve the system mass and momentum. In 

this case, it can be easily shown that:  
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 ( )0 0k km x dxρρ φ
Ω

= ∫  (4.63) 

 
( ) ( )

( )
0 0

0

0

v m

m

v m

x v x dx
v

x dx

ρ φ

ρ φ
Ω

Ω

= ∫
∫

 (4.64) 

 

4.8.2. Boundary conditions 

 

The boundary conditions establish relationships among the 

variables corresponding to the nodes located at the system boundary 

and can be regarded (in the bond graph methodology) as the input 

variables. It is necessary, for the model being mathematically well 

defined, that the boundary conditions allow determining the causality 

for all the bonds in the resulting bond graph. The boundary conditions 

are introduced through the bonds corresponding to the superficial 

source terms ( )
Bm Γ
ɺ .  

It is worth noting that, since the interpolation functions are zero 

at the boundary for inner nodes, causality is assigned by definition at 

these bonds. Thus, zero-flow sources are connected to an inner ( )
B km
Γ
ɺ , and 

these bonds could be removed from the graph.  

Since the two-equation model is second order, it is possible to 

establish boundary conditions in both 0x =  and x L= , being possible 

the treatment of problems in which boundary conditions are established 

at both ends (stop-and-go problems).  

 

4.9. Integrated variables 

 

We set linear shape functions for density and velocity, as well as 

linear weight functions for density. For simplicity, we consider 

vn n nρ = =  and regular grid of spacing h  for an inner node (1 l n< < ), 

and 
2

h
 for the first and last nodes.  
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4.9.1. Shape and weight functions 

 

4.9.1.1. Inner node 

For an inner node, we consider the following shape and weight 

functions (see Figure 4.8):  

 

 

 

 

 

 

 

 

 

Fig.4. 8. Shape and weight functions for an inner node  

(shape function is shown in continuous line). 

  

 

0

1 0

1 0

1 0

0

l vl l

x h

x
h x

h
w x

x
x h

h
x h

ρ ρφ φ

≤ −

 + − < <

= = = =

 − < <

 ≥

 (4.65) 

l  

1+lVϕ
 lVϕ

 1−lVϕ
 1 

 

1+l  

2
h

 

1−l  x  

h  

2
h

 

h  
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0

1
0

1
0

0

l v l l

x h

h x
hw

x x x
x h

h

x h

ρ ρφ φ

≤ −


 − < <

∂ ∂ ∂ 
= = = ∂ ∂ ∂ 

− < <


 ≥

 (4.66) 

As:  

 
1

n

l l
l

ρρ ρ φ
=

=∑  (4.67) 

 
1

n

l v l
l

v v φ
=

=∑  (4.68) 

it is obtained, for h x h− ≤ ≤ : 

 

1

1

1 0

1 0

l l

l l

x x
h x

h h

x x
x h

h h

ρ ρ
ρ

ρ ρ

−

+

  − + + − < < 
  = 

  − + < <   

 (4.69) 

 

1

1

1 0

1 0

l l

l l

x x
v v h x

h h
v

x x
v v x h

h h

−

+

  − + + − < < 
  = 

  − + < <   

 (4.70) 

As:  

 
1

n
l

l
lx x

ρφρ ρ
=

∂∂ =
∂ ∂∑  (4.71) 

 
1

n
v l

l
l

v
v

x x

φ
=

∂∂ =
∂ ∂∑  (4.72) 

it is obtained, for h x h− ≤ ≤ :  
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1

1

0

0

l l

l l

h x
h

x
x h

h

ρ ρ
ρ

ρ ρ

−

+

− − < <∂ =  −∂  < <


 (4.73) 

 

1

1

0

0

l l

l l

v v
h x

v h
v vx

x h
h

−

+

− − < <∂ =  −∂  < <


 (4.74) 

 

4.9.1.2. First node 

 

For the first node (see Figure 4.9) it results:  

 

 

 

 

 

 

 

 

 

Fig. 4.9. Shape and weight functions for the first node  

(shape function is shown in continuous line) 

 

 1 1 1

1 0

0
v

x
x h

w h
x h

ρ ρφ φ
 − ≤ <= = = 
 ≥

 (4.75) 

 
1 1 1

1
0

0

v w x h
h

x x x
x h

ρ ρφ φ ∂ ∂ ∂ − < <= = = ∂ ∂ ∂  ≥

 (4.76) 
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 1 21 0
x x

x h
h h

ρ ρ ρ = − + < < 
 

 (4.77) 

 1 21 0
x x

v v v x h
h h

 = − + < < 
 

 (4.78) 

 2 1 0 x h
x h

ρ ρ ρ∂ −= < <
∂

 (4.79) 

 2 1 0
v v v

x h
x h

∂ −= < <
∂

 (4.80) 

 

4.9.1.3. Last node 

 

For the last node (see Figure 4.10) it results:  

 

 

 

 

 

 

 

 

 

Fig. 4.10. Shape and weight functions for the last node  

(shape function is shown in continuous line). 

 

 

0

1 0n v n n

x h
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h x
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≤ −

= = =  + − < <

 (4.81) 

 

nVϕ

 

1−nVϕ
 

1 

 

x  

n  

h  

2
h

 



 

 
 

147 Chapter 4. Transport equations modeled by CFD 

 

0

1
0

n v n n

x h
w

x x x h x
h

ρ ρφ φ ≤ −∂ ∂ ∂ = = = ∂ ∂ ∂ − < <

 (4.82) 

 1 1 0n n

x x
h x

h h
ρ ρ ρ−

 = − + + − < < 
 

 (4.83) 

 1 1 0n n

x x
v v v h x

h h−
 = − + + − < < 
 

 (4.84) 

 1 0n n h x
x h

ρ ρ ρ −∂ −= − < <
∂

 (4.85) 

 1 0n nv v v
h x

x h
−∂ −= − < <

∂
 (4.86) 

 

4.9.2. Diagonal volume matrix 

 

 (1 )l h l nρΩ = < <  (4.87) 

 1

1

2n hρ ρΩ = Ω =  (4.88) 

 

 

4.9.3. Nodal vector of mass 

 

 (1 )l lm h l nρ= < <  (4.89) 

 1 1

1

2
m h ρ=  (4.90) 

 
1

2n nm h ρ=  (4.91) 
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4.9.4. Inertia matrix 

 

For the inner node, we have: 

 ( )1, 1 112

h

l l vl vl l lh

h
M dxρφ φ ρ ρ− − −−

= = +∫  (4.92) 

 ( )2
, 1 16

12

h

l l vl l l lh

h
M dxρφ ρ ρ ρ− +−

= = + +∫  (4.93) 

 ( )1, 1 112

h

l l vl vl l lh

h
M dxρφ φ ρ ρ+ + +−

= = +∫  (4.94) 

  For the first and last nodes, we have: 

 ( )2
1,1 1 1 20

3
12

h

v

h
M dxρφ ρ ρ= = +∫  (4.95) 

 ( )2,1 1 2 1 20 12

h

v v

h
M dxρφ φ ρ ρ= = +∫  (4.96) 

 ( )1, 1 112

h

n n vn vn n nh

h
M dxρφ φ ρ ρ− − −−

= = +∫  (4.97) 

 ( )0 2
, 1 3

12n n vn n nh

h
M dxρφ ρ ρ−−

= = +∫  (4.98) 

The nodal vector of vehicle momentum results, for an inner node:  

 1, 1 , 1, 1l l l l l l l l l lq M v M v M v− − + += + +  (4.99) 

For the first and last nodes, we have: 

 1 1,1 1 1,2 2q M v M v= +  (4.100) 

 1, 1 ,n n n n n n nq M v M v− −= +  (4.101) 
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4.9.5. Nodal vectors of potentials 

 

The nodal vector of kinetic energy per unit vehicle results, for an 

inner node:  

 

2

2
0

1

2

10

1 1

2

1 1
1 1

2

1 1
1 1

2

h

l lh

l lh

h

l l

K v dx
h

x x x
v v dx

h h h h

x x x
v v dx

h h h h

ρφ
−

−−

+

= =

    = − + + +    
    

    + − + −    
    

∫

∫

∫

 (4.102) 

 ( )2 2 2
1 1 1 1

1
2 6 2

24l l l l l l l lK v v v v v v v− − + += + + + +  (4.103) 

For the first and the last nodes, we have: 

 ( )2 2 2
1 1 1 1 2 20

2 1 1
3 2

2 12

h
K v dx v v v v

h ρφ= = + +∫  (4.104) 

 ( )0 2 2 2
1 1

2 1 1
2 3

2 12n n n n n nh
K v dx v v v v

h ρφ − −−
= = + +∫  (4.105) 

 

4.9.6. State equations, mass port 

 

4.9.6.1. Matrix K  

For an inner node (1 l n< < ):  

 ( ) 0 2
1 11

1 1 1

2l l l ll l h
l

w dx v w dxK
hρ ρ ρ ρ

ρ

κ φ φ− −− , Ω −
= =

Ω ∫ ∫  (4.106) 

As 1 1l lw wρ ρ− = −  for ( 0h x− ≤ ≤ ), it results:  
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( ) ( )0 2

1

2
0

1

1 1
1

2

1 1
1 1

2

l ll l h

l lh

v w dxK
h

x x x x
v v dx

h h h h h

ρ ρφ
− , −

−

= − =

      = − + + − +      
      

∫

∫
 (4.107) 

 ( ) ( )2 2
1 11,

1
3 4 3

120 l l l ll l
K v v v v− −−

= + +  (4.108) 

 

( ) 2

2 2
0

1

2 2

10

1 1 1

2

1 1
1 1

2

1 1
1 1

2

h

l l l ll l h
l

l lh

h

l l

w dx v w dxK
h

x x x
v v dx

h h h h

x x x
v v dx

h h h h

ρ ρ ρ ρ
ρ

κ φ φ
, Ω −

−−

+

= = =
Ω

    = − + + + +    
    

    + − + −    
    

∫ ∫

∫

∫

 (4.109) 

 ( ) ( )2 2 2
1 1 1 1,

1
3 12 3

60 l l l l l l ll l
K v v v v v v v− − + += + + + +  (4.110)  

 ( ) 2
1 11 0

1 1 1

2

h

l l l ll l
l

w dx v w dxK
hρ ρ ρ ρ

ρ

κ φ φ+ ++ , Ω
= =

Ω ∫ ∫  (4.111) 

As 1 1l lw wρ ρ+ = −  for ( 0 x h≤ ≤ ), it results:  

 

( ) 2

1 0

2

10

1 1
(1 )

2

1 1
1 1

2

h

l ll l

h

l l

v w dxK
h

x x x x
v v dx

h h h h h

ρ ρφ
+ ,

+

= −

    = − + −    
    

∫

∫
 (4.112) 

 ( ) 2 2
1 11

1
3 4 3

120 l l l ll l
v v v vK  

 + ++ ,  
= + +  (4.113) 

It is verified:  

 ( ) ( ) ( )1 1 ll l l l l l
KK K K

− , , + ,
+ + =  (4.114) 

For the first node:  
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( ) 2
1 1 1 11 1 0

1

2 2

1 20

1 2 1

2

2 1
1 1

2

h

h

w dx v w dxK
h

x x x
v v dx

h h h h

ρ ρ ρ ρ
ρ

κ φ φ
, Ω

= =
Ω

    = − + −    
    

∫ ∫

∫

 (4.115) 

 ( ) ( )2 2
1 1 2 21 1

1
6 3

30
v v v vK

,
= + +  (4.116) 

 

( ) 2
2 1 2 12 1 0

1

2

2
1 1 1 20 0

1 2 1

2

2 1 2 1
(1 ) 1 1

2 2

h

h h

w dx v w dxK
h

x x x x
v w dx v v dx

h h h h h h

ρ ρ ρ ρ
ρ

ρ ρ

κ φ φ

φ

, Ω
= =

Ω

    = − = − + −    
    

∫ ∫

∫ ∫

(4.117) 

 ( ) ( )2 2
1 1 2 22 1

1
3 4 3

60
v v v vK

,
= + +  (4.118) 

It is verified:  

 ( ) ( ) 11 1 2 1
KK K

, ,
+ =  (4.119) 

For the last node:  

 

( ) 0 2

2 2
0

1

1 2 1

2

2 1
1 1

2

n n n nn n h
n

n nh

w dx v w dxK
h

x x x
v v dx

h h h h

ρ ρ ρ ρ
ρ

κ φ φ
, Ω −

−−

= =
Ω

    = − + + +    
    

∫ ∫

∫

 (4.120) 

 ( ) ( )2 2
1 1

1
3 6

30 n n n nn n
v v v vK − −,

= + +  (4.121) 

 

( ) 0 2
1 11

0 2

2
0

1

1 2 1

2

2 1
(1 )

2

2 1
1 1

2

n n n nn n h
n

n nh

n nh

w dx v w dxK
h

v w dx
h

x x x x
v v dx

h h h h h

ρ ρ ρ ρ
ρ

ρ ρ

κ φ φ

φ

− −− , Ω −

−

−−

= =
Ω

= −

     = − + + − +     
     

∫ ∫

∫

∫

 (4.122) 

 ( ) ( )2 2
1 11

1
3 4 3

60 n n n nn n
v v v vK − −− ,

= + +  (4.123) 
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It is verified:  

 ( ) ( )1 nn n n n
KK K

− , ,
+ =  (4.124) 

 

4.9.6.2. Nodal vector ( )
BW Γ  

 

For an inner node (1 l n< < ):  

 
( ) 0B lW Γ =  (4.125) 

For the first and last nodes:  

 
( ) 3
1 1 1 1 1 1

1

2BW v vκ ρ ρΓ = =  (4.126) 

 
( ) 31

2B n n n n n nW v vκ ρ ρΓ = − = −  (4.127) 

 

4.9.6.3. Nodal vector BW  

 

For an inner node (1 l n< < ):  

 

3

3
0

1 1

3

1 10

1

2

1 1
1 1

2

1 1
1 1

2

h hl l
B l h h

l l lh

h

l l l l

w w
W v dx v dx

x x

x x x x
l dx

h h h h h

x x x x
dx

h h h h h

ρ ρκ ρ ρ

ρ ρ ν ν

ρ ρ ν ν

− −

− −−

+ +

∂ ∂
= =

∂ ∂

      = − + + − + +      
      

      − − + − +      
      

∫ ∫

∫

∫

 (4.128) 

 

( )

( )

( )

3 2 2 3
1 1 1 1

3 2 2 2 2 3
1 1 1 1 1 1

3 2 2 3
1 1 1 1

1
4 3 2

40
1

4 2 3 3 2
40
1

2 3 4
40

B l l l l l l l l

l l l l l l l l l l l

l l l l l l l

W ν ν ν ν ν ν ρ

ν ν ν ν ν ν ν ν ν ρ

ν ν ν ν ν ν ρ

− − − −

− − − + + +

+ + + +

= + + +

+ + + − − −

+ − − − −

 (4.129) 
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For the first and last nodes:  

 

1 1 3
1 0 0

3

1 2 1 20

1

2

1 1
1 1

2 2

h h

B

h

w w
W v dx dx

x x

x x x x
dx

h h h h

ρ ρκ ρ ρν

ρ ρ ν ν

∂ ∂
= =

∂ ∂

      = − − + − +      
      

∫ ∫

∫
 (4.130) 

 

( )

( )

3 2 2 3
1 1 1 2 1 2 2 1

3 2 2 3
1 1 2 1 2 2 2

1
4 3 2

40
1

2 3 4
40

BW ν ν ν ν ν ν ρ

ν ν ν ν ν ν ρ

= − − − −

+ − − − −
 (4.131) 

 

0 0 3

3
0

1 1

1

2

1 1
1 1

2

n n
B n h h

n n n nh

w w
W v dx dx

x x

x x x x
dx

h h h h h

ρ ρκ ρ ρν

ρ ρ ν ν

− −

− −−

∂ ∂
= =

∂ ∂

      = − + + − + +      
      

∫ ∫

∫
 (4.132) 

 

( )

( )

3 2 2 3
1 1 1 1

3 2 2 3
1 1 1

1
4 3 2

40
1

2 3 4
40

B n n n n n n n n

n n n n n n n

W

v

ν ν ν ν ν ν ρ

ν ν ν ν ν ρ

− − − −

− − −

= + + +

+ + + +
 (4.133) 

 

4.9.6.4. Nodal vector KW  

 

For an inner node (1 l n< < ):  

 
( )

( )

2

2
0

1
1 1

2

1
1 10

1 1 1

1 1 1

h

K l lh

l l
l l l lh

h
l l

l l l l

v
W w v dx

x

v v x x x x x
v v dx

h h h h h h

v v x x x x x
v v dx

h h h h h h

ρ ρ

ρ ρ

ρ ρ

−

−
− −−

+
+ +

∂=
∂

−         = + − + + − + +        
        

−         + − − + − +        
        

∫

∫

∫

(4.134) 
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( ) ( )

( ) ( )
( ) ( )

( ) ( )

2 2
1 1 1 1

2 2
1 1 1

2 2
1 1 1

2 2
1 1 1 1

1
3 4 3

60
1

2 6 12
60

12 6 2

1
3 4 3

60

K l l l l l l l l

l l l l l l

l l l l l l l

l l l l l l l

W v v v v v v

v v v v v v

v v v v v v

v v v v v v

ρ

ρ

ρ

− − − −

− − −

+ + +

+ + + +

= − + +

+ − + +

+ − + + 

+ − + +

 (4.135) 

For the first and last nodes:  

 
2

1 10

h

K

v
W w v dx

xρ ρ ∂=
∂∫   

 

2

2 1
1 2 1 20

( )
1 1 1

hv v x x x x x
v v dx

h h h h h h
ρ ρ−         = − − + − +        

        
∫  (4.136) 

 

( ) ( )

( ) ( )

2 2
1 2 1 1 1 2 2 1

2 2
2 1 1 1 2 2 2

1
12 6 2

60
1

3 4 3
60

KW v v v v v v

v v v v v v

ρ

ρ

= − + +

+ − + +
 (4.137) 

 
0 2

K n nh

v
W w v dx

xρ ρ
−

∂=
∂∫   

 
( ) 2

0
1

1 11 1 1n n
n n n nh

v v x x x x x
v v dx

h h h h h h
ρ ρ−

− −−

−         = + − + + − + +        
        

∫ (4.138) 

 

( ) ( )

( ) ( )

2 2
1 1 1 1

2 2
1 1 1

1
3 4 3

60
1

2 6 12
60

K n n n n n n n n

n n n n n n n

W v v v v v v

v v v v v v

ρ

ρ

− − − −

− − −

= − + +

+ − + +
 (4.139) 
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4.9.7. State equations, velocity port 

 

4.9.7.1. Nodal vector RF  

 

We consider  as a constat. For an inner node (1 l n< < ):  

 
0

1 1

1 10

1
1 1 1

1
1 1 1

h

Rl vlh

l l l lh

h

l l l l

v
F dx

x x x x x
dx

h h h h h

x x x x x
dx

h h h h h

ρ φ
τ

ρ ρ ν ν
τ

ρ ρ ν ν
τ

−

− −−

+ +

=

        = − + + − + + +        
        

        + − + − + −        
        

∫

∫

∫

 (4.140) 

 ( ) ( ) ( )1 1 1 1 1 16
12 12 12Rl l l l l l l l l l l

h h h
F ρ ρ ν ρ ρ ρ ν ρ ρ ν

τ τ τ− − − + + += + + + + + + (4.141) 

For the first and last nodes:  

 

1 10

1 2 1 20

1
1 1 1

h

R v

h

v
F dx

x x x x x
dx

h h h h h

ρ φ
τ

ρ ρ ν ν
τ

=

        = − + − + −        
        

∫

∫
 (4.142) 

 ( ) ( )1 1 2 1 1 2 23
12 12R

h h
F ρ ρ ν ρ ρ ν

τ τ
= + + +  (4.143) 

 

0

0

1 1

1
1 1 1

R n v nh

n n n nh

v
F dx

x x x x x
dx

h h h h h

ρ φ
τ

ρ ρ ν ν
τ

−

− −−

=

        = − + + − + + +        
        

∫

∫
 (4.144) 

 ( ) ( )11 1
3

12 12R n n n n nn n

h h
F ρ ρ ν ρ ρ ν

τ τ−− −
= + + +  (4.145) 
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4.9.7.2. Nodal vector EF  

We assume as the equilibrium relation: 

 ( ) max
max

1ev v
ρρ

ρ
 

= − 
 

 (4.146) 

where maxv  and maxρ  are positive constants. 

For an inner node (1 l n< < ):  

 
h

e
E l v lh

v
F dxρ φ

τ−
= ∫   

 

0
max

1 1
max

max
1 10

max

1
1 1 1 1

1
1 1 1 1

l l l lh

h

l l l l

v x x x x x
dx

h h h h h

v x x x x x
dx

h h h h h

ρ ρ ρ ρ
τ ρ

ρ ρ ρ ρ
τ ρ

− −−

+ +

         = − + + − − + + +         
         

         + − + − − + −         
         

∫

∫

(4.147) 

 
( ) 2max

max 1 1 1 1
max

2 2
1 1

2 8 2 2
12

6 2

E l l l l l l l

l l l l

hv
F ρ ρ ρ ρ ρ ρ ρ

τρ

ρ ρ ρ ρ

− + − −

+ +

= + + − −

− − − 

 (4.148) 

For the first and last nodes:  

 1 10

h
e

E v

v
F dxρ φ

τ
= ∫   

 max
1 2 1 20

max

1
1 1 1 1

hv x x x x x
dx

h h h h h
ρ ρ ρ ρ

τ ρ
         = − + − − + −         

         
∫ (4.149) 

 ( ) 2 2max
1 max 1 2 1 1 2 2

max

4 2 3 2
12E

hv
F ρ ρ ρ ρ ρ ρ ρ

τρ
 = + − − +   (4.150) 

 
0

e
E n v nh

v
F dxρ φ

τ−
= ∫   

 
0

max
1 1

max

1
1 1 1 1n n n nh

v x x x x x
dx

h h h h h
ρ ρ ρ ρ

τ ρ− −−

         = − + + − − + + +         
         

∫ (4.151) 
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 ( ) 2 2max
max 1 1 1

max

2 4 2 3
12E n n n n n n n

hv
F ρ ρ ρ ρ ρ ρ ρ

τρ − − − = + − − −   (4.152) 

 

4.9.7.3. Nodal vector GF  for the SG model 

 

In the speed gradient (SG) model [Jia 02]:  

 
v

G c
x

∂=
∂

 (4.153) 

where c  (assumed constant) is the propagation speed of small 

perturbations.  

For an inner node (1 l n< < ):  

 
h

G l v lh

v
F c dx

x
ρ φ

−

∂=
∂∫   

 

0
1

1

1
10

1 1

1 1

l l
l lh

h
l l

l l

v v x x x
c dx

h h h h

v v x x x
c dx

h h h h

ρ ρ

ρ ρ

−
−−

+
+

−     = − + + +    
    

−     + − + −    
    

∫

∫
 (4.154) 

 ( ) ( ) ( )1 1 1 1 1 1

1 1 1
2 2

6 6 6G l l l l l l l l l lF c v c v c vρ ρ ρ ρ ρ ρ− − + − + += − + − − + +  (4.155) 

For the first and last nodes:  

 1 10

h

G v

v
F c dx

x
ρ φ∂=

∂∫   

 2 1
1 20

1 1
hv v x x x

c dx
h h h h

ρ ρ−     = − + −    
    

∫  (4.156) 

 ( ) ( )1 1 2 1 1 2 2

1 1
2 2

6 6GF c v c vρ ρ ρ ρ= − + + +  (4.157) 

 
0

G n v nh

v
F c dx

x
ρ φ

−

∂=
∂∫   
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0

1
1 1 1n n

n nh

v v x x x
c dx

h h h h
ρ ρ−

−−

−     = − + + +    
    

∫  (4.158) 

 ( ) ( )1 1 1

1 1
2 2

6 6G n n n n n n nF c v c vρ ρ ρ ρ− − −= − + + +  (4.159) 

 

4.9.7.4. Nodal vector KF  

 

For an inner node (1 l n< < ):  

 
h

K l v lh

v
F v dx

x
ρ φ

−

∂=
∂∫   

 

0
1

1 1

1
1 10

1 1 1

1 1 1

l l
l l l lh

h
l l

l l l l

v v x x x x x
v v dx

h h h h h h

v v x x x x x
v v dx

h h h h h h

ρ ρ

ρ ρ

−
− −−

+
+ +

−         = − + + − + + +        
        

−         + − + − + −        
        

∫

∫
(4.160) 

 

( ) ( )

( ) ( ) ( )

( ) ( )

1 1 1 1

1 1 1 1 1 1

1 1 1 1

1
3

12
1

12
1

3
12

K l l l l l l l l

l l l l l l l l l l

l l l l l l l

F v v v

v v v v

v v v

ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ

− − − −

− − + − + +

+ + + +

= − + + +  

+ + − − − +  

+ + + +  

 (4.161) 

For the first and last nodes:  

 1 10

h

K v

v
F v dx

x
ρ φ∂=

∂∫   

 2 1
1 2 1 20

1 1 1
hv v x x x x x

v v dx
h h h h h h

ρ ρ−         = − + − + −        
        

∫  (4.162) 

 

( ) ( )

( ) ( )

1 1 1 2 2 1 2 1

1 1 2 2 1 2 2

1
3

12
1

3
12

KF v v v

v v v

ρ ρ ρ ρ

ρ ρ ρ ρ

= − + + +  

+ + + +  

 (4.163) 
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0

K n v nh

v
F v dx

x
ρ φ

−

∂=
∂∫  

 
0

1
1 11 1 1n n

n n n nh

v v x x x x x
v v dx

h h h h h h
ρ ρ−

− −−

−         = − + + − + + +        
        

∫ (4.164) 

 

( ) ( )

( ) ( )

1 1 1 1

1 1 1

1
3

12
1

3
12

K n n n n n n n n

n n n n n n n

F v v v

v v v

ρ ρ ρ ρ

ρ ρ ρ ρ

− − − −

− − −

= − + + +  

+ + + +  

 (4.165) 

 

 

4.10. Implementation 

 

Considers the following parameters: 

 max max100 ; 0.25 ; 33 ; 10 ; 11h m veh m v m s s c m sρ τ= = = = =  (4.166) 

where  h – the length of the section; 

 c – the propagation speed of small perturbations; 

 τ - the reactive time; 

 max max, vρ - the maximal values for density and velocity. 

 

a) Comparison CFD and finite difference approach 

 

In order to compare the time evolution of density and velocity 

obtained from the 2-equation method using CFD approach and finite 

difference numerical method, we have chosen Matlab as simulation 

medium. 
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Scenario 1:  rarefaction wave 
 

Data: 

 
0.18 ; 0.0 ;

3 ; 30 ;
left right

left right

veh m veh m

v m s v m s

ρ ρ= =

= =
 (4.167) 

 

a) 

 

b) 

Fig. 4.11. Comparison CFD- FD: rarefaction wave.  

a) initial conditions 

b) values at t=60s 
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We consider the rarefaction wave, which appears in the case of a 

stop and go situation (red color) with the initial conditions presented in 

figure 4.11. a). The color change into green and the vehicles start to 

move to the right. We observe that after 60 seconds the shapes of the 

density and velocity are the same in finite differences (FD) as also in 

Computational Fluid Dynamic (CFD) approach (fig. 4.11. b)).   

 

Scenario 2:  shock wave 
 

Data: 

 
0.0 ; 0.15 ;

30 ; 7.5 ;
left right

left right

veh m veh m

v m s v m s

ρ ρ= =

= =
 (4.168) 

 
a) 
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b) 

 

Fig.4.12.  Comparison CFD- FD: shock wave.  

c) initial conditions 

d) values at t=40s 

 

 

When we have a queue of vehicles that produce in the back a 

shock wave, with initial conditions presented in figure 4.12.a), after 40 

second we obtain the graphic from figure 4.12.b). We have almost the 

same shape for the density and velocity in both cases with a little bump 

in the back of the front in the CFD approach. The bump appears due to 

the linear approximations used that have a 0C  continuity near the 

discontinuity. To overcome this problem artificial diffusivity is used [Bes 

85].  
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where nρ represent the number of elements. 

 We adjust the value of t∆  in order to get the right velocity of 

propagation of shock wave [Jia 02]. 
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 A smaller t∆  will determine a smaller bump with diffusion in the 

back front and a velocity smaller than the propagation velocity of shock 

wave. A higher t∆  will determine a higher bump, without diffusion in the 

back front and a higher velocity. 

We can say that the model obtained by CFD approach satisfies the 

main characteristics that a traffic flow model must fulfill.   

 

b) Problems in the development of simulation 

 

In simulation we met some problems concerning the apparition of 

singular matrices. In fluid dynamics, the field where the CFD approach is 

used, the density is considers to be different from zero on every segment 

so the matrices are matrices that have the entire diagonal element 

different from zero. In our application we met situation where we do not 

have vehicles on some sections thus the corresponding elements in the 

matrices are equal to zero conducting to singular matrices.  
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To overcome this problem we apply the following steps: 

1) we find the lines with all elements equal to zero and put one 

on the diagonal; 

2) we put the value from the previous step in the right vector of 

the system. 
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c) Further development 

 

As a further development we propose a structure composed by a 

number of elements that are concatenated to obtain the structure of the 

entire road. 

The decomposed structure of the entire road in bond graph 

representation is illustrated in fig. 4.13, where we chose only three cells. 

In theory, the number of cells should be infinite to have a perfect 

representation of the distributed phenomena. Each section has the same 

structure which can be called “generic”. 

  

Section1

RO_V

Section3

R
R

1

K_1
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MSf
MSf1

1Section2 1
PulsePulse1

 

 
Fig.4.13. Three sections model 

 

At the section level the structure is represented in fig. 4.14, where 

can be found the different bond graph elements presented before. 
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Fig. 4.14. Bond Graph structure for one section 

 

The models will be simulated using 20 sim software.  

 

 

 

4.11. Conclusions 

 

This chapter addresses the theoretical development of a bond 

graph approach for representing the two-equation traffic model. The 

state equations are obtained in terms of the state variables, which result 

from nodal values of mass and velocity.  

The set of generalized effort and flow variables was derived based 

on energy considerations, while the state equations are obtained as a 

Petrov-Galerkin formulation for the mass port and a Galerkin 

formulation for the velocity port; as a consequence, the computational 

tools developed for the Finite Element Method, as well for other 

numerical methods, can be used to solve the resulting state equations.  

 The state model derived from CFD approach can be used for 

control designing purpose. It is of infinite dimension and has to be 

reduced to a finite one. The reduced dimension can be determined by 

simulating the model with an increasing number of sections, until the 

results will be stabilized. 
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 Some limitations in the simulation have been pointed out. They 

are due to the fact that some singularities appear in the matrices to be 

inverted, due to null values of density or velocity which may occur 

during the simulation. Specific algorithms have to be developed to solve 

this problem and allow simulations in all cases. 
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Conclusions - Future developments 

 

 

 

 

 

 

 

Modeling and simulation of distributed parameter systems are 

heavy tasks. Approximations have to be performed either on the PDE 

model itself or on its solution for simulation purpose. 

The objectives of the thesis were to combine PDE models and 

bond graph approach, with application to traffic flow. 

In chapter 1, some classical methods used for approximation of 

partial differential equations are recalled and the corresponding bond 

graph model is designed. For each of them advantages and drawbacks 

are presented. 

In the second chapter, the port-Hamiltonian approach for 

distributed parameter system is presented. 

The port Hamiltonian system has been used in the representation 

of the distributed parameter systems. Through the example of the 

telegrapher’s equation, we have shown [Che 09] that using a special form 

of discretization for space we made the calculation only on one element, 

considered as local and then concatenating the elements we can 

calculate the entire line of transmission. 

The port Hamiltonian system is derived from the energy function 

(Hamiltonian), which is usually a good Lyapunov function, used in 

control. 

In the third chapter, the main models used for traffic flow 

representation are presented and some of them are implemented in 

simulation. A comparison is done on one hand on different numerical 
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methods applied on the first class of models (1-equation model) and on 

the other hand between 1-equation and 2- equation models. 

In chapter 4, we have proposed an original approach extending 

Computational Fluid Dynamics bond graph representation to traffic flow, 

using Jiang’s model [Jia 02]. 

A theoretical development of a bond graph approach for 

representing the two-equation traffic model was developed. The state 

equations were obtained in terms of the state variables, which resulted 

from nodal values of mass and velocity.  

The set of generalized effort and flow variables was derived based 

on energy considerations, while the state equations are obtained as a 

Petrov-Galerkin formulation for the mass port and a Galerkin 

formulation for the velocity port; as a consequence, the computational 

tools developed for the Finite Element Method, as well for other 

numerical methods, can be used to solve the resulting state equations.  

 Regarding the CFD approach, some work are still to be done: 

- development of a solver algorithm dealing with singularities in 

matrices; 

- determination of the right number of sections to use to have a 

stabilized solution; 

- more precise study on velocity and comparison with LWR model in 

different scenarios.  

 

Further developments in the area of traffic flow study are wide 

and promising: 

- the proposed CFD bond graph model concerns a road, it has now to 

be extended to crossing sections; 

- the road is supposed to be single line. It could be extended to two 

line road as highway; 

- we supposed that we have the same type of vehicles. It could be 

extended considering different types of vehicles, with different 

velocities; 
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- the road is supposed to be without ramp. We can study the case 

where we have a  entry/exit ramp; 

- the model is an open loop model, with no perturbations. A control 

strategy [Nak 05a], [Nak 05b], [Nak 07], linked to traffic flow 

objectives, has to be studied. The state space model derived from 

bond graph can be used.  
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Appendices 1 

 

1.1. The weak formulation [Red 93] 

 

The development of weighted-integral statement of a differential 

equation is made to have N linearly independent algebraic relations 

among the coefficient ib of the approximation: 

 0
1

( ) ( )
N

N i i
i

u U b x xφ φ
=

≈ = +∑  (A.1.1) 

This is accomplished by choosing N linearly independent weight 

functions in the integral statement. 

To develop the weak form there are three steps that must be 

followed: 

1) To express the original equation in the weighted-integral or 

weighted-residual statement. 

We make this by moving all expressions to one side, multiplying 

the entire equation by a function w , called the weight function and 

integrating over the domain ( )0,LΩ = . 

If we consider the equation (A.1.2): 

 ( ) ( )
d du

EA x q x x
dx dx
 − = ∀ ∈Ω 
 

 (A.1.2) 

 0 0(0) ,
x L

du
u u EA Q

dx =

= =  (A.1.3) 

we have: 

 
0

0 ( )
L d du
w EA x q dx

dx dx

  = − −    
∫  (A.1.4) 

 The integral statement allows us to choose N linearly independent 

functions for w  and obtain N equations for 1 2, ,....., Nb b b . The weight 

function can be any nonzero integral function. 
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2) The approximation functions iφ  must be of the form that make 

NU  differentiable as many times as called for in the original differential 

equation and satisfies the specified boundary conditions. 

 If the differentiation is distributed between the approximate 

solution NU  and the weight function w , the resulting integral form will 

require weaken continuity conditions on jφ , and hence the weighted-

integral statement is called the weak form. The weak formulation has 

two characteristics: it requires weaker continuity of the dependent 

variable and the natural boundary conditions of the problem are 

included in the weak form, and therefore the approximate solution NU  is 

required to satisfy only the essential boundary conditions of the 

problem. 

 Integrating first term by parts we obtain: 

 
0

0
0

0 ( )

( ) ( )

L

L
L

d du
w EA x wq dx

dx dx

dw du du
EA x wq dx wEA x

dx dx dx

   = − −      

   = − −      

∫

∫
 (A.1.5) 

 To identify the natural and essential boundary conditions we 

must do the following: 

 After completing step 2, we must examine all boundary terms of 

the integral statement, which will involve both the dependent variable 

and the weight function. 

  Coefficient of the weight function and its derivative on the 

boundary expression constitutes the natural boundary conditions NBC. 

In our case ( )
du

EA x
dx

 
 
 

. 

 The dependent variable of the problem, expressed in the same 

form as the weight function appearing in the boundary term, constitutes 

the essential boundary conditions (EBC). 

 The weak form is: 
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( ) ( )

0
0

0
0

00

0 ( ) ( )

( ) ( )

( )

( )

L
L

L

x

x

x

x L

L

L

dw dv du
EA x wq dx wEA x

dx dx dx

dw du du
EA x wq dx wEA x n

dx dx dx

du
wEA x n

dx

dw du
EA x wq dx wQ wQ

dx dx

=

=

   = − −      

   = − −   
   

 −  
 

 = − − − 
 

∫

∫

∫

 (A.1.6) 

where xn -cosine of the angle between the x axis and the normal to the 

boundary. 

3) To impose in the weak formulation the boundary conditions of 

the problem under consideration. 

 (0) 0w =  because  0(0)u u=  

 Since (0) 0w = and 0( ) ( )
x L

du
Q L EA x Q

dx =

 = = 
 

, (A.1.6) reduces to 

the expression: 

 00
0 ( ) ( )

L dw du
EA x wq dx w L Q

dx dx
 = − − 
 ∫  (A.1.7) 

With the weak formulation we pass from a punctual formulation, 

where u is an application defined on the space of continuum derivable 

functions, named classical formulation, to a formulation where we 

rewrite the relations between functions through integrals. 

The weak formulation uses an approximation of the unknown 

variable using a base of functions, named base functions or form 

functions in finite element approximation or projection function in the 

case of spectral methods.  It simplifies the problem giving equivalent to 

initial problem new equations. 

When we have a problem with multiple dimensions, to reduce the 

derivation order of one unity, we apply the Green formula, which is the 

generalization for multiple dimensions of the integration by parts 

formula: 
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 ( )
ix

i i

w u
u d wd uw n d

x xΩ Ω ∂Ω

∂ ∂Ω = − Ω + ⋅ ∂Ω
∂ ∂∫ ∫ ∫  (A.1.8) 

where 
ixn  is the normal to ∂Ω  in the ix  direction.  

 The integration by parts form is: 

 [ ]
b b

b

a
a a

u u
u dx wdx uw

x x

∂ ∂= − +
∂ ∂∫ ∫  (A.1.9) 

Starting from the weak formulation, the approximation methods 

like finite elements and spectral methods give a general approximation 

of the variable u using the two relations and put the approximation 

under the form 
0

( , ) ( ) ( )
N

N i i
i

u x t b t xφ
=

=∑ , where iφ  are used as basis 

functions. 

The new unknowns are now the ib  which are found solving the 

new system: 

 i iKb F=  (A.1.10) 

where K and F depend by iφ  and w .    

 

 

1.2. The Bond Graph [Kar 90] 

 

A bond graph is composed of bonds (half arrows and elements). 

The bonds carry 2 variables, effort variable e and flow variable f whose 

product P=ef is the instantaneous power carried by the bond. 

 

Passive elements 

 

They can be elements which dissipate energy as heat or store 

energy. 

The 1-port resistor is represented by R: 
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There is a static relation between effort and flow variables. It is a 

energy dissipative element.  

The constitutive relation between e and f is: 

 
(e,f)=0 or e-R f=0 in the linear case

Power e f
RΦ ⋅

= ⋅
 (A.1.11) 

 An electrical resistor, a mechanical damper or dashpot, porous 

plug in fluid lines, and other analogous passive elements can be 

represented using this element. 

 

The 1-port capacitor is represented by C: 

 

There is a static constitutive relation between an effort (e) and a 

displacement (q). It is an element which stores and gives up energy 

without loss. 

 
t

q fdt
−∞

= ∫  (A.1.12) 

 ( , ) 0C e fdtΦ =∫  (A.1.13) 

In physical terms, the analogy is a spring, a torsion bar, an 

electrical capacitor, a gravity tank or an accumulator. 

  

 The 1-port inertial is represented by I: 

 

It is a storage energy element, characterized by a static 

constitutive law between the flow (f) and the momentum (p).  
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t

p edt
−∞

= ∫  (A.1.14) 

 ( ), 0I edt fΦ =∫  (A.1.15) 

It is used to model inductance in electrical systems and mass or 

inertia effects in mechanical or fluid systems. 

 

Active elements 

 

The source is used to supply power to the model and impresses 

either an effort or a flow. We have effort source ( eS ) and flow source 

( fS ):  

 

 

Junction elements 

 

They are used to connect passive and active elements. They are 

power conservative. 

The 2-port transformer element is represented by TF: 

 

The constitutive laws to dimension the modulus m are: 

 
1 2

2 1

e me

f mf

=
=

 (A.1.16) 

It can represent an electrical transformer, a rigid lever or a 

hydraulic ram. 
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In the same class of elements we find the 2-port gyrator 

represented by GY: 

 

The constitutive laws to dimension r are: 

 
1 2

2 1

e rf

e rf

=
=

 (A.1.17) 

 

It is used in motor models or for physical domain change without 

power loss. 

 

The 0-jonction or common effort junction it is characterized by 

the properties: 

-the efforts on all bonds are identical; 

-the algebraic sum of all flows always vanishes.    

 

1 2

1

.....

0

n

n

i
i

e e e

f
=

= = =

=∑
 (A.1.18) 

 

 

The 1-jonction of common flow junction has the properties: 

-all the bond has the same flow; 

-the algebraic sum of all efforts always vanishes. 

 

1 2

1

....

0

n

n

i
i

f f f

e
=

= = =

=∑
 (A.1.19) 
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Appendices 2 

 

2.1. The Dirac structure [Sch 05] 

 

In the port-Hamiltonian system formalism, the physical system 

can be express in terms of energy exchange, as a network, with the 

elements interconnected and these connections are non dissipative, with 

the power balance through connection equal to zero. This is represented 

by a Dirac structure. 

If we consider two dual linear spaces: F a ℓ -dimensional one, and 

F ∗
 its dual, the product space F F ∗×  is considered to be the space of 

power variables. 

 The power is defined by 

 , ( , )P f f f f F F∗ ∗ ∗= 〈 〉 ∈ ×  (A.1.20) 

where f f∗〈 〉
 
is the dual product. 

 F is called the space of flows f, and F ∗  the space of efforts e. The 

power of an element ( , )f e F F ∗∈ ×  is denoted as e f< > . 

If F is endowed with an inner product structure < , > , then F ∗ can 

be naturally identified with F in such a way that 

| , , ,e f e f f F e F F∗< >=< > ∈ ∈ ≃ .  

  

On F F ∗×  can be seen that there exist a canonically defined 

symmetric bilinear form 

 1 1 2 2 1 2 2 1( , ), ( , ) : | |
F F

f e f e e f e f∗×
< > =< > + < >  (A.1.21) 

for , , 1,2i if F e F i∗∈ ∈ = .  

If consider a linear subspace, with dimension p:  

 S F F ∗⊂ ×  (A.1.22) 
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its orthogonal complement with respect to the bilinear form *,
F F×

< >  on 

*F F× , is denoted as 

 *S F F⊥ ⊂ ×  (A.1.23) 

and has dimension 2 p−ℓ . ( dim( ) 2F F ∗× = ℓ , and ,
F F∗×

< > is a non-

degenerate form.) 

 

Definition. A constant Dirac structure on F is a linear subspace 

D F F ∗⊂ ×  such that D D⊥= . 

Result that the dimension of D on a ℓ -dimensional linear space is 

equal to ℓ .  

Let ( , )f e D D⊥∈ = . Then   

 0 ( , ),( , ) 2 |
F F

f e f e e f∗×
=< > = < >  (A.1.24) 

Thus for all ( , )f e D∈  we obtain  

 | 0e f< >=  (A.1.25) 

Hence a Dirac structure D on F defines a power-conserving 

relation between the power variables ( , )f e F F ∗∈ × . 

Different matrix representations of a Dirac structure.  

Let F be a ℓ -dimensional space. We define a constant Dirac 

structure D F F ∗⊂ × . Then D  can be represented as 

 

1. (Kernel and Image representation ) 

 {( , ) | 0}D f e F F Ff Ee∗= ∈ × + =  (A.1.26)   

for ×ℓ ℓ  matrices F and E satisfying 

 
[ ]

0

|

T TEF FE

rank F E

+ =
= ℓ

 (A.1.27)    

Equivalently, 

 {( , ) | , , }T TD f e F F f E e Fλ λ λ∗= ∈ × = = ∈ ℓ
ℝ  (A.1.28)  

2. (Constrained input-output representation) 

 {( , ) | , 0}TD f e F F f Je G G eλ∗= ∈ × = + =  (A.1.29) 
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for an ×ℓ ℓ  skew-symmetric matrix J, and a matrix G such that 

Im { | ( ,0) }G f f D= ∈ . Furthermore, { | (0, ) }KerJ e e D= ∈ . 

 

3. (Hybrid input-output representation) 

Let D  be given as in 1. Suppose 1( )rankF = ≤ℓ ℓ . Select 1
ℓ  

independent columns of F, and group them into a matrix 1F . Write 

(possibly after permutation) 1 2|F F E =   , 

1

2

f
f

f

 
=  
 

, 

1

2

e
e

e

 
=  
 

. Then the 

matrix 1 2|F E    can be shown to be invertible, and 

 

1 1 1 1

2 2 2 2
,

f e f e
D J

f e e f

         = =        
         

 (A.1.30) 

with 
11 2 2 1: | |J F E F E

−
   = −      skew-symmetric. 

 

 

2.2. Stokes-Dirac structures [Sch 05] 

 

Let Z be an n-dimensional smooth manifold with smooth (n-1)-

dimensional boundary Z∂ , representing the space of spatial variables. 

Denote by ( ), 0,1,....,k Z k nΩ = , the space of exterior k-forms on Z, 

and by ( ), 0,1,....., 1k Z k nΩ ∂ = − , the space of k-forms on Z∂ . (Note that 

0( )ZΩ , respectively 0( )ZΩ ∂  , is the space of smooth functions on Z, 

respectively Z∂ .) Clearly, ( )k ZΩ  and ( )k ZΩ ∂  are (infinite-dimensional) 

linear spaces (over ℝ ). Furthermore, there is a natural pairing between 

( )k ZΩ  and ( )n k Z−Ω  given by 

 ( ):
Z

β α β α= ∧ ∈∫ ℝ  (A.1.31) 

with ( ), ( )k n kZ Zα β −∈Ω ∈Ω , where ∧ is the usual wedge product of 

differential forms yielding the n-form β α∧ . In fact, the pairing (A.1.31) 
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is non-degenerate in the sense that if 0β α = for all α , respectively for 

all β , then 0β = , respectively 0α = . 

 Similarly, there is a pairing between ( )k ZΩ ∂  and 1 ( )n k Z− −Ω ∂ given 

by 

 :
Z

β α β α
∂

= ∧∫  (A.1.32) 

with 1( ), ( )k n kZ Zα β − −∈Ω ∂ ∈Ω ∂ . Now let us define the linear space 

 , : ( ) ( ) ( )p q n p
p q Z Z Z−= Ω × Ω × Ω ∂F  (A.1.33) 

for any pair p,q of positive integers satisfying 

 1p q n+ = +  (A.1.34) 

and correspondingly let us define 

 , : ( ) ( ) ( )n p n q n q
p q Z Z Z− − −Ε = Ω × Ω × Ω ∂  (A.1.35) 

 Then the pairing (A.1.31) and (A.1.32) yields a (non-degenerate) 

pairing between ,p qF and ,p qΕ . Symmetrization of this pairing yields the 

following bilinear form on , ,p q p q× ΕF with values in ℝ : 

 

( ) ( )1 1 1 1 1 1 2 2 2 2 2 2

1 2 1 2 2 1 2 1

1 2 2 1

, , , , , , , , , , , :p q b p q b p q b p q b

p p q q p p q qZ

b b b bZ

f f f e e e f f f e e e

e f e f e f e f

e f e f
∂

=

 ∧ + ∧ + ∧ + ∧ 

 + ∧ + ∧ 

∫
∫

≪ ≫

 (A.1.36) 

where for 1,2i =  

 

( ), ( )

( ), ( )

( ), ( )

i p i q
p q

i n p i n q
p q

i n p i n q
b b

f Z f Z

e Z e Z

f Z e Z

− −

− −

∈Ω ∈Ω

∈Ω ∈Ω

∈Ω ∂ ∈Ω ∂

 (A.1.37) 

The spaces of differential forms ( )p ZΩ  and ( )q ZΩ  will represent 

the energy variables of two different physical energy domains 

interacting with each other, while ( )n p Z−Ω ∂  and ( )n q Z−Ω ∂  will denote 

the boundary variables whose (wedge) product represents the boundary 

energy flow.  
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Theorem. Consider ,p qF  and ,p qΕ  given in (A.1.33), (A.1.35) with 

p, q satisfying (A.1.34), and bilinear form ,≪ ≫  given by (A.1.36). Define 

the following linear subspace D of , ,p q p q× ΕF  

 

( ){ , ,, , , , ,

0 ( 1)
,

0

1 0
}

0 ( 1)

p q b p q b p q p q

r
p p

q q

p Zb

n q
b q Z

D f f f e e e

f ed

f ed

ef

e e

∂

−
∂

= ∈ × Ε

    −
=    
    

   
=     − −      

F

 (A.1.38) 

where Z∂ denotes restriction to the boundary Z∂ , and r:=pq+1. Then 

D D⊥= , that is, D is a Dirac structure. 

 

2.3. Differential forms [Des 06], [Cou 90]  

 

A differential form is an integrand, i.e., a quantity that can be 

integrated. It is the dx in dx∫  and the dx dy in dx dy∫ . More precisely, 

consider a smooth function F(x) over an interval in ℝ . Now, define f(x) 

to be its derivative, that is, 

 ( ) dF
f x

dx
=  (A.1.39) 

Rewriting this last equation (using slightly abusive notations for 

simplicity) yields ( )dF f x dx= , which leads to: 

 ( ) ( ) ( )
b b

a a
dF f x dx F b F a= = −∫ ∫  (A.1.40) 

 This last equation is known as the Newton-Leibnitz formula, or 

the first fundamental theorem of calculus. The integrand f(x)dx is called a 

1-form, because it can only be integrated over any 1-dimensional (1D) 

real interval. Similarly, for a function G(x,y,z), we have: 

 
G G G

dG dx dy dz
x y z

∂ ∂ ∂= + +
∂ ∂ ∂

 (A.1.41) 
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  which can be integrated over any 1D curve in 3
ℝ , and is also a 1-form. 

More generally, a k-form can be described as an entity ready to be 

integrated on a kD (sub)region. Note that forms are valued zero on 

(sub)regions that are of higher or lower order dimension than the 

original space; for example, 4-forms are zero on 3
ℝ . 

 

Let consider the n-dimensional Euclidean space n
ℝ , n ∈ℕ  and let 

M be an open region nM ⊂ ℝ ; M is also called a n-manifold. The vector 

space xT M consists of all the (tangent) vectors at a point x M∈  and can 

be identified with n
ℝ  itself. A k-form kw  is a rank-k, skew-symmetric, 

tensor field over M. That is, at each point x M∈ , it is a multi-linear map 

that takes k tangent vectors as input and returns a real number: 

 : .....k
x xw T M T M× → ℝ  (A.1.42) 

which changes of sign when you switch two variables. 

 

There are seven operators in Exterior Calculus: 

- d: the exterior derivatives, that extends the notion of the 

differential of a function to differential forms; 

- ¾: the Hodge star, that transforms k-forms into (n-k)-forms; 

- �: the wedge product, that extends the notion of exterior product 

to forms; 

- � and �: the sharp and flat operators, that, given a metric, 

transforms a 1-form into a vector and vice-versa; 

- Xi : the interior product with respect to a vector field X (also 

called contraction operator), a concept dual to the exterior product;  

- XL : the Lie derivative with respect to a vector field X, that extends 

the notion of directional derivative. 
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 A k-simplex is a generic term to describe the simplest mesh 

element of dimension k- hence the name. 

 Let consider a three-dimensional mesh in space. This mesh is 

made of a series of adjacent tetrahedral. The vertices are said to form a 

0-simplex. The edges form a 1-simplex; the faces form a 2-simplex. The 

adjacent tetrahedrals form a 3-simplex.  

 Formally, a k-simplex kσ  is the non-degenerate convex hull of k+1 

geometrically distinct points 0,....,
n

kv v ∈ℝ  with n k≥ . In other words, it 

is the intersection of all convex sets containing ( )0,...., kv v ; namely: 

 
0 0

0 1
k k

n i i i
k i

i i

x x v with andσ α α α
= =

 
= ∈ = ≥ = 
 

∑ ∑ℝ  (A.1.43) 

The entities 0,...., kv v  are called the vertices and k is called the 

dimension of the k-simplex, which we will denote as: 

 { }0 1...k kv v vσ =  (A.1.44) 

An n-dimensional discrete manifold M is an n-dimensional 

simplicial complex that satisfies the following condition: for each 

simplex, the union of all the incident n-simplices forms an n-dimensional 

ball (i.e., a disk in 2D, a ball in 3D, etc.), or half a ball if the simplex is on 

the boundary.  As a consequence, each (n-1)-simplex has exactly two 

adjacent n-simplices - or only one if it is on a boundary. 

 

 Stokes’ Theorem. d applied to an arbitrary form w  is evaluated 

on an arbitrary simplex σ  as follows: 

 dw w
σ σ∂

=∫ ∫  (A.1.45) 

  

The wedge product ∧ is an operation used to construct higher 

degree forms from lower degree ones. Let consider α  a 1-form and β  a 

2-form on a subset 4T ⊂ ℝ . Their wedge product α β∧  is a 3-form on T. 
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 Given a inner product denoted ,< > , defined as the product of two 

( )kk form M− ∈Ω , which will measure in a way, the projection of one 

onto other, the operator ¾, called the Hodge star, maps a k-form to a 

complementary (n-k)-form: 

 : ( ) ( )k n kM M−Ω → Ωø  (A.1.46) 

and is defined to satisfy the following equality: 

 , nα β α β µ∧ =< >ø  (A.1.47) 

for any pair of k-form α  and β  ( nµ  is the volume form). 

 

2.4. Interpolation [Des 06] 

 

2.4.1. Interpolating 0-forms 

 

 For linear interpolation of 0-forms to the whole space, we can use 

the vertex-based linear interpolation basis, the hat function in Finite 

Element literature. With each vertex iv  is associated a basis denoted as 

iϕ : 

 1 , 0i i i j iat v at v vϕ ϕ= = ≠  (A.1.48) 

while iϕ  linearly goes to zero in the one-ring neighborhood of iv . This 

function are the barycentric coordinates, introduced by Möbius in 1827 

as mass point to define a coordinate-free geometry. 

 If we denote a vertex jv  by jσ , with this basis we have: 

 
1

0i i
j j j

v iv

if i j

if i jσσ σ
ϕ ϕ ϕ

== = =  ≠
∫ ∫ ∫  (A.1.49) 

2.4.2. Interpolating 1-forms 

 

 For the 1-forms interpolation we use the Whitney 1-form 

associated with an edge ijσ  between iv  and jv .   

 
ij i j j id dσϕ ϕ ϕ ϕ ϕ= −  (A.1.50) 
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 We have: 

 

1

1

0
ij

kl

if i k and j l

if i l and j k

otherwise
σσ

ϕ
= =

= − = =



∫  (A.1.51) 

 This is zero when at least one vertex is not on the edge. Along the 

edge ijσ , we have 1i jϕ ϕ+ = . Thus: 

 ( )0 0

1 1
(1 ) (1 ) ( ) 1

i i

ij
ij i i

i i i i id d d
ϕ ϕ

σσ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ

= =

= =
= − − − = − =∫ ∫ ∫  (A.1.52) 

 

2.5. Functionals [Kan 06] 

An integral expression of the form: 

 ( ) ( , , ') , ( ), '
b

a

du
I u F x u u dx u u x u

dx
= = =∫  (A.1.53) 

where the integrand F(x,u,u’)dx is a given function with the argument x, u 

and du dx , is called a functional. The value ( )I u  of the integral depends 

on u; hence the notation ( )I u  is appropriate. However, for a given u, 

( )I u  represents a scalar value. Mathematically, a functional is an 

operator I  mapping u into a scalar ( )I u . 

 

2.5.1. The variational symbol 

Consider the function F=F(x,u,u’). For an arbitrary fixed value of 

the independent variable x, F depends on u and u’. The change vµ  in u, 

where µ  is a constant and v is a function, is called the variation of u and 

is denoted by uδ : 

 u vδ µ=  (A.1.54) 

The operator δ  is called the variational symbol. The variation 

uδ  of a function u represents an admissible change in the function u(x) 

at a fixed value of the independent variable x. If u is specified at a point, 

the variation of u is zero there because the specified value cannot be 

varied, thus the variation of a function u should satisfy the homogenous 

form of the boundary conditions for u. The variation uδ  in u is a virtual 
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change. Associated with this change in u, there is a change in F. In 

analogy with the total differential of a function of two variables, the first 

variation of F at u is defined by 

 '
'

F F
F u u

u u
δ δ δ∂ ∂= +

∂ ∂
 (A.1.55) 

Note the analogy between the first variation (above) and the total 

differential of F, 

 '
'

F F F
dF dx du du

x u u

∂ ∂ ∂= + +
∂ ∂ ∂

 (A.1.56) 

Since x is not varied during the variation of u to u uδ+ , dx=0 and 

the analogy between F∂  and dF becomes apparent. That is, δ  acts as a 

differential operator with respect to dependent variables. It can easily be 

verified that the laws of variation of sums, products, ratios, powers, and 

so forth are completely analogous to the corresponding laws of 

differentiation. For example, if 1 1( )F F u=  and 2 2( )F F u=  then 

 ( )1 2 1 2F F F Fδ δ δ± = ±  (A.1.57) 

  

 ( )1 2 2 1 1 2F F F F F Fδ δ δ= +  (A.1.58) 

 1 2 1 1 2
2

2 2

F F F F F

F F

δ δδ   −= 
 

 (A.1.59) 

 ( ) ( ) 1

1 1 1

n n
F n F Fδ δ−  =   (A.1.60) 

Furthermore, the variational operator can commute with 

differential and integral operators: 

 ( ) ( ) ' '
d d dv du

u v v u
dx dx dx dx

δ µ µ µ δ δ  = = = = =  
 

 (A.1.61) 

 ( ) ( )
b b

a a
u x dx u x dxδ δ=∫ ∫  (A.1.62) 
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2.5.2. Functional derivative 

 

For a function with multiple arguments, 1 2( , ,....., )nf x x x , if the 

differential df can be written as, 

 1 2
1

( , ,...., )
n

i n i
i

df g x x x dx
=

=∑  (A.1.63) 

then the function 1( ,..., )i ng x x  is called the (partial) derivative of f with 

respect to ix , for 1,....,i n= , 

 1( ,..., )i n
i

f
g x x

x

∂ =
∂

 (A.1.64) 

Similarly, if the variation of a functional 

 [ ]( ) ( ( ), '( ))
b

a
I y x F y x y x dx= ∫  (A.1.65) 

can be written as, 

 ( ) ( )
b

a
I g x y x dxδ δ= ∫  (A.1.66) 

then the functional derivative of I is 

  ( )
( )

I
g x

y x

δ
δ

=  (A.1.67) 

The functional derivative of a functional [ ]( )I y x  is a function ( )g x . 

 

 

2.6. The variational derivative [Sch 05] 

Consider a density function : ( ) ( )v nΛ Ω × Ω → Λ ΩH where 

{ }1,..,v n∈ . The variational derivative of the functional H
Λ

= ∈∫ ℝH  

with respect to ( )vy ∈ Λ Ω  is the differential form ( )n vH

y

δ
δ

−∈Λ Ω  which 

satisfies for all ( )vy∆ ∈ Λ Ω  and ε ∈ℝ : 

 2( ) ( ) ( ) ( )
H

H y y y y y y O
y

δε ε ε ε
δΩ Ω Ω

 + ∆ = + ∆ = + ∧ ∆ + 
 

∫ ∫ ∫H H (A.1.68) 

where { }: ( ) ( ), 1,..,v n v nΛ Ω × Ω → Λ Ω ∈H  is a density function. 
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