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Résumé

Le problème de satisfaisabilité booléenne 3-SAT est connu pour présenter un phénomène
de seuil en fonction du quotient entre le nombre de clauses et le nombre de variables. Nous
donnons des estimations de la valeur de ce seuil au moyen de méthodes combinatoires et
probabilistes : la méthode du premier moment et la méthode du second moment. Ces méth-
odes mettent en jeu des problèmes d’optimisation sous contraintes et nous amènent à em-
ployer de façon intensive la méthode des multiplicateurs de Lagrange.

Nous mettons en œuvre une forme pondérée de la méthode du premier moment sur les
affectations partielles valides de Maneva ainsi que des variantes. Cela nous conduit à éla-
borer une pondération générale pour les problèmes de satisfaction de contraintes qui soit
compatible avec la méthode du premier moment. Cette pondération est constituée d’une
graine et d’un répartiteur, et nous permet d’obtenir une pondération des affectations par-
tielles valides meilleure que celle de Maneva. Nous comparons aussi dans certains cas les
performances de la pondération et de l’orientation de l’espace des solutions des problèmes
de satisfaction de contraintes relativement à la méthode du premier moment.

Nous développons la première sélection non uniforme de solutions pour majorer le seuil
de 3-SAT et nous montrons sa supériorité sur ses prédécesseurs.

Nous construisons un cadre général pour appliquer la méthode du second moment à k-
SAT et nous discutons des conditions qui la font fonctionner. Nous faisons notamment fonc-
tionner la méthode du second moment sur les solutions booléennes et sur les impliquants.
Nous étendons cela au modèle distributionnel de k-SAT.

Mots-clés : Satisfaisabilité, Problème de Satisfaction de Contraintes, Seuil, Transi-
tion de Phase, Méthode du Premier Moment, Méthode du Second Moment,
Multiplicateurs de Lagrange, Orientation, Pondération, Répartiteur, Sélec-
tion non Uniforme

Laboratoire d’accueil

Laboratoire d’Informatique Algorithmique : Fondements et Applications (LIAFA)
CNRS UMR 7089, Université Paris VII - Denis Diderot

175 rue du Chevaleret
75013 Paris - France



Esquisse

Le problème de satisfaisabilité booléenne 3-SAT est NP-complet, ce qui signifie qu’il est
algorithmiquement difficile. Sur des instances aléatoires on peut observer un phénomène de
transition de phase pour la satisfaisabilité à une valeur du rapport nombre de clauses

nombre de variables voisine de
4.25. Il se trouve que c’est au voisinage de cette transition de phase que le problème semble le
plus difficile algorithmiquement.

La localisation du seuil est un problème ouvert depuis une vingtaine d’années. Il a été
démontré que ce seuil se situe entre 3.5 et 4.5. Notre objectif est de contribuer à resserrer l’en-
cadrement de ce seuil. Pour ce faire nous décortiquons le fonctionnement de deux méthodes
probabilistes :

1. la méthode du premier moment, qui permet d’obtenir des majorants du seuil ;

2. la méthode du second moment, qui permet éventuellement d’obtenir des minorants du
seuil.

Cela nous amène à utiliser de façon récurrente la méthode des multiplicateurs de Lagrange. Ce
travail est au croisement de la combinatoire, des probabilités et de l’optimisation.

Faire des expériences avec SATLab

Puisque nous travaillons sur k-SAT aléatoire et que le comportement typique des instances
est difficile à calculer au moyen d’outils mathématiques, nous avons entrepris de développer
un logiciel (que nous avons appeléSATLab) qui puisse nous permettre d’avoir un aperçudirect
de ce qui se passe dans les formules et leur solutions. Ce logiciel réalise les tâches répétitives et
pénibles consistant à tirer des formules au hasard avec les paramètres voulus, appeler dessus
un “solver” (programme résolvant l’instance) et rassembler les résultats dans un seul et même
graphique.

La première observation que nous faisons est le fameux pic de complexité autour du seuil.
Ensuite nous allons un peu plus loin dans l’étude de la difficulté de modèles plantés (c’est-à-
dire où une solution a été cachée), en les comparant les uns aux autres et enmettant en évidence
des produits dérivés de la difficulté algorithmique tels que les variables gelées et les “cores”
(noyaux). Cette petite étude expérimentale permet de rendre compte des possibilités qu’offre
notre logiciel SATLab.

Nous revenons plus tard à SATLab, à l’occasion d’une discussion sur l’opportunité de la
méthode du second moment.
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Méthode du premier moment pondéré

Laméthode du premiermoment est le principal outil utilisé pour majorer le seuil de 3-SAT.
Nous utilisons les affectations partielles valides et le théorème de préservation de poids de

Maneva, Mossel & Wainwright - 2007 [MMW07] pour construire d’autres systèmes similaires
et leur appliquer la méthode du premier moment.

Une affectation partielle valide est une affectation sur le domaine {0, 1, ∗} telle qu’il n’y ait
pas de clause dans la formule ayant (tous ses littéraux faux) ou (tous ses littéraux faux sauf un
à ∗). Dans une affectation partielle valide, nous appelons étoilable une variable qui a la valeur
0 ou 1 et qui, si on la mettait à la valeur ∗, donnerait une autre affectation partielle valide. Étant
donné deux réels positifs ωo et ω∗, le poids d’une affectation partielle valide σ est W (σ) =

ω
no(σ)
o ω

n∗(σ)
∗ , où no (σ) est le nombre de variables étoilables dans σ et n∗ (σ) est le nombre de

variables étoilées dans σ. Le théorème de préservation de poids de [MMW07, MS08, AM09]
affirme que si σ est une solution booléenne et que ωo + ω∗ = 1, alors ∑τ≤σ W (τ) = 1. Par
conséquent, le poidsW convient parfaitement à la méthode du premier moment. Par un calcul
formel et numérique, nous obtenons un majorant de 4.883.

La propriété de validité de Maneva élimine les clauses de type FFF et FF*, mais qu’advient-
il si l’on choisit d’éliminer FFF, FF*, F** et ***, ou tout simplement FFF ? Quel est le majorant
obtenu dans chacun de ces cas ? Nous donnons les calculs mathématiques correspondants et
nous déterminons numériquement que nous ne pouvons pas obtenir de majorant meilleur que
4.866 dans ce cadre.

Alors nous faisons une autre tentative d’utiliser les affectations partielles valides, en élim-
inant celles qui n’ont aucune chance de se trouver sous un NPS (un NPS est une solution où
toutes les variables libres sont à 1). Les NPS ont été présentés en 1997 par Dubois & Boufkhad
[DB97] et par Kirousis, Kranakis&Krizanc [KKK97]. Leur décompte a permis à [DB97] d’obtenir
un majorant de 4.643, contre 4.667 pour [KKK97]. Il s’avère qu’en cherchant à combiner les af-
fectations partielles valides aux NPS, nous obtenons le meilleur majorant dans le cas particulier
où il n’y a plus d’étoiles, ce qui correspond à compter les NPS seuls (le majorant correspondant
étant 4.643).

C’est ce qui nous a amenés à nous interroger sur la performance de la pondération par
rapport à l’orientation des solutions.

Pondérer et ordonner les solutions

Dans ce chapitre nous considérons les problèmes de satisfaction de contraintes généraux
(CSP). Notre objectif est de définir sur l’espace de leurs solutions des pondérations et des ori-
entations qui soient compatibles avec la méthode du premier moment.

– les orientations de l’espace des solutions doivent présenter des élément minimaux, car ce
sont eux qui sont comptés par la méthode du premier moment ;

– les pondérations de l’espace des solutions doivent avoir un poids global d’au moins 1 ;
– les orientations tout comme les pondérations doivent pouvoir être calculées localement,
c’est-à-dire en tenant compte seulement du voisinage immédiat de la solution considérée,
afin que le premier moment puisse tout bonnement être mis en équations !

Ainsi nous définissons l’orientation suivante : pour chaque variable x, nous munissons le do-
maine D d’un ordre total strict <F,x. À partir de là, pour comparer deux solutions voisines, il
suffit de comparer leurs valeurs sur la variable x où elles diffèrent.

Pondérer les solutions des CSP en accord avec les contraintes susmentionnées n’est pas si
simple. Nous avons recours à une graine de poids sF (x, a) et à un répartiteur dF (x, a) définis
pour chaque variable x et chaque valeur a. Ensuite, étant donné une clique de voisinage dans
l’espace des solutions, c’est-à-dire un ensemble de solutions différant seulement sur la même
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variable x, nous donnons à chacune des solutions présentes σ un poidswF (σ, x) égal à la graine
sF (x, σ (x)), puis nous répartissons entre elles les graines de poids des solutions absentes au
moyen du répartiteur dF. Finalement, le poids d’une solution est le produit sur x des poids
wF (σ, x).

Nous démontrons que le système de poids ci-dessus a bien un poids global d’au moins 1,
en appliquant un théorème plus général de conservation de poids, par lequel nous établissons
des conditions suffisantes pour qu’une pondération ait un poids global d’au moins 1.

La portée de notre théorème de conservation de poids est effectivement plus générale, dans
la mesure où nous l’utilisons aussi pour valider un autre système de poids que nous définis-
sons sur les affectations partielles valides de Maneva (en les considérant comme des solutions
d’un CSP sur le domaine {0, 1, ∗}). L’intérêt de notre nouveau système de poids est qu’il est
plus léger que celui de Maneva, tout en ayant bien un poids global d’au moins 1. Nous ac-
complissons alors le calcul du premier moment avec notre tout nouveau système de poids sur
les affectations partielles valides. Avec la pondération de Maneva, le majorant obtenu était de
4.883, alors que notre nouvelle pondération nous donne dans le meilleur réglage un majorant
de 4.643. Donc notre pondération est meilleure, mais pas fracassante. En effet, le lecteur attentif
aura remarqué que le meilleur réglage de notre pondération revient à compter les NPS !

Tout cela nous amène à nous poser la question suivante : quel est donc l’intérêt de pondérer,
si le meilleur réglage des poids revient toujours à orienter ? Nous répondons à cette question
dans deux cas particuliers :

1. pondérations homogènes (i.e. lorsque dF = sF) : étant donné une pondération homogène,
nous montrons qu’il existe toujours une orientation au moins aussi bonne ;

2. sur un ensemble d’instances de CSP clos par renommage (i.e. un ensemble clos par per-
mutation des valeurs du domaine) : nous montrons que sur un tel ensemble, les pondéra-
tions et les orientations sont équivalentes en moyenne.

Comparer les pondérations et les orientations dans le cas général reste un problème ouvert.

Modèles distributionnels et non uniformité

Puisque pondérer les affectations partielles valides ne semble pas être mieux que compter
les NPS, nous avons décidé d’emprunter une autre direction pour obtenir des majorants du
seuil de 3-SAT. La première chose que nous eussions à faire était de passer dans le modèle
distributionnel (où les occurrences et les signes des variables sont donnés par une certaine dis-
tribution de probabilité plutôt que par tirage aléatoire). En effet, ce modèle donne intrinsèque-
ment de meilleurs majorants que le modèle à tirage (voir le tableau 6.2). De plus, le modèle à
distribution permet des réglages plus fins parce qu’il donne du contrôle sur le nombre d’occur-
rences de littéraux.

Nous avons observé que les orientations des espaces de solutions vers des solutions in-
téressantes (telles que les NPS) qui avaient été mises en œuvre jusqu’alors pour majorer le
seuil (4.643 par Dubois & Boufkhad - 1997 [DB97], 4.667 par Kirousis, Kranakis & Krizanc -
1997 [KKK97], 4.506 par Dubois, Boufkhad &Mandler - 2000 [DBM00, DBM03] ou encore 4.490
par Díaz, Kirousis, Mitsche and Pérez-Giménez - 2009 [DKMPG09]) étaient toutes uniformes :
toutes les arêtes correspondant à une variable x donnée dans le graphe de Hamming des solu-
tions sont orientées de la même manière, i.e. soit de 0 vers 1, soit de 1 vers 0. Il en va de même
pour notre pondération générale des CSP !

Nous cherchons donc à élaborer une orientation non uniforme de l’espace des solutions
d’une manière qui soit compatible avec la méthode du premier moment (i.e. garantissant l’ex-
istence d’éléments minimaux) mais aussi qui donne demeilleurs majorants que les orientations
uniformes connues.
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À cet effet, nous utilisons un jeu de 5 nombres par variable et nous l’utilisons pour dé-
partager les solutions voisines. Ces 5 nombres renseignent sur la répartition des occurrences
vraies et fausses de chaque variable dans chaque type de clause (le type d’une clause étant
son nombre de littéraux à vrai : 1, 2 ou 3). De même que [DBM03] orientait les solutions vers
une quantité croissante de littéraux à vrai, nous allons partir de cette idée et la pousser plus
loin en distinguant les occurrences des littéraux en fonction de leur état critique.Notre intuition
nous dit que nous devrions sélectionner les solutions qui ont le moins possible d’occurrences
critiques de littéraux. Une occurrence de littéral à vrai est dans un état d’autant plus critique
que la clause où elle apparaît a plus d’occurrences de littéraux à faux. Une telle propriété est
par nature non uniforme.

Nous appliquons notre technique à 4 modèles aléatoires différents de 3-SAT : le modèle
standard, un modèle où les occurrences des variables sont équilibrées, un modèle où les signes
sont équilibrés et un modèle où à la fois les signes et les variables sont équilibrés (le modèle
introduit par Boufkhad, Dubois, Interian & Selman - 2005 [BDIS05]). Sur tous ces modèles,
notre approche donne des majorants inférieurs à ceux obtenus par les méthodes antérieures (et
uniformes) de sélection.

Il faut dire que dans le modèle standard, notre borne de référence était le 4.506 de [DBM00] ;
en effet le 4.490 de [DKMPG09] est dérivé du 4.506 par l’ajout de deux ingrédients supplé-
mentaires : l’élimination des littéraux purs et la typicité des signatures des clauses. Ces deux
ingrédients supplémentaires sont en fait d’un intérêt indépendant : ils pourraient être ajoutés
à nos calculs, mais le surcoût requis en calculs serait disproportionné au regard du modeste
gain auquel on peut prétendre. Nous nous sommes donc focalisés sur la sélection des solutions
proprement dite, et nous avons trouvé

– une manière non uniforme de sélectionner des solutions (la première à notre connais-
sance),

– qui est meilleure que toutes les autres manières connues.
Au niveau des calculs proprement dits, nous aboutissons à un problème classique de maximi-
sation sous contraintes, que nous résolvons classiquement et en suivant la même démarche que
[DKMPG09], c’est-à-dire par la méthode des multiplicateurs de Lagrange. Cela nous oblige à
prouver que la fonction objectif ne se maximise pas aux frontières du polytope ; de plus nous
contrôlons que la solution obtenue est bien un maximum global en balayant ce polytope.

Un cadre général pour la méthode du second moment sur k-SAT

La méthode du second moment n’est pas l’outil principal ayant servi à minorer le seuil de
3-SAT. En effet la plupart des minorants ont été obtenus par l’analyse d’algorithmes trouvant
des solutions avec grande probabilité, y compris le meilleur minorant connu (3.52), obtenu par
Kaporis, Kirousis & Lalas [KKL06] et par Hajiaghayi & Sorkin [HS03]. Il est particulièrement
difficile de faire fonctionner la méthode du second moment sur k-SAT, parce qu’elle requiert
de compter un ensemble de solutions de variance faible.

Par conséquent, on peut dire que le travail d’Achlioptas & Peres - 2004 [AP04] est un grand
succès dans la mise en œuvre de la méthode du second moment sur k-SAT ; ils établissent
un minorant de 2.68 pour 3-SAT et un minorant asymptotiquement quasi-optimal de 2k ln 2−
O (k) pour k-SAT.

Notre objectif est de tirer le meilleur parti de la méthode du second moment sur k-SAT.
À cet effet nous suivons une approche différente de celle d’Achlioptas & Peres. Dans notre
cadre de travail, nous sélectionnons les solutions en fonction de la fraction de variables à 1 et
des fractions des différents types de clauses (le type d’une clause étant défini par le nombre
d’occurrences de littéraux vrais dans cette clause). Ce cadre est suffisamment général pour
permettre de traiter les solutions booléennes et les impliquants, entre autres. Néanmoins, le
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meilleur réglage des paramètres que nous ayons pu trouver ne nous a pas permis de trouver
numériquement un minorant meilleur que 2.83.

La pierre d’achoppement sur laquelle nous avons buté de façon récurrente est ce que nous
appelons le point d’indépendance. Ce point correspond aux couples de solutions indépen-
dantes dans le sous-ensemble des solutions sélectionnées. Bien que les solutions soient in-
dépendantes, la proportion des occurrences de littéraux ayant une certaine valeur de vérité
peut ne pas être indépendante entre les solutions. Par des tests numériques, nous avons acquis
la conviction que la méthode du secondmoment ne peut pas fonctionner si les valeurs de vérité
des occurrences de littéraux ne sont pas indépendantes entre les solutions indépendantes. D’un
autre côté, lorsqu’elles sont indépendantes, nous donnons une condition nécessaire pour que la
méthode du second moment fonctionne, en utilisant juste l’équivalent exponentiel du second
moment en ce point. Cette condition nous dit qu’il faut sélectionner des solutions ayant des
surfaces vraie et fausse égales (la surface étant tout simplement le nombre total d’occurrences
de littéraux), ce qui est très artificiel compte tenu de ce qu’on peut observer avec SATLab. En
utilisant cette condition nous avons réussi à faire marcher numériquement la méthode du sec-
ond moment ; cependant, puisque les minorants que nous obtenons (2.83) sont loin au-dessous
du meilleur minorant actuel (3.52), nous n’avons pas pris la peine de donner une preuve dé-
taillée de nos minorants (pour ce faire, l’équivalent exponentiel ne suffirait plus, et les calculs
deviendraient terriblement compliqués).

Les conditions très restrictives sur lesquelles nous sommes tombés pour faire marcher la
méthode du second moment sont peut-être dues à des faiblesses présentes dans notre cadre de
travail. Nous ne prétendons pas que la méthode du second moment soit condamnée à échouer
perpétuellement sur k-SAT. Nous espérons seulement y apporter notre éclairage.

Second moment sur le modèle distributionnel de k-SAT

L’utilisation du modèle distributionnel standard à la place du modèle à tirages standard
permet d’obtenir de meilleurs majorants du seuil de satisfaisabilité (cf. tableau 6.2). De plus,
nous aimerions avoir plus de contrôle sur les proportions de variables à 1 en fonction du
déséquilibre entre les occurrences positives et négatives des variables. En effet, nous pensons
qu’une variable a d’autant plus de chances de se retrouver à 1 dans une solution qu’elle a plus
d’occurrences positives, et inversement. C’est du moins ce qui semble se produire dans la réal-
ité, comme l’atteste SATLab. Toutes ces raisons nous amènent à mettre en œuvre la méthode
du second moment sur le modèle distributionnel de k-SAT.

Les grandes lignes des calculs sont à peu près les mêmes que sur le modèle à tirages. Une
différence majeure cependant est que s’il n’y a pas indépendance des valeurs de vérité des oc-
currences de littéraux au point d’indépendance, alors le point d’indépendance lui-même viole
une des contraintes. Néanmoins, le résultat est le même que dans le modèle à tirages : nous
n’arrivons à faire fonctionner la méthode du second moment que lorsqu’il y a indépendance
des valeurs de vérité des occurrences de littéraux au point d’indépendance.

Ce calcul est très décevant parce que non seulement il mène au même genre de contraintes
que dans le modèle à tirages, contraintes assurément artificielles au regard de ce qu’on peut
observer avec SATLab, mais en outre il donne la même valeur critique de 2.83 !





Satisfiability Estimations

Abstract

The boolean satisfiability problem 3-SAT is known to exhibit a threshold phenomenon
with respect to the clauses to variables ratio. We give some estimations of the location of this
threshold through combinatorial and probabilistic methods: the First Moment Method and
the Second Moment Method. These methods involve constrained optimization and lead us
to extensively use the Lagrange multipliers method.

We implement a weighted form of the First Moment Method on Maneva’s valid partial
assignments as well as some variants. That leads us to design a general weighting for Con-
straint Satisfaction Problems compliant with the requirements of the First Moment Method.
This weighting is made up of a seed and a dispatcher, and yields as a by-product a better
weighting system on valid partial assignments than Maneva’s. We also compare in some
cases the performances of weighting and ordering the solutions space of Constraint Satisfac-
tion Problems with respect to the First Moment Method.

We exhibit the very first non-uniform selection of solutions for upper-bounding the thresh-
old of 3-SAT and show that it is better than all previous selection methods.

We give a general framework implementing the Second Moment Method on k-SAT and
discuss the conditions making the Second Moment Method work in this framework. As ap-
plications, we make the Second Moment Method work on boolean solutions and implicants.
We extend this to the distributional model of k-SAT.

Keywords: Satisfiability, Constraint Satisfaction Problem, Threshold, Phase Transi-
tion, First Moment Method, Second Moment Method, Lagrange Multipliers,
Ordering, Weighting, Dispatcher, Non-Uniform Selection
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Chapter 1

Introduction

“In mathematics, approximation
or estimation typically means
finding upper or lower bounds of
a quantity that cannot readily be
computed precisely.” Wikipedia
page for Estimation - July 26th
2010.

1.1 Framework - Random 3-SAT

1.1.1 k-CNF SAT

We consider n variables x1, . . . , xn, each taking a value in the domain {0, 1}. A formula or
instance is built from variables by logical connectives: ¬, ∨ and ∧. A formula in the Conjunctive
Normal Form (in short CNF) appears as follows:

– ¬, the negation, applies to a single variable to build a literal; ¬x1 as well as x1 are called
literals;

– ∨, the disjunction, applies to several literals to build a clause, e.g. x1 ∨ ¬x2 ∨ x4;
– ∧, the conjunction, applies to several clauses to build a formula, e.g. (x1 ∨ ¬x2 ∨ x4) ∧
(x10 ∨ x3).

A clause is satisfied iff one of its literals is satisfied (this is an inclusive or). SAT is the problem
of deciding whether it is possible to assign each variable a value in the domain {0, 1} so that
the formula is true (i.e. each clause is satisfied). SAT was the very first problem to be shown
NP-complete by Cook - 1971 [Coo71] and Levin - 1973 [Lev73].

k-SAT is a restriction of SAT to instances having clauses of width k. It turns out that k-SAT
is NP-complete as soon as k ≥ 3 but polynomial if k ≤ 2. We shall particularly focus on 3-SAT.
A 3-CNF instance thus looks like that:
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x3 ∨ ¬x6 ∨ x7
¬x12 ∨ x1 ∨ ¬x2

. . .
x5 ∨ x18 ∨ x3

Let us now introduce two well-studied variants of the SAT problem:
– NAE-SAT, where a clause is satisfied iff not all literals have the same truth value (Not All
Equal), i.e. at least one literal is true and at least one literal is false. So this is a kind of
symmetrization of SAT. It turns out that k-NAE-SAT is also NP-complete when k ≥ 3;

– XOR-SAT, where the inclusive or of SAT become an exclusive or. Consequently the prob-
lem amounts to solving a linear system of equations. Thus Gaussian elimination makes
it a polynomial problem.

1.1.2 Goldberg’s Random-Clause-Width Model

One of the first attempts to build a random model of formulas was made by Goldberg in
1979 [Gol79]. In this model, each of the m clauses of a formula is built as follows: each of the 2n
literals are present with probability p. Goldberg showed that in this model, the SAT problem
is polynomial on average. Moreover, Franco & Paull - 1983 [FP83] showed that even a constant
number of random guesses can find a satisfying assignment almost surely.

However, Franco & Swaminathan - 1997 [FS97] noticed that formulas become harder when
their clause width is less than lnm.

We shall see in the sequel that when clause width is bounded (k-SAT), formulas can be very
hard, and that is the reason why we focus on random k-SAT.

1.1.3 Drawing Model

In the classical drawing model of k-SAT, there are n variables and m = cn clauses. Clauses
are drawn independently as follows: pick k literals uniformly at random. A variation on this
model requires all variables in the same clause to be distinct. It turns out that both models are
equivalent for the threshold properties we shall consider.

– in the first model, there are (2n)kcn possible formulas;

– in the second one, there are
(

2k(nk)
)cn

possible formulas.

1.1.4 Distributional Model

We consider a generic randommodel of k-CNF formulas having n variables and cn clauses,
parametrized by a probability distribution

(

dp,q
)

p,q∈N such that ∑p,q∈N dp,q = kc. Before we
get formulas we draw configurations as follows:

1. each of the n variables is given p labeled positive occurrences and q labeled negative
occurrences in a way that the overall proportion of variables with p positive occurrences
and q negatives occurrences is dp,q;

2. a configuration can be seen as a matrix of kcn bins containing literals occurrences; the
repartition of literals into the kcn bins is drawn uniformly among all (kcn)! permutations
of labeled literals occurrences.

A legal formula is a configuration where occurrences are unlabeled and each clause contains at
most one occurrence of each variable. For the models we consider in this thesis (as described
in section 6.1.1), it was shown that an upper bound on the satisfiability threshold obtained
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for configurations also applies to legal formulas (see Díaz, Kirousis, Mitsche & Pérez-Giménez
- 2009 [DKMPG09] for the standard model and Boufkhad, Dubois, Interian & Selman - 2005
[BDIS05] for models where p and q are bounded).

Note in particular that for the standard model discussed in section (1.1.3) where all literals
are drawn uniformly and independently, it was shown by Dubois, Boufkhad & Mandler - 2003
[DBM03] and Díaz, Kirousis, Mitsche & Pérez-Giménez - 2009 [DKMPG09] that the resulting
distribution is the 2D Poisson distribution:

dp,q =

(

p+ q

p

)

e−kc

(p+ q)!

(

kc

2

)p+q

. (1.1)

1.2 Motivations

1.2.1 A Universal Model

Since SAT is NP-complete, all NP-complete problems can be reduced to it in polynomial
time. Moreover, the very simple yet powerful framework offered by SAT has drained lots of
efforts to elaborate efficient SAT-solvers. So in practice lots of problems are encoded into a SAT
instance and then submitted to a SAT-solver.

For example, let us consider software distributions. Such distributions as Ubuntu or Debian
have over 20,000 available packages, and there exist different kinds of dependencies between
packages: “A requires B” or “A is incompatible with C”. The problem of deciding whether a
given package is installable in a given repository is called INSTALLABILITY and was shown
to be NP-complete by Di Cosmo, Durak, Leroy, Mancinelli & Vouillon - 2006 [DDL+06]. In
another paper, the same authors plus Boender & Treinen [MBC+06] showed that encoding this
problem into SAT and submitting it to the FGrasp solver is dramatically better than encoding
it into a Constraint Programming instance submitted to the Mozart-Oz solver.

1.2.2 A Difficult Problem

As mentioned earlier in section 1.1.1, SAT was the very first problem to be shown NP-
complete by Cook - 1971 [Coo71] and Levin - 1973 [Lev73]. However we saw in section 1.1.2
that Goldberg’s model is easy on average! However for random 3-SAT the situation is quite
different:

1. as was first observed by Simon & Dubois - 1989 [SD89] there exists a phase transition
in the satisfiability property: for low values of c (the ratio #clauses

#variables ), the probability of
satisfiability of formulas tends to 1 as n tends to infinity. On the contrary, it tends to 0
for high values of c. But it is experimentally observed that there is a threshold (or phase
transition) at around c = 4.25 where the probability suddenly goes from 1 to 0;

2. a few years later, Mitchell, Selman & Levesque - 1992 [MSL92] showed that a complexity
pattern seems to be connected to this threshold phenomenon: instances are easy when
c is far below 4.25, harder when c is far above 4.25, and considerably harder when c is
around 4.25. This situation is depicted on figure 1.1.

More details on hard instances are available in the survey of Cook &Mitchell - 1997 [CM97].

1.3 Sharpness of Thresholds

Look at figure 1.1 again. What would you like to say about both curves? The second one
looks like the d. . . e of the first one. The derivative, yes (in absolute value). This does make
sense in fact.
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Figure 1.1: On the left picture is the probability for a formula to be satisfiable with respect to
c. On the right picture is the algorithmic (resolution) complexity with respect to c. We can see
that the peak in complexity occurs in the neighborhood the threshold of satisfiability. These
pictures come from Biroli, Cocco & Monasson - 2002 [BCM02].

1.3.1 Influence and Complexity

Let us enumerate clauses from 1 to M = 2k(nk) and define an indicator variable γj telling
if clause number j is present in the formula. In this framework, a formula can be seen as
a boolean vector γ = (γ1, . . . , γM). The probability space considered here is defined by a
measure µp (γ) = pk (1− p)M−k where p ∈ (0, 1) and k = ∑

M
i=1 γi. Given a boolean function

f on formulas, we call influence of clause j on f the quantity Ij ( f ) = µp
(

f
(

γ⊕ 1j
)

6= f (γ)
)

,
i.e. the probability over all formulas that clause j is critical for f . For us f will be of course
SATISFIABILITY. The total influence of f is defined as I ( f ) = ∑j Ij ( f ).

Margulis-Russo’s lemma [Mar74, Rus78] states that the total influence is equal (in absolute

value) to the slope of the probability curve dµp( f )
dp , where µp ( f ) denotes the probability that

f (γ) = 1. So is there a connection between influence and algorithmic complexity?
To some extent, yes. Boppana’s theorem [Bop97] states that if f is computable by a circuit

of depth d and of width w, then I ( f ) ≤ 2 (10 log2 (4w))
d−1, assuming that I ( f ) is taken under

uniform probability: p = 1
2 . It turns out that in our case, p = Θ

(

M
1
k−1
)

= o (1), so this
theorem is not applicable. Moreover in the circuit complexity of Boppana, the most difficult
function is PARITY. . . However it is a hint that there is a connection between influence and
complexity, and we think this is a direction of research which deserves to be further investi-
gated.

1.3.2 The Quest for Sharpness

We denote by tε ( f ) the threshold interval, that is |p2 − p1| where µp1 ( f ) = ε and µp2 ( f ) =

1 − ε. The critical probability pc is defined by µpc ( f ) = 1
2 . Bollobás & Thomasson’s theo-

rem [BT87] states that for each monotone boolean function f , tε ( f ) = O (min (pc, 1− pc)) for
asymptotic M. It follows a dichotomy: a threshold is called sharp if tε ( f ) = o (min (pc, 1− pc))
and coarse otherwise.

There were then several lower bounds of influence (i.e. the slope dµp( f )
dp according to the
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Table 1.1: Sharpness vs. complexity of some problems.

problem threshold complexity
2-SAT sharp P
3-SAT sharp NP-complete

Margulis-Russo lemma) by a function of µp ( f ) itself, often referred to as isoperimetric inequal-
ities. See for example the inequalities of Kahn, Kalai & Linial - 1988 [KKL88]: maxj Ij ( f ) ≥
Kmin

(

µ 1
2
( f ) , 1− µ 1

2
( f )
)

logM
M or Talagrand - 1994 [Tal94]: ∑

M
j=1

Ij( f )

ln 1
Ij( f )

≥ K
µp( f )(1−µp( f ))

ln 2
p(1−p)

.

More information on this topic can be found in the excellent survey of Kalai & Safra - 2006
[KS06].

The sharpness and the value of the 2-SAT threshold at c = 1 has been known since the
early 90’s (see Chvátal & Reed - 1992 [CR92] and Goerdt - 1996 [Goe96]), but only in 1999 did
Friedgut & Bourgain [FB99] prove that the threshold of 3-SAT is sharp, a very deep result.
However the question of the location of this threshold is still open, and this thesis is dedicated
to the quest for upper and lower bounds on this threshold location.

1.3.3 Sharpness vs. Complexity

Schaefer’s dichotomy theorem [Sch78] characterizes those Constraint Satisfaction Problems
(see definition in section 5.2) which are in P (trivial, bijunctive, Horn, affine) and states that all
other ones are NP-complete.

Building on Friedgut-Bourgain’s theorem, Creignou & Daudé [CD03, CD04] established a
similar dichotomy regarding the sharpness of thresholds. They showed that if there are some
types of constraints f such that f (x1, . . . , xk) = 1 ⇒ xi = ε ( f strongly depends on one com-
ponent) or f (x1, . . . , xk) = 1⇒ xi ⊕ xj = ε ( f strongly depends on a 2-XOR relation) for some
ε ∈ {0, 1}, then the threshold is coarse, and otherwise the threshold is sharp.

The reader will certainly have noticed that both dichotomies are different, which means
that sharpness and complexity do not seem to be correlated, see table 1.1. So can’t random
3-SAT tell anything interesting about the computational complexity of 3-SAT?

1.4 The Solutions Space

Here is maybe the major hope in using random 3-SAT as a tool to establish computational
complexity results on 3-SAT.

1.4.1 The Number of k-CNF Functions

A boolean function f : {0, 1}n → {0, 1} is characterized by the set
−1
f ({1}) of its solutions.

By the way, how many boolean functions are there? 22
n
. Now, how many k-CNF formulas are

there? there are 2k(nk) possible clauses, each one may be present in the formula or not, so there

are 22
k(nk) k-CNF formulas. But how many boolean functions are represented by these formu-

las? At least 2(
n
k), because two different monotone formulas have different sets of solutions. A

monotone formula is a formula without negation ¬. Let 0i,j,k be the assignment where all vari-
ables are at 1 except xi, xj and xk. Then 0i,j,k is a solution of a monotone formula Φ iff clause
xi ∨ xj ∨ xk does not appear in Φ.
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So there are between 2(
n
k) and 22

k(nk) boolean functions which are expressible by a k-CNF
formula. This is negligible compared to 22

n
, the number of boolean functions. Consequently

the set of solutions of a k-CNF formula must be somehow structured! Moreover in our random
model we only allow O (n) clauses out of 2k(nk). So what does the solutions space look like?

And what if k may depend on n? Of course every boolean function is expressible by a n-
CNF formula. Bollobás & Brightwell - 2003 [BB03] give different estimates for various ranges
of k; in particular we can notice that the proportion of boolean functions expressible by a n− 1-

CNF formula is about 61% and it is still negligible - about exp
(

−2
log22 n

2

)

- for k = n− 2. They

establish a kind of phase transition with respect to α = k
n : if α <

1
2 , then there are 2o(2

n) k-CNF

functions, whereas if α >
1
2 , there are 2

Ω(2n) k-CNF functions. Moreover the authors conjecture

that the number of k-CNF functions is 2(
n
k)(1+o(1)) if k ≤

(

1
2 − ε

)

n for any ε > 0, which they
proved with Leader [BBL03] for k = 2. Once more 3-SAT seems to be much more difficult to
handle than 2-SAT. . .

1.4.2 Clustering

Statistical Physics has brought some helpful insights into the geometry of the solutions
space. For example, Mertens, Mézard & Zecchina - 2006 [MMZ06] successfully applied the
so-called “One-Step Replica Symmetry Breaking Cavity Method” from Statistical Physics to
random k-SAT, which enabled them to identify at least 3 phases: in random 3-SAT, solutions
form a connected mist for c < 3.927 and then group together into an exponential number of
clusters until they vanish at c = 4.267. Moreover, for k ≥ 4, there is an extra phase just below
the satisfiability threshold, where there is a finite number of clusters, seeMora’s thesis [Mor07].

Another phenomenon is quite interesting: just above the threshold, some frozen variables
appear, i.e. variables which take the same value in all solutions; they form a so-called backbone.
Monasson, Zecchina, Kirkpatrick, Selman & Troyansky - 1999 [MZK+99] showed that there
is a remarkable difference between 2-SAT and 3-SAT: the proportion of frozen variables is
continuous (thus zero) at the threshold for 2-SAT (second-order phase transition), whereas it
is discontinuous for 3-SAT (first order phase transition). That might be an explanation for
the algorithmic complexity of 3-SAT, but it turns out that 3-XOR-SAT (which is solvable in
polynomial time by Gaussian elimination) also has a first order transition; however the way
variables freeze in each cluster in the satisfiable phase might make the difference, see Semerjian
- 2007 [Sem07]. Moreover Mora emphasizes a fundamental difference in the fragmentation
process: a condensation transition exists for k-SAT but not for k-XOR-SAT.

On the other hand, Istrate, Boettcher & Percus - 2005 [IBP05] make a connection between
first-order transitions of the spine (slightly different from the backbone, see [BBC+01]) and the
hardness for resolution-based algorithms (it turns out that 3-XOR-SAT is hard for resolution).

Although their methods are usually not mathematically rigorous, physicists were able to
elaborate the best algorithm so far for random 3-SAT: Survey Propagation, by Braunstein,
Mézard & Zecchina - 2005 [BMZ05]. This a fixed-point algorithm where variables and clauses
pass messages to each other.

There are some mathematically established results about clustering in the solutions space.
For example, Achlioptas & Ricci-Tersenghi - 2006 [ART06] showed that, somewhere below the
satisfiability threshold, there is an exponential number of separate clusters (for k ≥ 8) and
every cluster have some (locally) frozen variables (for k ≥ 9).
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1.5 Outline of the Thesis

1.5.1 Experimenting through SATLab

Since we work on random k-SAT and typical behavior of instances is difficult to compute
with mathematical tools, we decided to build a software (which we called SATLab) to enable
us to have some insight into formulas and their solutions. This software achieves the repetitive
and painful tasks of drawing random instances with the desired parameters, calling a solver
on the drawn instances, and bringing together all results into a single graph.

We first make the classical observation of the complexity peak around the threshold, and go
a little further into the study of the hardness of some plantedmodels (i.e. models with a hidden
solution), comparing them to each other, and emphasizing such spin-offs of computational
hardness as frozen variables or cores. This experimental study is just a sample of what can be
performed by SATLab.

We go back to SATLab later in a discussion about the relevance of the Second Moment
Method.

1.5.2 Weighted First Moment Method

The First Moment Method has been the main tool to compute upper bounds on the 3-SAT
threshold.

We use the weighted valid partial assignments and the Weight Preservation Theorem intro-
duced by Maneva, Mossel & Wainwright - 2007 [MMW07] to build some other similar systems
and apply the First Moment Method to them.

A valid partial assignment of a formula is an assignment over the domain {0, 1, ∗} such
that there is no clause in the formula having (only false literals) or (only false literals but one
assigned ∗). In a valid partial assignment, we call a variable starrable if it is assigned 0 or 1 and
assigning it ∗ would still yield another valid partial assignment. Given two non-negative reals

ωo and ω∗, the weight of a valid partial assignment σ is W (σ) = ω
no(σ)
o ω

n∗(σ)
∗ , where no (σ) is

the number of starrable variables in σ and n∗ (σ) is the number of starred variables in σ. The
Weight Preservation Theorem [MMW07, MS08, AM09] insures that if σ is a boolean solution
and ωo + ω∗ = 1, then ∑τ≤σ W (τ) = 1. Consequently the weight W perfectly fits in with the
First Moment Method. Doing the calculation formally and then numerically, we get an upper
bound of 4.883.

The validity property of Maneva et al. discards clauses of type FFF and FF*, but what
happens if we choose to discard FFF, FF*, F** and ***, or just FFF? What is the upper bound
in each of these cases? We give the mathematical corresponding calculations and find out
numerically that we cannot get a better upper bound than 4.866 in this framework.

So we make a further attempt to use the valid partial assignments, discarding some of them
which cannot lay below a NPS (a NPS is a solution where every free variable are assigned 1).
The NPSs were presented in 1997 by Dubois & Boufkhad [DB97] and by Kirousis, Kranakis &
Krizanc [KKK97]. Counting them enabled [DB97] to get an upper bound of 4.643 and [KKK97]
to get an upper bound of 4.667. It turns out that combining NPSs and valid partial assignments,
the best upper bound we obtain corresponds to the special case where the ∗’s disappear, i.e. the
mere counting of NPSs (and thus the upper bound of 4.643).

That led us to question the performance of weighting versus merely counting solutions.
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1.5.3 Weighting and Ordering Solutions

In this chapter we consider general Constraint Satisfaction Problems (CSPs). We aim at
defining on their solutions space some orderings and weightings which may be suitable for the
First Moment Method:

– orderings of the solutions spacemust have someminimal elements, whichwill be counted
by the First Moment Method;

– weightings of the solutions space must have a global weight of at least 1;
– both orderings and weightings must be locally computable, that is looking only at the
immediate neighborhood, so that the First Moment calculation may be tractable.

So we define the following ordering: for each variable x, the domain D is given a total strict
order <F,x. Now to compare two neighboring solutions, it suffices to compare their values at
the variable x on which they differ.

Weighting the CSPs solutions in compliance with the aforementioned constraints is some-
what trickier. We use a weighting seed sF (x, a) and a dispatcher dF (x, a) defined for each
variable x and each value a. Now given a clique of neighborhood in the solutions space, that is
a set of solutions differing only on the same variable x, we give each of the present solutions σ
a weight wF (σ, x) equal to the weighting seed sF (x, σ (x)), and we dispatch among them the
weighting seeds of the absent solutions in proportions following dF. Finally the weight of a
solution is the product of the weights wF (σ, x) over x.

We prove that the above weighting scheme has a global weight of at least 1 as a particular
case of a more general Weight Conservation Theorem, by which we give sufficient conditions
for a weighting to have a global weight of at least 1.

The scope of our Weight Conservation Theorem is indeed more general, since we derive
from it another weighting system fitted to Maneva’s valid partial assignments (we regard them
as solutions of a CSP over the domain {0, 1, ∗}). The purpose of our new weighting of valid
partial assignments is that it weighs less than Maneva’s while keeping a global weight of at
least 1. So we performed the calculation of the first moment with our brand new weighting
on valid partial assignments. With Maneva’s weighting, the upper bound obtained was 4.883,
whereas our new weighting gives us an upper bound of 4.643. So it is better, but not outstand-
ing. Namely the attentive reader will remark that the best tuning of our weighting enables us
in fact to count NPSs!

So this leads us to the following question: what is the purpose of weighting, if the best
tuning of weights always amounts to an ordering? We are able to answer this question in two
special cases:

1. homogeneous weightings (i.e. when dF = sF): given an homogeneous weighting, we
show that there always exists a ordering which is at least as good as it;

2. on a set of CSP instances closed under renaming (i.e. on a set closed under permutations
of the values of the domain): we show that on such a set, weightings and orderings are
equivalent on average.

The general question of comparing weightings and orderings remains open.

1.5.4 Distributional Models and Non-Uniformity

Since weighting valid partial assignments does not seem to be better than counting NPSs,
we decided to try another direction to get upper bounds on the threshold of 3-SAT. First of
all we took the distributional model, which intrinsically gives better upper bounds than the
drawing model (see table 6.2). Moreover the distributional model allows more precise tunings
because it gives some control on the number of occurrences of the literals.
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We observed that the orientations of the solutions space towards interesting solutions (such
as NPSs) that had been implemented to get upper bounds on the threshold (4.643 by Dubois
& Boufkhad - 1997 [DB97], 4.667 by Kirousis, Kranakis & Krizanc - 1997 [KKK97], 4.506 by
Dubois, Boufkhad & Mandler - 2000 [DBM00, DBM03] as well as 4.490 by Díaz, Kirousis,
Mitsche and Pérez-Giménez - 2009 [DKMPG09]) were all uniform: all edges relative to a given
variable x in the Hamming graph of the solutions are oriented in the same way, i.e. from 0 to 1
or from 1 to 0). And so is the general weighting we put on CSPs!

So the purpose of our investigations is to build a non-uniform orientation of the solutions
space, in a way that is still suitable with the First Moment Method requirements (i.e. insur-
ing that minimal elements will exist) and also which may give lower upper bounds than the
previous ones.

To do so, we keep track of a set of 5 numbers associated with each variable and use it
to discriminate among neighboring solutions. These 5 numbers provide information on the
repartition of true and false occurrences of each variable in each type of clauses (clauses having
1, 2 or 3 true literals). Just as [DBM03] oriented solutions towards a greater quantity of true
literals, so shall we build on this idea, but we want to be able to distinguish between them on
the basis of their criticality. Our intuition is that we should select solutions in which the least
occurrences of true literals are critical. The less a clause has true literals, the more its true literals
are critical. Such a property is by nature non-uniform.

We apply our technique to 4 different models of random 3-SAT: the standard model, a
model where occurrences of variables are balanced, a model where signs are balanced and
a model where both signs and variables are balanced (the model introduced by Boufkhad,
Dubois, Interian & Selman - 2005 [BDIS05]). Our approach gives lower upper bounds than the
previous methods for selecting solutions in all of these models.

It turns out that in the standard model, our benchmark was the 4.506 of [DBM00]; namely
the 4.490 of [DKMPG09] was obtained from the 4.506 by adding two extra ingredients: elimi-
nation of pure literals and typicality of clauses signatures. These extra ingredients are in fact
of independent interest: they could be added to our calculations, but the additional computa-
tional cost would be too high with respect to the expected gain. So we focused on the selection
of solutions itself and found

– a non-uniform way of selecting solutions, the first one to our knowledge,
– which is better than the best known (uniform) ways of selecting solutions.

Our calculations lead us to as classical problem of constrained maximization, and we solve
it classically as well, through the Lagrange multipliers method and following the approach
of [DKMPG09]. Thus we must prove that the objective function does not maximize at the
boundary of the polytope. Moreover we check that the solution we get is indeed a global
maximum by a sweep over the polytope.

1.5.5 A General Framework for the Second Moment Method on k-SAT

The Second Moment Method has not been the main tool to compute lower bounds on the
3-SAT threshold. Namely most of the lower bounds were obtained by analyzing algorithms
finding solutions with high probability, and in particular the best currently known lower bound
(3.52), obtained by Kaporis, Kirousis & Lalas [KKL06] and by Hajiaghayi & Sorkin [HS03]. It
is rather difficult to make the Second Moment Method work on k-SAT, because it requires to
count a set of solutions with low variance.

Consequently, the work of Achlioptas & Peres - 2004 [AP04] can be seen as a great success
in the implementation of the SecondMoment Method on k-SAT, establishing a lower bound of
2.68 for 3-SAT and an asymptotically tight lower bound of 2k ln 2−O (k) for k-SAT.

We aim at making the most of the Second Moment Method on k-SAT. To do so we take a
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different approach from Achlioptas & Peres’. In our framework we select solutions according
to the fraction of variables assigned 1 and the fractions of the different types of clauses (i.e. the
number of true literals occurrences in the clauses). This framework is general enough to include
boolean solutions, implicants etc. However, tuning our parameters the best way we could, we
got numerical evidence that we could not obtain better lower bounds than 2.83.

The stumbling block we recurrently encountered is what we call the independence point. It
corresponds to the couples of independent solutions in the subset of selected solutions. Even
though solutions are independent, the proportion of literals occurrences having a certain truth
value may not be independent between solutions. We got numerical evidence that the Second
Moment Method does not work if truth values of literals occurrences are not independent.
On the other hand, when they are independent, we give a necessary condition for the Second
Moment Method to work, taking into account just the exponential equivalent of the second
moment at this point. This condition tells us that we must select solutions having equal true
and false surfaces (the surface is just the total number of literals occurrences), which is very
artificial with respect to what we can observe with SATLab. Using this condition, we could
make the Second Moment Method work numerically; however, since the lower bounds we
get (2.83) are far below the currently best lower bound (3.52), we do not give a rigorous (and
tedious) proof of our lower bounds (to do so, the exponential equivalent would not be enough,
and calculations would become quite involved).

The very restrictive conditions we encountered to make the Second Moment Method work
may be due to some weaknesses of our framework. We do not claim that the Second Moment
Method is doomed to perpetual failure on k-SAT. We only hope to shed a small ray of light
onto it.

1.5.6 Second Moment on Distributional Random k-SAT

Using the standard distributional model instead of the standard drawing model yields bet-
ter upper bounds on the satisfiability threshold (cf. table 6.2). Moreover, we would like to gain
some more control over the proportion of variables assigned 1 according to the imbalance be-
tween their positive and negative occurrences. Namely, a variable is all the more expected to
be assigned 1 in a solution as it has more positive occurrences, and vice-versa. At least this
seems to happen on real solutions, as we can see with SATLab. That is the reasons why we
implement the Second Moment Method on the distributional model.

The outline of the calculations is roughly the same as in the drawing model. A major dif-
ference though is that if the independence of truth values of literals occurrences does not hold
at the independence point, then the independence point violates one of the constraints. How-
ever, the result is the same as in the drawing model: we are able to make the Second Moment
Method work only when the independence of truth values of literals occurrences holds at the
independence point.

This calculation is very disappointing, because it leads not only to the same kind of con-
straints as in the drawing model, which are again very artificial with respect to what can be
seen through SATLab, but also to the same critical value of 2.83!
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Experimenting through SATLab

WE shall see in this thesis that it is rather difficult to get estimates by calculations. In
particular access to what happens almost surely is most of the time not possible by
calculations. Calculations involve rather moments than probabilities. For example
it is very difficult to give rigorous upper and lower bounds on the 3-SAT threshold

location, whereas it is mere experimental evidence that this threshold is located at around
c ≃ 4.25.

Consequently, if we want to have some more insights into what happens in reality, we
have to make some experiments, that is, draw some random formulas with a computer pro-
gram, find some solutions with a SAT-solver, and finally analyze all of these raw data to infer
properties we want to investigate. To this end we built a software called SATLab, which is
available and documented (more thoroughly than here) at the following web page [Hug10]:http://www.pratum.org/satlab/
2.1 A Brief Description of SATLab

SATLab is written in object-oriented Perl, with a Graphical User Interface in Tk. The pur-
pose of this software is to avoid to the experimenter the burden of repetitive tasks: generate
some random formulas, then call some SAT-solvers, extract complexity, solutions, and gather
all results in a data file which is then passed to gnuplot. Moreover the GUI is designed in
order to eliminate as far as possible unnecessary parameters.

A description of parameters and variables is available at the aforementioned web page.

2.2 Some Noteworthy Observations through SATLab

2.2.1 Algorithmic Complexity

The first observation to make is the famous “easy-hard-easy” pattern (see figure 2.1), which
was already observed by Mitchell, Selman & Levesque in 1992 [MSL92].

Since the hard region corresponds to the threshold region (in fact hardness occurs just above
the threshold), this observation aroused interest in the threshold phenomenon of random 3-
SAT. The solver used here is Dew_Satz, a solver based on resolution written by Slaney &
Anbulagan [SA05, Anb05].

29
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Figure 2.1: Algorithmic complexity of random 3-SAT (standard & planted) with respect to c.

It is also noteworthy that the same pattern occurs in random planted 3-SAT, which is a
model with a hidden solution (so always satisfiable), see figure 2.1. However the relative peak
in complexity is much coarser in the planted model than in the standard model. It is also
noticeable that in the planted model, the peak occurs in the neighborhood of c = 5, which is
significantly above the threshold.

2.2.2 Some Hard Satisfiable Models

Solvers based on a random walk (such as WalkSat, introduced in 1995 by Selman, Kautz
& Cohen [SKC95]) eventually find a solution if some solutions exist, but they are unable to
prove that there is no solution otherwise. That is why they are called incomplete solvers. Thus
benchmarks for these solvers must be satisfiable instances. However it turns out that just hid-
ing one solution (the so-called planted model) yields very easy instances (see figure 2.1). This
may be explained by the fact that there is an imbalance in the number of positive and nega-
tive occurrences of each literal (since 1 clause signature out of 8 is discarded). Then a simple
majority-based assignment (0 for variables havingmore negative than positive occurrences and
vice-versa) is not far from a solution.

Some physicists, Barthel, Hartmann, Leone, Ricci-Tersenghi, Weigt & Zecchina - 2001
[BHL+01] made a thorough study of planted models of 3-SAT having a balance between posi-
tive and negative occurrences; they define the following probabilities:

– the signature making 3 true literals has probability p0;
– each of the 3 signatures making 2 true literals has probability p1;
– each of the 3 signatures making 1 true literal has probability p2.
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Probabilities must have a total sum of 1: p0 + 3p1 + 3p2 = 1. Moreover, the balance between
positive and negative occurrences gives the following condition: 3p0 + 6p1 + 3p2 = 3p1 + 6p2,
i.e. p0 + p1 = p2. Thus we must have:

p1 =
1− 4p0

6
;

p2 =
1+ 2p0

6
.

It follows that 0 ≤ p0 ≤ 1
4 ; in SATLabwe call that model Ambiguously Planted SAT:

– the case when p0 = 0 makes the hidden assignment an NAE-SAT hidden assignment.
It amounts to hiding 2 opposite assignments. This special case was studied by Moore,
Achlioptas & Jia - 2005 [MAJ05]; in SATLabwe call this model Doubly Planted SAT.

– the case when p0 = 0.073 corresponds to the case when the model is deceptively planted,
as proposed by Jia, Moore & Strain - 2007 [JMS07]. They put onto each clause a signature
making t > 0 literals true with a probability proportional to qt, where q is a positive
parameter. The balance for 3-SAT is thus obtained when q3 + q2 = q, i.e. q ≃ 0.618 (the
golden ratio). We shall refer to this model as Deceptively Planted SAT.

– the case when p0 = 0.25 (and thus p1 = 0) makes the hidden assignment a XOR-SAT
hidden assignment. Thus this assignment can be found in polynomial time by Gaussian
elimination. We shall refer to this model as XOR Planted SAT.

Barthel et al. note that the case p0 = 0 is the easiest one and explain this by a second-order
phase transition. In the other cases, the algorithmic difficulty for WalkSat is maximal at the
ratio c ≃ 4.25 and increases with p0 and they explain this fact by the appearance of a backbone
of frozen variables at p0 = 0.077 which size increases with p0. We observe on figure 2.2 that the
algorithmic difficulty for kcnfs (a complete solver based on resolution, by Dequen & Dubois
[DD03]) increases with p0 as well. That is the limit: the hardest model for these algorithms is
just the polynomial one!

Figure 2.3 and 2.4 represent the number of variables according to the proportion of solutions
assigning them 1. In particular, frozen variables are those variables assigned 1 by none or all
solutions. Note however that here we use WalkSat to find solutions, and it may happen that
WalkSat finds several times the same solution. We can see that when p0 = 0 there are few
frozen variables (figure 2.3), whereas they are numerous when p0 = 0.25 (figure 2.4).

Another indication of algorithmic difficulty is the presence of cores. The core of a solution
is obtained as follows: start from the solution, remove all free variables and the clauses where
they appear, and iterate until a fix point is reached. The remaining set of variables is called
the core. We can see on figure 2.5 that for Ambiguously Planted SAT, the relative size of the
solutions cores is 0 when p0 = 0 but approaches 100% when p0 = 0.25.

We add to these models an extra ingredient: fixing variables which are not already fixed in
priority. More precisely, when a clause is signed so that it contains 1 true and 2 false literals
(and consequently the true literal is fixed), with probability pwe fix a variable which is already
fixed. Complexity is difficult to measure forWalkSat for low values of p, because about half of
the instances are very hard (cutoff of 108 iterations is reached for 90 variables in Fixedly XOR
Planted SAT), and half are very easy, but for kcnfs complexity does not vary much, see figure
2.6. When p = 0.2, we obtain models which are significantly more difficult than without fixing
forWalkSat, see figure 2.7.
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Figure 2.2: Complexity increases with p0 in model Ambiguously Planted SAT.

Figure 2.3: Number of variables according to the proportion of solutions assigning them 1.
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Figure 2.4: Number of variables according to the proportion of solutions assigning them 1.

Figure 2.5: Size of the cores in Ambiguously Planted SAT.
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Figure 2.6: Complexity of Fixedly XOR Planted SATwith respect to p.

Figure 2.7: Effect of fixation on the complexity forWalkSat.
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Chapter 3

Introduction to the First Moment Method

FIRST we make a brief technical introduction to the First Moment Method in section
3.1; then we present in section 3.2 a survey of the early attempts to upper bound
the threshold of 3-SAT through the First Moment Method. The general idea is to
count special kinds of solutions, which are present whenever there exist some so-

lutions, but which are hopefully not too numerous. Ideally, to get exactly the threshold, one
should count exactly 1 solution for all satisfiable formulas (and 0 for all unsatisfiable formulas).
However, in practice, calculations lead us to count several if not many solutions per satisfiable
formula.

In the next chapters we present two implementations of the First MomentMethod: ordering
and weighting. Ordering amounts to selecting some subset of solutions existing in all satisfi-
able formulas, whereas weighting consists in putting some weights onto solutions in order to
count a weight of at least 1 for all satisfiable solutions. In chapter 4 we present several attempts
to implement the First MomentMethod byweighting valid partial assignments, along the same
lines as Maneva, Mossel, Sinclair & Wainwright [MMW07, MS08]. In chapter 5, we introduce
a general weighting scheme for CSPs, try to compare ordering and weighting, and give an
improvement on Maneva’s weighting as an application of our general weighting scheme for
CSPs. In chapter 6, we implement the First Moment Method on the distributional model of
3-SAT, transforming a weighting into an ordering to improve on the upper bound of 4.506
obtained by Dubois, Boufkhad & Mandler [DBM03].

3.1 How the First Moment Method Works

Let us recall how the First Moment Method works: given an event A, we want to show that
Pr (A) is small but we don’t have access to Pr (A). Instead we use some EX. It suffices then to
ensure that Pr (A) ≤ EX. For our problem 3-SAT, A is the event “a formula is satisfiable” and
X is a non-negative random variable to be defined. Since X ≥ 0, Markov’s inequality yields
that Pr (X ≥ 1) ≤ EX; so if we choose X such that A implies X ≥ 1, we have

Pr (A) ≤ Pr (X ≥ 1) ≤ EX .

Then our goal will be to tune X so that EX → 0 for the least ratio c = #clauses
#variables, which gives

an upper bound for the threshold of satisfiability.

37



38 CHAPTER 3. INTRODUCTION TO THE FIRST MOMENTMETHOD

What is the purpose of working with expectation instead of probability? In general expec-
tation is much easier to handle than probability, because expectation is linear. Let X be the
number of assignments having some property P (P might be “be a solution” or “be a black
and red polka-dot solution”):

EX = E

(

∑
σ assignment

1σ∈P

)

= ∑
σ assignment

E1σ∈P

= ∑
σ assignment

Pr (σ ∈ P) .

In the case of satisfiability, due to NP-completeness, it is very difficult to estimate the prob-
ability for a formula to have some solutions; but it is much easier to estimate the probability
for a formula to be satisfied by a given assignment.

3.2 Use of the First Moment Method for Upper-Bounding the Threshold of
k-SAT

In this section we make a survey of different applications of the First Moment Method to
upper bound the threshold of random k-SAT. The model considered here is uniform random
drawing of k-SAT, as defined in section 1.1.3.

3.2.1 First Moment of Solutions

The first idea for X is simply the number of solutions. So what is the probability for a
formula to be satisfied by a given assignment?

1. number of satisfied formulas:

a) we consider how each clause can be constructed:

i. all variables are allowed: nk;
ii. all signatures are allowed except the one which makes all literals false: 2k − 1;

b) there are cn clauses,

so the number of satisfied formulas is
((

2k − 1
)

nk
)cn

;

2. total number of formulas:
(

2knk
)cn

.

It turns out that the probability for a formula to be satisfied by a given assignment does not
depend on the considered assignment. There are 2n possible assignments, so we have the
following expression of EX:

EX = 2n
(

1− 1
2k

)cn

.

It follows that EX tends to 0 as n tends to infinity as soon as 2
(

1− 1
2k

)c
< 1, i.e. c >

− ln 2
ln
(

1− 1
2k

) . This is thus an upper bound of the satisfiability threshold of k-SAT. Note also that

− ln 2
ln
(

1− 1
2k

) ≤ 2k ln 2 and − ln 2
ln
(

1− 1
2k

) ∼ 2k ln 2, so this upper bound is often referred to as 2k ln 2.
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Numerically, for 3-SAT this bound is 5.191, which is much above the experimentally ob-
served value of around 4.25. All progress made so far in the quest of the threshold has con-
sisted in a more refined choice of the random variable X, in combination with a more refined
model of formulas (shown to be equivalent to the original one - for example models defined
by a distribution, which we shall explore later in chapter 6).

Note that this very simple random variable was successfully used by [DM02] to establish a
tight upper-bound on the threshold of 3-XOR-SAT, in combination with a slight modification
of the random model, requiring each variable to have at least 2 occurrences.

3.2.2 First Moment of Implicants

The second idea for X is the number of implicants. An implicant is a partial assignment such
that every assignment of the non-assigned variables will yield a solution. Of course, solutions
are implicants. So in fact X is the number of implicants having a certain proportion α > 0 of
non-assigned variables.

In the standard drawing model of 3-SAT (as defined in section 1.1.3), El Maftouhi & de la
Vega - 1995 [ED95] showed that at the ratio c = 5.081 almost all solutions may be grouped in a
way that emphasizes a proportion of α = 0.02137 so-called dispensable variables, which corre-
spond to non-assigned variables of an implicant. Thus it is licit to count only those implicants
having this fraction of non-assigned variables, which amounts to counting 1 solution out of
2αn, and it turns out that this ratio c = 5.081 is an upper bound on the threshold.

As a refinement of this calculation, Kamath, Motwani, Palem & Spirakis - 1995 [KMPS95]
show that at the ratio c = 4.87 (and numerically at c = 4.762) the same phenomenon occurs.

3.2.3 First Moment of Prime Implicants

Another way to restrict implicants (which by default contain solutions) is to consider prime
implicants. A prime implicant is an implicant such that if any of the assigned variables is flipped,
this is no longer an implicant (thus it is a kind of minimal implicant). As shown by Boufkhad &
Dubois [BD99], the number of prime implicants of a random formula is exponentially smaller
than the number of solutions. It turns out that in the standard drawing model of 3-SAT (as
defined in section 1.1.3), the First Moment Method with X taken to be the number of prime
implicants yields an upper bound on the threshold of c = 4.88.

3.2.4 First Moment of Negatively Prime Solutions

A major breakthrough in the use of the First Moment Method for upper-bounding the
threshold of k-SAT consisted in counting the Negatively Prime Solutions (NPSs) of a formula.
This technique was presented in 1997 by Dubois & Boufkhad [DB97] and by Kirousis, Kranakis
& Krizanc [KKK97]. A Negatively Prime Solution (NPS) is a solution where every free variable
are assigned 1. A free variable in a solution is a variable which when flipped (from 0 to 1 or con-
versely) yields another solution. It turns out that in the standard drawing model of 3-SAT (as
defined in section 1.1.3), the First Moment Method with X taken to be the number of negatively
prime solutions yields an upper bound on the threshold of c = 4.667 or c = 4.643, depending
on the chosen parameters. A refinement of this technique was made by Kirousis, Kranakis,
Krizanc & Stamatiou - 1998 [KKKS98], as they counted maximal solutions within a distance
of 2 (thus allowing double-flips). They got an upper bound of 4.601, but calculations become
quite involved.

All better bounds shown so far are based on the framework of NPSs, as can be seen in the
sequel.





Chapter 4

Weighted First Moment Method

LET us recall the fundamental requirement for the First Moment Method, as empha-
sized in section 3.1: find a non-negative random variable X such that for each satis-
fiable formula, X ≥ 1. Note in particular that X is not required to be integer-valued!
That leads us to consider the possibility of putting non-negative real weights onto

solutions. X would be the total weight of all solutions. To do so we use the notion of (valid)
partial assignment and the Weight Preservation Theorem introduced by Maneva, Mossel &
Wainwright - 2007 [MMW07].

4.1 Partial Assignments

A partial assignment or valuation is an assignment taking its values in the domain {0, 1, ∗}.
A valid partial assignment or valid valuation is a partial assignment such that no clause contain
literals which are all false or all false but one starred. Thus the meaning of the ∗ value is that to
some extent starred variable may be given a certain value 0 or 1 to build a solution. However
the presence of some valid partial assignments does not guarantee the presence of solutions,
since the all-star assignment is always valid.

We call starrable variable a variable of a valid partial assignment assigned 0 or 1 such that as-
signing it ∗ instead still yields a valid partial assignment. We call invertible variable a variable of
a valid partial assignment assigned 0 or 1 such that flipping its value (to 1 or 0 respectively) still
yields a valid partial assignment. Note that an invertible variable is starrable but the converse
may not be true. It turns out that Maneva, Mossel & Wainwright [MMW07] considered only
starrable variables (which they called unconstrained) but we shall need to make the distinction
between starrable and invertible variables later in section 5.7.

4.1.1 Directed Graph and Partial Ordering

Let us consider the following coarsening process: given a valid partial assignment σ, choose
a starrable variable x and put a star instead of its current value. This yields another valid partial
assignment τ differing from σ only on variable x. We put an arc σ → τ and equivalently we
define a relation σ > τ. Finally we embed into > its transitive closure. Since coarsening strictly
increases the number of stars in the assignments, the oriented graph obtained by→is circuit-
free, and> is a partial strict order, whose minimal elements are valid assignments without any
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0110 0010 1010

011∗ 0 ∗ 10 ∗010 ∗111

01 ∗ ∗ ∗ ∗ 10 ∗1 ∗ 1 ∗11∗

∗1 ∗ ∗

∗ ∗ ∗∗

Figure 4.1: Coarsening graph of some valid partial assignments. Each (horizontal) level corre-
sponds to a given number of stars. There are 3 minimal elements: 01**, **10 and ****. Note that
this particular graph is not connected.

starrable variables. Moreover the graph may be sliced into levels characterized by the number
of stars, as shown in figure 4.1. On the top level are the boolean solutions, and on the bottom
level is the all-star assignment (because it is always valid).

4.1.2 Weight Preservation Theorem

Maneva, Mossel & Wainwright - 2007 [MMW07], and later Maneva & Sinclair [MS08] and
Ardila &Maneva [AM09] define the following weighting system: given two non-negative reals

ωo and ω∗, the weight of a valid partial assignment σ is W (σ) = ω
no(σ)
o ω

n∗(σ)
∗ , where no (σ) is

the number of starrable variables in σ and n∗ (σ) is the number of starred variables in σ. And
here is the fundamental result they establish:

Theorem 4.1. (Weight Preservation Theorem, [MMW07, MS08, AM09]). If σ is a valid partial as-

signment and ωo + ω∗ = 1, then ∑τ≤σ W (τ) = ω
n∗(σ)
∗ .

In fact Ardila & Maneva - 2009 [AM09] show that this identity characterizes the structure
of convex geometries, and it is immediate to see that coarsening graphs in this framework
are convex geometries, because a starrable variable remains starrable when other variables get
starred. We shall refer to this property as the convexity condition.

Corollary 4.2. If σ is a boolean solution and ωo + ω∗ = 1, then ∑τ≤σ W (τ) = 1.

Hurrah! This is a wonderful candidate for the First Moment Method: take X to be the
weight of all valid partial assignments. Corollary 4.2 guarantees that X ≥ 1 whenever the
formula is satisfiable. The incentive of this method is that several solutions may share the
same valid partial assignments below them. However, we may count too many valid partial
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assignments, because some of them are not reachable from any solution. For example, the
all-star assignment will always be counted with a weight of ωn

∗ , even if the formula is not
satisfiable. So what bound shall we get here?

We shall focus our attention on 3-SAT. We shall denote FFF a clause with 3 false literals,
FF* a clause with 2 false and 1 starred literal etc. Maneva, Mossel & Wainwright consider that
a partial assignment is valid when there no clause of type FFF or FF*, but we can imagine some
other kinds of validity. It is enough to check that the convexity condition is satisfied.

4.2 Trivial Kind of Validity: FFF

Here is the most simple kind of validity we can imagine. A partial assignment is valid iff
it does not build FFF clauses. In particular FF* is allowed, and every non-starred variable is
starrable. So the convexity condition holds.

Notations.

X: total weight of valid partial assignments;

αo: proportion of starrable variables (with an associated weight of ωo);

α∗: proportion of starred variables (with an associated weight of ω∗).

Expression of the first moment. The first moment of X can be split up according to the repar-
tition of variables into starrable and starred: ∑α∗+αo=1 (

n
α∗n,αon);

1. the αon non-starred variables are assigned 0 or 1: 2αon possibilities;

2. weight of ωα∗n∗ ωαon
o ;

3. probability for a partial assignment to be valid:

a) number of ways to build a satisfied formula:
(

8(n3)− (αon
3 )
)cn;

b) number of ways to build a formula:
(

8(n3)
)cn.

We denote by P the set of all families of non-negative numbers (α∗, αo) satisfying the following
constraint:

α∗ + αo = 1 .

We denote by I (n) the intersection of P with the multiples of 1
n ; we get the following

expression of the first moment:

EX = ∑
(α∗,αi,0,αi,1,αs,αc)∈I(n)

T1 (n)

where

T1 (n) = ∑
α∗+αo=1

(

n

α∗n, αon

)

2αonωα∗n∗ ωαon
o

(

8(n3)− (αon
3 )
)cn

(

8(n3)
)cn .

We get rid of multinomials thanks to inequalities B.2, so EX ≤ poly (n) Fn1 where
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Figure 4.2: Here is a plot of ln F1 with respect to ω∗ at c = 5.191 and at c = 15. The best choice
for ω∗ is thus 0.

F1 = α−α∗∗ α−αo
o 2αoωα∗∗ ωαo

o

(

1− α3
o

8

)c

;

F1 = α−α∗∗ (1− α∗)
−(1−α∗) 2(1−α∗)ωα∗∗ ω

(1−α∗)
o

(

1− (1− α∗)
3

8

)c

.

Maximization.
– if ω∗ = 0, then we are precisely counting solutions, and the critical c is c = 5.191;
– if ω∗ = 1, then the all-star assignment has a weight of 1 and the critical c is c = +∞;
– otherwise, numerical calculations reveal that it is even worse than counting only solu-
tions, since the critical value of c increases from 5.191 to +∞ when ω∗ goes from 0 to 1.
So the best choice for ω∗ is 0, as suggests figure 4.2.

4.3 Generic Calculation for Various Kinds of Validity

The previous calculation shows that defining validity by excluding FFF alone is not very
relevant. So in this section we are going to redo the calculations in a framework allowing more
elaborated forms of validity (such as FFF+FF*).

Notations.

X: total weight of valid partial assignments

αo: proportion of starrable variables (with an associated weight of ωo);

αc: proportion of unstarrable variables (with an associated weight of ωc = 1);

α∗: proportion of starred variables (with an associated weight of ω∗);

β1: proportion of constraining clauses (i.e. clauses that make a variable unstarrable);

β2: proportion of other clauses.

Expression of the first moment. The first moment of X can be split up according to the repar-
tition of variables into starrable, unstarrable and starred: ∑α∗+αc+αo=1 (

n
α∗n,αcn,αon);

1. the (1− α∗) n non-starred variables are assigned 0 or 1: 2(1−α∗)n possibilities;
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2. weight of ωα∗n∗ ωαon
o ;

3. probability for a partial assignment to be valid:

a) number of ways to build a satisfied formula, decomposed by the proportion of con-
straining clauses: ∑β1+β2=1 (

cn
β1cn,β2cn

);

i. choice of the variable made unstarrable in each constraining clause:
S (β1cn, αcn) (αcn)! (Stirling number of the second kind, see appendix B.2);

ii. choice of the other literals in constraining clauses: Ĉ (α∗)
β1cn (to be precised

below);

iii. choice of the literals in the other clauses: Û (α∗)
β2cn (to be precised below);

b) number of ways to build a formula:
(

8(n3)
)cn.

We denote by P the set of all families of non-negative numbers (α∗, αo, αc, β1, β2) satisfying the
following constraints:

α∗ + αo + αc = 1 ; (4.1)

β1 + β2 = 1 . (4.2)

We denote by I (n) the intersection of P with the multiples of 1
n ; we get the following expres-

sion of the first moment:

EX = ∑
(α∗,αi,0,αi,1,αs,αc,β1,β2,β3)∈I(n)

T1 (n)

where

T1 (n) = ∑
α∗+αc+αo=1

(

n

α∗n, αcn, αon

)

2(1−α∗)nωα∗n∗ ωαon
o

· ∑
β1+β2=1

(

cn

β1cn, β2cn

)

S (β1cn, αcn) (αcn)!
Ĉ (α∗)

β1cn Û (α∗)
β2cn

(

8(n3)
)cn .

We get rid of multinomials thanks to inequalities B.2 and of Stirling numbers thanks to
Temme’s estimates (see appendix B.2), so T1 (n) ≤ poly (n) Fn1 where

F1 = α−α∗∗ α−αc
c α−αo

o 21−α∗ωα∗∗ ωαo
o

(

β
−β1
1 β

−β2
2

)c

· (ex − 1)αc

(

β1c

ex

)β1c
(

6
8

)c

C (α∗)
β1c U (α∗)

β2c ,

with x defined as the positive solution to the following equation:

αcx

β1c
= 1− e−x .
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4.3.1 Application to FFF + FF*

Valid partial assignment: assignment without clause FFF or FF*;

Constraining clauses: FFT.

Note that this kind of validity is precisely the one introduced byManeva,Mossel &Wainwright
- 2007 [MMW07].

What are the expressions of Ĉ and Û?

1. for Ĉ, choose 2 false literals;

2. for Û, remove from all possibilities clauses of the following types: FFF, FF*, and FFT.

Ĉ (α∗) =

(

(1− α∗) n
2

)

;

Û (α∗) = 8
(

n

3

)

−
(

(1− α∗) n
3

)

− 2α∗n
(

(1− α∗) n
2

)

− 3
(

(1− α∗) n
3

)

.

Thus

C (α∗) =
(1− α∗)

2

2
;

U (α∗) =
8
6
− (1− α∗)

3

6
− 2α∗

(1− α∗)
2

2
− 3

(1− α∗)
3

6
;

i.e.

C (α∗) =
(1− α∗)

2

2
;

U (α∗) =
8
6
− 4

(1− α∗)
3

6
− α∗ (1− α∗)

2 .

Maximization.
– if ω∗ = 0, then we are precisely counting solutions, and the critical c is c = 5.191;
– if ω∗ = 1, then the all-star assignment has a weight of 1 and the critical c is c = +∞;
– otherwise, numerical calculations reveal that the best upper bound we can get is 4.883,
which is obtained for ω∗ = 0.587, as shown on figure 4.3.

4.3.2 Application to FFF + FF* + F**

Valid partial assignment: assignment without clause FFF, FF* or F**;

Constraining clauses: FFT and F*T.

Note that the convexity condition does not hold, since T variables are starrable in FTT, but not
in F*T. So it is not sure whether we can apply the Weight Preservation Theorem. However the
result we get (4.866) is not good either. . .

What are the expressions of Ĉ and Û?

1. for Ĉ, choose 2 false literals or (1 false and 1 starred literals);

2. for Û, remove from all possibilities clauses of the following types: FFF, FF*, F**, FFT and
F*T.
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Figure 4.3: FFF+FF*: here is a plot of the value of ln F1 with respect to ω∗ for 2 families of
solutions canceling out the derivative of ln F1 and satisfying the constraints, at c = 4.883. In
fact there exists at least another family of solutions, but we can see here that we cannot get a
better upper bound than 4.883.

Ĉ (α∗) =

(

(1− α∗) n
2

)

+ 2α∗ (1− α∗) n2 ;

Û (α∗) = 8
(

n

3

)

−
(

(1− α∗) n
3

)

− 2α∗n
(

(1− α∗) n
2

)

− 4
(

α∗n
2

)

(1− α∗) n

−3
(

(1− α∗) n
3

)

− 4
(

(1− α∗) n
2

)

α∗n .

It follows that:

C (α∗) =
(1− α∗) (1+ 3α∗)

2
;

U (α∗) =
2− 3α∗ + 6α2

∗ − α3
∗

3
.

Maximization.
– if ω∗ = 0, then we are precisely counting solutions, and the critical c is c = 5.191;
– if ω∗ = 1, then the all-star assignment has a weight of 1 and the critical c is c = +∞;
– otherwise, numerical calculations reveal that the best critical c we can get is c = 4.866,
obtained for ω∗ = 0.999, as shown on figure 4.4.

4.3.3 Application to FFF + FF* + F** + ***

Valid partial assignment: assignment without clause FFF, FF*, F** or ***;

Constraining clauses: FFT, F*T and **T.

Note that the convexity condition does not hold, since T variables are starrable in FTT, but not
in F*T. However this kind of validity is well-known. . . since valid partial assignments here are
precisely implicants. So in fact we make a calculation on weighted implicants, and we are not
sure it is correct with respect to the First Moment Method.

What are the expressions of Ĉ and Û?

1. for Ĉ, choose 2 false literals or (1 false and 1 starred literals) or 2 starred literals;

2. for Û, remove from all possibilities clauses of the following types: FFF, FF*, F**, ***, FFT,
F*T and **T.
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Figure 4.4: FFF+FF*+F**: here is a plot of the value of ln F1 with respect to ω∗ for 1 family
of solutions canceling out the derivative of ln F1 and satisfying the constraints, at c = 4.866
(below) and at c = 4.7 (above). In fact there exist at least two other families of solutions, but
we can see here that we cannot get a better upper bound than 4.866.
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and after simplifications:

C (α∗) =
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2
;

U (α∗) =
1
3
(1− α∗)

2 (2+ α∗) .

Maximization.
– if ω∗ = 0, then we are precisely counting solutions, and the critical c is c = 5.191;
– if 0 < ω∗ < 1, then numerical calculations reveal that the best critical c we can get is
4.883, obtained for ω∗ = 0, 9999, see figure 4.5.

– if ω∗ = 1, this case must be dealt with separately, because here the all-star assignment is
not valid. What does it represent? Precisely prime implicants! Why? because we put a
zero weight onto implicants which have some starrable variables.
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Figure 4.5: FFF+FF*+F**+***: here is a plot of the value of ln F1 with respect to ω∗ for 1 family
of solutions canceling out the derivative of ln F1 and satisfying the constraints, at c = 4.883
(below) and at c = 4.7 (above). In fact there exist at least two other families of solutions, but
we can see here that we cannot get a better upper bound than 4.883.

Here we have ωo = 0, so αo = 0 as well, and thus

F1 = α−α∗∗ α−αc
c 21−α∗

(

β
−β1
1 β

−β2
2

)c

· (ex − 1)αc

(

β1c

ex

)β1c
(

6
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C (α∗)
β1c U (α∗)

β2c .

Numerically, we find that c is critical at c = 4.883.

4.4 Combination of Stars and NPSs

The Weight Preservation Theorem (theorem 4.1) insures that the total weight of partial as-
signments below a given solution is 1. Since NPSs (see definition in section 3.2.4) are special
solutions, the total weight below them is 1 as well. So the idea here is to discard those valid
partial assignments which cannot be under any NPS. How to do so? We require any variable at
0 to be T either in some TFF clause (so it is blocked) or in some TF* or T** clause (so it may be
under a solution where it is blocked). This restriction still counts all valid partial assignments
located under any NPS, so we count 1 under each NPS.

Notations.

X: total weight of valid partial assignments

αo,1: proportion of starrable variables at 1 (with an associated weight of ωo);

αo,0: proportion of starrable variables at 0 (with an associated weight of ωo);

αc: proportion of unstarrable variables (with an associated weight of ωc = 1);

α∗: proportion of starred variables (with an associated weight of ω∗);

β1: proportion of clauses making a (true) variable unstarrable (i.e. the clauses of type TFF);

β2: proportion of clauses making a (true) starrable variable at 0 potentially below a NPS (i.e.
some of the clauses of type TF* and T** where T is at value 0);

β3: proportion of other clauses.
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Expression of the first moment. The first moment of X can be split up according to the repar-
tition of variables into starrable, unstarrable and starred: ∑α∗+αc+αo,0+αo,1=1 (

n
α∗n,αcn,αo,0n,αo,1n

);

1. the αcn non-starred and non-assigned variables are assigned 0 or 1: 2αcn possibilities;

2. weight of ωα∗n∗ ω
αo,0n+αo,1n
o ;

3. probability for a partial assignment to be valid:

a) number of ways to build a satisfied formula, decomposed by the proportion of con-
straining clauses: ∑β1+β2+β3=1 (

cn
β1cn,β2cn,β3cn

);

i. choice of the variable made unstarrable in each constraining clause:
S (β1cn, αcn) (αcn)!;

ii. choice of the other literals in constraining clauses: Ĉ (α∗)
β1cn (to be precised

below);

iii. choice of the free true variable at 0 potentially below aNPS: S (β2cn, αo,0n) (αo,0n)!

iv. choice of the other literals in these clauses: P̂ (α∗)
β2cn (to be precised below);

v. choice of the literals in the other clauses: Û (α∗, αo,0)
β3cn (to be precised below);

b) number of ways to build a formula:
(

8(n3)
)cn.

We denote by P the set of all families of non-negative numbers (α∗, αo,0, αo,1, αc, β1, β2) satisfy-
ing the following constraints:

α∗ + αo,0 + αo,1 + αc = 1 ; (4.3)

β1 + β2 + β3 = 1 . (4.4)

Note that P is convex (by linearity of constraints). We denote by I (n) the intersection of P
with the multiples of 1

n ; we get the following expression of the first moment:

EX = ∑
(α∗,αi,0,αi,1,αs,αc,β1,β2,β3)∈I(n)

T1 (n)

where
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β3cn

(

8(n3)
)cn .

We get rid of multinomials thanks to inequalities B.2 and of Stirling numbers thanks to
Temme’s estimates (see appendix B.2), so T1 (n) ≤ poly (n) Fn1 where
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with x and y defined as the positive solutions to the following equations:

αcx

β1c
= 1− e−x ;

αo,0y

β2c
= 1− e−y .

What are the expressions of Ĉ, P̂ and Û?

1. for Ĉ, just choose 2 false literals;

2. for P̂, just choose 1 false and 1 starred literals, or 2 starred literals;

3. for Û, it is a little trickier: we remove from all possibilities clauses of the following types:
FFF, FF*, TFF, T** with T among αo,0, TF* with T among αo,0 and F not among αo,0, and
TF* with both T and F among αo,0.
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Figure 4.6: Here is a plot of the value of ln F1 with respect to ω∗ for 2 families of solutions
canceling out the derivative of ln F1 and satisfying the constraints, at c = 4.643. In fact there
exists at least another family of solutions, but we can see here that we cannot get a better upper
bound than 4.643.

Table 4.1: Recap of the bounds obtained by weighted First Moment Method on partial assign-
ments.

framework best ω∗ equivalent upper bound
FFF 0 solutions 5.191

FFF+FF* 0.587 - 4.883
FFF+FF*+F** 0.999 - 4.866

FFF+FF*+F**+*** 1 prime implicants 4.883
partial assignments under NPSs 0 NPSs 4.643

Maximization.
– if ω∗ = 0, then we are precisely counting NPSs, and the critical c is c = 4.643;
– if ω∗ = 1, then the all-star assignment has a weight of 1 and the critical c is c = +∞;
– otherwise, numerical calculations reveal that the best critical c we obtain is c = 4.643,
obtained for ω∗ = 0.001, as can be checked on figure 4.6.

4.5 Conclusion and Perspectives

In this chapter we presented some attempts we made to implement the First Moment
Method using weights and partial assignments. All bounds we found are summed up in table
4.1.

We are not able to explain why both FFF+FF* and FFF+FF*+F**+*** give the same bound of
4.883. Is there a formal kind of equivalence between both frameworks?

It turns out that in the end we could not establish a better upper bound than 4.643, which
is the bound obtained by merely counting NPSs. In the next chapter we investigate some con-
nections between weighting and counting, and we build a better weighting system on partial
assignments than Maneva’s.



Chapter 5

Weighting and Ordering Solutions

THE FirstMomentMethod requires to count 1 for each satisfiable instance, as discussed
in section 3.1. In section 3.2 we saw the early attempts to upper bound satisfiability
by selecting some varieties of solutions (implicants or NPSs) which must exist in
every satisfiable instance; we shall refer to this process as ordering. In chapter 4 we

investigated an attempt to put some weights onto solutions in a way that gives a weight of at
least 1 to satisfiable instances; we shall refer to this process as weighting. Now the purpose of
this chapter is to introduce a correct weighting for multi-valued CSPs (see definition in section
5.2 below) and to compare ordering and weighting when possible.

TheNP-completeness of these problems in general makes it difficult to determine whether a
given instance is satisfiable; that may explainwhy direct counting of satisfiable instances is cur-
rently unfeasible. However, precisely because these problems are in NP, it is easy to determine
whether some instance is satisfied by a given valuation and then to count the formulas satisfied
by this valuation. Thus counting couples (formulas, solutions) is only accessible starting from
a solution; moreover, given a solution, it is not complicated to investigate also its immediate
neighborhood. But even at a distance of 2, i.e. with neighbors of neighbors, calculations be-
come quite complicated (see Kirousis, Kranakis, Krizanc & Stamatiou - 1998 [KKKS98]). This
fact imposes a strong restriction on the design of both estimation techniques studied: they can
only make use of local information. We shall refer to this as the locality condition.

So in this framework, ordering consists in putting a total order on the domain, which in-
duces an orientation between neighboring solutions in a way that prevents circuits from ap-
pearing, and then counting only minimal elements. Weighting consists in putting onto each
solution a non-negative real value based on its neighborhood in a way that the total weight is
at least 1 for each satisfiable instance. We investigate the combinatorial properties of these two
systems of estimation. First we give some sufficient conditions for a weighting system to be
correct, and then we compare it to ordering under different conditions.

The material contained in this chapter was written in collaboration with Yacine Boufkhad
and submitted for publication.

5.1 Overview of Results

Our first result consists in giving some sufficient conditions to make a weighting scheme
correct for the estimation of satisfiability on general CSPs (theorem 5.9, Weight Conservation

53
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Theorem). Then we propose a general weighting scheme obeying these conditions (theorem
5.15). This scheme is based on:

1. a weighting seed that expresses the relative importance of each value with respect to a
variable and an instance; the seed is such that if all valuations were solutions, then their
total weight would be exactly 1;

2. a dispatching function expressing how the weights of forbidden valuations are dispatched
among solutions to insure that counting weighted solutions will yield at least 1 for any
satisfiable instance.

We will refer to this method as solution weighting or for short weighting. Contrary to the weight-
ing introduced byManeva et al. which needs both solutions and partial valuations, our weight-
ing addresses solutions only.

Till now the only way to compare ordering and weighting was to compute the estimations
of satisfiability obtained by each of them on a certain set of instances and to choose the best one.
We give some results comparing these two ways of estimating satisfiability in the following
cases:

– weighting and ordering can be instance dependent when such syntactic properties as the
number of occurrences of variables and values etc. can guide the design of weighting
functions and orderings. We show that in the general case where the weighting function
is instance dependent and when the weighting is homogeneous (i.e. when weighting and
dispatching functions are equal), weighting cannot be better than a well chosen instance
dependent ordering (theorem 5.25);

– in the case where ordering and weighting are instance independent (which is the case of
problems where the values are indistinguishable like graph coloring for example) and in
the case of sets of instances closed under value renaming (which is the case of almost all
sets of instances considered in the literature), we show that weighting and ordering are
equivalent (theorem 5.31).

Finally, in theorem 5.37, we show that the estimation of satisfiability used by Maneva &
Sinclair - 2008 [MS08] can be improved upon by using a weighting scheme based on a 3-valued
CSP and obeying the conditions of our Weight Conservation Theorem (which shows that these
conditions are somehow relevant).

5.2 Framework

ACSP (Constraint Satisfaction Problem ) is a triple F = 〈X,D,C〉where X is a set of variables
taking their values in the same finite domain D of values, andC is a set of constraints. A constraint
is a couple 〈x, R〉where x ∈ Xk and R ⊆ Dk for some integer k. R is interpreted as the tuples of
allowed values. A valuation is a vector v ∈ DX; access to coordinate x ∈ X of v will be denoted
as v (x). It satisfies some constraint 〈(x1, x2, ..., xk) , R〉 iff (v (x1) , v (x2) , ..., v (xk)) ∈ R. A
valuation is said to be a solution of a CSP instance iff it satisfies all of its constraints.

We consider some sets F of CSP instances sharing the same set X of variables and the same
domain D. In the rest of the paper n = |X| denotes the number of variables, d = |D| the size of
the domain. Given a CSP instance F, let S (F) denotes the set of its solutions.

We are interested in the neighborhood of valuations. Given a valuation v and a ∈ D, we
define vx←a as the valuation obtained from v by changing the value of x to a (including the
case when already a = v (x)). Given a variable x, two solutions are called x-adjacent if they
agree on all variables but x: in other words σ and τ are x-adjacent iff τ = σx←τ(x). Note that
for each variable x, x-adjacency is an equivalence relation on solutions. Bringing together the
x-adjacency relations with respect to every variable and removing the loops (σ, σ) we get an
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non-oriented graph on S (F) that we call solutions network. Let NF (σ, x) denote the equivalence
class of σ under x-adjacency (i.e. the neighborhood of σ for variable x); note that NF (σ, x) is
a clique for x-adjacency. Such a clique will play a central role in our weighting system. We
are also interested in the different values that x takes in this equivalence class, so we define
AF (σ, x) = {τ (x)}τ∈NF(σ,x)

. For example in figure 5.1, solutions ab and aa are y-adjacent,
NF (ab, y) = {ab, aa} and AF (ab, y) = {b, a}.

Most of the results in this paper apply to any set of solutions regardless of which CSP
instance has generated them. The sole solutions network can be thought of as the input of the
problem. However it should be borne inmind that weightings and orderings cannot be defined
using the global knowledge of the whole set of solutions, because of the locality condition: one
can only count instances having a given solution and for each instance the solutions that are
neighbors of this solution (rather than all solutions of a given instance). A convenient way
to visualize this limitation is to imagine a network of processors (a processor representing a
solution) where each processor has knowledge of its neighbors only and must compute from
this knowledge its own weight or determine the orientation with respect to its neighbors.

5.3 Partial Ordering of Solutions

Given a CSP instance F, various partial orders ≺F can be defined on the set of solutions
such that for every two adjacent solutions σ and τ of F, we have either σ ≺F τ or τ ≺F σ.
The aim of the partial order here is to provide a measure on the solutions network through the
number of its minimal elements. LetM≺F (F) be the set of minimal solutions of F with respect
to the order ≺F.

In the solutions network of F, a partial order ≺F can be seen as a circuit-free orientation of
the edges of the graph such that an edge goes from τ to σ iff σ ≺F τ; then minimal elements
are vertices with no outgoing edges. In general one seeks partial orderings that have the least
number of minimal elements; however the choice is limited because orderings must be chosen
according to local criteria only.

Construction of an Ordering.

Definition 5.1. Given a variable x ∈ X, a total strict order <F,x on D gives an orientation
between neighboring solutions: σ ≺F,x τ iff σ and τ are x-adjacent and σ (x) <F,x τ (x). Note
that ≺F,x is a partial strict order on the set of solutions, but a total strict order in each clique
NF (σ, x).

We can bring all partial orders ≺F,x together on the set of solutions, as follows: if σ and τ
are x-adjacent and different, then σ ≺F τ iff σ ≺F,x τ. This is possible because two different
solutions σ and τ cannot be both x-adjacent and y-adjacent for two different variables x and y.
We say that ≺F is the orientation on S (F) induced by the set {(x,<F,x)}x∈X .

Lemma 5.2. If≺F is the orientation on S (F) induced by a set {(x,<F,x)}x∈X, then≺F is circuit-free.

Proof. Suppose on the contrary that there exists a circuit σ1 ≺F · · · ≺F σl ≺F σ1 for some l ≥ 2.
Let us consider the variable x such that σ1 ≺F,x σ2. For any i ≤ l, either σi (x) = σi+1 (x)
(if σi and σi+1 are not x-adjacent) or σi (x) <F,x σi+1 (x) (if σi and σi+1 are x-adjacent). Thus
σ1 (x) <F,x σ2 (x) and σ2 (x) ≤F,x σ3 (x) ≤F,x · · · ≤F,x σl (x) ≤F,x σ1 (x): a contradiction.

Corollary 5.3. The transitive closure of ≺F is a strict order relation.
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ab

aa bb

ba

ca bc

Figure 5.1: A bad orienta-
tion. There is no minimal
element under the orien-
tation.

ab

aa bb

ba

ca bc

Figure 5.2: A good ori-
entation. There are some
minimal elements under
the orientation (in gray).

ab

aa bb

ba

ca bc

Figure 5.3: A very good
orientation. There is only
1 minimal element under
the orientation.

Instance Dependent or not.
– Instance dependent ordering. In this case, we put for each variable x ∈ X and each CSP
instance F a total order <F,x onto the domain D of possible values. As mentioned above,
we (partially) order solutions as follows: let σ ∈ S (F) and τ ∈ NF (σ, x); we have σ ≺F τ
if and only if σ (x) <F,x τ (x). The motivation for the instance dependent ordering is that
some syntactic properties of the CSP instance F can be exploited to define a suitable order
for that instance.

– Instance independent ordering. This is a particular case of the above ordering, when the
total order<x on D does not depend on F. For some problems, no preferred order can be
defined given some instance. This happens in particular when values are indistinguish-
able because of the symmetry of the problem (e.g. colors in graph coloring).

Examples of Orientations. In figures 5.1, 5.2 and 5.3, we consider a network of 6 solutions
over the domain D = {a, b, c} for a set of variables X = {x, y}; by shortcut ab we mean that
variable x takes value a and variable y takes value b. For example {aa, ba, ca} is a clique for
variable x.

We first give an example (figure 5.1) of an orientation which is not circuit-free, even though
it was built from the following local orderings on each individual clique:

– in cliques {a, b} for variables x and y, we have b < a;
– in cliques {a, b, c} for variables x and y, we have a < c < b.

The problem comes from the fact that a and b are ordered differently in clique {a, b, c} and its
sub-clique {a, b}, which led us to consider only orientations built in the following way: we
choose for each variable x a total order<x on the domain D and use it for each sub-clique of D.
This is what we shall call a uniform orientation in chapter 6. Example in figure 5.2 was obtained
by the following orders: c <x b <x a and c <y a <y b. This orientation is circuit-free and has
two minimal elements. Now among good orientations, the less minimal elements they have,
the better they are; figure 5.3, which was obtained by the following orders: c <x b <x a and
a <y c <y b, gives an example of an orientation with just one minimal element.
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5.4 Weighting of Solutions

First we define a weighting system for all valuations (solutions or not) which sums up to 1.
Thenwe give sufficient conditions on aweighting system on solutions only, such that a transfer
between this weighting system and the previous one may be possible. Doing this we establish
a general framework for putting weights onto solutions, and use it to derive two particular
weighting systems: the first one addresses general CSPs and the second one is built to improve
on the weighting system introduced by Maneva, Mossel & Wainwright - 2007 [MMW07] and
further explored by Maneva & Sinclair - 2008 [MS08] and Ardila & Maneva - 2009 [AM09].
The purpose of such a transfer is to estimate the global weight in the weighting system on
solutions by means of the global weight of the weighting system on all valuations (which is
easier to compute).

5.4.1 Weighting Seeds

Definition 5.4. For a CSP F = 〈X,D,C〉 a weighting seed is a function sF : X × D → R+. We
say that sF is unitary iff ∀x ∈ X,∑a∈D sF (x, a) = 1.

Now we define the unladen weight of any valuation v (solution or not) with respect to some
weighting seed sF as :

UF (v) = ∏
x∈X

sF (x, v (x)) . (5.1)

As for the actual weight of a solution, we want to take into account the neighborhood of the
solution, so we put the weight wF (σ, x) on each variable x of solution σ. We will see later how
to build wF from sF.

The actual weight of a solution is:

WF (σ) = ∏
x∈X

wF (σ, x) . (5.2)

By extension, the weight of a set S of solutions is:

WF (S) = ∑
σ∈S

WF (σ) . (5.3)

Lemma 5.5. If the weighting seed sF is unitary, then the total unladen weight of all valuations is 1:
∑v∈DX UF (v) = 1.

Proof.

∑
v∈DX

UF (v) = ∑
v∈DX

∏
x∈X

sF (x, v (x))

= ∏
x∈X

∑
a∈D

sF (x, a)

= ∏
x∈X

1

= 1 .

This weight UF is indeed simple to handle. The purpose is now to connect it with WF. Just
as we defined weights WF of solutions in a product form variable per variable, so shall we
build our transfer system.
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5.4.2 Decomposers

Definition 5.6. We say that wF is decomposable by a family (δF,σ,x,a) iff for all solution σ of F and
all variable x, wF (σ, x) = ∑a∈D δF,σ,x,a. Such a family will be referred to as a decomposer. We
define onto it the following transfer quantities between a solution σ and a valuation v:

TF,σ→v = ∏
x∈X

δF,σ,x,v(x) . (5.4)

Lemma 5.7. (Transfer lemma). Let F be a CSP instance and σ any of its solutions. If wF is decomposable
by family (δF,σ,x,a), then

WF (σ) = ∑
v∈DX

TF,σ→v . (5.5)

Proof. It is sufficient to expand the weight of a solution as follows:

WF (σ) = ∏
x∈X

wF (σ, x)

= ∏
x∈X

∑
a∈D

δF,σ,x,a

= ∑
v∈DX

∏
x∈X

δF,σ,x,v(x)

= ∑
v∈DX

TF,σ→v .

We want to insure that transfers made towards a valuation are at least its unladen weight,
hence we define the following property of covering.

Definition 5.8. Let S be a subset of S (F); we say that (TF, S) covers UF iff ∀v ∈ Dx,∑σ∈S TF,σ→v ≥
UF (v).

We can now state some general conditions that are sufficient for a weighting scheme to be
correct.

5.4.3 Weight Conservation Theorem

Theorem 5.9. (Weight Conservation Theorem). If the following assumptions hold:

1. the weighting seed sF is unitary,

2. the actual weight wF is decomposable by family (δF,σ,x,a),

3. (TF, S) covers UF,

then WF (S) ≥ 1.

Proof. Since wF is decomposable by family (δF,σ,x,a), lemma 5.7 asserts that ∀σ ∈ S,WF (σ) =
∑v∈DX TF,σ→v. Thus

WF (S) = ∑
σ∈S

WF (σ)

= ∑
σ∈S

∑
v∈DX

TF,σ→v by lemma 5.7

= ∑
v∈DX

∑
σ∈S

TF,σ→v

≥ ∑
v∈DX

UF (v) since (TF, S) covers UF .
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Moreover by lemma 5.5, since sF is unitary, ∑v∈DX UF (v) = 1.

Thus we have exhibited three sufficient conditions to get a weight conservation theorem.
These conditions might not be necessary; however not anyweighting system wF will be correct,
as shown in example on figure 5.4. So let us introduce a way to build wF from sF in a way that
is intended to match the conditions of our Weight Conservation Theorem.

5.4.4 Generators

All weights we put onto solutions (either in section 5.4.5 or in section 5.7) are built from a
weight generator, as follows.

Definition 5.10. A generator is a function ωF : X×D×P (D)→ R+. We say that ωF is unitary
iff for all variable x and all nonempty subset ∆ of D, ∑a∈∆ ωF (x, a,∆) = 1.

From the weight generator ωF we now define the actual weight wF of a variable in a solution:

wF (σ, x) = ωF (x, σ (x) , AF (σ, x)) . (5.6)

Remark. If σ and τ are 2 solutions such that σ (x) = τ (x) and AF (σ, x) = AF (τ, x), then
wF (σ, x) = wF (τ, x). This is what we shall call a uniform weighting in chapter 6.

This may suggest that it could be sufficient to put any weights such that the sum of weights
on any clique would be 1; but it is not the case (cf. example on figure 5.4).

5.4.5 Dispatchers

Definition 5.11. A dispatcher is a function dF : X× D→ R+
∗ .

Using the weighting seed sF and the dispatcher dF we now build the weight generator ωF of
variables in a solution. Each variable will keep its seed sF; moreover the weights of forbidden
values will be dispatched to allowed values thanks to dF, in the following way:

ωF (x, a,∆) =

{

sF (x, a) +
dF(x,a)

∑b∈∆ dF(x,b)
∑b∈D\∆ sF (x, b) if a ∈ ∆;

0 otherwise .
(5.7)

∆ represents a category of set of allowed values; so the dispatcher dF dispatches the total
weighting seed of forbidden values among allowed values.

Fact. If sF is unitary, so is ωF.

Definition 5.12. We say that the weighting system is homogeneous when dF = sF. In this no-
ticeable case the same function is used to assign a weighting seed and to dispatch remaining
weights among neighbors.

Examples of Weightings. As one can see in figure 5.4, even if we put a total weight of 1 on
each clique, the overall weight can be less than 1. To prevent such bad configurations we let
our weights take the form of seeds+dispatchers (figures 5.5 and 5.6). The purpose of building
weights from seeds and dispatchers is to prevent the same kind of inversions that we encoun-
tered for orientations (which led to circuits): in figure 5.4, in clique {a, b} for variable x, a is
given a much smaller weight than b, whereas in clique {a, b, c} for the same variable x, the op-
posite occurs. In fact dispatchers allow some reshuffling of weights between different cliques
of the same variable (see the weights given to values a and b in cliques {a, b} and {a, b, c} for
variable x on figure 5.6), but the fact that seeds and dispatchers are assigned to each individ-
ual couple (variable, value) enables a kind of consistency between a clique and its sub-cliques,
preventing circuit-like structures from appearing.
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aa bb

ba

ca bc

0.2

0.7

0.1
0.9 0.1

0.1 0.7

0.9

0.1

0.2

Figure 5.4: A bad weight-
ing system. The total
weight is 2 ∗ (0.1 ∗ 0.9 +
0.1 ∗ 0.7+ 0.2) = 0.72.
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ca bc
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Figure 5.5: An homo-
geneous weighting sys-
tem. The total weight
is 0.7 + 0.3 + 0.2 ∗ 0.4 +
0.1 ∗ 0.571+ 0.3 ∗ 0.667+
0.333 ∗ 0.429 ≃ 1.48.
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aa bb

ba

ca bc

0.7

0.1

0.486
0.514 0.567

0.2 0.4

0.433

0.3

0.3

Figure 5.6: An hetero-
geneous weighting sys-
tem. The total weight
is 0.7 + 0.3 + 0.2 ∗ 0.4 +
0.1 ∗ 0.486+ 0.3 ∗ 0.433+
0.567 ∗ 0.514 ≃ 1.55.

– figure 5.5 was obtained by the following choice of sF and dF (homogeneous case, so dF =
sF):
sF a b c

x 0.1 0.2 0.7
y 0.4 0.3 0.3

dF a b c

x 0.1 0.2 0.7
y 0.4 0.3 0.3

;

– figure 5.6 was obtained by the following choice of sF and dF:
sF a b c

x 0.1 0.2 0.7
y 0.4 0.3 0.3

dF a b c

x 0.6 0.3 0.1
y 0.2 0.5 0.3

.

We come back to our weighting system wF built from sF and dF and show that it may
be used to estimate satisfiability if sF is unitary. So our first result concerning this weighting
system states that this system is correct for the estimation of satisfiability (theorem 5.15 below).
To prove it, we use our Weight Conservation Theorem, using the following decomposers:

δF,σ,x,a =















sF (x, a) if σ (x) = a;
dF(x,σ(x))

∑a∈AF(σ,x)
dF(x,a)

sF (x, a) if a /∈ AF (σ, x);

0 otherwise .

(5.8)

We must now prove that the conditions of our Weight Conservation Theorem are satisfied:
wF is decomposable family (δF,σ,x,a) and (TF, g) covers UF.

Lemma 5.13. wF is decomposable by family (δF,σ,x,a).
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Proof. By definitions:

∑
a∈D

δF,σ,x,a = ∑
a∈D

(

sF (x, a) 1a=σ(x) +
dF (x, σ (x))

∑a∈AF(σ,x) dF (x, a)
sF (x, a) 1a/∈AF(σ,x)

)

= sF (x, σ (x)) +
dF (x, σ (x))

∑a∈AF(σ,x) dF (x, a)
∑

a/∈AF(σ,x)

sF (x, a)

= wF (σ, x) .

As the unladen weight of a valuation is scattered among lots of solutions, in the proof of
the following lemma we use an algorithm building a tree in order to catch enough solutions
to insure the covering condition. The proof is somewhat technical and may be skipped at first
reading.

Lemma 5.14. Let g be any connected component of the solutions network S (F). Then (TF, g) covers
UF.

Proof. First we need some definitions. A partial valuation η over Y ⊆ X is a function fromY to the
set D. The domain of η is Dom (η) = Y. The level (of undetermination) of η is Level (η) = |X\Y|.
Let Z ⊆ Y ⊆ X, let ι be a partial valuation over Z and η be a partial valuation over Y. Since
Z ⊆ Y, we say that ι ≤Dom η. Of course ≤Dom is a partial order relation. We say that η is an
extension of ι iff ∀z ∈ Z, η (z) = ι (z), in which case we also say that ι is the restriction of η to Z:
ι = η|Z. In the particular case when Y = Z ∪ {x} with x /∈ Z, we denote by ιx 7→a, the extension
of ι to Y assigning value a to x. Let g be a connected component of the solutions network. Note
that the empty valuation ǫ (with domain ∅) is extensible to a solution in g as soon as g 6= ∅.
Given a partial valuation η, we call Eg (η) the set of its extensions which are elements of g and
rg (η) the set of restrictions of η extensible to a solution in g (i.e. restrictions r of η such that
Eg (r) 6= ∅).

Let us take any valuation v. We must prove that ∑σ∈g TF,σ→v ≥ UF (v). Since g 6= ∅,
ǫ ∈ rg (v) so rg (v) 6= ∅ and we can pick an element v0 in rg (v) maximal with respect to the
order ≤Dom. We arbitrarily put indices 1 . . . n0 onto the remaining n0 = Level (v0) variables:
x1, . . . , xn0 (i.e. variables not set by v0). In the following algorithm we shall bind a factitious
weight f (η) and a solution τ (η) to a partial valuation η. At the beginning f (v0) = UF (v), and
we make a call of Extend (v0).

Algorithm 5.1 Extensions of a partial valuation.
1: procedure Extend(η)
2: i ← Level (η)
3: if i = 0 then
4: S← S ∪ {η}
5: else
6: τ (η) ← a solution maximizing ∑b∈AF(σ,xi) dF (xi, b) among σ ∈ Eg (η)

7: for all a ∈ AF (τ (η) , xi) do
8: f (ηxi 7→a)← dF(xi,a)

∑b∈AF(τ(η),x)
dF(xi,b)

f (η)

9: Extend (ηxi 7→a)
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Informally we are building a tree and propagating weights from the root v0 (at level n0) to
leafs which are solutions (at level 0) in a conservative way: the total factitious weight on level
i will be the same as that of level i+ 1.

Formally, what can we insure along this process?

1. The first thing to notice is that the algorithm stops; namely the nested calls of Extend (η)
decrement Level (η) till it reaches 0.

2. Secondly S is indeed a set of solutions in g extending v0. Namely at each call of Extend (η),
η is extensible to a solution in g and the set of unset variables of η is {x1, . . . , xi}, where
i = Level (η). Thus when i = 0, η is a solution in g. We prove this by induction:

a) at the beginning: v0 ∈ rg (v), v0 trivially extends itself, Eg (v0) 6= ∅ and the set of
unset variables of v0 is {x1, . . . , xn0};

b) now suppose that Eg (η) 6= ∅, η extends v0 and the unset variables of η are {x1, . . . , xi};
given τ (η) ∈ Eg (η), let a ∈ AF (τ (η) , xi); then the valuation τ (η)xi←a is a solution
by definition of AF (τ (η) , xi); moreover it is connected to τ (η), thus τ (η)xi←a is an
element of component g. Moreover since τ (η) is an extension of η and xi is unset in
η, τ (η)xi←a is an extension of ηxi 7→a. Thus τ (η)xi←a ∈ Eg (ηxi 7→a), so Eg (ηxi 7→a) 6= ∅.
Of course, ηxi 7→a extends v0, the unset variables of ηxi 7→a are {x1, . . . , xi−1} and
Level (ηxi 7→a) = Level (η)− 1 = i− 1.

3. ∑σ∈S f (σ) = UF (v); namely among partial valuations considered in the process, η ∈ S
iff Level (η) = 0. Moreover we now prove by induction that ∑Level(η)=i f (η) = UF (v):

a) at the beginning when i = n0, the only partial valuation of level n0 is v0 and f (v0) =
UF (v);

b) now suppose that ∑Level(η)=i f (η) = UF (v); in our process each partial valuation η
of level i− 1 has one and only one parent in level i, which is given by the restriction
η′ of η to Dom (v0) ∪ {xi+1, . . . , xn0}; thus

∑
Level(η)=i−1

f (η) = ∑
Level(η′)=i

∑
a∈AF(τ(η′),xi)

f
(

η′xi 7→a

)

= ∑
Level(η′)=i

∑
a∈AF(τ(η′),xi)

dF (xi, a)
∑b∈AF(τ(η′),xi) dF (xi, b)

f
(

η′
)

= ∑
Level(η′)=i

f
(

η′
)

= UF (v) .

4. ∀σ ∈ S, ∀i ∈ {1, . . . , n0} , v (xi) /∈ AF (σ, xi). Suppose on the contrary that ∃σ ∈ S, ∃i ∈
{1, . . . , n0} , v (xi) ∈ AF (σ, xi); the partial valuation v0 xi 7→v(xi)

is still a restriction of v;
moreover, since by item 2, σ is an extension of v0, σxi←v(xi)

is an extension of v0 xi 7→v(xi)
;

and since v (xi) ∈ AF (σ, xi), σxi←v(xi)
is a solution.

Thus v0 xi 7→v(xi)
∈ rg (v) and v0 xi 7→v(xi)

>Dom v0, contradicting the maximality of v0 in
rg (v).
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5. ∀σ ∈ S, f (σ) ≤ TF,σ→v; namely, let us take any σ ∈ S:

TF,σ→v = ∏
x∈X

δF,σ,x,v(x) by definition 5.6

= ∏
x∈X

sF (x, v (x))

(

1v(x)=σ(x) +
dF (x, σ (x))

∑a∈AF(σ,x) dF (x, a)
1v(x)/∈AF(σ,x)

)

by eq. 5.8

= ∏
x∈Dom(v0)

sF (x, v (x))
n0

∏
i=1

dF (xi, σ (xi)) sF (xi, v (xi))
∑a∈AF(σ,xi) dF (xi, a)

by item 2 and 4

= UF (v)
n0

∏
i=1

dF (xi, σ (xi))

∑a∈AF(σ,xi) dF (xi, a)
by definition 5.4 .

Moreover note that

f (σ) = f
(

σ|Dom(v0)

) n0

∏
i=1

f
(

σ|Dom(v0)∪{xi,...,xn0}
)

f
(

σ|Dom(v0)∪{xi+1,...,xn0}
)

= f (v0)
n0

∏
i=1

f
(

σ|Dom(v0)∪{xi+1,...,xn0},xi 7→σ(xi)

)

f
(

σ|Dom(v0)∪{xi+1,...,xn0}
)

= UF (v)
n0

∏
i=1

dF (xi, σ (xi))

∑
a∈AF

(

τ

(

σ|Dom(v0)∪{xi+1,...,xn0}
)

,xi

) dF (xi, a)
.

Since of course, for all i between 1 and n0, σ ∈ Eg

(

σ|Dom(v0)∪{xi+1,...,xn0}
)

, by choice of

τ (η) in line 6 of algorithm 5.1, we have that ∑
a∈AF

(

τ

(

σ|Dom(v0)∪{xi+1,...,xn0}
)

,xi

) dF (xi, a) ≥

∑a∈AF(σ,xi) dF (xi, a), whence f (σ) ≤ UF (v)∏
n0
i=1

dF(xi,σ(xi))
∑a∈AF(σ,xi)

dF(xi,a)
= TF,σ→v.

Thus we finally get that

∑
σ∈g

TF,σ→v ≥ ∑
σ∈g

f (σ) by item 5

≥ ∑
σ∈S

f (σ) because S ⊆ g .

Moreover, by item 3, ∑σ∈S f (σ) = UF (v); thus (TF, g) covers UF.

From lemmas 5.13 and 5.14, we conclude that our weighting system built from seeds and
dispatchers obeys the conditions of the Weight Conservation Theorem.

Theorem 5.15. Let F be a satisfiable CSP instance and g the solutions in a connected component of the
solutions network of F. Weights wF are built from seeds sF and dispatchers dF, as in definition 5.11. If
the weighting seed sF is unitary, then WF (g) ≥ 1.

Remark. In this paper we do not address the question of choosing the best sF and dF for a given
instance F or for a given family of instances, which must be custom-tailored depending on the
considered problem.
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5.5 Homogeneous Case: Weighting Is not Better than Ordering

As we have seen, the weighting is based upon two functions:
1. the weighting seed sF that determines the intrinsic weight of each value and then allows

to compute the intrinsic unladen weight of each valuation;
2. the dispatcher dF that represents how the weights of forbidden valuations are scattered

among the authorized ones.
A natural case to investigate is when these two quantities are equal, namely when each allowed
value is dispatched a complimentary weight proportional to its intrinsic weight. So we deal
here with the homogeneous case dF = sF and show that whatever sF may be, there will exist
an ordering which is at least as good as the weighting system, as will be stated in theorem
5.25. The proof consists in choosing variable per variable the order <F,x in a way that does not
increase the global weight. For our recurrence to work we use the homogeneity property. Just
as we defined a generator ωF for a weight wF, so need we now to define a generator µF for an
orientation mF.

Definition 5.16. We define the following binary weight function:

µF (x, a,∆) =

{

1 if a is the minimum of ∆ for <F,x;
0 otherwise .

(5.9)

mF (σ, x) = µF (x, σ (x) , AF (σ, x)) . (5.10)

At each step of the recurrence, some variables are orderedwhile the other ones areweighted.
That leads us to introduce the following definitions. We are going to substitute binary weights
mF’s to original weights wF’s variable per variable, so we call Ξ the set of couples of (variables
x, orders <F,x) where mF’s are used and we define

Definition 5.17.

ΩF (σ,Ξ) = ∏
x∈Ξ

mF (σ, x) ∏
x∈X\Ξ

wF (σ, x) (5.11)

and we extend it to a set S of solutions by

ΩF (S,Ξ) = ∑
σ∈S

ΩF (σ,Ξ) . (5.12)

Remark 5.18. What happens when Ξ is empty?

ΩF (S (F) ,∅) = WF (S (F)) . (5.13)

Namely, by definition, for any solution σ ∈ S (F), ΩF (σ,∅) = ∏x∈X wF (σ, x) = WF (σ). But
ΩF (S (F) ,∅) = ∑σ∈S(F) ΩF (σ,∅) andWF (S (F)) = ∑σ∈S(F)WF (σ).

Remark 5.19. What happens when Ξ is full? Suppose that for all variable x, <F,x is a total order
on D. Let ≺F be the orientation induced by {(x,<F,x)}x∈X. Then

ΩF

(

S (F) , {(x,<F,x)}x∈X
)

= |M≺F (F)| . (5.14)

Namely, let us recall that for any solution σ ∈ S (F), ΩF

(

σ, {(x,<F,x)}x∈X
)

= ∏x∈X mF (σ, x).
Thus ΩF

(

σ, {(x,<F,x)}x∈X
)

= 1 iff ∀x ∈ X, σ is the minimum of NF (σ, x) for <F,x (or equiv-
alently for ≺F); in other words σ is minimal among all of its neighbors, which means that σ
is minimal (since ≺F compares neighboring solutions only). Thus ΩF

(

{(x,<F,x)}x∈X
)

is the
number of minimal elements of the underlying orientation ≺F.
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We are now ready to state the main lemma in this section.

Lemma 5.20. Suppose that sF is unitary and dF = sF. Then for each set Ξ, each variable x0 /∈ Ξ, there
exists a total order <F,x0 on D such that ΩF

(

S (F) ,Ξ∪
{(

x0,<F,x0

)})

≤ ΩF (S (F) ,Ξ).

At first reading it might be convenient to jump directly to theorem 5.25, because the proof of
lemma 5.20 is somewhat technical and requires some more notations and sub-lemmas. We fix a
variable x0 /∈ Ξ. Let a be an element of D and ∆ be a subset of D. We consider the preimages of
(a,∆) obtained through mapping a solution σ of instance F to (σ (x0) , AF (σ, x0)). We denote
these preimages as follows:

ΣF,x0 (a,∆) = {σ ∈ S (F) , σ (x0) = a and AF (σ, x0) = ∆} . (5.15)

Note that:

1. when a /∈ ∆, ΣF,x0 (a,∆) = ∅;

2. the ΣF,x0 (a,∆) are pairwise disjoint and
⊔

∆⊆D
a∈∆

ΣF,x0 (a,∆) = S (F);

3. if σ, τ ∈ ΣF,x0 (a,∆), then wF (σ, x0) = wF (τ, x0) = ωF (x0, a,∆)
and mF (σ, x0) = mF (τ, x0) = µF (x0, a,∆);

4. we call

ZF,Ξ,x0 (a,∆) = ∑
σ∈ΣF,x0(a,∆)

∏
x∈Ξ

mF (σ, x) ∏
x∈X\(Ξ∪{x0})

wF (σ, x) ; (5.16)

then by item 3,

ΩF

(

ΣF,x0 (a,∆) ,Ξ
)

= ωF (x0, a,∆) · ZF,Ξ,x0 (a,∆) ; (5.17)

ΩF

(

ΣF,x0 (a,∆) ,Ξ ∪
{(

x0,<F,x0

)})

= µF (x0, a,∆) · ZF,Ξ,x0 (a,∆) . (5.18)

We now need to explore further both quantities we want to compare. It will be convenient to
use the following quantities: let E ⊆ D and a ∈ E; we define the following quantities:

ζF,Ξ,x0 (a, E) = ∑
∆⊆E
∆∋a

ZF,Ξ,x0 (a,∆) ; (5.19)

ξF,Ξ,x0 (E) = ∑
∆⊆E

∑
a∈∆

ωF (x0, a,∆) · ZF,Ξ,x0 (a,∆) . (5.20)

Sowhat is the purpose of introducing these extra quantities? Theywill help us prove lemma
5.20 through the following facts.

Fact 5.21. If a1 <F,x0 a2 <F,x0 · · · <F,x0 ad, then

ΩF

(

S (F) ,Ξ∪
{(

x0,<F,x0

)})

=
d

∑
i=1

ζF,Ξ,x0 (ai,D\ {a1, . . . , ai−1}) .

Proof. We use the partition mentioned in item 2:
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ΩF

(

S (F) ,Ξ ∪
{(

x0,<F,x0

)})

= ΩF







⊔

∆⊆D
a∈∆

ΣF,x0 (a,∆) ,Ξ ∪
{(

x0,<F,x0

)}







= ∑
∆⊆D
a∈∆

ΩF

(

ΣF,x0 (a,∆) ,Ξ ∪
{(

x0,<F,x0

)})

= ∑
∆⊆D
a∈∆

µF (x0, a,∆) · ZF,Ξ,x0 (a,∆) by eq. 5.18

= ∑
a∈D

∑
∆⊆D
∆∋a

µF (x0, a,∆) · ZF,Ξ,x0 (a,∆)

= ∑
a∈D

∑
∆⊆D
∆∋a

1a is the minimum of ∆ for <F,x0
· ZF,Ξ,x0 (a,∆)

=
d

∑
i=1

∑
∆⊆D\{a1,...,ai−1}

∆∋ai

ZF,Ξ,x0 (ai,∆) since a1 <F,x0 · · · <F,x0 ad

=
d

∑
i=1

ζF,Ξ,x0 (ai,D\ {a1, . . . , ai−1}) .

Fact 5.22. For all x0 /∈ Ξ, ΩF (S (F) ,Ξ) = ξF,Ξ,x0 (D).

Proof. We use again the partition mentioned in item 2:

ΩF (S (F) ,Ξ) = ΩF







⊔

∆⊆D
a∈∆

ΣF,x0 (a,∆) ,Ξ







= ∑
∆⊆D
a∈∆

ΩF

(

ΣF,x0 (a,∆) ,Ξ
)

= ∑
∆⊆D
a∈∆

ωF (x0, a,∆) · ZF,Ξ,x0 (a,∆) by eq. 5.17

= ξF,Ξ,x0 (D) .

Fact 5.23. If E ⊆ D, ∆ ⊆ E, a ∈ ∆, sF is unitary and dF = sF then

ωF (x, a,∆) ∑
b∈E

dF (x, b) = dF (x, a) + ωF (x, a,∆) ∑
b∈E\∆

dF (x, b) .

Proof. If a ∈ ∆, then by equation 5.7, ωF (x, a,∆)∑b∈∆ dF (x, b) = sF (x, a)∑b∈∆ dF (x, b) +
dF (x, a)∑b∈D\∆ sF (x, b). By equality dF = sF and the fact that sF is unitary, we get dF (x, a) =
ωF (x, a,∆)∑b∈∆ dF (x, b).
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Fact 5.24. Let x0 /∈ Ξ and E any nonempty subset of D. Suppose that sF is unitary and dF = sF. Then
there exists a ∈ E such that ξF,Ξ,x0 (E) ≥ ζF,Ξ,x0 (a, E) + ξF,Ξ,x0 (E\ {a}).

Proof. Let us call a0 an element of E minimizing ζF,Ξ,x0 (a, E) + ξF,Ξ,x0 (E\ {a}) when a ∈ E:

ξF,Ξ,x0 (E) ∑
b∈E

dF (x0, b) = ∑
b∈E

dF (x0, b) ∑
∆⊆E
a∈∆

ωF (x0, a,∆)ZF,Ξ,x0 (a,∆)

= ∑
∆⊆E
a∈∆

dF (x0, a)ZF,Ξ,x0 (a,∆)

+ ∑
∆⊆E
a∈∆

ωF (x0, a,∆) ∑
b∈E\∆

dF (x0, b) ZF,Ξ,x0 (a,∆) by fact 5.23

= ∑
∆⊆E
a∈∆

dF (x0, a)ZF,Ξ,x0 (a,∆)

+ ∑
∆⊆E
a∈E\∆
b∈∆

ωF (x0, b,∆) dF (x0, a) ZF,Ξ,x0 (b,∆)

= ∑
a∈E

dF (x0, a) ∑
∆⊆E
∆∋a

ZF,Ξ,x0 (a,∆)

+ ∑
a∈E

dF (x0, a) ∑
∆⊆E\{a}

∑
b∈∆

ωF (x0, b,∆) ZF,Ξ,x0 (b,∆)

= ∑
a∈E

dF (x0, a)
(

ζF,Ξ,x0 (a, E) + ξF,Ξ,x0 (E\ {a})
)

≥ ∑
a∈E

dF (x0, a)
(

ζF,Ξ,x0 (a0, E) + ξF,Ξ,x0 (E\ {a0})
)

.

That gives what we want since ∑b∈E dF (x0, b) 6= 0 (by definition 5.11, dispatchers must be
positive).

Proof of Lemma 5.20. By fact 5.22, ΩF (S (F) ,Ξ) = ξF,Ξ,x0 (D). From D we successively re-
movewhat we call a1, a2, . . . , ad till we reach the empty set; applying at each step fact 5.24 yields
that ξF,Ξ,x0 (D) ≥ ∑

d
i=1 ζF,Ξ,x0 (ai,D\ {a1, . . . , ai−1}) + ξF,Ξ,x0 (∅). By definition, ξF,Ξ,x0 (∅) = 0.

What order <F,x0 shall we choose on D?
Of course: a1 <F,x0 a2 <F,x0 · · · <F,x0 ad.
Then by fact 5.21, ΩF

(

S (F) ,Ξ∪
{(

x0,<F,x0

)})

= ∑
d
i=1 ζF,Ξ,x0 (ai,D\ {a1, . . . , ai−1}). So in

the end ΩF (S (F) ,Ξ) ≥ ΩF

(

S (F) ,Ξ ∪
{(

x0,<F,x0

)})

.

Theorem 5.25. For any instance F, any positive and unitary weighting seed sF, when dF = sF, there
exists an instance dependent orientation ≺F induced by a set {(x,<F,x)}x∈X of total orders on D, such
that |M≺F (F)| ≤ WF (S (F)).

Proof. By remark 5.18, WF (S (F)) = ΩF (S (F) ,∅). Starting with Ξ = ∅, we add elements
(

x0,<F,x0

)

to Ξ such that ΩF (S (F) ,Ξ) ≥ ΩF

(

S (F) ,Ξ ∪
{(

x0,<F,x0

)})

, which is possible by
lemma 5.20. At the end of the processwe have thus ΩF (S (F) ,∅) ≥ ΩF

(

S (F) , {(x,<F,x)}x∈X
)

.
Let ≺F be the orientation on S (F) induced by {(x,<F,x)}x∈X.
By remark 5.19, ΩF

(

S (F) , {(x,<F,x)}x∈X
)

= |M≺F (F)|. SoWF (S (F)) ≥ |M≺F (F)|.
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Whether this theorem is true for non homogeneous weights remains an open question.

Remark. In the particular case of boolean satisfiability (i.e. when D = {0, 1}), there is no choice
on dF: the weighting system is necessarily homogeneous. Thus in this case weighting is not
better than ordering.

5.6 Instance Independent Case: Ordering and Weighting Are Equivalent

Definition 5.26. The weight of a CSP instance F is:

γ (F) = WF (S (F)) . (5.21)

By extension, the weight of a set F of CSP instances is:

γ (F ) = ∑
F∈F

γ (F) . (5.22)

A permutation over the domain of values is a bijection π : D → D. A renaming of values is
a family of permutations Π = (πx)x∈X over the domain D. For a CSP instance F, let Π (F) be
the instance where every occurrence of a value a for every variable x are replaced by πx (a). A
set of CSP instances F is said to be closed under renaming if for any renaming Π, if F ∈ F then
Π (F) ∈ F . By abuse of notation, for any valuation v, we denote by Π (v) the valuation that
assigns value πx (v (x)) to variable x.

Let us first give a very simple yet useful fact:

Fact 5.27. Let Π be a renaming, F and G be CSP instances. Then

1. σ ∈ S (F) iff Π (σ) ∈ S (Π (F));

2. AΠ(F) (Π (σ) , x) = πx (AF (σ, x)).

Note that almost all sets of CSP instances we know to be dealt with in the literature are
closed under renaming.

Let F be some set of instances closed under renaming. We prove in the sequel that γ (F ) =
∑F∈F |M≺ (F)| for any instance independent orientation ≺ on solutions as defined in section
5.3. That can be interpreted as follows: on average on F , the weight of all solutions is equal
to the number of minimal solutions, independently of the orientation ≺. The proof idea is to
partition the couples (solutions, instances) in a way that the weight of each class of the partition
has a weight of 1 and corresponds to a minimal element for ≺.

We define the set C of couples (σ, F)where F is an element of F and σ a solution of F:

C = {(σ, F)} F∈F
σ∈S(F)

. (5.23)

γ (F ) can be written as
γ (F ) = ∑

(σ,F)∈C
WF (σ) . (5.24)

For some variable x and some valuations v1 and v2, we define the permutation πx,v1,v2 on
D as the transposition which swaps v1 (x) and v2 (x), and the renaming Πv1,v2 as the collection
of these permutations, variable per variable:

πx,v1,v2 (a) =











v1 (x) if a = v2 (x)

v2 (x) if a = v1 (x)

a otherwise
; (5.25)

Πv1,v2 = (πx,v1,v2)x∈X . (5.26)
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Note that these definitions are symmetric in v1 and v2. Moreover note that Πv1,v2 (v1) = v2
and Πv1,v2 (v2) = v1.

Consider a formula F ∈ F and a solution τ of F. We denote by χF (τ) the set of valuations
σ assigning each variable x one of the values in the set AF (τ, x):

χF (τ) = ∏
x∈X

AF (τ, x) . (5.27)

When τ is a solution of F, we denote by C (τ, F) the set of all renamings of (τ, F) ranging in
χF (τ):

C (τ, F) = {(σ,Πσ,τ (F))}σ∈χF(τ)
. (5.28)

Lemma 5.28. If τ is a solution of F and σ ∈ χF (τ), then σ is a solution of G = Πσ,τ (F) and for all
variable x ∈ X, AG (σ, x) = AF (τ, x).

Proof. Since G = Πσ,τ (F), σ = Πσ,τ (τ) and τ is a solution of F, by fact 5.27 we know that σ is
a solution of G. Moreover by fact 5.27, for every variable x, AG (σ, x) = πx,σ,τ (AF (τ, x)). By
definition of χF, σ (x) ∈ AF (τ, x). Since πx,σ,τ swaps two values τ (x) and σ (x) that are both
elements of AF (τ, x), πx,σ,τ (AF (τ, x)) = AF (τ, x), hence AG (σ, x) = AF (τ, x).

Lemma 5.29. The set {C (τ, F)} F∈F
τ∈M≺(F)

is a partition of C .

Proof. If (σ,G) ∈ C (τ, F), then by lemma 5.28, σ is a solution of G. Moreover, by closure of
F under renaming, G ∈ F . Thus C (τ, F) ⊆ C . Now it is sufficient to prove that ∀ (σ,G) ∈ C
there exists a unique (τ, F) where F ∈ F , τ is a minimal solution of F and (σ,G) ∈ C (τ, F).

– Existence of (τ, F): for every x, let τ (x) be the minimal value in AG (σ, x) according to
the order<x underlying≺; by construction, τ ∈ χG (σ). Consider the renaming Πσ,τ and
let F = Πσ,τ (G). By lemma 5.28, τ is a solution of F and for all variable x, AF (τ, x) =
AG (σ, x). Since for all x ∈ X, τ (x) is the minimal value in AF (τ, x), τ is minimal for
the orientation ≺. Moreover for all x, σ (x) ∈ AF (τ, x), thus σ ∈ χF (τ); and since
G = Πσ,τ (F), we have that (σ,G) ∈ C (τ, F).

– Uniqueness of (τ, F): let (τ′, F′) be such that C (τ′, F′) ∋ (σ,G), i.e. σ ∈ χF (τ
′) and G =

Πσ,τ′ (F
′); then by lemma 5.28, for all variable x, AG (σ, x) = AF′ (τ

′, x). By minimality
of τ′, τ′ (x) must be the minimum of AG (σ, x) for each variable x.

Lemma 5.30. Suppose that the weight wF is obtained from a unitary and instance independent gener-
ator ω. Let (τ, F) be an element of C ; then ∑(σ,G)∈C(τ,F)WG (σ) = 1.

Proof. First note that by lemma 5.28, for all (σ,G) ∈ C (τ, F), we have AG (σ, x) = AF (τ, x).
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Thus:

∑
(σ,G)∈C(τ,F)

WG (σ) = ∑
(σ,G)∈C(τ,F)

∏
x∈X

wG (σ, x)

= ∑
(σ,G)∈C(τ,F)

∏
x∈X

ω (x, σ (x) , AG (σ, x)) since ω is instance independent

= ∑
σ∈χF(τ)

∏
x∈X

ω (x, σ (x) , AF (τ, x)) since AG (σ, x) = AF (τ, x)

= ∏
x∈X

∑
σ(x)∈AF(τ,x)

ω (x, σ (x) , AF (τ, x))

= ∏
x∈X

1 since ω is unitary

= 1 .

Theorem 5.31. Let F be a set of CSP instances which is closed under renaming. Let wF be a weight-
ing system built from a unitary and instance independent weight generator ω. Let ≺ be an instance
independent orientation. Then it holds that ∑F∈F |M≺ (F)| = γ (F ).

Proof. It is a mere combination of lemmas 5.29 and 5.30:

γ (F ) = ∑
F∈F

γ (F)

= ∑
F∈F

∑
σ∈S(F)

WF (σ)

= ∑
(σ,F)∈C

WF (σ)

= ∑
F∈F

τ∈M≺(F)

∑
(σ,G)∈C(τ,F)

WG (σ) by lemma 5.29

= ∑
F∈F

τ∈M≺(F)

1 by lemma 5.30

= ∑
F∈F
|M≺ (F)| .

Closure by renaming involves symmetry, so it is not surprising that on average all weight-
ings on the one hand and all orderings on the other hand should be equivalent. What is more
surprising though, is the fact that weightings and orderings are equivalent. This is noteworthy
because weights are simpler to handle in calculations (they yield more compact and tractable
formulas, see chapter 6 for example).

5.7 Boolean Case: a Better Weighting for Partial Valuations

In order to estimate boolean satisfiability of formulas, Maneva & Sinclair - 2008 [MS08] use
a so called Weight Preservation Theorem. Valuations here are mappings from X to D = {0, 1, ∗}.
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The value ∗ is to be interpreted as 0 or 1. They call a valuation valid iff each clause contains
at least one true literal or two starred literals. In this section, one has to be aware about the
fact that we define a boolean solution as a valid valuation taking its values in {0, 1} only! S (F)
still denotes the set of valid valuations of instance F (with values in {0, 1, ∗}) and AF (σ, x) still
refers to neighborhood in S (F). Note that any formula has at least one valid valuation: the
one that gives the value ∗ to every variable (the so-called trivial cores by Maneva and Sinclair)
so the existence of valid assignments does not guarantee the existence of boolean solutions.
Nevertheless, counting weighted valid valuations can be used to estimate boolean satisfiability.

Maneva and Sinclair choose their weights as follows: each variable has a weighting seed
s0 (x), s∗ (x) such that s0 (x) + s∗ (x) = 1, and for all valid valuation σ and all variable x they
put the following weight:

qF (σ, x) =











s∗ (x) if σ (x) = ∗ ;
s0 (x) if σ (x) 6= ∗ and ∗ ∈ AF (σ, x) ;
s0 (x) + s∗ (x) otherwise .

(5.29)

As shown byManeva, Mossel &Wainwright - 2007 [MMW07], the sum of the weights of all
valid valuations reachable from any boolean solution is exactly 1. The reachability property is
defined as the existence of a path from the boolean solution to the valid valuationwhere at each
step a variable is given the value ∗while maintaining the validity property. Since a given valid
valuation may be reachable from lots of different boolean solutions (but sometimes from no
one), counting the weighted partial valuations hopefully enables to count less than the number
of boolean solutions. To get an upper bound for the satisfiability threshold, Maneva & Sinclair
- 2008 [MS08] count the so called non trivial cores σ; a non trivial core σ is a valid assignment
with a linear number of non starred variables, all of them such that AF (σ, x) = {σ (x)}. Many
non trivial cores are not extensible to solutions; a core is extensible to a solution when there is
a boolean valuation of the starred literals which is a boolean solution. They manage to count
only cores which are extensible to a boolean solution, and they estimate the satisfiability of the
starred part of the formula by weighting valid assignments as defined in equation 5.29. What
we show in the following is that this weighting can be improved upon using our framework.

Before we give this improvement and show its correctness, we want to stress an impor-
tant difference between the weighting of solutions of general CSPs as defined in the previous
sections and the weighting defined in this section: in the previous sections, an unsatisfiable
formula has always a total weight of 0 while in the present one, an unsatisfiable formula (a
formula with no boolean solution) will have a non-zero total weight (provided the weights of
the value ∗ are not 0). This is the price one has to pay to lower the weights of satisfiable formu-
las. This fact makes difficult to establish a general comparison between both methods, because
they are highly dependent on the set of instances that are considered and in particular on the
proportion of unsatisfiable instances among them.

To improve on Maneva et al.’s estimation system, we choose the following weights: each
variable x has a unitary weighting seed sF (x, 0), sF (x, 1) and sF (x, ∗). From this seed sF we
define the weight generator ωF as follows:

ωF (x, a,∆) =











sF (x, a) if a = ∗ and a ∈ ∆ ;
sF (x, a) + ∑b∈D\∆ sF (x, b) if a 6= ∗ and a ∈ ∆ ;
0 if a /∈ ∆ .

(5.30)

As before in section 5.4.5, we define the actual weight wF (σ, x) = ωF (x, σ (x) , AF (σ, x)).
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Remark 5.32. Noticeable values of ωF:

ωF (x, 0, {0}) = ωF (x, 1, {1}) = sF (x, 0) + sF (x, 1) + sF (x, ∗) = 1 ;

ωF (x, 0, {0, ∗}) = ωF (x, 1, {1, ∗}) = sF (x, 0) + sF (x, 1) ;

ωF (x, a, {0, 1, ∗}) = sF (x, a) ;

ωF (x, ∗,∆) = sF (x, ∗) if ∗ ∈ ∆ .

Remark 5.33. ωF is almost unitary, since for all nonempty ∆ ⊆ D, ∆ 6= {∗}, ∆ 6= {0, 1},
∑a∈∆ ω (x, a,∆) = 1; {0, 1} cannot be a clique in this model of validity, because if both 0 and 1
are allowed, so is ∗. However {∗} can be a clique, and in this case ω (x, ∗, {∗}) = sF (x, ∗).

Our system can be seen as a split of 1− s∗ (x) into sF (x, 0) and sF (x, 1) (instead of just s0 (x)
for Maneva) in the case when σ (x) 6= ∗ and AF (σ, x) = {0, 1, ∗}; thus our weights are smaller
than Maneva’s, though we are able to insure that they are correct.

This system is different from the system seeds+dispatchers, because here a fixed variable at
value ∗ is given a weight of sF (x, ∗), whereas dispatchers would give it a weight of 1. However
we are able to use our Weight Conservation Theorem, using the following decomposers:

δF,σ,x,a =











sF (x, a) if

{

σ (x) = a

or (σ (x) 6= ∗ and a /∈ AF (σ, x))
;

0 otherwise .

(5.31)

We must now prove that the conditions of our Weight Conservation Theorem are satisfied:
wF is decomposable family (δF,σ,x,a) and (TF, g) covers UF.

Lemma 5.34. wF is decomposable by family (δF,σ,x,a).

Proof. By definitions:

1. if σ (x) = ∗: ∑a∈D δF,σ,x,a = ∑a∈D sF (x, a) 1a=σ(x) = sF (x, σ (x)) = wF (σ, x);

2. if σ (x) 6= ∗:

∑
a∈D

δF,σ,x,a = ∑
a∈D

sF (x, a)
(

1a=σ(x) + 1a/∈AF(σ,x)

)

= sF (x, σ (x)) + ∑
b/∈AF(σ,x)

sF (x, b)

= wF (σ, x) .

Lemma 5.35. Let v be a valuation and g be any connected component of the network of valid valuations
S (F) containing a boolean solution. Then there exists a valid valuation σ ∈ g such that UF (v) =
TF,σ→v.

Proof. Let us take any v ∈ DX and a boolean solution σ0 ∈ g. At the beginning we put σ = σ0.
Consider the following procedure:

– If there is a variable x ∈ X such that σ (x) 6= v (x) and σx←v(x) remains a valid valuation,
then change σ to σx←v(x).
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We iterate this procedure till there is no variable x ∈ X such that σ (x) 6= v (x) and σx←v(x)
remains a valid valuation. This eventually happens because at each step we make a move
towards v, and X is finite. So in the end, each variable in σ has either its initial boolean value in
σ0 or the value given by v. In other words, for any x ∈ X, either σ (x) = v (x) or (σ (x) 6= ∗ and
v (x) /∈ AF (σ, x)). Thus by equation 5.31, δF,σ,x,v(x) = sF (x, v (x)), which in turn by definitions
5.4 and 5.6 yields TF,σ→v = UF (v). Moreover, by construction, the ending σ is also in g.

Corollary 5.36. Let g be any connected component of the network of valid valuations S (F) containing
a boolean solution. Then (TF, g) covers UF.

Thus our weighting system obeys the Weight Conservation Theorem, and we can conclude
that γ (F) = WF (S (F)) ≥WF (g) ≥ 1 and state the following theorem:

Theorem 5.37. wF as defined in equation 5.30 yields γ (F) ≥ 1 whenever F admits a boolean solution.

Remark. We cannot apply theorem 5.31 because there is no closure by renaming; namely {0, 1}
cannot be a clique (if both 0 and 1 are allowed, so is ∗), whereas {0, ∗} and {1, ∗} can.

Note that in the particular case where for all x ∈ X, sF (x, 0) = 0, sF (x, 1) = 1 and
sF (x, ∗) = 0, we count what Dubois & Boufkhad - 1997 [DB97] call Negatively Prime Solutions
(NPSs). Moreover, as soon as sF (x, ∗) = 0, this weighting can be seen as seeds+dispatchers on
a boolean domain (so this weighting is homogeneous).

We used theweighting defined in equation 5.30 to compute an upper bound of the threshold
of random 3-SAT: taking seeds independent of F and x, we obtained the best estimation when
sF (x, ∗) = 0, see section 5.7.1 below. We conjecture that even if one takes seeds dependent on
F or x, the best choice of sF (x, ∗) to estimate boolean unsatisfiability remains indeed 0. The
reason why we think so, is that, as described in remark 5.33, ωF is almost unitary, except for
clique {∗}, in which case ωF (x, ∗, {∗}) = sF (x, ∗).

5.7.1 Calculation of the First Moment in this Framework

Notations.

X: total weight of valid partial assignments

α∗: proportion of variables at value ∗ (they get a weight of ω∗);

αi,0: proportion of invertible variables at value 0 (they get a weight of ω0);

αi,1: proportion of invertible variables at value 1 (they get a weight of ω1);

αs: proportion of starrable but non-invertible variables (they get a weight of ω0 + ω1);

αc: proportion of non-starrable variables (they get a weight of 1);

β1: proportion of clauses making a (true) variable non-starrable (i.e. the clauses of type TFF);

β2: proportion of clauses making a (true) starrable variable non-invertible (i.e. some of the
clauses of type TF*);

β3: proportion of other clauses.

Expression of the first moment.

The first moment of X can be split up into the following factors: total number of assign-
ments and probability for an assignment to be a solution.

1. total number of assignments:



74 CHAPTER 5. WEIGHTING AND ORDERING SOLUTIONS

a) choose subsets of the different types of variables: ( n
α∗n,αi,0n,αi,1n,αsn,αcn

);

b) choose 0 or 1 for not yet assigned variables: 2(αs+αc)n;

2. weighting: we put a weight of ωα∗n∗ ω
αi,0n
0 ω

αi,1n
1 (ω0 + ω1)

αsn;

3. probability for an assignment to be a solution: quotient of the number of satisfied formu-
las by the total number of formulas:

a) number of satisfied formulas:

i. we give each clause its type: ( cn
β1cn,β2cn,β3cn

);

ii. we choose in each clause of type β1 which variable is made non starrable:
S (β1cn, αcn) (αcn)!;

iii. we draw 2 false literals for each of these clauses:Ĉ (α∗)
β1cn;

iv. we choose in each clause of type β2 which starrable variable is made non invert-
ible: S (β2cn, αsn) (αsn)!;

v. we draw 1 false and 1 starred literals for each of these clauses : P̂ (α∗)
β2cn;

vi. we draw all other literals: Û (α∗, αs)
β3cn;

b) total number of formulas:
(

8(n3)
)cn.

We denote by P the set of all families of non-negative numbers (α∗, αi,0, αi,1, αs, αc, β1, β2, β3)
satisfying the following constraints:

α∗ + αi,0 + αi,1 + αs + αc = 1 ;

β1 + β2 + β3 = 1 .

Note that P is convex (by linearity of constraints). We denote by I (n) the intersection of P
with the multiples of 1

n ; we get the following expression of the first moment:

EX = ∑
(α∗,αi,0,αi,1,αs,αc,β1,β2,β3)∈I(n)

T1 (n)

where

T1 (n) =

(

n

α∗n, αi,0n, αi,1n, αsn, αcn

)

2(αs+αc)nωα∗n∗ ω
αi,0n
0 ω

αi,1n
1 (ω0 + ω1)

αsn

·
(

cn

β1cn, β2cn, β3cn

)

S (β1cn, αcn) (αcn)!S (β2cn, αsn) (αsn)!

· Ĉ (α∗)
β1cn P̂ (α∗)

β2cn Û (α∗, αs)
β3cn

(

8(n3)
)cn .

We get rid of multinomials thanks to inequalities B.2 and of Stirling numbers thanks to
Temme’s estimates (see appendix B.2), so T1 (n) ≤ poly (n) Fn1 where
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F1 = α−α∗∗ α
−αi,0
i,0 α

−αi,1
i,1 α−αs

s α−αc
c 2αs+αcωα∗∗ ω

αi,0
0 ω

αi,1
1 (ω0 + ω1)

αs

·
(

β
−β1
1 β

−β2
2 β

−β3
3

)c
(ex − 1)αc

(

β1c

ex

)β1c

(ey − 1)αs

(

β2c

ey

)β2c

·
(

6
8

)c

C (α∗)
β1c P (α∗)

β2c U (α∗, αs)
β3c

with x and y defined as the positive solutions to the following equations:

αcx

β1c
= 1− e−x ;

αsy

β2c
= 1− e−y .

Since I (n) consists of a variable which can take at most n + 1 values (as a multiple of 1
n

ranging between 0 and 1), there is a polynomial poly1 (n) such that

EX ≤ poly1 (n)
(

max
δ∈I(n)

F1

)n

.

What are the expressions of Ĉ, P̂ and Û?

1. for Ĉ, just choose 2 false literals;

2. for P̂, just choose 1 false and 1 starred literals;

3. for Û, it is a little trickier: we remove from all possibilities clauses of the following types:
FFF, FF*, TFF, TF* with T among 1− α∗ − αc and F not among 1− α∗ − αc, and TF* with
both T and F among 1− α∗ − αc:

Ĉ (α∗) =

(

(1− α∗) n
2

)

;

P̂ (α∗) = 2α∗ (1− α∗) n2 ;

Û (α∗, αs) = 8
(

n

3

)

−
(

(1− α∗) n
3

)

− 2α∗n
(

(1− α∗) n
2

)

− 3
(

(1− α∗) n
3

)

−2α∗ (1− α∗ − αc) αcn
3 − 4α∗n

(

(1− α∗ − αc) n

2

)

.

What are the expressions of C, P and U?

C (α∗) =
(1− α∗)

2

2
P (α∗) = 2α∗ (1− α∗)

U (α∗, αs) =
8
6
− (1− α∗)

3

6
− 2α∗

(1− α∗)
2

2
− 3

(1− α∗)
3

6

−2α∗ (1− α∗ − αc) αc − 4α∗
(1− α∗ − αc)

2

2

i.e., after simplifications:
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Figure 5.7: Here is a plot of ln F1 with respect to ω∗ for 3 families of solutions canceling out the
derivative of ln F1 and satisfying the constraints, at c = 4.643. We can see here that we cannot
get a better upper bound than 4.643.

C (α∗) =
(1− α∗)

2

2
;

P (α∗) = 2α∗ (1− α∗) ;

U (α∗, αs) =
4
3
− 2 (1− α∗)

3

3
− α∗ (1− α∗) (3− 3α∗ − 2αc) .

Maximization.

– if ω∗ = 0, which amounts to taking the binary domain D = {0, 1}, any choice of ω0
will yield an homogeneous weighting, and theorem 5.31 tells us that weightings and or-
derings are equivalent on average. In this case they correspond to the Negatively Prime
Solutions introduced in section 3.2.4. Thus we are precisely counting NPSs, and the criti-
cal c is c = 4.643;

– if ω∗ = 1, then the all-star assignment has a weight of 1 and the critical c is c = +∞;
– otherwise, numerical calculations reveal that the best critical c we can get is c = 4.643,
obtained for ω∗ = 0.0003, as depicted on figure 5.7.

5.7.2 Calculation of the First Moment with Restricted Validity

Here we consider partial assignment to be valid when there are no clauses of type FFF, FF*,
F** or ***. Here starrable is equivalent to invertible. Why is it interesting to do this calculation?
Because we saw just above in section 5.7.1 that in this framework the best ω∗ is ω∗ = 0 (NPSs)
whereas with restricted validity FFF+FF*+F**+***, we saw in section 4.3.3 that the best ω∗ is
ω∗ = 1 (prime implicants). Se we are doing here a combination of NPSs and prime implicants.

Notations.

X: total weight of valid partial assignments

α∗: proportion of variables at value ∗ (they get a weight of ω∗);

αi,0: proportion of invertible variables at value 0 (they get a weight of ω0);

αi,1: proportion of invertible variables at value 1 (they get a weight of ω1);
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αc: proportion of non-starrable variables (they get a weight of 1);

β1: proportion of clauses making a (true) variable non-starrable (i.e. the clauses of type TFF,
TF* or T**);

β2: proportion of other clauses.

Expression of the first moment.

The first moment of X can be split up into the following factors: total number of assign-
ments and probability for an assignment to be a solution.

1. total number of assignments:

a) choose subsets of the different types of variables: ( n
α∗n,αi,0n,αi,1n,αcn

);

b) choose 0 or 1 for not yet assigned variables: 2αcn;

2. weighting: we put a weight of ωα∗n∗ ω
αi,0n
0 ω

αi,1n
1 ;

3. probability for an assignment to be a solution: quotient of the number of satisfied formu-
las by the total number of formulas:

a) number of satisfied formulas:

i. we give each clause its type: ( cn
β1cn,β2cn

);

ii. we choose in each clause of type β1 which variable is made non-starrable:
S (β1cn, αcn) (αcn)!;

iii. we draw 2 false literals for each of these clauses:Ĉ (α∗)
β1cn;

iv. we draw all other literals: Û (α∗)
β2cn;

b) total number of formulas:
(

8(n3)
)cn.

We denote by P the set of all families of non-negative numbers (α∗, αi,0, αi,1, αc, β1, β2) satisfy-
ing the following constraints:

α∗ + αi,0 + αi,1 + αc = 1 ;

β1 + β2 = 1 .

Note that P is convex (by linearity of constraints). We denote by I (n) the intersection of P
with the multiples of 1

n ; we get the following expression of the first moment:

EX = ∑
(α∗,αi,0,αi,1,αc,β1,β2)∈I(n)

T1 (n)

where

T1 (n) =

(

n

α∗n, αi,0n, αi,1n, αcn

)

2αcnωα∗n∗ ω
αi,0n
0 ω

αi,1n
1

·
(

cn

β1cn, β2cn

)

S (β1cn, αcn) (αcn)!

· Ĉ (α∗)
β1cn Û (α∗)

β2cn

(

8(n3)
)cn .
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We get rid of multinomials thanks to inequalities B.2 and of Stirling numbers thanks to
Temme’s estimates (see appendix B.2), so T1 (n) ≤ poly (n) Fn1 where

F1 = α−α∗∗ α
−αi,0
i,0 α

−αi,1
i,1 α−αc

c 2αcωα∗∗ ω
αi,0
0 ω

αi,1
1

·
(

β
−β1
1 β

−β2
2

)c
(ex − 1)αc

(

β1c

ex

)β1c

·
(

6
8

)c

C (α∗)
β1c U (α∗)

β2c

with x defined as the positive solution to the following equation:

αcx

β1c
= 1− e−x .

Since I (n) consists of a variable which can take at most n + 1 values (as a multiple of 1
n

ranging between 0 and 1), there is a polynomial poly1 (n) such that

EX ≤ poly1 (n)
(

max
δ∈I(n)

F1

)n

.

What are the expressions of Ĉ, P̂ and Û?

1. for Ĉ, choose 2 false literals or (1 false and 1 starred literals) or 2 starred literals;

2. for Û, remove from all possibilities clauses of the following types: FFF, FF*, F**, ***, TFF,
TF* and T**:

Ĉ (α∗) =

(

(1− α∗) n
2

)

+ 2α∗ (1− α∗) n2 + 4
(

α∗n
2

)

;

Û (α∗) = 8
(

n

3

)

−
(

(1− α∗) n
3

)

− 2α∗n
(

(1− α∗) n
2

)

− 4
(

α∗n
2

)

(1− α∗) n− 8
(

α∗n
3

)

−3
(

(1− α∗) n
3

)

− 4
(

(1− α∗) n
2

)

α∗n− 4 (1− α∗) n
(

α∗n
2

)

.

What are the expressions of C, P and U?

C (α∗) =
(1− α∗)

2

2
+ 2α∗ (1− α∗) + 4

α2
∗
2

U (α∗) =
8
6
− (1− α∗)

3

6
− 2α∗

(1− α∗)
2

2
− 4

α2
∗
2

(1− α∗)− 8
α3
∗
6

−3 (1− α∗)
3

6
− 4

(1− α∗)
2

2
α∗ − 4 (1− α∗)

α2
∗
2

i.e., after simplifications:

C (α∗) =
(1− α∗)

2

2
+ 2α∗ ;

U (α∗) =
4
3
− 2 (1− α∗)

3

3
− 3α∗ (1− α∗)

2 − 4α2
∗ (1− α∗)−

4α3
∗

3
.
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Figure 5.8: Here is a plot of ln F1 with respect to ω∗ for a family of solutions canceling out the
derivative of ln F1 and satisfying the constraints, at c = 4.643.

Maximization.

– if ω∗ = 0, which amounts to taking the binary domain D = {0, 1}, any choice of ω0
will yield an homogeneous weighting, and theorem 5.31 tells us that weightings and
orderings are equivalent on average. In this case they correspond to the negatively prime
solutions. Since we are precisely counting NPSs, and the critical c is c = 4.643;

– if ω∗ = 1, then we count prime implicants, and the critical c is c = 4.883;
– otherwise, numerical calculations reveal that the best critical c we can get is c = 4.643,
obtained for ω∗ = 0.001, as depicted on figure 5.8.

5.8 Conclusion and Perspectives

Through our Weight Conservation Theorem we gave sufficient conditions to have a correct
weighting on solutions of CSPs. We were able to apply it to two different weightings: the
first one, which is very general, was built from seeds and dispatchers; the second one was
specifically designed to improve onManeva et al.’s weighting. We also showed an equivalence
between weighting and ordering over a set closed under renaming when they are instance
independent. On the contrary, when weighting and ordering may depend on instances, we
showed that given an homogeneous weighting it is possible to find an ordering which is not
worse, but what happens for heterogeneous weightings? is it always possible to find for a
given weighting a corresponding ordering?

Other perspectives include: is it possible to define a correct non-uniform weighting? how
to generalize boolean partial valuations to general CSPs? how to extend our weighting when
considering neighbors of neighbors, or more generally neighbors at bounded distance?





Chapter 6

Distributional Models and Non-Uniformity

SINCE we were not able in the previous chapters to get lower upper bounds than 4.643
on the threshold of 3-SAT through the First Moment Method, despite lots of efforts
to tune the weights, we are going now to change models! Namely it turns out that
there is a framework which is better (but trickier to handle) than drawing models

(introduced in section (1.1.3)): distributional models (introduced in section (1.1.4)). Indeed up-
per bounds obtained in distributional models are significantly lower than in drawing models
(see table (6.2) for a comparison). Moreover distributional models allow us to make more pre-
cise tunings on the types of variables present in the formulas and consequently to define more
precise weights.

We obtain some new upper bounds in a variety of models of 3-CNF formulas (which we in-
troduce later in section 6.1.1) thanks to a new technique for selecting solutions. In the particular
case of the standard model we get an upper bound of 4.500. We must mention here the work
of Díaz, Kirousis, Mitsche & Pérez-Giménez - 2009 [DKMPG09]; gathering the technique of
Dubois, Boufkhad & Mandler [DBM00, DBM03] with a pure literal elimination and a filtering
on the typicality of clauses, they got an upper bound of 4.490. The fact is that our new tech-
nique is quite compatible with the pure literal elimination and the filtering on the typicality of
clauses, but we only aim at emphasizing the positive effect of our new technique for selecting
solutions, by comparing it to previous analogous techniques in several models of formulas.

The best implementations of the first moment method approximating the threshold of 3-
SAT use local relationships between solutions, which involves solutions agreeing on the values
of all variables but a constant number of them, in general one variable (see Dubois & Boufkhad
- 1997 [DB97] or Kirousis, Kranakis & Krizanc - 1997 [KKK97]) or two (see Kirousis, Kranakis,
Krizanc & Stamatiou - 1998 [KKKS98]).

We shall consider the set of solutions with local relationship as a graph which nodes are the
solutions and an edge exists between two solutions if and only if both solutions agree on the
values of all variables except one. Each edge will be labeled by the variable differing between
both solutions (the so-called free variable).

For example the formula

Φ =
{

a ∨ b ∨ c, a ∨ c ∨ d, a ∨ c ∨ d, a ∨ b ∨ d, b ∨ c ∨ d, a ∨ b ∨ d, a ∨ b ∨ c
}

has 7 solutions that can be represented by the non-oriented Hamming graph of figure 6.1.

81
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0010 0100 1000

0110 1100 1001
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a c

Figure 6.1: Hamming graph of
solutions for formula Φ. The la-
bel of an edge is the name of the
variable differing between both
solutions.

The techniques used so far amount to making an acyclic orientation of the above graph and
to counting only the minimal solutions (those that do not have outgoing edges). The least is
the number of minimal solutions the best is the upper bound obtained. In general, any graph
can be oriented so as to obtain only one minimal element for every connected component (e.g.
by a depth first search), but this orientation is obtained thanks to a sophisticated algorithm that
is aware of the whole graph while in our case, the orientation must be decided locally.

The very first orientation introduced by Dubois & Boufkhad - 1997 [DB97] and Kirousis,
Kranakis, Krizanc - 1997 [KKK97] consisted in orienting an edge from the solution where the
label variable is assigned 0 to the one where it is 1 regardless of which variable is considered.
Later, in the works of Dubois, Boufkhad & Mandler [DBM03] and Díaz, Kirousis, Mitsche
& Pérez-Giménez - 2009 [DKMPG09], an edge is oriented towards the value that makes true
the most literals and this can be known thanks to the syntactic property of the number of
occurrences of each variable in the formula. In both these types of orientation, the edges having
the same labels are oriented the same way (e.g. from 0 to 1) anywhere in the graph. So we call
such orientations uniform (see Figure 6.2).

The orientation that we use in this paper is less rigid: two edges labeled with the same
variable can be oriented differently depending on the solutions involved (that is what we call
non-uniform orientation, see Figure 6.3). Indeed we keep track of a set of 5 numbers associated
with each variable and use it to discriminate among neighboring solutions. These 5 numbers
provide information on the repartition of true and false occurrences of each variable in each
type of clauses (clauses having 1, 2 or 3 true literals). Our intuition is that we should select
solutions in which the least occurrences of true literals are critical. The less a clause has true
literals, the more its true literals are critical. Such a property is by nature non-uniform.

We develop our technique in a general framework allowing us to apply it to a wide variety
of 3-CNF models of formulas defined by their distributions; thus we derive new bounds for
some known models of formulas (see Boufkhad, Dubois, Interian & Selman - 2005 [BDIS05]).
The existence of other non-uniform orientations that may give a smaller number of minimal
elements and then better bounds remains to be investigated.

In section 6.1 we present our framework and four different models of formulas; in section
6.2 we show how we make our non-uniform selection of solutions, and sum up the bounds we
obtain for eachmodel. We give details on the calculation of the first moment and its constraints
in section 6.3, as well as some hints on what led us to the weights we took for our non-uniform
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Figure 6.2: Uniform orientation.
For example b has 2 positive oc-
currences and 3 negative ones,
so every edge labeled by b is ori-
ented from 1 to 0. Minimal solu-
tions are in gray.
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Figure 6.3: Non-uniform orien-
tation, obtained in this exam-
ple by minimizing 4β1 + 2β2 +
β3 (see definition in section 6.1).
Both edges labeled by b are ori-
ented differently (i.e. from 0 to 1
as well as from 1 to 0). Minimal
solutions are in gray.

selection.
Our calculations lead us to as classical problem of constrained maximization, and we solve

it classically as well, through the Lagrange multipliers method (appendice A.1) and following
the approach of [DKMPG09]. Thus we must prove that the objective function does not max-
imize at the boundary of the polytope (appendice A.2). Moreover we check that the solution
we get is indeed a global maximum by a sweep over the polytope (appendice A.3).

The material contained in this chapter was written in collaboration with Yacine Boufkhad
and is published as [BH10] and [HB10].

6.1 Definitions and Notations

6.1.1 Overview of Models

StandardModel: see section (1.1.4). We recall equation (1.1):

dp,q =

(

p+ q

p

)

e−3c

(p+ q)!

(

3c
2

)p+q

.

By analogy with the standard model we now define several other models where we force an
equilibrium between variables occurrences and/or signs. These can be seen as regular variants
of 3-SAT (just like regular graphs). The equilibrium cannot be perfect because of parity or
truncation reasons, but we circumvent it as follows. Of course one can check that all of these
distributions sum up to 1 and have an average of 3c.
Model with Almost Balanced Signs: every variable appear with (almost) the same number of

positive and negative occurrences; we define dp,q by

dp,p =
e−3c (3c)2p

(2p)!

dp+1,p = dp,p+1 =
1
2
e−3c (3c)2p+1

(2p+ 1)!
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and zero elsewhere.

Model with Almost Balanced Occurrences: every variable appearwith (almost) the same num-
ber occurrences; let t∗ = ⌊3c⌋ and r∗ = 3c− t∗; we define dp,q by

dp,t∗−p = (1− r∗)
(t
∗
p )

2t∗

dp,t∗+1−p = r∗
(t
∗+1
p )

2t∗+1

and zero elsewhere.

Model with Almost Balanced Signs and Occurrences: every variable appearwith (almost) the
same number occurrences and have strictly the same number of positive as negative oc-
currences (this model was introduced and examined by Boufkhad, Dubois, Interian &
Selman - 2005 [BDIS05]); let p∗ = ⌊ 3c2 ⌋ and r∗ = 3c

2 − p∗. We define dp,q by

dp∗,p∗ = 1− r∗

dp∗+1,p∗+1 = r∗

and zero elsewhere.

6.1.2 Types of Clauses and Variables

Our selection method is based on different types of clauses: given any assignment, we call
clause of type t a clause having t true literals under this assignment, and βt the proportion of
clauses of type t.

Moreover we want to have some control on the number of occurrences of variables in the
different types of clauses; to do so we need 6 numbers per variable, so we say that a variable is
of type (i, j, k, l,m, v) if it is assigned v and has:

i true occurrences in clauses of type 1;

j true occurrences in clauses of type 2;

k true occurrences in clauses of type 3;

l false occurrences in clauses of type 1;

m false occurrences in clauses of type 2;

i l

j m

k β3

β2

β1

true

f alse

Remark 6.1. For each variable we have i+ j+ k = p and l +m = q or vice versa (according to
the value v assigned to the variable).

Then we put some weights onto the solutions as follows: in a given solution each variable
of type (i, j, k, l,m, v) receives a weight ωi,j,k,l,m,v. The weight of a solution will be the product of
the weights of all variables. It turns out that in the end we shall take binary weights, yielding
in fact an orientation between solutions. We explain the choice of the weights in sections 6.2
and 6.3.4. Then we apply the first moment method to the random variable X equal to the sum
of the weights of the solutions.
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6.2 Selection of Solutions

6.2.1 Construction of a Correct Weighting Scheme

Of course we must put some constraints onto the weights in order that the weighting
scheme can be correct for the first moment method: namely the sum of the weights of the
solutions of a satisfiable formula must be at least 1. However the constraints we choose here
might not be necessary for the first moment method to hold.

Let us recall that given a solution, a variable is called freewhen the assignment obtained by
inverting its value (0/1) remains a solution. Thus in our framework, a variable is free iff its i
number is 0. How does the tuple (0, j, k, l,m, v) for a free variable x behave when the value v is
inverted to 1− v?

i (x) ← 0

j (x) ↔ l (x)

k (x) ↔ m (x)

v (x) ← 1− v (x)

1. the first constraint we put is that ωi,j,k,l,m,v = 1 as soon as i ≥ 1; that is, we put significant
weights only onto free variables. The reason for this is that free variables allow to move
between solutions.

2. the second constraint is that

ω0,j,k,l,m,v+ ω0,l,m,j,k,1−v = 1 ; (6.1)

that is, the sum of the weights of a free variable in a couple of solutions differing only on
that variable is 1. We impose this condition by analogy with the conditions on weights
given by Ardila & Maneva - 2009 [AM09] and in chapter (5).

As suggested by the analysis given in section 6.3.4, we shall take ω0,j,k,l,m,v = 1P(j,k,l,m,v) for a
certain predicate P (j, k, l,m, v) linked with the sign of α1ρj,l + α3ρk,m (where α1 and α3 are any
real constants and ρ is an operator defined as ρa,b = a− b).

The fact that we imposed ω0,j,k,l,m,v + ω0,l,m,j,k,1−v = 1 tells us that given a solution and a
free variable x at the value v, the predicate P is satisfied by x at the value v or (exclusively) by
x at the value 1− v. Thus we are able to define an orientation between neighboring solutions.

Let us say that variable x is obedient when P is satisfied. We put an arc between 2 solutions
differing only on 1 (free) variable x from the solution Sd (where x is disobedient) to the solution
So (where x is obedient), and we call that relation Sd > So. The notation > is not randomly
chosen.

Namely our weighting scheme counts 1 for a solution when it does not have any disobedi-
ent free variables, and 0 otherwise; but what can ensure that whenever there is a solution, there
is also a solution where all free variables are obedient? It suffices that the relation > is circuit-
free. Then the transitive closure of > is an order, and we are precisely counting the minimal
solutions in that order. Minimal solutions exist because the set of all solutions is finite. So let
us see how we can make the relation > circuit-free.

6.2.1.1 Recapitulation of ExistingMethods

All Solutions: This method consists in computing the first moment on all solutions:

P (j, k, l,m, v) ≡ 1 .
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Negatively Prime Solutions (NPS): This method consists in counting only solutions which
free variables are assigned 1. That is

P (j, k, l,m, v) ≡ v > 0 .

This method was introduced by Dubois & Boufkhad - 1997 [DB97].

NPS with Imbalance: This method was introduced by Dubois, Boufkhad & Mandler - 2000
[DBM00] and combined to some other ingredients by Díaz, Kirousis, Mitsche & Pérez-
Giménez - 2009 [DKMPG09]. This method consists in allowing free variables to take only
a value such that the number of true occurrences is larger than the number of negative
occurrences of this variable (and in case of equality, ties are broken in favor of the value
1). In other words

P (j, k, l,m, v) ≡
(

ρj,l + ρk,m, v
)

>lex (0, 0)

where >lex denotes the lexicographical order.

6.2.1.2 Our Method

May we choose arbitrary real coefficients α1 and α3 in the expression of α1ρj,l + α3ρk,m in
order that the first moment method should hold? It turns out that it is the case, and here is a
proof of it.

We make the following observation: how does the population of the 3 different types of
clauses evolve when a free variable x is flipped?

β1cn + = ρj,l (x)

β2cn + =
(

ρk,m − ρj,l

)

(x)

β3cn + = −ρk,m (x)

Thus α1ρj,l + α3ρk,m is the variation of α1β1− α3β3; so we may define our predicate P in the

following way: P (j, k, l,m, v) ≡
(

α1ρj,l + α3ρk,m, v
)

>lex (0, 0); thanks to v we break ties when
α1ρj,l + α3ρk,m = 0, so that the underlying relation > between solutions is circuit-free: namely
going from Sd to So when Sd > So strictly increases (−α1β1 + α3β3, v) for >lex.

Moreover the exclusion between P (j, k, l,m, v) and P (l,m, j, k, 1− v) is satisfied, which
means that whenever there is a solution with a disobedient free variable, it suffices to flip
the value of this variable so that it becomes obedient.

We investigated the best ratio between α1 and α3 by numerical experiments.

6.2.2 Summary of Results

As one can see in table 6.1, our method yields in all models a slight improvement on the
bounds obtained by former methods. Note that for some models there is a range of values for
α which give the same upper bound.

In themodel where signs aswell as occurrences are balanced, themethod of NPS+imbalance
is of course the same as the method of NPS, whereas our method is somewhat better than the
method of NPS.

The bound we obtain in the standard model is 4.500; this is not better than the bound of
4.490 obtained by Díaz, Kirousis, Mitsche & Pérez-Giménez - 2009 [DKMPG09]. Their cal-
culation adds 2 ingredients to the method of Dubois, Boufkhad & Mandler - 2003 [DBM03]:
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Table 6.1: Upper bounds obtained in various distributional models.

model standard almost
balanced
signs

almost
balanced

occurrences

almost
balanced
signs and

occurrences
all solutions 5.040 3.858 5.046 3.783

NPS
v > 0

4.552 3.521 4.662 3.548

NPS+imbalance
(

ρj,l + ρk,m, v
)

>

(0, 0)

4.506 3.514 4.628 3.548

our method
(

αρj,l + ρk,m, v
)

>

(0, 0)

4.500 3.509 4.623 3.546

our α α = 2.00 1.01 ≤ α ≤
1.16

2.01 ≤ α ≤
2.24

α ≥ 1.01

typicality of clauses and elimination of pure literals. These 2 ingredients might be combined
to our approach to improve on the 4.490, but this would involve too complicated calculations
with respect to the expected improvement. However in models where signs are balanced it is
irrelevant to eliminate pure literals.

6.3 The First Moment Method

6.3.1 Types of Variables

We split the set of variables into several sets and subsets of variables. In order to be able
to match the original random 3-CNF model of formulas where all literals are drawn indepen-
dently, we should consider p and q to range in N . For convenience of our forthcoming maxi-
mization, we only take into account bounded values of p and q. So we are going to consider 2
kinds of variables, according to their numbers of occurrences. We follow the notations of Díaz,
Kirousis, Mitsche & Pérez-Giménez - 2009 [DKMPG09]. We denote by M some integer whose
value will be determined according to the required accuracy of the calculations; in practice we
shall take M = 21. M enables us to define 2 kinds of variables:

1. the set of light variables, that is variables which indices are in the set

L =
{

(p, q) ∈ N2, p ≤ M ∧ q ≤ M ∧ dp,q > 0
}

; (6.2)

they are the most important variables since almost all variables are light in the models
we consider; we call δp,q the proportion of light variables having p positive occurrences,
q negative occurrences, and assigned 1. As a further refinement, we call πi,j,k,l,m,v the
proportion of variables of type (i, j, k, l,m, v) whose corresponding weight ωi,j,k,l,m,v is
nonzero, and omit the other ones because we shall need all active πi,j,k,l,m,v to be nonzero.
To connect πi,j,k,l,m,v’s with δp,q’s we introduce the following set of tuples of integers:
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Qp,q =
{

(i, j, k, l,m) ∈ N5, i+ j+ k = p ∧ l +m = q
}

; thus we have

∑
(i,j,k,l,m)∈Qp,q

πi,j,k,l,m,1 = δp,q ; (6.3)

∑
(i,j,k,l,m)∈Qq,p

πi,j,k,l,m,0 = dp,q − δp,q . (6.4)

Note that equality 6.4 involves Qq,p whereas equality 6.3 involves Qp,q.

2. the set of heavy variables, that is all other variables; their indices are thus in the set

H =
{

(p, q) ∈ N2, p > M ∨ q > M ∨ dp,q = 0
}

; (6.5)

we weaken the notion of satisfiability by considering that heavy variables are always
satisfied, regardless of their signs and values. Doing so is harmless for the validity of
the first moment method because we can only increase the number of solutions. In other
words we are going to consider heavy variables as indistinguishable members of a tote
bag. We call τ the global scaled number of heavy variables: τ = ∑(p,q)∈H dp,q.

We also need to distinguish some types of occurrences of heavy variables. We call H the global
scaled number of occurrences of heavy variables:

H = ∑
(p,q)∈H

(p+ q) dp,q

= 3c− ∑
(p,q)∈L

(p+ q) dp,q .

According to the types of clauses where occurrences appear, H is divided into Ht’s, where Ht

is the scaled number of occurrences of heavy variables in clauses of type t.
We are now ready to write down the expression of the first moment of X, the weight of all

solutions.

6.3.2 Expression of the First Moment and its Constraints

We recall that all occurrences of literals are drawn according to the distribution dp,q (see
section 6.1). Thus the sample space we consider consists in the (3cn)! permutations of labeled
occurrences of literals, and our parameters are n, c, dt,p, τ, H and ωi,j,k,l,m,v’s (although we must
carefully choose the weights ωi,j,k,l,m,v, as explained below in section 6.3.4).

All other quantities: βt, Ht, δt,p and πi,j,k,l,m,v are variables, and the first moment of X can be
split up into a big sum over all variables of the product of the following factors depending on
variables: number of assignments, weight of an assignment and probability for an assignment
to be a solution.

1. number of assignments: each variable is assigned 0 or 1: 2τn ∏(p,q)∈L (
dp,qn
δp,qn

);

2. weight of an assignment: ∏(p,q)∈L∏(i,j,k,l,m)∈Qp,q
v∈{0,1}

ω
πi,j,k,l,m,vn

i,j,k,l,m,v ;

3. probability for an assignment to be a solution: quotient of the number of satisfied config-
urations by the total number of configurations:

a) number of satisfied configurations: a configuration can be seen as a set of bins filled
with occurrences of literals:
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i. each of the 3cn bins is first given a truth value:
there are ( cn

β1cn,β2cn,β3cn
)3(β1+β2)cn possibilities, and the following constraint ap-

pears:

β1 + β2 + β3 = 1 . (6.6)

ii. each light literal is given a tuple (i, j, k, l,m) consistently with dp,q and δp,q. This
gives a series of constraints:

∑
(i,j,k,l,m)∈Qp,q

πi,j,k,l,m,1+ ∑
(i,j,k,l,m)∈Qq,p

πi,j,k,l,m,0 = dp,q . (6.7)

Note that δp,q = ∑(i,j,k,l,m)∈Qp,q πi,j,k,l,m,1. Thus, given a family
(

πi,j,k,l,m,v

)

, there
are

∏
(p,q)∈L

(

δp,qn

. . .πi,j,k,l,m,1n . . .

)

(i,j,k,l,m)∈Qp,q

· ∏
(p,q)∈L

(
(

dp,q − δp,q
)

n

. . .πi,j,k,l,m,0n . . .

)

(i,j,k,l,m)∈Qq,p

possible allocations. Moreover the following constraints appear, so that all oc-
currences of literals can fit into the destined types of clauses:

∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q
v∈{0,1}

iπi,j,k,l,m,v+ H1 = β1c ; (6.8)

∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q
v∈{0,1}

jπi,j,k,l,m,v+ H2 = 2β2c ; (6.9)

∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q
v∈{0,1}

kπi,j,k,l,m,v+ H3 = 3β3c ; (6.10)

∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q
v∈{0,1}

lπi,j,k,l,m,v = 2β1c ; (6.11)

∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q
v∈{0,1}

mπi,j,k,l,m,v = β2c . (6.12)

iii. all occurrences of light variables are allocated to the 5 regions:

∏ (p,q)∈L
(i,j,k,l,m)∈Qp,q

v∈{0,1}

(

(i+j+k
i,j,k )(l+m

l,m )
)πi,j,k,l,m,vn

allocations are possible;

iv. all occurrences of heavy variables are allocated to the 3 satisfied regions, which
yields ( Hn

H1n,H2n,H3n
) possible allocations; and we must add the following con-

straint:

H1 + H2 + H3 = H . (6.13)
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v. all permutations of occurrences of literals are possible inside the 5 regions:
their number is (β1cn)! (2β2cn)! (3β3cn)! (2β1cn)! (β2cn)!;

b) total number of configurations: the occurrences of literals can be in any order: (3cn)!
permutations are possible.

We denote by P the set of all families ζ of non-negative numbers








(

πi,j,k,l,m,v

)

(p,q)∈L
(i,j,k,l,m)∈Qp,q

v∈{0,1}

, (H1,H2,H3) , (β1, β2, β3)









(6.14)

satisfying the above constraints; note that P is convex (by linearity of constraints). We denote
by I (n) the intersection of P with the multiples of 1

n ; we get the following expression of the
first moment: EX = ∑ζ∈I(n) T (n) where

T (n) = 2τn

(

Hn

H1n,H2n,H3n

)(

cn

β1cn, β2cn, β3cn

)

3(β1+β2)cn

· (β1cn)! (2β2cn)! (3β3cn)! (2β1cn)! (β2cn)!
(3cn)!

· ∏
(p,q)∈L

(

dp,qn

δp,qn

)

∏
(p,q)∈L

(

δp,qn

. . .πi,j,k,l,m,1n . . .

)

(i,j,k,l,m)∈Qp,q

· ∏
(p,q)∈L

(
(

dp,q − δp,q
)

n

. . .πi,j,k,l,m,0n . . .

)

(i,j,k,l,m)∈Qq,p

· ∏
(p,q)∈L

(i,j,k,l,m)∈Qp,q
v∈{0,1}

(

ωi,j,k,l,m,v

(

i+ j+ k

i, j, k

)(

l +m

l,m

))πi,j,k,l,m,vn

. (6.15)

We get rid of all factorials thanks to the following Stirling’s inequalities due to Batir - 2008

[Bat08]:
(

k
e

)k
√

2π
(

k+ 1
6

)

< k! <
(

k
e

)k
√

2π
(

k+
(

e2
2π − 1

))

.

The boundedness of the set L of light variables (and thus the boundedness of the sets Qp,q)
allows to write that T (n) ≤ poly1 (n) F

n where

F = 2τ HH

H
H1
1 HH2

2 H
H3
3

(

1
3
(2β1)

β1 (2β2)
β2 (3β3)

β3

)2c

∏
(p,q)∈L

d
dp,q
p,q ∏

(p,q)∈L
(i,j,k,l,m)∈Qp,q

v∈{0,1}



ωi,j,k,l,m,v

(i+j+k
i,j,k )(l+m

l,m )

πi,j,k,l,m,v





πi,j,k,l,m,v

. (6.16)

Once again, by the lightness property, I (n) consists of a bounded number of variables,
each of which can take at most n+ 1 values (as a multiple of 1

n ranging between 0 and 1). It
follows that the size of I (n) is bounded by a polynomial poly2 (n). And since I (n) ⊆ P , we
have EX ≤ poly2 (n) poly1 (n)

(

maxζ∈P F
)n.
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6.3.3 Maximization of ln F

This is the technical part of our work. We mainly use the same techniques as [DKMPG09].

1. In order to maximize ln F under our constraints, we use the standard Lagrange multipli-
ers technique. This is appendix A.1. The following equations come from the Lagrange
derivations and are important for our study:

πi,j,k,l,m,1 = ωi,j,k,l,m,1

(

i+ j+ k

i, j, k

)(

l +m

l,m

)

ri+j+k,l+mx
2i
1 x

j
2y

l
1y

2m
2 (6.17)

πi,j,k,l,m,0 = ωi,j,k,l,m,0

(

i+ j+ k

i, j, k

)(

l +m

l,m

)

rl+m,i+j+kx
2i
1 x

j
2y

l
1y

2m
2 (6.18)

x1, x2,y1 and y2 are Lagrange multipliers, that is positive numbers; moreover rp,q is de-
fined as follows:

rp,q =
dp,q

Ap,q
; (6.19)

Ap,q = ∑
(i,j,k,l,m)∈Qp,q

ωi,j,k,l,m,1

(

p

i, j, k

)(

q

l,m

)

x2i1 x
j
2y

l
1y

2m
2

+ ∑
(i,j,k,l,m)∈Qq,p

ωi,j,k,l,m,0

(

q

i, j, k

)(

p

l,m

)

x2i1 x
j
2y

l
1y

2m
2 . (6.20)

2. In order to justify the use of this technique we must show that the function ln F does not
maximize on the boundary of the polytope of constraints; to do so we show that starting
at a boundary point there is always a “good” direction inside the polytope which makes
ln F greater. This is appendix A.2.

3. Finally we must ensure that the solution we found by the Lagrange multiplier technique
is indeed a global maximum; to do so we make a sweep over different values of the
parameters βt; indeed when these βt are fixed the function ln F is strictly concave relative
to the remaining variables, thus easier to maximize. This is appendix A.3.

6.3.4 Minimization of Global Weight

Let us see how one can minimize F (or equivalently ln F) by a good choice of the weights.
The following reasoning is not rigorous; we only aim at giving some hints to explain the choice
of the weights we made in section 6.2.

Remember that F is given by equation 6.16. Wewant to minimize ln F by tuning the weights
ω0,j,k,l,m,v, so we are going to differentiate ln Fwith respect to an individual ω0,j,k,l,m,1. Of course
due to the constraints every variable depend on ω0,j,k,l,m,1 in the process of maximizing ln F
under these constraints. But we consider that the variations on all variables are negligible
except for π0,j,k,l,m,1 (because of equation A.10) and π0,l,m,j,k,0 (because of equations A.11 and
6.1), so we can write:

∂ (ln F)

∂ω0,j,k,l,m,1
≃ ∂ (ln F)

∂π0,j,k,l,m,1

∂π0,j,k,l,m,1

∂ω0,j,k,l,m,1
+

∂ (ln F)

∂π0,l,m,j,k,0

∂π0,l,m,j,k,0

∂ω0,j,k,l,m,1
. (6.21)

Using equations A.10, A.11 and 6.1 we find that:
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∂ (ln F)

∂ω0,j,k,l,m,1
≃ −

(

j+ k

j, k

)(

l +m

l,m

)

rj+k,l+mx
j
2y

l
1y

2m
2 ln

(

rj+k,l+mx
j
2y

l
1y

2m
2

)

+

(

j+ k

j, k

)(

l +m

l,m

)

rj+k,l+mx
l
2y

j
1y

2k
2 ln

(

rj+k,l+mx
l
2y

j
1y

2k
2

)

. (6.22)

Now due to equations A.13 and A.12 and numerical experiments we make the following
approximations:
rj+k,l+mx

j
2y

l
1y

2m
2 ≪ 1 and rj+k,l+mx

l
2y

j
1y

2k
2 ≪ 1. As the function x 7→ x ln (ax) is strictly decreas-

ing between 0 and 1
ea , we can infer the following property: ∂(ln F)

∂ω0,j,k,l,m,1
> 0 iff xl2y

j
1y

2k
2 < x

j
2y

l
1y

2m
2 ,

i.e.
(

y1
x2

)j−l (
y22
)k−m

< 1.

Now let us consider we are at the minimum point of ln F. If ∂ ln(F)
∂ω0,j,k,l,m,1

6= 0, then ω0,j,k,l,m,1

must be at the boundary, i.e. 0 or 1.
∂(ln F)

∂ω0,j,k,l,m,1
> 0 iff α1ρj,l + α3ρk,m < 0, where α1 = ln y1

x2
and α3 = ln

(

y22
)

. Thus:

1. if α1ρj,l + α3ρk,m < 0, then ω0,j,k,l,m,1 = 0;

2. if α1ρj,l + α3ρk,m > 0, then ω0,j,k,l,m,1 = 1;

3. if α1ρj,l + α3ρk,m = 0, nothing can be said about ω0,j,k,l,m,1.

What about ω0,j,k,l,m,0?

1. if α1ρj,l + α3ρk,m < 0, then α1ρl,j + α3ρm,k > 0, thus ω0,l,m,j,k,1 = 1, so ω0,j,k,l,m,0 = 0;

2. if α1ρj,l + α3ρk,m > 0, then by the same argument, ω0,j,k,l,m,0 = 1;

3. if α1ρj,l + α3ρk,m = 0, nothing can be said about ω0,j,k,l,m,0.

6.4 Conclusion

We hope that the new track we opened will help gain some more insight and some more
decimals in the quest of the 3-SAT threshold. In particular note that we required the relation
> between solutions to be circuit-free although this might not be necessary; indeed we only
used the fact that this relation had at least one minimal element. The same remark holds for
the constraints we put onto the weights of two neighboring solutions as introduced in equation
6.1, since this might be too strong. Thus there may be better orientations or weighting schemes
than ours.



Conclusion on the First Moment Method

We saw in chapter 3 that the First Moment Method can be used either through an appro-
priate selection of solutions of through an appropriate weighting of solutions. Moreover we
extensively used the weighting introduced by Maneva, Mossel & Wainwright [MMW07] onto
valid partial assignments, without any success. Even with the improvement we gave in section
5.7, we were not able to achieve a better upper bound than the one obtained by amere counting
of NPSs (see a recap in table 6.2). Moreover we were able to prove in section 5.5 that in some
particular cases weighting cannot be better than ordering. In fact we have no example where
weighting is better than ordering. So we have little hope in this direction.

With lots of efforts on distributional models (chapter 6) we performed a non-uniform selec-
tion of solutions, slightly improving (4.500) on the Dubois-Boufkhad-Mandler [DBM00] upper
bound of 4.506. This might thus be a more fruitful direction for future investigations: find an
astute (non-uniform?) way of selecting solutions.

Table 6.2: Summary of upper bounds obtained on the threshold of standard 3-SAT by the First
Moment Method in the drawing and distributional models.

drawing distribution
solutions sections 3.2.1 and chapter 6 5.191 5.040

prime implicants section 4.3.3 4.883 -
Maneva’s weighted valid

partial assignments
section 4.3.1 4.883 -

valid partial assignments
weighted w.r.t. starrable vs.

invertible

section 5.7 4.643 -

NPSs [DB97] and chapter 6 4.643 4.552
NPSs with imbalance [DBM00, DBM03] and

chapter 6
- 4.506

our non-uniform selection
of solutions

chapter 6 - 4.500

NPSs with imbalance +
elimination of pure literals

+ typicality of clauses

[DKMPG09] - 4.490
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Chapter 7

Introduction to the Second Moment
Method

JUST as the First Moment Method is a way to upper-bound the threshold of k-SAT,
so is the Second Moment Method a way to lower-bound it. After a brief technical
introduction to the Second Moment Method in section 7.1, we present in section 7.2
a survey of the early attempts to lower-bound the threshold of 3-SAT through the

Second Moment Method. As in the First Moment Method, the general idea is to count special
kinds of solutions. However, the selection of solutions is not the same as in the First Moment
Method:

1. in the First Moment Method, we considered random variables X such that satisfiability
implies X ≥ 1 (see section 3.1); setting X to be the number of solutions yields an upper
bound of 5.191 for the threshold of 3-SAT (see section 3.2.1); and we tried to select the
least solutions;

2. in the Second Moment Method, we shall consider random variables X such that unsatis-
fiability implies X = 0 (see section 7.1); setting X to be the number of solutions yields a
lower bound of 0 for the threshold of 3-SAT (see section 7.2.1); here the criterion to select
solutions is quite different: we are interested in subsets of solutions having low variance.

In a breakthrough paper, Achlioptas & Peres - 2004 [AP04] succeeded with the Second Mo-
ment Method on k-SAT, establishing a lower bound of 2.68 for 3-SAT and an asymptotically
tight lower bound of 2k ln 2−O (k) for k-SAT. It turns out that the currently best lower bound
of the 3-SAT threshold (3.52) was obtained by another way: analyzing algorithms finding so-
lutions with high probability, cf. Kaporis, Kirousis & Lalas [KKL06] and Hajiaghayi & Sorkin
[HS03].

The purpose of the next chapters is to make the most of the Second Moment Method on
k-SAT. To do so we take a different approach from Achlioptas & Peres’. In our framework we
select solutions according to the fraction of variables assigned 1 and the fractions of the differ-
ent types of clauses (i.e. the number of true literals occurrences in the clauses). This framework
is general enough to include boolean solutions, implicants etc. However, tuning our parame-
ters the best way we could, we got numerical evidence that we could not obtain better lower
bounds than 2.83.

97
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The stumbling block we recurrently encountered is what we call the independence point. It
corresponds to the couples of independent solutions in the subset of selected solutions. Even
though solutions are independent, the proportion of literals occurrences having a certain truth
value may not be independent between solutions. We got numerical evidence that the Second
Moment Method does not work if truth values of literals occurrences are not independent.
On the other hand, when they are independent, we give a necessary condition for the Second
Moment Method to work, taking into account just the exponential equivalent of the second
moment at this point. This condition tells us that we must select solutions having equal true
and false surfaces (the surface is just the total number of literals occurrences), which is very
artificial with respect to what we can observe with SATLab. Using this condition, we could
make the Second Moment Method work numerically; however, since the lower bounds we
get (2.83) are far below the currently best lower bound (3.52), we do not give a rigorous (and
tedious) proof of our lower bounds (to do so, the exponential equivalent would not be enough,
and calculations would become quite involved).

The very restrictive conditions we encountered to make the Second Moment Method work
may be due to some weaknesses of our framework. We do not claim that the Second Moment
Method is doomed to perpetual failure on k-SAT. We only hope to shed a small ray of light
onto it. This work is very fresh, still in progress, and has not been published.

7.1 How the Second Moment Method Is Supposed to Work

Let us recall how the Second Moment Method is supposed to work: given an event A, we
want to show that Pr (A) tends to 1 but we don’t have access to Pr (A). Instead we use the first
and the second moments of a non-negative random variable X such that Pr (A) ≥ Pr (X > 0),
i.e. X must be 0 when A does not hold. For our problem 3-SAT, A is the event “a formula is
satisfiable”. The simplest choice for X is of course the number of solutions.

1. The first thing to notice is that if we show that Pr (A) is lower-bounded by a positive con-
stant, then it tends to 1. Why? Because Friedgut & Bourgain’s theorem [FB99] established
a sharp threshold for random k-SAT;

2. In order to prove that Pr (X > 0) is bounded away from zero, we use the following clas-
sical identity:

Pr (X > 0) ≥ (EX)2

EX2 . (7.1)

To prove it, use the fact that EX = E (X1X>0) since X ≥ 0, and apply the Cauchy-
Schwartz inequality to it: (EX)2 ≤ EX2E12X>0. So in particular note that

(EX)2

EX2 ≤ 1 . (7.2)

Just as the first moment is fairly easy to compute, so is the second moment. Let X be the
number of assignments having some property P (P might be “be a solution” or “be a black
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and red polka-dot solution”):

E
(

X2
)

= E





(

∑
σ assignment

1σ∈P

)2




= E

(

∑
σ,τ assignments

1σ∈P1τ∈P

)

= ∑
σ,τ assignments

E1σ∈P∧τ∈P

= ∑
σ,τ assignments

Pr (σ ∈ P ∧ τ ∈ P) .

In the case of satisfiability however, we are going to see that the Second Moment Method is
much more difficult to implement than the First Moment Method. The reason is that in general
EX2 tends to be exponentially greater than (EX)2, so equation 7.1 just says that Pr (X > 0) ≥ 0,
which is not very informative. . . Thus the challenge is to find out a set of solutions having low
variance.

7.2 Use of the Second Moment Method for Lower-Bounding the
Threshold of k-SAT

In this section we make a survey of different applications of the Second Moment Method to
lower-bound the threshold of random k-SAT. The model considered here is uniform random
drawing of k-SAT, as defined in section 1.1.3.

7.2.1 Second Moment of Solutions

Here is a perfect example of the failure of the Second Moment Method. Namely the lower
bound obtained by the Second Moment Method of solutions is c = 0. We saw in section 3.2.1

that if X is just the number of solutions, then EX = 2n
(

1− 1
2k

)cn
. So let us now compute the

second moment.
To do so we need an extra parameter µ, representing the proportion of variables changing

values between two solutions.
1. total number of couples of assignments:

a) choose the value of variables assigned 0 or 1 in the first assignment: 2n;
b) choose the subset of variables assigned different values in both assignments: ( n

µn);

2. probability for a couple of assignments to be a couple of solutions: as noted by Achlioptas
& Peres [AP04], it is easier to compute the probability that a clause breaks two given

assignments, since it is
(

1−µ
2

)k
. Using then the fact that Pr (A ∩ B) = 1− Pr

(

A ∪ B
)

=

1− Pr
(

A
)

− Pr
(

B
)

+ Pr
(

A ∩ B
)

, it follows that the probability for a clause not to break

any of both assignments is g (µ) = 1− 2
2k
+
(

1−µ
2

)k
.

Thus the second moment is:

EX2 = 2n ∑
0≤µ≤1
µn∈N

(

n

µn

)

g (µ)cn .
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Let us look at the exponential equivalent of this quantity:

EX2 ≍ max
0≤µ≤1

(

2
µµ (1− µ)µ g (µ)

c
)n

.

As explained by Achlioptas & Peres [AP04], it turns out that when µ = 1
2 , this is precisely

(EX)2. Now the function µ 7→ 1
µµ(1−µ)1−µ has its maximum at µ = 1

2 , whereas g (µ) is strictly

decreasing over (0, 1). Consequently, at any positive ratio c, the maximum of 2
µµ(1−µ)µ g (µ)

c

occurs at µ <
1
2 and EX2 is exponentially greater than (EX)2. So (EX)2

EX2 tends to zero, and we
only get that Pr (X > 0) ≥ 0. . .

7.2.2 Balancing True and False Surfaces

Achlioptas & Moore - 2002 [AM02] noticed that g (µ) is locally maximal at µ = 1
2 in k-

NAE-SAT because in this problem g (µ) = 1− 4
2k

+ 1
2k

(

(1− µ)k + µk
)

is symmetric in µ. We
recall that in NAE-SAT, when an assignment is a solution, then the opposite assignment is a
solution as well. Thus this problem contains some symmetry. Using this remark, Achlioptas
& Moore were able to establish a tight lower bound on the k-NAE-SAT threshold. And since
a NAE-SAT solution is a solution of standard SAT, they got the following lower bound of the
k-SAT threshold: 2k−1 ln 2−O (1).

Achlioptas & Peres - 2004 [AP04] put some weights onto the solutions of standard SAT and
got a lower bound of 2k ln 2 −O (k). (thus almost matching the asymptotic upper bound of
2k ln 2 we saw in section 3.2.1). The weights they put are of the form λtrue surface1SAT, where
the true surface is the number of occurrences of true literals under the solution. Assignments
which are not solutions must be discarded because the Second Moment Method requires to
count 0 when there is no solution, as explained in section 7.1. In the particular case of 3-SAT
they got a lower bound of 2.54 (and even 2.68 with a refinement).

We are going to implement the Second Moment Method without any weights; so how shall
we control the balance of true and false surfaces? Our control parameterswill be βt, the fraction
of clauses having t true literals. Then the true surface will be β1 + 2β2 + 3β3 and the false
surface will be 2β1 + β2. With this parameters we are able to make the Second Moment work.
However, we are not able to achieve a better lower bound than 2.833, see section 8.6.1.

Moreover our approach is quite general and enables us tomake the SecondMomentMethod
work on implicants as well.



Chapter 8

A General Framework for the Second
Moment Method on k-SAT

HERE we present a general framework for the Second Moment Method on k-SAT. Sec-
tion 8.1 introduces all ingredients we need: values, signs, truth values, types of
clauses and surfaces. Then in section 8.2 we give the expression of the first moment
of the solutions under these settings; the expression of the second moment is given

in section 8.3. Bringing together the second moment and the constraints, we use the Lagrange
multipliers method in section 8.4.

One point in the space of the variables is very important in the Second Moment Method:
this is what we call the independence point. It is important because it makes EX2

(EX)2
= 1 (see

conditions in theorem 8.5 of section 8.5). Thus if we want the Second Moment to work, we
must be careful that this point should be stationary.

We apply this general framework to boolean solutions (section 8.6.1) and to implicants (sec-
tion 8.6.2).

We discuss the relevance of the Second Moment Method for lower-bounding the k-SAT
threshold in section 8.7, where we use SATLab to confront the theoretical requirements we
obtained with reality.

8.1 Preliminaries

8.1.1 Values

First of all we have n variables. An assignment gives each variable a value taken from a given
domain D:

– in the case of boolean satisfiability, D = {0, 1};
– in the case of implicants, D = {0, 1, ∗}.

Given an assignment, for all a ∈ D, we denote by δa the proportion of variables assigned value
a:

∑
a∈D

δa = 1 . (8.1)

101
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Given two assignments S1 and S2, for all (a, b) ∈ D2, we denote by µa,b the proportion of
variables assigned value a in S1 and value b in S2:

∑
a∈D

µa,b = δb ; (8.2)

∑
b∈D

µa,b = δa . (8.3)

So we are going to consider some of the µa,b’s as functions of the other ones, assuming that
equations 8.2 and 8.3 are satisfied. We shall refer to the remaining µa,b’s as a generic variable µ,
cf. section 8.4.2.

8.1.2 Signs

In a k-CNF formula with cn clauses, we have kcn occurrences of variables, each having a sign
s ∈ S. In the case of boolean satisfiability as well as in the case of implicants, S = {+,−};

For all s ∈ S, we denote by ρs the proportion of occurrences having sign s:

∑
s∈S

ρs = 1 . (8.4)

8.1.3 Truth Values

The combination of a sign and a value yields a truth value v ∈ V . Here is an example of a

classical truth table with V = {T, F, ∗}:
+ −

0 F T
1 T F
∗ ∗ ∗

.

We use the following notation, for a ∈ D, s ∈ S and v ∈ V :

χa,s,v =

{

1 if value a and sign s yield the truth value v ;
0 otherwise .

Of course one sign and one value yield exactly one truth value:

∑
v∈V

χa,s,v = 1 .

So we shall denote by a⊗ s the unique v such that χa,s,v = 1.
Given an assignment, for all v ∈ V , we denote by ηv the proportion of literals occurrences

having the truth value v:

ηv = ∑
a∈D
s∈S

χa,s,vδaρs .

Given two assignments S1 and S2, for all (v,w) ∈ V2, we denote by εv,w the proportion of
literals occurrences having the truth value v in S1 and the truth value w in S2:

εv,w = ∑
(a,b)∈D2

s∈S

χa,s,vχb,s,wµa,bρs .
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8.1.4 Clauses Types

A clause type is an element of V k, e.g. TTF or *TF. Some types of clauses will be forbidden,
such as FFF and FF*. We denote by T the set of allowed types of clauses. T is a subset of V k.

– in the case of boolean solutions of 3-SAT: V = {T, F} and FFF is forbidden;
– in the case of implicants of 3-SAT: V = {T, F, ∗} and the allowed types of clauses are
those containing at least one T.

Given an assignment, for all t ∈ T , we denote by βt the proportion of clauses of type t (which
is zero for all forbidden types of clauses):

∑
t∈T

βt = 1 . (8.5)

Given two assignments S1 and S2, for all (t, u) ∈ T 2, we denote by γt,u the proportion of
clauses of type t in solution S1 and of type u in solution S2:

∑
t∈T

γt,u = βu ; (8.6)

∑
u∈T

γt,u = βt . (8.7)

8.1.5 Surfaces

Given an assignment, the surface occupied by a truth value v is obtained by summing all
occurrences of v in the different types of clauses: Σv = ∑t∈T βt ∑

k
i=1 1ti=v.

Given two assignments S1 and S2, the surface occupied by a couple of truth values (v,w)
is obtained by summing all occurrences of (v,w) in the different types of clauses: Ξv,w =

∑(t,u)∈T 2 γt,u ∑
k
i=1 1ti=v∧ui=w.

Surfaces are normalized to k because the βt’s sum up to 1:

Fact 8.1. ∑v∈V Σv = k and ∑(v,w)∈V2 Ξv,w = k.

Proof.

∑
v∈V

Σv = ∑
v∈V

∑
t∈T

βt

k

∑
i=1

1ti=v

= ∑
t∈T

βt

k

∑
i=1

∑
v∈V

1ti=v

= ∑
t∈T

βt

k

∑
i=1

1

= k ∑
t∈T

βt

= k by constraint 8.5.

The same proof works for the other sum, using constraints 8.6 and 8.5.

8.1.6 Symmetry of Occurrences

We say that there is symmetry of occurrences when for all permutation σ of V k, βt = βσ(t) (it
follows that T is closed by permutation).
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Fact 8.2. Symmetry of occurrences implies that Σv = k ∑t∈T 1t1=vβt.

Proof. Let us call σi the permutation of V k swapping t1 and ti.

Σv = ∑
t∈T

βt

k

∑
i=1

1ti=v

=
k

∑
i=1

∑
t∈T

1ti=vβt

=
k

∑
i=1

∑
t∈T

1σi(t)1=vβσi(t)
by symmetry of occurrences

=
k

∑
i=1

∑
σi(t)∈T

1σi(t)1=vβσi(t)
because T is closed by permutation

= k ∑
t∈T

1t1=vβt .

Fact 8.3. If γt,u = βtβu, symmetry of occurrences implies that kΞv,w = ΣvΣw.

Proof. Let us call σi the permutation of V k swapping t1 and ti.

kΞv,w = k ∑
(t,u)∈T 2

γt,u

k

∑
i=1

1ti=v∧ui=w

= k ∑
(t,u)∈T 2

βtβu

k

∑
i=1

1ti=v1ui=w by independence

= k
k

∑
i=1

∑
(σi(t),σi(u))∈T 2

βσi(t)
βσi(u)

1σi(t)1=v1σi(u)1=w by symmetry of occurrences

= k2 ∑
(t,u)∈T 2

βtβu1t1=v1u1=w because T is closed by permutation

= ΣvΣw by fact 8.2.

Symmetry of occurrences is quite natural and will be assumed from now on. Note that δa’s
and βt’s are parameters of the first moment, so they may be chosen without any restriction,
except that they must sum up to 1. They are our control parameters: we can tune them as we
wish in order to take into account only some solutions. However, when the set of solutions
defined by δa’s and βt’s is determined, we have to consider all possible couples of solutions.
So the variables µa,b’s and γt,u’s of the second moment may not be chosen, but result from a
maximization process, as investigated in section 8.4.

8.2 Expression of the First Moment

The first moment of the number X of solutions can be split up into the following factors:
total number of assignments and probability for an assignment to be a solution.
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1. total number of assignments: choose subsets of variables assigned a ∈ D: ( n
...(δan)a∈D...

).

2. probability for an assignment to be a solution:

a) we give each clause an allowed type t ∈ T : ( cn
...(βtcn)t∈T ...

).

b) probability for clauses to be constructed (variables + signs) according to their types:

∏t∈T
(

∏
k
i=1 ηti

)βtcn
.

We denote by P the set of all families of non-negative numbers
(

(δa)a∈D , (βt)t∈T
)

satisfying
constraints 8.1 and 8.5. We denote by I (n) the intersection of P with the multiples of 1

n ; we
get the following expression of the first moment:

EX = ∑
((δa)a∈D,(βt)t∈T )∈I(n)

T1 (n)

where

T1 (n) =

(

n

. . . (δan)a∈D . . .

)(

cn

. . . (βtcn)t∈T . . .

)



∏
t∈T

(

k

∏
i=1

ηti

)βt




cn

=

(

n

. . . (δan)a∈D . . .

)(

cn

. . . (βtcn)t∈T . . .

)

(

∏
t∈T

k

∏
i=1

∏
v∈V

η
1ti=vβt

v

)cn

=

(

n

. . . (δan)a∈D . . .

)(

cn

. . . (βtcn)t∈T . . .

)

(

∏
v∈V

η
∑t∈T ∑

k
i=1 1ti=vβt

v

)cn

=

(

n

. . . (δan)a∈D . . .

)(

cn

. . . (βtcn)t∈T . . .

)

(

∏
v∈V

ηΣv
v

)cn

.

From equation B.2, the exponential equivalent of T1 (n) is Tn
1 , with the following two equiv-

alent forms:

T1 =
1

∏a∈D δδa
a



∏
t∈T

(

∏
k
i=1 ηti
βt

)βt




c

=
1

∏a∈D δδa
a

(

∏v∈V ηΣv
v

∏t∈T β
βt
t

)c

.

8.3 Expression of the Second Moment

The second moment of X can be split up into the following factors: total number of couples
of assignments and probability for a couple of assignments to be a couple of solutions.

1. total number of couples of assignments: ( n
...(µa,bn)(a,b)∈D2 ...

);

2. probability for a couple of assignments to be a couple of solutions:
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a) we give each clause an allowed type t ∈ T in solution S1 and another u ∈ T in
solution S2: (

cn
...(γt,ucn)(t,u)∈T 2 ...

);

b) probability for clauses to be constructed (variables + signs) according to their types:

∏(t,u)∈T 2

(

∏
k
i=1 εti,ui

)γt,ucn
.

We denote by P2 the set of all families of non-negative numbers
(

(µa,b)(a,b)∈D2 , (γt,u)(t,u)∈T 2

)

satisfying constraints 8.2, 8.3, 8.6 and 8.7. We denote by I2 (n) the intersection of P2 with the
multiples of 1

n ; we get the following expression of the second moment:

EX2 = ∑
(

(µa,b)(a,b)∈D2 ,(γt,u)(t,u)∈T 2
)

∈I2(n)
T2 (n)

where

T2 (n)

=

(

n

. . . (µa,bn)(a,b)∈D2 . . .

)(

cn

. . . (γt,ucn)(t,u)∈T 2 . . .

)



 ∏
(t,u)∈T 2

(

k

∏
i=1

εti,ui

)γt,u




cn

=

(

n

. . . (µa,bn)(a,b)∈D2 . . .

)(

cn

. . . (γt,ucn)(t,u)∈T 2 . . .

)



 ∏
(t,u)∈T 2

k

∏
i=1

∏
(v,w)∈V2

ε
1ti=v∧ui=wγt,u
v,w





cn

=

(

n

. . . (µa,bn)(a,b)∈D2 . . .

)(

cn

. . . (γt,ucn)(t,u)∈T 2 . . .

)



 ∏
(v,w)∈V2

ε
∑(t,u)∈T 2 ∑

k
i=1 1ti=v∧ui=wγt,u

v,w





cn

=

(

n

. . . (µa,bn)(a,b)∈D2 . . .

)(

cn

. . . (γt,ucn)(t,u)∈T 2 . . .

)



 ∏
(v,w)∈V2

ε
Ξv,w
v,w





cn

.

From equation B.2, the exponential equivalent of T2 (n) is Tn
2 with the following two equiv-

alent forms:

T2 =
1

∏(a,b)∈D2 µ
µa,b
a,b



 ∏
(t,u)∈T 2

(

∏
k
i=1 εti,ui
γt,u

)γt,u




c

=
1

∏(a,b)∈D2 µ
µa,b
a,b





∏(v,w)∈V2 ε
Ξv,w
v,w

∏(t,u)∈T 2 γ
γt,u
t,u





c

.

8.4 Expression of the Lagrangian

When the parameters of the first moment (i.e. (δa)a∈D , (βt)t∈T ) are chosen, T2 must be
maximized under constraints 8.2, 8.3, 8.6 and 8.7. That leads us to use the Lagrange multipliers
method.
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As explained in section 8.1.1, we are going to consider some of the µa,b’s as functions of the
other ones, assuming that equations 8.2 and 8.3 are satisfied. We shall refer to the remaining
µa,b’s as a generic variable µ. So we define the following Lagrangian:

Λ = − ∑
(a,b)∈D2

µa,b ln
µa,b

e
− c ∑

(t,u)∈T 2

γt,u ln
γt,u

e
+ c ∑

(v,w)∈V2
Ξv,w ln εv,w

+c ∑
t∈T

(ln ft)

(

∑
u∈T

γt,u− βt

)

+ c ∑
u∈T

(ln gu)

(

∑
t∈T

γt,u − βu

)

.

8.4.1 Derivative with respect to γt,u

∂Λ

∂γt,u
= −c lnγt,u + c

k

∑
i=1

ln εti,ui + c ln ft + c ln gu .

Canceling out this derivative yields:

γt,u = ftgu
k

∏
i=1

εti,ui . (8.8)

8.4.2 Derivative with respect to µ

∂Λ

∂µ
= ∑

(a,b)∈D2

∂Λ

∂µa,b

∂µa,b

∂µ

= ∑
(a,b)∈D2

∂µa,b

∂µ



− ln µa,b + c ∑
(v,w)∈V2

∂εv,w
∂µa,b

Ξv,w

εv,w





= − ∑
(a,b)∈D2

∂µa,b

∂µ
ln µa,b + c ∑

(a,b)∈D2

∂µa,b

∂µ ∑
(v,w)∈V2

Ξv,w

εv,w
∑
s∈S

χa,s,vχb,s,wρs

= − ∑
(a,b)∈D2

∂µa,b

∂µ
ln µa,b + c ∑

(a,b)∈D2

∂µa,b

∂µ ∑
s∈S

ρs
Ξa⊗s,b⊗s
εa⊗s,b⊗s

. (8.9)

Canceling out this derivative is somewhat tricky in general, so we are going to focus on
some simple particular cases and otherwise end up calculations numerically withMathemat-
ica. . .

So let us consider first a particularly simplifying case, i.e. when εv,w = ηvηw.

8.5 Independence Point - Discussion about εv,w

We define the independence point in the polytope P2 to be the point where µa,b = δaδb and
γt,u = βtβu. This point is of major interest because it make T2

T2
1
= 1 if εv,w = ηvηw (see theorem

8.5). More surprisingly, it turns out that there seems to be a dichotomy in the success / failure
of the Second Moment Method, regarding εv,w at the independence point:
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– if εv,w = ηvηw then we are able to find a necessary and sufficient condition on the first
moment parameters for the Second Moment Method to give a non trivial lower bound in
all models we considered:
– boolean solutions, see section 8.6.1;
– implicants, see section 8.6.2;
– distributional model, see chapter 9;

– otherwise numerical calculations give us empirical evidence that the Second Moment
Method fails to give any non trivial lower bound to the threshold; indeed even when we
have almost this identity, the ratio T2

T2
1
is strictly greater than 1 for any positive ratio c (see

figures 8.1 and 8.2 at the end of section 8.6.1 and figure 9.1 in chapter 9).

Conjecture 8.4. The Second Moment Method works only if εv,w = ηvηw.

This conjecture echoes the following theorem.

Theorem 8.5. At the independence point (i.e. µa,b = δaδb and γt,u = βtβu), if εv,w = ηvηw, then
T2
T2
1
= 1.

Proof. Let us recall that

T2

T2
1

=

(

∏a∈D δδa
a

)2

∏(a,b)∈D2 µ
µa,b
a,b









∏
t∈T

(

βt

∏
k
i=1 ηti

)βt




2

∏
(t,u)∈T 2

(

∏
k
i=1 εti,ui
γt,u

)γt,u







c

.

So at the independence point:

T2
T2
1

=

(

∏a∈D δδa
a

) (

∏b∈D δ
δb
b

)

∏(a,b)∈D2 (δaδb)
δaδb

·









(

∏t∈T β
βt
t

) (

∏u∈T β
βu
u

)

∏(t,u)∈T 2 (βtβu)
βtβu

·
∏(t,u)∈T 2

((

∏
k
i=1 ηti

) (

∏
k
i=1 ηui

))βtβu

(

∏t∈T
(

∏
k
i=1 ηti

)βt
)(

∏u∈T
(

∏
k
i=1 ηui

)βu
)









c

.

To show that this quantity is indeed 1, we shall use the following fact:

Fact 8.6. Let X and Y be two finite sets. We assume that ∑x∈X ex = ∑y∈Y fy = 1.

Then ∏(x,y)∈X×Y
(

bxcy
)ex fy =

(

∏x∈X bexx
)

(

∏y∈Y c
fy
y

)

.

Proof.

∏
(x,y)∈X×Y

(

bxcy
)ex fy = ∏

(x,y)∈X×Y
b
ex fy
x ∏

(x,y)∈X×Y
c
ex fy
y

= ∏
x∈X

b
ex ∑y∈Y fy
x ∏

y∈Y
c
fy ∑x∈X ex
y

= ∏
x∈X

bexx ∏
y∈Y

c
fy
y .
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Now to prove that the previous ratio T2
T2
1
is 1, it suffices to apply fact 8.6 3 times:

with X = Y = D, bx = ex = δa and cy = fy = δb, which is possible thanks to equation 8.1;
with X = Y = T , bx = ex = βt and cy = fy = βu, which is possible thanks to equation 8.5;
with X = Y = T , bx = ∏

k
i=1 ηti , ex = βt, cy = ∏

k
i=1 ηui and fy = βu, which is possible

again thanks to equation 8.5.

Moreover, it turns out that the independence point satisfies constraints 8.2, 8.3, 8.6 and 8.7,
thus T2 must be stationary at the independence point if we want the Second Moment Method
to work (because T2

T2
1
must not exceed 1 if we want to avoid the pitfall we encountered in section

7.2.1). Thus we have the following necessary condition to make the Second Moment Method
work:

∂Λ

∂µ
= 0 at the independence point. (8.10)

Remark 8.7. We show rigorously only the fact that the above conditions (εv,w = ηvηw and
equation 8.10) are necessary to make the Second Moment Method work, but not that they are
sufficient. This would require to handle the polynomial residues of the multinomials, and the
complete expressions of EX2 and (EX)2. Since we show only negative results (i.e. bad lower
bounds), this tricky part is omitted.

8.6 Applications

8.6.1 Boolean Solutions

8.6.1.1 Preliminaries

1. the domain of values is D = {0, 1}; given a solution, we call δ the fraction of variables
assigned 1; constraints 8.2 and 8.3 become:

δ = µ1,1 + µ1,0

δ = µ1,1 + µ0,1

1− δ = µ0,0 + µ1,0

1− δ = µ0,0 + µ0,1

so, if we define µ = µ0,1, we have

µ1,1 = δ− µ

µ0,0 = 1− δ− µ

µ1,0 = µ

µ0,1 = µ

2. the set of signs is S = {+,−}; we call ρ the fraction of positive occurrences;
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3. the set of truth values is V = {T, F} and the truth table is:
+ −

0 F T
1 T F

; so

ηT = ρδ + (1− ρ) (1− δ)

ηF = (1− ρ) δ + ρ (1− δ)

εT,F = εF,T = µ (8.11)

εT,T = ηT − µ (8.12)

εF,F = ηF − µ (8.13)

4. the set of allowed types of clauses is T = Dk\
{

Fk
}

.

8.6.1.2 Condition for εv,w = ηvηw at the Independence Point

The first thing to notice is that if εT,F = ηTηF, then the three other identities follow, because
εT,F + εT,T = ηT etc.

At the independence point, we have µ = δ (1− δ). Thus

εT,F − ηTηF = δ (1− δ)− (ρδ + (1− ρ) (1− δ)) ((1− ρ) δ + ρ (1− δ))

= δ (1− δ)− ρ (1− ρ)
(

δ2 + (1− δ)2
)

−
(

ρ2 + (1− ρ)2
)

δ (1− δ)

= 2ρ (1− ρ) δ (1− δ)− ρ (1− ρ)
(

δ2 + (1− δ)2
)

= −ρ (1− ρ) (2δ− 1)2 .

Consequently, εT,F ≤ ηTηF, with equality iff ρ ∈ {0, 1} or δ = 1
2 .

We discard the particular case of ρ ∈ {0, 1} (which corresponds to monotone k-SAT, always
trivially satisfiable). It turns out that as soon as δ 6= 1

2 , we could not make the Second Moment
Method work: our numerical attempts revealed that the ratio T2

T2
1
is strictly greater than 1 for

any positive ratio c.
On the other hand, when δ = 1

2 we could make the Second Moment Method work, as
follows.

8.6.1.3 Condition for the Second Moment Method to Work at δ = 1
2

As mentioned in section 8.5, stationarity of the independence point implies that ∂Λ
∂µ = 0.

Using equation 8.9:

∂Λ

∂µ
= − ∑

(a,b)∈D2

∂µa,b

∂µ
ln µa,b + c ∑

(a,b)∈D2

∂µa,b

∂µ ∑
s∈S

ρs
Ξa⊗s,b⊗s
εa⊗s,b⊗s

= ln
µ1,1µ0,0

µ1,0µ0,1
+ c

(

(ρ + (1− ρ))

(

ΞT,F

εT,F
+

ΞF,T

εF,T
− ΞT,T

εT,T
− ΞF,F

εF,F

))

= ln
µ1,1µ0,0

µ1,0µ0,1
+ c

(

ΞT,F

εT,F
+

ΞF,T

εF,T
− ΞT,T

εT,T
− ΞF,F

εF,F

)

.
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At independence µ1,1µ0,0
µ1,0µ0,1

=
δ21δ20

δ1δ0δ0δ1
= 1; moreover, assuming symmetry of occurrences, we

may use independence of surfaces (cf. fact 8.3):

∂Λ

∂µ
= c

(

−Σ2
F

η2
F

− Σ2
T

η2
T

+ 2
ΣFΣT

ηFηT

)

= c

(

ΣT

ηT
− ΣF

ηF

)2

.

Canceling out this derivative yields:

ΣT

ηT
=

ΣF

ηF
.

Since we assume δ = 1
2 , we have ηT = ηF = 1

2 , thus ΣT = ΣF = k
2 .

It turns out that this condition is sufficient to make the Second Moment Method work,
and numerically we found a critical ratio c = 2.833 for βTFF = βFTF = βFFT = 0.197633,
βTTF = βTFT = βFTT = 0.104733 and βTTT = 0.0929. It is noticeable that this critical ratio is
the same for any value of ρ; this comes from the fact that laying down ηT = ηF = 1

2 , equations
8.11, 8.12 and 8.13 imply that equation 9.8 has no dependence in ρ.

The First Moment Method applied with these settings (i.e. δ = 1
2 ) yields a critical ratio of

3.783 when βTFF = 0.191, which means that such balanced solutions disappear far below the
conjectured threshold ratio of 4.25. Thus we would like to evade the δ = 1

2 condition.
MoreoverSATLab enables us to see that real solutions do not have δ = 1

2 , see our discussion
in section 8.7.1.

8.6.1.4 Attempts to evade the δ = 1
2 condition

We plot ln ln F2
F21

for different values of δ and ρ, at a point satisfying our constraints 8.6 and

8.7. The expected value is −∞ iff F2
F21

= 1. We set the ratio c = 0.1 (to be compared with 2.833,

where δ = 1
2 works).

1. setting ΣT = ΣF = k
2 : only δ = 1

2 seems to make F2
F21

= 1, cf. figure 8.1;

2. setting ΣT = kηT and ΣF = kηF: once more, only δ = 1
2 seems to make F2

F21
= 1, cf. figure

8.2.
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Figure 8.1: ΣT = ΣF = k
2 : −∞ is obtained only when δ = 1

2 .
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Figure 8.2: ΣT = kηT and ΣF = kηF: −∞ is obtained only when δ = 1
2 .
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8.6.2 Implicants

We recall (see section 3.2.2) that an implicant is a partial assignment such that every as-
signment of the non-assigned variables will yield a solution. We represent the non-assigned
value of variables by a ∗. We performed the calculations on implicants with the hope that their
variance might be lower than the solutions’.

8.6.2.1 Preliminaries

1. the domain of values is D = {0, 1, ∗}; given a solution, we call δ the fraction of variables
assigned 1 and α the fraction of variables assigned ∗; constraints 8.2 and 8.3 become:

δ = µ1,1 + µ1,0 + µ1,∗
δ = µ1,1 + µ0,1 + µ∗,1
α = µ∗,1 + µ∗,0 + µ∗,∗
α = µ1,∗ + µ0,∗ + µ∗,∗

1− δ− α = µ0,0 + µ0,1 + µ0,∗
1− δ− α = µ0,0 + µ1,0 + µ∗,0 ,

so, if we define µ = µ∗,∗, ν = µ1,1, π = µ1,∗ and π
′
= µ∗,1, we have

µ1,0 = δ− ν− π

µ0,1 = δ− ν− π
′

µ∗,0 = α− µ− π
′

µ0,∗ = α− µ− π

µ0,0 = 1− 2δ− 2α + µ + ν + π + π
′
;

2. the set of signs is S = {+,−}; we call ρ the fraction of positive occurrences;

3. the set of truth values is V = {T, F, ∗} and the truth table is:

+ −
0 F T
1 T F
∗ ∗ ∗

; so

ηT = ρδ + (1− ρ) (1− δ− α)

ηF = (1− ρ) δ + ρ (1− δ− α)

η∗ = α
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and

εT,T = ρν + (1− ρ)
(

1− 2δ− 2α + µ + ν + π + π
′)

εT,F = ρ (δ− ν− π) + (1− ρ)
(

δ− ν− π
′)

εF,T = ρ
(

δ− ν− π
′)

+ (1− ρ) (δ− ν− π)

εF,F = ρ
(

1− 2δ− 2α + µ + ν + π + π
′)

+ (1− ρ) ν

ε∗,∗ = µ

εT,∗ = ρπ + (1− ρ) (α− µ− π)

ε∗,T = ρπ
′
+ (1− ρ)

(

α− µ− π
′)

εF,∗ = ρ (α− µ− π) + (1− ρ)π

ε∗,F = ρ
(

α− µ− π
′)

+ (1− ρ)π
′
;

4. a clause type is allowed iff it contains at least one T.

8.6.2.2 Condition for εv,w = ηvηw at the Independence Point

The independence point is defined by µ = α2, ν = δ2 and π = π
′
= αδ. So at this point we

have:

εT,T = ρδ2 + (1− ρ) (1− δ− α)2

εT,F = εF,T = δ (1− δ− α)

εF,F = ρ (1− δ− α)2 + (1− ρ) δ2

ε∗,∗ = α2 = η2
∗

εT,∗ = ε∗,T = α (ρδ + (1− ρ) (1− δ− α)) = ηTη∗
εF,∗ = ε∗,F = α (ρ (1− δ− α) + (1− ρ) δ) = ηFη∗ .

The first thing to notice is that all identities involving ∗ satisfy εv,w = ηvηw. The second
thing to notice is that if εT,F = ηTηF, then the three remaining identities follow, because εT,F +
εT,T + εT,∗ = ηT etc.

εT,F − ηTηF = δ (1− δ− α)− (ρδ + (1− ρ) (1− δ− α)) ((1− ρ) δ + ρ (1− δ− α))

= δ (1− δ− α)− ρ (1− ρ)
(

δ2 + (1− δ− α)2
)

−
(

ρ2 + (1− ρ)2
)

δ (1− δ− α)

= 2ρ (1− ρ) δ (1− δ− α)− ρ (1− ρ)
(

δ2 + (1− δ− α)2
)

= −ρ (1− ρ) (2δ + α− 1)2 .

Consequently, εT,F ≤ ηTηF, with equality iff ρ ∈ {0, 1} or δ = 1−α
2 .

We discard the particular case of ρ ∈ {0, 1} (which corresponds to monotone k-SAT, always
trivially satisfiable). It turns out that as soon as δ 6= 1−α

2 , we could not make the Second
Moment Method work.

On the other hand, when δ = 1−α
2 we could make the Second Moment Method work.

Remark 8.8. Setting α = 0 corresponds in fact to solutions (which are some trivial implicants),
thus to some extent we get back to the δ = 1

2 condition. But is there a positive α yielding a
better lower bound than α = 0?
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8.6.2.3 Condition for the Second Moment Method to Work at δ = 1−α
2

As mentioned in section 8.5, stationarity of the independence point implies that ∂Λ
∂µ = ∂Λ

∂ν =
∂Λ
∂π = ∂Λ

∂π
′ = 0.

Using equation 8.9, i.e.

∂Λ

∂µ
= − ∑

(a,b)∈D2

∂µa,b

∂µ
ln µa,b + c ∑

(a,b)∈D2

∂µa,b

∂µ ∑
s∈S

ρs
Ξa⊗s,b⊗s
εa⊗s,b⊗s

,

we get:

∂Λ

∂µ
= ln

µ∗,0µ0,∗
µ∗,∗µ0,0

+c

(

(1− ρ)

(

ΞT,T

εT,T
+

Ξ∗,∗
η∗,∗
− ΞT,∗

εT,∗
− Ξ∗,T

ε∗,T

)

+ ρ

(

ΞF,F

εF,F
+

Ξ∗,∗
η∗,∗
− ΞF,∗

εF,∗
− Ξ∗,F

ε∗,F

))

;

∂Λ

∂ν
= ln

µ1,0µ0,1

µ1,1µ0,0
+ c

(

ΞT,T

εT,T
+

ΞF,F

εF,F
− ΞT,F

εT,F
− ΞF,T

εF,T

)

;

∂Λ

∂π
= ln

µ1,0µ0,∗
µ1,∗µ0,0

+c

(

(1− ρ)

(

ΞT,T

εT,T
+

ΞF,∗
εF,∗
− ΞF,T

εF,T
− ΞT,∗

εT,∗

)

+ ρ

(

ΞF,F

εF,F
+

ΞT,∗
εT,∗
− ΞT,F

εT,F
− ΞF,∗

εF,∗

))

;

∂Λ

∂π
′ = ln

µ0,1µ∗,0
µ∗,1µ0,0

+c

(

(1− ρ)

(

ΞT,T

εT,T
+

Ξ∗,F
ε∗,F
− ΞT,F

εT,F
− Ξ∗,T

ε∗,T

)

+ ρ

(

ΞF,F

εF,F
+

Ξ∗,T
ε∗,T
− ΞF,T

εF,T
− Ξ∗,F

ε∗,F

))

.

We consider the independence point, thus µa,b = δaδb. Assuming symmetry of occurrences,
we may use independence of surfaces (cf. fact 8.3); moreover, using condition εv,w = ηvηw, we
get that:

∂Λ

∂µ
= c

(

(1− ρ)

(

ΣT

ηT
− Σ∗

η∗

)2

+ ρ

(

ΣF

ηF
− Σ∗

η∗

)2
)

;

∂Λ

∂ν
= c

(

ΣT

ηT
− ΣF

ηF

)2

;

∂Λ

∂π
=

∂Λ

∂π
′ = c

(

(1− ρ)

(

ΣT

ηT
− ΣF

ηF

)(

ΣT

ηT
− Σ∗

η∗

)

+ ρ

(

ΣF

ηF
− ΣT

ηT

)(

ΣF

ηF
− Σ∗

η∗

))

.

Canceling out these derivatives yields:

Σ∗
η∗

=
ΣT

ηT
=

ΣF

ηF
.

Since we assume δ = 1−α
2 , we have ηT = ηF = 1−α

2 ; moreover η∗ = α. Thus ΣT = ΣF =

k 1−α
2 and Σ∗ = kα.
It turns out that this condition is sufficient to make the Second Moment Method work, and

numerically we found the critical ratios laid in table 8.1 for standard 3-SATwith symmetry of
occurrences at ρ = 1

2 .
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Table 8.1: Critical ratios c of implicants obtained for a given α (and the corresponding choice of
the free β parameters).

α c βTFF βTTF βT∗∗ ratio c of [BD99]

0.001 2.81 0.195 0.10867 3.33× 10−5 4.5
0.01 2.77 0.1942 0.098833 3.33× 10−5 4.5
0.05 2.52 0.17767 0.08167 0.001633 2
0.08 2.32 0.1633 0.07 0.00233 1.5
0.11 2.13 0.1533 0.05467 0.0033 1
0.15 1.88 0.13833 0.041 0.012 -
0.2 1.59 0.1233 0.02567 0.02833 -
0.25 1.31 0.10833 0.0133 0.04767 -
0.333 0.89 0.094433 3.33× 10−5 0.094167 -

0.05 0.10 0.15 0.20 0.25 0.30
∆

1.5

2.0

2.5

c

These values are to be compared with those of Boufkhad & Dubois - 1999 [BD99], who
proved for example that at the ratio c = 4.5, any satisfiable instance will have prime implicants
with α = 0.01. Combined with the lower bound of 3.52 of [KKL06] and [HS03], this proves that
such implicants exist almost surely when c ≤ 3.52.

Thus in the range c ∈ (2.81, 3.52) Boufkhad & Dubois prove that implicants with α = 0.01
exist. However, in the range c ≤ 2.81 the Second Moment Method enable us to establish the
existence of implicants with a α significantly greater than Boufkhad & Dubois’s.

How can we interpret the fact that the critical c obtained decreases with α? Looking at the
set of allowed types of clauses:

T = {TTT, TTF, TFT, FTT, TFF, FTF, FFT, TT∗, T ∗ T, ∗TT, T ∗ ∗, ∗T∗, ∗ ∗ T}
∪ {TF∗, T ∗ F, FT∗, F ∗ T, ∗TF, ∗FT} ,

we can see that there are 27 T’s, 15 F’s and 15 ∗’s. Thus when ∗’s are present, the ratio T/F
is 27

15 = 1.8. Without ∗’s, T/F would be 12
9 ≃ 1.33 (see section 8.7.2). Now, since the Second

Moment Method requires ΣT = ΣF, we can see that it is all the more artificial as T/F is large.
Thus adding ∗’s should cut down the Second Moment Method’s performance.
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8.7 Confrontation of the Second Moment Method with Reality

Using SATLab, we investigate the behavior of real solutions and we emphasize how it
differs from the conditions required by the Second Moment Method that we laid down just
above.

Based on numerical calculations of figures 8.1 and 8.2, we conjectured in section 8.5 that
the Second Moment Method might work only if εv,w = ηvηw. In this setting we showed that
the independence point defined by µa,b = δaδb and γt,u = βtβu must be a maximum of T2, the
second moment. This led us in section 8.6.1 to the following necessary condition for the Second
Moment Method to work on boolean solutions: δ = 1

2 .
Now using SATLab, we are going to give experimental evidence that:
– real solutions of standard 3-SAT violate all of these conditions: they are not independent
at all!

– real solutions of standard 3-NAE-SAT seem to be rather independent.
These observations may explain why the Second Moment Method performs so poorly on stan-
dard 3-SAT (cf. section 8.6.1) whereas it works pretty well on 3-NAE-SAT (cf. Achlioptas &
Moore - 2002 [AM02]).

8.7.1 Distances between Solutions

It turns out that in random 3-SAT, solutions are correlated with respect to their Hamming
distances. Namely their Hamming distances are not centered around 50% contrary to solutions
of random 3-NAE-SAT, but narrower to each other (cf. figure 8.3).

What we mean by Hamming similarity between two assignments is just the proportion of
variables assigned the same value in both assignments. We took all couples of different solu-
tions in a sample of random solutions output by a solver, and we plotted the frequency of the
Hamming similarity.

To have a more precise insight into Hamming similarity, we separated fixed and free vari-
ables. Let us recall that a variable is free iff flipping it yields another solution. We can notice
that Hamming similarity is significantly greater among fixed variables than among free vari-
ables (see figure 8.4), and that it increases with c for both types of variables (see figures 8.5 and
8.6).
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Figure 8.3: Hamming similarity among solutions in NAE-SAT and in SAT.

Figure 8.4: Hamming similarity is greater among fixed variables.
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Figure 8.5: Hamming similarity among free variables increases with c.

Figure 8.6: Hamming similarity among fixed variables increases with c.
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Figure 8.7: The true surface of fixed variables decreases with c.

8.7.2 Surface of True Literals

What we call true surface is the scaled number of true occurrences of literals. We can see a
fundamental difference between the true surface of fixed variables and the true surface of free
variables. Namely the true surface of fixed variables decreases with c (figure 8.7) whereas the
true surface of free variables increases with c (figure 8.8). Note that both quantities converge
to roughly 0.56 (i.e. roughly 4

7 ) when c approaches the threshold ratio, whereas in section 8.6.1
we got the following condition: ΣT = ΣF = k

2 to make the Second Moment Method work.
We interpret the ratio 4

7 as follows: the allowed types of clauses are

{TTT, TTF, TFT, FTT, TFF, FTF, FFT} ,

which amounts to 12 T’s and 9 F’s. Now 12
12+9 = 12

21 = 4
7 .

8.7.3 Non-Independence of True / False Surfaces

Let us consider two solutions S1 and S2. We denote by ΣF the false surface under solution
S1, ΣT the true surface under solution S2, and ΞFT the surface which is false under S1 and true
under S2. In a given sample of random solutions, we took all couples of different solutions
(S1, S2) and computed the ratio ΣFΣT

kΞFT
; the histogram in figure 8.9 plots the frequency of this

ratio for the solutions of two different models of formulas: random 3-NAE-SAT and random
3-SAT. Although some independence seems to exist in 3-NAE-SAT (i.e. the ratio is centered
around 1), it can be seen that there is no independence of these surfaces for random 3-SAT.
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Figure 8.8: The true surface of free variables increases with c.

Figure 8.9: (Non-)independence of surfaces in NAE-SAT and in SAT.
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Figure 8.10: The non-independence of surfaces comes rather from fixed variables.

To have a more precise insight into the non-independence, we separated fixed and free
variables. Let us recall that a variable is free iff flipping it yields another solution. We can
notice that non-independence comes from both free and fixed variables, but rather from fixed
variables than from free variables, cf. figure 8.10.

8.7.4 Non-Independence of Clauses Types

Here what we call clause type is the number of true occurrences of variables in the clause.
Let us consider two solutions S1 and S2. We denote by β1 the proportion of uniquely satisfied
clauses under solution S1, b1 the proportion of uniquely satisfied clauses under solution S2,
and γ1,1 the proportion of clauses which are uniquely satisfied under S1 and under S2. In
a given sample of random solutions, we took all couples of different solutions (S1, S2) and
computed the ratio β1b1

γ1,1
; the histogram in figure 8.11 plots the frequency of this ratio for the

solutions of two different kinds of assignments: solutions of a random 3-NAE-SAT formula
and solutions of a random 3-SAT formula. Although independence seems to happen among
solutions of random 3-NAE-SAT (i.e. the ratio is centered around 1), it can be seen that there is
no independence in random 3-SAT.

In real instances we can assume symmetry of occurrences, in the sense of section 8.1.6; so
in the light of fact 8.3, we could conclude from the non-independence of surfaces observed in
section 8.7.3 that in the real solutions of 3-SAT independence of clauses types would not hold.
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Figure 8.11: (Non-)independence of uniquely satisfied clauses in NAE-SAT and in SAT.





Chapter 9

Second Moment Method on Distributional
Random k-SAT

REMEMBER that using the standard distributional model (defined in section 1.1.4) in-
stead of the standard drawing model (defined in section 1.1.3) yields better upper
bounds on the satisfiability threshold (cf. table 6.2). Moreover, we would like to
gain some more control over the proportion of variables assigned 1 according to the

imbalance between their positive and negative occurrences. Namely, a variable is all the more
expected to be assigned 1 in a solution as it has more positive occurrences, and vice-versa. At
least this seems to happen on real solutions, see figure 9.2 in section 9.6.1.

That is the reasons why we are going to implement the Second Moment Method in the
distributional model.

In this chapter we follow roughly the same outline than in chapter 8, but we focus on solu-
tions only; we only emphasize the major differences with respect to the general framework of
chapter 8.

9.1 Preliminaries

9.1.1 Occurrences and Signs

We still have n variables. We denote by dp,q the fraction of variables having p positive and q
negative occurrences.

∑
(p,q)∈N2

dp,q = 1 ;

∑
(p,q)∈N2

(p+ q) dp,q = kc .

Occurrences and signs of variables are determined a priori.
As in section 6.3.1, we ought to consider light and heavy variables L and H. In fact we are

going not to worry about that, because they make the calculation heavier, and in the end we
shall see that there is no need to be rigorous since we only have negative results.
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9.1.2 Values

Given a boolean assignment, we denote by δp,q the proportion of variables with p positive
and q negative occurrences which are assigned 1. Thus the proportion of variables with p
positive and q negative occurrences which are assigned 0 is 1− δp,q.

Given two assignments S1 and S2, for all (a, b) ∈ D2, considering variables with p positive
and q negative occurrences, we denote by:

– λp,q the proportion of variables which are assigned 1 in S1 and S2;
– µp,q the proportion of variables which are assigned 1 in S1 and 0 in S2;
– µ

′
p,q the proportion of variables which are assigned 0 in S1 and 1 in S2;

– νp,q the proportion of variables which are assigned 0 in S1 and S2.
We have the following constraints:

δp,q = λp,q + µp,q

δp,q = λp,q + µ
′
p,q

1− δp,q = µp,q + νp,q

1− δp,q = µ
′
p,q + νp,q

thus

λp,q = δp,q − µp,q

µ
′
p,q = µp,q

νp,q = 1− δp,q − µp,q

which enables us to work only with µp,q.

9.1.3 Truth Values

ηT =
1
kc ∑

(p,q)∈N2

(

pδp,q + q
(

1− δp,q
))

dp,q

ηF =
1
kc ∑

(p,q)∈N2

(

qδp,q + p
(

1− δp,q
))

dp,q

εT,T =
1
kc ∑

(p,q)∈N2

(

p
(

δp,q − µp,q
)

+ q
(

1− δp,q − µp,q
))

dp,q

εF,F =
1
kc ∑

(p,q)∈N2

(

q
(

δp,q − µp,q
)

+ p
(

1− δp,q − µp,q
))

dp,q

εT,F = εF,T =
1
kc ∑

(p,q)∈N2

(p+ q) µp,qdp,q

9.1.4 Types of Clauses and Surfaces

We keep the same definitions as in section 8.1.
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However, some extra constraints on surfaces occur in the distributional model, because here
all occurrences and signs of variables are determined a priori:

Σv = kηv ; (9.1)

Ξv,w = kεv,w . (9.2)

9.2 Expression of the First Moment

The first moment of the number X of solutions can be split up into the following factors:
total number of assignments and probability for an assignment to be a solution.

1. total number of assignments: choose subsets of variables assigned 0 or 1:

∏(p,q)∈L (
dp,qn

δp,qdp,qn
);

2. probability for an assignment to be a solution:

a) number of satisfied formulas:

i. we give each clause an allowed type t ∈ T : ( cn
...(βtcn)t∈T ...

)

ii. we find a permutation of the true literals into the true boxes and a permutation
of the false literals into the false boxes: (ηTkcn)! (ηFkcn)!

b) total number of formulas, i.e. number of permutations of the occurrences of literals
into the boxes: (kcn)!

We denote by P the set of all families of non-negative numbers
(

(

δp,q
)

(p,q)∈L , (βt)t∈T
)

satis-

fying constraint 8.5. We denote by I (n) the intersection of P with the multiples of 1
n ; we get

the following expression of the first moment:

EX = ∑
(

(δp,q)(p,q)∈L,(βt)t∈T
)

∈I(n)
T1 (n)

where

T1 (n) =
∏(p,q)∈L (

dp,qn
δp,qdp,qn

)( cn
...(βtcn)t∈T ...

)

( kcn
ηTkcn

)
.

From equation B.2, the exponential equivalent of T1 (n) is Tn
1 , where

T1 =
1

∏(p,q)∈L2 δ
δp,qdp,q
p,q







(

η
ηT
T η

ηF
F

)k

∏t∈T β
βt
t







c

.

9.3 Expression of the Second Moment

The second moment of X can be split up into the following factors: total number of assign-
ments and probability for an assignment to be a solution.
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1. total number of assignments: choose subsets of variables assigned 0 or 1:

∏(p,q)∈L (
dp,qn

λp,qdp,qn,µp,qdp,qn,µp,qdp,qn,νp,qdp,qn
);

2. probability for an assignment to be a solution:

a) number of satisfied formulas:

i. we give each clause two allowed types: ( cn
...(γt,ucn)(t,u)∈T 2 ...

)

ii. we find a permutation of the literals into the corresponding boxes:
(εT,Tkcn)! (εT,Fkcn)! (εF,Tkcn)! (εF,Fkcn)!

b) total number of formulas, i.e. number of permutations of the occurrences of literals
into the boxes: (kcn)!

We denote by P2 the set of all families of non-negative numbers
(

(

µp,q
)

(p,q)∈L , (γt,u)(t,u)∈T 2

)

satisfying constraints 8.6 and 8.7. We denote by I2 (n) the intersection of P2 with the multiples
of 1

n ; we get the following expression of the second moment:

EX2 = ∑
(

(µp,q)(p,q)∈L,(γt,u)(t,u)∈T 2
)

∈I2(n)
T2 (n)

where

T2 (n) =
∏(p,q)∈L (

dp,qn
λp,qdp,qn,µp,qdp,qn,µp,qdp,qn,νp,qdp,qn

)( cn
...(γt,ucn)(t,u)∈T 2 ...

)

( kcn
εT,Tkcn,εT,Fkcn,εF,Tkcn,εF,Fkcn

)
.

From equation B.2, the exponential equivalent of T2 (n) is Tn
2 , where

T2 =
1

∏(p,q)∈L
(

(

δp,q − µp,q
)δp,q−µp,q µ

2µp,q
p,q

(

1− δp,q − µp,q
)1−δp,q−µp,q

)dp,q

·







(

ε
εT,T
T,T ε

εT,F
T,F ε

εF,T
F,T ε

εF,F
F,F

)k

∏(t,u)∈T 2 γ
γt,u
t,u







c

.

9.4 Expression of the Lagrangian

When the parameters of the first moment (i.e.
(

δp,q
)

(p,q)∈L , (βt)t∈T ) are chosen, T2 must
be maximized under constraints 8.6 and 8.7. That leads us to use the Lagrange multipliers
method. In order to make the forthcoming maximization easier, we introduce some extra vari-
ables ψv,w which are going to simulate εv,w. The reason for this is that εv,w contains µp,q, but
we need the expression of µp,q for our numerical calculations. So, because of equation 9.2, we
have the following constraints:

kεT,T = kψT,T = ΞT,T

kεT,F = kψT,F = ΞT,F

kεF,T = kψF,T = ΞF,T

kεF,F = kψF,F = ΞF,F



9.4. EXPRESSION OF THE LAGRANGIAN 129

Using the facts that εT,T + εT,F = ηT , ΞT,T+ΞT,F = ΣT and ΣT = kηT , we see that constraint
εT,T = ψT,T is redundant. Eliminating εF,T and εF,F as well, there remain the following 5
constraints:

εT,F = ψT,F (9.3)

ψT,T = ηT − ψT,F (9.4)

ψT,F =
ΞT,F

k
(9.5)

ψF,T = ψT,F (9.6)

ψF,F = ηF − ψT,F (9.7)

So we define the following Lagrangian:

Λ = − ∑
(p,q)∈L

dp,q

(

(

δp,q − µp,q
)

ln
δp,q − µp,q

e
+
(

1− δp,q − µp,q
)

ln
1− δp,q − µp,q

e

)

−2 ∑
(p,q)∈L

dp,qµp,q ln
µp,q

e
− c ∑

(t,u)∈T 2

γt,u ln
γt,u

e
+ kc ∑

(v,w)∈{T,F}2
ψv,w ln

ψv,w

e

+c ∑
(v,w)∈{T,F}2

(ln hv,w) (Ξv,w − kψv,w) + kc (ln y) (ψT,F − εT,F)

+c ∑
t∈T

(ln ft)

(

∑
u∈T

γt,u − βt

)

+ c ∑
u∈U

(ln gu)

(

∑
t∈T

γt,u − βu

)

.

9.4.1 Derivative with respect to γt,u

∂Λ

∂γt,u
= −c lnγt,u + c

k

∑
i=1

ln hti,ui + c ln ft + c ln gu .

Canceling out this derivative yields:

γt,u = ftgu
k

∏
i=1

hti,ui . (9.8)

9.4.2 Derivative with respect to ψv,w

∂Λ

∂ψv,w
= kc lnψv,w − kc ln hv,w + kc (ln y) 1v=T∧w=F .

Canceling out these derivatives yields:

ψv,w = hv,wy
−1v=T∧w=F . (9.9)
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Thus constraints 9.3, 9.4, 9.5, 9.6 and 9.7 become:

εT,F =
hT,F
y

hT,T = ηT −
hT,F
y

hT,F
y

=
ΞT,F

k

hF,T =
hT,F
y

hF,F = ηF −
hT,F
y

9.4.3 Derivative with respect to µp,q

∂Λ

∂µp,q
= dp,q ln

(

δp,q − µp,q
) (

1− δp,q − µp,q
)

µ2
p,q

− (p+ q) dp,q ln y . (9.10)

Canceling out this derivative yields:

(

δp,q − µp,q
) (

1− δp,q − µp,q
)

= µ2
p,qy

p+q ,

i.e.

µ2
p,q
(

1− yp+q
)

− µp,q + δp,q
(

1− δp,q
)

= 0 .

Thus there are 2 cases to consider:

1. case where y = 1 or p+ q = 0: µp,q = δp,q
(

1− δp,q
)

;

2. case where y 6= 1 and p+ q 6= 0: µp,q =
1±
√

1−4(1−yp+q)δp,q(1−δp,q)
2(1−yp+q)

; numerically we can

find solutions with µp,q =
1−
√

1−4(1−yp+q)δp,q(1−δp,q)
2(1−yp+q)

.

9.5 Independence Point

As in section 8.5, we define the independence point by µp,q = δp,q
(

1− δp,q
)

and γt,u = βtβu.
Again, we were able to make the Second Moment Method work only if εv,w = ηvηw.

When εv,w = ηvηw, we have T2
T2
1
= 1 (see proof of theorem 8.5) and the independence point is

stationary without any extra condition (plug hv,w = ηvηw, y = 1, ft =
βt

∏
k
i=1 ηti

, gu = βu

∏
k
i=1 ηui

into

the constraints and equations 9.8, 9.9 and 9.10), assuming symmetry of occurrences as usual
(and thus fact 8.3). By comparison with chapter 8, we could say that the extra condition we
had there on the surfaces to make the independence point stationary corresponds here to the
preliminary extra constraint 9.2.

Moreover, it is noteworthy that, because of fact 8.3 and constraint 9.1, the independence
point violates constraint 9.2 when εv,w 6= ηvηw.

So, what is the condition for εv,w = ηvηw?
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9.5.1 Condition for εv,w = ηvηw at the Independence Point

As before in section 8.6.1, the first thing to notice is that if εT,F = ηTηF, then the three other
identities follow, because εT,F + εT,T = ηT etc.

We are grateful to Emmanuel Lepage, who gave us the main idea to compare εT,F and ηTηF.
Let us make the following change of variables: δp,q =

1
2 + δ

′
p,q:

ηT =
1
2
+

1
kc ∑

(p,q)∈N2

(p− q) δ
′
p,qdp,q ;

ηF =
1
2
− 1

kc ∑
(p,q)∈N2

(p− q) δ
′
p,qdp,q ;

εT,F =
1
4
− 1

kc ∑
(p,q)∈N2

(p+ q) δ
′2
p,qdp,q .

Thus

εT,F − ηTηF =





1
kc ∑

(p,q)∈N2

(p− q) δ
′
p,qdp,q





2

− 1
kc ∑

(p,q)∈N2

(p+ q) δ
′2
p,qdp,q .

1.
(

1
kc ∑(p,q)∈N2 (p− q) δ

′
p,qdp,q

)2
≤
(

1
kc ∑(p,q)∈N2

∣

∣

∣(p− q) δ
′
p,q

∣

∣

∣ dp,q

)2
, with equality iff

(p− q) δ
′
p,q has the same sign wherever dp,q 6= 0;

2. Since p, q ≥ 0, |p− q| ≤ p+ q with equality iff p = 0 or q = 0;

thus
(

1
kc ∑(p,q)∈N2

∣

∣

∣(p− q) δ
′
p,q

∣

∣

∣ dp,q

)2
≤
(

1
kc ∑(p,q)∈N2

√
p+ q2

∣

∣

∣δ
′
p,q

∣

∣

∣

√

dp,q
2
)2

, with equal-

ity iff δ
′
p,q = 0 wherever p 6= 0, q 6= 0 and dp,q 6= 0;

3. By the Cauchy-Schwartz inequality,




1
kc ∑

(p,q)∈N2

√

p+ q
2
∣

∣

∣δ
′
p,q

∣

∣

∣

√

dp,q
2




2

≤





1
kc ∑

(p,q)∈N2

√

p+ q
2
√

dp,q
2








1
kc ∑

(p,q)∈N2

√

p+ q
2
∣

∣

∣δ
′
p,q

∣

∣

∣

2√

dp,q
2




=
1
kc ∑

(p,q)∈N2

(p+ q) δ
′2
p,qdp,q ,

with equality iff
∣

∣

∣δ
′
p,q

∣

∣

∣ has the same value wherever (p+ q) dp,q 6= 0.

To conclude, εT,F ≤ ηTηF with equality iff (δ
′
p,q = 0 whenever (p+ q) dp,q 6= 0) or (δ

′
p,q is

symmetric in p, q and the model has only pure literals).
This means that in all models allowing non-pure literals (in particular the standard model

having a 2D-Poisson dp,q), εT,F = ηTηF iff δp,q =
1
2 whenever (p+ q) dp,q 6= 0.

Consequently, even in the distributional model, we encounter the very restrictive condition
δp,q =

1
2 to make the Second Moment Method work.

Numerically, we found a critical ratio of 2.838, thus very slightly above the 2.833 obtained
in the drawing model (cf section 8.6.1).
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Figure 9.1: Setting δp,q =
1

1+ωp−q makes the Second Moment Method work iff ω = 1.

9.5.2 Attempts to evade the δp,q =
1
2 condition

The shape of δp,q on figures 9.2 and 9.3 suggested us that on real solutions δp,q =
1

1+ωp−q . So
we tried to evade the ω = 1 case.

We plotted ln ln F2
F21

for different values of ω, at a point satisfying constraints 8.6, 8.7, 9.2, 9.3,

9.4, 9.5, 9.6 and 9.7, for the best choice of the βt’s that we found complying with constraint 9.1.
The expected value is−∞ iff F2

F21
= 1. We set the ratio c = 0.1 (to be compared with 2.838, where

ω = 1 works). Only ω = 1 seems to make F2
F21

= 1, cf. figure 9.1.

9.6 Confrontation with Reality

We are going to do the same kinds of observations through SATLab as in section 8.7 in
order to figure out why the SecondMoment Method still fails to give high upper bounds in the
distributional model.

9.6.1 Non-Independence of Values

We focus our attention on variables with T occurrences among which U are positive. We
denote by d the average proportion of those variables assigned 1 by a solution and u the aver-
age proportion of those variables assigned 0 and 1 by a couple of distinct solutions. In a given
sample of random solutions, we took all couples of different solutions and computed the fol-
lowing three quantities: d, d_d = d (1− d) and u. At independence we should have u = d_d,
which happens for c = 2 (cf. figure 9.2) but not for c = 4 (cf. figure 9.3).

Moreover we can see that d is almost linear in U when c = 2 but it curves when c = 4.
Note also that the range of U may be strictly included in [0 . . . T] (cf. figure 9.3). Determining
the shape of d might help do better calculations of first and second moments, even though in
section 9.5.2 we took δp,q =

1
1+ωp−q but it could not make the Second Moment Method work. It

is clear however that the condition δp,q = 1
2 we encountered in section 9.5.1 does not hold on

real solutions.
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Figure 9.2: δp,q and µp,q = δp,q
(

1− δp,q
)

at c = 2.

Figure 9.3: δp,q and µp,q 6= δp,q
(

1− δp,q
)

at c = 4.
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Figure 9.4: The distributional model slightly curbs the non-independence of surfaces.

9.6.2 Non-Independence of Surfaces

We perform the same experiment as in section 8.7.3, but we restrict surfaces to variables
having T occurrences among which U are positive. On figure 9.4 we can see that there is still
no independence of surfaces, although the restriction of the surfaces to these variables curbs
the non-independence.



Conclusion on the Second Moment Method

“Personne n’est jamais assez fort
pour ce calcul.” French folklore.

Contrary to the First Moment Method, which works more or less finely, the SecondMoment
Method will not always work. Furthermore, it is rather difficult to make it work, and we were
able to make it work only under very artificial conditions with respect to reality. Moreover,
even when it works, we have not been able to find strong lower bounds with it. We got stuck
at 2.83 for 3 different models (standard drawing model, implicants and standard distributional
model).

However we did not prove that it is impossible to find better lower bounds with our general
framework, this is just numerical experiments. Moreover our framework may not be perfect,
perhaps the parameters we consider are not relevant for the Second Moment Method, so there
is still hope in making the Second Moment Method work and give higher lower bounds on the
threshold of 3-SAT.
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Appendix A

Maximization of ln F
(Non-Uniform Selection of Solutions)

Let us recall (cf. section 6.3.3) that under the following constraints:

β1 + β2 + β3 = 1 (A.1)

∑
(i,j,k,l,m)∈Qp,q

πi,j,k,l,m,1+ ∑
(i,j,k,l,m)∈Qq,p

πi,j,k,l,m,0 = dp,q (A.2)

H1 + H2 + H3 = ∑
(p,q)∈H

(p+ q) dp,q (A.3)

∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q
v∈{0,1}

iπi,j,k,l,m,v+ H1 = β1c (A.4)

∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q
v∈{0,1}

jπi,j,k,l,m,v+ H2 = 2β2c (A.5)

∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q
v∈{0,1}

kπi,j,k,l,m,v+ H3 = 3β3c (A.6)

∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q
v∈{0,1}

lπi,j,k,l,m,v = 2β1c (A.7)

∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q
v∈{0,1}

mπi,j,k,l,m,v = β2c (A.8)

we want to maximize the function:
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F = 2τ HH

H
H1
1 HH2

2 H
H3
3

(

1
3
(2β1)

β1 (2β2)
β2 (3β3)

β3

)2c

∏
(p,q)∈L

d
dp,q
p,q ∏

(p,q)∈L
(i,j,k,l,m)∈Qp,q

v∈{0,1}



ωi,j,k,l,m,v

(i+j+k
i,j,k )(l+m

l,m )

πi,j,k,l,m,v





πi,j,k,l,m,v

. (A.9)

on variables
(

πi,j,k,l,m,v

)

(p,q)∈L
(i,j,k,l,m)∈Qp,q

v∈{0,1}

, (H1,H2,H3) , (β1, β2, β3).

To perform such a maximization we use the standard technique of Lagrange multipliers.

A.1 Resolution of the Global Lagrange Multipliers Problem

Elimination of redundant constraints. The first thing to do is to remove redundant con-
straints. It appears that e.g. constraint (A.6) is redundant with constraints (A.4), (A.5), (A.7),
(A.8), because summing these 5 equations and using the previous ones (A.1), (A.3), (A.2) gives
a tautology:

∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q
v∈{0,1}

(i+ j+ k+ l+m)πi,j,k,l,m,v+ H1 + H2 + H3 = 3 (β1 + β2 + β3) c

which is equivalent to

∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q

(

(i+ j+ k) πi,j,k,l,m,1+ (l +m)πi,j,k,l,m,1

)

+ ∑
(p,q)∈L

(i,j,k,l,m)∈Qq,p

(

(i+ j+ k)πi,j,k,l,m,0+ (l+m)πi,j,k,l,m,0

)

+ H = 3c

which is equivalent to

∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q

(

pπi,j,k,l,m,1+ qπi,j,k,l,m,1

)

+ ∑
(p,q)∈L

(i,j,k,l,m)∈Qq,p

(

qπi,j,k,l,m,0+ pπi,j,k,l,m,0

)

+ H = 3c

which is equivalent to

∑
(p,q)∈L

(p+ q)



 ∑
(i,j,k,l,m)∈Qp,q

πi,j,k,l,m,1+ ∑
(i,j,k,l,m)∈Qq,p

πi,j,k,l,m,0



+ H = 3c

which is equivalent to

∑
(p,q)∈L

(p+ q) dp,q +∑(p,q)∈H (p+ q) dp,q = 3c

which was a requirement we made on
(

dp,q
)

(see section (1.1.4)).
Thus we get rid of constraint (A.6) and there remain 7 constraints.
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Definition of the Lagrangian.

Λ = τ ln 2+ H lnH − H1 ln
(

H1

e

)

− H2 ln
(

H2

e

)

− H3 ln
(

H3

e

)

− H

+ ∑
(p,q)∈L

dp,q ln dp,q + ∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q
v∈{0,1}

πi,j,k,l,m,v ln



ωi,j,k,l,m,v

e(i+j+k
i,j,k )(l+m

l,m )

πi,j,k,l,m,v



− 1

−2c ln 3+ 2cβ1 ln
(

2
β1

e

)

+ 2cβ2 ln
(

2
β2

e

)

+ 2cβ3 ln
(

3
β3

e

)

+ 2c

+ (2c ln b) (β1 + β2 + β3 − 1)

+ ∑
(p,q)∈L

(

ln rp,q
)



 ∑
(i,j,k,l,m)∈Qp,q

πi,j,k,l,m,1+ ∑
(i,j,k,l,m)∈Qq,p

πi,j,k,l,m,0− dp,q





+ (ln h)



H1 + H2 + H3 − ∑
(p,q)∈H

(p+ q) dp,q





+ (2 ln x1)















∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q
v∈{0,1}

iπi,j,k,l,m,v+ H1 − β1c















+ (ln x2)















∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q
v∈{0,1}

jπi,j,k,l,m,v+ H2 − 2β2c















+ (ln y1)















∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q
v∈{0,1}

lπi,j,k,l,m,v− 2β1c















+ (2 ln y2)















∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q
v∈{0,1}

mπi,j,k,l,m,v− β2c















.
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Derivatives with Respect to πi,j,k,l,m,v.

∂Λ

∂πi,j,k,l,m,1
= lnωi,j,k,l,m,1+ ln

((

i+ j+ k

i, j, k

)(

l+m

l,m

))

− lnπi,j,k,l,m,v+ ln ri+j+k,l+m

+2i ln x1 + j ln x2 + l ln y1 + 2m ln y2 ;
∂Λ

∂πi,j,k,l,m,0
= lnωi,j,k,l,m,0+ ln

((

i+ j+ k

i, j, k

)(

l+m

l,m

))

− lnπi,j,k,l,m,v+ ln rl+m,i+j+k

+2i ln x1 + j ln x2 + l ln y1 + 2m ln y2 .

Canceling out these derivatives yields:

πi,j,k,l,m,1 = ωi,j,k,l,m,1

(

i+ j+ k

i, j, k

)(

l +m

l,m

)

ri+j+k,l+mx
2i
1 x

j
2y

l
1y

2m
2 ; (A.10)

πi,j,k,l,m,0 = ωi,j,k,l,m,0

(

i+ j+ k

i, j, k

)(

l +m

l,m

)

rl+m,i+j+kx
2i
1 x

j
2y

l
1y

2m
2 . (A.11)

The rp,q constraints become:

∑
(i,j,k,l,m)∈Qp,q

ωi,j,k,l,m,1

(

i+ j+ k

i, j, k

)(

l +m

l,m

)

ri+j+k,l+mx
2i
1 x

j
2y

l
1y

2m
2

+ ∑
(i,j,k,l,m)∈Qq,p

ωi,j,k,l,m,0

(

i+ j+ k

i, j, k

)(

l +m

l,m

)

rl+m,i+j+kx
2i
1 x

j
2y

l
1y

2m
2 = dp,q .

Let us introduce

Ap,q = ∑
(i,j,k,l,m)∈Qp,q

ωi,j,k,l,m,1

(

p

i, j, k

)(

q

l,m

)

x2i1 x
j
2y

l
1y

2m
2

+ ∑
(i,j,k,l,m)∈Qq,p

ωi,j,k,l,m,0

(

q

i, j, k

)(

p

l,m

)

x2i1 x
j
2y

l
1y

2m
2 . (A.12)

We have:

rp,qAp,q = dp,q

i.e.

rp,q =
dp,q

Ap,q
. (A.13)

Thus

πi,j,k,l,m,1 = ωi,j,k,l,m,1

(

i+ j+ k

i, j, k

)(

l +m

l,m

)

di+j+k,l+m

Ai+j+k,l+m
x2i1 x

j
2y

l
1y

2m
2 ;

πi,j,k,l,m,0 = ωi,j,k,l,m,0

(

i+ j+ k

i, j, k

)(

l +m

l,m

)

dl+m,i+j+k

Al+m,i+j+k
x2i1 x

j
2y

l
1y

2m
2 .
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Derivatives with Respect to βt.

∂Λ

∂β1
= 2c ln 2+ 2c ln β1 + 2c ln b− 2c ln x1 − 2c ln y1 ;

∂Λ

∂β2
= 2c ln 2+ 2c ln β2 + 2c ln b− 2c ln x2 − 2c ln y2 ;

∂Λ

∂β3
= 2c ln 3+ 2c ln β3 + 2c ln b .

Canceling out these derivatives yields:

β1 =
x1y1
2b

;

β2 =
x2y2
2b

;

β3 =
1
3b

.

Constraint (A.1) yields:

b =
x1y1
2

+
x2y2
2

+
1
3

.

Derivatives with Respect to Ht.

∂Λ

∂H1
= − lnH1 + ln h+ 2 ln x1 ;

∂Λ

∂H2
= − lnH2 + ln h+ ln x2 ;

∂Λ

∂H3
= − lnH3 + ln h .

Canceling out these derivatives yields:

H1 = hx21 ;

H2 = hx2 ;

H3 = h .

Constraint (A.3) yields:

h
(

x21 + x2 + 1
)

= H

i.e.

h =
H

x21 + x2 + 1
.
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Thus:

H1 =
Hx21

x21 + x2 + 1
;

H2 =
Hx2

x21 + x2 + 1
;

H3 =
H

x21 + x2 + 1
.

Further Simplifications.
– 1st Moment:

F = ∏
(p,q)∈L

d
dp,q
p,q ∏

(p,q)∈L
(i,j,k,l,m)∈Qp,q

v∈{0,1}



ωi,j,k,l,m,v

(i+j+k
i,j,k )(l+m

l,m )

πi,j,k,l,m,v





πi,j,k,l,m,v

·2τ HH

H
H1
1 HH2

2 H
H3
3

(

1
3
(2β1)

β1 (2β2)
β2 (3β3)

β3

)2c

i.e.

F = ∏
(p,q)∈L

d
dp,q
p,q ∏

(p,q)∈L
(i,j,k,l,m)∈Qp,q

(

Ai+j+k,l+m

di+j+k,l+mx
2i
1 x

j
2y

l
1y

2m
2

)πi,j,k,l,m,1

· ∏
(p,q)∈L

(i,j,k,l,m)∈Qq,p

(

Al+m,i+j+k

dl+m,i+j+kx
2i
1 x

j
2y

l
1y

2m
2

)πi,j,k,l,m,0

·2τ HH

(

hx21
)H1 (hx2)

H2 (h)H3

(

1
3b

(x1y1)
β1 (x2y2)

β2

)2c

i.e.

F = ∏
(p,q)∈L



d
dp,q
p,q ∏

(i,j,k,l,m)∈Qp,q

(

Ap,q

dp,qx2i1 x
j
2y

l
1y

2m
2

)πi,j,k,l,m,1




· ∏
(p,q)∈L



 ∏
(i,j,k,l,m)∈Qq,p

(

Ap,q

dp,qx2i1 x
j
2y

l
1y

2m
2

)πi,j,k,l,m,0




·2τHHh−(H1+H2+H3)x
−2H1
1 x−H2

2

(

1
3b

x
β1
1 y

β1
1 x

β2
2 y

β2
2

)2c
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i.e.

F = 2τ

(

H

h

)H

∏
(p,q)∈L

(

d
dp,q
p,q

(

Ap,q

dp,q

)∑(i,j,k,l,m)∈Qp,q
πi,j,k,l,m,1+∑(i,j,k,l,m)∈Qq,p

πi,j,k,l,m,0
)

·x
−2





∑(i,j,k,l,m)∈Qn

v∈{0,1}
iπi,j,k,l,m,v+H1







1 x

−





∑(i,j,k,l,m)∈Qn

v∈{0,1}
jπi,j,k,l,m,v+H2







2

·y
−∑(i,j,k,l,m)∈Qn

v∈{0,1}
lπi,j,k,l,m,v

1 y

−2 ∑(i,j,k,l,m)∈Qn

v∈{0,1}
mπi,j,k,l,m,v

2

·
(

1
3b

x
β1
1 y

β1
1 x

β2
2 y

β2
2

)2c

i.e.

F = 2τ

(

H

h

)H

∏
(p,q)∈L

(

d
dp,q
p,q

(

Ap,q

dp,q

)dp,q
)

x
−2β1c
1 x

−2β2c
2 y

−2β1c
1 y

−2β2c
2

·
(

1
3b

x
β1
1 y

β1
1 x

β2
2 y

β2
2

)2c

i.e.

F = 2τ
(

x21 + x2 + 1
)H

∏
(p,q)∈L

(

A
dp,q
p,q

)

(

3x1y1
2

+
3x2y2
2

+ 1
)−2c

.
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– Remaining constraints:

∑
(p,q)∈L

dp,q

Ap,q
∑

(i,j,k,l,m)∈Qp,q

i

(

p

i, j, k

)(

q

l,m

)

x2i1 x
j
2y

l
1y

2m
2 ωi,j,k,l,m,1

+ ∑
(p,q)∈L

dp,q

Ap,q
∑

(i,j,k,l,m)∈Qq,p

i

(

q

i, j, k

)(

p

l,m

)

x2i1 x
j
2y

l
1y

2m
2 ωi,j,k,l,m,0+

Hx21
x21 + x2 + 1

=
x1y1c

2
(

x1y1
2 + x2y2

2 + 1
3

) ;

∑
(p,q)∈L

dp,q

Ap,q
∑

(i,j,k,l,m)∈Qp,q

j

(

p

i, j, k

)(

q

l,m

)

x2i1 x
j
2y

l
1y

2m
2 ωi,j,k,l,m,1

+ ∑
(p,q)∈L

dp,q

Ap,q
∑

(i,j,k,l,m)∈Qq,p

j

(

q

i, j, k

)(

p

l,m

)

x2i1 x
j
2y

l
1y

2m
2 ωi,j,k,l,m,0+

Hx2
x21 + x2 + 1

=
x2y2c

(

x1y1
2 +

x2y2
2 + 1

3

) ;

∑
(p,q)∈L

dp,q

Ap,q
∑

(i,j,k,l,m)∈Qp,q

l

(

p

i, j, k

)(

q

l,m

)

x2i1 x
j
2y

l
1y

2m
2 ωi,j,k,l,m,1

+ ∑
(p,q)∈L

dp,q

Ap,q
∑

(i,j,k,l,m)∈Qq,p

l

(

q

i, j, k

)(

p

l,m

)

x2i1 x
j
2y

l
1y

2m
2 ωi,j,k,l,m,0

=
x1y1c

(

x1y1
2 + x2y2

2 + 1
3

) ;

∑
(p,q)∈L

dp,q

Ap,q
∑

(i,j,k,l,m)∈Qp,q

m

(

p

i, j, k

)(

q

l,m

)

x2i1 x
j
2y

l
1y

2m
2 ωi,j,k,l,m,1

+ ∑
(p,q)∈L

dp,q

Ap,q
∑

(i,j,k,l,m)∈Qq,p

m

(

q

i, j, k

)(

p

l,m

)

x2i1 x
j
2y

l
1y

2m
2 ωi,j,k,l,m,0

=
x2y2c

2
(

x1y1
2 + x2y2

2 + 1
3

) ,

that is:

∑
(p,q)∈L

dp,q

Ap,q

x1
2

∂Ap,q

∂x1
+

Hx21
x21 + x2 + 1

=
x1y1c

2
(

x1y1
2 + x2y2

2 + 1
3

) ;

∑
(p,q)∈L

dp,q

Ap,q
x2

∂Ap,q

∂x2
+

Hx2
x21 + x2 + 1

=
x2y2c

(

x1y1
2 +

x2y2
2 + 1

3

) ;

∑
(p,q)∈L

dp,q

Ap,q
y1

∂Ap,q

∂y1
=

x1y1c
(

x1y1
2 +

x2y2
2 + 1

3

) ;

∑
(p,q)∈L

dp,q

Ap,q

y2
2

∂Ap,q

∂y2
=

x2y2c

2
(

x1y1
2 + x2y2

2 + 1
3

) .
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Table A.1: Solutions to the Lagrange multipliers problem of the first moment.

model standard balanced
signs

balanced
occurrences

balanced signs
and occurrences

our method
(

αρj,l + ρk,m, v
)

>

(0, 0)

4.500 3.509 4.623 3.546

our α 2.00 1.01 2.01 1.01
x1 1.0083 1.47787 1.01694 1.57726
x2 2.06625 3.09005 2.08256 3.38506
y1 2.18256 3.27457 2.19038 3.51076
y2 1.01253 1.02742 1.01221 1.045
β1 0.44373 0.557479 0.445306 0.568436
β2 0.421847 0.365723 0.421418 0.363128
β3 0.134422 0.0767974 0.133276 0.0684362

Then we introduce Z = ∏(p,q)∈L A
dp,q
p,q and Y = ln Z:

∂Y

∂x1
+

2Hx1
x21 + x2 + 1

=
y1c

(

x1y1
2 + x2y2

2 + 1
3

) ;

∂Y

∂x2
+

H

x21 + x2 + 1
=

y2c
(

x1y1
2 + x2y2

2 + 1
3

) ;

∂Y

∂y1
=

x1c
(

x1y1
2 + x2y2

2 + 1
3

) ;

∂Y

∂y2
=

x2c
(

x1y1
2 + x2y2

2 + 1
3

) .

To solve these equations we used Mathematica. The bound we obtained for c are
summed up in table (A.1).

A.2 Inspection of the Boundary of P

In order to justify the use of Lagrangemultipliers technique wemust show that the function
ln F does not maximize on the boundary of the polytope of constraints; to do so we show that
starting at a boundary point there is always a “good” direction inside the polytope which
makes ln F greater. The boundary of P is reached when one of the variables is at 0. We want to
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Table A.2: Summary of bounds on βt.

model standard balanced
signs

balanced
occurrences

balanced
signs and

occurrences
our method

(

αρj,l + ρk,m, v
)

>

(0, 0)

4.500 3.509 4.623 3.546

our α 2.00 1.01 2.01 1.01
our bounds for β1 0.177 < β1 <

0.912
0.428 < β1 <

0.786
0.182 < β1 <

0.909
0.5 < β1 <

0.75
(our bounds for β2
- deductible from

above)

0 ≤ β2 <

0.823
0 ≤ β2 <

0.572
0 ≤ β2 <

0.818
0 ≤ β2 < 0.5

our bounds for β3 0 ≤ β3 <

0.412
0 ≤ β3 <

0.286
0 ≤ β3 <

0.409
0 ≤ β3 < 0.25

be sure that F cannot be maximized by such a configuration. Remember that

ln F = τ ln 2+ H lnH − H1 ln
(

H1

e

)

− H2 ln
(

H2

e

)

− H3 ln
(

H3

e

)

− H

+ ∑
(p,q)∈L

dp,q ln dp,q + ∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q
v∈{0,1}

πi,j,k,l,m,v ln



ωi,j,k,l,m,v

(i+j+k
i,j,k )(l+m

l,m )

eπi,j,k,l,m,v



+ 1

−2c ln 3+ 2cβ1 ln
(

2
β1

e

)

+ 2cβ2 ln
(

2
β2

e

)

+ 2cβ3 ln
(

3
β3

e

)

+ 2c .

If we increase an Ht or a πi,j,k,l,m,v from 0 to a small ξ > 0 and we change any other nonzero

variables, then the variation of ln F is f = −ξ ln ξ + Θ (ξ) is such that f
ξ = − ln ξ + Θ (1) →

+∞, so ln F must increase; but what if we increase a βt from 0 to a ξ > 0? Then f
ξ = + ln ξ +

Θ (1) → −∞. Thus the problem at the boundary of P comes from the βt. The technique will
be the same as Dubois, Boufkhad & Mandler - 2003 [DBM03] or Díaz, Kirousis, Mitsche &
Pérez-Giménez - 2009 [DKMPG09]: make a small move in a well chosen direction in order to
circumvent the negative side-effect of increasing a βt which is at 0. Such a direction will be
referred to as an increasing direction. However we must ensure that such a direction is indeed
in the polytope P . Note that in case we find the direction by pointing towards another point in
P , this property results from the convexity of P .

We used Mathematica to minimize and maximize β1 under the above constraints in each
model and our corresponding weighting scheme ; the precise bounds we obtained for β1 in
each model are summed up in table (A.2). Noteworthy is the fact that β1 can be neither 0 nor 1
(thus we can have neither β1 = 0 nor β2 = β3 = 0).

1. case where β2 = 0: then H2 = 0 and πi,j,k,l,m,v = 0 unless j = m = 0; we call these vari-
ables forced as did Díaz, Kirousis, Mitsche & Pérez-Giménez- 2009 [DKMPG09]; moreover
in the models where there are no heavy variables we consider variables Ht to be forced
to 0 as well.
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– sub-case where there is an unforced variable at zero: we find a feasible point where
β2 = 0 and all unforced variables are nonzero. Then a move towards this point gives
an increasing direction (because β1 > 0 and β3 > 0). To find such a point, we use the
Lagrange multipliers method, as follows:
– Definition of the Lagrangian:

Λ = τ ln 2+ H lnH − H1 ln
(

H1

e

)

− H3 ln
(

H3

e

)

− H

+ ∑
(p,q)∈L

dp,q ln dp,q + ∑
(p,q)∈L

(i,0,k,l,0)∈Qp,q
v∈{0,1}

πi,0,k,l,0,v ln

(

ωi,0,k,l,0,v
(i+k
i,k )

eπi,0,k,l,0,v

)

+ 1

−2c ln 3+ 2cβ1 ln
(

2
β1

e

)

+ 2cβ3 ln
(

3
β3

e

)

+ 2c

+ (2c ln b) (β1 + β3 − 1)

+ ∑
(p,q)∈L

(

ln rp,q
)



 ∑
(i,0,k,l,0)∈Qp,q

πi,j,k,l,m,1+ ∑
(i,0,k,l,0)∈Qq,p

πi,j,k,l,m,0− dp,q





+ (ln h) (H1 + H3 − H)

+ (2 ln x1)















∑
(p,q)∈L

(i,0,k,l,0)∈Qp,q
v∈{0,1}

iπi,0,k,l,0,v+ H1 − β1c















+ (ln y1)















∑
(p,q)∈L

(i,0,k,l,0)∈Qp,q
v∈{0,1}

lπi,0,k,l,0,v− 2β1c















.

– Derivatives with respect to πi,0,k,l,0,v:

∂Λ

∂πi,0,k,l,0,1
= ln ωi,0,k,l,0,1+ ln

(

i+ k

i, k

)

− lnπi,0,k,l,0,v+ ln ri+k,l + 2i ln x1 + l ln y1 ;

∂Λ

∂πi,0,k,l,0,0
= ln ωi,0,k,l,0,0+ ln

(

i+ k

i, k

)

− lnπi,0,k,l,0,v+ ln rl,i+k + 2i ln x1 + l ln y1 .

Canceling out these derivatives yields:

πi,0,k,l,0,1 = ωi,0,k,l,0,1

(

i+ k

i, k

)

ri+k,lx
2i
1 y

l
1 ;

πi,0,k,l,0,0 = ωi,0,k,l,0,0

(

i+ k

i, k

)

rl,i+kx
2i
1 y

l
1 .
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The rp,q constraints become:

∑
(i,0,k,q,0)∈Qp,q

ωi,0,k,q,0,1

(

i+ k

i, k

)

ri+k,qx
2i
1 y

q
1

+ ∑
(i,0,k,p,0)∈Qq,p

ωi,0,k,p,0,0

(

i+ k

i, k

)

rl,i+kx
2i
1 y

p
1 = dp,q .

Let us introduce

Ap,q = ∑
(i,0,k,q,0)∈Qp,q

ωi,0,k,q,0,1

(

p

i, k

)

x2i1 y
q
1

+ ∑
(i,0,k,l,0)∈Qq,p

ωi,0,k,p,0,0

(

q

i, k

)

x2i1 y
p
1 :

rp,qAp,q = dp,q

thus

rp,q =
dp,q

Ap,q

and

πi,0,k,l,0,1 = ωi,0,k,l,0,1

(

i+ k

i, k

)

di+k,l

Ai+k,l
x2i1 y

l
1 ;

πi,0,k,l,0,0 = ωi,0,k,l,0,0

(

i+ k

i, k

)

dl,i+k

Al,i+k
x2i1 y

l
1 .

– Derivatives with respect to βt:

∂Λ

∂β1
= 2c ln 2+ 2c ln β1 + 2c ln b− 2c ln x1 − 2c ln y1 ;

∂Λ

∂β3
= 2c ln 3+ 2c ln β3 + 2c ln b .

Canceling out these derivatives yields:

β1 =
x1y1
2b

;

β3 =
1
3b

.

Constraint (A.1) yields:

x1y1
2b

+
1
3b

= 1

i.e.

b =
x1y1
2

+
1
3

.
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– Derivatives with respect to Ht:

∂Λ

∂H1
= − lnH1 + ln h+ 2 ln x1 ;

∂Λ

∂H3
= − lnH3 + ln h .

Canceling out these derivatives yields:

H1 = hx21 ;

H3 = h .

Constraint (A.3) yields then:

h
(

x21 + 1
)

= H

i.e.

h =
H

x21 + 1
.

– Remaining constraints:

∑
(p,q)∈L

dp,q

Ap,q
∑

(i,0,k,q,0)∈Qp,q

i

(

p

i, k

)

x2i1 y
q
1ωi,0,k,q,0,1

+ ∑
(p,q)∈L

dp,q

Ap,q
∑

(i,0,k,p,0)∈Qq,p

i

(

q

i, k

)

x2i1 y
q
1ωi,0,k,p,0,0+

Hx21
x21 + 1

=
x1y1c

2
(

x1y1
2 + 1

3

) ;

∑
(p,q)∈L

dp,q

Ap,q
∑

(i,0,k,q,0)∈Qp,q

q

(

p

i, k

)

x2i1 y
q
1ωi,0,k,q,0,1

+ ∑
(p,q)∈L

dp,q

Ap,q
∑

(i,0,k,p,0)∈Qq,p

p

(

q

i, k

)

x2i1 y
p
1ωi,0,k,p,0,0 =

x1y1c
(

x1y1
2 + 1

3

) .

Then we introduce Z = ∏(p,q)∈L A
dp,q
p,q and Y = ln Z:

∂Y

∂x1
+

2Hx1
x21 + 1

=
y1c

(

x1y1
2 + 1

3

) ;

∂Y

∂y1
=

x1c
(

x1y1
2 + 1

3

) .

With Mathematica we found the solutions (and the corresponding values of ln F)
mentioned in table (A.3).
So we find a feasible point where β2 = 0 all unforced variables are nonzero.
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Table A.3: Interior point when β2 = 0.

model standard balanced signs balanced occurrences balanced signs
and occurrences

c 4.500 3.509 4.623 3.546
x1 0.997334 0.96803 0.999726 0.970462
y1 2.07123 2.06284 2.05335 2.06087
ln F −2.463 −1.78313 −2.53084 −1.79349

– sub-casewhere all unforced variables are nonzero: we define a function f (ξ) represent-
ing the variation of ln F under a small positive variation ξ in the following direction;
remember that ωi,j,k,l,m,v = 1 as soon as i ≥ 1 thus the corresponding variable πi,j,k,l,m,v
exists. Let us take some p ≥ 3 and q ≥ 2 such that dp,q > 0. We make the following
move:

β1 → β1 −
ξ

c

β2 → β2 +
2ξ

c

β3 → β3 −
ξ

c
πp−1,0,1,q,0,1 → πp−1,0,1,q,0,1− 5ξ

πp−2,1,1,q,0,1 → πp−2,1,1,q,0,1+ ξ

πp−1,0,1,q−2,2,1 → πp−1,0,1,q−2,2,1+ ξ

πp−1,1,0,q,0,1 → πp−1,1,0,q,0,1+ 3ξ

so that all constraints remain satisfied; in fact we are performing a small move inside
the polytope P and we would like to show that along this direction ln F is increasing.
Note that β2 = πp−2,1,1,q,0,1 = πp−1,0,1,q−2,2,1 = πp−1,1,0,q,0,1 = 0 and all other variables
here are nonzero, so we have:

f (ξ) = 2c
(

β1 −
ξ

c

)

ln
(

2
e

(

β1 −
ξ

c

))

− 2cβ1 ln
(

2
e

β1

)

+2c
(

β2 +
2ξ

c

)

ln
(

2
e

(

β2 +
2ξ

c

))

+2c
(

β3 −
ξ

c

)

ln
(

3
e

(

β3 −
ξ

c

))

− 2cβ3 ln
(

3
e

β3

)

−
(

πp−1,0,1,q,0,1− 5ξ
)

ln
(

πp−1,0,1,q,0,1− 5ξ
)

+πp−1,0,1,q,0,1 ln πp−1,0,1,q,0,1
−
(

πp−2,1,1,q,0,1+ ξ
)

ln
(

πp−2,1,1,q,0,1+ ξ
)

−
(

πp−1,0,1,q−2,2,1+ ξ
)

ln
(

πp−1,0,1,q−2,2,1+ ξ
)

−
(

πp−1,1,0,q,0,1+ 3ξ
)

ln
(

πp−1,1,0,q,0,1+ 3ξ
)

+ Θ (ξ)
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that is

f (ξ) = +2c
(

β1 −
ξ

c

)

ln
(

2
e

(

β1 −
ξ

c

))

− 2cβ1 ln
(

2
e

β1

)

+4ξ ln
(

4ξ

ec

)

+2c
(

β3 −
ξ

c

)

ln
(

3
e

(

β3 −
ξ

c

))

− 2cβ3 ln
(

3
e

β3

)

−
(

πp−1,0,1,q,0,1− 5ξ
)

ln
(

πp−1,0,1,q,0,1− 5ξ
)

+ πp−1,0,1,q,0,1 ln πp−1,0,1,q,0,1
−2ξ ln ξ − 3ξ ln (3ξ) + Θ (ξ)

and thus:

lim
ξ→0

f (ξ)

ξ
= lim

ξ→0
(− ln ξ) + Θ (1) .

Since limξ→0
f (ξ)

ξ = +∞, we have found an increasing direction.
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2. case where β3 = 0: then H3 = 0 and πi,j,k,l,m,v = 0 unless k = 0; again we call these
variables forced.
– sub-case where there is an unforced variable at zero: we find a feasible point where

β3 = 0 and all unforced variables are nonzero. Then a move towards this point gives
an increasing direction (because β1 > 0 and β2 > 0). To find such a point we use again
the Lagrange multipliers method, as follows:
– Definition of the Lagrangian:

Λ = τ ln 2+ H lnH − H1 ln
(

H1

e

)

− H2 ln
(

H2

e

)

− H

+ ∑
(p,q)∈L

dp,q ln dp,q + ∑
(p,q)∈L

(i,j,0,l,m)∈Qp,q
v∈{0,1}

πi,j,0,l,m,v ln



ωi,j,0,l,m,v

(i+j
i,j )(

l+m
l,m )

eπi,j,0,l,m,v



+ 1

−2c ln 3+ 2cβ1 ln
(

2
β1

e

)

+ 2cβ2 ln
(

2
β2

e

)

+ 2c

+ (2c ln b) (β1 + β2 − 1)

+ ∑
(p,q)∈L

(

ln rp,q
)



 ∑
(i,j,0,l,m)∈Qp,q

πi,j,0,l,m,1+ ∑
(i,j,0,l,m)∈Qq,p

πi,j,0,l,m,0− dp,q





+ (ln h) (H1 + H2 − H)

+ (2 ln x1)















∑
(p,q)∈L

(i,j,0,l,m)∈Qp,q
v∈{0,1}

iπi,j,0,l,m,v+ H1 − β1c















+ (ln x2)















∑
(p,q)∈L

(i,j,0,l,m)∈Qp,q
v∈{0,1}

jπi,j,0,l,m,v+ H2 − 2β2c















+ (ln y1)















∑
(p,q)∈L

(i,j,0,l,m)∈Qp,q
v∈{0,1}

lπi,j,0,l,m,v− 2β1c















+ (2 ln y2)















∑
(p,q)∈L

(i,j,0,l,m)∈Qp,q
v∈{0,1}

mπi,j,0,l,m,v− β2c















.
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– Derivatives with respect to πi,j,0,l,m,v:

∂Λ

∂πi,j,0,l,m,1
= lnωi,j,0,l,m,1+ ln

((

i+ j

i, j

)(

l +m

l,m

))

− lnπi,j,0,l,m,v+ ln ri+j,l+m

+2i ln x1 + j ln x2 + l ln y1 + 2m ln y2 ;
∂Λ

∂πi,j,0,l,m,0
= lnωi,j,0,l,m,0+ ln

((

i+ j

i, j

)(

l +m

l,m

))

− lnπi,j,0,l,m,v+ ln rl+m,i+j

+2i ln x1 + j ln x2 + l ln y1 + 2m ln y2 .

Canceling out these derivatives yields:

πi,j,0,l,m,1 = ωi,j,0,l,m,1

(

i+ j

i, j

)(

l +m

l,m

)

ri+j,l+mx
2i
1 x

j
2y

l
1y

2m
2 ;

πi,j,0,l,m,0 = ωi,j,0,l,m,0

(

i+ j

i, j

)(

l +m

l,m

)

rl+m,i+jx
2i
1 x

j
2y

l
1y

2m
2 .

The rp,q constraints become:

∑
(i,j,0,l,m)∈Qp,q

ωi,j,0,l,m,1

(

i+ j

i, j

)(

l +m

l,m

)

ri+j,l+mx
2i
1 x

j
2y

l
1y

2m
2

+ ∑
(i,j,0,l,m)∈Qq,p

ωi,j,0,l,m,0

(

i+ j

i, j

)(

l +m

l,m

)

rl+m,i+jx
2i
1 x

j
2y

l
1y

2m
2 = dp,q .

Let us introduce

Ap,q = ∑
(i,j,0,l,m)∈Qp,q

ωi,j,0,l,m,1

(

p

i, j

)(

q

l,m

)

x2i1 x
j
2y

l
1y

2m
2

+ ∑
(i,j,0,l,m)∈Qq,p

ωi,j,0,l,m,0

(

q

i, j

)(

p

l,m

)

x2i1 x
j
2y

l
1y

2m
2 .

We have:

rp,qAp,q = dp,q

i.e.

rp,q =
dp,q

Ap,q
.

Thus

πi,j,0,l,m,1 = ωi,j,0,l,m,1

(

i+ j

i, j

)(

l +m

l,m

)

di+j,l+m

Ai+j,l+m
x2i1 x

j
2y

l
1y

2m
2 ;

πi,j,0,l,m,0 = ωi,j,0,l,m,0

(

i+ j

i, j

)(

l +m

l,m

)

dl+m,i+j

Al+m,i+j
x2i1 x

j
2y

l
1y

2m
2 .
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– Derivatives with respect to βt:

∂Λ

∂β1
= 2c ln 2+ 2c ln β1 + 2c ln b− 2c ln x1 − 2c ln y1 ;

∂Λ

∂β2
= 2c ln 2+ 2c ln β2 + 2c ln b− 2c ln x2 − 2c ln y2 .

Canceling out these derivatives yields:

β1 =
x1y1
2b

;

β2 =
x2y2
2b

.

Constraint (A.1) yields:

x1y1
2b

+
x2y2
2b

= 1

i.e.

b =
x1y1
2

+
x2y2
2

.

– Derivatives with respect to Ht:

∂Λ

∂H1
= − lnH1 + ln h+ 2 ln x1 ;

∂Λ

∂H2
= − lnH2 + ln h+ ln x2 .

Canceling out these derivatives yields:

H1 = hx21 ;

H2 = hx2 .

Constraint (A.3) yields then:

h
(

x21 + x2

)

= H

i.e.

h =
H

x21 + x2
.
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– Remaining constraints:

∑
(p,q)∈L

dp,q

Ap,q
∑

(i,j,0,l,m)∈Qp,q

i

(

p

i, j

)(

q

l,m

)

x2i1 x
j
2y

l
1y

2m
2 ωi,j,0,l,m,1

+ ∑
(p,q)∈L

dp,q

Ap,q
∑

(i,j,0,l,m)∈Qq,p

i

(

q

i, j

)(

p

l,m

)

x2i1 x
j
2y

l
1y

2m
2 ωi,j,0,l,m,0+

Hx21
x21 + x2

=
x1y1c

(x1y1 + x2y2)
;

∑
(p,q)∈L

dp,q

Ap,q
∑

(i,j,0,l,m)∈Qp,q

j

(

p

i, j

)(

q

l,m

)

x2i1 x
j
2y

l
1y

2m
2 ωi,j,0,l,m,1

+ ∑
(p,q)∈L

dp,q

Ap,q
∑

(i,j,0,l,m)∈Qq,p

j

(

q

i, j

)(

p

l,m

)

x2i1 x
j
2y

l
1y

2m
2 ωi,j,0,l,m,0+

Hx2
x21 + x2

=
2x2y2c

(x1y1 + x2y2)
;

∑
(p,q)∈L

dp,q

Ap,q
∑

(i,j,0,l,m)∈Qp,q

l

(

p

i, j

)(

q

l,m

)

x2i1 x
j
2y

l
1y

2m
2 ωi,j,0,l,m,1

+ ∑
(p,q)∈L

dp,q

Ap,q
∑

(i,j,0,l,m)∈Qq,p

l

(

q

i, j

)(

p

l,m

)

x2i1 x
j
2y

l
1y

2m
2 ωi,j,0,l,m,0

=
2x1y1c

(x1y1 + x2y2)
;

∑
(p,q)∈L

dp,q

Ap,q
∑

(i,j,0,l,m)∈Qp,q

m

(

p

i, j

)(

q

l,m

)

x2i1 x
j
2y

l
1y

2m
2 ωi,j,0,l,m,1

+ ∑
(p,q)∈L

dp,q

Ap,q
∑

(i,j,0,l,m)∈Qq,p

m

(

q

i, j

)(

p

l,m

)

x2i1 x
j
2y

l
1y

2m
2 ωi,j,0,l,m,0

=
x2y2c

(x1y1 + x2y2)
.

Then we introduce Z = ∏(p,q)∈L A
dp,q
p,q and Y = ln Z:

∂Y

∂x1
+

2Hx1
x21 + x2

=
y1c

( x1y1
2 + x2y2

2

) ;

∂Y

∂x2
+

H

x21 + x2
=

y2c
( x1y1

2 + x2y2
2

) ;

∂Y

∂y1
=

x1c
( x1y1

2 + x2y2
2

) ;

∂Y

∂y2
=

x2c
( x1y1

2 + x2y2
2

) .

With Mathematica we found the solutions (and the corresponding values of ln F)
mentioned in table (A.4).
So we find a feasible point where β3 = 0 and all unforced variables are nonzero.
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Table A.4: Interior point when β3 = 0.

model standard balanced signs balanced occurrences balanced signs
and occurrences

c 4.500 3.509 4.623 3.546
x1 0.512382 0.473066 0.493115 0.494614
x2 0.546014 0.489687 0.501307 0.494614
y1 0.583465 0.520769 0.531045 0.494614
y2 0.529328 0.513117 0.505216 0.494614
ln F −0.682149 −0.375917 −0.695819 −0.33427

– sub-casewhere all unforced variables are nonzero: we define a function f (ξ) represent-
ing the variation of ln F under a small positive variation ξ in the following direction;
remember that ωi,j,k,l,m,v = 1 as soon as i ≥ 1 thus the corresponding variable πi,j,k,l,m,v
exists. Let us take some p ≥ 3 and q ≥ 2 such that dp,q > 0. We make the following
move:

β1 → β1 +
ξ

c

β2 → β2 −
2ξ

c

β3 → β3 +
ξ

c
πp−2,2,0,q−1,1,1 → πp−2,2,0,q−1,1,1− 3ξ

πp−1,0,1,q−1,1,1 → πp−1,0,1,q−1,1,1+ ξ

πp−2,1,1,q,0,1 → πp−2,1,1,q,0,1+ 2ξ

so that all constraints remain satisfied; in fact we are performing a small move inside
the polytope P and we would like to show that along this direction ln F is increas-
ing. Note that β3 = πp−1,0,1,q−1,1,1 = πp−2,1,1,q,0,1 = 0 and all other variables here are
nonzero, so we have:

f (ξ) = 2c
(

β1 +
ξ

c

)

ln
(

2
e

(

β1 +
ξ

c

))

− 2cβ1 ln
(

2
e

β1

)

+2c
(

β2 −
2ξ

c

)

ln
(

2
e

(

β2 −
2ξ

c

))

− 2cβ2 ln
(

2
e

β2

)

+2c
(

β3 +
ξ

c

)

ln
(

3
e

(

β3 +
ξ

c

))

−
(

πp−2,2,0,q−1,1,1− 3ξ
)

ln
(

πp−2,2,0,q−1,1,1− 3ξ
)

+πp−2,2,0,q−1,1,1 lnπp−2,2,0,q−1,1,1
−
(

πp−1,0,1,q−1,1,1+ ξ
)

ln
(

πp−1,0,1,q−1,1,1+ ξ
)

−
(

πp−2,1,1,q,0,1+ 2ξ
)

ln
(

πp−2,1,1,q,0,1+ 2ξ
)

+ Θ (ξ)
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thus

f (ξ) = +2c
(

β1 +
ξ

c

)

ln
(

2
e

(

β1 +
ξ

c

))

− 2cβ1 ln
(

2
e

β1

)

+2c
(

β2 −
2ξ

c

)

ln
(

2
e

(

β2 −
2ξ

c

))

− 2cβ2 ln
(

2
e

β2

)

+2ξ ln
(

3ξ

ec

)

−
(

πp−2,2,0,q−1,1,1− 3ξ
)

ln
(

πp−2,2,0,q−1,1,1− 3ξ
)

+πp−2,2,0,q−1,1,1 lnπp−2,2,0,q−1,1,1
−ξ ln ξ − 2ξ ln (2ξ) + Θ (ξ)

and thus:

lim
ξ→0

f (ξ)

ξ
= lim

ξ→0
(− ln ξ) + Θ (1) .

Since limξ→0
f (ξ)

ξ = +∞, we have found an increasing direction.

3. case where all βt > 0; suppose there is another variable at zero; we move towards the
general solution we found in section A.1, where all variables are nonzero. Then again

limξ→0
f (ξ)

ξ = +∞; so this is an increasing direction.

A.3 Inspection of the Interior of P
As Díaz, Kirousis, Mitsche & Pérez-Giménez [DKMPG09] noticed in their calculation, we

can perform a sweep over some coordinates in order to check that the solution of the Lagrange
multipliers problem is indeed a global maximum. Namely when we fix all β1, β2 (and β3 =
1− β1 − β2), the function ln F is strictly concave in the other variables. Let Pβ1,β2 the polytope
where the remaining variables are allowed to move; remember that the function to maximize
is:

ln F = τ ln 2+ H lnH − H1 ln
(

H1

e

)

− H2 ln
(

H2

e

)

− H3 ln
(

H3

e

)

− H

+ ∑
(p,q)∈L

dp,q ln dp,q + ∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q
v∈{0,1}

πi,j,k,l,m,v ln



ωi,j,k,l,m,v

(i+j+k
i,j,k )(l+m

l,m )

eπi,j,k,l,m,v



+ 1

−2c ln 3+ 2cβ1 ln
(

2
β1

e

)

+ 2cβ2 ln
(

2
β2

e

)

+ 2cβ3 ln
(

3
β3

e

)

+ 2c .

If we increase an Ht or a πi,j,k,l,m,v from 0 to a small ξ > 0 and we change any other nonzero

variables, then the variation f of ln F: f = −ξ ln ξ + Θ (ξ) is such that f
ξ = − ln ξ + Θ (1) →

+∞, so ln F must increase; thus the function cannot maximize on the boundary of Pβ1,β2 and
we can apply the Lagrange multiplier technique again. But now by strict concavity of the
objective function, we know that the solution we find corresponds to a global maximum.
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– Definition of the Lagrangian:

Λ = τ ln 2+ H lnH − H1 ln
(

H1

e

)

− H2 ln
(

H2

e

)

− H3 ln
(

H3

e

)

− H

+ ∑
(p,q)∈L

dp,q ln dp,q + ∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q
v∈{0,1}

πi,j,k,l,m,v ln



ωi,j,k,l,m,v

(i+j+k
i,j,k )(l+m

l,m )

eπi,j,k,l,m,v



+ 1

−2c ln 3+ 2cβ1 ln
(

2
β1

e

)

+ 2cβ2 ln
(

2
β2

e

)

+ 2cβ3 ln
(

3
β3

e

)

+ 2c

+ ∑
(p,q)∈L

(

ln rp,q
)



 ∑
(i,j,k,l,m)∈Qp,q

πi,j,k,l,m,1+ ∑
(i,j,k,l,m)∈Qq,p

πi,j,k,l,m,0− dp,q





+ (ln h)



H1 + H2 + H3 − ∑
(p,q)∈H

(p+ q) dp,q





+ (2 ln x1)















∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q
v∈{0,1}

iπi,j,k,l,m,v+ H1 − β1c















+ (ln x2)















∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q
v∈{0,1}

jπi,j,k,l,m,v+ H2 − 2β2c















+ (ln y1)















∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q
v∈{0,1}

lπi,j,k,l,m,v− 2β1c















+ (2 ln y2)















∑
(p,q)∈L

(i,j,k,l,m)∈Qp,q
v∈{0,1}

mπi,j,k,l,m,v− β2c















.

– Derivatives with respect to πi,j,k,l,m,v:
As in the general case we find that

πi,j,k,l,m,1 = ωi,j,k,l,m,1

(

i+ j+ k

i, j, k

)(

l +m

l,m

)

di+j+k,l+m

Ai+j+k,l+m
x2i1 x

j
2y

l
1y

2m
2 ;

πi,j,k,l,m,0 = ωi,j,k,l,m,0

(

i+ j+ k

i, j, k

)(

l +m

l,m

)

dl+m,i+j+k

Al+m,i+j+k
x2i1 x

j
2y

l
1y

2m
2 .
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– Derivatives with respect to Ht:
As in the general case we find that

H1 =
Hx21

x21 + x2 + 1
;

H2 =
Hx2

x21 + x2 + 1
;

H3 =
H

x21 + x2 + 1
.

– Remaining constraints:

∂Y

∂x1
+

2Hx1
x21 + x2 + 1

=
2β1c

x1
;

∂Y

∂x2
+

H

x21 + x2 + 1
=

2β2c

x2
;

∂Y

∂y1
=

2β1c

y1
;

∂Y

∂y2
=

2β2c

y2
.

– Objective function:

F = 2τ HH

HH1
1 HH2

2 HH3
3

(

1
3
(2β1)

β1 (2β2)
β2 (3β3)

β3

)2c

· ∏
(p,q)∈L

d
dp,q
p,q ∏

(p,q)∈L
(i,j,k,l,m)∈Qp,q

v∈{0,1}



ωi,j,k,l,m,v

(i+j+k
i,j,k )(l+m

l,m )

πi,j,k,l,m,v





πi,j,k,l,m,v

thus

F = 2τ
(

x21 + x2 + 1
)H

∏
(p,q)∈L

(

A
dp,q
p,q

)

(

1
3

(

2β1

x1y1

)β1
(

2β2

x2y2

)β2

(3β3)
β3

)2c

.

So we made a sweep over β1 and β2 in the feasible region and plotted the maximum
point given as the solution of these equations, which confirmed the fact that the solu-
tions to the global Lagrange system are indeed global maxima.
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Table A.5: Values of parameters obtained by a sweep over the interior of P .
model standard balanced

signs
balanced

occurrences
balanced signs
and occurrences

our method
(

αρj,l + ρk,m, v
)

>

(0, 0)

4.500 3.509 4.623 3.546

β1 0.44373 0.557479 0.445306 0.568436
β2 0.421847 0.365723 0.421418 0.363128
β3 0.134422 0.0767974 0.133276 0.0684362

Figure A.1: Maximum of ln F for different values of β1 and β2 in the standard model at c =
4.500. Numerically we found that the maximum is at β1 ≃ 0.44313 and β2 ≃ 0.421847.
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Figure A.2: Maximum of ln F for different values of β1 and β2 in the model with balanced signs
at c = 3.509. Numerically we found that the maximum is at β1 ≃ 0.557479 and β2 ≃ 0.365723.
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(NON-UNIFORM SELECTION OF SOLUTIONS)

Figure A.3: Maximum of ln F for different values of β1 and β2 in the model with balanced
occurrences at c = 4.623. Numerically we found that the maximum is at β1 ≃ 0.445306 and
β2 ≃ 0.421418.

Figure A.4: Maximum of ln F for different values of β1 in the model with balanced signs and
occurrences at c = 3.546. In this particular model where each variable has as many positive
occurrences as negative ones, true and false surfaces are equal: β1 + 2β2 + 3β3 = 2β1 + β2,
thus β2 = 1.5− 2β1. Numerically we found that the maximum is at β1 ≃ 0.568436 and β2 ≃
0.363128.



Appendix B

Some Useful Asymptotic Estimates

B.1 Multinomial Coefficients

Stirling’s asymptotic estimate of the factorial states that

k! ∼
(

k

e

)k√
2πk ; (B.1)

it is enough for us to know that k!

( k
e )

k√
2πk

is bounded and away from 0. But to be more precise,

we would like to mention the following inequalities due to Batir - 2008 [Bat08]:

(

k

e

)k
√

2π

(

k+
1
6

)

< k! <
(

k

e

)k
√

2π

(

k+

(

e2

2π
− 1
))

.

It follows that when k is a constant, there exist two polynomials poly1 (n) and poly2 (n)
such that:

poly1 (n)
nn

n
n1
1 . . . nnkk

< ( n
n1,...,nk

) < poly2 (n)
nn

n
n1
1 . . . nnkk

. (B.2)

B.2 Stirling Numbers of the Second Kind

We recall that S (n,m) denotes the Stirling number of the second kind with parameters n
and m. It represents the number of possible surjections from a set of n elements onto a set of m
elements. We are interested in an asymptotic estimate of this number.

According to Temme - 1993 [Tem93],

S (n,m) ∼ eAmn−m f (t)

(

n

m

)

,

where t = n−m
m , f is bounded by a polynomial, A = Φ (x) − mt + (n−m) ln t, Φ (x) =

−n ln x+m ln (ex − 1), and x is the positive solution to the following equation:

m

n
x = 1− e−x . (B.3)
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So we have

S (n,m) ∼ e−n ln x+m ln(ex−1)−n+m+(n−m) ln n−m
m mn−m f

(

n−m

m

)(

n

m

)

∼ x−n (ex − 1)m
(

n−m

e

)n−m
f

(

n−m

m

)(

n

m

)

.

Using equation B.1 and inequalities B.2, we conclude that there exist two polynomials
poly1 (n) and poly2 (n) such that poly1 (n) B < S (n,m)m! < poly2 (n) B where

B =
(m

e

)m
x−n (ex − 1)m

(

n−m

e

)n−m nn

mm (n−m)n−m

=
( n

ex

)n
(ex − 1)m ,

i.e.

poly1 (n)
( n

ex

)n
(ex − 1)m < S (n,m)m! < poly2 (n)

( n

ex

)n
(ex − 1)m . (B.4)

First Derivative Cancels out

Suppose now thatm and n are variables of some function F to maximize, and that F contains
a Stirling number S (n,m)m!; suppose that we work only on the exponential equivalent of F:
ln F = Λ + ∆, where Λ = m ln (ex − 1) + n ln

(

n
ex

)

and x does not appear in ∆. In particular x
is an implicit function of m and n as defined by equation B.3.

∂Λ

∂m
= ln (ex − 1) +

∂Λ

∂x

∂x

∂m
;

∂Λ

∂n
= ln

n

x
+

∂Λ

∂x

∂x

∂n
;

∂Λ

∂x
= m

ex

ex − 1
− n

x
.

But if x satisfies equation B.3, m ex

ex−1 − n
x = m

1−e−x −
n
x = n

x − n
x = 0, thus ∂Λ

∂x = 0. Conse-
quently maximization of ln F can be performed as if x were a constant.
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partial assignment, 41
permutation, 68
phase transition, 21
planted model, 30
prime implicant, 39

regular model, 83
renaming, 68

SAT, 19
Second Moment Method, 97
seed, 57
sharp threshold, 22
sign, 102
solution, 54
solutions network, 55
standard model, 83
starrable variable, 41
Stirling number, 169
surface, 100, 103, 120
symmetry of occurrences, 103

threshold, 21
Transfer lemma, 58
truth value, 102
type of a clause, 84
type of a variable, 84, 87

uniform, 56, 59, 82
unitary, 57
unladen weight, 57

valid partial assignment, 41
valid valuation, 41, 71
valuation, 41, 54
value, 101

Weight Conservation Theorem, 58
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weighting, 53
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