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Résumé

Le contexte de mon travail est la mise au point d’outils statistiques pour le dé-
velopement et l’analyse de modèles stochastiques structurés. L’idée sous-jacente à la
notion de structure est qu’il est souvent possible à l’aide d’hypothèses locales simples
combinées de manière cohérente de rendre compte de phénomènes globaux potentiel-
lement complexes. Cette idée de construction du local vers le global guide ainsi la
modélisation, l’estimation et l’interprétation. Cette approche se révèle utile dans des
domaines variés tels que le traitement du signal et de l’image, les neurosciences, la
génomique, l’épidémiologie, etc. Inversement les besoins de ces domaines ont pu susci-
ter en retour des dévelopements théoriques importants.

Par ailleurs, beaucoup de techniques statistiques sont encore limitées par des d’hy-
pothèses restrictives pouvant conduire à des analyses imprécises voire erronées. Diffé-
rentes sources de complexité peuvent mettre en défaut les approches classiques. Souvent
les données exhibent une structure de dépendance non triviale, due par exemple à des
répétitions, des groupements, des méthodes d’échantillonage particulières, des associa-
tions dans l’espace ou le temps. Une seconde source de complexité est liée au processus
de mesure qui peut impliquer l’utilisation d’instruments physiquement très différents,
qui produisent des données hétérogènes, en grandes dimensions et potentiellement de
manière défaillante de sorte qu’une partie des données peut être manquante.

La plupart de mes objectifs de recherche sont centrés sur la mise au point de modèles
et d’outils d’inférence pouvant faire face à ce genre de complications fréquentes dans
les données modernes et contribuer ainsi au dévelopement de nouvelles méthodes sta-
tistiques.

En ce qui concerne la notion de dépendance et de localité, un concept central est ce-
lui d’indépendance conditionnelle. Les propriétés de Markov et les modéles markoviens
permettent d’énoncer de telles indépendances conditionnelles et ce thème est central
dans ma recherche.

Pour ce qui est des données manquantes ou incomplètes, les modèles de mélanges
sont une approche classique. Ces modèles conduisent plus généralement à la notion
de modèles à structure manquantes. Ces derniers sont également utiles pour rendre
compte d’hétérogénités dans les données. Ils trouvent de nombreux échos en statistique :
modéles de mélanges finis, modèles de Markov cachés, modèles à effet aléatoire, etc. La
présence de données incomplètes induit cependant généralement des difficultés pour ce
qui est de l’estimation des paramètres et de l’évaluation des performances.

Modèles markoviens et modèles de mélanges sont mes deux principaux thèmes de
recherche avec cette idée unificatrice de structure dans les modèles mais aussi dans
les données. J’ai pu montrer que ces deux thèmes pouvaient être reliés utilement en
traitant des problèmes difficiles dans diverses applications.

Plus précisément, j’ai developé des modèles à structure cachée essentiellement dans
le but de résoudre des problèmes de classifications inhérents à certaines questions. J’ai
souvent abordé le problème de l’estimation de ces modèles à partir de l’algorithme EM
et developpé des variantes permettant d’apporter des solutions satisfaisantes lorsque
les outils classiques faisaient défaut. J’ai tenté également d’apporter des résultats sur
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les propriétés théoriques, e.g. convergence et vitesse, de ces algorithmes. Enfin, j’ai
abordé la question de la sélection de modèles essentiellement en cherchant à proposer
des critères de sélection dans les cas où les critères classiques n’étaient pas calculables.



Table des matières

Research Activities 7
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Scientific foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Markov models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Domains of research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Clustering with hidden structure models . . . . . . . . . . . . . . 15
3.2 The design and study of EM-like algorithms . . . . . . . . . . . . 37
3.3 Hidden structure model selection . . . . . . . . . . . . . . . . . . 45

4 Application domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1 Image Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Biology and Computational Neuroscience . . . . . . . . . . . . . 63

Technology development 73
1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2 Industrial transfer of research result . . . . . . . . . . . . . . . . . . . . 76

Summary of main contributions 81
1 Variational approximations for inference in hidden Markov random fields 83
2 Models for complex and structured data . . . . . . . . . . . . . . . . . . 85
3 Model-based clustering for the analysis of MR brain scans . . . . . . . . 88

Research Program 91
1 Bayesian conditional modeling for multimodal data analysis . . . . . . . 93
2 Extreme value theory and structured data . . . . . . . . . . . . . . . . . 94
3 Hybrid inference algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 95
4 Statistical image processing and cognition . . . . . . . . . . . . . . . . . 95
5 Application domains and technology transfer . . . . . . . . . . . . . . . 96
6 International collaborations . . . . . . . . . . . . . . . . . . . . . . . . . 96



Detailed Curriculum Vitae 97
1 Diplomas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2 Professional history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3 Prizes and awards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4 Supervision of research activities . . . . . . . . . . . . . . . . . . . . . . 100
5 Responsibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6 Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7 Collaborations, visits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8 Teaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
9 Dissemination of scientific knowledge . . . . . . . . . . . . . . . . . . . . 112
10 Other relevant information . . . . . . . . . . . . . . . . . . . . . . . . . 112

Publications 113
1 Articles in international refereed journals and book chapters . . . . . . . 115
2 Articles in national refereed journals . . . . . . . . . . . . . . . . . . . . 116
3 Publications in international Conferences and Workshops . . . . . . . . 116
4 Publications in national Conferences and Workshops . . . . . . . . . . . 118
5 Internal Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



Research Activities





9

1 Introduction

The context of my work is the analysis of structured stochastic models with sta-
tistical tools. The idea underlying such models is that stochastic systems that exhibit
great complexity can be accounted for by combining simple local assumptions in a
coherent way. This provides a key to modelling, computation, inference and interpreta-
tion. Such stochastic models have found applications in areas as diverse as signal and
image processing, neuroscience, genetics and epidemiology. The needs of these areas
have in turn stimulated important theoretical developments.

However, these powerful and flexible techniques can still be restricted by necessary
simplifying assumptions, such as precise measurement and independence between ob-
servations, and it long ago became clear that in many areas such assumptions can be
both influential and misleading. Also there are several generic sources of complexity
in data that require methods beyond the commonly-understood tools in mainstream
statistical packages.

Often data exhibit complex dependence structures, having to do for example with
repeated measurements on individual items, or natural grouping of individual observa-
tions due to the method of sampling, spatial or temporal association, family relation-
ship, and so on.

Other sources of complexity are connected with the measurement process, such as
having multiple measuring instruments or simulations generating high dimensional and
heterogeneous data or such that data are dropped out or missing.

Such complications in data-generating processes raise a number of challenges when
dealing with modern data. My goal is to contribute to statistical modelling by offering
theoretical concepts and computational tools to handle properly some of these issues.

As regards dependencies and locality, a central part is played by the concept of
conditional independence. It provides a precise description of the information conveyed
by the value of one variable about others in a statistical model. Markov properties are
statements about conditional independence assumptions and Markov models are the
central subject of my research. The concept of conditional independence, whereby each
variable is related locally (conditionally) to only a few other variables, is the key to
both the construction and analysis of such models.

When dealing with missing data, mixture models are a central starting point. They
lead naturally to more general hidden structure models. Hidden structure models are
also useful for taking into account heterogeneity in data. They concern many areas of
statistical methodology (finite mixture analysis, hidden Markov models, random effect
models, . . . ). Due to their missing data structure, they induce specific difficulties for
both estimating the model parameters and assessing performance.

My two main domains of research are Markov models and mixture models. The
main particularity of my work is the focus on the key idea of structure in models and
data. This focus is unifying and promising in its ability to generalize the ingredients of
the models, to broaden the scope of applications and to allow cross-fertilization between
different areas. Besides, various successful applications illustrate how I managed to
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combine my two main domains of expertise.
More specifically, I designed and studied a number of models with hidden data

structure. The main goal is usually to address clustering tasks that appear in various
challenging practical issues. For inference, I have mainly focused on the EM algorithm
principle and provided appropriate variants able to capture the main features of the
designed models and to solve the targeted tasks satisfyingly. When accessible, I have
provided insights on their theoretical properties such as their convergence and speed.
I also investigated the issue of model selection. More specifically, I am interested in
providing, for the models I consider, ways to use standard selection criteria when their
computation is not straightforward.

My research activity is structured around the three following lines :

1. Clustering with hidden structure models : Section 3.1.

2. The design and study of EM-like algorithms : Section 3.2

3. Hidden structure model selection : Section 3.3.

Current application domains are mentioned in Section 4.
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2 Scientific foundations

A general presentation of my main domains of expertise, in this section, is followed
by more specific research topics in Section 3.

2.1 Mixture models

Keywords : missing data, mixture of distributions, EM algorithm, statistical pattern
recognition, clustering, unsupervised and partially supervised learning.

Mixture models and more specifically Gaussian mixture models are among the most
statistically mature methods for clustering and are also used intensively for density
estimation. The success of mixture models lies partly in the fact that clustering can be
seen as a labelling problem and therefore corresponds to many problems in practice.

A labelling problem is specified in terms of a set of sites S and a set of labels L. A site
often represents an item, a point or a region such as an image pixel or an image feature
such as a corner, a line segment or a surface patch. A set of sites may be categorized
in terms of their regularity. Sites on a lattice are considered as spatially regular (e.g.
the pixels of a 2D image). Sites which do not present spatial regularity are considered
as irregular. This is a common case when sites represent geographic locations, features
extracted from images at a more abstract level, such as the detected corners and lines
and more generally interest points[1]. It can also be that the sites correspond to items
(e.g. genes) that are related to each other through a distance or dissimilarity measure
or simply to a collection of independent items.

A label is an event that may happen to a site. I have been working mainly with
discrete label sets. In this case, a label assumes a discrete value in a set L of K labels. In
edge detection, for example, the label set is the two component set {edge, non− edge}.

The labelling problem is to assign a label from a label set L to each of the sites. If
there are N sites, the set z = {z1, . . . , zN} with zi ∈ L for all i ∈ S, is called a labelling
of the sites in S in terms of the labels in L. When each site is assigned a unique label,
a labelling can be regarded as a function with domain S and image L. In mathematical
programming a labelling is also called a coloring, in the terminology of random fields it
is called a configuration. In vision, it can corresponds to an edge map, an interpretation
of image features in terms of object features, or a pose transformation and so on.

The approach of the labelling problem considered in my work is based on mixture
models and more generally on hidden structure models. They correspond to a form of
clustering in which we assume that individual data points are generated by first choo-
sing one of a set of multivariate distributions (typically Gaussian) and then sampling
from it. Data is assumed to naturally divide into observed data y = {y1, . . . , yN} and
unobserved or missing data z = {z1, . . . , zN}. The missing data zi represents the mem-
berships to one of a set of K alternative categories, i.e. the labels. The distribution of

[1] D. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision,
60(2) :91–110, 2004.
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an observed yi can be written as a finite mixture of distributions,

f(yi ; θ) =
K∑

k=1

P (zi = k ; θ) f(yi | zi; θ) . (1)

I have considered statistical parametric models, θ being the parameter, possibly multi-
dimensional, usually unknown and to be estimated.

Besides their usefulness for clustering, mixture models are a very flexible method
of modelling. As any continuous distribution can be approximated arbitrarily well by a
finite mixture of normal densities, mixture models provide a convenient semi-parametric
framework in which to model unknown distributional shapes, whatever the objective.

These models are also interesting in that they may point out a hidden variable
responsible for most of the observed variability and so that the observed variables are
conditionally independent. Their estimation is often difficult due to the missing data.
The Expectation-Maximization (EM) algorithm[2,3] is a general and now standard ap-
proach to maximization of the likelihood in missing data problems. The algorithm
iteratively maximizes the expected complete-data log-likelihood over values of the unk-
nown parameters, conditional on the observed data and the current values of those
parameters. In the clustering context, it provides parameter estimation but also values
for missing data by providing membership probabilities to each group.

Standard mixture models correspond to independent zi’s. They are more and more
used in statistical pattern recognition. They allow a formal (model-based) approach to
(unsupervised) clustering and learning.

When the zi’s are not independent, the inter-relationship between sites can be
maintained by a so-called neighborhood system usually defined through a graph. In
this case, we will rather consider Hidden Markov Models (HMM) as presented in the
following section.

2.2 Markov models

Keywords : graphical models, Markov properties, conditional independence, hidden
Markov field, EM algorithm, stochastic algorithms, selection and combination of models,
image analysis.

Graphical modelling provides a diagrammatic representation of a joint probability
distribution, in the form of a network or graph depicting the local relations among
variables. The graph can have directed or undirected edges between the nodes, which
represent the individual variables. Associated with the graph are various Markov pro-
perties that specify how the graph encodes conditional independence assumptions.

It is the conditional independence assumptions that give the graphical models their
fundamental modular structure, enabling computation of globally interesting quanti-

[2] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via
the EM algorithm (with discussion). J. Roy. Statist. Soc. Ser. B, 39(1) :1–38, 1977.

[3] T. Krishnam G. McLachlan. The EM algorithm and extensions. John Wiley, New York, 1997.
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ties from local specifications. Hence, graphical models form an essential basis for our
methodologies based on structures.

The graphs can be either directed, e.g. Bayesian Networks, or undirected, e.g. Mar-
kov Random Fields (MRF). The specificity of Markovian models is that the dependen-
cies between the nodes are limited to the nearest neighbor nodes. The neighborhood
definition can vary and be adapted to the problem of interest. When parts of the va-
riables (nodes) are not observed or missing, we refer to these models as Hidden Markov
Models (HMM). Hidden Markov chains or hidden Markov fields correspond to cases
where the zi’s in (1) are distributed according to a Markov chain or a Markov field.
They are natural extension of mixture models. Although a great deal of work has been
done on clustering and in particular on feature-based clustering in the image community,
surprisingly not so much work has gone into how to make the resulting clusters spa-
tially coherent. As an example, a very popular algorithm is the Mean Shift algorithm
of Comaniciu and Meer[4]. It is a non parametric method and has many advantages
and interesting features but as many other algorithms it does not offer the same ca-
pabilities as mixture models when trying to account for spatial dependencies. Hidden
Markov models are widely used in signal processing (speech recognition, genome se-
quence analysis) and in image processing (remote sensing, MRI, etc.). Such models are
very flexible in practice and can naturally account for the phenomena to be studied.
They are very useful in modeling spatial dependencies but these dependencies and the
possible existence of hidden variables are also responsible for a typically large amount
of computation. It follows that the statistical analysis may not be straightforward. The
following Section 3 presents the approaches I propose to use to address a number of
typical issues.

[4] D. Comaniciu and P. Meer. Mean Shift : A robust approach toward feature space analysis. IEEE
Trans. PAMI, 24(5) :603–619, 2002.
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3 Domains of research

In the following developments, regular citations correspond to my publications listed at
the end of the manuscript. Other bibliographical references quoted as footnotes appear
at the bottom of each page.

In the last few years, mixture models have became a widely used approach to
statistical pattern recognition. Efficient applications rely on the development of models
and techniques allowing learning of the patterns of interest at a reasonable cost. In this
context, I have focused on clustering tasks underlying a number of challenging practical
issues. I have designed and studied a number of models with missing or hidden data
structure (Section 3.1). I have provided appropriate inference frameworks based on the
EM algorithm principle and have given, when accessible, insights on their theoretical
properties such as their convergence and speed (Section 3.2). I have also considered
the issue of model selection, which can be critical in applications (Section 3.3).
The various challenging practical issues we had to face are presented in Section 4.
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3.1 Clustering with hidden structure models

One source of complexity is related to the measurement process. I addressed issues
where in addition to the structure, some observations are missing [29, 47]. Section
3.1.1 summarizes our investigations to deal with high-dimensional observations (yi’s)
while Section 3.1.2, describes a model we proposed to handle data from heterogeneous
modalities. I also developed with collaborators a clustering approach for the issue of
rigid and articulated Point Registration in computer vision. This is reported in Section
3.1.3.

A second source of complexity comes from possible dependencies between observed
and hidden variables. In Sections 3.1.4 to 3.1.7, I propose ways to extend the standard
hidden Markov field model to increase its modeling power. Typical issues are related to
the neighborhood structure on the z′is to be chosen when not dictated by the context.
This also requires a good understanding of the role of each parameter and methods
to tune them depending on the goal in mind (Section 3.1.4). In Section 3.1.5, we then
describe a model able to handle the need for cooperation between two related clustering
processes (zi = (si, ti) with the si’s and ti’s being two distinct labels sets) of the same
observed variables. In Section 3.1.6, we adopt a Bayesian approach. In addition to the
zi’s, other missing variables are introduced but they represent unknown parameters.
These parameters are used to weight differently each observation components in a
multivariate observations case. In Section 3.1.7 the Markov field structure of the zi’s is
enriched by introducing a set of sub-class variables. They are also missing but they allow
to account for more complex class-dependent distributions (noise model) using standard
hidden Markov models tools. Eventually in Section 3.1.8, we report some preliminary
attempts to investigate possible relationships between our discrete graphical Markov
models and models from geostatistics.

3.1.1 Taking into account the curse of dimensionality.

Related publications : 1 journal paper [8], 1 international conference [40].

This work has been done in the context of the ACI project Movistar (Section 6 of the
Detailed Curriculum Vitae part) which I coordinated for team mistis. My participation
was more specifically related to Juliette Blanchet’s PhD work that I advised (2004-2007).

The mixture ingredient under consideration here is the choice of an appropriate
class-dependent distribution f(yi|zi; θ) in equation (1) when yi is high dimensional.
There are not so many one dimensional distributions for continuous variables that ge-
neralize to multidimensional ones except when considering product of one dimensional
independent components. The multivariate Gaussian distribution is the most commonly
used but it suffers from significant limitations when it comes to modeling real data sets.
For very high dimensional data, the general covariance matrix model involves the es-
timation of too many parameters, leading to intractable computations or singularity
issues. Solutions have been proposed based on so-called parsimonious models[5] but

[5] G. Govaert G. Celeux. Gaussian parsimonious clustering models. Pattern Recognition, 28(5) :pages
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they are not specifically designed for high dimensional data. They do not take into
account the fact that real data points are often confined to a region of the space having
lower effective dimensionality, so that the data actually live on a smaller dimensional
manifold embedded within the high dimensional space. Other approaches consider re-
ducing the dimensionality of the data as a pre-processing step possibly using principal
component analysis or variable selection methods. In a classification context, this may
not be satisfactory as relevant information may be lost that can help separating the
classes. For these reasons, we rather considered a more recent approach developed for
independent Gaussian mixtures. In the PhD work of Charles Bouveyron[6](co-advised
by Stéphane Girard from team mistis and Cordelia Schmid from team lear, from 2003
to 2006 as part of the Movistar project), new Gaussian models of high dimensional data
for classification purposes were proposed. It is assumed that the data live in several
groups located in subspaces of lower dimensions. Such models are original in that a
dimension reduction constraint can be introduced for each group. They are also parsi-
monious models in the sense that different groups can share the same values of some
parameters. This modeling yields new supervised classification methods called HDDA
for High Dimensional Discriminant Analysis [7,8]. This approach has been adapted to
the unsupervised classification framework, and the related method is named HDDC for
High Dimensional Data Clustering[9]. The approach actually includes as a particular
case the mixtures of probabilistic principal component analyzers[10] which have been
proposed only in a non supervised case. Link with the Discrimination Subspace Model
(DSM) of Flury et al.[11] is also detailed in Charles Bouveyron’s thesis[6].

In the context of J. Blanchet’s PhD thesis, we combined the method to our Markov-
model based approach of learning and clustering and reported at that time successful
results as described in Section 3.1.4 and 3.1.7. More generally, this combination allows
us to maintain also the efficiency and tractability of the Markov models as proposed in
Sections 3.1.2, 3.1.5 and 3.1.6 for high dimensional data. Both dependencies between
sites and dependencies between components of the multidimensional observations are
modelled while the number of parameters to be estimated remains tractable. We obtai-
ned significant improvement in applications such as texture recognition [8, 40], where

781–793, 1995.

[6] C. Bouveyron. Modélisation et classification des données de grande dimension. Ap-
plication à l’analyse d’images. PhD thesis, Université Grenoble 1, septembre 2006.
http ://tel.archives-ouvertes.fr/tel-00109047.

[7] C. Bouveyron, S. Girard, and C. Schmid. Class-specific subspace discriminant analysis for high-
dimensional data. In C. Saunder et al., editor, Lecture Notes in Computer Science, volume 3940,
pages 139–150. Springer-Verlag, Berlin Heidelberg, 2006.

[8] C. Bouveyron, S. Girard, and C. Schmid. High Dimensional Discriminant analysis. Communica-
tions in Statistics, Theory and Methods, 36(14) :2607–2623, 2007.

[9] C. Bouveyron, S. Girard, and C. Schmid. High dimensional data clustering. Computational
Statistics and Data Analysis, 52 :502–519, 2007.

[10] M. Tipping and C. Bishop. Mixture of probabilistic principal component analyzers. Neural Com-
putation, 11(2) :443–482, 1999.

[11] L. Flury, B. Boukai, and B. Flury. The discrimination subspace model. Journal of the American
Statistical Association, 438(92) :758–766, 1997.
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the observations are high-dimensional (See Figure 1 and Section 4.1.1).

Figure 1 – SIFT (Scale Invariant Feature Transformation) descriptors used in compu-
ter vision are potentially high dimensional : when feature points have been identified,
a descriptor is generated for each point. Left image : gradients in a neighborhood of a
feature point. Right image : resulting quantification of gradient in 8 main directions for
each of the 2× 2 zones of the neighborhood. In practice we used 4× 4 zones resulting
in SIFT descriptors of size 4× 4× 8 = 128.

3.1.2 Conjugate mixture model for clustering multimodal data

Related publications : 1 journal paper [1], 2 international conferences [32,
33].

This was the main topic of Vasil Khalidov’s PhD thesis that I co-advised from 2007
to 2010. This is joint work with Radu Horaud from INRIA team perception. This
work was initiated in the European STREP POP (Perception On Purpose 2006-2008)
coordinated by Radu Horaud (see Section 6 in the Detailed Curriculum Vitae part). We
derived benefit from the various collaborations generated by the project (see Sections
4.1.2 and 4.2.3 for more details).

In some situations, it may not be possible to account for groups in data with a
single mixture model such as (1). In particular, we addressed the issue of clustering
observations that are gathered using multiple measuring instruments, e.g. using seve-
ral physically different sensors. A typical such issue is audio-visual speaker detection
(Section 4.2.3).

When the data originates from a single object (e.g. speaker), finding the best es-
timates for the object’s characteristics is usually referred to as a pure fusion task and
it reduces to combining multisensor observations in some optimal way. The problem is
much more complex when several objects are present and when the task implies their
detection, identification, and localization. In this case one has to consider two processes
simultaneously : (i) segregation[12] which assigns each observation either to an object or

[12] J. W. Fisher III, T. Darrell, W. T. Freeman, and P. Viola. Learning joint statistical models
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to an outlier category and (ii) estimation which computes the parameters of each object
based on the group of observations that have been assigned to that object. In other
words, in addition to fusing observations from different sensors, multimodal analysis
requires the assignment of each observation to one of the objects.

This observation-to-object association problem can be cast into a probabilistic fra-
mework. In the case of unimodal data (possibly multidimensional), the problems of
grouping observations and of associating groups with objects can be cast into the fra-
mework of standard data clustering. The problem of clustering multimodal data raises
the difficult question of how to group together observations that belong to different
physical spaces with different dimensionalities, e.g. how to group visual data (dense
2D or 3D data) with auditory data (sparse 1D data) ? When the observations from
two different modalities can be aligned pairwise, a natural solution is to consider the
Cartesian product of two unimodal spaces. Unfortunately, such an alignment is not
possible in most practical cases. Different sensors operate at different frequency rates
and hence the number of observations gathered with one sensor can be quite different
from the number of observations gathered with another sensor. Consequently, there is
no obvious way to align the observations pairwise. Considering all possible pairs would
result in a combinatorial blow-up and typically create abundance of erroneous observa-
tions corresponding to inconsistent solutions. Alternatively, one may consider several
unimodal clusterings, provided that the relationships between a common object space
and several observation spaces can be explicitly specified. Multimodal clustering then
results in a number of unimodal clusterings that are jointly governed by the same unk-
nown parameters characterizing the object space.
In [1] we showed how the problem of clustering multimodal data could be addressed wi-
thin the framework of mixture models. The proposed model is composed of a number of
modality-specific mixtures. These mixtures are jointly governed by a set of K common
object-space parameters (which are referred to as the tying parameters), thus ensuring
consistency between the sensory data and the object space being sensed (see Figure 2).
This is done using explicit transformations from the unobserved parameter space (ob-
ject space) to each of the observed spaces (sensor spaces). Hence, the proposed model
is able to deal with observations that live in spaces with different physical properties
such as dimensionality, space metric, sensor sampling rate, etc. We believe that linking
the object space with the sensor spaces based on object-space-to-sensor-space transfor-
mations has more discriminative power than existing multisensor fusion techniques and
hence performs better in terms of multiple object identification and localization. To the
best of our knowledge, there has been no attempt to use a generative model, such as
ours, for the task of multimodal data interpretation. The concept of conjugate mixture
models is described in more detail in our paper [1]. Standard Gaussian mixture mo-
dels are used to model the unimodal data. The parameters of these Gaussian mixtures
are governed by the object parameters {o1, . . . oK} through a number of object-space-
to-sensor-space transformations (one transformation for each sensing modality, e.g. F

for audio-visual fusion segregation. In Proceedings of Annual Conference on Advances in Neural
Information Processing Systems, Vancouver, BC, Canada, 2001.
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and G if two modalities). A very general class of transformations, namely non-linear
Lipschitz continuous functions is assumed. Figure 3 shows a graphical representation
of our conjugate mixture models. Typically, for two modalities generating observations
{f1, . . . fM} and {g1, . . . , gN}, we considered a log-likelihood of the form :

M∑
j=1

log

(
K∑

k=1

πkN (fj ;F(ok),Σk) + πK+1U(fj ; F)

)

+
N∑

i=1

log

(
K∑

k=1

λkN (gi;G(ok),Γk) + λK+1U(gi; G)

)
(2)

where N (fj ;F(ok),Σk) (resp. N (gi;G(ok),Γk)) denotes the Gaussian distribution with
mean F(ok) (resp. G(ok)) and variance Σk (resp. Γk), F and G represent the observation
spaces and additional uniform components on F and G have been added to account for
outliers.

Figure 2 – Conjugate model fitting in the two modality case : observed audio data
{G1 . . . GN} are 1D (ITD) while video data {F1 . . . FM} are 3D (stereo camera). The
objects to be localized o1, . . . oK are in 3D space.

3.1.3 Rigid and Articulated Point Registration with Expectation Condi-
tional Maximization

Related publications : 1 journal paper [3], 1 international conference [39].

This is joint work with Radu Horaud, Guillaume Dewaele from the INRIA team per-
ception and Manuel Iguel from team emotion.
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Figure 3 – Graphical representation of the conjugate mixture model in the case of
two modalities. The observed data {F1 . . . FM} and {G1 . . . GN} consists of two sets
of respectively M and N observations. We use the graphical notation introduced by C.
Bishop[13]. Circles denote random variables, plates (rectangles) around them represent
multiple similar nodes, their number being given in the plates. The representation inside
each plate corresponds to a Gaussian mixture model (the observed data are in grey and
additional hidden variables Zj and Xi are introduced). The two modalities are then
linked by the tying parameters o1, . . . oK shown in between the two plates.

We investigated a topic where mixture model clustering may not appear naturally
at first due to the existence of a lot of classes compared to the number of observations
to be clustered. This topic is that of finding an optimal alignment between two sets of
points (see Figure 4). In image analysis and computer vision there is a long tradition
of such algorithms. The issue is referred to as the point registration (PR) problem,
which is twofold : (i) find point-to-point correspondences and (ii) estimate the trans-
formation allowing the alignment of the two sets. Existing PR methods can be roughly
divided into three categories : the Iterative Closest Point (ICP) algorithm and its nu-
merous extensions, soft assignment methods and probabilistic methods. Probabilistic
point registration uses, in general, Gaussian mixture models. Indeed, one may reaso-
nably assume that points from the first set (the data) are normally distributed around
points belonging to the second set (the model). Therefore, the point-to-point assign-
ment problem can be recast into that of estimating the parameters of a mixture. One
has to estimate the mixture parameters as well as the point-to-cluster assignments, i.e.,
the missing data. In this case the algorithm of choice is the expectation-maximization
(EM) algorithm. As explained in detail in [3], there are intrinsic difficulties when one
wants to cast the PR problem in the EM framework. The main topic and contribution
of our work was to propose an elegant and efficient way to do that. We introduced
an innovative EM-like algorithm, namely the Expectation Conditional Maximization
for Point Registration (ECMPR) algorithm. The algorithm allows the use of general
covariance matrices for the mixture model components and improves over the isotropic
covariance case. We analyzed in detail the associated consequences in terms of estima-
tion of the registration parameters, and we proposed an optimal method for estimating
the rotational and translational parameters based on semi-definite positive relaxation.
We extended rigid registration to articulated registration. Robustness is ensured by
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detecting and rejecting outliers through the addition of a uniform component to the
Gaussian mixture model at hand. We have provided an in-depth analysis of our me-
thod and we have compared it both theoretically and experimentally with other robust
methods for point registration. In general, ECMPR performed better than ICP. In
particular it is less sensitive to initialization and it is more robust to outliers.

2nd iteration 6th iteration 35th iteration

Figure 4 – The point registration problem : Illustration of our ECMPR-rigid algorithm.
The goal is to find an optimal alignement between model and data points. In this
example, there are 15 model points (filled circles) and 25 data points, 15 inliers (filled
squares) that correspond to model points that were rotated, translated and corrupted
by anisotropic Gaussian noise, and 10 outliers (empty squares) drawn from a uniform
distribution. Here, we modelled all the components of the mixture model with a common
covariance matrix (shown with ellipses). The lines correspond to current data-to-model
assignments. The algorithm stopped at the 35th iteration. There are 12 data-to-model
assignments and 7 data-to-outlier assignments corresponding to the ground truth.

3.1.4 Constrained clustering

Related publications : 1 journal paper [5], 2 international conferences [42,
43], 6 national conferences [46, 47, 50, 51, 55, 56].

This part gathers essentially questions addressed first with Nathalie Peyrard during her
PhD (1998-2001) and then with Matthieu Vignes and Juliette Blanchet (2004-07).

By constrained clustering model, we mean specific instance and usage of hidden
Markov models that we developed to combine various sources of interactions and in-
formation. More specifically, as regards classification issues, the goal was to take into
account simultaneously data from individual objects, i.e. data that make sense and exist
for each objects, and data from pairs of objects reflecting for instance some distance or
some similarity measure defined on the objects. In practice such data can be missing
and EM offers a good framework to deal with this case (see e.g. [47]). Approaches to
analyze such data fall mainly in two categories. Some focus on individual data and as
a consequence assume that they are independent. Others use information on pairs in
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the form of networks or graphs but do not directly use individual data associated with
objects in the networks. Sequential procedures, clustering first individual data alone
and incorporating additional information only after the clusters are determined, are
necessarily suboptimal. Our aim is to take into account both types of information in
a single procedure. We proposed a hidden Markov random field model in which para-
metric probability distributions account for the distribution of individual data for each
object. Data on pairs are then included through a graph where the nodes represent
the objects and the edges are weighted according to pair data reflecting distance or
similarity measures between objects. There exist many ways to do that and it is not
clear whether they are equivalent in terms of the amount of information taken into ac-
count and in terms of clustering results. An illustration is given in Section 4.2.1 with an
application to genetic data analysis [5] carried out during the PhD thesis of Matthieu
Vignes that I advised (2003-2007).

One of the difficulties is to choose how the various information can be incorporated
in the model depending on the goal in mind. This requires a good understanding of
the role of each parameter in a hidden Markov random field model. With this in mind,
in [56], we investigated the role of singleton potentials which are parameters often
ignored in standard Markov model-based segmentation. We then used (e.g. in [6]) these
potentials to take into account cooperatively two sources of information so that two
segmentation processes could refine mutually and lead to better segmentation results
(see Section 4.1.3 for an application to MRI analysis). This later idea of cooperative
clustering processes is further developed in the next Section 3.1.5.

Then an additional difficulty is how much or with which weight each source of in-
formation has to be incorporated. For instance, when considering multi channel MRI
segmentation, taking advantage of the various protocols that acquire images using mul-
tiple modalities is a current issue (typically T1-weighted, T2-weighted, PD-weighted,
Diffusion-weighted or Flair sequences in MR neuroimaging). Their unique and comple-
mentary information should be merged together before a segmentation to get rid of the
inconsistencies one can encounter when segmenting on each modality separately. For
single MRI volumes, intensity distributions are usually modelled as one dimensional
Gaussian distributions, which have the advantage to generalize easily to higher dimen-
sions. However, the presence of different MR sequences rises additional questions : Do
all the sequences have the same importance in term of information content or discrimi-
native power ? If not as we suspect, how to deal with this and combine these multiple
channels in an optimal way ? To weight the different channels and address the issue of
how to find the optimal weights, we proposed [27, 26] a weighted clustering approach
further described in Section 3.1.6. Another question is how to encode expert knowledge
on the temporal evolution of lesions ? A first natural idea is to segment the multi-
channel data available at some current date and use the result as an a priori when
dealing with the data at the following date. This could be formalized like in Markov
chains by defining conditional models to capture relationships between two successive
dates either via the external field or the class distributions like in [31].

When dealing with Markov models on irregular graphs, choosing the neighborhood
structure can then be an additional issue. This choice may depend on the application.
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As regards Markov models, the automatic neighborhood selection has not been really
addressed in the literature except more recently by Le Hegarat-Mascle et al.[14]. In our
experiments described in Section 4.1.1, it appeared that graphs with similar numbers
of neighbors for each site give more satisfying results. Directions of research for neigh-
borhood selection can be found in the Le Hegarat-Mascle et al. paper, which contains
in particular ideas related to Triplet Markov Fields (Section 3.1.7).

3.1.5 Bayesian Markov model for cooperative clustering

Related publications : 5 international conferences [36, 31, 28, 35, 25].

I initiated this work to address a number of issues raised in Benoit Scherrer’s PhD work
(2005-08) in collaboration with Michel Dojat from Grenoble Institute of Neuroscience
and Catherine Garbay from Laboratoire d’Informatique de Grenoble. This framework
appeared to be useful in Ramya Narasimha’s PhD work too (2006-10).

In the previous section, we mentioned the need for approaches that couple different
levels of information. When clustering or segmenting data, attention has been focused
on clustering various data types, regular vector data, curve data or more heterogeneous
data. But in these cases, the goal is to produce a single partitioning of the individuals
that account for the groups existing in the observed data. The task we consider now
is that of producing more than one partitioning using the same data. We refer to
this task as a cooperative clustering task. Examples of applications in which this is
relevant include tissue and structure segmentation in MR brain scan analysis [4, 6, 7]
and Section 4.1.3, simultaneous estimation of motion discontinuities and optical flow in
motion analysis[15], consistent depth estimation and boundary ([35] and Section 4.1.2)
or depth discontinuity[16] detection, consistent depth and surface normal estimation
([25] and Section 4.1.2), etc.

Our so-called cooperative approach consists then in assuming the existence of two
(or more) sets of missing variables, representing two (or more) sets of labels which
are usually not independent but related in the sense that information on one of them
can help in finding the other. Besides the need for modeling cooperation, in many
applications, data points are not independent and require models that account for
dependencies. For this purpose, we used Markov random field (MRF) models to further
specify our missing data model. Faced with processes interacting on a wide variety of
scales, modeling can be done from either a joint or conditional viewpoint. Although it
may be intuitive to consider processes from a joint perspective, it can present serious
challenges to statistical modeling. Even when it is possible to specify a joint multivariate

[14] S. Le Hegarat-Mascle, A. Kallel, and X. Descombes. Ant colony optimization for image regulariza-
tion based on a nonstationary Markov modeling. IEEE Trans. Image Processing, 16(3) :865–879,
2007.

[15] F. Heitz and P. Bouthemy. Multimodal estimation of discontinuous optical flow using Markov
random fields. IEEE Trans. Pat. Anal. Mach. Intell., 15(12) :1217–1232, 1993.

[16] J. Sun, N.N. Zheng, and H.Y. Shum. Stereo matching using belief propagation. IEEE Trans.
Pattern Analysis and Machine Intelligence, 25(7) :787–800, July 2003.
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distribution, inference may be possible only through equivalent conditional models.
Hierarchical approaches[17] deal with joint modeling by writing joint distributions as
products of a series of conditional models, e.g. p(y, z, θ) = p(y|z, θ) p(z|θ) p(θ), with
y, z, θ denoting respectively the data, the labels and the parameters. Such models can
be considered from either a classical or Bayesian perspective. We proposed to use the
latter one for its additional modeling capabilities in a number of applications. We used
the term Bayesian which means that all the unknown quantities are treated identically,
be they the segmentation labels or the model parameters.

In our cooperative setting, we focus more particularly on situations where the pro-
cess stage, i.e. the specification of p(z|θ), is made of different sub-processes which are
linked and provide complementary information. We have proposed an approach dif-
ferent from standard hierarchical modeling. It is based on the decomposition of joint
models into a series of conditional models but which do not necessarily correspond
to the factors in a standard factorized decomposition. We refer to this alternative de-
composition as the cooperative approach because the focus is on capturing interactions
(cooperations) between the unknown quantities namely, sub-processes and parameters.
We have derived then a class of joint Markov models based on the specification of
a system of coherently linked conditional models that capture several level of inter-
actions. They incorporate 1) dependencies between individuals within each label set,
which is usually referred to as spatial interactions in spatial data analysis ; 2) rela-
tionships between label sets for cooperative aspects and 3) a priori information for
consistency with expert knowledge. Besides, the Bayesian setting and more specifically
the addition of a conditional model on parameters allows to encode additional infor-
mation and constraints. The decomposition we proposed is particularly well adapted
to such inference techniques which are based on alternating optimization procedures
in which variables of interest are examined in turn and that conditionally on the other
variables. More specifically, we have shown that inference could be described in terms
of the conditional models p(z|y, θ) and p(θ|y, z). Defining these conditional models
is equivalent to defining the conditional distribution p(z, θ|y). It follows that for seg-
mentation purpose, there is no need to define a joint model p(y, z, θ), the conditional
distribution p(z, θ|y) contains all useful information. Equivalently there is no need to
specify p(y). This point of view is also the one adopted in Conditional Random Fields
(CRF)[18] which have been widely and successfully used in applications including text
processing, bioinformatics and computer vision.

In the case of two label sets, denoting z = (t, s) the two label sets, it appears that the
specification of the three conditional distributions p(t|s,y, θ), p(s|t,y, θ) and p(θ|t, s,y)
is necessary and sufficient. In practice, the advantage of writing things in terms of the
conditional distributions p(t|s,y, θ) and p(s|t,y, θ) is that it allows to capture coope-
rations between t and s. We have proposed then an appropriate way to build these
conditional distributions for the model inference. We assume that y, z and θ are all

[17] C. K. Wikle. Hierarchical models in environmental science. Int. Stat. Review, 71 :81199, 2003.

[18] S. Kumar and M. Hebert. Discriminative random fields. Int. J. Comput. Vision, 68(2) :179–201,
2006.
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defined on S (more general cases are easy to derive) and that the conditional distribu-
tion p(z, θ|y) is a Markov random field with energy function H(z, θ|y), i.e. p(z, θ|y) ∝
exp(H(z, θ|y)), with H(z, θ|y) =

∑
c∈C

(
U c

Z,Θ(zc, θc|y) + U c
Z(zc|y) + U c

Θ(θc|y)
)
, where

the sum is over the set of cliques C and zc and θc denote realizations restricted to clique
c. The U c’s are the clique potentials that may depend on additional parameters, not
specified in the notation. In addition, in the formula above, terms that depend only
on z, resp. θ, are written explicitly and are distinguished from the first term in the
sum in which z and θ cannot be separated. Conditions ensuring the existence of such
a distribution can be found in H-O. Georgii’s book[19].

From the Markovianity of the joint distribution it follows that any conditional
distribution is also Markovian. Note that this is not true for marginals of a joint Markov
field which are not necessarily Markovian. Let us then consider MRF p(z, θ|y) whose
energy function can be written as

H(z, θ|y) = HZ(z) +HΘ(θ) +HZ,Θ(z, θ) +
∑
i∈S

log f(yi|zi, θi) .

The Markovian energy is separated into terms HZ, HΘ, HZ,Θ that involve respectively
only z, only θ and interactions between θ and z. With z = (t, s), we can further specify

HZ(z) = HT(t) +HS(s) + H̃T,S(t, s)
and HZ,Θ(z, θ) = HT,Θ(t, θ) +HS,Θ(s, θ) + H̃T,S,Θ(t, s, θ) ,

where we used a different notation H̃ to make clearer the difference between the energy
terms involving interactions only (resp. H̃T,S and H̃T,S,Θ) and the global energy terms
(resp. HZ and HZ,Θ). HΘ(θ) and HZ(z) can be interpreted as priors resp. on Θ and Z.
In a cooperative framework, the prior on Z can be itself decomposed into an a priori
cooperation term H̃T,S(t, s) and individual terms which represent a priori information
on T and S separately. HT,S,Θ(t, s, θ) specifies the process, i.e. the underlying model,
that can also be decomposed into parts involving t and s separately or together. In
what follows, we also assume that t and s are both defined on the set of sites S so that
writing zi = (ti, si) makes sense. With additional care, a more general situation could
be considered if necessary. Eventually

∑
i∈S log f(yi|ti, si, θi) corresponds to the data-

term. From such a definition of p(z, θ|y), it follows then expressions of the conditional
distributions required for inference.

As regards applications, the modeling capabilities of this new approach was first
illustrated in [31] on brain MRI analysis. Benoit Scherrer the student I worked with,
received the Young Investigator Award in segmentation at the MICCAI conference in
2008. Another paper along this line, with the important addition of a third registration
process was accepted to the MICCAI conference in 2009 [28]. Therein, we considered
a finite set S of N voxels on a regular 3D grid. We denote by y = {y1, . . . , yN} the
intensity values observed respectively at each voxel and by t = {t1, . . . , tN} the hidden

[19] H-O. Georgii. Gibbs measures and phase transition. de Gruyter studies in Mathematics, 1988.
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tissue classes. The ti’s take their values in {1, 2, 3} that represents the three tissues
cephalo-spinal-fluid, grey matter and white matter. In addition, we consider L subcor-
tical structures and denote by s = {s1, . . . , sN} the hidden structure classes at each
voxel. Similarly, the si’s take their values in {1, . . . , L, L+ 1} where L+ 1 corresponds
to an additional background class. Relationships exist between tissues and structures.
In particular, a structure is composed of a single known tissue. As parameters θ, we
consider θ = {ψ,R} where ψ are the parameters describing the intensity distributions
for the K = 3 tissue classes and R denotes registration parameters. Intensity distribu-
tion parameters are more specifically denoted by ψ = {ψk

i , i ∈ S, k = 1 . . .K}. Standard
approaches usually consider that intensity distributions are Gaussian distributions for
which the parameters depend only on the tissue class. Here we consider that they could
also depend on i and in the 1D Gaussian case, we would have ψk

i = {µk
i , σ

k
i } denoting

respectively the mean and variance. A priori knowledge is incorporated through fields
φT and φS representing a priori information respectively on tissues and on structures.
In our study, these fields correspond to prior probabilities provided by a probabilistic
atlas on structures that has to be registered on the observed brain image. The fields
depend then on the registration parameters R. In our approach we perform registra-
tion and segmentation simultaneously by considering that the information provided by
the atlas depends on the registration parameters R that have to be estimated as well
as other model parameters and whose successive values will adaptively modified the
registration. Within each label set t and s, interactions between neighboring voxels
are captured, for instance through two Potts fields involving interaction parameters
respectively ηT and ηS . Interaction between label sets can be captured in a third term.
Another term to be specified is that involving θ. The intensity distribution parameters
and the registration parameters are supposed to be independent. The specific form of
the prior on ψ is usually guided by the inference procedure as conjugate priors are
easier to deal with. Figure 5 shows the graphical model representation of the model
developed in [28] where m,λ, α, β denote hyperparameters.

3.1.6 Bayesian weighted Markov model for clustering multivariate data

Related publications : 2 international conferences [26, 27].

This is joint work with Senan Doyle and Darren Wraith, post-doctoral fellows in mistis
and Eric Frichot who was intern in the team in 2010.

Considering specifically multidimensional data, I addressed the issue of weighting
the various dimensions differently. I developed a clustering model in which weights
are introduced and estimated in a Bayesian framework. This technique was successfully
applied to the detection of brain lesions from multiple MR sequences (see Section 4.1.4).

Combining sequences is a data fusion issue which, in a probabilistic setting, na-
turally becomes an issue of combining probabilistic distributions. This relates to the
so-called pooling of distributions in the statistical literature[20]. Examples include linear

[20] C. Genest, K. J. McConway, and M. J. Schervish. Characterization of externally Bayesian pooling
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Figure 5 – Graphical model representation for the cooperative clustering model de-
veloped in [28] : two label sets are considered, resp. {s1, . . . sN} and {t1, . . . tN}. The
dashed lines show a zoom that specifies the interactions at the {si, ti} level (within
label set, MRF, and between label sets interactions). MRF regularization also occurs
at the hyperparameters level via smoothing of the means {µk

1 . . . µ
k
N}.

and logarithmic pooling. The former corresponds to a mixture of distributions, while
the latter consists of combining the distributions into a product where each component
is raised to a power. This power can be viewed as a weight. In this work we considered
logarithmic pooling for it appears that it was more appropriate for our segmentation
framework. Note however that the link to pooling although interesting is only mentio-
ned for information and that our approach could be presented without referring to such
aspects.

We consider a finite set S of N data items. We denote by y = {y1, . . . ,yN} the
observed values. Each yi = {yi1, . . . , yiM} is itself a vector of M values (e.g. corres-
ponding to M different MR sequences). Our goal is to assign each item i to one of
K classes considering the observed features data y. For instance in our brain tissue
segmentation task (Section 4.1.4), we consider in general 3 tissues plus some possible
additional classes to account for lesions in pathological data. We denote the hidden
classes by z = {z1, . . . , zN}, and the zi’s take their values in {1 . . .K}. We consider
nonnegative weights ω = {ωi, i ∈ S} with ωi = {ωi1, . . . , ωiM}. In our general setting
the weights are dimension and item-specific. The rationale is that relevant information

operators. Ann. Statist., 14 :487–501, 1986.
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is not usually uniformly localized so that the weights cannot be fixed equally for all
the items in a given dimension but may depend on the index i. Spatial dependencies
between items are then introduced through Markov random field modeling.

The clustering or segmentation task is recast into a missing data framework in
which y are the observations and z are the missing variables. Their joint distribution
p(y, z|ω; θ) is governed by the weights ω and parameters θ, which are both unknown
and need to be estimated within the segmentation procedure. A prior distribution p(ω)
is defined on the weights. Taking advantage of the fact that Bayesian inference does not
differentiate between missing data and random parameters, we propose a framework in
which the weights ω are viewed as additional missing variables. Denoting the parameters
by θ = {ψ, β}, we assume that the joint distribution p(y, z, ω; θ) is a MRF with the
following energy function :

H(y, z, ω; θ)=HZ(z;β)+HW (ω)+
∑
i∈S

log f(yi|zi, ωi;ψ) (3)

where the energy term HW (ω) involving only ω does not depend on θ and the f(yi|zi, ωi;ψ)s
are probability density functions of yi. The three terms in this energy are further spe-
cified below.
Data term. The data term

∑
i∈S log f(yi|zi, ωi;ψ) in (3) corresponds to the modeling of

class-dependent distributions. We considered two cases : first the particular simpler case
where the distributions are M-dimensional Gaussian distributions with diagonal cova-
riance matrices. For each class k, t(µk1, . . . , µkM ) is the mean vector and {vk1, . . . , vkM}
the covariance matrix components. When zi = k, then N (yim;µzim, vzim) represents the
Gaussian distribution with mean µkm and variance vkm. The whole set of Gaussian
parameters is denoted by ψ = {µkm, vkm, k = 1 . . .K,m = 1 . . .M}. Our data term is then
defined by setting

f(yi|zi, ωi;ψ) =
M∏

m=1

N (yim;µzim,
vzim

ωim
) ,

which is proportional to
M∏

m=1
N (yim;µzim, vzim)ωim . This corresponds to a modified

logarithmic pooling[20] of the M distributions p(zi|yim, ωim; θ) and p(zi;β) . Intuitively,
the impact of a larger ωim is to give more importance to the intensity value yim in the
model. Typically an integer ωim greater than one would correspond to increase ωim

times the number of voxels with intensity value yim. When the weights are all one, a
standard multivariate Gaussian case is recovered.

Then, we considered also the more general case where the class-dependent distribu-
tions are M-dimensional Gaussian distributions with full covariance matrices. For each
class k, µk = t(µk1, . . . , µkM ) is the mean vector and Σk the M ×M covariance matrix.
When zi = k, then N (yi;µzi

,Σzi
) represents the M -dimensional Gaussian distribu-

tion with mean µk and covariance matrix Σk. The whole set of Gaussian parameters
is denoted by ψ = {µk,Σk, k = 1 . . .K}. More specifically, we propose to consider the

[20] C. Genest, K. J. McConway, and M. J. Schervish. Characterization of externally Bayesian pooling
operators. Ann. Statist., 14 :487–501, 1986.
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parametrization of the covariance matrices based on their eigenvalue decompositions :

Σk = DkAkD
T
k ,

where Dk is the matrix of eigenvectors of Σk and Ak is a diagonal matrix with the
corresponding eigenvalues of Σk. The matrix Dk determines the orientation of the kth

Gaussian and Ak its shape. Such a parameterization has the advantage to allow an in-
tuitive incorporation of the weight parameters via the transformation of the covariance
matrices given below. Our data term is then defined by setting :

f(yi|zi, ωi;ψ) = N (yi;µzi
, Dzi

∆iAzi
DT

zi
) ,

where ∆i is the M ×M diagonal matrix whose diagonal components are the inverse
weights {ω−1

i1 , . . . , ω
−1
iM}. This means that the weights are used to act on the shape of

the Gaussians but not on their orientation. As before, when the weights are all one, a
standard multivariate Gaussian case is recovered.
Missing label term. The missing data term HZ(z;β) in (3) is set to a standard Potts
model, with external field ξ and spatial interaction parameter η, and whose energy is

HZ(z;β) =
∑
i∈S

(ξizi
+
∑

j∈V(i)

η 1Izi=zj
),

where V(i) denotes the items neighboring i and 1Izi=zj is 1 when zi = zj and 0 otherwise.
Parameter β = {ξ, η} with ξ = {t(ξi1 . . . ξiK), i ∈ S} being a set of real-valued K-
dimensional vectors and η a real positive value.
Missing weight term. The weights are assumed independent from parameters θ
and independent across modalities. The simplest choice is to define a prior p(ω) =∏M

m=1

∏
i∈S p(ωim) where each p(ωim) is a Gamma distribution with hyperparameters

αim (shape) and γim (inverse scale). Thus

HW (ω) =
M∑

m=1

∑
i∈S

((αim − 1) logωim − γim ωim).

In practice, the set of hyperparameters is fixed so that the modes of each prior
p(ωim) are located at some expert weights {ωexp

im ,m = 1 . . .M, i ∈ S} accounting for
some external knowledge, if available. Formally, we set αim = γim ωexp

im + 1 to achieve
this. The expert weights can be chosen according to the specific task. For example, when
observations around a specific value of interest are not numerous enough to attract a
model component, increasing the expert weight for some of them will help in biasing
the model toward the identification of this class.

Note that we also investigated the use of Dirichlet distributions for the weights
adding the constraints that they should sum to the sample size N in each modality.
However, there were no real theoretical reasons to do so and it required less stable
numerical computation. This is due to the fact that the Dirichlet distribution is not
a conjugate distribution in our setting. In addition, in some preliminary experiments,
results were not improved compared to the simpler independent Gamma case.
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The graphical representation of the model with weights is shown in Figure 6.
We proposed to use a variational EM framework to deal with the missing label and

weight data and the MRF prior. The fact that the weights can be equivalently consi-
dered as missing variables or random parameters induces some similarity between our
Variational EM variant and the Variational Bayesian EM algorithm presented by M.
Beal and Z. Ghahramani[21,22]. Our framework differs slightly. In contrast to these latter
papers, our observations are not i.i.d. and condition (2) in Section 3 of M. Beal and Z.
Ghahramani’s paper[21] is not satisfied. However, these differences are not significant.
More importantly, our missing data presentation offers the possibility to deal with ex-
tra parameters (the Gaussian means and variances in our setting) for which no prior
information is available. This is done in a maximum likelihood manner and avoids the
use of non-informative priors that could be problematic (difficulties with non informa-
tive priors are listed in a book by A. Gelman et al.[23] p. 64-65). As a consequence, the
variational Bayesian M-step of Beal and Ghahramani[21] is transferred into our E-step
while our M-step has no equivalent in the formulation of Beal and Ghahramani[21].

In practice, the diagonal case leads to a series of formulas for the updating while
the general case requires the use of a numerical procedure (the Flury and Gautschi
algorithm[5]) for the covariance matrices.

3.1.7 Triplet Markov Fields for non standard supervised clustering

Related publications : 1 journal paper [8], 1 research report [60], 1 interna-
tional conference [40].

This was the main topic of Juliette Blanchet PhD thesis that I advised from 2004 to
2007.

In more and more high-level image analysis, such as feature-based object recognition
or object tracking, images are not described by intensity levels on a regular grid but
rather by local affine-invariant descriptors (e.g. Figure 1) and by spatial relationships
between these descriptors. A graph is associated with an image with the nodes repre-
senting feature vectors describing image regions and the edges joining spatially related
regions. For tractability, most approach to recognition assume independence between
the features which is an obvious oversimplification. Incorporating information about
the spatial organization of the descriptors leads to better recognition results. Current
approaches consist in augmenting the data with information coming from the spatial

[21] M. Beal and Z. Ghahramani. The variational Bayesian EM Algorithm for incomplete data : with
application to scoring graphical model structures. Bayesian Statistics. Oxford University Press,
2003.

[22] Z. Ghahramani and M. Beal. Propagation algorithms for variational Bayesian learning. In Ad-
vances in Neural Information Processing Systems. MIT Press, 2001.

[23] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis. Chapman &
Hall, 2nd edition, 2004.

[5] G. Govaert G. Celeux. Gaussian parsimonious clustering models. Pattern Recognition, 28(5) :pages
781–793, 1995.
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Figure 6 – Graphical model representation for the Bayesian weighted clustering model.
Here the emphasize is on the addition of a set of weights w1m, . . . wNm to the standard
hidden Markov field setting.

relationships, for instance by using co-occurrence statistics, but without modeling ex-
plicitly the dependencies between neighboring descriptors. In such approaches the un-
derlying model is one where the descriptors are statistically independent variables. Our
claim is that recognition results can be further improved by considering that descriptors
are statistically dependent. We proposed to introduce the use of statistical parametric
models of the dependence between descriptors. We used hidden Markov models which
provide parametric models where the parameters have a natural interpretation and can
be adjusted to incorporate a priori knowledge with respect to strength of interaction for
instance. Another major source of complexity is related to the structure of the noise
model or the distribution (say p(y|z; θ)) linking the unknown labels z to the obser-
vations y. First, in real-world applications, data cannot usually be reduced to classes
modelled by unimodal distributions and consequently by single Gaussian distributions.
As regards the measurement process, we proposed class and site dependent mixtures
of distributions and more specifically mixtures of Gaussian distributions which provide
a richer class of density models than the single Gaussian distributions. To allow such
more general distribution, a natural idea is to to decompose each class, given by the
zi’s, into subclasses. Let us for instance assume that each of the K classes is decom-
posed into L sub-classes so that we can introduce additional variables {X1, . . . , XN}
indicating the sub-classes and then consider class and sub-class dependent distributions
P (.|xi, zi; θ) that depend on some parameters θ, actually usually on part of θ denoted
by θxizi . Then, a strong assumption of conditional independence of the observed data is
generally used in the hidden Markov random field framework for tractability and this
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standard model is sometimes referred to as HMF-IN (for Hidden Markov Field with
Independent Noise). This assumption combined with the Markovianity of the hidden
field has the advantage to lead to a distribution of the labels given the observations
(the posterior distribution) which is Markovian. This last property is essential in all
Markov model based clustering algorithms. However, conditional independence is too
restrictive for a large number of applications such as textured or non-stationary image
segmentation. For this reason, various Markov models have been proposed in the lite-
rature including Gaussian Markov fields[24] and more general hidden Markov models
proposed by Pieczynski and Tebbache[25] and referred to as Pairwise Markov models.
They are based on the observation that the conditional independence assumption is suf-
ficient but not necessary for the Markovianity of the conditional distribution to hold.
A further generalization has then been proposed by Benboudjema and Pieczynski[26]

through the so-called Triplet Markov Fields (TMF), that is a triplet (Y,X,Z) which
has a Markovian joint distribution. It has larger modeling capabilities, allowing more
general noise models and in particular multi-modal class distributions. We considered
Triplet models different from those by Benboudjema and Pieczynski[26,27]. We propo-
sed a class of Triplet Markov models with rich noise models that still allow standard
processing as regards classification and parameter estimation. We proposed to use an
Expectation Maximization framework and a mean field like approximation procedure
(Section 3.2.1) originally developed for the standard hidden Markov field case. We fo-
cused in particular on texture recognition (see Section 4.1.1) but further work includes
other contexts such as object recognition and tracking. Description and illustration of
these models can be found in preliminary studies [60, 40] and in the journal publication
[8]. The triplet models we considered in their general form are detailed in [8]. For illus-
tration, we just show a simple example of such a triplet model. Figure 7 shows images
corresponding to simulations of this example. It is given by :

P (y,x, z) ∝ exp(η1

∑
i∼j

1Ixi=xj 1Izi=zj + η2

∑
i∼j

1Izi=zj +
∑
i∈S

log f(yi|ψxizi)) (4)

where η1 and η2 are real parameters, ψlk = (µlk,Σlk) are the parameters of Gaussian
distributions f(.|ψlk), for l ∈ {1 . . . L} and k ∈ {1 . . .K}. The couple (X,Z) is then
Markovian :

P (x, z) ∝ exp(η1

∑
i∼j

1Ixi=xj 1Izi=zj + η2

∑
i∼j

1Izi=zj ) .

Figure 8 then illustrates the performance of our triplet models when segmenting
synthetic images with non standard noise models (see also [8] for details).

[24] G. R. Cross and A. K. Jain. Markov Random Fields texture models. IEEE Trans. Pattern Analysis
and Machine Intelligence, 5(1) :25–39, 1983.

[25] W. Pieczynski and A. Tebbache. Pairwise Markov Random Fields and segmentation of textured
images. Machine Graph. Vision, 9 :705–718, 2000.

[26] D. Benboudjema and W. Pieczynski. Unsupervised image segmentation using triplet Markov fields.
Computer Vision and Image Understanding, 99(3) :476–498, 2005.

[27] D. Benboudjema and W. Pieczynski. Unsupervised statistical segmentation of non stationary
images using triplet Markov Fields. IEEE Trans. PAMI, 29(8) :367–1378, 2007.



33

(a) (b) (c) (d)

η1 = −2
η2 = 2

η1 = 2
η2 = −2

Figure 7 – Simulations of 2 parameter (η1 and η2) Triplet Markov fields defined in
eq. (4) [8] when L = 2 and K = 2 with respectively η1 = −2, η2 = 2 (first row) and
η1 = 2, η2 = −2 (second row) : (a) Realizations of (X,Z), (b) Realizations of Z, (c)
Realizations of Y, (d) Realizations of a HMF-IN built by adding to images in (b) some
Gaussian noise with 0 mean and standard deviation equal to 0.3. Note that in the
images, each of the 4 possible values of (xi, zi) has been associated with a grey-level for
visualization.
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True segmentation (a) (b) (c) (d)

HMF-IN
Classification rates 51.2% 80.7% 66.3% 74.5%

TMF
Classification rates 96.6% 91.7% 95.8% 88.4%

Selected L 2 3 4 4

Figure 8 – Synthetic image segmentations using an HMF-IN model (second row) and
our TMF model (third row) : the true 2-class segmentation is the image in the upper
left corner and four different noise models are considered. In (a) class distributions
are mixtures of two Gaussians, In (c) observations from class 1 are generated from
a Gamma(1,2) distribution and observations from class 2 are obtained by adding 1
to realizations of an Exponential distribution with parameter 1. In (b) and (d) the
noisy images are obtained by replacing each pixel value respectively in (a) and (c) by
its average with its four nearest neighbors. Classification rates are given below each
segmentation results. In the TMF model case, the selected L values using our BICMF

criterion (see Section 3.3.1) are given in the last row.
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Also it is important to specify the relationship between the Triplet Models and the
Conditional Random Fields (CRF)[18] which have been widely and successfully used in
applications including text processing, bioinformatics and computer vision. CRF’s are
discriminative models in the sense that they model directly the posterior or conditional
distribution of the labels given the observations. Explicit models of the joint distri-
bution of the labels and observations or of the noise distribution are not required. In
classification issues, the posterior distribution is the one needed and it can appear as a
waste of time and computational resources to deal with the joint distribution or with
complex noise models. All the more so as the class conditional distributions describing
the noise model may contain a lot of structure but with little effect on the posterior
distribution (see for instance Figure 1.27 in C. Bishop’s book[13]). However, even in
classification contexts, approaches that model the joint distribution of the labels and
observations are considered. They are known as generative models. Triplet Markov mo-
dels belong to this class. Such generative models are certainly more demanding in terms
of modeling but they have the advantage to provide a model of the observed data (the
likelihood) allowing this way better access to theoretical properties of the estimators.
This can also be useful for detecting outliers or data points that have low probability
under the model and for which the predictions may be of low accuracy. Even when
the main interest is classification, such outliers, if not detected, can severely bias the
parameter estimates and affect the classification results. In addition, for more and more
modern applications, learning data is not enough and the use of external information
including a priori or expert knowledge is necessary. Such expertise is usually embed-
ded in the data structure which can be taken into account by using generative models.
Our aim was to investigate the use of Triplet Markov models seen as an alternative
to Conditional Random Fields with good modeling capabilities. As generative models
they better model the structure of the data. They can be used with standard Bayesian
techniques and probabilistic clustering tools requiring no more algorithmic effort than
CRF’s. They allow theoretically well-based studies and in particular model selection
to guide the user to specific modeling choices consistent with the observed data (see
[60, 8]).

3.1.8 Comparing two types of models for clustering spatial data

Related publication : 2 national conferences [66, 54].

This is joint work with Denis Allard from INRA, Avignon and Nathalie Peyrard from
INRA Toulouse.

My expertise in Markov models includes the investigation of other related modeling
solutions that offer similar processing advantages and possibly superior modeling ca-
pabilities. The pairwise and Triplet Markov random fields go in this direction and can

[18] S. Kumar and M. Hebert. Discriminative random fields. Int. J. Comput. Vision, 68(2) :179–201,
2006.

[13] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
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(a) (b) (c)

Figure 9 – Examples of different structures : (a) regular lattice and (b) a standard
four nearest neighbor system, (c) biological image of cells and proposed structure based
on Voronoi tesselation.

be related to the extensions we consider. With this in mind we focused on the problem
of clustering or grouping observations measured at different points of the plane, taking
into account the geographical distances between the points. We compared two models
to solve this problem : hidden Markov random fields (HMRF) and a geostatistical mo-
del which uses Gaussian random fields. Geostatistical-type problems (Figure 9 (c)) are
distinguished most clearly from lattice-type (Figure 9 (a) and (b)) problems by the
ability of the spatial index to vary continuously. The goal was to study how methods
from one class of problems could be borrowed from methods usually associated with
another class. As regards parameter estimation we investigated an EM-like algorithm.
If approximations of this algorithm exist for HMRFs (see Section 3.2.1), this is not the
case for geostatistical models. We proposed [66, 54] an approach mimicing the solu-
tion in the independent case. Models performance was compared on simulated and real
data : they showed the superiority of the geostatistical model in terms of classification
error but the classifications obtained with the HMRF model were smoother and some-
times more satisfactory. Further work is required to better understand these possible
extensions of standard HMRF.
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3.2 The design and study of EM-like algorithms

As regards, estimation algorithms, non trivial hidden structures usually lead to non
trivial optimization problems. I focused on a certain type of methods, appropriate for
Markov structures, based on the mean field principle (Section 3.2.1) and proposed effec-
tive algorithms which show good performance in practice and for which I also studied
theoretical properties (Section 3.2.2). To improve these algorithms in terms of computa-
tional efficiency and robustness to artefacts in the data, we also investigated distributed
versions of EM using a multi-agent system paradigm (Section 3.2.3). We then also pro-
posed an adaptation of the EM framework to cluster non standard multi-modal data
(Section 3.2.4) and addressed the problem of slow convergence in the standard mixture
model case (Section 3.2.5).

3.2.1 EM procedures using mean field-like approximations

Related publications : 1 journal paper [14], 1 national conference [56].

I initiated this direction of research in 1998 with the start of Nathalie Peyrard PhD
thesis that I advised from 1998 to 2001. The tools developed during these years are still
on focus today as regards their theoretical properties and practical efficiency. They are
also today in our team the basis of more recent works.

The EM algorithm has an elegant formulation and when it is applied to appro-
priate model structures it yields parameter update procedures that are easy to derive
and straightforward to implement. However, outside simple or standard cases, the EM
algorithm yields update procedures that do not have closed form expressions and it
is seldom tractable analytically. In particular, when focusing on image segmentation
and Markov random fields estimation, difficulties arise due to the dependence structure
in the models and approximations are required. A heuristic solution using mean field
approximation principle has been proposed by J. Zhang[28]. The mean field approach
consists of calculating quantities related to a complex probability distribution, by using
a simple tractable model such as the family of independent distributions. Using ideas
from this principle, we proposed [14] in the context of Markovian image segmenta-
tion a class of EM-like algorithms generalizing the work of J. Zhang which show good
performance in practice.

The idea underlying these algorithms is to replace the intractable Markov distribu-
tion by a simpler distribution obtained by fixing the neighbors of each pixel to constant
values. Then, an iteration of a mean field-like algorithm consists of two steps : in the
first step the values for the neighbors are updated according to the observations and
to the current value of the parameter. It follows an approximation of the intractable
Markov distribution. The second step consists of carrying out the EM algorithm for
the corresponding approximated observed likelihood to obtain an updated value of the
parameter. Mean field-like algorithms can thus be related to the EM algorithm for

[28] J. Zhang. The Mean Field Theory in EM Procedures for Markov Random Fields. IEEE Transac-
tions on Signal Processing, 40(10) :2570–2583, 1992.
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independent mixture models, with the significant difference that the mixture model
adaptively changes at each iteration depending on the current choice of the neighbors
values. In [14], we compared three different ways of updating the neighbors in the first
step : the mean field approximation of the conditional mean (mean field algorithm), an
approximation of the conditional mode (mode field algorithm) and a simulated realiza-
tion of the conditional Gibbs distribution obtained with the Gibbs sampler of Geman
and Geman[29] (simulated field algorithm). The last choice led to a new stochastic algo-
rithm which appeared to be the most promising for its good performance on synthetic
and real image experiments. As mentioned in many sections of the present document,
we are working on extending the modeling capabilities of these kind of algorithms and
on providing a better understanding of their properties.

Most of my work is currently based on the mean field approximation principle which
is among the variational methods [30], the simplest principle although not yet fully
understood in some aspects (see for instance Section 3.2.2). We observe that in many
practical applications, the mean field approximation already handles a good part of the
complexity of the data. There is a trade-off then between finer approximations which
may not always lead to much better (classification or estimation) results and additional
computational burden. Also, very few results exist on the quality of the variational
approximations when they act as a surrogate in a larger inference problem. In particular,
as regards parameter estimation, results on bounds on the likelihood may not be of
great help. Mean field methods can be related to message passing algorithms which
correspond to general schemes for fitting variational approximations. Message passing
algorithms include Mean Field, Loopy Belief Propagation, Expectation Propagation,
Tree-reweighted message passing, Fractional Belief Propagation, Power Expectation
Propagation. A unifying view and references for these different methods can be found
in a report by T. Minka[31]. It appears that the difference between mean field methods
and belief propagation methods is not the amount of structure they model but the
measure of loss they minimize. Neither method is inherently superior. It depends on
the task and goal in mind. To our knowledge, there exists no experimental comparison
of the various algorithms performance on real-world networks and data.

Apart from variational methods, recent efficient techniques such as Graph cuts [32]

are built to provide maximum a posteriori (MAP) solutions. However, in our frame-
work they do not seem to provide the same flexibility as probabilistic techniques when
parameter estimation is required. They are based on hard membership which allows the
use of the graph cut optimization methods that have proven highly effective for solving
pixel labeling problems in some cases. We chose to base our work mainly on soft mem-
bership adopting a more statistical point of view with some emphasize on parameter

[29] S. Geman and D. Geman. Stochastic Relaxation, Gibbs Distribution, and the Bayesian Restoration
of Images. IEEE trans. on Pattern Analysis and Machine Intelligence, 6 :721–741, 1984.

[30] M.I. Jordan, editor. An introduction to variational methods for graphical models. MIT Press, 1999.

[31] T. Minka. Divergence measures and message passing. Microsoft Research Technical Report, MSR-
TR-2005-173, Decembre, 7 2005.

[32] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. IEEE
trans. PAMI, 23(11) :1222–1239, 2001.
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estimation and in particular on the biais inherent to hard membership methods. To our
knowledge comparison of MRF techniques and graph cut techniques are not always fair
in the sense that they ignore the latest developments in Markov modeling.

3.2.2 MCVEM : combining Monte-Carlo simulations and variational EM

Related publications : 1 journal paper [10], 1 research report [61].

This is joint work with Gersende Fort, CNRS research scientist at LTCI TELECOM-
ParisTech, Paris.

For the standard EM algorithm, parameter estimates yield increasing likelihood
over the observed data and the convergence behavior of this process is well understood.
However, since it is often the case that there are no other feasible choices than to re-
sort to the mean field approximation in practical situations, it appears frequently that
the mean field approximation is being used for practical problems with little conside-
ration of important issues such as accuracy of the approximation, convergence of the
algorithms and so on. As a matter of fact, in the context of Markovian segmentation,
theoretical results as regards convergence properties are still missing. Convergence pro-
perties of related EM variants (GAM for Generalized Alternating Minimization) have
been studied by W. Byrne, A. Gunawardana[33] and R. Neal and G. Hinton[34] but these
variants cannot be applied in the MRF segmentation framework and further approxi-
mations are required. We proposed [10, 61] a new algorithm that we called MCVEM
for Monte Carlo Variational EM, which is tractable in practice and for which we prove
convergence results. Our algorithm has the advantage over the GAM procedures that it
can be applied to perform image segmentation tasks and this on the basis of theoretical
convergence results. The basis of our work is the paper by G. Fort and E. Moulines[35]

which focuses on the convergence properties of the MCEM algorithm. Using similar
tools, our key idea is to view the MCVEM algorithm as a stochastic perturbation of
a deterministic algorithm, so called Variational EM (VEM) that is easier to study[33].
Experiments on synthetic and real images show that the algorithm performance is very
closed and sometimes better than that of [14]. Additional good properties due to its
stochastic nature need to be further investigated. This first effective step opens the
way to a better understanding of the behavior of a lot of Markov based algorithms (see
Figure 10 for an illustration of practical implementation issues). In particular, analy-
zing how simulation steps should be incorporated so as to interact advantageously with

[33] W. Byrne and A. Gunawardana. Convergence theorems of Generalized Alternating Minimization
Procedures. Journal of Machine Learning Research, 1 :1–48, 2004.

[34] R.M. Neal and G.E. Hinton. A view of the EM algorithm that justifies incremental, sparse and
other variants. In M.I. Jordan, editor, Learning in Graphical Models, pages 355–368. MIT Press,
1998.

[35] G. Fort and E. Moulines. Convergence of the Monte-Carlo EM for curved exponential families.
Annals of Statistics, 31(4) :1220–1259, 2003.

[33] W. Byrne and A. Gunawardana. Convergence theorems of Generalized Alternating Minimization
Procedures. Journal of Machine Learning Research, 1 :1–48, 2004.
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deterministic approximations seems promising [10].

3.2.3 Distributed Cooperative EM for Markov model-based segmentation

Related publications : 2 journal papers [7, 6], 1 book chapter [4].

This work was carried out during the PhD thesis of Benoit Scherrer in collaboration
with Catherine Garbay from Laboratoire d’Informatique de Grenoble (LIG) and Michel
Dojat from Grenoble Institut of Neuroscience.

In a different context, I also considered variants of the so-called Incremental EM[34]

and Variational EM[33] which were implemented using multi-agent systems. This distri-
buted version of EM is detailed in [7] and used in our MRI applications [6, 4] (Section
4.1.3). Classically, when considering Markov model-based image segmentation, model
parameter estimation, in addition to leading to a large number of computations, is per-
formed over the whole image, and does not reflect local image properties. We proposed
to “agentify” the global MRF segmentation model by distributing a set of local MRF
models within a multi-agent framework. The image is partitioned in territories where
situated agents estimate the parameters of a local MRF model (see Figure 11). The
global consistency of local models is ensured by modifying the EM scheme to introduce
cooperation between neighboring agents. Local models estimated with our distributed
local EM (DILEM) then accurately fit local image features. A priori knowledge can
also be integrated into this model via the external field of the MRF models, and can be
used to introduce other levels of agent cooperation. The modification of the standard
EM procedure (Figure 12 (a)) leads to the introduction of additional steps and agent
interactions (Figure 12 (b)).

We considered two kinds of agents : one global agent which initializes the MRF
agentified segmentation and a set of local cooperating MRF segmentation agents. Local
segmentation agents estimate local MRF models via local EM procedures and coope-
rate to ensure a global consistency of local models. We demonstrated different types of
cooperations between agents that lead to additional levels of regularization compared
to the standard label regularization provided by MRF. Embedding Markovian EM pro-
cedures into a multi-agent paradigm showed interesting properties that were illustrated
on magnetic resonance (MR) brain scan segmentation (Section 4.1.3).

3.2.4 Conjugate EM for multimodal data clustering

Related publication : 1 journal paper [1].

This part has been developed during the PhD thesis of Vasil Khalidov in the context
of the European project POP. This is also joint work with Radu Horaud from team

[34] R.M. Neal and G.E. Hinton. A view of the EM algorithm that justifies incremental, sparse and
other variants. In M.I. Jordan, editor, Learning in Graphical Models, pages 355–368. MIT Press,
1998.

[33] W. Byrne and A. Gunawardana. Convergence theorems of Generalized Alternating Minimization
Procedures. Journal of Machine Learning Research, 1 :1–48, 2004.
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(a) (b)

Figure 10 – Estimation and effect of the interaction parameter η in standard hidden
Potts model (HMRF) : Figure (a) shows the η estimates trajectory versus the number
of iterations for different parameter starting values, with Mean Field (dot line), Simula-
ted Field (solid line) and MCVEM (dash-dot line). It appears that the starting value is
crucial for the limiting behavior of Mean Field. The trajectories of Simulated Field do
not converge to some fixed limiting value but the behavior of the different trajectories is
similar. We believe that convergence of the Simulated Field algorithm has to be unders-
tood in a different way. An approach similar to what is done for the so-called stochastic
EM algorithm is more appropriate. Averages of the parameters should converge and
this suggests to replace the current implementation of Simulated Field algorithm by an
averaging procedure. Note that for this data set, despite the variations in the estimation
of the interaction parameter, the corresponding segmentations were quite stable : the
mean error rate is in the range (2.86%, 2.92%) for MCVEM, (2.82%, 3.10%) for Mean
Field and (3.42%, 3.65%) for Simulated Field. Figure (b) shows the classification error
rate versus η obtained by Mean Field (dot line), Simulated Field (solid line) and MV-
CEM (dash-dot line), when the segmentation algorithm is started from two different
initial classifications. For large values of η, the segmentation is greatly dependent of the
initial segmentation. In addition, the curves give an idea of the value that corresponds
to the minimum error rate. For MCVEM and Simulated Field, this naive computation
is not far from the estimates obtained by running the full algorithms when all the para-
meters are unknown. This is not the case for Mean Field, thus showing that the Mean
Field segmentation may depend on the implementation of the algorithm.
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Figure 11 – Distributed segmentation : the volume of the 3D brain image is partionned
into a number of sub-volumes on which agents are going to act locally. The global
consistency of the resulting local treatments is then ensured through cooperations. A
Markovian regularization takes place via cooperation of each agent (in red) with its
neighbors (in green).

Figure 12 – The left Figure (a) shows a synthetic view of a classical global EM estima-
tion scheme. The right Figure (b) shows the agentified distributed local EM (DILEM)
scheme with cooperations and coordinations (bold arrows) to ensure a global consis-
tency of local models.
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perception.

In Section 3.1.2, I mentioned the problem of clustering multi-modality data and
presented a conjugate mixture models framework that provides consistent clustering
results in multiple feature spaces. In [1], we formulated this problem as a likelihood
maximization task. We proposed a variant of the EM algorithm specifically designed to
estimate object-space parameters that are indirectly observed in several sensor spaces.
We explicitly derived the expectation and maximization steps of the associated EM
algorithm. While the E-step of the proposed algorithm is standard, the M-step implies
non-linear optimization of the expected complete-data log-likelihood with respect to
the object parameters. We investigated efficient local and global optimization methods.
More specifically, we prove that, provided that the object-to-sensor functions as well as
their first derivatives are Lipschitz continuous, the gradient of the expected complete-
data log-likelihood is Lipschitz continuous as well. The immediate consequence is that
a number of recently proposed optimization algorithms specifically designed to solve
Lipschitzian global optimization problems[36] can be used within the M-step of the
proposed algorithm. Several of these algorithms combine a local maximum search pro-
cedure with an initializing scheme to determine, at each iteration, good initial values
from which the local search should be performed. This implies that the proposed EM
algorithm has guaranteed convergence properties. We then discussed several possible
local search initialization schemes, leading to different convergence speeds. We propo-
sed and compared two possible strategies to initialize the EM algorithm. The number
of objects is determined using the BIC criterion (see also Section 3.3.2).

3.2.5 Accelerated EM for finite mixtures

Related publication : 1 journal paper [16].

This work has been carried out with G. Celeux, S. Chrétien and A. Mkhadri when A.
Mkhadri was visiting the former is2 team at INRIA and S. Chrétien was a post-doc in
the former numopt team.

One of the most documented problems occurring with EM is its possible slow conver-
gence. In the finite independent mixture case, we proposed and studied the so-called
CEMM : component-wise EM for Mixtures algorithm [16] which aims at overcoming
the problem of slow convergence.

In its general formulation, the EM algorithm involves the notion of a complete data
space, in which the observed measurements and incomplete data are embedded. An
advantage is that many difficult estimation problems are facilitated when viewed in
this way.

One drawback is that the simultaneous update used by standard EM requires overly
informative complete data spaces, which leads to slow convergence in some situations.
In the incomplete data context, it has been shown that the use of less informative

[36] A.A. Zhigljavsky and A. Žilinskas. Stochastic Global Optimization. Springer, 2008.
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complete data spaces, or equivalently smaller missing data spaces, can lead to faster
convergence without sacrifying simplicity.

In [16], we proposed a component-wise EM for mixtures. It uses, at each iteration,
the smallest admissible missing data space by intrinsically decoupling the parameter
updates. Monotonicity is maintained, although the estimated proportions may not sum
to 1 during the course of the iteration. However, we proved that the mixing proportions
satisfied this constraint upon convergence. Chrétien and Hero[37] showed that the EM
procedure could be recast into a proximal point framework and our proof of convergence
relies on the interpretation of our procedure as a proximal point algorithm. .

For performance comparison, we considered standard EM as well as two other al-
gorithms based on missing data space reduction, namely the SAGE[38] and AECME[39]

algorithms. We provided adaptations of these general procedures to the mixture case.
We also considered the ECME algorithm[40], which is not a data augmentation scheme
but still aims at accelerating EM. The numerical experiments reported in [16] illustrate
the advantages of the component-wise EM algorithm relative to these other methods.

[37] S. Chretien and A. O. Hero. Acceleration of the EM algorithm via proximal point iterations. In
IEEE International Symposium on Information Theory, MIT Boston, 1998.

[38] J. A. Fessler and A. O. Hero. Space-Alternating generalized expectation-maximisation algorithm.
IEEE Trans. Signal Processing, 42 :2664–2677, 1994.

[39] X.-L. Meng and D. A. van Dyk. The EM algorithm - an old folk song sung to a fast new tune
(with discussion). J. Roy. Stat. Soc. Ser. B, 59 :511–567, 1997.

[40] C. Liu and D.B. Rubin. The ECME algorithm : A simple extension of EM and ECM with faster
monotone convergence. Biometrika, 81 :633–648, 1994.
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3.3 Hidden structure model selection

Choosing the probabilistic model that best accounts for the observations is an im-
portant first step for the quality of the subsequent statistical inference and analysis. In
most cases the choice is done subjectively using expert knowledge or ad hoc procedures
and there is a striking lack of systematic data-based approaches. When recasting this
choice as a problem of probabilistic model comparison, most selection criteria involve
calculating integrated likelihoods for a number of models, i.e. the likelihoods of the
observations integrated over the respective model parameters. For a lot of models of
interest, these integrated likelihoods are high dimensional and intractable integrals so
that most available software is generally inefficient for their evaluation. Various approxi-
mations have been proposed. In particular the Bayesian Information Criterion (BIC)
approximation of Schwarz[41] is based on the Laplace method for integrals. Many other
approaches can be found in the literature on model selection (see for instance the list
of references in Kass and Raftery’s paper[42]). BIC has become quite popular due to its
simplicity and its good results in cases where other standard model selection procedures
were not satisfactory.

In the HMRF context, I proposed [15] variational approximation tools to deal with
the HMRF selection issue in practice using the Bayesian Information Criterion (BIC)
(Section 3.3.1). Then, we also developed a so-called Conjugate BIC (Section 3.3.2)
appropriate in the context of our conjugate EM algorithm mentioned in Section 3.1.2.
At a different level, I also investigated the deviance information criterion (DIC) which
is not so naturally defined for missing data models (Section 3.3.3).

3.3.1 Approximations for selecting hidden Markov models

Related publication : 1 journal paper [15].

This section reports on research done with Nathalie Peyrard during her PhD 1998-2001.

Our aim was to apply variational approximation tools[30] to built and select a model
from a collection of hidden Markov random fields in the context of spatial data clus-
tering and in particular image segmentation. In these situations, exact calculation of
selection criteria is not possible and simulation methods such as Monte Carlo Markov
Chains (MCMC) methods reach their limits. In [15], we focused on the use of BIC[41]

and proposed two ways to use variational approximations to get tractable criteria. We
illustrated the performance of these approximations on the issue of selecting the number
of classes and compared with another criterion called PLIC[43] for Pseudo Likelihood

[41] G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6 :461–464, 1978.

[42] R. Kass and A. Raftery. Bayes factor. Journal of the American Statisticial Association, 90 :733–
795, 1995.

[30] M.I. Jordan, editor. An introduction to variational methods for graphical models. MIT Press, 1999.

[43] D.C. Stanford and A.E. Raftery. Approximate bayes factors for image segmentation : the pseu-
dolikelihood information criterion (plic). Pattern Analysis and Machine Intelligence, IEEE Tran-
sactions on, 24(11) :1517 – 1520, nov. 2002.
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Information Criterion. We obtained generally better results with our so called BICMF

but its theoretical properties remain to be investigated. In this case, we have no specific
results on the quality of BIC as an approximation of the integrated likelihood and this
choice as a selection criterion is arguable. However, the question of the criterion ability
to asymptotically choose the correct model can be addressed independently of the in-
tegrated likelihood approximation issue. As an illustration, E. Gassiat[44] proved that
for the more specialized but related case of hidden Markov chains, under reasonable
conditions, the maximum penalized marginal likelihood estimator of the number of hid-
den states in the chain is consistent. This estimator is defined for a class of penalization
terms that includes the BIC correction term and involves an approximation of the maxi-
mized log-likelihood which is not necessarily good, namely the maximized log-marginal
likelihood. In particular, this criterion is consistent even if there is no guarantee that it
provides a good approximation of the integrated likelihood. This suggests that a good
approximation of the maximized log-likelihood is not a strong requirement to obtain
consistent criteria. A key point in E. Gassiat’s paper[44] seems to be the decomposition
of the criterion as a sum of identically distributed terms. The criteria proposed in our
paper [15] can also be written as a sum because of the factorization property of the
distributions involved. The generalization is not straightforward but a next step could
therefore be to investigate if consistency results can be deduced in a similar way.

3.3.2 Information criteria for clustering multimodal data

This work has been carried out with Vasil Khalidov and is reported in Chapter 6 of his
PhD thesis[45]. No other published document is available yet.

As already presented in Section 3.1.2, a multimodal data setting is a combination
of multiple data sets each of them being generated from a different sensor. The data
sets live in different physical spaces with different dimensionalities and cannot be em-
bedded in a single common space. Clustering such multimodal data raises the question
of how to perform pairwise comparisons between observations living in different spaces.
We have proposed a solution within the framework of Gaussian mixture models and
the EM algorithm in [1]. Each modality is associated to a modality specific Gaussian
mixture which shares with the others a number of common parameters {o1, . . . , oK}
in equation (2) of Section 3.1.2 and a common number of components (K). Each com-
ponent corresponds to a common multimodal event that is responsible for a number of
observations in each modality.

As this number of components is usually unknown, we have proposed information
criteria, based on a penalized maximum likelihood principle, for selecting this number
from the data. A consistency result for the estimator of the common number of compo-
nents is given under some assumptions. To our knowledge, there has been no procedure

[44] E. Gassiat. Likelihood ratio inequalities with application to various mixtures. Annales de l’institut
Poincaré, 2002.

[45] V. Khalidov. Conjugate mixture models for the modelling of visual and auditory perception. PhD
thesis, University of Grenoble, October 2010.
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so far that properly selects the model dimensionality for multimodal case in a consistent
manner. Standard results on information criteria are shown for identically distributed
data which is typically not the case in the multimodal setting. In this contribution,
we have been able to derive an appropriate information criterion with a BIC like pe-
nalty and illustrate the performance of this conjugate BIC score on a challenging two
modality task of detecting and localizing audio-visual objects.

3.3.3 Deviance Information Criteria for missing data models

Related publication : 1 journal paper [13].

This work was initiated in the former is2 team with G. Celeux now from team select,
INRIA futur, when Mike Titterington from University of Glasgow in Scotland was
visiting is2 at INRIA Grenoble. It resulted in a common publication [13] with G. Celeux,
M. Titterington and Christian Robert, from ceremade, Paris Dauphine.

The deviance information criterion (DIC) has been introduced by Spiegelhater et
al.[46]. The advantage of DIC over other criteria in the case of Bayesian model se-
lection is that the DIC is easily calculated from the samples generated by a Markov
chain Monte Carlo simulation. AIC and BIC require calculating the likelihood at its
maximum over the possible parameter value θ, which is not readily available from the
MCMC simulation. But DIC follows directly from simple approximations that consists
of computing the average of the deviance (minus 2 log-likelihood) over the samples of
θ, and the value of this deviance evaluated at the average of the samples of θ.

The DIC is directly inspired by linear and generalized linear models, but it is not
so naturally defined for missing data models. In [13], we have considered different
possible variations depending in particular whether or not the missing variables are
treated as parameters. We have reassessed the criterion for such models, and compared
different DIC constructions, testing the behavior of various extensions in the cases
of independent mixture and random effect models. We have shown that the deviance
information criterion of Spiegelhater et al. and the corresponding effective dimension
allow for a wide range of interpretations and extensions outside exponential families,
as was already apparent from the published discussion of Spiegelhater et al.’s paper.
What we have found in addition through theoretical and experimental studies is that
some of these extensions, while as “natural” as the others, are simply not adequate for
evaluating the complexity and fit of a model, either because they give negative effective
dimensions or because they exhibit too much variability from one model to the next.
While Spiegelhater et al. argue that negative pD’s are indicative of a possibly poor fit
between the model and the data, there is no explanation of that kind in our cases : for
the same data and the same model, some DICs are associated with positive pDs and
others are not.

As illustrated by the associated discussion in [13], a lot of questions and issues are

[46] D. J. Spiegelhalter and al. Bayesian measures of model complexity and fit. Journal of the Royal
Statistical Society, series B, 64 :1–34, 2002.
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still open regarding the use of DIC as a measure of complexity and a well-grounded
criterion.
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4 Application domains

In this section more details are given for the various applications mentioned in
the text. Most Markov models applications arise naturally from image analysis (Sec-
tion 4.1. Other non image data applications are related to biology and computational
neuroscience (Section 4.2).

4.1 Image Analysis

Several areas of image analysis can be covered using the tools I developed. During
the ACI Movistar project 2003-06 (see Section 6 in the detailed CV part), we addres-
sed in collaboration with team lear at INRIA Grenoble Rhône-Alpes, issues about
object and class recognition and about the extraction of visual information from large
image data bases (Section 4.1.1). I also worked in the context of the European project
POP (see Section 6 of my detailed CV) on the consistent estimation of disparities and
boundaries or surface normals from stereoscopic images (Section 4.1.2).

Other applications in medical imaging are natural. I worked on brain MRI data
in collaboration with the Grenoble Institute of Neuroscience (GIN), team visage at
INRIA Rennes and team magma of the Computer Science Lab. in Grenoble (LIG)
(Sections 4.1.3 and 4.1.4). My investigations extended to functional MRI with the GIN
and Laboratoire de Neuroimagerie Assistée par Ordinateur (LNAO) from NeuroSpin
CEA in Saclay (Section 4.1.5). I also dealt with breast MRI data in collaboration with
the Statistics Department of University of Washington, Seattle (Section 4.1.6).

I then considered other statistical 2D fields coming from other domains such as
remote sensing, in collaboration with Laboratoire de Planétologie de Grenoble in the
context of the ANR Vahine project 2008-11 (see Section 6 of my detailed CV).

4.1.1 Triplet Markov Random Fields for recognizing textures

Related publications : 1 journal paper [8], 3 international conferences [44,
45, 40], 2 national conferences [52, 53], 1 research report [60].

In the context of Juliette Blanchet’s PhD thesis, this is joint work with Cordelia Schmid,
lear, INRIA Grenoble Rhône-Alpes.

We proposed a new probabilistic framework for recognizing textures in images.
Images are here described by local affine-invariant descriptors such as SIFT descriptors[1]

(Figure 1) and by spatial relationships between these descriptors. See an illustration in
Figure 13. We then proposed to introduce in texture recognition the use of statistical
parametric models of the dependence between descriptors. We chose hidden Markov
models and followed the method described in Section 3.1.7 involving Triplet MRF.
Using sample images, which have been gathered over a wide range of viewpoints and

[1] D. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision,
60(2) :91–110, 2004.
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(a) (b)

Figure 13 – Spatial relationships between descriptors : (a) detected interest points
(ellipse centers) and associated scales (ellipse sizes and orientations) using Laplace
detector and SIFT descriptors[1], (b) construction of a neighborhood system between
the detected points : points within the range of an enlarged ellipse are connected to the
ellipse center.

scale changes, textures are then learned as hidden MRF and a set of estimated para-
meters is associated to each texture. In our data set there were K = 7 texture classes
illustrated in Figure 14. Using Triplet models, we introduced Gaussian subclasses for
each texture class so as to allow a better modeling of the textures which cannot be
capture by single Gaussian distributions. For simplicity, the number of subclasses to
describe each class distribution was set to L = 10 for each texture. Selecting L using
BIC is also possible, but in this application we did not observe significantly better re-
cognition results. At recognition time then, another Markov model is used to compute,
for each feature vector, the membership probabilities to the different texture classes.
Experiments showed very promising results (e.g. [8]) as illustrated in Figure 15.

4.1.2 Depth recovery from stereo matching using coupled Markov fields

Related publications : 2 international conferences, [35, 25], 1 research report
[59].

This is part of Ramya Narasimha’s PhD thesis and is joint work with Elise Arnaud,
Miles Hansard and Radu Horaud from team perception, INRIA. This was part of the
European STREP POP (Perception On Purpose).
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Figure 14 – Texture sample : two different images (rows) of each of the 7 texture
classes (columns).

(a) (b)

(c) (d)

Figure 15 – Texture recognition using Triplet Markov Models : (a) and (b) origi-
nal multi-texture images (three textures are visible in each), (c) and (d) classification
results (ellipses represent interest points and associated regions). The different colors
correspond to different texture assignments.
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A typical stereo camera system captures a scene from two different view points (left
and right). The goal is then to find the locations in both images that correspond to the
same physical points in space. With this information, along with the geometry of the
stereo set up, it is possible to determine the three-dimensional locations of all the points
in the image. In this work, we focused on the so-called stereo correspondence issue. It
consists of determining the locations in each camera image that are the projection of
the same physical point in 3D space. After camera rectification, the search for the
corresponding points can be reduced to finding disparities, i.e. differences in the x-
coordinates of the corresponding left and right pixel locations. This disparity is related
to the depth in 3D space.

Methods for stereo correspondence include then techniques that use Markov random
fields to specify the local interaction between the disparities. They are used as priors
which encode the smoothness of the disparities across locations in space. The cost from
the stereo image intensities is introduced as the likelihood. In such approaches the
objective then is to maximize the posterior probability over all possible disparity maps.
However, even though such modeling techniques capture the local interactions between
the neighbouring disparities and incorporate the stereo image information, some crucial
problems still remain :

1) Some areas in the scene that are visible in one image may be occluded in the
other and this can lead to incorrect matches.

2) Regularization term in the model could smooth over all disparities and lead to
poor solutions at the object boundaries.

3) Incorporating just the stereo image intensities and smoothness term would mo-
del disparities which may not be consistent with the geometric properties of the surface.

In order to tackle these issues some extra information or constraints are required
in modeling the correspondence problem. Monocular cues such as gradient, edges or
color information pertaining a single image could be used within the model to provide
better solutions for disparity. In addition some extra geometric constraints have to be
incorporated to obtain surface-consistent solutions for the disparity. In this context, we
worked on two approaches :

– Cooperative disparity estimation and object boundary extraction.
The first method proposes to cooperatively estimate disparities and object boun-
daries in a joint probabilistic framework. The idea here is to tackle the problem
of localizing discontinuities in disparity which correspond to the object boun-
daries in the real world, along with that of disparity estimation. This scheme
involves incorporation of gradient information from a single image as a mono-
cular cue. While the disparities are detected using the stereo cue (the left and
the right images), the monocular cues help in correcting the disparity at the dis-
continuities and finding the object boundaries. We modelled both the stereo and
monocular cues within a joint MRF-framework. Further details can be found in
[35]. An illustration is given in Figure 16.

– Estimating surface consistent disparities .
The second method incorporates surface differential geometric constraints into
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Figure 16 – Cooperative disparity estimation and object boundary extraction : our
method (bottom right) improves over standard mean field (bottom left) in which boun-
daries are improperly localized.

the disparity model. These constraints are derived from the surface normals in
disparity space. The idea is to model the disparities in such a way that they lie on
the plane defined by the surface normals. This constraint leads to solutions that
are consistent with the surface geometric properties of the scene. The idea is to
simultaneously estimate the disparity and surface normals, considering explicitly
the influence of one on the other. This is done by modeling both the disparities and
the normal in a joint framework. This work corresponds to [25, 59].An illustration
is given in Figure 17.

The major challenge in both of the above mentioned methods is to incorporate these
cues and constraints within a single joint probabilistic setting, in which the relationship
between the disparities and the variables under consideration (object boundary or sur-
face normals) can be explicitly established. In this regard we used the idea of coupled
Markov random fields, which permit the influence of one variable on the other to be
made explicit within the model. Such a probabilistic set up also allows for separate op-
timization techniques to be used for maximizing the posterior distributions pertaining
to each of the variables, providing further flexibility in modeling and optimization. An
Alternating Maximization procedure was then used to achieve the overall optimization.
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Figure 17 – Estimating disparity for slanted and curved surfaces : the improvement
over the staircase solution that does not use normals is visible.
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4.1.3 Distributed and cooperative Markov modeling for local atlas regis-
tration and robust brain tissue and structure segmentation

Related publications : 2 journal papers [7, 6], 1 book chapter [4], 5 interna-
tional conferences [28, 31, 36, 37, 41], 2 national conferences [48, 49].

This is joint work with Benoit Scherrer, Michel Dojat and Catherine Garbay from
Grenoble Institut des Neurosciences and team magma of Laboratoire d’Informatique de
Grenoble (LIG).

Difficulties in automatic MR brain scan segmentation arise from various sources.
The nonuniformity of image intensity results in spatial intensity variations within each
tissue, which is a major obstacle to an accurate automatic tissue segmentation. The au-
tomatic segmentation of subcortical structures is a challenging task as well. It cannot be
performed based only on intensity distributions and requires the introduction of a priori
knowledge usually encoded via a pre-registered atlas. Most of the proposed approaches
share two main characteristics. First, tissue and subcortical structure segmentations are
considered as two successive tasks and treated relatively independently although they
are clearly linked : a structure is composed of a specific tissue, and knowledge about
structures locations provides valuable information about local intensity distribution for
a given tissue. Second, tissue models are estimated globally through the entire volume
and then suffer from imperfections at a local level. Alternative local procedures exist
but are either used as a preprocessing step or use redundant information to ensure
consistency of local models.

In a first approach we proposed [6, 7, 36, 37, 41], we obtained good results using an
innovative local and cooperative approach. It performs tissue and subcortical structure
segmentation by distributing through the volume a set of local Markov random field
(MRF) models which better reflect local intensity distributions. Local MRF models are
used alternatively for tissue and structure segmentations. For parameter estimation,
we used the algorithms we proposed in [14] (see Section 3.2.1) based on EM and va-
riational approximations. They showed interesting results for tissue segmentation but
were not sufficient for structure segmentation without introducing a priori anatomical
knowledge (atlas). In this first attempt, Brain anatomy was then described by fuzzy
spatial relations between structures that express general relative distances, orientations
or symmetries. This knowledge was incorporated into a 2-class Markov model via an
external field. This model was used for structure segmentation. The resulting struc-
ture information was then incorporated in turn into a 3 to 5-class Markov model for
tissue segmentation via another specific external field. Tissue and structure segmenta-
tions thus appear as dynamical and cooperative MRF procedures whose performance
increases gradually. This approach was implemented into a multi-agent framework,
where autonomous entities, distributed into the image, estimate local Markov fields
and cooperate to ensure consistency (see Section 3.2.4).

Although satisfying in practice, these tissue and structure MRFs did not corres-
pond to a valid joint probabilistic model and were not compatible in that sense. As
a consequence, important issues such as convergence or other theoretical properties of
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the resulting local procedure could not be addressed. In addition, in [36, 37], coope-
ration mechanisms between local models were somewhat arbitrary and independent of
the MRF models themselves. Our second contribution [4, 31] was then to propose a
fully Bayesian framework in which we define a joint model that links local tissue and
structure segmentations but also the model parameters so that both types of coope-
rations, between tissues and structures and between local models, are deduced from
the joint model and optimal in that sense. This model has the following main fea-
tures : 1) cooperative segmentation of both tissues and structures is encoded via a joint
probabilistic model specified through conditional MRF models which capture the rela-
tions between tissues and structures. This model specifications also integrate external
a priori knowledge in a natural way ; 2) intensity nonuniformity is handled by using a
specific parametrization of tissue intensity distributions which induces local estimations
on subvolumes of the entire volume ; 3) global consistency between local estimations
is automatically ensured by using a MRF spatial prior for the intensity distributions
parameters. Estimation within our framework was defined as a maximum a posteriori
(MAP) estimation problem and carried out by adopting again an instance of the EM
algorithm. We showed that such a setting could adapt well to our conditional models
formulation and simplified into alternating and cooperative estimation procedures for
standard hidden MRF models.

Then, we proposed to go further towards coupling methods by constructing a model
that performed local affine registration of an atlas in addition to tissue segmentation
using local Markov random fields and MRF segmentation of structures. The idea was to
capture in a single model all the relationships that could be formalized between these
tasks. Our basis toward this third solution was similar to that in [31] with the major
difference that therein a joint model was not explicitly given but defined through the
specification of a number of compatible conditional MRF models. In [28], we specified
directly a joint model from which the conditional models were derived. As a result, co-
operation between tissues and structures was treated in a more symmetric way which
resulted in new even more consistent conditional models. In addition, interaction bet-
ween the segmentation and registration steps was easily introduced. An explicit joint
formulation has the advantage to provide a strategy to construct more consistent or
complete models that are open to incorporation of new tasks. For estimation, we provi-
ded again an appropriate variational EM framework allowing a Bayesian treatment of
the parameters. The evaluation performed on both phantoms and real 3T brain scans
showed good results and demonstrated the clear improvement provided by coupling the
registration step to tissue and structure segmentation (see Figure 18).

4.1.4 Bayesian Weighting of Multiple MR Sequences for Brain Lesion Seg-
mentation

Related publications : 3 international conferences [38, 27, 26].

This is joint work with Senan Doyle, post-doctoral fellow in mistis, Michel Dojat (Gre-
noble Institute of Neuroscience), Daniel Garcia-Lorenzo and Christian Barillot (INRIA
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(a) (b)

(c) (d)

(e)

Figure 18 – Evaluation of the cooperative approach on a real 3T brain scan (a).
For comparison the segmentation of tissues only is given in (b). The results obtained
with our approach are shown in the second line. Major differences between tissue seg-
mentations (images (b) and (d)) are pointed out using arrows. Image (e) shows the
corresponding 3D reconstruction of 17 structures segmented using our approache. The
names of the left structures (use symmetry for the right structures) are indicated in
the image.



58 4. Application domains

Team visages).

The investigation described in the previous section has been carried out for healthy
brain for one type (T1) of MR images with no temporal information. In an ARC
project SeLMIC 2007-08 (see Section 6 in my detailed CV), we planned to extend
our tools to include multidimensional MR sequences corresponding to other types of
MR modalities and longitudinal data. This was investigated in collaboration with team
visages from INRIA Rennes. Such extensions are particularly relevant in the study of
some central nervous system disorders such as Multiple Sclerosis (MS) and brain attacks
[38]. After the end of the SeLMIC project, we went on investigating the delineation of
brain lesions from multiple MR images. The delineation and quantification of brain
lesions is critical to establishing patient prognosis, and for charting the development
of pathology over time. Typically, this is performed manually by a medical expert,
although automatic methods have been proposed (see the review od Seghier et al.[47])
to alleviate the tedious, time consuming and subjective nature of manual delineation.
A healthy brain is generally segmented into three tissues : cephalo spinal fluid, grey
matter and white matter, and one or two extra classes are generally added to account for
lesions. Statistical based approaches usually aim to model probability distributions of
voxel intensities with the idea that such distributions are tissue-dependent. Automated
or semi-automated brain lesion detection methods can then be classified according to
their use of multiple sequences, a priori knowledge about the structure of normal brain,
tissue segmentation models, and whether or not specific lesion types are targeted. A
common feature is that most methods are based on the initial identification of candidate
regions for lesions. In most approaches, normal brain tissue a priori maps are used
to help identify regions where the damaged brain differs, and the lesion is identified
as an outlier. Existing methods frequently avail of complementary information from
multiple sequences. For example, lesion voxels may appear atypical in one modality
and normal in another. This is well known and implicitly used by neuroradiologists
when examining data. Within a mathematical framework, multiple sequences enable
the superior estimation of tissue classes in a higher dimensional space.

For multiple MRI volumes, intensity distributions are commonly modelled as multi-
dimensional, often Gaussian, distributions. This provides a way to combine the multiple
sequences in a single segmentation task but with all the sequences having equal impor-
tance. However, given that the information content and discriminative power to detect
lesions varies between different MR sequences, the question remains as to how to best
combine the multiple channels. Depending on the task at hand, it might be beneficial
to weight the various sequences differently.

In our work [27, 26], rather than trying to detect lesion voxels as outliers from a
normal tissue model, we adopt an incorporation strategy whose goal is to identify lesion
voxels as a fourth component additional to the usual three tissues. Such an explicit
modeling of the lesions is usually avoided. It is difficult for at least two reasons : 1)

[47] M.L. Seghier, A. Ramlackhansingh, J. Crinion, A.P. Leff, and C. J. Price. Lesion identification
using unified segmentation-normalisation models and fuzzy clustering. Neuroimage, 41 :1253–1266,
2008.
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most lesions have a widely varying and inhomogeneous appearance (e.g. tumors or
stroke lesions) and 2) lesion sizes can be small (e.g. multiple sclerosis lesions). In a
standard tissue segmentation approach, both reasons usually prevent accurate model
parameter estimation resulting in bad lesion delineation. Our approach aims to make
this estimation possible by modifying the segmentation model with an additional weight
field. We propose to modify the tissue segmentation model so that lesion voxels become
inliers for the modified model and can be identified as a genuine model component.
Compared to robust estimation approaches (e.g. the work by Van Leemput et al.[48])
that consist of down-weighting the effect of outliers on the main model estimation,
we aim to increase the weight of candidate lesion voxels to overcome the problem of
under-representation of the lesion class.

Using the model presented in Section 3.1.6, we introduce weight parameters in the
segmentation model and then solve the issue of prescribing values for these weights. This
has the advantage to avoid the specification of ad-hoc weight values and to allow the
incorporation of expert knowledge through a weight prior distribution. Furthermore, in
the absence of explicit expert knowledge, we show how the weight prior can be specified
to guide the model toward lesion identification. Experiments on artificial (Table 1) and
real lesions (Table 2, Figures 19, 20, 21) of various sizes are reported to demonstrate
the good performance of our approach. We performed a quantitative evaluation using
the Dice similarity coefficient (DSC). This coefficient measures the overlap between
a segmentation result and the gold standard. Denoting by TPk the number of true
positives for class k, FPk the number of false positives and FNk the number of false
negatives the DSC is given by : dk = 2TPk

2TPk+FNk+FPk
and dk takes its value in [0, 1]

where 1 represents the perfect agreement.

(a) (b) (c)

Figure 19 – Real MS data, patient 1. (a) : Flair image. (b) : identified lesions with
our approach (DSC 82%). (c) : ground truth .

[48] K. Van Leemput, F. Maes, D. Vandermeulen, A. Colchester, and P. Suetens. Automated seg-
mentation of multiple sclerosis lesions by model outlier detection. IEEE Trans. Medical Imaging,
20(8) :677–688, 2001.
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(a) (b) (c)

Figure 20 – Real MS data, patient 3. (a) : Flair image. (b) : identified lesions with
our approach (DSC 45%). (c) : ground truth .

(a) (b) (c)

Figure 21 – Real stroke data. (a) : DW image. (b) : identified lesions with our approach
(DSC 63%). (c) : ground truth.
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Method 3% 5% 7% 9%
Mild lesions (0.02% of the voxels)

AWEM 72 (+5) 55 (-15) 39 (+5) 22 (+18)
[G] 67 70 34 0
EMS 56 33 13 4
[R] 52 NA NA NA

Moderate lesions (0.18% of the voxels)
AWEM 86 (+7) 80 (-1) 77 (+18) 73 (+36)
[G] 72 81 59 29
EMS 79 69 52 37
[R] 63 NA NA NA

Severe lesions (0.52% of the voxels)
AWEM 93 (+8) 88 (0) 78 (+6) 74 (+33)
[G] 79 88 72 41
EMS 85 72 56 41
[R] 82 NA NA NA

0% non-uniformities
-

Method 3% 5% 7% 9%
Mild lesions (0.02% of the voxels)

AWEM 50 (-25) 0 (-65) 0 (-20) 0 (-30)
[G] 75 65 20 30
EMS 58 27 13 6

Moderate lesions (0.18% of the voxels)
AWEM 64 (-12) 66 (-10) 66 (-1) 0 (-48)
[G] 75 76 67 48
EMS 76 64 47 31

Severe lesions (0.52% of the voxels)
AWEM 88 (+2) 84 (+1) 80 (+6) 67 (+9)
[G] 75 83 74 58
EMS 86 74 62 45

40% non-uniformities

Table 1 – DSC results (%) on MS Brain Web simulated data, for various lesion sizes,
noise and non-uniformity levels. Comparison of different methods : AWEM for our
Adaptive Weighted EM, Garcia-Lorenzo & al’s method [G], Van Leemput & al.’s me-
thod [EMS] and Rousseau & al.’s method [R]. The corresponding gain/loss over the
best comparable results is given in parentheses. NA means not available.

4.1.5 Variational approach for the joint estimation-detection of Brain ac-
tivity from functional MRI data

Related publications : 1 journal paper [2], 1 international conference [24].

This is joint work with Michel Dojat from Grenoble Institute of Neuroscience and Phi-
lippe Ciuciu from Laboratoire de Neuroimagerie Assistée par Ordinateur(LNAO), Neu-
rosSpin, CEA Saclay.
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LL EMS AWEM
Patient1 0.42 62 82 (+20)
Patient2 1.71 54 56 (+2)
Patient3 0.29 47 45 (-2)
Patient4 1.59 65 72 (+7)
Patient5 0.31 47 45 (-2)
Average 55 +/-8 60 +/-16

Table 2 – Lesion load or percentage of lesion voxels (LL), DSC results (%) for Van
Leemput & al.’s method [48] (EMS) and for our Adaptive Weighted EM (AWEM), for
5 patients with MS.

More recently, we have started investigating the extension of our methodology for
anatomical MRI to functional MRI (fMRI) data. The latter are from rather different
nature as they incorporate an additional time course. Since the first report of the
Blood Oxygen Level Dependent (BOLD) effect in humans, fMRI represents a powerful
tool to non-invasively study the relation between sensori-motor or cognitive tasks and
the hemodynamic BOLD response reflecting evoked neuronal activity indirectly. fMRI
allows us to determine which cortical regions elicit activations when a human subject is
submitted to specific stimuli. One of the major goals of fMRI is to show the existence
of common cognitive functions based on the exploration of a population of subjects
(typically about 15) submitted to the same experimental paradigm. This has to be based
on a careful within-subject statistical analysis. This analysis is traditionally conducted
using a Generalized Linear Model (GLM) built upon an experimental design matrix that
specifies the onsets of each stimulus occurrence. Such a GLM also postulates a preset
form of the so-called Hemodynamic Response Function (HRF). However, it appears that
fixing the latter function to some canonical shape is too restrictive and misleading. In
fact, as demonstrated by various experiments, the HRF may vary between subjects and
even between cortical regions in a given subject’s brain.

The context of our work is then the conjoint brain activity detection and HRF
estimation on the whole brain. To get reliable estimates, HRF estimation has to be
performed at a coarser spatial scale than the voxel level given the poor signal to noise
ratio of fMRI data. To this end, Makni et al. in 2005[49] and in 2008[50] have introduced a
joint estimation detection (JED) framework that implements using a MCMC framework
such a joint procedure on a prior parcellation of the function brain mask.

We have started investigating the possibility of using variational approximation

[49] S. Makni, P. Ciuciu, J. Idier, and J.-B. Poline. Joint detection-estimation of brain activity in func-
tional MRI : a multichannel deconvolution solution. IEEE Trans. Signal Processing, 53(9) :3488–
3502, Sep. 2005.

[50] S. Makni, J. Idier, T. Vincent, B. Thirion, G. Dehaene-Lambertz, and P. Ciuciu. A fully Baye-
sian approach to the parcel-based detection-estimation of brain activity in fMRI. Neuroimage,
41(3) :941–969, July 2008.
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techniques as an alternative to the MCMC based method[50]. The 5-month internship
of Alexandre Janon enabled us to initiate this activity [2, 24] which is now pursued
with a new collaboration with Philippe Ciuciu from LNAO, NeuroSpin, CEA in Saclay.

4.1.6 Model-based Region-of-Interest Selection in dynamic breast MRI

Related publications : 2 journal papers [12, 17], 3 research reports [65, 64,
62].

This is joint work with Chris Fraley and Adrian Raftery from University of Washing-
ton in Seattle, with Dave Goldhaber and Dianne Georgian-Smith, M.D. from Harvard
Medical School, Massachussets General Hospital.

Magnetic resonance imaging has also emerged as a powerful tool for the diagnosis
of breast abnormalities. Dynamic analysis of the temporal pattern of contrast uptake
has been applied in differential diagnosis of benign and malignant lesions to improve
specificity. Signal intensity time course data are useful for differentiating benign from
malignant enhancing lesions. The overall shape of the time-signal intensity curve is an
important criterion, while a single attribute of the curve, such as the enhancement rate,
may not be enough.

Selecting a region of interest (ROI) is an almost universal step in the process of
examining the contrast uptake characteristics of a breast lesion. I proposed [64, 62,
12] an ROI selection method that combines model-based clustering of the pixels with
Bayesian morphology [17]. I then investigated tools for subsequent analysis of signal
intensity time course data in the selected region.

Results on a data base of 19 patients were promising. The method provided informa-
tive segmentations and good detection rates were obtained. The investigation indicated
that our proposed statistical methods, which enable us to take into account more than
a single enhancement measure, were quite promising for tumor identification. There is
a clear gain in combining segmentation with kinetics analysis. Associating the location
and shape of a lesion with its pattern of uptake proved to be useful in resolving questio-
nable cases. The trade-off between smoothness and resolution needs to be assessed by
further empirical research on other images. Our study was limited to the determination
of feasibility for the proposed computational methods. Clinical value would have to
be assessed in more extensive and controlled studies, which in the light of our initial
experience may be warranted.

4.2 Biology and Computational Neuroscience

A second domain of applications concerns biomedical statistics and molecular bio-
logy. I have considered the use of missing data models in epidemiology and investigated
statistical tools for the analysis of bacterial genomes beyond gene detection (Section

[50] S. Makni, J. Idier, T. Vincent, B. Thirion, G. Dehaene-Lambertz, and P. Ciuciu. A fully Baye-
sian approach to the parcel-based detection-estimation of brain activity in fMRI. Neuroimage,
41(3) :941–969, July 2008.
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4.2.1). I also considered applications in population genetics (Section 4.2.2) and compu-
tational neuroscience (POP and HUMAVIPS European projects, Section 4.2.3).

4.2.1 Integrated Markov models on irregular graphs for clustering gene
expression data

Related publications : 1 journal paper [5], 2 international conference [42, 43],
4 national conferences [47, 50, 51, 46].

This work was carried out with Matthieu Vignes during his PhD thesis 2003-07. For
the additional treatment of missing data, the work also involved Juliette Blanchet.

Spatial gene clustering. Because of the increasing amount of genetic data genera-
ted by researchers, there is a great need to develop methodologies to analyse and to use
the information contained in this data. A major challenge in bioinformatics is to reveal
interactions between components of living organisms and discover the corresponding
networks responsible for their biological complexity. In this framework, clustering of
genes into groups sharing common characteristics is a useful exploratory technique. It
is frequently used as the basis for further computational analysis. As a simple example,
the function of a gene can be predicted according to known functions of other genes
from the same cluster.

A wide range of clustering algorithms have been proposed to analyze gene expression
data but most of them consider the genes as independent entities or include relevant
information on gene interactions a posteriori. We proposed [5] a probabilistic model
that has the advantage to take into account individual features (e.g. expression) and
pairwise data (e.g. interaction information coming from biological networks) simulta-
neously. As mentioned in Section 3.1.4, our model is based on hidden Markov random
fields in which parametric probability distributions account for the distribution of in-
dividual data for each gene. Data on pairs are included through a graph where the
nodes represent the genes and the edges are weighted according to pair data, for ins-
tance in order to reflect distances or similarity measures between genes. This model
has many interesting features. It leads to various possible statistical criteria to select
automatically the number of clusters. It is also able to incorporate many types of data.
It is flexible in the sense that its generalization to include missing data, that often oc-
cur when dealing with expression data, is straightforward. Its extension to overlapping
clustering methods, to deal with more realistic situations where genes can belong to
many groups at the same time, can also be considered. Preliminary investigations are
reported in [42, 43, 50, 51]. We have illustrated and validated the approach on simu-
lated data as well as on yeast expression data combined with pathway neighborhoods
[5].

Expression data with missing values. DNA microarray technologies provide
means for monitoring in the order of tens of thousands of gene expression levels quanti-
tatively and simultaneously. However data generated in these experiments can be noisy
and have missing values. When it is not ignored, the last issue has been solved by im-
puting the expression matrix in order to keep going with traditional analysis methods.
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Although it was a first useful step, it is not recommended to use value imputation
to deal with missing data. Moreover, as previously mentioned, appropriate tools are
needed to cope with noisy background in expression levels and to take into account
a dependency structure among the genes under study. Various approaches have been
proposed but to our knowledge none of them has the ability to fulfil all these features.
In [5], we mentioned the ability of a straightforward extension of the model therein to
deal with missing values. I therefore initiated [47] the study of clustering algorithms
that explicitly account for dependencies within a biological network and for missing
value mechanism to analyze microarray data. I proposed to tackle these issues in a
unique statistical framework. Theoretical developments have been specified in Juliette
Blanchet’s PhD thesis. The approach has been implemented and proved to be successful
at dealing with different absence patterns either on simulated or real biological data
sets. It has demonstrated enhanced results over existing approaches. Juliette Blanchet
and Matthieu Vignes emphasized[51,52] that our model could be useful in a great range
of applications for clustering entities of interest (such as genes, proteins, metabolites
in post-genomics studies). The method is neither organism- nor data-specific. More
generally, the method is of interest in a wide variety of fields where missing data is a
common feature : social sciences, computer vision, remote sensing, speech recognition
and of course biological systems. The analysis workflow is illustrated in Figure 22.

4.2.2 Modeling and inference of population structure from genetic and
spatial data

Related publications : 2 journal papers [11, 9].

This is joint work with Chibiao Chen (INRIA post-doctoral fellow in 2006) and Prof.
Olivier François from team TimB in TIMC laboratory in Grenoble.

In applications of population genetics, it is often useful to classify individuals in a
sample into populations which become then the units of interest. However, the defini-
tion of populations is typically subjective, based, for example, on linguistic, cultural, or
physical characters as well as the geographic location of sampled individuals. Pritchard
et al[53] proposed a Bayesian approach to classify individuals into groups using geno-
type data. Such data, also called multilocus genotype data, consists of several genetic
markers whose variations are measured at a series of loci for each sampled individual.
Their method is based on a parametric model in which there are K groups (where K
may be unknown), each of which is characterized by a set of allele frequencies at each

[51] J. Blanchet and M. Vignes. Combined expression data with missing values and gene interaction
network analysis : a Markovian integrated approach. In 7th IEEE BIBE Conference, pages 366–
373, Boston, USA, 2007.

[52] J. Blanchet and M. Vignes. A model-based approach to gene clustering with missing observations
reconstruction in a Markov random field framework. Journal of Computational Biology, 16(3) :475–
486, 2009.

[53] J.K. Pritchard, M. Stephens, and P. Donnelly. Inference of population structure using multilocus
genotype data. Genetics, 155 :945–959, 2000.
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Figure 22 – Graphical summary of an analysis workflow : (a) data extraction from
relevant databases, (b) specification of the HMRF setting using our Spacem3 software,
model inference and result visualization, (c) downstream biological analysis for biologi-
cal cluster relevance : modularity, over-represented GO-terms, expression level profiles
and link to pathways.

locus. Group allele frequencies are unknown and modelled by a Dirichlet distribution
at each locus within each group. A MCMC algorithm is then used to estimate simulta-
neously assignment probabilities and allele frequencies for all groups. In such a model,
individuals are assumed to be independent, which does not take into account their
possible spatial proximity.

The main goal of our work [9] was to introduce spatial prior models and to assess
their role in accounting for the relationships between individuals. In this perspective,
we proposed to investigate particular Markov models on graphs and to evaluate the
quality of mean field approximations for the estimation of their parameters. Maximum
likelihood estimation of such models in a spatial context is typically intractable but
mean field like approximations within an EM algorithm framework, in the spirit of
[14] can be considered and result in an alternative procedure to MCMC approaches.
With this in mind, we first considered the EM approach in a non spatial case, as an
alternative to the traditional Bayesian approaches. This resulted in a new computer
program (see Section Software in the next part) and promising results were reported in
[11].

This first approach was based on traditional hidden Markov models for which a
standard conditional independence assumption holds. Dependencies between indivi-
duals are described through spatial correlations between groups meaning that spatially
close individuals are likely to belong to the same group. In the joint work with INRA
Avignon [66, 54] (Section 3.1.8), we tried to weaken the standard but somewhat unrea-
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listic conditional independence assumption to describe dependencies at the observations
level through a spatial correlation model inspired from geostatistical models . Another
goal of this work would then be to investigate such extension in the context of popula-
tion genetics.

4.2.3 Multi-speaker Localization with Binaural Audition and Stereo Vision

Related publications : 1 journal paper [1], 3 international conferences [32,
33, 34].

This is part of Vasil Khalidov’s PhD thesis and is joint work with Elise Arnaud, Miles
Hansard, Radu Horaud and Ramya Narasimha from team perception. This work took
place in the context of the POP European project (see Section 6 of my detailed CV part)
and included further collaborations with researchers from University of Sheffield, UK.

The context is that of multi-modal sensory signal integration as already mentioned
in Section 3.1.2. We have focused on audio-visual integration. Fusing information from
audio and video sources can result in improved performance in applications such as
tracking. However, crossmodal integration is not trivial and requires some cognitive
modeling because at a lower level, there is no obvious way to associate depth and sound
sources. Combining expertise from team perception and University of Sheffield, we
addressed the difficult problem of integrating spatial and temporal audio-visual stimuli
using a geometrical and probabilistic framework. We developed the conjugate model of
Section 3.1.2 for this purpose.

Audio-visual objects can be characterized both by their locations in space and by
their auditory status, i.e., whether they are emitting sounds or not. These object cha-
racteristics are not directly observable and hence they need to be inferred from sensor
data, e.g., cameras and microphones. These sensors are based on different physical prin-
ciples, they operate with different bandwidths and sampling rates, and they provide
different types of information. On one side, light waves convey useful visual informa-
tion only indirectly, on the premise that they reflect onto the object surfaces. A natural
scene is composed of many objects/surfaces and hence the task of associating visual
data with objects is a difficult one. On the other side, acoustic waves convey auditory
information directly from the emitter to the receiver but the observed data is pertur-
bed by the presence of reverberations, of other sound sources, and of background noise.
Moreover, very different methods are used to extract information from these two sensor
types. A wide variety of computer vision principles exist for extracting 3D points from
a single image or from a pair of stereoscopic cameras but practical methods are strongly
dependent on the lighting conditions and on the properties of the object surfaces (pre-
sence or absence of texture, color, shape, reflectance, etc.). Similarly, various algorithms
have been developed to locate sound sources using a microphone pair based on interau-
ral time differences (ITD) and on interaural level differences (ILD)[54,55], but these cues

[54] D. Wang and G. J. Brown, editors. Computational Auditory Scene Analysis : Principles, Algo-
rithms, and Applications. Wiley-IEEE Press, September 2006.

[55] H. Christensen, N. Ma, S.N. Wrigley, and J. Barker. Integrating pitch and localisation cues at a
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are difficult to interpret in natural settings due to the presence of background noise
and of other reverberant objects. A notable improvement consists in the use of a lar-
ger number of microphones. Nevertheless, the extraction of 3D sound source positions
from several microphone observations results in inaccurate estimates. We showed then
in [1] that our conjugate mixture models framework may help in the task of locating
several speaking persons. The multimodal data consists of M visual observations f and
of N auditory observations g. We considered data that were recorded over a short time
interval such that one can reasonably assume that the audio-visual (AV) objects have
a stationary spatial location. Nevertheless, it is not assumed here that the AV objects,
e.g., speakers, are static : lip movements, head and hand gestures are tolerated. We
addressed the problem of estimating the spatial locations of all the objects that are
both seen and heard. Let K be the number of objects and in this case each object
is described by a three dimensional parameter vector ok = (xk; yk; zk). The AV data
are gathered using a pair of stereoscopic cameras and a pair of omnidirectional micro-
phones, i.e., binocular vision and binaural hearing. For j = 1 to M , a visual observation
vector fj = (uj ; vj ; dj) corresponds to a 2D image location (uj ; vj) and to an associated
binocular disparity dj . Considering a projective camera model it is straightforward to
define an invertible function F : R3 → R3 that maps o = (x; y; z) onto f = (u; v; d) :

F(o) = t(
x

z
;
y

z
;

1
z

) and F−1(f) = t(
u

d
;
v

d
;

1
d

) .

This model corresponds to a rectified camera pair and it can be easily generalized
to more complex binocular geometries[56,57].

Similarly one can use the auditory equivalent of disparity, namely the interaural
time difference (ITD) widely used by auditory scene analysis methods. The function
G : R3 → R3 maps o = (x; y; z) onto a 1D audio observation :

g = G(o) =
1
c

(||o− oM1|| − ||o− oM2||).

Here c is the sound speed and oM1 and oM2 are the 3D locations of the two micro-
phones in the sensor-centered coordinate system. Each isosurface defined by the above
equation is represented by one sheet of a two-sheet hyperboloid in 3D. Hence, each
audio observation g constrains the location of the auditory source to lie onto a 2D
manifold (see Figure 23).

With this setting, we then performed audiovisual clustering based on the conjugate
EM algorithm mentioned in Section 3.2.4 (See Figures 24 and 25). We refer to [1] for
more illustrations. Simulated data experiments allowed us to assess the average method
behaviour in various configurations. They showed that the obtained clustering results

speech fragment level. In Proc. of Interspeech, pages 2769–2772, 2007.

[56] M. Hansard and R. Horaud. Patterns of binocular disparity for a fixating observer. In Proc. of
Second International Symposium of Advances in Brain, Vision, and Artificial Intelligence, pages
308–317. Springer, 2007.

[57] M. Hansard and R. Horaud. Cyclopean geometry of binocular vision. Journal of the Optical
Society of America A, 25(9) :2357 2369, September 2008.
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Figure 23 – Audio mapping from the 3D object space to the 1D audio space (ITD).

were precise as regards the observation spaces under consideration. They also illustrated
the theoretical dependency between the precisions in observation and parameter spaces.
Real data experiments then showed that the observed data precision was high enough
to guarantee high precision in the parameter space.
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Figure 24 – An example of applying the proposed EM algorithm to a time interval of
20 seconds of the meeting scenario. The results are shown in the visual and auditory
observation spaces as well as in the parameter space. The initial parameter values
are shown with three stars while the parameter evolution trajectories are shown with
circles of increasing size. The final observation-to-cluster assignments are shown in
color : red, blue, and green for the three Gaussian components and light-blue for the
outlier component. The log-likelihood curve (bottom-right) shows that the algorithm
converged after 20 iterations.
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(a) frames 1001-1010 (b) frames 1011-1020

(c) frames 1021-1030 (d) frames 1031-1040

(e) frames 1041-1050 (f) frames 1051-1060

Figure 25 – Results obtained in the case of the meeting scenario shown overlapped
onto the left image. Sixty frames (1001 to 1060) were split into six segments. Parameter
initialization and model selection were performed on the first segment (frames 1-10)
and are not shown. The “visual” covariance matrices associated with the 3 Gaussian
components are projected onto the image plane. The white dots correspond to the
projected 3D locations estimated by the algorithm. The blue, green, and red colors
encode the observation-to-cluster assignments and the active speaker is marked with a
corresponding symbol. The algorithm correctly estimates speech sources, even in the
case when two speakers are active.





Technology development





1 Software

More than a contribution to the development of a specific software, what I would like
to emphasize in this section are my efforts to develop a unifying approach of software
development in mistis. I initiated this approach with the advising of Lemine Abdalah
in 2005 who was charged at that time with transforming a first prototype into a flexible
piece of software with a clear structure that would become our SpaCEM3 software. I
then successfully applied in 2007 for an ODL position and hired then Sophie Chopart
to help us. The goal was not only to reach a higher level in software development but
also to generate new habits among researchers in mistis. This goal has been reasonably
reached today with most of our recent software and prototypes on the INRIA forge.

I have been myself involved in the following software :

The SpaCEM3 software. The SpaCEM3 (Spatial Clustering with EM and Markov
Models) software replaces the former, still available, SEMMS (Spatial EM for
Markovian Segmentation). SpaCEM3 proposes a variety of algorithms for image
segmentation, supervised and unsupervised classification of multidimensional and
spatially located data. The software is written in C++ (35000 lines) and is avai-
lable with a new user interface at http://spacem3.gforge.inria.fr. A user
guide and example data sets are also available there. The software has been regis-
tered at APP (Software Protection Agency) in 2007 under the CeCILLB license.
A description of its main functionalities are also available in French [23]. See
Figure 26 for an illustration of the interface.

The FASTRUCT software. Bayesian model-based clustering programs have gained
increased popularity in studies of population structure since the publication of
the software STRUCTURE. These programs are generally acknowledged as per-
forming well, but their running-time may be prohibitive. FASTRUCT is a non-
Bayesian implementation of the classical model with no-admixture uncorrelated
allele frequencies. This program relies on the Expectation-Maximization prin-
ciple, and produces assignment rivaling other model-based clustering programs.
In addition, it can be several-fold faster than Bayesian implementations [11]. The
software consists of a command-line engine, which is suitable for batch-analysis
of data, and a MS Windows graphical interface, which is convenient for exploring
data. It has been registered at APP in 2006, under the CeCILLB license.

The TESS software. TESS is a computer program in C++ that implements a Baye-
sian clustering algorithm for spatial population genetics [9]. Is it particularly
useful for seeking genetic barriers or genetic discontinuities in continuous po-
pulations. The method is based on a hierarchical mixture model where the prior
distribution on cluster labels is defined as a Hidden Markov Random Field. Given
individual geographical locations, the program seeks population structure from
multilocus genotypes without assuming predefined populations. TESS takes input
data files in a format compatible to existing non-spatial Bayesian algorithms (e.g.,
STRUCTURE). It returns graphical displays of cluster membership probabilities
and geographical cluster assignments from its Graphical User Interface. It has
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been registered at APP in 2006 under the CeCILLB license. New models have
been implemented until recently by O. Francois and collaborators from TimB,
http://membres-timc.imag.fr/Olivier.Francois/tess.html.

The ECMPR software. The ECMPR (Expectation Conditional Maximization for
Point Registration) package implements [39, 3]. It registers two (2D or 3D) point
clouds using an algorithm based on maximum likelihood with hidden variables.
The method can register both rigid and articulated shapes. It estimates both
the rigid or the kinematic transformation between the two shapes as well as the
parameters (covariances) associated with the underlying Gaussian mixture model.
It has been registered at APP in 2010 under the GPL license.

The LOCUS software. The LOCUS software analyses in a few minutes a 3D MR
brain scan and identifies brain tissues and a large number of brain structures.
An image is divided into cubes on each of which a statistical model is applied.
This provides a number of local treatments that are then integrated to ensure
consistency at a global level. It results a low sensitivity to artefacts. The statistical
model is based on a Markovian approach which enables to capture the relations
between tissues and structures, to integrate a priori anatomical knowledge and
to handle local estimations and spatial correlations. A description and a video
of the software are available at the web site http://locus.gforge.inria.fr,
which is still under construction. The software is written in C++ (50000 lines).
It has been registered at APP in 2010 under an owner license. See Figure 27 for
an illustration of the interface.

The POPEYE software. POPEYE contains software modules and libraries jointly
developed by three partners within the POP STREP project : INRIA, University
of Sheffield, and University of Coimbra. It includes kinematic and dynamic control
of the robot head, stereo calibration, camera-microphone calibration, auditory
and image processing, stereo matching, binaural localization, audio-visual speaker
localization. Currently this software package is not distributed outside POP.

2 Industrial transfer of research result

I have started (October 2009) coordinating, on the mistis side, a Pôle de compétitivité
MINALOGIC project including VI-Technology and Pige electronique as industrial part-
ners (see Section 6 of my detailed CV). This collaboration is an excellent opportunity
to transfer my expertise in statistical image analysis and Bayesian techniques to the
AOI (Automatic Optical Inspection) market. I am developing new models, for expert
knowledge integration and defect detection from multiple image analysis, that have
been already implemented and will be transferred to VI-Technology during the project.

We have also started for the development of the Locus software in September 2010 a
project supported by GRAVIT. GRAVIT is a structure devoted to stimulating innova-
tion that brings together 7 academic institutions, attached to 200 research labs. It is a
shared tool, for the benefit of researchers and industry, to adapt the technology transfer
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Figure 26 – Top : Composition of the SpaCEM3 GUI window. Bottom : Hyperspectral
image of Mars visualized in the GUI. The left image shows dimension 18 of the data
set, the right image shows the spectrum at coordinates (300, 126).
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Figure 27 – Illustration of the Locus GUI window : data sets and segmentation results
can be visualized with functionalities similar to standard MRI visualization tools.
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to companies’s innovation needs. In this context we are participating in the Grenoble
Innovation Fair in October 2010 to explore new opportunities for collaboration among
industrial groups, start-ups and research labs.





Summary of main contributions





Main contributions

To summarize, my main contributions can be divided into three axes :

1. Variational approximations for inference in hidden Markov random fields

2. Models for complex and structured data

3. Model-based clustering for the analysis of MR brain scans

1 Variational approximations for inference in hidden Mar-
kov random fields

Issues involving hidden (or missing) data are typical settings where exact inference
is not tractable. Approximations are required and are often based on simulation tech-
niques such as Monte-Carlo Markov Chains (MCMC) techniques. As a computationally
more efficient alternative, I developed deterministic approximations based on the so-
called mean field principle and proposed in the context of hidden Markov random fields
(HMRF) a class of EM-like algorithms which shows good performance [14]. I focused
on the mean field approximation principle which is among the variational methods,
the simplest principle although not yet fully understood in some aspects. Convergence
results exist for the related Variational Expectation Maximization (VEM) algorithm[33]

but its application is restricted to very simple missing data structure. The variants I
proposed in [14] extend the application domain, in particular to image segmentation
and more generally to spatial data clustering. I also investigated how the variational
approximation principle could be used for the selection of such models [15]. In these
papers however, I did not address the proof of convergence results. As a matter of
fact, in most settings of practical interest, theoretical results regarding accuracy and
convergence properties are still missing. This is not the case for simulations methods
as the convergence of MCMC based algorithms has been widely studied. I worked then
with G. Fort to show that combining both types of methods to design new algorithms
could greatly improve accuracy and modeling flexibility in missing data settings. This
resulted in [10] in the so-called MCVEM algorithm which is tractable for HMRFs and
for which we prove convergence results.

Variational approximations are one of my main research interests. I initiated this
direction of research in 1998 with N. Peyrard’s PhD thesis that I advised from 1998 to
2001. This was a natural follow-up after my post-doc in Seattle as I had started working
there on statistical image analysis using HMRFs [17]. This latter work was itself using
my more theoretical background in graphical models and Markov random fields which
was the central subject of my thesis (1993-96) [22, 21, 20, 19, 18].

Originality and difficulty. Before the introduction of variational techniques for es-
timating HMRFs, most approximation techniques were based on simulation methods

[33] W. Byrne and A. Gunawardana. Convergence theorems of Generalized Alternating Minimization
Procedures. Journal of Machine Learning Research, 1 :1–48, 2004.
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at a much higher computational cost. I contributed to the development of efficient al-
ternative methods based on the mean field principle [14] while providing also the tools
for efficient model selection [15] and this was not standard at that time. The main
difficulty then was related to proving theoretical properties of the resulting algorithms.
Such theoretical issues are still under consideration and largely open questions today.
A subsequent original direction of my research was then to consider hybrid approaches
with the hope to combine fast and reasonable approximate estimates with simulation
methods offering more tools for theoretical studies. The MCVEM algorithm [10] is an
example of such a combination that allowed me to prove the first, to my knowledge,
convergence result for this kind of algorithm. I believe this first effective step opened
the way to a better understanding of the behavior and theoretical properties of a lot of
Markov model based algorithms. In particular, analyzing how simulation steps should
be incorporated so as to interact advantageously with deterministic approximations
seems promising.

Validation and impact. The approximation methods I proposed provide fast and
reasonable approximate parameter estimates in many scenarios and are the basis of va-
rious other works in team mistis. They favored our designing and developing of complex
structure (Markovian) models outside our main domain of expertise. The PhD work of
J. Blanchet included new Triplet Markov models (see contribution 2) and used these
tools for inference. They were then applied successfully to a texture recognition task
in the context of the ACI Movistar project. In the PhD work of M. Vignes our me-
thodology was applied to gene expression data clustering using information from gene
networks. More recently the PhD thesis of B. Scherrer on brain MRI segmentation and
our work on brain lesion detection are also based on this inference tools (see contri-
bution 3). Similarly the PhD thesis of R. Narasimha in the context of the European
project POP, uses MRF modeling and variational approximation methods. Eventually,
I obtained in collaboration with researchers from INRA Clermont-Ferrand-Theix a 5
year financial support from INRA for the PhD thesis and post-doc of L. Azizi. The
goal is to investigate the use of HMRF for disease mapping from spatio-temporal data
based on our ability to design and estimate such models.

My expertise in HMRF and variational methods is also generating interaction with
O. Francois and collaborators from TIMC lab. (see Section 7 of my detailed CV). O.
Francois is developing MCMC based methods for application to population genetics.
Currently, we are interacting about the work of L. Azizi as it appears that more recent
needs in population genetics would be potentially challenging for MCMC methods and
then open to variational methods similar to what we are planning to use in L. Azizi’s
thesis.

I should also mentioned that in a number of our past and current projects (see
Section 6 of my detailed CV), the participation of mistis is explicitly based on the
presence of this expertise in the team. This was or still is the case for ACI Movistar,
ANR Vahine, Minalogic project I-VP and ARC SeLMIC project. In addition, my former
students N. Peyrard and M. Vignes are now researchers in spatial statistics at INRA
Toulouse.
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Dissemination. The journal publications related to the methodology are [14, 15, 10].
An extension to new types of HMRFs is given in [8].

Publications using these tools with a specific application focus are also mentioned
in contributions 2 and 3. As regards texture recognition using image descriptors in the
context of the Movistar ACI project, they correspond to conference papers [40, 44,
45, 52, 53]. The journal paper [5] and conference papers [42, 43, 50, 51, 47] illustrate
the application to gene expression data clustering. As regards brain MRI analysis,
they correspond to journal papers [7, 6, 2], book chapter [4] and conference papers
[27, 26, 24, 28, 31, 36, 37, 41, 48, 49]. I also applied these tools to the consistent depth
and boundary/surface normal estimation from stereo image data [25, 35, 59].

The inference tools mentioned above are also the basis of the spaCEM3 software
that we are developing (see Section 1 of the Technology development part).

2 Models for complex and structured data

I have contributed to statistical modeling by developing theoretical concepts and
computational tools to handle properly complications in data-generating processes such
as issues generated by dependencies between variables and by high dimensional, he-
terogeneous, possibly incomplete and noisy data. More specifically, I considered the
following :

1. Issues related to the the measurement process :

High dimensional data : I proposed an HMRF framework for high dimensional
data [40, 8] by extending the work of mistis researchers[9].

Missing observations : I addressed the issue of clustering multi-dimensional data
when not all dimensions are available for all observed items in particular for the clus-
tering of gene expression data [47]. I also worked on an EM procedure to estimate the
so-called tail index from undersampled network traffic data [29].

Heterogeneous data : I proposed a conjugate clustering model [1] able to deal
with observations that live in spaces with different physical properties such as dimensio-
nality, space metric, sensor sampling rate, etc. A typical such issue, that we addressed
within the European POP project, was audio-visual speaker detection [32, 33, 34]. I also
proposed an elegant and efficient way to recast the complex rigid and articulated point
registration problem, e.g. in computer vision, into a statistically well-based clustering
task[39, 3].

2. Issues related to the existence of dependencies between observed and hidden va-
riables :

Constraint clustering : I proposed a method to include gene network information
when clustering gene expression data [5]. I also addressed the issue of taking into account

[9] C. Bouveyron, S. Girard, and C. Schmid. High dimensional data clustering. Computational
Statistics and Data Analysis, 52 :502–519, 2007.
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spatial information in the estimation of population structure from genetics data. I first
proposed a non-Bayesian implementation [11] of the classical model with no-admixture
uncorrelated allele frequencies and then developed a Bayesian clustering algorithm for
spatial population genetics [9].

Cooperative clustering : I considered the task of producing more than one par-
titioning using the same data, the later partitionings being mutually linked. I proposed
the notion of cooperative clustering which was very successfully applied to the joint seg-
mentation of brain tissues and structures (see contribution 3). I used similar coupling
ideas for the consistent depth and boundary/surface normal estimation from stereo
image data [25, 35, 59].

Clustering with weights : Considering specifically multidimensional data, I ad-
dressed the issue of weighting the various dimension differently. I developed a clustering
model in which weights are introduced and estimated in a Bayesian framework. This
technique was successfully applied to the detection of brain lesions from multiple MR
sequences (see contribution 3).

3. Non-standard “noise” model in an HMRF context :

HMRF extensions : I proposed a class of so-called Triplet Markov models where
the HMRF structure is enriched by introducing a set of sub-class variables. They al-
low to account for more complex class-dependent distributions using standard hidden
Markov models tools [8].

My contribution was in general to formalize and set the main modeling aspects. This
implied to design new models or to extend existing ones. I also provided the inference
step by designing appropriate estimation algorithms. I provided both these steps in my
work on Markov models for gene clustering, on conjugate and cooperative clustering,
on multidimensional data clustering with weights, and on the definition of new triplet
Markov models. My contribution was focused on the modeling step, when dealing with
missing and high-dimensional observations, and was related to the inference step in the
population genetics and network traffic cases.

Originality and difficulty. I coordinated and combined the expertise of different
members of team mistis including myself, which led to an original HMRF inference
framework able to deal with dependent possibly incomplete high dimensional data.
There are not so many existing tools that do both. Similarly, we mixed our expertise in
missing data models and extreme value theory to produce with team reso the original
work in [29] which was accepted in a selective conference (SIGMETRICS, acceptance
rate 15% in 2009).

Regarding my contribution to the POP project, it seems that there has been no
attempt to use a generative model, such as ours, for the task of multimodal data
interpretation. Similarly, as detailed in [3], there are intrinsic difficulties when one
wants to cast the point registration problem in an EM framework.

In population genetics, my work [11] relies on the EM principle, and produces
assignment rivaling other clustering programs. The work in [9] is particularly useful for



87

seeking genetic barriers or genetic discontinuities in continuous populations. It was one
of the first models able to handle spatial population genetics data.

My cooperative clustering approach is powerful in that it provides general guidelines
to decompose a joint process into parts to account for various types of interactions
between multiple label sets.

Similarly, the framework I proposed to introduce weights in a multidimensional
case has the advantage of allowing 1) the incorporation of a priori knowledge on the
information content of each measure and 2) a weighting scheme which is modified
adaptively. The model, applied to the detection of brain lesions, showed promising
results.

The originality of the Triplet Markov models [8] comes from their ability to allow
non standard assumptions while being tractable via standard algorithmic tools.

Validation and impact. The possibility to handle very high dimensional data and
missing observations in an HMRF framework was an important achievement. It allowed
us to prove the relevance of our models in a number of applications including gene
clustering, image analysis (ACI Movistar) and hyper-spectral data clustering (ANR
Vahine).

The work on multi-sensory data achieved in POP was selected for publication in
ICT-RESULT 1. Our work was presented as the main scientific results of the project
at CogSys 2010, the 4th International Conference on Cognitive Systems in Zurich,
Switzerland.

We were granted a new European project (HUMAVIPS 2010-13) within the highly
competitive FP7-ICT program of the European Union, which will build on the innova-
tion in POP.

My expertise in modeling spatial dependencies also generated collaborations which
resulted in two papers [11, 9] and two software packages, FASTRUCT and TESS, the
latter of which is still being developed by O. Francois and collaborators at TimC. I was
part of the PhD committee of two students advised by O. Francois in 2006 and 2009,
and O. Francois was in the committee of M. Vignes in 2007.

The impact on the medical imaging community is specified in the next section.

Dissemination. The related publications consist of 1 selective conference for the traffic
data application [29], 5 conferences [32, 33, 34, 35, 25], 1 journal paper [1], 1 submitted
paper [59] and the POPEYE software (see Technology development part) for our contri-
bution in the POP project, 1 journal paper [5] and 5 conferences [42, 43, 50, 51, 47] for
the genomics application. The population genetics application generated 2 journal pa-
pers [11, 9] and the FASTRUCT and TESS software registered at APP in 2006, under
the CeCILLB license. High dimensional data and Triplet Markov models are developed
in 1 journal paper [8] and 1 conference [40]. Our approach to point registration gene-
rated 1 journal paper [3] and 1 conference [39] with a corresponding software ECMPR
(see Technology development part). Most of the other developments, except the MRI

1. http://cordis.europa.eu/ictresults/index.cfm?section=news&tpl=

article&BrowsingType=Features&ID=90953
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one, which has required a specific treatment, have been implemented in the SpaCEM3

software available at http://spacem3.gforge.inria.fr. A user guide and data sets
are also available there. The software has been registered at APP in 2007 under the
CeCILLB license. A description of its main functionalities is also available in French
[23].

3 Model-based clustering for the analysis of MR brain
scans

In 2006, I initiated a collaboration with M. Dojat from the Grenoble Institute of
Neuroscience (GIN) and C. Garbay (team magma , Laboratoire d’informatique de
Grenoble) for the analysis of Magnetic Resonance (MR) brain scans. We first focused
on healthy brain MRI segmentation as it is a central step for a number of applications in
neuroscience. From MR images, neuroradiologists are able to delineate tissues such as
grey matter and structures such as Thalamus but this delineation cannot be performed
easily automatically due to a number of artefacts. The first model we developed is based
on the cooperative clustering framework I proposed (see contribution 2). It allows to
capture the relationships between tissues and structures, to integrate a priori anatomical
knowledge (via an atlas) and to handle local estimations and spatial correlations. It
resulted in a procedure that is able to jointly register the atlas properly and to segment
both tissues and structures with the three processes gradually and mutually improving
each other. In parallel, I extended the collaboration to team visages at INRIA in
Rennes via the ARC project SeLMIC. The goal was to add two important features : 1)
the possibility to deal with multiple complementary MR sequences and 2) the possibility
to deal with abnormalities (lesions). I proposed then a probabilistic model for brain
lesion segmentation, able to take into account multiple MR volumes and to weight
these volumes differently depending on their informative power. In 2009, we started
considering another type of MRI data, namely functional MRI data. The modeling is
quite different and required that we develop new collaborations with other experts in
the field. To this end, I started working with P. Ciuciu from CEA-Neurospin in Saclay
[2, 24].

During the 2006-09 period, I co-advised one PhD-student (B. Scherrer), one post-
doctoral fellow (S. Doyle), and one Master student (A. Janon). I also coordinated
the ARC project SeLMIC. My participation in the collaboration was an important
step toward the use of probabilistic and statistical tools. My contribution was first to
provide the statistics and probability background and then to formalize the targeted
brain imaging task. I designed the models and the estimation techniques.

Originality and difficulty. The originality comes from the successful combination of
the teams’ respective strengths i.e. expertise in distributed computing, in neuroimaging
data processing and in statistical methods. It was a challenge to reach rapidly a high
level in a domain outside my main domain of expertise. The relevance of our approach
has been acknowledged by the community with the MICCAI best paper award for the
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work in [31].

Validation and impact. mistis is the first statistics team to reach such a level of
collaboration with the GIN. This is unique at INRIA Grenoble and among other sta-
tistics groups in Grenoble. No other team is involved in brain medical imaging or in a
collaboration with the GIN. This work allowed me to initiate new collaborations with
other prestigious experts in the field, such as with INRIA team visages and CEA-
Neurospin. As an additional achievement, B. Scherrer got a post-doctoral position at
the prestigious Harvard Medical School in Boston.

Dissemination. Publications represent 3 journal papers [7, 6, 2], 1 book chapter [4],
9 international conferences [28, 31, 36, 37, 38, 41, 27, 26, 24], 2 national conferences
[48, 49]. This includes 3 papers at the major medical imaging conference, MICCAI,
among which a best paper award in 2008 [31]. It resulted in a software package called
Locus, http://locus.gforge.inria.fr (website still under construction) that was
selected for a regional technology fair in Grenoble, Forum 4i, May 2009 and for the
Grenoble Innovation Fair (GIF) in October 2010.





Research Program





A statistical methodology for coupling models and methods

Faced with complex processes, with multiple sources of observations from various
sensing devices, and with various degrees of scientific knowledge, the modeling task
needs to take into account and to combine several sources of information. As a step
toward the combination of methods that would deal alternatively but separately with
different sources or sub-tasks, I consider coupling as a paradigm to allow for mutual
interactions between components of a model. Such a coupling can be naturally expressed
in a statistical framework via the definition of joint distributions. However, although it
may be intuitive to consider processes from a joint perspective, it can present serious
challenges in terms of statistical modeling. My goal is to develop a number of directions
of research that involve coupling issues to eventually reach the definition of general
guidelines to deal with complex joint processes from a statistical perspective. More
specifically, I am planning to consider the following axis.

1 Bayesian conditional modeling for multimodal data ana-
lysis

When studying complex phenomena, it is crucial to be able to deal with various
information sources. Not only several data sources can improve model identification
by limiting the noise impact but also they can provide complementary information.
However, the potential heterogeneity of data usually prevent the use of a joint model for
inference. Even when it is possible to specify a joint multivariate distribution, inference
may be possible only through equivalent conditional models. A coherently linked system
of conditional models is often more appropriate. The approach I propose is to deal with
joint modeling by replacing the joint distributions by a series of conditional models
which fully define the joint model but not necessarily in an explicit way as in hierarchical
modeling. Such models can be considered from either a classical or Bayesian perspective.
I propose to focus on the latter one for its additional modeling capabilities in a number
of applications. The conjugate and cooperative clustering approaches that I have recently
developed, respectively for the analysis of multi-sensory and MR brain scans data, will
be the basis of this research.

Audio-visual integration. In particular, I will go on studying the integration of
audio-visual information through my participation in the new European STREP
HUMAVIPS (Humanoids with auditory and visual abilities in populated spaces)
which has started in February 2010 with partners including INRIA teams per-
ception and mistis, Czech Technical University, Aldebaran Robotics, IDIAP,
and Bielefeld University. The challenge is to integrate statistical machine lear-
ning techniques with interactive robotic applications. Indeed, one of the most
challenging and difficult tasks is to integrate unconstrained auditory, visual, and
motor information such that a humanoid robot can learn how to localize, reco-
gnize, and interact in real-time with people. Hence, modeling the coupling of data
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from physically different sensors plays a crucial role in this case.
Anatomical and functional MRI. I will also further address similar coupling issues

in MRI and functional MRI analysis with my collaborators from the Grenoble
Institute of Neuroscience and INRIA team visages.
As regards studies on human cognitive processes, most current approaches are
based on functional MRI data only. They do not usually consider the anatomical
information related to the data. By contrast, it is important for interpretation
purposes to relate functional information to anatomical structures. Also the injec-
tion of anatomical and/or functional a priori can greatly facilitate the detection of
activation and limite false positive rate. A large number of successful approaches
have involved statistical modeling. I believe this is one of the right approaches for
the task although to my knowledge no real unifying framework has been proposed
to date that fully exploits the modeling capabilities of probabilistic settings. My
aim is to build on my previous achievements to go towards that goal. In particu-
lar, we will address the question of combining anatomical features with functional
information in various forms.

Joint estimation-detection framework of brain activity. As regards functional
MRI, a new collaboration with CEA Neurospin is on its way.
Traditional functional MRI analysis postulates a preset form of the so-called He-
modynamic Response Function (HRF) although, as demonstrated by various ex-
periments, the HRF may vary between subjects and even between cortical regions
in a given subject’s brain. It appears then that fixing the HRF to some canonical
shape is too restrictive and misleading. I will therefore address the issue of jointly
detecting brain activity and estimating the HRF. Existing approaches along this
line are based on simulation intensive Markov Chain Monte Carlo (MCMC) me-
thods which prevent from easily integrating other prior information such as the
subject brain anatomy or structure mentioned above. I will investigate the use of
deterministic variational approximation techniques as a more efficient and more
open alternative.

Spatio-temporal disease mapping. Then I will develop our collaboration with INRA
and in particular the Clermont-Ferrand-Theix unit through the PhD thesis of L.
Azizi. The goal is to couple spatial and temporal information to study epidemio-
logy data. I will exploit the similarities that exist with the analysis of spatio-
temporal audio-visual signals as encountered in the HUMAVIPS project.

2 Extreme value theory and structured data

This second axis represents another level of coupling related to the combination of
ideas from different methodologies, namely extreme value theory and spatial statistics
or Markov random field modeling.

My goal is to combine the expertise already available in mistis to develop a new
domain, namely, dependent extreme value theory. Standard extreme value theory is a
relatively recent domain in statistics which is part of mistis scientific bases. Taking
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into account dependencies when studying extreme values is then a more recent area
of research in which the mistis team has some advantages and some part to play.
The two main directions I will consider are conditional extremes, to account for pos-
sible co-factors, and coupling traditional extreme value theory with spatial statistics
analysis. In particular, the few existing approaches are based on simulation intensive
inference techniques. The Markov Random Field modeling and variational approxima-
tions approaches that I have developed have not been used yet to this end, and they are
promising. Applications include environmental issues and in particular rainfalls studies
as initiated in mistis by S. Girard and L. Gardes in their collaboration with LTHE
(Hydrology lab. in Grenoble).

3 Hybrid inference algorithms

This third axis refers to the design of algorithms for inference of complex structure
models that would use both deterministic variational approximations and simulation
techniques. While variational methods provide fast and reasonable approximate esti-
mates, simulation methods offer more consideration of important theoretical issues such
as accuracy of the approximation and convergence of the algorithms but at a much hi-
gher computational cost. The idea of hybrid approaches is to combine the main features
and advantages of both simulation and deterministic methods. This kind of approach
has not been fully exploited yet and the development of my coupling objectives above
makes this exploitation more promising. Also I wish to keep a balanced activity bet-
ween the main three parts of a statistical study, namely those related to modeling,
estimation algorithms and theoretical properties.

4 Statistical image processing and cognition

My goal is then to investigate also the possibility to create a new team that would
unify activities in medical imaging. The medical imaging activities in Grenoble are dis-
tributed between different labs with common interest but without any common struc-
tured action. There is a striking lack of structure around this topic although clear
motivations and goals are expressed by various teams from some important laborato-
ries. The GIN is the central entity as regards MRI due to its proximity to the Grenoble
hospital and the MR device itself. Moreover, GIN researchers and engineers have strong
expertise in MRI data acquisition and analysis. An overall theme that I foresee as a
good structuring topic for such a team would be Statistical image processing and cog-
nition. The collaboration between mistis and the GIN gives us some visibility and
some advantage to be leader in such a project. Also, in terms of human resources, this
should help attracting new researchers (permanent or non permanent) either from the
GIN side which is affiliated to INSERM, Univ. Joseph Fourier and CEA, or from the
mistis side which is an INRIA team also in the Laboratoire Jean Kuntzman affiliated
to CNRS, Univ. Joseph Fourier, Univ. Pierre Mendès France and INPG.



96 6. International collaborations

5 Application domains and technology transfer

In addition to the applications already mentioned in the previous axis, I will go
on developing a number of techniques in particular for solving issues in new appli-
cations related to microelectronics : process variability and defect detection in PC
boards. Recent collaborations to be further developed include ones with CEA-Leti and
VI-Technology, a world leader in Automatic Optical Inspection. I have started (Oc-
tober 2009) coordinating, on the mistis side, a Pôle de compétitivité MINALOGIC
project including VI-Technology and Pige electronique as industrial partners (see Sec-
tion Industrial transfer in the previous Technology development part). Also, the Locus
software for brain MRI segmentation is now the object of a GRAVIT project whose
goal is to seek for potential industrial users and partners.

6 International collaborations

In addition, the context of my research also includes collaborations with a number of
international partners such as the Statistics Department of University of Washington in
Seattle, the Speach and Hearing group of University of Sheffield, UK and new partners
involved in the HUMAVIPS project. I will work at strengthening these collaborations
to effectively combine the teams’ respective strengths.
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1 Diplomas

Ph.D. :
Title : Modèles markoviens de ressources partagées (Markov models for resource sha-
ring)
Date of the defense of the Ph.D. : September 27, 1996
Granting institution : Joseph Fourier Univsersity (UJF), Grenoble
Host institution : SMS team, Laboratoire LMC, IMAG, Grenoble

Other diplomas :

– Ingénieur ENSIMAG (National institute for advanced study in computer science and
applied mathematics), Grenoble,MSc in Computer Science and Mathematics. With
highest honors.
Graduation rank : 1/120.

– DEA (degree for doctoral candidacy), Joseph Fourier University, Grenoble, in applied
probability with highest honors (mention TB).
Graduation rank : 1/30.
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Current professional status

Position and statute : Senior Research Scientist (CR1)
Institution : INRIA Grenoble Rhône-Alpes
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Previous professional experiences

Start End Institutions

January 1998 Dec. 1999 INRIA Grenoble Rhône-Alpes Junior Research Scientist (CR2)
October 1996 Dec. 1997 U. of Washington, Seattle, USA postdoctoral fellow

3 Prizes and awards

My paper [31] with B. Scherrer, C. Garbay and M. Dojat, entitled ”Fully Bayesian
Joint Model for MR Brain Scan Tissue and Structure Segmentation” received the young
investigator award at the International Conference on Medical Image Computing and
Computer Assisted Intervention (MICCAI) in 2008 in New-York, USA.

4 Supervision of research activities

PhD. students

Nathalie Peyrard [1998-2001, MENRT, UJF, Grenoble]. PhD thesis title :
Approximation de type champ moyen des modèles de champ de Markov
pour la segmentation de données spatiales. In this work we investigated
the use of variational approximations (Mean-Field) in the context of Markov
Random Fields. I initiated this activity in team is2 and co-advised [80%] the
work with G. Celeux (former team is2). This work was at the core of my research
program at that time. It became the basis of my activity regarding spatial data
analysis (e.g. images) and implied a number of other theoretical and practical
developments. The basis of our SpaCEM3 software come from this work. Main
related publications : [14, 15].
Nathalie is a senior researcher (CR1) at INRA in Toulouse.

Juliette Blanchet [2004-2007, MENRT, UJF, Grenoble]. PhD thesis title :
Modèles markoviens et extension pour la classification de données com-
plexes. We investigated and proposed extensions of standard Markov models, in
particular the so-called Triplet Markov models. Texture segmentation was a key
application. I advised [90%] this work with C. Schmid from team lear, IN-
RIA Rhône-Alpes, in the context of a common ACI project called Movistar. The
SpaCEM3 software was initiated at that time. Main related publications : [8, 44].
Juliette is a post-doctoral fellow at the WSL Institute for Snow and
Avalanche Research SLF, in Davos, Switzerland.

Matthieu Vignes [2003-2007, AC, Ecole Normale Supérieure de Lyon]. PhD
thesis title : Modèles markoviens graphiques pour la fusion de données
individuelles et d’interaction- application à la classification de gènes. We
investigated the use of graphical Markov models in genomics, and in particular for
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the clustering of gene expression data. I advised [100%] this work. It gave us the
opportunity to initiate collaborations with statisticians and bio-statisticians from
INRA Jouy-en-Josas and Toulouse. We were also involved in two ARC projects
coordinated by M-F. Sagot on related subjects. Main related publication [5].
Matthieu is a junior researcher (CR2) at INRA Toulouse.

Benoit Scherrer [2005-2008, MENRT, INPG, Grenoble]. PhD thesis title :
Segmentation des IRM cérébrales : agents markoviens et formulation
bayesienne. I co-advised [70%] this work with M. Dojat (Grenoble Institut des
Neurosciences) and C. Garbay (Laboratoire d’Informatique de Grenoble). I provi-
ded all the probabilistic and statistical background and most of the probabilistic
modeling ideas. We developed a statistical framework for the analysis of MR
brain scans (tissue and structure segmentations) that is able to combine several
sources of information. This work is the key-stone in the collaboration I deve-
loped with the Grenoble Institute of Neuroscience. Main related publications :
[4, 6, 7, 28, 31, 36].
Benoit is a post-doctoral fellow at the Harvard Medical school, Boston,
USA.

Vasil Khalidov [2006-2010, POP European STREP, UJF Grenoble]. PhD
thesis title : Conjugate Mixture Models for the Modeling of Visual and
Auditory Perception. I co-advised [70%] this work with R. Horaud (percep-
tion team, INRIA Grenoble Rhône-Alpes). The thesis was part of the European
STREP named POP for Perception On Purpose. This PhD work contributed to
the development of theoretical and algorithmic models based on probabilistic and
statistical modeling of both the input and the processed data. Bayesian theory
and hidden Markov models in particular have been combined with efficient op-
timization techniques in order to confront physical inputs and prior knowledge.
Research along this line is going to be further addressed in the new STREP
HUMAVIPS started in February 2010. Related publications : [1, 32, 33, 34].
Vasil is starting a post-doctoral position at IDIAP in Switzerland in
November 2010.

Ramya Narahsimha [2006-2010, POP STREP, INPG, Grenoble]. PhD the-
sis title : Depth Recovery from Stereo Matching Using Coupled Ran-
dom Fields. I co-advised [50%] this work with E. Arnaud and R. Horaud from
team perception. We investigated joint probabilistic frameworks for both dis-
parity, boundary and surface normal estimation in the context of stereo matching
problems. This work was initiated in the European STREP POP and is another
part of my collaboration with computer vision experts. Related publications :
[25, 35, 59].

Lamiae Azizi [2008-2011, CJC INRA , UJF, Grenoble]. I am co-advising [70%]
this work with M. Garrido and D. Abrial from INRA Clermont-Ferrand-Theix.
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We investigate the use of hidden Markov random fields for spatio-temporal disease
risk mapping as an alternative to more standard hierarchical Gaussian models.
No related publications yet.

Temporary engineer

Sophie Chopart [Sept. 2007-May 2009]. I advised [50%] the software develop-
ment activity of Sophie related to the SpaCEM3 software. Related publications :
[23] and a SpaCEM3 user guide.
Sophie is now a software engineer for the EB solutions company in
Saint Cyr au Mont d’or, France.

Interns

Jean-Baptiste Durand [March-June 1999, ENSIMAG, MASTER statistics
UJF, Grenoble]. I was partly involved [20%] in this Master work regarding
gesture recognition using hidden Markov chains.

Romain Neugebauer [March-June 2000, Ecole Nationale Supérieure Agro-
nomique, Montpellier, MASTER Biostatistics]. I advised [100%] this work
on the use of statistical clustering techniques to identify breast carcinoma using
angio-MRI data. This internship and the following were part of a collaboration
with Adrian Raftery and Chris Fraley from University of Washington, Seattle and
Toshiba inc. San Francisco. The overall goal was the analysis of dynamic breast
MRI.

Armelle Regeasse [March-June. 2001, MASTER Biostatistics Univ. Mont-
pellier]. I advised [100%] this work to investigate the use of data analysis tech-
niques to help with the diagnosis of breast cancer.

Franz Chouly [June-Sept. 2001, ENSIMAG, 2nd year research project]. I
co-advised [50%] this internship with Nathalie Peyrard. We generalized the use
of Potts model for image segmentation by showing the impact of using an external
field appropriately. The results of this study were an important step toward our
contribution to the use of Markov models for image segmentation.

Cyril Martin [June-Sept. 2002, ENSIMAG, 2nd year research project].
The goal of this work that I advised [100%] was to investigated an alternative to
hidden Markov Random Fields for image segmentation and more generally spatial
data clustering. We studied conditional autoregressive Gaussian processes.

Matthieu Vignes [July-Sept. 2002, Ecole Normal Supérieure de Lyon, MAS-
TER mathematics, UCB Lyon]. I was involved [20%] in this Master project
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on the use of parsimonious higher order Markov chains for the analysis of DNA
sequences.

Juliette Blanchet [March-June 2004, ENSIMAG, MASTER statistics, Univ.
Paul Sabatier, Toulouse]. I advised [100%] this work on the use of hidden
Markov field to cluster image descriptors. This study initiated our collaboration
with team lear, which was then centralized in our common ACI project Movis-
tar.

Jean-Baptiste Masson [March-June 2005, ENSIMAG, MASTER applied
Maths. UJF, Grenoble]. I co-advised [50%] this Master work with G. Fort.
The goal was to study the convergence properties of our mean-field like algorithms.
This initiated my collaboration with G. Fort.

Lemine Abdalah [August-October 2005]. I supervised [50%] with J. Blanchet
(mistis) the software development work of Lemine related to the SpaCEM3 soft-
ware.

Rajendran Narayanan [June-July 2007, INRIA Interships program]. I ad-
vised [100%] this work whose context was that of our ANR project Vahine. The
goal was to study the concept of overlapping clustering for segmenting complex
remote sensing data. Interesting preliminary results were obtained but the use on
real hyperspectral data is still under consideration.

Lamiae Azizi [March-August 2008, bioMerieux, MASTER statistics, UPMF,
Grenoble]. I co-advised this work [30%] with Laurent Gardes (mistis) and René
Vachon from bioMerieux, Grenoble in the context of a 6 month contract with bio-
Merieux. We investigated the use of the Slice Inverse Regression (SIR) method
for the analysis of a quantification process.

Luce Ponsar [March-June 2008, Veolia-eau, 3rd year research project, Ecole
Centrale de Lyon]. I co-advised this work [50%] with J-B. Durand (mistis)
in the context of a 4 month contract with Veolia-eau in Lyon. The goal was to
study and possibly detect groups of individuals in time series describing various
quantities linked to water consumption and billing in the Lyon area.

Alexandre Janon [April-August 2009, Ecole Normal Supérieure de Lyon,
MASTER statistics, UJF, Grenoble]. I co-advised [50%] this work with
Michel Dojat (Grenoble Institute of Neuroscience). The goal was to investigate
the use of variational approximation techniques for the joint estimation-detection
of brain activity in functional MRI data. This work initiated a new activity which
is pursued with a new collaboration with Philippe Ciuciu from Neurospin, CEA
in Saclay.
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Eric Frichot [February-June 2010, ENSIMAG, 2nd year research project].
I advised [100%] the work of Eric on the extension of our Bayesian weighted
model for brain lesion segmentation to the case of full covariance matrices.

5 Responsibilities

Organization of conferences and workshops

I was a member of the technical and organization committees of the following work-
shops :

The 3rd French-Danish workshop on spatial statistics and image analysis,
Saint Pierre de Chartreuse, France, October 2003.

The ”New directions in Monte-Carlo Markov chain methods” workshop,
Fleurance, France, June 2007, http://www.adapmc07.enst.fr/.

The first IEEE GRSS Workshop on Hyperspectral Image and Signal Pro-
cessing (IEEE WHISPERS-09), August 2009, Grenoble, France, http://www.
ieee-whispers.com/2009/.

The IEEE Signal Processing Society conference : Machine learning for Si-
gnal Processing (MLSP 2009), Sept. 2009, Grenoble, France, http://mlsp2009.
conwiz.dk. I organized with W. Pieczynski from Telecom Sud Paris, a special ses-
sion on ”New trends in Markov models and related learning to restore data” [30].

The 17th summer session of the Model-based clustering workshop, Grenoble, July
19-23, 2010. See Section 7 for more details.

The 3th annual session of the Statlearn workshop (see the precedent edition web-
page at http://samos.univ-paris1.fr/-Statlearn-10-) on statistical lear-
ning and complex data, Grenoble, March 17-18, 2011.

Committees

2009-2012 : Head of the committee for post-doctoral candidate selection at
INRIA Grenoble Rhône-Alpes (“Comité des Emplois Scientifiques”). I have
been a member of this committee since 2005.

2009-2012 : Member of the INRIA national committee, “Comité d’anima-
tion scientifique”, in charge of analyzing and motivating innovative activities
in applied mathematics.

2007-2012 : Member of the INRA committee (CSS MBIA) in charge of eva-
luating INRA (French National Institute of Agricultural Research) researchers
once a year.

2005-2007 : Member of the GTAI group in charge of incentive initiatives in the
Scientific and Technological Orientation Council (COST) of INRIA.

2000-2008 : Member of the committee for Faculty member selection (Com-
missions de Spécialistes) at Institut Polytechnique de Grenoble (INPG).
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1998-2004 : Member of the committee for Faculty member selection (Com-
missions de Spécialistes) at University Pierre Mendès France (UPMF, Gre-
noble II).

2002 : Member of the committee for research scientist candidate (CR)
selection at INRIA Grenoble Rhône-Alpes.

PhD thesis and HDR Committees

November 2005 : Christelle Melo de Lima from University Lyon 1. PhD title :
Développement d’une approche markovienne pour l’analyse de l’organisation des
génomes.

September 2006 : Mathieu Emily from TimC lab. INPG, Grenoble. PhD title :
Modèles statistiques du dévelopement de tumeurs cancéreuses.

September 2009 : Eric Durand from TimC Lab. INPG, Grenoble. PhD title :
Modèles statistiques pour la structure génétique des populations : organisation
spatiale et liens de parentés.

March 2010 : Tomas Crivelli from team vista INRIA Rennes, Univ. Rennes I. PhD
title : Mixed state Markov models for image motion analysis.

November 2010 : Lotfi Châari from University Paris-Est. PhD subject : Recons-
truction d’images médicales d’IRM à l’aide de représentations en ondelettes.

December 2010 : Nicolas Wicker is assistant professor at Strasbourg University. I
am a reviewer for the HDR (Qualification to coach researchers) thesis of Nicolas
Wicker on computational statistics.

6 Management

Research team mistis

Scientific leadership : I am the scientific leader of the mistis group http://mistis.
inrialpes.fr since its creation in 2003. I have defined its scientific bases and
I have initiated several interdisciplinary collaborations and industrial contracts.
I wrote several European, ANR, ARC project proposals that were eventually
granted.

Projects : The team is currently involved in 1 European STREP project (HUMA-
VIPS), 2 ANR projects (VAHINE and MEDUP), 2 Minalogic project (I-VP and
OPTYMIST II).

Past projects include a STREP project (POP), 1 ACI project (MOVISTAR), 3 ARC
projects (SeLMIC, ChromoNet and IBN), 3 industrial contracts (CEA, BioMe-
rieux, Veolia), 1 CIFRE contract with Xerox.

Projects leadership : I have been directly involved in HUMAVIPS, VAHINE, I-VP,
OPTYMIST II, POP, MOVISTAR, SeLMIC, ChromoNet, IBN, bioMerieux and
Veolia projects.
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Team composition : In September 2010, the team is composed of 15 persons in-
cluding 2 INRIA senior researchers (S. Girard and myself), 2 University Pierre
Mendès France (UPMF) faculty members (L. Gardes and M-J. Martinez) and 1
ENSIMAG (INPG) faculty member (J-B. Durand). The current number of PhD
students is 4, the current number of post-doctoral fellows is 5 and there is 1
temporary engineer.

Supervision : Among the 15 members, I am advising 2 PhD students and I am
directly working with 3 post-doctoral fellows and 1 engineer.

mistis is also part of the Statistics Department of Laboratoire Jean Kuntzman.

The table below shows the budget allocated to the project-team via external fun-
ding, in keuros, over the 2006-2012 period.

2006-2012 k euros
INRIA Research Initiatives
SeLMIC (ARC†) 27
National initiatives
VAHINE (ANR) 104.7
European projects
POP STREP FP6 140.6
HUMAVIPS STREP FP7 130
Industrial contracts
bioMerieux 1.5
Veolia 4.2
Xerox 9
CEA 20
MINALOGIC (I-VP) 442
Scholarships
PhD * L. Azizi (INRA) 100
PhD * A. Lekina (Cordi-INRIA) 100
Post Doc* C. Chen (INRIA) 46
Post Doc* S. Doyle (SeLMIC) 46
Post Doc* MEDUP (ANR) 69
Post Doc* D. Wraith (INRIA) 69
Post Doc* OPTYMIST II (UJF) 92
ODL# S. Chopart 90
Total (k euros) 1491

† INRIA Cooperative Research Initiatives
∗ other than those supported by one of the above projects
# engineer supported by INRIA
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Research Projects

European STREP HUMAVIPS (2010-13) mistis is involved in a new three-year
European project (STREP) started in February 2010. The project is named HU-
MAVIPS (Humanoids ables with auditory and visual abilities in populated spaces)
and was in 2009/10 the only INRIA coordinated project granted in the highly
competitive FP7-ICT program of the European Union. The partners involved are
team Perception and Mistis from INRIA Rhone-alpes (coord.), the Czech Tech-
nical University CTU Czech Republic, Aldebaran Robotics ALD France, Idiap
Research Institute Switzerland and Bielefeld University BIU Germany. The goal
is to develop humanoid robots with integrated audio-visual perception systems
and social skills, capable of handling multi-party conversations and interactions
with people in realtime. My contribution will consist in developing statistical
machine learning techniques for interactive robotic applications.
The financial support for mistis is of 130 keuros.

The MINALOGIC I-VP project (2009-12). Since October 2009, I am coordina-
ting new activities for the three-year Pôle de competitivité Minalogic project I-
VP (for Intuitive Vision Programming) supported by the French government.
The project is led by VI Technology (http://www.vitechnology.com), a world
leader in Automated Optical Inspection (AOI) of a broad range of electronic
components. The other partners involved are the CMM (Centre de Morphologie
Mathematiques) in Fontainebleau, and Pige Electronique in Bourg-Les-Valence.
The NOESIS company, which is a leader in the field of image processing and
analysis software, in Crolles, is also involved to provide help with software deve-
lopment. Our goal is to exploit more intensively statistical and image processing
techniques to improve defect detection capability and programming time based on
existing AOI principles so as to reach eventually a reliable defect detection with
virtually zero programming skills and efforts. The financial support for mistis in
about 442 keuros and implies the hiring and coordination of 102 man/month.

The OPTYMIST II project (2009-12). I am involved in this three year Pôle de
competitivité Minalogic project through a collaboration with CEA - LETI addres-
sing variability issues when designing electronic devices. The partners involved are
University Joseph Fourier (LJK), CEA-LETI, and Raise Partner, ASYGN and
Dolphin Integration companies. The financial support corresponds for mistis to
a 2-year post-doctoral position (92 k euros).

ANR VAHINE (2008-10). In the MDCO (Masse de Données et Connaissances)
program, this three-year project is called ”Visualisation et analyse d’images hy-
perspectrales multidimensionnelles en Astrophysique” (VAHINE). It aims at de-
veloping physical as well as mathematical models, algorithms, and software able
to deal efficiently with hyperspectral multi-angle data but also with any other
kind of large hyperspectral dataset (astronomical or experimental). It involves
the Laboratoire de Planétologie (LPG) de Grenoble, the Gipsa-lab, Observatoire
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de la Côte d’Azur (Nice), and University Strasbourg I. I initiated this collabora-
tion and organized numerous meetings with the collaborators beforehand. I am
in charge of coordinating the mistis activities which involves an 18 months post-
doctoral fellowship. The financial support was of 104 keuros. More details on
the web site http://mistis.inrialpes.fr/vahine/dokuwiki-2008-05-05/.

European STREP POP (2006-08). I coordinated the mistis part for the POP Eu-
ropean STREP (Perception On Purpose) coordinated by INRIA and involving
teams mistis and perception. The other partners involved were the University
of Sheffield, UK, University of Osnabrck, University Hospital Hamburg-Eppendorf
in Germany and University of Coimbra in Portugal. The objective was to put
forward the modeling of perception (visual and auditory) as a complex atten-
tional mechanism that embodies a decision taking process. The part I had in
charge included the PhD works of Vasil Kalidhov and Ramya Narasimha. The
financial support for mistis was of 140 keuros. Our contribution was to the
development of theoretical and algorithmic models based on probabilistic and
statistical modeling of both the input and the processed data. The final review
of the project was held on December 11 and 12, 2008 with in particular a live
demo running on the POP audio-visual head regarding multispeaker localisation
using the algorithm we developed [1]. Further details on the project web site
http://perception.inrialpes.fr/POP/.

The SeLMIC project (2007-08). I coordinated (2007-2008) the 2-year ARC pro-
ject SeLMIC supported by INRIA, http://euterpe.ujf-grenoble.fr/selmic/
doku.php. SeLMIC stands for Segmentation Longitudinale et multimodale par
IRM d’anormalités cérébrales. It aimed at developing new statistical methods for
the segmentation of multidimensional MR sequences corresponding to different
types of MRI modalities and longitudinal data. The applications included the
detection of brain abnormalities and more specifically strokes and Multiple Scle-
rosis lesions. The partners involved were team visages from INRIA in Rennes,
the INSERM Unit U594 (Grenoble Institute of Neuroscience) and Laboratoire
d’Informatique de Grenoble (LIG).

The funding included a one-year post-doctoral fellowship and about 27 keuros.

ACI MOVISTAR (2003-06) mistis got a Ministry grant (Action Concertée Incita-
tive Masses de données) for a three-year project involving other partners, team
lear from INRIA, SMS from University Joseph Fourier and Heudiasyc from
UTC, Compiègne. I initiated this project which aimed at investigating visual and
statistical models for image recognition and description and learning techniques
for the management of large image databases. The PhD work of Juliette Blanchet
and Charles Bouveyron were related to this project.
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7 Collaborations, visits

Long visits

1996-1997 (15 months) : Post-doctoral position in the Statistics Department of
University of Washington, Seattle, USA.

1998-2002 : 5 long visits (3 to 4 months each) to the Statistics Department of
University of Washington.

1997-2010 : Participation to the summer session of the Model-based clustering
workshop, on invitation only.

I visited the Statistics Department of University of Washington in Seat-
tle, as a post-doctoral fellow from October 1996 to December 1997. I initiated there
common work with Adrian Raftery http://www.stat.washington.edu/raftery/ on
models for clustering and more specifically for statistical image segmentation [17]. I
then visited the department on a regular basis for periods of 3 to 4 months. I made
5 such long visits from 1998 to 2002. In 1999, I visited the department with
N. Peyrard whose thesis was mainly on Markov model based segmentation using the
Expectation-Maximization (EM) algorithm and variational approximation techniques.
Markov model selection was also considered in this work. The focus was on BIC crite-
rion and A. Raftery’s expertise on Bayesian model selection was very relevant to the
collaboration. As a matter of fact, in 2001, A. Raftery was involved in N. Peyrard’s
PhD committee. In addition, I was also involved with N. Peyrard, A. Raftery and C.
Fraley (another member of the Statistics Department) in a project involving MRI data
with partners such as Toshiba Inc. and the Seattle University Hospital. In the following
years, model-based clustering techniques (and the various theoretical and practical as-
pects mentioned above) was the main topic of the collaboration. Medical image analysis
and more specifically breast MRI data played a central part. I was involved in 2 projects
contracted by the University of Washington with NIH (2001) and ONR (1998). Three
technical reports (1999 [65], 2001 [64], 2004 [62]) show the evolution of our collaboration
regarding both statistical methods and clinical data. The journal paper [12] shows that
results have been obtained that point out the relevance of statistical methodology to the
MRI community. In addition, since 1997, I have been involved nine times in an invitation
only Model-based clustering Workshop organized every summer by A. Raftery and col-
laborators (http ://www.stat.washington.edu/raftery/Onrgroup/onrgroup.html). Each
year various teams are represented including students and researchers from the Univ.
of Washington Statistics Department, INRIA (mistis, select, and more recently per-
ception), INRA (Avignon, Toulouse), University College London, University of Lon-
don, Trinity College and University College Dublin, University of Montreal, Texas Uni-
versity, Microsoft Research, etc. The workshop was in Seattle until 2006 but the 2007
and 2009 sessions took place resp. in Trinity College, Dublin and IHP, Paris. For 2010,
I was in charge of organizing the 2010 session that took place at INRIA Grenoble
Rhône-Alpes in July.
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Collaborations

One major strength of my research activity is the numerous collaborations that I
have initiated and developed. This contributes to the good visibility of team mistis.
Among the major achievements, I have been able to initiate and develop the following
strong collaborations :

Statistics Department, University of Washington, Seattle, USA. I already men-
tioned above this long-term collaboration.

Grenoble Institute of Neuroscience (GIN). The collaboration with the GIN, on
the analysis of MR brain scans, has included a co-advised PhD student, a post-
doctoral fellow, a Master student, a number of co-publications (2 journal papers
[7, 6], 1 book chapter [4], 8 international conferences [28, 31, 36, 37, 38, 41, 27,
26], 2 national conferences [48, 49]) and a software (LOCUS). This collaboration
also includes C. Garbay from team magma of LIG for multi-agent systems
aspects. I also coordinated the ARC project SeLMIC (Section 6) which allowed
to initiate collaboration with team visages from INRIA in Rennes (C. Barillot
and collaborators).

CEA Saclay, Neurospin. More recently I have started working with P. Ciuciu from
CEA-Neuropsin on functional MRI [2, 24]. More details are given in the Appli-
cation domains section.

Lab. of Planetology (LPG) and Gipsa-Lab. Grenoble. This collaboration with
the Gipsa-lab (Jocelyn Chanussot, Christian Jutten and collaborators) and Lab.
of Planetology in Grenoble (Sylvain Douté and collaborators) was initiated before
the Vahine ANR project (See Section 6). It includes two post-doctoral fellows and
a number of common publications (1) and communications (4). In addition, I was
a member of the technical and organization committees of the following workshops
coordinated by J. Chanussot and C. Jutten (see Section 5 for details) : The first
IEEE GRSS Workshop on Hyperspectral Image and Signal Processing (IEEE
WHISPERS-09) and the IEEE Signal Processing Society conference : Machine
learning for Signal Processing (MLSP 2009).

SandH, University of Sheffield, UK. This collaboration with the Speach and Hea-
ring group (SandH) was initiated with the European STREP POP. We organized
several cross-visits alternatively in Sheffield and Grenoble for periods of 1 to 2
weeks on average. This was essential for us to combine our respective expertise in
image analysis and auditory data analysis. In addition, it resulted in the creation
of a data-base with audio-visual sequences made from binaural and binocular
recordings [34]. The data-base is publicly available and quite unique.

TimB team, TIMC Lab. Grenoble. I also have common interest with Prof. Olivier
Francois and collaborators from TimB in the TIMC lab. I have started working
with O. Francois during my PhD thesis (1993-96) [22, 20, 19]. Later we co-advised
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a post-doctoral fellow, Chibiao Chen (2006), on the application of hidden Mar-
kov models to population genetics. This resulted in two papers [11, 9] and two
software, FASTRUCT and TESS, the latter of which is still developed at TimB.
I was part of the PhD committee of two students advised by O. Francois in 2006
and 2009, and O. Francois was in the committee of M. Vignes in 2007. We are
currently interacting for the PhD thesis of L. Azizi on the use of covariates in
epidemiology study.

INRA Clermont-Ferrand-Theix. I developed a collaboration with the Clermont-
Ferrand unit, with new applications to epidemiology, including a co-advised PhD
student (L. Azizi) that started in October 2008 . I am also an active members
of the INRA network called MSTGA on graphical models and spatial statistics,
http://carlit.toulouse.inra.fr/MSTGA/.

INRIA team perception. This collaboration includes two co-advised PhD thesis
and a number of co-signed publications. My work on clustering heterogeneous
multi-sensor data is part of mistis contribution to the European project POP and
was joint with Radu Horaud, Miles Hansard and Elise Arnaud from perception
[1, 32, 33, 34]. This collaboration is going to be further developed with the new
European project HUMAVIPS. In a different context, I also focused on Point
Registration in computer vision [3, 39].

INRIA team lear. The ACI project Movistar involved C. Schmid and collaborators
from team lear, SMS from University Joseph Fourier and Heudiasyc from UTC,
Compiègne. The PhD work of Juliette Blanchet and Charles Bouveyron were
related to this project. It resulted in 3 co-authored journal papers, 4 international
conference papers and 3 national conference papers. I was myself involved in co-
publications [44, 45, 52, 53].

INRIA team visages, Rennes. Initiated in the SeLMIC project, this collaboration
has focused on the analysis of pathological brain MR data. The work in [27, 26]
shows a successful application to Multiple Sclerosis and Stroke lesion detection.

INRIA team reso, Lyon. We have initiated a collaboration on the use of statistical
methods for the analysis of network traffic data. This resulted in a paper accepted
at the selective (15% acceptance rate) SIGMETRICS conference in 2009 [29].

8 Teaching

1993-1996. I taught at University Joseph Fourier (DEUG) and ENSIMAG, INPG
(1st year, BSc level) in Grenoble, statistics and probability courses. Total= 96
hours each year.

1998-2000. I taught at ENSIMAG, INPG (1st year, BSc level) a probability course
(TD). Total= 30 hours each year.
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2002-2005. I taught at ENSIMAG, INPG (2nd year Telecom, MSc level) a stochastic
processes course (TD). Total= 18 hours each year.

2001-2003. I taught at Polytech Grenoble, University Joseph Fourier (2nd year, BSc
level) a statistics course. Total= 16 hours each year.

Since 2005, I am teaching at University Joseph Fourier a statistics course in the
Statistical engineering MASTER pro (MSc level). Total= 24 hours each year.

This corresponds to a total of 618 hours and an average of 39 hours per year
from 1993 to 2010.

9 Dissemination of scientific knowledge

The LOCUS software (http ://locus.gforge.inria.fr) developed in collaboration with
the Grenoble Institute of Neuroscience and LIG (magma team), for brain MRI analysis,
was selected to be presented at the FORUM 4i (Technology fair) in Grenoble in
May 2009. For this event we prepared a 2 page flyer and a video for non specialists. They
are available at http://mistis.inrialpes.fr/people/forbes/dissemination. The
software is also going to be presented at the Grenoble Innovation Fair (GIF) in October
2010.

10 Other relevant information

Maternity leaves (two children) :

2003 : 6 months.

2006 : 6 months.
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1 Articles in international refereed journals and book chap-
ters

[1] V. Khalidov, F. Forbes, and R. Horaud. Conjugate mixture models for clustering
multimodal data. Neural Computation, 6(1-2) :48–83, 2010.

[2] L. Risser, T. Vincent, F. Forbes, J. Idier, and P. Ciuciu. Min-max extrapolation
scheme for fast estimation of 3D potts field partition functions. Application to the
joint detection-estimation of brain activity in fMRI. 2010. Special issue of Journal
of Signal Processing Systems.

[3] R. Horaud, F. Forbes, M. Yguel, G. Dewaele, and J. Zhang. Rigid and articulated
point registration with expectation conditional maximization. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 2010. To appear.

[4] B. Scherrer, F. Forbes, C. Garbay, and M. Dojat. A joint Bayesian framework for
MR brain scan tissue and structure segmentation based on distributed Markovian
agents. In I. Bichindaritz and eds. L. Jain, editors, Computational Intelligence in
Healthcare. Springer-Verlag, Berlin, 2010. To appear.

[5] M. Vignes and F. Forbes. Gene clustering via integrated Markov models combining
individual and pairwise features. IEEE Trans. on Computational Biology and
Bioinformatics, 6(2) :260–270, 2009.

[6] B. Scherrer, F. Forbes, C. Garbay, and M. Dojat. Distributed Local MRF Mo-
dels for Tissue and Structure Brain Segmentation. IEEE Trans. Medical Imaging,
28 :1296–1307, 2009.

[7] B. Scherrer, M. Dojat, F. Forbes, and C. Garbay. Agentification of Markov model
based segmentation : Application to MRI brain scans. Artificial Intelligence in
Medicine (AIM), 46(1) :81–95, 2009.

[8] J. Blanchet and F. Forbes. Triplet Markov fields for the supervised classifica-
tion of complex structure data. IEEE Trans. on Pattern Analyis and Machine
Intelligence, 30(6) :1055–1067, 2008.

[9] C. Chen, E. Durand, F. Forbes, and O. Francois. Bayesian clustering algorithms
ascertaining spatial population structure : a new computer program and a compa-
rison study. Molecular Ecology Notes, 7(5) :747–756, 2007.

[10] F. Forbes and G. Fort. Combining Monte Carlo and Mean field like methods for
inference in hidden Markov Random Fields. IEEE Trans. on Image Processing,
16(3) :824–837, 2007.

[11] C. Chen, F. Forbes, and O. Francois. FASTRUCT : Model-based clustering made
faster. Molecular Ecology Notes, (6) :980–983, 2006.

[12] F. Forbes, N. Peyrard, C. Fraley, D. Georgian-Smith, D. Goldhaber, and A. Raf-
tery. Model-based region-of-interest selection in dynamic breast MRI. Journal of
Computer Assisted Tomography, 30(4) :675–687, July/August 2006.

[13] G. Celeux, F. Forbes, C.P. Robert, and M. Titterington. Deviance information
criteria for missing data models. with discussion. Bayesian Analysis, 1(4) :651–
706, 2006.
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25(8), 2003.

[16] G. Celeux, S. Chrétien, F. Forbes, and A. Mkhadri. A component-wise EM algo-
rithm for mixtures. Journal of Computational and Graphical Statistics, 10 :699–
712, 2001.
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la classification de données géostatistiques. In 37èmes Journées de Statistique
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