N

N

Self-adjoint (a, b)-modules and hermitian forms

Piotr P. Karwasz

» To cite this version:

Piotr P. Karwasz. Self-adjoint (a, b)-modules and hermitian forms. Mathematics [math]. Université
Henri Poincaré - Nancy I, 2009. English. NNT: 2009NAN10143 . tel-00583888

HAL Id: tel-00583888
https://theses.hal.science/tel-00583888

Submitted on 7 Apr 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-00583888
https://hal.archives-ouvertes.fr

UFR S.T.M.I.A.

Ecole Doctorale IAE + M
Université Henri Poincaré - Nancy 1
D.F.D. Mathématiques

These
présentée pour 'obtention du titre de
Docteur de I’Université Henri Poincaré, Nancy-I
en Mathématiques
par

Piotr Przemyslaw Karwasz

Self-adjoint (a,b)-modules and hermitian forms

Soutenue publiquement le 10 Décembre 2009

Membres du jury :

Daniel Barlet Directeur de These Professeur, Nancy 1

Ridha Belgrade Examinateur Maitre de Conférences, Nancy I
Antoine Douai Rapporteur Maitre de Conférences, Nice
Claude Sabbah  Président et Rapporteur Professeur, Ecole Polytechnique
Willem Veys Rapporteur Professeur, Leuven

Institut Elie Cartan Nancy, Laboratoire de Mathématiques, B.P. 239, 54506 Vandceuvre-les-Nancy Cedex






Contents

[IRemerciements| 5
Introduction (francais)| 9
0.1 Les (a,b)-modules|. . . . .. ... ... ... ... .. ... 10
(0.2 Dualité et formes hermitiennesl. . . . . . . . . ... ... ... 10
(0.3 Suites de Jordan-Holder auto-adjointes| . . . . . . . .. .. .. 11
(0.4  Higher residue pairings| . . . . . . . . . . . . ... ... .. 12

(1 Theory of (a,b)-modules| 13
(I.1 The (a,b)-modules| . . . ... ... ... ... ... ... 13
1.1.1 General (a,b)-modules| . . . ... ... ... ... ... 13

1.1.2  Regularity of (a,b)-modules| . . . .. ... ... .. ... 16

(1.2 Jordan-Holder composition series| . . . . . ... .. ... ... 20
(1.2.1  Normality| . . . . ... ... ... ... ... .. .... 20

(1.2.2  Simple (a,b)-modules| . . . . . .. ... .. .. 21

(1.2.3  Composition series| . . . . . . . .. ... .. ...... 22

[1.2.4  Non unicity of composition series . . . . .. .. .. .. 26

2 Duality and hermitian forms| 29
2.1 Duality]. . . . . . oo 29
2.1.1 Barlet’s definitionl . . . . . . .. ... ... 29

[2.1.2  Belgrade’s definition| . . . . ... .. ... ... .... 32

[2.1.3  Bilinear forms and tensor product|. . . . . . .. .. .. 35

2.2 Fxistence of hermitian formsl . . . . . . ... .. ... ... 39
[2.2.1 Indecomposable (a,b)-modules{. . . . . . .. ... ... 39

2.2.2 Krull-Schmidt theorem| . . . . . . .. .. .. ... ... 43

[2.2.3  Hermitian forms on regular |

| and indecomposable (a,b)-modules| . . . .. ... ... 46
(3 Self-adjoint composition series| 51
[3.1 Selt-adjoint composition series| . . . . . . . . ... ... .. .. 51

3



4 CONTENTS

[4 Higher-residue pairings| 61
{.1 Duality of geometric (a,b)-modules| . . . . . .. .. ... ... 61
[4.2  “Higher residue pairings” of K. Saito| . . . . .. .. ... ... 62
[4.3  Proot of the proposition| . . . . ... ... ... ... ..... 62

4.3.1 Proof of ()] . . . .. ... 62
4.3.2 Proofof (ii)] . . . .. .. ... . oo 63
1.3.5  Grothendieck’s residuel . . . . . . .. ... 63

.4 Property (iv)] . . . . . . ... 67




Remerciements

Une these de doctorat n’est pas une tache triviale et son chemin est long
et rempli de difficultés en tout genre. Ce n’est pas chose a entreprendre
tout seul, mais heureusement les rencontres sont nombreuses et beaucoup de
personnes sont prétes a vous indiquer la bonne voie. Les énumeérer toutes ne
serait guére possible et toute omission qui se serait glissée dans ces lignes est
bien involontaire.

Mon directeur de thése DANIEL BARLET a toute ma gratitude. Depuis ce
mars 2005 enneigé ol nous nous sommes rencontrés pour la premiére fois et
jusqu’a la conclusion du voyage, il a toujours su me conseiller et me guider
sur le bon chemin. Dans les moments de découragement, qui sont inévitables
dans tout rapport directeur-doctorant, M. BARLET a toujours su montrer
une patience et une compréhension hors de ’ordinaire.

Mon équipe d’ Analyse et Géométrie Complexe m’a accordé dés le début
un accueil chaleureux et pour la premiére fois je n’ai pas été traité comme
un jeune en apprentissage, mais comme un membre de plein droit de la
communauté. Leur porte était toujours ouverte pour fournir des explications
sur des sujets variés liés ou pas a leur intéréts courants. Au noyau dur du
séminaire FREDERIC CAMPANA, MOHAMED KADDAR, VINCENT KOZIARZ,
MicHeL, MEO, MIHAT PAUN et aux nouveaux venus ALAIN (GENESTIER,
SERGEY LYSENKO et MATEI TOMA mes profonds remerciements pour la
belle atmosphére dans laquelle j’ai eu la chance de vivre.

A la porte de MICHEL MEO j’ai en particulier frappé plusieurs fois pour
des questions d’analyse complexe, tant que le dernier chapitre de cette thése
devrait lui étre dédié : il y a fait paraitre simples et évidents les calculs les
plus compliqués.

La venue d’ALAIN GENESTIER au sein de notre laboratoire, m’a permis
de profiter et parfois d’abuser de sa grande culture mathématique en général
et algébrique en particulier. C’est lors de conversations que j’ai pu avoir avec
lui et DANIEL BARLET que la terminologie utilisée dans ce manuscrit a recu
sa forme finale.

En ligne d’arrivée j’ai eu la chance d’avoir comme rapporteurs ANTOINE



6 CONTENTS

DouAl, CLAUDE SABBAH et WILLEM VEYS qui ne se sont pas limités a
rédiger des comptes-rendus extensifs et élogieux au sujet de mon travail, mais
m’ont aussi donné des conseils précieux concernant la rédaction et signalé les
fautes de frappe qui avaient échappé a4 ma relecture. Pour leur présence a la
soutenance, malgré le court préavis et les longs voyages, je leur suis également,
reconnaissant.

...Comme je suis reconnaissant & ARON GOHR qui a lui aussi tout aban-
donné pour assister a la conclusion de mon chemin.

Est-il finalement nécessaire qu’on cite RIDHA BELGRADE qui avec ses
travaux sur la dualité des (a, b)-modules a signé le début et donné I'inspiration
au sujet que vous trouverez ici traité ?

Un doctorat ne vit cependant pas de la seule science et un jeune math-
ématicien a besoin de beaucoup de soutien moral s’il espére franchir “le”
pas comme j’ai pu le faire. La chorale du CIES dirigée par JEAN-FRANCOIS
(GROSJEAN, bien que de courte durée, a assuré cette aide et le divertissement
nécessaires grace a 'atmosphére joviale que 1’on pouvait y trouver, les soirées
chez MANOLA et les concerts, toujours source d’amusement.

Parmi mes camarades d’aventure le rouquin PIERRE ETORE a toujours
su, fidéle & lui-méme, trouver une maxime de sa création ou en provenance de
sa grande culture pour éclairer la journée, et LARS SCHAFER faisait de méme,
méme si personne n’a jamais compris ses blagues. ALEXANDRE GALLOIS avec
GUILLAUME TYVAERT transformaient en sourire chaque soucis, tandis que
FREDERIC MERIZEN nous étonnait toujours avec ses gadgets électroniques.

Dans I'Institut les deux occupantes du bureau 111, MANON DIDRY et
MARIE-AMELIE LAWN ont subi avec patience et un peu de moquerie ’éclate-
ment de ma passion pour le thé et mes propres co-bureaux, ToM KRANTZ,
BRUNO MARTIN et le petit nouveau ROGER NAKAD ont rendu agréable avec
leurs conversations les pauses dans le travail.

A cette atmosphére conviviale ont contribué aussi mes fidéles commen-
saux et amis FARRELL BRUMLEY, JEAN-FRANCOIS GROSJEAN et ALAIN
(GENESTIER avec lesquels j’ai souvent pu disputer des sujets les plus variés.

Mon pére a toujours été un modeéle pour moi et depuis mon plus jeune age
il a toujours su susciter en moi l'intérét dans le travail scientifique. Bien que
les sujets de nos études aient divergé, je serai toujours endetté envers lui pour
m’avoir montré ce chemin. Tous les soucis grands et petits que j’ai éprouvés
durant ces derniéres quatre années, ma meére les a certainement ressentis plus
encore et j'espére que la conclusion de cette expérience puisse la rassurer et
lui donner une raison d’étre fiére.

En guise de conclusion, je voulais réserver un remerciement particulier
a mon amie de toujours, MARIE-AMELIE LAWN. Avec ses encouragements,
ses soirées spirituelles ou pas, sa bienveillance a rester a coté de moi jusqu’a



CONTENTS 7

I’écriture du point final, bien que sa carriére I’ait portée au Luxembourg. Je
savais que chaque fois ou j’étais prét a abandonner, elle était 1a pour moi et
les abus que j'aurais pu commettre n’ont pour autant pas fait vaciller son
amitié. Encore une fois merci!

Nancy, le 8 mars 2011

Piotr P. Karwasz



CONTENTS



Introduction (frangais)

Dans cette thése nous présenterons un travail relatif a la théorie des
(a, b)-modules. Nous nous intéresserons en particulier a trois problémes liés
a la dualité des (a,b)-modules que nous traiterons dans les chapitres 2, 3 et 4
de ce manuscrit.

Vu la relative nouveauté du sujet, en particulier en ce qui concerne la
dualité des (a,b)-modules, le premier chapitre sera dédié a un rappel des
principaux concepts et résultats de cette théorie. Nous nous concentrerons
plus particuliérement sur les suites de Jordan-Hélder et les invariants de ces
suites.

Dans le chapitre suivant, en se basant sur la définition de dual d’un
(a, b)-module, on exposera le concept de module adjoint et de forme her-
mitienne. Dans notre analyse des formes hermitiennes nous serons amenés
a définir la notion de (a, b)-module indécomposable et & montrer 'analogue
du théoréme de Krull-Schmidt dans la théorie des modules sur un anneau
commutatif. On montrera par la suite 'existence de formes ou bien hermi-
tiennes ou anti-hermitiennes sur les modules indécomposables auto-adjoints
et on donnera un exemple non trivial de rang 4 admettant uniquement une
forme anti-hermitienne.

Suivra un chapitre dédié aux suites de Jordan-Hélder de (a,b)-modules
auto-adjoints. L’intérét se portera en particulier sur les suites de Jordan-
Holder dites elles aussi auto-adjointes et on en montrera l’existence, pour
tout (a,b)-module régulier auto-adjoint.

En guise de conclusion on appliquera les résultats obtenus aux (a, b)-mod-
ules associés a une hypersurface a singularité isolée, c’est-a-dire au complété
formel de son module de Brieskorn. On montrera que le symétrisé de 'isomor-
phisme donné par R. BELGRADE dans |[Bel01] satisfait aux axiomes donnés
par K. SAITO dans la présentation de ses “higher residue pairings”.
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0.1 Les (a,b)-modules

Un (a, b)-module est une structure algébrique obtenue par la donnée d’un
C[[b]]-module E libre de rang fini sur ’anneau des séries formelles dans une
variable b et d’une application C-linéaire a de E dans lui-méme qui satisfont
a la relation :

ab —ba = b*.

Introduits par D. BARLET (cf. [Bar93]), ils apparaissent comme 1’abstrac-
tion algébrique du réseau de Brieskorn d’une fonction a singularité isolée
(cf. |Bri70]). En effet étant donnée une fonction holomorphe a singularité
isolée f: C"™! — C et a son réseau de Brieskorn :

Do Qg+1
Codf adQpY

ou ) désigne Pensemble des germes de i-formes holomorphes a 1’origine, on
peut associer un (a, b)-module en définissant deux opérations sur D :

alw] = [fw]
blw] = [df Av]

oil [-] représente la classe modulo df AdQ) ! w e Q! et dv = w. Le
complété du réseau D pour la topologie b-adique est un (a, b)-module, comme
il est démontré dans [Bar93).

Dans le premier chapitre on rappellera les notions fondamentales de la
théorie des (a,b)-modules et en particulier le concept de régularité, celui de
(a, b)-module simple et de sous-(a, b)-module normal.

Les suites de Jordan-Holder auront une importance particuliére dans
le contexte de cette thése. Une suite de Jordan-Holder d'un (a, b)-module
régulier est par définition une suite de sous-(a, b)-modules normaux F; de E,
tels que :

O=Fhcsh& - cF=E

ou tous les quotients F;/F;_; sont des (a,b)-modules simples.

0.2 Dualité et formes hermitiennes

Dans la premiére partie du deuxiéme chapitre on clarifie le concept de
dual d’un (a,b)-module E. Deux notions similaires existent au méme temps
dans la littérature : le concept de dual introduit par D. BARLET dans [Bar97|
et celui de d-dual introduit par R. BELGRADE dans [Bel01].
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On choisit la définition de D. BARLET de dual E* d’un (a, b)-module £,
qui a Pavantage de ne pas changer la C[[b]]-structure naturelle sur E*. Le
dual est ainsi le C[[b]]-module Homepy (E, Eo), out Ey est le (a,b)-module
élémentaire de rang 1 engendré par un élément eq qui vérifie aeg = 0, et la
a-structure sur £* est donnée par

(ap) () = alp(x)) — p(az)
pour tout p € E* et v € F.

La notion de d-dual de Belgrade sera réduite a la notion de dual & 'aide
d’un foncteur de conjugaison 7, qui échange les signes des actions de a et b
(a - —a et b — —b), et du concept de produit tensoriel de deux (a, b)-mod-
ules E et F', qui factorise toute application C|[b]]-bilinéaire

:ExF -G,
dans un troisiéme (a, b)-module G satisfaisant
a(®(z,y)) = ®(az,y) + (z, ay),

ou x € E et y € F. On montrera ainsi que le d-dual d’un (a,b)-module E
au sens de [Bel01] coincide avec le produit tensoriel E* ® Ej, out Ej est le
(a,b)-module élémentaire de paramétre 6 € C (cf. [Bar93|). Par analogie avec
la théorie des espaces vectoriels sur C, on appelle adjoint le module E*.

Dans [Bel0l] R. BELGRADE montre que le (a,b)-module de Brieskorn £
associé¢ & une fonction de C**! dans C & singularité isolée admet un iso-
morphisme avec son (n + 1)-dual. Pour mieux comprendre le lien entre cet
isomorphisme et les “higher residue pairings” de K. Saito (cf. [Sai83)), en par-
ticulier la propriété de symétrie de ces “pairings”, on étudie dans la deuxiéme
partie du chapitre 2 les (a,b)-modules réguliers qui admettent un isomor-
phisme auto-adjoint.

En se ramenant au cas des (a,b)-modules indécomposables, ¢’est-a-dire
qui ne peuvent s’écrire comme somme directe de (a,b)-modules de rang in-
férieur, on montre que tout (a, b)-module régulier indécomposable isomorphe
a son adjoint admet ou bien un isomorphisme hermitien, ou bien un isomor-
phisme anti-hermitien. On montre a ’aide d’un exemple non trivial de rang
4, que le deuxiéme cas est bien possible et que tous les isomorphismes de cet
(a, b)-module avec son adjoint sont anti-hermitiens.

0.3 Suites de Jordan-Holder auto-adjointes

Il est mis en évidence dans [Bar93| que les quotients F;/F; 1 d’une suite
de Jordan-Holder d’un (a, b)-module régulier E

O=F&--Sh=F
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ne sont pas nécessairement isomorphes pour deux suites différentes, méme
en tenant compte des permutations possibles.

Dans le troisiéme chapitre on se restreint aux (a,b)-modules réguliers
auto-adjoints E de rang n et on montre que sous ces hypotheéses il existe une
suite de Jordan-Hé6lder

O=F< Sk =FE,

avec les propriétés suivantes de symétrie :

(i) Les quotients “centraux” F,,_;/F; sont tous auto-adjoints pour 0 < i <
[n/2].

(ii) Pour chaque i le quotient simple F;/F; ; est isomorphe & 'adjoint de
Foiv1/Fa s

0.4 Higher residue pairings

Dans le dernier chapitre on regarde de plus prés la relation existante
entre l'isomorphisme avec le d-dual de BELGRADE et la version axioma-
tique des “higher residue pairings” de K. SAITO. En particulier, a partir d’un
(a,b)-module FE associé a une fonction C"™! — C a singularité isolée et de
I’isomorphisme g

A E— E* Qup) Eni

donné par R. BELGRADE, on obtient un nouvel isomorphisme auto-adjoint
(A + A*) /2 tel que la suite d’applications C-bilinéaires induite

AkiEXEH(C

vérifie les quatre axiomes des “higher residue pairings”.

La question si les Ay, qui respectent ces axiomes sont uniques et coincident
ainsi avec les “higher residue pairings” reste ouverte. Néanmoins, le premier
terme Ay coincide avec le résidu de Grothendieck.



Chapter 1

Theory of (a,b)-modules

Since the theory of (a, b)-module is rather new, this chapter is intended as
a short introduction to this theory, whose object of study is an algebraic gen-
eralisation of the Brieskorn modules, introduces by E. Brieskorn in [Bri70].
The first section will recall the definitions of the (a, b)-module structure, in-
troduced by D. Barlet in [Bar93| and the principal subtypes of this object.
The following section will be devoted to defining Jordan-Holder decomposi-
tions and recall a version of the Jordan-Holder theorem, originally showed
by C. Jordan and O. Holder for groups, which is applicable to (a, b)-modules.
We refer to [Bar93| and [Bar97| for a reference on the subject.

1.1 The (a,b)-modules

1.1.1 General (a,b)-modules

Definition 1.1. Let C[[b]] denote the ring of formal series in the variable
b. An (a,b)-module is an algebraic structure composed by a free C[[b]]-mod-
ule E of finite rank and a C-linear application a : E — E that satisfies the
commutation relation

ab — ba = b?, (1.1)

where b: E — FE is the multiplication by the element b € C[[b]].

Given an (a,b)-module E, we will refer to its C[[b]]-module structure
as the b-structure, whereas the linear map a will be referred to as the
a-structure. In the spirit of the category theory we will moreover define an
(a,b)-morphism as an application

p:E—F

13



14 CHAPTER 1. THEORY OF (A, B)-MODULES

between two (a, b)-modules E and F', which is a morphism of the underlying
C[[b]]-modules and respects the a-structure:

plax) = ap(r),
for any element x € E. We will call ¢ an isomorphism (resp. endomor-
phism) of (a, b)-modules if it is bijective (resp. F = F).
An alternative definition of (a, b)-module was given in [Bar97]|. Let

A= {i Qp(a)t?, with Q, € C[a]}>

the C[a]-module of formal series in b with coefficients in C[a] and define a
multiplication that satisfies ab — ba = b* and which is continuous for the
b-adic topology. It is a ring that contains C[[b]] as a subring and we can
define (a, b)-modules as:

Definition 1.2 (Alternative definition). Let C[[b]] < A be the ring given
above. An (a,b)-module E is a left A-module which is free and of finite rank,
when considered as an C[[b]]-module.

While definition puts (a,b)-modules in a more general context of the
theory of modules over a non-commutative ring, we will prefer the definition
for the clarity of proofs that follows from it.

As a first property of (a, b)-modules we remark that from equation |1.1| we
can directly derive by induction on n

ab" — b"a = nb"*!, neN, (1.2)

which shows us that a(b"E) < b"E, for all n € N. This shows the continuity
of a for the b-adic topology on E. The continuity of the map a gives us
another formulation for (1.2,

aS(b) = S(b)a + S'(b)b?, (1.3)
with S(b) € C[[b]] and S’(b) the formal derivative, which has the advantage

of a much more concise form.
Remark 1.3. Given an (a,b)-module F and a C[[b]]-basis {v;}, 1 < i < n,
we can deduce from (1.3 that the values of a are uniquely determined by
its values a(v;) on the basis. On the other hand for any choice ¢; € E of
elements, we can use (1.3 to define an application a, such that

CL(Ui) = €;

and a satisfies the properties of an a-structure.
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We will give now some examples of the (a,b)-module structure:

Example 1.4. Let E = C[[z]] be the ring of formal series in the variable z.
We endow it with a C[[b]]-structure given by the formal integration:

where S(z) € C[|z]]. The a-structure is defined as the multiplication by the
element z:

aS(z) = z25(z).

If we take e := 1 as a basis of F, it follows from remark [I.3] that E can
be identified as the only (a,b)-module of rank 1 that satisfies:

ae = be.

Example 1.5 (Brieskorn lattice). The standard source of (a,b)-modules is
the theory of complex hypersurfaces with isolated singularity and particularly
the Brieskorn lattices defined in [Bri70]. Let

F:C"' 5 C, neN,

be a holomorphic function with an isolated singularity at the origin and
suppose f(0) = 0. The Brieskorn module associated to this singularity is the
vector space
QTL+1
Di=—79%
df AdQp~Y

where () are germs of holomorphic i-forms at the origin. We can define on
this space two operations a and b that verify the relation of (a,b)-modules.
Let |w] be a germ of an (n + 1)-form at the origin, then we define

law] = [fw].

Since w is a germ of an holomorphic form, we can find by Poincaré’s lemma
a v such that w = dv. Then we define

[bw] = [df Av].

This definition doesn’t depend on the choice of v. In fact if we choose another
element w such that w = dw, v and w will differ by an element d o with
a e Q0 and therefore:

df Av =df Aw+df Ada,
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which implies that df Av and df Aw are in the same class modulo df d Q0.
We can easily verify that

[abw] = [a (Af Av)] = [f (df AV)]
[b(a + b)w] = [b(fw + df Av)] = [bd (fv)] = [f df Av]

and hence ab = ba + b?. Moreover b is injective on the Brieskorn module.
Consider in fact the complex:

0_)98_)/\df”__)/\deg+1_)0.

It is acyclic in every degree except (n + 1), because f has an isolated singu-
larity. Suppose that we have w = dv and blw] = 0. This translates into

df Av=df Adu, ueQp™! or, equivalently df A(v—du) =0.
But the complex above is acyclic in degree n, therefore we obtain
v—du=df na, aeQy
and by differentiating both sides we obtain
dv=—-df nda,

which shows us that [w] = 0.

The b-adic completion E of D is a free C[|b]]-module of finite rank. The
injectivity of b gives us an injection of D into its completion E and so we
can extend by continuity the definition of @ and b to the whole E and give
it at the same time the structure of an (a,b)-module. The details of this
construction can be found in [Bar93)|.

Many efforts in the theory of (a,b)-modules are put towards the charac-
terisation of the (a,b)-modules that are associated to the Brieskorn lattice
of a singularity via the construction in the example above. As it was proven
in [Bar93|, we can restrict our search to the regular (a,b)-modules defined in
the following subsection.

1.1.2 Regularity of (a,b)-modules

As shown in [Bar93|, we can associate to every meromorphic differential
system in one variable z, which has a simple pole at z = 0, an (a, b)-module
that satisfies the property in the following definition:
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Definition 1.6. An (a,b)-module E is called a simple-pole (a,b)-module if
aF c OE.

This justifies the use of the term “simple-pole”.

Remark 1.7. Note that on a simple-pole (a,b)-module the application b~'a
is well defined. We will use this fact in the future.

The structure of simple-pole (a,b)-modules was studied thoroughly in
the article [Bar93|, where we can find a complete classification. However,
not all Brieskorn lattices give simple-pole (a, b)-modules and in order to be
able to study those which are not, we need to define a bigger class: regular
(a, b)-modules, which we will do in the following definitions.

Definition 1.8. A sub-C[[b]|-module F of an (a,b)-module E is called a
sub-(a, b)-module if it is stable for the action of a,

a(F) c F.

Definition 1.9. An (a,b)-module E is called regular if it is a sub-(a,b)-mod-
ule of a simple-pole (a,b)-module.

For a regular (a,b)-module E we are interested in the “smallest” simple-
pole (a,b)-module F' that contains F as a sub-(a,b)-module. In order to
compare two (a,b)-modules containing E we will stick to the algebraic con-
vention of identifying an (a, b)-module E with its (a, b)-isomorphic image into
another (a,b)-module and we will therefore give the following definition:

Definition 1.10. Let E be a reqular (a,b)-module and E¥# a simple-pole
(a,b)-module with an injective (a,b)-morphism i : E — E*. We say that E*
is the saturate of the reqular (a,b)-module E, if and only if it satisfies the
following universal property: for every simple-pole (a,b)-module F and any
morphism of (a,b)-modules

p: E—F

there exist an unique morphism ¢ : E# — F, that makes the following

diagram commutative:
@

E——F

G
T

E#

To show the existence of the saturate, consider the following construction.
Let E be an (a,b)-module and define a b-torsion-free C[[b]]-module E[b~]
as

E[b~"] = E®cpy C[[b]I[07]-
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We can extend to E[b'] the action of @ on F by using the formula
a(v@b?)=a)@b " —pr@b P (1.4)
The operation a on E[b™'] is well defined, since

a (bv ® b_p) = (ba(v) + bQU) QbP —phu @b P!
=a(v)@b P+ (1 -plvb P
=aq (U ® b*pﬂ)
and satisfies ab — ba = b* as well. Hence E[b~1] satisfies all requirements for

an (a,b)-module except that free and of finite rank is replaced by b-torsion-
free. Moreover given two (a,b)-modules E and F' and a morphism:

p: E—F

there is only one way to extend it to a b-linear map between E [b~!] and
Fbt):
¢:Eb > F[b7] (1.5)
VRV = p(v) @b

It is easy to verify using formula that the resulting map ¢ is also a-linear.
We can now state the following proposition:

Proposition 1.11. Let E be an (a,b)-module then the following are equiva-
lent:

(i) E is regular.
(ii) The sub-C[[b]]-module of E[b1]:

o0
E* =3 () E
k=0

is of finite rank. In this case E* is a simple-pole (a,b)-module for the
induced structure and satisfies the universal property of the saturate.

Proof. The module E# is clearly stable for b—'a and therefore stable for the
morphism a = b (b'a). If it has finite rank it is a simple-pole (a,b)-module
and therefore F is regular.

Suppose E is regular and ¢ be an injective morphism into a simple-pole
module F. Using formula [1.5] we can extend ¢ to an unique map

G B[] - Fb].
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We remark that o is injective if and only if ¢ is. Moreover, since (b~'a) F < F
we have

2 (0'0) E) = (b '0) 3 (B) < F,

the image by ¢ of E# is contained in F. Therefore the E# is a sub-C[[b]]-
module of a finite type C[[b]]-module and hence of finite rank. At the same
time we can verify the universal property of E# with the same procedure. [J

The construction of the saturate E# gives us as a corollary:

Corollary 1.12. Given a regqular (a,b)-module E and its saturate E¥ the
dimension over C of E* /E is finite.

Proof. The saturate E# — E[b '] has finite rank, so it must be contained
in b "F for a certain n € N. Therefore the dimension over C of E#/E is
bounded by the dimension of b="E/E, which is n - rg(E). O

Example 1.13. The smallest example of regular (a, b)-module which is not a
simple-pole (a, b)-module occurs in rank two and is generated by two elements
e; and e, with a defined as follows:

ae; = Abeg

aes = (u—1)bey + €y

with A\ and p € C. This (a,b)-module is contained in an (a, b)-module which
is simple-pole and generated by # = b 'e; and y = (A — u)ey — x. It’s easy
to verify that:

ar = (A—1)bx
ay = (n—1by

which is trivially a simple pole (a,b)-module.

Example 1.14 (Non regular (a, b)-module). D. Barlet shows in [Bar93] (ex-
ample 2.1) that the (a,b)-module of rank two generated by two elements e;
and e, satistfying

aep = €9

aes = beg

is not regular.
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1.2 Jordan-Holder composition series

In the theory of groups and modules we encounter composition series
as a way to transform complex objects into simpler ones: simple groups and
modules. The main result is given by the Jordan-Ho6lder theorem which states
that any composition series is equivalent: up to a permutation the simple
quotients are the same. We will introduce in this section the equivalent
of composition series in the theory of (a,b)-modules. While many results
are similar to those of group and module theory, there is no unicity of the
quotients. Once again a complete reference can be found in |[Bar93|.

1.2.1 Normality

In the previous section we introduced the concept of sub-(a, b)-module.
However, since in the general case quotients of an (a,b)-module E by a sub-
(a,b)-module F are not (a,b)-modules, we will introduce normal (a, b)-mod-
ules and the basic properties they satisty.

Definition 1.15. A sub-(a,b)-module F' of an (a,b)-module E is called nor-
mal if the C[[b]]-module E/F is free. Equivalently if bF = F n bE.

Clearly, since sub-(a, b)-modules are closed for the action of a, a induces
a C-linear application @ on the quotient E/F which satisfies ab — ba = b%, so
the definition of normality guarantees us that E/F has an induced structure
of (a,b)-module.

Remark 1.16. Note that only FFnbE < bF has to be proved, since the reverse
is always true. In the case of an (a,b)-module F of rank 1 generated by an
element x € F, the normality condition is equivalent to = ¢ bFE.

When the rank is arbitrary, we can prove the following:

Lemma 1.17. Let E be an (a,b)-module and F' a sub-module of E. Then F
s normal if and only if the application

¢: F/bF — E/bE
induced by the inclusion of F' in E is injective.

Proof. The kernel of ¢ is F' n bE, so ¢ is injective if and only if we have
bF = F nbE. O

The previous lemma, while quite obvious has two useful corollaries that
we will use to test normality and compare normal (a, b)-modules.
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Corollary 1.18. Let F be a sub-(a,b)-module of an (a,b)-module E and {v;}
be a C[[b]]-basis of F. Then F is normal if and only if:

ZOéiUiEbE, OéiE(C

implies o; = 0, Va.

Proof. Tt is enough to remark that the ). o,v; are a set of representatives of
the classes of F//bF. Hence by F is normal if the only element belonging
to bE is 0. ]

Corollary 1.19. Let E be an (a,b)-module and F < G two normal sub-
(a,b)-modules. Then they are equal if and only if they have the same rank.

Proof. If F' = G their rank is equal.

On the other hand since F' is normal in F| it is in particular normal in G.
We remark that the dimensions of F'//bF and G/bG are respectively the rank
of F' and G. Hence from lemma we find out that ¢ : F/bF — G/bG is
bijective, so F' contains a C[[b]]-basis of G and is therefore equal to G. [J

Note that a normal sub-(a,b)-module F' of a simple-pole module E is
still simple-pole: we have aF' < bE n F' = bF. On the other hand any
sub-(a, b)-module F' of a regular (a,b)-module FE is regular: they are both
included in the saturate of E.

Similarly quotients of regular (resp. simple-pole) (a,b)-modules by a nor-
mal sub-(a,b)-module are regular (resp. simple-pole). A easy proof can be
found in [Bar93| lemma 2.3.

1.2.2 Simple (a,b)-modules

Let us introduce the second fundamental part of our decomposition. As
in the case of other algebraic categories, the basic blocks to build a Jordan-
Holder sequences are simple (a, b)-modules given by the following definition:

Definition 1.20. An (a,b)-module E is called simple if and only if its only
normal sub-(a,b)-modules are 0 and E.

Example 1.21. We note E, with A € C the (a,b)-module of rank one gen-
erated by one element e, which satisfies ae, = A\be,.

Since it is of rank 1 it follows directly from corollary [I.19]that E) is simple.
Moreover it is a simple-pole (a, b)-module, hence regular. In fact these are the
only regular simple (a, b)-modules, as we will show in the following subsection.

We will call the module F) the elementary (a, b)-module of parameter \.
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Example 1.22 (Simple (a, b)-module of rank 2). The example of non regular
(a, b)-module given at the end of subsection is simple. Let, in fact, e;
and ey be its generators that satisfy

ae; = €9

aes = be;.

Since it has rank 2 in order to show that it’s simple, it is enough to show
that it doesn’t contain any normal sub-(a, b)-module of rank 1. Let proceed
by contradiction and suppose there is a normal sub-(a, b)-module F of rank 1
generated by an element f € F'. By eventually multiplying f by an invertible
element of C[[b]], we can assume it is of the form e; + S(b)ey or S(b)e; + e,
with S(b) € C[[b]]-

In the first case we have to solve the equation:

a(er + S(b)ez) = ez + S(b)be; + S'(b)b*ey = T(b) (€1 + S(b)es),

for an unknown T'(b) € C[[b]]. Clearly we must have T'(b) = S(b)b looking
at the coeflicients of e;. Therefore by identifying the coefficients of e; on the
right and left side of the equation, we must have:

1+ S'(b)b? = S2(b)b,

which is impossible, since the right side lacks a constant term.
In a similar manner we proceed for the case f = S(b)e; +e,. The equation

a(S(b)e; + ea) = S(b)ey + S'(b)b*e; + bey = T(b) (S(b)er + e3),
gives us T'(b) = S(b) and we deduce another equation for S(b):
b+ S (b)b? = S*(b),

which does not have any solutions: if we write S(b) = ., s;b° we obtain that
the constant term s of S?(b) must be zero, hence the term 2sgs1b of degree
1 must be zero too, while the left side has a term of degree 1 equal to b.

1.2.3 Composition series

In this subsection we will expose the theory of Jordan-Holder composition
series in the context of (a,b)-modules. We will restrain ourselves to regular
(a, b)-modules, for which D. Barlet proved the existence of the composition
series and gave some invariance properties (|[Bar93]). The general case, on
the other hand, remains mainly unexplored.
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Definition 1.23. Let E be an (a,b)-module n € N and {F;} a sequence of
normal sub-(a,b)-modules of E, for 0 < i <n such that:

0=FGFGc--¢F=E

The sequence {F;} is called a Jordan-Hdlder composition series of E if and
only if all quotients F;/F;_q, for 1 <i < n, are simple (a,b)-modules.

Since (a,b)-modules have finite rank, we are always assured of the exis-
tence of a Jordan-Holder composition series. We have indeed the following:

Proposition 1.24. Let E be an (a,b)-module, then it admits a composition
Series:

O=Fhch< < =F,

where r € N and F; are normal sub-(a,b)-modules of E and F;/F; 1 are simple
for all 1.

Proof. We will prove this result by induction.

It follows for corollary that every (a,b)-module of rank 1 must be
simple.

Let E be an (a,b)-module of rank n € N and assume the result true for
all (a,b)-modules of rank less than n. Then we can have two cases: either F
is simple and we have nothing to prove, or £ has a normal non trivial sub-
(a, b)-module F. Corollary guarantees us that the rank of F is strictly
less than n.

From our induction step follows that F' and E/F admit Jordan-Holder
composition series,

0=G GG &G =F

with GG; normal in F' and
0O=HyScH << H =EFE/F.

with H; normal in E/F. Using lemmawe see that the natural application
v; : Gi/bG; — F/bF is injective for each i and so is the natural application
v : F/bF — E/bE. The composition Yo, is the natural application between
G;/bG; and E/bE and it is injective. Hence the modules G; are also normal
in F.

Let 7 : E — E/F be the projection of E onto E/F and let us define
H! = 7=' (H;). The sub-(a,b)-modules H! are normal sub-(a, b)-modules of
E. We can therefore combine the two sequences into a composition series of
b

0=Go&--<G,=F=Hy&---CH =E
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Remark 1.25. If E is regular, then the sub-(a,b)-modules and quotients of
the composition series are also regular.

We introduced in a class of simple regular (a,b)-modules of rank 1.
The following proposition, for which we give a condensed proof (cf. [Bar93]),
shows us that they are the only regular simple (a,b)-modules.

Proposition 1.26. Let E be a regular (a,b)-module, then it contains a nor-
mal simple sub-(a,b)-module of rank 1 of the form Ej.

Proof. We will reduce ourselves to the case of a simple-pole (a, b)-module.
Using the result from lemma we find a simple-pole (a,b)-module E#
that contains £ and such that E#/F is of finite dimension over C.

Suppose now that there is a normal sub-(a, b)-module F' of E# of rank 1
generated by an element e and let A € C such that ae = A\be (since F' must
be simple-pole). Since E#/E is of finite dimension there is an n € N such
that b"e e F.

Let ny be the minimal n such that Oje € E We assert that the sub-
(a,b)-module F’ of E generated by b™x is normal and isomorphic to E),,
as an (a, b)-module.

In fact since ae = Abe, by using |1.2| we obtain a.(b™)e = (A + ng)b.b™e,
which shows that F’ is isomorphic to Ey. .

On the other side F” is normal in E: if ny > 0 the minimality of this
number guarantees us that b e does not, belong to bE (otherwise b e € F)
and the corollary gives us the normality of F”.

If, however, nyg = 0 we have by hypothesis that £’ = F is normal in E7,
hence normal in E: if E#/F is free, so is its sub-C[[b]]-module E/F.

We can therefore reduce ourselves to show the proposition for a simple-
pole (a,b)-module E, which we will do in the following lemma. ]

Lemma 1.27 ([Bar93|). Let E be a simple-pole (a,b)-module and f the C-
morphism induced by b='a on E/bE. For each \ € C eigenvalue of f let:

then E has an element x that satisfies ax = A\pinbx and the sub-(a, b)-module
F' generated by x is normal.

Proof. We’ll build recursively a sequence of x; € E, i € N, such that

(b7'a = Ain) (Z bkxk) eb"™E  VneN
k=0
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and since F is complete for the b-adic topology and a is continous the series

o0
T = Z by

k=0

will converge and it will satisfy:
(b™'a = Amin) z €[ J0"E =0
and therefore (b™'a — \in)x = 0 or ax = \,;,bx as we wanted
Since by hypothesis A,;, € Spec(f) there exists an x( that satisfies
(b_lCL — )\mm)x(] e bl

Suppose now that for an n = 0 we have n + 1 elements xy, for ¢ ranging
between 0 and n, such that:

(67 a — Apnin) (i bkxk> ="ty
k=0
for a certain y € E. We are looking for an x,,,1 such that
(b_la - )\mm) b g, — 0" ly e 0VTE
and by using formula we obtain:
V" (b a = Apin + 0+ 1) 21 —y) €0V 2E,
the injectivity of b allowing us to write:
(b_la — (Amin —1n — 1)) Tpi1 — Y € DE.
By the minimality property of A,,;, we know that
(bila — (Amin —n — 1))

is bijective on E/bE, we can therefore find the y we were looking for.

We find in this way an = = Z;;.O:o bEx), that satisfies ax = A\nbr. It must
also verify x ¢ bE, otherwise let k be an integer such that b=*x € E, but
b=% ¢ bE. This element is not 0 in E/bE and satisfies

a (b7%z) = Amin — k) b (b7%2)

which contradicts the minimality of A,,;,. According to the corollary
this implies that the sub-(a, b)-module F' generated by x is normal in £. [
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We can now give the classification of all regular simple (a, b)-modules.

Corollary 1.28. All regular simple (a,b)-modules are of rank 1 and are
wsomorphic to one of the modules E.

Proof. Apply proposition to a simple regular (a,b)-module E. It follows
that £ must be of rank 1 and contain an (a,b)-module of the form E). By
corollary we must have F = F). n

Given the important role that the elements e verifying ae = Abe play in
the theory of (a,b)-modules, we will use from now on the following definition:

Definition 1.29. Let E be an (a,b)-module and x € E. We call x an mono-
mial of E of type (A, 0) with X\ € C if and only if x satisfies:

ax = \bzx.

1.2.4 Non unicity of composition series
As we already anticipated before, if E is a regular (a, b)-module and:
O:FOQFlgan:E

the quotients are not unique and may in fact depend upon the decomposition.
The following example will enlighten the situation:

Example 1.30. We recall the regular (a, b)-module E given in example|1.13]
It satisfies:

ae; = Abey

aes = (p— 1) beg + €1

for a basis {e, e} and two complex numbers A and p. Let define:
e = e+ (u—A)bes.

The couple {€], e} is still a basis of E and it satisfies:

ae) = Abey + (= A) ((n— 1) b’ea + bey + bes)
= (A +p— A bey + p(p— ) bey = pbe)
aey = (u—1)beg + e + (A — ) beg = (A — 1) bey + €]
Thus we have two different Jordan-Hélder composition series. One given by

the basis {e, e2}:
0C FCE,
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with F' being the module generated by e;. The two quotients are respectively:
F ~ E, and E/F ~ E,_;. The other decomposition is given by the other
basis:

0OcF' ¢k,
where F” is generated by €} and the quotients are: F' ~ E, and E/F’ ~ E,_;.

Now if we choose A # u, the quotients of the two Jordan-Holder compo-
sition are in four different isomorphism classes..

Even if the unicity is not guaranteed, there are however some properties
that don’t depend upon the Jordan-Hélder sequence choosen. The following
theorem is due to D. Barlet:

Theorem 1.31 (|Bar93|). Let E be a regular (a,b)-module and 0 = Fy &
< - ¢ F, = FE a Jordan-Holder decomposition whose quotients are
respectively Fi/F;_y ~ E,, for 1 <i < n and the \; € C. Then the following
does not depend upon the decomposition choosen:

(i) The complex number 3" | ;.

(ii) The polynomial [;_, (= —exp (2iw);)) (or the number of \; in each
class of C modulo Z is constant).
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Chapter 2

Duality and hermitian forms

In this chapter we will introduce the concept of duality for an (a, b)-mod-
ule E. This notion was introduced by D. Barlet in [Bar97| and further
developed by R. Belgrade in [Bel01]. The first section will be devoted to
the comparison of the definitions of dual (a,b)-module given by D. Barlet
and R. Belgrade. We will retain here the definition of D. Barlet, while we’ll
reduce R. Belgrade’s definition of 6-dual to the concept of adjoint (a, b)-mod-
ule and tensor product. We will moreover introduce hermitian forms on
(a, b)-module and relate them to isomorphisms of an (a,b)-module with its
adjoint. The second and last section will deal with the existence of hermitian
non degenerate forms on (a,b)-modules. For this purpose we will introduce
the concept of indecomposable modules and give the decomposition of an
(a, b)-module into its indecomposable parts.

2.1 Duality

2.1.1 Barlet’s definition

Let E and F be two (a,b)-modules. As defined by D. Barlet in [Bar97],
the C[[b]]-module Homeyy (£, F') of C[[b]]-linear maps from E to F' has a
natural structure of (a,b)-module provided by an operator A that satisfies

(Ap) (2) = ar (p(2)) = ¢ (apr), (2.1)

where ¢ € Homgppy (E, F), « is an element of F and ap and ap are the
a-structures of E and F respectively. We will designate this (a, b)-module
with the notation Hom,) (E, F'). For notation’s sake we will denote ag, ap
and A all by the letter a and to avoid the confusion that such a notation

29
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could pose we should read the expression

a- o(r)

as (Ap) (x), whereas the expression ag (¢(z)) will keep the conventional no-
tation

ap().
We will therefore rewrite the equation [2.1] as:

a-p(z) = ap(z) — p(ax).

Remark 2.1. Note that whereas Homep (E, F) is a free C[[b]]-modules of
finite rank, it was proven in theorem 1 bis of [Bar97| that the vector space
Hom ; (E, F) of (a,b)-morphisms between E and F' is of finite C-dimension
and therefore can not have a structure of (a,b)-module. No confusion can
therefore arise when talking about the (a,b)-module Hom, 4 (£, F).

By choosing Fy for the codomain of the morphisms, we can give the
following definition:

Definition 2.2 (Barlet). Let E be an (a,b)-module and Ey the elementary
(a, b)-module of parameter 0, then we call the module

Hom(a,b) (E, Eo)
the dual (a,b)-module of E and note it by E*.

Remark 2.3. When considering only the b-structure of F, the C[[b]]-module
E* corresponds exactly to the definition of dual of a C[[b]]-module, since
Ey = C[[b]]eo, with aey = 0.

Remark 2.4. The dual of the elementary (a,b)-module E) is isomorphic to
E_,. In fact, if we consider the basis {e,} of F) and {e}} the dual basis of
(E\)* such that

ex(ex) = e,
where ¢ is the generator of Ej, we just have to check the action of a on e}

to obtain the result.
We have therefore:

a-exy(ey) = aex(en) —ex(aey) = aeyg — ex(Nbey) = —Abeg = —Abej(ey)
and we have so verified the equality
a-ey =—Ab-e}

on the C[[b]]-basis {e}} and we can conclude.
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While the example above shows us that an (a, b)-module is not in general
isomorphic to its dual, there exists always an isomorphism with its bidual
E** = (E*)*. In fact:

Proposition 2.5. Let E be an (a,b)-module and E** = (E*)* its bidual then
the natural application

can : £ — E**
v (09— (),
where v e E and p € E*, is an isomorphism.

Proof. Setwise the application ‘can’ is the same as the canonical application
between E considered as C[[b]]-module and its C[[b]]-module dual. Therefore
it is an isomorphism of C|[[b]]-modules.

We have just to verify that it preserves the a-structure. We will denote
the action of @ on E** by a - -, which satisfies:

a--0(p) = av(p) —ofa- ),
for each v € E** and ¢ € E*. With this notation we have
(a--can(v)) (¢) = acan(v)(p) — can(v)(a - @) =
= ap(v) —a- p(v) = ap(v) — ap(v) + p(av) = can(av)(ep),
for p e E* and v e E. O

Another important property of dual (a,b)-modules is that the duality
functor that associates an (a,b)-module E to its dual and every morphism
¢ : E — F to the morphism

Y poty  YpeF”
is exact. We have in fact the following result:

Proposition 2.6. Let E, F and G be (a,b)-modules and suppose that there
exist an exact sequence of (a,b)-modules:

0->F5L5ESG—0,
then the following sequence is also exact:
71_*

0 G* 55 B 5 Fr 50,

where i* (resp. ©) send an element ¢ into @ oi (resp. pom).
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Proof. The dual sequence is exact as complex of C[[b]]-modules and oi and ogp
are a-linear. O

By relating on the definition of (a,b)-module, we can describe the
dual of an (a,b)-module F in an alternative way.

Let F be an (a, b)-module and A be the non commutative ring introduced
in subsection [[.1.1] Then we can consider the object

Ext! (E A) ,

which we can see at the same time as a right module over the ring A or equiv-
alently as a left module over the opposite ring A°?. Consider the morphism
of rings defined by
9 A— AP
1—1
b—b
a— —a

r-zy = N(T) g Vy) = V(y) -1 U(x),

for z and y € A and -; and - 5,, the multiplications of the rings A and A°
respectively. The morphism ¢ is the identity on the commutative subring
generated by b and it maps a to —a. It is easy to verify that this is in fact
an isomorphism.

Then we can define the dual (a,b)-module as follows:

Definition 2.7 (Alternative definition). Let E be an (a,b)-module, then the
dual (a,b)-module is the left A°P-module

E* = Bxt!, (E A) ,

with the structure as left A-module given by ¥
Ax E* - E*
(x,v) — I x)v

2.1.2 Belgrade’s definition

In [Bel01] R. Belgrade gives a different definition of §-dual (a,b)-mod-
ule, for § in C. We shall show that Belgrade’s 0-dual is in fact the dual of
the conjugate as defined in this subsection, while the general §-dual can be
expressed in terms of the 0-dual and the tensor product, as we will show in
the following subsection. Let us begin with Belgrade’s definition:
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Definition 2.8 (Belgrade). Let E be an (a,b)-module. We call §-dual of E,
d € C, the C[[b]]-module

Hom@[[b]] (E, Eg)

endowed with an (a,b)-structure defined as:

[a - o](x) = p(ax) — ap(z)
[b- p](z) = —bp(z) = p(—bx),

with ¢ € Homeppy (E, Es) and x € E.

In order to conciliate the two definitions, we will introduce the concepts
of conjugate and adjoint (a, b)-modules.

As in the case of the complex field C, the ring of formal series C[[b]] also
admits a rather natural involution

"= Clle]] = <{lol]

where S(b) € C[[b]]. This remark allows us to define the conjugate of an
(a,b)-module in the same way as one defines the conjugate of a complex
vector space.

Definition 2.9. Let E be an (a,b)-module. We call (a,b)-conjugate of E
and note it E the complex vector space E itself, endowed with an a- and b-
structure given by:

a-zpV=—a-gv

b-pv=—-b-gv,

where -z and -g denote the (a,b)-structure of E and E respectively.
Since we change signs of both a and b, the formula ab — ba = b* is still

verified.

Remark 2.10. The conjugate of an elementary module E) is isomorphic to
the module itself. Given a basis ey, this isomorphism can be written:

D : E)\ — E/\
S(b)e)\ = S(—b)e,\ (2.2)

for S(b) e C[[H]].
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Remark 2.11. An (a, b)-module is not necessarily isomorphic to its conjugate.
We can take, for example, the (a,b)-module of rank 2 generated by two
elements x and y that satisfy:

ar = \bx
ay = by + (1 + ab) z,

where A and o € C and a # 0. Its conjugate satisfies

ar = \bx
ay = by + (1 — ab) z,

and the classification of rank 2 regular (a, b)-modules, given in [Bar93| implies
that the two modules are not isomorphic.

One can see immediately that the conjugate of the conjugate (E)Vof an

(a, b)-module E is the (a, b)-module itself.

On the other hand let E and F be (a,b)-modules and ¢ a morphism
between E and F. Since p(—ax) = —ap(z) and ¢(—bx) = —bp(z), for all
x € E the application ¢ is also a morphism between the conjugates E and F.
We call conjugation functor the functor that associates to every (a, b)-module
its conjugate and to every morphism, the morphism itself. Its easy to see
that such a functor is exact. By combining proposition and the remark
above we have:

Proposition 2.12. Let E, F and G be (a,b)-modules and
0->FE—>F->G-—-0

be an exact sequence, then the sequence obtained by applying the duality and
conjugation functors to the complex above is also exact:

0> G* > F* > E* >0,
with E*, F* and G* the conjugates of the duals of E, F and G.

With the terminology given above the Belgrade’s definition of 0-dual
(a,b)-module corresponds exactly to the definition of conjugate of the
dual of an (a,b)-module. For notation’s sake we will call adjoint of an
(a, b)-module the conjugate of its dual and we will call adjoint functor the
composition of the conjugation and duality functors. An (a, b)-module which
is isomorphic to its adjoint will be called self-adjoint.

We will give an equivalent of the d-dual for a generic 6 € C in the next
subsection after introducing the tensor product of (a, b)-modules.
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2.1.3 Bilinear forms and tensor product

In order to define Hom, (£, F') we used the equivalent object for its
underlying b-structure. We will introduce in a similar manner the concept of
bilinear map of (a, b)-modules:

Definition 2.13. Let E, F and G be two (a,b)-modules. An (a,b)-bilinear
form on E x F is a C[[b]]-linear map ®,

o:ExF -G,
that satisfies the following property:
a®(z,y) = ®(az,y) + ®(z, ay).

Remark 2.14. If ® is an (a, b)-bilinear map on E x F' with values in G and
v is an element of E:

d, = P(v,:) : w— P(v,w) weF

is not necessarily an (a, b)-morphism. However the map 7 : v — @, is an
(a,b)-morphism between £ and Hom,p (¥, G). We have in fact:

m(av)(z) = Qg (x) = aPy(z) — Dy(ax) = a - Dy (x) = an(v).

Inherently linked to the concept of (a,b)-bilinear maps is that of tensor
products, that allows a more practical manipulation of these objects.

Definition 2.15. Let E and F be two (a,b)-modules. We call (a,b)-tensor
product of E and F and write it as E Qqp) F the C[[b]]-module

E @y F
endowed with an a-structure defined as follows:
a(v®w) = () Qw + v (aw)
for everyve E and we F.

The a-structure we gave on E @) I is well defined. We have in fact:

a(bv@w) = a(bv) @w + bv @ a(w) = ba(v) @w + b*v @ w + v ® ba(w) =
a(v) ®bw + v @ a(bw) = a (v bw),



36 CHAPTER 2. DUALITY AND HERMITIAN FORMS

for each v € E, w € F and it satisfies ab — ba = b*:
a(bv@w) —ba (v@w) = ba(v) @w + b*v @ w + bv @ a(w)
—ba(v) Q@w — v ®a(w) = b* (v w).

We can easily verify that the tensor product defined in this way satisfies
the usual universal property: there exists a bilinear map

@:EXF—>E®(a7b)F,

such that for every bilinear map W on £ x F' with values in a third (a, b)-mod-
ule G, there exists a unique (a,b)-morphism ¥ from E ®, F into G that
makes the following diagram commutative:

E ®(a,b) F.
We can take as ¢ the natural application

@:EXF—>E®(a7b)F

(v, W) = v Q) W
and define U as:

R E@u@py ' — G
UV ®apy w— Y(v,w)

The unicity of ¥ follows directly from the universal property of the tensor
product of C[[b]]-modules. We need only verify that the map is a-linear. We
will do it on the generators v ®(qp) w of EQqpy £, for ve E and w € F:

U (a(v @y w)) = ¥ ((av) @ap w + v @y (aw)) =
U(av, w) + ¥ (v, aw) = a¥(v,w) = a¥ (v Q) w).
In a similar manner, by using the properties of the tensor product of

C[[b]]-modules, we can derive the other properties of the equivalent object
in the theory of (a,b)-modules.

Lemma 2.16. Let E, F and G be three (a,b)-modules, then the tensor prod-
uct satisfies the following properties:
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(i)
E ®(a,b) F~F ®(a,b) E7
(ii)
(E ®ap) F) ®ap) G = EQupy (F Qup G)
(iii)
(E®uy F)" =~ E* Q) F*,
(iv) } }
(E Q@p) F) = E®uu F,
(v) The (a,b)-morphism

b F— E@(a,b) EO

V= U Qab) €0

where ey 18 a generator of the elementary (a,b)-module Ey, is an iso-
morphism.

(vi) We have the following isomorphism of (a,b)-modules:

E* ®(ap) ' — Homyq ) (E, F ®(ap) Eo)
(2 ®(a,b) Yy r— ((I) Ty ®(a,b) QO($)) )

where pe B*, x e F andye F.

From property (v) and (vi) we have E*® a5 F >~ Hom, ) (£, F'), which in
turn allows us to find an alternative description of the §-dual of an (a, b)-mod-
ule. In fact from definition [2.8 follows that the J-dual of an (a, b)-module is
the module

Hom(&b) (E', E(;) y

which in turn can be rewritten as E* Q(ap) Es-

We will call an (a, b)-bilinear application on E x F with values in G, an
(a, b)-bilinear form if G = Ey. In the rest of this chapter we will deal with
the existence of nondegenerate hermitian forms on (a,b)-modules. We will
need therefore the following definitions.

Definition 2.17. Let E and F be two (a,b)-modules and ® a bilinear form on
E x F. We say that ® is nondegenerate, if the (a,b)-morphism v — ®(v,-)
s an isomorphism of E with F™.

Definition 2.18. Let E be an (a,b)-module. A sesquilinear form on E is
a bilinear form on E x E.
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Remark 2.19. Since a nondegenerate sequilinear form on an (a,b)-module
FE induces an isomorphism of E with its adjoint E* it follows that not all
(a,b)-modules are self-adjoint (e.g. E) with A # 0 is not) and not every
(a, b)-module admits a nondegenerate sesquilinear form.

Consider now a sesquilinear form ® on E. By applying to it the conjugate
functor we obtain a bilinear map ® on E x E with values in E,. If we fix an
isomorphism of E, with Ey, we can consider ® as a sequilinear form on E.
Under this assumption, we define (a, b)-hermitian and anti-(a, b)-hermitian
forms as:

Definition 2.20. Let E be an (a,b)-module. An (a,b)-sesquilinear form H
on E is called (a,b)-hermitian (respectively anti-(a,b)-hermitian) if it
satisfies:

H(v,w) = H(w,v),
(respectively H(v,w) = —ﬁ(w,v)) .
where ve E, we E and H is the sesquilinear form on E defined above.

We have already shown that in order to admit a nondegenerate sesquilin-
ear form, an (a,b)-module must be self-adjoint. We will refine the concept
of self-adjoint by defining;:

Definition 2.21. Let E be a self-adjoint (a,b)-module. We say that E is
hermitian (resp. anti-hermitian), if it admits a nondegenerate hermitian
(resp. anti-hermitian) form.

Let E be an (a,b)-module endowed with a hermitian form and consider
® : E — E* to be the linear form associated to the hermitian form via the
remark

We can translate the hermitian property into the identity between ® and

its adjoint ®* : E — E*. In fact while ®(v), for v € E is the linear map:
©:w— d(v,w), weE,
the adjoint map ®* sends an element v € E = E** to the map:
p:iwe v (d(w,)) = d(w,v).

We will use this formulation extensively in the following section.

Note moreover that to give an isomorphism @ from an (a,b)-module £
and its 6-dual £* ®ap) s is equivalent to specifying an isomorphism between
E ®@p E-s5p2 and

E* ®ap) Es ®apy E_sj2 = E* ®ayp) Espa-
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Since we have
(E ®(a.b) E—5/2) ~ B ®(ab) Eja/z ~ E* ®ap) Esy2,

we can identify an isomorphism of E with its -dual with an hermitian form
on E ®(a,b) E_5/2.

2.2 Existence of hermitian forms

We will analyze in this section the existence of nondegenerate hermitian
forms on regular (a,b)-modules, which will be necessarily self-adjoint as of
remark [2.19] We will proceed in two steps: in the first two subsections we
will reduce ourselves to a subclass of (a,b)-modules called indecomposable
(a, b)-modules and show that every regular (a, b)-module can be decomposed
into the direct sum of indecomposable ones and that this decomposition is
unique.

In the last subsection we will show that a self-adjoint (a, b)-module which
is indecomposable admits at least a hermitian or anti-hermitian form. The
result is optimal since there are examples that admit only a hermitian or
only an anti-hermitian form.

2.2.1 Indecomposable (a,b)-modules

Definition 2.22. Let E be an (a,b)-module. We say that E is indecompos-
able if it cannot be written as direct sum F @ G of non zero (a,b)-modules.

Since whenever we decompose an (a,b)-module F into a direct sum of
(a,b)-modules E = F @ G the rank of the components is strictly less than
the rank of E., by proceeding by induction for every (a,b)-module E we can
find a decomposition into a sum of indecomposable (a,b)-modules:

E = éﬂa
i=1

where r € N and F; are indecomposable sub-(a, b)-modules.

We are interested in the question whether the isomorphism classes of the
F; are unique and do not depend upon the decomposition. We will need to
this purpose an intermediary result:

Proposition 2.23. Let E be a reqular and indecomposable (a,b)-module.
Then every endomorphism of E is either bijective or nilpotent.
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The proof of this proposition will need several steps beginning with a
definition:

Definition 2.24. Let E be a regular (a,b)-module and A € C. We define:
= {Y FIF c B.F = B,

the sum of all sub-(a,b)-modules of E isomorphic to E.

The object V) is clearly a sub-(a, b)-module. We will use V) as an induc-
tion step in the proof of proposition by choosing such a A that V) is
normal:

Proposition 2.25. Let E be a regular (a,b)-module, \ € C and:
Amin = {\+ j|j € Z and Iz € E,ax = (A + j)bx}
J

be the minimal A + j such that E contains a monomial of type (A + j,0).
Then V.. is a normal sub-(a,b)-module of E isomorphic as (a,b)-module
to the direct sum of a finite number of copies of E)

Proof. We will use two facts.

First, for every W ~ @ E,, ., sub-(a,b)-module of E, W is normal in F.
Let in fact {e;} be a basis of W with 1 < ¢ < p the rank of W. Suppose by
absurd that there exist some x € W which is in bE, but not in bWV.

By eventually translating x by an element of b1/, we can assume x =
dP e, a; € C. We can easily verify that

ar = Apinbx
but now if x = by we must have:
ay = (Amzn - 1)by7

and since y € F it contradicts the minimality of \,,;,.

On the other hand we can show that V) . is adirect sumof £ . . In fact
let W be the largest (inclusionwise) direct sum of copies of F, . included
in V.. We remark that since W is normal, for any sub-(a, b)-module F’
isomorphic to E . only one of two cases is possible: either

WnF={0}or FcW.

If Wn F # {0}, let e be the generator of F' and S(b)b"e € W with
S(0) # 0, then S(b)e € W by normality and e = S™!(b)S(b)e € W. We have
therefore ' W.

If W contains every sub-(a, b)-module module isomorphic to E) , , then
it is equal to Vypin. Otherwise there is an F' such that W n F' = {0}, hence
W @ F is still in Vi, which contradicts the maximality of W. O

min
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We will now use the sub-(a, b)-module V. to show the following propo-
sition
Proposition 2.26. Let E be a regular (a,b)-module and let ¢ be a morphism
between E and itself. Then ¢ is bijective if and only if p is injective.

Proof. To show that bijectivity follows from injectivity, we will proceed by
induction on the rank of the module.

If E is of rank 1 the statement of the proof is satisfied: in fact £ must be
isomorphic to one of the E) and the only b-linear morphisms from a F, to
itself that are also a-linear are those that send the generator e to ae, a € C.
They are all bijective for o # 0.

Let now E be of rank n > 1. We can find, by lemma [1.27] a A,
that satisfies the minimality property of the previous proposition. Hence the
module V) . is normal and isomorphic to a direct sum of E)_, .

Let {e;} be a basis of V) . composed of monomials of type (Ayin,0) and
let x another monomial of type (Apin, 0). We want to show that z is a linear
combination of the elements of the basis, with coefficients in C < C[[b]].

From the definition of V) _, follows that z € V) , . Suppose now that
x =), Si(be; and let us apply a to both sides. We obtain:

ar = )\manZ b bei + SI b bQBi = )\mznbx + S, b 6262‘
2 (b) [(b)bPe;) > Sib)

7

and since z is a monomial of type (A\yin, 0), we must have S’(b); = 0 for all
v and therefore
r = Z 81(0)6“

as we wanted.
Let ¢ : E — E be an injective endomorphism of E and {e;} a basis of

Vi, - Every o(e;) is a monomial of type (A, 0) and therefore is an element
of V... The restriction of ¢ to V), . is therefore an endomorphism of V) , :

Moreover since the coefficients of the ¢(e;) in our base are complex con-
stants, 90|men behaves as a linear application between finite dimensional
spaces: in particular if it is injective, it is also surjective.

In order to apply our induction hypothesis let us consider the following
commutative diagram:

Pl s
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where ¢ is the (a, b)-linear morphism induced on the quotient. As we showed
the first downward arrow is bijective.

The third arrow ¢ is injective: suppose in fact that we have two different
classes with representatives x and y € F that map to the same class modulo
Viin- Then o(x —y) isin V) . . From the bijectivity of ¢|y,  we can find
an element v € V), such that o

o(r —y) = ¢p(v)

which in turn implies x —y = v by the injectivity of ¢, which contradicts the
fact that = and y are in distinct classes modulo V) , .

Since the rank of E/V, . 1is strictly inferior to the rank of E, we can
apply the induction hypothesis to show that ¢ is also bijective.

It follows from a basic result of homological algebra that the second arrow
is bijective if it is injective. O

We can now consider endomorphisms that are not necessarily injective.
Once again the structure of (a,b)-modules does not differ essentially from
that of finite vector spaces over C:

Lemma 2.27. Let E be a regular (a,b)-module and ¢ an endomorphism of
E. Then E splits into the direct sum of two p-stable sub-(a,b)-modules F
and N, with o bijective on F and nilpotent on N.

Proof. Consider the sequence of normal sub-(a, b)-modules
K, =Kerp", neN.

Since two normal sub-(a, b)-modules F' = G are equal if and only if they
have the same rank, the sequence of K, stabilizes beginning with a certain
integer m: K,, = K,,,1.

On the other hand if we consider the sequence I,, = Im ", let us look at
the restriction of ¢ to I,,:

SD|]m : Im - ]m+1 - ]m~

This restriction is injective: if y = ™ (x) € Ker ¢, then z € K11 = K,,.
Hence y = ¢™(x) = 0. From the previous proposition we deduce that this
restriction is in fact bijective, which means that I,,.1 = ¢(I,,) = L.

We can now take F' = [, and N = K,,. They are clearly stable by ¢.
We will show that E = F® N.

We have in fact Kerp n F' = {0}, since the restriction of ¢ to I, is
injective. A fortiori, since K < Ker ¢ we have F'n N = {0}.
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Let’s take an element x € E. Since I, = I5,, we can find an element
y € F such that ¢™(z) = ¢*™(y) and call k the element z — ¢™(y). Thus we
can write £ as a sum:

r=¢"(y)+k

of an element ¢ (y) € I, and an element k € K,,, which implies that:
E=NOF.

The restriction of ¢ to NN is nilpotent, since | = 0, while we already
showed that the restriction to I,,, = F' is bijective. O]

We have now all the elements necessary to prove proposition [2.23}

Proof. Let E be a regular indecomposable (a, b)-module and ¢ an endomor-
phism of E. Then by lemma [2.27 splits E into a sum

E=N@F

of two (a,b)-modules, with ¢ nilpotent on N and bijective on F. But E is
indecomposable, therefore either N = 0 and ¢ is bijective or F' = 0 and ¢ is
nilpotent. [

2.2.2 Krull-Schmidt theorem

This subsection will be devoted to the proof of a version of the Krull-
Schmidt theorem for the theory of (a,b)-modules. The principal argument
of the proof will be proposition from the previous subsection.

Theorem 2.28 (Krull-Schmidt for (a,b)-modules). Suppose that we have
two decompositions into direct sum of a regular (a,b)-module E:

where m,n € N and all E; and F; are indecomposable (a,b)-modules. Then
m = n and up to a reindexing of the modules E; is isomorphic to F; for all
1<i<n.

For the proof of this theorem we need a couple of lemmas:
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Lemma 2.29. Let E be a reqular indecomposable (a,b)-module and ¢ an
automorphism of E. Suppose moreover that p = o1 + @o. Then at least one
of v1, Qo 1s an isomorphism.

Proof. Be applying ¢~! to both terms, we can assume without loss of gener-
ality that ¢ = Id is the identity automorphism.
The two endomorphisms ¢; and o commute. In fact:

V192 — a1 = p1(1 + p2) — (Y2 + 1)1 = 1 — 1 = 0.

By lemma the ¢; can be either nilpotent or isomorphisms. If they were
both nilpotent, their sum would be nilpotent, which is absurd. Hence the
result. O]

Remark 2.30. By subsequently applying the previous lemma, we can extend
the result to the sum of more than two endomorphisms.

Lemma 2.31. Let E and F be indecomposable regular (a,b)-modules and
a:FE— Fandp:F — E two (a,b)-linear morphisms. Suppose that ( o «
18 an 1somorphism, then o« and 3 are also isomorphisms.

Proof. Let prove that F' = Ima @ Ker 3. If a(z) € Ker 3, we have
Boa(r) =0,
hence x = 0 and therefore
Ima n Ker 8 = {0}.
Consider now an element x € F' and let
y=ao(foa)™op(x).

We have

Blz—y) = B(z) = Bly) = Bz) = (Boa)o(Boa) "of(x) = fz) - Bx) = 0.

We can thus write = as sum of an element y of Im a and an element z — y of
Ker 5. This implies F' = Im a @ Ker j.

Now since (8 o «v is injective, so must be o and Im « can not be 0. But
F' is indecomposable therefore we must have Ima = F and Kerg = 0. It
from proposition that « is bijective and 3 = (8 o a) o a™! must be also
bijective. O]
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Proof of Krull-Schmidt theorem for (a,b)-modules. We will show this theo-
rem by induction on m.
If m = 1, then E is indecomposable and we must have n = 1 and E; ~ F7.
In the general case consider the morphisms

q; = T; ©P1,

where the ;s are the projections on F; and the p;s are the projections on
E;. Let consider the sum:

ZPlOQi =D OZTFiOpl =pP1o°pP1 = P,

is the identity on the component Ej;. By the lemma [2.2.2] there is an ¢
such that py o ¢;|g, : F1 — E; is an isomorphism. Suppose, without loss of
generality, it is p; o ¢1, then by the lemma G|, =m : E1 — F)is an
isomorphism.

In order to apply the induction hypothesis, let note G = >, F;. We want
to show that E; @ G is equal to £ = F} @ (. Since m; is an isomorphism of
FE, onto F and its kernel is G we must have

ElﬁG:{O}I

if x € By n G, then 71(x) = 0, but 1 restricted to E is injective, so x = 0.
On the other hand every element of E' can be written as v + w with v € F}
and w e G. If y € Fy is such that m(y) = v, then we have:

v+w=y+my) —y+w,

and 7 (y) —y € W by definition of m;. We can then conclude that 1 @G =
E=E,®Y",E.

We have immediately E/E, ~ G ~ ", E; and we can apply the induc-
tion hypothesis to G. [

We can now focus on finding self-adjoint isomorphisms of an (a, b)-mod-
ule F with its adjoint £*. The Krull-Schmidt theorem will be useful to show
the following decomposition:

Proposition 2.32. Let E be a regular self-adjoint (a,b)-module. Then E is
1somorphic to:

E=@ (") o (Gecn™

where r and s as well as the a; and (; are positive integers. The F; are self-
adjoint (a,b)-modules and the G; are non self-adjoint (a,b)-modules. The
isomorphism classes of the F;, G; and G} are all disjoint.
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Proof. Consider a decomposition of F into indecomposable (a, b)-modules
E=)E.

Since F is self-adjoint we have another decomposition given by

E:E*zZE’f

The Krull-Schmidt theorem assures us that the factors are unique up to a
permutation. So we can divide the F; into two groups.

In the first group we find the self-adjoint components F; with a certain
multiplicity.

In the second one we find the non self-adjoint components G; with the
respective multiplicity. Since the two decompositions » , F; and . E* must
contains the same modules up to a permutation, the multiplicity of the G;
and the G must be equal. ]

Remark 2.33. From the proposition above we can immediately see that the
non self-adjoint part of the decomposition always admits a hermitian nonde-
generate form. In fact if we consider the module G; ® G;", a hermitian form
can be given by:

(z,y) = (y, x).

If the multiplicity of a self-adjoint term F; is pair, we fall into the same
situation.

The case of an unpair multiplicity of a self-adjoint component is far more
interesting and we will study it in the next subsection.

2.2.3 Hermitian forms on regular and indecomposable
(a,b)-modules

As already noted in the previous subsection, the situation of an inde-
composable self-adjoint (a,b)-module concerning hermitian forms is not so
simple as in the complex vector space case and the existence is not always
guaranteed. We have in fact the following theorem:

Theorem 2.34. Let E be a regular indecomposable self-adjoint (a,b)-mod-
ule and E # {0}. Then it admits a hermitian nondegenerate form or an
anti-hermitian one.
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Proof. Let ® : E — E* be any isomorphism of E with its dual and pose
M = &1®*. Consider now the two endomorphisms of E given by:

Id+ M

and

Id—M

they commute and can be either isomorphisms or nilpotent, since E is in-
decomposable. But if they were both nilpotent, their sum 2/d would be
nilpotent too, which is absurd.

If Id + M is an isomorphism, so is S = ® + ®*, which is associated to a
nondegenerate hermitian form. The bijectivity of /d — M on the other hand
gives us an isomorphism A = ® — ®* which comes from an anti-hermitian
form. ]

Example 2.35. Note that both cases of the previous theorem are equally
possible.

The simplest example of a regular self-adjoint indecomposable (a, b)-mod-
ule which admits a hermitian form is the elementary (a,b)-module E, with
the isomorphism that sends the generator e to its adjoint é*.

In order to obtain an anti-hermitian form, we can consider for a given
A, i € C the (a,b)-module E of rank 4, generated by {ei, es, €3, €4} which
satisfies:

ae; = A\bey
aes = pbes + €1
aes = —ubes + e; (2.3)

aey = —Abey + €3 — e3
whose adjoint basis satisfies:

SE =z
SE 5% <%

- €3 = pbey — €]
<&

ey = —ubeél + é;

€] = —\bej + é5 + &5

Q@ Q@ 2 2
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It is now easy to check that the map given by:

¢:F— E*
ey — €,
ors

es — €5

€4 —éi‘

is an isomorphism and is anti-self-adjoint.

If we choose A and p such that none of the numbers 2\, 2y and A + p is
an integer, this module is indecomposable and does not admit a hermitian
form.

We can show that the structure of this module is in fact very rigid and
the only elements of the (a,b)-module that verify the equations are the
4-tuplets {aey, aes, aes, aey}, for a ranging among the complex numbers: let
x1, Ta, 3 and x4 be four non zero elements that satisfy:

T = )\bl’l
To = pubro + 1
r3 = —ubrs + 11

Ty = —Abxy + 19 — 23

Let 1 = Rey + Sey + Teg + Uey, for R, S, T and U € C[[b]], then the
following equation is verified:

a(Rey + Sex + Tes + Uey) = (ARbe; + R'b%ey) +
(,queg + Seq + S’b262) + (—uTbeg +Te; + T,b263) +
(=AUbes + Uey — Ues + U'b’es) = (ARb+ RV + S +T) 1+
(1Sb+ S0 +U)ea + (—puTb+ TV —U) ez + (—AUb + U'b*) es. (2.4)

Moreover the equation oS = bS’, where « € C and S € C[[b]] has non trivial
solutions only if « is an integer.

By identifying the left and right term of the equation ax; = Abxy, we
deduce —2\Ub + U'b?> = 0, hence U = 0 since 2\ ¢ Z. In the same way we
obtain

— A+ To+ TV =0
~(A—p)Sb+ S* =0
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which implies S and T equal to 0 too. Therefore we are left with Rbe; 4+ R'b%e;
which has as solution R = « for a € C. We obtain in this way z; = ae;.

In the same way we prove that if xo = pubrs + 21 the only solution is
T9 = aeq. If we let x9 = Rey + Ses + Tes + Uey we obtain in fact:

~ A+ U+ UV =0 =U=0
—2uTb+T'V =0 =T=0
S'¥=0 =S8=p83, peC,

and finally
ARb + R'V* + 5 = «,

which forces = a when looking at the rank 0.

A similar proof gives us x3 = aes and x4 = aey. We have showed there-
fore that the unique automorphisms of F are multiplications by a complex
number. All the isomorphisms of £ with its adjoint are therefore of the form
a® and are all anti-hermitian.

The same fact shows us that E' is indecomposable. In fact if by absurd
EF = F® G, E would possess at least another automorphism, e.g. the
application which is the identity on F' and —Id on G.
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Chapter 3

Self-adjoint composition series

Given the non unicity of the Jordan-Ho6lder composition series in the the-
ory of (a,b)-modules, we are interested whether the particularities of certain
(a, b)-modules can be transmitted to their composition series. This chapter
will focus on the properties of Jordan-Holder composition series of self-adjoint
(a, b)-modules. In particular we will prove that a self-adjoint composition se-
ries alway exists for such (a, b)-modules.

3.1 Self-adjoint composition series

Consider a regular (a,b)-module E of rank n € N and a Jordan-Holder
decomposition of itself:

0=1Fry& I

n

. F,=F.

with F;/F;_1 ~ E),, the elementary (a,b)-module of parameter \;. We say
that the sequence is self-adjoint if \,,_;;; = —A; for all 1 < j < n and the
(a,b)-module F,,_;/F} is self-adjoint for all 0 < j < [n/2].

We shall prove the following theorem in the case of regular hermitian or
anti-hermitian (a, b)-modules and we will extend it successively to all regular
self-adjoint (a,b)-modules.

Theorem 3.1. Let E be a reqular hermitian or anti-hermitian (a,b)-module,
then it has a Jordan-Hélder sequence

which s self-adjoint.

Before proving the theorem we shall introduce a couple of lemmas.

51
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Lemma 3.2. Let E be a regular hermitian (a,b)-module (respectively anti-
hermitian) and ® : E — E* a self-adjoint (resp. anti-self-adjoint) isomor-
phism. If there exists Fy normal sub-(a,b)-module isomorphic to Ey such that
O(Fy)(Fy) = 0, then there exists a normal sub-(a, b)-module F, 1 of rangn—1
such that E/F, 1 ~ B and F,_1/F is hermitian (resp. anti-hermitian).

Proof. Let ey be the generator of F| and H the hermitian form associated to
® by H(z,y) = ®(y)(r) and consider

Fo,1:={x e E|H(ey,z) = 0}.

We remark that the condition H(ey,ey) = 0 gives us F; < F,,_; and F,_;
is normal, because it is the kernel of a morphism. Let’s consider the following

exact sequence:
0->F ->E—>E/FF -0

by theorem we can pass to the adjoint sequence:

0— (E/F)* - E* 5 FF —0.

Let K = Kerm, since 7 is the restriction morphism of forms on £ to the
sub-(a, b)-module Fy, we can describe K as follows:

K = {p e E*|p(F) = 0}

&
since (E/Fy) is isomorphic to K, we can consider it as the sub-(a, b)-module
of E* whose elements annihilate Fj.
Consider now the restriction of ¢ to F,,_;.

d:F,_, — E*

Since by the definition of F,,_1, ®(x)(ey) = 0 for all z € F,,_1, we obtain
that ®(F,_;) < (E\//Fl)* On the other side since for all ¢ € (Lm* the
element y = ®!(p) satisfies ®(y)(e)) = 0 we also have (%* < O(F,_1).
Hence ®(F, 1) = (Em* and since ® is an (a, b)-linear isomorphism F,, ;
is isomorphic to its image by ®: (E\/_F/l)*

Let look at the following exact sequence:

0— (F1/F1) = (B/F1) > (E/F, 1) =0

and its adjoint sequence:

—_— . Tre—— T

0= (B/Fy1)* > (B/F)* 5 (Fut/F1)* — 0.
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7 is the restriction application on the forms of (E\//Fl)* Ker 7 is thus the

forms of (E/F1)" that annihilate (F,_/F1)" or with the convention of the
previous paragraph, the forms of £* that annihilate F} and F), i:

Kerm = {pe E* s.t. o(F,_) =0}
since F; < F,, 1. We note that since ® is self-adjoint (resp. anti-self-adjoint)
Pex)(Fn1) = £P(Fr1)(er) =0

and hence ®(F;) < Kerm. An easy calculation shows that Ker r is of rank
1. Since ®(F) is normal, of rank 1 and included into Ker 7, they must be
equal. .

We obtain (E/F,_1)* ~ Kerm ~ F;. Now we know that ® sends F,_;
onto (E/F1)* and F; onto Kerw, so starting with the following exact se-
quence:

0 — Kerm — (E/F)* 5 (F_1/Fy)* — 0

we can obtain another by substituting Ker 7 with Fy and (F/F;)* with F,,_;:

—

0—>F —F - (anl/Fl)* — 0.

or in other terms (F, |/F)* ~ (F, 1/F;). Note that the isomorphism is
given by x — ®(x)|r,_, and is therefore hermitian.
Let resume the results with a graph of interwoven exact sequences:

0

Modules in symmetric positions with respect to the dotted line are each
other’s adjoints. O]
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Remark 3.3. If aey, = Mbey and 2\ ¢ N, then H(ey,e)) = 0. In fact
H(ey, ey) € Ey must verify:

aH(ey, ey) = H(aey, ey) + H(ey, —aey) = 2X\bH (ey, e))
which has non-trivial solutions in Ej only if 2\ € N.

Lemma 3.4. If E is a reqular hermitian (resp. anti-hermitian) (a,b)-module
and there exists A € C such that E contains two distinct normal elementary
sub-(a,b)-modules F' and G of parameters f = g = X\ mod Z then there exists
Fy © F,_1 two normal sub-(a,b)-modules or rang 1 and n — 1 respectively

such that (E/\Fn/,l)* ~ Iy and F,,_1/F is hermitian (resp. anti-hermitian).

Proof. We will denote by H an hermitian (resp. anti-hermitian) form on
E. Let e; and e, be generators of F' and G and suppose without loss of
generality that f —¢g > 0. We will show that there exist a normal elementary
sub-(a, b)-module F; of E whose generator e € E satisfies H(e,e) = 0.

By the property [1.2 of (a, b)-modules we have ab’ 9e, = fb-b/ 9¢,. Let’s
pose e; = b/ 9e,. Consider now the complex vector space:

V= {ae; + e, § € C)

Note that every v € V satisfies av = fbv. The b-linearity of H and the
definition of the action of a give us:

(a —2fb)H(v,v) =0

which has in F, only solutions of the form ab®* ey, a € C. There exists
therefore an application B from V' x V to C such that:

H(v,w) = Bv,w)b* ey Yv,weV

The bilinearity and symmetry of H imply that B is in fact a bilinear sym-
metric form on a 2 dimensional complex vector space, which entrains:

B(es + zer, e +wer) = ag + arv + asx?

for some complex numbers a;. This vector space has an isotropic vector e # 0
such that B(e,e) = 0, and therefore H(e,e) = 0.

By eventually dividing e by a certain power of b, operation that does
not change the relation H(e,e) = 0, we can assume that e ¢ bE, hence the
module F| generated by e is normal.

We can now conclude by applying lemma |3.2 [
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Lemma 3.5. Let E be a reqular (a,b)-module and:
0c..FaucsFkFKcFkFau%... B

be a Jordan-Hélder sequence with F;/F;_y ~ E,, for all i and suppose there
is a j such that \j11 # \; mod Z.

Then we can find another Jordan-Hdlder sequence that differs only in the
j-th term Fj such that Fj/F; 1 ~ Ey and Fj./Fj =~ Ex  with A\j = Xj 4
mod Z and \ji1 = N; mod Z, i.e. we can permute the quotients up to an
integer shift of the parameters.

Proof. Let consider G := Fj;1/F;_; and the canonical projection of E onto
the quotient E/F;_;, 7 : E — E/F;_;. G is a rank two module. Using the
classification of regular (a, b)-modules of rank 2 given by D. Barlet in [Bar93]
we see that the only two possibilities for GG are:

G ~ E\, ® E)

j+1
in which case we take F] = n~'(E),,,) or

G~ By, 11
generated by y and t satisfying:

ay = by
at = )\j+1bt+y

that has also another set of generators: ¢t and z := y+ (\j11 —\; +1)bt which
satisty:

ar = (N +1)bx
at = (N —1)bt+ x.

In this case we take Fj = 7~ '(< x >). O

Lemma 3.6. Let \ be either 0 or 1/2 and E be a regular hermitian (resp.
anti-hermitian) (a,b)-module. Suppose that there is an unique normal el-
ementary sub-(a,b)-module of parameter equal to X modulo Z and suppose
moreover that every Jordan-Hélder sequence contains at least 2 elementary
quotients of parameter equal to X modulo Z.

Then there exist Fy < Fn_l\tuﬁ normal sub-(a,b)-modules of rang 1 and
n — 1 respectively such that (E/F,_1)* ~ F\ and F,_,/F} is hermitian (resp.
anti-hermitian,).
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Proof. Let Fy ~ E, be the elementary sub-(a,b)-module of the hypothesis
and {F;} a J-H sequence beginning with F; and such that E/F,_; is of
parameter y' equal to A mod Z. We can find such a sequence by using
repeatedly the previous lemma.

Consider the exact sequence:

0—>F,1>E—>(E/F,_1)—0
and the dual sequence:
0 (E/Fp))* 5 B* 5 50,

The image of 7 is a normal elementary sub-(a, b)-module of E* of parameter
equal to —\ mod Z (since (E/F,1)* ~ E_,/). But A = —X mod Z and
E ~ E* so by the uniqueness of F} given in the hypothesis Im ((E/Fn,l)*) =

®(F), thus (E/F, 1)" ~ Fi. By replacing £* by E and (E/F, 1) by F in
the sequence we obtain:

O—»Fl—i>E—>F;71—>O

which is exact and i is the inclusion of sub-(a, b)-modules, so F* | ~ (E/F,)

or equivalently F,,_; ~ (E/F})*. Note that the first isomorphism is given by
&1 while the second by the restriction of ®.
Consider the following sequence and its adjoint:
0— anl/Fl - E/F1 - E/Fn,1 — 0
0= (E/Fo)" = (E/F)" — (Fpt/F1)" — 0

———— e

by replacing (E/F,_1)* and (E/F,)* with Fy and F,,_; we obtain:

0— Fl % n—1 5 (an/Fl)* — 0

for the uniqueness of Fi, ¢ can only be (up to multiplication by a complex

number) the inclusion F; < F,_; and hence (Fn_\l//Fl)* ~ (F,_1/Fy). Note
that 7 is the restriction of ® to F,,_1, so the isomorphism is self-adjoint (resp.
anti-self-adjoint). O

We can now prove the theorem.

Proof of theorem [3.1. We will prove the theorem by induction on the rank
of the (a,b)-module. For rank 0 and 1 the theorem is obvious.
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Suppose we proved the theorem for every rank < n and let’s prove it for
rank n. Let find Fy, < F,_; of rang 1 and n— 1 such that (E/F,_,)" ~ I} and
F,_1/F} is hermitian or anti-hermitian. We can have different cases which
are exhaustive:

(i)

(iif)

There is G normal elementary sub-(a,b)-module of E of parameter A
not equal to 0 or 1/2 mod Z. Then ®(G)(G) = 0 by remark [3.3 and
we can apply lemma [3.2]

Only (a, b)-modules whose only normal elementary sub-(a, b)-modules
have parameter A = 0 or A = 1/2 modulo Z remain after this point.

For A = 0 or A = 1/2 there are two distinct normal elementary sub-
(a, b)-modules of parameter equal to A mod Z. We apply lemma [3.4]
After this point we can only have at most an unique normal elementary
sub-(a, b)-module of parameter equal to 1/2 modulo Z and an unique
normal elementary sub-(a,b)-module with an integer value of the pa-
rameter.

There is only one normal elementary sub-(a,b)-module of parameter

equal to A mod Z, where A\ = 0 or 1/2, but two quotients of a J-H
sequence are of parameter equal to A mod Z. We apply lemma |3.6|
Only modules of rank at most 2 (one for each possible value of \) pass
this far.

The rank of F is 2 and one quotient of a J-H sequence is equal to 0
mod Z, the other equal to 1/2 mod Z. By the classification of rank 2
modules this case is impossible. In fact with the notations of [Bar93]:

(E)\ ® E,u)* = E—A ® E—,u,
EX .,

0

Elf)\,lf,u

so if A = 0 mod Z and p = 1/2 mod Z the (a,b)-module is not self-
adjoint.

By induction hypothesis F, 1/F; has a J-H sequence that satisfies the
hypothesis of the theorem and if we take the inverse image by the canonical
morphism F,, 1 — F,_1/F; and adding 0 and E we find a J-H sequence of F
that satisfies the theorem. O

By considering the results of the previous chapter we can leave out the
hermitian condition on the self-adjoint module. We have in fact the following:

Theorem 3.7. Let E be a reqular self-adjoint (a,b)-module. Then it admits
a self-adjoint Jordan-Hdélder composition series.
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Proof. By proposition we can decompose F into

EZEEHi

where m is an integer, while the H; are either indecomposable self-adjoint or
of the form GOG*, where G is indecomposable non self-adjoint (a, b)-module.

Each term of this sum admits a self-adjoint composition series. In fact if
H; is indecomposable self-adjoint, then it is hermitian or anti-hermitian by
theorem We can therefore apply the previous theorem [3.1]

On the other hand if H; is the sum G @ G* of a module and its adjoint,
we can easily find a self-adjoint Jordan-Hélder composition series. Take in
fact any Jordan-Holder series of G,

and consider the adjoint series

0=(G/Gn) S (G/Gur) ... (G]Go) =G,

Then the following composition series of G @ G* is self-adjoint:

0=GySGiG...G=CGa(GIG,) cCG@(G/Gr) <
S Ga(GIG,) =Gad"

We will now prove the theorem on induction on m. The case m = 1 was
already proven.

Suppose now m = 2 and let E' := H; and F := )", H;. We have
therefore £ = E'@® F, and E’ and F are both self-adjoint. By induction
hypothesis we can find a self-adjoint composition series of E':

O=FE, - E =F

and of F:
O=Fk<---CF,=F

Then the following composition series is self-adjoint:
0=EyGE1G G By G By @ S - S Eppy) @ Flpgg [+ ]

Ef(r+1)/2] @ Fls11y/21 & Ef(r+1)/2] D st 1 & & EE(T’+1)/2] @F
< Ef(r+1)/2]+1 Frc.--- ¢ EI@F,

where depending on the parity of r and s, [--- ]| stands for
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(i) the = sign if r and s are both even.
(ii) the < sign if one is even and the other odd.
(iii) the subsequence
S Erj ® Fiiornyz) &

This case needs a short verification. If » and s are odd, then the two
central quotients of the series are isomorphic to EE(T +1)/2] /Efr /2 and
Fi(s+1y/21/Fjs/21- Since E; and F; are self-adjoint series both quotients
are self-adjoint (a,b)-modules of rank 1. They are therefore isomorphic
to Ej.

O
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Chapter 4
Higher-residue pairings

In the study of the Brieskorn lattice K. Saito introduced the concept of
“higher residue pairings” (cf. [Sai83|), which can be defined using a set of
axiomatic properties.

Using the theory of (a,b)-modules R. Belgrade showed the existence of
a duality isomorphism between an (a,b)-module associated to a germ of a
holomorphic function in C**! with an isolated singularity at the origin and
its (n + 1)-dual. In this chapter we’ll prove (as already noticed by R. Bel-
grade in [Bel01]) that the concept of “higher residue pairings” and self-adjoint
(a,b)-module are linked.

In this chapter D will always denote the Brieskorn module associated to
a holomorphic function in C"*! with an isolated singularity, while £ will
denote its b-adic completion considered as an (a, b)-module.

4.1 Duality of geometric (a, b)-modules

The following theorem of R. Belgrade gives a relationship between E and
its (n + 1)-dual.

Theorem 4.1 (Belgrade). Let E be the (a,b)-module associated to a germ
of holomorphic function f : C**' — C, then there is a natural isomorphism
between E and its (n + 1)-dual:

A E ~ E* ®(a,b) En+1

We can obtain from this isomorphism a series Ay : E x E — C of bilinear
forms defined as follow:

+co

[AW)] (@) = (n+ 1)1 Y A, y)brens

k=0

61
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with x, y € E. Notice that this definition differs from that of R. Belgrade by
a factor of (n + 1)\

4.2 “Higher residue pairings” of K. Saito

K. Saito introduced in [Sai83| a series of pairings on the Brieskorn lattice
D which are called “higher residue pairings™

K®. DxD-C keN

which are characterized by the following properties:
(i) K& (wi,wy) = KEHD by, wy) = —KFD(wy, bws).
(i) K® (aw;,ws) — K®(wi, aws) = (n + k) K% D (w, wy).

(iii) K© satisfies
K9(D,bD) = K9®BD,D) =0

and induces Grothendieck’s residue on the quotient D/bD.
(iv) K® are (—1)*-symmetric.

Remark 4.2. We notice that from the properties (i) and (iii) above we can
deduce that K™ (D, b**1D) = K®)(b*+1D D) = 0, so we can consider the
pairings K(*) as being defined on D/b**'D.

In the following section we’ll show the following result:

Proposition 4.3. The Ay verify the properties (i)—(iii) of the “higher residue
pairings” of K. Saito.

The prove will be performed by steps.

4.3 Proof of the proposition

4.3.1 Proof of (i)
We use the b-linearity of A(y) to obtain:

2,0+ DAL bz y)brenss = [Aly)] (br) = b[A(Y)] (2) =

k
Z(n + DA (z, y)b e
k
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which gives us Ag(x,y) = Agy1(bx,y). And similarly by using the b-linearity
of A and the definition of conjugate, we obtain:

A(by)(x) = (b-px Aly)) (x) = —bA(y)(x),

and therefore

(n 4+ DU Ap(a, by)bFenn = Alby)(z) = —bA(y)(x) =

which implies Ay (bx,y) = —Agy1(x, by).

4.3.2 Proof of (ii)

Since A is an isomorphism we have A(ay) = a -« [A(y)] and:

(n+ 1Y Ax(z, ay)bienn = Aay)(z) = a- [A(y)](z) =

= A(y)(az) = a[A(y) ()] = (n + 1! Y (Axlaz, y)brenss — Az, y)ab enss)

The definition of (a,b)-module and E, . (ae,;1 = (n + 1)be, 1) gives the
following relation

ab¥eni1 = brae, 1 + kb e = (n 4+ k+ Db e,
hence follows:

Ag(ax,y) — Ag(z,ay) = (n + k) Ap_1(z,y)

4.3.3 Grothendieck’s residue

We have to show now that the pairing Ag induces Grothendieck’s residue
on D/bD ~ QL /df A Q"

Proof of (iv): From the definition of Ay and the b-linearity of A it’s
easy to see that Ag(D,bD) = A¢(bD, D) = 0. We can hence consider A as
a pairing on D/bD.

Grothendieck’s residue is defined as follows:

. ghdz
Res(g,h) := lim
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where g,h € O and dz = dz; A ...dz,.1.
The morphism A is defined as composed morphism of six (a,b)-modules
morphism as showed by the following graph:

EaF16

Fy

Fy

N
a

These morphisms pass to the quotient by the action of b in order to give a
decomposition of the morphism Ag:

En+l ¢ F5 n F4

E/WE —% ~ F\ JbF, "~ Fy/bFy

(E*®En+1)
b(E*®En+1) ¢

F5/bF5 <T F4/bF4

We have to verify that the image of [gdz| by Ag is Res(g, -), where gdz is an
element of "1, We’ll accomplish this in many steps using the decomposition
above.

(i) Step 1: E, F; and F,. We have the following isomorphisms:

Fl Qn+1 F2 Danrl

~

bE,  df AQ®  BF, (0 —dfA)Db

the morphism & coincides with the identity on Q""!/df A Q" and B
is induced by the inclusion ¢ : Q"1 — D", We deduce that 3 o
a([gdz]) = [i(gdz)]. Let write T € Db 0 the current i(gdz).

(ii) Step 2: path between F» and F3 By using the description of the
lemma 3.4.2 of [BelO1] we see that:

Fy  Ker(Dpn+! 49 pyrntt)
b5 9Ker(Dbom U3 D)
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and the isomorphism 7 is induced by the inclusion Db*" ! < Dy +!,
In order to find S := 57 1(T) we have to solve the following system:

T = df na™

éan,o _ df A Oénfl,l
oottt = df a%m
o’ = 8

where the a?? € DbP?. There is a solution to this system of equa-
tions since the complex (Db*%;df A) is acyclic in degree # 0 for all
qin 0,...,n + 1 and the solution satisfies [S] = [T'] where [-] is the
equivalence class in Fy/bF5.

(@—dfn) Y " =8a"" —df Aa™ =5 —T
k=0

We can compute this solution explicitly. Let be (p,q) € N? and ¢P? a
C* test form with compact support and of type (p,q). The action of
T over " is given by:

< T, ¢0,n+1 = f¢0,n+1 A gdZ

then the following current satisfies T' = df A a™":

VA gdzg AL A dzg

< o™ bt > = lim
81—>0 |alf|>€1 alf

in fact:

0,n+1
<df A ™, P > = lim ¢ Adf Agdzg Ao A dzpg
)
0o flza orf

_ J¢O,n+1 A gdZ
and thanks to the Stokes’ theorem:

<0a™ ' > = — <™ Jp!" >

O™ A gdza A ... Adzpe

= lim —
e1-0  Jio, flza of
. YA gdzg AL A dzpa
= lim

81—>0 \91]”\:61 51f
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We’'ll remark that the currents 042’0 defined above for 1 < k< n+1
also verify df A af® =T

n,0 1n+1 _
<ap 0 >=

. (=D)Fpbntt A gdzy A ... d/z\k oo A dZpg
= lim
620 Jjoy flzer O f

and that [0a™"] = [0a}°] in Fy/bFy: in fact (0 — df A)(a™® — a}*) =
da™® — .

Forall k€0,....,nand 1 <i; < ... <11 <n+1let us define:
1) (&g ig)+1
Oén_k’k = 1 lim ( 1) g /\l¢i1 ,,,,, i1
Ulyeesllot1 (k + 1)! €ig—0 |01, fl =€, 5,1f - &ika
Visask+l 1o, fl=ei
and let "~k = o/ 0E

A simple computation gives us:
TRLas!
n—k,k kn—k+1\ __ A n—k+1,k-1 k,n—k+1
df A i P = —2504, N
1.5tk +1 k + 1 1 D] yeeny Ugyeeny 41
q=

using this formula, we prove by induction on k that the class of the

—kk . L
current o) ¢ doesn’t depend upon the i,s. This gives us
1seenslho41 q

[df A Oénfk,k] _ [éankarl,kfl].

In particular 0a®" acts upon the test function ©"*%0 in the following
way:
_ 1 ¢n+17og
< Ba0n 0 s lim j N i
| (0 Dl e J UG 0 O

Step 3 from F3/bF; to (D/bD)*: let notice that S is a current of type
(0,n + 1) with support in the origin.
We have the following isomorphisms:

ﬂ ~ n+1 df n n+1 1
o = Ker (HO (X,0) D Hri(x, 0 ))

and the isomorphism between F3/bF3 and Fy/bFy is the natural one,

and .
F5 N Qn+1
bEs  \df A Qn

From steps (1)-(3) we deduce that A induces Grothendieck’s residue.
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4.4 Property (iv)

Verifying that the A, are (—1)*-symmetric would follow closely the foot-
steps of K. Saito and R. Belgrade. We will follow another approach by
proving instead that the isomorphism given by R. Belgrade can be easily
transformed into one that satisfies the property.

Tet A: E — E* ®(ap) Eni1 be Belgrade’s 1somorphlsm As we already
noted in chapter 2, the isomorphisms between E and E* ®(ap) Eny1 are in
bijection with the 1som0rph1sms between E ®qp) F_(n+1)2 and its adjoint,
through the map that sends an isomorphism @ to ® Q) IdEe_,, .-

By an easy calculation we can prove the following lemma:

Lemma 4.4. Let A : E — E* ® E,.1 be an isomorphism and
Aly)(x) = (n+ 1)1 Ag(z, y)brena
k

for each x and y € E. Then the Ay satisfy Saito’s condition (iv) if and only
if the isomorphism A Q. Idg_, ., s self-adjoint.

Proof. A®upy lde_,,,,, is self-adjoint iff we have:
A®ap) Ide_ 1) (y®e n+1/2) (x@e n+1/2 ZSkb ey &
A®ap) Ide_(, 1) (2 ®e—(nr1)2) (Y@ e—(niny2) = Z Sk(=b)ep.
k

for all x and y € . On the other hand we have:

A®ap) Ide_(,, 1) (Y@ e_(nr1y2) (2 @ e_(ni1)2) ZSkb €y =

= Z Skbk€n+1.
k

O

By combining the previous equivalence with the results of chapter 2, we
can state the following theorem:

Theorem 4.5. Let E be a reqular (a,b)-module associated to a holomorphic
function from C**! to C with an isolated singularity. Then there exists an
isomorphism @ : B — E* ®qp) Eni1 with

O(y)(x) = (n+ DY Pp(a, y)beni,

for all x and y such that the sequence of C-bilinear forms ®,, satisfies all four
properties of Saito’s “higher residue pairings”.
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Proof. Let A be Belgrade’s isomorphism and Ay defined as at the beginning
of this chapter. Consider the isomorphism

A* ®(a,b) ]dE E— E* ®(a,b) En+1

n+1

and let ® = (A + A* ®uy) Idp,,,) /2-

It is easy to see that the @, satisfy properties (i) and (ii). Moreover since
Ay is symmetric (Grothendieck’s residue) and A* ®(ap) Idg,,, induces the
transposed of Ay on E/bE, we have

P = (Ag +"Ag) /2 = A,.

We have also

((D ®(a,b) ]dE_(n+1)/2) = @* ®(a,b) ]dE(n+1)/2 = @ ®(a,b) ]dE_(n+1)/27

therefore the @, satisfy Saito’s property (iv).

We just have to show that ® &) [dE_,,,,, s an isomorphism. Since
there exists an isomorphism between E ®q5) E_(nt1)2 and its adjoint, we
can apply proposition and reduce ourselves to prove the injectivity of
PR(a,b) [dbl(nﬂ)/z- But if ®®,) ICZEOLH)/2 were not injective ® would induce
a degenerate form on F/bE, which is absurd. ]

The existence of a hermitian form on E ®p) E_(n41)2 gives us an in-
teresting restriction on the kind of (a, b)-module associated with Brieskorn
lattices:

Corollary 4.6. Let E be a reqular (a,b)-module associated to a holomorphic
function from C**' to C with an isolated singularity. Then E®p) E—(n+1)2
is a hermitian (a,b)-module.
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