
HAL Id: tel-00579125
https://theses.hal.science/tel-00579125

Submitted on 23 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling and executing multidimensional data analysis
applications over distributed architectures.

Jie Pan

To cite this version:
Jie Pan. Modelling and executing multidimensional data analysis applications over distributed archi-
tectures.. Other. Ecole Centrale Paris, 2010. English. �NNT : 2010ECAP0040�. �tel-00579125�

https://theses.hal.science/tel-00579125
https://hal.archives-ouvertes.fr

ÉCOLE CENTRALE PARIS
ET MANUFACTURES

〈〈 ÉCOLE CENTRALE PARIS〉〉

THÈSE
présentée par

PAN Jie

pour l’obtention du

GRADE DE DOCTEUR

Spécialité : Mathématiques appliquées

Laboratoire d’accueil : Laboratoire mathématiques appliquées aux systèmes

SUJET : MODÉLISATION ET EXÉCUTION DES APPLICATIONS

D’ANALYSE DE DONNÉES MULITIDIMENTIONNELLES SUR

ARCHITECTURES DISTRIBUÉES

soutenue le : 13 décembre 2010

devant un jury composé de :

Christophe Cérin Rapporteur

Gilles Fedak Examinateur

Yann Le Biannic Co-encadrant

Frédéric Magoulès Directeur de thèse

Serge Petiton Rapporteur

Lei Yu Examinateur

2010ECAP0040

1) Numéro d’ordre à demander au Bureau de l’École Doctorale avant le tirage définitif
de la thèse.

ii

Abstract

Along with the development of hardware and software, more and more

data is generated at a rate much faster than ever. Processing large volume

of data is becoming a challenge for data analysis software. Additionally,

short response time requirement is demanded by interactive operational

data analysis tools. For addressing these issues, people look for solutions

based on parallel computing. Traditional approaches rely on expensive high-

performance hardware, like supercomputers. Another approach using com-

modity hardware has been less investigated. In this thesis, we are aiming to

utilize commodity hardware to resolve these issues. We propose to utilize

a parallel programming model issued from cloud computing, MapReduce,

to parallelize multidimensional analytical query processing for benefit its

good scalability and fault-tolerance mechanisms. In this work, we first re-

visit the existing techniques for optimizing multidimensional data analysis

query, including pre-computing, indexing, data partitioning, and query pro-

cessing parallelism. Then, we study the MapReduce model in detail. The

basic idea of MapReduce and the extended MapCombineReduce model are

presented. Especially, we analyse the communication cost of a MapRe-

duce procedure. After presenting the data storage works with MapReduce,

we discuss the features of data management applications suitable for cloud

computing, and the utilization of MapReduce for data analysis applications

in existing work. Next, we focus on the MapReduce-based parallelization

for Multiple Group-by query, a typical query used in multidimensional data

exploration. We present the MapReduce-based initial implementation and

a MapCombineReduce-based optimization. According to the experimental

results, our optimized version shows a better speed-up and a better scalabil-

ity than the other versions. We also give formal execution time estimation

for both the initial implementation and the optimized one. In order to

further optimize the processing of Multiple Group-by query processing, a

data restructure phase is proposed to optimize individual job execution.

We redesign the organization of data storage. We apply, data partitioning,

inverted index and data compressing techniques, during data restructure

phase. We redefine the MapReduce job’s calculations, and job scheduling

relying on the new data structure. Based on a measurement of execution

time we give a formal estimation. We find performance impacting factors,

including query selectivity, concurrently running mapper number on one

node, hitting data distribution, intermediate output size, adopted serializa-

tion algorithms, network status, whether using combiner or not as well as

the data partitioning methods. We give an estimation model for the query

processing’s execution time, and specifically estimated the values of various

parameters for data horizontal partitioning-based query processing. In or-

der to support more flexible distinct-value-wise job-scheduling, we design a

new compressed data structure, which works with vertical partition. It al-

lows the aggregations over one certain distinct value to be performed within

one continuous process.

Keywords: MapReduce, multidimensional data analysis, Multiple Group

by query, cost estimation, performance optimization, commodity hardware

Acknowledgements

This thesis could not be finished without the help and support of many peo-

ple who are gratefully acknowledged here. At the very first, I want to express

my gratitude to my supervisor, Prof. Frédéric Magoulès, with whose able

guidance I could have worked out this thesis. He has offered me valuable

ideas, suggestions and criticisms with his rich research experience and back-

ground knowledge. I have also learned from him a lot about dissertation

writing. I am very much obliged to his efforts of helping me complete the

dissertation. I am also extremely grateful to my assistant supervisors, M.

Yann Le Biannic and M. Christophe Favart, whose patient and meticulous

guidance and invaluable suggestions are indispensable to the completion of

this thesis. They brought constructive ideas and suggestions with their rich

professional experience, solid background knowledge and keen insight for

the industrial development. I cannot make it without their support and

guidance. I also would like to express my gratitude to M. Chahab Nastar,

M. Yannick Gras and Jean-Claud Grosselin. They gave me a chance for

doing this work in SAP BusinessObjects. Without their encouragement

and support, I cannot finish this hard work. What’s more, I wish to extend

my thanks to my colleges and friends, Mai Huong Nguyen, Lei Yu, Cather-

ine Laplace, Sbastien Foucault, Arnaud Vincent,Céderic Venet, Fei Teng,

Haixiang Zhao, Florent Pruvost, Thomas Cadeau, Thu Huyen Dao, Lionel

Boillot, Sana Chaabane. Working with them was a great pleasure. They

created a lively and serious working environment. I benefited a lot from the

discussions and exchanges with them. They also gave me great encourage-

ment during this three years. At last but not least, I would like to thank

my family for their support all the way from the very beginning of my PhD

study. I am thankful to all my family members for their thoughtfulness and

encouragement.

ii

Contents

List of Figures ix

List of Tables xiii

Glossary xv

1 Introduction 1

1.1 BI, OLAP, Data Warehouse . 1

1.2 Issues with Data Warehouse . 2

1.3 Objectives and Contributions . 3

1.4 Organisation of Dissertation . 5

2 Multidimensional Data Analyzing over Distributed Architectures 7

2.1 Pre-computing . 9

2.1.1 Data Cube Construction . 9

2.1.2 Issue of Sparse Cube . 10

2.1.3 Reuse of Previous Query Results 10

2.1.4 Data Compressing Issues . 11

2.2 Data Indexing . 12

2.2.1 B-tree and B+-tree Indexes . 13

2.2.2 Bitmap Index . 15

2.2.3 Bit-Sliced Index . 16

2.2.4 Inverted Index . 17

2.2.5 Other Index Techniques . 19

2.2.6 Data Indexing in Distributed Architecture 20

2.3 Data Partitioning . 21

iii

CONTENTS

2.3.1 Data Partitioning Methods . 22

2.3.1.1 Horizontal Partitioning 22

2.3.1.2 Vertical Partitioning . 23

2.3.2 Data Replication . 24

2.3.3 Horizontally Partitioning Multidimensional Data Set 24

2.3.3.1 Partitioning Multidimensional Array Data 25

2.3.3.2 Partitioning Star-schema Data 26

2.3.4 Vertically Partitioning Multidimensional Data set 28

2.3.4.1 Reducing Dimensionality by Vertical Partitioning . . . 29

2.3.4.2 Facilitating Index and Compression by Vertical Parti-

tioning . 29

2.4 Query Processing Parallelism . 30

2.4.1 Various Parallelism Forms . 31

2.4.2 Exchange Operator . 32

2.4.3 SQL Operator Parallelization . 32

2.4.3.1 Parallel Scan . 33

2.4.3.2 Merge and Split . 33

2.4.3.3 Parallel Selection and Update 34

2.4.3.4 Parallel Sorting . 34

2.4.3.5 Parallel Aggregation and Duplicate Removal 36

2.4.3.6 Parallel Join . 37

2.4.3.7 Issues of Query Parallelism 40

2.5 New Development in Multidimensional Data Analysis 40

2.6 Summary . 41

3 Data Intensive Applications with MapReduce 43

3.1 MapReduce: a New Parallel Computing Model in Cloud Computing . . 44

3.1.1 MapReduce Model Description 45

3.1.1.1 Fundamentals of MapReduce Model 46

3.1.1.2 Extended MapCombineReduce Model 48

3.1.2 Two MapReduce Frameworks: GridGain vs Hadoop 48

3.1.3 Communication Cost Analysis of MapReduce 50

3.1.4 MapReduce Applications . 52

iv

CONTENTS

3.1.5 Scheduling in MapReduce . 53

3.1.6 Efficiency Issues of MapReduce 56

3.1.7 MapReduce on Different Hardware 57

3.2 Distributed Data Storage Underlying MapReduce 57

3.2.1 Google File System . 57

3.2.2 Distributed Cache Memory . 59

3.2.3 Manual Support of MapReduce Data Accessing 60

3.3 Data Management in Cloud . 62

3.3.1 Transactional Data Management 62

3.3.2 Analytical Data Management . 63

3.3.3 BigTable: Structured Data Storage in Cloud 63

3.4 Large-scale Data Analysis Based on MapReduce 63

3.4.1 MapReduce-based Data Query Languages 64

3.4.2 Data Analysis Applications Based on MapReduce 64

3.4.3 Shared-Nothing Parallel Databases vs MapReduce 65

3.4.3.1 Comparison . 66

3.4.3.2 Hybrid Solution . 68

3.5 Related Parallel Computing Frameworks 69

3.6 Summary . 70

4 Multidimensional Data Aggregation Using MapReduce 71

4.1 Background of This Work . 71

4.2 Data Organization . 72

4.3 Computations Involved in Data Explorations 76

4.4 Multiple Group-by Query . 79

4.5 Challenges . 79

4.6 Choosing a Right MapReduce Framework 80

4.6.1 GridGain Wins by Low-latency 80

4.6.2 Terminology . 81

4.6.3 Combiner Support in Hadoop and GridGain 81

4.6.4 Realizing MapReduce Applications with GridGain 82

4.6.5 Workflow Analysis of GridGain MapReduce Procedure 83

4.7 Paralleling Single Group-by Query with MapReduce 84

v

CONTENTS

4.8 Parallelizing Multiple Group-by Query with MapReduce 85

4.8.1 Data Partitioning and Data Placement 86

4.8.2 Determining the Optimal Job Grain Size 87

4.8.3 Initial MapReduce Model-based Implementation 87

4.8.4 MapCombineReduce Model-based Optimization 91

4.8.5 Performance Measurements . 92

4.8.5.1 Experiment Platform: Grid’5000 92

4.8.5.2 Speed-up . 93

4.8.5.3 Scalability . 95

4.9 Execution Time Analysis . 96

4.9.1 Cost Analysis for Initial Implementation 97

4.9.2 Cost Analysis for Optimized Implementation 100

4.9.3 Comparison . 102

4.10 Summary . 102

5 Performance Improvement 105

5.1 Individual Job Optimization: Data Restructure 106

5.1.1 Data Partitioning . 106

5.1.1.1 With Horizontal Partitioning 106

5.1.1.2 With Vertical Partitioning 107

5.1.1.3 Data Partition Placement 107

5.1.2 Data Restructure Design . 108

5.1.2.1 Using Inverted Index 108

5.1.2.2 Data Compressing . 110

5.2 Mapper and Reducer Definitions . 112

5.2.1 Under Horizontal Partitioning . 112

5.2.2 Under Vertical Partitioning . 115

5.3 Data-locating Based Job-scheduling . 117

5.3.1 Job-scheduling Implementation 118

5.3.2 Discussion on Two-level Scheduling 119

5.3.3 Alternative Job-scheduling Scheme 119

5.4 Speed-up Measurements . 120

5.4.1 Under Horizontal Partitioning . 120

vi

CONTENTS

5.4.2 Under Vertical Partitioning . 123

5.5 Performance Affecting Factors . 126

5.5.1 Query Selectivity . 126

5.5.2 Side Effect of Running Multiple Mappers on One Node 127

5.5.3 Hitting Data Distribution . 128

5.5.4 Intermediate Output Size . 130

5.5.5 Serialization Algorithms . 131

5.5.6 Other Factors . 132

5.6 Cost Estimation Model . 133

5.6.1 Cost Estimation of Implementation over Horizontal Partitions . . 135

5.6.2 Cost Estimation of Implementation over Vertical Partitions . . . 138

5.6.3 Comparison . 139

5.7 Alternative Compressed Data Structure 140

5.7.1 Data Structure Description . 140

5.7.2 Data Structures for Storing RecordID-list 141

5.7.3 Compressed Data Structures for Different Dimensions 142

5.7.4 Measurements . 145

5.7.5 Bitmap Sparcity and Compressing 145

5.8 Summary . 146

6 Conclusions and Future Directions 149

6.1 Summary . 149

6.2 Future Directions . 151

Appendices 153

A Applying Bitmap Compression 155

A.1 Experiments and Measurements . 155

References 159

vii

CONTENTS

viii

List of Figures

2.1 B-tree index (a) vs. B+-tree index(b) 14

2.2 Example of Bit-sliced index . 17

2.3 A parallel query execution plan with exchange operators. 33

3.1 Logical view of MapReduce model. 47

3.2 Logical view of MapCombineReduce model. 49

3.3 Big-top-small-bottom processing structure of MapReduce suitable appli-

cations . 54

3.4 Manual data locating based on GridGain: circles represent mappers to

be scheduled. The capital letter contained in each circle represents the

data block to be processed by a specific mapper. Each worker has a

user-defined property reflecting the contained data, which is visible for

master node. By identifying the values of this property, the master node

can locate data blocks needed by each mapper. 61

4.1 Storage of original data set and the pre-computed materialized views for

the identified frequently demanded queries: sub-figure (a) shows original

data set under star-schema; sub-figure (b) shows several materialized

views created based on the original data set represented in (a). 74

4.2 Overall materialized view—ROWSET 75

4.3 Create the task of MapCombineReduce model by combining two GridGain

MapReduce tasks. 82

4.4 Work flow diagram of MapReduce-based application in GridGain. 85

ix

LIST OF FIGURES

4.5 Single Group-by query’s MapReduce implementation design. This de-

sign corresponds to the SQL query SELECT Orderkey SUM(Quantity)

FROM LINEITEM WHERE Suppkey = 4633 GROUP BY Orderkey. 86

4.6 The initial Multiple Group-by query implementation based on MapRe-

duce model. 88

4.7 Aggregate table structure . 88

4.8 The optimized Multiple Group-by query implementation based on Map-

CombineReduce model. 92

4.9 Speed-up versus the number of machines and the block size (1000, 2000,

4000, 8000, 16000). 94

4.10 Comparison of the execution time upon the size of the data set and the

query selectivity. 96

5.1 Data placement for the vertical partitions. 109

5.2 (a) Compressed data files for one horizontal partition. (b) Compressed

data files for one vertical partition of dimension x. (DV means Distinct

Value) . 111

5.3 Speed-up of MapReduce Multiple Group-by query over horizontal parti-

tions. 121

5.4 Speed-up of MapCombineReduce Multiple Group-by query over horizon-

tal partitions. 122

5.5 Speed-up of MapReduce Multiple Group-by aggregation over vertical par-

titions, MapReduce-based implementation is on the left side. MapCombineReduce-

based implementation is on the right side. 125

5.6 Hitting data distribution: (a) Hitting data distribution of qurey with

WHERE condition ”Color=’Pink’ ”(selectivity=1.06%) in the first 2000

records of ROWSET; (b) Hitting data distribution of query with WHERE

condition ”Product Family=’Accessories’ ”(selectivity=43.1%) in the first

2000 records of ROWSET. 129

5.7 Measured speedup curve vs. Modeled speedup curve for MapReduce

based query on horizontal partitioned data, where the each work node

runs one mapper. 138

x

LIST OF FIGURES

5.8 Compressed data files suitable for distinct value level job scheduling with

measures for each distinct value are stored together. 141

5.9 Compressed data structure storing recordID list as Integer Array for

dimension with a large number of distinct values 143

5.10 Compressed data structure storing recordID list as Bitmap for dimension

with a small number of distinct values (In Java, Bitmap is implemented

as Bitset) . 144

xi

LIST OF FIGURES

xii

List of Tables

2.1 Example of Bitmaps for a column X: B0, B1, B2 and B3 respectively

represents the Bitmaps for X’s distinct values 0, 1, 2 and 3. 15

3.1 Differences between parallel database and MapReduce 68

4.1 Notations used for describing the cost analysis 98

5.1 Average execution time of multiple mappers jobs on 1 node. 127

5.2 Parameters and their estimated values (in ms) 137

5.3 Execution Times in ms of Group-by queries with different selectivities

(S) using new compressed data structures. The numbers shown in italic

represents that the corresponding aggregations run over the dimensions

correlated to the WHERE condition involved dimension. For example,

Product Family and Product Category are correlated dimensions. 146

A.1 Execution Times in ms of Group-by queries with different selectivities

(S) using three compressed data structures. The numbers shown in italic

represents that the corresponding aggregations run over the dimensions

correlated to the WHERE condition involved dimension. For example,

Product Family and Product Category are correlated dimensions. 157

xiii

LIST OF TABLES

xiv

Listings

4.1 SQL statements used to create materialized view—ROWSET 73

4.2 SQL statements used for displaying the first page of exploration panel. . 76

4.3 SQL statements used for displaying the second page of exploration panel. 77

xv

LISTINGS

xvi

1

Introduction

Business Intelligence (BI) end-user tools often require rapid query processing in order

to serve the interactive interfaces. The typically required queries are usually complex,

with the concerning data from various categories, at different the semantic levels. The

typically require queries access a large volume of historical data, which is progressively

generated every day. BI software needed to be scalable in order to address this in-

creasing data volume. Short response time requirement and scalability requirement are

the two important aspects concerning the performance of BI software. They are also

the main objectives for which we start this work. In this chapter, we first review the

relevant technologies of BI. Then we illustrate the main problems need to be addressed.

After that, we describe the main contributions of this work. Finally, we specify the

organization of this dissertation.

1.1 BI, OLAP, Data Warehouse

In present enterprise competitions, business and organizations are faced with changing

circumstances and challenges. In order to adapt to changes, business and organizations

need to be continually making decisions to adjust their actions so as to grow profitably.

BI is a broad category of software applications or technologies for gathering, storing,

analysing and providing data access to help users to make sound business decision. BI

has increased the need for analytical capabilities. In earlier stage before BI, such as in

decision support systems, users’ queries are relatively straightforward reports, but now

1

1. INTRODUCTION

their queries often require on-line analytical capabilities, such as forecasting, predictive

modeling, and clustering.

On-Line Analytical Processing (OLAP) provides many functions which make BI

happens. It transforms data into multidimensional cubes, provides summarized, pre-

aggregated and derived data, manages queries, offers various calculation and modeling

functions. In the BI architecture, OLAP is a layer between Data Warehouse and BI

end-user tools. The results calculated by OLAP are feed to end-user BI tools, which in

turn realize functions like, business modeling, data exploration, performance reporting

and data mining etc. During the data transformation, the raw data is transformed

into multidimensional data cube, over which OLAP processes queries. Thus, answering

multidimensional analytical queries is one of the main functions of OLAP. Codd E.F.

put the concept of OLAP forward in (41), where Codd and his colleagues devised twelve

rules covering key functionality of OLAP tools.

Data Warehouse is an enterprise level data repository, designed for easily reporting

and analysis. It does not provide on-line information; instead, data are extracted from

operational data source, and then cleansed, transformed and catalogued. After such

a set of processing, manager and business professionals can directly use this data for

on-line analytical processing, data mining, market research and decision support. This

set of processing is also considered as the typical actions performed in Data Warehouse.

Specifically, actions for retrieving and analysing data, actions for extracting, transform-

ing and loading data, and actions for managing data dictionary make up the principal

components of Data Warehouse.

1.2 Issues with Data Warehouse

As data is getting generated from various operational data source, the volume of data

stored in Data Warehouse is ever-increasing. While today’s data integration technolo-

gies make it possible to rapidly collect large volume of data, fast analysis over a large

data set still needs the scalability performance of Data Warehouse to be further im-

proved. Scaling up or scaling out with increasing volume of data is the common sense of

scalability. Another aspect of scalability is scaling with increasing number of concurrent

running queries. Comparing with data volume scalability, query number scalability is

relatively well resolved in present Data Warehouse.

2

1.3 Objectives and Contributions

With BI end-user tools, the queries are becoming much more complex than before.

Users used to accept simple reporting function, which involves small volume of aggre-

gated data stored in Data Warehouse. But today’s business professionals demand to

access data from the top aggregate level to the most detailed level. They play more

frequently with Data Warehouse with the ad hoc queries, interactive exploration and

reporting. Interactive interface of BI strictly requires the response time should not be

above 5 seconds, ideally within hundred of milliseconds. Such a short response time

(interactive processing) requirement is another issue with Data Warehouse.

1.3 Objectives and Contributions

In this work, we are going to address data scalability and interactive processing issues

arose in Data Warehouse, and propose a feasible, cheap solution. Our work is aiming

to utilize commodity hardware. Different from those solutions relying on high-end

hardware, like SMP server, our work is realized on commodity computers connecting in

a shared-nothing mode. However, regarding to performance and stability of commodity

hardware and those of high-end hardware are not comparable. The failure rate of

commodity computers is much higher than high-end hardware.

Google proposed MapReduce is the de facto the Cloud computing model. After

the MapReduce article (47) publication in 2004, MapReduce attracts more and more

attentions. For our work, the most attractiveness of MapReduce is its automatical

scalability and fault-tolerance. Therefore, we adopted MapReduce in our work to par-

allelize the query processing. MapReduce is also a flexible programming paradigm. It

can be used to support all of data management processes performed in Data Warehouse,

from Extract, Transform and Load to data cleansing and data analysis.

The major contributions of this work are the following:

• A survey of existing work for accelerating multidimensional analytical

query processing. Three approaches are involved, including pre-computing,

data indexing and data partitioning. These approaches are valuable experience,

from which we can benefit in new data processing scenario. We summarize a wide

range of commonly used operators’ parallelizations.

3

1. INTRODUCTION

• Latency comparison between Hadoop and GridGain. Those are two open-

source MapReduce frameworks. Our comparison shows Hadoop has long latency

and is suitable to for batch processing, while GridGain has low latency, and

is capable of processing interactive query. We chose GridGain because of its

advantage of low latency in the subsequent work.

• Communication cost analysis in MapReduce procedure. MapReduce

hides the communication detail in order to provide an abstract programming

model for developer. In spite of this, we are still curious of the underlying com-

munication. We analysed the communication cost in the MapReduce procedure,

and discussed the main factors affecting the communication cost.

• Proposition and use of manual supporting MapReduce data accessing.

Distributed File System, such as Google File System and Hadoop Distributed File

System and the file system based on cache are two main data storage approaches

used by MapReduce. We propose the third MapReduce data accessing support ,

i.e. manual support. In our work, we use this approach to works with GridGain

MapReduce framework. Although this approach requires developers to take care

of data locating issue, it provides chances for restructuring data, and allows to

improve data access efficiency.

• Making GridGain to support Combiner . Combiner is not provided in

GridGain. For enabling Combiner in GridGain, we propose to combine two

GridGain’s MapReduce tasks to create one MapCombineReduce task.

• Multiple Group-by query implementation basing on MapReduce We

implement MapReduce model and MapCombineReduce based Multiple Group-by

query. A detailed workflow analysis over the GridGain MapReduce procedure has

been done. Speed-up and scalability performance measurement was performed.

Basing on this measurement, we formally estimated the execution time.

• Utilize data restructure improves data access efficiency In order to accel-

erate Multiple Group-by query processing, we first separately partition data with

horizontal partitioning and vertical partitioning. Then, we create index and com-

pressed data over data partitions to improve data access efficiency. These mea-

4

1.4 Organisation of Dissertation

sures result in significant accelerating effects. Similarly, we measure the speed-up

performance of Multiple Group-by query over restructured data.

• Performance affecting factors analysis We summarize the factors affecting

execution time and discuss how they affect the performance. These factors are

query selectivity, number of mappers on one node, hitting data distribution, inter-

mediate output size, serialization algorithms, network status, use or not combiner,

data partitioning methods.

• Execution time modelling and parameters’ values estimation Taking into

account the performance affecting factors, we model the execution time for differ-

ent stage of MapReduce procedure in GridGain. We also estimate the parameters’

value for horizontal partitioning-based query execution.

• Compressed data structure supporting distinct-value-wise job-scheduling

Data location-based job-scheduling is not flexible enough. A more flexible job-

scheduling in our context is distinct-value-wise job-scheduling, i.e. one mapper

works to compute aggregates for only several distinct values of one Group-by di-

mension. We propose a new structure of compressed data, which facilitate this

type of job-scheduling.

1.4 Organisation of Dissertation

The rest of this dissertation is organized as follows.

Chapter 2 focuses on traditional technologies for optimizing distributed parallel

multidimensional data analysis processing. Three approaches for accelerating multi-

dimensional data analysis query’s processing are pre-computing, indexing techniques

and data partitioning. They are still very useful for our work. We will talk about

these three approaches for accelerating query processing as well as their utilizations in

distributed environment. The parallelism of various operators, which are widely used

in parallel query processing, is also addressed.

Chapter 3 addresses data intensive applications based on MapReduce. Firstly, we

will describe the logic composition of MapReduce model as well as its extended model.

The relative issues about this model, such as MapReduce’s implementation frameworks,

cost analysis will also be described. Secondly, we will talk about the distributed file

5

1. INTRODUCTION

system underlying MapReduce. A general presentation on data management applica-

tions in the cloud is given before the discussion about large-scale data analysis based

on MapReduce.

Chapter 4 describes MapReduce-based Multiple Group query processing, one of

our main contributions. We will introduce Multiple Group-by query, which is the calcu-

lation that we will parallelize relying on MapReduce. We will give two implementation

of Multiple Group-by query, one is based on MapReduce, and the other is based on

MapCombineReduce. We also will present the performance measurement and analysis

work.

Chapter 5 talks about performance improvement, one of our main contributions.

We will first present the data restructure phase we adopted for improving performance

of individual job. Several optimizations were performed over raw data set within data

restructuring, including data partitioning, indexing and data compressing. We will

present the performance measurement and the proposed execution time estimation

model. We will identify the performance affecting factors during this procedure. A

proposed alternative compressed data structure will be described at the end of this

work. It enables to realize more flexible job scheduling.

6

2

Multidimensional Data Analyzing

over Distributed Architectures

Multidimensional data analysis applications are largely used in BI systems. Enterprises

generate massive amount of data everyday. These data are coming from various as-

pects of their products, for instance, the sale statistics of a series of products in each

store. The raw data is extracted, transformed, cleansed and then stored under multi-

dimensional data models, such as star-schema1. Users ask queries on this data to help

making business decisions. Those queries are usually complex and involve large-scale

data access. Here are some features we summarized for multidimensional data analysis

queries as below:

• queries accesses large data set performing read-intensive operations;

• queries are often quite complex and require different views of data;

• query processing involves many aggregations;

• updates can occur but infrequently, and can be planned by administrator to

happen at an expected time.

Data Warehouse is the type of software designed for multidimensional data analy-

sis. However, facing to larger and larger volume of data, the capacity of a centralized

Data Warehouse seems too limited. The amount of data is increasing; the number of

concurrent queries is also increasing. The scalability issue became a big challenge for

1A star schema consists of a single fact table and a set of dimension tables

7

2. MULTIDIMENSIONAL DATA ANALYZING OVER DISTRIBUTED
ARCHITECTURES

centralized Data Warehouse software. In addition, short response time is also chal-

lenging for centralized Data Warehouse to process large-scale of data. The solution

addressing this challenge is to decompose and distribute the large-scaled data set, and

calculate the queries in parallel.

Three basic distributed hardware architectures exist, including shared-memory,

shared-disk, and shared-nothing. Shared-memory and shared-disk architectures can-

not well scale with the increasing data set scale. The main reason is that these two

distributed architectures all require a large amount of data exchange over the inter-

connection network. However, interconnection network cannot be infinitely expanded,

which becomes the main shortage of these two architectures. On the contrary, shared-

nothing architecture minimizes resource sharing. Therefore, it minimizes the resource

contentions. It fully exploits local disk and memory provided by a commodity com-

puter. It does not need a high-performance interconnection network, because it only

exchanges small-sized messages over network. Such an approach minimizing network

traffic allows more scalable design. Nowadays, the popular distributed systems almost

adopted the shared-nothing architectures, including, peer-to-peer, cluster, Grid, Cloud.

The research work related to data over shared-nothing distributed architectures is also

very rich. For instance, parallel database like Gamma (54), DataGrid project (6),

BigTable (37) etc. are all based on shared-nothing architecture.

In the distributed architecture, data is replicated on different nodes, and query is

processing in parallel. For accelerating multidimensional data analysis query’s pro-

cessing, people proposed many optimizing approaches. The traditional optimizing ap-

proaches, used in centralized Data Warehouse, mainly include pre-computing, indexing

techniques and data partitioning. These approaches are still very useful in the dis-

tributed environment. In addition, a great deal of work is also done for paralleling

the query processing. In this chapter, we will talk about three approaches for accel-

erating query processing as well as their utilizations in distributed environment. We

will present parallelism of various operators, which are widely used in parallel query

processing.

8

2.1 Pre-computing

2.1 Pre-computing

Pre-computing approach resembles the materialized views optimizing mechanism used

in database system. In multidimensional data context, the materialized views become

data cubes1. Data cube stores the aggregates for all possible combination of dimen-

sions. These aggregates are used for answering the forthcoming queries.

For a cube with d attributes, the number of sub-cubes is 2d. With the augment of the

number of cube’s dimensions, the total volume of data cube will exponentially increase.

Thus, such an approach produces data of volume much larger than the original data

set, which might not have a good scalability facing to the requirement of processing

larger and larger data set. Despite this, the pre-computing is still an efficient approach

for accelerating query processing in a distributed environment.

2.1.1 Data Cube Construction

Constructing data cube in a distributed environment is one of the research topics. The

reference (93) proposed some methods for construction of data cubes on distributed-

memory parallel computers. In their work, the data cube construction consists of six

steps:

• Data partitioning among processors.

• Load data into memory as a multidimensional array.

• Generate a schedule for the group-by aggregations.

• Perform the aggregation calculations.

• Redistribute the sub-cubes to processors for query processing.

• Define local and distributed hierarchies on all dimensions.

In the data loading step (step 2), the size of the multidimensional array in each

dimension equals the number of distinct values in each attribute; each record is repre-

sented as a cell indexed by the values2 of each attribute. This step adopted two different

1Data Cube is proposed in (67), it is described as an operator, it is also called for short as cube.
Cube generalizes the histogram, cross-tabulations, roll-up, drill-down, and sub-total constructs, which
are mostly calculated by data aggregation.

2The value of each attribute is a member of the distinct values of this attribute.

9

2. MULTIDIMENSIONAL DATA ANALYZING OVER DISTRIBUTED
ARCHITECTURES

methods for data loading: hash-based method and sort-based one. For small data sets,

both methods work well, but for large data sets, the hash-based method works better

than the sort-based method, because of its inefficient memory usage1. The cost for

aggregating the measure values stored in each cell is varying. The reason is that the

whole data cube is partitioned over one or more dimensions, and thus some aggregating

calculations involve the data located on other processors. For example, for a data cube

consisting of three dimensions A, B and C, being partitioned over dimension A, then

aggregations for the series of sub-cubes ABC→AB→A involve only local calculations

on each node. However, the aggregations of sub-cube BC need the data from the other

processors.

2.1.2 Issue of Sparse Cube

The sparsity is an issue of data cube storage. In reality, the sparsity is a common

case. Take an example of a data cube consisting of three dimensions (product, store,

customer). If each store sells all products, then the aggregation over (product, store)

produces |product| × |store| records. When the number of distinct values for each

dimension increases, the product of above formula will greatly exceed the number of

records coming from the input relation table. When a customer enters a store, he/she

is not possible to cannot buy 5% of all the products. Thus, many records related to this

customer will be a cell ”empty”. In the work of (58), the authors addressed the problem

of sparsity in multidimensional array. In this work, data cube are divided into chunks,

each chunk is a small equal-sized cube. All cells of a chunk are stored contiguously in

memory. Some chunks only contain sparse data, which are called sparse chunks. For

compressing the sparse chunks, they proposed a Bit-Encoded Sparse Storage (BESS)

coding method. In this coding method, for a cell presents in a sparse chunk, a dimension

index is encoded in ⌈log |di|⌉ bits for each dimension di. They demonstrated that data

compressed in this coding method could be used for efficient aggregation calculations.

2.1.3 Reuse of Previous Query Results

Apart from utilizing pre-computed sub-cubes to accelerate query processing, people

also tried to reuse the previous aggregate query results. With previous query results

1Sort-based method is excepted to work efficiently as in external memory algorithms it reduces the
disk I/O over the hash-based method.

10

2.1 Pre-computing

being cached in memory, if the next query, say Qn, is evaluated to be contained within

one of the previous queries, say Qp, thus Qn can be answered using the cached results

calculated for Qp. The case where Qp and Qn have entire containment relationship

is just a special case. In a more general case, the relationship between Qp and Qn is

only overlapping, which means only part of the cached results of Qp can be used for

Qp. For addressing this partial-matching issue, the reference (51) proposed a chunk-

based caching method to support fine granularity caching, allowing queries to partially

reuse the results of previous queries which they overlap; another work (75) proposed a

hybrid view caching method which gets the partial-matched result from the cache, and

calculates the rest of result from the component database, and then it combines the

cached data with calculated data to form the final result.

2.1.4 Data Compressing Issues

As the size of data cube’s growth is exponential with the number of dimensions, when

the number of dimensions increase to a certain extent, the corresponding data cube

will explode. In order to address this issue, some data cube compressing methods

are proposed. For instance, Dwarf (97) is a method of constructing compressed data

cube. Dwarf considers eliminating prefix redundancy and suffix redundancy over cube

computation and storage. The prefix redundancy commonly appears in dense area,

while the suffix redundancy appears in the sparse area. For a cube with dimensions

(a, b, c), there are several group-bys, including a: (a, ab, ac, abc). Assuming that the

dimension a has 2 distinct values a1, a2, dimension b has b1, b2 and dimension c has

c1, c2, in the cells identified by (a1, b1, c1), (a1, b1, c2), (a1, b1), (a1, b2), (a1, c1), (a1,

c2) and (a1), the distinct value a1 appears 7 times, which causes a prefix redundancy.

Dwarf can identify this kind of redundancy and store each unique prefix only once.

For example, for aggregate values of three cells (a1, b1, c1), (a1, b1, c2), and (a1, b1),

the prefix (a1, b1) is associated with one pointer pointing to a record with 3 elements

(agg(a1, b1, c1), agg(a1, b1, c2), agg(a1, b1)). Thus the storage for cube cells’ identifiers,

i.e. (a1, b1, c1), (a1, b1, c2), and (a1, b1), is reduced to storage of one prefix(a1, b1)

and one pointer. The suffix redundancy occurs when two or more group-bys share a

common suffix (like, (a, b, c) and (b, c)). If a and b are two correlated dimensions, some

value of dimension a, say ai, only appears together with another value bj of dimension

b. Then the cells (ai, bj , x) and (bj , x) always have the same aggregate values. Such

11

2. MULTIDIMENSIONAL DATA ANALYZING OVER DISTRIBUTED
ARCHITECTURES

a suffix redundancy can be identified and eliminated by Dwarf during the construction

of cube. Thus, for a cube of 25 dimensions of one petabyte, Dwarf reduces the space

to 2.3 GB within 20 minutes.

The condensed cube (104) is also a work for reducing the size of data cube. Con-

densed cube reduces the size of data cube and the time required for computing the

data cube. However, it does not adopt the approach of data compression. No data

decompression is required to answer queries. No on-line aggregation is required when

processing queries. Thus, there is no additional cost is caused during the query process-

ing. The cube condensing scheme is based on the Base Single Tuple (BST) concept.

Assume a base relation R (A, B, C,...) , and the data cube Cube(A, B,C) is con-

structed from R. Assume that attribute A has a sequence of distinct values a1, a2...an.

Considering a certain distinct value ak, where 1 ≤ k ≤ n, if among all the records of R,

there is only one record, say r, containing the distinct value ak, then r is a BST over

dimension A. To be noted, one record can be a BTS on more than one dimension. For

example, continuing the previous description, if the record r contains distinct value cj

on attribute C, and no else record contains cj on attribute C, then record r is the BST

on C. The author gave a lemma saying that if record r is a BST for a set of dimen-

sions, say SD, then r is also the BTS of the superset of SD. For example, consider

record r, a BST on dimension A, then r is also the BST on (A, B), (A, C), (A, B,

C). The set contains all these dimensions is called SDSET . The aggregates over the

SDSET of a same BST r concern always the same record r, which means that any the

aggregate function aggr() only apply on record r. Thus, all these aggregate values will

have equal value aggr(r). Thus, only one unit of storage is required for the aggregates

of the dimensions and combination of dimension from SDSET .

2.2 Data Indexing

Data indexing is an important technology of database system, especially when good

performance of read-intensive query is critical. The index is composed of a set of

particular data structure specially designed for optimizing the data access. When per-

forming read operations over the raw data set, within which the values of column are

randomly stored, only full table scan can achieve data item lookup. In contrast, when

performing read operations over index, where data items are specially organized, and

12

2.2 Data Indexing

the auxiliary data structures are added, the read operations can be performed much

more efficiently. For queries of characteristics of read-intensive, like multidimensional

data analysis query, index technology is an indispensable aid to accelerate query pro-

cessing. Compared with other operations happening within the memory, the operations

for reading data from the disk might be the most costly operations. One real example

cited from (80) can demonstrate this: ”we assume 25 instructions needed to retrieve

the proper records from each buffer resident page. Each disk page I/O requires several

thousand instructions to perform”. It is clear that data accessing operations are very

expensive. Especially, it becomes the most common operation in the read-intensive

multidimensional data analysis application. Indexing data improves the data access-

ing efficiency by providing the particular data structures. The performance of index

structures depends on different parameters, such as the number of stored records, the

cardinality of the data set, disk page size of the system, bandwidth of disks and latency

time etc. The index techniques used in Data Warehouse is coming from the index of

database. Many useful indexing technologies are proposed, such as, B-tree/B+-tree

index (55), projection index(80), Bitmap index (80), Bit-Sliced index (80), join index

(103), inverted index (42) etc. We will review these interesting index technologies in

this section.

2.2.1 B-tree and B
+-tree Indexes

B+-tree indexes(55) are one of the commonly supported index types in relational

database systems. A B+-tree is a variant of B-tree. To this end, we will briefly review

B-tree. The Figure 2.1 illustrates these two types of index. In a B-tree with order of

d, each node has at most 2d keys, and 2d + 1 pointers, but at least d keys and d + 1

pointers. Each node is stored in form of one record in the B-tree index file. Such a

record has a fixed length, and is capable of accommodating 2d keys and 2d+1 pointers

as well as the auxiliary information, specifying how many keys are really contained in

this node. In a B-tree of order d, accommodating n keys, a lookup for a given key never

uses more than 1 + ⌈logd n⌉ visits, where 1 represents the visit of root, ⌈logd n⌉ is the

height of tree, which is also the longest path from root to any leaf. As an example,

the B-tree shown in Figure 2.1 (a) has order d = 2, because each node holds keys of

number between d and 2d, i.e. between 2 and 4. In total, 26 keys reside inside the

13

2. MULTIDIMENSIONAL DATA ANALYZING OVER DISTRIBUTED
ARCHITECTURES

B-tree index. Then, a lookup over this B-tree involves no more than 1 + ⌈log2 26⌉ = 3

operations.

B+-tree is an extension of B-tree. In a B+-tree, all keys reside in the leaves, but

the branch part (upper level above the leaves) is actually a B-tree index, except that

the separator keys held by the upper-level nodes still appear in one of their lower-level

nodes. The nodes in the upper-level have different structure from the leaf nodes. The

leaves in a B+-tree are linked together by pointers from left to right. The linked leaves

form a sequence key set. Thus, a B+-tree is composed of one independent index for

search and a sequence set. As all keys are stored in leaves, any lookup in B+-tree

spends visits from the root to a leaf, i.e. 1 + ⌈logd n⌉ visits. An example of B+-tree is

shown in Figure 2.1 (b).

(a)B-tree of order d = 2

(b)B+-tree of order d = 3

Figure 2.1: B-tree index (a) vs. B+-tree index(b)

B+-tree indexes are commonly used in database systems for retrieving records which

contain the given values in specified columns. A B+-tree over one column takes the

distinct values as the keys. In practice, only the prefix of each distinct value is stored in

the branch part nodes, for saving space. On the contrary, the keys stored in the leaves

accommodate distinct values. Each record of a table with a B+-tree index on one

column is referenced once. Records are partitioned by distinct values of the indexed

14

2.2 Data Indexing

column, and the list of RecordIDs indicating those records having the same distinct

value are associated to a same key.

B+-tree indexes are considered to be very efficient for lookup, insertion, and dele-

tion. However, in the reference (80), the author pointed out the limitation of B+-tree

index: it is inconvenient when the cardinality of the distinct values is small. The reason

is that, when the number of distinct values (i.e. keys in B+-tree index) is small com-

pared with the record number, each distinct value is associated with a large number of

RecordIDs. Thus, a long RecordID-list needs to be stored for every key (distinct value).

Assume that one RecordID is stored as an integer, thus it takes 4 bytes for storing one

RecordID. Even after compressing, the space required for storing these RecordIDs can

take up to 4 times space required for stocking all RecordIDs. Therefore, in case of small

number of distinct values, B+-tree indexes are not space-efficient.

2.2.2 Bitmap Index

Another type of index structures, the Bitmap index is proposed to address the issue of

small number of distinct values. Bitmap indexes do not store RecordID-list; instead,

they store a bit structure representing the RecordID-list for records containing specific

distinct values of the indexed column. This bit structure for representing the RecordID-

list is called Bitmap. A Bitmap for a key (distinct value) is composed of a sequence

of bits; the length of the bit sequence equals the record number of table; if one certain

record, say the r-th record, contains the key in question, then the r-th bit is set to 1,

and the other bits are set to 0. Refer to an example of Bitmap shown by Table 2.1.

RecordID X B0 B1 B2 B3

0 2 0 0 1 0

1 1 0 1 0 0

2 3 0 0 0 1

3 0 1 0 0 0

4 3 0 0 0 1

5 1 0 1 0 0

6 0 1 0 0 0

7 0 1 0 0 0

Table 2.1: Example of Bitmaps for a column X: B0, B1, B2 and B3 respectively represents
the Bitmaps for X’s distinct values 0, 1, 2 and 3.

15

2. MULTIDIMENSIONAL DATA ANALYZING OVER DISTRIBUTED
ARCHITECTURES

A Bitmap index for a column C containing distinct values v0,v1,...,vn, is composed

of a B-tree, in which keys are distinct values of C, and each key is associated with a

Bitmap tagging the RecordIDs of records having the current key in its C field. Bitmap

indexes are more space-efficient than storing RecordID-list when the number of keys

(distinct values) is small (80). In addition, as the Boolean operations (AND, OR, Not)

are very fast for bit sequence operands, then operations for applying multiple predicates

are efficient with Bitmap indexes. Similarly, this also requires the indexed column has

a small number of distinct values.

To be noted, storing Bitmaps and storing RecordID-list (used in B-tree and B+-tree)

are two interchangeable approaches. Both of them are aiming to store information of

corresponding RecordIDs for a given distinct value When the number of distinct values

of indexed column is small, each distinct value corresponds to a large number of records.

In this case, the Bitmap is dense i.e. it contains a lot of 1-bits. Therefore, using Bitmap

is more space-efficient. On the contrary, when the number of distinct values is large,

then each distinct value corresponds to a small number of records. In such a case,

directly storing RecordID-list is more space-efficient.

2.2.3 Bit-Sliced Index

Bit-sliced indexes (80) a type of index structure aiming to efficiently access values in

numeric columns. Different from values of ”text” type, numeric values can be extremely

variable, then the number of distinct values can be extremely large too. For indexing a

numeric column, the technologies for indexing text column are not practical. A useful

feature of numeric values is that they can be represented using binary number. In order

to create a bit-sliced index over a numeric column, one need to represent each numeric

value with binary number. Through representing in binary number, one numeric value

is expressed by a sequence of 0 and 1 codes with a fixed length, say N , where the bits in

this sequence are numbered from 0 to N −1. A sequence of Bitmaps, B0, B1 ..., BN−1,

is created, each Bitmap recording the bit values at i-th position (i = 1..N − 1) for all

the column values. Refer to an example of bit-sliced index from Figure 2.2. In this

example, a bit-sliced index is generated for a sale qty column, which stores four data

items of quantity of sold products. These four integer values of sale qty are represented

with binary numbers, each of them having 7 bits. Then these binary numbers are sliced

16

2.2 Data Indexing

into 7 Bitmaps, B0...B6. Bit-sliced indexes can index a large range of data, for instance,

20 Bitmaps are capable of indexing 220 − 1 = 1048575 numeric values.

Figure 2.2: Example of Bit-sliced index

2.2.4 Inverted Index

Inverted index(42) is a data structure which stores a mapping from a word, or atomic

search item to the set of documents, or sets of indexed units containing that word.

Inverted indexes are coming from the information retrieval systems, and widely used

in most full-text search. Search engines also adopted the inverted indexes. After web

pages are crawled, an inverted index of all terms and all pages is generated. Then the

searcher uses the inverted index and other auxiliary data to answer queries. Inverted

index is a reversal of the original text in the documents. We can consider the documents

to be indexed as a list of documents, each document is pointing to a term list. On the

contrary, an inverted index maps terms to documents. Instead of scanning a text and

then seeing its content (i.e. a sequence of terms), an inverted index allows an inverted

search of a term to find its accommodating documents. Each term appears only once in

inverted indexes, but it appears many times in the original documents. The identifier

of document appears many times in inverted indexes, but only once in the original

document list.

An inverted index is composed of two parts, an index for terms and for each term

a posting list (i.e. a list of documents that contain the term). If the index part is

sufficiently small to fit into memory, then it can be realized with a hash table; on

the contrary, if the index part cannot fit into memory, then the index part can be

realized with a B-tree index. Most commonly, B-tree index is used as the index part.

17

2. MULTIDIMENSIONAL DATA ANALYZING OVER DISTRIBUTED
ARCHITECTURES

The reference (42) proposed some optimization for B-tree based inverted index. The

optimization involves reducing disk I/Os and storage space. As disk I/Os are the

most costly operations compared with other operations, reducing disk accesses and

reducing storage space also mean accelerating the processing of index creation and

index searching. Two approaches for fully utilizing memories1, i.e. page cache and

buffer, were proposed to create inverted index. With page cache approach, the upper

level part of B-tree is cached in memory, then sequentially read into each word from

documents and write them to the B-tree. In order to update the nodes beyond the

cached part of B-tree, an extra disk access is required. With buffer approach, the

postings reside in a buffer (in memory) instead of the upper level part of B-tree. When

the buffer is full, the postings will be merged with B-tree. During the period of merge,

B-tree’s each sub-tree is iteratively loaded into memory in order to be merged. The

buffer approach is demonstrated to run faster than the page cache approach. Storing

the associated posting list of each term in a heap file on disk can reduce both disk

I/Os and storage space. For reducing the storage space for posting list, a simple delta

encoding is very useful. Instead of storing the locations of all postings as a sequence

of integers, delta encoding just records the distance between two successive locations,

which a smaller integer occupying less space.

In a multidimensional data set, the columns including only pure ”text” type values

are very common. For example, the columns storing information about, city name,

person name, etc. These columns have a limited number of distinct values2. Thus, it is

possible to index values of these ”text” type column with inverted index. To this end,

we consider the column values contained in each record as terms, and the RecordIDs as

a document (i.e. posting in the terminology of full-text search). Instead of storing the

document-ids as the postings, the RecordIDs are stored as postings in inverted index.

Using inverted index allows quickly finding the given term’s locations. Similarly, using

inverted index can quickly retrieve records meeting a query’s condition. The reference

(73) proposed a method of calculating high-dimensional OLAP queries with the help

of inverted indexes. The issue being addressed in this work is the particularly large

number of dimensions in high-dimensional data set. As the number of dimensions are

1Assume that the B-tree index is too large to fit into memory, only a part of nodes of B-tree can
reside in memory.

2In contrast, the columns including only numeric type values can have very large number of distinct
values.

18

2.2 Data Indexing

too large, the data cube is not possible to pre-calculate because of the data cube’s

exponential growth with the number of dimensions. In their work, they vertically par-

titioned the original data set into fragments, each fragment containing a small number

of dimensions. The local data cube is pre-calculated over each fragment instead of over

the original high-dimensional data set. Along with the calculation of local data cubes,

the inverted index for each cuboid1 is also built. The inverted index for a individual

dimension is directly created; the inverted index for non-individual-dimension-cuboid

is calculated by intersecting record-lists of two or more concerned values stored in the

inverted indexes of concerned individual-dimension-cuboids. Here, these inverted in-

dexes are served to efficiently retrieve concerned RecordIDs for computing cells of a

given cuboid.

Lucene(16) is an open-source implementation of inverted index. It is originally cre-

ated by Doug Cutting, one author of the reference (42). It is now under the Apache Soft-

ware License. It is adopted in the implementation of Internet search engines. Lucene

offers a set of APIs for creating inverted index and search on it. Lucene allows user to

reconfigure the parameters to obtain higher performance.

2.2.5 Other Index Techniques

Projection Index

Taking into account that most queries retrieve only a part of columns, accessing the

whole table for reading only part of them is considered to be inefficient. For solving

this problem, projection index is proposed in (80). A projection index over one column

extracts the values of this column from the raw data table, keeping the order of values

as in the ordinal data table. In case of processing query concerning a small number of

columns being concerned, data access over projection indexes is very efficient.

Join Index

Join index (103) is proposed to optimize the join operations. A join index concerns

two relations to be joined. Assuming A and B are two relations to join, and A joins B

1A cuboid is an element composing data cube, and it is also a group-by over the original data set.
For example, for a data set with 3 dimensions (A1, A2, A3), the cuboids composing the cube (A1, A2,
A3) are: {A1, A2, A3, (A1, A2), (A1, A3), (A2, A3), (A1, A2, A3)}. The cuboid on all dimensions is
called base cuboid.

19

2. MULTIDIMENSIONAL DATA ANALYZING OVER DISTRIBUTED
ARCHITECTURES

will produce a new relation T . Then a join index for two joining relations A and B—

join operation concerns the column a from A and the column b from B—is composed

of columns a and b, each qualified record will appear in the produced relation T. Join

index can be used together with other indexing technologies, such as Bitmap index,

Projection index, Bit-Sliced index. Choosing appropriate combination according to the

characteristics of queries will produce high efficiency (80). For instance, a combination

between Join index and Bitmap index can avoid creating and storing many Join indexes

for all joins probably appear before processing a query, because the join index can be

rapidly created in the runtime with the aid of Bitmap index.

R-tree Index

R-tree index is an index structure similar to B-tree, but is used to access cells of

a multidimensional space. Each node of an R-tree has a variable number of entries

(up to some pre-defined maximal value). Each entry within a non-leaf node stores

two pieces of data: a way of identifying a child node, and the bounding box of all

entries within this child node. Some research work has exploited R-tree index to build

index over data cube, such as Cubetree (92), Master-Client R-Tree (94), and RCUBE

index (48). Cubetree is a storage abstraction of the data cube, which is realized with a

collection of well organized packed R-trees that achieve a high degree of data clustering

with acceptable space overhead. A Master-client tree index is composed of the non-leaf

nodes stored on master and leaf nodes stored on clients; each client builds a complete

R-tree for the portion of data assigned to it. RCUBE index is similar to Master-Client

tree index, except that there is no a global R-tree on a dedicated node (Master), instead,

and the queries are passed in form of messages directly to each processor.

2.2.6 Data Indexing in Distributed Architecture

Using indexing technology in a distributed architecture for efficient query processing is

still an open issue. The challenge is concerning with data partitioning and data ordering

so as to satisfy the requirements of load balancing and minimal disk accesses over each

node. More specifically, load balancing requires reasonably partitioning data set and

placing each data partitions over nodes so that the amount of data retrieved from

20

2.3 Data Partitioning

each node as evenly as possible1; minimal disk accesses requires good data structure to

augment the efficiency of data accessing over the disk of each node.

In the reference (44), the author proposed an index method similar to projection

indexing and join index to process queries. Differently, they use these indexes in a

distributed environment (shared-nothing). This work is based on a star-schema data

set, which is composed of several dimension tables and one fact table. In this work,

the data index is called Basic Data Index (BDI). BDI is a vertical partition of the

fact table, which includes more than one column. The BDI is separated out and be

stored respectively, having the same number of records as in the fact table. After

separating out one BDI, the fact table does not keep the same columns. Assuming

the star-schema data set has d dimensions, the fact table is vertically partitioned into

d+1 BDI s, which d BDI s storing columns related to d dimensions, and 1 BDI storing

the remaining columns of the fact table. The Join Data Index (JDI) is designed to

efficiently process join operations between fact table and dimension table. Thus, it

concerns one of BDI s separated from the fact table and one dimension table. A JDI

add to the BDI the corresponding record’s RecordIDs, which identify the record in the

dimension table. In this way, the join operation between fact table and dimension table

can be accomplished with only one scan over JDI.

2.3 Data Partitioning

In order to reduce the resource contention 2, a distributed parallel system often uses

affinity scheduling mechanism; giving each processor an affinity process to execute.

Thus, in a shared-nothing architecture, this affinity mechanism tends to be realized

by data partitioning; each processor processes only a certain fragment of the data set.

This forms the preliminary idea of data partitioning.

Data partitioning can be logical or physical. Physical data partitioning means

reorganizing data into different partitions, while logical data partitioning will greatly

affect physical partitioning. For example, a design used in Data Warehouse, namely

data mart, is a subject-oriented logical data partitioning. In a Data Warehouse built

in an enterprise, each department is interested only in a part of data. Then, the data

1Data partitioning will also be referred to later in this chapter.
2Resource contention includes disk bandwidth, memory, network bandwidth, etc.

21

2. MULTIDIMENSIONAL DATA ANALYZING OVER DISTRIBUTED
ARCHITECTURES

partitioned and extracted from Data Warehouse for this department is referred as a

data mart. As we are more interested in the physical data access issue, we will focus

on the physical data partitioning techniques.

2.3.1 Data Partitioning Methods

Data partitioning allows exploiting the I/O bandwidth of multiple disks by reading

and writing in parallel. That increases the I/O efficiency of disks without needing any

specialized hardware (52). Horizontal partitioning and vertical partitioning are two

main methods of data partitioning.

2.3.1.1 Horizontal Partitioning

Horizontal partitioning conserves the record’s integrality. It divides tables, indexes

and materialized views into disjoint sets of records that are stored and accessed sepa-

rately. The previous studies show that horizontal partitioning is more suitable in the

context of relational Data Warehouses(33). There mainly are three types of horizontal

partitioning, round-robin partitioning, range partitioning and hash partitioning.

Round-robin partitioning is the simplest strategy to dispatch records among parti-

tions. Records are assigned to each partition in a round-robin fashion. Round-robin

partitioning works well if the applications access all records in a sequential scan. Round-

robin does not use a partitioning key, and then records are randomly dispatched to

partitions. Another advantage of round-robin is that it gives good load balancing.

Range partitioning uses a certain attribute as the partitioning attribute, and records

are distributed among partitions according to their values of the partitioning attribute.

Each partition contains a certain range of values on an indicated attribute. For example,

table CUSTOMER INFO stores information about all customers. We define column

ZIP-CODE as the partition key. We can range-partition this table by giving a rule

as zip-code between 75000 and 75019. The advantages of range partitioning is that it

works well when applications sequentially or associatively access data1, since records

are clustered after being partitioned. Data clustering puts related data together in

physical storage, i.e. the same disk pages. When applications read the related data,

the disk I/Os are limited. Each time one disk page is read, not only the targeted data

1Associative data accessing means access all records holding a particular attribute value.

22

2.3 Data Partitioning

item, but also other needed data items of potential operations are fetched into memory.

Thus, Range partitioning makes disk I/Os more efficient.

Hash partitioning is ideally suitable for applications that access data in a sequen-

tial manner. Hash partitioning also needs an attribute as the partitioning attribute.

Records are assigned to a particular partition by applying a hash function over the

partitioning key attribute of each record. Hash partitioning works well with both se-

quential data access applications and associative data access ones. It can also handle

data with no particular order, such as alphanumeric product code keys.

The problem with horizontal partitioning is that it might cause data skew, where

all required data for a query is put in one partition. Hash partitioning and round-robin

partitioning are less possible to causes data skew, but range partitioning is relatively

easy to cause this issue.

2.3.1.2 Vertical Partitioning

Another data partitioning method is vertical partitioning, which divides the original

table, index or materialized view into multiple partitions containing fewer columns.

Each partition has full number of records, but partial attributes. As each record has

fewer attributes, the size of record is smaller. Thus, each disk page can hold more

records, which allows query processing to reduce disk I/Os. When the cardinality of

the original table is large, this benefit is more obvious.

However, vertical partitioning has some disadvantages. Firstly, updating (insert or

delete) records in a vertically partitioned table involves operations over more proces-

sors. Secondly, vertical partitioning breaks the record integrality. Nevertheless, vertical

partitioning is useful in some specific contexts. For example, it can separate frequently

updated data (dynamic data) columns from static data columns; the dynamic data can

be physically stored as a new table. In the processing of data read-intensive OLAP

queries, vertical partitioning has its proper advantages:

• With isolating certain columns, it is easier to access data, and create index over

these columns (45; 44).

• Column-specific Data compression, like run-length encoding, can be directly per-

formed (24).

23

2. MULTIDIMENSIONAL DATA ANALYZING OVER DISTRIBUTED
ARCHITECTURES

• Multiple values from a column can be passed as a block from one operator to the

next. If existing attributes have fix-length values, then they can be iterated as

array (24).

• For some specific data set with a high dimension number, vertical partitioning is

more reasonable in terms of time and space costs (74).

2.3.2 Data Replication

Data replication technique is usually used together with data partitioning. Data repli-

cation is used to increase the liability. Multiple identical copies of data are stored over

different machines. Once the machine holding the primary copy is down, then the data

can still be accessed on machines holding the copies. In general, data replication and

distribution are not necessary together with data partitioning. They are the technolo-

gies can be used alone. In the work of (29), the author proposed an adaptive virtual

partitioning for OLAP query processing based on shared-nothing architecture. In their

approach, the data set is replicated over all the nodes in the shared-nothing cluster.

The virtual partitioning does not physically partition the data set, instead, it creates

a set of sub-queries including different predicates. By applying these predicates, the

original data set is virtually partitioned, the original query is run only on the data

items belonging to the partition.

2.3.3 Horizontally Partitioning Multidimensional Data Set

The multidimensional data set usually has a large volume. But the calculations over

them are expected running rapidly. As one of the OLAP query optimizing approaches,

data partitioning makes it possible to process queries in a parallel and distributed

fashion. Also, it can reduce irrelevant data accesses, improve the scalability, and ease

data management. In this sub-section, we summarize the applications of horizontal

partitioning in OLAP query processing. By horizontal partitioning, we refer to the

partitioning method that conserves the record integrality. According to the ways for

storing data, OLAP tools can be categorized into Relational OLAP (ROLAP) and

Multidimensional OLAP (ROLAP). In ROLAP, data is stored in form of relations

under star-schema. In MOLAP, data is stored in form of cubes or multidimensional

24

2.3 Data Partitioning

arrays i.e. data cubes. We separately specify the data partitioning approaches designed

for these two different data models.

2.3.3.1 Partitioning Multidimensional Array Data

In a MOLAP, data cube is represented as a multidimensional space, stored in opti-

mized multidimensional array storage. In the multidimensional space, each dimension

is represented as an axis; the distinct values of each dimension are various coordinate

values on the corresponding axis. The measures are loaded form each record in the

original data set into the cells of this multidimensional space, each cell being indexed

by the unique values of each attributes of the original record. Partitioning a data cube

into dimensions and measures is a design choice (93).

Partitioning data cubes should support equal or near-equal distributions of work

(i.e. the various aggregate computations for a set of cuboids) among processors. The

partitioning approach should be dimension-aware, which means that it should pro-

vide some regularity for supporting dimension-oriented operations. Partitioning can be

performed over one or more dimensions(93; 58). That is to say, the basic multidimen-

sional array is partitioned on one or more dimensions. The dimensions over which the

partitioning is performed are called partitioning dimensions. After partitioning, each

processor holds a smaller multidimensional array, where the number of distinct values

held in each partitioning dimension is smaller than in the whole multidimensional ar-

ray. Thus, the distinct values over each partitioning dimension are not be overlapped

among the sub-multidimensional arrays held by each processor. In order to obtain the

coarsest partitioning grain possible, the dimension(s) having largest number of distinct

values is chosen to be the partitioning dimension. Assume a data set with 5 attributes

(A, B, C, D, M), among them A, B, C, D are the dimensions (axis) in the multidi-

mensional array, and M is the measure stored in each cell of multidimensional array.

Da, Db, Dc and Dd are number of distinct values in each dimension, respectively, with

Da ≥ Db ≥ Dc ≥ Dd established. This data set will be partitioned and distributed over

p processors, numbered P0...Pn−1. Thus, an one-dimension partitioning will partition

on A, since the A has the biggest number of distinct values1; this partitioning also

builds an order on A, which means if Ax ∈ Pi and Ay ∈ Pj then Ax ≤ Ay for i < j.

1Similarly, a two-dimension partitioning will partition on A, B, since A and B have the biggest
number of distinct values.

25

2. MULTIDIMENSIONAL DATA ANALYZING OVER DISTRIBUTED
ARCHITECTURES

The sub-cubes are constructed over processors with their local sub-data set (i.e.

partition). In order to guarantee that each partition does not have overlaps over the

partitioning dimension’s distinct values, the sampling-like record distributing methods,

such hash-based or sort-based method can be used to distribute records to various

processors as described in (93).

Constructing the sub-cube is performed by scanning sub-data set attributed to the

local processor. In reference (93), the sub-data-set is scanned twice. The first scan

obtains the distinct values for each dimension contained in the sub-data-set, and con-

structs a hash-table for various dimensions’ distinct values. The second scan loads the

records into the multidimensional array. Record loading (the second scan) works to-

gether with probing the hash-tables created earlier. During this process, the method

chosen for partitioning and distributing the original data set, will affected the perfor-

mance because the way to access data is slightly different.

Another thing to be noted is that data partitioning determines the amount of data

movement during the aggregates’ computations of the aggregates (58). As the com-

putations of various cuboids involve multiple aggregations over any combination of

dimensions, some cuboid computations are non-local. They need to newly partition

over a dimension and distribute the partitions. Assume that the multidimensional ar-

ray of the 4 dimensional cube is partitioned over A, B, then the aggregation of over

dimension C from ABC1 to AC involves aggregations over dimension B, and requires

partitioning and distribution over dimension C.

2.3.3.2 Partitioning Star-schema Data

In ROLAP, data is organized under star-schema. Horizontal partitioning was considered

an effective method compared to vertical partitioning for star schema data (70). In the

centralized Data Warehouse, data is stored in form of star schema. In general, star

schema is composed of multiple dimension tables and one fact table. Since horizontal

partitioning addresses the issue of reducing irrelevant data access, it is helpful to avoid

unnecessary I/O operations. One of the features about data analysis queries run on

Data Warehouse is they involve multiple join operations between dimension tables and

the fact table. The derived horizontal partitioning, developed for optimizing relational

database operations, can be used to efficiently processed these join operations.

1The letters with underlines represents the dimensions being partitioned and distributed.

26

2.3 Data Partitioning

Partitioning only fact table

This partitioning scheme partitions only the fact table, and replicating the dimension

tables, since the fact table is generally large.

The reference (34) proposed stripping-partitioning approach. In this approach, the

dimension tables are fully replicated over all compute nodes without being partitioned,

as they are relatively small. The fact table is partitioned using round-robin partitioning

and each partition is distributed to a compute node. Defining N as the number of

computers, each computer stores 1/N fraction of total amount of records. Records

of fact table are striping-partitioned by N computers, then queries can be executed

in parallel. In this way, they guaranteed a nearly linear speed-up and significantly

improvement of query response time.

The size of each partition determines the workload attributed to a processor. The

partition size needs to be tuned according to variant queries. A virtual partitioning

method (28) was proposed for this purpose. It allows greater flexibility on node alloca-

tion for query processing than physical data partitioning. In this work, the distributed

Data Warehouse is composed of several database systems running independently. Data

tables are replicated over all nodes, and each query is broken into sub-queries by ap-

pending range predicates specifying an interval on the partitioning key. Each database

system receives a sub-query and is forced to process a different subset of data of the

same size. However, the boundaries limiting each subset are very hard to compute, and

dispatching the one sub-query per node makes it difficult to realize dynamic load bal-

ancing. A fine-grained virtual partitioning (FGVP) (31) was proposed addressing this

issue. FGVP decomposes the original query into a large number of sub-queries instead

of one query per database system. It avoids fully scanning table and suffers less from

the individual database system internal implementation. However, determining appro-

priate partition size is still difficult. Adaptive Virtual Partitioning (AVP) (29) adopted

an experimental approach to obtain the appropriate partitioning size. An individual

database system process the first received sub-query with a given small partitioning

size. Each time it starts to process a new sub-query, it increases the partitioning size.

This procedure repeats until the execution time does not shorten any more, then the

best partitioning size is found. Performing AVP needs some metadata information.

Metadata information includes clustered index of the relations, names and cardinalities

of relations, attributes on which a clustered index is built, the range of values of such

27

2. MULTIDIMENSIONAL DATA ANALYZING OVER DISTRIBUTED
ARCHITECTURES

attributes. The meta data information is stored in a catalog in the work of (69).

Partitioning dimension tables & fact table

This partitioning scheme works with star-schema is partitions both dimension tables

and fact table. Often, the dimension tables are horizontally partitioned into various

fragments, and the fact table is also horizontally partitioned according to the parti-

tioning results of dimension tables. This scheme takes in to account of the star-join

requirements.

The number of the fact table partitions depends on the partition number of each

dimension table. Assume N is the number of fact table partitions, p1...pd are the

partition numbers of dimension tables 1...d. If fact table partitioning considers all

partitioning performed on the dimension table, then N = p1 × ... × pd. That means,

along with augment of p1...pd, N will explosively increase. The work of (32) focus on

finding the optimal number of fact table partitions, in order to satisfy two objectives:

• avoid an explosion of the number of the fact table partitions;

• ensure a good performance of OLAP queries.

A generic algorithm is adopted for selecting an horizontal schema in their work.

2.3.4 Vertically Partitioning Multidimensional Data set

Multidimensional data set usually contains many attributes. With the entire record

being stored on the disk (in case of horizontal partitioning), the data access over mul-

tidimensional data set may become inefficient, even though some indexing technique,

like B-tree applied on it. Vertical partitioning is needed in some special cases. Imagine

the following extreme scenario where a query scans only the values of one particular

attribute of each record. Clearly, in this case, scanning the required attribute sepa-

rately is much more efficient than scanning the whole table. From the literature, we

summarized two types of data set, for which vertical partitioning is very suitable, high

dimension data set and read-oriented data set.

The advantages of vertical partitioning versus horizontal one are, firstly, it can

reduce the dimensionality, which in turn enhance the data accessibility; secondly, it

28

2.3 Data Partitioning

enables a set of optimization, like index and compressing easily, to be performed, which

in turn improves the efficiency.

2.3.4.1 Reducing Dimensionality by Vertical Partitioning

In a data set with high dimensionality, the number of dimensions is very large, but

the number of records is moderate. The queries run over such data set concerns only

several dimensions. Although OLAP queries involve high-dimension space, retrieving

data of all dimensions occurs very rarely. Based on this, the authors of reference (74)

employed a vertically partitioning method in their work. They vertically partitioned

the data set into a set of disjoint low dimensional data sets, called fragment. For

each fragment, the local data cube is calculated. These local data cubes are on-line

assembled when queries concerning multiple fragments need to be processed. In this

work, an inverted index based indexing technique and data compressing technique are

applied for accelerating the on-line data cube assemblage1.

2.3.4.2 Facilitating Index and Compression by Vertical Partitioning

In a vertically partitioned data set, data is stored in a column-oriented style. Dif-

ferent from the row-oriented storage where, records are stored one after another, in

the column-oriented storage, attribute values belonging to the same column stored

contiguously, compressed, and densely packed (26). OLAP applications are generally

read-intensive, where the most common operation is to read data from disk, the up-

date operation also occurs, but not frequently. For such read-intensive applications,

the most important performance-affecting factor is the I/O efficiency.

For a multidimensional data set, the traditional indexing techniques, such as B-tree

indexing, are not appropriate. Simply scanning the vertically partitioned data tables

is often more efficient than using B-tree based indexes to answer ad hoc range queries

(100). Using the traditional indexing techniques to process queries involving only a

subset of attributes suffers from the high dimensionality of the data set, since the size

of index increase super-linearly with the augment of the dimension number. With

the vertical partitioning method, the high dimensionality issue is resolved. However,

facing the new data storage structure, not all the traditional indexing techniques are

1Refer to 2.2.4 Inverted index for more information.

29

2. MULTIDIMENSIONAL DATA ANALYZING OVER DISTRIBUTED
ARCHITECTURES

appropriate. Bitmap index data structure is mostly used for answering read-intensive

OLAP queries (38), but not optimized for insert, delete or update operations. Having

this characteristic, Bitmap is considered to be the most suitable index for working

with vertical partitioned data. For large data set, Bitmap index can have millions

to billions of bits. It is imperative to compress bitmap index. The authors of (100)

have compared some of the compression schemes such as Byte-aligned Bitmap Code

(BBC), Word-Aligned Hybrid run-length code (WAH), and Word-aligned Bitmap Code

(WBC). They found that WAH is the most efficient in answering queries because it is

much more CPU-efficient.

Compared to row-oriented storage, column-oriented storage presents a number of

opportunities to improve performance by compression techniques. In such a column-

oriented storage, compression schemes encoding multiple values within one time are

natural. For example, many popular modern compression schemes, such as Run-length

encoding, make use of the similarity of adjacent data to compress. However, in a row-

oriented storage system, such schemes do not work well, because an attribute is stored

as a part of an entire record. Compression techniques reduces the size of data, thus it

improves the I/O performance in the following ways (23):

• In a compressed format, data is stored nearer to each other, the seek time is

reduced;

• The transfer time is reduced also because there is less data to be transferred;

• The buffer hit rate is increased because a larger fraction of retrieved data fits in

the buffer pool.

Especially, compression ratios are usually higher in column-oriented storage because

consecutive values of a same column are often quite similar to each other.

2.4 Query Processing Parallelism

Parallelizing query processing over partitioned data set using multiple processors can

significantly reduce the response time. The query processing parallelism has shown

a good speed-up and scale-up for OLTP query, it is worthwhile to investigate paral-

lelism research for processing OLAP query. In the sequential database systems, such

30

2.4 Query Processing Parallelism

as relational database system, queries are often parsed into graphs during the process-

ing. These graphs are called query execution plan or query plan, which is composed of

various operators.

A lot of parallel query processing work has been done in parallel database machines,

such as Gamma (54), Bubba (35), Volcano (59) etc. The main contributions of their

work were parallelization of data manipulations and design of the specific hardware.

Even though parallel database machines were not really put into use, they leaded

database technology toward a good direction, and its research work became the basis

of parallel query processing techniques. The general description of query processing

parallelization is as follows: a query is transformed into N partial queries that are

executed in an independent way in each of N computers. Generally, we can distribute

the same query to all computers, but some types of queries require rewriting.

2.4.1 Various Parallelism Forms

There exist several forms of parallelism that are interesting to designers and imple-

menters of query processing systems (60). Inter-query parallelism means multiple

queries are processed concurrently. For example, several queries contained in a trans-

action are executed concurrently in a database management system. For this form

of parallelism, the resource contention is an issue. Basing on the algebraic operators

parallelization, the parallelism forms can be further refined.

Inter-operator parallelism means parallel execution of different operators in a single

query. It has two sub-forms, i.e. horizontal inter parallelism and vertical inter paral-

lelism. Horizontal inter parallelism means splitting a tree of query execution plan into

several sub-trees, each sub-tree is executed by a processor individually. It can easily

be implemented by inserting a special type of operators, exchange, into the query exe-

cution plan, in order to parallelize the query processing. We will talk about exchange

operator in the following content. Vertical inter-parallelism is also called pipeline, in

which operators are organized into a series of producers and customers. Parallelism is

gained by processing records as a stream. Records being processed by producers are

sent customers. The authors of reference (52) argued that, in a relational database

system, the benefit of pipeline parallelism is limited. The main reasons was: 1) very

long pipelines are rare in query processing based on SQL operators; 2) some SQL oper-

ators do not emit the first item of output until they consumed all items of input, such

31

2. MULTIDIMENSIONAL DATA ANALYZING OVER DISTRIBUTED
ARCHITECTURES

as aggregate and sort operators; 3) there often exist one operator which takes much

longer time than other operators, which makes the speed-up by pipeline parallelism be

very limited.

Another form of parallelism is Intra-operator parallelism, which means executing an

operator using several concurrent processes running on different processors. It is based

on data partitioning. The precondition of intra operator parallelism is that query should

focus on sets. Otherwise, if data being queried represents a sequence, for example, time

sequence in a scientific database, then such a parallelism form could not be directly

used, and some additional synchronization should be processed at the result-merging

phase.

2.4.2 Exchange Operator

Exchange operator was proposed in Volcano system (59). It is a parallel operator

inserted into a sequential query execution plan so as to parallelize the query processing.

It is similar to the operators in the system, like open, next, close; other operators are not

affected by the presence of exchange in the query execution plan. It does not manipulate

data. On the logical level, exchange is ”no-op” that has no place in logical query

algebra such as the relational algebra. On the physical level, it provides the ”control”

functions that the other operators do not offer, such as, processes management, data

redistribution, flow control. Exchange provides only ”control” parallelisms, but it does

not determine or presuppose the policies applied for using these mechanisms, such

as degree of parallelism, partitioning functions, attributing processes to processors.

In Volcano, the optimizer or user determines these policies. The Figure 2.3 shows a

parallel query execution plan with exchange operators.

2.4.3 SQL Operator Parallelization

Query running over the partitioned data set can achieve parallelism, which is also called

partitioned parallelism. The algorithms used to implement various operators in parallel

are different from those used in a sequential query execution plan’s implementations.

In the following content, we will summarize the parallelization issues for different op-

erators.

Various SQL operators parallelization algorithms has been introduced in the liter-

ature (52; 60; 68), such as, parallel scan, parallel selection and update, parallel sorting,

32

2.4 Query Processing Parallelism

Figure 2.3: A parallel query execution plan with exchange operators.

parallel aggregation and duplicate removal, parallel join and binary matching. Apart

from these traditionally used SQL operators, some operators specifically designed for

parallel query processing, such as merge, split, are also introduced. We summarize these

algorithms in this section.

2.4.3.1 Parallel Scan

Scan is a basic operator used in query processing. It involves a large number of disk

I/Os, which is also the most expensive operation. Therefore, it is significant to paral-

lelize scan operator in order to share I/O cost. After partitioning data, each parallel

scan operator performs over one partition. The output of parallel scans working over

partitions of a same relation are then processed by a merge operator, which merges

multiple scanning outputs into one output and send it to the application or to the next

operator in the query execution plan.

2.4.3.2 Merge and Split

Merge operator is to collect data. A merge operator is equipped several input ports

and one output port. The input data streams are received at the input ports of merge

33

2. MULTIDIMENSIONAL DATA ANALYZING OVER DISTRIBUTED
ARCHITECTURES

operator, and the merging result exits from the output port. If a multi-stage parallel

processing is required, then a data stream need to be split into individual sub-streams.

Split operator serves this purpose. Split is used to partition or duplicate a record

stream into multiple ones. For example, record’s various attributes are sent to different

destination processes through attribute split operator. A split operators partition the

input record stream by applying round-robin, hash partitioning methods, or any other

partitioning methods. Split allows the auto parallelism of new added operators of

system, and it supports various kinds of parallelism.

2.4.3.3 Parallel Selection and Update

Parallel selection operator partitions the workload of selection over several I/O devices,

each being composed of one single disk or an array of disks. Selection operator concur-

rently perform over all required data partitions, and retrieve matching records. If the

partitioning attribute is also the selection attribute, then all disks holding partitions

will not contain the selection results. Thus, the numbers of processes and that of acti-

vated disks are limited. Local index can still bring high efficiency for parallel selection

operator.

Data movement could be caused by update operator in the case of updating the value

of the partitioning attribute of one record. The modified data might need to be moved

to a new disk or node in order to maintain the partitioning consistency. Since moving

data is expensive operation, it is more practical to choose an immutable attribute as

the partitioning attribute in case where the original data set contains dynamic data.

2.4.3.4 Parallel Sorting

Sorting is one of the most expensive operators in database systems. Lots of research

has addressed parallel sorting. Without loss of generality, assume a parallel sorting

operator with multiple inputs and multiple outputs, and further, assume records are

aligned in a random order on the sorting attribute in each input, and the output has

to be range-partitioned with records being sorted within each range. The algorithms

implementing Parallel sorting generally include two phases, local sorting phase and

data exchange phase. In the local sorting phase, records are sorted within multiple

processes. In the data exchange phase, records are sent to a set of processes. The

target process, to which a record is sent, will produce an output partition with the

34

2.4 Query Processing Parallelism

range of sorting attribute value comprising the record’s sorting attribute value. In

other words, the sent records should contribute to the output produced by the target

process. In practice, we can first run data exchange, then local sorting; or, run local

sorting first, then data exchange. If data exchange runs first, then the knowledge of

quantile should be available in order to ensure load balancing. If local sorting runs first,

records are sent, at the end of local sorting, to the right receiving processes, according

to the range that each sent record’s sorting attribute value belongs to.

One of the possible problems during this procedure is deadlock. The reference (60)

summarized the five necessary conditions of deadlock, cited as follows, i.e. if all these

conditions establish, then deadlock will occur. Assume that a couple of parallel sort

operators play with other operators in a relationship of producers and consumers, then

the necessary conditions of deadlock are:

• multiple consumers feed multiple producers;

• each producer produces a sorted stream and each consumer merges multiple sorted

streams;

• some key-based partitioning rule (i.e., hash partitioning) is used other than range

partitioning, ;

• flow control is enabled;

• the data distribution is particularly unfortunate.

Deadlock can be avoided by guaranteeing one of the above conditions does not es-

tablish. Among them, the second condition—each producer produces a sorted stream

and each consumer merges multiple sorted streams—is most easily to be avoided. For

instance, if the sending process (producer) does not perform sorting, or each individ-

ual input stream of receiving process (consumer) is not sorted, then deadlock can be

avoided. That is, moving the sorting operation from producer operator to consumer

operator can resolve deadlock problem.

Deadlocks can also occur during the execution of a sort-merge-join, and they can

be similarly avoided by moving the sorting operation from the producer operator to the

consumer operator. However, this happens when the sorting operation is not possible

to be moved from producer (sort) to consumer (merge-join), for example, reading data

35

2. MULTIDIMENSIONAL DATA ANALYZING OVER DISTRIBUTED
ARCHITECTURES

from a B-tree index makes the records being sorted when they are retrieved from

disk. In such a case, it is necessary to find alternative methods that do not require re-

partitioning and merging of sorted data between the producers and consumers. The first

alternative method is moving the consumer’s operations into the producer. Assume the

original data is sorted and partitioned with range- or hash-partitioning method, with

the partitioning attribute being exactly the attribute considered by the operations

of consumer process, e.g. join attribute in case of consumer operator being merge-

join, then the process boundaries and data exchange can entirely be removed from

consumer. This means producer operator, i.e. B-tree scan and consumer operator,

i.e. merge-join, are all performed in a same group of processes. The second method

utilizes fragment-and-replicate to perform join operation. Assume that records of input

stream are sorted over a relevant attribute within each partition, but partitioned either

round-robin or over a different attribute. For such a data distribution, fragment-and-

replicate strategy is applicable. During the join operation with fragment-and-replicate

strategy, one input of join is partitioned over multiple processes and another input of

join is replicated across these processes1. The join operations are running within the

same processes as the processes producing sorted output. Thus, the sorting and join

operations are running in one operator, and deadlocks can be avoided.

2.4.3.5 Parallel Aggregation and Duplicate Removal

There are three commonly used methods for parallelizing aggregation and duplicate

removal. Centralized Two Phase method first does aggregations on each of the mul-

tiprocessors over the local partition, then the partial results are sent to a centralized

coordinator node, which merges these partial results and generates the final result.

Two Phase method parallelizes the processing of the second phase of the Centralized

Two Phase method. The third method is called Re-partitioning. It first redistributes

the relation on the group by attributes, and then it does the aggregation and generates

the final results in parallel over each node. Shatdal et al. (96) argued that those three

methods do not work well for all queries. Both of the Two Phase methods only work

well when the number of result records is small. On the contrary, the Re-partitioning

method works well only when the number of distinct values of group-by attributes is

1In typical fragment-and-replicate join processing, the larger input is partitioned, and the smaller
input is replicated.

36

2.4 Query Processing Parallelism

large. They proposed a hybrid method that changes/decides the method according to

the workload and the number of the distinct values of group-by attributes being com-

puted. A bucket overflow optimization of Two Phase methods was discussed in (60).

For hash-based aggregation, a special technique to improve performance is that they do

not create the overflow file1, and the records can be directly moved to the final nodes,

because in resent shipping records to other node is faster than writing record into disk.

The disk I/O operations are caused when the aggregate output is too large to fit into

memory.

2.4.3.6 Parallel Join

Join operators include different kinds of join operators, which are realized in different

approaches. For instance, semi-join, outer-join, non-equi-join etc. are all join opera-

tors. Different from above mentioned operators, join operators are binary operators,

which involve two inputs.

Executing distributed join operator in parallel indispensably involves send and re-

ceive operation. These operations are based on protocols like TCP/IP or UDP. Row

blocking is a commonly used technique for shipping records to reduce cost. Record

shipping is done in a block-wise way. Instead of being shipped one by one, records are

shipped block by block. This method compensates for the brute in the arrival of data

up to a certain point (68).

Parallel joins over horizontally partitioned data can be achieved by multiple ways.

Assuming relation R is partitioned into R1 and R2: R = R1
⋃

R2, then the join between

relations R and S can be computed by (R1
⋃

R2) ⋊⋉ S or (R1
⋃

S) ⋊⋉ (R2
⋃

S). If R is

partitioned into 3 partitions, and S is replicated, then more methods can be adopted.

For instance, the join can be calculated by ((R1
⋃

R2) ⋊⋉ S)
⋃

(R3 ⋊⋉ S)), with one

replica of S is placed near to R1 and R2, another replica of B is placed near to R3. If

Ri ⋊⋉ Sj is estimated to be, then this partial calculation can be removed to reduce the

overhead.

Sort-merge-join is a conventional method for computing joins. Assume still R and S

are two input relations for join. In sort-merge-join method, both of the input relations

are first sorted over the join attribute. Then these two intermediate relations sorted

are compared, and the matching records are output. Hash-join is an alternative of

1Overflow file means the common overflowing zone of hash table.

37

2. MULTIDIMENSIONAL DATA ANALYZING OVER DISTRIBUTED
ARCHITECTURES

sort-merge-join. Hash-join breaks a join into several smaller joins. The two input

relations R and S are hash-partitioned on the join attributes. One partition of relation

R is hash into memory, the related partition of relation S is scanned. Each of the

records in this S partition is compared against the partition of R held in memory.

Once a record is matched, it is outputed. Double-pipelined-hash-join improved the

conventional hash-join. It is a symmetric, incremental join. Double-pipelined-hash-join

creates two in-memory hash-tables, each for one of the input relations. Initially, both

hash-tables are empty. The records of R and S are processed one by one. For processing

one record of R, the hash-table of S is probed, if the record is matched records, then

it is outputed immediately. Simultaneously, the record is inserted into the hash-table

of R for matching the unprocessed records of S. Thus, at any point in time, all the

encountered records are joined. Double-pipelined-hash-join has two advantages. Firstly,

it allows delivering the first results of a query as early as possible. Secondly, it makes it

possible to fully exploit pipelined parallelism, and in turn reduce the overall execution

time.

Symmetric partitioning and fragment-and-replicate are two basic techniques for par-

alelizing binary operators. In symmetric partitioning, both of the inputs are partitioned

over the join attribute, and then the operations will be run on every node. This method

is used in Gamma(54). In fragment-and-replicate method, one of the two inputs is par-

titioned; the other input is broadcasted to all other nodes. In general, the larger input

is partitioned in order not to move it. This method is realized in the early database

systems, because the communication cost overshadowed the computation cost. Send-

ing small input to a small number of nodes costs less than partitioning both larger

input and small input. To be noted, fragment-and-replicate cannot correctly work for

semi-join, and other binary operators, like, difference union, because when a record is

replicated, it will contribute multiple times to the output.

Semi-join is used to process join between relations placed on different nodes. As-

sume two relations R and S are placed on nodes r and s, respectively. Semi-join sends

the needed columns for join of relation R from node r to s, then finds the records qual-

ifying the join from relation S and sends these records back to r. The join operation

is executed on node r. Semi-join can be expressed as: R ⋊⋉ S = R ⋊⋉ (S ⋉π (R)).

Redundant-semi-join is a technique for reducing network traffic used in distributed

38

2.4 Query Processing Parallelism

databases for join processing. This method is used in distributed memory parallel sys-

tems. Assume two relations R and S having a common attribute A, are each stored

on nodes r and s separately. Redundant-semi-join sends the duplicate-free projection

on A to s, executes a semi-join to decide which records of S will contribute to the

join result, and then ships these records to r. Basing on the law of relational algebra

R ⋊⋉ S = R ⋊⋉ (S ⋉ R), there is no need of shipping S, which reduces communication

overhead, at the cost of adding the overhead of projecting, shipping the column A of

R and executing the semi-join. Such a reduction can be applied on R or S, or both

of them. The operations included during this process, such as projection, duplicate

removal, semi-join and final join can be parallelized not only on nodes s and r, but

also on more than two nodes.

Symmetric fragment-and-replicate is proposed by Stamos et al. (98) which is appli-

cable for non-equi-joins and N-way-join. For parallelizing a non-equi-join, processors

are organized into rows and columns. One input relation is partitioned over rows, and

its partitions are replicated over each processor row. The other input relation is par-

titioned over columns, and its partitions are replicated over each processor column. A

record of one input relation only matches with one record from the other input relation.

The global join result is the concatenation of all partial results. This method improves

fragment-and-replicate method by reducing the communication cost.

For joins in a parallel Data Warehouse environment, the parallel star-join is dis-

cussed by Datta et al. in (44). This parallel join processing is based on a special

data structure, Data Index 1, proposed in the same work. Recall that Basic DataIndex

(BDI) is simply a vertical partition of the fact table, which may include more than one

column and the Join DataIndex (JDI) is designed to efficiently process join operations

between fact table and dimension table. JDI is an extension of BDI. JDI is composed

of BDI and a list of RecordIDs indicating the matching records in the corresponding

dimension table. Assume that F represents the fact table, and D represents the set

of dimension tables, then | D |= d, which means that there are d dimension tables.

Let G represents a set of processor groups, and | G |= d + 1. Dimension table Di and

the fact table partition JDI corresponding to the key value of Di are distributed to

the processor group i. And the fact table partition BDI after containing measures is

1DataIndex is discussed in section 2.2.6

39

2. MULTIDIMENSIONAL DATA ANALYZING OVER DISTRIBUTED
ARCHITECTURES

distributed to processor group d+1. Basing on the above data distribution, the parallel

star-join processing involves only rowsets and projection columns.

In (101) a more complex join operator General Multiple Dimension Join (GMDJ)

is discussed in a distributed Data Warehouse environment. GMDJ is a complex OLAP

operator being composed of relational algebraic operators and other GMDJ opera-

tors. These GMDJ operator-composed queries need a multi-round processing. GMDJ

operator clearly separates group-by definition and aggregate definition, which allows

expressing various kinds of OLAP queries. An OLAP query expressed in GMDJ ex-

pressions is translated into a multi-rounded query plan. During each round, each site

of distributed Data Warehouse executes calculations and communicates its results with

the coordinator; the coordinator synchronize the partial results into a global result, then

transfer the global result to distributed Data Warehouse sites. When a distributed Data

Warehouse site receives an OLAP query, it transforms the OLAP query into GMDJ

operators, then these operators are optimized using distributed computation. Taking

the efficiency into account, the synchronization at the end of each round is started when

the faster sites’ partial results arrive on the coordinator, instead of waiting all partial

results’ arrivals before starting the synchronization. Although this work described how

to generate a distributed query plan, it did not support on-line aggregation.

2.4.3.7 Issues of Query Parallelism

During the parallelization of query processing, some issues will appear, such as data

skew and load balance. Pipeline parallelism does not easily lend itself to load balancing,

since each processor in the pipeline is loaded proportionally to the amount of data it has

to process. This amount of data cannot be predicated very well. For partitioning-based

parallelism, load balancing are optimal, if the partitions are all of equal size. However,

load balancing can be hard to achieve in case of data skew. Range partitioning risks data

skew, where all the data is placed in one partition, and all the calculations. However,

hashing and round-robin based partitioning suffers less from data skew.

2.5 New Development in Multidimensional Data Analysis

Recently, some new technologies are adopted in the multi-dimensional data analysis ap-

plication. These new technologies include: in-memory query processing, search engine

40

2.6 Summary

technologies, enhanced hardware.

SAP BI Accelerator (BIA)(72) is a commercial multi-dimensional data analysis

product using these new technologies. BIA is running on a couple of blade servers1.

BIA does not adopt the traditional pre-calculation way (store pre-calculated results

into materialized views) to accelerate query processing. On the contrary, it compresses

data to fit into the memory. Before a query is answered, all the data needed to answer

it is copied to memory. All the query processing are in-memory.

Aside from in-memory query processing, BIA adopted the search engine technology

to accelerate the query processing. They used a metamodel in order to bridge the gap

between the structured data cube and search engine technology, which is originally de-

veloped to work with unstructured data. In this metamodel, the data originally stored

under star-schema are represented as a join graphs expressing the joins between fact

table and required dimension tables. This pre-defined joins (stored in the metamodel)

are materialized at run time by the accelerator engine.

2.6 Summary

In this chapter, we first described the features of multidimensional data analysis queries

and three distributed system architectures, including shared-memory, shared-disk and

shared-nothing. Secondly, we gave a survey for existing work in accelerating data

analytical query processing. Three approaches were discussed, pre-computing, data

indexing and data partitioning. Pre-computing is an approach to barter storage space

for computing time. The aggregates of all possible dimension combination are calcu-

lated and stored to rapidly answer the forthcoming queries. We discussed some related

issues of pre-computing, including data cube construction, sparse cube, query result

re-usability, data compressing. For indexing technologies, we discussed several indexes

appearing in the literature, including B-tree/B+-tree index, projection index, Bitmap

index, Bit-Sliced index, join index, inverted index etc. A special type of index used

in distributed architecture was also presented. For data partitioning technology, we

introduced two basic data partitioning methods, horizontal partitioning and vertical

partitioning, as well as their advantages and disadvantages. Then we presented the

1A blade server is equipped with high performance CPUs (e.g. Dual Intel Xeon), memory of up
to 8 gigabytes, 3 level caches ranging from 512 kilobytes to 2 megabytes, modest board storage, or
external disk, 2 or 3 Ethernet interfaces with high speed internet.

41

2. MULTIDIMENSIONAL DATA ANALYZING OVER DISTRIBUTED
ARCHITECTURES

application of partitioning methods on the multidimensional data set. After that, the

parallelism of query processing was described. We focused on parallelization of various

operators, including, scan, merge, split, selection, update, sorting, aggregation, duplicate

removal and join. At the end of this chapter, we introduced some new developments

in multidimensional data analysis.

42

3

Data Intensive Applications with

MapReduce

Along with the development of hardware and software, more and more data are gener-

ated at a rate much faster than ever. Although data storage is cheap, and the issues for

storing large volume of data can be resolved, processing large volume of data is becom-

ing a challenge for data analysis software. The feasible approach to handle large-scale

data processing is to divide and conquer. People look for solutions based on paral-

lel model, for instance, the parallel database, which is based on the shared-nothing

distributed architectures. Relations are partitioned into pieces of data, and the com-

putations of one relational algebra operator to be proceeded in parallel on each piece of

data (52). The traditional parallel attempts in data intensive processing, like parallel

database, was suitable when data scale is moderate. However, parallel database does

not scale well. MapReduce is a new parallel programming model, which turns a new

page in data parallelism history. MapReduce model is a parallel data flow system that

works through data partitioning across machines, each machine independently run-

ning the single-node logic (64). MapReduce initially aims at supporting information

pre-processing over a large number of web pages. MapReduce can handle large data

set with the guarantee of scalability, load balancing and fault tolerance. MapReduce

is applicable to a wide range of problems. According to different problems, the de-

tailed implementations are varied and complex. The following are the some of possible

problems to be addressed:

• How to decompose a problem into multiple sub-problems?

43

3. DATA INTENSIVE APPLICATIONS WITH MAPREDUCE

• How to ensure that each sub-task obtain the data it needs?

• How to cope with intermediate output so as to benefit from MapReduce’s advan-

tages without loosing efficiency?

• How to merge the sub-results into a final results?

In this chapter, we will focus on the MapReduce model. Firstly, we describe the logic

composition of MapReduce model as well as its extended model. The relative issues

about this model, such as MapReduce’s implementation frameworks, cost analysis,

etc., will also be addressed. Secondly, we will talk about the distributed data access of

MapReduce. A general presentation on data management applications in the cloud is

given before the discussion about large-scale data analysis based on MapReduce.

3.1 MapReduce: a New Parallel Computing Model in

Cloud Computing

In parallel distributed computing, the most troublesome part of programming is to

handle the system-level issues, like communication, error handling, synchronization

etc. Some parallel computing models, such as MPI, OpenMP, RPC, RMI etc., are

proposed to facilitate the parallel programming. These models provide a high-level

abstraction and hide the system-level issues, like communication and synchronization

issues.

Message Passing Interface (MPI) defines a two-sided message-passing library (be-

tween sender and receiver). Otherwise, the one-sided communications are also possible.

Note that in MPI, a send operation does not necessarily have an explicit reception.

Remote Procedure Call (RPC) and Remote Method Invocation (RMI) are based on

the one-side communication. Open Multi-Processing (OpenMP) is designed for shared

memory parallelism. It automatically parallelizes programs, by adding the synchro-

nization and communication controls during compiling time. Although these models

and their implementations have undertaken much system-level work, they are rather

designed for realizing processor-intensive applications. When using these models for

large-scale data processing, programmers still need to handle low-level details.

MapReduce is a data-driven parallel computing model proposed by Google. The

first paper on MapReduce model (47) described one possible implementation of this

44

3.1 MapReduce: a New Parallel Computing Model in Cloud Computing

model based on large clusters of commodity machines with local storage. The paper (71)

gave a rigorous description of this model, including its advantages, in Google’s domain-

specific language, Sawzall. One of the most significant advantages is it provides an

abstraction which hides the system-level details from programmers. Having this high-

level abstraction, developers do not need to be distracted by solving how computations

are carried out and finding the input data that the computations need. Instead, they

can focus on the processing of the computations.

3.1.1 MapReduce Model Description

MapReduce is a parallel programming model proposed by Google. It aims at supporting

distributed computation on large data sets by using a large number of computers with

scalability and fault tolerance guarantees. During the map phase, the master node

takes the input, and divides it into sub-problems, then distributes them to the worker

nodes. Each worker node solves a sub-problem and sends the intermediate results are

ready to be processed by reducer. During the reduce phase, intermediate are processed

by reduce function on different worker nodes, and the final results are generated.

This type of computation is different from parallel computing with shared memory,

which emphasizes that computations occur concurrently. In parallel computing with

shared memory, the parallel tasks have close relationships between each other. Compu-

tations supported by MapReduce are suitable for parallel computing with distributed

memory. Indeed, MapReduce executes the tasks on a large number of distributed com-

puters or nodes. However, there is a difference between the computations supported

by MapReduce and the traditional parallel computing with distributed memory. For

the latter, the tasks are independent, which means that the error or loss of results from

one task does not affect the other tasks’ results, whereas in MapReduce, tasks are only

relatively independent and loss or error do matter. For instance, the mapper tasks are

completely independent between each other, but the reducer tasks cannot start until

all mapper tasks are finished, i.e. reducer tasks’ start-up is restricted. The loss of task

results or failed execution of task also produces a wrong final result. With MapRe-

duce, complex issues such as fault-tolerance, data distribution and load balancing are

all hidden from the users. MapReduce can handle them automatically. In this way,

MapReduce programming model simplifies parallel programming. This simplicity is

45

3. DATA INTENSIVE APPLICATIONS WITH MAPREDUCE

retained in all frameworks that implement MapReduce model. By using these frame-

works, the users only have to define two functions map and reduce according to their

applications.

3.1.1.1 Fundamentals of MapReduce Model

MapReduce’s idea was inspired from high-order function and functional programming.

Map and reduce are two of primitives in functional programming languages, such as

Lisp, Haskell, etc. A map function processes a fragment of key-value pairs list to gen-

erate a list of intermediate key-value pairs. A reduce function merges all intermediate

values associated with a same key, and produces a list of key-value pairs as output.

Refer to the reference (47) for a more formal description. The syntax of MapReduce

model is the following: map(key1,value1) → list(key2,value2)

reduce(key2,list(value2) → list(key2,value3)

In the above expressions, the input data of map function is a large set of (key1,value1)

pairs. Each key-value pair is processed by the map function without depending on other

peer key-value pair. The map function produces another pair of key-value, noted as

(key2,value2), where, the key (denoted as key2) is not the original key as in the

input argument (denoted as key1). The output of the map phase are processed before

entering the reduce phase, that is, key-value pairs (key2,value2) are grouped into

lists of (key2,value2), each group having the same value of key2. These lists of

(key2,value2) are taken as input data by the reduce function, and the reduce func-

tion calculates the aggregate value for each key2 value. Figure 3.1 shows the logical

view of MapReduce.

The formalization given in the first article of MapReduce (47) was simplified. It

omitted the detailed specification for intermediate results processing part in order to

hide the complexities to the readers. However, this might cause some confusion. The

author of reference (71) took a closer look at the Google’s MapReduce programming

model and gave a clearer explanation for the underlying concepts of the original MapRe-

duce. The author formalized the MapReduce model with the functional programming

language, Haskell. The author also analyzed the parallel opportunities existing in

MapReduce model and its distribution strategy. The parallelization may exist in the

processing of mapper’s input, the grouping of the intermediate output, the reduction

46

3.1 MapReduce: a New Parallel Computing Model in Cloud Computing

Figure 3.1: Logical view of MapReduce model.

processing over groups and the reduction processing inside each group during the reduce

phase. In the strategy of MapReduce model, network bandwidth is considered as the

scarce resource. This strategy combines parallelization and large data set distributed

storage to avoid saturating the network bandwidth.

Note that the keys used in map phase and reduce phase can be different, i.e. de-

velopers is free to decided which part of data will be keys in these two phases. That

means this data form of key-value pair is very flexible, which is very different from the

intuitive feel. As keys are user-definable, one can ignore the limitation of key-value.

Thus, a whole MapReduce procedure can be informally described as follows:

• Read a lot of data;

• Map: extract useful information from each data item;

• Shuffle and Sort;

• Reduce: aggregate, summarize, filter, or transform;

• Write the results.

47

3. DATA INTENSIVE APPLICATIONS WITH MAPREDUCE

3.1.1.2 Extended MapCombineReduce Model

MapCombineReduce model is an extension of MapReduce model. In this model, an

optional component, namely the combiner, is added to the basic MapReduce model.

This combiner component is proposed and adopted in Hadoop project (11). The in-

termediate output key-value pairs are buffered and periodically flushed onto disk. At

the end of the processing procedure of the mapper, the intermediate key-value pairs

are already available in memory. However, these key-value pairs are not written into a

single file. These key-value pairs are split into R buckets based on the key of each pair.

For the sake of efficiency, we sometimes need to execute a reduce-type operation within

each worker node. Whenever a reduce function is both associative and commutative, it

is possible to ”pre-reduce” each bucket without affecting the final result of the job. Such

a ”pre-reduce” function is referred to as combiner. The optional combiner component

collects the key-value pairs from the memory. Therefore, the key-value pairs produced

by the mappers are processed by the combiner instead of being written into the output

immediately. In such a way, the intermediate output amount is reduced. This makes

sense when the bandwidth is relatively small and the volume of transferred data over

the network is large. Figure 3.2 shows the logical view of MapCombineReduce model.

3.1.2 Two MapReduce Frameworks: GridGain vs Hadoop

Hadoop(11) and GridGain (10) are two different open-source implementations of MapRe-

duce. Hadoop is designed for processing applications. The response time is relatively

long, for instance, from several minutes to several hours. One example of such an

application is the finite element method calculated over a very large mesh. The ap-

plication consists into several steps; each step uses the data generated by the previous

steps. The processing of Hadoop includes transmitting the input data to the comput-

ing nodes. This transfer must be extremely fast to fulfill the users’ need. Hadoop is

an excellent MapReduce supporting tool and a Hadoop cluster gives high throughput

computing. However, it has a high latency since Hadoop is bound with the Hadoop

distributed file system (HDFS). The Hadoop’s MapReduce component operates on the

data or files stored on HDFS, and these operations take a long time to be performed.

For this reason, Hadoop cannot provide a low latency.

48

3.1 MapReduce: a New Parallel Computing Model in Cloud Computing

Figure 3.2: Logical view of MapCombineReduce model.

49

3. DATA INTENSIVE APPLICATIONS WITH MAPREDUCE

However, what we are trying to perform in parallel is a great number of queries on

one large data set. The data set involved is not modified, and the query processing

should be interactive. In fact, low latency is essential for interactive applications. In or-

der to be compatible with the application’s interactive requirements, the response time

is strictly limited, for instance, within five seconds. In contrast to Hadoop, GridGain

is not bound with file system and offers low latency. It is a MapReduce computational

tool. GridGain splits the computing task into small jobs and executes them on the

grid in parallel. During the task execution, GridGain deals with the low-level issues,

such as nodes discovery, communication, jobs collision resolution, load balancing, etc.

Being compared with Hadoop, GridGain is more flexible. Instead of accessing data

stored on distributed file system, GridGain can process data stored in any file system

or database. In addition, GridGain has some other advantages. For instance, it does

not need application deployment and can be easily integrated with other data grid

products. In particular, it allows programmers to write their programs in pure Java

language.

3.1.3 Communication Cost Analysis of MapReduce

In parallel programming, a computation is partitioned into several tasks, which are allo-

cated to different computing nodes. The communication cost issues must be considered

since the data transmission between the computing nodes represents a non-negligible

part. The communication cost is directly linked with the degree of parallelism. If the

tasks are partitioned with a high degree of parallelism, the communication cost will be

large. On the other hand, if the degree of parallelism is small, the communication cost

will be limited.

In MapReduce parallel model, the communication cost exists in several phases. For

the basic MapReduce model, without a combiner component, the communication cost

consists in three distinct phases. The first phase is the launching phase, during which

all the tasks are sent to the mappers. The second phase, located between mappers and

reducers, consists in sending the output from mappers to reducers. The third phase

is the final phase, which produces the results and where the outputs of the reducers

are sent back. For the extended MapCombineReduce model, the communication con-

sists in four phases. The first phase is still the launching phase. The second phase,

located between mappers and combiners, consists to send the intermediate results from

50

3.1 MapReduce: a New Parallel Computing Model in Cloud Computing

mappers to combiners located on the same node. The third phase, located between

the combiner and the reducer, consists to send the output of combiners to reducers.

The fourth phase is the final phase, which produces the results. The size of the output

data exchanged between the components strongly impacts the communication cost. In

reference (62), the author described an analysis for the communication cost in a par-

allel environment, depending on the amount of data exchanged between the processes.

Basing on their work we analyzed the case of MapReduce, we summarized the following

factors influencing the communication cost.

(i) The first one is the amount of intermediate data to be transferred, from the mappers

to the reducers (case without a combiner component) or from the combiners to

the reducers (case of a combiner component).

(ii) The second factor is the physical locations of the mappers, the combiners and the

reducers. If two communicating components are on the same node, the communi-

cation cost is low; otherwise the cost is high. If two communicating components

are located on two geographically distant nodes, the communication cost could

be extremely high!

(iii) The third factor to be considered is the number of mappers, combiners and reduc-

ers respectively. Usually, the user defines the number of mappers according to the

scale of the problem to be solved and the computing capacity of the hardware.

The number of combiners is usually equal to the number of nodes participating

to the calculation, as are devoted to collect local intermediate result of a node.

Whether or not the number of reducers can is user-definable depends on the de-

sign of the implemented MapReduce framework. For example Hadoop allows the

user to specify the number of reducers. Opposite, GridGain fixes the value of the

number of reducers to one.

(iv) The fourth factor is the existence of a direct physical connection between two com-

municating components. A direct physical connection between two components

means that two nodes respectively holding the two components are physically

connected to each other.

(v) The last factor is the contention over the communicating path. When two or more

communications are executed at the same time, the contention of the bandwidth

51

3. DATA INTENSIVE APPLICATIONS WITH MAPREDUCE

will appear. A possible scenario of this contention with MapReduce model could

be described as follows. The mappers on various nodes are started at almost the

same time. Since the nodes in a cluster are usually of identical type, they almost

have the same capability. As a consequence, the mappers complete their work on

each node at the same time. The outputs of these mappers are then sent to the

reducers. In this scenario, the contention of the communicating path is caused

by the transmission requests arriving almost simultaneously.

Since the actions of transferring the data from the master node to the worker nodes

are generally much more costly than the actions of transferring the mappers from the

master to the workers, we usually transfer the mapper job code towards the location

of data. Thus, the geographical locations of the data have a strong impact on the

efficiency.

3.1.4 MapReduce Applications

MapReduce was initially proposed to support the search operation among a large

amount of web pages. It is naturally capable of handling large-scale unstructured

data, i.e. data-intensive text processing. An example of data-intensive text-processing

is website log analysis. Website uses log to record users’ behaviours or activities, which

generates a large volume of data. Analysing this information allows providing additional

services. For example, with log analysing, an on-line selling website may recommend

the new products to a client which is relative to the product that he or she already

purchased.

The large-scale structured data analysis applications, such as OLAP query pro-

cessing can benefit from MapReduce. For utilizing MapReduce to serve data analysis

applications, there still exist some challenges. Firstly, MapReduce does not directly sup-

port relational algebraic operators and query optimization. Secondly, being compared

with the high-level declarative data query and manipulation language SQL, MapRe-

duce is only a low-level procedural programming paradigm. In order to benefit from

MapReduce, a combination of MapReduce and SQL is expected for data intensive ap-

plications in a near future. The combination between MapReduce and SQL consists

in realizing and optimizing each relational algebra operator. Some SQL queries can be

directly and naturally realized using MapReduce, for example, such as select queries.

52

3.1 MapReduce: a New Parallel Computing Model in Cloud Computing

The other queries are more difficult to realize. For instance, a group by query involves

multiple operations, such as selecting, grouping and aggregating. It is more complex

to realize it in MapReduce. In addition, in a MapReduce-based application, the pro-

cessing over input data, intermediate output and final output should also be handled.

Some research work on how to translate relational algebra operators into MapReduce

programs are carried out. For instance, the work of reference (65) uses an extended

MapReduceMerge model to efficiently merge data already partitioned and sorted.

MapReduce model is also applied to machine learning. In reference (102) the au-

thors used MapReduce in machine learning field. They showed the speed-up on a

variety of learning algorithms parallelized with MapReduce. Instead of running on a

cluster of computers, their program was running on the multi-core hardware.

MapReduce is used for data mining in (86; 61). The objective of data mining is

to find final models from a lot of raw data. As data set is increasingly gathering vol-

ume, data mining also need to address the scalability issue. In this context, a data set

consists of unstructured or semi-structured data, for example, a corpus of text docu-

ments, a large web crawl, or system logs, etc. The traditional way needs to convert

unstructured data into structured data. However, getting data in the appropriate form

is not trivial. As MapReduce can naturally process unstructured data, it is advanta-

geous to be applied in data mining. MapReduce allows a large class of computations

to be transparently executed in a distributed architecture. Distributed data mining

process involves several steps, including data gathering, pre-processing, analysis and

post-processing. MapReduce is suitable to for almost all these processing steps.

Comparing all these MapReduce applications, we can see that they have a common

feature, i.e. they all have a ”big-top-small-bottom processing structure”, the Figure 3.3

illustrates this structure. This means that these MapReduce-applicable applications all

take a large data set as input, but generate a small-sized output compared to the size

of input. We can imagine that all the applications having such a feature can benefit

from using MapReduce model.

3.1.5 Scheduling in MapReduce

In traditional parallel computing, where storage nodes and computing nodes are con-

nected via a high-performance network, one form of parallelization is task parallelism.

Task parallelism means dispatching tasks across different parallel computing nodes,

53

3. DATA INTENSIVE APPLICATIONS WITH MAPREDUCE

Figure 3.3: Big-top-small-bottom processing structure of MapReduce suitable applica-
tions

which involves moving data to nodes where the computations occur. The task par-

allelism, characterized by moving data, is not suitable for data-intensive applications.

The workload of data-intensive applications will suffer from network congestion when

moving large amount of data across network, which causes a bottleneck of system. An-

other form of parallelism is data parallelism. Data parallelism focuses on distributing

data across different computing nodes. In a system of multiple computing nodes, Data

Parallelism is achieved when each node performs a task over a piece of distributed data.

MapReduce follows the same idea as Data Parallelism, moving programs instead of

moving data. In a distributed architecture running MapReduce, computing nodes and

storage nodes co-locate on same machines. Computation is sent to a node having or

close to the received data and execute on it. MapReduce assumes a distributed archi-

tecture being composed of one master node and many worker nodes. For a MapReduce

procedure, a common scheduling is described as following.

1. The input is split into M blocks, each block is processed by a mapper ;

2. Mappers are assigned and started on free worker nodes;

3. Each mapper produces R local files containing intermediate data;

54

3.1 MapReduce: a New Parallel Computing Model in Cloud Computing

4. Reducers are assigned and started when all mappers were finished, processing

intermediate data read from mapper workers.

When the master node assigns mapper to a free worker node, it takes into account

the locality of data to the worker node. The worker nodes closest to or having the

needed data are chosen. The output of each mapper is partitioned into R local files

containing intermediate key-value pairs. A shuffle over all intermediate key-value pairs

is automatically run after all the intermediate outputs are available, before starting the

reducer. When the master node assigns reducer to a free worker node, the worker node

reads the intermediate key-value pairs from remote worker nodes where were running

mappers. Worker node then sorts and applies reduce logic which produces the final

output.

Comparing with traditional scheduling used in parallel computing, the job schedul-

ing within a MapReduce processing need to mainly consider two additional aspects(79):

• the need for data locality (running computing where the data is);

• the dependence between mapper and reducer.

In Hadoop, one of the implemented MapReduce frameworks, a speculative task

execution is realized. This speculative execution is aiming to address the straggler

nodes. As a barrier exists between map phase and reduce phase, the reducer cannot

be started until all mappers finished. Thus, the speed of MapReduce fully depends

on the slowest node running mapper, which is called straggler node. With speculative

execution, an identical mapper of straggler node is executed on a different worker

node, and the framework simply uses the result of the first task attempt to finish. Both

mappers and reducers can be speculatively executed. Hadoop uses a slots model for

task scheduling over one worker node. Each worker node has a fixed number of mapper

slots and reducer slots. When a slot becomes free, the scheduler will scan through tasks

ordered by priority and submit time to find a task to fill the slot. The scheduler also

considers the data locality when it assigns a task of mapper1

Another framework implementing MapReduce model, GridGain, has a limitation

over the reducer number. The number of reducer is fixed as one, which means only one

1Scheduler chooses the node holding the needed data block, if it is possible. Otherwise, scheduler
chooses a node within a same rack as the neede data blocks holding node.

55

3. DATA INTENSIVE APPLICATIONS WITH MAPREDUCE

reducer is run when all mappers were finished their computations. The reducer is run

on the master node. In such a context, the scheduling is simplified. GridGain provides

several policies for scheduling mappers. Especially, GridGain provides a Data affinity

policy for dispatching jobs over nodes. If a previous mapper using a data block, saying

A, is assigned to a worker node, noted as a, then the next task using the same data

block A will still be assigned to the worker node a.

When there are multiple jobs to be executed, Hadoop schedules these jobs follow-

ing the FIFO policy. The reference (57) considers a multi-user environment. Their

work designed and implemented a fair scheduler for Hadoop. The fair scheduler gives

each user an illusion of owning a private Hadoop cluster, letting user to start jobs

within seconds and run interactive queries, while utilizing an underlying shared cluster

efficiently.

Some jobs need not only one time MapReduce procedure, but multiple times MapRe-

duce procedures. In this case, one MapReduce job cannot accomplish the whole job,

and then a chain of MapReduce can be used to realize such large jobs, i.e. multi-stage

MapReduce.

3.1.6 Efficiency Issues of MapReduce

The efficiency of MapReduce is a matter of debate for data analysis. The fundamental

reason is that MapReduce is not initially designed for data analysis system over struc-

tured data. The typical calculations involved in MapReduce are scanning over a lot of

unstructured data, like web page. In contrast, the data analysis applications typically

accesses structured data. Comparing to the brute-force scan over unstructured data,

the measures for accelerating query over structured data are abundant, such index,

materialized view, column-oriented store. However, people argued that the lack of data

structure is not a limitation, because MapReduce skip the data-loading phase, and im-

mediately read data off of the file system and answer query on the fly, without any kind

of loading stage. In the traditional data analysis, the data-loading phase is to load data

using a pre-defined schema. Still, the optimization, like index and materialized view

can unquestionably improve the performance. Especially, these optimization only need

to be done one-time, and are reusable for all processing of query. In fact, data loading

phase could also be exploited in MapReduce. For example, data compression can be

56

3.2 Distributed Data Storage Underlying MapReduce

done in data loading phase, which can accelerate brute-force scan. Without data load-

ing, MapReduce needs to parse data each time it accesses data, instead of parsing data

only once as load time. The efficiency of MapReduce depends on the applications in

which it is used. For complex analysis of unstructured data, where brute-force scan is

the right strategy, MapReduce is suitable. On the contrary, for business-oriented data

analysis market, special MapReduce-based algorithms need to be created to obtain high

efficiency.

3.1.7 MapReduce on Different Hardware

MapReduce is typically running across multiple machines connected in a shared-nothing

fashion. People tried to run MapReduce over other different hardware. MapReduce can

be run on shared-memory, multicore and multi-processor systems. In the reference (90),

the author realized a specific implementation of MapReduce for shared-memory system.

This shared-memory MapReduce automatically manages thread creation, dynamic task

scheduling, and fault tolerance across processor nodes. Another specific implementation

of MapReduce running on Cell BE architecture is introduced in (46). MapReduce can

also run on graphics processors (GPUs). A GPU specialized MapReduce framework,

Mars, was proposed in (63).

3.2 Distributed Data Storage Underlying MapReduce

The data-driven nature of MapReduce requires a specific underlying data storage sup-

port. High-Performance Computing’s traditional separating storage component from

computations is not suitable for processing large size data set. MapReduce abandons

the approach of separating computation and storage. In the runtime, MapReduce needs

to either access data on local disk, or access data stored closely to the computing node.

3.2.1 Google File System

Google uses a distributed Google File System (GFS) (57; 87) to support MapRe-

duce computations. Hadoop provides an open-source implementation of GFS, which

is named Hadoop Distributed File System (HDFS) (12). In Google, MapReduce is

implemented on top of GFS and running over within clusters. The basic idea of such

GFS is to divide a large data set into chunks, then replicate each chunk across different

57

3. DATA INTENSIVE APPLICATIONS WITH MAPREDUCE

nodes. The chunk size is much larger than in the traditional file system. The default

chunk size is 64M in GFS and HDFS.

The architecture of GFS follows master-slave model. The master node is responsible

of maintaining file namespace, managing and monitoring the cluster. Slave nodes man-

age their actual chunks. Data chunks are replicated across slave nodes, with 3 replicas

by default. When an application wants to read a file, it needs to consult the metadata

information about chunks by contacting the master node to know on which slave nodes

the required chunk is stored. After that, application contacts the specific slave nodes

to access data. The size of chunk is a crucial factor influencing the amount of data

that the master node needs to handle. The default chunk size considers a trade-off

between trying to limit resource usage and master interaction times on the one hand

and accepting an increased degree of internal fragmentation on the other hand.

GFS is different from the general applicative File System, such as NFS or AFS.

GFS assumes that data is updated in an append-only fashion(36), and data access

is mainly long streaming reads. GFS is optimized for workload characterized of the

above-mentioned features. The following summarizes GFS’s characteristics:

• GFS is optimized for the usage of large files, where the space efficiency is not very

important;

• GFS files are commonly modified by being appended data;

• Modifying at file’s arbitrary offset is infrequent operation;

• GFS is optimized of large streaming reads;

• GFS supports great throughput, but has long latency;

• Client’s caching techniques are considered as ineffective.

A weakness of GFS master-slave is the single master node. The master node plays

a crucial role in GFS. It does not only manage metadata, but also maintains the file

namespace. In order to avoid the master node becoming a bottleneck, the master

has been implemented using multi-threading and fine-grained locking. Additionally, in

order to alleviate the workload of master node, master node is designed to only provide

metadata to locate chunks, and it does not participate the following data accessing.

58

3.2 Distributed Data Storage Underlying MapReduce

Rick of single point of failure is another weakness of GFS. Once the master node crushes,

the whole file system will stop working. For handling master’s crush, a shadow masters

design is adopted. The shadow master holds a copy of the newest operation log. When

master node crushes, the shadow master provides read-only access of metadata.

3.2.2 Distributed Cache Memory

The combination of MapReduce and GFS guarantee high throughput since GFS is

optimized for sequential reads and appends on large files. However, such a combination

has a high latency. GFS-based MapReduce heavily use disk, in order to alleviate

the affect brought by failures. However, this produces a large amount of disk I/O

operations. The latency for disk access is much higher than that of memory access. In

GFS-based MapReduce, memory was not fully utilized (110). In the GFS open-source

implementation, HDFS, reading data also suffers from high latency. Reading a random

chunk in HDFS involves multiple operations. For instance, it needs communicating

with master to get the data chunk location. If data chunk is not located on the node

where read operation occurs, then that also requires performing data transfer. Each of

these operations leads to higher latency(76).

The authors of reference (110) argued that small-scale MapReduce clusters, which

have no more than dozen of machines, are very common in most companies and lab-

oratories. Node failures are infrequent in clusters of such size. So it is possible to

construct a more efficient MapReduce framework for small-scale heterogeneous clus-

ters using distributed memory. The author of the reference (76) also proposed the

idea of utilizing distributed memory. Both of these works have chosen the open-source

distributed in-memory object caching system, memcached to provide an in-memory

storage to Hadoop.

In the work of (76), the whole data set, in form of key-value pair, is loaded into

memcached from HDFS. Once the whole data set is in memcached, the subsequent

MapReduce programs access data with the client API of memcached. Each mapper

or reducer maintains connections to the memcached servers. All requests happen in

parallel and are distributed across all memcached servers.

In the work of (110), only the output of mappers is loaded into memcached. The

cached mapper’s output is attached with a key. Such a key is made up of a mapper id

59

3. DATA INTENSIVE APPLICATIONS WITH MAPREDUCE

and its target reducer id. Once a reducer is started, it checks whether the outputs for

it are in memcached. If that is true, then it gets them from memcached server.

3.2.3 Manual Support of MapReduce Data Accessing

If a MapReduce framework without being attached with a distributed file system is

used, then data locating needs to be taken charge of developers. GridGain is such a pure

MapReduce computing framework, and it is not attached with any distributed storage

system. Although this forces developers to do the low-level work of data locating, to

some extent, this provides some flexibility. Data accessing does not need to consult the

file namespace any more; the other data forms than files can also be the representation

of distributed stored data, e.g. data can be stored in database on each computing node.

GridGain’s MapReduce is composed of one master node and multiple worker nodes.

GridGain provides useful mecanism for users to add user properties, which is visible

to master. Master node can identify worker nodes from the added properties. The

additional properties defined by user can be used for different purposes, such as, logical

name of node, role name of node etc. As we adopted GridGain as the MapReduce

framework, we give an example coming from our work. In this work, we added to

each worker node a property representing the identifier of data fragment stored in the

current worker node.

In the manual approach, a data pre-processing phase is indispensable. During this

phase, data set is divided into blocks, and distributed/replicated across different worker

nodes. Using the method mentioned above, a user-defined property representing data

fragment identifier is added to each worker node. As being visible to master node,

this user-defined property is used for locating data chunks. An illustration is given

in the Figure 3.4. As this manual approach decouples underlying storage from the

computations, it provides the possibility to choose various underlying data storages.

Mappers can access third-part data source. As developer can personally control data

locating, then data transfer between worker nodes is less frequent than in the GFS-

based MapReduce system. More importantly, the optimization over data accessing can

be performed without being limited by a particular file system.

60

3.2 Distributed Data Storage Underlying MapReduce

Figure 3.4: Manual data locating based on GridGain: circles represent mappers to be
scheduled. The capital letter contained in each circle represents the data block to be
processed by a specific mapper. Each worker has a user-defined property reflecting the
contained data, which is visible for master node. By identifying the values of this property,
the master node can locate data blocks needed by each mapper.

61

3. DATA INTENSIVE APPLICATIONS WITH MAPREDUCE

3.3 Data Management in Cloud

Cloud computing is an internet-based computing system, which integrates resources

ranging from computer processing, storage and software available across network. Ama-

zon, Google, Microsoft all put forward the concept of Cloud Computing. So far, there

already exist multiple commercial products. Amazon Simple Storage Service (Amazon

S3) (2) and Amazon Elastic Compute Cloud (Amazon EC2) (1) provide small-scale en-

terprises with computing and storage services. Google App Engine (7) allows running

the third-part parallel programs on its cloud. Microsoft’s Windows Azure Platform

(22) provides a Windows-based environment for running applications and storing data

on servers in data centers. More details can be find in reference (109), an article on

state-of-the-art of cloud computing.

Data storage in the new cloud platform is different than before. Replicated and

distributed are two of main characteristics of data stored in cloud. Data is automati-

cally replicated without the interference of users. Data availability and durability are

achieved through replication. Large cloud provider may have data centers spread across

the world.

3.3.1 Transactional Data Management

Data stored in fashion of cloud—replicated and distributed—is considered to be un-

suitable for transactional data management applications(25). In traditional data man-

agement system, a transaction should support ACID, which means all computations

contained in a transaction should be Atomicity, Consistency, Isolation and Durability.

Such a guarantee is important for write-intensive applications. However, the ACID

guarantee is difficult to be achieved on replicated and distributed data storage. Among

full-fulfilled database products, shared-nothing architecture is not commonly used for

transactional data management. Realizing a transaction on a shared-nothing architec-

ture involves complex distributed locking which is non-trivial work. The advantage of

scalability coming with shared-nothing architecture is not an urgent need for transac-

tional data management.

62

3.4 Large-scale Data Analysis Based on MapReduce

3.3.2 Analytical Data Management

Analytical data management applications are commonly used in business planning

problem solving, and decision support. Data involved by analytical data management

is often historical data. Historical data usually has large size, and is read-mostly (or

read-only), and occasionally batch updated. Analytical data management applications

can benefit from cloud data storage. Analytical data management applications are

argued to be well-suited to run in a Cloud environment (25), since analytical data

management matches well with shared-nothing architecture, and ACID guarantees are

not needed for it.

3.3.3 BigTable: Structured Data Storage in Cloud

BigTable(37) is a distributed structured data storage system. Hadoop provided HBase

(13), an open-source implementation of BigTable. BigTable provided a flexible, high-

performance solution for various Google applications with varied demands. MapReduce

is one of applications using BigTable. Different applications in Google could be latency-

sensitive or they need high-throughputs. A BigTable is a sparse, distributed, persistent

multidimensional sorted map, indexed by a row key, column key and a time-stamp.

Thus, it shares characteristics of both row-oriented storage and column-oriented stor-

age. GFS is used to store log and data files in BigTable. The cluster management takes

charge of job scheduling, resource managing on shared machines, dealing with machine

failures, as well as monitoring machine status. BigTable API provides functions for

creating and deleting tables and column families1, changing cluster, table, and column

family metadata.

3.4 Large-scale Data Analysis Based on MapReduce

Data analysis applications or OLAP applications are encountering scalability issue.

Facing more and more generated data, OLAP software should be able to handle data

sets much larger than ever. MapReduce naturally has good scalability, and people

argued that MapReduce approach is suitable for data analysis workload. The key is

to choose an appropriate implementation strategy for the given data analysis applica-

tion. For choosing an appropriate implementation strategy to process an data analysis

1Column family refers to several column keys being grouped into sets.

63

3. DATA INTENSIVE APPLICATIONS WITH MAPREDUCE

query, two types of questions need to be answered. The first question is about the data

placement. This short term includes several sub-questions: What is the most suitable

data-partitioning scheme? To which degree we will partition the data set? What is the

best data placement strategy of data partitions? The second question is how to effi-

ciently perform the query over the distributed data partitions? In a MapReduce based

system, the query’s calculation is transformed to another problem, how to implement

the query’s processing with MapReduce? To answer to these questions, the specific

analysis addressing various queries needs to be undertaken.

3.4.1 MapReduce-based Data Query Languages

Hadoop’s rudimentary support for MapReduce, promoted the development of MapReduce-

based high-level data query languages. A data query language PigLatin (40), was orig-

inally designed by Yahoo, and later became an open-source project. It is designed as

a bridge between low-level, procedural style of MapReduce and high-level declarative

style of SQL. It is capable of handling structured and semi-structured data. Program

written in PigLatin is translated into physical plans being composed of MapReduce

procedures during compiling. The generated physical plans are then executed over

Hadoop.

Similarly, another open-source project, Hive (14) of Facebook, is a Data Warehouse

infrastructure built on top of Hadoop. It allows aggregating data, processing ad hoc

query, and analysing data stored in Hadoop files. HiveQL is an SQL-like language,

which allows querying over large data set stored as HDFS files.

Microsoft developed MapReduce-based declarative and extensible scripting lan-

guage, SCOPE (Structured Computations Optimized for Parallel Execution) (91),

targeted for massive data analysis. This language is high-level declarative, and the

compiler together with optimizer can improve SCOPE scripts through compiling and

optimizing. SCOPE is extensible. Users are allowed to create customized extractors,

processors, aggregators and combiners by the extending built-in C# components.

3.4.2 Data Analysis Applications Based on MapReduce

An attempt of MapReduce-based OLAP system was described in (39). The following

description of their work lays out a clear example of doing data analysis with MapRe-

duce. The data set used in their work is a data cube. In particular, the data cube was

64

3.4 Large-scale Data Analysis Based on MapReduce

coming from a web log, which is employed to analyse the web search activities. More

specifically, the data cube is composed of 2 dimensions (keyword k and time t) and 2

measures (page count: pageCount and advertisement count: adCount). During data

partitioning, the data cube is divided over dimensions of keyword and time. The cells

having the same value of k and t are put into one block. Similar to the MOLAP, the

hierarchy concept is applied over the data cube in their work. These different hierar-

chy levels in time dimension allow partitioning data cube with different granularities.

Support of dynamic data partitioning granularity is a unique feature of this work. As

queries processed in their work are correlated, the results generated for one query can

serve as the input for another query. However, the granularity of the second query is not

necessarily the same as in the first query, and then the change of granularity is needed.

The MapReduce-based query processing concerns two groups of nodes: nodes running

mappers, and nodes running reducers. The group of nodes is done at the beginning of

query processing. Mapper fetches part of data set and generates key-value pairs from

individual record. The key field is related to different granularities, which in turn de-

pends on the query, and it can be computed using the given algorithms. The value field

is the exact copy of the original data record. These key-value pairs are shuffled, and

dispatched to reducers. The pairs with the same key go to the same reducer. Reducer

performs an external sorting to group pairs with the same value. Then it produces an

aggregated result for each group.

Regarding the commercial software, MapReduce was integrated into some commer-

cial software products. Greenplum is a commercial MapReduce database, which enables

programmers to perform data analysis on petabyte-scale data sets inside and outside

of it (8). Aster Data Systems, a database software company has recently announced

the integration of MapReduce with SQL. Aster’s nCluster allows implementing flexible

MapReduce functions for parallel data analysis and transformation inside the database

(3).

3.4.3 Shared-Nothing Parallel Databases vs MapReduce

Although being able to run on different hardware, MapReduce is typically running on a

shared-nothing architecture where computing nodes are connected by network without

memory or disk sharing among each other. Many parallel databases adopted shared-

65

3. DATA INTENSIVE APPLICATIONS WITH MAPREDUCE

nothing architecture, like in the parallel database machines, Gamma (54) and Grace

(56).

Though MapReduce and parallel databases target different users, it is in fact possi-

ble to write almost any parallel processing task as either a set of database queries or a

set of MapReduce jobs (88). This led to controversies about which system is better for

large-scale data processing. Among them, there are also criticizing voice of new-rising

MapReduce. Some researchers in the database field even argued that MapReduce is

a step backward in the programming paradigm for large-scale data intensive applica-

tions (53). However, more and more commercial database software begun to integrate

the cloud computing concept into their products. Existing commercial shared-nothing

parallel databases suitable for doing data analysis application in cloud are: Teradata,

IBM DB2, Greenplum, DATAllego, Vertica and Aster Data. Among others, DB2,

Greenplum, Vertica and Aster Data are naturally suitable since their products could

theoretically run in the data centers hosted by cloud computing provider (25). It is

interesting to compare the features of both systems.

3.4.3.1 Comparison

We compare shared-nothing parallel database and MapReduce in the following aspects:

Data partitioning In spite of having a lot of differences, shared-nothing parallel

database and MapReduce do share one feature: the data set is all partitioned in both

systems. However, as in shared-nothing parallel database data is structured in tables,

data partitioning is done with specific data partitioning methods. Partitioning take

into account the data semantic, and is running under control of user. On the contrary,

data partitioning in a typical MapReduce system is automatically done by system,

where user can only participate data partitioning with limitations. For example user

can configure the size of block. But the semantic of data is not considered during

partitioning.

Data distribution In shared-nothing parallel database, the knowledge of data dis-

tribution is available before query processing. This knowledge can help query optimizer

to achieve load-balancing. In MapReduce system, the detail data distribution remains

unknown, since distribution is automatically done by system.

66

3.4 Large-scale Data Analysis Based on MapReduce

Support for schema Shared-nothing parallel databases require data conform to a

well-defined schema; data is structured with rows and columns. In contrast, MapReduce

permits data to be any arbitrary format. MapReduce programmer is free of schema,

and data can even have no structure at all.

Programming model Like other DBMSs, shared-nothing parallel database supports

a high-level declarative programming language, i.e. SQL, which is known for and largely

accepted by both professional and non-professional users. With SQL, users only need

to declare what they want to do, but do not need to provide a specific algorithms to

realize it. However, in MapReduce system, developers must provide an algorithm in

order to realize the query processing.

Flexibility SQL is routinely criticized for its insufficient expressive power. In order

to mitigate flexibility, shared-nothing parallel databases allow user-defined functions.

MapReduce has good flexibility by allowing developers to realize all calculations in the

query processing.

Fault tolerance Both parallel database and MapReduce use replication to deal with

disk failures. However, parallelism databases cannot handle node failures, since they do

not save intermediate results, once a node fails, the whole query processing should be

restarted. MapReduce is able to handle node failure during the execution of MapReduce

computation. The intermediate results (from mappers) are stored before launching

reducers in order to avoid starting the processing from zero in case of node failure.

Indexing Parallel databases have many indexing techniques, such hash or B-tree, to

accelerate data access. MapReduce does not have built-in indexes.

Support for Transactions The support for transactions requires the processing

to respect ACID. Shared-nothing parallel databases support transaction, since it can

easily respect ACID. But it is difficult for MapReduce to respect such a principle. Note

that, in large-scale data analysis, the ACID is not really necessary.

67

3. DATA INTENSIVE APPLICATIONS WITH MAPREDUCE

Scalability Shared-nothing parallel database can scale well to tens of nodes, but

difficult to go any further. MapReduce has very good scalability, which is proved by

Google’s use. It can scale to thousands nodes.

Adaptability over heterogeneous environment As shared-nothing parallel database

is designed to run in homogeneous environment, it is not suited to run in heterogeneous

environment. MapReduce is able to run in heterogeneous environment.

Execution strategy MapReduce has two phases, map phase and reduce phase. Re-

ducers need to pull each of its input data from the nodes where mappers were run.

Shared-nothing parallel databases uses a push approach to transfer data instead of

pull.

Table 3.1 summarizes the differences between parallel database and MapReduce

with short descriptions.

Parallelism database MapReduce
Data partitioning Use specific methods Done automatically

consider data semantic do not consider data semantic
Data distribution Known for developers Unknown
Schema support Yes No
Programming model Declarative Direct realize
Flexibility Not good Good
Fault tolerance Handle disk failures Handle disk and node failures
Indexing Support Have no built-in index
Transaction support Yes No
Scalability Not good Good
Heterogeneous Unsuitable Suitable
environment
Execution strategy Push mode Pull mode

Table 3.1: Differences between parallel database and MapReduce

3.4.3.2 Hybrid Solution

MapReduce-like software, and shared-nothing parallel databases have their own advan-

tages and disadvantages. People look for a hybrid solution that combines the fault

tolerance, heterogeneous cluster, and ease of scaling of MapReduce and the efficiency,

performance, and tool plug-ability of shared-nothing parallel database.

68

3.5 Related Parallel Computing Frameworks

HadoopDB (27) is one of the attempts for constructing such a hybrid system. It

combines parallel databases and MapReduce to exploit both the high performance

from the parallel database and scalability from MapReduce. The basic idea behind

HadoopDB is to use MapReduce as the communication layer above multiple nodes

running single-node DBMS instances. Queries are expressed in SQL, translated into

MapReduce by extending existing tools, and as much work as possible is pushed into

the higher performing single node databases. In the experiments their work, they tested

several frequently used SQL-queries, such as select query, join query, simple group-by

query, etc. over one or more of the three relations.

Another way to realize such a hybrid solution is to integrate parallel database

optimization as a part of calculations running with MapReduce. Since MapReduce

does not give any limitations over the implementations, such a hybrid solution is totally

feasible. Our work’s approach also belongs to the hybrid solution.

3.5 Related Parallel Computing Frameworks

Like MapReduce, Dryad system (66) also provides an abstraction that hides system-

level details from developers. The system-level details include fine-grain concurrency

control, resource allocation, scheduling, component failures etc. Dryad provides an

appropriate abstraction level for developers to write the scalable applications. In Dryad,

a job is expressed as a directed acyclic graph where each vertex represents developer-

specified subroutines and edges represent data channels that caption dependencies.

Dryad allows developers to write sub-routines as sequential programs. Such a logical

computation graph is then mapped onto physical resources by the framework.

DryadLINQ (108) is high-level language programming environment based on Dryad.

DryadLINQ combines Dryad and .NET Language Integrated Query (LINQ). LINQ

allows developers to write large-scale data parallel application in a SQL-like query

language. DryadLINQ translates LINQ programs into distributed Dryad computations

that are run within Dryad system.

An academic research project, YvetteML (YML) (49), is a framework aiming to

exploit distributed computing architectures and peer-to-peer systems. YML, together

with various low-level middlewares addressing different distributed architectures, pro-

vides users with an easy way to utilize these distributed architectures. The provided

69

3. DATA INTENSIVE APPLICATIONS WITH MAPREDUCE

workflow language Yvette allows describing an application with a directed acyclic graph,

with the vertex representing component1 and edges represents the timing relationship

between components when being executed. Developers need to write components and

the Yvette program when realizing a distributed application over YML framework.

3.6 Summary

In this chapter, we first introduced the basic idea and related issues of MapReduce

model and its extended model, MapCombineReduce. Two implementation frameworks

of MapReduce, Hadoop and GridGain were presented. They have different latency.

Hadoop has high latency, while GridGain has low latency. Under the interactive re-

sponse time requirement, GridGain is a suitable choice for our work. MapReduce

model hides the underlying communication details. We specially analysed the commu-

nication cost of MapReduce procedure, and discussed the main factors that influence

the communication cost. We then discussed the job-scheduling issues in MapReduce. In

MapReduce job-scheduling, two more things need to be considered than in other cases,

data locality and dependence between mapper and reducer. Our discussion also involves

MapReduce efficiency and its application on different hardware. Secondly, we described

the distributed data storage underlying MapReduce, including distributed filesystems,

like GFS and its open source implementation—HDFS, and efficient enhanced storage

system basing on cache mechanism. Another approach is manual support of MapRe-

duce data access adopted in our work. The third topic addressed in this chapter is

data management in cloud. The suitability of being processed with MapReduce was

discussed for transactional data management and analytical data management. The

latter was thought to be able to benefit from MapReduce model. Relying on this, we

further addressed large-scale data analysis based on MapReduce. We presented the

MapReduce-based data query languages and data analysis related work with MapRe-

duce. As shared-nothing parallel database and MapReduce system use similar hard-

ware, we specially did the comparison between them, followed by presenting the related

work of a hybrid solution of combining these two into one system. Finally, we intro-

duced related parallel computing frameworks.

1A component is a pre-compiled executable which realizes the user-defined computations

70

4

Multidimensional Data

Aggregation Using MapReduce

In this chapter, we will present the MapReduce-base multidimensional data aggrega-

tion. We will first describe the background of our work, as well as the organization

of data used in our work. Then we will introduce Multiple Group-by query, which is

also the calculation that we will parallelize relying on MapReduce. We will give two

implementations of Multiple Group-by query, one is based on MapReduce, and the

other is based on MapCombineReduce. The job definitions for each implementation

will be specifically described. We also will present the performance measurement and

execution time analysis.

4.1 Background of This Work

In the last ten years, more and more BI products use data visualization technique to

support decision-making. Data visualization means using computer-supported, interac-

tive, visual representation of abstract data to reinforce cognition, hypothesis building

and reasoning. Facing to the growing volume of historical data, data visualization

is becoming an indispensable tool helping decision-maker to extract useful knowledge

from large amount of data. Typically, the abstract data is represented as dashboards,

charts, maps, and scatter-plots etc. Data represented in these forms become easier to

be understood and explore. There is no need to become a data expert to navigate

among data, make comparison and share findings. The data visualization techniques

71

4. MULTIDIMENSIONAL DATA AGGREGATION USING
MAPREDUCE

have impacted the BI modern analytic techniques (78). Interactive data explorations,

such as zooming, brushing, and filtering become basic computations supported by BI

software.

Data exploration consists in operations related to the dimensionality of multidimen-

sional data set. OLTP techniques implemented in DBMSs are not the right solution for

data exploration, since they are optimized for transaction processing and neglect the

dimensionality of data. On the contrary, OLAP is argued to be suitable for data ex-

ploration (43), since OLAP systems organize data into multidimensional cubes, which

equips data structure itself with dimensionality. A data cube is composed of measures

and dimensions. Measures contain static numeric values aggregated from raw historical

data, such as margin, quantity sold, which are classified by dimensions. Dimensions

contain ”text” values, and they form the axes of cube, such as, product, city etc. The

values within one dimension can be further organized in a containment type hierarchy

to support multiple granularities. During data exploration, a set of multidimensional

aggregation queries are involved. Usually, user starts from an overview of data set, and

then goes further to browse more detailed data aggregates of smaller grain. Citing the

example of SAP BusinessObjects Explorer (20), at the beginning of data exploration,

the first view displayed for user shows the aggregates over several dimensions selected

by default. The aggregated values shown in such a view are calculated by a set of multi-

dimensional aggregated queries. Next, when user selects a certain distinct value of one

dimension, then measures are filtered and re-aggregated in another multidimensional

aggregation query.

4.2 Data Organization

The traditional data cube is stored either in form of multidimensional data array (in

MOLAP) or under star-schema (in ROLAP). MOLAP suffers from sparsity of data.

When the number of dimensions increases, the sparsity of the cube also increases at a

rapid rate. Sparsity a insurmountable obstacle in MOLAP. In addition, MOLAP pre-

compute all the aggregates. When the amount of data is large enough, pre-computation

will take long time. Thus, MOLAP is only suitable for data sets of small and moderate

size. In contrast, ROLAP is more suitable for data sets of large size. In ROLAP, one of

72

4.2 Data Organization

traditional query accelerating approaches is pre-computing1. Pre-computing approach

requires all the aggregated values contributing to the potential queries are computed

before processing queries. For this purpose, the database administrators need to iden-

tify the frequently demanded queries from numerous passed queries, and then build

materialized views and indexes for these queries. Figure 4.1 shows the data organi-

zation in case of employing materialized views. Certainly, query’s response time is

reduced by this approach. However, the computations involved in this approach are

heavy, more calculations are needed for choosing optimal one from multiple materi-

alized views during query processing. Materialized views can only help to accelerate

processing of a certain set of pre-chosen queries, not to accelerate the processing of all

queries. Another disadvantage of materialized view is that they take up a lot of storage

space.

An alternative approach for organizing data is to store one overall materialized view.

The materialized view is a result of join operation among all dimension tables and the

fact table. Assume a data set from an on-line apparel selling system, recording the sales

records of all products in different stores during the last three years. This data set is

originally composed of 4 dimension tables (COLOR, PRODUCT, STORE, WEEKS)

and 1 fact table (FACT). Refer to the sub-figure (a) of Figure 4.1 for the star-schema

definition of the data set. The overall materialized view is named as ROWSET. Each

record stored in ROWSET contains values of all measures retrieved from original FACT

table associated with the distinct values of different dimensions retrieved from dimen-

sion tables. The List 4.1 shows the SQL statements used to generate the materialized

view, ROWSET. Those SQL statements are written in psql, which can be interpreted

and executed in PostgreSQL. A graphic illustration is available in Figure 4.2:

Listing 4.1: SQL statements used to create materialized view—ROWSET

DROP TABLE IF EXISTS "ROWSET" CASCADE;

CREATE TABLE "ROWSET" AS

SELECT c."color_name" AS color,

p."family_name" AS product_family,

p."family_code" AS product_code,

p."article_label" AS article_label,

p."category" AS product_category,

s."store_name" AS store_name,

s."store_city" AS store_city,

1Refer to section 2.1 for more information.

73

4. MULTIDIMENSIONAL DATA AGGREGATION USING
MAPREDUCE

(a)

(b)

Figure 4.1: Storage of original data set and the pre-computed materialized views for
the identified frequently demanded queries: sub-figure (a) shows original data set under
star-schema; sub-figure (b) shows several materialized views created based on the original
data set represented in (a).

74

4.2 Data Organization

Figure 4.2: Overall materialized view—ROWSET

s."store_country" AS store_state,

s."opening_year" AS opening_year,

w."week" AS week,

w."month" AS "month",

w."quarter" AS quarter,

w."year" AS "year",

f."quantity_sold" AS quantity_sold,

f."revenue" AS revenue

FROM "WEEKS" w JOIN

("COLOR" c JOIN

("PRODUCT" p JOIN

("STORE" s JOIN

"FACT" f ON (f."store_id"=s."store_id"))

ON (f."product_id"=p."product_id"))

ON (f."color_id"=c."color_id"))

ON (w."week_id"=f."week_id");

In this work, the data organization of single overall materialized view is adopted. It

has several advantages. Firstly, comparing with multiple materialized views approaches,

the required storage space is reduced. Secondly, the overall materialized view is not

created for optimizing a set of pre-chosen queries, instead, all queries can benefit from

this materialized view. Thirdly, with one materialized view, the emerging search engine

75

4. MULTIDIMENSIONAL DATA AGGREGATION USING
MAPREDUCE

techniques could be easily applied. In particular, in this work, one materialized view

approach greatly simplifies data partitioning and indexing work.

Term specification From now on, the terms dimension and measure are slightly

different from the recognized terms with common names in OLAP field. In order to

avoid confusion, we would like to newly declare the definitions of these two terms. If not

additionally specified, the following occurrences of the two terms adopt the definitions

below.

• Dimension is a type of columns, of which the distinct values are of type text.

• Measure is a type of columns, of which the distinct values are of type numeric.

To be noted, hierarchy is not adopted in this terminology.

4.3 Computations Involved in Data Explorations

In SAP BusinessObjects data explorer, user selects an information space, and then

enters into a relevant exploration panel. The first page displayed in exploration panel

shows aggregated measures dimension by dimension. User can selected various ag-

gregate functions, such as COUNT, SUM, AVERAGE, MAX, MIN, etc, by clicking

a drop-list. Assuming the aggregate function SUM applied on all the measures, then

the computations involved within the display of the first page actually is equivalent to

execution of SQL statement of the List 4.2.

Listing 4.2: SQL statements used for displaying the first page of exploration panel.

DROP VIEW IF EXISTS page_0 CASCADE;

CREATE VIEW page_0 AS

SELECT * FROM "ROWSET"

;

DROP VIEW IF EXISTS dimension_0;

CREATE VIEW dimension_0 AS

SELECT "page_0"."color" AS distinct_value,

SUM(page_0."quantity_sold") AS quantity_sold,

SUM(page_0."revenue") AS revenue

FROM "page_0"

GROUP BY "distinct_value"

;

DROP VIEW IF EXISTS dimension_1;

76

4.3 Computations Involved in Data Explorations

CREATE VIEW dimension_1 AS

SELECT "page_0"."product_family" AS distinct_value,

SUM(page_0."quantity_sold") AS quantity_sold,

SUM(page_0."revenue") AS revenue

FROM "page_0"

GROUP BY "distinct_value"

;

DROP VIEW IF EXISTS dimension_2;

CREATE VIEW dimension_2 AS

SELECT "page_0"."product_category" AS distinct_value,

SUM(page_0."quantity_sold") AS quantity_sold,

SUM(page_0."revenue") AS revenue

FROM "page_0"

GROUP BY "distinct_value"

;

-----------repeate for all the dimensions---------

If user finds an anomalous aggregated value, for example, a certain product category,

say, ”swimming hats” has a too low quantity sold, and he/she wants to see the detail

data over the specific product category, then a detailed exploration is performed and

the second page is generated. The second page displays the ”swimming hats” related

measures aggregated over different dimensions. The computation involved in displaying

the second page of exploration panel is equivalent to execution of SQL statement in

List 4.3.

Listing 4.3: SQL statements used for displaying the second page of exploration panel.

DROP VIEW IF EXISTS page_1 CASCADE;

CREATE VIEW page_1

AS

SELECT * FROM "page_0"

WHERE "product_category"=’Swimming hats’

;

DROP VIEW IF EXISTS dimension_0;

CREATE VIEW dimension_0 AS

SELECT "page_1"."color" AS distinct_value,

SUM(page_1."quantity_sold") AS quantity_sold,

SUM(page_1."revenue") AS revenue

FROM "page_1"

GROUP BY "distinct_value"

;

DROP VIEW IF EXISTS dimension_1;

CREATE VIEW dimension_1 AS

77

4. MULTIDIMENSIONAL DATA AGGREGATION USING
MAPREDUCE

SELECT "page_1"."product_family" AS distinct_value,

SUM(page_1."quantity_sold") AS quantity_sold,

SUM(page_1."revenue") AS revenue

FROM "page_1"

GROUP BY "distinct_value"

;

DROP VIEW IF EXISTS dimension_2;

CREATE VIEW dimension_2 AS

SELECT "page_1"."product_category" AS distinct_value,

SUM(page_1."quantity_sold") AS quantity_sold,

SUM(page_1."revenue") AS revenue

FROM "page_1"

GROUP BY "distinct_value"

;

-----------repeate for all the dimensions---------

Similarly, further exploration can be achieved by applying both the current WHERE

condition "product category"=’Swimming hats’ and the new condition coming

from the exploration panel.

As seen from the above illustration, a typical computation involved in data explo-

ration is the Group-by query, on different dimensions, with aggregates using various

aggregate functions. Without considering other features of data explorer, we could

say that the computations involved in a data exploration are composed of a couple of

elementary Group-by query having the following form:

SELECT DimensionA,

aggregate_funtion(Measure1),

aggregate_funtion(Measure2)

FROM "ROWSET"

WHERE DimensionB=b

GROUP BY DiemnsionA;

Group-by query is a typical OLAP query. Because of OLAP queries wide appli-

cation, a lot of research work has been done. The characteristics of these queries are

summarized in (75). The two important characteristics of OLAP query—including

Group-by query—are:

• most of them include aggregate functions;

• they usually include selection clauses.

78

4.4 Multiple Group-by Query

Going any further from the two characteristics, one Group-by query involves two pro-

cessing phases, filtering and aggregating. During filtering phase, the WHERE condition

is applied to filter the records of materialized view. During the aggregating phase, the

aggregate function is performed over the filtered records.

4.4 Multiple Group-by Query

For being able to response user’s exploration, multiple Group-by queries need to be

calculated simultaneously, instead of one single Group-by query. The term Multiple

Group-by query is able to more clearly express the characteristics of the query addressed

in this work. For defining the Multiple Group-by query, we describe it as follows:

Multiple Group-By query is a set of Group-by queries using the same select-where

clause block. More formally, Multiple Group-By query can be expressed in SQL with

the following form:

SELECT X, SUM(*),

FROM R WHERE condition

GROUP BY X

ORDER BY X;

where X is a set of columns on relation R.

Some commercial database systems support a similar Group-by construct named

GROUPING SETS, and it allows the computation of multiple Group-by queries using

a single SQL statement (111). Comparing with the Multiple Group by query addressed

in this work, GROUPING SETS query is slightly different. Each Group-by query

contained in GROUPING SETS query could have more than one group-by dimension,

i.e. one Group-by query aggregates over more than one dimension, whereas in this

work, one Group-by query aggregates over only one dimension.

4.5 Challenges

In data exploration environment, processing Multiple Group-by query has several chal-

lenges. The first challenge is large data volume. In a very common case, the historical

data set is often of large size. The generated materialized view also is of large size. In

79

4. MULTIDIMENSIONAL DATA AGGREGATION USING
MAPREDUCE

order for user to do analysis as comprehensively as possible, the historical data set con-

tains many dimensions. It is not rare that the generated overall materialized view has

more than 10 dimensions. The second challenge is the requirement of short response

time. It is a common demand for all the interactive interface application, including data

exploration. Multiple Group-by queries aggregating over all dimensions is repeatedly

invoked and processed during data exploration, then it is required that each query is

answer within a very short time, for example, not more than 5 seconds, ideally, within

hundreds of milliseconds. Summarizing these challenges’ description—doing time and

resource consuming computations in short time.

Parallelization is the solution to address these challenges: partition the large ma-

terialized view ROWSET into smaller blocks, then processed query over each of them,

finally merge the results. One particular thing of this work is that we utilize cheap

commodity hardware instead of expensive supercomputer. This is also the significant

side of this work. This particularity brings further challenges, scalability and fault

tolerance issues. For addressing these challenges, we adopt MapReduce model, and the

detailed specifications will be given later in this chapter.

4.6 Choosing a Right MapReduce Framework

There exist several researches and projects focusing on building specific MapReduce

frameworks for various hardware and different distributed architectures. In our work,

we adopt the shared-nothing clusters, which are available for free1. Some well-designed

MapReduce frameworks are already realized for this type of hardware architecture. We

need to the right framework for satisfying the specific requirement.

4.6.1 GridGain Wins by Low-latency

Interactivity, i.e. short response time is the basic requirement in this work. In order

to meet this requirement, while the application-level optimization is essential, choosing

a right underlying MapReduce framework is also important. At our framework choos-

ing moment, there were two different open-source MapReduce frameworks available,

Hadoop (11) and GridGain (10).

1Grid’5000, for more information, refer to(9)

80

4.6 Choosing a Right MapReduce Framework

At first, Hadoop has been chosen as the MapReduce supporting framework. We

successfully installed and configured Hadoop in a cluster of two computers, and run

several simple tests over Hadoop. The experiment execution time over Hadoop was

not satisfying. An application of filtering materialized view of small size with a given

condition took already several seconds, which is too slow for interactive interface. This

phenomenon was then diagnosed as a consequence of the high latency of Hadoop. Ac-

tually, high latency is consistent with the initial design of Hadoop. Hadoop is designed

to address batch-processing application. Batch-processing application only emphasizes

high-throughput. In such a context, high-latency is insignificant. The high-latency is

also a side effect of Hadoop’s ”MapReduce + HDFS” design, of which more explanation

can be found in Subsection 3.1.2.

Another MapReduce framework, GridGain, is finally adopted as the underlying

framework in this work. GridGain offers a low latency since it is a pure MapReduce

engine without being associated with a distributed file system. Therefore, data par-

titioning and distributing should be manually managed. Although this increases the

workload of programmers, they have a chance to do optimizations at the data access

level. Additionally, GridGain provides several pre-defined scheduling policies including

data affinity scheduling policy, which can be beneficial for processing multiple contin-

uous queries.

4.6.2 Terminology

In GridGain, a Task is a MapReduce processing procedure; a Job is either a Map

procedure or a Reduce procedure. In Hadoop, the two terms are used inversely. A

MapReduce procedure is called a Job in Hadoop, and a Map or a Reduce procedure is

called a Task. In this dissertation, we adopt the terminology of GridGain.

4.6.3 Combiner Support in Hadoop and GridGain

Combiner is an optional component, which is located between the mapper and the

reducer. In Hadoop, combiner component is implemented, and user can choose to use

or not to use it freely. The combiner is physically located on each computing node.

Its function is to locally collect the intermediate output from the mappers running on

current node before these intermediate outputs being sent over the network. In certain

81

4. MULTIDIMENSIONAL DATA AGGREGATION USING
MAPREDUCE

Figure 4.3: Create the task of MapCombineReduce model by combining two GridGain
MapReduce tasks.

case, using this combiner component can optimize the performance of the entire model.

The objective of using combiner is to reduce the intermediate data transfer.

This optional component combiner is not implemented in GridGain. In this work,

we propose a bypass method to make GridGain supporting combiner. Although this

method is implemented on top of GridGain, it is not limited to work with GridGain.

The same idea can also be carried out on other MapReduce frameworks. We illustrate

this method in the Figure 4.3. A GridGain MapReduce is composed of multiple mappers

and one reducer. In this method, we utilized two successive GridGain MapReduce

tasks. In the first MapReduce task, the mappers correspond to the mapper component

of MapCombineReduce model, and its reducer acts as a trigger to activate the second

MapReduce task, once the first MapReduce’s mappers have all finished their works.

The mappers of the second MapReduce task actually act as the combiner component

of MapCombineReduce model. The reducer of the second MapReduce task does the

job of the reducer component of MapCombineReduce model.

4.6.4 Realizing MapReduce Applications with GridGain

GridGain provides developers with Java-based technologies to develop and to run grid

applications on private or public clouds. In order to implement a MapReduce ap-

plication, there are mainly two classes need to define in GridGain, i.e. Task, and

82

4.6 Choosing a Right MapReduce Framework

Job. Task class’s definition requires developer realizing map() and reduce() func-

tions. Job class’s definition requires developer realizing execute() function. The

name of map() might be confusing. This name misleads people to think it defines the

calculations to be carried out in mapper. But in fact, the map() function is respon-

sible for establishing the mappings between mappers and worker nodes. This function

could be utilized to apply user-defined job-scheduling policy. GridGain provides some

pre-defined implementations of map() function, which support various job-scheduling

policies, including data affinity, round robin, weighted random, etc. The web site

of GridGain (10) gives to the readers more descriptions about GridGain’s supported

job-scheduling policies. execute() is actually the function specifying operations per-

formed by mapper. execute() contains the distributed computations which will be

executed in parallel with other instances of execute() function. When a mapper arrives

at a remote worker node, a collision resolving strategy will look into a queue of existing

mappers on this worker node to either reject the current mapper or leave it waiting

in the queue. When the mapper got run, the execute() function will be executed.

Reduce function contains the actions of reducer, collecting mappers intermediate out-

puts and calculate the final result. It usually is composed of some aggregate-type

operations. Reduce() function’s execution is activated by the arrival of the mappers’

intermediate outputs. According to the policy defined by the user, reduce() can be

activated once the first intermediate output from mapper arrives at the master node,

or after the sub-results of all the mappers arrived. The default policy is to wait all the

mappers to finish their works and then to activate the reduce() method. In addition,

developer also need to define a task loader program, which takes charge of initializing

the parameters, starting a grid instance, launching user’s application, and then waiting

and collecting the results.

4.6.5 Workflow Analysis of GridGain MapReduce Procedure

GridGain’s MapReduce is composed of multiple mappers and one reducer. The mappers

are sent to and run on worker nodes, and the reducer run on master node. For fully

understanding the procedure of GridGain’s MapReduce, we analyzed the log file of

GridGain and also did the profiling work when running MapReduce application. The

following description of GridGain MapReduce workflow is based on this analysis.

83

4. MULTIDIMENSIONAL DATA AGGREGATION USING
MAPREDUCE

The Figure 4.4 shows the workflow of a GridGain’s MapReduce task. When master

starts a MapReduce task, it in fact starts a thread for this task. The thread does the

start-up work and closure work for the task. The start-up work includes the following

steps.

1. Firstly, master creates mappings between user-defined jobs (mappers) and avail-

able worker nodes;

2. Secondly, master serializes mappers in a sequential way ;

3. Once all mappers are serialized, master sends each mapper to the corresponding

worker node.

After all the mappers being sent, the thread terminates and the master enters into

a ”waiting” status. This ”waiting” status continues until the master node receives the

mappers’ intermediate outputs. When the master node receives a mapper’s intermedi-

ate output, it begins to de-serialize this intermediate output immediately. After all the

intermediate outputs are de-serialized, then it starts the reducer. The de-serialization

and reducer execution compose the task’s closure.

On the other side, the worker node listens to the messages after the GridGain

instance is started. When it receives a message containing serialized mapper object, it

will de-serialize the message, thereby it obtains mapper’s object. Then, the mapper is

put into a queue waiting for being executed once one or more CPU becomes available.

After the mapper’s execution is accomplished, the intermediate output is serialized and

sent back to the master node.

4.7 Paralleling Single Group-by Query with MapReduce

Before addressing the parallelization of Multiple Group-by query, we describe the pro-

cessing of the elementary query—single Group-by query—in MapReduce. Intuitively,

single Group-by query could be well matched with MapReduce model. A single Group-

by query can be executed in two phases: the first phase is filtering, and the second

phase is aggregating. The other operations (regroup) can be incorporated into the ag-

gregating phase. The filtering phase corresponds to the mapper’work in MapReduce,

and the aggregating phase corresponds to its reducer’s work.

84

4.8 Parallelizing Multiple Group-by Query with MapReduce

Figure 4.4: Work flow diagram of MapReduce-based application in GridGain.

As an example of Group-by query, we consider another materialized view LINEITEM

with two dimensions and one measure, LINEITEM(OrderKey,SuppKey,Quantity), and

one Group-by query of the form:

SELECT "Orderkey", SUM("Quantity")

FROM "LINEITEM"

WHERE "Suppkey" = ’4633’

GROUP BY Orderkey

The above query performs the following operations on the materialized view, LINEITEM.

The first operation is filtering, which makes records to be filtered by the WHERE

condition. Only the records matching the condition ”"Suppkey" = ’4633’” are

retained for the subsequent operations. Within the next operation, these tuples are re-

grouped into groups according to the distinct values stored in the dimension OrderKey.

The last operation is a SUM aggregation, which adds up the values of the measure

Quantity. The SUM aggregation is executed on each group of tuples. Figure 4.5

illustrates how this MapReduce model-based processing procedure is organized.

4.8 Parallelizing Multiple Group-by Query with MapRe-

duce

A Multiple Group-by query can also be implemented in these two phases. In a Multiple

Group-by query, multiple single Group-by queries, having the same WHERE condition,

we propose that the mapping phase performs the computation for filtering data accord-

85

4. MULTIDIMENSIONAL DATA AGGREGATION USING
MAPREDUCE

Figure 4.5: Single Group-by query’s MapReduce implementation design. This design
corresponds to the SQL query SELECT Orderkey SUM(Quantity) FROM LINEITEM

WHERE Suppkey = 4633 GROUP BY Orderkey.

ing to the condition defined by the common WHERE clause. The aggregating phase

still corresponds to a set of reduce-type operations. For a Multiple Group-by query, the

aggregating phase consists of a couple of aggregating operations performed on several

different Group-by dimensions. In this work, we first use the reducer to implement the

aggregating phase at first, and then we propose an optimized implementation based

on the extended MapCombineReduce model. The following content in this section will

give more details about these two implementations.

4.8.1 Data Partitioning and Data Placement

The materialized view ROWSET used in our tests is composed of 15 columns, including

13 dimensions and 2 measures. We partition this materialized view into several blocks.

The horizontal partitioning method (99) is used to equally divide ROWSET. As a result,

each block has an equal number of records, and each record keeps all the columns from

the original ROWSET. All the data blocks are replicated on every participating worker

node. This is inspired from the Adaptive virtual partitioning method proposed in (29).

Such a method allows conveniently realizing the distribution of data without worrying

about the accessibility problem caused by a data placement strategy. With all the data

blocks available on all the worker nodes, the data location work is simplified.

86

4.8 Parallelizing Multiple Group-by Query with MapReduce

4.8.2 Determining the Optimal Job Grain Size

The size of the data block actually determines the job grain size, since the data block

is processed as the input data by each job. A too big grain size leads to an unbalanced

load, on the contrary, a too small grain size will lead to waste much more time on

the start-up overhead and job closure overhead. An optimal job grain size on a given

computing node is determined by the computing power of the node. Then defining an

appropriate data block size can get the nodes to work more efficiently. The optimal

or near-optimal data block size could be evaluated by the minimization of the value of

cost function working under current investigation. In practice, it can also be obtained

through experiments. In this work, we perform the experiments on top of IBM eServer

325 machines. According to the experimental results, the optimal block sizes are 16000

and 32000 lines (in one block) on this type of hardware.

4.8.3 Initial MapReduce Model-based Implementation

The initial implementation of the MapReduce model-based Multiple Group-by query we

have developed is shown in Figure 4.6. In this implementation, the mappers perform

the filtering phase, and the reducer performs aggregating phase. In order to realize the

filtering operations, each mapper first opens and scans a certain data block file locally

stored on the worker node, and then selects the records which meet the conditions

defined in the WHERE clause. In this way, each mapper filters out a group of records.

After that, all the records filtered by the mappers are then sent to the reducer as

intermediate outputs. The Algorithm 1 describes this processing with pseudo-code.

The reducer realizes the aggregating operations as follows. Firstly, the reducer

creates a set of aggregate tables to save the aggregate results. Each aggregate table

corresponds to a Group-by dimension. The aggregate table is a structure designed

to store aggregate value for one dimension. In addition to the distinct values of the

dimension, the aggregate table also stores aggregate values calculated by applying user

defined aggregate functions over different measures. As shown in figure 4.7, the first

column stores the distinct values of dimension, and the corresponding aggregate values

are stored in the rest columns. The number of aggregate functions (denoted as nbagg)

contained in the query determines the total number of columns. There are nbagg + 1

columns in aggregate table in total.

87

4. MULTIDIMENSIONAL DATA AGGREGATION USING
MAPREDUCE

Figure 4.6: The initial Multiple Group-by query implementation based on MapReduce
model.

Figure 4.7: Aggregate table structure

88

4.8 Parallelizing Multiple Group-by Query with MapReduce

As an example, we specify the construction of aggregate tables for the Multiple

Group-by query below:

SELECT SUM("revenue"), SUM("quantity_sold"), "product_family"

FROM "ROWSET"

WHERE "color"=’Pink’

GROUP BY "product_family"

;

SELECT SUM("revenue"), SUM("quantity_sold"), "store_name"

FROM "ROWSET"

WHERE "color"=’Pink’

GROUP BY "store_name"

;

SELECT SUM("revenue"), SUM("quantity_sold"), "year"

FROM "ROWSET"

WHERE "color"=’Pink’

GROUP BY "year"

;

This Multiple Group-by query includes three single Group-by queries; each query in-

cludes two aggregate functions. Thus, we need to create three aggregate tables. For

the first Group-by query aggregating over dimension product family, the aggregate

table has three columns. The first column is used to store different distinct values

appearing in the records which meet the WHERE condition E > e. The second and

third columns are used to store the corresponding aggregate values for each distinct

value of the dimension product family. In this example, the two aggregate func-

tions are both SUM. The aggregate table for the second and third Group-by queries,

are constructed in a similar way. Aggregate table is implemented as Hashtable in over

program.

Secondly, the reducer scans all intermediate results, and simultaneously the reducer

updates the aggregate tables by aggregating the new arriving aggregate values onto

some records in the aggregate tables. The final result obtained by the reducer is a

group of aggregate result tables, each table corresponding to one Group-by query. The

Algorithm 2 describes this processing in pseudo-code.

In this initial implementation, the reducer works on all the records filtered by the

WHERE condition. The most important calculations, i.e. the aggregations, are per-

formed in the reducing phase. It takes all the filtered records as its input data. Such an

implementation is a general approach for realizing a MapReduce application. However,

89

4. MULTIDIMENSIONAL DATA AGGREGATION USING
MAPREDUCE

Algorithm 1 Filtering in Mapper

Input: data block, Multiple Group-by query
Output selectedRowSet
Load data block into rawData
for record ∈ rawData do

if record passes WHERE condition then
recordID → matchedRecordIDs

end if
end for
for recordID ∈ matchedRecordIDs do

copy rawData[recordID] to selectedRowSet
end for

Algorithm 2 Aggregating in Reducer

Input: selectedRowSet
Output: aggs
for dimension ∈ GroupByDimensions do

create a aggregate table: agg
end for
for record ∈ selectedRowSet do

for dimension ∈ GroupByDimensions do
if (value of dimension in record) ∈ agg of dimension then

assuming existing record is r
for agg func() ∈ agg func list do

update r.field(1 + a) with agg func(r)
end for

else
Insert into agg a new record rr where
rr.field1 = value of GroupByDimension
for agg func() ∈ agg func list do

rr.field(1 + a) = agg func(rr)
end for

end if
end for

end for

90

4.8 Parallelizing Multiple Group-by Query with MapReduce

it is not fully suitable for GridGain. Because of the limitation of GridGain (only one

reducer), all the filtered records should be transfer over the network. This could cause

high overhead when the bandwidth is limited.

4.8.4 MapCombineReduce Model-based Optimization

In the initial implementation, all the intermediate outputs produced by the mappers

(i.e. all the records matching the WHERE condition), are sent to the reducer over the

network. If query selectivity 1 under the given WHERE condition is relatively small,

for instance 1%2, then output of mapping phase will be moderate, and the initial

implementation is suitable. However, if the query selectivity is larger, for instance,

9%, then the number of records will be great and the volume of data being transferred

over the network will become large, which causes a higher communication cost. As a

consequence, the initial implementation is not suitable for queries with relatively large

selectivity.

In order to reduce the network overhead caused by the intermediate data transmis-

sion for queries with larger selectivity value, we propose a MapCombineReduce model-

based implementation. We let the combiner component to act as a pre-aggregator

on each worker node. In this work, the number of combiner of each worker node is

one. In optimized MapCombineReduce model-based implementation, the mapper first

performs the same operations of the filtering phase as in the initial implementation.

However, the result of the filtering phase will be put into the local cache instead of

being sent over the network immediately. The mapper then sends out a signal when it

finished its work. The trigger (i.e. reducer in the first MapReduce task) will receive

this signal. When the trigger receives all the work finished signals, then it activates the

second MapReduce task. In the second MapReduce task, the combiner (i.e. the map-

per of the second MapReduce task) does the aggregating operations locally within each

worker node. Each of the combiners generates a portion of aggregate the results, i.e. a

set of partial aggregate tables. Then they send out their partial results to the reducer.

After merging all the partial results, the reducer generates the final aggregate tables

of the Multiple Group-by query. Thus, the volume of data to be transferred is reduced

1Here, a selectivity of a select query means the ratio value between the number of records satisfying
the predicate defined in the WHERE clause and the cardinality of the relation.

2This means that only 1% of the records are selected out from the data source table.

91

4. MULTIDIMENSIONAL DATA AGGREGATION USING
MAPREDUCE

Figure 4.8: The optimized Multiple Group-by query implementation based on MapCom-
bineReduce model.

during the pre-aggregation phase, which in turn reduces the total communication cost.

Figure 4.8 illustrates the MapCombineReduce model-based Multiple Group-by query

processing.

4.8.5 Performance Measurements

We have developed two implementations of Multiple Group-by query. The initial im-

plementation uses a basic MapReduce model without combiner. The optimized imple-

mentation adopts the combiner component to do the pre-aggregation over the output

of the mappers before sending the intermediate data to the reducer.

4.8.5.1 Experiment Platform: Grid’5000

To evaluate the proposed approaches, we did a first performance measurement on

Grid’5000 (9) a French project that provides a large-scale reconfigurable grid infrastruc-

ture to support distributed and parallel experiments. Grid’5000 is composed of 9 sites

geographically distributed in France featuring a total of 5000 processors. In Grid’5000,

users can reserve a number of computers within one cluster or across several clusters.

Users can freely install his/her own software, such as operating system (OS) on the

reserved computers. Grid’5000 provides a series of tools and commands to support

computer reservation, rapid software installation experiment deployment, and node

status monitoring. For instance, with the Kadeploy (15) tool, it is possible to generate

92

4.8 Parallelizing Multiple Group-by Query with MapReduce

customized images of operating systems and applications, store and automatically or

interactively load them through the job scheduler tool OAR (17).

For the experiments in this work, we ran the version 2.1.1 of GridGain over Java

1.6.0 on top of computers in one cluster located in the Sophia site. In this cluster, all

the computers are of model IBM eServer 325. The total number of nodes in this cluster

is 49 and each node is equipped with two AMD Opteron 246 2.0GHz processors, 2GB of

RAM and network card of Myrinet-2000, running under the 64-bit Debian. We reserve

from 1 to 20 nodes according to the experiment requirements. GridGain instances

are started at master node and worker nodes, the JVM maximum of heap size were

set to 1536MB. In the following experiments, we were mainly interested in the two

performance aspects of our Multiple Group-by query implementations, the speed-up

and the scalability.

4.8.5.2 Speed-up

In our work, the materialized view was stored as a plain text CSV file. We use a

materialized view of 640 000 records which is composed of 15 columns, including 13

dimensions and 2 measures. Each record is stored as a different line of the CSV file.

We partitioned this materialized view with 5 different block sizes: 1000, 2000, 4000,

8000 and 16000. Several Multiple Group-by queries with different selectivities1 (1.06%,

9.9%, 18.5%) were executed on the materialized view. Each query includes 7 Group-by

queries. In order to test the speed-up, We firstly ran a sequential test on one machine in

the cluster, then we launched the parallel tests realized with GridGain on 5, 10, then on

15, and finally on 20 worker nodes. Each test is run 5 times and the average execution

time was recorded. Figure 4.9 shows the speed-up of the initial implementation and

the optimized one comparing with the sequential execution time.

As seen from this figure, no good speed-up is obtained with small block sizes such

as 1000 and 2000. However, an obvious acceleration can be observed when using larger

block size like 4000, 8000 and 16000. The explanation of this phenomenon is that, for

each job running on a worker node, there are some initial costs to start (job start-up)

and to close the job (job closure). The actions in job start-up include receiving data

or parameters from the calling node (usually this is the master node), preparing the

1The selectivity of a select query means the ratio value between the number of records satisfying
the predicate defined in the WHERE clause and the cardinality of the relation

93

4. MULTIDIMENSIONAL DATA AGGREGATION USING
MAPREDUCE

Figure 4.9: Speed-up versus the number of machines and the block size (1000, 2000, 4000,
8000, 16000).

94

4.8 Parallelizing Multiple Group-by Query with MapReduce

input data or reading the input data from an indicated place, etc. The job closure cost

consists in establishing a connection with the master node in order to send back the

intermediate outputs on worker side, and receiving and pre-processing each intermediate

output on the master side. The smaller the block size is, the larger the job number is.

When the block size is equal to 1000 or 2000, the number of jobs is large and the job

start-up/closure cost becomes important . . .

The results shown in the two first figures consider a query with selectivity equal to

1.06%. With this small selectivity, the output of the mappers is not large enough, and

the optimized implementation does not exhibit its advantage over the initial implemen-

tation. However, increasing the query selectivity (e.g. 9.9% and 18.5%), makes the in-

termediate data being transferred in the initial implementation considerably larger than

those transferred in the optimized implementation. As a consequence, the optimized

implementation shows a better speed-up performance than the initial implementation.

4.8.5.3 Scalability

For the scalability, we used several materialized views having the same dimensions

and measures, but containing several times more records than the one of the speed-up

tests. We used materialize views of 640 000, 1 280 000, 1 920 000 and 2560000 records,

respectively. The tests performed using the materialized view of 640 000 records were

run on 5 machines, those using the materialized view of 1 280 000 records were run

on 10 machines, those using materialized view of 1 920 000 records were run on 15

machines, and those using materialized view of 2 560 000 records were run on 20

machines. According to the previous test case, the executions with block size as 16000

had better performance than the other ones. Therefore, we defined the block size of

16000, and we used queries with the same selectivities as used in speed-up experiments.

Figure 4.10 shows the obtained results.

These figures show that the optimized implementation has very good scalability.

With an increasing the data scale, the executions spend almost the same time (the

difference is smaller than 1 seconds). As seen from the first figure, for the case of query

selectivity equal to 1.06%, the workload is relatively small and both the optimized

implementation and the initial implementation gave acceptable execution time, i.e.

within 3 seconds. Note that in case of a small selectivity, the communication cost

was not dominant and the pre-aggregation work did not bring an obvious optimizing

95

4. MULTIDIMENSIONAL DATA AGGREGATION USING
MAPREDUCE

Figure 4.10: Comparison of the execution time upon the size of the data set and the
query selectivity.

effect. In the rest of the figures, the query selectivities have larger values. This enables

more records to be selected and implies larger communication costs for transferring

intermediate output. As a consequence, the optimized implementation always shows

better performance than the initial implementation, and the curve if the optimized

implementation stands upper the curve of the initial implementation. This behaviour

is clearly outlined for query selectivity equal to 9.9% and 18.5%.

4.9 Execution Time Analysis

In this section, we will describe a basic analysis of execution time of the Multiple Group-

by query. These cost analysis respectively address the initial implementation based on

the MapReduce and optimized implementation based on the MapCombineReduce. As

96

4.9 Execution Time Analysis

mentioned earlier, a GridGain MapReduce task’s calculation is composed of the start-

up and closure on the master node, and the mapper executions over worker nodes. In

this work, we are also interested in the optimization over communication cost, thus,

communication time is considered, but we ignore the extra cost brought by the resource

contention over each worker node when running multiple mappers.

4.9.1 Cost Analysis for Initial Implementation

Assume that the Multiple Group-by query runs over a materialized view of N records,

and the query has nbGB Group-by dimensions. We use MapReduce-based method

to parallelize query processing. The parallel Multiple Group-by query’s total cost is

composed of four parts:

• start-up cost(on master node), denoted as Cst;

• mapper’s execution (on workers), denoted as Cm;

• closure cost (on master node), denoted as Ccl;

• communication cost, denoted as Ccmm.

In start-up, the master does the preparation of mappers, including the mappings

from mappers to available worker nodes, and then sequentially performs the serializa-

tions of mappers with their attached arguments. We use Cmpg to denote the time for

building mapping between mappers and worker nodes, Cs the time for serializing one

unit size of data, sizem the size of mapper object, nbm the number of mappers. The

notations that are used for expressing the cost analysis are listed in the Table 4.1.

Without considering the low-level details of serialization1, we simply assume that

the serialization time is proportional to the size of data being serialized, i.e. a bigger

mapper object consumes more time during the serialization. Therefore, a MapReduce

task of GridGain, the start-up cost Cst over master node is:

Cst = (Cmpg + Cs · sizem) · nbm

When a worker node receives a message containing mapper, it first serializes the

mapper as well as its arguments, it then launches the execution of mapper. When

1The details of serialization will be discussed in Chapter 5.

97

4. MULTIDIMENSIONAL DATA AGGREGATION USING
MAPREDUCE

Table 4.1: Notations used for describing the cost analysis

Notation Description

N records number of whole data set
Cst start-up cost
Cm

st mapper’s start-up cost (optimization)
Cc

st combiner’s start-up cost (optimization)
Cm

w cost spend on worker for executing
mapper (optimization)

Cc
w cost spend on worker for executing

combiner (optimization)
Ccl closure cost
Cw cost spent on one worker
Cmpg cost for creating a mapping

from mapper to a worker node
Ccmm communication cost
Cm mapper’s cost
Cr reducer’s cost
Cc combiner’s cost
Cs one unit data’s serialization cost
Cd one unit data’s de-serialization cost
Cl cost for loading a record into memory
Cn network factor, cost for transferring a unit of data
Cf cost for filtering a record
Ca cost for aggregating a record
Ci total cost of initial implementation
sizem size of mapper object
sizec size of combiner object
sizerslt size of mapper’s intermediate result
nbGB Group-by dimension number
DVi the ith distinct value
nbm mapper number
nbnode worker node number

N
nbm

block size

S query’s selectivity

98

4.9 Execution Time Analysis

the mapper is finished, it serializes the mapper’s output. Therefore, the cost of this

procedure is expressed as:

Cw = Cd · sizem + Cm + Cs · sizerslt

Similarly, let’s assume that the de-serialization cost is proportional to sizem, and the

cost for serializing the intermediate result generated by a mapper is proportional to

sizerslt by assumption.

The closure consists of de-serializing of the mappers’ outputs and executing user-

defined reducer. The de-serialization is run over all the records filtered by user-defined

condition in the query. Therefore, we know the total record number contained in

all intermediate outputs for being serialized is equal to the number of all the filtered

records: N × S, (S represents the query’s selectivity). Thus, we express the closure

cost as below:

Ccl = Cd ·N · S + Cr

The communication cost is composed of two parts. One is the cost for sending

mappers from master node to worker nodes; the other is that for worker nodes sending

intermediate output to the master node. The size of messages and the network status

are two factors considered in this cost analysis. Thus, we express the communication

cost as:

Ccmm = Cn · (nbm · sizem + N · S)

The analysis of Cm and Cr are related to various applications. In the MapReduce-

based initial implementation, the mappers perform filtering operations. They firstly

load the data block from the disk into the memory, and then filter loaded data with

condition defined in the query. For the mappers used in initial implementation, the

cost analysis of the Cm is as follows:

Cm =
N

nbm
· (Cl + Cf · S)

The reducer aggregates over the records filtered by mappers. It concerns the number

of records that it processes. We express reducer’s cost as below:

Cr = N · S · Ca

99

4. MULTIDIMENSIONAL DATA AGGREGATION USING
MAPREDUCE

With the mapper and reducer’s cost analysis, we obtain the total cost analysis of the

initial implementation. We consider that mapper object’s size is small comparing with

the intermediate outputs, and it can be ignored when the data set is large, the costs

concerning mappers’ mapping, serialization, de-serializations and transmission can be

removed. Thus, the analysis as below is obtained:

Ci =
N

nbm
· (Cl + Cf · S) + Cs · sizerslt + (Cd + Ca + Cn) ·N · S (1)

4.9.2 Cost Analysis for Optimized Implementation

For MapCombineReduce-based optimization of multiple-group-by query, the total cost

is considered to be composed of:

• Mapper’s start-up (on master), denoted as Cm
st ;

• Cost spend on one worker for executing a mapper, denoted as Cm
w ;

• Combiners’ start-up (on master), denoted as Cc
st;

• Cost spend on one worker for executing a combiner, denoted as Cc
w;

• Closure (on master), denoted as Ccl;

• Communication, denoted as Ccmm.

The start-up of mappers is similar to that of MapReduce, we mark two superscripts m

and c in order to distinguish mapper’s start-up from combiner’s start-up:

Cm
st = (Cmpg + Cs · sizem) · nbm

The mappers do the same calculations as in initial implementation. However, the

output’s size of each mapper is estimated as 0, because the mapper stores the selected

records into the worker’s memory and returns null. Thus, the cost for running a mapper

is expressed as below:

Cm
w = Cd · sizem + Cm + 0

where

Cm =
N

nbm
· (Cl + Cf · S)

100

4.9 Execution Time Analysis

The combiner’s start-up is similar to the mapper’s start-up, however, the number of

combiners is equal to the number of worker nodes in that the combiners collect the

intermediate data from all the worker nodes, one combiner per worker node is sufficient.

Thus, the combiner’s start-up cost is expressed as below:

Cc
st = (Cmpg + Cs · sizec) · nbnode

The combiner’s execution over one worker node can be analyzed similarly as in the

analysis of mapper’s execution. However, the size of combiner’s result can be precisely

expressed as
∑nbGB

i=1 DVi, which is the result size of pre-aggregations on any worker

node. Thus, we have the following analysis for combiner’s execution cost:

Cc
w = Cd · sizec + Cc + Cs ·

nbGB
∑

i=1

DVi

where the combiner’s cost is expressed as:

Cc =
N

nbnode
· S · Ca

The closure includes the de-serialization of combiners’ output and the cost of re-

ducer:

Ccl = Cd ·

nbGB
∑

i=1

DVi · nbnode + Cr

where the reducer’s cost is expressed as:

Cr = nbnode ·

nbGB
∑

i=1

DVi · Ca

As an additional combiner is added, the communication cost’s analysis is corre-

spondingly modified:

Ccmm = Cn · (nbm · sizem + nbnode · sizec +

nbGB
∑

i=1

DVi ∗ nbnode)

101

4. MULTIDIMENSIONAL DATA AGGREGATION USING
MAPREDUCE

The following analysis of total cost is obtained after ignoring the mapping, serialization/de-

serialization and transmission cost of mappers and combiners:

Co =
N

nbm
· (Cl + Cf · S) +

N

nbnode
∗ S · Ca+

(Cn + Cd + Ca) · nbnode ·

nbGB
∑

i=1

DVi + Cs ·

nbGB
∑

i=1

DVi (2)

4.9.3 Comparison

Comparing the equations (1) and (2), we can see that the optimized implementation

surpass the initial one in two aspects. Firstly, it decreases the communication cost by

reducing it from the scale of N×S to nbnode·
∑nbGB

i=1 DVi. Secondly, a part of aggregating

calculations are parallelized over worker nodes. We call the aggregation parallelized over

worker nodes as pre-aggregation. The aggregating phase’s calculation in initial imple-

mentation had scale of N×S, and it is reduced to (N
nbnode

·S+nbnode ·
∑nbGB

i=1 DVi) in the

optimized implementation. However, another part of aggregation (post-aggregation) is

inevitably to be done by master node, fortunately, the post-aggregation is small relative

to the whole aggregation.

A disadvantage of the optimized implementation can be observed. A part of cost is

increased with the growth of worker node number, including communication cost. With

this knowledge, the compression of intermediate output is considered to be important.

4.10 Summary

In this chapter, we firstly introduced the data explorer background of this work and

identified the Multiple Group-by query as the elementary computation to be parallelized

under this background. Then we described for why we chose GridGain over Hadoop

as the MapReduce framework in our work. We used GridGain as the MapReduce

supporting framework because of its low latency. A detailed workflow analysis over

the GridGain MapReduce procedure has been done. We realized two implementations

of Multiple Group-by query based on MapReduce, initial and optimized implementa-

tions. The initial implementation of the Multiple Group-by query is based on a direct

realization, which implemented filtering phase within mappers and aggregating phase

102

4.10 Summary

within the reducer. In the optimized implementation of Multiple Group-by query, we

adopted a combiner as a pre-aggregator, which does the aggregation (pre-aggregation)

on a local computing node level before starting reducer. With such a pre-aggregator,

the amount of intermediate data transferred over the network is reduced. As GridGain

does not support a combiner component, we constructed the combiner through merging

two successive GridGain’s MapReduces. The experiments were run on a public aca-

demic platform named Grid’5000. The experimental results showed that the optimized

version has better speed-up and better scalability for reasonable query selectivity. At

the end of this chapter, a formal analysis of execution time is given for both imple-

mentations. A qualitative comparison between these implementations was presented.

According to the qualitative comparison, the optimized implementation has decreased

the communication cost by reducing the intermediate data; it has also reduced the ag-

gregating phase’s calculation by parallelizing a part of aggregating calculation. These

analysis are also valuable reference for other MapReduced applications.

103

4. MULTIDIMENSIONAL DATA AGGREGATION USING
MAPREDUCE

104

5

Performance Improvement

In this chapter, we will present some methods to improve the performance of MapReduce-

based Multiple Group-by query processing. In a distributed shared-nothing architec-

ture, like MapReduce system, there are two approaches to optimize query processing.

The first one is to choose optimal job-scheduling policy in order to complete the calcu-

lation within minimum time. Load balancing, data skew, straggler node etc. are the

issues involved in job-scheduling. The second approach focuses on the optimization of

individual jobs constituting the parallel query processing. Individual job optimization

needs to consider the characteristics of involved computations, including the low-level

optimization over detailed operations. The optimization of individual job sometimes

affects the job-scheduling policy. Although the two optimizing approaches are at differ-

ent level, they have influences between each other. In this chapter, we will first discuss

the optimization work for accelerating individual jobs during the parallel processing

procedure of the Multiple Group-by query. Then, we will identify the performance

affecting factors during this procedure. The performance measurement work will be

presented. The execution time estimation models are proposed for query executions

based on different data partitioning method. An alternative compressed data structure

will be proposed at the end of this chapter. It enables to realize more flexible job

scheduling.

105

5. PERFORMANCE IMPROVEMENT

5.1 Individual Job Optimization: Data Restructure

In this work, a specific data restructure phase is adopted for realizing the distributed

data storage. During data restructure phase, a data index and compressing procedure

is performed after data partitioning. The objective of data restructure is to improve

data access efficiency. GridGain needs developer to provide an underlying distributed

data storage scheme since it is not coming with an attached distributed file system.

To some extent, this provides flexibility, although this forces developers to do the low-

level work. In this section, we first describe the applied data partitioning method

and corresponding data partition’s placement policies used in this work, and then we

describe index and compressing data structure.

5.1.1 Data Partitioning

Data partitioning is one of the major factors that significantly affect the performance in

traditional parallel database systems. Using data partitioning, a data table is divided

into disjoint blocks and placed on different computing nodes. There mainly exist two

principal data partitioning methods, horizontal partitioning and vertical partitioning.

Horizontal partitioning means dividing a data table into multiple blocks with different

rows in each block. Vertical partitioning means dividing a data table into multiple

blocks with different columns in each block. In Chapter 2, we discussed advantages and

disadvantages of two data partitioning methods. The type of calculation determines

the choice between horizontal and vertical partitioning. For Multiple Group-by query,

neither data partitioning method has an overwhelming advantage over another one.

We adopted both horizontal and vertical partitioning into this work.

5.1.1.1 With Horizontal Partitioning

With horizontal partitioning, we divide the materialized view ROWSET into a certain

number of equal-sized horizontal partitions, each partition holding the same number of

entire records. Each record contains the dimensions and measures. With entire records

in each partition, one benefit is that the aggregations over multiple dimensions can be

performed within one pass of data scanning. However, this partitioning method does

not exclude the dimensions unrelated to the query from being accessed.

106

5.1 Individual Job Optimization: Data Restructure

5.1.1.2 With Vertical Partitioning

With the vertical partitioning, we divide ROWSET into vertical partitions. One vertical

partition contains only one dimension and all measures. Since one dimension together

with measures can supply enough information for aggregating phase calculation of a

Group by query. Thus, the number of vertical partitions is equal to the number of

dimensions. Taking the ROWSET as an example, ROWSET consists of 13 dimensions

and 2 measures. The entire ROWSET is divided into 13 partitions, with each partition

including one dimension and two measures. The advantage of this vertical partitioning

is that unrelated data accessing is excluded. However, the measures are duplicated

accessed in every vertical partition.

5.1.1.3 Data Partition Placement

After partitioning, data partitions will be respectively placed on different worker nodes.

Data placement policy also affects workload distribution across worker nodes during

query processing.

In case of horizontal partitioning, an equal number of data partitions are placed on

every worker node. Additionally, we place the partitions containing successive records

on each worker node. It means that in the original data set, these records were aligned

together, one after another. The advantage of such a data distribution is that load

balancing across worker nodes can be achieved if no data skew or workload skew exists.

In case of vertical partitioning, the number of worker nodes is considered during

data placement. Data partitions are distributed according to the following policies:

• If the number of worker nodes is small, then all vertical partitions are placed

(replicated) on every worker node. We can judge a number of worker nodes to

be ”small”, if it is smaller than the average number of single Group-by queries

contained in a Multiple Group-by query. For example, we often create a Multiple

Group-by query with 5 single Group-by queries in our experiments, and then 5,

or less than 5 worker nodes are considered as a small number of worker nodes.

In a practical data exploration system, one exploring action will invoke a set of

single Group-by queries, each corresponding to one dimension. Thus, the number

of single Group-by queries is equal to or smaller than the number of dimensions

in reality. Then, worker node number smaller than the dimension number is

107

5. PERFORMANCE IMPROVEMENT

considered to be small. Otherwise, the worker node number is considered as

large.

• If worker node number is big, then each vertical partition is further horizontally

divided into smaller blocks. Worker nodes are accordingly grouped into regions.

Block is replicated over worker nodes within its corresponding region. Consider an

example shown in Figure 5.1, given a ROWSET with 3 000 000 records under the

same scheme as before, we divide it into 13 vertical partitions using our vertical

partitioning method, and each partition includes three columns (one dimension

and two measures). Assuming that there are 15 worker nodes available. In

this case of big number of worker nodes, each vertical partition of 3 000 000

records is further divided into 3 blocks of 1 000 000 records. The worker nodes

are accordingly regrouped into 3 regions, with each region containing 5 worker

nodes. As a result, the first block of every vertical partition is replicated across

worker nodes within the region one; the second block of all the vertical partition

is replicated across worker nodes within the region two; and so on. In this case,

each vertical partition is further divided in a horizontal fashion, thus it actually

is hybrid partitioning.

5.1.2 Data Restructure Design

As discussed in the preceding chapters, Multiple Group-by query processing is a data-

intensive application, since it contains many data scanning operations. For instance, in

previous work, filtering phase performed scanning operations over each data partition

to identify records satisfying the given WHERE condition. These operations involve

disk I/O, which is recognized as one type of the most costly operations. Using more

efficient way to access data will be significant for accelerating query processing. Our re-

structuring data approach is based on inverted index and data compressing techniques.

5.1.2.1 Using Inverted Index

Indexing techniques are widely used for accelerating data access in database systems.

These index techniques were rather designed for quickly locating one specific record or

a small number of records. However, in data analysis applications, including Multiple

Group-by query, there are a large number of records that needed to be located. Under

108

5.1 Individual Job Optimization: Data Restructure

Figure 5.1: Data placement for the vertical partitions.

109

5. PERFORMANCE IMPROVEMENT

this circumstance, the inverted indexing technique is more suitable, since its special

structure allows for retrieving data in a batch fashion. Refer to Section 2.2.4 for details

on inverted index.

Inverted index was originally designed to handle unstructured data, such as data

contained in web pages. Apache Lucene (16) realized the inverted indexing technique.

The concepts used in Lucene are based on unstructured data. For example, in Lucene, a

Document is a collection of Fieldables; a Fieldable is a logical representation of a user’s

content that needs to be indexed or stored. In order to utilize Lucene to index structured

data, a record is considered as a Document of Lucene, and each column’s value of the

record is considered as a Fieldable. Thus, recordID corresponds DocumentID of Lucene.

When searching a keyword of a certain column in an inverted index, we get a set of

recordIDs with which associate the records containing this keyword.

5.1.2.2 Data Compressing

In this work, the data restructuring procedure does not only realize the Lucene-based

inverted indexation, but also realize a data compressing procedure. For the Dimensions,

the ”text” type distinct value is converted into an integer. We call this integer as the

code of the distinct value. Both of these integer values and float values of Measures are

compressed into bytes before written to the disk.

For each horizontal partition, the compressed data is stored in two files, FactIndex

and Fact. Fact file stores distinct values of each dimension and the measure values

contained in each record. These values are organized record by record in Fact file.

The FactIndex file stores a set of addresses. Each address pointing to the position

of each record stored in Fact file. Figure 5.2(a) shows the compressed data storage

for horizontal partitions. Similarly, for each vertical partition, the compressed data is

also stored in FactIndex and Fact. Instead of storing integer values for all dimensions,

only one integer value is stored for each record. The float values of all measures are

still stored for each record. Figure 5.2(b) shows the compressed data files for vertical

partitions.

110

5.1 Individual Job Optimization: Data Restructure

(a)

(b)

Figure 5.2: (a) Compressed data files for one horizontal partition. (b) Compressed data
files for one vertical partition of dimension x. (DV means Distinct Value)

111

5. PERFORMANCE IMPROVEMENT

5.2 Mapper and Reducer Definitions

Processing a Multiple Group-by query consists of filtering and aggregating phases. Over

the restructured data, the computations involved in these two phases are different than

before. Instead of a raw data scanning, filtering phase performs a search operation

over inverted index with a keyword coming from the WHERE condition. Such a search

operation retrieves from inverted index a list of recordIDs, indicating the records satis-

fying the given condition. With the recordID list, the aggregating phase can locate the

selected records and compute aggregates by reading filtered data from their compressed

data file.

In the previous work, we learned that performing aggregating phase within combin-

ers could reduce execution time. Lately, we realized that aggregating phase could be

moved into mappers for purpose of reducing the size of the intermediate output from

mappers. As a result, we let mappers perform filtering and aggregating phases, and

reducer merges the aggregate tables from mappers and generates the final result.

Under different data partitioning methods, data organization is different, and the

job definitions are not the same. In our implementation under the horizontal partition-

ing, the mapper applies the WHERE condition and then aggregates for all dimensions

appearing in Group-by dimensions over each data partition. In our implementation

under the vertical partitioning, mapper performs the filtering operations, and then ag-

gregates for one dimension, since each vertical partition includes only one dimension.

We present the detailed Mapper and Reducer definition in the following content.

5.2.1 Under Horizontal Partitioning

Mapper

Under the horizontal partitioning, a mapper starts with the filtering phase. In filter-

ing phase, records are filtered with the WHERE condition through a ”search” operation

which looks for the given keyword within the Lucene index file (denoted as index). As

a result, a recordID list (denoted as slctRIDs) in type of BitSet (5) is produced. In

filtering phase, dimensions are also filtered. Only those dimensions appearing in the

Group-by clauses (denoted as GBDims) are selected.

After that, processing enters into the aggregating phase. Multiple aggregate tables

are created for selected dimensions (denoted as slctDims). These tables are initialized

112

5.2 Mapper and Reducer Definitions

with distinct values of corresponding dimension. We designed a new data structure of

aggregate table and enhanced its functionality. The basic functionality of new aggregate

table remains the same as in Chapter 4, which means storing for each Group-by di-

mension distinct values and the corresponding aggregate values for each distinct value.

Differently, the new structure can additionally record the aggregate function list given

in query, and it provides implementations for various aggregate functions, which al-

lows computing aggregate values by calling the built-in functions. Besides, the new

aggregate table structure stores the name of dimension.

Since in one mapper, aggregating phase only aggregates over one partition of the

entire ROWSET, the aggregate table only contains a partial of the aggregates, and we

mark the partial aggregate table as agg part. The text type distinct value of all the

selected dimensions, as well as the numeric values of all the measures in the selected

records is read from the compressed data (CD) file. The following computations are

performed each time one selected record is retrieved. Values of all Group-by dimensions

are read from the retrieved record. For every Group-by dimension, the aggregated

value associated with the read distinct value is updated by the measure values from

the retrieved record. It is necessary to distinguish two cases. In one case, the current

record is the first one that contributes to the aggregate values of one distinct value.

In this case, we compute the aggregates with newly arrived measure values, and insert

a new record with the computed aggregate values. Otherwise, the current record is

not the first contributing one, then recalculate aggregate values by aggregating the

existing aggregate values with newly arrived measure values, and update them. The

pseudo-code in Algorithm 3 describes this procedure.

Reducer

The reducer collects all the intermediate outputs, i.e. partial aggregate tables pro-

duced by mappers. Each mapper produces multiple aggregate tables, each aggregate

table for one Group-by dimension. One mapper processes aggregations over multiple

dimensions. If we mark the number of Group-by queries as nbGB, then each mapper

produces nbGB partial aggregate tables, noted as, agg part[nbGB]. Assuming that there

are, in total, nbm mappers, the number of intermediate aggregate tables is equal to the

product of the mapper number and the Group-by dimension number, i.e. nbm×nbGB.

The intermediate output from the same mapper is sent back in one message. Reducer

113

5. PERFORMANCE IMPROVEMENT

Algorithm 3 Mapper under Horizontal Partitioning

Input: index, (CD)
Output: agg part[nbGB]
//filtering
slctRIDs = index.search(keyword)
slctDims = GBDims
//aggregating
for d = 0 to nbGB − 1 do

create and initialize agg part[d]
end for
for RID ∈ slctRIDs do

retrieve dimV alues[nbGB] of RIDth-record from CD
retrieve msrV alues[nbmsr] of RIDth-record from CD
for d = 0 to nbGB − 1 do

if in agg part[d], aggV alues[..] for dimV alues[d] = {0.0..0.0} then
for a = 0 to |agg func[..]| − 1 do

aggV al[a] = agg func[a](msrV alues[x]),
where x ∈ [0..nbmsr − 1]
aggV alues[a] = aggV al[a]

end for
else

for a = 0 to |agg func[..]| − 1 do
aggV al[a] = agg func[a](msrV alues[x], aggV alues[a]),
where x ∈ [0..nbmsr − 1]
aggV alues[a] = aggV al[a]

end for
end if

end for
end for

114

5.2 Mapper and Reducer Definitions

processes the intermediate outputs mapper by mapper. After creating a set of empty

aggregate tables, denoted as agg[nbGB], then it calls the merge function to merge the

partial aggregate tables produced by each mapper with the initialized aggregate tables.

The pseudo-code in Algorithm 4 describes this processing procedure.

Algorithm 4 Reducer under Horizontal Partitioning

Input: mp output[nbm] < agg part[nbGB] > //nbm: mapper number
Output: agg[nbGB]
for g = 0 to nbGB − 1 do

create agg[g] //create the gth aggregate table
end for
for m = 0 to nbm − 1 do

agg part[..]← mp output[m]
for g = 0 to nbGB − 1 do

merge agg part[g] with agg[g]
end for

end for

5.2.2 Under Vertical Partitioning

Mapper

Under the vertical partitioning, the index and compressed data is organized partition

by partition. The processing a Group-by query actually involves data of two partitions,

since filtering with the WHERE condition needs to access one partition, aggregating

phase needs to access another partition. This is the usual case. It is uncommon that a

Group-by query aggregates over a dimension which appears in the WHERE condition.

In filtering phase, mapper applies condition by searching the given keyword within

Lucene index of the partition concerned by WHERE condition, and produces a selected

recordID-list. As mentioned above, the aggregating phase works on a different parti-

tion, which is the corresponding partition of the Group-by dimension. The selected

recordID-list is used to interactively retrieve dimension value and measure values from

the compressed data file. At the same time, the aggregate computations are performed.

When a record being retrieved, the aggregate functions are performed to calculate the

new aggregate values. The aggregate function either aggregates over the newly read

measure values and the existing aggregate values, or, if the current record is the first

115

5. PERFORMANCE IMPROVEMENT

contributor to the aggregate value of current distinct value, the aggregate function com-

pute the aggregate values only with the new measured values. The aggregate values

are updated into the aggregate table.

Note that, we use the same mapper computation both vertically partitioned data

and hybrid partitioned data. The only difference is in the generated intermediate ag-

gregate table. Mapper working over a complete vertical partition produces an complete

aggregate table. The aggregate table contains aggregate values for all distinct value.

It is not necessary to aggregate such an aggregate table with other aggregate tables to

generate the final result in reducer. On the contrary, the mapper working on a hybrid

partition can only produce a partial aggregate table. For generating the final result,

multiple partial aggregate tables need to be re-aggregated in reducer. This difference is

automatically managed in our program. In order to distinguish from the final aggregate

table, which is noted as agg, we still mark the output of mapper as agg part for both

cases. The detailed mapper pseudo-code is listed in Algorithm5.

Algorithm 5 Mapper under Vertical Partitioning

Input: index, CD, dim // CD: Compressed Data
Output: agg part
//filtering phase
slctRIDs = index.search(keyword)
//aggregating phase
for all RID ∈ slctRIDs do

retrieve dimV alue of RIDth-record from CD)
retrieve msrV alues[nbmsr] of RIDth-record from CD
if in agg part, aggV alues[..] for dimV alue = {0.0..0.0} then

for a = 0 to |agg func[..]| − 1 do
aggV al[a] = agg func[a](msrV alues[x])
where x ∈ [0..nbmsr − 1]
aggV alues[a] = aggV al[a]

end for
else

for a = 0 to |agg func[..]| − 1 do
aggV al[a] = agg func[a](msrV alues[x], aggV alues[a])
where x ∈ [0..nbmsr − 1]
aggV alues[a] = aggV al[a]

end for
end if

end for

116

5.3 Data-locating Based Job-scheduling

Reducer

The reducer collects aggregate tables agg parts produced by all mappers. Under

vertical partitioning, the total number of intermediate aggregate tables is equal to

the number of mappers. That is much smaller comparing with the number of agg part

produced by mappers over horizontal partitions. At the beginning of reducer, we create

and initialize nbGB aggregate tables, which will be updated during the calculation and

”outputed” as the final result at the end of reducer. For each partial aggregate table,

we first identify the aggregate table agg[x] serving for the same dimension. Then we

merge the aggregate values within the partial aggregate table to the final aggregate

table.

As mentioned above, one mapper may produce a complete aggregate table or a

partial aggregate table. However, reducer handles them using the same computation.

If an aggregate table is complete, then there will be no other aggregate table, which

corresponds to the same dimension. Thus, no aggregate table will be merged with it.

This is achieved automatically. For a partial aggregate table, there are naturally other

partial aggregate tables be merged with it. The pseudo-code in Algorithm 6 describes

this procedure.

Algorithm 6 Reducer under Vertical Partitioning

Input: mp output[nbm] < agg part >
where nbm is number of mappers
Output: agg[nbGB]
for g = 0 to nbGB − 1 do

create agg[g]
end for
for m = 0 to nbm − 1 do

identify the target agg[x], where agg[x]
serves the same dimension as agg part[m]
aggregate agg[x] with agg part[m]

end for

5.3 Data-locating Based Job-scheduling

GridGain is a Multiple-Map-One-Reduce framework. It provides an automatic job-

scheduling scheme, which assumes all nodes are equally suitable for executing job. Un-

117

5. PERFORMANCE IMPROVEMENT

fortunately, that is not the case of our work. We provide a data-locating job-scheduling

scheme. This scheme can be simply described as sending job to where its input data is.

5.3.1 Job-scheduling Implementation

Our job-scheduling implementation helps mapper to accurately locate data partition.

This is especially important in case of no existence of data redundancy. One wrong map-

ping will cause computational errors. With the data placement procedure performed

during data restructuring, this job-scheduling scheme is converted to a data location

issue. We utilize the user-definable attribute mechanism provided by GridGain to ad-

dress this issue. For example, we add a user-defined attribute ”fragment” into each

worker’s GridGain configuration, and attribute it a value representing the data parti-

tions’ identifiers that it holds. When the worker nodes’ GridGain instances are started,

the ”fragment” attribute is visible to the master node’s GridGain instance and the

other worker nodes’ GridGain instances. It is used to identify the right worker node.

In the case of horizontal partitioning, worker node identifiers (i.e. hostnames) are

utilized to locate data partitions. In this case, an equal number of partitions are placed

on each worker node. The partitions containing successive records are placed over

one worker node. That is, partitions are distributed on worker nodes in a sequential

order. Then, the identifier of worker node is used as the identifier of data partitions

that it holds. In this way, worker node identifiers are used to locate data partitions.

For example, assuming that ROWSET is horizontally divided into 10 partitions, these

partitions are placed over 5 worker nodes. Thus, worker node A holds partitions 1, 2;

worker node B holds partitions 3, 4, and so on. In this scenario, 10 mappers need to

be dispatched. As partitions 1 and 2 locate on worker node A, then mappers 1 and 2

are sent to worker node A. The rest of mappers are scheduled in the same way.

In case of vertical partitioning, a user-defined attribute, ”region identifier” is utilized

to locate data partitions. When worker node number is small (case of 1 region), vertical

partitions are replicated across all worker nodes. When worker node number is large,

further, vertical partitions are horizontally divided into regions. Worker nodes are

accordingly re-organized into regions. The worker nodes of the same region have the

same ”region identifier”. Partitions are replicated across worker nodes within the same

region. Thus, the region identifiers of worker nodes are utilized for data partitions.

As an example, 13 vertical partitions from ROWSET having 10 000 000 records, are

118

5.3 Data-locating Based Job-scheduling

horizontally divided into 2 regions. The records 1 to 5 000 000 are put in region 1, and

the records 5 000 001 to 10 000 000 are put in region 2. 10 worker nodes are accordingly

re-organized into 2 regions, each containing 5 worker nodes. 10 mappers aggregate over

5 different dimensions in two different regions respectively. For load balancing reason,

we use round-robin policy within region to keep the job number running over each

worker as balanced as possible.

5.3.2 Discussion on Two-level Scheduling

We actually realize a two-level scheduling in MapReduce computations, i.e. task-level

scheduling and job-level scheduling. Task-level scheduling means dispatching each map-

per to the corresponding worker node. It considers how to distribute mappers, and

ignores the calculation details within each job (mapper). Several elements should be

considered in the task-level scheduling, such as mapper number, worker node number,

load balancing. In order to achieve load balancing, it is necessary to take into account

worker node’s performance and status, and the input data location, etc. As one job is

run on one worker node, job-level scheduling takes place within a worker node, since

one job runs on one worker node. Job-level scheduling considers the organization of

calculations within a mapper. The main calculations can be encapsulated into reusable

classes, and stored in a local jar file on each worker. Mapper calls the methods of these

classes to run those calculations. Job-level scheduling is closely related to calculations

that a job should execute. For this reason, the job-level scheduling should be tuned

according to different queries; on the contrary, the task-level scheduling could be un-

changed or slightly changed for different queries. Our mapper job definitions can be

considered as a job-level scheduling.

5.3.3 Alternative Job-scheduling Scheme

An alternative job-scheduling scheme is to perform filtering phase on the master node

and aggregating phase over worker nodes. This job-scheduling scheme is feasible since

the restructured data allows loosely coupled computations. In the preceding imple-

mentation, filtering phase and aggregating phase are not separable, since aggregating

phase computations consume filtering computations’ output. With restructured data,

we can see that the computations of these two phases are clearly decoupled, since they

use different files as input data. In filtering phase, a search operation is performed via

119

5. PERFORMANCE IMPROVEMENT

accessing only inverted index files (Lucene generated files). In aggregating phase, ag-

gregation is performed over filtered records identified by a list of recordID calculated by

filtering phase, and it only needs to accesses the compressed data files (FactIndex and

Fact files). As these two phases are decoupled, they can be scheduled and optimized

separately, which provides more flexibility for job-scheduling. This is especially helpful

in case of vertical partitioning, where the selected recordIDs is commonly usable for

multiple dimensions’ aggregations.

5.4 Speed-up Measurements

We evaluated our MapReduce-based Multiple Group-by query over restructured data in

a cluster of Grid’5000 located in Orsay site1. Also, we use the version of GridGain 2.1.1

over Java 1.6.0. The JVM’s maximum of heap size is set to 1536MB on both master

node and worker nodes. We ran our applications over 1 to 15 nodes. Although the

worker nodes were small-scaled, the ROWSET processed in these experiments is not

extremely large, and it fits well with the amount of nodes used in our work. ROWSET

was composed of 10 000 000 records with each including 15 columns. The size of

ROWSET was 1.2 GB. We partition the data set with both horizontal partitioning

and vertical partitioning. All the partitions had already been indexed with Lucene and

compressed before launching the experiments.

We chose queries having different selectivity. Selectivity is a factor that controls

the amount of data being processed in the aggregating phase. Four Multiple Group-by

queries’ selectivities are 1.06%, 9.9%, 18.5% and 43.1% respectively. These queries all

had the same five Group-by dimensions. Before starting the parallel experiments, we

ran a group of sequential versions for each of these queries and measured the execution

times, which were used as the baseline of the speed-up comparison.

5.4.1 Under Horizontal Partitioning

Under the horizontal partitioning, we partitioned the ROWSET with different sizes.

We ran concurrently different number of mappers over each worker node in different

experiments. Thus, we could compare the performance of running a few of big-grained

1The cluster located in Sophia site had unfortunately retired after doing our first part of experi-
ments. The currently chosen cluster has the same hardware configuration as retired cluster of Sophia.

120

5.4 Speed-up Measurements

Figure 5.3: Speed-up of MapReduce Multiple Group-by query over horizontal partitions.

jobs per node against that of running multiple small-grained jobs on one node. Our

experiments with the horizontal partitioning-based implementation was organized in

4 groups, in the first group, there was only 1 mapper being dispatched to a worker

node and run on it. In the second group, 2 mappers were running on one worker

node. In the third group, we ran 10 mappers on each worker node, and in the fourth

group, 20 mappers per worker node. The Figure 5.3 shows the speed-up performance

of the MapReduce-based Multiple Group-by query over horizontal partitions. We also

realized a MapCombineReduce-based implementation. The MapCombineReduce-based

implementation was for the case where more than one mappers running on one node.

Combiner performed the same computations as reducer. The Figure 5.4 shows the

speed-up performance measurement of the MapCombineReduce-based multiple Group-

by aggregation over horizontal partitions.

121

5. PERFORMANCE IMPROVEMENT

Figure 5.4: Speed-up of MapCombineReduce Multiple Group-by query over horizontal
partitions.

122

5.4 Speed-up Measurements

Observation and Comparison

For the MapReduce-based implementation, the first observation of the speed-up mea-

surement is that the queries with big selectivity shows better speed-up performance

than the queries with small selectivity. A query with certain selectivity has a fixed

workload of calculation. Some parts of this workload are parallelizable, but others are

not. The reason why the big selectivity queries have better speed-up performance is

the parallelizable portion in their workload is greater than that in the small selectivity

queries. The second observation is the speed-up performances of smaller job number

per node (1 and 2 jobs/node) experiments surpass that of bigger job number per node

(10 and 20 jobs/node) experiments. Multiple jobs concurrently running over one node

were considered to be able to more efficiently utilize the CPU cycles, and can run

faster. But in reality, this is not always true. We will discuss the issue of multiple jobs

concurrently running on one worker node later in this chapter.

The speed-up of MapCombineReduce-based implementation is similar to that of

MapReduce-based one. Comparing these two implementations, we can see that the

speed-up performance of MapReduce-based implementation is better than that of MapCombineReduce-

based one in the experiments of small job number per node. In contrast, for experiments

of big job number per node, the MapCombineReduce-based implementation speeds up

better than MapReduce-based one. That is due to the necessity of combiner for dif-

ferent job number per node. For the job number per node smaller or around the CPU

number per node (e.g. 1 and 2), the pre-final-aggregation (combiner’s work) is not

necessary, in that the number of intermediate outputs is not big. On the contrary,

when the number of job per node is big (e.g. 10 and 20), the combiner is necessary. In

this case, the speed-up of MapCombineReduce-based implementation is slightly better

than the MapReduce-based implementation.

5.4.2 Under Vertical Partitioning

Under vertical partitioning, we dispatched the vertical partitions using the policies

described in Section 5.1.1.3. Similarly, we realized a MapReduce based implementation

and MapCombineReduce based one. We measured the speed-up performance for both

of them. During the experiments, we increased the number of worker nodes from 1 to 15,

and divided the experiments into 3 groups. In experiments of group 1, we had a small

worker node number, denoted as w, w ∈ [1..5], we organized vertical partitions into

123

5. PERFORMANCE IMPROVEMENT

one region. If we note region number as nbr, then nbr = 1. In this case, each mapper

aggregates over one entire Group-by dimension. Thus, then in case of 1 region, the

number of mappers is equal to the number of Group-by dimensions (nbm = nbGB = 5).

In the second group of experiments, we increased the number of region to two (nbr = 2)

in order to utilize till 10 worker nodes. We ran the queries over 2, 4, 6, 8 then 10 worker

nodes (i.e. w ∈ [2, 4, 6, 8, 10]), and measured the execution time in case of each vertical

partition being cut into two regions. As the number of mapper equals to the number

of partitions, then we have nbm = nbGB · nbr = 10. In the third group of experiments,

we increased the number of region to three, i.e. nbr = 3. We had worker nodes number

w ∈ [3, 6, 9, 12, 15] in different experiments. The number of mapper nbm = 15. The

mappers were evenly distributed within each region.

As we fixed the Group-by dimension number as 5, the total mapper number was

5×nbr, and the number of mappers per node was varying with node number per region:

nbjob/node =
⌊

5/nbnode/region

⌋

or
⌈

5/nbnode/region

⌉

For example, if nbnode = 1, nbr = 1,

then each node was assigned 5 mappers; if nbnode = 10, nbr = 2, then each node is

assigned 1 mapper; if nbnode = 2, nbr = 1, then one node was assigned 2 mappers, the

other 3 mappers, etc. We illustrate the speed-up performance measurements in the

Figure 5.5.

Observation and Comparison

As shown in this figure, the speed-up is increasing with the raise of worker number

regardless of the number of regions. The MapReduce-based implementation speeds up

better than the MapCombineReduce-based one, because the number of job per node is

small (i.e. < 5). The queries with bigger selectivity, like, 9.9%, 18.5%, 43.1%, benefit

more from the parallelization than the queries with smaller selectivity, like 1.06%.

For most of queries, the biggest speed-up appears in the third group of experiments

with 3 regions, for both the implementations MapReduce-based one and MapCombineReduce-

based one. Comparing the speed-up under vertical partitioning and that under the

horizontal partitioning, we can see the best speed-up appears in experiments under the

vertical partitioning. Under vertical partitioning, each mapper aggregates over only one

dimension; the obtained intermediate output is the aggregates of one dimension. The

size of the intermediate outputs with using vertical partitioning is much smaller than

those with using the horizontal partitioning. Imagining a scenario where 10 worker

124

5.4 Speed-up Measurements

Figure 5.5: Speed-up of MapReduce Multiple Group-by aggregation over vertical par-
titions, MapReduce-based implementation is on the left side. MapCombineReduce-based
implementation is on the right side.

125

5. PERFORMANCE IMPROVEMENT

nodes are available. Under horizontal partitioning, one mapper works on one horizon-

tal partition on one worker node. As each mapper aggregates over 5 dimensions, then,

the number of intermediate aggregate tables from all the mappers are 10 × 5 = 50.

Under vertical partitioning, 10 available workers are organized into 2 regions. Also,

there are in total 10 mappers. But each mapper aggregates over one dimension. Thus

the number of intermediate aggregate tables is exactly the number of mappers 10. If

we simply suppose that an aggregate table of an arbitrary Group-by dimension is of

size 20K, then 1000K intermediate output is generated under horizontal partitioning,

while 200K intermediate output is generated under vertical partitioning. Thus, with

vertical partitioning, the intermediate data volume to be transferred is reduced with

regard to the experiments with the horizontal partitioning.

5.5 Performance Affecting Factors

In this section, we will discover the performance affecting factors in the Multiple Group-

by query processing. Some of them are concerning the computations themselves, others

are related to the exterior condition, such as hardware, network, etc. Discovering of

these factors is helpful for locating the bottlenecks, and in turn increasing the system

efficiency. The performance affecting factors addressed in this section include, query

selectivity, running multiple jobs over one worker node, hitting data distribution, in-

termediate output size, serialization algorithms, network status, combiner’s utilization

as well as data partitioning methods.

5.5.1 Query Selectivity

Query selectivity is a factor that controls the records filtered out during the selecting

phase. Also, it determines the amount of data that the aggregating phase should

process. For big selectivity, query’s aggregating phase takes up a majority of the

whole calculation. In addition, the aggregating calculation is parallelizable. Thus

the query with big selectivity benefits more from the parallelization than query with

small selectivity. Query selectivity sometimes is related with workload skew. In some

particular cases a query selects a lot of records from some partitions, but very limited

records from the other partitions. Therefore, most aggregate operations are performed

only on a part of worker nodes, while the other nodes keep idle, which causes the

126

5.5 Performance Affecting Factors

Job number 1 Mapper’s
on Average Execution

1 node time (ms)

1 170
2 208
3 354
4 417
5 537

Table 5.1: Average execution time of multiple mappers jobs on 1 node.

workload skew. This happens more frequently with range data partitioning than in

other cases.

5.5.2 Side Effect of Running Multiple Mappers on One Node

In our experiments, we ran a different number of mappers on each worker node so as to

measure different effects for acceleration. Intuitively, the more mappers concurrently

run on one worker node, the more efficiently the CPU(s) should be utilized. However,

mappers run degradedly when contentions are provoked. More importantly, this retards

the execution of reducer, since the reducer does not start until all mappers have been

finished. Thus, from the point of view of the whole query processing, running multiple

mappers on one worker node may degrade the performance of individual mapper. This

will in turn degrade the whole MapReduce procedure. Table 5.1 shows a list of average

execution time of one individual mapper when multiple mappers running concurrently

on one node. The workload of each mapper was as follows: searching in the inverted

index to filter the data partition and obtaining a list of recordIDs with which associated

the records satisfying the WHERE condition; aggregating over one vertical partition.

The total record number of the partition is 3 333 333, and the number of records

selected out accounts for 1 percent of the total records. These mappers were executed

on one same worker node.

These mappers are concurrently running as different threads. They do not commu-

nicate among each other, and they have different inputs and outputs. This means that

each mapper will bring new input data into the memory and generate the output data

of it. The workload of data aggregation is typically data-intensive, and contentions may

occur different resources, such as the contentions of disk I/O or memory bandwidth. As

127

5. PERFORMANCE IMPROVEMENT

shown in this table, when running only one mapper over one worker node, the execu-

tion time is relatively small (170 ms). When concurrently running 2 mappers over one

worker node, the average execution time of one individual mapper is lightly dragged (37

ms longer). When concurrently running 3 or more mappers over one worker node, the

execution time shows a relatively large delay (from 184 ms to 367 ms). We can see that,

on one worker node with 2 CPUs, having 2 concurrently running mappers, the average

execution time is the most interesting. After that, when we continuously increased the

number of mappers on the worker node, the more mappers were concurrently running

on one worker node, the longer time an individual mapper takes.

5.5.3 Hitting Data Distribution

The data intensive application involves a large number of data read operations. The

execution time is affected by the hitting data’s distribution. By hitting data, we mean

the data item that a read operation is going to locate and read. The hitting data’s

distribution means the distribution of all the hitting data items’ storage positions in

one file. If the distribution of hitting data items is concentrated, then less operations of

disk I/O are invoked. Otherwise, if the distribution of hitting data items is dispersed,

then more operations of disk I/O are invoked.

This is a result of using the buffering technique, which is widely used to realize read

operations. Buffering technique can help to reduce the number of disk I/O operations.

Buffer is actually a region in memory of a given size, for example, 1024 Bytes. The data

stored in the buffer is fetched within one disk read operation. When a read operation

with a given file read position is invoked, it will first check whether the data item

of the give position is already loaded into the buffer. If that is the case, then the

read operation will directly read the data item from the buffer. If the given file read

position is exceeded the data scope held in buffer, then a buffer refill operation will be

invoked. Thus, a disk read operation is caused. It seeks in the file stored on disk and

then continuously fetches data items from this position to the buffer, until the buffer

is filled.

In the processing of Multiple Group-by query, the computations in aggregating phase

involves reading data of each selected records. The selected records distribution in

stored file becomes a factor that affects the execution time. This is relatively more

obvious in the experiments using horizontal data partitioning than in the experiments

128

5.5 Performance Affecting Factors

(a)

(b)

Figure 5.6: Hitting data distribution: (a) Hitting data distribution of qurey with WHERE
condition ”Color=’Pink’ ”(selectivity=1.06%) in the first 2000 records of ROWSET; (b)
Hitting data distribution of query with WHERE condition ”Product Family=’Accessories’
”(selectivity=43.1%) in the first 2000 records of ROWSET.

using vertical partitioning. Taking an example in our work, in order to do aggregation,

we aggregated over various Group-by dimensions after read each selected record. Re-

garding the execution time, the worst case appeared in our experiments is the query

with the WHERE condition of ”Color=’Pink’”(selectivity=1.06%). In this case, hitting

data items are very dispersed, and the average time for aggregating one record is 5500

nanoseconds. On the contrary, for the query with WHERE condition ”Product Fam-

ily=’Accessories’ ”(selectivity=43.1%), the average time for aggregating one selected

records is 1000 nanoseconds. In order to be more illustrative, we visualize the distribu-

tion of hitting data of these two cases in Figure 5.6. The axis x represents the recordID,

and a vertical black line represents that the record hits the WHERE condition. We

visualize only the first 2000 records in these figures.

A simple calculation can make this clearer. In the compressed data file, we stored

for each record the compressed dimension values, and measure values. In our case of

horizontal partitioning, one record is composed of 13 dimension values of ”text” type,

and 2 measure values of float type. Under the compressed data format, one dimension

value is first replaced by an integer and then converted into 1 byte data; one float

measure value is converted into 4 bytes data. Thus, one record is converted into 21

bytes (13×1 bytes + 2×4 bytes = 21 bytes) in the compressed format. A buffer of 1024

bytes is capable of accommodating 1024÷21 ≈ 49 records. In case of the sub-figure (a),

where 1.06% records are selected, and the hitting data distribution is very dispersed.

129

5. PERFORMANCE IMPROVEMENT

In this case, one buffer refill (i.e. disk read operation) is caused for processing each

selected record. In case of the sub-figure (b) 43.1% records are selected. The hitting

data distribution is rather concentrated, there even exists a lot of selected records

that are contiguously stored. In this extreme case (continuous storage), processing 21

selected records will only cause one buffer refill. Disk read is one of the most expensive

operations. That explains the big difference of the average per record processing time

between these two cases. The similar case also occurred in the filtering phase. We

observed a various difference among the average time for retrieving one recordID of

selected records when processing queries with different selectivities.

5.5.4 Intermediate Output Size

Except for the overhead for computing the aggregates, the cost for transferring inter-

mediate output is also an overhead that we cannot ignore. Without considering the

uncontrollable factor of available network bandwidth, the main factor controlling this

overhead is the size of intermediate output. In our work, distinct value number of each

Group-by dimension, aggregate function number, mapper number and data partitioning

method affect the size of intermediate aggregate tables.

Distinct value number of one dimension and aggregate function number determines

the size of current dimensions aggregate table. The distinct value number of a certain

dimension determines the number of rows composing the corresponding aggregate table.

Each row stores the aggregates values for one distinct value. The number of aggregate

functions determines the number of columns composing the aggregate table. In each

row, one cell stores distinct value, and for each aggregate function, one additional cell

is used for storing the data item calculated by the aggregate function. As a result, one

row stores 1 value of type integer plus |agg func[..]| values of type float.

While the first two factors determine the individual aggregate table size. Mapper

number and data partitioning method affect the total size of all the intermediate aggre-

gate tables. Under horizontal partitioning, each mapper produces multiple aggregate

tables, where the number of aggregate tables is the product of Group-by dimension

number (denoted as nbGB) and mapper number (denoted as nbm). Under vertical par-

titioning, each mapper produces one aggregate table for a particular dimension, and

the number of aggregate tables is the number of mappers. Similarly, under hybrid

partitioning, the number of aggregate tables is also the number of mappers.

130

5.5 Performance Affecting Factors

In practice, individual aggregate tables concerning to different dimensions have

different size. If we note the total number of distinct values for all the Group-by

dimensions (nbDV), we can calculate the intermediate output size under horizontal

partitioning as follows: nbm×nbDV×nbGB×[sizeof(int)+sizeof(float)×|agg func[..]|]

Under vertical partitioning, the mapper number is closely correlated with the num-

ber of region number (nbr). A set of aggregate tables—each for a Group-by dimension—

are produced by one region’s mappers. Then we have the intermediate output size as:

nbr × nbDV × nbGB × [sizeof(int) + sizeof(float)× |agg func[..]|]

5.5.5 Serialization Algorithms

Serialization is a process for converting a data structure or an object into a sequence

of bytes so in order to transmit it across network and be restored to the original state.

De-serialization is the inverse process of serialization. They are crucial for distributed

applications. In our experiments, we noticed that a portion of time non-ignorable is

used to serialize and de-serialize the data being transferred. Sometimes, this portion

of time reaches 50% of the total execution time.

There exist various serialization algorithms. For example, some of them are designed

for message sending based applications, where objects are smaller and infrequently re-

peated; some others of them are designed for streaming protocol based applications,

where the objects are big and usually repeated. Some algorithms are time-efficient; oth-

ers are space-efficient. Also, a serialization can either be performed during runtime or

during the compile-time (89). GridGain provides three alternatives of serialization/de-

serialization, one is based on JBoss serialization, one is based on JDK serialization, and

the other is based on XStream1. We adopted JBoss serialization based one, since it is

the default choice and the most time-efficient one among them.

Regarding the size of serialized object, the serialized object size is usually larger

than the original object. A serialized object needs contain sufficient information to

restore the original object. The class description of current object and its supper-class

description, as well as the other serializable objects referenced by current object should

be included in the generated serialized object. As a result, the serialized object is larger

than its original object. There exist some work trying to reduce the size of serialized

object, like in (81).

1XStream is a library to serialize objects to XML and back again.

131

5. PERFORMANCE IMPROVEMENT

In our work, two types of data are serialized and transmitted, i.e., mapper objects

and aggregate tables. The serialization of mapper objects happens during the start-

up phase of a MapReduce task. The mappers are sequentially serialized one after

another on the master node. The serialization for the first instance of mapper class

takes much longer time than the following instances of the same mapper class. The

aggregate tables are also sequentially de-serialized when they arrived at the master

node. The de-serialization times for aggregate tables are varying, and we did not

observe regularity over their changes. Over the worker nodes, we observed a small

overhead for de-serializing the mapper instance, but a non-ignorable serialization time

for aggregate tables.

Taking a close look at the two main types of transmitted data, we find that map-

per object and aggregate tables are of different type. Mapper object has a complex

structure, being composed of many super classes, references and parameters. This will

cause a big overhead for rewriting the class descriptions. Fortunately, in our case,

the serialization process is repeated multiple times within one process, for serializing

mapper objects with different status, which make it possible to do optimization. In

contrast, aggregate table’s structure is relatively simple, but contains big size of data.

The data types are mostly primitive, like integers and floats. Therefore, the desirable

serialization/de-serialization algorithms for our application need to be compatible to

both types of data. The future work will address this issue.

5.5.6 Other Factors

Except for the above performance affecting factors, there exist some other factors, such

as network status, utilization of combiner, and data partitioning methods. We have

already discussed them is earlier work, here we only want to give a short summary for

them.

Network status

Network status together with the size of serialized objects determines the execution

time of data transmission. It involves not only the available bandwidth over network,

but also the physical location of two communicating components. The data transfer

takes longer time if two communicating components are located in different clusters

than if they are within the same cluster. In our experiments, we adopted a single

132

5.6 Cost Estimation Model

cluster, where the network bandwidth is stable. By observation, the execution times

for sending mapper objects did not significantly change1.

Use or not Combiner

Using combiner component reduces a lot the execution time in the work of Chapter

4. In this previous work, we ran a relatively large number of mappers over one worker

node. Also, the intermediate output’s data structure (i.e. aggregate table) was not

compact. However, combiner component’s utilization is not always favorable. As we

can see in the resent work, the combiner component’s utilization did not significantly

reduce the execution time. On the contrary, it caused more overheads in certain cases.

In case where the number of mappers over one worker node is small, it is not neces-

sary to use the combiner component. However, our MapCombineReduce construction

using two successive MapReduce tasks is still significant, since it allows executing a

MapCombineReduce job in GridGain.

Data partitioning methods

In our work, the data partitioning methods determines multiple issues concerning

the execution of mappers and reducer. Firstly, it determines the index creation and

data compressing in data restructure phase. It, in turn, determines the computations

performed during MapReduce procedure. Finally, it determines the size of intermediate

output.

5.6 Cost Estimation Model

In this section, we give a cost estimation model for the execution time during the whole

MapReduce-based query processing on the restructured data. For the sake of time

limitation, we worked only on the cost estimation for the MapReduced-based imple-

mentation, and the cost estimation for MapCombineReduce-based implementation is

not addressed in this work. The above-mentioned performance effecting factors and

observation based on our experiments are maximally considered for constructing the

cost estimation model.

1The size of mapper is constant. For this reason, we use it to observe execution time changes

133

5. PERFORMANCE IMPROVEMENT

We still consider the four parts of cost in a MapReduce procedure, start-up, map-

per’s execution, closure and communication. In start-up, the master prepares the

mappers, including mapping mappers to available worker nodes, then serializing map-

per objects. The serialization for the first mapper object takes longer time than the

serializations for the other mapper objects. The formal cost estimation for start-up is

as follows:

Cst = Cmpg · nbm + Cs · sizem + C ′

s · (nbm − 1) · sizem

If there is no additional specification, the notations used in the formulas of this

chapter can be referred in Table 4.1. In above formula, we estimate the cost for com-

puting the mappings as Cmpg ·nbm, the serialization time for the first mapper object as

Cs · sizem, the serialization time for the rest of mapper objects as Cs · (nbm− 1) · sizem

When a worker receives a message of mapper, it de-serializes the mapper object,

then executes mapper job. When finished, it serializes aggregate table produced by

mapper. Taking into account the factor of running multiple mappers on one worker

node, we add a function of mapper number per node (denoted as f(nbm/node)) into the

estimation. Thus, the execution time of this process is estimated as:

Cw = f(nbm/node) · (Cd · γ · sizem + Cm + Cs · sizeagg)

Here, γ · sizem, (γ > 1) is used to represent the size of serialized mapper object. A

serialized object is always bigger than the original one, so, we have γ > 1. Also, γ is

varying according to the composition of object. The notation sizeagg means the size

of generated aggregate table. The mapper execution cost Cm and aggregate table size

sizeagg are varying according to the adopted partitioning methods. We will respectively

give the detailed estimations for the horizontal partitioning-based implementation and

the vertical partitioning-based one lately.

The closure includes de-serialization of the intermediate aggregate tables and user-

defined reducer’s execution. We estimate the closure cost as below:

Ccl = Cd ·

nbm
∑

i=1

γ · sizeagg i + Cr

134

5.6 Cost Estimation Model

where the reducer cost (denoted as Cr) is varying with different applications. We will

give the estimation of reducer lately.

In our work, the data communication is composed of master node sending mappers

to the worker nodes, and worker nodes sending intermediate aggregate tables to master

node. Considering the size of transmitted data and the network status we estimate the

communication cost as:

Ccmm = Cn · (nbm · γ · sizem +

nbm
∑

i=1

γ · sizeagg i)

where sizeagg i represents the size of the ith aggregate table produced by mappers.

5.6.1 Cost Estimation of Implementation over Horizontal Partitions

For the implementation over horizontal partitions, the mapper takes a horizontal par-

tition as input data, searches in its Lucene index, read values of dimensions and ag-

gregates with measures over the distinct values of Group-by dimensions. We assume

there exist D dimensions and M measures in ROWSET, over which we run the query

aggregating on nbGB Group-by dimensions. The mapper cost is estimated as below:

Cm = S ·
N

nbm
· {α · Cf + β · (nbGB + 4M) · Crd + nbagg · nbGB · Ca}

where Cf estimates the average execution time for successfully obtaining one recor-

dID of the selected records by searching Lucene index; Crd represents the execution

time for retrieve 1 byte from compressed file; nbagg means the number of aggregate

functions defined in the query. A distinct value is represented as an integer (i.e. dis-

tinct value code) of size 1 byte1, and a measure value as a float sized 4 bytes. As

mentioned before, record filtering and record reading operations are impacted by hit-

ting data distribution issue, which means, the average time for processing one unit of

data is varying with query selectivity. Therefore, two parameters α and β are applied

over the corresponding items. Their values are varying with different queries.

Under horizontal partitioning, each mapper produces aggregate tables for all Group-

by dimensions. The size of aggregate table can be estimated as follows:

1In our work, distinct value number of any dimension is smaller than 256, thus, 1 byte is sufficient
to represent all distinct value code in integer of any dimension.

135

5. PERFORMANCE IMPROVEMENT

sizeagg =

nbGB
∑

i=1

nbDVi
· (1 + 4nbagg)

where nbDVi
represents the number of distinct values of the ith Group-by dimension.

1 + 4nbagg is the number of bytes containing in one row of aggregate table.

As the reducer takes all intermediate outputs of mappers as input and performs

aggregation over them, we estimate cost of reducer as:

Cr = Ca · nbagg · nbm ·

nbGB
∑

i=1

nbDVi
(1)

With these detailed estimation, we ignore the function f(nbm/node), since we address

on the small job per node cases, which is the most common case. Thus, we obtain the

total execution time estimation of the horizontal partitioning-based Multiple Group-by

query as below:

Costhp = Cmpg · nbm + Cs · sizem + C ′

s · (nbm − 1) · sizem + Cd · γ · sizem+

S ·
N

nbm

· [α · Cf + β · (nbGB + 4M) · Crd + nbagg · nbGB · Ca] + Cs ·

nbGB
∑

i=1

nbDVi
· (1 + 4nbagg)+

Cd·nbm·

nbGB
∑

i=1

nbDVi
·(1+4nbagg)+Ca·nbagg·nbm

nbGB
∑

i=1

nbDVi
+Cn·nbm·γ·sizem+Cn·γ·

nbm
∑

i=1

sizeSaggi

If we note the average size of serialized aggregate table as γ·
∑nbGB

i=1 nbDVi
·1 + 4nbagg.

We estimate the value of parameters as described in table 5.2. As it is difficult to accu-

rately estimate the serialization/de-serialization execution time for a unit of data, we

estimate the serialization/de-serialization time for the really used data in our exper-

iments. Therefore, the estimation values for these parameters are accompanied with

the size of data being serialized or de-serialized.

In order to test the accuracy of our execution time estimation model, we compare

the speed-up curve calculated from our model to the measured speed-up curve. The

Figure 5.7 are two speed-up curves for MapReduce based query processing on horizontal

partitions, with the number of worker nodes gradually increasing from 1 to 15. We chose

the case where only one mapper concurrently running on a worker node. In this case,

the application related parameter can be determined, such as, total record number

136

5.6 Cost Estimation Model

Table 5.2: Parameters and their estimated values (in ms)

Notation Estimated value Cost for...

Cmpg 2.34× 10−1 creating a mapping between
mapper and a worker node

Cs · sizem 83.51 serializing first mapper instance

C ′

s · sizem 1.21 serializing non-first mapper instance

Cd · γ · sizem 2.45 de-serializing mapper

Ca in mapper 0 aggregation, ignorable, since we use
small number aggregate functions
(only 2) in our work; aggregate
operation is right after retrieving
the operand.

Ca in reducer 0.001 aggregating in reducer

Cs 6.67× 10−3 serializing one byte of aggregate
table on average in mapper

Cd · γ 5.0× 10−3 de-serializing for one byte of aggregate
tables on average in reducer

Cn · γ · sizem 0.403 transmitting one mapper

Cn · γ 8.82× 10−4 transmitting one byte of aggregate table

For query selectivity = 1.06%
α · Cf 7.24× 10−4 filtering per record in average
β · Crd 4.33× 10−4 reading one byte from compressed data

For query selectivity = 9.9%
α · Cf 1.15× 10−4 filtering per record in average
β · Crd 7.20× 10−5 reading one byte from compressed data

For query selectivity = 18.5%
α · Cf 5.30× 10−5 filtering per record in average
β · Crd 7.60× 10−5 reading one byte from compressed data

For query selectivity = 43.1%
α · Cf 5.30× 10−5 filtering per record in average
β · Crd 7.60× 10−5 reading one byte from compressed data

137

5. PERFORMANCE IMPROVEMENT

Figure 5.7: Measured speedup curve vs. Modeled speedup curve for MapReduce based
query on horizontal partitioned data, where the each work node runs one mapper.

N=10 000 000, aggregate function number nbagg = 2, total distinct values number
∑nbGB

i=1 nbDVi
= 511, Group-by dimension number nbGB = 5, measure values contained

in one record M = 2, etc.

5.6.2 Cost Estimation of Implementation over Vertical Partitions

We also estimate the cost of the implementation under the vertical partitioning in a

similar way. The mapper’s cost is estimated as:

Cm = S ·
N

nbrgn
· [Cf + (4M + 1) · Crd + Ca · nbagg]

where nbrgn means the number regions.

With vertical partitioning, each mapper aggregates over one dimension d then the

intermediate aggregate table size is estimated as:

sizeaggd
= nbDVd

· (1 + 4nbagg)

where, nbnbDVd
means the distinct value number of current Group-by dimension d;

(1 + 4nbagg) is the estimated size in byte of each row in aggregate table.

The reducer aggregates over a list of aggregate results; each of them is the aggregate

result of one dimension or a part of dimension in case of nbrgn > 1. The estimation of

138

5.6 Cost Estimation Model

the reducer is:

Cr = Ca · nbrgn · nbagg · γ ·

nbGB
∑

i=1

nbDVi
(2)

By summing up the above estimations, we obtain the total cost estimation of Mul-

tiple Group-by query processing over vertical partitions:

Costvp = Cmpg ·nbm+Cs·sizem+Cd·γ ·sizem+S ·
N

nbrgn
·[Cf +(4M+1)·Crd+nbagg ·Ca]+

Cs·nbDVd
·(1+4nbagg)+Cd·γ ·nbrgn·

nbGB
∑

i=1

nbDVi
·(1+4nbagg)+Ca·nbrgn·nbagg

nbGB
∑

i=1

nbDVi
+

Cn · (nbm · γ · sizem + γ · nbrgn ·

nbGB
∑

i=1

nbDVi
· (1 + 4nbagg)

Here we replaced
∑nbm

i=1 sizeaggi
by nbrgn ·

∑nbGB

i=1 nbDVi
·(1+4nbagg) since the partial

aggregate tables from different region effectively construct nbrgn times aggregates for

all Group-by dimensions. The same estimation for parameter values could also be done

for vertical partitioning base query processing. We will have this done in the future

work.

5.6.3 Comparison

Note that, for the same ROWSET partitioned horizontally and vertically, the number

of partitions in horizontal partitioning is larger than the number of regions in vertical

partitioning, that is, HP.nbpttn > V P.nbrgn. The reason is, in horizontal partitioning,

partition number is equal to mapper number, and we let mapper number equal to a

multiple of node number, so as to utilize all the available nodes. However, with vertical

partitioning, the region number is usually a sub-multiple of nodes number. Given

this established facts, HP.nbpttn > V P.nbrgn, we see that the reducer cost of vertical

partitioning-based implementation, which is expressed with formula (1), is smaller than

that of the horizontal partitioning-based one, which is expressed with formula (2). As

shown by the estimation, under both horizontal partitioning and vertical partitioning,

a great part of calculation is parallelized. We make the calculation reduced from scale

139

5. PERFORMANCE IMPROVEMENT

of ROWSET size N to fragment size N
nbm

(in case of horizontal partitioning) or N
nbrgn

(in

case of vertical and hybrid partitioning). However, the transfer and serialization/de-

serialization of intermediate data still form an important part of the cost. This cost is

caused by parallelization. On the contrary, we can imagine that a further compression

for intermediate outputs of mappers can optimize the calculation.

5.7 Alternative Compressed Data Structure

In the previous work, we used a data partition locating policy as the job-scheduling

policy. Although this worked well, we still need a more flexible job-scheduling policy.

An imaginable job-scheduling policy is based on distinct values. That means, each

mapper works for aggregating only one or a part of distinct values of one certain

dimension, then the intermediate aggregate tables produced by mappers are assembled

in reducer. For supporting such a distinct-value-wise job scheduling, we propose an

alternative compressed data structure in this section. This data structure works with

the vertical partitioning.

5.7.1 Data Structure Description

In order to facilitate distinct-value-wise job scheduling, we need the aggregate value

of one distinct value can be calculated within one continuous process. Thus, if the

measures values corresponding to the same distinct value are successively stored, then

aggregation for one distinct value can be processed in a continuous mode. This is the

basic idea of the new compressed structure. In this new compressed data structure,

we regroup the measure values’ storage order. Measures corresponding to the same

distinct value are stored together successively. As the stored order of measures is

different than in the original ROWSET, we provide a data structure recording the

records’ old positions in the original ROWSET. Relying on the above description, we

design the compressed data structure as follows. To be noted, this structure is designed

specifically for vertical partition. The compressed data is still composed of two files,

FactIndex and Fact. For each distinct value, Fact file stores a recordID-list with each

recordID indicating the old position of records containing the current distinct value.

Then, it stores a set of measures contains the current distinct value. FactIndex stores

for each distinct value the distinct value code, and an address pointing to a position in

140

5.7 Alternative Compressed Data Structure

Figure 5.8: Compressed data files suitable for distinct value level job scheduling with
measures for each distinct value are stored together.

Fact file where the recordID-list and a set of measures covered by the current distinct

value start to store. Figure 5.8 illustrates this structure. For aggregating with using

this data structure, each mapper will be scheduled to aggregate over one distinct value.

FactIndex file is accessed to obtain the given distinct value’s storage position in Fact file.

Then, the mapper identifies the selected records covered by the given distinct values

by retrieving the common recordIDs of selected recordID-list from the filtering phase

and the recorID-list retrieved from Fact file. At last, the selected records covered by

the current value are aggregated using the measure values covered by current distinct

value retrieved from the Fact file.

5.7.2 Data Structures for Storing RecordID-list

Integer Array and Bitmap are two alternative data types can be used to store recordID

list. In case of using Integer Array, each recordID is stored as an element of the array.

In case of using Bitmap, we create a Bitmap being composed of a sequence of bits.

The number of bits is equal to the cardinality of the original ROWSET. One bit in

141

5. PERFORMANCE IMPROVEMENT

Bitmap corresponds one record. The value of each bit is either 0 or 1. If we use 1

to indicate that the current record’s id is in current distinct value’s recordID-list, we

obtain a Bitmap with all 1 positions indicating the whole recordID-list.

Considering the use of storage space, Integer Array and Bitmap are very different.

When the recordID-list contains a small number of elements, Integer Array takes smaller

storage spaces. In the opposite case, where the recordID-list contains a large number

of elements, Bitmap is more storage efficient.

5.7.3 Compressed Data Structures for Different Dimensions

Taking into account the above features, we distinguish two categories of dimensions:

dimensions having a small number of distinct values and dimensions having a large

number of distinct values. For those dimensions with a small number of distinct values,

then many records are covered by one certain distinct value. In turn, a large number

of recordIDs need to be stored. In this case, Bitmap is more space-saving and makes

access more efficient than Integer Array. For those dimensions with a large number of

distinct values, only a few recordIDs need to be stored. For this case, Integer Array

provides is more space-saving and provides more access efficiency.

But how to define the ”small” and ”large” over the number of distinct values for

one dimension? Let’s do a concrete calculation. Imagine that we have a ROWSET

containing 107 records. One recordID stored as integer takes 4 bytes. Assume that a

dimension includes V distinct values. Thus each distinct value covers 107/V records.

If we store the recordID-list in Integer Array, for one certain distinct value, 4× 107/V

bytes are needed, on average. Then, we need to store 4×107/V bytes in total in order to

store all recordIDs containing all distinct values. If we use a Bitmap to store recordID-

list of one distinct value, then the Bitmap takes 1.25×106 bytes. As a result, the critical

point of distinct value number V is 32. If V = 32, then two storage take the same space;

if V < 32, Bitmap takes smaller space; if DV > 32, then Integer Array takes smaller

space. Thus, if the number of distinct values is larger than 32, then we considered it as

”large”; otherwise, if the number of distinct value is smaller than or equal to 32, then

we consider it as ”small”. After defining the data structure of recordID-list, we specify

the concrete storage for those two dimensions. For dimensions having a large number

of distinct values, the composed data is composed of 2 files, FactIndex and Fact. Data

stored in the FactIndex file includes, the code of each distinct value of integer and an

142

5.7 Alternative Compressed Data Structure

Figure 5.9: Compressed data structure storing recordID list as Integer Array for dimen-
sion with a large number of distinct values

address of long integer pointing to a position in the Fact file where the data related

to this distinct value is stored. Data stored in the Fact file includes three parts. The

first one is an integer representing the number of records covered by current distinct

value. The second one is an Integer Array compressed in Byte Array representing the

recordID-list for records covered by current distinct value. The third one is a Float

Array representing the measure values for records having the current distinct value.

Refer to Figure 5.9 for the illustration of this structure.

For dimension having small number of distinct values, the compressed data is also

composed of FactIndex file and Fact file. The FactIndex file stores the code of the

current distinct value in integer and an address in long integer, in long type, pointing

to a position in the Fact file where data related to this distinct value is stored. The

Fact file stores, for each distinct value, a Bitmap indicating the records covered by the

current distinct value, as a Byte Array, and the measure values for records having the

current distinct value in type of Float Array. Refer to Figure 5.10 for the illustration

of this structure.

143

5. PERFORMANCE IMPROVEMENT

Figure 5.10: Compressed data structure storing recordID list as Bitmap for dimension
with a small number of distinct values (In Java, Bitmap is implemented as Bitset)

144

5.7 Alternative Compressed Data Structure

5.7.4 Measurements

We tested these two compressed data using a single machine, which is equipped with a 4-

core CPU running at 2.5GHz and 4 Go RAM. The objective is to measure the efficiency

provided by using these two different data structure over all dimensions. Table 5.3 shows

the execution time for four single Group-by queries having the following form:

SELECT group_by_dimension, SUM("quantity_sold"), SUM("revenue")

FROM "ROWSET"

WHERE condition

GROUP BY group_by_dimension

Those four single Group-by queries aggregates over dimensions, Product Family, Prod-

uct Category, Article Label and Store City, respectively. These four dimensions have

different distinct value number varying from 12 to 244. As shown in this table, the first

compressed data structure works well for aggregations over dimensions having large

number of distinct values and dimensions having small number of distinct values. For

the second compressed data structure, the aggregation over dimensions having small

number of distinct values is much faster than the aggregation over dimensions hav-

ing large number of distinct values. Even though, the aggregations over the second

compressed data are always slower than those over the first compressed data. The

compressed data using Bitmap did not provide the same efficiency as we imagined.

5.7.5 Bitmap Sparcity and Compressing

The low efficiency of Bitmap, i.e. the second compressed data used in above experi-

ments is caused by the sparcity. Even for a dimension having small number of distinct

values, for example, 12, the Bitmap is very sparse, since only 1/12 bits are set to

1. A Bitmap compressing is crucial for improving the storage efficiency. There exist

already some Bitmap compressing algorithms that we can take advantage of. These

methods typically employ Run-length-encoding, such as Byte-aligned Bitmap Code,

Word-Aligned Hybrid code and Position List Word Aligned Hybrid (4). Run-length-

encoding stores the sequence in which the same data value occurs in many consecutive

positions, namely run, as one single data value and count, instead of storing them as

the original run(19). We will address the Bitmap compressing methods in the future

work in order to improve our Bitmap’s storage efficiency.

145

5. PERFORMANCE IMPROVEMENT

RecordID list stored as Integer Array RecordID list stored as Bitmap

Group-by dimension Product Product Article Store Product Product Article Store
Family Category Label City Family Category Label City

❳
❳

❳
❳

❳
❳

❳
❳

❳
WHERE

DV nb

12 34 209 244 12 34 209 244

Color=Pink
(S=1.06%) 547 500 516 453 968 1313 4219 3922

Product Family=
Shirt Waist(S=9.9%) 469 453 438 437 562 797 3235 3812

Opening Year=
2001(S=18.5%) 678 688 563 531 1031 1390 4344 3062

Product Family=
Accessories(S=43.1%) 860 859 859 844 1079 1625 4203 4281

ALL
(S=100%) 1844 1578 1531 1516 2344 2422 5484 5547

Table 5.3: Execution Times in ms of Group-by queries with different selectivities (S)
using new compressed data structures. The numbers shown in italic represents that the
corresponding aggregations run over the dimensions correlated to the WHERE condition
involved dimension. For example, Product Family and Product Category are correlated
dimensions.

5.8 Summary

In this work, we realized Multiple Group-by query on restructured data, using MapRe-

duce model to parallelize the calculation. We introduced the data partitioning, index-

ation and data compressing processing in data restructuring phase. The materialized

view ROWSET is partitioned respectively using two principal partitioning methods,

horizontal partitioning and vertical partitioning. The index that we created using

Lucene over ROWSET is an inverted index, which allows rapidly accessing and filter-

ing the records with WHERE condition. We measured our Multiple Group-by query

implementations over ROWSET, and compared the speed-up performance of implemen-

tations over horizontally partitioned data and that over vertically partitioned data. In

most cases, they showed similar speed-up performance, however, the best speed-up

appeared in the vertical partitioning-base implementation. Basing on the measured

result observations and analysis, we discovered several interesting factors that affect

query processing performance, including query selectivity, concurrently running map-

per number on one node, hitting data distribution, intermediate output size, adopted

serialization algorithms, network status, whether or not using combiner as well as the

data partitioning methods. We gave an estimation model for the query processing’s

146

5.8 Summary

execution time, and specifically estimated the values of various parameters for data

horizontal partitioning-based query processing. In order to support distinct-value-wise

job-scheduling, we designed a new compressed data structure, which works with verti-

cal partition. It allows the aggregations over one certain distinct value to be performed

within one continuous process. However, such a data structure is only an initial design.

We will address the optimization issues, like Bitmap compressing, in the future work.

147

5. PERFORMANCE IMPROVEMENT

148

6

Conclusions and Future

Directions

The objective of this Ph.D work is to propose a cheap solution for interactive large-scale

multidimensional data analysis applications using commodity hardware. We propose

to adopt MapReduce to achieve this target. MapReduce helps to solve scalability and

fault tolerance issues of in parallel and distributed computing environment, especially

in case of using unstable commodity hardware. However, MapReduce only is a low-level

procedural programming paradigm. In order for data intensive applications to benefit

from MapReduce, a combination of MapReduce and SQL is expected. The combination

between MapReduce and SQL consists in realizing and optimizing relational algebra

operators. In this work, we address a typical multidimensional data analysis query,

Multiple Group by query.

6.1 Summary

In our work, we try to utilize methods of Cloud Computing to satisfy commercial

software requirements. In addition to realize a concrete multidimensional data analysis

query with MapReduce, we mostly focus on the performance optimization. It is an

important aspect in designing Cloud Computing-based solution for business software.

The main contributions of this work are summarized as follows:

• We identify Multiple Group by query as the elementary computation under data

explorer background of our work.

149

6. CONCLUSIONS AND FUTURE DIRECTIONS

• We choose GridGain over Hadoop as MapReduce framework to realize Multiple

Group by query since GridGain has lower latency. A detailed workflow analysis

of the GridGain MapReduce procedure has been done.

• We realize two implementations of Multiple Group by query over plain text data

format with MapReduce. In the initial MapReduce-based implementation, we re-

alize filtering phase within mappers and aggregating phase within the reducer. In

the optimized MapCombineReduce-based implementation, the aggregation (pre-

aggregation) is performed within combiner on a local computing node level before

starting reducer. As GridGain does not support combiner component, we realize

the combiner by merging two successive GridGains MapReduces.

• The experimental results show that the optimized version has better speed-up

and better scalability for reasonable query selectivity. We formally analyze the

execution time of these two implementations in a qualitative way. The qualitative

comparison shows that the optimized implementation decreases the communica-

tion cost by reducing the intermediate data quantity, and it also reduces the

aggregating phases calculation by parallelizing a part of aggregating calculation.

• We further optimize the individual jobs’ execution of parallelized Multiple Group

by query by running them over restructured data format. We introduce a data

restructuring phase, within which the data partitioning, indexation and data

compressing processing are performed.

• We measure and compare the speed-up performance of Multiple Group by query

over horizontally partitioned data set and vertically partitioned data set. They

show similar speed-up performance but the best speed-up appears in the vertical

partitioning-base implementation.

• We discover several interesting factors that affect query processing performance,

including query selectivity, concurrently running mapper number on one node,

hitting data distribution, intermediate output size, adopted serialization algo-

rithms, network status, whether or not using combiner as well as the data parti-

tioning methods.

150

6.2 Future Directions

• We give an estimation model for Multiple Group-by query processings execution

time, and specifically estimated the values of various parameters for data hori-

zontal partitioning-based query processing.

• We design a new compressed data structure, which is working with vertical par-

tition, in order to support more flexible distinct-value-wise job-scheduling.

6.2 Future Directions

In order to utilize Cloud Computing to serve as the infrastructure of multidimensional

data analysis applications, the combination of traditional parallel database optimization

mechanisms and Cloud computing is expected. In our work, we combine MapReduce

with several optimization techniques coming from parallel database. This approach

does not depend on a third-part product, and it can guarantee the performance appli-

cation. There are still some performance issues to be addressed.

• Choosing suitable serialization/de-serialization algorithms to deal with mapper

objects and intermediate results is an important issue. Since these procedures are

repeatedly performed, it is closely related to the performance. In our distinct-

value-wise job-scheduling, Bitmap compressing is needed for reducing storage

requirement and improving the efficiency of data access. We will address these

issues in our near future work.

• In this work, we focused on a specific type of query, Multiple Group by query.

However, our work is still limited for processing all kinds of data analytical queries.

For addressing different queries, we could define concrete MapReduce job and

add suitable optimization mechanisms in a similar way. This work will also be

addressed in the future.

• Extending our calculation to a larger computing scale is another interesting di-

rection. In this work, all the experiments were running over one single cluster.

However, running experiments over one cluster is a bit far from exploiting a real

Cloud platform. In order to further address a more realistic large-scaled multi-

dimensional data analytical query processing, multiple clusters or even the real

Cloud experimental platform need to be exploited during in the experiments. The

hardware update will allow us to handle larger data sets.

151

6. CONCLUSIONS AND FUTURE DIRECTIONS

• Utilizing Cloud Computing to process large data set involves another hard problem—

data privacy. This topic was not covered in our work. However, it is still an

important aspect. People or enterprises will not want to put their data over the

Cloud until their private data can be protected from unauthorized accesses. Some

authorization and authentication technologies have already been developed earlier

in Grid Computing. They are very useful for the Cloud platform’s data accessing

protection requirement. However, the authorization and authentication of Cloud

platform are more challenging than in Grid platform, since it is a commercial-

ized, shared computing platform, users will require more fine authorization and

authentication mechanisms.

• MapReduce was employed as a parallel model in our work. For this work, MapRe-

duce is used as a tool. In fact, a lot of research work inside MapReduce model has

been done recently. Scheduling strategies of Map jobs and Reduce jobs are one of

the addressed problems. Job-scheduling strategies have a considerable impact on

the computing efficiency of a specific calculation. Being limited by the fixed Re-

ducer number of GridGain framework’s design, we did not sufficiently addressed

the job-scheduling issues. However, along with the development of MapReduce

frameworks and the new emergence of new frameworks, we should have more

participation into MapReduce’s job-scheduling.

There is much more other interesting work to do for integrating MapReduce model

into or utilizing Cloud Computing in resolving the real problems, including industrial

applications as well as scientific computations. For instance, MapReduce’s combination

with web techniques, re-designing of various algorithms for fitting MapReduce execution

style, etc. are all interesting research subjects. We believe that the performance issue

addressed in this work represents an important aspect in Cloud computing. We hope

that our work can provide a useful reference for people who want to study and utilize

MapReduce and Cloud Computing platform.

152

Appendices

153

Appendix A

Applying Bitmap Compression

We talked about Bitmap sparsity and compressing earlier in section 5.7.5. Compressing

Bitmap is helpful for reducing the aggregation time of Group-by query over vertically

partitioned data. Recall that we have described two methods for store the list of

recordIDs which correspond to a specific distinct value. The first method is to store

recordID list as Integer Array. The second method is to store recordID list as Bitmap.

From the measured execution time of a couple of Group-by query, we can see that

the Bitmap storage method suffered from the Bitmap sparsity and was not sufficiently

efficient. That is the why we introduce Bitmap compressing technique.

Word-Aligned Hybrid (WAH) method (105) is one of Bitmap Compression tech-

niques. We adopt it this technique in our work. WAH method encodes Bitmap in

words which better matches current CPUs. Bitmaps compressed with WAH method

can directly participate in bitwise operations without decompression. Other alterna-

tive Bitmap compressing techniques are also applicable, including Byte-aligned Bitmap

Code (30) and Position List Word Aligned Hybrid (PLWAH)(50), etc.

A.1 Experiments and Measurements

Similar to the experiments described in section 5.7.4, we tested Group-by queries over

three compressed structures. The first compressed data structure stores recordID list

as Integer Array. The second compressed data structure stores recordID list as non-

compressed Bitmap. The third compressed data structure stores recordID list as com-

pressed Bitmap. We measured the execution times of the same four single Group-by

155

A. APPLYING BITMAP COMPRESSION

queries over a single machine which is equipped with a 4-core CPU running at 2.66GHz

and 4Go RAM. Table A.1 shows the measured results.

As shown in this table, among the three compressed data structures, the first data

structure works best for aggregations over dimensions having large number of distinct

values. The first data structure works well for aggregations over dimensions having

small number of distinct values. However, comparing with the third data structure,

the first data structure makes Group-by queries to take longer execution time. That

means the third compressed data structure, storing recordID list as compressed Bitmap,

is the best one for the aggregations over dimensions having small number of distinct

values. The measurements over the second compressed data structure still shows longer

execution time for aggregations over large distinct value number dimensions, comparing

with the other two compressed data structures. Based on these observations, we can

summarize that, for single Group-by queries over dimensions having small distinct

value number, the data structure storing recordID list as compressed Bitmap offers

best performance; for single Group-by queries over dimensions having large distinct

value number, the data structure storing recordID list as Integer Array offers best

performance. Up to here, our original objective is achieved.

156

A
.1

E
x
p
e
rim

e
n
ts

a
n
d

M
e
a
su

re
m

e
n
ts

RecordID list stored as Integer Array RecordID list stored as Bitmap RecordID list stored as compressed Bitmap

Group-by dimension Product Product Article Store Product Product Article Store Product Product Article Store
Family Category Label City Family Category Label City Family Category Label City

❳
❳

❳
❳

❳
❳

❳
❳

WHERE

DV nb
12 34 209 244 12 34 209 244 12 34 209 244

Color=Pink
(S=1.06%) 434 420 387 447 581 937 2589 2411 198 289 981 934

Product Family=
Shirt Waist(S=9.9%) 395 394 375 394 444 638 2255 2440 234 292 902 841

Opening Year=
2001(S=18.5%) 498 466 479 473 661 913 2694 2361 229 327 974 857

Product Family=
Accessories(S=43.1%) 710 706 626 647 848 1055 2880 2811 317 386 1048 949

ALL
(S=100%) 794 758 869 783 1282 1500 3267 3217 195 302 1138 870

Table A.1: Execution Times in ms of Group-by queries with different selectivities (S) using three compressed data structures. The
numbers shown in italic represents that the corresponding aggregations run over the dimensions correlated to the WHERE condition
involved dimension. For example, Product Family and Product Category are correlated dimensions.

157

A. APPLYING BITMAP COMPRESSION

158

References

[1] Amazon Elastic Compute Cloud Amazon EC2. Available on-line at http://aws.

amazon.com/ec2/. 62

[2] Amazon Simple Storage Service (Amazon S3). Available on line at: http://

aws.amazon.com/s3/. 62

[3] Aster nCluster: in-database MapReduce. Available on-line at: http://www.

asterdata.com/product/mapreduce.php. 65

[4] Bitmap. Available on-line at http://en.wikipedia.org/wiki/Bitmap_index#

Compression. 145

[5] BitSet. Available on-line at: http://download.oracle.com/javase/1.4.2/

docs/api/java/util/BitSet.html. 112

[6] DataGrid Project. Available online at: http://eu-datagrid.web.cern.ch/

eu-datagrid/. 8

[7] Google App Engine. Available on-line at: http://code.google.com/appengine.

62

[8] Greenplum. Available on-line at: http://www.greenplum.com/resources/

MapReduce/. 65

[9] Grid’5000. Available on-line at: https://www.grid5000.fr/. 80, 92

[10] GridGain. Available on-line at: http://www.gridgain.com/. 48, 80, 83

[11] Hadoop. Available on-line at: http://hadoop.apache.org/. 48, 80

[12] Hadoop Distributed File System. Available on-line at: http://hadoop.apache.

org/hdfs/. 57

[13] HBase. Available on-line at: http://hbase.apache.org/. 63

[14] Hive. Available on-line at: http://hadoop.apache.org/hive/. 64

159

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://www.asterdata.com/product/mapreduce.php
http://www.asterdata.com/product/mapreduce.php
http://en.wikipedia.org/wiki/Bitmap_index#Compression
http://en.wikipedia.org/wiki/Bitmap_index#Compression
http://download.oracle.com/javase/1.4.2/docs/api/java/util/BitSet.html
http://download.oracle.com/javase/1.4.2/docs/api/java/util/BitSet.html
http://eu-datagrid.web.cern.ch/eu-datagrid/
http://eu-datagrid.web.cern.ch/eu-datagrid/
http://code.google.com/appengine
http://www.greenplum.com/resources/MapReduce/
http://www.greenplum.com/resources/MapReduce/
https://www.grid5000.fr/
http://www.gridgain.com/
http://hadoop.apache.org/
http://hadoop.apache.org/hdfs/
http://hadoop.apache.org/hdfs/
http://hbase.apache.org/
http://hadoop.apache.org/hive/

REFERENCES

[15] Kadeploy. Available on-line at: http://kadeploy.imag.fr/. 92

[16] Lucene. http://lucene.apache.org/java/docs/index.html. 19, 110

[17] OAR. Available on-line at: https://www.grid5000.fr/mediawiki/index.php/

Cluster_experiment-OAR2. 93

[18] Performance On-demand Using Vertica in Enterprise Clouds. Available online

at: http://www.vertica.com/Cloud-and-Virtualization.

[19] Run-length-encoding. Available on-line at http://en.wikipedia.org/wiki/

Run-length_encoding. 145

[20] SAP BusinessObjects Explorer. Available on-line at: http://ecohub.sdn.sap.

com/irj/ecohub/solutions/sapbusinessobjectsexplorer. 72

[21] Start-Ups Bring Google’s Parallel Processing To Data Warehousing. Informa-

tionWeek.

[22] Windows Azure Platform. Available on-line at: http://www.microsoft.com/

windowsazure/. 62

[23] Daniel Abadi, Samuel Madden, and Miguel Ferreira. Integrating Compres-

sion and Execution in Column-oriented Database Systems . In SIGMOD ’06:

Proceedings of the 2006 ACM SIGMOD International Conference on Management of

Data, pages 671–682, New York, NY, USA, 2006. ACM. 30

[24] Daniel Abadi, Samuel Madden, and Nabil Hachem. Column-stores vs. Row-

stores: How Different Are They Really? In SIGMOD 08: Proceedings of the 2008

ACM SIGMOD International Conference on Management of Data, New York, NY, USA,

2008. ACM. 23, 24

[25] Daniel J. Abadi. Data Management in the Cloud: Limitations and Opportu-

nities. IEEE Data Eng. Bull., 32(1):3–12, 2009. 62, 63, 66

[26] Daniel J. Abadi, Peter A. Boncz, and Stavros Harizopoulos. Column-

oriented Database Systems. Proceeding of the VLDB Endowment, 2(2):1664–1665,

2009. 29

[27] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi Silberschatz,

and Alexander Rasin. HadoopDB: an Architectural Hybrid of MapRe-

duce and DBMS Technologies for Analytical Workloads. Proc. VLDB Endow.,

2(1):922–933, 2009. 69

[28] Fuat Akal, Klemens Böhm, and Hans-Jörg Schek. OLAP Query Evaluation

in a Database Cluster: A Performance Study on Intra-Query Parallelism. In

160

http://kadeploy.imag.fr/
https://www.grid5000.fr/mediawiki/index.php/Cluster_experiment-OAR2
https://www.grid5000.fr/mediawiki/index.php/Cluster_experiment-OAR2
http://www.vertica.com/Cloud-and-Virtualization
http://en.wikipedia.org/wiki/Run-length_encoding
http://en.wikipedia.org/wiki/Run-length_encoding
http://ecohub.sdn.sap.com/irj/ecohub/solutions/sapbusinessobjectsexplorer
http://ecohub.sdn.sap.com/irj/ecohub/solutions/sapbusinessobjectsexplorer
http://www.microsoft.com/windowsazure/
http://www.microsoft.com/windowsazure/

REFERENCES

ADBIS ’02: Proceedings of the 6th East European Conference on Advances in Databases

and Information Systems , pages 218–231, London, UK, 2002. Springer-Verlag. 27

[29] Marta Mattoso Alexandre A. B. Lima and Patrick Valduriez. Adaptive

Virtual Partitioning for OLAP Query Processing in a Database Cluster. In

Proceeding of 19th SBBD, 2004. 24, 27, 86

[30] Gennady Antoshenkov. Byte-aligned bitmap compression. Data Compression

Conference, 0:476, 1995. 155

[31] LIMA Alexandre A. B., MATTOSO Marta, and VALDURIEZ Patrick. OLAP

Query Processing in a Database Cluster. In Proceeding of 10th International Euro-

Par Conference, pages 355–362, Pisa, Italy, August 2004. Springer. 27

[32] Ladjel Bellatreche and Kamel Boukhalfa. An Evolutionary Approach to

Schema Partitioning Selection in a Data Warehouse. In Proceeding of Data Ware-

housing and Knowledge Discovery, pages 115–125, Copenhagen, Denmark, 2005. Springer.

28

[33] Ladjel Bellatreche, Michel Schneider, Herve Lorinquer, and Mukesh Mo-

hania. Bringing Together Partitioning, Materialized Views and Indexes to Op-

timize Performance of Relational Data Warehouses. In Proceeding of the Interna-

tional conference on data warehousing and knowledge discovery, pages 15–25, September

2004. 22

[34] Jorge Bernardino and Henrique Madeira. Data Warehousing and OLAP:

Improving Query Performance Using Distributed Computing. 27

[35] Haran Boral, William Alexander, Larry Clay, George Copeland, Scott

Danforth, Michael Franklin, Brian Hart, Marc Smith, and Patrick Val-

duriez. Prototyping Bubba, A Highly Parallel Database System. IEEE Trans-

actions on Knowledge and Data Engineering, 2:4–24, 1990. 31

[36] Eric A. Brewer. Readings in Database Systems, chapter Combining Systems and

Databases: A Search Engine Retrospective. MIT Press, Cambridge, MA, fourth edition

edition, 2005. 58

[37] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.

Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E.

Gruber. Bigtable: A Distributed Storage System for Structured Data. ACM

Transaction on Computer Systems, 26(2):1–26, 2008. 8, 63

[38] Surajit Chaudhuri and Umeshwar Dayal. An Overview of Data Warehousing

and OLAP Technology. SIGMOD Rec., 26(1):65–74, 1997. 30

161

REFERENCES

[39] Lei Chen, Christopher Olston, and Raghu Ramakrishnan. Parallel Evalua-

tion of Composite Aggregate Queries. In International Conference on Data Engi-

neering, pages 218–227, Los Alamitos, CA, USA, 2008. IEEE Computer Society. 64

[40] Olston Christopher, Reed Benjamin, Srivastava Utkarsh, Kumar Ravi, and

Tomkins Andrew. Pig Latin: a not-so-foreign language for data processing.

In SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD International Conference on

Management of Data , pages 1099–1110, New York, NY, USA, 2008. ACM. 64

[41] E. F. Codd, S. B. Codd, and C. T. Salley. Providing OLAP to User-Analysts:

An IT Mandate. 1993. 2

[42] Doug. Cutting and Jan Pedersen. Optimization for Dynamic Inverted Index

Maintenance. In SIGIR ’90: Proceedings of the 13th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, pages 405–411, New

York, NY, USA, 1990. ACM. 13, 17, 18, 19

[43] Alfredo Cuzzocrea and Svetlana Mansmann. Encyclopedia of Data Warehousing

and Mining, chapter OLAP Visualization: Models, Issues, and Techniques. Information

Science Reference, second edition edition. 72

[44] Anindya Datta, Bongki Moon, and Helen Thomas. A Case for Parallelism in

Data Warehousing and OLAP. In DEXA 98: Proceedings of the 9th International

Workshop on Database and Expert Systems Applications, page 226, Washington, DC,

USA, 1998. IEEE Computer Society. 21, 23, 39

[45] Anindya Datta, Debra Vandermeer, Krithi Ramamritham, and Bongki Moon.

Applying parallel processing techniques in data warehousing and OLAP. 23

[46] Marc de Kruijf and Karthikeyan Sankaralingam. MapReduce for the Cell

B.E. Architecture. Technical report, Department of Computer Sciences, The University

of Wisconsin-Madison, Madison, WI, 2007. 57

[47] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Process-

ing on Large Clusters. In Proceding of OSID’04, pages 137–150, 2004. 3, 44, 46

[48] Frank Dehne, Todd Eavis, and Andrew Rau-Chaplin. Parallel Multi-

Dimensional ROLAP Indexing. In Cluster Computing and the Grid, IEEE Inter-

national Symposium on, Los Alamitos, CA, USA, 2003. IEEE Computer Society. 20

[49] Olivier Delannoy and Serge Petiton. A Peer to Peer Computing Framework:

Design and Performance Evaluation of YML. International Symposium on Parallel

and Distributed Computing, 0:362–369, 2004. 69

162

REFERENCES

[50] François Deliège and Torben Bach Pedersen. Position List Word Aligned

Hybrid: Optimizing Space and Performance for Compressed Bitmaps. In Pro-

ceedings of the 13th International Conference on Extending Database Technology, EDBT

’10, pages 228–239, New York, NY, USA, 2010. ACM. 155

[51] Prasad M. Deshpande, Karthikeyan Ramasamy, Amit Shukla, and Jeffrey F.

Naughton. Caching Multidimensional Queries Using Chunks, booktitle =

SIGMOD Rec., pages = 259-270, year = 1998, volume = 27, number = 2,

address = New York, NY, USA, publisher = ACM. 11

[52] David DeWitt and Jim Gray. Parallel Database Systems: the Future of High

Performance Database Systems. Communication ACM, 35(6):85–98, 1992. 22, 31,

32, 43

[53] David DeWitt and Michael Stonebraker. MapReduce: A major

step backwards. Available on-line at:http://databasecolumn.vertica.com/

database-innovation/mapreduce-a-major-step-backwards/. 66

[54] David J. DeWitt, Robert H. Gerber, Goetz Graefe, Michael L. Heytens,

Krishna B. Kumar, and M. Muralikrishna. GAMMA - A High Performance

Dataflow Database Machine. In VLDB’86 Twelfth International Conference on Very

Large Data Bases, pages 228–237. Morgan Kaufmann, 1986. 8, 31, 38, 66

[55] Comer Douglas. Ubiquitous B-Tree. ACM Computing Surveys, 11(2):121–137,

1979. 13

[56] Shinya Fushimi, Masaru Kitsuregawa, and Hidehiko Tanaka. An Overview of

The System Software of A Parallel Relational Database Machine GRACE. In

VLDB ’86: Proceedings of the 12th International Conference on Very Large Data Bases,

pages 209–219, San Francisco, CA, USA, 1986. Morgan Kaufmann Publishers Inc. 66

[57] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file

system. ACM SIGOPS Operating Systems Review, 37(5):29–43, 2003. 56, 57

[58] Sanjay Goil and Alok Choudhary. A Parallel Scalable Infrastructure for

OLAP and Data Mining. In IDEAS ’99: Proceedings of the 1999 International Sym-

posium on Database Engineering & Applications, page 178, Washington, DC, USA, 1999.

IEEE Computer Society. 10, 25, 26

[59] Goetz Graefe. Encapsulation of Parallelism in the Volcano Query Processing

System. In SIGMOD ’90: Proceedings of the 1990 ACM SIGMOD International Con-

ference on Management of Data, pages 102–111, New York, NY, USA, 1990. ACM. 31,

32

[60] Goetz Graefe. Query Evaluation Techniques for Large Databases. ACM Com-

puting Surveys, 25:73–170, 1993. 31, 32, 35, 37

163

http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/

REFERENCES

[61] Robert Grossman and Yunhong Gu. Data mining using high performance data

clouds: experimental studies using sector and sphere. In KDD ’08: Proceeding

of the 14th ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 920–927, New York, NY, USA, 2008. ACM. 53

[62] Waqar Hasan. Optimization of SQL queries for parallel machines. PhD thesis, Stanford,

CA, USA, 1996. 51

[63] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K. Govindaraju, and Tuyong

Wang. Mars: a MapReduce framework on graphics processors. In PACT ’08:

Proceedings of the 17th International Conference on Parallel Architectures and Compila-

tion Techniques, pages 260–269, New York, NY, USA, 2008. ACM. 57

[64] Joe Hellerstein. Parallel Programming in the Age of Big

Data. Available on-line at: http://gigaom.com/2008/11/09/

mapreduce-leads-the-way-for-parallel-programming/. 43

[65] Yang Hung-chih, Dasdan Ali, Hsiao Ruey-Lung, and Parker D. Stott. Map-

Reduce-Merge: Simplified Relational Data Processing on Large Clusters. In

SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD International Conference on Man-

agement of Data, pages 1029–1040. ACM, 2007. 53

[66] Isard, Michael and Budiu, Mihai and Yu, Yuan and Birrell, Andrew and

Fetterly, Dennis. Dryad: distributed data-parallel programs from sequential

building blocks. In EuroSys ’07: Proceedings of the 2nd ACM SIGOPS/EuroSys Eu-

ropean Conference on Computer Systems 2007, pages 59–72, New York, NY, USA, 2007.

ACM. 69

[67] Gray Jim, Chaudhuri Surajit, Bosworth Adam, Layman Andrew, Reichart

Don, Venkatrao Murali, Pellow Frank, and Pirahesh Hamid. Data Cube:

a relational aggregation operator generalizing group-by, cross-tab, and sub-

totals. Readings in Database Systems (3rd ed.), pages 555–567, 1998. 9

[68] Donald Kossmann. The state of the art in distributed query processing. ACM

Computing Surveys, 32(4):422–469, 2000. 32, 37

[69] Nelson Kotowski, Re A. B. Lima, Esther Pacitti, and Patrick Valduriez.

OLAP Query Processing in Grids. In VLDB, 2007. 28

[70] Bellatreche Ladjel, Karlapalem Kamalakar, and Mohania Mukesh. OLAP

Query Processing for Partitioned Data Warehouses. In DANTE ’99: Proceed-

ings of the 1999 International Symposium on Database Applications in Non-Traditional

Environments, Washington, DC, USA, 1999. IEEE Computer Society. 26

[71] Ralf Lämmel. Google’s MapReduce programming model: revisited. Sci. Com-

put. Program., 68(3):208–237, 2007. 45, 46

164

http://gigaom.com/2008/11/09/mapreduce-leads-the-way-for-parallel-programming/
http://gigaom.com/2008/11/09/mapreduce-leads-the-way-for-parallel-programming/

REFERENCES

[72] Thomas Legler, Wolfgang Lehner, and Andrew Ross. Data Mining with the

SAP NetWeaver BI Accelerator. In VLDB ’06: Proceedings of the 32nd Interna-

tional Conference on Very large data bases, pages 1059–1068, Seoul, Korea, 2006. VLDB

Endowment. 41

[73] Xiaolei Li, Jiawei Han, and Hector Gonzalez. High-dimensional OLAP: a

Minimal Cubing Approach. In VLDB ’04: Proceedings of the Thirtieth international

conference on Very large data bases , pages 528–539, Toronto, Canada, 2004. VLDB

Endowment. 18

[74] Xiaolei Li, Jiawei Han, and Hector Gonzalez. High-Dimensional OLAP: A

Minimal Cubing Approach. In Proceedings of the 30th VLDB Conference, Toronto,

Canada, 2004. 24, 29

[75] Hua-Ming Liao and Guo-Shun Pei. Cache-based Aggregate Query Shipping:

An Efficient Scheme of Distributed OLAP Query Processing. Journal of com-

puter science and technology, 23(6):905–915, November 2008. 11, 78

[76] Jimmy Lin, Shravya Konda, and Samantha Mahindrakar. Low-Latency, High-

Throughput Access to Static Global Resources within the Hadoop Frame-

work, 2009. Available on-line at: http://www.umiacs.umd.edu/˜jimmylin/

publications/Lin_etal_TR2009.pdf. 59

[77] Frédéric Magoulès, Jie Pan, Kiat-An Tan, and Kumar Abhinit. Introduction

to Grid Computing, 10 of Chapman & Hall/CRC numerical analysis and scientific com-

puting. CRC Press, 2009.

[78] Svetlana Mansmann, Florian Mansmann, Marc H. Scholl, and Daniel A.

Keim. Hierarchy-driven Visual Exploration of Multidimensional Data Cubes.

2009. Available on-line at: http://www.btw2007.de/paper/p96.pdf. 72

[79] Joydeep Sen Sarma Khaled Elmeleegy Scott Shenker Ion Stoica Matei Za-

haria, Dhruba Borthakur. Job Scheduling for Multi-User MapReduce

Clusters. 2009. Available on-line at: http://www.eecs.berkeley.edu/Pubs/

TechRpts/2009/EECS-2009-55.html. 55

[80] Patrick O’Neil and Dallan Quass. Improved Query Performance with Vari-

ant Indexes. In Proceedings of the 1997 ACM SIGMOD International Conference on

Management of Data, pages 38–49. ACM, 1997. 13, 15, 16, 19, 20

[81] Lukasz Opyrchal and Atul Prakash. Efficient Object Serialization in Java.

Distributed Computing Systems, International Conference on, 0:0096, 1999. 131

[82] Jie Pan, Yann Le Biannic, and Frédéric Magoulès. Parallelizing Multiple

Group-by Query in Shared-nothing Environment: a MapReduce Study Case.

165

http://www.umiacs.umd.edu/~jimmylin/publications/Lin_etal_TR2009.pdf
http://www.umiacs.umd.edu/~jimmylin/publications/Lin_etal_TR2009.pdf
http://www.btw2007.de/paper/p96.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-55.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-55.html

REFERENCES

In HPDC ’10: Proceedings of the 19th ACM International Symposium on High Perfor-

mance Distributed Computing, pages 856–863, New York, NY, USA, 2010. ACM.

[83] Jie Pan, Frédéric Magoulès, and Yann Le Biannic. Executing Multiple

Group-by Query in a MapReduce Approach. In In proceeding of 2010 Second

International Conference on Communication Systems, Networks and Applications (ICC-

SNA), 2, pages 38–41, 2010.

[84] Jie Pan, Frédéric Magoulès, and Yann Le Biannic. Executing Multiple Group

by Query Using MapReduce Approach: Implementation and Optimization. In

GPC’10: Proceedings of Advances in Grid and Pervasive Computing, 61042010, pages

652–661. Springer Berlin / Heidelberg, 2010.

[85] Jie Pan, Frédéric Magoulès, and Yann Le Biannic. Implementing and opti-

mizing Multiple Group-by query in a MapReduce approach. Journal of Algo-

rithms and Computational Technology, 4(2):183206, 2010.

[86] Spiros Papadimitriou and Jimeng Sun. DisCo: Distributed Co-clustering with

Map-Reduce: A Case Study towards Petabyte-Scale End-to-End Mining. Data

Mining, IEEE International Conference on, 0:512–521, 2008. 53

[87] Johannes Passing. The Google File System and its application in MapReduce.

Available on-line at:http://int3.de/res/GfsMapReduce/GfsMapReducePaper.pdf. 57

[88] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J.

DeWitt, Samuel Madden, and Michael Stonebraker. A Comparison of Ap-

proaches to Large-scale Data Analysis. In SIGMOD ’09: Proceedings of the 35th

SIGMOD International Conference on Management of Data, pages 165–178, New York,

NY, USA, 2009. ACM. 66

[89] Pavel Petrřek. Runtime Serialization Code Generation for Ibis Serialization,

2006. Available on-line at:http://paja.modry.cz/past/en-amsterdam-vu/

thesis/thesis-pavel_petrek-vu.pdf. 131

[90] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and

Christos Kozyrakis. Evaluating MapReduce for Multi-core and Multiproces-

sor Systems. In HPCA ’07: Proceedings of the 2007 IEEE 13th International Symposium

on High Performance Computer Architecture, pages 13–24, Washington, DC, USA, 2007.

IEEE Computer Society. 57

[91] Chaiken Ronnie, Jenkin Bob, Larson Per-Åke, Ramsey Bill, Shakib Darren,

Weaver Simon, and Zhou Jingren. SCOPE: Easy and Efficient Parallel Pro-

cessing of Massive Data Sets. Proceeding of VLDB Endow., 1(2):1265–1276, 2008.

64

166

http://paja.modry.cz/past/en-amsterdam-vu/thesis/thesis-pavel_petrek-vu.pdf
http://paja.modry.cz/past/en-amsterdam-vu/thesis/thesis-pavel_petrek-vu.pdf

REFERENCES

[92] Nick Roussopoulos, Yannis Kotidis, and Mema Roussopoulos. Cubetree: Or-

ganization of and Bulk Incremental Updates on the Data Cube. In SIGMOD

’97: Proceedings of the 1997 ACM SIGMOD international Conference on Management

of Data, New York, NY, USA, 1997. ACM. 20

[93] Goil Sanjay and Choudhary Alok. High Performance OLAP and Data Mining

on Parallel Computers. In Data Mining Knowledge Discovery, 1, pages 391–417,

Hingham, MA, USA, 1997. Kluwer Academic Publishers. 9, 25, 26

[94] Bernd Schnitzer and Scott T. Leutenegger. Master-Client R-Trees: A New

Parallel R-Tree Architecture. International Conference on Scientific and Statistical

Database Management, page 68, 1999. 20

[95] Saba Sehish, Grant Machkey, Jun Wang, and John Bent. MRAP: A Novel

MapReduce-based Framework to Support HPC Analytic Applications with

Access Patterns . In Proceedings of the 19th ACM International Symposium on High

Performance Distributed Computing, pages 107–118, Chicago, Illinois, USA, June 2010.

[96] Ambuj Shatdal and Jeffrey Frank Naughton. Adaptive parallel aggregation

algorithms. In SIGMOD ’95: Proceedings of the 1995 ACM SIGMOD International

Conference on Management of Data, New York, NY, USA, 1995. ACM. 36

[97] Yannis Sismanis, Antonios Deligiannakis, Nick Roussopoulos, and Yannis Ko-

tidis. Dwarf: Shrinking the PetaCube. In SIGMOD ’02: Proceedings of the 2002

ACM SIGMOD international conference on Management of data, pages 464–475, New

York, NY, USA, 2002. ACM. 11

[98] James W. Stamos and Honesty C. Young. A Symmetric Fragment and Repli-

cate Algorithm for Distributed Joins. IEEE Transactions on Parallel Distributed

Systems, 4(12):1345–1354, 1993. 39

[99] Ceri A Stephano, Negri Mauro, and Giuseppe Pelagatti. Horizontal Data

Partitioning in Database Design. In SIGMOD ’82: Proceedings of the 1982 ACM

SIGMOD International Conference on Management of Data, pages 128–136. ACM, 1982.

86

[100] Kurt Stockinger, Kesheng Wu, and Arie Shoshani. Strategies for Processing

Ad hoc Queries on Large Data Warehouses. In DOLAP ’02: Proceedings of the

5th ACM International Workshop on Data Warehousing and OLAP, pages 72–79, New

York, NY, USAs, 2002. ACM. 29, 30

[101] Michael Akinde Strategy, Michael Akinde, Michael Bhlen, Laks V. S. Lak-

shmanan, Theodore Johnson, and Divesh Srivastava. Efficient OLAP Query

167

REFERENCES

Processing in Distributed Data Warehouses. In In Proceeding of the 8th Inter-

national Conference on Extending Database Technology, Prague, Czech Republic , pages

336–353. Elsevier, 2002. 40

[102] Chu Cheng Tao, Kim Sang Kyun, Lin Yi An, Yu Yuanyuan, Bradski Gary,

Ng Andrew Y., and Olukotun Kunle. Map-Reduce for Machine Learning on

Multicore. In Schölkopf Bernhard, Platt John C., and Hoffman Thomas,

editors, NIPS, pages 281–288, 2006. 53

[103] Patrick Valduriez. Join indices. ACM Transactions on Database Systems,

12(2):218–246, 1987. 13, 19

[104] Wei Wang, Hongjun Lu, Jianlin Feng, and Jeffrey Xu Yu. Condensed Cube:

An Efficient Approach to Reducing Data Cube Size. In International Conference

on Data Engineering, page 0155, Los Alamitos, CA, USA, 2002. IEEE Computer Society.

12

[105] Kesheng Wu, Arie Shoshani, and Ekow Otoo. Word-Aligned Hybrid Bitmap

Compression. Available on-line at: http://www.freepatentsonline.com/

6831575.html, 12 2004. 155

[106] Chen Ying, Dehne Frank, Eavis Todd, and Rau-Chaplin Andrew. Parallel

ROLAP Data Cube Construction On Shared-Nothing Multiprocessors. In Par-

allel ROLAP Data Cube Construction On Shared-Nothing Multiprocessors, IEEE Com-

puter Society, 2003. IEEE Computer Society.

[107] Edward Yoon. Hadoop Map/Reduce Data Processing Benchmarks. Available

online at: http://wiki.apache.org/hadoop/DataProcessingBenchmarks.

[108] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Ulfar Erlingsson,

Pradeep Kumar Gunda, and Jon Currey. DryadLINQ: A System for General-

Purpose Distributed Data-Parallel Computing Using a High-Level Language.

In Richard Draves and Robbert van Renesse, editors, OSDI, pages 1–14. USENIX

Association, 2008. 69

[109] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud Computing: State-of-the-art

and Research Challenges. Journal of Internet Services and Applications, 1(1):7–18,

May 2010. 62

[110] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Shengzhong Feng.

Accelerating MapReduce with Distributed Memory Cache. International Con-

ference on Parallel and Distributed Systems, 0:472–478, 2009. 59

[111] Chen Zhimin and Narasaya Vivek. Efficient Computation of Multiple Group-

by Queries. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD International

Conference on Management of Data, pages 263–274, 2005. 79

168

http://www.freepatentsonline.com/6831575.html
http://www.freepatentsonline.com/6831575.html
http://wiki.apache.org/hadoop/DataProcessingBenchmarks

	List of Figures
	List of Tables
	Glossary
	1 Introduction
	1.1 BI, OLAP, Data Warehouse
	1.2 Issues with Data Warehouse
	1.3 Objectives and Contributions
	1.4 Organisation of Dissertation

	2 Multidimensional Data Analyzing over Distributed Architectures
	2.1 Pre-computing
	2.1.1 Data Cube Construction
	2.1.2 Issue of Sparse Cube
	2.1.3 Reuse of Previous Query Results
	2.1.4 Data Compressing Issues

	2.2 Data Indexing
	2.2.1 B-tree and B+-tree Indexes
	2.2.2 Bitmap Index
	2.2.3 Bit-Sliced Index
	2.2.4 Inverted Index
	2.2.5 Other Index Techniques
	2.2.6 Data Indexing in Distributed Architecture

	2.3 Data Partitioning
	2.3.1 Data Partitioning Methods
	2.3.1.1 Horizontal Partitioning
	2.3.1.2 Vertical Partitioning

	2.3.2 Data Replication
	2.3.3 Horizontally Partitioning Multidimensional Data Set
	2.3.3.1 Partitioning Multidimensional Array Data
	2.3.3.2 Partitioning Star-schema Data

	2.3.4 Vertically Partitioning Multidimensional Data set
	2.3.4.1 Reducing Dimensionality by Vertical Partitioning
	2.3.4.2 Facilitating Index and Compression by Vertical Partitioning

	2.4 Query Processing Parallelism
	2.4.1 Various Parallelism Forms
	2.4.2 Exchange Operator
	2.4.3 SQL Operator Parallelization
	2.4.3.1 Parallel Scan
	2.4.3.2 Merge and Split
	2.4.3.3 Parallel Selection and Update
	2.4.3.4 Parallel Sorting
	2.4.3.5 Parallel Aggregation and Duplicate Removal
	2.4.3.6 Parallel Join
	2.4.3.7 Issues of Query Parallelism

	2.5 New Development in Multidimensional Data Analysis
	2.6 Summary

	3 Data Intensive Applications with MapReduce
	3.1 MapReduce: a New Parallel Computing Model in Cloud Computing
	3.1.1 MapReduce Model Description
	3.1.1.1 Fundamentals of MapReduce Model
	3.1.1.2 Extended MapCombineReduce Model

	3.1.2 Two MapReduce Frameworks: GridGain vs Hadoop
	3.1.3 Communication Cost Analysis of MapReduce
	3.1.4 MapReduce Applications
	3.1.5 Scheduling in MapReduce
	3.1.6 Efficiency Issues of MapReduce
	3.1.7 MapReduce on Different Hardware

	3.2 Distributed Data Storage Underlying MapReduce
	3.2.1 Google File System
	3.2.2 Distributed Cache Memory
	3.2.3 Manual Support of MapReduce Data Accessing

	3.3 Data Management in Cloud
	3.3.1 Transactional Data Management
	3.3.2 Analytical Data Management
	3.3.3 BigTable: Structured Data Storage in Cloud

	3.4 Large-scale Data Analysis Based on MapReduce
	3.4.1 MapReduce-based Data Query Languages
	3.4.2 Data Analysis Applications Based on MapReduce
	3.4.3 Shared-Nothing Parallel Databases vs MapReduce
	3.4.3.1 Comparison
	3.4.3.2 Hybrid Solution

	3.5 Related Parallel Computing Frameworks
	3.6 Summary

	4 Multidimensional Data Aggregation Using MapReduce
	4.1 Background of This Work
	4.2 Data Organization
	4.3 Computations Involved in Data Explorations
	4.4 Multiple Group-by Query
	4.5 Challenges
	4.6 Choosing a Right MapReduce Framework
	4.6.1 GridGain Wins by Low-latency
	4.6.2 Terminology
	4.6.3 Combiner Support in Hadoop and GridGain
	4.6.4 Realizing MapReduce Applications with GridGain
	4.6.5 Workflow Analysis of GridGain MapReduce Procedure

	4.7 Paralleling Single Group-by Query with MapReduce
	4.8 Parallelizing Multiple Group-by Query with MapReduce
	4.8.1 Data Partitioning and Data Placement
	4.8.2 Determining the Optimal Job Grain Size
	4.8.3 Initial MapReduce Model-based Implementation
	4.8.4 MapCombineReduce Model-based Optimization
	4.8.5 Performance Measurements
	4.8.5.1 Experiment Platform: Grid'5000
	4.8.5.2 Speed-up
	4.8.5.3 Scalability

	4.9 Execution Time Analysis
	4.9.1 Cost Analysis for Initial Implementation
	4.9.2 Cost Analysis for Optimized Implementation
	4.9.3 Comparison

	4.10 Summary

	5 Performance Improvement
	5.1 Individual Job Optimization: Data Restructure
	5.1.1 Data Partitioning
	5.1.1.1 With Horizontal Partitioning
	5.1.1.2 With Vertical Partitioning
	5.1.1.3 Data Partition Placement

	5.1.2 Data Restructure Design
	5.1.2.1 Using Inverted Index
	5.1.2.2 Data Compressing

	5.2 Mapper and Reducer Definitions
	5.2.1 Under Horizontal Partitioning
	5.2.2 Under Vertical Partitioning

	5.3 Data-locating Based Job-scheduling
	5.3.1 Job-scheduling Implementation
	5.3.2 Discussion on Two-level Scheduling
	5.3.3 Alternative Job-scheduling Scheme

	5.4 Speed-up Measurements
	5.4.1 Under Horizontal Partitioning
	5.4.2 Under Vertical Partitioning

	5.5 Performance Affecting Factors
	5.5.1 Query Selectivity
	5.5.2 Side Effect of Running Multiple Mappers on One Node
	5.5.3 Hitting Data Distribution
	5.5.4 Intermediate Output Size
	5.5.5 Serialization Algorithms
	5.5.6 Other Factors

	5.6 Cost Estimation Model
	5.6.1 Cost Estimation of Implementation over Horizontal Partitions
	5.6.2 Cost Estimation of Implementation over Vertical Partitions
	5.6.3 Comparison

	5.7 Alternative Compressed Data Structure
	5.7.1 Data Structure Description
	5.7.2 Data Structures for Storing RecordID-list
	5.7.3 Compressed Data Structures for Different Dimensions
	5.7.4 Measurements
	5.7.5 Bitmap Sparcity and Compressing

	5.8 Summary

	6 Conclusions and Future Directions
	6.1 Summary
	6.2 Future Directions

	Appendices
	A Applying Bitmap Compression
	A.1 Experiments and Measurements

	References

