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THÈSE

présentée et soutenue publiquement le 04/03/2011

pour l’obtention du
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Abstract

In the recent years, we have witnessed major advances in mobile computing. Modern devices are
equipped with a variety of sensors and network interfaces that make them quite versatile. In order to take
advantage of all the hardware capabilities and provide a better user experience, software has to be context

aware, i.e. it has to monitor the events and information coming from its environment and react accord-
ingly. At the same time, we notice that an important number of such mobile applications share several
characteristics regarding its architecture, communication, storage and interfaces. This leads us to consider
that context-aware systems can also benefit from the Software Product Line (SPL) paradigm. SPLs were de-
fined to take advantage of commonalities through the definition of reusable artifacts, in order to automate
the derivation of multiple products. Nevertheless, SPLs are limited regarding the runtime modifications
implied by context awareness. This dissertation investigates on Dynamic Software Product Lines (DSPL). A
DSPL extends a classic SPLs by providing mechanisms to adapt products at runtime to cope with dynamic
changes imposed by context awareness. Our main goal is to unify design and runtime adaptations under
the same definition through high-level artifacts. Such artifacts can then be used to implement DSPLs by
defining the processes required to map them into concrete products at design time and at runtime.

Concretely, as the first contribution of this dissertation, we introduce both: a simple – yet complete
– variability model, and a composition model that realizes variability. With the variability model we aim at
defining a family of products and at identifying commonalities and variabilities along those products using
variants. The composition model on the other side, is based on ideas from Aspect Oriented Software De-
velopment (AOSD). We use the model to divide the products in several modules called aspect models that
are used to construct platform independent representations of variability. Each aspect model is formed by
three parts: the architecture model which represents parts of a system to be added, the advice that contains
a set of changes to the core application and finally, the pointcut that identifies the places where the modi-
fications are performed. As a second contribution, we propose two processes of product derivation: design

weaving and runtime weaving. Design weaving aims at building a single product. Runtime weaving aims at
adapting a product being executed. Both processes use the same variability and aspect models. We thus
allow developers to reuse the same artifacts used for building a software product to adapt it dynamically
among various configurations. For the design weaving, we base ourselves on a model driven approach
where transformations and code generation are employed to obtain source code from a set of models. For
the runtime weaving, we use FraSCAti, a service and component based platform with dynamic proper-
ties, to execute reconfigurations during the execution of products. We also use a context manager to process
events coming from the environment and make decisions about the adaptation.

To validate our approach we define and implement a DSPL. Concretely, this research is part of the FUI
CAPPUCINO project, which aims at building mobile applications for ubiquitous environments. We have
implemented a DSPL for a retail case study. We successfully cover the whole cycle of design derivation and
adaptation of software products. The scenario demonstrates the versatility of our approach and in particular
the unification achieved through the aspect models used at design time as well as at runtime.





Résumé

Pour profiter des nombreux matériels actuellement, les logiciels s’exécutant sur des téléphones
mobiles doivent devenir sensibles au contexte, c’est-à-dire, qu’ils doivent surveiller les événe-
ments provenant de leur environnement et réagir en conséquence. Nous considérons que ces
logiciels peuvent bénéficier d’une approche basée sur les Lignes de Produits Logiciels (LPL). Les
LPLs sont définies pour exploiter les points communs par la définition d’éléments réutilisables.
Néanmoins, les LPLs ne prennent pas en compte les modifications à l’exécution des applica-
tions. Cette thèse propose une ligne de produits logiciels dynamique (LPLD) qui étend une LPL
classique en fournissant des mécanismes pour adapter les produits à l’exécution. Notre objec-
tif principal est d’unifier les adaptations à la conception et à l’exécution en utilisant des artefacts
logiciels de haut niveau. Concrètement, nous introduisons un modèle de variabilité et un modèle
de composition pour modulariser les produits sous forme de modèles d’aspect. Chaque modèle
d’aspect a trois parties : l’architecture, les modifications, et le point de coupe. Ensuite, nous pro-
posons deux processus de dérivation du produit : un pour la conception que vise à construire
un produit, et un pour l’exécution que vise à adapter un produit. Ce travail de recherche s’est
déroulé dans le cadre du projet FUI CAPPUCINO. Nous avons défini une LPLD pour une étude
de cas de vente d’un hypermarché sensible au contexte. Le scénario démontre les avantages de
notre approche et, en particulier, l’unification réalisée par les modèles d’aspect utilisés à la fois à
la conception et à l’exécution.
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Forty years after the first conference on Software Engineering [nat68] and almost twenty
years after the IEEE Computer Society has standardized this discipline, Software Engineering
is still struggling to produce large software systems [BJ95, FJF+07]. This is related to the fact
that requirements keep on changing even after software has been built and deployed. To tackle
such a challenge, a cornerstone element that is intrinsic to any moderns software is the notion of
adaptation. If a system is designed and implemented to be adapted, then it is more likely that it
can better support changes in its requirements, architecture, and even implementation. Software
adaptations open the door for new kinds of systems that use smartly all the information available
both at design time, to postpone and minimize the impact of developers decisions, and at run-
time, to take advantage of the information available in the application environment. However,
adaptations are difficult to define since they may take place at early stages of the development
process, but also at runtime where there are many situations that have to be considered (e.g.,
limited connectivity, hardware heterogeneity, changes of user preferences, etc.). Tipically, this
kind of information is known as context information. Hence, a context-aware system is aware of
changes in the context and is able to adapt to offer better user experiences [Bro96, DAS01]. A
well-known example of such kind of behavior is when a system changes its behavior depending
on the location [SAW94].
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In this dissertation we explore the applicability of the Software Product Line (SPL) paradigm
into the development of adaptable systems. SPLs aims at managing and building multiple soft-
ware products from a set of previously developed and tested assets. An asset is understood as any
software artifact that can be employed in the development of an application. In SPL engineering,
commonalities and variabilities across a set of applications (i.e., product family) are identifed, so
that assets can be developed, and used to create new different products. We consider that the
SPL engineering consitutes a suitable candidate to manage the variety of configurations that we
find in context-aware software.

Two essential tasks for any successful SPL are variability management and product deriva-
tion [CN01]. Variability can be understood as the analysis of the characteristics (i.e., features)
that make one product different from others in the same product family. A common tool in SPL
are feature diagrams which are used to express the variability by defining its variants and its
variation points [SHT06, SvGB05].

The product derivation defines how assets are selected according to a given feature con-
figuration, and specifies how those assets are composed in order to build the desired product
[DSB04]. While the product derivation is commonly conceived as only belonging to the develop-
ment process of products, this is not always the case and it can be extended to cover the adapta-
tion of an existing product at runtime. In fact, the idea of using SPLs to derive dynamic products
has recently started to gain interest from the academic community. In [HHPS08] authors intro-
duce SPLs for derivation of software that needs to be adapted at runtime, they refer to this kind
of SPLs as dynamic. A Dynamic SPL (DSPL) is capable of producing systems that can be adapted
at runtime in order to dynamically fit new requirements or resources changes.

This research aims at providing insights on the methodologies and tools required for the
development of DSPLs for adaptive applications. We propose a unified approach that allows
both: development and adaptation of software. To realize variability across the different phases
of development and adaptation, and to provide a complete DSPL approach, we explore several
well-known methodologies that have independently proven to bring benefits in terms of modu-
larization, platform independence, reusability, and fast development.

In particular, we explore the Aspect Oriented Modeling (AOM). The AOM initiative intro-
duces the Aspect Oriented Software Development (AOSD) principles in the Model Driven Engi-
neering (MDE) development process, particularly in the composition and transformation phases
[AOM, FJ09]. AOSD and MDE follow the well-known separation of concerns principle, which
has been proven to provide many benefits, including reduced complexity, improved reusabil-
ity, and easier evolution [TOHS99]. AOSD enables software systems to be modularized using
orthogonal aspects that are woven at the production time [KLM+97]. MDE deals with levels of
abstraction and considers any software artifact produced at any step of the development process
as a valuable asset by itself to be reused across different systems and implementation platforms
[Sch06].

We propose in this dissertation a unified approach that supports the complete software life
cycle: from feature selection and initial product derivation, to runtime adaptation in response
to changes of the execution environment. We concretize the notion of asset with a definition of
aspect models to leverage the variability across a family of products. Derivation of products is
divided in two adaptation processes: design time adaptation and runtime adaptation. The former
one is in charge of creating the initial product. The latter one modifies the product once it has
been created and deployed depending on the execution context. Finally our approach unifies
design and runtime adaptations by representing both categories of adaptation as aspect models.
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Structure of the Chapter

The reminder of this introductory chapter is organized as follows: in Section 1.1 we identify
the problems that motivate this research. In Section 1.2, we present a preliminary description
of the overall approach. In Section 1.3 we briefly enumerate the different contributions of this
dissertation. Finally, in Section 1.4 we present a roadmap to guide the reader through the rest of
this document.

1.1 Problem Statement

In spite of the increasing necessity for automating design and runtime adaptations, several prob-
lems remain open, preventing such kind of developments to be widely accepted. Here below we
present the most relevant problems related to such systems.

1.1.1 Development Processes Differ

The first problem is related to the twofold product derivation. We can notice that there are two
different processes for product derivation. One that covers the design time adaptations and one
that covers runtime adaptations. In the literature, we can find approaches that face each pro-
cess separately. For example, AOM is currently being used within more and more SPL ap-
proaches [RGF+06, KAAK09, LSO+07, PKGJ08] in order to compose assets selected from a feature
diagram. However, those approaches only contribute to the design phases of the software life cy-
cle (i.e., they are not dynamic). The system features and their corresponding assets are modeled
using AOM techniques. The product derivation process is supported by automatic model com-
positions and transformations. As a consequence, they are used to build software systems that,
once deployed, cannot be easily evolved. Some SPL approaches contribute to the runtime phase
[MFB+08, DL06]. They are based on rules specifying the contextual changes that trigger the dy-
namic adaptation of a software system. Although some of those approaches make use of aspects
to specify and realize dynamic adaptation, they define new mechanisms that differ from those
involved in existing SPL approaches focusing on the design phase. Any automated development
process for adaptive applications has to provide the means to describe adaptations at design time
as well as adaptations at runtime. As a consequence, there exist no unified SPL approach that
covers the complete life cycle, from design to runtime.

1.1.2 Lack of a unified representation

Even if the two processes previously identified use different technologies and occur at different
moments in the life cycle of any product, they both have the same objective, i.e., to modify the
product by adding and/or removing a certain group of features from the product being derived.
It would be desirable to have a unified representation of these modifications, so that we can use
them at design time and at runtime. Such modifications have basically the following information:

• Why? the motivation behind a software adaptation must be made explicit. This could be
either a design choice (for design adaptation) or a specific runtime event.

• When? the pre-condition under which the adaptation can be realized has to be specified.
This pre-condition defines all the software components that should belong to the system.
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• What and how? the system modifications that realize the adaptation have to be defined.
Those modifications can be applied either at the design level (e.g., class, code) or at the
runtime level (e.g., links between components, values of specific fields).

1.2 Research Goals

This dissertation investigates on software engineering techniques for developing and adapting
software. Our main goal is to implement dynamic software product lines. We propose a soft-
ware engineering solution that introduces high-level abstractions of assets. Such abstractions
allow us to define independent yet complementary processes for derivation and adaptation of
context-aware software products. By doing it, we are able to address several issues regarding:
automation, verification of correctness, code generation platform independency, and runtime
adaptations. The main goals of our approach are:

• Variability Management: First of all, the DSPL has to provide the means to express com-
monalities and variabilities across the family of products. This helps to identify and build
reusable assets that can be used to build new products reducing the effort and the time
invested when building several products.

• Automated Development Process: Variability enables developers to create product con-
figurations by selecting the features they want for their products. A second challenge for
DSPLs is to use such configurations as starting points for the implementation of automated
development process of adaptable software.

• Correctness: It is important that products are not only easier to develop, but also that their
correctness rests guaranteed. When composing multiple parts to form a software product,
it is possible that two or more of those parts have conflicts regarding the elements where
they are going to be composed and the requirements for the composition to take place. It
may happen that implicit dependencies exist between different artifacts. This may lead
to composition and correctness problems. We want to define a development process that
analyses such inconsistencies and prevents the incorrect products from being derived.

• Guarantee platform independance: It is also desirable that the development process re-
mains platform-independent. This allows the SPL to have multiple targets and postpone
the decision of a particular platform until later steps of the product derivation. Our DSPL
has to be able to separate business concepts from the details of the underlying platform.

• Continue derivation at runtime: A fundamental issue in adaptive software development,
is the management of events and context information, and its manipulation in order to
modify products dynamically. With the DSPL, we want to add the support for deriving
products at runtime, and at the same time preserve the same architecture defined during
the design and implementation of the product.

1.3 Contributions

We propose an approach for designing and implementing Dynamic Software Product Lines. In
particular, as the first contribution of this thesis, we introduce both: a simple – yet complete –
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variability model, and an aspect model that realizes variability. With the variability model we aim
at defining a family of products and at identifying commonalities and variabilities along those
products using variants. Additionally, the variability model also allows us to define constraints
between those variants. The aspect model, on the other side, is used to construct platform inde-
pendent representations of variability. Each aspect is self-contained in the sense that it has the
three pieces of information required for it to be integrated into any product. It defines the model
which represents parts of a system to add, advices with a set of changes to the core application
and finally, pointcuts that identify the places where the aspect perform the modifications. As a
second contribution, we propose two independent processes of product derivation. Variability
and aspect modeling allow us to define a complete development process that unifies the expres-
sion and manipulation of domain independent concerns at both design time and runtime. We use
aspect models in two different processes that we call design weaving and runtime weaving respec-
tively. Design weaving aims at building a single product. Runtime weaving aims at adapting a
product being executed. We thus allow developers to reuse the same artifacts used for building
a software product to adapt it dynamically among various configurations.

For the design weaving, we base ourselves on a model driven approach where transforma-
tions and code generation are employed to obtain source code from a set of models. For the
runtime weaving, we use FraSCAti, a service and component based platform with dynamic
properties. Such a choice allows us to execute reconfigurations at runtime. We also use a context
manager to process events coming from the environment and make decisions about the adapta-
tion.

1.3.1 Publications

The results of this research have been published in international journals, conferences, book
chapters and workshops as follows:

Journals

• Carlos Parra, Xavier Blanc, Anthony Cleve, and Laurence Duchien. Unifying Design and

Runtime Software Adaptation Using Aspect Models. In Science of Computer Programming.
Special edition on software evolution. To appear.

International Conferences

• Carlos Parra, Anthony Cleve, Xavier Blanc, and Laurence Duchien. Feature-based Composi-

tion of Software Architectures. In 4th European Conference on Software Architecture (ECSA
2010), Copenhagen, Denmark. August 2010.

• Carlos Parra, Xavier Blanc and Laurence Duchien. Context Awareness for Dynamic Service-

Oriented Product Lines. In 13th International Software Product Line Conference (SPLC’09),
San Francisco, USA. August 2009.

Book Chapters
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• Carlos Parra, Rafael Leaño, Xavier Blanc, Laurence Duchien, Nicolas Pessemier, Chantal
Taconet and Zakia Kazi-Aoul. Dynamic Software Product Lines for Context-Aware Web

Services. In Enabling Context-Aware Web Services: Methods, Architectures, and Technologies.
Chapman and Hall/CRC, 2009.

Workshops

• Daniel Romero, Carlos Parra, Lionel Seinturier, Laurence Duchien, Rubby Casallas. An

SCA-based middleware platform for mobile devices. In Middleware for Web Services (MWS
2008) at EDOC2008 , Munich, Germany, 2008.

• Carlos Parra and Laurence Duchien. Model-Driven Adaptation of Ubiquitous Applications.

Proceedings of the First International DisCoTec Workshop on Context-aware Adaptation
Mechanisms for Pervasive and Ubiquitous Services (CAMPUS 2008). Oslo, Norway, 2008.

1.4 Dissertation Roadmap

1.4.1 Part 1: State of the Art

• Chapter 2: Context of the Research In this chapter, we present the notions of Software
Product Lines, Model Driven Engineering, Aspect Oriented Software Development and
Service Oriented Platforms. The idea of the chapter is to introduce and define a common
language and a base of knowledge that are used to explain our approach throughout the
rest of this document.

• Chapter 3: Design and Runtime Adaptation This chapter presents a survey on the state of
the art and the related works in the domain. We list and describe some of the most relevant
works related to SPL and dynamic adaptation. At the end of the chapter we present a
synthesis to enumerate the strong points and weaknesses of each one. Afterwards, we
revisit the contributions of this dissertation and compare them with the surveyed works, in
order to highlight the benefits of our approach.

1.4.2 Part 2: Contribution

• Chapter 4: Dynamic SPL : Our Approach in a Nutshell This short chapter presents a
global overview of our main contribution, a framework for the development of Dynamic
SPLs for adaptable software. The idea of the chapter is to introduce the whole process of
product derivation. It includes two main phases, design phase, and runtime phase. We
also define the roles and responsibilities across the development process.

• Chapter 5: Design Phase : Variability, Application and Platform In this chapter we
describe in detail the processes and technologies used in the design phase of a DSPL.
We start by defining the models of variability and aspects. The chapter also covers the
verification of constraints and the transformations and generation of code.
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• Chapter 6: Runtime Phase : Context aggregation, verification, and dynamic reconfigura-

tion This is the last chapter of our contribution. It describes in detail what happens with
applications derived from a DSPL at runtime. We revisit the model of aspects presented in
Chapter 5 and explain how it is used to reconfigure products dynamically. We also describe
briefly the middleware elements we have utilized to achieve the adaptation. Concretely, we
describe FraSCAti, our runtime platform.

1.4.3 Part 3: Validation

• Chapter 7: Experimentation and tool Support This chapter is divided in three main parts.
First we describe our case study. We start with our top - down approach which consist in
the development of a DSPL for the examples of the Project CAPPUCINO. Then we describe
the software and tool-support developed as part of this research. To conclude the chapter
we present a qualitative evaluation and a discussion on the choices made for design and
implementation of our DSPL framework.

1.4.4 Part 4: Conclusion

• Chapter 8: Conclusion and Perspectives This chapter concludes the work presented in
this dissertation. We summarize the overall approach and discuss about the limitations
that motivate new ideas and future directions for research in the domain.
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Background and Context
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This chapter introduces the basics of several software engineering approaches used as a start-
ing point for the overall approach presented in this dissertation. The goal of the chapter is to
introduce and define a common language and a base of knowledge that will be used throughout
this dissertation.

Structure of the Chapter

The chapter is organized as follows. Section 2.1 introduces the notion of Software Product Lines
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(SPL). We define SPLs, discuss the domain and application engineering processes, the variability
management, and the feature modeling principles. In Section 2.2 we introduce the domain of
Model Driven Engineering (MDE), including the concepts of models, metamodels, and transfor-
mations. Next, in Section 2.3 we present the main principles of Aspect Oriented Software De-
velopment (AOSD), we discuss the issue of separation of concerns and the motivations behind
aspects. Finally in Section 2.4 we present the Service Component Architecture (SCA) approach.
We finish the chapter with a summary of the approaches presented.

2.1 Software Product Lines

The product lines in general constitute an approach that has already been used successfully in
various domains, allowing stakeholders to optimize the product development process and the
resources available, through the identification and reuse of common elements that are shared by
several products. In avionics for example, there is the case of the american aircraft manufacturer
Boeing. They have built a product line in order to produce two of their most famous aircrafts, the
757 and the 767 [Sof10]. Even if they are different aircrafts, according to Boeing, these machines
share up to 60% of common parts. By means of a product line strategy, Boeing has achieved
to reduce the costs at different stages of the process like: parts manufacturing, assembling, and
maintenance. In the same way, other industries have taken advantages of these strategies for
optimizing their resources and improving the time to market. Nokia, for example, uses prod-
uct lines for building mobile phones. Hewlett Packard follows the same approach for building
printers.

2.1.1 The Product Line Approach Applied to Software

With regard to software engineering, building software from a set of previously developed and
tested parts represents a major advance. The benefits in terms of time, quality, and resources are
considerable. Nevertheless, successful implementations of these schemas are not as abundant as
in other domains. There are, however, several groups from academia and industry that work on
bringing all the benefits from software product lines to the software engineering development
process [MM09].

In terms of costs, as stated by [PBL05] SPLs offer benefits when producing at least a certain
number of products. Figure 2.1 (taken from [PBL05]) illustrates the costs of producing one versus
multiple products. The solid line sketches the costs of developing the systems independently,
while the dashed line sketches the costs of developing the products using product line engineer-
ing. As it can be seen from the figure, in the case of a few systems, the price of product line
engineering is relatively high, whereas it is significantly lower for larger quantities. There is a
break-even point at which the two lines intersect. It indicates that the costs are the same for both
approaches. As referred in [PBL05] recent empirical experiences have shown that this break-even
point is located at around 3 or 4 systems in the particular case of software engineering. This is
of course influenced by several factors like: expertise, domain, strategy for implementing SPL,
customer base, and range of products.

2.1.2 Software Product Line Definition

As described in [Sof10], an SPL is a set of systems that share a group of manageable features. A
feature is understood as an end-user visible characteristic of the system [KCH+90]. Such features
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Figure 2.1: Costs of a product Line development.

satisfy the specific needs of a given market. The features are developed from a set of base assets.
In the context of SPL, an asset is a software artifact that can be used in the development of more
than one product. An asset can be a software component, a model, a planning, a document, or
any other element useful in the development of system.

One of the most important parts of an SPL is the architecture. The architecture must consider
the needs of the complete set of products in order to provide a framework for the development
and reuse of new assets. These new assets have to be conceived with the required flexibility in
order to satisfy the needs of the different products in the SPL. Another important part of any SPL
is its scope. It contains the boundaries of the SPL with regard to the set of products that can be
produced from base assets. The scope defines the common features (i.e. commonalities) and the
ways in which products differ from each other (i.e. variability). This leads to the notion of product
family. As stated in [Wit96], a product family refers to the group of software products that can be
developed from a set of common assets. The products in a family generally share some of their
elements in design, components, and integration rules. The size of the family depends on the
capabilities of the SPL to combine the assets in a functional system that manages the concepts of
business rules, architecture, platform and implementation.

2.1.3 Software Product Line Processes

Software Product Lines are usually divided in three main tasks: (1) asset development, (2) prod-
uct development using the assets, and (3) line management. In the SPL community the two
former processes are also known as Domain Engineering and Application Engineering respectively.
In general terms domain engineering refers to the creation of assets, whereas application engi-
neering refers to the process of using those assets in order to build individual software products.
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Both the domain engineering as well as the application engineering are complementary pro-
cesses and do not follow a specific order. For instance, it is possible to create assets from already
developed products, in which case, assets are built from the artifacts that constitute the products.
In this case, domain engineering takes place after the product itself has been built. The assets are
obtained from analyzing and isolating the products so that they can be used in the development
of other products. A different way of proceeding is by creating the assets from scratch. In this
case domain engineering precedes application engineering. Each asset is then conceived having
in mind that it is going to be used in the development of multiple software products. Figure 2.2
illustrates the domain and application engineering processes.
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Figure 2.2: Domain and application engineering processes.

Domain Engineering

Domain engineering is the process responsible for establishing the reusable platform, and thus,
for defining the commonality and variability of the product line. The platform consists of all
types of software artifacts requirements, design realization, tests, etc. Traceability links between
these artifacts facilitate systematic and consistent reuse [PBL05].

According to [PBL05], the main goals of the domain engineering process are:

• Define the commonality and variability of the product line;

• Define the product family, i.e., the set of applications that can be built. This represents the
scope of the product line;

• Build the reusable artifacts that accomplish the desired variability.

Application Engineering

Application engineering refers to the process of actually combining the assets obtained during
the domain engineering phase, in order to develop software product. In this process, applications
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of the product line are built by reusing the artifacts and exploiting the product line variability.
Application engineering aims at reusing the domain assets and take advantage of commonalities
and variabilities in order to define and develop a product line application. The application engi-
neering process is composed of activities for (i) configuring individual products inside the set of
valid variation points (product configuration), and (ii) creating product line members by using
the available domain assets (product derivation).

• Product Configuration: it refers to the selection or deselection of a valid combination of
variability identified in the domain engineering process. Literature refers to this selection
as binding time of the variability [PBL05].

• Product Derivation: it refers to the concrete process of building an SPL application. This
process can be manual, or automated. The main input for this process is the product con-
figuration, and the artifacts identified in the domain engineering process.

2.1.4 Variability

Variability represents the differences among set of products in an SPL. It is thanks to an adequate
management of variability that multiple products can be built from a set of reusable assets. Pohl
et al. [PBL05] define the notions of variability subjects and objects to describe variability. Vari-
ability subjects are the items or properties from the real world that do vary. A variability object
is defined as one of the possible ways in which a variability subject varies. In software product
line engineering, there are equivalent terms for variability subjects and objects: variation points

and variants. A variation point is a representation of a variability subject, for example, the type
of user interface that an application provides. A variant identifies a single option of a variation
point. Using the same example, every single user interface that can be chosen for the application
(e.g., rich, thin, web-based, mobile) is represented by a variant.

Feature Diagrams

The notion of feature diagrams was first introduced by Kang et al. in 1990 [KCH+90], as a tool
in the Feature Oriented Domain Analysis (FODA). The feature diagram essentially represents
a way to model variability among a set of similar products. A feature diagram, as defined by
Kang et al., consist of an and/or tree of different features. Optional features are designated
graphically by a small circle immediately above the feature name. Alternative features are shown
as being children of the same parent feature, with an arc drawn through all of the options. The arc
means that one and only one of those features must be chosen. The remaining features with no
special notation are all mandatory. Figure 2.3 illustrates a generic example of a feature diagram
as proposed by Kang et al. Part a of Figure 2.3 shows a feature diagram while part b shows one
product configured. The selected features for the configured product are highlighted with boxes.

In addition to the feature diagrams, FODA also introduced the notion of composition rules.
A composition rule is a constraint that establishes a relationship between features. Composition
rules have two forms: (1) one feature requires the existence of another feature (because they are
interdependent), and (2) one feature is mutually exclusive with another one (they cannot coexist).

A variety of interpretations and extensions to feature diagrams have appeared over the
years. Several researchers and industrials have revisited the FODA ideas in order to improve
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Figure 2.3: Graphical representation of features.

the expressiveness of the feature diagrams and use them as core elements in software develop-
ment. For example, the notion of multiplicity for the relationships between parent and child
features has been proposed, as well as different graphical representations of feature diagrams
that include, among others, graphical notations for the composition rules. Consequently, cur-
rently there is no unified standard for feature modeling. However, there are efforts mainly from
academia to define a unified and standardized language for feature modeling, and provide an ad-
equate tool support for it. Among those efforts we can identify [FHMP+09] which proposes the
Common Variability Language (CVL) for feature modeling. CVL aims at creating a generic model
that can be combined with other types of models in order to define and implement variability of
an SPL through transformations. Another example of such efforts is the Text-based Variability
Language (TVL) [BCFH10]. TVL is a text-based modeling notation that covers most constructs of
existing languages for feature modeling, including cardinality-based decomposition and feature
attributes. The main objective of TVL is to provide engineers with a human-readable language
supporting large-scale models through modularization mechanisms.

Other approaches for feature modeling include the approaches in [ACLF10], and [BJS09].
In [ACLF10], authors propose a domain-specific language called FAMILIAR which allows the
definition of product families through feature models. Feature models can be analyzed to find
correct configurations and the whole scope of the product family. In [BJS09], authors also propose
a configuration tool called S2T2, which in the same way as FAMILIAR, allows for the definition of
feature models. S2T2 offers a graphic user interface that allows developers to configure products.
The constraints of the feature model are propagated throughout the feature tree. For instance, the
tool automatically selects features that are required by a given feature, when the latter is selected
by the user.

2.1.5 Traceability

The last concept that we present in the context of SPL refers to traceability. Although the approach
presented in this dissertation does not specifically target strategies for traceability management,
we consider that several paths for future research can benefit from this topic, which is considered
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of highly importance in SPL engineering. Traceability refers to the different relationships and de-
pendencies that exist among the artifacts of different levels in a software development process.
In the case of SPLs, traceability is considered a very important element to manage the complexity
of variability management. Traceability aims at defining the relationships between the features
at the domain level, and the assets that implement such features at the underlying levels of the
product derivation. In [JZ05] authors enumerate the following difficulties linked to traceability
for SPLs: (1) there is a larger number and heterogeneity of documents than in traditional soft-
ware development; (2) developers need to understand the consequences of variability binding
at difference phases of the development; (3) the relationships between products and the product
line architecture, or between the product members themselves must be established; and (4) there
is still poor general support for managing requirements and handling such relationships among
different features of a product family. Furthermore, traceability can be clasified depending on
the type of elements for which it creates a relationship. For example, in [AGG+08] the authors
propose a classification of traceability. They analyze in particular the relationship between trace-
ability and SPLs driven by models. In their classification they identify two types of traceability;
inter and intra. The former one refers to the relationships between different levels of abstraction
from requirements to models to implementation. The latter one refers to relationships between
artifacts at the same level of abstraction: between related requirements, between models, between
software components, etc.

2.1.6 Summary of SPL and Variability

We have presented the main principles of the Software Product Line engineering. We have dis-
cussed a key concept in SPLs that corresponds to variability. Identifying commonalities and vari-
abilities among a set of software applications is one of the big challenges for any successful SPL.
The languages and tools for feature modeling previously discussed focus on the problem of prod-
uct configuration. They propose ways to define product families and eventually tool-supported
mechanisms to define feature models and configure different products. We have also presented
a brieff description of traceability in its implications in software product line engineering.

In our approach, we do not specifically deal with the problem of configuration but rather
with the product derivation process that follows afterwards. We focus on the mechanisms that
enable the realization and composition of commonalities and variabilities for a product family.
In order to define such a process, we consider that a simple, easy to understand variability model
has to be defined, so that, developers can create multiple product configurations that are used as
input in the SPL product derivation. This model can be later transformed towards and from the
different variability languages and tools like the ones presented in this section, to take advantage
of the configuration assistance and tool support offered from each particular approach.

2.2 Model Driven Engineering

The Model Driven Engineering (MDE) paradigm started back in the year 2000. That year, the
Object Management Group (OMG) [Obj10] proposed an approach for the development of soft-
ware called Model Driven Architecture (MDA) which was based on the idea of using models
as first-class entities on the development of software. Two years later, the research community
realized the importance of this approach and its transcendence outside the technical space when
it was originated. They changed the name and called it Model Driven Engineering, because
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they considered the previous term to be restrictive with regard to the variety of approaches that
manipulate models [FEBF06]. The central activities in MDE focus on creating models of the sys-
tems [KWB03]. MDE helps software engineering practitioners in the design process by allowing
them to focus on the business itself. Different points of view (models) can be defined for a system,
which are expressed separately. MDE also integrates fundamental tasks like the composition of
each point of view, the automation through tools for model transformations, and the code gen-
eration [FEBF06]. Furthermore, the use of models brings a higher level of flexibility in terms of:
(1) implementation, since new technologies can be implemented using the models of current de-
signs; (2) integration, using the models of a system it is possible to automatize the generation of
code and the composition strategies; (3) maintenance, having a design that is understood by a
machine gives developers direct access to the specification of the system and thus making main-
tenance tasks easier; and (4) test and simulation, since models can also be used to validate specific
requirements.

2.2.1 Models

The cornerstone of any proposal in MDE are the models. One important characteristic about the
whole MDE proposal, is the fact that modeling constitutes a familiar activity to human beings,
in diverse domains other than computer science like physics, economics, and medicine. This is
mainly because using models facilitates the understanding of real-world problems.

In computer science, a model is a description or a specification of a real-world system and
its environment for a specific purpose. A model is represented frequently as a combination of
drawings and text. The text can be in a modeling language or in natural language. In the same
way as the system it is modeling, the model can be static or dynamic. In order for a model to be
useful, it is expected that it can answer certain questions about the system it represents, in the
same way as the system itself would answer.

Models, according to the way they are built, can also be prescriptive or descriptive. The former
ones refer to the models that are generated with the purpose of guiding the development of
the system they represent (i.e., the system represented does not exists yet). The latter ones are
obtained from existing systems, and are mainly used to understand the system [Béz05].

2.2.2 Model Classification

The definition of model given previously is rather abstract and could include all kinds of models.
This is why there exists a classification of models, according to the information provided about
the system they represent, and the level of detail in terms of technologies used or implementation
platforms.

Platform

A platform, as defined by the OMG, is a group of subsystems and technologies that provide a
coherent set of functionalities through interfaces and specific patterns. An application supported
by a given platform, can use such services without worrying about how those underlying services
are implemented.

This brings a new property to the models. A model can be dependent or independent from
the platform. A model is independent from the platform when the model does not include the
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characteristics specified by the platform for the system to use the provided services. Platform
independency can have a scale. In this way, a model can only describe the availability of charac-
teristics of any platform in general, like the remote invocation of services. In a more specific way,
a different model may assume the existence of a set of tools for a particular technology, like RMI
or CORBA in the case of remote invocation. This means that while some models may assume the
existence of an abstract characteristic, others may be linked to a particular technology [KWB03].

Platform Independent Model

The OMG defines a Platform Independent Model (PIM) as a model of a system that contains
no specific information about the platform or the technology that is used to realize it. The PIM
abstracts away technical details.

However, platform independence is a relative concept. For example, a model can be in-
dependent with respect to technical languages but dependent with respect to the middleware
platform. Another example for PIMs are the ones created for a virtual machine. A virtual ma-
chine is defined as a set of parts and services that are defined independently from any specific
platform and that are concretized in different ways for each platform. Hence, a virtual machine is
a platform, so a model of a virtual machine is specific to the virtual machine, yet, that model will
be independent of the different platforms for which the virtual machine can be implemented.

Platform Specific Model

Finally, a Platform Specific Model (PSM) represents a model with the system specification de-
fined in the PIM, and that additionally includes the details of how such system makes use of the
services offered by a particular underlying platform [KWB03].

2.2.3 Models, Metamodels and Metametamodels

There are two main relationships between models: representedBy and conformsTo [Béz05]. The for-
mer one applies to the relationship between a system and a model that represents it (i.e. a system
is represented by a model). The latter relationship takes place at a higher level of abstraction
and indicates that a model conforms to a metamodel. A metamodel is a language used to define
the models. Hence a model is specified using the concepts defined in the metamodel. The meta-
model is unique in the technical space in which it is working so that operations between models
can take place as transformations, combinations, and comparisons [Béz05]. The metamodel itself
is defined with a language specified in a meta-metamodel. To prevent the need of infinite layers
on top, the meta-metamodel is defined using the same meta-metamodel.

Meta-Object Facility

In MDA, one of the meta-metamodels defined is the MOF (Meta Object Facility). The MOF is
an OMG standard that specifies an abstract language to describe other languages [Obj06]. The
purpose of the MOF is to define the essential concepts for the modeling and standardization of
the design of meta-models and of their resulting models. The MOF is also known as the upper-
most layer in the four-layer framework defined in MDA (see Figure 2.4).
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Figure 2.4: Four-layer framework of MDA.

• M0: This level corresponds to the user objects and includes information that has to be
modeled and that represents the real world. This information is usually called data.

• M1: This is the level of models. It is composed of all the meta-data that describes the
information from the M0 level.

• M2: this level is constituted by the meta-models. In this level, we found the descriptions
(meta-metadata) that define the structure and semantics of the meta-data. A metamodel
can also be seen as a language to describe several types of data.

• M3: This is the level of the meta-metamodel. It defines the structure and semantics of the
meta-metadata. In other words, it is the language used to define the different metamodels
(MOF).

2.2.4 Model Transformations

In general terms, a transformation is described as the process of converting a model of a system
into a different model of the same system [CH03]. A transformation is usually formed by the
following elements: rules, relationships between the source and the target model, and direction
of the transformation (unidirectional or bidirectional). Inside a rule, there is also the notion of
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scope and applicability. The strategy of application corresponds to the order in which rules are
applied and the way they are organized through mechanisms of reuse, modularity, or according
to the language [CH03].

Currently, two main approaches for model transformation can be identified: model to model

and model to text. Each approach can have subcategories of its own. For example, for the model

to text transformations there are approaches based on visitors, which provide mechanisms to
traverse the different elements of a model and print a text sequence related to them. There are
also approaches based on templates that contain the code that has to be generated and empty
spaces that are filled with the information coming from the model [CH03].

In the model to model transformations, we find the approaches of direct manipulation, in which
the developer of the transformation is the one who makes all the decisions concerning: the rela-
tionships between source and target elements, the order, and the strategy of application. There
are also the relational approaches in which mathematical relationships are used to establish the
type of relation between different elements of the source and target models. We can find graphi-

cal transformations too, where graphical elements are used to describe the relationships between
source and target elements. Approaches based on structures are also popular, since they help
developers in defining the transformations, by providing the tools and taking care of the order
and strategy used to apply such transformations. Finally, there are hybrid approaches which are
a combination of the previous approaches [CH03].

A transformation is usually formed by a set of transformation rules, which specify the way
in which target elements are created in terms of the source elements. A transformation rule has
two parts: left and right. The left part is in charge of accessing the source model, while the right
part is in charge of making the needed operation to create or modify the target model. Both the
left and right parts contain the following characteristics:

• Variables: variables contain the elements of the source or target model (or eventually inter-
mediate elements).

• Logic: logic contains the constraints and algorithmic over the model elements. The logic
can be executable or not. Non-executable logic is used to specify a relationship between the
models. Executable logic can be declarative or imperative. In [Kur05], the author explains
the difference between declarative and imperative model transformation languages. A lan-
guage is declarative if its transformation rules specify the relationships between the source
and target model elements, without involving a particular order of execution. In contrast,
a language is imperative, when it specifies an explicit sequence of steps to be executed
with the goal of producing a particular result. There may be a third category of transfor-
mation languages. In this category languages are considered hybrid, this means that they
have a mix of declarative and imperative instructions. As mentioned in [Kur05], a transfor-
mation written in this kind of languages may have a set of declarative rules that describe
the relationships between source and target models, and additionally, each rule may have
fragments of imperative code, that realize additional actions to obtain the desired result.

2.2.5 Summary of MDE

In this section we have presented the main principles of Model Driven Engineering including
the notion of models, metamodels and transformations. MDE has represented an evolution in
software engineering, by making emphasis on the definition of models of systems. Using MDE
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applications can be built in different steps, starting from an independent model that gets enriched
with the particular elements of the platform and the implementation language. Furthermore,
automated approaches for code generation can be implemented using the MDE principles.

However, we consider that a pure MDE approach is not enough to face challenges for the
design an implementation of dynamic software product lines. For example, the configuration
and correctness issues from the variability management, the composition order and correctness
needed to built different products from user choices, and the reconfigurations of products at
runtime, among others, are some of the challenges that require different strategies other than
MDE. We consider that MDE can be useful to define a derivation process, where products are
built from platform independent models. Such models can then be mapped towards platform
specific models and source code. However, to face the challenges related to SPL configuration
management, it is necessary to combine combine MDE with other approaches.

2.3 Aspect Oriented Software Development

Aspect Oriented Software Development (AOSD) is a set of emerging technologies that look for
new ways of modularizing software systems. The origins of modularization can be traced back
to Parnas in the seventies [Par72]. It refers to the separation and localization of concerns. A con-
cern can be anything that interest developers about a system. It can be a high-level concern (i.e.
user-visible), like reliability or security, or it can be a low-level concern dealing with technical
issues like caching and synchronization [FECA05]. Separating such concerns helps specialists to
focus on small modules of their expertise, hence improving quality and reducing the probability
for failure. Separation of concerns is a fundamental part of software engineering allowing devel-
opers to divide a problem into several independent modules that deal with particular concerns
in a separated way. Object Oriented Programming (OOP), for example, is a way of separating
concerns, by decomposing a system into a set of objects that deal with particular functional con-
cerns. However, OOP does not deal with what is known as cross-cutting concerns. A cross-cutting
concern is not ideally placed into a single module (an object for example), but is rather spread
across several modules [KLM+97]. For this reason, and to complement OOP, Aspect Oriented
Programing (AOP) was defined.

2.3.1 Aspect Oriented Programing

AOP is the activity of programming with multiple cross-cutting concerns or aspects [FECA05]. It
was defined in 1996 by Kickzales and his team at the Xerox PARC research center [KLM+97]. As
mentioned before, the main objective of AOP was not to replace the OOP but rather to comple-
ment it in order to obtain applications that are clearer and better structured [PRS04]. AOP helps
developers to define and implement cross-cutting concerns.

AOP specifically deals with two main problems of OOP, code dispersion (scattering), and
code mixing (tangling).

• Scattering: it happens when similar code is spread across many program modules. Hence
the same code has to be written over and over again in various modules, making it hard to
maintain.
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• Tangling: it happens when code, external to the main objective of the module, is mixed
with the code of the local module in order to deal with a particular concern. This makes it
harder to understand the module and causes that a change in one part of the module has
an impact on other parts that should be independent.

Definitions

AOP introduces a new terminology to define aspects and describe the way they are linked to the
base modules. Here we present the most important concepts that we use again in our contribu-
tion.

• Core: the core corresponds to the base modules of the system without any aspects. The core
is the base where the concerns are added using the aspects.

• Aspect: an aspect is a modular unit designed to implement a concern. It may have some
code (i.e., Advice) and the instructions on where, when and how to invoke it. To define such
instructions, two essential concepts in AOP are the join points and pointcuts.

• Join point: a join point is a well-defined place in the structure or execution flow of a
program where additional behavior can be attached. The most common elements of a join
point model are method calls, though aspect languages have also defined join points for a
variety of other circumstances including field definition, access, modification, exceptions,
execution events and states [FECA05].

• Pointcut: a pointcut or pointcut designator [FECA05], describes a set of join points. A
pointcut allows developers, for example, to mark a specific set of methods (chosen from all
the methods in an application), where they want their aspects advice code to be woven.

• Weaving: finally, in AOP the weaving is known as the process of composing core func-
tionality modules with aspects, thereby yielding a working system. Weaving can happen
in different ways depending on the mechanisms used to implement it. For example, weav-
ing can take place statically, compiling the advice together with the base code; at loading,
inserting aspects when loading the code; or at runtime, linking the aspects while the base
code is being executed.

2.3.2 Aspect Oriented Modeling

Aspect-oriented Modeling (AOM) aims at applying the aspect-oriented techniques to software
models in order to modularize crosscutting concerns. AOM is concerned with the systematic
identification, modularization, representation, and composition of concerns. This can be done at
different moments of the software development process, and also using different mechanisms to
model the aspects.

As stated in [FJ09], a relationship between AOSD and MDE can be established since, from
a modeling point of view, the terms aspect and model can be considered synonymous. This
notion of aspects goes beyond the usual meaning found in the AOP community with a broader
definition. In AOM an aspect is a concern (not only crosscutting) that can be modularized.

AOM is of particular interest for the purposes of this dissertation because, as pointed out by
[FJ09], a challenge in this area is, rather than achieving separation of concerns (which has been
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already done in many contexts), to reduce the effort that engineers have to put when working
with many inter-dependent concerns. Authors illustrate the problem in a product-line context,
when an engineer wants to replace a variant of an aspect used in a system. In such a context, the
engineer should be able to do this easily, quickly, and safely.

Similarly to MDE or AOP, currently there is no standard approach for using AOM. Although
there are already several approaches using AOM, it is not clear how such approaches apply to
different phases of software development and how they can be combined to produce a coherent
aspect-oriented software development process. In the next chapter, we survey some of the most
relevant works in this area, in order to better position our strategy for using aspect models.

2.3.3 Summary of AOSD

We have briefly discussed the notions and main concepts of AOSD. In our approach, we are
particularly interested in AOM, since it offers the possibilities to modularize the architecture
of an application using models. We consider that aspect models can be particularly useful to
realize the variability of the product line. For that, a language has to be defined in order to create
the aspects that are linked to the notions identified in the variability modeling. However, in
the context of DSPL, a challenge that arises from the use of aspect models is the definition of a
product derivation that allows aspects to: (1) represent feature selections; (2) be woven at design
time to build products; and (3) be woven at runtime to adapt applications dynamically. This
implies that, in order to use aspect models for product derivation, they have to be linked to the
features defined for the product family, and also be used in combination with a design generation
chain and a runtime platform that supports dynamic adaptations.

2.4 Service and Component Oriented Architectures

This last section focuses on the Service Component Architecture (SCA). It is relevant for the pur-
pose of this dissertation, because as we will detail in the contribution chapters, our target plat-
form is service and component-based. In this section we briefly discuss the origins of SCA and
we summarize the essential concepts of the specification. To properly understand SCA we have
to first introduce the two trends in software engineering that were at the origin of this specifica-
tion: the Component Based Software Engineering (CBSE) and the Service Oriented Architecture
(SOA).

2.4.1 CBSE

A different way of modularizing a program is by means of components. In the same way as OOP
or AOP, CBSE was intended to modularize software systems [Par72], and to follow the principle
of separation of concerns. CBSE aimed at creating independent entities for different modules in
a software system. Szyperski et. al [Szy02] define a software component as unit of composition
with contractually specified interfaces and explicit context dependencies only.

In general terms, a component can be seen as a black (or white) box abstracting a given be-
havior, with explicit input and output mechanisms called interfaces. It is through these interfaces
that the component can communicate with other components and with its environment. Ide-
ally, the interface is an abstraction that defines what is strictly necessary for the component to

24



2.4. Service and Component Oriented Architectures

achieve such communication. Szyperski et al. also defined three features that characterize any
component:

• It is a unit of independent deployment: this means that a component has to be well sep-
arated from its environment and from other components, by including all of their con-
stituents. Also, it will never be deployed partially;

• It is a unit of third party composition: this means that the component has to be self-
contained, so that, no matter which third party is in charge of the composition, it can do it
by using the specification of the component establishing what it provides and what it re-
quires. In other words, a component needs to encapsulate its implementation and interact
with its environment by means of well-defined interfaces;

• It has no observable state: this means that a component should not be distinguishable from
(can be replaced with) copies of its own.

Several component models have been proposed from both the industry (COM [Don98] from
Microsoft, the EJB specification from SUN [BMH06], CORBA [OMG04] from the OMG, etc.), as
well as from academia (Fractal [BCL+06], SOFA [PBJ98], etc.). Some of those approaches like
Fractal, have reflexivity properties. Reflexion is understood as the ability of a program to examine
(i.e., introspection) and eventually modify (i.e., intercession) its internal structure during the exe-
cution. Reflexion is used for controling the lifecycle of components, and enable a set of operations
like starting, stopping and modifying the architecture tha has been defined at design time. This
is a very interesting characteristic because it enables applications to be modified at runtime. We
consider reflection constitutes a useful mechanism to be used for the process of dynamic product
derivation in software product lines.

2.4.2 SOA

Service Oriented Architecture (SOA) is a paradigm to develop software systems based on services
that interact with each other. In [Jos07], Josuttis defines SOA as a paradigm for dealing with
business processes distributed over a large landscape of existing and new heterogeneous systems
that are under the control of different owners. SOA aims at facing several challenges:

• Distributed systems: this refers to the fact that in large businesses, more and more systems
and companies are involved with corresponding integration and exchange.

• Different owners: concerned with the distributed nature of systems that makes it possible
for different groups of engineers or even companies to manage separated systems.

• Heterogeneity: related to the differences in terms of programming languages, platforms or
even paradigms among the different software systems that are part of a large enterprise
application.

SOA faces those challenges by employing three main technical concepts:

• Services: the service is essential to SOA. Services provide solutions to requirements of soft-
ware users. A service is an IT representation of some business functionality. [Jos07]
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• Interoperability: this refers to the ability of several systems to connect with each other and
communicate successfully. It is highly desirable to achieve interoperability, specially in
heterogeneous environments with a variety of different systems.

• Loose coupling: loose coupling refers to the amount of knowledge that one module has
over another one in a system. With loose coupling, the goal is to minimize the dependencies
between different modules so that, if one module of the system gets modified, it should not
have an impact, or at least it should be minimal, on the rest of the modules.

It is important to notice that SOA, as a paradigm, does not apply to a specific technology. The
most common application example of SOA are Web Services. Web Services are a way to realize
SOA by using a specific implementation strategy.

IBM identifies three main participants in any SOA architecture regardless of the implemen-
tation [Gis01].

• Service Provider: corresponds to the system that implements a service (a business function-
ality) so that other systems can use it [Jos07].

• Service Consumer: also known as requestor ([Gis01]), it corresponds to the system that calls
the services offered by the providers. A service provider can be also a service consumer.

• Service Broker is an entity that acts as a repository for software interfaces that are published
by service providers. A business entity or an independent operator can represent a service
broker [Gis01].

The three participants interact with each other as explained in Figure 2.5 (taken from [Jos07]). The
provider registers the services it offers in the broker, then the consumer discovers such services
in the broker and proceeds to call the service directly in the provider.

2.4.3 SCA

The Service Component Architecture (SCA) was born as a way to provide a technology-agnostic
platform to achieve delivery, support, and management of distributed applications conforming to
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the principles of SOA [Bar07]. SCA uses software components as a way to implement services. It
basically brings together CBSA and SOA with a specification for developing service components
that can be treated as services but that can be implemented as components. Concretely, SCA is
a set of specifications describing a model for building applications and systems using SOA. It
is promoted by several important software companies including BEA, IBM, IONA, Oracle, SAP,
Sun and TIBCO.

The essence of SCA are components implementing business logic that offer their capabilities
through service-oriented interfaces called services and that consume functions offered by other
components through service-oriented interfaces, called references [Bar07].

SCA proposes a development process with two major parts: (1) implementing the compo-
nents which provide services and consume other services, and (2) assembling sets of components
to build business applications, through the wiring of references to services. SCA emphasizes the
decoupling of service implementation and of service assembly from the details of infrastructure
capabilities and from the details of the access methods used to invoke services. SCA components
operate at a business level and use a minimum of middleware APIs.

The SCA specification supports service implementations written using any of several pro-
gramming languages, including conventional object-oriented and procedural languages such as
Java, PHP, C++, COBOL; XML-centric languages such as BPEL and XSLT; also declarative lan-
guages such as SQL and XQuery. SCA also supports a range of programming styles, including
asynchronous and message-oriented styles, in addition to the synchronous call-and-return style
[Bar07].

Definitions

In the SCA specification [BBB+07], software entities are components which provide interfaces
(called services), require interfaces (called references), and can have properties. A component may
be a composite if it has subcomponents inside. Figure 2.6 shows the graphical representation of
some of the elements defined in the specification.

Following the SCA notation, components are presented as blue rounded-corner squares.
Green chevrons to the left of each component represent the services that it provides, whereas
purple chevrons to the right represent the references or services it requires. Properties are repre-
sented as yellow squares usually placed on top of each component.

• Component: a component is the basic element of business function in SCA providing ser-
vices and consuming references. In [Cha07] a component is defined as an instance of an
implementation that has been appropriately configured. The implementation is the code
that actually provides the component’s functions, such as a Java class or a BPEL process.
The configuration defines how that component interacts with the outside world. A com-
ponent can be implemented using different technologies, and it relies on a common set of
abstractions (including services, references, properties, and bindings), to specify its interac-
tions with the world outside itself;

• Composite: it represents a way to combine components into a larger structure. A com-
posite aggregates multiple components, it can also have services and references. In other
words, a composite is an assembly of components, services, references, and the wires that
interconnect them [BBB+07];
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Figure 2.6: SCA graphical representation.

• Service: services represent the entry point to the functionality offered by a component. In
essence, a service represents an addressable set of operations of an implementation that are
designed to be exposed for use by other implementations or exposed publicly for use else-
where (e.g. public web services for use by other organizations). The operations provided
by a service are specified by an interface, as are the operations required by the service client
(if there is one) [BBB+07];

• Reference: references represent the functionality required by one component that is pro-
vided by a different component. The SCA specification defines a reference as a service that
an implementation may call during the execution of its business function. In the same way
as services, references are typed using an interface;

• Property: properties allow for the configuration of an implementation with externally set
data values. The data value is provided through a component [BBB+07];

• Wire: as shown in Figure 2.6, wires (dashed lines) connect services and references. Within
a composite, valid wire sources are component references and composite services. Valid
wire targets are component services and composite references [BBB+07].

• Binding: a binding specifies how the communication between a component and other
elements should be done. Bindings are used by services and references. References use
bindings to describe the access mechanism used to call the service to which they are wired.
Services use bindings to describe the access mechanism(s) that clients should use to call the
service;

• Domain: a domain specifies the instantiation, configuration, and connection of a set of
components that are specified in one or more composite files. The domain, like a composite,
also has Services and References. Domains also contain wires that connect the Components,
Services and References.
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2.4.4 Summary of Service and Component Architectures

In this last section, we have presented SCA and the two approaches that were at its origin: SOA
and CBSE. SCA enables the development of service components that can be treated as services
but that can be implemented as components. In our approach we use a platform implementing
the SCA specification. We base ourselves in this platform because it offers the dynamic recon-
figuration tools that we need in order to adapt products at runtime. In the second part of this
dissertation, we explain how we have modeled the applications using a component and service
architecture, so that they can be executed and adapted at runtime using the tools provided by the
SCA platform.

2.5 Summary

In this chapter we have briefly introduced the principles and basic concepts of four main ap-
proaches in software engineering: Software Product Lines, Model Driven Engineering, Aspect
Oriented Software Development, and Service Component Architecture. We have given a short
explanation of each one of them.

We have also introduced the terminology used in every particular community. We consider
that the approaches presented in this chapter can be combined for defining a SPL for adaptive
applications. Therefore, having a common understanding of the terminology of each community
is important for the comprehension of the approach presented in this dissertation.

In the next chapter, we survey different works in the literature that are closely related to
our approach. We go down in specificity and review research approaches that also try to define
dynamic frameworks for adaptive applications by employing some of the approaches presented
in this chapter. This will allow us to make a comparison and properly position our contributions.
In the second part of this dissertation, and having this comparison as a reference, we proceed
with a detailed description of our approach for building dynamic software product lines.
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Chapter 3

Design and Runtime Adaptation

It is important that students bring a certain ragamuffin, barefoot, irreverence to their studies; they are not

here to worship what is known, but to question it.

– The Ascent of Man
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Dynamic Software Product Lines (DSPL) intend to face several challenges related to the con-
tinuous changes in software at design and execution. More and more, these modifications be-
come the rule rather than the exception. At design time, developers have to produce a family
of software products instead of individual applications for solving one problem. They usually
specify the software using a composition of concerns in order to obtain a complete software def-
inition. Such a separation and composition of concerns facilitates either the definition of succes-
sive versions in the time, or different variants for different target platforms or user requirements.
Moreover, software can also evolve at runtime in order to dynamically consider new require-
ments or context changes. This last change could be managed by self-adaptive platforms. These
platforms enable software systems to add and remove some of its elements at runtime.
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The term DSPL was introduced in 2008 by Hallsteinsen et al. [HHPS08]. In this paper au-
thors introduce a new trend in research that aims at using the principles of traditional SPL to
build products that can be adapted at runtime depending on the requirements of the users and
the conditions of the environment. Because of its novelty, literature is yet scarce with regard
to concrete DSPL approaches. Nevertheless, DSPL challenges can be faced using already ma-
ture approaches in software engineering, specially when dealing with software adaptation (e.g.
AOM, service and component-based runtime platforms, MDE, ECA rules). This chapter aims at
studying different approaches for design and runtime adaptation that can be used in the context
of DSPLs. We propose a classification and a comparison of existing work. Afterwards, we refine
our proposal by concretizing the research goals that fulfill the gaps current approaches present.

Structure of the Chapter

This chapter is organized as follows. In Section 3.1 we discuss the adaptation and present the two
main types of adaptation considered for this survey: adaptation at design time, and adaptation
at runtime. In Section 3.2 we elaborate on the criteria and classification as well as the description
of the approaches surveyed. We discuss additional criteria for the comparison that, although not
present in all the works surveyed, is worth mention for the relevance in the context of DSPL.
At the end of the section we present a summary of the results. Next, in Section 3.3 we revisit
the research goals presented in Chapter 1 to better position the contributions of this dissertation.
Sections 3.3.1 and 3.3.2 elaborate on the need for a unification of adaptations and the challenges
of defining and implementing such unification. Finally we conclude in Section 3.4 with a brief
summary of the survey presented in the chapter.

3.1 DSPL and Software Adaptation

DSPLs focus on the development of software products that can be adapted at runtime depend-
ing on the requirements of the users and the conditions of the environment. Indeed with the
increasing need of self-managed systems and the emergence of multi-scale environments, soft-
ware developers need to cope with variability and adaptations. Software must be developed to
be adapted and reconfigured automatically on heterogeneous platforms in accordance with the
unavoidable evolution of information and communication technologies. Therefore, the adapta-
tion is now considered as a first-class problem that must be taken into account throughout the
software life-cycle [1]. In order to position our work, we start by presenting the definition of
adaptation, and its implications at design time and at runtime respectively.

3.1.1 Adaptation

Software adaptation is strongly related to software evolution. Both processes deal with the mod-
ification of an application. However, as presented on [OGT+99, OMT08], such processes are
complementary with regard to the focus and tasks that they involve. A software evolution is un-
derstood as the modifications done to a system over time. The adaptation is more related to the
processes needed to modify an application including: detecting events and information that may
lead to a change, planning a set of changes, and performing those changes on the application. A
well-known reference of this model is the one presented by IBM [IBM06] known as MAPE for the
phases it includes: Monitor, Analyze, Plan, and Execute.

The IBM model has been defined for control loops at runtime. However, software can be
adapted either at the design phase or at the runtime phase. For each phase, dedicated technolo-
gies are used to specify and realize the adaptations.
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3.1.2 Static and Dynamic Adaptation

Another characteristic of adaptation is the moment of time in which the business code is adapted.
Literature in general refers to two types of adaptation: static and dynamic.

Static adaptation refers to the changes that are performed during development, compile or
load time. During the development for instance, design languages provide adaptation mecha-
nisms such as inheritance or composition. A slightly different approach is to adapt the appli-
cation at compile time. One of the better-known examples that allow this type of adaptation is
AspectJ [KHH+01], an aspect-orientation extension of java. With AspectJ, crosscutting features
can be defined and woven with original business code at compile time. Load-time adaptation is
also considered as a way of static adaptation. This kind of adaptation consists in waiting until the
loading of an application to decide which components are employed. For example, as explained
in [MSKC04], when an application requests the loading of a new component, decision logic might
select from a list of components with different capabilities or implementation, choosing the one
that most closely matches current needs.

Dynamic adaptation refers to changes that happen while the applications are being exe-
cuted. This means that elements of the application such as algorithms or structures can be re-
placed or modified during execution without necessarily having to halt and restart the applica-
tion [MSKC04]. Typically, at runtime, applications are based on platforms that support dynamic
adaptation. For instance, certain CBSE platforms provide APIs to dynamically change connec-
tions between running components.

3.1.3 Adaptation at design time

In this dissertation we intend to face the challenges for the adaptations at design time. From
an SPL perspective, it does not matter if the adaptation takes place at the level of models or by
modifying the source code because in both cases, the adaptations are part of the derivation of
a product from a user-defined configuration. For this reason we group the static adaptations
techniques under the same SPL process of application engineering at design time. We consider
an adaptation at design time as any modification performed over an application that starts and
ends before the application has been deployed ant its execution has actually taken place.

3.1.4 Adaptation at runtime

In a similar way as for the adaptation at design time, we group the different approaches for
achieving dynamic adaptations under the same process of application engineering at runtime.
We consider that independently from the approach, all share the same objective of changing the
applications dynamically. Consequently, we define the notion of adaptation at runtime as any
modification of the application that takes place during its execution.

3.2 Design and Runtime Adaptation: Approaches and Mecha-

nisms

In this section, we survey different approaches that are related to the definition and implemen-
tation of SPLs for deriving adaptive systems. We classify the approaches based on the type of
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adaptation they support. There are three main groups: (1) those who specifically deal with de-
sign time adaptations, those who specifically deal with runtime adaptations, and (3) those who
try to cover both processes at the same time.

3.2.1 Design time adaptation approaches

This category includes all the approaches where the adaptation takes place before the deploy-
ment of the software artifacts that constitute the application. Usually, approaches in this category
present a complete derivation process that uses variability and variability constraints for product
derivation, as well as mappings and code generation processes for building the concrete artifacts
that constitute the software products.

Design time criteria

Each approach in the design time category is classified regarding two main criteria: (1) the mech-
anisms used, and (2) the scope of the adaptation. These criteria are detailed in Table 3.1.

Arboleda et. al. [ARCR09] propose a Software Product Line based on Models. Their ap-
proach uses variability and constraint models in combination with AOP to derive products that
integrate different concerns into a single product. All the operations to derive a product occur at
design time (merging models and code generation). Regarding the scope of the adaptation, this
approach emphasizes on the adaptation at the level of models and code. The adaptation modifies
the models used to represent the product. Besides, since they use AOP, source code is also the
target of modifications during the derivation process. In terms of mechanisms employed, the
approach defines the variability of the family of products, and uses MDE to define intermediate
models and AOP to compose model transformation rules.

Clarke [Cla02] discusses about composition mechanisms needed in particular in the UML
metamodel to align requirements and objects. She proposes to add a specific composition re-
lationship among elements, so that, common elements in different models (regarding the same
requirements) can be identified and composed. Using this composition relationship, she dis-
cusses two ways of performing composition: merging and override. As in the previous case, the
composition takes place at design time, among the different UML models. Since the result of the
composition proposed are new UML models, the scope of this approach are the models. Regard-
ing the mechanisms used, the approach uses MDE for representing the models and for defining
the composition mechanisms that correspond to the same requirements.

Czarnecki and Antkiewicz [CA05] propose a mapping from feature models to application
models. The idea is to allow the modeler to view directly the assets related to each feature and
estimate the impact of selecting/deselecting a given variant. With a particular configuration, a
template instance is obtained which represents the selection of the modeler. A template corre-
sponds to design elements like UML diagrams. The approach focuses on design-time derivation
since the results of the configuration corresponds to a UML model. Regarding the scope, the
mapping of feature models to application models implies that the models and the architecture of
the application are modified. Indeed, authors deal with both models and templates at the same
time. While models are used mainly to represent variability, templates are used to represent de-
sign elements like UML diagrams which define the architecture of the applications being derived.
The mechanisms used by the authors combine mainly MDE for modeling the applications and
variability management to map such models to features.
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Table 3.1: Comparison criteria for design time approaches.

Criteria Definition

Mechanisms The mechanisms used for defining and implementing the adaptation. This
includes but is not limited to models and model transformations, aspect
oriented modeling and model merging, and feature diagrams.

AOM, AOP AOP and AOM are also commonly used across the different approaches as
a way to achieve modularization and adaptation based on the composition
of multiple modules. Aspects can be combined with feature diagrams as
a way to deal with variability and constraints among several products in
software product lines.

MDE MDE is widely accepted in design adaptations. One common strategy
among several approaches is the use of model transformations and code
generation to automate the development of applications

Variability Manage-
ment

Several approaches are based on SPL and variability management to con-
figure and build families of similar products. Adaptation is achieved by
switching across several product configurations. Tipically, variability man-
agement is combined with other mechanisms like models or aspect oriented
programming.

Scope By scope we mean the granularity of the adaptation, it varies from fine
grained granularity, as modifying methods and parameters, to coarse
grained granularity, when doing architectural modifications like changing
component bindings.

Model Several approaches use models to represent applications at both design
(most MDA approaches) and runtime (models at runtime). We say that the
scope of the adaptation is a model if the elements that get modified because
of the adaptation are models.

Architecture For approaches where applications are based on architectural paradigms
like components, services, processes (e.g. CBSE, SOA, BPEL), we evaluate
if the adaptation has an impact on the structure or behavior of the elements
that constitute the architecture of the application.

Code Finally, we say that the code is the scope of the adaptation when parts of
the source code (e.g. classes, methods, attributes) implementing the ap-
plications are impacted by the adaptation. For example, AOP approaches
define explicit pointcuts on the source code, to extend them with added
functionality.

Kienzle et al. [KAAK09] define aspects over UML diagrams. They use class diagrams for
structure modeling, as well as sequence and state diagrams for behavior modeling. Afterwards,
their approach proposes a weaving that composes such models, including dependency chains
among them. Since the result of the weaving is a new model, that can be used for simulation or
code generation, the approach is centered on design-time adaptation. The scope of the approach
are the models that get composed thanks to the weaving of the aspects defined. The mechanisms
used by Kienzle et. al. combine AOM for defining the aspects, and MDE for the creation of class,
sequence, and state diagrams.

Perrouin et al. [PKGJ08] propose a model-based approach at design time for product deriva-
tion in SPLs. They start with a feature model, and for each feature, there is a partial model. A
merging operation takes place in order to merge the partial models of the different features se-
lected for a particular configuration. The adaptation target corresponds to the models, since the
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merging that combines different features results in a merged model. Regarding the mechanisms,
Perrouin et. al. combine variability for defining the feature model with MDE for defining the
models and the merging operation.

Reddy et al. [RGF+06] present an aspect based approach for model composition. They
introduce a base algorithm and different directives. The directives are used when the composi-
tion algorithm yields to incorrect results. Directives modify default composition rules, so that
developers have finer-grained control on how the elements of the models are composed. Their
approach focuses on aspect models and design composition. The adaptation scope in the ap-
proach are the models obtained after modifying the composition rules. The approach is mainly
based on AOM and MDE for defining the elements to compose, the base composition algorithm,
and the directives that modify the rules of such algorithm for the cases where there is a conflict.

Sánchez et al. [SLFG09] define a language for composition of assets in SPL called VLM4. This
language can be used to generate model transformation rules that automate the derivation pro-
cess at design time. The approach aims at creating model transformations that in the end produce
as a result a model that represents the SPL configuration. Authors use variability for defining the
assets to compose and MDE transformations that are generated from their own language.

Voelter and Groher [VG07] propose a complete model driven SPL where aspects are used to
realize variability. AOM and AOP are both used to introduce variability at the level of models,
and later at the level of generated code. The scope of this approach covers both the models when
using AOM, and code when the adaptation takes place through AOP.

Wagelaar [Wag08] proposes a way to take modularization to the level of rule-based model
transformations. He proposes a composition of rules so that different independent transforma-
tions can be combined and scale up to a larger model transformation. Since combining transfor-
mation rules is equivalent to modify the model that results from executing them, we consider that
the scope of the approach are the models. Wagelaar focuses on MDE techniques and particularly
in the combination of model to model transformations.

Van der Storm [dS07] proposes a formal model to bridge domain and solution models in
product line engineering. His approach is based on dependency graphs that map concepts from
feature diagrams to software artifacts. As with the previous approaches, the domain and solu-
tion models are used at design time during the development process of the applications. The
approach by Van der Storm has also the models as its scope, since its main goal is to define
a formal model which allows adaptation based on feature selection (domain problem) into the
software artifacts (solution). Regarding the mechanisms, Van der Storm approach is based on
variability management and SPL techniques.

Finally, Lee et al. [LBT09] work on product derivation by means of an aspect oriented so-
lution to the problem of feature dependencies. Aspects are used as a way to separate feature
dependencies from feature implementations. This approach attacks directly the source code of
the applications being implemented, by defining aspects that are woven depending on the fea-
ture dependencies. Aspects are combined with feature diagrams as a way to deal with variability
and constraints among several products in software product lines

Summary of design time approaches

As we have shown, work on adaptation at design time is prolific. Different scopes are defined
as well as different mechanisms for achieving such adaptations. The results of this first group
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are summarized in Table 3.5. The first column contains the reference of the work. We have two
main columns for Scope, and Mechanisms. Each main column contains their respective criteria
subgroups. Additionally, we have added an extra column called Domain to indicate, if available,
the kind of domain of application (e.g., mobile computing, embedded systems, smart houses,
and multimedia). We use a check mark (X) if the approach proposes solutions or deals with the
different criteria, and a dash (–) in the opposite case.

From this first group of approaches that focus on design time, we can observe that most of
them include complete derivation processes by defining the variability of the products at early
stages of the development. All of them can be used (at least partially) to produce families of prod-
ucts from different product configurations. They combine variability management with concrete
techniques for software development like MDE in the case of a PIM to PSM transformation chain,
AOM when modularization and composition are employed at the level of models, or AOP when
aspects are woven directly to the source code.

However, due to the lack of support for dynamic adaptations, these approaches only face a
subset of the challenges for DSPLs. Concretely, there is no support for adaptations at runtime.
This implies that the configuration defined for each product at design time does not exist when
the product is executed. We consider that a complete approach for DSPL should not only deal
with the design adaptations this group of approaches support, but also with the requirements for
adaptations during the execution of the applications.

Table 3.2: Summary of the design time adaptation approaches.
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[ARCR09] – X X X X X X X – X –
[Cla02] X – – – – X – – – – –
[CA05] X X – – – X X – – – –
[KAAK09] X – – X – X – – – – –
[PKGJ08] X – – – – X X – – – –
[RGF+06] X – – X – – – – – – –
[SLFG09] X – – – – X X – – X –
[VG07] X – X X X X X – – X –
[Wag08] X – – – – X – – – – –
[dS07] X – – – – X X – – – –
[LBT09] – – X – X – X – – – –

3.2.2 Runtime adaptation approaches

This category includes all the approaches where the adaptation takes place during the execu-
tion of the application. Usually, approaches in this category aim at defining adaptation rules
and at taking advantage of technologies that allow for runtime modifications of the applications.
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Table 3.3: Comparison criteria for runtime approaches.

Criteria Definition

Mechanisms In the same way as for the design adaptations, the runtime mechanisms cover the
different techniques and approaches used to achieve the adaptation.

ECA Rules Event condition-action (ECA) rules are mechanisms employed when it is necessary to
trigger a particular action in response to events. This type of mechanisms are mainly
used to model an adaptation in response to changes in the execution context.

Context Awareness Context awareness refers to the capability of the systems to react to changes in their
environment [Bro96, DAS01]. Context information refers to all the information avail-
able in the environment when applications are being executed, and that may affect the
structure or behavior of them. Examples of context information include location, tem-
perature, hardware constraints, user preferences and personal information, time, etc.
For this criteria we identify the approaches that effectively use context information as
input in the decision making process particularly in the case of runtime adaptations.

Runtime reconfigurations are performed in different ways and using a variety of tools (i.e., intro-
spection and intersection, meta object protocols, models at runtime, runtime platforms based on
services and/or components).

Runtime adaptation criteria

To properly identify the different mechanisms used in this category, we have slightly modified
the criteria. In addition to the elements previously identified for the design time approaches
that remain valid, we have added the ECA rules in the Mechanisms criteria for approaches that
are based on rules, and conditions. Additionally, we have added a new criterion called Con-

text Awareness, that is used to classify the approaches that use context information to trigger the
process of adaptation dynamically. Table 3.3 details the new criteria for runtime approaches.

In [BJC05] Batista et al. introduce their framework called PLASTIK. It allows both the def-
inition of runtime components as well as their dynamic reconfiguration. It is a combination of
an ADL for describing architectures, with a reflective component model. Runtime adaptation
is achieved through reconfigurations that can be of two types: programmed reconfigurations,
which are foreseen at design time, and ad-hoc reconfigurations, which cannot be foreseen at
design and that are controlled with the help of invariants in the specification of the system.
PLASTIK uses models at runtime together with ECA rules for achieving the adaptation. The
component-based platform called OpenCOM and the ADL with extensions allow developers to
define ECA-like conditions on which reconfiguration actions take place.

In [BSBG08], Bencomo et al. propose software product lines for adaptive systems. In their
approach, a complete specification of the context and supported changes has to be provided
thanks to a state machine. Each state then represents a particular variant of the system and
transitions between states define dynamic adaptations that are triggered by events corresponding
to context changes. The work of Bencomo et al. defines reconfiguration policies that take the
form of on-event-do-action, where actions are changes to component configurations and events
represent the notifications arriving from the environment and processed by a context engine.
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David and Ledoux [DL06] present SAFRAN, an extension of the FRACTAL component
model in order to modularize dynamic adaptations using aspects. The aspects represent reac-
tive adaptation policies which trigger reconfigurations based on evolutions of the context. The
adaptation is defined using FScript, a language developed to write Fractal component reconfigu-
rations. They use WildCAT [DL05] to detect external events. WildCAT models context as a set of
domains. Each domain represents a particular aspect of the context information. The information
itself is modeled as pairs (name, value) inside every domain. The information changes over time,
and this changes generate events, which are used by SAFRAN to trigger the adaptation process.

Pessemier et al. [PSDC08] introduce the Fractal Aspect Components (FAC). FAC is a model
for software evolution that benefits from AOSD and CBSE. In FAC, there can be aspect compo-
nents, which are regular Fractal components that embody an advice code. The adaptation takes
place by adding or removing components (aspect or regular) to running applications. The run-
time reconfiguration is, as in the previous case based on the support provided by the FRACTAL
component model. Since FAC is based on Fractal components and use Fractal dynamic capa-
bilities to define adaptations at the architecture level, the scope of the adaptation corresponds
to the architecture of the component-based application that gets modified through FRACTAL
reconfigurations.

Zhang and Cheng [ZC06] introduce a model driven process for the development of dynamic
programs. Formal models are created for the behavior based on states. They separate adaptive
from non-adaptive behavior in programs, making the models easier to specify.

Trinidad et al. [TCn07] propose a mapping from feature models onto component models.
Basically, for each feature, there is one component who implements it. There is additionally a
component called the configurator which is in charge of creating the bindings to form the desired
architecture that represents a particular feature configuration. The configurator acts at runtime
and is able to activate components linked to non-core features. The approach focuses on the
relationship of features and software components. Adaptation takes place thanks to a configu-

rator component that modifies the architecture of the applications components and bindings at
runtime.

Finally, Dinkelaker et al. [DMFM10] propose a dynamic software product line using aspect
models at runtime. They use aspect models to define features and feature constraints. Their
approach mixes SPL principles of product derivation with the notion of dynamic variability. They
distinguish static variability from dynamic variability, and for the latter one, they use dynamic
AOP for the implementation. Their approach links what they call dynamic features, representing
late variation points in an SPL, to dynamic aspects.

Summary of runtime adaptation approaches

Table 3.4 summarizes the approaches of the second category. We have added the ECA rules
criterion for the mechanisms, and the context awareness. In the same way as for the previous
group, a check mark (X) indicates if the approach proposes solutions or deals with the different
criteria, and a dash (–) in the opposite case.

In this second category we find approaches that offer great support for dynamic adapta-
tions. They are usually based on platforms with reflective capabilities that they use to modify
applications at runtime. Some of the approaches use context information and event rules to trig-
ger adaptations, whenever a context occurs. However, such approaches do not offer support for
design adaptations. Their starting point is usually a set of applications already developed (by
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hand in most cases), and they are not interested on automating the development process before
the execution. A DSPL approach can take advantage of the dynamic capabilities and runtime
adaptations offered by the approaches in this category. Nevertheless, the lack of adaptations at
design time, make us consider that this second category of approaches are only suitable to face a
subset of the challenges for DSPLs. They have to be complemented to offer support for the initial
development process that takes place before the execution.

Table 3.4: Summary of the runtime adaptation approaches.
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[BJC05] – X – – – X – X X X – – –
[BSBG08] – X – – – X – X X – – – –
[DL06] – X – – X – – – X – – – –
[PSDC08] – – – – – – – – – – – – –
[ZC06] X – X – – X – – – X – – –
[DMFM10] – – X – X – X – – – – – –
[TCn07] – X – – – – X – – – X – X

3.2.3 Mixed adaptation approaches

In this category, we analyze a third group of approaches that propose mixed solutions. Such
approaches include some of the characteristics we have found separatedly in the two previous
groups, but combined in order to provide support for adaptations to be performed at design time
and at runtime.

Adaptation criteria

Since this category is a combination of the two previous categories, we use the same criteria
specified for the previous groups.

In this category, we find the work by Bastida et al. [BNT08]. The authors introduce an
approach for context-aware service composition. They propose a methodology of six processes
aimed at defining an executable model composed of several services with a particular workflow,
which represents a set of variants chosen for several variation points. Afterwards, the composi-
tion can take place at runtime based on ECA rules, in order to connect to new services. Regarding
the mechanisms for runtime, the authors use context information defined as a dynamic property
that may depend on an underlying protocol. The property is used in a predicate which is ex-
pressed in their particular ADL. This ADL associates a programmed reconfiguration action to
the property. This leads to context-based reconfigurations that are triggered through a change in
the dynamic property.

Apel et al. [ALS08] introduce the notion of Aspectual Feature Modules. They aim at com-
bining feature oriented programing (FOP) and AOP to implement feature models when required.
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Their approach uses classic feature modules for non cross-cutting concerns and AOP for special
cases. Although not specified, their approach could eventually use dynamic AOP, making adap-
tation possible at both design and runtime. The scope of the adaptations in this approach is the
source code where aspects are woven. Regarding the mechanisms, Apel et al. base their ap-
proach on the combination of variability to build families of similar products, and AOP for the
cross-cutting concerns.

Lundesgaard et al. [LSO+07] propose an approach formed by two parts: an MDA trans-
formation chain for building adaptive applications, and a middleware system to make deci-
sions about adaptation based on Quality of Service (QoS) information. At runtime, the model
is causally connected with the application it represents. The adaptation takes place by choos-
ing the right configuration by modifying the application model. Then, the application absorbes

the changes of the model. No details are given as to how this last process actually takes place.
The approach uses QuAMobile, a context and QoS-aware middleware that identifies and chooses
the best variant configuration for the current context and available resources. Such middleware
works as a set of plugins that can be plugged in and out. In particular there is one plugin called
Context Manager in charge of managing context information.

In [MBJ08], the authors present K@RT, a framework for dynamic product lines based on
aspects and models. They use models at runtime for dynamic variability and deal with the
combinatorial explosion. In [MFB+08] a close related work presents the strategy for dynamic
adaptation. Models are kept at runtime as part of the application being executed, then, the target
configuration is calculated for the current conditions of the executing environment. Having both
models, current and target model, a difference is computed, and from this difference, a reconfig-
uration script is generated that takes the current configuration to the target configuration. Also
from the same authors, Morin et. al. [MBNJ09] present an evolved version of this approach when
aspects are formed by advice, pointcut, and weaving directives. They use dynamic reconfigu-
rations to modify the model of the application, the architecture of the application itself, and the
code generated from the model. With respect to the scope of these approaches, the main element
of the adaptation is the model. However, using the models as starting point, they also introduce
strategies for source code generation. Regarding context awareness, in [MFB+08] authors de-
fine an adaptation model which captures all the information about the dynamic variability and
adaptation of their adaptive system. Among the elements that conform to such a model, they
include a context model which is a minimal representation of the environment used to define
adaptation rules. In a similar way, in [MBNJ09] authors define aspect models which may include
a context that they describe as a slice of the environment. No further details are given concerning
the context management or the frameworks used for context aggregation.

Phung-Khac [PK10] proposes the adaptive medium approach for developing adaptive dis-
tributed applications. His approach proposes a development process where business logic is
separated from the adaptation aspects of the applications. The business logic is refined in dif-
ferent configurations that are treated as different members of the system family. Like this, the
adaptive medium approach extends the feature modeling method. On the other side, the adapta-
tion aspects define architectural models are and in charge of adapting the business logic dynam-
ically. In his approach, the desired adaptive application is specified at a high abstraction level
and then is refined towards the implementation level. For the runtime adaptation, the approach
uses FRACTAL software components. The architectural models generated by the refinement pro-
cess are embedded into the adaptation control to perform the reconfigurations. Finally, since the
applications are component-based, we consider that their adaptation scope corresponds to the
architecture of the applications that get modified during the reconfigurations, and additionally,
to the generated code that is obtained from their refinement process.
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Finally, the project ECaesarJ [NnNG09] represents an approach to have design and runtime
adapatations based on the programing language. ECaesarJ is an aspect oriented language that is
based in its predecessor CaesarJ [AGMO06]. The language aims at facing the challenges of feature
decomposition. To do so, it improves modularity of object oriented programming languages by
providing extension and composition mechanisms. At the core of ECaesarJ there is the concept
of virtual classes. A virtual class can be redefined in subclasses by adding new methods fields
and inheritance relationships. This allows, for example, to define features as extensions of other
features. For the composition of features, ECaesarJ supports mixings. It represents a form of
multiple inheritance when all inherited declarations of virtual classes with the same name are
composed. ECaesarJ also offers support for events and state machines. The events are used to
represent explicitly behavioral abstractions. An event is composed of a source and destinations.
Examples of such events include implicit join points of the source code for example method
calls, attribute value changes, but can also be explicitly defined by the programmer. The state
machines are supported in ECaesarJ to make it possible to organize the event handling. Because
it is based on CaesarJ, the weaving of aspects takes place through several deployment process
which include design time and runtime deployments. At design, the aspects are woven in a
similar way as in any AspectJ-based approach. At runtime, the aspect which is defined as in java,
can be instantiated at any moment. However for the weaving to actually take place the aspects
deployment act as a wrapper that intercepts the calls to the business objects to enrich them with
the advice code. Since the language is basically focused on java code, their mechanisms include
aspect oriented techniques as well as direct code manipulation. The scope of the adaptation
achievable with ECaesarJ is the business code itself that gets modularized and composed by the
aspects defined with the ECaesarJ language.

Summary of mixed approaches

Table 3.5 summarizes the approaches of the third category. The criteria is the same that we have
used for the runtime approaches. In the same way as before, a check mark (X) indicates if the
approach proposes solutions or deals with the different criteria, and a dash (–) in the opposite
case.

This third category of approaches is the most interesting one for the development of DSPLs.
The approaches in this category offer support for both design and runtime adaptations. Some of
them use variability management and context information as well as models at runtime, reflective
platforms, or dynamic aspects that allow them to have both source code manipulation processes
for the design adaptations and dynamic reconfigurations for the runtime adaptations. Some of
them also use variability management for modularizing and defining adaptations, and context
information to define concrete events at runtime for adaptations. There are other approaches
based on programming languages that focus on modularity and propose constructs tailored for
feature decomposition.

However, for a complete DSPL, we consider that there are still two main issues missing. First
of all, the approaches in this group do not offer a complete development life cycle from feature
modeling and configuration to runtime adaptations. This means that design and runtime adap-
tations are realized through completely independent process that do not have many elements
in common. Moreover, to the best of our knowledge, none of the approaches offers a unified
representation of adaptations. Assets used for building applications are defined and treated in a
different manner than assets used to achieve reconfigurations dynamically.
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Table 3.5: Summary of mixed adaptation approaches.
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[BNT08] – X – – – – – X X X – – –
[LSO+07] X – – X – X – – X – – – X

[MBJ08] X X – X – X – – X – – – –
[MFB+08] X X – X – X – – X X – – –
[MBNJ09] X X – X – X – – X – – X –
[ALS08] – – X – X – X – – – – – –
[CTPRC08] – X – – – – X – – – – X –
[PK10] – X X – – X X – – – – – –
[NnNG09] – – X – X – – – X – – – –

3.2.4 Summary

We can now summarize the results of the approaches reviewed with regard to the challenges they
face and the strengths and weaknesses of each group. In table 3.6 we summarize the findings of
each of the three categories previously discussed. We have three main criteria. First, we illustrate
if the category support design time adaptations, and if it uses variability management for the
derivation process. Second, we illustrate if the approach support runtime adaptations, and if it
uses context information for the decision making. Finally, we add a last criteria indicating if the
approach offers a unified representation of design and runtime adaptations. In the next section,
we further discuss the unification and revisit the challenges for a complete DSPL approach that
successfully manages design time and runtime adaptations.

Table 3.6: Synthesis of approaches for DSPL.

Approach Design Variability Runtime Context Unified

Adaptation Adaptation Awareness Representation

Focus on Design and

Product Derivation Yes Yes No No No

Focus on Runtime

Reconfigurations No No Yes Yes/No No

Mixed Approaches Yes Yes/No Yes Yes/No No
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3.3 Research Goals Revisited

From the results of Table 3.6, we have concluded that the main missing issue relates to the lack
of unification between adaptations at design time and adaptations at runtime. For each one,
dedicated technologies are used to specify and realize the adaptations as it has been presented
in all of the categories previously reviewed.

As we have pointed out in Chapter 1 both adaptation processes can be understood as the
modification of the product being derived by adding and/or removing a certain group of fea-
tures. It would be desirable to have a unified representation of this modification, so that it can be
used at design as well as at runtime.

3.3.1 The Need for Unification

We claim that design and runtime are similar in their definition and their using process, but not
in their implementation. Hence, in order to define a complete approach for DSPL, we need a
unified representation of adaptations that combines design and runtime in a coherent develop-
ment process. Design adaptations are often considered to be of completely different nature than
runtime adaptations. Design adaptations are motivated by design goals whereas runtime adap-
tations are motivated by changes of the software environment. Moreover, design adaptations are
considered as permanent adaptations that cannot be rolled back whereas runtime adaptations
are considered as impermanent. However, whatever the technology and whatever the phase, a
software adaptation is always initiated by a particular motivation and is always realized through
modifications of some software artifacts. Therefore, from a specification point of view, design
and runtime adaptations are not that different. We argue that a single unified language should
be provided to specify both of them. Based on this language, a platform should be realized to
derive the software products at design time and runtime transparently.

Having only one unified language to specify design and runtime adaptations offers several
advantages. First, it formalizes similarities and differences that exist between the two kinds of
adaptation. Second, it may serve as a basis to transform design adaptations into runtime ones
and vice versa. Transforming design adaptations into runtime one allows one to delay the real-
ization of some design adaptations to the runtime phase. Transforming runtime adaptation into
design one prevents the realization of adaptation mechanisms that have been defined regard-
ing specific environment state that may not arise at runtime. Third, unifying the specification
of modifications done by both aspects is the first step to compute analysis such as dependency
analysis between aspects.

Having a platform that derives the software products at design time and at runtime trans-
parently offers several advantages. First, it supports the whole life cycle from the initial creation
of the product (driven by feature selection) to its dynamic adaptation (driven by changes of its en-
vironment). Second, it establishes the link between the motivations (feature selection or changes
of the product environment) and the adaptations of the software artifacts. Third, it can be used as
a way to achieve flexibility in the tradeoff between development cycles that are fully design ori-
ented (without any runtime adaptation), and development cycles that are fully runtime oriented
(without any feature selection).
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3.3.2 Challenges for DSPL Revisited

Having the unification in mind, we can now precise the goals of the approach presented in this
dissertation. We investigate on software engineering techniques for developing and adapting
software. Our main goal is to implement dynamic software product lines through the unification

of software adaptations that allows developers to define and implement adaptations both at
design time and at runtime.

In Chapter 1 we identified 4 main goals for our approach: variability management, auto-
mated development and correctness, platform independence, and derivation at runtime. Let us
now refine those goals and group them properly according to the classification we have intro-
duced for the reviewed works, namely: design and variability, runtime and context awareness,
and unification.

Design and Variability

First of all a DSPL needs a design adaptation phase that allows developers to build products
through automated processes. These processes need to take into account the variability of the
product family as well as further analysis and management for different product configurations.
We identify the following challenges for a design adaptation process:

• Automated Development Process

An SPL exploits commonalities among a set of software products in order to identify and
build reusable assets that can be used to derive new products reducing the effort and time
invested when building several products. A DSPL needs to automate the development
process of adaptable software.

• Variability and Correctness

It is important that products are not only easier to develop, but also that their correctness
remains guaranteed. When composing multiple parts to form a single software product,
it is possible that two or more of those parts have conflicts regarding the elements where
they are going to be composed and the requirements for the composition to take place. In
other words, implicit dependencies may exist between different artifacts which may lead
to composition problems. A design time adaptation has to exploit variability management
in order to define a development process that analyses such dependencies and prevents
incorrect products from being derived.

• Guarantee Platform Independence

It is also desirable that business concepts about the products to be derived are separated
from the details of the underlying platform. The derivation process in the DSPL has to
postpone as much as possible the decisions about platform and implementation. This en-
ables developers to define multiple targets and offer support for different platforms.

Runtime and Context awareness

Second, the DSPL has to deal with runtime reconfigurations. For this process, context information
has to be used to decide about the adaptation. At the same time, the reconfiguration has to
respect the constraints defined during the design with the variability. We identify the following
challenges that have to be faced to realize a process of adaptation at runtime:
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• Define and adaptation cycle with well-assigned responsibilities

An equivalent process of product derivation as the one defined for the design adaptations
has to be defined. It has to take as input the running product and its configuration, and
has to return a new adapted version of the product. A complete adaptation loop has to
be established, by differentiating different sub-process in charge of: monitoring the context
information, analyzing and deciding about possible adaptations, and finally, executing the
adaptation on the software product.

• Use context information for the decision making

A fundamental issue in adaptive software development is the management of context
events, and its manipulation in order to modify products dynamically. The DSPL has to
take context information into account to decide the appropriate configuration at the right
moment when adaptations take place in order to offer a better experience to the final users.

• Extend the concept of feature at runtime

Since products in the SPL are described as a set of selected features, an important challenge
to achieve dynamic product derivation is to define a way to maintain, and update, the state
of a product in terms of the features it is supporting at a given moment of its execution.
Furthermore, this information has to be used, in the same way as in the design time adap-
tations, to guarantee that the product will respect the constraints of the product family after
the adaptation has taken place.

A unified representation and management of design time and runtime adaptations

Finally, to provide the unification of adaptations at design time and at runtime, the DSPL has
to define a language and use an underlying platform that allows definition of adaptations inde-
pendently from the moment when they take place. This would allow developers to define only
once any adaptation, and use it independently at design for building a product, or at runtime for
adapting an existing product.

Additional Properties for a DSPL

In addition to the challenges for the design phase, the runtime phase, and the unification of
adaptations, we consider that any framework for developing DSPLs has to consider the following
properties.

• Extensibility

Extensibility is a property of highly importance in any SPL. Since requirements are evolving
constantly, it is desirable that SPLs can be extended or adapted to support the derivation
of new products, different execution platforms, or new functionalities required by different
stakeholders. This fact is reinforced by [PBL05] when authors define domain and appli-
cation engineering processes. These two processes are usually implemented in iterative
developments cycles. This practice intends to exploit the complementary nature of each
process. For example, during the application engineering, it is possible to identify new re-
quirements. Those requirements can be supported by the existing DSPL in a new iteration,
by creating their corresponding assets. This allows the SPL to evolve and extend its scope
over time. DSPLs are no different than traditional SPLs regarding the need for extensibility.
It is important to provide the mechanisms to extend the scope of the product family and
support new functionalities regardless of the derivation time.

46



3.4. Summary

• Scalability

In any SPL, one of the biggest challenges refers to the management of the combinatorial
explosion of product configurations. The size of a product family can grow exponentially
when features are added. Larger product families represent a challenge in terms of scal-
ability and performance. In an approach for DSPLs, it is necessary to consider this issue
because part of the management of the product family is postponed at the execution of the
different products. Calculations over larger product families performed at runtime may
have an impact on the adaptation and the overall performance of the products.

• Runtime History

When a product is adapted at runtime, it changes its configuration. If such changes include
the deletion of several parts of the product, then such modifications have to remain avail-
able. Like these, products can be able to go back to a previous state before one or several
adaptations have taken place. A DSPL has to take into account this kind of changes.

• Usability

Finally, another property for an approach in DSPLs is usability. By usability, we mean the
difficulty encountered by newcomers when starting to use a new framework for DSPLs.
This can be related with the changes in the development process, specially when there are
automated parts that are mixed with manual parts; and also, it can be related with the use of
new languages for modeling the different assets that are combined to produce the software
products. We consider that a framework for DSPL has to remain usable, for the automation
to have a positive impact on the effort and time invested when building individual soft-
ware products, regardless of the changes on the development process introduced by the
framework.

3.4 Summary

In this chapter we have surveyed several approaches in literature that are close related to the main
contributions of this dissertation. We have reviewed an important number of research works that
use a variety of technologies (i.e. MDE, SPL, AOSD, CBSE) in order to build software and/or
adapt it at runtime. We made a classification of the approaches surveyed. This classification has
been used to concretize the main objectives of this dissertation that were briefly introduced in
Chapter 1.

This chapter concludes the second part of this document dedicated to the study and analysis
of the background and state of the art. The next three chapters describe the contributions of this
dissertation. We start with a global overview of our approach in Chapter 4, to later concentrate
on the details of the processes for design time and runtime adaptations in Chapters 5 and 6,
respectively.
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Chapter 4

Dynamic Software Product Lines: Our
Approach in a Nutshell
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Nowadays, applications, and especially mobile applications, need to provide means to mod-
ify their structure and their behavior dynamically. That is because current technologies and im-
provements in hardware enhance software developers to build applications that benefit from the
information and events available at runtime. Dealing with this problem has been the focus of
our approach for DSPL, which constitutes the main contribution of this dissertation. We have de-
veloped a framework for developing DSPLs called CAPucine for Context Aware Software Product

Line. CAPucine provides a derivation process that can be performed at early steps of the devel-
opment as well as during the execution of a given product. We aim at providing a framework
for DSPLs that successfully faces the challenges presented in Chapter 3 by allowing products
to be built at design time and adapted at runtime using the same set of assets. The purpose
of this chapter is to give a global overview of the process of implementation and utilization of
CAPucine.

CAPucine has been divided in several phases, and for each phase, there are different steps
and associated roles. Here we present a global view of the different phases and the way they are
structured to have a complete process of product derivation. To face the challenges of DSPLs, we
present CAPucine using the processes previously identified for a typical product line: Domain

Engineering and Application Engineering. As introduced in Chapter 2 domain engineering refers
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to the definition of commonalities and variabilities of the SPL and the construction of the cor-
responding assets. Application engineering refers to building software products by reusing the
assets identified and developed during the domain engineering.

In our case, during the domain engineering process, we create the language that allows de-
sign and runtime assets to be defined in a unified manner. Every product in the DSPL is formed
as a combination of such assets. Afterwards, during the application engineering process, we dif-
ferentiate two types of product derivation: one for design time adaptations, and one for runtime
adaptations. Both types of derivation have the same effect: adapt an application. Both types of
derivation also share elements regarding the input: a set of selected features as defined in the
domain engineering processes. However, each derivation uses different technologies for per-
forming the adaptation at design and at runtime respectively. This separation together with the
unified language, allows us to face the challenges for design time adaptations, runtime adapta-
tions, and the lack of unification, identified in Chapter 3.

Here we present a global overview of both processes. We enumerate the elements of the
DSPL architecture and make emphasis on the roles, the types of assets used, and the derivation
processes to follow in order to successfully derive adaptable products. Next, in the following
two chapters of this dissertation we present in more detail the assets and the derivation at design
time and at runtime.

Structure of the Chapter

The remainder of this Chapter is organized as follows: in Section 4.1 we present the global pic-
ture of CAPucine, covering all the phases and both architecture and product derivation lifecycle.
Next, in Section 4.2 we describe the process of Domain Engineering, making special emphasis
on the types of assets employed. In Section 4.3 we focus on the development cycle using assets.
Finally, in Section 4.4 we present a summary of the global architecture of the SPL.

4.1 CAPucine, A Global Overview

A Dynamic SPL differs from a traditional SPL with respect to the architecture and development
cycle. Such differences are reflected in terms of: (1) the different roles and responsibilities, (2)
the type of assets identified and built in the domain engineering process, and (3) the derivation
process. Figure 4.1 presents a global view of CAPucine. It is divided in two parts. In the top
of the Figure, we find the elements for the domain engineering processes. We base ourselves in
an MDE approach where the assets are represented as metamodels and models. There are three
metamodels in total which represent four different domains: (1) variability (Features), (2) appli-
cation (Aspects), and (3) platform (SCA and Java). This division allows one to have different roles
for each domain. For example, an expert in the particular platform can be in charge of defin-
ing the platform metamodel or the transformations towards this particular platform, whereas a
stake-holder can be only involved in the process of product configuration to select the features
she wants for her product.

The bottom of the Figure depicts the application engineering process. Here we define two
types of product derivation: one for adaptations at design time, and one for adaptations at run-
time. The former one is in charge of building a product, whereas the latter one is intended to
modify an existing running product. It is important to notice that such processes are triggered
by completely different roles. In the first case, the product is built according to a request done by
a developer. In the second case however, there is no human intervention, and the adaptation is
triggered by a context event.
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Figure 4.1: A global view of CAPucine.

4.2 Domain Engineering

In this section, we describe the whole process of domain engineering as illustrated in Figure 4.1.
As we stated before, this processes is concerned with the development of assets. We start by
describing the different roles that interact in their creation. Afterwards we detail the assets that
in this case are defined as models, metamodels, and transformations.

4.2.1 Roles

The responsibilities for developing each type of asset are shared among four different roles:
application architect, platform architect, stakeholder, and asset developer.

• Application Architect: The architect is the expert in the particular domain business of
applications that are going to be built using the product line. She is responsible for defining
the application metamodel. The application metamodel defines the elements that will be
used to define every product. Additionally, she also defines the variability model, which is
used to define the features and scope of the product family.

• Platform Architect: The platform architect is the expert in the target platform where prod-
ucts are going to be deployed and executed. As such, she is responsible for defining the
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platform metamodel. Additionally she may participate in the definition of transformations
from the application model towards the platform.

• Stakeholder: The stakeholder is the final user of the product line. She has all the informa-
tion about commonalities and variabilities of the product family. Together with the asset
developer, she is in charge of reflecting this knowledge in a concrete variability model that
conforms to the variability metamodel defined by the architect. Such model is the starting
point of every product derivation and represents by itself the whole set of products that
the product line is able to produce.

• Asset Developer: The asset developer has several responsibilities. First, she helps the
stakeholder to define the variability model of the product line. Afterwards, she creates the
aspect models that realize each feature identified in the variability model. To do so, the
asset developer uses the application metamodel defined by the architect and creates a core
model for commonalities and aspect models for variable features. Additionally, the asset
developer also defines a series of compositions and transformations that build the product.
Such transformations are created using the metamodels, which guarantees that they are
generic and reusable for every model that conforms to the application metamodel.

4.2.2 Models as Assets

In addition to the roles, Figure 4.2 also illustrates two levels of assets in the domain engineer-
ing process, namely: metamodels and models. For our DSPL, we follow an MDE approach.
Consequently, the assets to be created in the domain engineering process mainly correspond to
metamodels, models, and transformations. We divide the creation of assets in two different cat-
egories which are: abstract assets and concrete assets. Abstract assets are needed in order to
create the concrete assets that are used during product derivation to build software products.
Abstract assets mainly correspond to metamodels, while concrete assets include models, model
transformations and code generators. The abstract assets in CAPucine are described below.

• Variability for feature modeling

The first domain modeled corresponds to the variabilities and commonalities of a family of
products. The objective is to provide a language that allows us to define such information.
We present a feature metamodel that defines the main concepts for features and their
relationships.

• Application for core and aspect modeling

An application is modeled as a combination of a core and a set of aspects. The core is
modeled using a metamodel that includes the essential elements of a component and
service based application. The aspects are intended to enrich or modify the elements of the
core by adding or deleting new elements at specific points in the core structure. The core as
well as the aspects use an architecture based on components that offer services and require
references. The architecture model, as well as the language for defining the core and the
aspect models are further explained in Chapter 5.
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Figure 4.2: Roles in the domain engineering process.

• Platform for SCA and Java modeling

We use Service-Component Architecture (SCA) [Ope07b] as target platform. SCA proposes
a reconciliation between the Service Oriented Architecture (SOA) and CBSE, by defining
a framework for describing the composition and the implementation of services using
software components. The motivation behind this choice relates to the capabilities of the
platform to reconfigure the applications dynamically. In order to generate the code for the
SCA runtime platform we use two metamodels: one for SCA and one for Java. The archi-
tecture of the product is defined using an SCA model, which references implementations
for every component described. Such implementations are written in Java.

Concrete assets, on the other hand, refer to the models and transformations that are obtained
using the metamodels to reflect the products variabilities and commonalities. The variability
model together with the aspects that conform to the application metamodel are written by hand
by the asset developer. SCA and Java models are automatically generated as a result of model
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transformations from the application models, performed during the application engineering.

4.3 Application Engineering

The application engineering process concerns the development of individual products by
selecting a subset of features and combining the assets defined during the process of domain
engineering. One particular characteristic that distinguishes a dynamic SPL from a traditional
one is that there are two different roles in the process of product derivation (Figure 4.2):
developer and context events.

• Product Developer: this is the traditional role of the developer who wants to build a
product by selecting a set of features. She interacts with the product line at design time
and the result of her configuration is a product ready to be deployed.

• Context Event: this is a dynamic role which also creates a product configuration but
this time at runtime. By context we mean every possible information that may affect the
product behavior. Examples of such pieces of information are temperature, time, available
services and resources, battery level, available memory, etc. The result of its product
configuration is a reconfiguration of the product being executed.

For each particular role, there is a different process of product derivation which corresponds to
the two CAPucine phases: design and runtime. Both phases share the same idea of building a
product from a given configuration, but the implementation and the technologies used to imple-
ment them are different.

4.3.1 Design Phase: analysis, composition and generation

In general terms, the design phase corresponds to the building of a product out of a manual
Product Configuration. We first perform a constraint Analysis step which verifies constraints at
the level of features and the assets that realize them. Out of this analysis we obtain an order
of composition. Next, we have the composition itself, that we call design weaving, which puts
together the common elements of all products with the features selected for the particular product
being built. Once the whole composed model reflecting the choice of the developer is built,
the generation takes place. We follow an MDE approach for SPL (MD-SPL). This is reflected in
the fact that our assets are models and derivation is a set of consecutive calls to model to model,
and model to code transformations. At the end of the design phase, the code for the product is
generated. The design phase is described in detail in Chapter 5

4.3.2 Runtime Phase: transformation and runtime reconfiguration

The runtime phase aims at modifying an application at execution. One advantage of using SPLs
is that assets used for both phases are the same. Hence, by starting from the same set of models
created and used in the design phase, the runtime phase generates the adequate software artifacts
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that change the product dynamically in a process that we call Runtime Weaving. To achieve this, in
this phase we rely on an adaptation cycle that includes a process of decision making, an executing
platform for performing dynamic modifications, and the use of context information to trigger the
process of adaptation. The runtime phase is detailed in Chapter 6.

4.3.3 Facing the Challenges for DSPLs with CAPucine

We have presented a global overview of CAPucine, our approach for developing DSPLs. Let us
now revisit the challenges presented in Chapter 3 to explain how our approach is intended to
face them.

Design and Variability

To face the challenges of design and variability, CAPucine defines the design phase. It is in-
tended to automate the development of software products using as starting point a product con-
figuration. The software products are developed using platform independent aspect models and
performing a constraint analysis to guarantee that the product family constraints are respected.

Runtime and Context awareness

To face the challenges of the runtime phase and context awareness, CAPucine defines the runtime
phase. It is intended to enable software products obtained in the design phase to be modified
during their execution. For that, the runtime phase establishes an adaptation cycle where context
information is analized to decide if it implies a modification of the product configuration. Such
modification is then translated into a reconfiguration of the running product.

Unification

Finally, to face the challenge regarding the unification, CAPucine uses aspect models that can be
used at both the design phase and the runtime phase. In the design phase, the aspect models are
used in a process of model composition and transformation to obtain source code. In the runtime
phase, the aspect models are transformed into reconfiguration scripts that are used to modify a
running software product.

4.4 Summary

In this chapter we presented an introduction to our approach for building DSPLs called CA-
Pucine. We emphasized on the two main processes of traditional SPLs and the differences found
by extending such processes at runtime. We have presented the different roles involved in the
domain and application engineering of CAPUcine. We have also introduced the types of assets
that we use to develop products and the two phases of product derivation. The following two
chapters of this dissertation cover in detail each one of those phases.
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Chapter 5

Design Phase: Variability, Application
and Platform
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5.1 Introduction

Two of the most important challenges in Software Product Line Engineering concern variability

management and product derivation. The former refers to how to describe, manage and implement
the commonalities and variabilities existing among the members of the same family of software
products. The latter deals with how to build products starting from a selection of a given set
of variable features. A well-known approach to variability management is by means of Feature
Diagrams (FD) introduced as part of Feature Oriented Domain Analysis (FODA) [KCH+90] back
in 1990. An FD typically consists of (1) a hierarchy of features, which may be mandatory (common-
ality) or optional (variability), and (2) a set of constraints expressing inter-feature dependencies.
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Nevertheless, deriving a concrete software product from an FD remains a highly complex pro-
cess. It starts with the feature configuration step, which aims at selecting the features to include
in the desired product, in strict conformance to the specified constraints. The product derivation
process then necessitates the composition of the software artifacts corresponding to the selected fea-
tures. This second step may be very challenging, since the impact of selecting a single feature
can spread across several phases of the software development process as well as several places
in the product itself. In order to enable the automated derivation of a product, it is necessary
to specify the composable elements that reify each feature. Each of these composable elements must
include all the information required for the composition among which (1) the locations impacted
by the composition, (2) the additional elements to be composed and (3) the changes to perform
in order to add support for the associated feature.

To face such challenge, we introduce the notion of aspect model as a way to realize the
composable elements. Using aspect models enables the derivation of products by means of feature-
based software composition. The definition of aspect models relies on Aspect Oriented Modeling
(AOM) which consist in using the Aspect Oriented Programming (AOP) principles as part of the
Model-Driven Engineering (MDE) development process [Jéz08, FJ09]. Although AOP, was ini-
tially developed to deal with crosscutting concerns in the source code, it has recently become
an interesting paradigm to be used also in the early steps of software development [KLM+97].
MDE, on the other hand, raises the level of abstraction of the development life cycle by shift-
ing its emphasis from code to models [Sch06]. It considers any software artifact produced at
any step of the development process as valuable asset by itself to be reused across different sys-
tems and implementation platforms. In MDE, models are main software artifacts that provide
the full specification of a software system. Each model describes a particular software view at
a particular level of abstraction [Zam95]. This use of models follows the well-known separa-
tion of concerns principle, which has been proven to provide many benefits, including reduced
complexity, improved reusability, and simpler evolution [TOHS99].

This chapter covers the complete phase of product derivation at design time. We start by
introducing the variability, application and platform metamodels. We present an aspect meta-
model to define high-level aspects and the weaving process at design which links the elements
of the aspect at the model level. Then we present the process of product derivation which covers:
product configuration, constraint analysis, aspect weaving, and platform mapping.

Structure of the Chapter

The remainder of this chapter is organized as follows. Section 6.2 discusses the need for product
derivation using aspect-based composition and present the challenges for the design phase. Sec-
tion 5.3 presents the domain engineering process and in particular the metamodels defined for
the DSPL. Section 5.4 illustrates the application engineering process of the DSPL by describing
the steps to derivate a software product. Finally, Section 5.5 revisits the challenges for the design
phase and concludes the chapter.

5.2 Design Phase Challenges

In Chapter 3 we have identified three main challenges for the design phase of DSPLs. Such
challenges refer to: automated development process, variability and correctness, and platform
independence. To face those challenges, in the design phase of CAPucine we define a complete
derivation process that starts with a feature selection, also known as product configuration, and
that ends with the implemented software product. Feature diagrams are a way to specify and
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manage different product configurations. However, the process of creating a product from each
configuration is based on: (1) the existence of dependencies between the selected features (i.e.
the features in the configuration), (2) the mapping between the selected features and software
artifacts that implement them, and (3) the mappings needed to create platform specific artifacts
that represent the final product. For this reason, here we present a more detailed definition of the
challenges in order to explicitly deal with the problems related to correctness and variability as
follows:

1. Ensure a clear separation of concerns: Although feature diagrams enable the clean speci-
fication of software variability as a feature hierarchy, the mapping that holds between the
features and the corresponding software artifacts may prove much more difficult to define.
This is especially the case in the presence of crosscutting features, i.e., features that are ma-
terialized at multiple places in the final product. Possibly complex interactions between
features on the one hand, and between artifacts on the other hand, further complicate the
definition of the composable elements.

2. Identify inconsistencies: When composing multiple features to form a software product,
it is possible that two or more artifacts have conflicts regarding the elements where they
are going to be composed and the requirements for the composition to take place. It may
happen that implicit dependencies exist between artifacts that support independent fea-
tures in the FD, and conversely. Such inconsistencies do not necessarily lead to composition
problems but they have to be made explicit.

3. Derive a suitable composition strategy: This challenge refers to the use of information at
the feature and also at the artifact level to obtain a composition strategy. For example if
two features have a dependency, it is necessary to decide which feature is integrated to the
product first, so that, the second feature can use the elements it needs from the first one. In
other words, features have to be used to stablish the order for the composition of assets.

4. Use platform independent assets: It is desirable that the artifacts that implement the fea-
tures are platform-independent, this allows the SPL to have multiple targets and postpone
the decision of a particular platform until later steps of the product derivation. Addi-
tionally, for every target platform, the SPL has to define the mappings that transform the
platform-independent assets in to concrete software artifacts for the platform. This includes
for example the mechanisms to obtain the source code that is compliant with the target plat-
form.

5. Provide an automated development process: Independently from the techniques used for
incosistency detection and platform independance, the main goal of the design phase is to
provide development process that takes advantage of commonalities and variabilities of a
set of software products, to build reusable assets. Such assets can then be used to build the
products in an automated way reducing the time and effort invested.

In order to face those challenges, we present a design phase that, as introduced in the pre-
vious chapter, includes the two main processes of software product lines: domain engineering
and application engineering. For the domain engineering process, we present the metamod-
els for variability, architecture, and aspects. For the application engineering process, we define
four phases that constitute the derivation process for creating individual software products: con-
straint analysis, model composition, model transformation, and code generation. Both domain
and application engineering processes are described in the following two sections.
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5.3 Domain Engineering

This section describes in detail the metamodels defined and/or used in our approach and some
model examples that conform to such metamodels. There are four metamodels: Features, As-
pects, SCA and Java. We focus on the former two since they are part of the contribution and
were created specifically for the DSPL. For the latter two, we briefly describe them and present
external references for further information.

5.3.1 Feature Metamodel

Several works on feature modeling have proposed multiple extensions to the FDs initially intro-
duced in [KCH+90]. In [SHT06] Schobbens et al. survey different approaches to feature modeling
and define an abstract syntax for feature diagrams that eliminate the ambiguity occurring in ear-
lier proposals. They employ a mathematical notation to define the inter-feature relationships. A
different approach to deal with ambiguity in FDs is by defining a metamodel like the one pro-
posed by Pohl et al. [PBL05]. This metamodel presents two main concepts: variation points and
variants. The metamodel presented in [PBL05] further specializes the relationships between vari-
ation points and variants, by classifying the types of relationships that may exist. They define
dependencies (optional and mandatory) and constraints (requires, excludes). In our case, we have
defined a feature metamodel inspired from the concepts that Pohl et al. have identified. We de-
fine the same concepts and relationships using the Eclipse Modeling Framework (EMF) [The10],
but we change the way they are modeled, since EMF does not support the specialization or in-
heritance of relationships between two different meta-classes. Our feature metamodel is shown
in Figure 5.1.

 
FeatureModel

name : String
VariationPoint

name : String
selected : Boolean

Variant

exclusive : boolean
Alternative

nodes name : String
mandatory : Boolean

Node

requires

0...*

0...*0...*

0...*

excludes

name : String
Aspect

implementedBy

1...*

Figure 5.1: Feature metamodel.

The root of the metamodel is the meta-class FeatureModel. It contains a set of Nodes. Each
node has two relationships: requires or excludes. Such relationships allow for the definition
of constraints between all types of nodes. The nodes can be mandatory. We support two types of
nodes: VariationPoint, and Variant that correspond to the concepts of variation point and
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variant previously discussed. Additionally, a variation point can be alternative. There are two
kinds of alternative variation points: exclusive or non-exclusive. The former one specifies that,
from all the children variants of the alternative variation point, only one has to be selected. The
latter one specifies that one or more children can be selected. Notice that in the metamodel, the
constraints are defined at the level of nodes. This means that variants may require or exclude
not only variants but also variation points. In the case of variation point, a requires means that
at least one of its children has to be selected. In the case of an excluded variation point, none of
their children can be selected. Finally, all variants have one Aspect that implements them. Like
this, the variants are realized as the parts of the architecture that are introduced by each aspects.
The weaving of such aspects results in an architecture that represents the product configuration
where the variants for the aspects woven have been selected. The aspect metamodel and weaving
are further explained in the Section 5.3.3

Illustrative Example

To illustrate the use of the feature metamodel, please consider the feature diagram illustrated
in Figure 5.2. The diagram introduces a feature model defining a family of products with the
essential functionality for an e-shopping scenario where a client connects to a server in order to
find and buy items. This example is a simplified version of our case study. We use this example
throughout the contribution chapters of this dissertation to illustrate the approach.

The part a of Figure 5.2 depicts the feature model for the e-shopping example using a tra-
ditional FD representation. Part b illustrates an object diagram of the equivalent model that
conforms to our metamodel. From this diagram, we can identify the three types of features: (1)
mandatory features (dark circles) which are always selected (e.g. Notification and Payment),
(2) optional features (white circles), which can be chosen or not (e.g. SMS), and (3) alternative

features (inverted arc). Exclusive alternative features are represented with a white arc (e.g.
ByDiscount, ByWeather, and ByLocation) whereas non-exclusive alternative features are
represented with a dark arc (e.g. Wifi and GPS). In addition to that, the diagram introduces one
constraint indicating that location-filtered catalog needs one type of location to work.

The model corresponding to this feature diagram begins with the application element,
the root of the model. It has four variation points: Catalog, Notification, Location
and Payment. Catalog is mandatory and has an alternative exclusive variation point
called Filtered with three different variants ByDiscount, ByWeather, and ByLocation.
Notification is modeled as a variation point with two alternatives: SMS and Call. Location
is a non-exclusive alternative variation point with two variants, Wifi and GPS. Payment is a
variation point with two variants: CreditCard and Discount. Finally, the constraint between
ByLocation and Location is represented as a property inside the requiring node, which in
this case corresponds to the variant ByLocation.

5.3.2 Architectural Model

The target applications used in our approach are implemented to be executed in a platform based
on CBSE and SOA paradigms. This choice enables products to be adapted at runtime by using
the dynamic reconfiguration mechanisms available in such platform. In order to define a generic
architecture to model such applications, we have created a metamodel inspired from the ele-
ments found particularly in SCA. SCA proposes a reconciliation between the Service Oriented
Architecture (SOA) and Component-Based Software Engineering (CBSE), through a framework
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Figure 5.2: A sample feature diagram.

for describing the composition and the implementation of services using software components.
Likewise, our architectural metamodel (illustrated in Figure 5.3) describes the software prod-
ucts in terms elements (meta-class Element) that provide services (meta-class Service) and
require references (meta-class Reference). An element can contain other elements. This is
expressed using the composite pattern of the meta-class Container. To fully describe a ser-
vice oriented architecture, the metamodel also introduces the concepts of contracts (meta-classes
ServiceContract and Operation) which are used to establish a relationship between ser-
vices and references of different elements. There is the notion of Object to model business ele-
ments that cannot be represented as Elements. We can represent a set of calls between different
services and references in an application using the meta-classes Activity and Connection.
An activity represents a set of connections and a connection represents a link between two con-
nection points.
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Figure 5.3: Architectural metamodel.

5.3.3 Aspect Metamodel

In our target platform, the unit of composition is the software component [Szy02], which is sup-
posed to be independent. However, in a product family, each feature may be realized by several

components. To fill the gap between the variability expressed in terms of features and the plat-
form components, we have to modularize the architecture of the software products. This is the
role of the aspect metamodel. It defines a language that extends the architecture metamodel in or-
der to define both the base architecture model, that we called the core, and different modules that
we call the aspect models. The core represents the commonalities of the family of products (e.g.

mandatory features) whereas the aspect models contain different concerns, that can be woven to
the base model (e.g. optional features). Aspect models are combined with the core to produce any
product in our SPL.

The aspect metamodel (see Figure 5.4) is formed by four parts: the architecture of the ele-
ments to be woven (Model), the places where the weaving is realized (Pointcut), the modifica-
tions performed by the aspect (Advice), and optionally the moment of runtime when the aspect
can be woven (Event). A description of each part is provided below.

what

name : String
Aspect

  
Advice  
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how

0..1

where

0..1

 
Model 

Event

when

0..1

0..1

Figure 5.4: Aspect metamodel: simplified view.
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Modeling the elements to be woven (what)

We use the architecture metamodel presented in Figure 5.3 to specify the core model as well
as the pieces of architecture defined in every aspect. However, we have modified it to fulfill
the role of Model for the aspect. Concretely, we have replaced the notion of Application
for Model that belongs to the aspect. In addition to that, we have added a meta-class called
ReferencedElement. This meta-class is specialized by all the meta-classes in the architecture.
The main idea behind this meta-class is to provide a single entry point, so that every architectural
element of the application becomes accessible from the Pointcut and Advice parts of the as-
pect. Figure 5.5 illustrates the modifications performed to the architecture metamodel to become
the Model of the aspect.
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Figure 5.5: Aspect metamodel: definition of the Model.

Modeling the place (where)

We define the notion of Pointcut (see Figure 5.6) to define the places where an aspect can be
woven. A pointcut queries the architecture of the core and returns all the elements that have to be
present in the model in order for the weaving. The pointcut is composed of expressions (meta-
class Expression) and variables (meta-class Variable). An expression can be either compos-
ite (meta-class Composite) or atomic (meta-class Atomic). A composite expression may contain
nested expressions. To aggregate the results it uses an operator (meta-attribute operator) that
defines the semantics of the composition (e.g., AND, OR). An atomic expression can be special-
ized in three different forms: InstanceOf, FindByName and Owned. InstanceOf is used to
find an element using its type as a parameter. FindByName returns the elements whose name is
equal to the name attribute of the expression. Finally the Owned expression looks for couples of
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elements where one of the elements (parent) owns the other (child). A variable represents a
place where the elements obtained as a result of the execution of an expression are stored.

name : String
Pointcut

name : String
Variable

operator :  OperatorType
CompositeExpression

 
AtomicExpression

type : ModelType
InstanceOf

isOwnedBy()
 

Owned

name : String
FindByName

execute()
 
Expression OR

AND

ENUM
OperatorType

1..*

1..*

0..*

11

father

child1

1

where

name : String
Aspect

0..*

expressions

expressions

Figure 5.6: Aspect metamodel: definition of the Pointcut.

Modeling the modifications (how)

We consider the Advice (see Figure 5.7) to be a sequence of modifications (meta-class
Modification). The following modifications are supported by our metamodel:

• The addition of a new model element (meta-classes Add). To add an element, each Add

statement links an element of the model, represented as a ReferencedElement, and a
Variable of the query, which represents the place where the element is going to be added.

• The removal of an existing model element (meta-classes Delete). To remove an element,
each Remove statement references a Variable which represents the elements that are go-
ing to be removed.

Modeling the time (when)

Even if the notion of time is only relevant for the execution of an application, it is still necessary
to model it. To do this, we use context events. By context we mean every piece of information
that may affect an application. Examples of such information vary from availability of resources
or services to information like temperature, location, or even hardware restrictions like memory.
Consequently, a context event is a change in context information. The model part of the aspect
model that is used to represent the context events is further detailed in Chapter 6.

Illustrative Example

To illustrate how architectural and aspect models are created, consider the object diagrams pre-
sented in Figure 5.8. Part a of the Figure depicts the core model for the e-shopping example. The
core represents all the artifacts that implement the mandatory features of the diagram. In the
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Figure 5.7: Aspect metamodel: definition of the Advice.

core, we are only interested in the architecture of the products. For this reason, the Pointcut,
Advice, and Event parts of the aspect are empty. In this case, there is one element for ev-
ery mandatory feature in the feature model. Additionally, we have created a FrontEnd ele-
ment to have a single entry point to the functionalities offered by the application. Every ele-
ment offers a number of services and requires a number of references. For example, the element
Notification offers one service called SendNotification and uses two references called
SMSNotification and CallNotification, which corresponds to the two variants that can
be selected. For illustrative purposes, we have omitted the relationships between elements in the
diagram. However, elements are connected with each other through connections, that link
services and references. Part b illustrates the aspect model for the feature SMS. It has the four
parts defined for an aspect: model, pointcut, advice and event. Since the event is only used at
runtime, we leave it empty for now and focus on the other parts. The model includes an ele-
ment called SMS with a service called SMSNotification. There is one pointcut that defines a
composite expression and a variable named reference. The composite expression is formed
by two atomic expressions of type InstanceOf and FindByName. The former one looks for
instances of Reference. The latter one searches for instances named "SMSNotification". Both
expressions are linked to the variable reference. The aspect’s advice defines one modification:
addBoundElement. This is a specialized version of the Add modification. It adds an element,
but in addition to that, it also creates a binding with an available Connection Point in the
core model. In this case, it adds the SMS element and it creates a binding to the reference found
in the variable reference. Finally there is an event that declares a condition over a boolean ob-
servable. In other words, this aspect adds the element SMS to the container Eshop, and connects
it to the corresponding reference in the Notification element.

In summary, the aspect metamodel combines the elements defined in the architecture (based
on SCA) with the notions of pointcut, advice, and event. Like this, we are able to build a core
model like the one in part (a) of Figure 5.8 that represents the commonalities of the family of
products, and different aspect models that complement the core like the one presented in part (b)
of the same Figure. Using this metamodel, we are able to modularize the architecture in different
aspect models and link them to each one of the variants defined in the featuremodel. The product
derivation process is then realized as the weaving of the aspect models for the selected variants
with the core model, as explained in Section 5.4.
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Figure 5.8: Architecture and aspect example models.

5.3.4 SCA Metamodel

For the SCA metamodel, we have used the metamodel defined by the OSOA that is part of the
SCA specification. In order to integrate such metamodel as part of the assets of our SPL, we have
created the corresponding resources (ecore files in the Eclipse Modeling Framework (EMF)) from
the graphical representation available at [Ope07a]. Figure 5.9 illustrates the SCA metamodel.
It presents the main concepts behind the specification. Composite, Component, Service,
Reference, Property, Binding, Wire, Implementation.

5.3.5 JAVA Metamodel

With the increasing popularity of MDA approaches, several Java metamodels have been pro-
posed ([INR10, Fal10, Bru10, PNP06]). For our SPL, we have chosen the Java metamodel pro-
posed in the Spoon EMF Project [ND08, Bar06]. There are two main motivations for this choice.
First, the metamodel is extensive enough and includes all the constructs that we need in order
to build model transformations. Second, since it is part of the Spoon project, we benefit from
the tools developed for this project in terms of code generation. In Spoon, the proposed Java
metamodel is extensive as it considers most of the concepts of the Java language to build the
abstract syntax tree of any application written in Java. It is formed by three main packages:
declaration, reflection and spoon. Since the reflection and spoon parts deal with
the imperative part of Java, and spoon processors to build code transformations, we only use the
elements found in the declaration package for the model-to-model and model-to-text transfor-
mations. It contains the concepts required to represent the structure of any java application such
as: CtPackage, CtClass, CtInterface, CtField, CtParameter, and CtAnnotation. For
a more detailed explanation of the Spoon Java metamodel please refer to [PNP06], and [ND08].
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Figure 5.9: SCA metamodel.
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5.4 Application Engineering

In order to obtain a software product from a product configuration, we define a product deriva-
tion process with four main phases as illustrated in Figure 5.10: (1) constraint analysis dealing
with the analysis of constraints at both feature and aspect levels, (2) model composition in charge
of weaving of multiple aspect models with the core to obtain a single woven model, (3) platform

transformation to create platform specific models out of the woven model, and finally (4) code gen-

eration to obtain the source code of the products from the platform specific models. The product
derivation goes like follows: first, the developer selects a set of features desired for his/her prod-
uct, then a feature constraint analysis takes place. Out of this analysis the order of composition
is obtained. This is used to perform the weaving of the different aspect models for the features
selected. At the end of the composition a woven platform-independent model is obtained. The fi-
nal steps of the product derivation consist in transforming this woven model into SCA and JAVA
specific models and use them to generate the code of the product.

PRODUCT
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1. Constraint 
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Constraint 
Warnings

Composition
Order Design Weaving 

(Model Transformation)

2. Model 
Composition

Developer

Product
Configuration

3. Platform 
Transformation

model2SCA
model2Java

4. Code 
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Generators

.composite
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Model

Platform
Specific 
Models

Platform
Specific 
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Figure 5.10: Product derivation phases.

5.4.1 Constraint Analysis

The goal of the constraint analysis is to identify and prevent the conflicts that may exist between
the feature model and the aspect models. To overcome such conflicts, in our approach we pro-
pose an analysis of the inter-feature constraints of the FD and the dependencies between the
corresponding aspect models.

The constraint analysis process takes place once the developer has configured a particular
product. The product configuration is represented as a set of variants. Based on this selection,
the constraint analysis aims at (1) checking that the constraints defined in the FD are consistent
with respect to corresponding inter-aspect dependencies, (2) identifying implicit composition
conflicts, and (3) deriving the most appropriate order of composition. This cross-model analysis
goes in both ways: from features to aspects (left to right), and from aspects to features (right to

left). Below, we specify both analyses based on the following notations:
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• FD denotes the feature diagram of interest;

• F = {F1, F2, . . . , Fn} denotes the set of features of FD;

• P denotes the set of valid products that can be derived from FD;

• R = {(F1, F2) ∈ F × F : F1 requires F2} denotes the set of requires constraints of FD;

• E = {(F1, F2) ∈ F × F : F1 excludes F2}, denotes the set of excludes constraints of FD;

• AF denotes the aspect model associated with a feature F ;

• A =
⋃

F∈F
AF denotes the set of aspect models associated with the features of FD;

• A.Model denotes the Model part of an aspect A ∈ A;

• A.Pointcut denotes the Pointcut of an aspect A ∈ A;

Left to right analysis

The left to right analysis, concerns the constraints (requires or excludes) that are explicitly specified in
the FD. Given a valid feature configuration, the analysis (1) checks that the related FD constraints
actually translate as equivalent inter-aspect dependencies, (2) takes such dependencies as a basis
to derive a correct weaving order, and (3) returns a warning for each FD constraint that has no
“equivalent” at the aspect level.

• A “F1 requires F2” constraint in the FD usually implies that the pointcut of aspect AF1
refer-

ences some model element(s) introduced by aspect AF2
. If it is the case, AF2

must be woven
before AF1

when deriving the product.

• A “F1 excludes F2” constraint in the FD usually implies that the pointcuts of AF1
and AF2

reference common model elements.

Algorithm 1 summarizes the left to right analysis process, which takes as inputs (1) the feature
diagram FD, (2) the associated aspect models A, and (3) a valid feature configuration p. Each
requires constraint relative to p is analyzed (lines 2–8). If the constraint translates as a Pointcut-
Model dependency, the weaving order is adapted accordingly (line 6). If such a dependency is
not found, a corresponding warning is returned. The analysis of excludes constraints (lines 9–12)
is similar, except that (1) it is based on Pointcut-Pointcut dependencies and (2) it does not impact
the weaving order. Indeed, the feature configuration is supposed to be valid with respect to the
explicit FD constraints.

Right to left analysis

The second part of the analysis is intended to find implicit inter-feature constraints. Such depen-
dencies are not specified in the FD, but hold between the corresponding aspects and, thus, may
cause a conflict when realizing the composition. Similarly to the left to right analysis, two types
of constraints are considered:

• A requires constraint indicates that an aspect pointcut refers to parts of the model of other
aspect.
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Algorithm 1 Left to right analysis
Require: A feature diagram FD, the associated aspect models A, a valid feature configuration

p = {F1, F2, . . . , Fk} ∈ P

Ensure: A weaving order O and a set of warningsW
1: O ← toList(p)
2: for all (F1, F2) ∈ R such that F1 ∈ p do

3: if AF1
.Pointcut ∩ AF2

.Model = ∅ then

4: W ←W ∪ {F1 does not require F2 at the architectural level}

5: else

6: O ← switchPositionIfNeeded(O, F2, F1)
7: end if

8: end for

9: for all (F1, F2) ∈ E such that F1 ∈ p do

10: if AF1
.Pointcut ∩ AF2

.Pointcut = ∅ then

11: W ←W ∪ {F1 does not exclude F2 at the architectural level}

12: end if

13: end for

• An excludes constraint indicates that there are at least two pointcuts in distinct aspects with
equivalent expressions. If such a situation occurs, then it is necessary to verify whether
the corresponding advices are interfering with each other. Generally, aspects can be clas-
sified with respect to the interferences with each other in three categories: (1) independent,
when their pointcuts and modifications do not affect other aspects, (2) partially dependent,
when pointcuts may involve previously woven aspects but advices are independent, and
(3) totally dependent, when pointcuts are dependent on previous aspects and advices may
impact other aspects. In our case, it is the third category that may lead to composition con-
flicts. Consequently, aspects that exhibit such dependencies should not be weaved within
the same product derivation. In order to determine whether the aspects are totally depen-
dent, one must check if the modifications introduced by one aspect have a negative impact
on the other. This is similar to critical pair analysis [Plu93] in the domain of graph rewriting.
Since there are only two types of modifications in our aspect metamodel: add and delete, the
analyzer has to make sure that one aspect is not deleting an element referenced in the other
aspect. If it does, the developer is warned about an implicit excludes constraint missing in
the FD.

The right to left analysis is formalized in Algorithm 2. In case an implicit requires constraint is
detected (lines 2–14), the behavior of the analyzer varies depending on whether the product
configuration includes the required feature F2 or not. If F2 is selected, a warning is returned
and the composition can be achieved according to an appropriate weaving order (line 8). If,
in contrast, F2 is not part of the configuration, then the composition is aborted (lines 10–11).
Regarding the detection of implicit excludes constraints, the analyzer behaves in the other way
around. In this case, indeed, the presence of excluded features F2 in the configuration causes the
composition to be aborted (lines 20–21), while their absence leads to a warning only (line 18).

Defining the composition order

The composition order is derived from the analysis in both ways. To obtain it, the analysis tool
traverses the list of features in the same order as they were selected, and, whenever a feature
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Algorithm 2 Right to left analysis
Require: A feature diagram FD, the associated aspect models A, a valid feature configuration

p = {F1, F2, . . . , Fk} ∈ P , an initial weaving order O
Ensure: A flag compositionAllowed, a possibly adapted weaving order O and a set of warn-

ingsW
1: compositionAllowed← true

2: for all F1 ∈ p do

3: for all F2 ∈ F such that AF1
.Pointcut ∩ AF2

.Model 6= ∅ do

4: if (F1, F2) 6∈ R then

5: W ←W ∪ {F1 implicitly requires F2 at the architectural level}

6: end if

7: if F2 ∈ p then

8: O ← switchPositionIfNeeded(O, F2, F1)
9: else

10: compositionAllowed← false

11: W ←W ∪ {F1 implicitly requires a non-selected feature (F2)}
12: end if

13: end for

14: end for

15: for all F1 ∈ p do

16: for all F2 ∈ F such that AF1
.Pointcut ∩ AF2

.Pointcut 6= ∅ do

17: if (F1, F2) 6∈ E∧ totallyDependent(AF1
, AF2

) then

18: W ←W ∪ {F1 implicitly excludes F2 at the architectural level}

19: if F2 ∈ p then

20: compositionAllowed← false

21: W ←W ∪ {F1 implicitly excludes a selected feature (F2)}
22: end if

23: end if

24: end for

25: end for

requires (implicitly or explicitly) other feature, it is moved in the list to the position right after the
feature being required. This is done in both the left to right algorithm (line 6) and the right to left

algorithm (line 8). This order guarantees that the pointcuts of features requiring other features
are correctly executed during the composition.

Illustrative Example

To better illustrate the constraint analysis. Lets consider the family of products defined in the
feature model of Figure 5.2. First of all, we have to select a product configuration. Only the
leafs of the feature model – which are represented with variants in the model – can be selected.
The diagram includes 9 variants in total: ByDiscount, ByWeather, ByLocation, SMS, Call,
Wifi, GPS, CreditCard, and Discount. Consider the following two product configurations:

• P1 = {ByLocation,SMS,Wifi,CreditCard} ;

• P2 = {ByLocation,Call,GPS,Discount} ;
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For the configuration P1 the left to right analysis changes the order of the composition. This
is due to the requires constraint that goes from the variant ByLocation towards any kind of
location, in this case Wifi. Consider the pointcut of the ByLocation aspect and the model of
the Wifi aspect (parts a and b of Figure 5.11). As it can be noticed, there is a match between the
pointcut of the ByLocation aspect and the model of the Wifi aspect. This match corresponds
to the requires constraint that has been explicitly defined at the level of features. Following the
left to right algorithm, when the corresponding dependency is found, the order is modified so
that, the aspect implementing the variant Wifi is woven before the aspect implementing the
variant ByLocation (see line 6 of algorithm 1). Changing the order guarantees that the pointcut
of ByLocation finds the service offered by the element Wifi. The conflict-free configuration for
P1 obtained after applying the algorithm 1 is: {Wifi,ByLocation,SMS,CreditCard}.

ByLocation:Aspect

pointcut:Pointcut

operatorType = "AND"

composite:
CompositeExpression

reference:Variable

name = "getLocation"
constrainedVariable = "reference" 

fbn:FindByName

type = "Service"
constrainedVariable = "reference"

io:InstanceOf

a) Pointcut of aspect ByLocation 

event:Eventadvice:Advice model:Model

Wifi:Aspect

event:Eventadvice:Advice model: Modelpointcut:Pointcut

getLocation : Service
 

WifiLocation:Element

b) Model of aspect Wifi

match  

ByLocation
requires

Wifi

implementedBy implementedBy

Figure 5.11: Dependency between ByLocation and Wifi.

For the configuration P2 the rigth to left analysis stops the composition. This is because there
is a hidden dependency between the aspect for the variant Discount and the aspect for the
variant SMS. Consider the pointcut and model parts for each aspect that are illustrated in Figure
5.12. The pointcut for the variant Discount needs a service that is only offered by the aspect
implementing the Feature SMS. The dependency is found because the right to left analysis looks
for match relationships in every aspect for the product family, and not only the ones selected for
the particular configuration. Following the algorithm 2 if dependencies towards aspects that do
not belong to the current configuration are found, the weaving cannot take place (see lines 9,10 ,
and 11). Since the variant SMS is not part of the configuration P2, the weaving is stopped. This
behavior repeats for any configuration that includes the variant Discount and not the variant
SMS.
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Discount:Aspect

pointcut:Pointcut

operatorType = "AND"

composite:
CompositeExpression

reference:Variable

name = "smsNotification"
constrainedVariable = "reference" 
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constrainedVariable = "reference"
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match  

Discount SMS
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Figure 5.12: Hidden dependency between Discount and SMS.

5.4.2 Model Composition

In general terms, the model composition consists of successive calls to a single generic model
transformation (weaver). This transformation takes as inputs the core model M and an aspect A

to be woven, and returns a single model representing the composition of the core and the aspect.
The transformation is executed as many times as aspects are to be woven in the order defined by
the constraint analysis. The transformation itself relies on the aspect metamodel. It consists in
iterating over the set of modifications specified in the Advice of A in order to execute each one of
them.

The places where each modification is performed are defined by the associated Pointcut.
The execution of this pointcut on the core model iterates over its Expressions, which can
be either atomic or composite. There exist three types of atomic expressions: FindByName,
InstanceOf and Owned. FindByName is a basic query that looks for every single element in the
model whose name corresponds to the name introduced as a parameter. An InstanceOf query
finds all the elements that correspond to the type introduced as a parameter. Finally, Owned is a
query that looks for couples where one element owns the other. Each atomic expression returns
the collection of core model elements that match the filter conditions. A composite expression
is evaluated by accumulating and combining the result of each atomic expression. The way the
resulting elements are combined depends on the composite operator. The and operator is inter-
preted as the intersection of the model elements, whereas the or operator translates as their union.
The resulting elements are stored and impacted by the modifications.

At the end of the pointcut execution, all the places impacted by the aspect have been iden-
tified. Then the modifications specified by the aspect can be applied. In the case of an Add

modification, the elements of the aspect are added to the core model. In the case of a Delete

modification, the elements found in the pointcut are removed from the core model.

76



5.4. Application Engineering

The transformation finishes when all modifications specified in the advice have been per-
formed. At this point it is considered that the original core model M is now woven with the
aspect A. This process is repeated for every selected. The global weaving process repeats until
all the aspects implementing the variants selected in the feature configuration have been woven
with the core model. The model M is no longer a core but rather a complete representation of
an application including the right constructs for the concerns defined separately in every aspect
woven.

Algorithm 3 Model Composition
Require: A weaving order O, and a core aspect C

Ensure: A woven model C

1: for all (F ) ∈ O do

2: AF .Pointcut.execute()

3: AF .Advice.execute()

4: end for

Illustrative Example

To illustrate the composition, consider the core and aspect presented in Figure 5.8. In order
to weave the core model with the SMS aspect, the weaver executes the pointcut in the aspect
SMS. This process traduces in executing its atomic expressions. The first one (fbn) finds all
the referenced elements called "SMSNotification", in this case there is only one element
with such a name. The second one (io), finds all the referenced elements whose type corre-
sponds to Reference. Afterwards, the composite expression indicates an intersection between
the two sets obtained in the atomic expressions which results in a single match. Consequently
the variable called reference of the pointcut will have the reference SMSNotification of the
Notification element. The next step in the weaver is to perform the modifications in the place
indicated by the variable. The two possible modifications are described below:

• Add: To add an element, the meta-class Add has a relationship with the
ReferencedElement being added and the Variable where it will be added. Never-
theless, having this relationship allows for any referenced element to be weaved at any
place in the core model. To prevent incompatible combinations, like for example trying to
add a Container inside an Attribute, we have defined a scope for these combinations.
There is a set of allowed pairs of types, where the first type corresponds to referenced
element being weaved and the second type corresponds to the variable where the element
is going to be added. For each allowed pair, we perform the adequate operations to add the
element. Allowed pairs vary from coarse grained operations (i.e. adding a new Element

inside an existing Container) to finer grained ones (i.e. adding a new Operation inside
a Service Contract). For the incompatible pairs, no weaving is performed.

• Delete: deletes the elements at the places described by the Variable. The deletion of an el-
ement triggers the destruction of its inner elements (for Element or Container elements.

In the aspect depicted of Figure 5.8, there is one modification. Add and bind
(addBoundElement) the element SMS to the elements found by the pointcut, which in this case is
a single reference. The add operation first adds SMS to the container Eshop. Then, it creates a con-
nection between the service SMSNotification of SMS and the reference SMSNotification of
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the element A. The resulting woven model obtained from this composition is illustrated in Figure
5.13. The classes and connections added to the core model are shown in dashed red lines.

core:Aspect

model:Modeladvice:Advice pointcut:Pointcut event:Event

SMSNotification : Service

SMS:Element

Eshop:Container

CatalogQuery : Service
Database : Reference
FilterProducts : Reference

Catalog:Element

SendNotification : Service
SMSNotification : Reference
CallNotification : Reference

Notification:Element

Payment : Service
CreditCardPayment : Reference
DiscountPayment : Reference

Payment:Element

FrontEndService : Service
CatalogQuery : Reference
SendNotification : Reference
PaymentService : Reference

FrontEnd:Element
connection:Connection

Figure 5.13: Woven model obtained after the composition.

5.4.3 Platform Mapping and Code Generation

The model shown in Figure 5.13 illustrates a woven model with the core plus the SMS variant.
However, this model is still platform and technology independent. In order to generate source
code from it, we follow a classic MDE approach where the model is the input to a transformation
that maps its concepts into platform (SCA) and implementation (Java) specific ones. Each trans-
formation consists of a set of rules that map the concepts of the model into the corresponding
elements in Java, and SCA. For instance, an Element is mapped into: (1) an SCA component,
(2) a Java interface defining its services, and (3) a Java class implementing the Java interface and
representing the SCA component.

Figure 5.14 presents a conceptual view of how model transformations and code generation
are performed. By first transforming the model concepts into Java and SCA models, we can check
the consistency among these new models. This would not be possible if we had directly gener-
ated the source code from the aspect metamodel. Finally, code is generated from SCA and Java
to obtain the composite descriptors and Java code using Spoon capabilities. A detailed explana-
tion of the transformation and generation processes is presented in the tool support section of
Chapter 7.

5.5 Discussion

We have presented so far the domain and application engineering processes that cover the design
phase of the DSPL. Let us now revisit the challenges identified in Section 6.2 and discuss how
our approach face them.

1. Ensure a clear separation of concerns: To face this challenge, we use the aspect metamodel
to modularize the architecture of products in order to realize variability through aspect
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Figure 5.14: Transformation scheme.

models. The language defined for aspect models allows us to define the right constructs
for every feature identified in the feature model. Consequently, we are able to define the
mapping that holds between the features and the corresponding software artifacts that im-
plement them. For features that have an impact at multiple places in the final product, the
aspect model proves to be expressive enough to define the different places (i.e. pointcut)
and modifications (i.e. advice) for aspects to be woven.

2. Identify inconsistencies: To face this challenge, we have defined the constraint analysis
algorithms between features and aspect models. Such algorithms traverse both the FD and
the aspect models looking for corresponding constraints that may cause incorrect products.
The composition only takes place if and only if all the explicit and implicit constraints are
respected.

3. Derive a suitable composition strategy: In addition to the inconsistency identification, the
algorithms take explicit and implicit features interactions as a basis to derive a conflict-
free composition strategy. This ensures that aspects models are woven to the core in the
appropriate order for any product configuration.

4. Use platform independent assets: To face this challenge, we have provided a platform-
independent language to build aspect models. We use model transformations towards a
particular platform (SCA and Java) in order to complete the derivation of products and
obtain source code at the end of the process. Moreover, the aspects models could eventu-
ally be transformed towards different platforms, in which case, the constraint analysis and
aspect weaving processes would remain valid.

5. Provide an automated development process: The complete design phase of CAPucine
defines a process where assests correspond to aspect models. Such models realize com-
monalities and variabilities of the product family and are used to build the products in an
automated manner.
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5.6 Summary

This chapter presented a comprehensive approach to feature-driven derivation of software prod-
ucts. We have illustrated an approach for automated derivation of product architectures from
feature configurations combining MDE and AOM techniques. The composition process is re-
alized through transformation-based model weaving and is guided by the explicit and implicit
dependencies that exist between the selected features. The method allows to identify implicit
dependencies and conflicts between features, and takes such feature interactions as a basis to de-
rive an appropriate architecture composition strategy. Our approach relies on a clear separation
of concerns provided by the underlying variability and aspect metamodels.

In the next chapter of this dissertation, we discuss the challenges of extending the derivation
process of the DSPL at runtime and enable products to be modified during their execution. We
present a runtime phase that adapts products dynamically using the same domain engineering
assets illustrated in this chapter.
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Chapter 6

Runtime Phase: Context aggregation,
verification, and dynamic
reconfiguration

"The only constant is change" Heraclitus of Ephesus
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6.1 Introduction

In the previous chapter, we have introduced a process of product derivation at design time based
on aspect models. Furthermore, we have illustrated a constraint analysis of implicit and explicit
feature interactions and aspect dependencies. In this chapter we present an extension of such
derivation process at runtime. The main objective of this process is to adapt the products being
executed using the same assets of design weaving and ensuring that any product obtained as a
result of the process remains a valid product of the SPL.
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An adaptation in CAPucine can be understood as the switching from one product config-
uration (current) to a new one (target). The decision about the target configuration is obtained
using the context information available at runtime. Since runtime weaving deals with appli-
cations that are being executed, the aspect models used in the previous chapter for the design
phase cannot be used in the same way to adapt the running product. This implies the definition
of a dynamic representation of the aspect models, and the implementation of the mechanisms
allowing aspects to be woven. Among those mechanisms we can enumerate: a context manager
to obtain and aggregate context information, a decision making engine that finds the adequate
configuration based on context that respects the FD constraints and the aspect dependencies,
and a runtime platform supporting runtime adaptations. To derive a product from the DSPL,
whether at design or at runtime, we have the same input i.e., an aspect model. However, each
phase relies on different processes and return different outputs. Design derivation can be seen as
a refinement of a core architecture using the product configuration and its implementing aspect
models. Runtime derivation, on the other side, aims at modifying an already complete and run-
ning software product based on the product configuration, but mapping the aspect model into
usable reconfiguration scripts that change the products during their execution.

Structure of the Chapter

This chapter is organized as follows. In section 6.2 we introduce a motivating scenario and iden-
tify several challenges for achieving dynamic adaptation using SPL assets. Section 6.3 presents
the adaptation life-cycle. Section 6.4 presents the derivation process at runtime using aspect mod-
els. In Section 6.5 we revisit the challenges for the runtime phase and discuss how the proposed
adaptation phase faces them. Finally, in Section 6.6 we summarize and conclude the chapter.

6.2 Motivating Scenario and Challenges

This section introduces a motivating scenario for dynamic adaptations. It illustrates a distributed
application following a double threshold pattern. We first discuss the characteristics of such
example and then based on this discussion we enumerate several challenges for the process of
runtime weaving in our DSPL.

6.2.1 Double Threshold

One classical example that motivates the need for dynamic adaptation refers to the adaptation of
applications to the network conditions. To prevent the system to be constantly changed due to
a non-stable bandwidth, adaptation can be based on a classical double threshold pattern. Thanks
to such a pattern, the architecture of the product only varies within two different modes: full

connectivity when bandwidth goes over the Maximum threshold, and limited connectivity when
bandwidth falls below the Minimum threshold. (see Figure 6.1).

For example, consider the simple application depicted in Figure 6.2. It illustrates an assem-
bly of components that represent the architecture of one product. Following the SCA notation,
arrows to the left of each component represent the services that it provides and arrows to the right
represent the references or services it requires. In this case there is a GUI component which offers
a run service, and is bound with the DB component through the getDesc reference. The GUI is
also bound to the Cache component through the store reference in order to retain information
locally.
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Figure 6.1: Double threshold pattern.
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Figure 6.2: SCA assembly.

At runtime, this product can be dynamically adapted to fit changes in its environment. In
this case, the Cache can be selected, depending on the bandwidth quality. On the one hand, if the
bandwidth is high (full connectivity), then the GUI directly interacts with the database without
using the cache. During this period of time, the cache stores locally all the movie descriptions
browsed by the user, but also requests other ones that have been defined to be closely related.
On the other hand, if the bandwidth is low (limited connectivity), then the GUI uses the cache, that
is still connected to the database. Figure 6.3 shows the two alternative configurations that work
respectively with a full connectivity and a low connectivity bandwidth.

This example shows the dynamic nature of adaptations and the importance of having a pro-
cess of decision making in order to modify products. In this case, it is necessary to capture events
and information in the environment like the "bandwidth". Furthermore it is necessary to analyze
this information regarding thresholds and business rules in order to make the right adaptation.

6.2.2 Challenges

The example previously discussed uses information that is only available at runtime to change
its internal structure and behavior. Our goal with the runtime phase, is to also cover the de-
velopment of this kind of applications. We argue they can be modeled as families of products
where context information (and not developers) decides about the product configuration for ev-
ery particular situation. A Dynamic SPL for such kind of applications has to support a product
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o1:GUI o2:Cache o3:DB
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B). Full Connectivity setup

getRelated

Figure 6.3: Sequence diagrams for full and low connectivity configurations.

derivation that is able to change products from one configuration (current) to a new configuration
(target). To achieve such flexibility in a SPL, and take advantage of the assets developed for the
design phase, we identify several challenges that have to be faced:

1. Extend the concept of feature at runtime Every product in the SPL is described as a set of
selected features that are realized through aspect models. The first challenge to achieve dy-
namic product derivation is to define a way to maintain, and update, the state of a product
in terms of the features it is supporting at a given moment during its execution.

2. Find the appropriate reconfiguration using several pieces of information A dynamic
adaptation is driven by several factors like context information or the current state of the
application. As a consequence, there has to be a way of receiving and analyzing events
that occur in the environment, and that may have consequences in the architecture of the
software products. The second challenges consist in providing the means to manage all the
inputs for the decision making process that decides about the adaptations to be performed
in the different products of the SPL.

3. Avoid conflicts and maintain SPL consistency Even if one configuration is found to fit
a particular context situation, it is necessary to verify if such configuration remains legal
regarding the SPL constraints (i.e. if the set of selected variants respect the FD constraints),
and to define the reconfiguration. The third challenge that has to be faced is then to avoid
conflictive products and specify the correct order on which the reconfiguration takes place
to obtain the new configuration.

4. Use a platform that supports dynamic adaptations For the context-driven reconfigurations
to take place, it is necessary to have a runtime platform that allows for: executing the prod-
ucts, managing context, and performing reconfigurations at runtime. The last challenge
regards the use of a platform that provides the means to achieve such tasks.

6.3 Adaptation Life Cycle

To better understand the process of runtime weaving, we start by describing the expected adap-
tation life-cycle (see Figure 6.4) of any product derived from the DSPL. The adaptation life-cycle
includes four main steps:
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Figure 6.4: Adaptation life-cycle.

• Step 1. Wait for changes: The product executes as planned until the platform is notified of
changes in the context state.

• Step 2. Decide: Next, the platform verifies if the new context information implies an
adaptation of the system. If an adaptation is not needed, the cycle returns to the step 1

to wait for further changes. If, on the other hand, the product needs to be modified, then
a new configuration is created using the context information to decide which variants
it has to support. Once the new configuration has been defined the cycle continues to step 3.

• Step 3. Validate Adaptation: The configuration generated in step 2 gets validated. The
objective is to avoid conflicting configurations that may lead to inconsistent products that
do not belong to the scope of the product family by violating one of the constraints defined
in the FD. If the configuration is correct, the cycle continues to step 4. On the contrary, if
the new configuration is not valid, the cycle returns to step 1.

• Step 4. Reconfigure: This is the step when the reconfiguration actions are actually executed.
This involves stopping the system components concerned by the modifications, removing
and adding bindings between them, and restarting them with the new configuration.
Finally, once the new configuration has been applied, the system returns to step 1, to listen
for further context changes. This processes repeats until the end of the product execution.

The adaptation cycle implicitly identifies several responsibilities to enable adaptation of
DSPL products. First, in order to wait for changes (step 1) a Context Manager is needed to
aggregate and process context information from different sources. Second, to decide and validate

a new configuration (steps 2 and 3) it is necessary to have a Decision Making mechanism.
Finally the reconfiguration itself (step 4) indicates the need for an Application Platform
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where products can be modified at runtime following a set of reconfiguration actions. In the
following sections we present in detail how these elements are integrated into our DSPL.

6.4 Runtime Phase: dynamic adaptation of DSPL products

In order to create the concrete components that implement the functionalities identified before,
we define an adaptation cycle for the runtime phase as illustrated in Figure 6.5. It is formed by
two main parts: Decision Making, and Runtime Platform. The adaptation cycle starts in the
latter one with an event which is processed by the context manager (step 1). The context event
is aggregated into a piece of context information represented as an observable. It is the value
assigned to this observable that gets evaluated to decide whether or not to trigger the adaptation.
The updated observable values are the input of the process of Decision Making. An Adapter

defines a target configuration using as input the observables and the current configuration (step
2). Next the configuration is validated to check if it respects the DSPL constraints (step 3). If
the configuration is correct, both the current configuration coming from the product, and the
target configuration obtained in the previous steps are used as input to the Script Generator

which generates a list of modifications expressed in terms of weaving or unweaving aspects (step
4). From this modifications, a reconfiguration script is obtained. Finally, this script is executed
to adapt the product (step 5). The following sections describe in detail the two parts: Decision

making and Runtime platform.

6.4.1 Context Management

From the (step 1) of the cycle defined in Figure 6.5, we identify the need for a mechanism of
context aggregation and manipulation. In Chapter 3 we introduced the context awareness as the
capability of the systems to react to changes in their environment [Bro96, DAS01]. Examples of
context information include location, temperature, hardware constraints, user preferences and
personal information, time, etc. To identify and react to such changes in the environment, we
need to model the context information which represents the data available in the environment
when applications are being executed, and that may affect their structure or behavior.

In CAPucine, we do not propose a solution for context management. However, to provide
the means to gather and aggregate context information, we consider that platforms like COS-
MOS [RCS08] can be used for the management of context information. COSMOS, which is a
component-based framework for context management, obtains the different pieces of context
information from different sources like sensors, network probes, or systems, and processes it ac-
cording to defined policies. These policies are described as hierarchies of context nodes using a
dedicated composition language. Each COSMOS node in the top of the hierarchy represents a
single value. This allows developers to create context policies that aggregate context information
from different sources, and that present the results as single boolean values which can be evalu-
ated to trigger a reconfiguration. In CAPucine, we start from such boolean values and model the
adaptations through the definition of events inside every aspect model.

Context Event Modeling

The boolean values obtained from the context manager have to be used as input in the decision
making process. To model such values in our aspect metamodel, we define a fourth part called
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Figure 6.5: Runtime product derivation.

–when– that was already briefly introduced in Chapter 5. The when specifies the moment in the
execution where the aspects get to be woven, and is based on the boolean values obtained from
the context manager. To model this information, we use context events. Inside an event, we define
the notion of observable. An observable is an abstraction of a single piece of information referring
to context. It consists of a single value that can be easily evaluated to decide whether to weave
an aspect dynamically or not. Figure 6.6 illustrates the structure for this part of the aspect meta-
model. The Eventmeta-class defines one Condition that uses one or more Observables. The
Condition has also an operator type (AND or OR) that is used to combine different Observable
values. It is important to notice that only the aspect models that have events with observables in
their definition can be used in the runtime phase to adapt the software products.

6.4.2 Decision Making

The decision making aims at obtaining the target configuration in terms of variants that have to be
present in the product. It has two main inputs, the updated context information and the current
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Figure 6.6: Aspect metamodel: definition of the Event.

configuration provided by each product. The output of such process is a set of reconfiguration
actions written as scripts that are understood and executable in the runtime platform. Three main
components constitute the decision making mechanism: Adapter, Validator, and Script

Generator.

Adapter

The Adapter finds the target configuration expressed in terms of selected variants from the FD.
As illustrated in Figure 6.7, the Adapter receives as input the current configuration for a par-
ticular product, and includes two different processes for finding, and then verifying the target

configuration.

ADAPTER

Find New 
Configuration

Verify New Configuration

Current 
Configuration

P={vA, vB ... vM}

Target 
Configuration

P'={vC, vD ... vN}

Figure 6.7: Reconfiguration: input and output.

Both the current and target configurations are expressed in terms of selected variants. How-
ever, since the notion of variant belongs into the feature model and consequently into the initial
steps of the design, one of the first tasks to make the SPL dynamic is to have a dynamic represen-
tation of variants. To do this, we add an extra component to the core of every product derived
from the SPL. Such component illustrated in Figure 6.8 is in charge of maintaining a representa-
tion of the current application state in terms of selected variants. It exposes one service with two
operations, one for obtaining the current configuration, and one for updating the configuration.
Both are used in the process of reconfiguration for, getting the current configuration and setting
the new configuration every time the product gets adapted.
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Figure 6.8: A component for managing product configuration at runtime.

In addition to variants, the Adapter uses the Observable elements of each aspect. The
aspects models may include several observables indicating the moment during the execution
when they have to be woven. When a context update occurs, the aspects that actually include
one or multiple observables gets evaluated to decide if the variant has to be selected/deselected.
This is equivalent to weaving/unweaving the aspect model.

The Algorithm 4 illustrates how the new feature configuration is obtained from context in-
formation. The algorithm requires to start, the set of updated observables, obtained from the
context manager, and the current configuration obtained from the product itself. The first step
consist in creating a target configuration with the same variants as in the current configuration
(line 1). Afterwards, the algorithm iterates over the updated observables. For the observables
whose aspect belongs to the current configuration, the algorithm verifies if the new observable
value is false. In that case, the aspect has to be unwoven from the product. For the observables
whose aspect does not belong to the configuration the algorithm verifies if the new observable
value is true. In that case, the aspect has to be woven to the target configuration. After the vari-
ants of the aspects to weave have been selected, and the variants of the aspects to unweave have
been deselected, the algorithm obtains the target configuration.

Algorithm 4 Adapter algorithm
Require: A set of updated context observables C
Require: The current product configuration Pcurrent = {F1, F2, . . . , Fk}

Ensure: A target product configuration Ptarget

1: Ptarget ← Pcurrent

2: for all (On ∈ C) do

3: if (FOn
∈ Pcurrent) then

4: if (On.value() = false) then

5: Ptarget.deselect(FOn
)

6: end if

7: else

8: if (On.value() = true) then

9: Ptarget.select(FOn
)

10: end if

11: end if

12: end for
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Validator

Since the Adapter decides the new configuration using only the information obtained from the
updated observables, we need a process to verify if such configuration respects the feature con-
straints and aspect dependencies. The Validator guarantees that the target configuration re-
mains a valid product from the DSPL and that it is achievable by a process of selecting and
deselecting variants. However, this kind of analysis can be time-consuming for larger feature
models. For this reason, in our approach, we prepare in advance the results of analyzing the
feature model and the aspect dependencies at design time. This analysis results in a large table
where the complete list of valid products derivable from the feature diagram are stored. Valid
products are those that respect the FD constraints and that are composable. To create the table
with the valid products we define the following steps:

1. Count the number of products First of all, from the feature model, we obtain the product
family size i.e., the number of configurations that can be obtained from the model. The size
depends on the number and the kind of variants found in the feature diagram: for optional
variants, there are 2n configurations, where n represents the number of optional variants.
For alternative non-exclusive variants there are (2n − 1) configurations respectively, where
m represents the number of alternatives for each variation point. Finally for alternative-
exclusive variants there are n configurations where n represents the number of alternatives
for each variation point. To illustrate this calculation, consider the feature model intro-
duced in part a of Figure 5.2. This FD has in total 9 variants, classified as follows: 4 optional
features (SMS,Call,CreditCard, and Discount), 2 alternative-non-exclusive variants
(Wifi and GPS), and finally, 3 alternative exclusive variants (ByDiscount, ByWeather,
and ByLocation). Applying counting formulas previously defined, we have:

(24) ∗ (22 − 1) ∗ 3 = 144

2. Generate all the possible product configurations To generate all the possible combinations
we use the size obtained from each type of variants and iterate over it to generate a config-
uration. Every configuration represents a set of variants selected. Once we have obtained a
table for each type of variant, we consolidate the three results into a single table (with 144
rows for the previous example), where every row represents a possible product configura-
tion. For example, Table 6.1 lists all the combinations obtained from the optional variants of
the feature diagram (e.g Call, SMS, CreditCard, and Discount). Each variant is shown
in a column. We use a checkmark to indicate if the variant is selected, or a dash in the
opposite case.

3. Delete the configurations that do not respect the FD constraints From the table obtained
in the previous step, we eliminate the combinations that do not respect the FD constraints.
For instance, the feature diagram illustrated in part a of Figure 5.2 includes one requires

constraint. All the products that include the variant ByLocation must include one of
the child variants from the alternative variation point Location. The products that do
not respect this constraint are removed from the table. In other words, we apply the
Left to Right analysis (see Section 5.4.1 of Chapter 5) to verify every configuration of the
consolidated table.
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Table 6.1: Optional variant combinations.

Configuration Call SMS CreditCard Discount

1 – – – –
2 – – – X

3 – – X –
4 – – X X

5 – X – –
6 – X – X

7 – X X –
8 – X X X

9 X – – –
10 X – – X

11 X – X –
12 X – X X

13 X X – –
14 X X – X

15 X X X –
16 X X X X

4. Delete the configurations that have conflicts at the aspect level Finally, to guarantee that
the products in the table are actually composable we look for hidden constraints that are
only detectable by analyzing the aspects for each variant. In other words we apply the
Right to Left analysis (see Section 5.4.1 of Chapter 5). in order to remove the configurations
that are not composable due to implicit aspect dependencies.

At the end of this process, we obtain a table with the complete list of valid products. Dy-
namically, using this table, the Validator matches the result coming from the Adapter with
the entries in the table. If the product configuration is found in the table, the product is valid and
the adaptation continues, if the product configuration is not in the table, the product is considered
to be invalid and the adaptation stops.

Script Generator

The script generator has two inputs: the current feature configuration as provided by the running
product, and the validated target configuration obtained by the Adapter, and verified by the
Validator. Its goal is to obtain a reconfiguration script. To do it, it performs a difference
between the two input configurations. The result of such operation is a list of variants that have
to be deselected (i.e. aspects to unweave), and a list of variants that have to be selected (i.e.
aspects to weave).

Since aspect models implement the variants and contain the information required in terms
of: places affected by the reconfiguration, and actions to follow, they are used to build the
weave/unweave script accordingly. A transformation takes each aspect model and generates
the needed reconfiguration scripts. Each part of the aspect is transformed as described in Figure
6.9.
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Figure 6.9: An aspect at runtime.

Model Since the model part of the aspect is expressed in the same way as both the core model
and the composed model, every aspect is transformed as it was presented in Section 5.4.3 of
Chapter 5. Concretely, the model is transformed into SCA and Java models and then the code is
generated to obtain an SCA descriptor and Java classes implementing the components.

Advices Advices are transformed into FScript code [DLLC09], which is a scripting language
dedicated to architectural reconfigurations of Fractal-based systems. A reconfiguration in our
case consists of two main steps: (1) find the place, and (2) perform the modifications. The former
step corresponds to FPath code. Similarly to an advice that uses pointcuts to describe the places
where it performs the modifications, FScript uses FPath to find the places in the architecture
where the adaptation will be applied. For each variable required by the advice, there is an FPath
script (generated from the pointcut). The latter step is a translation of the Modify instruction
into FScript code.

Pointcuts The Pointcuts are transformed into FPath code [DLLC09]. FPath is a query lan-
guage to navigate Fractal-based Architectures. It eases the navigation of component systems
and enables developers to define queries that search for elements of the architecture that match
some criteria. The goal of the pointcut transformation is to map every Expression into the
FPath script that finds the specific elements of the architecture of the application being executed.
Hence, every atomic expression has an equivalence in terms of FPath. FPath also allows for
multiple queries to be combined by using the ’|’ operator for a union and the ’&’ operator for an
intersection. In this way, every CompositeExpression is translated into a union or an intersec-
tion of its sub-expressions. Table 6.2 summarizes the equivalences between the pointcut model
and the FPath scripts.

Events The events are not transformed into code but rather used in the decision making mech-
anism to obtain the list of updated observables and its corresponding values, as it was presented
in Section 6.4.2.
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Table 6.2: Pointcut transformation

Model Pointcut FPath Equivalent Meaning

FindByName(name) $root/descendant-or-self::*[name(.)== ’name’] -All the elements which name is
equal to "name".

Type

- Service or Reference $root/descendant-or-self::*/interface::* -All the interfaces.
- Attribute $root/descendant-or-self::*/attribute::* -All the attributes.
- Element $root/descendent-or-self::* -All the components.

Owned $root/descendent-or-self::*/child::*; -All the components owned by an-
other component.

CompositeExpression

- Operator= OR (exp1 | exp2) or union() -Union of two expressions.
- Operator= AND (exp1 & exp2) or intersection() -Intersection of two expressions.

6.4.3 Runtime Platform

The runtime platform is the second element that interacts with software products in the adap-
tation cycle illustrated in Figure 6.5. The platform is formed by two main parts: the context
manager, which we have discussed previoulsy; and a runtime executing platform, which sup-
ports the execution and dynamic adaptation of software products. For the latter one, we use
FraSCAti a platform based on the principles of CBSE and SOA.

Application

Svahinberg et. al., [SvGB05] define that variability realization techniques are used to integrate
assets while building the final products [SvGB05]. Moreover, authors clearly identify Component-

Based Software Engineering (CBSE) as one of the variability realization techniques that can be used
at runtime. In CAPucine we use the FraSCAti platform [SMF+09]. FraSCAti is a Fractal-based
SCA implementation. SCA establishes that components are the basic building blocks. Each com-
ponent requires and provides services. SCA supports several service description languages like
WSDL and Java interfaces, several programming languages such as Java, C++, and BPEL, several
communication protocols between applications such as SOAP, CORBA, Java RMI, and JMS. Frac-
tal [BCL+06], on the other side, is a hierarchical and reflective component model intended to im-
plement, deploy, and manage complex software systems. Fractal offers several features like com-
posite components (components containing subcomponents), sharing (multiple enclosing com-
ponents for the same subcomponent), introspection, and re-configuration. A Fractal component
can expose elements of its internal structure and offer introspection and intercession capabilities.
Several controllers have been defined in the Fractal specification like the binding controller that
allows the dynamic binding and unbinding of component interfaces, and the life-cycle controller
that allows to perform operations like stop and start the execution of a component. In FraSCAti,
Java-based SCA components are simultaneously both SCA-compliant and Fractal-compliant. The
main benefit of this particular property is that all the components can be dynamically reconfig-
ured at runtime.
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Illustrative Example

To illustrate the use of FraSCAti, consider the product family introduced with the feature dia-
gram of Figure 5.2. In particular, consider the core model defined for this example and the aspect
model that implements the feature SMS. For the purposes of the example, we postpone the weav-
ing of the aspect model. Let us assume that no aspects has been woven during the design phase.
Consequently, in order to obtain a product, the core model is transformed into platform specific
models and code. The resulting architecture of the core in SCA is illustrated Figure 6.10 with a
component diagram. It shows SCA components for each of the elements identified in the architec-
ture shown in Figure 5.8 (FrontEnd, Catalog, Notification, and Payment) with its corresponding
services and references. Additionally, the core includes the Configurator component that, as
it was explained in Section 6.4.2, is used to obtain and update the current configuration of the
product in terms of selected variants.

CORE

FrontEnd

Payment

Configurator

Notification

Catalog

Figure 6.10: Core architecture represented in SCA.

To illustrate how the adaptation works, we proceed with the weaving of the aspect for the
same variant SMS. First of all, the aspect has to be completed. In other words, we have to add
the Event part that is missing from the aspect model used during the design phase. If the aspect
does not have an event, there would not be any observables associated and therefore, it would not
be used as part of the decision making to adapt a product at runtime. Consider the new version
of the aspect illustrated in Figure 6.13 for the runtime phase. What differentiates this aspect from
the design one, is its fourth part: the Event. It defines one condition over an observable called
online. This means that dynamically, whenever the system receives a notification that it has lost
the internet connection, the aspect must be woven.

Afterwards we perform the mapping presented in Figure 6.9 The aspect gets transformed
into different snippets of code for: (1) the part of the architecture it contains (in Java and SCA),
and (2) the modifications it performs over the core (in FScript and FPath). The snippet of code
in Figure 6.12 depicts the script obtained from the Advice and Pointcut parts of the aspect
implementing the variant SMS of the feature diagram.

As it can be seen from the code, in this case, the modification consist in adding a new element
SMSNotification and bind it to an existing component Notification. The first part of the
snippet (lines 5 through 8 ) looks for the places where the modification takes place. This part
represents the equivalent of the pointcut expression that looks for a reference in the Notification
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type = "addBoundElement"

add:Add

advice:Advice model:Model

operatorType = "AND"

composite:
CompositeExpression

reference:Variable

SMSNotification : Service

SMS:Element

name = "SMSNotification"
constrainedVariable = "reference" 

fbn:FindByName

type = "Reference"
constrainedVariable = "reference"

io:InstanceOf

event:Event

operatorType = "AND"

condition:Condition

type = "boolean"

online:Observable

Figure 6.11: Aspect model for the runtime phase.

1 a c t i o n addElement ( )
2 {
3 −−Step 1 : Find the place ( FPath )
4 n o t i f i e r =$root/descendant−or−s e l f : : ∗ [ name ( . ) = = ’ N o t i f i c a t i o n ’ ] ;
5 r e f N o t i f i e r =$root/descendant−or−s e l f : :∗/ i n t e r f a c e : : ∗ [ name ( . ) = = ’ sendSMSNotif ication ’ ]
6 sms=$root/descendant−or−s e l f : : ∗ [ name ( . ) = = ’ SMSNotif icat ion ’ ] ;
7
8 −−Step 2 : Perform the adaptat ion ( F S c r i p t )
9 stop ( $ n o t i f i e r ) ; −−s tops the n o t i f i e r

10 bind ( $ r e f N o t i f i e r , $sms/ i n t e r f a c e : : smsNot i f i ca t ion ) ; −−c r e a t e s the binding
11 s t a r t ( $ n o t i f i e r ) ; −−s t a r t s the n o t i f i e r component now bound to the SMS
12 s t a r t ( $sms ) ; −−s t a r t s the SMS component
13 }

Figure 6.12: An FScript equivalent of the SMS advice.

element. The second part performs the addBoundElement which creates a binding between
the reference of the Notification element and the service offered by the SMSNotification
element that is being added.

CORE

FrontEnd

Payment

Configurator

Notification

Catalog

SMSNotification

Figure 6.13: Result of the runtime weaving.
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6.5 Discussion

We have presented the adaptation cycle and all its components used to adapt products at runtime
in the DSPL. Let us now revisit the challenges identified at the beginning of the chapter and
discuss how our approach faces each one of them.

1. Extend the concept of feature at runtime To face this challenge, we have added a compo-
nent to every single product derived from the DSPL that is in charge of keeping their own
configuration in terms of selected variants. The component is used to obtain the current
configuration and to update it with the target configuration after an adaptation has been
performed.

2. Find the appropriate reconfiguration using several pieces of information To face this chal-
lenge, we have implemented a decision making mechanism that obtain a target configura-
tion using the context events that are queried and processed through the observables. The
result is transformed into a set runtime modifications which are the equivalent of the pro-
cesses of weaving or unweaving the aspect models defined in the design phase.

3. Avoid conflicts and maintain SPL consistency To avoid conflicts we have included a ver-
ification process as part of the decision making mechanism that guarantees that, from all
the target configurations obtained from the context updates, only valid configurations (re-
specting FD constraints and aspect dependencies) are used to generate the reconfiguration
scripts.

4. Use a platform that supports dynamic adaptations To overcome this challenge, we have
based our DSPL on two platforms on which our DSPL is based: FraSCAti and COSMOS.
The former one fulfills the needs for an executing platform with dynamic reconfiguration
properties, whereas the latter one deals with context management, which is used for the de-
cision making mechanism, to chose the target configuration of the software products being
adapted.

6.6 Summary

In this chapter we have presented the runtime phase of the DSPL. We have introduced an adap-
tation cycle with two different parts for the adaptation of software products: Decision Making

and Runtime Platform. We have stated that, in order to maintain the DSPL product family, the
Decision Making has to reason about adaptations in terms of variants, and that only valid con-
figurations can lead to an adaptation of a product. We have also presented the adaptation itself as
the change of a product from one current configuration, to a new target one. The aspect models of
our DSPL are mapped into reconfigurations scripts in order to adapt the products at runtime. The
Runtime Platform allows us to adapt the products and manage context information. We have
based the reconfiguration on FraSCAti that, due to its reconfiguration properties, enables prod-
ucts to switch configurations. Finally, we have used COSMOS to aggregate context information
and be able to reason about context updates in terms of boolean observables.

This chapter concludes the contribution of this dissertation, which started in Chapter 4 with
a global picture of the Dynamic Software Product . We have explained in detail and with sim-
ple examples the two Phases defined for a DSPL: Design Phase (Chapter 5) and Runtime Phase
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(Chapter 6). The next part of this dissertation is dedicated to discuss the advantages and limi-
tations of the DSPL proposed, as well as to give more details on the experimentation and tool
support developed for the research work.
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Chapter 7

Validation

“The difference between theory and practice is that in theory, there is no difference between theory and

practice. Anonymous”
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In this chapter, we present the experimentation results of using CAPucine based on a retail
case study, which is an extended version of the example product family introduced in chapters
5 and 6. We particularly emphasize on the complete derivation processes including the design
and runtime phases as well as the different processes that are part of each phase. We also present
the tools built around CAPucine. This includes a set of analysis tools and aspect weavers, as
well as model transformations and code generators called Model2Code. We present all the
phases involved in Model2Code that enable developers to build products starting with a feature
selection and obtain at the end the source code and adaptation scripts. Finally we discuss the
results of the experimentation with a qualitative analysis and a discussion on the motivations
behind our choices, as well as advantages and limitations of our approach.

Structure of the Chapter

The remainder of this chapter is organized as follows. In Section 7.1 we describe the CAPPUCINO
project and our experimentation with the case study for the mobile e-Commerce product family.
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Next, in Section 7.2 we describe in detail, all the tools implemented for the development of appli-
cations using the DSPL. In Section 7.3 we present a discussion on the advantages and limitations
of our approach. Finally, Section 7.4 summarizes and concludes the chapter.

7.1 Experimentation

The scenario presented in this section has been prepared as part of the CAPPUCINO project.
CAPPUCINO is a collaboration project between two research laboratories, two commerce compa-
nies, and one IT company in the northern region of France. The main objective of the CAPPUCINO
project is to build and adapt ubiquitous applications in open environments for the commerce in-
dustry. As part of the project, we have collaborated with our research and industrial partners
in order to define a common scenario for mobile and adaptable applications. We have used this
scenario as the target of the experimentation of CAPucine.

To highlight the challenges of dynamic software product lines, we use a mobile commerce
scenario that introduces some of the new opportunities brought by mobile and context-aware
systems, such as the availability to use context-aware information. The motivation behind such
a case study is to define a family of adaptive applications in which final users interact with the
system in order to perform typical tasks of an electronic commerce scenario like browsing and
selecting different items from an online catalog. There are two special characteristics that make
this particular scenario an appropriate case study for a DSPL: (1) it is oriented to mobile devices,
and (2) it exploits context information to enrich the user experience.

We cover the two derivation processes defined in CAPucine. Starting from a product family,
we build and validate the different assets that are used in the development and adaptation of
software products. For the implementation of mobile applications we use Google Android as
mobile platform and FraSCAti for the execution and reconfiguration. In general terms, the sce-
nario presented in this chapter is a richer version of the examples presented in chapters 5 and
6. It shows a typical interaction between a final user and one the applications obtained from our
target family as described in the following paragraph:

Alice uses a software system in her mobile phone to search and buy different items from an

online catalog. In particular, the system can use external information to offer customized

services. For example, when subscribing to the reward point program, Alice automatically

receives special offers and prices. She can also register important events in her calendar like

her best friends birthdays. Using this information, customized notifications with a focused

product offer may be pushed to her mobile phone. Alice can also find gift ideas by using special

services that use information like weather or location, to retrieve a list of items that match the

season or that are close in the surrounding shops. If she does not have Internet access, she can

still browse an offline version of the catalog. The system can also send notifications via SMS

or email

7.1.1 The eStore Family with CAPucine

In this case, Alice –the final user– uses its mobile application to search and buy items from an
online catalog. We start by identifying a set of features representing all the different product
configurations that constitute the product family. The first step is then to create a feature model
to represent such features.
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Feature Model and Product Family

We start by defining the feature diagram and corresponding feature model that represents the
product family. The essential functionalities identified from the scenario constitute a family of
mobile applications that includes among others: catalogs of items, search of items, local and
remote queries, calendar, authentication, historic of items bought, and order management. Figure
7.1 depicts the feature diagram for this example.

Catalog

Application

Offline

ByLocation

Notification

ByWeather

SMS

optional mandatory xoror

Legend

ShoppingCart Calendar History

Filteredemail Payment

CodeCreditCard ByDate

ByPopularity

UserPreferences

ByPreferences

ItemsBought ItemsVisited

MapStores Evaluation

requires

requires

requires

Figure 7.1: e-Commerce product family.

The feature diagram starts with the Application feature, the root of the diagram. It has
eight different features: MapStores, Notification, ShoppingCart, Catalog, Calendar,
UserPreferences, History, and Evaluation. MapStores is optional, it represents the
functionality of visualizing the different stores in a map. The diagram includes a Notification
feature which represents a way to communicate with the final user. The notification can option-
ally take place via eMail or sending an SMS. Next, there is the ShoppinCart feature. It has
one child mandatory feature Payment. The payment can take place in two different ways: using
a CreditCard, or by entering a buying code (Code). The diagram also includes a mandatory
feature called the Catalog. It contains one optional feature Offline for working with cached
catalog information locally. In addition to that, the Catalog feature has also a Filtered alterna-
tive, which is used to reduce the size of the catalog using different criteria like: popularity of the
items being sold ByPopularity, special dates (ByDate), user preferences (ByPreferences),
weather (ByWeather), or geographical location (ByLocation). The application may also have
access to a Calendar for keeping track of special dates, and UserPreferences for customized
services. What is more, the application can maintain a history of items that have been previ-
ously visited and bought (ItemsVisited and ItemsBought). This can be used to propose
close-related items to the user based on their consumption habits. Finally, the application may
allow the final user to give an evaluation about previously bought items (Evaluation). Ad-
ditionally, the feature diagram introduces constraints between different variants in the feature
model. Concretely, there are three requires constraints linking the following couples of variants:
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ByDate and Calendar, ByPreferences and UserPreferences, and finally ByPopularity
and ItemsVisited.

Context Information

In addition to the features identified below, we define the context information to which we want
the products in the family to react during their execution. Table 7.1 summarizes the different
elements of context to monitor, and the variants that are impacted by the modification of the
context information.

Table 7.1: Context information.

Concept Definition Variant

Internet Connection Indicates if the application has
access to the Internet

Affects the variants that require an internet
connection to work. In this case the vari-
ants affected are Email, and ByWeather

Location Indicates the current geographi-
cal location of the user.

Affects the variants that use location
information for customizing special-
ized services. In this case the vari-
ants ByLocation, ByWeather, and
MapStore, are affected.

Weather Provides the weather forecast
for a specific location.

Affects the variants that use weather
information. In this case the variant
ByWeather is affected.

UserPreferences Provide information about the
user preferences.

Affects the variants that use the
user information. In this case
the variants ByPreferences and
UserPreferences are affected.

Modeling the product Family using CAPucine

Using the metamodel of Figure 5.1, we proceed with the creation of an EMF representation of
such diagram. The snippet of code in Figure 7.2 illustrates the different tags and elements of an
EMF representation of such diagram. As it can be noticed from the code, the requires relationships
are defined as attributes in the source variants and specify a link towards the required elements.
Also, notice that the tags for the variants may include a boolean attribute called selected (lines
16, 24, and 39). This means that the same XMI file is used to represent a family, and one particular
configuration. In practice, we need as many files as product configurations there exist.

To begin the derivation, we perform an analysis of this feature model in order to calculate the
total amount of legal products which are defined as the configurations that respect the constraints
of the feature diagram. In total there are 16 variants that can be selected (leaves in the diagram).
The variants are classified as follows: 7 exclusive alternative variants ( ByPopularity, ByDate,
ByPreferences, ByWheather, ByLocation, CreditCard, and Code); 2 non-exclusive al-
ternative variants (ItemsBought, and ItemsVisited); and 7 optional variants (Offline,
MapStores Calendar, eMail, SMS, UserPreferences, and Evaluation).

Combining the three different lists to obtain the consolidated product family we obtain a
total of 3840 possible configurations. This number comes from multiplying the lengths of each
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1 <?xml version=" 1 . 0 " encoding=" ASCII " ?>
2 <features :FeatureModel xmi :vers ion=" 2 . 1 "
3 xmlns:xmi=" h t t p : //schema . omg . org/spec/XMI/2.1 "
4 xmlns :xs i=" h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e "
5 x m l n s : f e a t u r e s =" p l a t f o r m :/resource/Adapter/resources/metamodel/ f e a t u r e s . ecore ">
6 <nodes x s i : t y p e =" f e a t u r e s : V a r i a n t " name=" MapStores " mandatory=" f a l s e "
7 implementingAspect=" amMaptStores "/>
8 <nodes x s i : t y p e =" f e a t u r e s : A l t e r n a t i v e " name=" N o t i f i c a t i o n " mandatory=" t rue " e x c l u s i v e =" t rue ">
9 < v a r i a n t name=" Email " mandatory=" f a l s e " implementingAspect=" amEmail "/>

10 < v a r i a n t name="SMS" mandatory=" f a l s e " implementingAspect="amSms"/>
11 </nodes>
12 <nodes x s i : t y p e =" f e a t u r e s : V a r i a t i o n P o i n t " name=" ShoppingCart " mandatory=" t rue ">
13 < v a r i a t i o n P o i n t x s i : t y p e =" f e a t u r e s : A l t e r n a t i v e " name=" Payment " mandatory=" t rue "
14 e x c l u s i v e =" t rue ">
15 < v a r i a n t name=" CreditCard " mandatory=" f a l s e " implementingAspect=" amCreditCard "/>
16 < v a r i a n t name="Code " mandatory=" f a l s e " implementingAspect="amCode" s e l e c t e d =" t rue "/>
17 </ v a r i a t i o n P o i n t >
18 </nodes>
19 <nodes x s i : t y p e =" f e a t u r e s : V a r i a t i o n P o i n t " name=" Catalog " mandatory=" f a l s e ">
20 < v a r i a n t name=" O f f l i n e " implementingAspect=" amOffline "/>
21 < v a r i a t i o n P o i n t x s i : t y p e =" f e a t u r e s : A l t e r n a t i v e " name=" F i l t e r e d " mandatory=" f a l s e "
22 e x c l u s i v e =" t rue ">
23 < v a r i a n t name=" ByPopularity " mandatory=" f a l s e " r e q u i r e s ="//@nodes .6/ @variant . 1 "
24 implementingAspect=" amPo pu lar i t yF i l t e r " s e l e c t e d =" t rue "/>
25 < v a r i a n t name=" ByDate " mandatory=" f a l s e " r e q u i r e s ="//@nodes . 4 "
26 implementingAspect=" amCalendarFi l ter "/>
27 < v a r i a n t name=" ByPreferences " mandatory=" f a l s e " r e q u i r e s ="//@nodes . 5 "
28 implementingAspect=" a m P r e f e r e n c e s F i l t e r "/>
29 < v a r i a n t name=" ByWeather " mandatory=" f a l s e " implementingAspect=" amWeatherFilter "/>
30 < v a r i a n t name=" ByLocation " mandatory=" f a l s e " implementingAspect=" amLocat ionFi l ter "/>
31 </ v a r i a t i o n P o i n t >
32 </nodes>
33 <nodes x s i : t y p e =" f e a t u r e s : V a r i a n t " name=" Calendar " mandatory=" f a l s e "
34 implementingAspect=" amCalendar "/>
35 <nodes x s i : t y p e =" f e a t u r e s : V a r i a n t " name=" UserPreferences " mandatory=" f a l s e "
36 implementingAspect=" amUserPreferences "/>
37 <nodes x s i : t y p e =" f e a t u r e s : A l t e r n a t i v e " name=" History " mandatory=" t rue " e x c l u s i v e =" f a l s e ">
38 < v a r i a n t name=" ItemsBought " mandatory=" f a l s e " implementingAspect=" amItemsBought "
39 s e l e c t e d =" t rue "/>
40 < v a r i a n t name=" I temsVis i t ed " mandatory=" f a l s e " implementingAspect=" amItemsVisited "/>
41 </nodes>
42 <nodes x s i : t y p e =" f e a t u r e s : V a r i a n t " name=" Evaluat ion " mandatory=" f a l s e "
43 implementingAspect=" amEvaluation "/>
44 </features :FeatureModel>

Figure 7.2: XMI feature model.

particular list: 128 for the optional variants, 10 for the alternative exclusive variants, and 3 for
the alternative non-exclusive variants. After deleting the configurations that do not respect the
constraints, like for example all the ones that include the feature ByPreferences and not the
feature UserPreferences, we obtain a total of 2817 product configurations left. This is the
number of legal configurations obtained from the model introduced in Figure 7.1. Table 7.2 sum-
marizes the results of this first analysis.

Aspect Modeling

Aspect models are used to create a high-level representation of variants. For the scenario, we
have built a core model that represents the mandatory features of the feature model, and one
aspect model for each variant in the feature model regardless of their type (optional, alternative
exclusive, or alternative non-exclusive).

Since mandatory features are always present in every product, they are modeled all together
as the core model. The core model of our example is illustrated in the snippet of code of Figure
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Table 7.2: Summary results of the feature model analysis.

Concept Value

Variants 16
Number of optional variants 7
Combinations obtained from optional variants 128
Number of alternative exclusive variants 7
Combinations obtained from alternative exclusive variants 10
Number of alternative non-exclusive variants 2
Combinations obtained from alternative non-exclusive variants 3
Consolidated Size 3840
Invalid configurations (requires and excludes violations) 1024

Final size of the product family 2816

7.3. The model starts with a Container element (line 8), which groups all the other elements
in the architecture. There are four additional elements: Catalog, Notification, Payment,
and FrontEnd. Besides the Container and the FrontEnd, which are created as part of the
architecture, note that each element is intended to realize one of the mandatory features found in
the feature model. Additionally, as we discussed in Chapter 6 we need an extra element called
the Configurator (lines 31-33), which is in charge of keeping the configuration of the product
at runtime. The core model also includes business objects and contracts that specify the relation-
ships between services and references in the elements. To simplify the code, we have omitted
those elements from the snippet of code presented in the figure.

After the core model, we created an aspect model for each variant in the feature model. There
are in total 16 aspects which realize the different variants of the feature model. As an illustration,
consider the aspect model presented in the snippet of code of Figure 7.4. It contains the four
parts of an aspect model, advice, pointcut, and event. The model includes the elements needed
to have a notification via e-mail when the client makes an order to the store. The advice indicates
how those elements have to be added. In this case, we define an addBoundElement meaning
that the elements of the model are added to the core, and then a connection is created between
the new element and the one found by the pointcut. The pointcut indicates a couple of queries
that look the reference in the component that is in charge of sending the notification. Finally, the
event indicates that, at runtime, this aspect is woven when there is an internet connection.

We summarize the different characteristics of the aspects models created for every particular
feature in the Table 7.3.
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1 <?xml version=" 1 . 0 " encoding=" ASCII " ?>
2 <model . j ava . capucine:Aspect xmi :vers ion=" 2 . 1 "
3 xmlns:xmi=" h t t p : //schema . omg . org/spec/XMI/2.1 "
4 xmlns :xs i=" h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e "
5 xmlns:model . j ava . capucine=" p l a t f o r m :/resource/Adapter/resources/metamodel/capucine . ecore "
6 name=" core ">
7 <what>
8 <referencedElement x s i : t y p e =" model . j ava . capucine :Conta iner " name=" eshop ">
9 < s e r v i c e s name=" FrontEndService " type="//@what/@referencedElement . 2 5 "/>

10 <elements name=" Catalog ">
11 < s e r v i c e s name=" CatalogQuery " type="//@what/@referencedElement . 1 0 "/>
12 < r e f e r e n c e s name=" RemoteCatalog " s e r v i c e ="//@what/@referencedElement . 1 1 "/>
13 < r e f e r e n c e s name=" LocalCatalog " s e r v i c e ="//@what/@referencedElement . 1 7 "/>
14 < r e f e r e n c e s name=" F i l t e r P r o d u c t s " s e r v i c e ="//@what/@referencedElement . 1 2 "/>
15 </elements>
16 <elements name=" N o t i f i c a t i o n ">
17 < s e r v i c e s name=" SendNot i f i ca t ion " type="//@what/@referencedElement . 9 "/>
18 < r e f e r e n c e s name=" SMSNotif icat ion " s e r v i c e ="//@what/@referencedElement . 1 3 "/>
19 < r e f e r e n c e s name=" E m a i l N o t i f i c a t i o n " s e r v i c e ="//@what/@referencedElement . 1 4 "/>
20 </elements>
21 <elements name=" Payment ">
22 < s e r v i c e s name=" PaymentService " type="//@what/@referencedElement . 8 "/>
23 < r e f e r e n c e s name=" CreditCardPayment " s e r v i c e ="//@what/@referencedElement . 1 5 "/>
24 < r e f e r e n c e s name=" DiscountPayment " s e r v i c e ="//@what/@referencedElement . 1 6 "/>
25 </elements>
26 <elements name=" ShoppingCart ">
27 < s e r v i c e s name=" Authent icat ion " type="//@what/@referencedElement . 1 8 "/>
28 < s e r v i c e s name=" Payment " type="//@what/@referencedElement . 2 6 "/>
29 < r e f e r e n c e s name=" PaymentService " s e r v i c e ="//@what/@referencedElement . 8 "/>
30 </elements>
31 <elements name=" Configurator ">
32 < s e r v i c e s name=" Conf igura torServ ice " type="//@what/@referencedElement . 2 4 "/>
33 </elements>
34 <elements name=" FrontEnd ">
35 < s e r v i c e s name=" FrontEndService " type="//@what/@referencedElement . 2 5 "/>
36 < r e f e r e n c e s name=" FECatalog " s e r v i c e ="//@what/@referencedElement . 1 0 "/>
37 < r e f e r e n c e s name=" F E N o t i f i c a t i o n " s e r v i c e ="//@what/@referencedElement . 9 "/>
38 < r e f e r e n c e s name=" FEShoppingCart " s e r v i c e ="//@what/@referencedElement . 2 6 "/>
39 < r e f e r e n c e s name=" FEConfigurator " s e r v i c e ="//@what/@referencedElement . 2 4 "/>
40 < r e f e r e n c e s name=" FEUserPreferences " s e r v i c e ="//@what/@referencedElement . 1 9 "/>
41 < r e f e r e n c e s name=" FEHistory " s e r v i c e ="//@what/@referencedElement . 2 0 "/>
42 < r e f e r e n c e s name=" FEEvaluation " s e r v i c e ="//@what/@referencedElement . 2 1 "/>
43 < r e f e r e n c e s name=" FEMapStores " s e r v i c e ="//@what/@referencedElement . 2 2 "/>
44 < r e f e r e n c e s name=" FECalendar " s e r v i c e ="//@what/@referencedElement . 2 3 "/>
45 </elements>
46 < a c t i v i t i e s name=" MyActivity ">
47 <connect ions name=" ConnectionOne "
48 c a l l e r ="//@what/@referencedElement .0/ @elements .0/ @references . 1 "/>
49 <connect ions name=" promoteContainer "
50 c a l l e r ="//@what/@referencedElement .0/ @services . 0 "
51 c a l l e d ="//@what/@referencedElement .0/ @elements .5/ @services . 0 "/>
52 <connect ions name=" payment "
53 c a l l e r ="//@what/@referencedElement .0/ @elements .3/ @references . 0 "
54 c a l l e d ="//@what/@referencedElement .0/ @elements .2/ @services . 0 "/>
55 </ a c t i v i t i e s >
56 </referencedElement>
57 < !−−B u s i n e s s O b j e c t s −−>
58 < !−−C o n t r a c t s−−>
59 </what>
60 </model . j ava . capucine:Aspect>

Figure 7.3: XMI core aspect model.
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1 <?xml version=" 1 . 0 " encoding=" ASCII " ?>
2 <model . j ava . capucine:Aspect xmi :vers ion=" 2 . 1 "
3 xmlns:xmi=" h t t p : //schema . omg . org/spec/XMI/2.1 "
4 xmlns :xs i=" h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e "
5 xmlns:model . j ava . capucine=" p l a t f o r m :/resource/Adapter/resources/metamodel/capucine . ecore "
6 name=" amEmail ">
7 <how>
8 <modi f i ca t ions x s i : t y p e =" model . j ava . capucine:Add " type=" addBoundElement "
9 toBeAddedTo="//@where .0/ @rootExpression/@variable "

10 toBeAdded="//@what/@referencedElement . 0 "/>
11 </how>
12 <where name=" n o t i f i e r ">
13 <rootExpress ion x s i : t y p e =" model . j ava . capucine:CompositeExpression ">
14 < v a r i a b l e name=" r e f e r e n c e "/>
15 <express ions x s i : t y p e =" model . j ava . capuc ine : Ins tanceOf " name=" type " type=" Reference "
16 cons t ra inedVar iab le="//@where .0/ @rootExpression/@variable "/>
17 <express ions x s i : t y p e =" model . j ava . capucine:FindByName " name=" E m a i l N o t i f i c a t i o n "
18 cons t ra inedVar iab le="//@where .0/ @rootExpression/@variable "/>
19 </rootExpress ion>
20 </where>
21 <what>
22 <referencedElement x s i : t y p e =" model . j ava . capucine:Element " name=" Email ">
23 < s e r v i c e s name=" E m a i l N o t i f i c a t i o n " type="//@what/@referencedElement . 1 "/>
24 </referencedElement>
25 <referencedElement x s i : t y p e =" model . j ava . c a p u c i n e : S e r v i c e C o n t r a c t "
26 name=" N o t i f i a t io nE m ai l C o n t ra c t ">
27 <operators s p e c i a l =" " name=" not i fyEmai l "/>
28 </referencedElement>
29 </what>
30 <when>
31 <condi t ion>
32 <observable name=" onl ine " type=" boolean "/>
33 </condi t ion>
34 </when>
35 </model . j ava . capucine:Aspect>

Figure 7.4: XMI aspect model for the Email variant.
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Table 7.3: Summary of aspect modeling

Aspect Variant Model Elements Modifications Pointcuts Runtime Observables

core Mandatory 124 – – – –

amOffline Offline 16 1 1 NO 0
amPopularityFilter ByPopularity 12 1 1 NO 0
amCalendarFilter ByDate 27 2 2 NO 0
amPreferencesFilter ByPreferences 25 2 2 YES 1
amWeatherFilter ByWeather 16 1 1 YES 2
amLocationFilter ByLocation 15 1 1 YES 1
amMapStores MapStores 15 1 1 YES 1
amCreditCard CreditCard 12 1 1 NO 0
amCode Code 21 2 2 NO 0
amCalendar Calendar 17 1 1 NO 0
amEmail eMail 15 1 1 YES 1
amSms SMS 12 1 1 NO 0
amUserPreferences UserPreferences 16 1 1 YES 1
amItemsBought ItemsBought 13 1 1 NO 0
amItemsVisited ItemsVisited 13 1 1 NO 0
amEvaluation Evaluation 17 1 1 NO 0

Total 386 19 19 – 7
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Constraint Analysis

At this point we have both the left side (Feature Configuration), and the right side (Aspect Mod-
els). It is possible now to perform the constraint analysis presented in Chapter 5. We have chosen
15 random legal product configurations out of the 2816 that can be obtained from the feature
model to show the different warnings and outputs that can be obtained from running the algo-
rithms. The results of the constraint analysis are summarized in Table 7.4. For each product we
present its configuration using checkmarks for the variants selected. Next we present the results
of the left to right (l2r) and right to left (r2l) algorithms, the order of the composition (Result), and
the execution time (Time) in milliseconds.

As it can be seen from the results, the analysis for each product takes slightly short times.
Nevertheless, the more variants there exist, the more aspects to verify for each product with
consequences in performance, but such an overload is related to the nature of the product family
itself. Additionally, since this process is executed during the design phase, time and performance
are less critical than correctness and conflict-free composition.

Regarding the results of the left to right analysis, we notice that the left to right algorithm
modifies the order of composition of the products 6,7,8, and 15. That is because the variants
ByDate and ByPreferences are placed in the selection before the variants they require, in
this case Calendar and UserPreferences. This also means that the analysis has found the
corresponding dependencies at the level of aspects for the requires relationships. On the other
hand, for the products 1,4, and 11, the analysis prints a warning RR(7,15) (for Redundant Re-

quires) between the variants ByPopularity and ItemsVisited. This means that the requires
relationship between those variants does not have a corresponding dependency at the level of
aspects, and hence, it might be considered for removal from the feature diagram. However, as
previously stated, even if there is no corresponding dependencies, the constraint does not nec-
essarily represent an error, it may come for example from a business rule and is not related with
the implementing aspect models.

On the other side, the right to left analysis shows a warning for the products: 3, 4, 7, 10,
11, 13, and 14. The message is presented in the table as HR(5,3) (for Hidden Requires) between the
aspects implementing the variants Code and SMS. This means that the aspect for the variant Code
has a dependency with the aspect for the variant SMS. To understand this dependency, consider
the snippet of code presented in Figure 7.5.

The first part (lines 2-11) corresponds to the pointcut defined in the aspect implementing the
variant Code. The pointcut looks for a reference called SMSNotification. The only place to
find such a reference is in the model part of the aspect implementing the SMS variant (lines 15-24
in the same Figure). As a result, products 3,10,11,13,14 are not allowed for composition. In the
case of products 4 and 7, the analysis indicates the same dependency, however, the composition
is allowed because those configurations include the variant SMS. Additionally, the order does not
need to be changed since the variant SMS is already placed before the variant Code. After the
analysis to the whole product family, a total of 704 configurations are removed because of the
dependency problem found in the right 2 left analysis.
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1 < !−−P o i n t c u t o f t h e v a r i a n t Code −−>
2 <where name=" BoundTo ">
3 <rootExpress ion x s i : t y p e =" model . j ava . capucine:CompositeExpression ">
4 < v a r i a b l e name=" n o t i f i c a t i o n "/>
5 <express ions x s i : t y p e =" model . j ava . capucine:FindByName " name=" SMSNotif icat ion "
6 cons t ra inedVar iab le="//@where .1/ @rootExpression/@variable "/>
7 <express ions x s i : t y p e =" model . j ava . capuc ine : Ins tanceOf " name=" " type=" S e r v i c e "
8 cons t ra inedVar iab le="//@where .1/ @rootExpression/@variable "/>
9 </rootExpress ion>

10 </where>
11 <what>
12
13
14
15 < !−−Model o f t h e v a r i a n t SMS−−>
16 <what>
17 <referencedElement x s i : t y p e =" model . j ava . capucine:Element " name="SMS">
18 < s e r v i c e s name=" SMSNotif icat ion " type="//@what/@referencedElement . 1 "/>
19 </referencedElement>
20 <referencedElement x s i : t y p e =" model . j ava . c a p u c i n e : S e r v i c e C o n t r a c t "
21 name=" Noti f icat ionSMSContract ">
22 <operators name=" notifySMS "/>
23 </referencedElement>
24 </what>

Figure 7.5: Aspect dependency.
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Table 7.4: Constraint analysis results.
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Product 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 L2R R2L Result Time

1 X X X X – – X – – – – – – X X – RR(7,15) – {1,2,3,4,7,14} 52ms
2 – – – X – X – – – X – – – – X X – – {4,6,10,15,16} 42ms
3 X X – – X – – – – – X – – X X – – HR(5,3) Not allowed 48ms
4 X – X – X X X – – – – – – X X X RR(7,15) HR(5,3) { 1,3,5,6,7,14,15,16 } 61ms
5 – – X X – – – – – X – X – – X X – – {3,4,10,12,15,16} 53ms
6 X – – X – – – – X – – X X X X – Order – {1,4,13,9,12,14,15} 54ms
7 – – X – X X – – X – – – X – X – Order HR(5,3) { 3,5,6,13,9,15} 58ms
8 X – – X – – – X – – – X – X – X Order – {1,4,12,8,14,16} 47ms
9 – – X X – X – – – X – X – X X – – – {3,4,6,10,12,14,15 } 66ms
10 X – – – X – – X – – – X – X – – – HR(5,3) Not allowed 44ms
11 X X – – X – X – – – – – – – X – RR(7,15) HR(5,3) Not allowed 40ms
12 – – X X – – – – – X – – – X X – – – { 3,4,10,14„15 } 43ms
13 – X – – X – – – – – X – – X – – – HR(5,3) Not allowed 40ms
14 X X – – X X – – X – – – X X X X – HR(5,3) Not allowed 75ms
15 X – – X – – – X – – – X – X X – Order – { 1,4,12,8,14,15 } 48ms
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Table 7.5: Composition and code generation results.

Product Configuration LoC LoC LoC Total LoC
Product Woven Time Java Time SCA Time Java & SCA
1 { 1,2,3,4,7,14 } 196 26ms 944 1592ms 192 231ms 1136
2 { 4,6,10,15,16 } 191 21ms 979 1773ms 174 223ms 1153
3 {1,3,5,6,7,14,15,16 } 205 29ms 1006 1632ms 204 226ms 1210
4 { 3,4,10,12,15,16 } 194 25ms 1006 1634ms 183 228ms 1189
5 { 1,4,13,9,12,14,15 } 204 26ms 1047 1716ms 204 225ms 1251
6 { 3,5,6,13,9,15 } 203 25ms 1047 1763ms 200 222ms 1247
7 {1,4,12,8,14,16 } 197 25ms 1047 1704ms 187 229ms 1234
8 { 3,4,6,10,12,14,15 } 203 28ms 1030 1897ms 200 228ms 1230
9 { 3,4,10,14,15 } 195 21ms 1047 1737ms 182 235ms 1229
10 { 1,4,12,8,14,15 } 200 25ms 902 2260ms 195 291ms 1097

Transformation and Generation of Code

From the results of the constraint analysis, and using the order obtained for the allowed config-
urations, we obtain the woven models. We can proceed with the generation of code. As it was
presented in Chapter 5 we use two model to model transformations towards Java and SCA. Using
the models obtained in those transformations we perform model to text transformations to obtain
the source code. Table 7.5 summarizes the results obtained from executing the transformations
and generators on the 10 products whose composition was allowed in the constraint analysis.
For each product, we show its configuration in terms of variants selected, the time to execute the
transformation towards Java and SCA, and the size of the product obtained measured in terms
of the number of lines of code.

Mobile Development

After the code of the products has been generated, we proceed with the execution and runtime
adaptation. In particular we are interested by the context information and events that may trigger
adaptation processes, which in CAPucine are translated into switching the configuration of the
product being executed.

To execute the products obtained at design time, and given that CAPucine does not include
any elements to automate the development of the Graphic User Interfaces (GUI), we need an in-
terface between the final user and the functionality of the products. In order to test the products,
we have developed by hand a mobile application using the Android platform.

We have chosen Android for two main reasons. First of all, its Java API allows us to access
information about context that we use for testing the runtime adaptations. Second, although not
yet implemented, it is feasible and foreseen to build a mobile version of FraSCAti. This means that
in the future, SCA applications will possibly be executed in mobile phones. For the time being,
a prototype has been developed which allows an android Activity to start an SCA composite
as an Android service. However, the SCA application cannot be reconfigured, since the current
mobile version of FraSCAti does not include the elements that enable reflection and dynamic
reconfigurations. For this reason, rather than deploying the products inside the mobile device,
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we have developed a GUI that acts as a client of our product which is executed in a desktop
computer. The Android application interacts with both the application and the adapter as shown
in Figure 7.6.

Client (Mobile Phone)

GUI Android 
Activities

Application

Adaptation

SCA

SCA

Figure 7.6: Mobile client architecture.

In this case, the GUI communicates with the adapter in order to provide the context infor-
mation that is only accessible via the mobile device. The GUI also is bound and consumes the
services provided by the application. In addition to that, the adapter communicates with the
application in order to access the Configurator service whenever there is a need for an adap-
tation.

Context awareness and Aspect models

As we explained in Chapter 6, the reconfiguration scripts are obtained from the aspect mod-
els that include events, and hence, that can be woven dynamically. In our example, 6 as-
pect models include events as indicated in Table 7.3. More specifically, those aspects corre-
spond to the variants: ByPreferences, ByWeather, ByLocation, MapStores, Email, and
UserPreferences. Table 7.6 summarizes the results for the generation of reconfiguration
scripts for these aspect models. For each aspect we present: the observables defined as part
of its Event, the lines of code generated from their reconfiguration, and the execution of time for
the generation. Notice that the number of lines of code only correspond to the reconfiguration
operations, like the ones presented in the snippet of code in Figure 6.12. It does not include the
Java or SCA lines of code for the implementation of the elements (in the Model part of the aspect)
that are being added.

Summary of the experimentation

The experimentation presented in this section illustrates the development process of SPLs with
CAPucine. We have presented the results of the model-based derivation process introduced in
Chapter 5 and the adaptations at runtime introduced in Chapter 6 using the product family for
the electronic store as a case study. We have illustrated in detail the results obtained from both
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Table 7.6: Runtime adaptation summary.

Aspect Model Context LoC Time
Observables Script

ByPreferences preferences 18 153ms
ByWeather location, online 15 152ms
ByLocation location 14 156ms
MapStores location 12 148ms
Email online 12 145ms
UserPreferences preferences 14 147ms

the constraint analysis and the MDA process of transformation and code generation using the 16
variants and their corresponding aspect models, as well as the runtime adaptations presented in
Chapter 6. To realize such experimentation, we have used the set of tools built around CAPucine.
The next section presents the architecture and implementation details of such tools.

7.2 Tool Support

Automation within SPLs in general, and DSPLs in particular, aims at reducing the load of work
on developers by identifying repetitive tasks that do not need human intervention and can be
automatized. Usually, in software engineering these tools are in charge of generating source
code of functionalities that are common and can be factorized from different applications. Such
tools allow developers to focus on the business requirements and to spend less time solving
common problems. CAPucine proposes different tools that can be used at different phases of the
development process, from the analysis and requirements, and going all the way down to the
execution and adaptation of products at runtime. In order to have a better understanding of the
tools, in this section, we describe in detail the set of tools implemented around CAPucine that we
call Model2Code.

7.2.1 Model2Code Architecture

Model2Code is divided in several parts covering the different phases of the application engi-
neering process in CAPucine. Figure 7.7 illustrates such parts and how they correspond with
separated phases of the CAPucine architecture. There are four parts in total as follows: (1) Fea-

ture Analysis, that covers the algorithms for the analysis of the feature and aspect models; (2)
Model Composition, that covers the process of weaving of the aspect models; (3) Model Trans-

formation, which includes a set of model transformations towards the specific platform; and
finally (4) Code Generators to obtain the source code of the products. On top of these parts, we
have implemented a simple GUI to access all these functionalities. However, several parts of
Model2Code can be used programmatically or manually.

7.2.2 Feature Analysis

The first part of Model2Code includes a sets of algorithms for the analysis of the feature di-
agrams and aspect models. Figure 7.8 depicts the two main processes included in the feature
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Figure 7.7: Model2Code architecture.

analysis. The first part of the analysis uses as input the feature model and obtains a list with
all the legal configurations achievable for that model. The second part corresponds to the con-
straint analysis between features and aspect models. It uses as input the feature model, all the
aspect models implementing the different variants of the features and a product configuration,
and produces as a result a refined set of configurations (excluding the products with aspect de-
pendency problems), the order of weaving, and several warnings for the developers. The list of
legal configurations is used to verify at runtime if the adaptations respect the constraints of the
feature model. The weaving order is used as input in the model composition part to weave the
core model with the different aspects belonging to the given product configuration. Both parts of
the analysis are implemented in Java and use the EMF API to create object representations of the
feature and aspect model elements.

Legal configurations

For the first analysis, we generate a table with all the legal combinations from a feature model.
To do that, we create different tables for the three types of variants available in the feature model:
optional, non-exclusive alternative, and exclusive alternative. The size of each table is obtained
by applying the formulas introduced in Section 6.4.2 of Chapter 6. Afterwards with the help of a
binary string, we iterate over the size of each table and we create all the different combinations.
The snippet of code of Figure 7.9 illustrates the cycle and the use of such binary string to create
all the combinations for the optional variants.

Once the three tables have been created, we consolidate all the results into a single table,
and eliminate the products that do not respect the requires or excludes constraints from the feature
model. To do this, we basically traverse the feature model looking for couples of features that are
linked through requires or excludes relationships. With the couples identified, we verify if there
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Figure 7.8: Feature analysis processes.

1 / / Use a b i n a r y number t o f i n d a l l t h e p o s s i b i l i t i e s
2 i n t maxSize ;
3 S t r i n g binary , reverse ;
4 for ( i n t i = 0 ; i <= i t e r a t o r ; i ++)
5 {
6 i n t maxSize = I n t e g e r . t o B i n a r y S t r i n g ( i t e r a t o r ) . length ( ) ;
7 S t r i n g binary = I n t e g e r . t o B i n a r y S t r i n g ( i ) ;
8 S t r i n g reverse ;
9 i f ( binary . length ( ) < maxSize )

10 {
11 reverse = new S t r i n g B u f f e r ( binary ) . reverse ( ) . t o S t r i n g ( ) ;
12 while ( reverse . length ( ) < maxSize )
13 {
14 reverse = reverse . concat ( " 0 " ) ;
15 }
16 binary = new S t r i n g B u f f e r ( reverse ) . reverse ( ) . t o S t r i n g ( ) ;
17 }
18 for ( i n t j =0 ; j <binary . length ( ) ; j ++)
19 {
20 i f ( binary . charAt ( j ) == ’ 1 ’ )
21 {
22 tableNormal [ i ] [ j ]= t h i s . normalVariants . get ( j ) ;
23 }
24 }
25 }

Figure 7.9: Use of binary strings to generate product configurations.

are products in the consolidated table that contain one feature of the couple and not the other
one for the requires case, or both features at the same time in the excludes case. If such products
are found, they are removed from the consolidated results. This operation is illustrated in the
snippet of code of Figure 7.10. There is one verification for each constraint (lines 4 and 13). If an
inconsistency is found in any case, the product configuration is removed from the consolidated
collection.
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1 / / r e q u i r e s
2 Variant required , requ i r ing ;
3 / / . . . f i n d c o u p l e s
4 i f ( c o n f i g u r a t i o n . conta ins ( re qu i r ing ) && ! c o n f i g u r a t i o n . conta ins ( required ) )
5 {
6 consol idated . remove ( c o n f i g u r a t i o n ) ;
7 }
8 / / . . .
9

10 / / e x c l u d e s
11 Variant excluded , excluding ;
12 / / . . . f i n d c o u p l e s
13 i f ( c o n f i g u r a t i o n . conta ins ( excluding ) && c o n f i g u r a t i o n . conta ins ( excluded ) )
14 {
15 consol idated . remove ( c o n f i g u r a t i o n ) ;
16 }
17 / / . . .

Figure 7.10: Deletion of ilegal products.

Constraint Analysis

This process refers to the constraint analysis explained in Chapter 5. In a similar way as for the
legal configurations, we use as input the EMF feature model and additionally, we also use the
aspect models for each variant and a particular product configuration. The algorithms for the left

2 right and right 2 left analysis have been implemented in Java.

In the implementation of the algorithms we use match() methods to verify if the aspects
have the corresponding relationships from the ones defined in the feature diagram. This is what
we defined in the algorithm 1 as:

AF1
.Pointcut ∩ AF2

.Model = ∅.

In the actual implementation, we compare sets of elements from the collections of objects ob-
tained when instantiating an object representing the XMI aspect model file. For example, the
method presented in Figure 7.11 illustrates the verification of the pointcut of one aspect with the
model of a second aspect. As it can be noticed from the code, the pointcut of the first aspect is
executed in the model of the second aspect (line 10). This action creates a collection with the
elements that satisfy the pointcut expressions. If such collection is not empty, it means that the
match exists.

7.2.3 Model Composition

The model composition (see Figure 7.12) refers to the iterative process of weaving a core model
with one or several aspect models. The inputs for this process are: the core model, the aspect
models to weave, and strategy (order) of composition or order obtained from the constraint anal-
ysis.

For the implementation of the weaving process, we rely on the Java code obtained from the
EMF model. EMF generates the classes and interfaces needed to represent every meta class de-
fined in the Aspect Metamodel as Java objects and collections. However, in order to add the
composition logic required for the weaving process, we extend the generated code by adding
execute() methods inside the Expression and Modification meta-classes. For the expres-
sions, we use this method to write the specific algorithms in every class inherited from expression
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1 private boolean matchPointcutModel ( S t r i n g sources t , S t r i n g t a r g e t s t )
2 {
3 Aspect source = getAspectByName ( s o u r c e s t ) ;
4 Aspect t a r g e t = getAspectByName ( t a r g e t s t ) ;
5
6 for ( Pointcut pointcut : source . getWhere ( ) )
7 {
8 i f ( po intcut != null )
9 {

10 pointcut . getRootExpression ( ) . execute ( ) ;
11 i f ( po intcut . getRootExpression ( ) . g e t Va r ia b le ( ) . getContents ( ) . s i z e ( ) > 0)
12 return true ;
13 }
14 }
15 return f a l s e ;
16 }

Figure 7.11: Matching pointcuts and models for the constraint analysis.
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Aspect Model
Aspect
Weaver

name : String
Aspect

Core Model

Weaving order

P={v1, v2 ... vN}

name : String
Aspect

Woven
Model

name : String
Aspect

intermediate result

Figure 7.12: Model composition processes.

in the pointcuts: CompositeExpression, FindByName, InstanceOf, and Owned. No-
tice that Atomic expression is abstract, only concrete instances of it are allowed. Likewise, for
the modifications, we define such method to insert the code in the classes that inherit from the
Modification in the advices: Add and Delete. Figure 7.13 shows the hierarchy of the classes
for both the Expression (part a) and the Modification (part b).

Pointcut execution

The first part of the weaving executes every expression defined in the pointcut of the model. Since
every class in the lower level of the Expression hierarchy overrides the method execute, the
pointcut execution consist in iterating over the expressions and calling their execute()method.
Every atomic expression (FindByName, InstanceOf, and Owned) introduces the code that
filters the elements for its own case. For example, consider the code presented in Figure 7.14.
It presents the implementation of the InstanceOf. It basically traverses the set of elements in
the model and retains only the ones whose type corresponds to the type specified in the model.
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execute()
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AtomicExpression

getChild()
getParent()
setChild(Variable)
setParent(Variable)

-father: Variable
-child: Variable

Owned

execute()
 

Expression

a) Hierarchy of pointcut expressions b) Hierarchy of advice modifications

getConstrainedVariable()
getType()
setConstrainedVariable(Variable)
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-constrainedVariable: Variable
-type : ModelType
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getConstrainedVariable()
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getOperator()
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Figure 7.13: Expression and Modification hierarchy.

Notice that, thanks to the EMF generation, the type defined in the model is available as a private
attribute type of the class InstanceOf (see line 12).

1 @Override
2 public EList <ReferencedElement > execute ( Aspect core )
3 {
4 EList <ReferencedElement > l i s t = new Bas icELis t <ReferencedElement > ( ) ;
5 for ( I t e r a t o r <EObject > i t =core . eResource ( ) . getAl lContents ( ) ; i t . hasNext ( ) ; )
6 {
7 EObject eo = i t . next ( ) ;
8 S t r i n g className= eo . ge tClass ( ) . getCanonicalName ( ) ;
9 S t r i n g simpleName = className . s ub s t r ing ( className . las t IndexOf ( " . " )+1 ,

10 className . length ( ) ) ;
11 simpleName=simpleName . r e p l a c e ( " Impl " , " " ) ;
12 i f ( simpleName . equals ( t h i s . getType ( ) . getName ( ) ) )
13 {
14 l i s t . add ( ( ReferencedElement ) eo ) ;
15 }
16 }
17 return l i s t ;
18 }

Figure 7.14: Implementation of the InstanceOf expression.

The results of all atomic expressions are consolidated in the CompositeExpression execution.
It performs the intersection or union for each case, of the results obtained from the atomic expres-
sions. Figure 7.15 shows the implementation of this method. It firsts calls the execute methods
of all the expressions it contains. Afterwards, with the results obtained from the atomic expres-
sions, it performs an intersection or union of such elements, depending on the type selected in
the model.
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1 @Override
2 public EList <ReferencedElement > execute ( Aspect core )
3 {
4 ArrayList <HashSet<ReferencedElement >> a l l = new ArrayList <HashSet<ReferencedElement > >( ) ;
5 HashSet<ReferencedElement > i n t e r s e c t i o n = new HashSet<ReferencedElement > ( ) ;
6 i n t counter =0;
7 for ( Expression exp : t h i s . ge tExpress ions ( ) )
8 {
9 a l l . add (new HashSet<ReferencedElement >( exp . execute ( core ) ) ) ;

10 }
11 i f ( t h i s . operator . getValue ( ) == OperatorType .AND_VALUE)
12 {
13 for ( HashSet<ReferencedElement > hashSet : a l l )
14 {
15 i f ( counter == 0)
16 {
17 i n t e r s e c t i o n . addAll ( hashSet ) ;
18 counter ++;
19 continue ;
20 }
21 i n t e r s e c t i o n . r e t a i n A l l ( hashSet ) ;
22 counter ++;
23 }
24 }
25 e lse i f ( t h i s . operator . getValue ( ) == OperatorType .OR_VALUE)
26 {
27 for ( HashSet<ReferencedElement > hashSet : a l l )
28 {
29 i n t e r s e c t i o n . addAll ( hashSet ) ;
30 counter ++;
31 }
32 }
33 CapucineFactory f a c t o r y = new CapucineFactoryImpl ( ) ;
34 i f ( t h i s . g e t Va r ia b le ( ) == null )
35 t h i s . s e t V a r i a b l e ( f a c t o r y . c r e a t e V a r i a b l e ( ) ) ;
36 t h i s . g e t Va r ia b le ( ) . getContents ( ) . c l e a r ( ) ;
37 t h i s . g e t Va r ia b le ( ) . getContents ( ) . addAll ( i n t e r s e c t i o n ) ;
38 return (new Bas icELis t <ReferencedElement >( i n t e r s e c t i o n ) ) ;
39 }

Figure 7.15: Implementation of the Composite expression.

Advice execution

Likewise, the second part of the weaving consist in iterating over every modification defined in
the advice and executing it. Since the results of the pointcuts may contain any element in the
model, the add algorithm has to consider every possible combination of types in the form (place,
element to add). There are as many combinations as allowed pairs we define. For the rest of the
cases, no weaving is performed. The deletion is much simpler than the addition, the execute
method only has to find the elements and delete them from their containing collection.

7.2.4 Model Transformation

The model transformation process (see 7.16) takes the woven model obtained from the composi-
tion phase and maps it into new platform-dependent models for SCA and Java. Hence, the only
input for this process is the woven model obtained before. The output of this process are two new
models that represent the woven model in terms of SCA and Java elements. Additionally, there is
a verification between the new models to assure that the concepts defined in the SCA model have
an equivalent implementation in the Java model. We have chosen to implement the transforma-
tions in this order because both, the SCA and Java models require only the architecture described
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in the woven model. The verification between these results does not add any additional elements
to the models already created. It just verifies that the elements of the architecture are reflected in
both languages, and that the naming strategy is consistent for the code generated to be consistent.
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3.Model 
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Java
EMF

Woven Model

Aspect
Weaver

name : String
Aspect

Java

Model

name : String
Aspect

SCA

Model

name : String
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Figure 7.16: Model transformation processes.

The transformations in Model2Code are based on a classic strategy that traverses the source
model. In this case, we only use the information found in the Model part of our aspect meta-
model. The Model is hierarchical and defines one and only one starting point or root ele-
ment that in this case is called the Model which contains several referenced elements. Start-
ing from such root, the model is traversed with the help of iterators for every specialization of
ReferencedElement found in the model. To improve the readability of the transformations
and simplify further development, we have grouped all the methods used to traverse the source
model in two different classes: ToSCATransformer for the transformations towards SCA, and
ToJavaTransformer for the transformations towards Java. In both cases, for each element
found in the Model part of the aspect model (i.e., Element, Reference, Service, Contract)
there is an associated ElementBuilder class that implements the interface shown in Figure
7.17.

1 public i n t e r f a c e ElementBuilder <X extends Object , Y extends EObject >
2 {
3 X build (Y element ) ;
4 }

Figure 7.17: Interface for creating elements in the target model.

All the transformation code is based on the principle given by this interface. This means that
for each element of the source model (the object X), there are one element in the target model
(the object Y). There are as many ElementBuilder classes as many elements to create in the target
model. For example, Figure 7.18 illustrates the PropertyBuilder class that creates a Property in
SCA using the information of an Attribute in the aspect metamodel.

7.2.5 Code Generators

The code generators include three main parts: generation for java, generation for SCA, and gen-
eration for FScript and FPath. Figure 7.19 shows the three different generators with their corre-
sponding input and outputs. For the generation, we use the PrintWritter interface from Java.
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1 public c l a s s PropertyBui lder implements ElementBuilder <Property , At t r ibute >
2 {
3
4 public Property bui ld ( A t t r i b u t e a t t r i b u t e )
5 {
6 S t r i n g attributeName = a t t r i b u t e . getName ( ) ;
7 Property property = new ScaFactoryImpl ( ) . c rea t eP r o per t y ( ) ;
8 property . setName ( attributeName ) ;
9 property . setElement ( a t t r i b u t e . getType ( ) . getName ( ) ) ;

10 return property ;
11 }
12 }

Figure 7.18: The class PropertyBuilder.

Consequently, there are as many writers as elements to be generated in the three different target
languages.
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Figure 7.19: Code generation process.

Java Generation

For the Java generation, thanks to the use of the metamodel defined for the Spoon EMF project
[Bar06], the generation of source code is direct. It consist in calling the Spoon EMF tools providing
the XMI file. The tools implemented by this project include a PrettyPrinter mechanism that
creates the java classes associated with the elements of the model, and writes their contents with
the proper syntax and indentation (see Figure 7.20). Additionally, we use Spoon templates to
generate the code of certain methods that are common to every implementation like for instance
the getters and setters for the attributes of classes.

SCA Generation

For SCA we also use Writter classes for each element in the SCA metamodel. The current im-
plementation defines the writers defined for the following SCA types: Component, Composite,
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XMI

Spoon EMFSpoon EMF

XMI
XMI

Java

Defined with the 
Java (Spoon EMF)

metamodel

EMF Launcher Pretty printer

Figure 7.20: Java code generation.

Service, Reference, Property, and Wire. The result is the composition of the tags gener-
ated by each particular writer, that are put together under a same Composite element as defined
in model used as input.

FScript

The generation of scripts for the runtime adaptation takes a different input. Unlike the case of
SCA and Java, the generation of scripts takes as input the aspect model and directly creates the
FScript code without and intermediate model transformation towards an FScript metamodel.
Hence, we have defined a Java class called FScriptWritter that groups all the logic of the
FScript generation. The current implementation supports the aspect advices for Services,
References and Connections. With this subset of elements we are able to create adapta-
tions that add components at runtime and create the bindings between those components and
the core that is being executed.

Model2Code metrics

To conclude the description of the tool support, we present several metrics for the different parts
of Model2Code. Table 7.7 summarizes these metrics. It includes the four parts previously intro-
duced (i.e., Feature analysis, Model Composition, Model Transformation, and Code Generators),
and a fifth part with other functionalities, like the GUI and the tests. For each part, the table
enumerates the number of packages, classes (and interfaces), and finally the total amount of lines
of code developed. It is important to notice that in the case of the design weaver, an important
part of the code is automatically generated by the EMF tools. We have included the code because
we modify it at multiple parts to add the behavior required to execute the composition of the
aspect models. Notice also that the numbers shown in Table 7.7 do not include elements like: the
code for the Java and SCA metamodels, the different EMF files (metamodels and models), and
the configuration files (ANT scripts) that are used to manage the tool.
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Table 7.7: Model2Code metrics.

Part Packages Classes LoC

1. Feature Analysis

Constraint Analysis 6 50 624
Legal Products 10 303 1201
Feature Metamodel 3 18 1026

2. Model Composition

Design Weaver (with Aspect Metamodel) 4 105 6762

3. Model Transformation

Architecture to Java 2 15 797
Architecture to SCA 2 10 350

4. Code Generators

Generation of Java code 3 12 408
Generation of SCA code 3 10 392
Generation of FScript code 2 5 298

Others

CAPucine GUI 8 21 2783
Configuration 4 22 1148
Tests 8 20 456

Total 55 591 16245

7.3 Discussion

The experimentation has helped us to identify the benefits as well as the weaknesses of CAPucine
for the overall management of variability and context awareness in different setups, and in par-
ticular within DSPLs. In this section, we present discussion on the approach where we revisit the
unification challenge identified in Chapter 3. Afterwards, we present a qualitative evaluation of
CAPucine based on the criteria for a DSPL framework that was also introduced in Chapter 3.

7.3.1 The Unification Challenge

In Chapter 3, we have identified the unification of design and runtime adaptations as the most
important challenge to face through a framework for DSPLs. To face this challenge we have
made several decisions regarding the main assets used by CAPucine and the strategy for product
derivation at design time as well as at runtime. Here we present a justification to such choices.

• On the difference between design and runtime adaptations

Applications can be adapted either during the design or the runtime phase. Design adap-
tations are motivated by design decisions, whereas runtime adaptations are motivated by
changes in the executing environment. While a motivation of a design adaptation cannot
be modeled (it is a choice), the motivation of a runtime adaptation can be modeled as a
condition on the state of the environment. Moreover, design and runtime adaptations are
different also because they are realized by means of different mechanisms that use different
technological platforms.
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• On the reason for unifying design and runtime adaptations

Although design and runtime adaptations have different motivations, and are performed us-
ing different mechanisms, they can be specified thanks to a unified language. Our aspect
metamodel provides such a unified language. The main advantage is the fact that design
and runtime adaptations are modeled thanks to aspects that share three principal descrip-
tions: the what, the where and the how. In fact, the only key difference comes from the fact
that aspects that can be woven at runtime must have a description of the event: the when.
As a consequence, aspects can be easily reused. Moreover, one can think about weaving
aspects during the design phase, although they have been originally defined to be woven
at runtime. Changing a runtime aspect into a design one is quite easy as it only consists in
removing its event description. Vice versa, one can think about weaving aspects during the
runtime phase, although they have been originally defined to be woven at design. Chang-
ing a design aspect into a runtime one is much more complex as it needs to add an event
description.

In this point it is important to notice that, since aspects are used for both types of adapta-
tions, our approach introduces a strong dependency between the design process and the
runtime adaptation. In fact, this dependency is what makes the unification of adaptations
possible and allows the products to be derived dynamically. However, it also implies that
when creating the aspect models, one has to be aware of their twofold nature. Ideally, to
help designers to define new assets, the tools used for creating the aspect models should
provide enough information about the models being developed, so that, developers get in-
mediate feedback of the correctness and possibilities of each model. This would not only
ease the task of asset development but it would also guarantee that what is defined at de-
sign remains valid for an aspect used either at design for building the inital product or
at runtime when it gets transformed into reconfiguration scripts and used for a dynamic
adaptation. For the time being, our tools perform a simple validation that takes place be-
fore the weaving, which in most cases hapens after the model has been created and hence
makes it difficult to identify and fix the problems. In the perspectives presented in Chapter
8 we revisit this issue and indicate possible ways to improve the tool support in the short
term.

• On the necessity of weaving aspects at design time

One question that may naturally arise is: why do we need design weaving if we can per-
form any adaptations at runtime? Design weaving is important for three main reasons: au-
tomation, performance, and platform independence. Regarding automation, if there is no
design weaving, the initial application have to be built manually. That is because runtime
weaving just modifies an existing application. Regarding performance, it should be noted
that all aspects that can be woven during the runtime phase need to define an event descrip-
tion. Regarding our example, it clearly appears that some aspects do not have any event
that motivates their weaving. Those aspects are definitively intrinsic design aspects. With-
out design weaving, we could weave them at the beginning of the execution, by defining
a fake runtime event. This may potentially affect the performance of the application, while
design weaving has no impact on performance. We firmly believe that intrinsic design as-
pects have to be woven as early as possible, and that runtime weaving only has to operate
on aspects that depend on runtime events. Regarding platform independence, obtaining a
woven model through design weaving is only an intermediate step in the derivation of an
executable product. The woven model obtained in our approach completely differs from
the woven code produced by an AOP technology. In the AOP world, the woven code pro-
duced is language and platform-specific, and is not supposed to be further modified. In
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our approach, the woven model is a generic artifact that belongs to a high level of abstrac-
tion and constitutes a valuable input of a subsequent generation process, where it is still
possible to make design decisions like execution platform and implementation languages.

• On the use of aspect models for variability modeling

In our approach the use of aspect models provides a clear separation of concerns. It sep-
arates the core of the application from optional and possibly crosscutting functionalities.
In our case study, we have defined a set of variants expressed in a feature model. Each
variant (or feature), being crosscutting or not, is represented through an aspect model. If
a feature is not crosscutting, then the corresponding aspect pointcut is simple, as it only
captures a single element of the base architecture. In contrast, if the feature is crosscutting,
then the aspect pointcut and the aspect advice become more complex since they have to
deal with multiple elements and different modifications. In summary, our approach allows
aspects to be defined with multiple expressions and multiple modifications. Furthermore,
the weavers at design time and at runtime are able to deal with these aspects. We consider
that, regardless of the crosscutting nature of the variants, the proposed aspect metamodel
and the two weaving processes provide the required flexibility for variants to be realized
as aspect models and derivation to be defined as the weaving of such aspects.

• On the use of MDA and AOM

In general terms, we consider that the use of a well-defined metamodel enhances the inte-
gration of aspects within complementary model-driven development strategies. This per-
mits: (1) to define independent business models that are transformed into platform-specific
models depending on the needs of a particular application, and (2) to have a unified ap-
proach in which software products and related adaptations can be modeled at the same
time and derived from the same type of artifacts (e.g., aspect models). Furthermore, each
aspect model is self-contained, and can be woven by a generic weaver that resolves the
pointcuts, and then executes all modifications defined in the advice. Finally, as we have
shown in the experimentation, CAPucine aspect models are used as a way to realize fea-
tures and obtain assets for both the initial and iterative phases. In such a context, our
approach provides support for product derivation at design time, based on the selection
of optional features, in order to build an initial product. It also supports dynamic prod-
uct reconfiguration at runtime, translating the iterative configuration changes in reaction to
context changes.

• On the applicability of the approach

The CAPucine framework for the development of DSPLs that we have presented has been
validated regarding the examples of the CAPPUCINO project when we model and derive
applications based on SCA. We consider that the same approach is aplicable to other con-
texts that share the same characteristics as our example. Such characteristics refer basically
to the architectural decisions we have made in order to automate the development process.
This means that families of applications built for a component based and service oriented
platform and that need to be modified at runtime are well suited to fit in the CAPucine
framework. In that trend, for example, we consider the applicability of our approach to
define a family of applications for the FraSCAti platform. Since FraSCAti is a platform al-
ready developed, it constitutes an interesting example, when the approach can be used in a
bottom - up strategy, starting from the implemented assets and going upwards to obtain the
high level representations and obtaining the variability model and the different configura-
tions. In addition to that, FraSCAti has been built as a highly modular platform that can be
customized with different plugins with respect to the user needs.
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From a general perspective, in order to target other types of families the framework needs
to be extended to support the derivation of different assets and products. In the next section
we discuss the issues related to the extensibility both at the domain engineering as well as
at the application engineering level.

7.3.2 Qualitative Analysis

This section presents a qualitative evaluation of CAPucine in terms of the properties for a DSPL
framework introduced in Chapter 3. We identified 4 main properties: extensibility, scalability,
runtime history, and usability.

Extensibility

In our approach, we give support to a given extent for extensibility. Since our approach is based
in MDE principles, models are used as first-class entities for the development and adaptation of
the different products, the extensibility is achieved by adding new metamodels, transformations,
code generators and models. We distinguish two types of extensibility in our approach that are
derived from the two processes of SPLs: extensibility of the domain, and extensibility of the
application.

• Extensibility of the domain

This type of extensibility refers to the modification of the core assets defined during the
process of domain engineering. This type of extensibility represents a major challenge since
it aims at modifying the core assets that constitute the architecture of the product line. An
extension of this type may be for example the addition of new target platforms (other than
SCA or Java), the definition of a different composition model (i.e., change the model part of
the aspect metamodel).

To successfully realize this kind of extensibility and support these new core assets, devel-
opers are required to add the metamodels for the new platforms (in the same way we have
provided metamodels for SCA and Java), and also a set of transformations that takes every
aspect model and map its concepts into coherent elements that are particular to the new
platform. Additionally, for the derivation process to be complete, the code generators for
the new models have to be also provided. Although this type of extensions requires an
important effort from developers, there are several ways in which we can ease the task. For
example, the transformations and code generators already developed for our DSPL can be
used as templates to build the new transformations towards different platforms. Consider
the diagram presented in Figure 7.21. It describes the elements that have to be provided
in order to extend the scope of the transformations in the Software Product Line. The cur-
rent implementation of the DSPL supports Java and SCA. For a new target platform, the
elements to provide (presented with dashed lines) are: (1) the metamodel of the new target
domain, (2) a model transformation from the aspect model, (3) a code generation for the
particular platform of implementation language.

Additionally, if the dynamic properties of the product line are important, then the exten-
sions to new platforms have to guarantee, that these new platforms do provide the mecha-
nisms for modifying products at runtime, in the same way as our target platform FraSCAti

does. Without this support, the runtime phase is not complete.
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Figure 7.21: Extensibility of the Domain.

• Extensibility of the application

The second type of extensibility refers to the addition of new functionalities for a particular
product family. This type of extensibility is easier to handle than the previous case since
it only affects the assets developed for every particular product family and not the whole
architecture of the product line. An extension of this type may be for example the addi-
tion of new features, the development of new aspect models to realize each feature and in
general, every modification that only affects the elements developed during the application
engineering phase.

We have built the architecture of CAPucine based on the variability and aspect metamod-
els, which are independent of any particular technology. This allows developers to create
product families for different application domains. To create a new product family or en-
rich an existing one, developers are required to create or modify the feature model to add
the new supported features, and use the metamodels provided to create aspect models for
each optional or alternative feature in the feature model. If new mandatory features are
also added, it is necessary to modify the core aspect by adding the architectural elements
that support them.

Since model transformations for design weaving as well as code generators have been de-
veloped for any model that conforms to the metamodel, no further modification is needed
to derive the products for the new product family. For the runtime weaving, aspects are
required to specify an event. As described in Chapter 6, the runtime weaving only takes
place for aspect models that specify the moment during the execution when they have to be
woven. If aspect models do not include the event part, they are considered as design-only,
and runtime adaptation scripts will not be generated from them.
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Scalability

In any SPL, one of the biggest challenges is to deal with the combinatorial explosion of product
configurations. We have illustrated in 6 that the size of a product family grows exponentially
with every optional feature added to the diagram. As it was the case for the example used in our
experimentation, starting from a rather small feature diagram with 16 variants, we have obtained
more than two thousand product configurations.

Larger product families represent a challenge in terms of scalability and performance. To
face it, we try to anticipate as much as possible the different configurations that are valid and
that can be reached by the weavers at design time. We have defined analysis that calculate the
set of valid product configurations from a given feature model. Furthermore, we use the aspect
models in our constraint analysis to reduce the number of configurations to eliminate those that
cannot be composed. The results are stored in tables that are accessed at runtime to guarantee
that no matter the adaptation required, the products will always respect the feature constraints
and the aspect dependencies.

However, if the size of the product family grows bigger, the time for the adaptation cycle,
and in particular the time for the Validator to verify if the target configuration is correct will be
impacted by the manipulation of a large number of valid configurations. In addition to that, there
are other elements that impact the performance. For instance the reconfiguration of products is
by itself a time and resource consuming operation. If it is combined with other processes, it may
result in performances that are not satisfying for mobile environments as the one presented in
our experimentation.

Runtime History

A remaining problem in adaptable systems refers to the capability of the system to go back to a
previous state before one or several adaptations have taken place. In our approach this traduces
in defining a process of unweaving for the aspect models that might get woven due to context
events. As we have described in Chapter 6 this is only possible for the aspects that do not in-
clude any Delete modifications. If a weaving performs a Delete modification, the elements
that got deleted are not stored anywhere and recovering those elements would not be possible.
This kind of adaptations is not supported yet. We consider that all the features selected at design
time, should remain as part of the products and should not disappear, regardless of the different
context events that may occur. Consequently, for the dynamic reconfigurations we only support
aspects that extend the products functionality by adding new elements. Deletion is reserved for
design time adaptations. Another concern at runtime refers to the volatility of context infor-
mation itself. Since we confine the definition of context-information to the design of an aspect
model, new context observables, that were not initially specified by an aspect model, cannot be
taken into account. CAPucine does not support the on-the-fly introduction of new observables
and their corresponding adaptation rules.

Usability

In our approach, we propose two languages for variability and architecture and composition
languages as well as a specific derivation process inspired by the MDA approaches to transform
PIMs into PSMs. Since we have already discussed the tool support offered by Model2Code for
the derivation process, here we discuss the usability of CAPucine regarding the languages used
for the variability, and architecture.

130



7.4. Summary

• Variability

With regard to variability, we have defined the feature metamodel (see Chapter 5). This
metamodel is small and easy to understand. We have focused on modeling the essential
concepts for features including variation points, variants, and the different types of interac-
tions among them. We have demonstrated in our case study and experimentation in Section
7.1, how the metamodel is used to define the variability model.

However, the simplicity of the feature metamodel also implies that it lacks the expressive-
ness required to define elements found in other approaches like: multiplicities (when OR
and XOR alternatives are not accurate enough), mixed exclusive and non exclusive variants
from the single variation point (this property is specified into the variation point and not
in every variant), and finally selection and deselection of variation points (only variants
can be selected from a feature model). We are aware of the lack of such properties in our
language. Nevertheless, our goal was to create a language expressive enough to allow de-
velopers to create product configurations, used as input in the derivation of products. Even
if we lack the expressiveness of other approaches, we consider that the feature metamodel
is expressive enough to be used in the overall DSPL approach.

• Architecture

The second language that we have introduced is represented with the aspect metamodel
(see Chapter 5). This metamodel plays an essential role in the application engineering pro-
cess of CAPucine since it enables developers to define only once, artifacts that are used at
both design and runtime. The metamodel uses the terminology from AOSD in order to rep-
resent the modularization of the software products and allows the realization of variability
through aspect models. One of the advantages of such metamodel is that, we provide a
generic weaver for design and runtime. This means that, regardless of the business being
modeled, as long as it conforms to our metamodel, the weavers and transformation tools
provided can be used with no extra effort.

However, an aspect contains several pieces of information (architecture, modifications,
places, events). Developers need to concretize several pieces of information in a single
model. Currently our approach offers no extra support for the development of aspect mod-
els. They have to be created as any other model in EMF, which for large products, may
result in a complex and error-prone process.

7.4 Summary

In this chapter we have presented a validation for CAPucine. We started with the experimen-
tation we followed to describe a sample Product Family with CAPucine using a top – down ap-
proach. We started from scratch and define the domain and application engineering processes
for building a family of products. The scenario used has been defined for the purposes of a col-
laborative work in the context of the CAPPUCINO project. In the initial phase, products can be
configured with the help of a feature diagram. In a second step, we add dynamic properties to
the systems and extend the scope of the product family using several use cases based on context
information. This enables the products to switch among several configurations at runtime, in re-
sponse to changes in the environment. We have also presented in detail the tools built around the
DSPL. This includes a set of transformations and code generators called Model2Code, the im-
plementation of the algorithms and their application along the product derivation process. The
last part of this chapter presents a discussion and justification for the choices made in CAPucine
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and a qualitative evaluation of CAPucine. For the discussion, we revisit the challenges identified
in Chapter 3 and, in particular, we elaborate on how the design and runtime derivation processes
presented in Chapters 5 and 6 combined enable the unification of software adaptations. For the
evaluation, we have discussed how our approach stands regarding properties like: extensibility,
scalability, and usability.

This chapter concludes the third part of this document dedicated to the validation of our
approach. In the next chapter we summarize the main contributions of this dissertation, present
the conclusions of the research work, and define a set of perspectives for future work.
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Chapter 8

Conclusion

“It’s more fun to arrive a conclusion than to justify it." Malcolm Forbes
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8.1 Summary of the Dissertation

The software industry presents new challenges related with the user expectations and the speed
at which applications have to be developed. In addition to that, requirements keep on changing,
making dynamic adaptations more the rule rather than the exception. As a consequence, this
has brought the need for automated development processes that help developers involved in the
projects to accomplish their goals with the quality expected and respecting the deadlines. The
strategies proposed by the SPL community are ambitious and promise to ease such processes
by defining reuse strategies that are usually implemented through generative and compositional
schemes. However, successful implementations of such strategies are still scarce and do not ex-
tend properly to software systems that have to be adapted constantly, after their implementation.

This research has tried to bring new insights on this domain, and in particular, in the chal-
lenges of developing adaptable applications using SPL principles, and the possible ways to face
those challenges.

We have defined a simple –yet complete– language for defining variability and enabling
the process of product derivation. We have also defined an architecture metamodel to have a
high-level representation of SOA and CBSE applications. In addition to that, we have defined an
AOSD-like metamodel that includes the notions of pointcuts, and advices. With this metamodel
we are able to modularize the architecture of the applications in two parts: the first part that holds
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the mandatory elements for any product, and the second part that holds a set of independent
aspect models representing optional elements.

We have also introduced the variability management for different product families. This is
perhaps, one of the most interesting and challenging topics for the construction of SPLs that ac-
tually generate applications matching the user expectations. It has been demonstrated that using
a specification of commonalities and variabilities for a set of software products, it is possible to
involve the users in a customization process, where they can be able to decide about the elements
constituting their software product by selecting/deselecting among the different features avail-
able. The decisions are reflected with product configurations that are used as a strategy for the
composition which results in complete PIMs for every particular configuration. The weaving is
based on a model composition that creates a single woven model from two different parts: (1)
the elements implementing the commonalities for every product (i.e. the core), and (2) the ele-
ments implementing the variability from the particular configurations (i.e. aspects). Thanks to
the weaving process, it is possible to build different products that share a certain set of features,
but that are differentiated by a set of variabilities selected specifically to satisfy every particular
user.To complement the aspect weaving, we have defined metamodels for the target platform
and implementation language. Using metamodels for each particular domain provides a separa-
tion of concerns that allow developers to focus on the business of the applications being modeled
and postpone decisions about a particular platform and implementation technology. We have
proposed a separation in different domains for: the architecture, the platform, and the imple-
mentation. We have also proposed a set of model transformations to obtain the source code from
the application and platform domains. By using the transformations, models are enriched in
every stage of the derivation process to produce the platform specific models that represent a
software product. In this way, source code is automatically generated.

Furthermore, we have defined a second process of product derivation that extends the clas-
sic one to the execution time. Starting from a product configuration obtained from analyzing the
context information, products can be adapted at runtime. We have enriched the aspect meta-
model with a context event to be aware of the information that triggers the dynamic adaptations.
Products can then be adapted to match the specific executing conditions using aspect models
that specify the context events. An adaptation in the DSPL is realized as the switch from a given
product configuration (current) to a new one (target). The switch itself is expressed with a set
of weaving/unweaving operations for the aspects affected by the context update. To realize the
runtime derivation process, we have based the adaptation on a set of realization techniques for
context-aware management, such as the FraSCAti, a platform capable of performing dynamic
reconfigurations.

Finally, thanks to the aspect metamodel, our approach unifies the product derivation pro-
cesses at design time and at runtime. The aspect metamodel allows developers to define at the
same time a base architecture and different modules that can be integrated to this architecture.
The metamodel enables aspect models to have a twofold weaving. On the one hand, they can
be used to represent user selections and build customized products. On the other hand, they can
take into account the information coming from the environment, and use it as a way of binding
the variability. In this case, the same aspect model can be transformed into reconfiguration scripts
that adapt the product by switching its configuration. Consequently, developers only have to de-
fine aspect models once and use them at design time as a way to build a product or at runtime to
adapt the product for a particular context situation.
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8.1.1 Contributions

1. Unification of design and runtime adaptations

The main contribution of this dissertation refers to the unification of design and runtime
adaptations. It is achieved through the definition of a single metamodel that enables
SCA-based architectures to be modularized, and trhough two different phases for prod-
uct derivation, one at design to build a product and one at runtime to adapt a product. The
design phase is implemented using model transformations and code generation, at runtime
the platform FraSCAti supports the dynamic adaptations.

The main benefits of the proposed approach are (1) a clear separation of concerns, (2) a
unified definition of design and runtime adaptations, (3) an explicit link between software
adaptations and their motivations, and (4) a supporting platform that allows adaptations to
be executed in different moments of the software life cycle, from the initial product configu-
ration to its successive dynamic reconfigurations. As a result, our tool-supported approach
allows software adaptation processes to reach high levels of reusability and flexibility.

2. Variability Definition

The variability metamodel allows one to define the functionality for a set of applications
through abstractions of their main features. In our case, we have defined a variability
model that includes the notions of variant, variation point, alternatives, and constraints be-
tween variants and variation points. The metamodel is simple and easy to use, and through
our experimentation we have demonstrated that it is expressive enough to model different
kinds of relationships within a product family.

3. Conflict-free composition strategy for design time and runtime

We have introduced a composition of models that is realized through the weaving of a
core and different aspect models. The weaving process is guided by the explicit and im-
plicit dependencies that exist between the selected features. Our proposal relies on a clear
separation of concerns enabled by the underlying variability and aspect metamodels. Our
method allows to identify implicit dependencies and conflicts between features, and takes
such feature interactions as a basis to derive an appropriate architecture composition strat-
egy. The conflict-free strategy is part of the derivation processes at design and at runtime,
which enables the derivation and adaptation of SCA-based software products.

4. Generative and automated development

CAPucine presents a comprehensive approach to feature-driven composition of software
architectures. It allows the automated derivation of product architectures from feature con-
figurations, by combining MDE and AOM techniques. The composition process is realized
through transformation-based model weaving. Afterwards, code generation is based on
templates from which common methods are generated for the different products of the
family. Templates include a certain amount of empty fields that are filled with the informa-
tion that comes from the models. The use of templates guarantees that the code is correct
and well formed. Besides, its integration with the models implies a high degree of reuse
throughout the different products.

5. Automated tool-supported derivation of products

Product derivation has been automatized through the set of tools called Model2Code. This
tools offer support for the feature configuration, the analysis of constraints and the code
generation. At the same time, they provide the mechanisms to invoke every process of
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the transformation chain separately, in the cases where only a part of the functionality is
required; or following the complete derivation process strategy, where starting from sim-
ple feature selections we obtain software products as well as the required reconfiguration
scripts for a dynamic adaptation.

8.2 Perspectives

Even if the results obtained from this research are consequent, there are still several areas that
have to be further developed. In the following paragraphs we discuss some of this areas as well
as some future works that could lead to further improvements in the DSPLs.

8.2.1 Scope and short-term perspectives

The work realized in the context of this dissertation is not complete. Several areas are still open
for improvement so that we can cover the whole strategy for DSPL that we want to promote.
Here below we present some of the works that would further improve CAPucine in the short
term:

• Verification of Models and Metamodels

As we briefly discussed it in Chapter 7, model creation is still a complex an error-prone
task. It would be desirable to have a methodology and a set of tools to help architects and
developers to create this type of assets. If the model presents errors, the derivation process
is affected. So far, the verification is done programmatically when the models are loaded for
the processes of analysis and transformation. This usually occurs very late in time. Ideally
models should be verified right after their creation so that, different types of checks can be
applied and developers get inmediate feedback of the issues encountered. An improved
tool for creating the models would help developers to find mistakes and missing parts of
the models right after their creation. In this direction, an interesting option may be to use
a set of tools for defining domain specific languages (DSL). Certain tools used for defining
this type of languages like xText enable developers to add a set of verifications to the
instances of the DSL. Furthermore, this tools have already a good level of maturity and
provide and integration with EMF.

• Extend the domain of the DSPL

For the implementation of the DSPL presented in this dissertation, we have limited the
number of software artifacts that we are able to generate. In addition to that, we have
chosen only one platform for the execution of the products. However, CAPucine could be
extended to support other types of platforms, and domains. For example, we could increase
the amount of code that is automatically generated depending on the chosen platform.

• Graphic User Interfaces

The examples provided in CAPucine only deal with the architecture of SCA applications
and not with particular GUIs. Actually, in our experimentation for mobile devices, we have
built a wrapper around SCA applications inside the Android platform, and the interfaces
have been developed by hand in order to interact with the applications. An interesting
work that could follow this research is related to the generation of code for mobile devices
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like it is already being done by the Startup UBINNOV 1, which aims at automating the de-
velopment of mobile applications. In particular they focus on automating the development
process through software product lines. They target mobile platforms like iOS from Apple
and Android from Google.

• Add more information for the decision making

The decision making mechanism presented in Chapter 6 only uses the information of the
variability model to guarantee the correctness of the reconfiguration. Furthermore, if the
constraints in the variability model or in the aspect dependencies are not respected, the
adaptation does not take place. To overcome this limitation, it would be necessary to in-
clude other sources of information to reason about the best configuration for a particular set
of context events. There can be several configurations that respect the variability and aspect
models for a particular set of context events. Hence, using extra information like quality of
service (QoS) or the complexity of the reconfiguration itself, one should be able to choose
the most appropriate configuration that maximizes the quality functions and that respects
the SPL constraints. A possible workaround can be found in the work of Romero [Rom11].
He describes the notion of ubiquitous feedback control loops which among their compo-
nents, include a Planning mechanism that uses information like QoS to find the best re-
configuration for self-adaptive systems.

• Finer-grained Adaptations

The adaptations defined in the examples and in generally the ones presented throughout
the work presented in this dissertation focus on rather coarse-grained adaptations. Con-
cretely, we have presented examples that manipulate components, references, services, and
in general the elements defined in the architectural metamodel. However, the modification
of smaller elements in the architecture of an application (e.g., objects, properties, methods,
etc.) are not covered. A short-term improvement to the overall approach is to consider
finer-grained adaptations by creating aspects that enable the modification of the source
code inside the Operator elements.

8.2.2 Long-term perspectives

In order to further improve the DSPL and to overcome some of the limitations with regard to the
results of this research, several perspectives for long-term work can be foreseen:

• Behavior Adaptation

We have focused on the adaptation of the structure of products based on SCA, either at
design time or at runtime. Even if our architecture metamodel includes several concepts
related to the behavior, they have not been exploited for the adaptation of applications. We
consider that the behavior elements already modeled can be enriched with the notions of
execution processes like BPEL. This would bring a new level of adaptation to the products
by allowing modifications of the sequence of calls between services and references, that
extend the already supported addition or suppression of certain components or connections
between components.

1UBINNOV home page: http://ubinnov.lille.inria.fr/
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• Support multi-staged configurations

An interesting problem in SPL engineering refers to multi-staged derivation processes. In
CAPucine, we have assumed that a single-staged configuration and the associated product
derivation is always possible. However this may not be true for different contexts where ex-
ternal restrictions require a product to be derived in a sequence of smaller and independent
steps. This kind of derivations raises new challenges for the product derivation process and
specially for the constraint analyisis introduced in Chapter 5.

For example, supose that a feature model includes two features A and B. In a multi-staged
derivation process we may have restrictions like, for instance, being able to add only one
feature at a time. In such a case, in order to add the two features, we have two possibilities:
(1) add A first and then B; or (2) add B first and then A. In this simple example without
relationships between the features or the aspects, the constraint analysis will not make any
difference between the two options and return the same order from left to right as received
(A and then B). However, adding A in the first place may violate external restrictions like
for example budget (i.e. adding the feature A is too expensive and has to be delayed),
and time (i.e. feature B takes less time to be integrated in the product ). If we add to this
problem, the constraints between features (e.g. if A requires B), the derivation process gets
more complex and a solver is needed to define the best path of derivation (if any), that
respects the external restrictions. This consitutes an important and interesting trend for
improvement of the approach, where CAPucine could benefit from other works in the area
that specifically deal with the multi-staged configuration problem.

• Traceability and Reverse Engineering

As a complement to the transformation processes, and in general to the derivation of
software products presented in this dissertation, the traceability management is a field
that is yet to explore. We have already implemented a small top - down mechanism for
traceability with the definition of the Configurator component in every product of the
software product line. Such component keeps the configuration of the product in terms of
selected variants at runtime. However, there is no way to go the other way around (bottom

- up) to reify a model of aspects or a feature diagram from a composite structure in an SCA
application. Having such a tool, would allow one to analyze and understand bigger and
complex applications by creating high abstract representations in terms of variability. This
could also be used in the process of creating new assets from already implemented code,
and integrating them inside the architecture of the SPL.

Traceability could also be useful to support the unweaving process of aspects that delete
elements. This was one of the main limitations of the approach discussed in Chapter 7. In
order to support this kind of adaptations, we need to store a trace of the history of modifi-
cations that have been done over a single product at runtime. This would mean that, every
time an adaptation takes place, we would save the the elements deleted, in order to add
them again if the adaptation has to be rolled-back. Several challenges have to be faced in
order to support this kind of behavior mainly related to the order in which we can unweave
aspects, and the constraints in the feature model and in the aspects. One possibility to face
those challenges is the implementation of a traceability mechanism at runtime. Traceability
can be used to annotate the elements with extra information about the relationships with the
aspects where they belong and to a higher level, the features that are implemented by such
aspects. This information could be used to evaluate if a given unweaving operation has an
impact on the product at the level of features (legal) or aspects (composable).
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• Formal aspects of the approach

The CAPucine framework is focused on the derivation process and the development of
reusable assets throughout the life cycle of each product. Nevertheless, several parts of the
approach could be enriched and improved by applying well founded theoretical studies.
For instance, it could be interesting to redefine the constraint analysis using satisfaction
of boolean expressions. This would allow us to express constraint algorithms between fea-
tures and aspect models in a formal way and could open the doors to reuse them in different
applicaiton contexts.In the same idea, it would be also interesting to explore the applicabil-
ity of binary decision diagrams for the optimization of legal and valid configurations that
we use through pre-calculated tables for the dynamic adaptation.

Finally, it would be also interesting to evaluate the impact of extending the proposed the
feature model, to include the notions found in other approaches like cardinalities, feature
groups, and attributes for the features. This would have an impact specially in the con-
straint analysis presented in Chapter 5, and in the algorithms for obtaining the product
family. In that sense, it would be interesting to evaluate if the extra information added to
the feature model is useful with regard to the aspect model dependencies and the deriva-
tion itself, or if we can rather build transformations towards languages that focus on the
problem of feature configuration (e.g. FAMILIAR, TVL).

• Discovery of Context Information

Since we confine the definition of context-information to the design of an aspect model,
new context observables, that were not initially specified by an aspect model, cannot be
taken into account. This means that so far, aspects are defined before the execution, which
limits the adaptation possibilities to the set of foreseen observables. Our approach does
not support (yet) the on-the-fly introduction of new observables and their corresponding
adaptation rules. We would like to enhance CAPucine by allowing the products to process
new pieces of context-information at runtime.
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Oriented Software Development. Addison-Wesley, Boston, 2005. 22, 23

145



Bibliography

[FHMP+09] Franck Fleurey, Øystein Haugen, Birger Møller-Pedersen, Gøran K. Olsen, Andreas
Svendsen, and Xiaorui Zhang. A generic language and tool for variability modeling.
Technical report, University of Oslo, Oslo, Norway, December 2009. 16

[FJ09] Robert France and Jean-Marc Jézéquel. Editorial for the special issue on aspects
and model-driven engineering. Transactions on Aspect-Oriented Software Development,
2009. 2, 23, 60

[FJF+07] Steven Fraser, Frederick P. Brooks Jr., Martin Fowler, Ricardo Lopez, Aki Namioka,
Linda M. Northrop, David Lorge Parnas, and Dave A. Thomas. "no silver bullet"
reloaded: retrospective on "essence and accidents of software engineering". In ACM

SIGPLAN OOPSLA’07 Companion, pages 1026–1030, 2007. 1

[Gis01] Dan Gisolfi. Web services architect: Part 1. an introduction to dynamic e-business,
April 2001. http://www.ibm.com/developerworks/webservices/library/w-ovr/.
26

[HHPS08] Svein Hallsteinsen, Mike Hinchey, Sooyong Park, and Klaus Schmid. Dynamic Soft-
ware Product Lines. Computer, 41(4):93–95, 2008. 2, 32

[IBM06] IBM. An architectural blueprint for autonomic computing. white paper, June 2006.
White Paper. 32

[INR10] INRIA Project-Team Triskell. Kermeta tool suite, 2010.
http://www.kermeta.org/. 69

[Jéz08] Jean-Marc Jézéquel. Model driven design and aspect weaving. Software and System

Modeling, 7(2):209–218, 2008. 60

[Jos07] Nicolai Josuttis. Soa in Practice: The Art of Distributed System Design. O’Reilly Media,
Inc., 2007. 25, 26

[JZ05] Waraporn Jirapanthong and Andrea Zisman. Supporting product line development
through traceability. In Proceedings of the 12th Asia-Pacific Software Engineering Con-

ference, pages 506–514, Washington, DC, USA, 2005. IEEE Computer Society. 17

[KAAK09] Jörg Kienzle, Wisam Al Abed, and Jacques Klein. Aspect-oriented multi-view mod-
eling. In AOSD ’09: Proceedings of the 8th ACM international conference on Aspect-

oriented software development, pages 87–98, New York, NY, USA, 2009. ACM. 3, 35,
37

[KCH+90] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. Feature-oriented domain analysis (foda) feasibility study. Technical re-
port, Carnegie-Mellon University Software Engineering Institute, November 1990.
12, 15, 59, 62, 156

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of AspectJ. In J. L. Knudsen, editor, Proc. ECOOP

2001, LNCS 2072, pages 327–353, Berlin, June 2001. Springer-Verlag. 33

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In
ECOOP, pages 220–242, 1997. 2, 22, 60

146



[Kur05] Ivan Kurtev. Adaptability of model transformations. PhD thesis, University of Twente,
Enschede, May 2005. 21

[KWB03] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model Driven

Architecture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003. 18, 19

[LBT09] Kwanwoo Lee, Goetz Botterweck, and Steffen Thiel. Aspectual separation of feature
dependencies for flexible feature composition. In Proc. of the 33rd Annual IEEE Inter-

national Computer Software and Applications Conference, pages 45–52. IEEE CS, 2009.
36, 37

[LSO+07] Sten A. Lundesgaard, Arnor Solberg, Jon Oldevik, Robert B. France, Jan Øyvind
Aagedal, and Frank Eliassen. Construction and execution of adaptable applications
using an aspect-oriented and model driven approach. In Jadwiga Indulska and
Kerry Raymond, editors, DAIS, volume 4531 of Lecture Notes in Computer Science,
pages 76–89. Springer, 2007. 3, 41, 43

[MBJ08] Brice Morin, Olivier Barais, and Jean-Marc Jezequel. K@rt: An aspect-oriented and
model-oriented framework for dynamic software product lines. In Proceedings of the

3rd International Workshop on Models@Runtime, at MoDELS’08, Toulouse, France, oct
2008. 41, 43

[MBNJ09] Brice Morin, Olivier Barais, Gregory Nain, and Jean-Marc Jezequel. Taming Dynam-
ically Adaptive Systems with Models and Aspects. In 31st International Conference

on Software Engineering (ICSE’09), Vancouver, Canada, May 2009. 41, 43

[MFB+08] Brice Morin, Franck Fleurey, Nelly Bencomo, Jean-Marc Jézéquel, Arnor Solberg, Ve-
gard Dehlen, and Gordon S. Blair. An aspect-oriented and model-driven approach
for managing dynamic variability. In Krzysztof Czarnecki, Ileana Ober, Jean-Michel
Bruel, Axel Uhl, and Markus Völter, editors, Model Driven Engineering Languages and

Systems, 11th International Conference, MoDELS 2008, Toulouse, France, September 28 -

October 3, volume 5301 of Lecture Notes in Computer Science, pages 782–796. Springer,
2008. 3, 41, 43

[MM09] John D. McGregor and Dirk Muthig. Splc ’09: Proceedings of the 13th international
software product line conference, 2009. 12

[MSKC04] Philip K. McKinley, Seyed M. Sadjadi, Eric P. Kasten, and Betty H. C. Cheng. A
taxonomy of compositional adaptation. Technical report, Department of Computer
Science and Engineering, Michigan State University, 2004. 33

[nat68] Nato software engineering conference, 1968. 1

[ND08] Carlos Noguera and Laurence Duchien. Annotation framework validation using
domain models. In Fourth European Conference on Model Driven Architecture Founda-

tions and Applications, pages 48–62, Berlin, Germany, June 2008. 69, 158

[NnNG09] Angel Núñez, Jacques Noyé, and Vaidas Gasiūnas. Declarative definition of con-
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Appendix A

Vers les Lignes de Produits Logiciels
Dynamiques

A.1 Introduction

Ces dernières années, de nombreux progrès dans le domaine de la mobilité ont été faits. Les
téléphones mobiles sont maintenant équipés de multiples capteurs et d?interfaces d?accès aux
réseaux qui ouvrent de nombreuses possibilités d?usage.

Pour profiter de toutes ces capacités matérielles et fournir aux utilisateurs une utilisation
simplifiée, les logiciels pour ces téléphones mobiles doivent devenir sensibles au contexte, c’est-
à-dire, qu?ils doivent surveiller les événements et les informations provenant de leur environ-
nement et réagir en conséquence. De plus, nous remarquons qu’un nombre important des appli-
cations mobiles partagent des caractéristiques communes concernant l?architecture, les moyens
de communication, la capacité de stockage et les interfaces. Pour cela, nous considérons que les
logiciels sensibles au contexte peuvent bénéficier d’une approche basée sur les Lignes de Pro-
duits Logiciels (LPL)(Software Product Line en anglais). Les LPL ont été définies pour exploiter
les points communs par la définition d?éléments réutilisables, ceci afin d’automatiser la dériva-
tion de multiples produits. Néanmoins, les LPLs ne prennent pas en compte les modifications à
l’exécution des applications.

Cette thèse propose une ligne de produits logiciels dynamiques (LPLD) (Dynamic Software
Product Line en anglais) appelée CAPucine (pou Context-Aware software Product line). Celle-ci
étend une LPL classique en fournissant des mécanismes pour adapter les produits à l’exécution,
ceci pour faire face aux changements dynamiques imposés par la sensibilité au contexte. Notre
objectif principal est d’unifier les adaptations à la conception et à l’exécution en utilisant des
artefacts logiciels de haut niveau. Ces artefacts peuvent ensuite être réutilisés pour mettre en
?uvre une LPLD en définissant les processus nécessaires pour produire des produits logiciels à la
conception et les adapter pendant son exécution.

Concrètement, la première contribution de cette thèse introduit un modèle de variabilité et
un modèle de composition. Avec le modèle de variabilité, nous cherchons à définir une famille
de produits et à identifier les points communs et les différences pour un ensemble d?applications
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mobiles. Le modèle de composition, quant à lui, est fondé sur les idées du développement logi-
ciel par aspects (Aspect Oriented Software Devlopment en anglais). Nous utilisons le modèle
de composition pour modulariser les produits sous forme de modèles d’aspect qui permettent
d?obtenir une représentation indépendante de la plate-forme. Chaque modèle d’aspect est formé
de trois parties : le modèle d’architecture qui représente les parties de logiciel à ajouter, les ad-
vices qui contiennent un ensemble de modifications demandées et enfin, le point de coupe qui
identifie les endroits où les modifications seront effectuées.

Comme seconde contribution, nous proposons deux processus de dérivation du produit :
un au moment de la conception et un au moment de l’exécution. Le premier processus vise à
construire un produit. Le processus à l?exécution vise à adapter un produit en cours d’exécution.
Les deux processus utilisent les modèles de variabilité et de composition définies précédemment.
De cette façon, nous permettons aux développeurs d?utiliser les mêmes artefacts logiciels, à la
fois pour la conception d’un produit logiciel et pour l?adaptation à l?exécution. Pour la concep-
tion, nous nous basons sur une approche dirigée par les modèles, où les transformations et la
génération de code sont utilisées pour construire le produit logiciel à partir d’un ensemble de
modèles. Pour l’exécution, nous utilisons FraSCAti, une plate-forme d’exécution des applica-
tions à base de services et de composants qui comprend des propriétés dynamiques, de façon
à pouvoir exécuter les adaptations. Nous utilisons également un gestionnaire de contexte pour
traiter les événements provenant de l’environnement et prendre des décisions sur l’adaptation.

Ce travail de recherche s?est déroulé dans le cadre du projet FUI CAPPUCINO, qui a pour
objectif de créer des applications mobiles pour des environnements ubiquitaires. Pour valider
notre approche, nous avons défini une LPLD pour une étude de cas de vente d?un hypermarché,
qui est composée des deux processus de dérivation à la conception et à l’exécution. Le scénario
démontre les avantages de notre approche et, en particulier, l’unification réalisée par les modèles
d’aspect utilisés au moment de la conception et lors de l’exécution.

A.2 CAPucine : Vue Globale

Nous proposons dans cette section une organisation de la chaîne de production logicielle, appelée
CAPucine. Un produit logiciel sensible au contexte dans le cadre de CAPucine contient au final
des composants de type SCA, des classes Java, et des scripts d’adaptation. Pour construire ces
différents éléments, nous utilisons une chaîne de production de logiciels dont nous décrivons
l’organisation dans cette section. Cette ligne de production a la particularité de proposer des
points de variation qui dépendent du contexte dans lequel le logiciel sera exécuté. Une SPL
dynamique telle que CAPucine présente plusieurs différences vis-à-vis d’une SPL traditionnelle,
en ce qui concerne l’architecture, et le cycle de développement. De telles différences sont reflétées
en termes : (1) de rôles et responsabilités différents, (2) de type d’artefacts (ou assets) identifiés
et construits dans le processus de l’ingénierie du domaine, et (3) de processus de dérivation.
La figure A.1 présente une vue globale de notre DSPL avec les phases et les éléments présents
dans les processus de l’ingénierie du domaine et de l’ingénierie d’application. Dans le cas de
l’ingénierie de domaine, les artefacts sont représentés comme des méta-modèles et modèles pour
l’expression de la variabilité ((Features), l’application (Aspects), et la plate-forme (SCA and Java).
Pour l’ingénierie d’application, il y a deux types de dérivation de produit : à la conception et à
l’exécution. La dérivation au moment de la conception se concentre sur la construction d’un
produit à partir de zéro, tandis que la dérivation au moment de l’exécution est prévue pour
modifier un produit existant.
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Figure A.1: Ingénieries du domaine et de l’application.

A.2.1 Ingénierie de domaine

Le processus de l’ingénierie de domaine concerne la définition et la construction des assets.
Dans notre cas, nous suivons une approche de l’ingénierie Dirigée par les modèles (IDM). En
conséquence, les assets correspondent principalement à des méta-modèles, des modèles, et des
transformations. Nous divisons la création des assets en deux catégories différentes : assets ab-
straits, et assets concrets. Les assets abstraits sont nécessaires afin de créer les assets concrets qui
sont employés pendant la dérivation de produit pour construire les logiciels. Les assets abstraits
correspondent principalement aux méta-modèles, alors que les assets concrets incluent les mod-
èles, les transformations de modèle et les générateurs de code. La responsabilité de développer
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chaque type d’asset est partagée entre quatre rôles différents : architecte d’application, architecte
de plate-forme, utilisateur final, et développeur d’assets.

A.2.2 Ingénierie de l’application

Le processus de d’ingénierie d’application concerne le développement des différents produits
par choix d’un sous-ensemble de caractéristiques et par combinaison des assets définis pendant
le processus de l’ingénierie du domaine. Une caractéristique particulière qui distingue une SPL
dynamique d’une SPL traditionnelle est qu’il y existe deux rôles supplémentaires lors de la déri-
vation de produit (Figure A.1) : le développeur de produit qui veut construire un produit en choi-
sissant un ensemble de caractéristiques (features), et la notion d’événement de contexte qui crée
également une configuration de produit mais cette fois au moment de l’exécution. Pour chaque
rôle particulier, il y a un processus différent de dérivation de produit qui lance les deux phases
différentes : la conception et l’exécution. Les deux phases partagent les mêmes abstractions pour
construire un produit pour une configuration donnée, mais la réalisation et les technologies em-
ployées pour les mettre en oeuvre sont différentes.

A.3 Phase de Conception

Afin de permettre la dérivation automatisée d’un produit, il est nécessaire de spécifier les élé-
ments composables qui réifient chaque feature. Chacun de ces éléments composables doit in-
clure toute les informations exigées pour la composition parmi lesquelles nous trouvons : (1) les
endroits affectés par la composition, (2) les éléments complémentaires devant être composés et
(3) les changements à exécuter afin d’ajouter le feature associé. Pour relever un tel défi, nous
présentons la notion de modèle d’aspect qui est une manière de réaliser un élément composable.
L’utilisation des modèles d’aspect permet la dérivation des produits au moyen d’une composi-
tion logicielle basée sur les features. La définition des modèles d’aspect se fonde sur la Mod-
élisation Orientée Aspect (MOA ou en anglais Aspect-Oriented Modeling). De la même façon, le
processus de dérivation couvre la configuration de produit, l’analyse de contraintes, le tissage
d’aspect, et finalement la transformation vers la plate-forme d’exécution.

A.3.1 Méta-modèles

Méta-modèle de Features

Plusieurs travaux sur la modélisation de features ont proposé de multiples extensions aux
travaux sur les diagrammes de features (FD) introduits par [KCH+90]. Dans [SHT06] Schobbens
et al. décrivent différentes approches pour modéliser les features et définissent une syntaxe ab-
straite pour les diagrammes de features qui élimine les ambiguïtés des précédentes propositions.
Ils utilisent une notation mathématique pour définir les relations entre les features. Une approche
différente pour traiter l’ambiguïté dans les FDs est de définir un méta-modèle comme celui pro-
posé par Pohl et al. [PBL05]. Ce méta-modèle présente deux concepts principaux : les points de

variation et les variants. Un point de variation est une représentation d’un sujet de variabilité, par
exemple, le type d’une interface utilisateur qu’une application fournit. Un variant identifie une
option simple d’un point de variation. En utilisant le même exemple, chaque interface utilisateur
simple qui peut être choisie pour l’application (par exemple, riche, léger, basé sur le web, mobile)
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est représentée par un variant. Le méta-modèle présenté dans [PBL05] spécialise alors les rela-
tions entre les points de variation et les variants, en classifiant les types de relations qui peuvent
exister. Ils définissent les dépendances (facultatif et obligatoire) et des contraintes (requires et ex-

cludes). Dans notre cas, nous avons défini un méta-modèle de features inspiré des concepts que
Pohl et al. ont identifiés. Nous définissons les mêmes concepts et les relations en utilisant Eclipse
Modeling Framework (EMF), mais nous changeons la manière dont ils sont modélisés, puisque
l’EMF ne supporte pas la spécialisation ou l’héritage des relations entre deux méta-classes dif-
férentes. Notre méta-modèle de features est montré dans la figure A.2.

 
FeatureModel

name : String
VariationPoint

name : String
selected : Boolean

Variant

exclusive : boolean
Alternative

nodes name : String
mandatory : Boolean

Node

requires

0...*

0...*0...*

0...*

excludes

name : String
Aspect

implementedBy

1...*

Figure A.2: Métamodèle de Features.

La racine du métamodèle est la méta-classe FeatureModel. Elle contient une ensemble de
Nodes. Chaque Node a deux relations : requires ou excludes. De telles relations tiennent
compte de la définition des contraintes entre tous les types de Node. Le Node peut également être
obligatoire ou pas. Nous supportons deux types de node : le VariationPoint, et le Variant
qui sont les équivalents des concepts du point de variation et du variant discutés préalablement.
En plus, un point de variation peut être alternatif, ainsi cela signifie qu’à partir de tous les variants
alternatifs, seulement un doit être choisi. En conclusion, toutes les variants ont au moins un
Aspect qui les implémente.

Méta-modèle d’Aspects

Le méta-modèle d’aspect est utilisé pour construire les assets qui seront composés pour produire
n’importe quel produit de CAPucine. Nous utilisons ce méta-modèle pour définir à la fois le
modèle de base (e.g., le cœur ou core) qui contient les éléments communs de la famille de produits
(e.g. les features obligatoires), et les aspects contenant la variabilité (e.g. les features optionnels)
qui peuvent être tissés sur le modèle de base.

Le métamodèle d’aspects (voir figure A.3) est formé de quatre parties : les éléments à tisser
(Model), les endroits où le tissage doit être réalisé (Pointcut), les modifications à apporter via
l’aspect (Advice), et de façon optionnelle, le moment à l’exécution où l’aspect peut être tissé
(Event).

• Model : la partie Model du métamodèle est utilisée pour définir le modèle core. Pour
modéliser le core, nous avons créé un métamodèle inspiré des éléments issus des modèles à
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Figure A.3: Méta-modèle d’aspects: vue simplifiée.

services et à composants (SOA et CBSE), et plus particulièrement SCA (Service Component
Architecture) [Ope07b].

• Pointcut : nous considérons le Pointcut comme une requête qui retourne tous les
éléments du modèle qui doivent être présents dans le modèle pour qu’un aspect soit tissé.
Nous proposons une modélisation des pointcuts sous la forme d’expressions.

• Advice : nous considérons l’Advice comme une séquence de modifications atomiques.
Nous supportons deux types de modifications: Add et Delete. Dans le premier cas,
pour ajouter un élément, chaque élément Add lie un élément du modèle, et un résultat
du l’exécution d’un pointcut, qui représente l’endroit où l’élément va être ajouté.

• Event : même si la notion du temps n’est seulement utilisée que pendant l’exécution
d’une application, il est nécessaire de la modéliser. Pour faire ceci, nous employons des
événements contextuels. Par contexte nous entendons chaque type d’information pouvant
affecter une application. Les exemples de telles informations correspondent à la disponibil-
ité des ressources, des services, ou encore à des informations telles que la température, le
lieu, ou les restrictions liées au matériel comme la mémoire. En conséquence, un événement
de contexte est considéré comme un changement de l’information de contexte.

Plate-forme et langage

Nous utilisons FraSCAti comme plate-forme d’exécution des applications. Pour la transforma-
tion vers cette plate-forme, et la génération de code, nous utilisons deux méta-modèles dif-
férentes. Un qui définit les architectures à base des services et composants (SCA), et un qui
définit les éléments classiques des implémentations en Java. Concrètement, nous avons employé
le méta-modèle défini par le groupe d’OSOA pour SCA, et le méta-modèle Java proposé dans le
projet Spoon EMF [ND08, Bar06] pour le langage Java.

A.3.2 Derivation

Analyse de contraintes

Le but de l’analyse statique de contraintes est d’identifier et de prévenir les conflits qui peu-
vent exister entre deux mondes différents, le monde de la variabilité exprimé par un modèle de
variabilité et le monde des aspects représenté avec un core et plusieurs aspects.
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Dans notre approche nous proposons une analyse des contraintes dans le diagramme de
features (FD) et des dépendances entre les éléments composables correspondants.

Le processus d’analyse de contraintes a lieu une fois que le développeur a configuré un
produit particulier. La sélection de features est représentée comme un ensemble de variants.
Basée sur cette sélection, l’analyse de contraintes vise (1) à vérifier que les contraintes définies
dans le FD sont conformes aux dépendances correspondantes entre les aspects, (2) à identifier les
conflits implicites de composition, et (3) à dériver l’ordre le plus approprié de composition.

Composition de modèles

À la fin de l’analyse de contraints, nous avons comme résultat l’ordre de tissage pour les modèles
d’aspect qui font partie de la configuration sélectionnée par le développeur du produit. L’étape
suivante consiste a composer ces modèles pour avoir une représentation de haut niveau du pro-
duit que nous sommes en train de construire. D’une façon générale, la composition de modèles
d’aspects se compose des appels successifs à une transformation simple de modèles génériques
(tissage). Cette transformation prend comme entrée le modèle M du core et un aspect A à tisser,
et renvoie un modèle simple représentant la composition du core et de l’aspect. La transforma-
tion est exécutée autant de fois qu’il y a d’aspects à tisser car les aspects doivent être tissés dans
l’ordre défini par l’analyse de contraintes. Le tisseur utilise les informations dans chaque aspect
pour faire la composition. Plus précisément, le tisseur utilise les expressions dans le pointcut
pour trouver les endroits où il doit modifier le core, et ensuite il exécute ces modifications tels
qu’elles sont exprimées dans l’advice.

Transformation et génération de code

Afin de produire le code source correspondant à ce produit, nous suivons une approche classique
MDE où le modèle composé est l’entrée d’une transformation qui prend en compte les concepts
de la plate-forme à services (SCA) et du langage de programmation (Java). Chaque transforma-
tion se compose d’un ensemble de règles qui mettent en correspondance les concepts du modèle
avec les éléments Java et SCA. Par exemple, un élément sera mis en correspondance dans (1)
un composant SCA, (2) une interface de Java définissant ses services, et (3) des classes java qui
implémentent l’interface de Java et représentent le composant de SCA.

La figure A.4 représente une vue conceptuelle montrant comment les modèles, les transfor-
mations et la génération de code sont traités. En transformant d’abord les concepts des modèles
en modèles Java et SCA, nous pouvons vérifier la cohérence de ces nouveaux modèles. Ce ne
serait pas possible si nous avions directement produit du code source à partir du méta-modèle
d’aspect. En conclusion, le code est généré à partir des modèles SCA et Java pour obtenir les
descripteurs composites et le code Java respectivement.

A.4 Phase d’execution

Nous avons présenté un processus de dérivation de produit lors de la conception utilisant des
modèles d’aspect. Nous avons montré aussi un processus d’analyse et de dérivation de con-
traintes conduit par les sélections de features. Dans cette section nous allons présenter une pro-
longation de ce processus de dérivation au moment de l’exécution. Nous montrons les mécan-
ismes requis pour utiliser les modèles d’aspect dans la reconfiguration à l’exécution.
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Figure A.4: Schéma de transformation.

A.4.1 Adaptation en CAPucine

Pour l’adaptation dynamique en CAPucine, nous définissons un processus de tissage à
l’exécution, que transforme le modèle d’aspect définit précédemment dans une nouvelle
représentation appropriée pour la plate-forme d’exécution.

La figure A.5 illustre le processus défini pour le cycle d’adaptation. Il commence par un
événement qui est traité par le gestionnaire de contexte. À la fin de l’agrégation, une information
de contexte est représentée comme un observable. L’observable déclenche l’adaptation. La pre-
mière partie de l’adaptation vise à définir les variants du diagramme de features (FD) qui doivent
être présents dans le produit en fonction des valeurs courantes des différents observables. Cette
liste est alors vérifiée par le validateur qui compare la nouvelle sélection avec les contraintes du
FD. L’algorithme employé pour vérifier les contraintes correspond aux analyses de contraintes
de la phase de conception. S’il n’y a aucun conflit, le générateur de scripts effectue la différence
entre la nouvelle configuration obtenue à partir du validateur et la configuration courante du
produit. Le résultat de cette différence donne deux ensembles : un ensemble de variants qui doit
être retiré du produit, et un ensemble de variants qui doit être ajouté. Pour que chaque variant
soit enlevé ou ajouté, des scripts sont produits pour l’aspect associé et qui peuvent être exécutés
sur la plate-forme FraSCAti.

Adaptateur

L’Adaptateur vise à trouver une nouvelle configuration, exprimée en termes de variants choisis
dans le FD. Pour décider quels sont les variants à employer, il utilise l’information disponible
uniquement pendant l’exécution du produit. Néanmoins, comme la notion de variant appartient
aux étapes initiales de conception, une des premières tâches pour rendre la SPL dynamique est
d’apporter la notion de variant au produit pendant l’exécution. Sans cette information, raisonner
en termes de variants choisis n’est pas possible. Pour tracer la notion du feature à l’exécution,
nous ajoutons un composant supplémentaire au noyau de chaque produit généré par le DSPL.
Un tel composant est responsable de maintenir une représentation de l’état courant du produit en
termes de features. Il expose un service avec deux opérations, une pour obtenir la configuration
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Figure A.5: Dérivation d’un produit à l’exécution.

courante, et une pour mettre à jour la configuration. Tous les deux sont employés pendant la
reconfiguration pour obtenir la configuration courante et mettre à jour la nouvelle configuration
une fois que le produit a été adapté. Chaque aspect lié à un variant a plusieurs observables qui
indiquent quand le tisser. À chaque mise à jour de contexte, les observables des aspects affectés
sont réévaluées pour décider si l’aspect doit être tissé/détissé.

Validateur

Le validateur est quant à lui chargé de vérifier la cohérence du produit. Pour cela il utilise les
résultats des analyses réalisées au moment de la conception, et notamment, il prend en compte
l’ensemble des configurations que nous obtenons avec les algorithmes d’analyse de contraintes.
A partir de cette information, il prendra alors la décision d’appliquer les modifications néces-
saires et de faire appel au générateur de scripts.
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Générateur de scripts

Le générateur de scripts calcule la différence entre les modèles de features. Le résultat de la
différence donne une liste d’aspects à détisser, et une liste d’aspects à tisser. A ce moment,
l’information de chaque aspect dans la configuration est employée pour obtenir les scripts de
tissage/détissage. Ces scripts sont ensuite exécutés.

Puisque les aspects sont des modèles, le but avec la génération de scripts est de créer les
scripts pour les adaptations demandées en vue de tisser ou détisser un aspect, et d’exécuter ces
scripts à l’exécution. Pour cela nous construisons une transformation qui prend comme entrée
chaque modèle d’aspect qui produit en sortie les scripts nécessaires de reconfiguration, en util-
isant les langages FPath et FScript. Ces deux langages sont utilisés pour parcourir et déterminer
des endroits précises dans une application à composants (i.e. l’équivalent du pointcut), et ensuite,
pour définir des modifications sur l’application sur ces endroits (i.e. l’équivalent de l’advice).

A.5 Conclusion

Cette recherche apporte de nouvelles idées sur le domaine des lignes de produits logicielles dy-
namiques. En particulier, nous avons relevé les défis du développement d’applications adapta-
bles selon les principes SPL.

Nous avons défini un méta-modèle pour l’expression de la variabilité des produits logiciels.
Grace à cette variabilité, il est possible de fabriquer des produits différents qui partagent un en-
semble de fonctionnalités, mais qui se différencient par un ensemble de features (variabilité).
Nous avons également défini un méta-modèle qui permet d’avoir une représentation architec-
tural de haut niveau des applications basées sur les principes de SOA et CBSE. Ce méta-modèle
s’inspire des notions d’aspects, en définissant par exemple des pointcuts et des advices. Avec
ce méta-modèle d’aspects, nous avons été capables de diviser l’architecture des applications en
deux parties: la première partie qui contient les éléments obligatoires pour tout produit, et la
seconde partie qui contient un ensemble de modèles d’aspect indépendants représentant les élé-
ments facultatifs (variabilité). Le méta-modèle et les modèles dérivés ont été ensuite utilisés pour
la dérivation des produits, en associent des aspects à chacune des features identifiées dans le
modèle de variabilité. Pour compléter la dérivation des produits, nous avons défini des transfor-
mations vers une plate-forme cible.

En outre, nous avons défini un deuxième processus de dérivation de produits qui est pris en
compte au moment de l’exécution des produits logiciels. Pour cela, nous avons enrichi le méta-
modèle d’architecture en ajoutant la notion d’observable, qui représente un événement de con-
texte. Les produits peuvent alors être adaptés en fonction des conditions spécifiques d’exécution
en utilisant les mêmes modèles d’aspect utilisés pour leur conception.

Grâce au méta-modèle d’architecture basée sur les aspects, notre approche unifie les adapta-
tions des applications sensibles au contexte, en utilisant deux processus de dérivation différents
au moment de la conception et à l’exécution. Les aspects peuvent à la fois être utilisés pour
représenter les sélections des développeurs au moment de la conception et ils peuvent aussi
prendre en compte les informations provenant de l’environnement et les utiliser pour déclencher
une adaptation dynamique. Par conséquent, les développeurs doivent définir une seule fois les
modèles d’aspect pour ensuite les utiliser aussi bien à la conception que à l’exécution.
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