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Introduction

Les astres ont toujours été une source de crainte, de passion, d’inspiration et de quête pour
l’Homme à travers les âges. Cette quête de connaissance de l’inconnu avait, à l’antiquité, pris
forme de science de prédictions écliptiques, telle que la prédiction des éclipses de Vénus par les
civilisations Maya, ou la prédiction des éclipses solaires et lunaires à l’époque grecque alexan-
drine. Les premières théories sur l’Univers débutèrent par la théorie géocentrique, défendues
par Ptolémée, Aristote et Hipparque. Cette théorie établit un modèle physique de l’Univers cen-
tré sur la Terre, qui est immobile, tandis que les autres astres (dont le Soleil et la Lune) ont des
trajectoires circulaires autour de ce centre. La théorie géocentrique fut, par la suite, contredite
par la théorie héliocentrique, évoquée au 13e siècle par le savant Al-Toosi de l’observatoire de
Maragheh (Perse). Après des mesures des trajectoires des astres à l’aide de l’Astrolabe (un
des premiers instruments de mesures astronomiques), il déduit que la Terre tourne autour du
Soleil. Cette théorie héliocentrique fut reprise par Copernic au 16e siècle, puis complétée par
Kepler et Galilée au début du 17e siècle. D’ailleurs, c’était l’amélioration apportée par Galilée
aux lunettes astronomiques (qui se comportent comme une longue vue marine, mais avec un
facteur de grossissement plus important)en 1609 qui a permis d’obtenir les premières précisions
sur la théorie héliocentrique. Entre 1684 et 1687, Newton a reussi à établir, d’une part, les lois
gravitationnelles qui appuyaient cette théorie, et d’autre part, il a inventé le télescope réflecteur
avec des miroirs réfléchissants qui a permis d’améliorer davantage la qualité des observations,
et d’ouvrir une fenêtre optique pour l’étude des astres.

Longtemps après, Karl Jansky découvrit en 1932 l’existence d’émissions radios provenant de
la Voie Lactée qui brouillaient les communications transatlantiques. Ce fut ainsi que commença
une nouvelle ère d’observations astronomiques via les radiofréquences (figure 1). En effet, le
premier radiotéléscope, proprement dédié à la réception de signaux cosmiques, a été construit
en 1938 par Grote Reber. Ce dernier a, par ailleurs, entrepris une série de travaux de recherche
qui ont permis :

• la confirmation de l’observation faite par Jansky,

• l’établissement d’une carte radiofréquence du ciel,

• la découverte d’un nombre important de signaux cosmiques à basse énergie, ce qui a
permis en 1950 de différencier entre les émissions thermiques et les synchrotrons1.

Cette dernière découverte a été le pas précurseur dans l’expansion et la multiplication des
constructions des radiotéléscopes à travers le monde à l’issue de la 2nde guerre mondiale. A

1Du fait du mouvement des électrons, tous les corps émettent un rayonnement thermique caractéristique
de leur température. Cependant, il existe également des émissions non thermiques, beaucoup plus intenses,
provenant de particules chargées se déplaçant dans les champs magnétiques galactiques et intergalactiques.
Lorsque l’énergie d’une particule est si élevée que sa vitesse tend vers celle de la lumière, l’émission radioélec-
trique de ces particules est appelée radiation synchrotron.
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Introduction

titre d’information, le plus grand radiotéléscope de nos jours, nommé l’Arecibo radio telescope,
se trouve au Porto Rico. Mais pour répondre aux besoins scientifiques de plus en plus gran-
dissants, des instruments plus sensibles et plus performants ont dû être envisagés, notamment
l’utilisation des réseaux phasés d’antennes, essentiellement en interférométrie.

Figure 1: Fenêtres d’observation astronomique dans le spectre du rayonnement
électromagnétique. Les télescopes optiques permettent d’observer dans la fenêtre
du visible et de l’infrarouge. Les radiotélescopes permettent d’étudier les astres
dans le domaine radio.

En 1993 [92], lors d’une réunion de l’Union des Radio Sciences Internationale (URSI), un
groupe de travail international fut créé pour le développement des grands télescopes. Le 10
août 2000, il fut décidé la construction du plus grand radiotélescope du monde de par sa surface
collective (de l’ordre du kilomètre carré), et le plus performant de par sa fenêtre d’observation
(de 70 MHz à 10 GHz), connu sous le nom de Square Kilometer Array (SKA) (figure 2).
Les tâches scientifiques qu’aura à traiter SKA seront [74]:

• L’époque de réonisation,

• l’évolution des galaxies, la Cosmologie et l’énergie noire,

• l’origine et l’évolution du magnétisme cosmique,

• tests des champs puissants de gravité à l’aide des Pulsars et des trous noirs,

• étude de l’origine de la vie,

10



Figure 2: Vue d’artiste du radiotélescope Square Kilometer Array (SKA). Cette
image représente la zone centrale du radiotélescope (5 à 10 km de diamètre). Au
premier plan, le réseau d’antennes phasé, observant dans la bande 70MHZ-1200
MHz. Il y aura 250 stations de ce type dans un rayon de 200km. Arriere plan
: antennes paraboliques de 12m-15m de diamètre, fonctionnant dans la bande
de 700MHz-10GHz. Le foyer pourra être un récepteur simple ou un réseau de
récepteurs positionnés sur le plan focal. Il y aura environ 1200 paraboles dans la
zone centrale et 1200 autres réparties sur des bras spiralés jusqu’à une distance
3000 km. Les deux sites potentiels sont l’Australie et l’Afrique du Sud. Avec
l’autorisation de SKA telescope organisation.
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Introduction

• et l’exploration de l’inconnu ...

Les tâches d’études et de développement ont été réparties sur plusieurs entités : Les Etats
Unis, L’Europe, et le reste du Monde (l’Australie, le Canada, l’Afrique du Sud, la Chine
et l’Inde). Les partenaires européens se sont regroupés dans le projet Square Kilome-
ter Array Design Studies (SKADS) [93]. Ce projet regroupe les Pays Bas (représentés
principalement par ASTRON et l’Université de Groningen), la Grande Bretagne (les Uni-
versités de Cambridge, de Manchester et d’Oxford), la Suède (l’Université de Chalmers),
l’Allemagne (l’Institut Marx Planck pour la Radio Astronomie), l’Italie (l’Observatoire de
Bologne), l’Espagne (l’Observatoire National Astronomique d’Espagne) et la France (représen-
tée par l’Observatoire de Paris et l’Université d’Orléans).

L’Université d’Orléans, de par cette thèse, participe à l’amélioration de l’élimination de
brouilleurs. En effet, plus un instrument est sensible, et plus il sera vulnérable face aux in-
terférences. De plus, les dernières décennies connaissent une explosion sans précédent des
moyens de télécommunications. En outre, des développements en télécommunications seront
mis en oeuvre dans un futur proche tels que l’avènement des télévisions et radios numériques,
ou la possibilité de téléphoner et même d’avoir des connexions à internet depuis les trans-
ports aériens. Il faudrait alors des méthodes de suppressions de brouilleurs plus robustes, et
une différentiation plus précise entre les signaux utiles (les signaux cosmiques) et les signaux
d’origine entropique (figure 3). Le projet SKADS se base sur l’étude de propositions possibles
à apporter au projet SKA. Dans ce but, cette thèse proposera des méthodes exploitant la
propriété de cyclostationnarité présente sur la plupart des brouilleurs. En effet, selon [71], les
signaux cosmiques sont une somme d’émissions indépendantes, et en utilisant le théorème de
centrale limite, ces signaux sont gaussiens, blancs et stationnaires. La plupart des signaux de
télécommunications, sont, quant à eux, cyclostationnaires, offrant une possibilité de différen-
ciation entre les signaux de télécommunications et les signaux utiles (signaux cosmiques), lors
du traitement spatial des interférences (pour des radiotélescopes à réseaux phasés, tels que
SKA)).

Cette thèse est une contribution à l’amélioration des observations pour les radiotélescopes à
réseaux phasés en présence d’interférences. L’originalité de cette thèse repose sur l’utilisation
de la séparation spatiale entre les sources cosmiques et les brouilleurs issus des télécommu-
nications en se basant sur la cyclostationnarité de ces derniers. Cette thèse s’inscrit dans le
cadre du projet SKADS décrit ci-dessus, elle s’appuie sur des techniques de traitement spatial
existantes, et qui seront adaptées au contexte radioastronomique. Les performances des tech-
niques proposées seront évaluées à travers des simulations sur des données synthétiques et/ou
réelles.

Le premier chapitre abordera les principes généraux de la cyclostationnarité. Des exemples
seront donnés sur les brouilleurs observés classiquement en radioastronomie.

Dans le second chapitre, un modèle général de signaux reçus dans un radiotélescope à réseau
phasé sera proposé. Les matrices de corrélations dans l’approche classique et cyclostationnaire
seront définies. La décomposition en sous-espaces signal et bruit des matrices de corrélation
étant une étape clé dans le traitement multidimensionnel des signaux, elle sera expliquée pour
l’approche classique et cyclostationnaire.

Le troisième chapitre étudiera les techniques principales existantes en télécommunications
pour le traitement d’antennes. Plus spécialement les méthodes basées sur la cyclostationnatrité
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Figure 3: Spectrogramme de la bande 20-300 MHz de l’environnement du ra-
diotélescope LOFAR (annexe A.1). Certaines interférences ont disparu du spec-
tre (quelques chaînes TV). Néanmoins, les bandes vides actuelles (170−230 MHz)
seront progressivement occupées par des transmissions issues des radio et TV
numériques (DAB et DVB). Avec l’autorisation de Albert-Jan BOONSTRA et
ASTRON.
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Introduction

seront expliquées afin de définir des pistes de développement de méthodes de suppression
d’interférences cyclostationnaires pour notre application.

La détection d’interférences est une technique permettant d’identifier et de masquer les
observations brouillées. Trois méthodes de détection d’interférences cyclostationnaires seront
présentées dans le quatrième chapitre, et seront comparées dans leurs performances aux méth-
odes de détection classiques existantes en radioastronomie.

Dans le cinquième chapitre, une méthode d’estimation et de soustraction d’interférences
cyclostationnaires sera présentée. Cette technique permet d’éliminer le brouilleur, tout en
limitant les distorsions introduites sur l’observation. Des simulations seront proposées sur des
signaux synthétiques et réels.

Enfin, le filtrage spatial est une méthode générale pouvant être appliquée dans quasiment
tous les cas d’observation. Son algorithme sera présenté dans le sixième chapitre avec des
exemples de traitement d’interférences synthétiques et réelles en utilisant des observations
issues du radiotélescope LOFAR (cet instrument précurseur de SKA est décrit en annexe A.1).

• Introduction

The present thesis is a contribution to observation improvements for phased array radio
telescopes, in presence of radio frequency interferers (RFIs). The originality of the study is the
use of the cyclostationarity property, in order to improve the spatial separation between cosmic
sources and telecommunication signals. This thesis is part of the square kilometre array design
study (SKADS) project [93]. The proposed approaches are based on existing spatial processing
techniques, which will be adapted to the radio astronomy context. The performance of the
techniques presented will be evaluated through simulations on synthetic and/or real data

A distinction between cosmic signals and man-made signals can be achieved using cyclosta-
tionarity. This property is due to the redundancy of the periodic characteristics involved in the
modulation schemes of the telecommunication signals (carrier frequency, baud rate and coding
scheme). The first chapter will present the general principles of cyclostationarity. Examples
on common interferers encountered in radio astronomy will be given.

In the second chapter, a general model of received signals in phased array radio telescopes
will be proposed. Correlation matrices will be defined within respectively the classic and the
cyclostationary approaches. Decomposition of the correlation matrices into signal and noise
subspaces, which is a key step in multidimensional signal processing, will be explained for both
classic and cyclostationary approaches.

The third chapter is an overview on the main existing array processing techniques. More
specifically, cyclostationarity-based methods will be explained, in order to define RFI mitiga-
tion improvements for our application.

Interference detection techniques allow the identification and the blanking of corrupted
observations. Three RFI detection algorithms based on cyclostationarity will be presented in
the fourth chapter, and will be compared to classic detection techniques in radio astronomy.

In the fifth chapter, an estimation and subtraction technique of cyclostationary RFIs will be
presented. This technique allows RFI suppression, with limited distortions on the observation.
Simulations will be proposed on synthetic and real data.

14



Finally, spatial filtering, which is a general method that can be applied on almost all
observation cases, will be presented in the sixth chapter. Examples of synthetic and real RFI
processing will be presented.
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Chapter 1

General definitions of the
cyclostationarity property

Most telecommunication signals present a hidden periodicity due to the periodic charac-
teristics involved in the signals construction related to e.g.carrier frequency, baud rate, coding
scheme...). These parameters are usually scrambled and hidden by the randomness of the mes-
sage to be transmitted. However, by using a cyclostationary approach, this hidden periodicity
can be recovered, thus making identification of the telecommunications signal possible.

Cosmic signals, in contrast, according to [71], are considered to be Gaussian centered, white
and stationary. Thus, the separation criterion will be the cyclostationarity assumption of the
radio frequency interferences (RFIs) against the stationary assumption of the cosmic
sources, called the signals of interest (SOI). This chapter will present the cyclostationarity
concept.

The earliest explanation of cyclostationarity in signal processing appeared in Gardner’s
book [34]. In [36], Gardner presented his nonprobabilistic statistical theory of cyclostationarity,
while Giannakis [21] [20] [22], defined cyclostationarity within the framework of stochastic
processes. In other words, Gardner adopted the infinite time averaging notation < . >∞ instead
of the classic expectation operation E {.}. In accordance with Gardner, we will proceed in this
thesis with the time-space theory using the notation < . >∞ instead of the probability-space
theory. At certain points in the study, however, we will employ E {.} when necessary. In this
section we will also consider the asymptotical case, represented by infinite time averaging. An
exhaustive overview on cyclostationarity theory and applications can found in [77] [41].

In the first section, we will describe the cyclostationarity principle and will derive the
different mathematical tools used to express this property. In the second section, the cyclosta-
tionarity will be illustrated, for common telecommunication interferences. In the third part of
this chapter, we will present a practical technique to retrieve the hidden periodicities mentioned
above.

1.1 Cyclostationarity principle

This section will define cyclostationarity for readers unfamiliar with the concept, since all the
document is based on this principle.
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1.1. CYCLOSTATIONARITY PRINCIPLE

Consider the autocorrelation function of a signal r(t) defined by:

Rr,r∗(t, τ) ≜
〈
r(t+

τ

2
)r∗(t− τ

2
)
〉

∞
. (1.1)

• If Rr,r∗(t, τ) = Rr, r∗(τ), the signal is said to be wide-sense stationary,

• If Rr,r∗(t+T0, τ) = Rr,r∗(t, τ), then Rr,r∗(t, τ) exhibits a second order periodicity, and the
process is said to be wide-sense cyclostationary. We define the corresponding fundamental
frequency and its harmonics as cyclic frequencies. These cyclic frequencies are noted
α = k/T0, with k ∈ ℤ.

• Moreover, if there is more than one fundamental cyclic frequency, the signal is called
polycyclostationary.

Figure 1.1 illustrates the cyclostationarity principle for a binary signal. In particular, it
shows that telecommunications signals can be modeled as stationary or cyclostationary by
respectively randomizing or not randomizing the phase.

Figure 1.1: Random binary signal. (a) Temporal representation. (b) Autocorre-
lation representation when the temporal origin is seen as a random parameter:
the process is stationary. (c) Autocorrelation representation when the temporal
origin is constant: the process becomes cyclostationary.

Consider a discrete-time signal r(t). If r(t) is a cyclostationary signal, then Rr,r∗(t, τ) is
periodic with period T0 and can be decomposed into its Fourier series:

Rr,r∗(t, τ) =
+∞∑

α

Rαr,r∗(τ)e
j2παt, with α =

k

T0

and k ∈ ℤ, (1.2)
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CHAPTER 1. GENERAL DEFINITIONS OF THE CYCLOSTATIONARITY PROPERTY

where Rαr,r∗(τ) are the Fourier coefficients defined by:

Rαr,r∗(τ) ≜
〈
Rr,r∗(t, τ)e

−j2παt
〉

T0

. (1.3)

As Rαr,r∗ is a cyclic (sinusoidal) weighting of the autocorrelation function, with the factor
e−j2παt, we call Rαr,r∗ the cyclic autocorrelation function.

Moreover, the cyclic autocorrelation function Rαr,r∗ can be interpreted [39] as the cross-
correlation between two signals v(t) and w(t), representing the signal r(t) with respectively
frequency-shifts of α

2
and −α

2
:

Rαr,r∗(τ) = Rv,w∗(t, τ)

with v(t) = r(t)e−jπαt

and w(t) = r(t)ejπαt.

(1.4)

Thus, a more generalized definition of the cyclic correlation function can be expressed with:

Rαr,r∗(τ) =
〈
r(t+

τ

2
)r∗(t− τ

2
)e−j2παt

〉

∞
. (1.5)

Note that if α = 0 or widesense stationary, we obtain Rαr,r∗(τ) = Rr,r∗(τ).

In some cases (see section 1.2), for instance amplitude modulation (AM) signals, the cyclic
conjugated correlation function provides another cyclostationary representation of the signal
r(t). It is defined by:

Rαr,r(τ) =
〈
r(t+

τ

2
)r(t− τ

2
)e−j2παt

〉

∞
. (1.6)

From these definitions, we can see that Rαr,r∗(τ) and Rαr,r(τ) are two interesting tools to
discriminate between cyclostationary and stationary signals. Indeed:

• If Rαr,r∗(τ) and Rαr,r(τ) are zero for α 6= 0 then r(t) is stationary. In other words, for
cosmic signals Rαr,r∗(τ) and Rαr,r(τ) = 0.

• If ∃α 6= 0, such as Rαr,r∗(τ) 6= 0 or Rαr,r(τ) 6= 0, then r(t) is cyclostationary.

Note that in some papers [35] [40], the authors prefer the use of the cyclic or the cyclic con-
jugated spectrum, which are just the Fourier transform of the cyclic and the cyclic conjugated
autocorrelation functions (figure 1.1).

The cyclostationary properties of some modulations , considered as the most common
interferences, will be derived in the next section.

1.2 Cyclostationary properties of some common RFIs

In this section, the statistics of a non-exhaustive list of telecommunications signals will be
studied, in order to illustrate the cyclostationarity property defined in the previous section. In
subsections 1.2.1, 1.2.2 and 1.2.3, we will first define some calculation tools, then will apply
the results on the modulation schemes.
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1.2. CYCLOSTATIONARY PROPERTIES OF SOME COMMON RFIS

1.2.1 Amplitude modulation

Consider a carrier signal r(t) = ej(2πf0t+ϕ0) where f0 and φ0 are respectively the carrier
frequency and phase.

The cyclic correlation function is:

Rαr,r∗(τ) =
〈
ej(2πf0(t+ τ

2
)+ϕ0)e−j(2πf0(t− τ

2
)+ϕ0)e−j(2παt)

〉

∞

=
〈
ej2πf0τe−j(2παt)

〉

∞

=






0 if α 6= 0,

ej2πf0τ if α = 0.

(1.7)

The cyclic conjugated autocorrelation function of r(t) is:

Rαr,r(τ) =
〈
ej(2πf0(t+ τ

2
)+ϕ0)ej(2πf0(t− τ

2
)+ϕ0)e−j2παt

〉

∞

= ej2ϕ0

〈
ej2π(2f0−α)t

〉

∞

=






0 if α 6= 2f0,

ej2ϕ0 if α = 2f0.

(1.8)

Let us now consider r(t) to be the product of two independent signals w(t) and x(t):
r(t) = w(t)x(t). The cyclic autocorrelation function of this product is given by ([36] pages 400
and 401):

Rαr,r∗(τ) =
∑

β

Rα−βx,x∗ (τ)Rβw,w∗(τ). (1.9)

A similar formula can be derived for the cyclic conjugated autocorrelation function:

Rαr,r(τ) =
∑

β

Rα−βx,x (τ)Rβw,w(τ). (1.10)

• Application to amplitude modulation

If a(t) ∈ ℝ is a stationary signal, and f0 and φ0 are respectively the carrier frequency and
phase, the expression of an amplitude modulated signal is:

r(t) = a(t) ej(2πf0t+ϕ0)
︸ ︷︷ ︸ .
x(t)

(1.11)

According to equation (1.9):

Rαr,r∗(τ) =
∑

β

Rα−βx,x∗ (τ)Rβa,a(τ). (1.12)

Since a(t) is stationary, the cyclic autocorrelation function of a(t) is:

Rβa,a(τ) =






0 if β 6= 0,

Ra,a(τ) if β = 0,
(1.13)
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CHAPTER 1. GENERAL DEFINITIONS OF THE CYCLOSTATIONARITY PROPERTY

where Ra,a(τ) is the autocorrelation function of a(t).

Considering equations (1.13) and (1.7), equation (1.12) becomes:

Rαr,r∗(τ) = Rαx,x∗Ra,a(τ)

=






0 if α 6= 0,

ej2πf0τRa,a(τ) if α = 0.

(1.14)

Similarly, the cyclic conjugated correlation function of an AM modulated signal will be:

Rαr,r(τ) = Rαx,xRa,a(τ)

=






0 if α 6= 2f0,

ej2ϕ0Ra,a(τ) if α = 2f0.

(1.15)

Since Rαr,r∗(τ) is zero for all values of α except when α = 0, no cyclostationary property
can be stated in this way. However, the cyclic conjugated autocorrelation function reveals that
Rαr,r(τ) is non zero for the cyclic frequency α = 2f0, and thus, r(t) is cyclostationary. Figure
1.2 shows the cyclic conjugated autocorrelation function and its spectrum, for an amplitude
modulated signal.

Figure 1.2: (a)Cyclic conjugated autocorrelation function of an amplitude modu-
lated signal (b) Its Fourier transform (FT): named the cyclic spectrum. Both
representations are non-zero only for the cyclic frequency α = 2f0. The modula-
tion term a(t) is a rectangular filtered white noise.

20



1.2. CYCLOSTATIONARY PROPERTIES OF SOME COMMON RFIS

1.2.2 Binary phase shift keying

Consider the baseband digital signal q(t) given by:

q(t) =
∑

k

akh(t− kTsym − t0) with k ∈ ℤ, (1.16)

where ak ∈ ℝ are independent values chosen among a set of centered fixed levels with cor-
responding power equal to σ2

a, h(t) is the impulse response of the emission filter, Tsym is the
symbol duration and t0 is an unknown time delay. The autocorrelation function of q(t) is given
by:

Rq,q∗(t, τ) =
〈
q(t+ τ

2
)q∗(t− τ

2
)
〉

∞

= σ2
a

∑

k

h(t+
τ

2
− kTsym − t0)h∗(t−

τ

2
− kTsym − t0).

(1.17)

From (1.17), it is straightforward to see that Rq,q∗(t + Tsym, τ) = Rq,q∗(t, τ). Thus, q(t)
is cyclostationary with cyclic frequency 1/Tsym. As Rq,q∗(t, τ) is cyclic, it can be decomposed
into its Fourier series:

Rq,q∗(t, τ) =
∑

l∈ℤ

R
l

Tsym

q,q∗ (τ)e
j2π l

Tsym
t
, (1.18)

with:

R
1

Tsym

q,q∗ (τ) =
l

Tsym

∫

Tsym
Rq,q∗(t, τ)e

−j2π l
Tsym

t
dt

=
σ2
a

Tsym

∫

Tsym

∑

k

h(t+
τ

2
− kTsym − t0)h∗(t−

τ

2
− kTsym − t0)e−j2π

l
Tsym

t
dt

=
σ2
a

Tsym

∫ +∞

−∞
h(t+

τ

2
− t0)h∗(t−

τ

2
− t0)e−j2π

l
T
tdt

=
σ2
a

Tsym
e
−j2π l

Tsym
t0
∫ +∞

−∞
h(t+

τ

2
)h∗(t− τ

2
)e
−j2π l

Tsym
t
dt

︸ ︷︷ ︸

r
l

Tsym

h,h∗ (τ)
(1.19)

Consequently, the cyclic autocorrelation function will be:

Rαq,q∗(τ) =






σ2
a

Tsym
e−j2παt0rαh,h∗(τ) if α = l

Tsym
with l ∈ ℤ,

0 if α 6= l
Tsym
.

(1.20)

Another demonstration can be found in [38], where the author has employed a time aver-
aging approach in order to prove the result given by equation (1.20).

• Application to BPSK modulation
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CHAPTER 1. GENERAL DEFINITIONS OF THE CYCLOSTATIONARITY PROPERTY

Binary phase shift keying is a modulation that uses two phases which are separated by 180◦

and so can also be termed 2-PSK (i.e. ak in equ.(1.16) takes the values +a or −a with a ∈ ℝ).
The expression of a BPSK modulated signal is:

r(t) = q(t) ej2πf0t+jϕ0

︸ ︷︷ ︸ .
x(t)

(1.21)

Using equation (1.9), the cyclic autocorrelation function will be as follows:

Rαr,r∗(τ) =
∑

β

Rα−βx,x∗ (τ)Rβq,q∗(τ). (1.22)

As shown with equations (1.20) and (1.7), the cyclic autocorrelation function of q(t) and
x(t) will be:

Rβq,q∗(τ) =






σ2
a

Tsym
e−j2πβt0rβh,h∗(τ) if β = l

Tsym
with l ∈ ℤ,

0 if β 6= l
Tsym
.

(1.23)

Rγx,x∗(τ) =






0 if γ 6= 0,

ej2πf0τ if γ = 0⇒ α = β.
(1.24)

From equations (1.23) and (1.24), we deduce that the cyclic autocorrelation function of a
BPSK modulated signal will be:

Rαr,r∗(τ) =






σ2
a

Tsym
e−j2παt0ej2πf0τrαh,h∗(τ) if α = l

Tsym
,

0 if α 6= l
Tsym
.

(1.25)

Figure 1.3 shows the spectrum of the cyclic autocorrelation function for a BPSK modulated
signal.

In the same way, we evaluate both Rβq,q(τ) and Rγx,x(τ) in order to deduce the cyclic conju-
gated autocorrelation function of BPSK modulated signals:

Rβq,q(τ) =






σ2
a

Tsym
e−j2πβt0rβh,h(τ) if β = l

Tsym
with l ∈ ℤ,

0 otherwise.

(1.26)

Rγx,x(τ) =






0 if γ 6= 2f0,

ej2ϕ0 if γ = 2f0 ⇒ α = 2f0 + β.
(1.27)

Consequently, the cyclic conjugated autocorrelation function of a BPSK modulated signal
will be:

Rαr,r(τ) =






σ2
a

Tsym
ej2ϕ0e−j2π(α−2f0)t0r

l
Tsym

h,h (τ) if α = 2f0 + l
Tsym
,

0 otherwise .

(1.28)

Figure 1.4 shows the spectrum of the cyclic conjugated autocorrelation function of a BPSK
modulated signal.
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Figure 1.3: Spectrum of a BPSK modulated signal cyclic autocorrelation func-
tion, considering a rectangular window h(t). The spectrum is non-zero for cyclic
frequencies α = l

Tsym
, l ∈ ℤ.
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Figure 1.4: Spectrum of the cyclic conjugated autocorrelation function for a BPSK
modulated signal, with h(t) a rectangular window. The spectrum is non-zero for
cyclic frequencies α = 2f0 + l

Tsym
with l ∈ ℤ.
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1.2.3 M-phase shift keying and quadrature amplitude modulations

Let q(t) be the signal with the following expression:

q(t) =
∑

k

ckh(t− kTsym − t0), (1.29)

where ck = ak + jbk, ak and bk are independent values chosen among the same set of centered
fixed levels, with corresponding power of σ2

a = σ2
b = σ2

c/2, h(t) is the impulse response of the
emission filter, Tsym is the symbol duration and t0 is an unknown time delay.

The same approach as detailed in section 1.2.2 will be used, however:

〈ck c∗l 〉∞ = 〈ak al〉∞ + 〈bk bl〉∞ + j [〈bk al〉∞ − 〈ak bl〉∞]

=






0 if k 6= l,

σ2
c if k = l.

(1.30)

Therefore, the autocorrelation function of q(t) will be:

Rq,q∗(t, τ) =
σ2
c

Tsym

∑

k

h(t+
τ

2
− kTsym − t0)h∗(t−

τ

2
− kTsym − t0) (1.31)

Thus, the cyclic autocorrelation function will be:

Rαq,q∗(τ) =






σ2
c

Tsym
e−j2παt0rαh,h∗(τ) if α = l

Tsym
with l ∈ ℤ,

0 otherwise .

(1.32)

where:

r
l

Tsym

h,h∗ (τ) =
∫ +∞

−∞
h(t+

τ

2
)h∗(t− τ

2
)e
−j2π l

Tsym
t
dt.

To calculate the cyclic conjugated autocorrelation function, we have:

〈ck cl〉∞ = 〈ak al〉∞ − 〈bk bl〉∞ + j [〈bk al〉∞ + 〈ak bl〉∞]

= 0 ∀ k, l,
(1.33)

therefore:
Rq,q(t, τ) = 0⇒ Rαq,q(τ) = 0 ∀ α. (1.34)

• Application to the m-PSK and QAM modulations

The statistics of the quadrature amplitude modulations (QAM) are similar to the phase shift
keying modulations (m-PSK). A m-PSK or QAM modulated signal expression is:

r(t) = q(t) ej2πf0t+jϕ0

︸ ︷︷ ︸ .
x(t)

(1.35)

Using equation (1.9), the cyclic autocorrelation function will be given by:

Rαr,r∗(τ) =
∑

β

Rα−βx,x∗ (τ)Rβq,q∗(τ). (1.36)
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Similarly to section (1.2.2), we obtain:

Rβq,q∗(τ) =






σ2
c

Tsym
e−j2πβt0rβh,h∗(τ) if β = l

Tsym
with l ∈ ℤ,

0 otherwise.

(1.37)

Rγx,x∗(τ) =






0 if γ 6= 0,

e−j(2πγτ) if γ = 0⇒ α = β.
(1.38)

From equations (1.37) and (1.38), the cyclic autocorrelation function will be:

Rαr,r∗(τ) =






σ2
c

Tsym
e−j2παt0e−j(2πf0τ)rαh,h∗(τ) if α = l

Tsym
,

0 otherwise.

(1.39)

Figure 1.5 represents the spectrum of the cyclic autocorrelation function of a quaternary phase
shift keying (QPSK) modulated signal.

The cyclic conjugated autocorrelation function of mPSK and QAM is zero for all values of
α, since, as shown by equation (1.34):

Rβq,q(τ) = 0 ∀ β ⇒ Rαr,r(τ) = 0 ∀ α (1.40)

1.2.4 Continuous phase modulations

CPM modulations are generally used in modern satellite and mobile communications due
to their the ability to control the power and bandwidth efficiencies and their constant-modulus
properties [64]. CPM schemes include Gaussian minimum shift keying (GMSK) signals used in
GSM communication systems, and continuous phase frequency shift keying (CPFSK) signals
which are commonly used in wireless modems.

Continuous phase frequency shift keying

Frequency shift keying (FSK) signals are nonlinearly modulated digital signals [67] [28].
CPFSK is the most commonly used variation of FSK modulations. The expression of such
modulated m-FSK signals is given by:

r(t) = σFSK
∑

k

ej(θk+2πfdak(t−kTsym))h(t− kTsym)ej(2πf0t+ϕ0), (1.41)

where: σ2
FSK is the power of the FSK signal r(t), θk is the phase of the symbol k, fd is the peak

frequency deviation, ak are the transmitted M-ary symbols taking their values in the alphabet
±1,±3, ...,±(m− 1), Tsym is the symbol duration, h(t) is a rectangular pulse of duration Tsym
and amplitude 1, and f0 and φ0 are respectively the carrier frequency and phase. The FSK
modulation expression is equivalent to expression (1.41). However, for CPFSK signals, we
consider that θk represents the accumulation of all symbols up to (k − 1)Tsym and thus:

θk = 2πfdTsym
k−1∑

q=−∞

aq.
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Figure 1.5: Spectrum of a QPSK (4-PSK) modulated signal cyclic autocorrela-
tion function with a rectangular window. The spectrum is non-zero for cyclic
frequencies α = l

Tsym
, l ∈ ℤ.
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The CPFSK signals are cyclostationary [36] [2] [28] and both the cyclic and cyclic conju-
gated autocorrelations functions are non zero for:

Rαr,r∗(τ) 6= 0 ⇒ α = l
Tsym

with l ∈ ℤ

Rαr,r(τ) 6= 0 ⇒ α = 2f0 + (2l + 1)fd with 0 ≤ l ≤ m−2
2
.

(1.42)

Gaussian minimum shift keying

GMSK is a continuous-phase frequency-shift keying modulation scheme. It is similar to
standard minimum-shift keying (MSK); however the digital data stream is first shaped with
a Gaussian filter before being applied to a frequency modulator. This has the advantage of
reducing sideband power. However, the Gaussian filter increases the modulation memory in
the system and causes intersymbol interference. GMSK schemes correspond to a CPM signal
with infinite-width pulse, the expression of GMSK transmitted signal is given by [64]:

r(t) =
1√

2πδTsym
e
− t2

2δ2T2
sym ⊗ π

2Tsym
h(
t

Tsym
)ej(2πf0t+ϕ0), (1.43)

where δ =
√

ln 2/2πB (B is generally equal to 0.3), f0 and φ0 are respectively the carrier
frequency and phase and h(t/Tsym) is defined by:

h(
t

Tsym
) ≜






1 if |t| ≤ Tsym
2
,

0 otherwise .

GMSK signals are cyclostationary [36] [2] [64] and both the cyclic and cyclic conjugated
autocorrelations functions are non zero for:

Rαr,r∗(τ) 6= 0 ⇒ α = l
Tsym

with l ∈ ℤ

Rαr,r(τ) 6= 0 ⇒ α = 2f0 ± 1
2Tsym
.

(1.44)

1.2.5 Orthogonal frequency division multiplexing modulations

OFDM modulations belong to the family of multi-carrier transmission schemes. OFDM-
like techniques, and especially OFDM/OQAM modulations, are employed in the European
digital radio broadcasting (DAB) and digital terrestrial TV broadcasting (DVBT), which are
problematic interferers in radio astronomy. The general OFDM/OQAM transmitted signal is
expressed by [18]:

r(t) =




Q−1∑

q=0

+∞∑

l=−∞

(
xq,lgx(t− lTsym) + jyq,lgx(t− lTsym +

Tsym
2

)
)
e
j2π q

Tsym
(t−lTsym)



 ej2π∆f0t,

(1.45)
which can be interpreted as QAM-type symbols, of duration Tsym/Q (Tsym is the duration of
the total OFDM symbol, and Q is assumed to be known), shaped by the pulses ga(t) and gb(t)
(usually square-root raised cosine), translated to the sub carrier q/Tsym. ∆f0 is the carrier
frequency offset.
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For OFDM/OQAM signals, the cyclic frequencies are [6] α = {q/Q}q=0,Q−1 and the cyclic
conjugated frequencies [18] α = {α0 + q/Q}q=0,Q−1 where α0 = ∆f0 mod 1.

1.2.6 Conclusion

Other demonstrations for the following modulations are illustrated in [36]. Spectral correlations
have been detailed for analog modulated signals in [35], and for digital modulations in [40].
Detailed developments on the spectrum of the exemplified autocorrelation functions dedicated
to radio astronomy can be found in [9].

It has been shown that most modulation schemes present some cyclostationary properties.
The corresponding cyclic frequencies can be obtained through the specifications of the trans-
mitter or can be measured from the data itself. In the next section we will present a practical
technique to retrieve these cyclic frequencies, for any kind of modulation scheme.

1.3 Practical retrieval of cyclic frequencies

When doing RFI site measurement, it could be interesting to retrieve the modulation
characteristics of the RFI from the measured data. The expressions of the cyclic and cyclic
conjugated autocorrelation function of a cyclostationary signal, r(t), are given by equations
(1.5) and (1.6):

Rαr,r∗(τ) =
〈
r(t+ τ

2
)r∗(t− τ

2
)e−j2παt

〉

∞

Rαr,r(τ) =
〈
r(t+ τ

2
)r(t− τ

2
)e−j2παt

〉

∞
,

(1.46)

We derived a finite sample length of these formulas, assuming discrete time signals:

Rαr,r∗(τ) =
〈
r(t+ τ

2
)r∗(t− τ

2
)e−j2παt

〉

L

≜ 1
L

L−1∑

k=0

r(k +
τ

2
)r∗(k − τ

2
)e−j2παt

(1.47)

Rαr,r(τ) =
〈
r(t+ τ

2
)r(t− τ

2
)e−j2παt

〉

L

≜ 1
L

L−1∑

k=0

r(k +
τ

2
)r(k − τ

2
)e−j2παt

(1.48)

For τ fixed, these equations correspond to the Fourier transform of respectively r(k +
τ/2)r∗(k − τ/2) and r(k + τ/2)r(k − τ/2) over L samples.

In practice, by choosing τ = 0 and α = k/L, k = 0, .., L − 1, we obtain a simple analysis
tool based on the Fast Fourier Transform (FFT). In this case, equations (1.47) and (1.48) can
be seen as a spectral analysis of the |r(k)|2 and r2(k).

If r(t) is cyclostationary, |r(k)|2 and r2(k) will contain periodicities buried in the noise.
Hence, spectral lines related to r(t) cyclic frequencies will pop up in the spectrum obtained
through equations (1.47) and (1.48). The accuracy of the cyclic frequency estimation will
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depend on the time series length, L. In [89], we derived the detection performances of this
approach.

This level of analysis is sometimes not adequate to determine exactly the kind of modulation
behind these cyclic frequencies. For example, m-PSK or QAM modulations with same baud
rate but different bit rates cannot be differentiated. Then, more complex methods must be
applied.

In [21], Dandawate and Giannakis proposed a more sophisticated approach based on de-
tection theory where spectral lines can be stated as cyclic frequencies with a given false alarm
probability. In fact, after Fourier transform, any kind of nonlinear transformations may pro-
vide some spectral lines corresponding to the modulation characteristics. In particular higher
order cyclic approaches may improve modulation identification [58].

We applied our technique on the Westerbork synthesis radio telescope (WSRT, see A.2)
data. Figure 1.6 represents the spectrum of the received signal for one antenna. The re-
ceived RFI is a GPS (global positioning system) satellite signal, BPSK modulated. Thus, its
theoretical cyclic and cyclic conjugated frequencies are respectively α = l/Tsym, l ∈ ℤ and
α = 2f0 + l/Tsym (f0 and Tsym are respectively the carrier frequency and the BPSK symbol
duration). Figure 1.7 shows the results obtained with this technique. The theoretical cyclic
frequencies can be retrieved on the measured spectra obtained from equations (1.47) and (1.48).

1.4 Conclusion

For single dish radio telescopes, in the cyclostationary case, the autocorrelation of the
received signal can be written as:

R(t, τ) = Rs(τ) +RRFI(t, τ), (1.49)

with the following property: RRFI(t + T0, τ) = RRFI(t, τ), and where Rs(τ) is the autocor-
relation function of the stationary signal without RFI s(t). Obviously, R(t, τ) inherits this
property of periodicity. Moreover, if there is no RFI, this property disappears. From these
considerations, several RFI mitigation techniques have been envisaged:

1. RFI blanking: by detecting periodicities in R(t, τ). This can be done by synchronized
averaging or by filtering. For simplicity and real time operation, one can choose a given
τ (usually τ = 0, so the detector just looks for periodic variation in the power of the
measured signal) [12] [89] [13] [10] [11] [9].

2. RFI nulling: if we can find for each τ , some values of t where RRFI(t, τ) = 0, then: [10]
[9]

Rs(τ) =
∫

t/RRFI=0
R(t, τ)dt. (1.50)

3. RFI estimation: under certain conditions, it is possible to estimate the RFI power
spectrum from R(t, τ). This estimate can then be subtracted from the power spectrum
of the measured signal to obtain an estimate of the SOI power spectrum [9].
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Figure 1.6: Spectrum of received signal by one WSRT antenna. The spectrum
shows, in addition to the system noise, the presence of an RFI which is a GPS
signal. GPS signals are BPSK modulated, and characterized with a carrier
frequency f0 and a symbol duration Tsym. WSRT data by courtesy of Albert Jan
Boonstra and ASTRON.
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Figure 1.7: Cyclic spectrum analysis of a GPS satellite signal (a) Spectrum of
|r(k)|2 : Spectral lines are obtained for frequencies that are multiples of 1.023
MHz, which correspond to the GPS BPSK symbol duration Tsym. (b) Spectrum
of r2(k): Spectral lines appear for corresponding BPSK cyclic conjugated fre-
quencies, which correspond to twice the carrier frequency (2f0 ) and additional
multiples of the symbol rate ( 1/Tsym). WSRT data by courtesy of Albert-Jan
Boonstra and ASTRON.

The last two techniques can be used even if the RFI and the SOI share the same time-
frequency area.

The one dimensional cyclostationary tools and approaches presented in this chapter will be
extended next to the multidimensional sensor case. First we will propose a multidimensional
sensor model corresponding to our radio astronomical context, then we will extend the previous
cyclostationary concept to the proposed model.
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Chapter 2

Phased array model description

A phased array consists of an array of similar elements that are excited in or out of phase
with each other to control beam steering or scanning and radiation patterns without moving
the array [42]. The array is assumed to be in free space. The purpose of this chapter is to
present a multidimensional data model for phased array radio telescopes, which will be used
in the manuscript. Some related tools will also be described in order to simplify the analysis
of the proposed interferences mitigation techniques discussed in the following chapters.

The first section will present the assumptions made on the array and the received signals.
A general model of the telescope output will be therefore proposed. Based on this model, the
correlations between the sensors output will be discussed in the second section. Then, the
correlation matrix model will be extended to the cyclic approach, using the cyclostationary
properties of the radio frequency interferers (RFIs). The correlation matrices contain useful
information on the inpinging signals and the array response, that can be extracted using
subspace decomposition. This process will be explained in the third section for both the
classic and the cyclic cases. The chapter will end with some highlights resulting from the
comparison between the classic and the cyclic approaches.

2.1 Data model

2.1.1 Single source model

We assume the sky as a collection of discrete point sources, which can be of an astronomical
or a telecommunications nature. The astronomical sources are complex white Gaussian Noise
with statistics CN(0, σ2

s), and the RFIs are defined by their modulation properties. We consider
one discrete source in the sky u(t), received with a delay on the ith sensor of an array. The
delay τθu,i is measured relative to a reference sensor. The output of each sensor, illustrated in
figure 2.1, is expressed by:

zi=1...M (t) = γi,θu(t)u(t− τθu,i) + ni(t), (2.1)

where:

• γi,θu(t) is the sensor beam response including the electronic chain response. γi,θu(t) is
direction dependent and time varying due to motion of the source. For cosmic sources,
this response can be different from one sensor to another. Nevertheless, it can be known
through calibration (which involves estimating γi,θu(t) by pointing the telescope at a
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CHAPTER 2. PHASED ARRAY MODEL DESCRIPTION

known single point source). For RFI sources, this response is usually unknown since the
signal enters through the side lobes, which are not well characterized (single beam feed
array case). For aperture arrays, this gain can be known if the RFI enters the main lobe.

• ni(t) is the independent identically distributed (i.i.d) complex Gaussian Noise with statis-
tics CN(0, σ2

i ). It is assumed to be uncorrelated between sensors.

Figure 2.1: A sensor array radio telescope configuration. The sensor receives a
signal u(t− τθu,i) from the direction θu. This signal is affected by both the sensor
beam response and the electronic chain response ( γi,θu(t)). The received signal
plus the additive system noise constitute the sensor output. The array output
vector z(t) is constituted by all the sensors’ outputs zi=1,...,M (t).

Certain assumptions on the received signal must be taken into consideration:

• Broad-band / narrow-band assumptions: A signal is considered as narrow-band if the
signal is band-limited (by its own nature or by sub-band filtering [7]) to a frequency
band ∆f0 centered at f0, with ∆f0/f0 << 1 [68], or ∆f0 << (2πτmax)

−1 (where τmax is
the maximum propagation delay between the array elements) [94] [44].

Let E(t) be the complex envelope of the source u(t). The complex envelope Eτθu,i(t) of a
τθu,i delayed signal will be:

Eτθu,i(t) = E(t− τθu,i)e−j2πf0τθu,i .
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2.1. DATA MODEL

Under the narrow-band assumption:

Eτθu,i(t)
∼= E(t)e−j2πf0τθu,i .

Thus, if we consider the received signal u(t− τθu,i) expression:

u(t− τθu,i) = E(t− τθu,i)e−j2πf0τθu,i︸ ︷︷ ︸
ej2πf0t,

Eτθu,i(t)
(2.2)

under the narrow-band assumption, we obtain:

u(t− τθu,i) ∼= E(t)ej2πf0t
︸ ︷︷ ︸

e−j2πf0τθu,i .

u(t)
(2.3)

Hence, if the narrow-band condition holds, equation (2.1) becomes:

zi(t) = γi,θu(t)e
−j2πf0τθu,i

︸ ︷︷ ︸
u(t) + ni(t).

ai,u(t)
(2.4)

In this thesis, except when specified otherwise, we will consider block processing and
will assume that the parameters of our model are constant over the block duration. In
particular, ai,u(t) will be constant over the block duration. For example [7], the block
duration in the Westerbork synthesis radio telescope (WSRT - the Netherlands) varies
from 10 ms up to 100ms, while the stationarity time of an astronomical source is 10s,
due to the Earth’s rotation. If ai,u(t) is not constant over the block duration, we can use
a multipath model (see the multipath effects below). Thus, the M sensors array model
will be:

z(t) = auu(t) + n(t), (2.5)

where: z(t) = [z1(t)...zM(t)]T is the array output vector, au = [a1,u...aM,u]
T is the spa-

tial signature of the source u and n(t) = [n1...nM ]T is the system noise vector with
independent Gaussian complex entries.

Except in section 6.5, the narrow-band hypothesis on the received signals will be assumed
herein.

• Near-field / far-field considerations: τθu,i can be expressed in a closed form from the
sensor array geometry. If we consider the far field hypothesis (i.e the emitted spherical
wavefront can be considered flat at the sensor array), and we assume that the propagation
delays are determined by a source in direction lu and that each sensor has a position in
the array represented by pi, then cτθu,i = pTi lu, where c is the propagation speed (figure
2.2).

Following [71], the far-field assumption can be expressed by the satisfied condition :

dsource >
2D2
array

λwavelength
, (2.6)

where dsource is the distance between the array and the source, Darray the array aperture
diameter and λwavelength the signal wavelength.
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CHAPTER 2. PHASED ARRAY MODEL DESCRIPTION

Figure 2.2: A phased array radio telescope configuration in the far-field hypothesis.
M sensors receive the signal u(t) from lu. This signal can be an interference (r(t))
or a cosmic source (s(t)). The position of each sensor is given by pi. ni is the
additive noise. The array output vector z(t) is constituted by all the sensors’
outputs zi=1,...,M (t).
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2.1. DATA MODEL

The far-field assumption generally holds for cosmic sources [71]. Hence, once the sensor
array has been calibrated (i.e γi,θu is known), au is completely linked with the source
direction and the sensor array geometry. Then, beamforming or sky mapping can be
performed.

This is not always the case for RFI. When the far-field hypothesis is not valid, the near-
field is assumed, and we consider that the different delays are unknown as the direction
of the RFI may not be known. Thus, au can again be considered as a random complex
vector without any predictable structure. With this model, the sensor array geometry
does not have to be known.

• Multi path effects: Except for sciltillation (multi paths caused by ionospheric effects),
the cosmic sources multi paths can be neglected, due to the fact that the ground plane
is neither flat nor perfectly conductive (which may have led to a reflexion of the signals)
[7]. However, the multipath effects cannot always be neglected for RFIs. We therefore
obtain a multiple sources configuration (see next section).

In conclusion, under the narrow-band assumption:

z(t) = auu(t) + n(t), (2.7)

where u(t) represents either a cosmic source (i.i.d complex Gaussian) or a RFI (modulated
signal), n(t) is the system noise vector, considered as independent complex Gaussian entries
and au is the spatial signature of u, and can be considered as a random complex vector without
any predictable structure because of one or more of the following reasons:

• the sensor array is uncalibrated (valid for cosmic sources or RFIs),

• the signal enters through the side lobes (RFI case only),

• the far field hypothesis is not valid (RFI case only).

Since calibration and imaging are beyond the scope of this thesis, we do not need a more
precise model for au. The structured model will only be used when simulating sky maps or
beamforming. In fact, our model is quite general. Thus, having a calibrated array and/or the
far field hypothesis are just particular cases of our model.

2.1.2 Multiple sources model

If we consider receiving K inpinging sources uk=1...K(t), under the narrow-band assumption,
equation (2.4) becomes:

zi(t) =
K∑

k=1

γi,θuk (t)e
−j2πf0τθuk ,i

︸ ︷︷ ︸
uk(t) + ni(t),

=
K∑

k=1

ai,uk uk(t) + ni(t).

(2.8)

If Au = [au1 , ...auK ] is a M × K matrix where each auk = [a1,uk ...aM,uk ]
T is the spatial

signature of the corresponding kth signal, and u(t) = [u1(t)...uK(t)] is the K × 1 vector of the
K received signals, the output of the telescope in this case will be:
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z(t) = Auu(t) + n(t), (2.9)

where n(t) is the M × 1 system noise vector with independent Gaussian complex entries.
Among the K sources, we consider receiving K1 RFIs that are cyclostationary, with the same
cyclic frequency α and K2 other sources, including RFIs that are not cyclostationary at α and
cosmic sources which are white Gaussian, as represented by figure 2.3.1

Figure 2.3: Separation between received signal types

For simplicity’s sake, we will consider next that we do not receive cyclostationary interfer-
ences with cyclic frequencies different than α.

From all the above-mentioned considerations, the telescope output vector z(t) can be mod-
eled in complex baseband form as:

z(t) = Arr(t)
︸ ︷︷ ︸

+ Ass(t)
︸ ︷︷ ︸

+ n(t)
︸ ︷︷ ︸
,

RFI cosmic sources system noise
(2.10)

where Ar =
[
ar1 , ..., ark1

, ..., arK1

]
is a M ×K1 matrix where each ark1

= [a1,rk1
...aM,rk1

]T is the

spatial signature of the corresponding k1th RFI, and r(t) = [r1(t)...rK1(t)]T is the K1×1 vector

of the K1 cyclostationary interferers, As =
[
as1 , ..., ask2

, ..., asK2

]
is a M × K2 matrix where

1In practice, only one RFI is present within a given bandwidth. Thus, K1 = 1 in general, and K2 only
refers to the number of received cosmic sources. However, for some interferers, such as GPS signals, or in the
presence of multipath, K1 > 1.
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each ask2
= [a1,sk2

...aM,sk2
]T is the spatial signature of the corresponding k2th cosmic source,

and s(t) = [s1(t)...sK2(t)]T is the K2× 1 vector of the K2 white, Gaussian, independent cosmic
source signals. n(t) is the system noise vector, considered as independent complex Gaussian
entries.

This model is a multidimensional extension of the single source model (see the conclusion
to section 2.1.1). We recall that Ar and As contain non structured spatial signatures. We also
assume that:

• Each incoming cosmic sources signal has a power of σ2
sk2

, with k2 = 1...K2. However,
the K1 signals are not independent of each other, with respect to the multipath issue or
coupling issues.

• The system noise on each sensor has a power of σ2
ni

, with i = 1...M .

• The K1 signals are independent of the K2 signals and the system noise (the K2 signals
are also independent of the system noise).

The following section will study the correlations between the antennas using the telescope
output expressed by equation (2.10).

2.2 Correlation Matrices

In radio astronomy, Sky images are obtained through the correlation matrices measured by
phased array radio telescopes. Indeed, all the spatial and statistical information of the cosmic
sources are contained in these matrices.

From our previous model, in the next subsection, we will derive the expression of the
correlation matrix, the cyclic correlation matrix and the cyclic conjugated matrix. In radio
astronomy, the correlation matrices are calculated with τ = 0. However, in this section, we
will also give the expressions of the different correlation matrices for τ 6= 0, since for the
cyclostationary case, the maximum of information may occur for τ 6= 0. Moreover, it will be
necessary to employ expressions with τ 6= 0 when studying the broad band case (section 6.5).

2.2.1 Classic correlation matrix

The classic correlation matrix is expressed by:

R(τ) =
〈

z(t+
τ

2
).zH(t− τ

2
)
〉

∞
, (2.11)

with:
z(t) = Arr(t) + Ass(t) + n(t). (2.12)

According to the independence assumption of r(t), s(t) and n(t), we obtain that:

〈rks∗l 〉∞ = 0 〈rkr∗l 〉∞ 6= 0
〈skn∗l 〉∞ = 0 however 〈sks∗l 〉∞ 6= 0
〈rkn∗l 〉∞ = 0 〈nkn∗l 〉∞ 6= 0

(2.13)

(Note that we do not assume for now the independence of cosmic sources and system noise
in order to have a general correlation matrix model, i.e for cases where the system noise is
correlated XXX)
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With this assumption, the classic correlation matrix expression will be:

R(τ) = ArRr(τ)A
H
r + AsRs(τ)A

H
s + Rn(τ).

= RRFI(τ) + RCosmic(τ) + RNoise(τ)
(2.14)

defining :

• Rr(τ) ≜
〈
r(t+ τ

2
).rH(t− τ

2
)
〉

∞
,

• Rs(τ) ≜
〈
s(t+ τ

2
).sH(t− τ

2
)
〉

∞
,

• Rn(τ) ≜
〈
n(t+ τ

2
).nH(t− τ

2
)
〉

∞
.

An illustration of the skymaps using R(0) is given by figure 2.4. Maps have been obtained
with a whole sky scanning.

2.2.2 Cyclic correlation matrix

The cyclic correlation matrix is expressed by:

Rα(τ) =
〈

z(t+
τ

2
).zH(t− τ

2
)e−j2παt

〉

∞
. (2.15)

All the contributions from the non-cyclostationary signals, and the cyclostationary signals
that have a cyclic frequency α′ 6= α tend to zero. From these considerations, equation (2.15)
reduces to:

Rα(τ) = ArR
α
r
(τ)AHr = RαRFI(τ), (2.16)

where Rα
r
(τ) ≜

〈
r(t+ τ

2
).rH(t− τ

2
)e−j2παt

〉

∞
.

2.2.3 Cyclic conjugated correlation matrix

In some cases (see section 1.1), when the cyclic correlation matrix is zero for all α 6= 0
(example: AM modulated signals), we will have to use the conjugated correlation matrix,
defined by:

R
α
(τ) =

〈
z(t+

τ

2
).zT (t− τ

2
)e−j2παt

〉

∞
. (2.17)

Similarly to the cyclic correlation function, because of the non cyclostationarity of cosmic
sources and system noise, (2.15) reduces to:

R
α
(τ) = ArR

α
r
(τ)ATr = R

α
RFI(τ), (2.18)

with R
α
r
(τ) ≜

〈
r(t+ τ

2
).rT (t− τ

2
)e−j2παt

〉

∞
.
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Figure 2.4: Skymaps with real and synthetic data. The upper figures represent real
observations using the LOFAR initial test stations (ITS) (see appendix A.1, by
courtesy of Albert-Jan Boonstra and ASTRON). The lower figures represent
the corresponding simulations that we have obtained using the proposed model.
The skymaps on the left represent an observation with a strong received RFI
(cosmic sources are not visible in the map). Figures on the right represent the
same observation without RFI. 3 sources appear in the map. For the lower
figures, the correlation matrices were obtained firstly with K1 = 1 and K2 = 3,
for the observation with RFI (left figure), then with K1 = 0 and K2 = 3 for
the observation without RFI (right figure). These skymaps are based on the
ITS antennas positions (i.e for each source we have defined a structured spatial
signature).
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2.2.4 Independent signals case

If we consider now that all the signals are independent (independence of all the sources),
Rr, Rs, Rn, Rα

r
(τ) and R

α
r
(τ) reduce to diagonal matrices. Each element of the diagonal

is, depending on the specific case, either the autocorrelation, cyclic autocorrelation or cyclic
conjugated autocorrelation function of each source (see definitions in section 1.1). Expressions
(2.14), (2.16) and (2.18) become respectively:

R(τ) = Ardiag
(
Rr1,r∗1 (τ), ..., RrK1

,r∗
K1

(τ)
)

AHr

+Asdiag
(
Rs1,s∗1(τ), ..., RsK2

,s∗
K2

(τ)
)

AHs
+diag (σ2

1, ..., σ
2
M )

Rα(τ) = Ardiag
(
Rαr1,r∗1 (τ), ..., RαrK1

,r∗
K1

(τ)
)

AHr

R
α
(τ) = Ardiag

(
Rαr1,r1(τ), ..., RαrK1

,rK1
(τ)
)

AHr

(2.19)

where diag(.) is the diagonal operator, that converts a vector into a diagonal matrix, where
the off-diagonal elements are set to zero.

2.2.5 Conclusion

The classic and cyclic correlation matrices described in this section are structured according to
the characteristics of the RFIs, the astronomical signals and the system noise. These different
structures lead to a possible separation between the signals. Indeed, from the correlation ma-
trices, we can estimate the spatial signatures of the incoming signals. These spatial signatures
will be used later in all the RFI mitigation algorithms that will be presented. Their estimation
is based on a subspace decomposition of the corresponding correlation matrices. This is the
topic of the next section.

2.3 Subspace decomposition

In order to remove the RFIs from the received data, we will have to estimate the spatial
signature of the undesired signals. Each received signal is identified by its spatial signature
in the received data model (section 2.1). When spatial signatures of the interfering sources
are unavailable, we can estimate them using a subspace decomposition of the corresponding
correlation matrix. This process will be detailed in this section, for R(τ), Rα(τ) and R

α
(τ)

(respectively the classic, cyclic and cyclic conjugated correlation matrices).

In the following chapters, we will use the notation “subspace decomposition” to refer to
an eigenvalue decomposition (EVD) for full-rank matrices and a singular value decomposition
(SVD) for cyclic correlation matrices. In this section, for explanatory purposes, we will dis-
tinguish the two sorts of decomposition (EVD and SVD), but in the rest of the document, we
will use the general term of eigenvalues for both SVD and EVD (subspaces decomposition)
to avoid too many notations for the reader. Further explanation can be found in [32] and [48]
for the classic EVD, and in [39] for the cyclic SVD.
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2.3. SUBSPACE DECOMPOSITION

2.3.1 Classic eigenvalues decomposition

Consider the correlation matrix expressed in equation (2.14). As RNoise is assumed to be
always a full rank matrix, R is full rank as well, and can be decomposed into eigenvalues. If U
contains the eigenvectors ui: U = [u1, ...,uM ], and Λ contains the corresponding eigenvalues
λi: Λ = diag(λ1, ..., λM) (sorted in decreasing order λ1 ≥ λ2 ≥ ...λM ≥ 0):

R(τ) = ArRr(τ)A
H
r + AsRs(τ)A

H
s + Rn(τ)

= UΛUH ,
(2.20)

where U is aM×M unitary matrix(UUH = UHU = I). A physical interpretation of eigenvalue
decomposition can be that the eigenvectors give an orthogonal set of directions present in the
correlation matrix sorted in decreasing order of dominance. The eigenvalues give the power
of a beamformer matched in that direction. Without further assumptions, there is no link
between these directions and the spatial signatures contained in Ar and As.

Now, we consider that the noise is i.d.d (independent and identically distributed) and
spatially white2 with the same power on each antenna equal to σ2

Noise. If we assume a large
number of samples:

λ1 ≥ λ2 ≥ ...λK ≥ λK+1 ≃ λK+2 ≃ ... ≃ λM ≃ σ2
Noise. (2.21)

where K is the number of inpinging signals (K = K1 + K2 consisting of K1 RFIs and K2

cosmic sources). From the EVD, it is possible to find an orthonormal basis which forms two
subspaces [32] [48]:

• Signal subspace generated by the K first eigenvectors Us = [u1, ...,uK ],

• Noise subspace generated by the M − K smallest eigenvalues: UN = [uK+1, ...,uM ].
Noise subspace eigenvectors are orthogonal to the K vectors of the signal subspace.

However, the RFI spatial signatures matrix Ar cannot be estimated from Us. The only way
for Ar and Us to span the same subspace is to neglect the cosmic contributions in equation
(2.20) (i.e: R(τ) = ArRr(τ)A

H
r + σ2

Noiseδ(τ)I), where δ(.) is the Dirac delta function on τ .

2.3.2 Cyclic and cyclic conjugated singular values decomposition

As Rα and Rα are non hermitian, we perform a singular values decomposition (SVD)
instead of an EVD. Moreover, Rα and Rα have a rank less than or equal to K1 [99].

If ΛCyclic is the singular values matrix, UCyclic the input basis vectors matrix and VCyclic
the output basis vectors matrix, the correlation matrix (eq.(2.16)) will be decomposed into:

Rα(τ) = ArR
α
r
(τ)AHr = RαRFI(τ)

= UCyclicΛCyclicV
H
Cyclic

(2.22)

2If the noise matrix contains unequal elements on the diagonal (i.e not identical for all sensors), a pre-

whitening can be done by calibration procedure. We will call N̂ the estimated noise matrix [7]. The corrected

model Rw to which the EVD will be applied is : Rw = N̂
−

1

2 RN̂
−

1

2 .
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CHAPTER 2. PHASED ARRAY MODEL DESCRIPTION

Here, the estimated singular values will be:

λ1 ≥ λ2 ≥ ...λK1 ≥ λK1+1 = λK1+2 = ... = λM = 0. (2.23)

TheK1 dominant singular values are related only to the RFIs directions. Thus, span(UCyclic) =
span(Ar). No assumptions have been made on the calibration of the noise, as it does not affect
the estimation of the K1 strongest singular values.

However, since the spatial signatures of the interferers are not orthogonal to each other,
the columns of the signal subspace formed by the K1 input basis vectors Ucyclic = [u1, ...,uK1 ]
do not correspond exactly to the columns of Ar. In that case, u1 will point to a direction
common to all the interferers, u2 will point to the remaining direction orthogonal to u1, u3

will point to the remaining direction orthogonal to u1 and u2 etc.

However, in the case of a single received interferer K1 = 1 (which is a common case, see
footnote in section 2.1.2), Ar is equal to ar1 . Thus, we obtain for the cyclic case, using equation
(2.19), that:

Rα(τ) = Rαr1,r∗1 (τ)ar1aHr1

= λ1u1u
H
1

(2.24)

It is straightforward to see that:

λ1 = Rαr1,r∗1 (τ) ‖ar1‖2

u1 = ar1 ‖ar1‖−1

(2.25)

Similar results are obtained for R̄α.

2.3.3 Conclusion

With negligible cosmic sources, and with a calibrated system (i.e: R(τ) ≈ RRFI(τ) +
σ2
Noiseδ(τ)I), the classic and cyclic approaches are equivalent, since the signal subspace derived

from the subspace decomposition spans the same subspace as the RFI spatial signatures. How-
ever, as we make the model more complex with uncalibrated noise, or add cosmic sources, only
the cyclic approach can estimate the RFI subspace. Consequently, the cyclic approach will be
more robust than the classic approach. Figure 2.5 summarizes the previous results.

2.4 Conclusion

In this chapter, a global model with related tools has been presented, for narrow-band
received signals. The study of the correlations between the sensors’ outputs has shown that,
the cyclic correlation matrices asymptotically contain only information on the RFIs. Indeed, by
using the subspace decomposition of the cyclic correlation matrices, we obtained an interesting
result: the estimated signal subspace spans the same subspace as that defined by the RFI
spatial signature vectors, regardless of the presence of cosmic sources and/or uncalibrated
system noise.
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Figure 2.5: Comparison between the estimated subspaces resulting from the EVD
of R and the SVD of Rα. For our general model, the signal subspace in the
classic case will depend on the interferers and the cosmic sources. In the cyclic
case, it will depend only on the RFIs.

Thus, more robust methods can be derived using the cyclostationarity principle, compared
to the classic approaches. From the cyclic correlation matrices (Rα and R̄α) subspace de-
composition, eigenvalues and subspaces related to the RFI will only be estimated and used to
design three different RFI mitigation approaches. Chapter 4 will describe the cyclo-detection
approach for phased array radio telescopes. In some cases, the particular structure of the
cyclic correlation matrices (see equations (2.24) and (2.25)) allows an estimation of the RFI
correlation matrix (RRFI), in order to remove this RFI contribution from the global correlation
matrix (R). This method will be explained in chapter 5. Chapter 6 will describe cyclic spatial
filtering. It is a general method that can be extended to broad-band received signals, also
discussed in chapter 6.

Since the proposed techniques are based on existing array processing methods, an overview
of main phased array techniques will be presented in the next chapter. Figure 2.6 summarizes
the cyclic approaches, compared to the classic approaches.
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CHAPTER 2. PHASED ARRAY MODEL DESCRIPTION

Figure 2.6: Classic (using R) and cyclic (using Rα) approaches for RFI mitigation
in phased arrays. In the presence of one cosmic source and one RFI source for
instance, two dominant eigenvalues result from the subspace decomposition of R.
From the cyclic subspace decomposition results only one dominant eigenvalue.
The presence of the cosmic source in the estimation of the spatial signature may
affect the classic RFI mitigation techniques (detection and spatial filtering). In
addition to the classic approaches, that may be improved using cyclostationarity,
the estimation and subtraction technique may be proposed to process a certain
class of interferers.
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Chapter 3

Overview of multidimensional signal
processing

This chapter presents an overview of existing array processing techniques. The aim of this
chapter is to extract useful approaches that can be applied to our RFI mitigation issue.

We will first start with a description of existing multidimensional RFI mitigation techniques
in radio astronomy, pointing out the limitations of each method and the interest of employing
the cyclostationarity concept.

The second part of the section will present some well-known algorithms that are employed
in telecommunications applications such as source localization, signal extraction and nulling.
Depending on the “philosophy” behind each algorithm, these techniques can be divided into
two kinds of methods :

• Beamforming methods which are based on a weighted filtering of the signals, according
to an a-priori knowledge of the array characteristics and the properties of the signals of
interest.

• High-resolution approaches, based on signal and noise subspaces determination.

For telecommunications algorithms, we will modify the general data model given in section
2.1 as follows, by neglecting the cosmic sources part, in a M sensors network receiving K
sources:

z(t) = Ar(t) + n(t), (3.1)

where z(t) is the array output vector, A = [a1, ..., aK ] is aM×K matrix where each ak=1,...,K =

[a1k ...aMk ]
T is the steering vector of the corresponding source, and r(t) = [r1(t)...rK(t)] and

n(t) = [n1(t)...nM(t)] are respectively the sources signals and the spatially white Gaussian
system noise.

Note that the term “steering vectors” is used instead of “spatial signature”, as the al-
gorithms presented are based on the assumption of a structured vector. For example, an
equi-spaced linear array will have the following steering vector:

ak=1...K =
[
1, e−j(2π

f

c
∆)sin(θk)...e−j(2π

f

c
∆)(M−1)sin(θk)

]T
, (3.2)
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CHAPTER 3. OVERVIEW OF MULTIDIMENSIONAL SIGNAL PROCESSING

where f is the center frequency of the signal, c the propagation speed and ∆ the distance
between the antennas (these parameters are assumed to be known). Note that if K = 1,
A = a.

3.1 Existing methods in radio astronomy

Since the introduction of the phased array concept in radio astronomy, several multidimen-
sional RFI mitigation approaches had been proposed [8]. These methods can be regrouped
into RFI detection methods, subspace approaches and adaptive beamforming. The latter will
be studied in 3.3.1.

In the following approaches, two important assumptions are made:

• the astronomical source signal power must be much less than the interferer powers.

• the system noise must be whitened.

Thus, the received data model will be:

z(t) = Arr(t)
︸ ︷︷ ︸

+ n(t)
︸ ︷︷ ︸
,

RFI system noise
(3.3)

where Ar =
[
ar1 , ...arK1

]
is a M ×K1 matrix of the K1 spatial signature of each corresponding

k1 RFI signal, and r(t) = [r1(t)...rK1(t)] is the K1 × 1 vector of the K1 interferers. n(t) is the
M × 1 system noise vector with independent identically distributed Gaussian complex entries.

3.1.1 Classic detection

Since the detection is based on a binary problem, the observations can be expressed by two
testing hypotheses H0 and H1:

• H0: there is no interference,

• H1: there is at least one interferer detected.

Let T be the detection criterion, γ the detection threshold and d the detection decision.
The detection hypotheses yield:

T ≤ γ → d = 0 → H0,
T ≥ γ → d = 1 → H1.

(3.4)

In the case of an array radio telescope, the basic idea beyond the detection criterion is to
maximize the power coming from the RFI by focusing the array in that direction. Then, it
is compared with the noise power, σ2

n . An important consideration is that the system noise
is assumed calibrated (i.e. Rnoise = σ2

nI). Assuming that the spatial vector is known, we can
beamform the array toward the RFI. We define y(t) to be the output of the matched beam
former in the direction of z(t), y(t) = |ar|−1aHr z(t). The corresponding power can be expressed
by

Py = |ar|−1aHr RaHr .
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3.1. EXISTING METHODS IN RADIO ASTRONOMY

The Neyman-Pearson detector based on the data matrix Z = [z(1), ...z(L)] (with L the length
of the time series) considers the estimated data correlation matrix and is given by: [47]

T (Z) = Lσ2
Noise

aHr R̂ar
aHr ar

>H1

<H0
γ. (3.5)

where γ is a power threshold, which is related to a given false alarm probability. The Neyman-
Pearson detector is generally used in radio astronomy multichannel detection because of its
independence of the telescope characteristics and its independence of the required a-priori
knowledge of the RFI presence probabilities or the cost of correlation.

Depending on the process applied on the correlation matrix R̂ =
〈
z(t)zH(t)

〉

L
, where L

is the length of the time series, several multi-channel detectors have been proposed. Among
these methods, the following can be mentioned [8]:

The eigenvalue test [7] [54] [55] [51] [86]

If a telescope array is calibrated, and if the location or direction of an interferer is known,
then the spatial signature of the interferer is also known. In that case, T (Z) (eq. (3.5)) will
compare the received power in the direction ar to the noise power σ2

Noise, which is known as
the matched spatial filter detector.

If the interferer spatial signature is unavailable, ar can be estimated by the eigenvector u1

corresponding to the largest eigenvalue of R̂.
Thus, as ârR̂âHr = λ̂1 for âr = û1, the test statistic in (3.5) takes the form of a matched

spatial filter:
T (Z) = Lσ2

Noiseλ̂1
>H1

<H0
γ (3.6)

A threshold γ can be set by simulations or using the maximum eigenvalue estimate as
defined in [24]

γ = σ2



1 +

√
M

L




2

(3.7)

The norm-based detector [53]

The selected norm for interferences detection is the Frobenius norm. This detector requires
a pre-whitening of the correlation matrix. The test statistic applied on the pre-whitened
correlation matrix R̂w is:

T (Z) = ||R̂w||2F>
H1

<H0
γ (3.8)

Note that ||R̂w||2F =
∑
λ2
i , where λi are the eigenvalues of R̂w.

The generalized likelihood ratio test detector [54] [52] [53]

The eigenvalue analysis showed that in the absence of interferences all eigenvalues are asymp-
totically equal to σ2

Noise. If the noise power σ2
Noise is known, we can apply the (generalized)

likelihood ratio test (GLRT), which leads to a test statistic given by:

T (Z) = −LM log
M∏

i=1

λ̂i
σ2
Noise

= −LM log
|R̂|
σ2
Noise

(3.9)
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CHAPTER 3. OVERVIEW OF MULTIDIMENSIONAL SIGNAL PROCESSING

where λ̂i is the ith eigenvalue of R̂. An interference is detected if T (Z) > γ.

If the noise power is unknown as well, the Minimum Description Length (MDL) detector [88]
can be used, even if, at present, some improvements need to be made to the classic approach,
such as determination of the false alarm rate.

3.1.2 Spatial filtering

To overcome the continuous interferences issue (i.e observations where the RFIs cannot be
masked on the time-frequency plane), filtering methods are applied. One filtering method
proposed for radio astronomy is spatial filtering [54] [7] [69]

The spatial filtering is a subspace approach based on nulling the power received from
undesired directions (RFIs incoming directions). This nulling is achieved by projecting out the
undesired direction, which is such that PAr = 0. The projector P is defined by:

P ≜= I−Ar(A
H
r Ar)

−1AHr (3.10)

where Ar is the M ×K1 matrix containing the K1 spatial signatures of the RFIs. When
available, these spatial signatures are removed from the observations by applying the projector
on the correlation matrix R:

Rcleaned = PRP (3.11)

When the spatial signatures of the interferers are unknown, they can be estimated by a
subspace analysis of the correlation matrix, which can be written in terms of eigenvalues and
eigenvectors as

R = UΛUH (3.12)

where U is a M ×M matrix containing the eigenvectors, and Λ is a M diagonal matrix con-
taining the eigenvalues. Assuming that the astronomical contribution is small, the eigenvalue
decomposition yields M −K1 eigenvalues that are equal to the system noise power σ2

Noise (see
section 2.3.1). Thus, span(Ar) = span(UK1), where UK1 is formed by K1 dominant eigenvec-
tors. As UK1 and the noise subspace UN (formed by the M −K1 eigenvectors corresponding
to the noise eigenvalues) are orthogonal, the projector expression can be written as:

P = UNUHN , (3.13)

and thus, the projector can be built using only the noise subspace, without requiring spatial
signature estimation.

3.2 Conclusion

Classic detection and spatial filtering techniques have been developed by assuming that cosmic
sources are neglected and that the telescope is calibrated. If one of these conditions is not
satisfied, the false alarm rate will increase (for detection), and the interferer subspace estimation
will be distorted (for spatial filtering).

To overcome these issues and obtain better performances (a more accurate detection of
the interferers and a robust estimation of the RFI subspace), we can use the cyclostationary
properties of the interferer. Cyclostationarity is a widely used concept in telecommunications
approaches to improve existing techniques. The next sections will present an overview of the

50



3.3. BEAMFORMING METHODS

general array processing algorithms, in order to explore some resulting principles for multi-
channel RFI mitigation.

3.3 Beamforming methods

Multidimensional processing techniques were first proposed for application in radio com-
munications in [33], [95] and [82]. The aim of these algorithms is the extraction of the signal
of interest, and the determination of the direction of arrival of the undesired signal (for radio
astronomy purposes). Beamforming algorithms can be divided into two categories: adaptive
beamforming techniques, which employ minimization of the output power subject to linear
constraints, in order to protect the desired signal from being canceled with the minimization
process, and property restoral techniques (SCORE, CAB), which adapt the array to restore
the properties of known signals of interest to the array output.

3.3.1 Classical and adaptive beamforming

The generalized method consists in a weighted summation of each channel. The weights repre-
sent time-lags in the time domain and a phase difference in the frequency domain. The output
of each sensor z(t) is multiplied with the conjugate of the weights:

y(t) = wHz(t). (3.14)

In order to estimate the weights vector w, several cost functions were defined, allowing
the estimation of the direction of arrival of the sources. The most commonly employed cost
function is the power function of the output of the beamformer :

P = 〈|y(t)|2〉∞ = wHRw, (3.15)

where R is the correlation matrix of the array output.

Fixing w = a(θ) (which is the basic method), the DOA of the sources is given by the value
of θ which maximizes the output power :

P (θ) = aH(θ)Ra(θ). (3.16)

The adaptive beamforming process [14] (also known as the Capon method or the minimum
variance distortionless response (MVDR) method) uses the constraint wHa(θ) = 1, which leads
to a minimization of the received power in all directions except the direction of observation.
The filter is the weights vector minwwHRw with the constraint wHa(θ) = 1. The solution is
given by :

wMVDR =
R−1a(θ)

aH(θ)R−1.a(θ)
(3.17)

The Capon filtering power will be:

P (θ) =
1

aH(θ)R−1a(θ)
. (3.18)
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Several other adaptive beamforming methods have been derived from the capon principle,
among which, [87] [80] and [56], where adaptive beamforming approaches robust to small
sample size problems and steering vector estimation errors have been presented. Adaptive
beamforming techniques have also been employed in radio astronomy [31] [25] [26] [3].

3.3.2 Cyclic adaptive beamforming technique

The adaptive beamforming algorithm proposed in [15] [16]is based on the property of
cyclostationarity, using a particular class of nonlinear transformations that generates spectral
lines. A zero-mean complex signal r(t) generates a spectral line at a frequency α after passing
through the nonlinearity (.)p if it has a non zero pth order cyclic moment defined by:

mαpr =
〈
rp(t)e−j2παt

〉

∞
=

1

T
lim
T→∞

∫ T/2

−T/2
rp(t)e−j2παtdt, (3.19)

which is a generalization of the second order definitions given in section 1.1. The cyclic
moment mαpr represents the spectral line at α contained in the PSD of zp(t). As shown in [36]
and section (1.3), the cyclic moments correspond, under some assumptions, to the coefficients
of the Fourier series expansion of the statistical moments.

The algorithm proposed in [16] exploits these spectral lines by choosing the coefficients
w of a narrow band antenna array, where y(t) = wHz(t) is the beamforming output, which
minimizes:

J =
〈
|ej2παt − yp(t)|2

〉
. (3.20)

The proposed cost function is therefore the mean square error between a complex expo-
nential and the beamforming output after the (.)p nonlinearity, where the p and α are selected
according to the order and the frequency of the spectral lines generated by the signal to be
extracted (i.e the existence of non-zero pth order cyclic moment at α).

In order to minimize the cost function J , the computed weights will be:

w(t+ 1) = w(t) + µǫ∗(t)yp−1(t)z(t), (3.21)

where µ is the algorithm step size and ǫ(t) = ej2παt − yp(t) is the error signal whose variance
is minimized via the gradient (eq.(3.20).

A blind adaptive beamforming approach, that does not require knowledge of the cyclic
frequencies, based on the gradient-based technique, was presented in [45]).

3.3.3 Self-coherence restoral technique

Cyclic adaptive beamforming was first presented in [2], where three self-coherence restoral
(SCORE) algorithms were introduced: the Least Square SCORE, the Cross SCORE and the
Auto-Score. The spectral self-coherence property of a signal is defined as the existing (non-zero)
correlation with a frequency-shifted and probably correlated version of the signal for certain
discrete values of frequency shift. The spectral self coherence functions were developed in [36]
and [34], where it was shown that complex wide-sense cyclostationary and wide-sense almost-
cyclostationary waveforms exhibit spectral self-coherence or conjugate spectral self-coherence
at discrete multiples of the time periodicities of the waveform statistics. Indeed, a scalar
waveform r(t) is said to be spectrally self-coherent (eq. (3.22)) and respectively spectrally
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conjugated self-coherent (eq. (3.23)) at frequency α if the correlation between r(t) and r(t)
(respectively r∗(t)) frequency shifted by α is non zero for certain lag τ :

ραrr∗(τ) ≜
〈r(t+ τ2 ).r∗(t− τ

2
)e−j2παt〉

∞√
〈|r(t+ τ2 )|2〉

∞
〈|r∗(t− τ2 )ej2παt|2〉

∞

≜
Rα
rr∗

(τ)

Rrr(0)
6= 0,

(3.22)

ραrr(τ) ≜
〈r(t+ τ2 ).r(t− τ

2
)e−j2παt〉

∞√
〈|r(t+ τ2 )|2〉

∞
〈|r(t− τ2 )ej2παt|2〉

∞

≜
Rαrr(τ)
Rrr(0)

6= 0,

(3.23)

Note that, for some authors and for our document, the definition of the conjugated corre-
lation is the inverse of the definition given in [2].

The spectral self coherence restoral concept consists in finding the weights of the beam
former output that suppress all undesired signals (including the noise), by minimizing a least
square function, using the self-coherence property. The resulting weights are:

wSCORE = gSCORER−1aRRFI ,

where Rr is the signals of interest correlation matrix (note that knowledge of this matrix is
required), gSCORE = [a(∗)]HCρα

ss(∗)(τ)e
−j2πτ is a gain constant, and C is the control vector.

This algorithm is presented as the least square (LS) SCORE method. Two other variants
of the SCORE algorithm, the cross SCORE and the auto SCORE, were developed in [2]. Some
improvements have been made to the initial SCORE algorithms: To avoid mismatch in the
cyclic frequency resulting from the carrier frequency offset or the Doppler shift, some algorithms
were proposed in [49] and [50] to estimate the true cyclic frequency for the SCORE methods.
In [23], a gradient based algorithm was proposed by maximizing the self-coherent coefficients
constrained with a normalized beamforming weight, thus increasing the convergence speed.

3.3.4 Cyclic adaptive beamforming algorithm

The main attractive quality of the CAB algorithm [98], [97] compared to the SCORE
method, is its faster implementation. When the array receives only one desired signal, the
array output data vector z(t) and its frequency shifted version z(t)ej2παt contain the signal
components r(t) and r(t)ej2παt that have a high correlation value at the computation cyclic
frequency α. Thus, the weight vector of the beam former wCAB is obtained from the singular
vector corresponding to the largest singular value cyclic correlation matrix Rα.

Variants of the CAB algorithm, the Constrained CAB and the Robust CAB methods were
also proposed in [98] to, respectively, suppress interference and increase robustness.

3.3.5 Conclusion

Adaptive beamforming methods suffer from:

• The cost of the matrix inversion,
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• the risk of several minimals (or maximals, depending the defined cost function),

• sensitivity to pointing errors and uncertainties in aperture characteristics

• the required knowledge of the properties of the signal of interest.

Moreover, cyclic adaptive beamforming methods seems to be quite complex for our aim to
find a general RFI mitigation approach. In addition, the determination of the step size is a an
additional problem when using this gradient-based algorithm.

The SCORE methods are based on adapting the array in order to maximize the cyclic
fluctuations of the correlation function. The major advantage of the SCORE algorithms over
conventional methods is that the only necessary parameters are the cyclic frequencies of the
desired signals. Nevertheless, the methods suffer from slow convergence and require the adap-
tation of two beam formers simultaneously. In addition, the methods fail completely when
operating under environments which contain more than one spectrally self-coherent signal, at
the computation frequency. Despite these drawbacks, the spectral lines concept is attractive,
and a detector based on this principle, was proposed in [9], for a single dish radio telescope.

The CAB algorithm is easy to implement. It only requires the extraction of the main
eigenvector obtained from the subspace decomposition of the cyclic correlation matrix. This
eigenvector will be used as the beamformer weights vector. However, while these algorithms are
efficient for one signal, in the presence of more than one signal with the same cyclic frequency,
certain conditions have to be verified. Besides, the accurate knowledge of the array, and the
calibration assumption do not fit our purpose of proposing a general method regardless to
the array characteristics. Since this observation is valid for all the beamforming techniques
presented, we will not use these principles in the present thesis.

3.4 High resolution methods

This section is an overview of the main high resolution methods. These methods are based
on a subspace decomposition of the correlation matrix R in order to define the signal subspace
vectors and the noise subspace vectors. The estimation of these subspaces is therefore used to
minimize or maximize a cost function. We distinguish between two categories of high resolution
approaches: linear methods, and subspace decomposition approaches.

3.4.1 Linear methods

Linear methods are based on a determination of the signal subspace and the noise subspace
without decomposition of the correlation matrix into values. The assumption common to all
these methods is that the steering vectors matrix A must be full rank, and contain at least
K linearly independent lines that form a full K rank matrix. This submatrix is noted Alinear
and the corresponding output data vector zlinear to the K used lines of Alinear. Acompl is
the complementary submatrix containing the lines of A that have not been involved in the
construction of Alinear. zcompl is the corresponding output data vector.

The determination of the signal subspace and the noise subspace, according to each method,
makes it possible to build an orthogonal projector

∏
. This projector is subsequently used to

compute a cost function (3.24). Minimizing this cost function gives the direction of arrivals
(DOA) of the desired signals.
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P (θ) = aH(θ)
∏

a(θ). (3.24)

Fuller details about the linear methods can be found in [62].

Bearing estimation without eigen decomposition method

The BEWE technique was first presented in [101] and was then extended for low signal to noise
ratios [102] with a statistical study in [81].

In the presence of spatially white Gaussian noise, a (M −K)×K matrix is defined by :

Us =
〈
zcompl(t)z

H
linear(t)

〉

∞
= AcomplrAHlinear, (3.25)

Assuming that Acompl is a full rank matrix, which implies that M > 2K, Us and Acompl
span the same subspace. The orthogonal projector of the BEWE method is therefore defined
by:

∏

BEWE

= I −UsU
H
s . (3.26)

The propagator

The propagator method was published in [63] and then developed in [59], [60] and [61].
Using the definition given for all linear methods, the propagator is the unique K×(M−K)

operator defined by:

PHAlinear = Acompl or AHQ = 0 with Q ≜ (= def) [P− IM−K ]T . (3.27)

From these relations, it appears that Q span an orthogonal subspace to A. Therefore, if

Qs =
[
IKPH

]T
then: span {Qs} = span {A}. The propagator P consequently can define the

noise subspace represented by Q and the signal subspace represented by Qs.
The determination of Q and Qs to build the projector is given by estimating the propagator

P.
In order to estimate P, we define two submatrices of the correlation matrix, G = 〈z(t)zlinear〉∞

and H = 〈z(t)zcompl〉∞, such that R = [G,H]. The projector is therefore defined by (3.28)

P = (GHG)−1GHH. (3.28)

The orthogonal projector of the Propagator method is defined by 3.29

∏

propagator

= I −QsQ
H
s . (3.29)

Subspace method without eigen decomposition

The SWEDE method was presented in [27]. The steering vectors matrix is reorganized such
that A = [A1A2A3]

T , where A1 and A2 are K ×K dimension matrices and A3 M − 2K ×K
matrix. Strong assumptions were made : M > 3K, A is a full rank matrix and A1 and A2 are
non singular matrices.

Two unique K × (M − 2K) operators, P1 and P2 were defined:

P1 = A−H1 AH3 and P2 = −A−H2 AH3 . (3.30)
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Consequently, the matrix W, defined by 3.31, spans an orthogonal subspace to A, and
therefore can define the noise subspace.

W =




P1 0
0 P2

I I


 . (3.31)

The noise subspace estimation is given by the matrix VSWEDE = WD, where D is deter-
mined such that span {VSWEDE} ⊥ span {A}, which corresponds to the noise subspace. The
signal subspace Vs−SWEDE will be therefore an orthogonal subspace to VSWEDE. The choice
of D gives a set of subspace methods, corresponding to different versions of the SWEDE tech-
nique, that do not require an eigenvalue decomposition of the correlation matrix to determine
the signal and noise subspaces.

The SWEDE orthogonal projector of the method is given by (3.32):

∏

SWEDE

= I −VsV
H
s . (3.32)

Some other versions of the SWEDE algorithm are also presented in [27], using the sensors
output vector z(t) or the correlation matrix R.

Conclusion

To avoid subspace decomposition, linear methods make certain strong assumptions, such as
Acompl and Alinear must be full rank. The performance of the method resides in the choice of
zcompl and zlinear. Indeed if the elements of zlinear correspond to nearby sensors, Alinear can be
singular. If the sources are close, the elements of zlinear must be chosen from spaced sensors.

However, the proposed projector seems to be interesting for our radio astronomy context,
as we project out the signal subspace (instead of the noise subspace). This principle is sim-
ilar to the spatial filter (section 3.1.2), for which we will propose some improvements using
cyclostationarity in chapter 6.

3.4.2 Subspace decomposition methods

Subspace decomposition methods yield an estimation of the desired signals DOA, with
a theoretically infinite resolution, independently of the signal to noise ratio. This attractive
property has given rise to a number of publications. A non-exhaustive list of the main subspace
decomposition approaches is presented below.

Multiple signal classification

The MUSIC method was proposed by [5] and [76] (with a more detailed study in [75]). The
algorithm uses the orthogonality property between the sources steering vectors and the noise
subspace eigenvectors.

Using the structured formula of the steering vector a(θ) and the eigenvectors resulting from
the subspace decomposition of the correlation matrix(R) (see 2.3.1):

θk = θ ⇒ aH(θ)ui=1,M = 0, (3.33)
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where θk is the direction of arrival of the desired (or undesired) source. Consequently, the
power norm expressed by eq.(3.34) has to be minimized, according to a variation of θ in order
to find the direction of the source.

p(θ) = |UHNa(θ)|2 = aH(θ)UNUHNa(θ), (3.34)

where UN is the matrix containing the noise subspace eigenvectors. Some variants of the
MUSIC algorithm, known as the Root MUSIC algorithms, can be found in [4], [83] and [96].

Estimation of signal parameters via the rotational invariance technique

The ESPRIT method was proposed by [72]. The ESPRIT method is a narrow-band source
localization algorithm, requiring the assumption of a two similar subnetworks sensors network
that can be deduced one from the other by translation.

Consequently, the ESPRIT algorithm allows a direct estimation of the sources direction of
arrival, using the signal subspace properties. When applicable, this method avoids the costly
numerical search of minimals, or maximals of a function (such as for the classical beamforming
methods and the MUSIC algorithm).

Consider the Vandermonde matrix V (which is a matrix with the terms of a geometric
progression in each row), whose dimensions correspond to the noise subspace dimensions. Vup
and Vdown are respectively the matrices that contain the M − 1 first lines and the M − 1 last
lines of V . In the same way, Us−up and Us−down are matrices that contains respectively the
M − 1 first lines and the M − 1 last lines of the signal subspace vectors matrix Us. We can
verify that :

Vup = VdownJ, (3.35)

with J = diag
(
e−j(2π

f

c
∆)sin(θ1)...e−j(2π

f

c
∆)(M−1)sin(θK)

)
. Note that the columns of V and Us

form two bases of the same subspace. Consequently, an invertible matrix G, which is the
translation matrix from one base to the other, verifies:

Vup = UsG. (3.36)

Substituting (3.35) in (3.36):

Us−up = ΦESPRITUs−down, (3.37)

where ΦESPRIT is a spectral matrix, whose poles are θk=1...K , defined by:

ΦESPRIT = GJG−1. (3.38)

Some other methods use this principle of two (or more) similar subnetworks that are related
by a translation or a rotation relations, such as covariance difference methods [65], [84] and
[66], and the spatial smoothing methods [70] and [78].

Cyclic subspace decomposition methods

The MUSIC algorithm was adapted to cyclostationary sources in [37] and [73], and named
“cyclic MUSIC”. The correlation matrix that has to be decomposed in this algorithm, instead
of R, is Rα, or R

α
when available (see 2.2.2 for definitions ). As explained in 2.3.2, if the
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desired or undesired sources are cyclostationary, the result of the subspace decomposition of
the cyclic correlation matrix is a signal subspace depending on only the cyclostationary sources
(at the computation cyclic frequency α), thus allowing an estimation of the steering vectors of
these sources. Some improvements to the cyclic-MUSIC algorithm are given in [46] and [57].
Other improvements using the extended cyclic correlation matrix (which is a combination of
both cyclic and cyclic conjugated correlation matrix) can be found in [17].

The Cyclic-ESPRIT algorithm, presented in [37], also employs the cyclic correlation matrix
instead of the classic one. It is based on a generalized eigenvalue (when receiving one cyclosta-
tionary signal) estimated from the cyclic correlation matrix Rα, and the cyclic output matched
correlation matrix (corresponding to a correlation between each sensor and a matched sensor
in the same plane displaced by a distance ∆):

RαMatched = RαΦ with Φ = ej2πf∆ sin(θ)/c, (3.39)

where f is the center frequency of the signal, c the speed of propagation and ∆ the distance
(these parameters must be known). The generalized eigenvalue will then be λ = 1/Φ∗. The
direction of arrival θ can be therefore estimated.

Conclusion

For subspace methods, the direction finding procedure requires structured steering vectors,
which is not always the case in practice. These methods are sensitive to the errors committed
in the modeling of the signals. The theoretically infinite resolution of these algorithms requires
exact knowledge of the correlation matrix, which is not realistic, as only an estimate of the cor-
relation matrix is available. The obtained zeros are in fact minimals. For non-cyclostationary
methods, an additional issue is the determination of the number of eigenvalues involved in the
extraction of respectively the system and noise subspaces. Some rank tracking methods have
been proposed to avoid this issue in [88], [100] and [1].

Despite the cost of a subspace decomposition of the correlation matrix, this limitation can
be compensated by the interest of the information extracted from the eigen structures.

3.5 Conclusion

Several improvements can be made to the classic RFI mitigation methods in radio astronomy
using cyclostationarity. For example, the detection methods fail in the presence of a significant
cosmic source, due to a non-differentiation between the sources of interest and the interferers,
leading to a wrong RFI detection. For subspace approaches, calibration and noise whitening
are important and costly steps, which can be avoided by using subspace decomposition of the
cyclic correlation matrix instead of the classic correlation matrix. The proposed improvements
can be achieved using recent results in telecommunication array processing. Multidimensional
telecommunication techniques fall into two categories : beamforming techniques and high
resolution methods.

Beamforming methods suffer from several limitations. For classical and adaptive beam-
forming techniques, the most relevant problem is the computational cost and the extensive a
priori knowledge required of the system parameters . Indeed, the correlation matrix can be
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inaccurately estimated due to limited number of data samples, and the knowledge of the steer-
ing vector can be imprecise due to constrained direction errors or imperfect array calibration.
The Score methods convergence is very slow, and the algorithms fail in the presence of several
self-coherent signals at the computational frequency α. In the rest of this study, among the
proposed RFI mitigation approaches, we will not employ beamforming techniques.

For RFI mitigation in the radio astronomy context, high resolution methods seem to per-
form better than beamforming techniques. Despite the strong assumptions required for linear
methods, the orthogonal projector can be interesting after some modifications, to avoid the
high risk of errors committed by choosing very close lines, or the presence of nearby sensors or
sources. Moreover, it has been shown in subspace decomposition approaches that the spatial
signature of the received cyclostationary signal can be estimated via the dominant eigenvector,
regardless of knowledge or the architecture of the array. Additionally, the projector is quite
similar to the spatial filter in radio astronomy. Thus, improving the projector using the cyclic
subspace decomposition results amounts to improving the spatial filter using cyclostationarity.
The proposed approach will be described in chapter 6.

In short, the main result obtained from the study of the telecommunications methods
described is the improvement provided by the use of the cyclostationarity principle. In the
following chapters, our proposed array processing techniques, based on cyclostationarity, will
be compared to existing radio astronomy multichannel RFI mitigation methods. In the next
chapter, we will present three detection algorithms based on cyclostationarity, which are im-
provements on the classic detectors presented in this chapter.
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Chapter 4

Cyclic detection for phased array radio
telescopes

For some applications in radio astronomy, such as time-frequency representation of the
observations, the polluted time-frequency slots can be flagged (with a flag (1 or 0) which marks
a time-frequency slot as corrupted with radio frequency interferers (RFI)), blanked (time-
frequency slots are replaced by fake data, usually zero) or excised (time-frequency slots are
removed) from the data without completely losing astronomical information. These techniques
are applied when the RFI do not share continuously the same time frequency slots with the
signal of interest (astronomical sources). Prior to the flagging/blanking/excision process, a
detection procedure must indicate if the time frequency slot is polluted or not.

In detection theory, the problem is rephrased as a hypothesis testing issue:

• H0: there is no interference, so the reception model will be: z(t) = Ass(t) + n(t),

• H1: at least one interferer is present in the band z(t) = Arr(t) + Ass(t) + n(t),

where Ar and As are the spatial signature matrices of respectively the interferers r(t) and the
cosmic sources s(t), and n(t) is the system noise vector (see equation (2.10)).

The detection techniques can be conceptually implemented at any point of the processing
line. However, such techniques are traditionally applied in radio astronomy to post correlation
data (i.e. R).

For example, if we consider the correlation matrix R as the output product of the radio
telescope array, the basic approach is to split the whole observation into K smaller independent
observations Rk, where k is the observation index1. Consequently, a clean version of R would
be: Rclean =

∑

k/Rk∈H0

Rk

Now, depending on the degree of knowledge on the involved signals, more or less optimal
approaches can be derived. The objective is to define a detection criterion T (z) and a threshold
γ.

In the first section, we will define our performance analysis tool. In the second section,
from the classical detector described in section 3.1.1, we will derive three cyclic methods based
on the cyclic (conjugated) correlation matrix (in this section, the delay τ will be systematically

1The dump time for R will depend on the stationarity conditions of the observation, typically 10s, and the
dump time for Rk will depend on the stationarity conditions of the RFI, typically 1ms [19] [3]
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equal to zero). The first one requires knowledge of the cyclic frequency, the second one is a
blind approach based on the Frobenius norm. Simulation results assessing the performances
of both approaches will also be provided. An application of the blind detector on the WSRT
A.2 will be shown as well.

4.1 Fisher criterion definitions

The aim of the detection algorithms is the rejection of the interferences so as to obtain clean
observations. However, this rejection has to be accurate enough to avoid either rejecting the
information of interest (cosmic sources), known as false alarm detection, or not missing the
RFIs, known as miss detection.

In order to describe the ability of the detectors to separate between H0 and H1, the Fisher
criterion [30] [29] has been used. It is defined by:

F =
(EH1 [T (z)]− EH0 [T (z)])2

V arH1 [T (z)] + V arH0 [T (z)]
, (4.1)

where E[.] and V ar[.] are respectively the mathematical expectation and the variance of the
detection criterion T (z). In fact, the Fisher criterion describes the distance between H0 and
H1 obtained from a given detection criterion T (z). The interesting point is that it does not
require the complete statistics knowledge of T (z) under the hypothesis H0 and H1. Mean and
variance are sufficient to assess the performance of the criterion T (z) (see figure 4.1)

This approach is well adapted to our RFI scenario where the temporal characteristics of the
RFI modulation scheme must be taken into account and cannot be simplified by a Gaussian
model.

In the next section, we will present detectors based on cyclostationarity.

4.2 Cyclic detection approaches

As shown in section 2.2, the cyclic and cyclic conjugated correlation matrices Rα and R
α

depend asymptotically only on the information related to the cyclostationary interferer. Thus,
we can expect better estimations of the RFI indicators, which will reduce the false alarms and
will increase the detection rate, compared to classic detectors.

In the classic approach (see section 3.1.1), different criteria based on the eigenvalues of
the classic correlation matrix were proposed (assuming a specific model R = RRFI + σ2

nI).
From this principle, the first approach is to apply the same procedure to Rα or R

α
, but

in our case, with no hypothesis on the cosmic sources or the system noise. However, these
cyclic techniques require prior knowledge of the cyclic frequency α. The cyclic frequency can
be known, for telecommunication signals, through previous observations, or via the technical
documents. However, we can blindly search for cyclic frequencies (i.e we do not know α), by
extending our single dish detector described in section 1.3 to the multidimensional case. All
these proposed algorithms will be compared with one another, and with the classic approach.
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Figure 4.1: The Fisher criterion principle. Left hand figure: The T (z) criterion
is not able to completely separate the two hypotheses H0 and H1. Miss detec-
tions and false alarms will occur. The corresponding Fisher criterion is low
(here, F = 4.5). Right hand figure: The T (z) criterion completely separates the
two hypotheses H0 and H1. The detection is perfect. The corresponding Fisher
criterion is higher (here, F = 32).

4.2.1 Description of the eigenvalue approach

In [37], it was shown that the rank of the cyclic correlation matrix Rα is equal to the
number of cyclostationary signals received .Thus, the rank can be estimated from the number
of the non-zero eigenvalues. Indeed, if λi (where i = 1...M) are the eigenvalues of Rα, then
λi=K1...M = 0 (see section 2.3.2). A simple cyclo detector algorithm will be to compare the
maximum eigenvalue with a given threshold.

The subspace decomposition detection method is summarized by figure 4.2. From an im-
plementation point of view, subspace decomposition has a heavy computational load. The
next subsection presents another approach which is computationally less costly.

4.2.2 Description of the norm-based detector

Consider a M ×M matrix A = [Akl]k,l=1...M . The Frobenius norm is defined by:

frob(A) =

√√√√
M∑

k=1

M∑

l=1

A2
kl (4.2)

In the classic approach, and for the corresponding model (R = RRFI + σ2
nI), frob2(R) is

similar to the GLRT detector (see section 3.1.1). We transpose this approach to Rα with our
general model (R = RRFI + RCosmic + RNoise).

62



4.2. CYCLIC DETECTION APPROACHES

Figure 4.2: The subspace decomposition detection algorithm: After a subspace de-
composition of the cyclic correlation matrix Rα, we compare the eigenvalues to
the threshold in order to obtain the number of K1 dominant eigenvalues cor-
responding to the number of the K1 received cyclostationary RFIs with cyclic
frequency α.

Cyclic frequency known

Under H0 (no interferers: r(t) = 0), the Frobenius norm of the the cyclic correlation matrix
frob2(Rα) = 0, as Rα = 0. Under the H1 hypothesis,

frob2(Rα) =
K1∑

k=1

λ2
k,

where λk are the eigenvalues resulting from the subspace decomposition of Rα (see section
2.3.2), since M − K1 other eigenvalues are zero. Thus, the cyclic norm-based detector is
asymptotically not sensitive to general detection issues (calibration problems and presence of
cosmic sources), as only the presence of the RFI is the determining criterion for distinguishing
between H0 and H1.

Blind detector for cyclic frequencies retrieval

Knowledge of the cyclic frequencies is a key element for all the RFI mitigation techniques
described in this document. Now, we will define a blind detector which can be used when the
modulation scheme is unknown. We consider the M ×M instantaneous correlation matrix
defined by:

R(t) = z(t) ∗ zH(t). (4.3)

The algorithm is defined by the following steps:

63



CHAPTER 4. CYCLIC DETECTION FOR PHASED ARRAY RADIO TELESCOPES

0 2 4 6 8 10
100

105

110

115

120

125

130

135

Frequency

P
ow

er
 S

pe
ct

ru
m

 M
ag

ni
tu

de
 (

dB
)

FFT of the frobenius norm of the cyclic correlation matrix

0 2 4 6 8 10
100

105

110

115

120

125

130

135

Frequency

P
ow

er
 S

pe
ct

ru
m

 M
ag

ni
tu

de
 (

dB
)

FFT of the frobenius norm of the cyclic conjugated correlation matrix

Figure 4.3: The norm-based detector. Left hand figure: retrieval of the cyclic fre-
quencies: Spectral lines appear for frequencies that are multiples of 1.023 MHz,
which correspond to the GPS cyclic frequencies (multiples of the BPSK sym-
bol duration Tsym). Right hand figure: retrieval of the cyclic conjugated cyclic
frequencies: Spectral lines appear for corresponding BPSK cyclic conjugated fre-
quencies, which correspond to twice the carrier frequency 2f0 and additional mul-
tiples of the symbol rate 1/Tsym. WSRT data by courtesy of Albert-Jan Boonstra
and ASTRON.

1. We consider a set of L successive instantaneous matrices and we stack them in a data
cube. The cube size is M × M × L. Each M × M slice represents an instantaneous
correlation matrix. The third dimension represents time.

2. Then, we apply a L bin FFT to each vector [zk(t)z
∗
l (t)]t=0,..L−1 (i.e. one row in the third

dimension of the data cube). We obtain another data cube where each slice (M ×M) is
related to one cyclic frequency α = l/L, l = 0, .., L− 1.

3. Finally, we compute the square of the Frobenius norm (frob2) for each slice. We obtain
a monodimensional signal which will provide spectral lines at frequencies corresponding
to RFI cyclic frequencies:

blinddetector(α) =

(
M∑

k=1

M∑

l=1

〈
zk(t)z

∗
l (t)e

−j2παt
〉

L

)2

.

This approach can be seen as a generalization of the retrieval method proposed in section
1.3 for one-dimensional signal. It can also be used as a technique to analyze cyclostationary
signals. Obviously, the same approach can be applied to the cyclic conjugated case.

We have tested this blind detector on the Westerbork telescope (A.2). The method has been
applied on the same GPS interferer as that used in section 1.3. The GPS are BPSK modulated
signals, and thus, the theoretical cyclic and cyclic conjugated frequencies are respectively
α = l/Tsym, l ∈ ℤ and α = 2f0 + l/Tsym (f0 and Tsym are respectively the carrier frequency
and the BPSK symbol duration). Figure 4.3 confirms the result obtained previously in figure
1.7. However, due to the multidimensional approach, the spectral line levels are higher.
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The next section is a performance study of the described methods. They will be compared to
classic detection methods to show the improvements afforded by the use of the cyclostationarity
hypothesis. In particular, the effect of finite length time series will be simulated.

4.2.3 Cyclic detector performances

In this part, the performances of the different cyclic detection algorithms proposed will be
studied, and compared to the classic detectors for phased array radio telescopes. Monte Carlo
simulations will be performed on different reception scenarios, including a random sorting of
the inpinging directions. The Fisher criterion will be used to evaluate the performances of the
detectors.

For the simulations, the following signal model will be considered:

H0 → z(t) =
√

1− ρass(t) +
√
ρn(t)

H1 → z(t) = σrarr(t) +
√

1− ρass(t) +
√
ρn(t)

(4.4)

where:

• The spatial signatures ar and as are chosen randomly : ar or as = ejφ with φ random
value ∈ [0, 2π].

• The RFI is an AM signal : r(t) = b(t)ej2πf0t+jφ0 . b(t) is Gaussian white noise N (0, 1), φ0

is a random phase and f0 = 0.3 in normalized frequency.

• The system noise n(t) is assumed independent and identically distributed (i.i.d) N (0, 1)
for the moment

• The parameter ρ defines the contribution ratio between the cosmic source and the system
noise in the generated signal. If ρ = 1, the scenario involves no cosmic source contribution.
The parameter ρ is also related to the signal power to noise power ratio (SNR) through
the following equation: SNR= 10 log10(

1
ρ
−1). For example, If ρ = 0.9 (10 % contribution

of the cosmic source in the total noise power), then SNR = −9.54 dB.

• We define the interference power to cosmic source plus noise ratio (INR) as: INR= σ2
r

(in our simulation, the cosmic source plus noise power is always equal to 1).

The number of sensors in the array is M = 8. The interference to noise ratio (INR) varies
from −30 dB to 5 dB. The different correlation matrices will be estimated over a finite set of
samples (L = 1024, 8192 and 65536 samples). For each set of parameters (INR, ρ, L), 500
trials are averaged to obtain the final Fisher value.

As the classic method is affected by the presence of cosmic sources and uncalibrated tele-
scope, the three main reception scenarios are based on these issues. To study the effects of each
problem separately, we assume first a calibrated system (i.i.d noise) receiving one interferer,
but no cosmic source (i.e. ρ = 1). Secondly, a cosmic source will be included in the generated
signal with ρ = 0.9, still with a calibrated system noise. Finally, the uncalibrated noise case
will be studied in a scenario with no cosmic source.
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No cosmic sources, calibrated noise

We compared first the dominant eigenvalue extracted from the subspace decomposition of
the classic and the cyclic correlation matrices. Figure 4.4 shows the simulation results. Similar
performances were obtained for both the classic and the cyclic approaches, as described in
section 2.3.3.
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Figure 4.4: Fisher criterion comparison (classic vs cyclic approach) for subspace
based detectors in the absence of cosmic sources (ρ = 1). The numbers on the
right are the sample number, L, used to estimate the classic and cyclic correla-
tion matrices. For example, both detectors perform well down to INR= −15 dB
for L = 1024 samples.

The Frobenius norm-based detector, for both the classic and the cyclic case, was compared
for the two approaches in the same reception scheme (one interferer and calibrated system
noise). We also added a detector based on the Frobenius norm of the cyclic correlation ma-
trix diagonal (diag(Rα)) with the cyclic and classic Frobenius norm. The Frobenius norm of
diag(Rα) limits the computation complexity.

The performances of the three detectors are presented in figure 4.5. Once again, we ob-
tained similar performances for both the classic and the cyclic full approaches, as described in
section 2.3. Even though the diag(Rα) detector performs less well than the classic and cyclic
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approaches, its simple implementation offers an attractive compromise between performance
and required resources. Moreover, by comparing figure 4.4 with figure 4.5, it can be seen that
norm based detectors perform a few dB lower that subspace detectors whatever the approach
is (cyclic or classic, see figure 4.6). Indeed since the Frobenius norm is the sum of all the
eigenvalues, all estimation errors will be added for this detector.
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Figure 4.5: Fisher criterion comparison (classic vs cyclic approach) for the Frobe-
nius norm based detectors, in the absence of cosmic source (ρ = 1). The numbers
on the right are the number of samples, L, used to estimate the classic and cyclic
correlation matrices.

Cosmic source, calibrated noise

In this part, the same simulations are performed in order to compare the classic and
the cyclic detectors behavior in the presence of a cosmic source (ρ = 0.9). In other words,
the source power represents a 10% contribution to the total noise power. In figure 4.7, the
dominant eigenvalue is extracted, from both classic and cyclic correlation matrices by subspace
decomposition. The sensitivity of the classic approach to the presence of a cosmic source is
clearly shown, whereas the cyclic approach remains robust even if the scenario departs from
the "no cosmic source" scenario. Thus, for the cyclic detector, the separation between H0 and
H1 can be achieved, for 65536 samples, down to an INR of −24 dB.
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Figure 4.6: Fisher criterion comparison between the Frobenius norm based detector
and the subspace based detector, in the classic approach, in the absence of cosmic
sources (ρ = 1). The system noise is i.i.d. The correlation matrices have been
estimated over L = 1024, 8192 and 65536 samples.
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Figure 4.7: Fisher criterion comparison (classic vs cyclic approach) for the sub-
space based detectors, in the presence of a cosmic source with 10% contribution.
The numbers on the right are the number of samples, L, used to estimate the
classic and cyclic correlation matrices.
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In figure 4.8, similar simulations have been set up for the Frobenius norm detectors, and
confirm the robustness of the cyclic approach. At low INR, an interesting point is that the
classic Frobenius norm detector improves its detection performance compared to the classic
subspace approach (see figure 4.9). The reason is that the Frobenius detector behaved more
as a power detector than as a detector based on spatial discrimination. It will therefore be less
sensitive to any spatial mismatch. In other words, the reason why the classic Frobenius norm
detector is less efficient is the "no cosmic scenario". It is also the reason why it performs better
in the "presence of cosmic source scenario".
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Figure 4.8: Fisher criterion comparison (classic vs cyclic approach) for the Frobe-
nius norm based detectors, in the presence of a cosmic source with 10% contri-
bution (ρ = 0.9). The numbers on the right are the number of samples, L, used
to estimate the classic and cyclic correlation matrices.

In figure 4.10, we pushed the cosmic contribution up to 50%. This is not a realistic scenario,
but it provides some information on the detectors limitations. The bad effect on the classic
detectors is confirmed. However the interesting point is that the cyclic subspace detector is
also affected by the presence of a strong source. Once again, the norm based detectors (right
hand figure in 4.10) appear to be more robust for both the classic and the cyclic case, compared
with the subspace detectors.
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Figure 4.9: Fisher criterion comparison between subspace detector and Frobenius
norm detector in the classic approach. The cosmic source contribution is 10%
(ρ = 0.9). The numbers on the right are the number of samples, L, used to
estimate the classic correlation matrices.
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Figure 4.10: Classic and cyclic approaches in the presence of a significant cosmic
source. A 10% source contribution corresponds to ρ = 0.9 and to a SNR of
−9.54 dB. A 50% contribution corresponds to ρ = 0.5 and to a SNR of 0 dB.
Left hand figure: subspace detection using the dominant eigenvalue extracted
from the subspace decomposition of the classic (R) and cyclic (Rα) correlation
matrices. Right hand figure: Frobenius norm detectors.

Uncalibrated noise

The third part of the simulations addresses the calibration problem for classic and cyclic
detectors. It is assumed that the array receives only one interferer while the system noise is
uncalibrated. To generate an uncalibrated system, the following steps has been computed:

• A power variation parameter ρ was set to 0.2.

• For each antenna, a signal was computed, whose values are taken randomly between
±√ρ, say bi, i = 1, ...,M .

• The uncalibrated noise was generated on each antenna (di(t) = bi. ∗ni(t), where .∗ is the
element-wise multiplication).

• The total noise power σ2
N =

M∑

i=1

σ2
i was computed, where the σ2

i are the power of each

corresponding di(t).

• The corresponding power of the RFI σ2
r was evaluated for each INR: σ2

r = (INR∗σ2
N)/M .

• The RFI (the AM signal) was generated with power of σ2
r .

• The same simulation steps as in the previous section were then followed (classic and
cyclic correlation matrices subspace decomposition, Fisher criterion computation, etc...).

To evaluate the detectors performances, the Fisher criterion was computed for both classic
and cyclic approaches (figure 4.11). It shows that calibrated noise is an important assumption
for the classic approach. Even for large INR (0 to 5 dB), the extracted main eigenvalue (the
subspace detection criterion) is corrupted in the classic case by the noise uncalibration. Once
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Figure 4.11: Classic and cyclic approaches in the presence of uncalibrated noise.
The correlation matrices were estimated over 1024, 8192 and 65536 samples. Left
hand figure: subspace detection using the dominant eigenvalue extracted from
the subspace decomposition of R (classic) and Rα (cyclic). Right hand figure:
Frobenius norm of R and Rα detector comparison.

again, the robustness of the cyclic approach is demonstrated. Since array calibration needs
clean observations, the cyclostationary approach could be an interesting way to provide such
information to the array calibration process.

4.2.4 Conclusion

Different detectors based on cyclostationarity have been proposed, and their performances
analyzed. It has been shown that asymptotically they are not sensitive to general detection
issues (calibration problems and presence of cosmic sources), as only the presence of the RFI
is the determining criterion for distinguishing between H0 and H1.

4.3 Conclusion

In this chapter, three new detectors based on cyclostationarity have been proposed:

• The first algorithm is based on the subspace decomposition of the cyclic correlation
matrix.

• The second algorithm is based on the Frobenius norm of the cyclic correlation matrix.

• The third algorithm is a blind detector for cyclic frequencies retrieval.

These algorithms have demonstrated by simulation their robustness against the presence
of cosmic sources or uncalibrated noise. These results are based on the fact that the cyclic
correlation or cyclic conjugated correlation matrices depend asymptotically only on the cyclo-
stationary RFI.

In practice, cyclostationary detectors could be useful when looking for clean frequency
bands prior to the array calibration. Another interest would be radio spectrum analysis and
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RFI modulation characteristics retrieval, during RFI site monitoring and survey. Moreover,
the ability of such detectors to discriminate between stationary and cyclostationary signals
could also be used for Pulsar2 observations. In particular, giant pulsar pulses are interesting
phenomena for radio astronomers but are difficult to observe since most of the time they
are completely random. By combining a classical detector together with a cyclic one, the
observations could be flagged only in the presence of giant pulses even in the presence of RFI.
In this case, the cyclic detector is used to identify false alarm detections triggered by RFI
signals

The ability of the cyclostationary approach to perform efficient subspace decomposition
will be used in the following sections to derive first an "estimation and subtraction" method
(chapter 5), then a cyclic spatial filtering method (chapter 6).

2Pulsars are rapidly rotating highly magnetized neutron stars which produce radio beams that sweep the
sky like a lighthouse. If the beam is oriented towards the Earth, it will produce periodic pulses which can be
measured with radio telescopes and dedicated backends.
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Chapter 5

Estimation and subtraction method

The raw output product of a phased array radio telescope is the classic correlation matrix,
R(τ = 0). With this classic correlation matrix, images or skymaps can be derived1.

As explained in the introduction of the previous chapter, in the presence of radio frequency
interferers (RFI), a clean version of R can be obtained by discarding or blanking intermediate
correlation matrices Rk detected as being polluted. However, such an approach will also remove
part of the information and hence, it will decrease the sensitivity of the observations.

Moreover, this detection and blanking process does not take full advantage of the spatial
processing possibilities of phased array radio telescopes.

In this chapter, we propose an estimation and subtraction (E & S) approach. It is based
on knowledge of the RFI modulation model and on the ability of the cyclostationary approach
to extract the unknown parameters of this model from observations.

Each kind of modulation requires a specific study. In this thesis, only the AM and the BPSK
modulations have been evaluated. Thus, in the next section, we will present the algorithm for
these two modulations. As the method is especially dedicated to interferometry, skymaps
simulations will be given to illustrate the method. Finally, an example of spectrum estimation
using data obtained with the low frequency array (LOFAR) will be presented.

5.1 The E & S algorithm

Figure 5.1 illustrates the principle of the E & S method. The aim of the method is the
estimation of the interferer correlation matrix, R̂RFI , using the cyclic correlation matrix of
the data, Rα, which contains interferers only (RαRFI). R̂RFI will be then subtracted from the
global correlation matrix R, to arrive at Rcleaned.

From equation (2.25) in section 2.3.2, we have shown that the subspace decomposition
of the cyclic correlation matrix Rα or the cyclic conjugated correlation matrix R

α
provides

straightforward information on the spatial signature, but is also linked with the monodimen-
sional cyclic correlation of the RFI RαRFI , assuming only 1 interferer:

λ1 = Rαr1,r∗1 (τ) ‖ar1‖2

u1 = ar1 ‖ar1‖−1

(5.1)

1Roughly, the Fourier transform of R will transform correlation information (i.e. visibilities in interferome-
try) into sky image intensities [54].
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In the following, we will investigate how to use these formulae in the case of an AM interferer
and a BPSK interferer.

Figure 5.1: The Estimation and Subtraction principle: We estimate the RFI cor-
relation matrix RRFI using the cyclic correlation matrix Rα, as Rα ∼= RαRFI. As-
suming then we can extract R̂RFI from Rα, we subtract the resulting estimate
R̂RFI from the global correlation matrix R.

• Amplitude modulated interferers:

Assume that we receive 1 AM modulated interferer with a carrier frequency f0 and carrier
phase ϕ0. In this case, the global correlation matrix will be:

R = σ2
rara

H
r︸ ︷︷ ︸

+RCosmic + RNoise,

RAM
(5.2)

where σ2
r is the power of the AM interferer, ar is the spatial signature of the RFI, RCosmic

and RNoise are respectively the cosmic sources and the system noise correlation matrices.

From section 1.2.1, we know that AM signals express their cyclostationarity properties only
through the cyclic conjugated correlation. Thus, by combining equations (1.15) and (2.24),
the asymptotic expression of the cyclic conjugated correlation matrix will be (for τ = 0):

R
α

= σ2
re
j2φ0ara

T
r = R

α
AM , (5.3)

From equation (5.2), we have:
RAM = σ2

rara
H
r .

In order to reconstruct RAM , we need to extract σ2
r , φ0 and aHr from (5.2) and (5.3) :

• We saw in section 2.3 that, using eigenvalues analysis, we can estimate ar. This estimate
is noted âr.

• We can estimate the RFI power σ2
r with the following operation:

σ̂2
r =

1

M2
frob(R

α
./
(
ârâ
T
r

)
),

where ./ is the element-wise division.
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• We can estimate the carrier phase

φ̂0 =
1

2M2
arg




M∑

i=1

M∑

j=1

(
R
α
./
(
ârâ
T
r

))

i,j





Thus, in the case of AM modulation, we can estimate the correlation matrix of the interferer
using one of the following two expressions:

RAM = σ̂2
r ârâ

H
r . (5.4)

RAM = e−j2φ̂0R
α
â∗r
(
âTr â∗r

)−1
âHr . (5.5)

• BPSK modulated interferers:

As R
α

is non zero for BPSK modulated signals, the same processing can be done for
1 received BPSK interferer with the following emission characteristics: carrier frequency f0,
carrier phase ϕ0, emission filter with impulse response h(t) ∈ ℝ and impulse duration Tsym.
Using the expressions of a BPSK signal statistics given in section 1.2.2, we obtain:

R(τ) =
σ2
r

Tsym
rh,h∗ara

H
r

︸ ︷︷ ︸
+RCosmic + RNoise,

RBPSK

(5.6)

with: rh,h∗ =
∫ +∞

−∞
h(t)h∗(t)dt.

The cyclic conjugated correlation matrix will be (asymptotically, for α = 2f0 + l/Tsym,
l ∈ ℤ):

R
α

=
σ2
r

Tsym
ej2φ0e

−j2π l
Tsym

t0r
l

Tsym

h,h ara
T
r = R

α
BPSK . (5.7)

with t0 is the reception time delay, and r
l

Tsym

h,h =
∫ +∞

−∞
h(t)h(t)e

−j2π l
Tsym

t
dt and l ∈ ℤ.

Since h(t) ∈ ℝ, rh,h∗ = rh,h. For l = 0, equation (5.7) becomes:

R
α=2f0 =

σ2
r

Tsym
ej2πφ0rh,hara

T
r = R

α
BPSK . (5.8)

Thus:
σ2
r

Tsym
rh,h = Ĝ =

1

M2
frob(R

2f0 ./
(
ârâ
T
r

)
). (5.9)

Applying the same method as for the AM signals, we can estimate RBPSK with either:

RBPSK = Ĝârâ
H
r (5.10)

or:

RBPSK = e−j2φ̂0R
α
â∗r
(
âTr â∗r

)−1
âHr . (5.11)
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Algorithms 1 and 2 summarize the two E & S algorithms for AM and BPSK signals with
cyclic frequency α = 2f0. The aim of the two algorithms is the estimation of the RFI correlation
matrix from the cyclic correlation matrix, in order to subtract it from the global correlation
matrix. The two approaches differ in the required parameters for the estimation of the RFI
correlation matrix.

In the BPSK case, if we assume knowledge of the emission filter h(t), it is possible to use
other cyclic frequencies α = 2f0 + l/Tsym. With this assumption, it is also possible to base the
E & S method on the cyclic correlation matrix at α = l/Tsym for BPSK, m-PSK and QAM
signals. In the next section, we will apply the E & S technique on sky imaging.

Algorithm 1 First algorithm of the estimation and subtraction method

Decompose R
2f0 into subspaces,

Estimate the RFI spatial signature (âr = ur1)

Estimate amplitude of the RFI σ̂2
r or Ĝ:

σ̂2
r(or Ĝ)= 1

M2 frob(R
α
./
(
ârâ
T
r

)
)

Estimate the correlation matrix relative to the RFI:

R̂RFI = Ĝârâ
H
r

Subtract R̂RFI from R:

R̂cleaned = R− R̂RFI

Algorithm 2 Second algorithm of the estimation and subtraction method

Decompose R
α

into subspaces,
Estimate the RFI spatial signature (âr = Ur1)
Estimate the carrier phase φ̂0:

φ̂0 = 1
2M2 arg




M∑

i=1

M∑

j=1

(
R
α
./
(
ârâ
T
r

))

i,j





Estimate the correlation matrix relative to the RFI:

R̂RFI = e−j2φ̂0R
α
â∗r
(
âTr â∗r

)−1
âHr

Subtract R̂RFI from R:

R̂cleaned = R− R̂RFI

5.2 Simulation results on the E & S method

In this section, we will illustrate the E & S technique through simulations on skymaps. For
the phased array, we will use the ITS configuration with M = 60 antennas (see appendix A.1).

Figure 5.2 shows a corrupted observation compared to an interference free observation.
We will compare the cleaned results to this reference figure. As there is no such equivalent
technique to the E & S method using the classic correlation matrix R, we cannot compare
the performance of this approach with an existing one. However, error maps (cleaned map -
reference map without RFI) will be computed in order to evaluate the E & S method.
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Figure 5.2: Initial skymaps simulated from the ITS configuration with M = 60
antennas (see appendix A.1). Left hand figure: the reference skymap simulating
an ideal sky with no interferer. Only the cosmic source is visible at the zenith
on the skymap. Right hand figure: the cosmic source is completely drowned in
the presence of a strong interferer.

5.2.1 One interferer

We performed the E & S method on a simulated observation, containing 1 white Gaussian
cosmic source with steering vector as1 pointing towards the zenith (i.e. here the spatial sig-
natures are structured relative to the ITS configuration), and 1 BPSK modulated RFI whose
carrier frequency f0 = 0.3 (normalized frequency), its baud rate is 1/Tsym = 1/8, the emission
filter is rectangular, its power is σ2

r1
and its steering vector is ar1 . The cyclic correlation matrix

that has been computed is R̂
α=2f0

.

Three cases of INR were selected: 10 dB (strong interferer), 0 dB (weak interferer) and -10
dB (very weak interferer). The signal subspace was estimated using the strongest eigenvalue.
Figure 5.3 shows the results of the simulation. For all INR values, the directions of the
RFIs have been correctly estimated, and the corrupting signal has been subtracted from the
correlation matrices.

5.2.2 Presence of several interferers

We performed the E & S method on a simulated observation containing the same Gaussian
cosmic source, and 3 BPSK modulated RFIs with different emission characteristics (different
carrier frequencies and baud rates). The corresponding steering vectors of each one of the 3
BPSK signals are ar1 , ar2 and ar3 .

The first BPSK carrier frequency is f10 = 0.3 and the baud rate is 1/Tsym = 1/8. The second
BPSK carrier frequency is f20 = 0.48 and the baud rate is 1/Tsym = 1/16. The third BPSK
carrier frequency is f30 = 0.25 and the baud rate is 1/Tsym = 1/32. The carrier frequencies
are normalized. The emission filters for the 3 BPSK are rectangular. The interferers have the
same power σ2

r1
= σ2

r2
= σ2

r3
.

Three cyclic correlation matrices were computed: R̂
α=2f10

, R̂
α=2f20

and R̂
α=2f30

. For each
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Figure 5.3: Estimation and subtraction method with 1 BPSK interferer. Left
to right: The upper figures represent initial skymaps for respectively a strong
(INR= 10 dB), a weak (INR= 0 dB) and a very weak interferer (INR= −10 dB).
The correlation matrix has been computed over 8192 time samples. The midline
figures represent the observations after applying the E & S method: the RFI has
been correctly subtracted and is no longer visible on the skymaps. The lower
figures represent the error maps.
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Figure 5.4: Skymaps for 3 interferers with different emission characteristics, for
INR= 0 dB and 8192 time samples: Left to right: (a) Observation with the
presence of 3 RFIs. (b) The observation after applying the E & S method using
3 different cyclic frequencies: the RFIs are almost completely removed, and the
shape of the map is fairly well preserved. (c) The error map.

cyclic correlation matrix, the eigenvector corresponding to the strongest eigenvalue was ex-
tracted. The INR is 0 dB (all the signals have the same level of power).

Figure 5.4 shows the results of the simulation. Since each column of the estimated 3
dimensions signal subspace can be identified as ar1 , ar2 and ar3 , the estimated directions
correspond quite closely to the directions of the RFIs.

5.3 Real data results using the E & S method

In this section, we present the test of our E & S method applied on LOFAR (see appendix
A.1) data. Since only the output signal from 8 stations (i.e. M = 8) was available, we will
provide a frequency spectrum rather than a skymap, as the number of sensors is too small,
leading to low resolution of the maps. The estimation results are based on a real AM signal
received in the 0− 20 MHz band of LOFAR. The different steps of our test are:

• First, the AM signal was filtered from the output data vector of one antenna, at the
central frequency 16.7 MHz (figure 5.5) using a passband filter of 200 KHz bandwidth.
The same process was carried out on the 8 antennas.

• After filtering the signal from each antenna, we built a new output data vector zAM (con-
taining the 8 obtained signals), and then computed the classic instantaneous correlation
matrix of zAM .

• Using the blind detector based on the Frobenius norm (described in section 4.2.2), we
estimated the cyclic frequency α = 0.15 (normalized frequency).

• Then, we computed the cyclic correlation matrix of zAM , to extract the eigenvector
corresponding to the dominant eigenvalue.

• The carrier phase is therefore estimated (according to the second E & S algorithm). We
obtained φAM = 0.8147.
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• We applied the RFI estimation method described in [9] to estimate the power spectrum
of zAM from the instantaneous cross-correlation function Rzx,z∗y(t, τ) (where x and y refer
to two different antennas).

• The AM signal spectrum is then estimated from the Fourier transform of the cyclic
cross-correlation function at α (figure 5.6).

Figure 5.5: Spectrum of the AM signal. Left hand figure: TF plane of the observed
0− 100 MHz band with LOFAR. Right hand figure: from the observed spectrum,
we filtered the AM signal using a passband filter of 200 KHz bandwidth.

To confirm the results obtained, we added a fake source (which is not cyclostationary at α),
and repeated the process. Figure 5.7 shows that the AM spectrum was correctly estimated,
without being affected by the presence of the fake source.

5.4 Conclusion

In this chapter, we have proposed an estimation and subtraction (E & S) approach. It is
based on knowledge of the RFI modulation signature, and on the ability of the cyclostationary
approach to extract the unknown parameters of this signature from observations.

However, this technique is limited by its applicability. While it can be used on AM or
BPSK, for m-PSK or QAM signals, some knowledge of the signals characteristics is required
such as the emission filter characteristics, which can be known through literature. Further
research is necessary to conclude about the applicability of this technique to other modulation
schemes.

Another point for further study would be to evaluate the exact distortion of the cosmic
source signal induced by such an approach. In particular, it could be interesting to compare it
with distortions induced by spatial filtering methods, since spatial filtering is a more general
technique that can be applied on almost all interferers. In the next chapter, we will see how
classic spatial filtering can be extended to cyclic spatial filtering.
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Figure 5.6: Spectrum of the AM signal, compared to the estimated spectrum using
the RFI estimation process based on cyclostationarity.
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Figure 5.7: Effects of the presence of a non-cyclostationary source at α): the
estimated spectrum is similar to the spectrum estimated in the absence of the
source. The process is not affected by the presence of other sources.
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Chapter 6

Cyclic spatial filtering

Cyclic spatial filtering is an improvement on the classic spatial filtering detailed in 3.1.2. It
is a general method that can be applied either on narrow-band or broad-band signals, and on
signals for which either the cyclic correlation matrix Rα or the cyclic conjugated correlation
matrix R

α
is available.

We will start the chapter with a presentation of the general cyclic spatial filtering algorithm.
The error on the estimation of the spatial signatures will be computed, for both classic and
cyclic spatial filtering. The performances of the two approaches will be compared via the study
of the remaining INR after filtering, in comparison with the initial INR, for small arrays and
for a very large number of sensors. Skymap simulation results will be presented, to illustrate
the impact of spatial filtering. Results using LOFAR real data will be presented to test the
practical effectiveness of cyclic spatial filtering compared to the classical approach. The chapter
concludes with an extension of the algorithm to the broad-band case, with an illustration using
a real broad-band interferer received by LOFAR.

6.1 General algorithm of cyclic spatial filtering

Consider receiving K1 interferers (cyclostationary with cyclic frequency α) and K2 cosmic
point sources (white Gaussian) with aM sensors array. The system noise is independent Gaus-
sian complex entries. In accordance with section 2.3.2, we can estimate the spatial signatures
using subspace decomposition of the estimated cyclic correlation matrix over L time samples,
or the cyclic conjugated correlation matrix computed over L time samples, and τ = 0:

R̂α = 〈z(t)zH(t)e−j2παt〉L = UcyclicΛcyclicV
H
cyclic,

R̂
α

= 〈z(t)zT (t)e−j2παt〉L = UcyclicΛcyclicV
H
cyclic,

(6.1)

where z(t) = Arr(t) + Ass(t) + n(t) is the telescope output vector (see section 2.1 for defini-
tions), and α is the cyclostationary parameter which characterizes the RFI signals. Since the
cosmic sources signal s(t) and the system noise signal n(t) are not cyclostationary with the
cyclic frequency α, the cyclic correlation matrix will depend asymptotically on RFIs only:
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R̂α = R̂αRFI + R̂αCosmic︸ ︷︷ ︸
+ R̂αNoise︸ ︷︷ ︸

.

0 0

R̂
α

= R̂
α

RFI + R̂
α

Cosmic︸ ︷︷ ︸
+ R̂

α

Noise︸ ︷︷ ︸
.

0 0

(6.2)

Consequently, the signal subspace formed by the K1 largest singular vectors UrK1
=

[u1...uK1 ] (with UrK1
= Ucyclic or Ucyclic depending on the decomposition of R̂α or R̂

α

) will
span the same subspace as the RFI spatial signatures Ar.

Once these spatial signatures have been estimated, the RFI signals can be filtered out by
applying a projector on the telescope outputs:

zcleaned(t) = Pcyclicz(t), (6.3)

where Pcyclic is the cyclic spatial projector defined by Pcyclic = I − UrK1
UHrK1

and I is the
M ×M identity matrix

Since Ar spans the same subspace as UrK1
, Ar can be written as a linear combination of

UrK1
=⇒ Ar = UrK1

ϑ (ϑ is an arbitrary normalized vector). This leads to the following result
when applying the projector on Ar:

PcyclicAr = (I−UrK1
UHrK1

)UrK1
ϑ = 0. (6.4)

It follows that equation (6.3) becomes, using equation (6.4):

zcleaned(t) = Pcyclic(Ass(t) + n(t)) (6.5)

This result represents a cleaned output signals vector. The bias induced by Pcyclic in
Equ(6.5) can be removed as explained in [85].

Alternatively, the same projector can be applied directly on the correlation matrix, similarly
to the classic approach described in section 3.1.2. Thus, the cleaned correlation matrix will be
obtained by:

Rcleaned = PcyclicRPcyclic, (6.6)

where:
R = ArRrA

H
r + AsRsA

H
s + Rn.

= RRFI + RCosmic + Rnoise

(6.7)

The next section will demonstrate by simulations the effectiveness of this approach through
a comparison with the classical approach.

6.2 Performances of the spatial filtering method

In this section we will compare the performances of the classic and the cyclic approaches. We
consider the case where we have K1 = 1 interferer and K2 = 1 cosmic source, using an array
of M = 8 (subsections 6.2.2 and 6.2.2) or M = 1000 (subsection 6.2.3) antennas. The RFI is
a BPSK modulated signal, with the following characteristics: the carrier frequency is f0 = 0.3
(normalized frequency), the baud rate is 1/Tsymbol = 1/8, the emission filter is rectangular, its
power is σ2

r1
and its spatial signature is ar1 . The cosmic source power is σ2

s1
. Without loss of
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Algorithm 3 General Algorithm of cyclic spatial filtering

Decompose R̂α (or R̂
α

) into subspaces
Estimate the RFI spatial signature (Âr = UrK1

)
Calculate the cyclic spatial projection operator

Pcyclic = I−UrK1
UHrK1

Apply this operator on the sensors output z(t) to filter out the RFI:

zcleaned(t) = Pcyclicz(t)

The obtained cleaned output signal will be:

zcleaned(t) = Pcyclic(Ass(t) + n(t))

generality, the system noise power in the simulations for each antenna has been set to σ2
n. We

consider the correlation matrix defined by:

R = σ2
r1

ar1aHr1︸ ︷︷ ︸
+ σ2

s1
as1aHs1 + σ2

nI︸ ︷︷ ︸
.

Rr1 D
(6.8)

The first subsection will study the estimation errors of the spatial signature, in the presence
of a cosmic source. In the second subsection, the effects of the projector on the filtered corre-
lation matrix are analyzed. Finally, the third subsection examines the behavior of the classic
and cyclic approaches in the case of a very large number of sensors, which will be achieved for
the SKA telescope.

6.2.1 The inner product as performance indicator

Performances are analyzed through the inner product, which is the product of the true RFI
spatial signature ar1 with the estimated one (the strongest eigenvector u1), in accordance with
the variations in the INR. This inner product, aHr1u1, is equal to 1 if the spatial signature is
accurate.

In figure 6.1, the performance and the limitations of both classic and cyclic spatial filtering
for the 50% source case are shown. A 50% source contribution indicates that the source to
noise ratio (SNR) is 0 dB, which means that the system noise and the cosmic source have the
same power.

For INR > 0 dB, the main eigenvector extracted using the two methods is very close to the
true spatial signature of the interferer, since the total noise power contribution ( the cosmic
source + system noise) is (much) less than the power of the RFI. Thus, the power in the first
eigenvalue is dominated by the RFI, and the corresponding eigenvector relates to a direction
vector pointing in the direction of the RFI.

As the INR decreases, the performance of the classic approach drops off, since the array
signature vector is altered by the cosmic source contribution. Thus, below an INR of −5
dB, the spatial signature of the interferer is badly estimated. This decreasing performance is
consistent with the results shown in figure 6.2.

The cyclic approach is more robust to this cosmic source contribution. Figure 6.1 clearly
shows that the RFI spatial signature is still well estimated at INR = −15 dB.
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Figure 6.1: Simulation results of the inner product between the estimated spatial
signature and the true one, for 8192 samples and 8 antennas.
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6.2.2 The remaining INR

We define the Interference to Noise Ratio before any spatial filtering by:

INRbefore =
tr(Rr1)

tr(D)
=
σ2
r1

σ2
s1

+ σ2
n

. (6.9)

We also define the Interference to Noise Ratio after spatial filtering by:

INRafter =
tr(P̂Rr1P̂)

tr(D)
=
σ2
r1
tr(P̂ar1aHr1P̂)

σ2
s1

+ σ2
n

, (6.10)

where P̂ is the estimated projector obtained through either the classic approach Pclassic or the
cyclic approach Pcyclic.

Figure 6.2 shows the computed INRbefore as a function of the INRafter. The projector P̂
is estimated from time series with length L = 8192. We have also used different ratios between
the cosmic source power and the system noise power in the total noise power contribution. For
example, a 50% contribution indicates that the system noise and the cosmic source will have
the same power.

When the projector is badly estimated, the RFI is not filtered out, then, apart from a
small bias, INRbefore = INRafter. This bias (≃ 0.6 dB) can be explained by the fact that
even though the interferer spatial signature is wrongly estimated, the projector will remove
a subspace dimension and, hence, a small fraction of the RFI power. When the number of
antennas increases, this offset decreases.

When we have only system noise (i.e. 0% source), the two methods yield similar simulation
results. This is due to the fact that in the classic (asymptotic) approach, the estimated
eigenvector does not depend on the (whitened) noise power, assuming equal noise powers for
each of the antennas.

However as we add a cosmic source, differences between the two approaches become appar-
ent. This result can be explained by the fact that in the classic spatial filtering case, unlike
the cyclic case, the estimated largest eigenvector is influenced by the source. Similar results
are observed when the previous equal noise powers assumption is not satisfied (see the last 2
curves on figure 6.2).

For large INRbefore, we retrieve an extreme case [79] [7]:

INRafter =
1

L

(
1 +

1

M INRbefore

)
. (6.11)

For L = 8192, the theoretical limit (Equ.6.11) is −39.09 dB, which is close to that reached
in the simulation:−39.83 dB.

6.2.3 Very large number of sensors

The simulation presented in figure 6.3 was obtained with a 1000 sensors array. We considered
the sources as a very weak contribution in the total noise power (1%). We kept the same method
for estimating the INR before and after applying the projector, and the length for the time
series was similar to that in the previous subsection (L = 8192).
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Figure 6.2: Simulation results of the INR before and after applying spatial filter-
ing, for 8192 samples and 8 antennas. The first 8 curves satisfy the equal noise
powers assumption. For the last two curves, the noise powers fluctuate within
20% between antennas.
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In the case of a very large number of sensors (M = 1000), the array will be more sensitive
to the received signals. We obtain better performances for both classic and cyclic approaches
compared to the 8 sensors configuration. However, the cyclic approach in this simulation clearly
outperforms the classic one. This quite satisfying result indicates that, in the case of an array
with a very large number of sensors (SKA for instance), the greater sensitivity to RFI when
using the cyclic technique may lead to a better filtering, and thus, an enhanced robustness of
the method.

For L = 8192, the limit reached in the simulation is -39.17 dB, which is very close to the
theoretical limit (Equ.6.11): -39.1339 dB.
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Figure 6.3: Simulation results of the INR before and after applying spatial filter-
ing, for 8192 samples and 1000 antennas.

The simulations above show that, for low INR, and in the presence of a cosmic source,
the cyclic method outperforms the classic one. In the next section, we will demonstrate with
simulations (skymaps) and experimentally (using real LOFAR telescope data), that for large
INR the cyclic method also has advantages over the classic spatial filtering approach.
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Figure 6.4: Initial skymaps simulated from the ITS configuration with M = 60
antennas (see appendix A.1). Left hand figure: Simulated single source skymap
of ideal sky without interferer, the SNR = 0 dB. Right hand figure: the cosmic
source is completely drowned in the presence of a strong interferer. Here a
BPSK with f0 = 03 (normalized frequency) and INR = 10 dB.

6.3 Simulation results on the SF method

In this section we will use the ITS configuration to build skymaps in order to illustrate
the impact of the cyclic spatial filtering method (using the estimated cyclic correlation matrix

R̂
α
). We will compare it to classic spatial filtering (using the classic correlation matrix R̂).
Figure 6.4 provides the initial skymaps with and without RFI. The latter will be used as a

reference skymap.

6.3.1 One interferer

We performed classic spatial filtering (SF) and cyclic spatial filtering (CSF) on an observation
containing:

• 1 white Gaussian cosmic source with spatial signature as1 ,

• 1 strong BPSK modulated RFI. The carrier frequency is f0 = 0.3 (normalized frequency),
baud rate is 1/Tsymbol = 1/8, the emission filter is rectangular, the power of the RFI power
is σ2

r1
and its spatial signature is ar1 .

The cyclic correlation matrix that was computed is R̂α=2f0 .

Three cases of INR have been selected: 10 dB (strong interferer), 0 dB (weak interferer)
and -10 dB (very weak interferer). The signal subspace was estimated using the strongest
eigenvalue.

Figure 6.5 shows the results of the simulation. For strong interferers, the maximum eigen-
value of R̂ and R̂α is related to the RFI only. The estimated signal subspace is a good estimate
of the interferer spatial signature. However, as the INR decreases, the performance of classic
spatial filtering drops. Indeed, as the power of the interferer declines, the power of the cos-
mic source becomes relatively strong. The extracted eigenvector, which is mostly related to
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the strongest signal (here the cosmic source) gives a wrong estimation of the RFI direction.
For very weak interferers, skymaps show that the cosmic source is completely removed. For
CSF, as the strongest eigenvector is always related to the RFI only, the method performs well
even in the presence of very weak interferers. The results obtained in the previous section are
confirmed with the skymaps.

6.3.2 Presence of several interferers

We performed the SF and the CSF methods on an observation containing 1 white Gaussian
cosmic source with spatial signature as1 and 3 BPSK modulated RFIs with different emission
characteristics; their respective spatial signatures are ar1 , ar2 and ar3 .

The first BPSK carrier frequency is f10 = 0.3 and the baud rate is 1/Tsym = 1/8. The second
BPSK carrier frequency is f20 = 0.48 and the baud rate is 1/Tsym = 1/16. The third BPSK
carrier frequency is f30 = 0.25 and the baud rate is 1/Tsym = 1/32. The carrier frequencies
are normalized. The emission filters for the 3 BPSK are rectangular. The interferers have the
same power σ2

r1
= σ2

r2
= σ2

r3
. The INR is 0 dB (all the signals have the same level of power).

The three cyclic correlation matrix that were computed are: R̂α=2f10 , R̂α=2f20 and R̂α=2f30 .
For each cyclic correlation matrix, the eigenvector corresponding to the strongest eigenvalue
was extracted, and merged to form 3-dimension subspace. For R̂, the signal subspace was
formed using the 3 main eigenvectors resulting from the subspace decomposition of R̂.

Figure 6.6 shows the results of the simulation. For the classic spatial filtering method,
the 3 main eigenvectors extracted from the subspace decomposition of R̂ contain a mix of
all the signals since no specific directions pop up. Thus, all the signals are partially filtered
out. For cyclic spatial filtering, as each column of the 3-dimensions estimated signal subspace
can be identified as ar1 , ar2 and ar3 , the estimated directions correspond very closely to the
directions of the RFIs. We compared the case of different cyclic frequencies using CSF with the
Estimation and Subtraction approach (chapter 5). The E & S method generates less distortion
than cyclic spatial filtering but it needs particular configurations as explained in chapter 5.
The advantage of the CSF method is that it can be applied on practically all kinds of RFIs

using either R̂
α

or R̂α.

6.4 Real data results using the SF method

We have applied classic and cyclic spatial filtering to real observations using the LOFAR
radio telescope (see appendix A.1).

In figure 6.7, we have observed in the 160 − 240 MHz LOFAR band, which contains a
very strong transmitter (a pager) at 170 MHz with an INR of 47 dB. The array configuration
consisted ofM = 8 LOFAR antennas. The cyclic frequency, α, of the pager was first estimated
from the data, using the blind detector described in section 4.2.2. We obtained α = 0.1221 in
normalized frequency (figure 6.7).

Figure 6.8 represents the eigenvalues obtained from the classic and the cyclic correlation
matrices (resp. R̂ and R̂α) which were derived from baseband data of the 8 antennas. This fig-
ure shows that the interferer signal subspace can be fairly well estimated using one dimension
in the cyclic decomposition, whereas it needs two dimensions in the classic one. The more di-
mensions that are used to remove the interferer, the more information about the cosmic sources
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Figure 6.5: Classic and cyclic spatial filtering with 1 BPSK. Upper line: from left
to right: skymaps for respectively a strong (INR= 10 dB)a weak (INR= 0 dB)
and a very weak interferer (INR= −10 dB). The correlation matrix was computed
over 8192 time samples. Midline: the classic spatial filtering results on the
skymaps. The performance declines as the INR decreases. The lower figures
represent the observation after applying the cyclic spatial filtering method: the
RFI has been correctly subtracted and is no longer visible on the skymaps
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Figure 6.6: Skymaps for 3 interferers with different emission characteristics.
From top to bottom, left to right: (a) Observed skymap for 3 interferers with
INR= 0 dB and 8192 time samples. (b) Results of the application of classic
spatial filtering: the 3 RFIs have been filtered but part of the cosmic source is
also removed. (c) Results of CSF with 3 different interferers (3 different cyclic
frequencies): the interferers have been filtered out. (d) Comparison with the E
& S method: in addition to removing the RFI, the shape of the map has been
preserved.

Figure 6.7: Strong RFI (a pager) received with the LOFAR. Left hand figure: TF
plane of the observed 160 - 240 MHz band with LOFAR. Right hand figure:
cyclic frequencies retrieval using the blind detector based on the Frobenius norm
of the instantaneous correlation matrix, described in section 4.2.2.
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6.5. BROAD-BAND ISSUE

that is thrown away in the same way. We therefore used only the eigenvector corresponding
to the strongest eigenvalue to build the projector for both methods.

Figure 6.8: The eigenvalue decomposition of the classic and the cyclic correlation
matrices estimated from real data from the LOFAR telescope. A strong trans-
mitter is present in the dataset (see figure 6.7). M = 8 antennas were used and
the correlation matrices were estimated over L = 65536 samples.

Figure 6.9 demonstrates the effect of the projector on the pager. For both approaches
(clasic and cyclic) only one dimension has been removed. Using the cyclic method, the pager
has been removed more effectively than by using the classic approach. The main reason is
that the spatial filter is applied to uncalibrated data; unlike the classic spatial filter, the cyclic
method in not dependent on calibration.

6.5 Broad-band issue

In all the previous sections and chapters, we assumed that the narrow-band assumption
holds. In this section, it will be shown that the spatial filtering method can be generalized to
the broad-band case. The modifications made to the algorithm will be first explained, then an
illustration using LOFAR real data will be presented.

6.5.1 Broad-band algorithm

In the case where the narrow band assumption is no longer verified, the algorithm described
in 6.1 has to be modified. The proposed approach is based on an algorithm from Xu and
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Figure 6.9: Spectrum of one antenna output after applying cyclic and classic spa-
tial filtering (M = 8, L = 65536).
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Kailath [99]. For purposes explanation, we assume that there is no cosmic source and no
system noise.

If the received interferer is a broad-band signal, then:

zi(t)i=1...M = γi,θrr(t− τθr,i). (6.12)

where γi,θr is the sensor beam response and the electronic chain response (see section 2.1.1 and
figure 2.1).

According to equation (2.2), we can express r(t− τθr,i) with:

r(t− τθr,i) = E(t− τθr,i)e−j2πf0τθr,i︸ ︷︷ ︸
ej2πf0τθr,it,

Eτθr,i(t)
(6.13)

where Eτθr,i(t) is the complex envelope expression of the τθr,i delayed signal r(t− τθr,i)
Its cyclic correlation with cyclic frequency α is [99]:

Rαzi(τ) = Rαr (τ)e
−j2πατθr,i . (6.14)

This equation is just a straightforward application of the time delay and phase shift duality
transposed to cyclic frequency. Let us now define the global output cyclic correlation zα(τ):

zα(τ) =
[
Rαz1(τ), Rαz2(τ), ..., RαzM (τ)

]T

= a(α)Rαr (τ),

(6.15)

where a(α) =
[
γ1,θre

−j2πατθr,1 , ..., γM,θre
−j2πατθr,M

]T
is called the pseudo-spatial signature1.

A similar expression was obtained when expressing the sensor output with the narrow band
condition (eq.(2.4)):

z(t) = arr(t), (6.16)

with ar =
[
γ1,θre

−j2πf0τθr,1 , ..., γM,θre
−j2πf0τθr,M

]T
.

Thus, the RFI mitigation techniques applied to z(t) can be transposed to zα(τ). However,
the key point is that in the general case (cosmic sources and/or uncalibrated noise), zα(τ)
content, asymptotically, only information on the RFI.

The sample covariance matrix will be:

Rsample =
〈
zα(τ)(zα(τ))H

〉

N
,

where N is the number of delays τ (in practice τ = kTS, k = 0, ..N − 1. TS is the sampling
period).

By applying a subspace decomposition on this sample covariance matrix, we can estimate
the pseudo spatial signature a(α) using the eigenvector ur corresponding to the dominant
eigenvalue. Thus, if the array is calibrated (i.e. γi,θr = γθr , for all i = 1, ..M), then:

ur =
1

γθr
a(α) =

[
e−j2πf0τθr,1 , ..., e−j2πf0τθr,M

]T

1In fact, in the presence of cosmic sources or system noise, the same expression will be derived since the
cyclic approach removes all the components which are not cyclostationary at cyclic frequency α.
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Assuming knowledge of α and f0, We can derive from ur, another phase vector :

u(f0) = [a(α)]
f0
α =

[
e−j2πf0τθr,1 , ..., e−j2πf0τθr,M

]T

We propose to use the broadband approach to retrieve ur and then to construct a projector
Pcyclic(f0), as defined in section 6.1.

In other words, the observed band will be split into K smaller sub-bands centered at
frequency fk, k = 0, ..., K − 1. The sub-band bandwidth will fit the narrow band assumption.
From the broad-band analysis, we will extract the ur vector. Then, we will derive K cyclic
projectors Pcyclic(k), k = 0, .., K − 1 which will be applied individually on each sub-band (see
figure 6.10).

Figure 6.10: Broad-band spatial filtering. The observed band will be split into
K smaller sub-bands centered at frequency fk, k = 0, ..., K − 1. The sub-band
bandwidth will fit the narrow band assumption. From the broad-band analysis,
K cyclic projectors Pcyclic(k) will be derived, and which will be applied individually
on each sub-band, or on each correlation matrix R(fk).

6.5.2 Real data results

We have observed in the 222 − 226 MHz LOFAR band, which contains a broad-band
interferer (Digital Audio Broadcasting (DAB)) at 223 − 225 MHz with an INR of 5 dB. The
array configuration consisted of M = 8 LOFAR antennas.

Figure 6.11 shows the eigenvalues obtained from the classic correlation matrix R̂ =
〈
z(t)zH(t)

〉

N
,

and the sample cyclic correlation matrix R̂sample =
〈
zα(τ)(zα)H(τ)

〉

N
, with N = 8192. The

cyclic frequency, α, of the observed German DAB has been retrieved from the literature [43]
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Figure 6.11: The eigenvalue decomposition of the classic correlation matrix and
the sample cyclic correlation matrix estimated from LOFAR DAB data. A broad-
band transmitter is present in the dataset (see figure 6.9). M = 8 antennas were
used and the correlation matrices were estimated over N = 8192 delays.
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Algorithm 4 Broad-band cyclic spatial filtering algorithm
Compute the global output cyclic correlation

zα(τ) =
[
Rαz1(τ), ..., RαzM (τ)

]T

Compute the sample covariance matrix over N equispaced delays τ :

R̂sample =
〈
zα(τ)(zα)H(τ)

〉

N

Extract the eigenvector, ur, corresponding to the dominant eigenvalue
Estimate the RFI spatial signature at fk, for k = 1, ..., K, where K is the subband number:

û(fk) = [ur]
fk
α

Calculate the cyclic spatial projection operators:

Pcyclic(fk) = I− u(fk)u
H(fk)

Apply this operator either on the sensors output z(t) to filter out the RFI:

zcleaned(t) = Pcyclic(fk)z(t),

or on the correlation matrix of the output vector R = 〈z(t)zH(t)〉L:
Rcleaned = Pcyclic(fk)RPcyclic(fk).

Figure 6.11 shows that the interferer signal subspace can be fairly well estimated using the
broad band approach, whereas it needs at least 6 dimensions in the classic one ! If we use all
these dimensions to remove the interferer in the classic case, almost all the information about
the cosmic sources will be thrown away. However, from the subspace decomposition of the
classic correlation matrix, it can be seen that, due to the spread of the eigenvalues, and to the
power variation of the DAB from one antenna to another, a pre-calibration of the data must be
achieved before spatial filtering, in order to remove one dimension from the classic correlation
matrix using the broad-band spatial filter.

Figure 6.12 shows the effect of the projector on the DAB using the cyclic method. In fact,
the projector was computed for only one frequency fk chosen as the center frequency of the
4 MHz band, and was applied as it is on the 4 MHz band. The DAB was removed efficiently
even though the narrow band condition is not completely fulfilled in this example. Note that
the input data was calibrated before applying the algorithm since the power of the DAB varies
from one antenna to another.

6.6 Conclusion

Cyclic spatial filtering is a general method that can be applied to almost all kinds of
interferers whether they are narrow-band or broad-band. Except for the broad-band case, the
technique is independent of calibration issues and the presence of cosmic sources. The use
of cyclostationarity in the spatial filter described in this chapter leads to better performances
compared to existing methods.

Moreover, it has been shown that in practice, the multipath issue can be overcome when
using the cyclic correlation matrix instead of the classic one. Indeed, the more dimensions that
are removed, the more useful data that is lost. The number of corrupted dimensions in the
classic correlation matrix is in practice superior to the dimensions that have to be removed from
the cyclic correlation matrix, even for very strong interferers, while performance simulations
have shown that the two techniques are equivalent for high INR.
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Figure 6.12: Broad-band approach. Left hand figure: TF plane of the observed
200 - 300 MHz band with LOFAR. Right hand figure: spectrum of one antenna
output after applying cyclic spatial filtering (M = 8, N = 8192).

For broad-band interferences, the structure of the cyclic correlation matrix makes it possible
to build a pseudo-data correlation matrix, which takes into account the broad-band character-
istics of the interferer. Thus, only one dimension (if we receive one broad-band interferer) is
removed. These kinds of approaches seem to be very promising and should have priority for
further testing and research in the framework of SKA.

However, these good performances are obtained if and only if the cyclic frequency is ac-
curately estimated, using the cyclic frequency finder algorithm described in 4.2.2, or retrieved
from the interferer description (which can be found in the literature).

Furthermore, the spatial filter adds deep zeros in the skymaps, while the E & S method
does not change the maps, but can be applied only under certain conditions described in the
previous chapter. The appropriate method has to be chosen according to the application.
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Conclusion

La présente étude a été menée dans le cadre de SKADS [93] pour élaborer des méthodes de
suppression d’interférences. L’originalité du travail repose sur l’utilisation de la propriété de
cyclostationnarité des signaux de télécommunication dans le cas du traitement spatial de ces
interférences. Cette étude s’appuie sur le calcul de la matrice de corrélation cyclique ou cyclique
conjuguée qui correspond à une mesure de périodicités dans les matrices de corrélations instan-
tanées obtenues par corrélation successive du réseau d’antennes. Dans ce document, plusieurs
approches ont été proposées, cependant elles reposent toutes sur le fait que ces matrices de
corrélation cyclique ou cyclique conjugué ne dépendent asymptotiquement que de l’information
spatiale relative aux brouilleurs. En effet, l’étude des sous espaces signal et bruits générés par
la décomposition de la matrice de corrélation cyclique, a montré que le sous espace signal cou-
vre le même sous-espace que celui défini par les signatures spatiales des interférences, même
en présence de sources cosmiques, et dans le cas où le bruit système n’est pas calibré.

Le problème de détection a été abordé, des améliorations par rapport aux techniques
actuelles dites classiques (n’utilisant pas la cyclostationnarité) ont été proposées, et comparées
dans leurs performances. Outre la capacité à identifier des observations polluées ou non, les
techniques de détection proposées peuvent déterminer le nombre de ces brouilleurs, paramètre
important dans le traitement spatial des brouilleurs. De plus, lorsque la fréquence cyclique
n’est pas déterminée, nous pouvons la retrouver en aveugle. La détection peut également être
une étape précédant les deux autres méthodes décrites dans ce document, et qui nécessitent la
connaissance préalable de la fréquence cyclique : la méthode d’estimation et de soustraction
et le filtrage spatial.

Dans la méthode d’estimation et de soustraction, le spectre du brouilleur est estimé et sous-
trait directement des observations. Cette technique a l’avantage, en interférométrie, de ne pas
modifier les images du ciel. Néanmoins, le problème de cette méthode est qu’elle n’est applica-
ble que sur certains types de brouilleurs (AM -BPSK voire QPSK avec quelques informations
supplémentaires), où la matrice de corrélation des brouilleurs peut être estimée à partir de la
matrice de corrélation cyclique des observations. Pour les autres types de modulations, une
étude de la cyclostationnarité à des ordres supérieurs serait nécessaire.

Pour les autres types de brouilleurs, notamment les brouilleurs large bande, la méthode
de filtrage spatial cyclique a été proposée. C’est une technique générale de suppression des
brouilleurs, sans contraintes d’application.

De façon générale, les performances des méthodes proposées sont meilleures que celles des
méthodes classiques, sous les hypothèses où ces dernières ne sont pas applicables : la non-
calibration du système (bruit système non blanc) et la présence de sources cosmiques fortes.
Les futurs instruments seront plus sensibles, et de ce fait, la contribution de ces sources ne sera

102



plus négligeable. De plus, la calibration des réseaux phasés étant problématique, l’application
des méthodes cycliques permettrait de s’affranchir de ces contraintes.

Cette thèse a montré l’intérêt d’une approche cyclostationnaire dans le cas d’un radiotéle-
scope à réseau phasé. Cependant, un certain nombre d’approfondissements seraient nécessaires.
Ainsi, une étude approfondie de l’impact de ces méthodes sur les images du ciel serait néces-
saire, notamment en lien avec les problèmes de calibration. D’autre part, des tests exhaustifs
sur les données réelles seraient également très intéressants pour définir plus précisément le
domaine d’applicabilité des techniques proposées. En effet, lors de cette étude, nous n’avions
pas d’éléments suffisants pour étudier ces images en pratique, et nous nous sommes donc basés
sur des simulations. De futures recherches sur les effets du filtrage spatial sont en cours, et des
conclusions plus précises pourront alors être données.

Le radiotélescope LOFAR rentrant en phase opérationnelle, il sera un très bon précurseur
de ce que sera le radiotélescope SKA. En effet, de par sa sensibilité, sa surface effective et
son architecture, LOFAR doit permettre de tester et de prolonger concrètement les approches
proposées dans ce mémoire. Une thèse en continuité de ce travail est d’ailleurs d’ores et déjà
prévue.

• Conclusion

The present study has been achieved in the framework of the SKADS project [93], in order
to define some RFI mitigation tools. The originality of our work is based on the use of the
cyclostationarity property of telecommunications signals when applying spatial interferences
mitigation processing. This study is based on the cyclic and cyclic conjugated correlation
matrices, which correspond to a periodicity measurement in the instantaneous correlation ma-
trices, resulting from successive correlation of the array. In this document, several approaches
have been proposed. However, they all depend on the fact that the cyclic and cyclic conjugated
correlation matrices contain asymptotically only spatial information related to the interferers.
From the subspace decomposition of the cyclic correlation matrices, we obtained an interesting
result: the estimated signal subspace spans the same subspace as that defined by the RFI spa-
tial signature vectors, regardless to the presence of cosmic sources and/or uncalibrated system
noise.

The detection issue has been studied, and some improvements on the existing "classic"
approaches (that do not employ cyclostationarity) have been proposed, and their performance
compared. In addition to the ability to identify the polluted or unpolluted observations, the
detection techniques proposed can determine the number of interferers, which is an important
parameter in RFI mitigation. Moreover, when the cyclic frequency cannot be determined, it
can be retrieved blindly. Detection can also be a previous step to the other two techniques
described in this document, and which require prior knowledge of the cyclic frequency: the
estimation and subtraction technique and spatial filtering.

In the estimation and subtraction approach, the interferer spectrum can be estimated and
subtracted directly from the observations. The main advantage of such a technique in Sky
imaging is that it does not alter the skymaps. However, the main drawback of this approach
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is that it can be applied only on certain kinds of interferers (AM, BPSK and QPSK with
some additional information), for which the RFI correlation matrix can be estimated from
the cyclic correlation matrix of the observations. For other modulation schemes, a high order
cyclostationarity study is required.

For other kinds of interferers, and more specifically for broad-band interferers, the spa-
tial filtering technique has been proposed. It is a general RFI mitigation method, without
application constraints.

Overall, the proposed approaches perform better than the classic approaches, when working
under the hypotheses where the classic approach is not applicable, namely an uncalibrated
system (the system noise is not white), and in the presence of strong cosmic sources. As future
instruments will be more sensitive, it will no longer be possible to disregard the contribution
of these sources. Moreover, the problematic system calibration may be avoided when applying
the cyclic techniques.

This thesis has shown the interest of cyclostationarity for phased array radio telescopes.
However, further investigation is still required on the impact on skymaps, and especially the
impact on calibration issues. Moreover, exhaustive tests on real data would be interesting so
as to define more precisely the applicability context of the proposed techniques. In fact, in
the present study, insufficient elements were available to evaluate these skymaps in practice,
and the techniques were therefore tested only on simulated data. Further research on spatial
filtering will be done, and more precise conclusions may therefore be provided.

Since the LOFAR radio telescope is in the roll-out phase, it will be a good demonstrator for
the square kilometer array. Thanks to its sensitivity, effective collecting area and architecture,
the LOFAR will allow the approach proposed in this thesis to be tested and improved. Another
PhD topic is already underway with this aim in view.
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Appendix A

Existing phased array radio telescope

A.1 The low frequency array

The LOFAR [90] (figure A.1) is an instrument built by ASTRON, dedicated to inter-
ferometry. The core is situated in Exloo (the Netherlands) with stations located across the
Netherlands, and extensions to other countries (Germany, France, Great Britain, Sweden, and
possibly Poland and Ukraine). In LOFAR, antennas are grouped in so-called stations in which
the signals from over a hundred antennas are combined using phased-array beamforming. The
beamformed signals of many stations are combined centrally by correlating them. It is cur-
rently in the roll-out phase with a compact core area comprising 32 stations and 45 remote
stations, and operates in the band 30-240 MHz. The LOFAR radio telescope can represent a
demonstrator for SKA, since the predicted total effective collecting area will be up to 1 square
kilometer. Additionally, LOFAR is currently the most sensitive instrument in radio astronomy.

• Initial test station

The Initial Test Station (ITS) is the first configuration of the LOFAR. It has been opera-
tional since December 2003. The ITS is composed of 60 inverse V-shaped dipoles. The position
of the dipoles allows the whole sky to be mapped, as shown by figure A.2.

A.2 The Westerbork synthesis radio telescope

The WSRT (figure A.3) [91], located in Westerbork, Midden-Drenthe, the Netherlands, is
a synthesis radio telescope built by ASTRON. It is an aperture synthesis interferometer that
consists of a linear array of 14 antennas arranged on a 2.7 km East-West line. Ten of the
telescopes are on fixed mountings while the remaining four dishes are movable along two rail
tracks. The telescope has been operational since 1970.

The telescopes in the array can operate at several frequencies between 120 MHz and 8.3
GHz. The WSRT is often combined with other telescopes around the world to perform Very
Long Baseline Interferometry (VLBI) observations, being part of the European VLBI Network.

The WSRT is a demonstrator of the square kilometer array (SKA) within the project
APERTIF. This project aims to increase the field of view of the WSRT with a factor 25.
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Figure A.1: LOFAR station at the Effelsberg site (Germany). Bottom left : the
low frequency array (30 MHz- 80MHz). Top the high frequency array (110 - 240
MHz). Each black box is itself an array of high frequency antennas. Copyright
of the Max Planck Institute for radio astronomy, ASTRON and LOFAR.
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A.2. THE WESTERBORK SYNTHESIS RADIO TELESCOPE

Figure A.2: ITS parameters for interferometry: performing a beam scan using
the antennas location allows LOFAR to observe the whole sky. By courtesy of
Albert-Jan Boonstra and ASTRON.

Indeed, one of the major improvements that SKA will bring to radio astronomy is that the
field of view, i.e. the region of the sky that can be imaged in a single observation, will be much
larger than what is currently possible. This increase will be achieved by placing a receiver
array in the focus of each parabolic dish of the WSRT, instead of the single receiver element
that the current system employs.
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Figure A.3: The Westerbork synthesis radio telescope (WSRT) - the Netherlands.
The grey building in the bottom right corner of the picture is the EMBRACE
(Electronic MultiBeam Radio Astronomy ConcEpt) dome. EMBRACE is an
aperture-plane phased-array prototype using tiles of Vivaldi feed antennas. It
is part of the FP6 European Project SKADS [93] and it has installations at
Westerbork and Nancay.
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Symbols and operators

A, a Denote scalars
a Denotes vector, a = [akl]k,l=1...M

A Denotes matrix, A = [Akl]k,l=1...M

E {.} Expected value
(.)∗ Conjugate

< . >∞ Infinite time averaging < . >∞= 1
T

lim
T→∞

∫ T/2

−T/2
.dt for nonprobabilistic approach,

or < . >∞= E {.} for stochastic approach

< . >L Finite time averaging for continuous signals < . >L=
1
L

∫ L/2
−L/2 .dt,

for discrete signals, < . >L=
1
L

L/2∑

−L/2

.

⊗ Convolution operator
(.)T Transpose operator
(.)H Conjugate transpose operator
(.)−1 Matrix inverse
.∗ Element-wise multiplication
./ Element-wise division

(.) Complex conjugate operator
IM×M The M ×M identity matrix
diag(.) Diagonal operator, converts a vector into a diagonal matrix
tr(.) Trace operator
det(.) Determinant

‖a‖ Vector norm, |a| =
√

aHa

frob(A) Frobenius norm of the K × L matrix A, frob(A) =

√√√√
K∑

k=1

L∑

l=1

A2
kl

e. Exponential
log e-based logarithm
log10 10-based logarithm
δ(.) Dirac delta function.

109



APPENDIX A. EXISTING PHASED ARRAY RADIO TELESCOPE

110



Acronyms

RFI Radio frequency interferers
SOI Signal of interest
INR Interference to noise ratio
SNR Signal to noise ratio
SKA Square kilometer array
SKADS Square kilometer array design and study
LOFAR Low frequency array
WSRT Westerbork synthesis radio telescope
ITS Initial test station
GPS Global positioning system
DAB Digital audio broadcasting
DVBT Digital video broadcasting - terrestrial
AM Amplitude modulation
BPSK Binary phase shift keying
QPSK Qua
QAM Quadrature amplitude modulation
OQAM Offset quadrature amplitude modulation
CPM Element-wise multiplication
FSK Frequency shift keying
CPFSK Continuous phase frequency shift keying
GMSK Gaussian minimum shift keying
OFDM Orthogonal frequency division multiplexing
FFT Fast Fourier transform
EVD Eigenvalue decomposition
SVD Singular value decomposition
DOA Direction of arrival
SCORE Self-coherent restoral
LS Least square
CAB Cyclic adaptive beamforming
BEWE Bearing estimation without eigen decomposition
SWEDE Subspace method without eigen decomposition
MUSIC Multiple signal classification
ESPRIT Estimation of signal parameters via the rotational invariance technique
E&S Estimation and subtraction method
SF Spatial filtering
CSF Cyclic spatial filtering
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Rym FELIACHI
Traitement spatial des interférences

cyclostationnaires pour les radiotélescopes à
réseau d’antennes phasé

Cette thèse est une contribution à l’amélioration des observations pour les radiotéle-
scopes à réseaux phasés en présence d’interférences. L’originalité de cette thèse
repose sur l’utilisation de la séparation spatiale entre les sources cosmiques et les
brouilleurs issus des télécommunications en se basant sur la cyclostationnarité de
ces derniers. Cette thèse s’inscrit dans le cadre du projet européen SKADS pour
l’amélioration des techniques de suppression d’interférences en radioastronomie pour
les futurs instruments d’observations.

Nous avons proposé trois techniques de traitement d’interférences : la détection,
l’estimation et la soustraction, et le filtrage spatial. Les performances des techniques
proposées ont été évaluées à travers des simulations sur des données synthétiques
et/ou réelles, et comparées aux techniques existantes.

Mots clés : cyclostationnarité, traitement d’antennes, réseau phasé, traitement
d’interférences, radioastronomie.

Spatial processing of cyclostationary interferers
for phased array radio telescopes

This thesis is a contribution to observation improvements for phased array radio
telescopes, in the presence of radio frequency interferers (RFIs). The originality of
the study is the use of the cyclostationarity property, in order to improve the spatial
separation between cosmic sources and telecommunication signals. This thesis is part
of the European SKADS project, which aims to improve RFI mitigation techniques for
future instruments in radio astronomy.

We have proposed three spatial processing techniques: detection, estimation and
subtraction and spatial filtering. The performance of the techniques presented have
been evaluated through simulations on synthetic and/or real data, and compared to
existing approaches.

Keywords: cyclostationarity, array processing, phased array, RFI mitigation, radio as-
tronomy.
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