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Thanks to Amaël Delanoy, Antoine Letouzey, Regis Perrier, Benjamin Petit, Gaëtan,
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CHAPTER 1

Introduction
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The ambient world is percieved in a unified manner independently of the environment

– whether it is in the office, at home, in the street, in the parc, etc. We are not affected

by the strongly varying conditions of lighting, acoustics and noise, nor do we pay much

attention to the head position and motion at every time instant. We deal with multimodal

percepts of the events – an image of a ball jumping off the ground is associated with the

hitting sound, distant barking is immediately connected with the image of a running dog.

This interpretation may be considered as an audio-visual analysis of the scene. The goal

of my research is to develop a computational statistical framework to perform low-level

binding of descriptions from different modalities that correspond to the same objects.

The human ability to efficiently extract biologically meaningful events based on in-

dependent information from different senses is impressive. Evolution accounted for the

development of sophisticated sensory organs linked to specialized brain regions that allow

to detect and identify various events or objects of interest. Each of them gives optimal

performance under different conditions. Let us consider two examples of a scene shown on

Figure 1.1. The first image shows a typical indoor environment with several persons talking

in the room. In total five persons are present, four of them are visible and three talk, one

of the talking persons is not visible. The auditory and visual signals are significantly cor-

rupted. Numerous occlusions, ambiguous colour information and the fact that the objects

are distant makes the extraction of meaningful events difficult. At the same time, such an

environment is highly reverberant and allows for shadowing effects, the auditory activity

contains interfering sounds – footsteps and motion noise, as well as simultaneous speech of

several persons. The more so, auditory and visual scene interpretations are contradictory

– visual scene contains four persons, while auditory scene contains three and none of the

modality scenes is a subset of the other. However, the human brain succeeds in integrating

information from the two senses and forms correct multimodal percepts of the scene.

The second image shows a dog relay team somewhere in the northern snowy plains.

This time the events received from the sensory systems are different, speech and gesture
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(a) indoors environment (b) outdoors environment

Figure 1.1: Examples of audio-visual scenes: indoors environment with five persons, four

of them are visible and three are speaking, one is to the left, outside the field of view;

outdoors environment with a dog relay team, five dogs are present, two of them whine.

cues are absent. Both auditory and visual systems on their own provide weak cues that

are not as informative, as in the previous example. But again, the human brain constructs

multimodal percepts that allow us to have a stable scene representation.

Therefore, the major role in human audio-visual perception is played by an integrative

process that combines information from different senses. This human brain capability is of

primary importance for forming unified multimodal representations. Findings in research

on neurobiology confirm these ideas and provide more and more evidence that the inte-

grated product reveals more about the nature of the external event leading to faster and

better perception.

1.1 Biological View on Audio-Visual Perception

The way the human brain performs audio-visual (AV) integration is amazingly efficient.

However, no matter how natural it seems to be in everyday life, the mechanisms leading

to such a performance are still a subject of intensive research [Kadunce 2001, Meyer 2001,

Spence 2004, Stanford 2007, Stein 2008]. The brain faces a complex task of integrating

information that possesses different physical properties. Moreover, the sound and light

emitted from a sensory source travel at different speeds and therefore arrive at different

times at the sensory organs. The neural processing delay between the auditory and visual

systems should also be accounted for. This makes the AV integration problem challenging.

The integration of auditory and visual signals is most commonly assessed by com-

paring responses to a cross-modal stimulus with those to visual and auditory stimuli

alone. The measurements can be performed in various experiments using response speed,

such as saccadic reaction times [Colonius 2001], performance improvement, for example

in motion prediction task [Hofbauer 2004], or directly on individual multisensory neu-

rons [Stein 2008]. An important consequence of AV integration is multisensory enhance-
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ment which refers to the phenomenon when the neural response to a multimodal event

occurs to be more vigorous than to any of its inputs [Stein 1993, Anastasio 2000]. In cer-

tain cases the augmentation can even be superadditive [Stanford 2007], meaning that the

response exceeds the sum of its inputs.

Bayesian models of sensory cue integration have been proposed recently in order to

account for multisensory enhancement [Anastasio 2000, Knill 2007]. These approaches

allow to model the characteristic property of the phenomenon, inverse effectiveness, which

states that combinations of weak unimodal responses can produce large amount of enhance-

ment.

Certain conditions were found to improve AV integration. Co-localized and co-incident

auditory and visual stimuli lead to more effective integration, as shown by single-unit stud-

ies [Stein 1988] and detection-based experiments [Meyer 2005]. Sometimes even weaker

conditions with co-incident stimuli originate from different points in space are sufficient

to ensure integration [Kadunce 2001]. In this case only the overlapping of receptive fields

in the superior colliculus is required. Even more complex integration strategies based on

stimulus congruence were discovered in cortical multisensory representations [Stein 2008].

The capability of a human brain to perform audio-visual integration under relatively weak

conditions gives rise to cross-modal illusions, such as McGurk Effect [McGurk 1976] and

Ventriloquism Effect [Howard 1966]; their dependency on spatial, temporal and cognitive

factors has been investigated [Lewald 2003].

AV integration is responsible for creating unified percepts, which raises some

non-trivial issues and requirements:

• Processing complexity: a percept inherits all the complexities related to neural pro-

cessing in each individual modality;

• Percept richness: simultaneous inference of assignment labels and object parame-

ters allows to avoid exponentially hard binding problems;

• Binding: appropriate input data should be chosen for binding – these selection pro-

cesses that are not yet well understood [Stein 2008];

• Weighting: binding should be performed based on some strategy, which is often

accomplished by weighting the various cues based on the amount of information

they are likely to provide [Burr 2006, Knill 2007];

• Invariance: a common percept should not be dependent on the current state of the

sensory systems. There is a need for multisensory spatial representations and for the

means to align receptive fields in case of state changes [Pouget 2002b];

This brief outline shows that there has been extensive research effort aiming at under-

standing the mechanisms of multisensory integration. The field grows rapidly in both the

number and the variety of investigations on multisensory phenomena.
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1.2 Overview of Computational Models for Audio-Visual Per-

ception

Advances in research on biological principles of audio-visual (AV) integration influenced

the development of computational models. Originally, in most systems that handled multi-

modal data, audio and visual inputs were first processed by modality-specific subsystems,

whose outputs were subsequently combined [Heckmann 2002, Garg 2003]. The perfor-

mance of such procedures in realistic situations is limited in the following ways. Confu-

sion may arise from factors such as background auditory noise, presence of both speech

and non-speech multiple audio sources, acoustic reverberations, rapid changes in the vi-

sual appearance of an object, varying illumination conditions, visual occlusions, and so

forth. The different attempts that have been made to increase robustness are based on the

observation that improved object detection and localization can be achieved by integrating

auditory and visual information. The major reason for this was to benefit from multisensory

enhancement: weak stimuli from one modality can be potentially reinforced by the other

modality. Simultaneous AV processing is particularly critical in complex situations such

as the ones encountered when distant sensors (microphones and cameras) are used within

realistic AV scenarios. This means that the problems that arise when trying to understand

AV integration strategies in human brain should be resolved in a computational model.

The major questions that need to be answered in order to develop a computational

audio-visual integration model are:

• Which A and V features to select in order to account for an optimal compromise

between single- and cross-modality?

• In which mathematical space the AV data fusion should be performed?

• Once A and V features are detected, which of them should be bound together to form

an analogue of AV percept?

• Which strategy could be used to perform the binding?

• How to ensure consistency between modalities?

Different solutions for computational models can be found in the literature. Below we

provide an overview of the existing approaches to audio-visual integration.

Features to be selected. The dilemma is the following. On the one hand one wants to

extract rich and expressive features which would provide informative event descriptions.

This can lead to high-level event detection which is hard to perform, which would be rarely

available in noisy conditions, and hard to integrate with other cues due to the event speci-

ficity. At the same time, for robust and continuous perception one would like to constantly

receive a flow of low-level cues that can be extracted even in noisy conditions. But then

these features may occur to be too elementary to provide any significant information. As
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usual, the best option is somewhere in the middle: low-level descriptions are processed

by bottom-up feature detectors to extract meaningful representations which are afterwards

combined into high-level patterns by top-down processes.

The features that are available through bottom-up detectors depend mostly on the

hardware setup. Some methods rely on complex audio hardware such as microphone

arrays that are mutually calibrated [Checka 2004, Chen 2004, Perez 2004, Nickel 2005,

Gatica-Perez 2007]. This yields an approximate unimodal spatial localization of each audio

source. Reducing the number of microphones leads to decrease in localization precision.

Two microphones setup [Beal 2003, Kushal 2006, Hospedales 2007, Hospedales 2008] re-

sembles the most the real head, but can only provide approximate localization using binau-

ral localization cues [Wang 2006], such as interaural time difference (ITD), interaural level

difference (ILD), interaural phase difference (IPD). A single microphone is simpler to set

up, but it cannot, on its own, provide spatial localization.

Several calibrated cameras were used in [Checka 2004, Nickel 2005,

Gatica-Perez 2007] that can provide 3D object location estimates. Though in most

computational models the 3D scene is further projected onto camera planes to work with

a 2D representation. As in the case of a single camera, this can only provide approximate

localization. Note that two distinct AV objects may project to nearby locations in an

image. The more distant object will be partially or totally occluded in this case, and so

purely 2D visual information is not sufficient to solve the localization problem. In this

respect it is advantageous to use a pair of stereoscopic cameras. It allows to increase the

field of view and at the same time to extract depth information through the computation of

binocular disparities.

Various modality-specific features can be extracted like spectral auditory fea-

tures [Wang 2006], photometric visual features such as colour models [Perez 2004], struc-

tural templates [Gatica-Perez 2007], etc. These cues are typically used as descriptors for

data clusters.

Choosing a fusion space. There are several possibilities. In contrast to the fusion of

previous independent processing of each modality [Heckmann 2002], the integration could

occur at the feature level. In this case audio and video features are concatenated into

larger feature-vectors, which are then processed by a single algorithm. However, owing

to the very different physical natures of audio and visual stimuli, direct integration is not

straightforward. For example, there is no obvious way to associate dense visual maps with

sparse sound sources.

The fusion space should be defined so as to contain common information from au-

ditory and visual features. The most popular choice is the image space [Beal 2003,

Kushal 2006, Hospedales 2007, Hospedales 2008, Gatica-Perez 2007]. Though this is usu-

ally done under the assumption that there are no occlusions or by considering them as a

special case [Gatica-Perez 2007].

We argue here that the fusion space plays an important role in the integration process.

The real-world AV data tends to be influenced by the structure of the 3D environment in
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which it was generated. Thus we the best choice would be to perform fusion in the physical

3D space.

Feature association. The general association problem that finds the optimal matching

within the two sets of data is NP-hard and cannot be easily solved. Certain applications

admit simple association strategies based on co-incidence of the cues [Hazen 2004]. How-

ever, the conditions under which such a binding can be performed are not common.

Another opportunity is to impose multimodal patterns and thus force association of cer-

tain features through a supervised learning strategy [Zeng 2007]. This method is suitable

for recognition tasks, but cannot be applied in general tracking scenarious.

Most of the computational models use object-related association models. The essential

role here is played by the chosen fusion space. To gain more spatial resolution and increase

separation between clusters it is important to keep the dimensionality of the fusion space

without projecting the data.

Binding strategies. We identify two major directions depending on the type of syn-

chrony being used for binding. The first one focuses on spatial synchrony and implies

combining those signals that were observed at a given time, or through a short period of

time, and correspond to the same location. Generative probabilistic models in [Beal 2003]

and [Kushal 2006] for the problem of single speaker tracking achieve this by introducing

dependencies of both auditory and visual observations on 2D locations, i.e., in the image

plane. The same idea is used in [Hospedales 2007, Hospedales 2008] for the multi-speaker

case. The explicit dependency on the source location in these models can be general-

ized by the use of particle filters. Such approaches have been used for the task of single

speaker tracking [Zotkin 2002, Vermaak 2001, Perez 2004, Chen 2004, Nickel 2005] and

multiple speaker tracking [Checka 2004, Gatica-Perez 2007, Chen 2004, Bernardin 2007,

Brunelli 2007]. In the latter case the parameter space grows exponentially as the number of

speakers increases, so efficient sampling procedures may be needed, to keep the problem

tractable [Gatica-Perez 2007, Chen 2004].

The second direction focuses on temporal synchrony. It efficiently generalizes the pre-

vious approach by making no a priori assumption on AV object location. Signals from

different modalities are grouped if their evolution is correlated through time. The work

in [Fisher III 2004] shows how the principles of information theory can be used to select

those features from different modalities that correspond to the same object. Although the

setup consists of a single camera and a single microphone and no special signal process-

ing is used, the model is capable of selecting the speaker among several persons that were

visible. Another example of this strategy is described in [Barzelay 2007], where matching

is performed on the basis of audio and video onsets (times at which sound/motion begins).

This model has been shown to work with multiple, as well as with individual, AV objects.

Most of these approaches are, however, non-parametric and highly dependent on the choice

of appropriate features. Moreover they usually require either learning or ad-hoc tuning of
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quantities such as window sizes and temporal resolution. They tend to be quite sensitive to

artifacts, and may require careful implementation.

Consistency between modalities. The binding strategy is the core principle of the mul-

timodal integration. However, to show meaningful behaviour it should comply the consis-

tency principle. For spatial synchrony, for instance, the locations to which both modalities

are bound should be the same. Thus one should verify that auditory and visual devices used

in the setup are calibrated with respect to each other.

Smart room environments [Wilson 2001, Checka 2004, Gatica-Perez 2007,

Nickel 2005] require elaborate and complex calibration techniques to align the de-

vices. Displacing one of them would require recalibration of the whole setup. This was

the reason for the development of fast and approximate calibration in [Gatica-Perez 2007].

At the same time, a head-like device, while being able to perform binding in the 3D space,

offers facilities for fast and exact calibration, and is potentially capable of performing

self-calibration.

1.3 Modelling Audio-Visual Perception: Ideas and Goals

Our device, described later in Chapter 2 comprises a pair of stereoscopic cameras and a

pair of microphones. Having analyzed major advantages and drawbacks of the existing

approaches, we set a number of requirements for the multimodal framework desirable for

multiple object tracking and define the following goals:

• Fusion in the 3D space: our device allows for 3D scene reconstruction, it is impor-

tant to reinforce the binding strategy and consider the multimodal integration task in

the 3D space;

• Features extensibility: the multimodal integration framework should allow to use

modality-specific high-level features even if the integration is performed on low-level

cues;

• Modality weighting: weights for observations should be adjusted automatically

based on the amount of information provided by each modality;

• Multimodal enhancement: the multimodal framework should enable multimodal

enhancement to reinforce weak stimuli from one modality with the stimuli from the

other modality;

• Robust multimodal tracking: the multimodal framework should be able to perform

robust multimodal tracking even when the objects become invisible for a short period

of time;

• Calibration: the hardware device should allow fast, efficient and precise calibration;
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• Evaluation: a set of audio-visual scenarios should be developed to mimic natural

environments and conditions to evaluate the multimodal multiobject tracking frame-

work;

• Theoretical integrity: the proposed multimodal framework should be well-founded,

convergence properties and consistency should be verified.

1.4 Outline of the Thesis

The thesis comprises 8 chapters. After this introduction, Chapter 2 presents the hardware

devices used in the experiments as well as the feature extraction algorithms used to obtain

the data. It introduces some functional models used throughout all the thesis. The database

of realistic audio-visual scenarios is described (CAVA database). It was designed and ac-

quired as a part of this work. It is used to validate the results of Chapters 4–7. This database

part of Chapter 2 is based on my publication [Arnaud 2008].

Chapter 3 describes the first original contribution of this thesis – it is devoted to the

audio-visual head-like device calibration method. It presents the theoretical framework as

well as a simulated and real data experimental validation. This chapter is self-consistent

and can be read separately.

Chapter 4 contains the second original contribution of this thesis – the conjugate clus-

tering framework and the family of associated optimization algorithms that I developed to

perform audio-visual integration. The theoretical framework is introduced, the properties

of the algorithms are discussed and verified on simulated data. The chapter is based on my

publications [Khalidov 2008b, Khalidov 2010].

Chapter 5 presents the third original contribution of this thesis – it considers one in-

stance of the family of conjugate clustering algorithms, and shows that it can be signif-

icantly accelerated and gain attractive theoretical properties. The theoretical results are

verified on simulated data and on the CAVA database. The chapter follows my publica-

tions [Khalidov 2008a, Khalidov 2010].

Chapter 6 describes the fourth original contribution of this thesis – it introduces the

multimodal initialization and model selection procedures that improve the performance of

the optimization algorithms considered in previous chapters and are shown to possess the

same theoretical properties as their single modality counterparts. Again, the results are

verified on the simulated data and CAVA database.

The last original contribution of this thesis is given in Chapter 7 – it combines the devel-

oped multimodal clustering framework with some known tracking techniques to perform

multimodal multiobject tracking. It shows that our framework can be naturally extended

with an object dynamics model. The performance is demonstrated on the CAVA database

scenarios.

Finally, Chapter 8 concludes the thesis and discusses future perspectives.
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Audio-Visual Scene Analysis Using a

Head-like Device
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In this Chapter we discuss the task of human-centered computational audio-visual (AV)

scene analysis. Different hardware configurations that aim at modelling a human perceiver

are presented, all of them were used in the experiments. Features that are general enough to

be applied to any AV object or scene and informative enough to better suit for the task of AV

integration are proposed. The novel database, designed to investigate binaural/binocular

fusion strategies of a human and to validate and compare the models of an AV perceiver, is

presented.

2.1 Audio-Visual Acquisition Devices

The idea behind the robot head hardware configurations was to create a device that would

record data from the perspective of a person, i.e. would try to capture what a person would

see and hear while being in natural audio-visual (AV) environment. The three configura-

tions that were used in the experiments are depicted in Figure 2.1, below we give their

detailed descriptions.

Figure 2.1(a) shows the device employed for CAVA database acquisition (see Sec-

tion 2.4). The Brüel & Kjær (B & K) Head and Torso Simulator type 4128C was used to

provide a realistic reproduction of the acoustical properties of an average adult human. Two

B & K microphones type 4190 (1/2-inch, free-field) are fitted into its ears to record binaural

data. The audio signals are then treated by B & K type 2669 1/2-inch preamplifiers and

then by B & K type 2690-OS2 Nexus conditional amplifier. Finally, the analog-to-digital

(A/D) conversion is performed by Behringer Ultragain Pro-8 Digital ADA8000 A/D and

D/A converter. A pair of Point Grey Flea cameras with 6mm Fujinon lenses were fixed to
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(a) (b) (c)

Figure 2.1: Audio-visual acquisition devices used in experiments. (a) Mannequin con-

figuration; (b) POPEye Robot Head, high-specification audio configuration; (c) POPEye

Robot Head, low-specification audio configuration.

the front of a helmet placed on the mannequin’s head to record binocular data. This is a

high specification device that was intended for acquiring AV streams that would resemble

those obtained by human eyes and ears.

Another type of device shown in Figure 2.1(b) was developed within the European

project POP (Perception on Purpose, FP6-IST-027268) 1 by Computer and Robot Vision

Laboratory members2, University of Coimbra, Portugal. The POPEye Robot Head uses the

same cameras and B & K Head Simulator together with B & K microphones, preamplifiers

and the conditional amplifiers, and A/D converter as described in the previous case. They

are mounted onto a robot platform with four rotational degrees of freedom, namely neck

pan, neck tilt and eyes vergence. The control is performed through four brushed DC motors

from Harmonic Drive: one motor PMA-11A-100-01-E500ML for neck pan, one motor

PMA-8A-100-01-E500ML for neck tilt and two motors PMA-5A-80-01-E512ML for eyes

vergence. They produce much less noise than brushless AC motors, which is essential for

experiments involving auditory analysis. The platform allows for adjustment of baseline

(distance between the cameras) and camera positions along their optical axes, so that the

properties of the configuration can be changed to approach those of human visual system.

This device can be controlled in real time and is capable of modelling active perception.

The third device shown in Figure 2.1(c) is a version of the POPEye robot that has a

simple polystyrene head and Soundman OKM binaural microphones connected to a Sound-

man amplifier instead of the B & K head simulator and the B & K audio acquisition system.

The summary on the three configurations is given in Table 2.1.

To improve correspondance between the left and right images acquired by the two

cameras, the video streams are synchronized by means of an external trigger. Also dif-

ferent calibrations are required to use the data obtained from an AV device. Firstly, the

intrinsic and extrinsic camera parameters (see Section 2.2) are estimated through visual

1http://perception.inrialpes.fr/POP/
2http://labvis.isr.uc.pt/

http://perception.inrialpes.fr/POP/
http://labvis.isr.uc.pt/
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Mannequin Robot Head, HSA Robot Head, LSA

Audio

system

B & K 4128C Head Simulator,

B & K 4190 microphones,

B & K 2669 preamplifiers,

B & K 2690-OS2 conditional amplifier

Polystyrene head,

Soundman OKM

binaural microphones,

Soundman amplifier

Video

System

A pair of Point Grey Flea cameras, external trigger

Platform B & K 4128C Torso

Simulator

POPEye robot platform

Table 2.1: Robot configurations. Three columns correspond to three versions of the exper-

imental setup, namely a mannequin, a robot head with high-specification auditory system

(HSA) and a robot head with low-specification auditory system (LSA). Each line shows

different options for a particular system.

calibration procedure. In our experiments we used the one provided by the image process-

ing library OpenCV3 with chessboard as a calibration rig. Secondly, the audio calibration

is needed to ascertain the exact amplification in the left and right channels. This was done

through attaching B & K pure tone generator to each of the microphones and calculating

the corresponding normalization factor. Finally, to perform AV integration the AV calibra-

tion is required. It consists in determining the microphone coordinates in camera frame.

AV calibration method was developed as a part of the current Thesis and is presented in

Chapter 3.

2.2 Binocular Visual Features

We would like to extract visual features that would be general enough (not specific to partic-

ular object types) and at the same time sufficiently informative to perform AV integration.

In this Section we present the technique used to extract and reconstruct in the scene such

features called “interest points”.

3http://www.intel.com/technology/computing/opencv

http://www.intel.com/technology/computing/opencv
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(a) (b)

Figure 2.2: Binocular geometry. (a) Basic pinhole camera model. C is the camera centre,

(xcam, ycam, zcam) is the camera frame, s is a point in 3D and p is its projection on the

image plane. (b) Point correspondence. The two cameras are indicated by their centers C

and C ′ and image planes. An image point p back-projects to a ray in 3D space defined by

C and p. This ray is imaged as a line l in the second view.

The visual data is gathered using a pair of stereoscopic cameras, i.e. binocular vision.

We assume the basic pinhole camera model [Hartley 2003] that establishes a projective

mapping

s = (x, y, z)⊤ 7→ p = (p1s/p3s, p2s/p3s) (2.1)

of a point s in 3D onto the image plane. We denoted pi the ith line of the camera matrix

P = AR( I | − C), where A =





αu γ u0
0 αv v0
0 0 1



 is the matrix of camera intrinsic pa-

rameters and R and C are the rotation and translation of camera frame respectively with

respect to some reference frame (extrinsic parameters); I is the 3x3 identity matrix. For

exact meaning of values in A matrix we refer to [Hartley 2003]. The extrinsic and intrin-

sic parameters of a camera are obtained through camera calibration, as mentioned before

in Section 2.1. Schematic representation of the basic pinhole camera model is given in

Figure 2.2a.

Under the pinhole camera model, image points are represented as rays of light inter-

secting the image plane on a line running through the camera center. Given a pair of

cameras, C and C ′, and a point p in camera C, the location p′ of the same point in the

other camera can be constrained to an epipolar line l, as shown in Figure 2.2b. Thus for

every scene point s one can introduce the notion of epipolar disparity d as a displacement

of an image point along the corresponding epipolar line [Hansard 2008]. For a rectified

camera pair [Hartley 2003] an invertible function F : R3 → R
3 can be defined, that maps

a scene point s = (x, y, z)⊤ onto a cyclopean image point f = (u, v, d)⊤ corresponding

to a 2D image location (u, v) and to an associated binocular disparity d:

F(s) =
(

x

z
,
y

z
,
B

z

)⊤

and F−1(f) =

(

Bu

d
,
Bv

d
,
B

d

)⊤

, (2.2)
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Figure 2.3: Visual observations on the left and right camera images. White circles depict

the “interest points”, coloured squares show those of them that are matched to some point

from the other image. The epipolar lines correspond to a point marked by a star in the

opposite image.

where B is the baseline length (distance between camera centres C and C ′) measured

in focal distances of a camera. Without loss of generality we further scale the disparity

component and let B = 1 to use the following feature space mapping

F(s) =
(

x

z
,
y

z
,
1

z

)⊤

and F−1(f) =

(

u

d
,
v

d
,
1

d

)⊤

. (2.3)

This model can be easily generalized from a rectified camera pair configuration to more

complex binocular geometries [Hansard 2007, Hansard 2008]. We use a sensor-centered

coordinate system to represent the object locations.

Visual observations f = {f1, . . . ,fM} in our experiments are obtained as follows.

First we detect points of interest (POI) in both the left and right images. Second we perform

stereo matching such that a disparity value is associated with each matched point.

In practice we used the POI detector described in [Harris 1988]. This detector is known

to have high repeatability in the presence of texture and to be photometric invariant. We

analyse each image point detected this way and we select those points associated with a

significant motion pattern. Motion patterns are obtained in a straightforward manner. A

temporal intensity variance σt is estimated at each POI. Assuming stable lighting condi-

tions, the POI belongs to a static scene object if its temporal intensity variance is low and

non-zero due to a camera noise only. For image points belonging to a dynamic scene ob-

ject, the local variance is higher and depends on the texture of the moving object and on

the motion speed. In our experiments, we estimated the local temporal intensity variance

σt at each POI, from a collection of 5 consecutive frames. The point is labelled “mo-

tion” if σt > 5 (for 8-bit gray-scale images), otherwise it is labelled as “static”. The

motion-labelled points are then matched and the associated disparities are estimated us-

ing standard stereo methods. The features we use are obtained with the method described

in [Hansard 2007]. Examples are shown on Figure 2.3. Alternatively, we could have used

the spatiotemporal point detector described in [Laptev 2005]. This method is designed to
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Figure 2.4: Visual observations f in the Cyclopean image space (on the right) and their

reconstructed correspondances in the scene space (on the left), obtained through applying

F−1. Point colour represents the d or z coordinate in Cyclopean image space or scene

space respectively.

detect points in a video stream having large local variance in both the spatial and temporal

domains, thus representing abrupt events in the stream. However, such points are quite rare

in data flows we work with.

An example of visual observation set for a visual scene containing three persons is

given in Figure 2.4. The points f in the Cyclopean image space (on the right) are obtained

through stereo matching of POI in the left and right images. Their reconstruction s in the

scene space (on the left) can be found through applying the inverse mapping F−1. The

point colours are computed from the d or z coordinates in Cyclopean image space or scene

space respectively.

The implementation of the visual feature detection algorithm was kindly provided by

Miles Hansard, a member of PERCEPTION team4 at INRIA research institute, France.

2.3 Binaural Hearing

As in the case with binocular vision, we would like the auditory features to be informative

and at the same time general enough. This Section is devoted to techniques used to extract

the ITD features that fulfil mentioned requirements.

The auditory data is gathered using a pair of microphones, i.e. binaural hearing. A

sound emitted at time instant t from a source located at a scene point s = (x, y, z)⊤

would be acquired by the left and right microphones located at Mℓ and Mr at time tℓ =

t+ 1
c‖s−sMℓ

‖ and tr = t+ 1
c‖s−sMr‖ respectively. As soon as the value of t is not known

in advance, a good cue for the sound source location would be the time difference tℓ − tr.
It is called interaural time difference (ITD) and plays the role of disparity for binaural

hearing. ITD values are widely used by auditory scene analysis methods [Wang 2006]. We

4http://perception.inrialpes.fr/

http://perception.inrialpes.fr/
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Figure 2.5: Auditory observations g in the ITD space shown as a histogramm (on the left).

Three peaks are marked with coloured bars and mapped to the corresponding surfaces in

the scene space (on the right), obtained through applying G−1.

introduce the function G : R3 → R that maps s = (x, y, z)⊤ onto a 1D ITD observation:

g = G(s; sMℓ
, sMr) =

1

c

(

‖s− sMℓ
‖ − ‖s− sMr‖

)

, (2.4)

where c ≈ 343m/s is the sound speed. Unlike visual observations, an ITD value does not

correspond to a unique point in the scene space, but rather to a whole surface of points. In

fact, each isosurface defined by (2.4) is represented by one sheet of a two-sheet hyperboloid

in 3D, as shown in Figure 2.5. Hence, each audio observation g constrains the location of

the auditory source to lie onto a 2D manifold.

Auditory observations g = {g1, . . . , gK} in our experiments are obtained using the

ITD calculation method described in [Christensen 2007]. First, the left and right micro-

phone signals are processed by a filter bank that separates them into different frequency

bands. Second, cross-correlogramm is computed for every frequency band, the results are

integrated and analyzed to obtain an ITD value.

In practice we used a bank of biologically inspired gammatone filters [Patterson 1992]

that model cochlea in the inner ear of a human. The impulse response function of a filter is

given by

h(t) = atn−1e−2πbt cos(2πfct+ φ), (2.5)

where a is the amplitude, n is the filter order, b is the filter’s bandwidth, fc is the filter centre

frequency and φ is the phase. It was shown [Patterson 1992] that the choice of n = 4 and

b = 1.019 · ERB provides an excellent fit to the human auditory filter shapes, where

ERB = 24.7(4.37 · 10−3fc + 1) (2.6)

is the equivalent rectangular bandwidth (ERB) model proposed by [Glasberg 1990]. Sev-

eral efficient implementations of the gammatone filterbank are available [Cooke 1993,
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Left Ear

Right Ear

Left Ear

Right Ear

Figure 2.6: Summary of the audio processing system. Signals from the left and right

microphones are treated by the gammatone filterbank to obtain time-frequency representa-

tions. Spectrograms are then split into 10ms frames (we show 1s fragment of the recording

that contains 100 frames) that are cross-correlated to obtain ITD observations, one for each

frame. The final observation set g is shown as a histogram of ITD values.

Slaney 1993]. We use the Martin Cooke’s digital filters [Cooke 1993] based on impulse

invariance transformation5. The 64 frequency channels of the bank are uniformly spaced

from 50Hz to 8000Hz.

The output of the filterbank for the left and right microphones is split into intervals of

10 ms that are further used to generate cross-correlogramms. The ITD observation is then

found as a maximum value of weighted sum of cross-correlogramms for different channels.

The processing steps are summarised in Figure 2.6.

Alternative approaches to ITD computation exist, notably [Faller 2004, Mandel 2007].

We’ve chosen the one proposed by [Christensen 2007] as soon as this method could be ex-

tended to the multispeaker case through time-frequency fragment segregation and analysis.

The real-time implementation of the algorithm was kindly provided by Heidi Christensen

from the Speech and Hearing Laboratory6 the University of Sheffield, UK.

2.4 CAVA Database

To investigate binaural/binocular fusion strategies of a human and to validate and compare

the models of an audio-visual (AV) perceiver, a common data set is required that would

satisfy the following conditions:

• data is acquired by a human head-like device comprising a pair of calibrated cam-

eras and a pair of calibrated microphones;

5http://www.dcs.shef.ac.uk/˜ning/resources/gammatone/
6http://www.dcs.shef.ac.uk/spandh/

http://www.dcs.shef.ac.uk/~ning/resources/gammatone/
http://www.dcs.shef.ac.uk/spandh/
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• data is acquired in natural environment, so that the recordings contain visual oc-

clusions, lighting changes, auditory reverberations and ambient sounds;

• data contains scenarios of various complexity: stationary scenes and simple tracking

tasks, as well as complex dynamic scenes.

There already exists a number of databases used by the audio-visual (AV) research com-

munity. They can be roughly divided into three groups.

Face/speech-oriented multimodal databases, such as AV-TIMIT [Hazen 2004],

GRID [GRI ], M2VTS [M2V ], XM2VTSDB [Messer 1999],

BANCA [Bailly-Bailliére 2003], CUAVE [Patterson 2002], GEMEP [GEM ] are

typically acquired with one fixed camera and one fixed microphone and include individual

speakers or speaker pairs. As actors are recorded in the near field of the sensors, thus these

databases are primarily destined for AV verification, AV speech recognition and affect

recognition tasks.

Meeting-oriented multimodal databases including AMI [AMI ], M4 [McCowan 2003],

CHIL [Mostefa 2008], NIST [Michel 2007], VACE [Chen 2005] meeting corpora are ac-

quired using smart room environments comprising distributed camera systems, microphone

arrays, individual lapel microphones. The scenes are predominantly stationary and the

main accent in the recordings is put on actor interactions and postures.

Finally, dynamic scene multimodal corpora AV16 [Lathoud 2004],

CHIL [Mostefa 2008] acquired with smart room environments are destined for sin-

gle/multiple person tracking.

None of the existing databases concerns the challenging task of human-centered audio-

visual (AV) scene analysis and thus they do not satisfy the three formulated conditions.

In fact, very few studies limit the sensory input to mimic that of humans both in terms of

the number of input channels, and especially in terms of the position and dynamics of the

perceiver.

The CAVA database7 [Arnaud 2008] was recorded within the POP project by two

partners - the University of Sheffield, UK and INRIA, France. The goal was to provide

common base for development, verification and comparison of algorithms destined for

computational audio-visual analysis (CAVA) by means of a human head-like device. It

comprises about 50 sessions of 20 seconds to 3 minutes duration each with varying degrees

of visual and auditory complexity.

The entire CAVA corpus was acquired with the mannequin device (see Figure 2.1(a),

Table 2.1) in a 7m×5m office-like room with carpets, painted walls and board ceilings.

Figure 2.7 shows four photographs from the room depicting parts of the setup and scenario

sessions. In addition to the fluorescent lamps in the room, two 500 watt studio lamps

with light reflectors were used. To minimise unwanted acoustic noise, all computers were

positioned outside the room, and all wires run under a door, which was closed during the

recordings.

7http://perception.inrialpes.fr/CAVA_Dataset/

http://perception.inrialpes.fr/CAVA_Dataset/
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Figure 2.7: CAVA database recording environment and setup.

The two audio streams were sampled at 44.1 kHz, the acquisition was done with in-

house software from Sheffield University. The resulting file contained wave data for the

two microphones and a synchronization timestamp written to its header. The two video

streams contained 1024×768 colour images recorded at 25 frames per second. They were

stored in raw format, i.e. 8 bits per pixel with Bayer pattern encoding. The two streams

were synchronized through an external trigger and each frame was timestamped. Synchro-

nization of the audio and video streams was twofold. Firstly, timers on the computers, on

which audio and video acquisition was performed, were aligned through the NTP protocol.

This ensured consistency in timestamping for audio and video. Secondly, a device that

resembled a clapper board used in movie production was employed.

Below we give details on some scenarios from the database that were designed as ver-

ification base for the methods derived in the current Thesis and constitute one of its contri-

butions. The aim was to enable evaluation of audio, video and AV tracking and clustering

in scenes with various challenges, such as actors walking in and out of the field of view,

walking behind a screen, occluding each other, changing appearance and speaking in pres-

ence of multiple simultaneous sound sources.

The considered scenarios are recorded from the point of view of fixed perceiver (the

acquisition device doesn’t move). Table 2.2 gives an overview of the recordings and Fig-

ure 2.8 shows the accompanying “storyboard schematics”. The name of each sequence is
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sequence duration, type of number of speaker visual auditory

name min:sec head speakers behaviour occlusion overlap

TTOS 1 20.84 dummy 1 moving yes no

CT1OS 1 18.51 dummy 1 moving no no

CT2OS 3 21.76 dummy 1∗ moving no no

CT3OS 1 19.48 dummy 2† moving no no

NTOS 2 33.02 dummy 1 moving yes - L no - M/N/C

TTMS 3 23.28 dummy 3 to 4 moving yes yes

CTMS 3 25.34 dummy 1 to 3 moving yes yes

DCMS 3 48.40 dummy 2 to 4 moving yes yes

NTMS 2 26.62 dummy 2 moving yes - L no - M/N/C

CPP 1 2:40.54 dummy several seated yes yes

M 1 3:47.80 dummy 5 seated yes‡ yes

∗ actor changes appearance; † actors speak one at a time; ‡ two speakers are not visible

Table 2.2: List of recorded sequences - the visual occlusion accounts both for (i) an oc-

clusion of a speaker by another speaker or by a wall, and (ii) a speaker outside of the field

of view while speaking. In the column “auditory overlap” and “visual occlusion”, the tags

mean [M]usic, [C]licks, white [N]oise and [L]ight changes.

unique, and is composed of a scenario name and a number e.g. tracking test one speaker,

sequence 1 (TTOS 1). Each scenario has been recorded several times. One representative

sequence per scenario is currently available. The names used in the table correspond to the

names of the sequence on the web site.

TTOS: tracking test; one speaker - Figure 2.8(a). One speaker, walking while speaking

continously though the whole scene. The speaker moves in front of the camera and

passes behind. He reappears from the right, and turns to the cameras. The purpose

of this sequence is to evaluate audio (A), video (V) and audio-visual (AV) speaker

tracking on difficult motion cases, and in situations where the speaker is out of the

field of view.

CT1OS: clustering test 1; one speaker - Figure 2.8(b). One speaker, walking. The speaker

moves while speaking in front of the camera and passes behind it from the left. As

soon as he gets out of the field of view, the actor becomes silent. Only on reappearing

from the right, does he start speaking again and turns to the cameras. The purpose of

this sequence is to evaluate A, V, and AV speaker tracking on difficult motion cases,

as well as A, V, and AV recognition test.

CT2OS: clustering test 2; one speaker. Same scenario as CT1OS again with one walking

speaker. The main distinction is that, when reappearing, the actor has changed ap-

pearance (taken off jacket, put on glasses). An AV recognition test should be able to
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detect that it is the same speaker.

CT3OS: clustering test 3; one speaker - Figure 2.8(c). Two actors, only one seen and

heard at a time. The first speaker moves towards the camera then disappears from

the field of view and stops talking. The second speaker enters the field of view while

speaking and faces the cameras. An AV recognition test should be able to distinguish

the two speakers.

NTOS: noise test; one speaker - Figure 2.8(d). One speaker, walking. The actor walks

behind a wall and returns to his initial position, always speaking. Various audio

noises like clicks and music are regularly present. The lighting condition is inten-

tionally modified. This sequence may be use to verify the performance of tracking

/ recognition / speech analysis algorithms in AV noisy environment, and with visual

occlusions.

DCMS: dynamic changes; multiple speakers - Figure 2.8(e). Five actors in total. Initially

there are two speakers, then a third joins, one leaves, and later on a fifth joins. Then

another two leaves. All actors speak while in the scene and move around.

TTMS: tracking test; multiple speakers - Figure 2.8(f). A more complex tracking sce-

nario than the single speaker TTOS. Four actors are initially in the scene. As they

start speaking (and go on speaking throughout the test), they move around; one per-

son exits the visible scene, walks behind the camera while talking, and reappears. To

test tracking abilities on speakers when both in and out of the field of view.

CTMS: clustering test; multiple speaker - Figure 2.8(g). A more complex clustering test

scenario than the single speaker CTOS. Here four actors are initially in the scene.

As they start speaking and moving around, two people exit the visible scene, stop

talking, reappear and start talking again.

NTMS: noise test; multiple speakers - Figure 2.8(h). Similar to the one speaker noise test,

NTOS. Two speakers are talking, occasionally walking behind a screen.Meanwhile

music and clicks are heard in the background.

M1: meeting - Figure 2.8(i). Five actors are seated around a table, three are visible to

the fixed perceiver (dummy head); one is to the left and one is to the right of the

dummy. Initially all join into the same conversation and later on two sub-groups of

conversations are formed.

CPP: cocktail party problem - Figure 2.8(j). 7 actors in total, 6 in scene and one to the

left of the fixed perceiver. Two groups of conversation (one immediately in front

of and one further away from the dummy head) are formed. People are seated and

generally not moving a lot. At some point one speaker from the furthest away group

gets up and joins the conversation of the front group. This setup makes for a very

challenging auditory and visual scene.

The TTOS1, CTMS3 and M1 scenarios were annotated: actor 3D positions in camera

frame and actor speaking activity were provided for the sequences.



2.5. Discussion 21

(a) TTOS (b) CT1OS (c) CT3OS (d) NTOS (e) DCMS

(f) TTMS (g) CTMS (h) NTMS (i) M1 (j) CPP

Figure 2.8: Scenario schematics. Actors are depicted with circles, lines indicate 2D actor

trajectories in the room. A solid line indicates “speaks while walking”, and a dashed line

means “quiet while walking”. The field of view is drawn in blue. The rectangle accounts

for an occluding wall. The tags mean [M]usic, [C]licks, [L]ight changes.

2.5 Discussion

We presented an approach to computational audio-visual (AV) scene analysis using a head-

like device. Several hardware configurations are described that possess different properties

in terms of recorded signals quality and capabilities of active behaviour. The following

advantages of head-like devices with respect to other configurations can be pointed out:

• Self-sufficiency: the device, once calibrated, doesn’t require any knowledge about

the environment it’s put to - scene reconstruction and adaptation can be done auto-

matically;

• Easy calibration: precise calibration can be performed in short time with well-

established techniques;

• Persistent calibration: the device can use motors to perform pan, tilt and eye ver-

gence motions, while keeping the calibration valid;

• Autocalibration: there is a possibility to make calibration of a head-like device

fully-automatic through the use of motor controls;

• 3D reconstruction: the device is capable of reconstructing the observed scene in the

3D ambient space;

We showed the examples of features that could be extracted from both modalities: “in-

terest points” for binocular vision and interaural time difference (ITD) values for binaural
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hearing. Both occur to be general enough to be extracted for almost any kind of AV ob-

ject and informative enough to perform AV integration. Of course, one can consider other

object characteristics, such as local 3D motion, local interest point descriptors, interaural

level differences (ILD) [Wang 2006], spectral features of auditory observations etc. In the

current Thesis we focus on arbitrary AV object detection, localization and tracking and con-

centrate on the major principle of AV integration, considering the two described auditory

and visual features. The others are left for possible extensions (see Chapter 8).

Finally, we presented a novel CAVA database aimed to investigate binaural/binocular

fusion strategies of a human and to validate and compare the models of an audio-visual

(AV) perceiver. It was acquired with a head-like device comprising a pair of calibrated

cameras and a pair of calibrated microphones. The environment was kept natural, so that

auditory reverberations, ambient sounds, lighting changes were not artificially removed.

The recorded scenarios vary from almost stationary scenes and single-target tracking tasks

to complex dynamnic scenes.

Two contributions of the current Thesis are related to the CAVA database:

• development and implementation of the fixed perceiver part of the scenarios;

• annotation of TTOS1, CTMS3 and M1 scenarios;
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This Chapter is devoted to a technical, but very important issue of audio-visual (AV)

calibration. Indeed, data arriving from different sensors is meaningless, unless there is a

common parametrization that ties the observations together. We refer to the task of finding

the optimal configuration parameter values as the calibration task. Our calibration is based

on matching unaligned AV data. The particularity of our approach is that we analyze

correspondences between trajectories in modality spaces, rather than between separate

single points. The approaches based on Lp optimization (1 ≤ p ≤ 2) are compared.

We demonstrate the algorithm performance on both, simulated and real data, analyzing

accuracy in the estimated values.

3.1 Multisensor Calibration Task

Tendency to use configurations containing multiple sensors is backed by numerous ben-

efits such as robustness to observation noise, increased stability with respect to dynamic

changes in the observed scene and better accuracy in estimations derived from the ob-

servations. This is achieved through integration of data coming from different sen-

sors. Applications can be found in different domains: speech processing and acous-

tics [Raykar 2004, McCowan 2008], computer vision [Svoboda 2005, Courchay 2010]
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robotics [Yguel 2008, Gould 2008], tracking systems [Cui 2008, Spinello 2008] etc. How-

ever, knowledge of inter-sensor parameters of the configuration is required, to benefit from

the data integration. Finding the optimal parameters constitutes the calibration task.

The major goal in the calibration task is to find a trade-off between the number of pa-

rameters and the complexity of the optimization algorithm. On the one hand, the more

parameters are included in to the calibration procedure, the better would be the correspon-

dence of optimal parameters to the observations. The extremum of the target function

becomes “sharper” but harder to find due to dimensionality increase. On the other hand,

reducing the dimensionality of the parameter space leads to more efficient optimization

procedures, but less prominent or even ambiguous extremal points. A good solution to this

duality problem is to consider rich parameter space and impose various constraints on the

observation spaces.

We work with the “robot head” configuration that comprises a pair of stereoscopic

cameras and a pair of microphones (see Section 2.1). Thus integration of audio-visual

(AV) data to improve AV object detection, localization and tracking is the primary con-

cern. So far there has been no attempt to use a head-like device for this kind of task.

Various other AV configurations perform approximate AV calibration by making restric-

tive assumptions on the observed objects [Beal 2003, Vermaak 2001], or by aligning pro-

jected data [Gatica-Perez 2007], or they perform precise AV calibration adding assump-

tions on the observed environment and using microphone arrays for better auditory local-

ization [Zotkin 2002, Checka 2004, Nickel 2005]. For example, the AV integration models

proposed in [Beal 2003] and [Hospedales 2008] perform AV calibration at the same time as

AV integration by assuming affine dependency between person’s ITD and his location in an

image. This approach has an advantage of permanent online correction of the calibration,

but at the same time it implicitly assumes that persons are located at a certain distance from

the sensors. Moreover, this approximation is not valid for AV objects outside of the field of

view and has no direct relation to the geometry of the ambient 3D space. This means that

in the case of a mobile robot head with pan, tilt and vergence controls one cannot easily

update the calibration using the motor data or determine the angle to turn the head towards

a sound source, so that it becomes visible.

The real-world AV data tend to be influenced by the structure of the 3D environment

in which they were generated. Thus we would like to use geometric properties of auditory

and visual observations and consider the integration task in the 3D ambient space. Approx-

imate projection-based calibration is not sufficient in this case and exact AV calibration is

required. At the same time we would like to preserve the original head-like configuration

without using additional microphones.

A typical approach to multimodal calibration consists in acquiring observations of the

same object (calibration rig) simultaneously by all the sensors for further use in the opti-

mization procedure to find optimal inter-sensor parameters. The optimization task is usu-

ally formulated as a least squares problem [Raykar 2004, McCowan 2008].

In our case forcing synchronization of auditory and visual streams would significantly

increase the duration of calibration procedure without any improvement in data set. Thus
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the goal is to develop a method that performs AV calibration on the two streams without

their explicit alignment. This becomes possible if one considers rig trajectories in each

modality, instead of single observations. Another benefit is that the trajectory-based cali-

bration method is able to take advantage from temporal information, thus augmenting the

data set.

In Section 3.2 we formalize the trajectory-based calibration task using the continuous-

time notation. The approach is based on geometrical observation models that relate the two

modalities. In Section 3.3 we show how to discretize the model and propose the relaxed

version that is more robust to various noise types. A general optimization algorithm is for-

mally derived based on the alternating EM procedure, several techniques to accelarate the

algorithm are proposed. The experiments presented in Section 3.4 show the algorithm per-

formance for various parameter values and outline the most important optimization steps.

The method is demonstrated on both, simulated and real data, acquired with a specially

designed device ‘Altair’. Discussion of the results and directions for future work in Sec-

tion 3.5 conclude the Chapter.

3.2 Calibration Through Multimodal Trajectory Matching

Given a head-like device equipped with a calibrated stereo camera pair and a pair of mi-

crophones, we would like to relate the auditory and visual frames. The geometry of visual

observation model is defined through the visual space mapping F and given by (2.3):

F(s) =
(

x

z
,
y

z
,
1

z

)⊤

and F−1(f) =

(

u

d
,
v

d
,
1

d

)⊤

,

where s = (x, y, z)⊤ is the ambient space 3D position. Similarly, the geometry of auditory

observation model is defined through the auditory space mapping G given by (2.4):

g = G(s; sMℓ
, sMr) =

1

c

(

‖s− sMℓ
‖ − ‖s− sMr‖

)

,

where the speed of sound c should be given in the same units as s. Hence to relate the

two observation spaces, one needs to determine microphone locations Mℓ and Mr in visual

frame.

Assume an object that is both seen and heard, moves along the trajectory

s(t) =
(

x(t), y(t), z(t)
)⊤
, t ∈ [tmin, tmax] (3.1)

in the 3D space. The object’s size is supposed to be negligibly small, so that it can be

roughtly considered to be a point. On the one hand, the trajectory maps to visual space into

f(t) = F(s(t)) =
(

u(t), v(t), d(t)
)⊤
, t ∈ [tmin, tmax]. (3.2)

On the other hand, the image of the trajectory with the auditory space mapping G gives

g(t) = G(s(t); sMℓ
, sMr), t ∈ [tmin, tmax]. (3.3)
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In what follows we denote θ = {sMℓ
, sMr} and write G(s(t); θ) instead of

G(s(t); sMℓ
, sMr) to keep the notation concise.

The task of audio-visual calibration can be stated as follows: given the two observed

trajectories f(t) and g(t) that correspond to the same (unobserved) object trajectory s(t) in

the ambient space, find the microphone locations sMℓ
and sMr and the 3D object trajectory

s(t) such that they minimize the discrepancy simultaneously between f(t) and F(s(t))
and between g(t) and G(s(t); θ). This problem is formalized as

{θ∗, s∗} = arginf
θ∈Θ, s∈S

{

‖f −F ◦ s‖p
F

+ ‖g − G(θ) ◦ s‖q
G
+ γR(s)

}

, (3.4)

for a compact set Θ, positive constants p and q, some functional spaces S ([tmin, tmax]→
S), F ([tmin, tmax] → F) and G ([tmin, tmax] → G) with the associated norms ‖ · ‖F ,

‖ · ‖G and ‖ · ‖S , regularization functionalR and regularization parameter γ. The sign ‘◦’
denotes the function composition operation.

For example, one could take quadratic penalties for observed functions with regular-

ization R(s) given by
∫ tmax

tmin

∥

∥

ds
dt

∥

∥

2
dt. This would imply the functional spaces F and G

to be L2([tmin, tmax],F) and L2([tmin, tmax],G) respectively. The trajectory s(t) then

belongs to Sobolev spaceW1,2([tmin, tmax]). In what follows we shall concentrate on the

latter class ofW1,2([tmin, tmax]) trajectories with the Lp([tmin, tmax], ·) norm (1 ≤ p ≤ 2)

used for penalty terms.

3.3 Trajectory Reconstruction and Parameter Estimation.

The problem (3.4) includes two optimization tasks to be solved simultaneously - the target

function should be minimized with respect to a hidden trajectory s(t) and with respect to

the parameters θ. Efficient solutions can be proposed for certain choices of the penalty and

regularization terms. In this Section we restrain the general calibration problem (3.4) and

adapt it to the particular task of audio-visual (AV) calibration. The variational approach

being less suitable in the case of AV data and less evident to derive because of the non-

linear mappings F and G, we develop the discretized analogue of (3.4) and give it the

Bayesian interpretation.

3.3.1 Problem Discretization and Relaxation

To narrow down the class of optimization tasks we take norms fromLp([tmin, tmax],F) and

Lp([tmin, tmax],G) with 1 ≤ p ≤ 2 for the penalty terms and the first order regularization

term for the trajectory s(t):

{θ∗, s∗} = arginf
θ∈Θ, s∈S

{

‖f −F(s)‖p
F,p + ‖g − G(s; θ)‖

p
G,p + γR(s)

}

, (3.5)
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where S =W1,2([tmin, tmax]) is Sobolev space and

‖f −F(s)‖p
F,p =

∫ tmax

tmin

‖f(t)−F(s(t))‖ppdt, (3.6)

‖g − G(s; θ)‖p
G,p =

∫ tmax

tmin

|g(t)− G(s(t); θ)|pdt, (3.7)

and R(s) =
∫ tmax

tmin

∥

∥

∥

∥

ds

dt

∥

∥

∥

∥

2

dt. (3.8)

The minimization problem with respect to s can be solved using the variational approach.

The particular case of linear mappings F and G with p = 2 admits an efficient optimization

scheme. Taking the variational derivative leads to a screened Poisson equation that can

be solved in Fourier domain, as shown for the 2D case in [Bhat 2008]. However, we

do not consider this approach here for several reasons. Firstly, in our case F and G are

essentially non-linear, approximations are required to reduce the problem to the screened

Poisson equation. Secondly, practice shows that the penalty terms given in (3.5) do not fully

account for all kinds of noise in the AV data. Finally, the observed data for each modality

forms a stream of values arriving at discrete time instants. Thus it would be more natural

to discretize the problem, improve penalty terms and develop the optimization method for

the general case of non-linear mappings F and G.

Assume, observations are detected in the two modalities at time instants tmin ≤ t
(f)
1 <

. . . < t
(f)
m < . . . < t

(f)
M ≤ tmax and tmin ≤ t

(g)
1 < . . . < t

(g)
k < . . . < t

(g)
K ≤ tmax

respectively. We denote the resulting sets

f = {fm}Mm=1, fm = f(tm) ∈ R
3, and g = {gk}Kk=1, gk = g(tk) ∈ R, (3.9)

They are not necessarily aligned in time, i.e. M and K can be different and time instants

tm and tk are not expected to coincide for any m and k. To account for the fact that these

observations were generated from the same trajectory s(t) that is discretized

s = {sn}Nn=1, sn = s(tn) ∈ S ⊂ R
3, tmin ≤ t(s)1 < . . . < t(s)n < . . . < t

(s)
N ≤ tmax,

(3.10)

we introduce subsequences n
(f)
m and n

(g)
k that verify t

(f)
m = t

(s)

n
(f)
m

and t
(g)
k = t

(s)

n
(g)
k

respec-

tively. Timestamp set {t(s)n }Nn=1 can be taken as an ordered union {t(f)m }Mm=1 ∪ {t
(g)
k }Kk=1.

Further we shall omit the upper indicators of the timestamp sets, using tn, tm and tk instead

of t
(s)
n , t

(f)
m and t

(g)
k respectively. We illustrate how discrete observations sets f and g are

related to the hidden continuous 3D space trajectory s(t) in Figure 3.1.

The discrete analogue of the regularization termR(s) is given by

Hs(s) =

N−1
∑

n=1

‖sn+1 − sn‖2
tn+1 − tn

, (3.11)

which engenders a Gaussian process on trajectories s space:

P (s) ∝ exp {−γHs(s)} . (3.12)
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Figure 3.1: Discretization in auditory and visual spaces. The observations fm and gk
are detected in the two modalities at different time instants, but correspond to the same

unobserved 3D space trajectory s(t). The mappings F and G that relate 3D space positions

to the visual and auditory observations depend on visual and auditory system calibration

parameters.

To write the discrete versions of (3.6) and (3.7) we first consider in more detail the way data

is generated. The observations in both modalities can be corrupted by two different types

of noise. Firstly, the detection process is based on matching two monocular/monaural

features into a binocular/binaural one. Matching errors (e.g. in the presence of another

visual/auditory observations source) lead to significant deviations of an observation fm or

gk from the real object’s position F(snm) or G(snk
; θ) in the corresponding modality. We

suppose fm and gk to be uniformly distributed on F or G respectively in this case. If the

pair of features was chosen correctly, there can still exist small deviations from the real

object’s position and we assume generalized Gaussian noise distributions. To distinguish

between the two cases we introduce sets of random variables

A = {Am}Mm=1, Am =

{

0, if visual matching error,

1, otherwise,
(3.13)

and B = {Bk}Kk=1, Bk =

{

0, if auditory matching error,

1, otherwise,
(3.14)

i.e. each observation fm and gk is associated with a matching error flag Am and Bk.
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ambient space
trajectory

auditory space
trajectory

visual space
trajectory

Figure 3.2: Graphical representation of the audio-visual calibration model. Unobserved

ambient space trajectory s(t) can have associated visual observations, auditory observa-

tions or both at different times. Only the auditory mapping G depends on calibration pa-

rameters θ.

The values of the random variables A and B for a particular realisation are unknown

and should be estimated. Then the conditional likelihood of fm and gk given the unob-

served object position snm or snk
can be written as

P (fm | Am, snm) =Np(fm; F(snm), σ)δAm +U(fm ; V )(1− δAm), (3.15)

and P (gk | Bk, snk
) =Np(gk; G(snk

), κ)δBk
+U(gk ; U)(1− δBk

), (3.16)

where for x ∈ R
d we let

Np(x; µ, σ) =

(

p

2σΓ(1/p)

)d

exp(−‖x− µ‖pp/σp) (3.17)

and δ is the Kronecker delta:

δi =

{

1, if i = 0,

0, if i 6= 0,
(3.18)

the scale parameters σ and κ do not depend on n and V and U are Lebesgue measures

of the support sets in F and G respectively. We note that if one takes p = 2 and Σ =

0.5σ2I, the distribution (3.17) would become the usual multivariate Gaussian distribution.

A more general model can be considered with σ = σ(n) or κ = κ(n) being parametrically

dependent on the position sn, but we do not discuss this case. We suppose the observations

fm and gk to be conditionally independent, so that

P (f | A, s) =
M
∏

m=1

P (fm | Am, snm), (3.19)

and P (g | B, s) =
K
∏

k=1

P (gk | Bk, snk
). (3.20)
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The matching error flags are assumed to be independent and identically distributed:

P (A) =

M
∏

m=1

P (Am), P (Am) = πδAm + (1− π)(1− δAm), 0 ≤ π ≤ 1. (3.21)

P (B) =

K
∏

k=1

P (Bk), P (Bk) = λδBk
+ (1− λ)(1− δBk

), 0 ≤ λ ≤ 1. (3.22)

Thus full probabilities for the observation sets f and g given s can be written as

P (f | s) =
M
∏

m=1

(πNp(fm; F(snm), σ) + (1− π)U(fm ; V )) , (3.23)

P (g | s) =
K
∏

k=1

(λNp(gk; G(snk
), κ) + (1− λ)U(gk ; U)) . (3.24)

We note that (3.23) and (3.24) are discrete analogues of (3.6) and (3.7), where strict obser-

vation proximity condition, expressed by a generalized Gaussian distribution, is relaxed by

the uniform component.

The calibration problem is formulated as

{s∗,θ∗,ψ∗} = argmax
s∈SN ,θ∈Θ,ψ∈Ψ

logP (f, g, s,θ ; ψ), (3.25)

where ψ = {π, λ, σ, κ} are the model parameters. We use the alternating optimization

approach to solve (3.25). The target function is optimized by turns with respect to the

ambient space trajectory s and with respect to microphone locations θ. These two steps are

described in detail in Sections 3.3.2 and 3.3.3 respectively.

3.3.2 Hidden Trajectory Inference Using the EM Algorithm

Let’s suppose that the parameters θ are fixed and the task is to carry out optimization with

respect to the trajectory s. We formulate the problem of trajectory estimation in Bayesian

framework, looking for the optimal s∗ ∈ S
N and ψ∗ = {π∗, λ∗, σ∗, κ∗} such that

{s∗,ψ∗} = argmax
s∈SN ,ψ∈Ψ

logP (f, g, s ; ψ). (3.26)

The expectation-maximization (EM) algorithm [Dempster 1977, McLachlan 2007] is a

standard approach to carry out such a maximization. It is given by an iteration

{

s(q+1),ψ(q+1)
}

= argmax
s∈SN ,ψ∈Ψ

Q(ψ, s,ψ(q), s(q)), (3.27)

with Q(ψ, s,ψ(q), s(q)) = EA,B [logP (f, g, s,A,B; ψ) | f, g, s(q); ψ(q)], (3.28)

where the expectation is taken over the hidden variables A and B. Each iteration q of EM

proceeds in two steps.
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Expectation. For the current values ψ(q) and s(q) of the parameters and trajectory, com-

pute the conditional expectation with respect to variablesA andB:

Q(ψ, s,ψ(q), s(q)) = −
M
∑

m=1

α(q)
m

(

σ−p‖fm −F(snm)‖pp + 3 log σ − log
π

1− π

)

−

−
K
∑

k=1

β
(q)
k

(

κ−p|gk − G(snk
; θ)|p + log κ− log

λ

1− λ

)

+

+M log(1− π) +K log(1− λ)− γ
N−1
∑

n=1

‖sn+1 − sn‖2
tn+1 − tn

+ C(q),

(3.29)

where C(q) is a term that does not depend on ψ and s, α
(q)
m = P (Ak = 0 | fm, s

(q); ψ(q))

and β
(q)
k = P (Bk = 0 | gk, s(q); ψ(q)) are the posterior probabilities. Their expressions

can be derived straightforwardly from Bayes’ theorem:

α(q)
m =

π(q)Np(fm ; F(s(q)n ), σ(q))

π(q)Np(fm ; F(s(q)n ), σ(q)) + (1− π(q))U(fm ; V )
, (3.30)

and β
(q)
k =

λ(q)Np(gk ; G(s(q)n ; θ), κ(q))

λ(q)Np(gk ; G(s(q)n ; θ), κ(q)) + (1− λ(q))U(gk ; U)
. (3.31)

Maximization. Update the parameter setψ(q) and the trajectory s(q) by performing max-

imization (3.27). We set the derivatives of the conditional expectation (3.29) with respect

to model parameters to zero to obtain the update expressions. For priors one gets the usual

empirical formulas:

π(q+1) =
1

M

M
∑

m=1

α(q)
m , (3.32)

and λ(q+1) =
1

K

K
∑

k=1

β
(q)
k . (3.33)

Scale parameters are expressed as functions of the hidden trajectory

σ(q+1) =

(

p

3

M
∑

m=1

α(q)
m ‖fm −F(s(q+1)

nm
)‖pp

)1/p

, (3.34)

and κ(q+1) =

(

p
K
∑

k=1

β
(q)
k |gk − G(s(q+1)

nk
; θ)|p

)1/p

. (3.35)
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The trajectory s(q+1) is found as a solution for a system of optimization problems

s(q+1)
n = argmin

s∈S
γ

(‖sn+1 − sn‖2
tn+1 − tn

+
‖sn − sn−1‖2
tn − tn−1

)

+

+ δmnα
(q)
mn

(

‖fm −F(sn)‖p/σ(q)
)p

+ δknβ
(q)
kn

(

|gk − G(sn; θ)|/κ(q)
)p
,

(3.36)

where δmn and δkn are defined as

δmn =

{

1, if ∃m = mn : nm = n,

0, otherwise,
(3.37)

and δkn =

{

1, if ∃k = kn : nk = n,

0, otherwise.
(3.38)

Thus the trajectory is optimized taking into account the regularization term in (3.36) for

every n = 1 . . . N and observation discrepancy terms for those n that are observed in

at least one modality. Taking the timestamp sequence {t(s)n }Nn=1 as an ordered union

{t(f)m }Mm=1 ∪ {t
(g)
k }Kk=1 ensures that there is always one observation corresponding to a

hidden variable sn.

The optimization task (3.36) is performed using the method of generations that ef-

ficiently combines local and global optimization methods [Zhigljavsky 2008]. We make

use of the fact that the mapping F is injective and sample the trajectory space using the

preimage of the regularized visual space trajectory F−1(̃f). Afterwards, we perform local

coordinate-wise optimization of the trajectory s.

Trajectory sampling. The sampling method we consider here is based on visual data. To

draw a trajectory in the ambient space, we take the visual observation sequence f, regularize

it into f̃ using a random γ̃ parameter value and map to S
N to get s(q+1,0). The visual

trajectory regularization method we consider resembles the one, given by (3.11) and (3.15)

for p = 2. Though now the observation space and hidden trajectory space coincide, so the

non-linear mapping is no longer present in the formulas:

P (̃f) ∝ exp

(

−γ̃
M−1
∑

m=1

‖f̃m+1 − f̃m‖2
tm+1 − tn

)

, (3.39)

P (f | f̃) =
M
∏

m=1

(

πN (fm; f̃m,Σ) + (1− π)U(fm ; V )
)

. (3.40)

The solution to the problem is again acquired using the EM algorithm, but this time both

steps admit closed form expressions. The E-step is given by

α̃(q)
m =

π̃(q)N (fm ; f̃m,Σ
(q))

π̃(q)N (fm ; f̃m,Σ
(q)) + (1− π̃(q))U(fm ; V )

(3.41)
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M-step update expressions are

f̃
(q+1)
m = Ξ

(q)v(q), (3.42)

π̃(q+1) =
1

M

M
∑

m=1

α̃(q)
m , (3.43)

Σ
(q+1) =

1
M
∑

m=1
α̃
(q)
m

M
∑

m=1

α̃(q)
m (fm − f̃

(q+1)
m )(fm − f̃

(q+1)
m )⊤. (3.44)

Here Ξ
(q) is the inverse of a sparse 3M × 3M matrix made of M blocks of size 3× 3:

Ξ
(q) =

















−I R
(q)
1 0 . . . 0

L
(q)
2 −I R

(q)
2 . . . 0

0 L
(q)
3 −I . . . 0

... . . . R
(q)
M−1

0 0 0 . . . −I

















−1

. (3.45)

We denoted the 3× 3 identity and zero matrices by I and 0 respectively and L
(q)
m and R

(q)
m

are 3× 3 matrices defined by

L(q)
m =

[

tm − tm−1

γ̃
α̃(q)
m Σ

(q)−1
+
tm+1 − tm−1

tm+1 − tm
I

]−1

, m = 2, . . . ,M, (3.46)

and R(q)
m =

[

tm+1 − tm
γ̃

α̃(q)
m Σ

(q)−1
+
tm+1 − tm−1

tm − tm−1
I

]−1

, m = 1, . . . ,M − 1.

(3.47)

The vector v(q) ∈ R
3M in (3.42) is given by

v(q) =

(

v
(q)
1

⊤
, . . . ,v

(q)
M

⊤
)⊤

, (3.48)

with v(q)m =

[

(tm+1 − tm)(tm − tm−1)

γ̃(tm+1 − tm−1)
α̃(q)
m Σ

(q)−1
+ I

]−1

fm − fm. (3.49)

We note that equations (3.45)-(3.49) define a variant of EM that uses the covariance matrix

Σ
(q) from the previous step instead of Σ(q+1). Using the arguments similar to those pre-

sented in [Xu 1997], we can argue that the resulting algorithm has the same convergence

properties as its basic version.

Coordinate-wise trajectory optimization. Once the initial sampled solution s((q+1),0)

is obtained, we apply the local optimization procedure to (3.36). This procedure involves

iterative updates of the target function with respect to sn, n = 1, . . . , N . Given the cur-

rent trajectory s(q+1,i), its update s(q+1,i+1) is computed as follows: for n = n(i) chosen
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according to some scan strategy, the initial guess is computed as the one minimizing the

regularization component:

s(q+1,i+1)
n =

1

tn+1 − tn−1

(

(tn − tn−1)sn+1 + (tn+1 − tn)sn−1

)

. (3.50)

This position s
(q+1,i+1)
n(i) is then improved using the simultaneous perturbation stochastic

approximation (SPSA) optimization algorithm [Spall 2003], other nodes {sj}j 6=n(i) on it-

eration i remain unchanged.

3.3.3 Microphone Locations Inference Using the EM Algorithm.

We assume now that the ambient space trajectory s is fixed and consider the optimization

task

{θ∗,ψ∗} = argmax
θ∈Θ,ψ∈Ψ

logP (f, g,θ ; ψ) (3.51)

to find microphone locations θ∗ = {s∗Mℓ
, s∗Mr

}. As in the case of the ambient trajectory,

the inference is performed with the EM algorithm that proceeds in two steps.

Expectation. For the current values ψ(q) and θ(q) of the parameters and microphone lo-

cations, compute the conditional expectation with respect to variablesA andB. It is given

by (3.29), but this time it is considered as a function Q(ψ,θ,ψ(q),θ(q)) of microphone

locations.

Maximization. Update the parameter set ψ(q) and microphone locations θ(q) by per-

forming maximization (3.51). As previously, we get the formulas (3.32)- (3.35) for the

optimal parameters ψ(q+1). The microphone locations θ(q+1) can be found as a solution to

θ(q+1) = argmin
θ∈Θ

K
∑

k=1

β
(q)
k (|gk − G(snk

; θ)|/κ)p − logP (θ), (3.52)

where P (θ) is some prior distribution on the parameter values. Depending on the in-

formation we possess on the configuration, we take either uniform prior on some known

domain Θ or a Gaussian prior centered at some supposed parameter value θ̂. Performance

of models, based on different priors is compared in Section 3.4. The minimization (3.52) is

performed using the method of generations, based on sampling from the prior distribution

P (θ) and local optimization through the SPSA algorithm.

3.3.4 Calibration Algorithm.

We provide the summary of a head-like device calibration algorithm. Given observation se-

quences f = {fm}Mm=1 and g = {gk}Kk=1 from a calibrated camera pair and a microphone

pair respectively, and the associated timestamp sequences {tm}Mm=1 and {tk}Kk=1
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1. Calculate {tn}Nn=1 as an ordered union of {tm}Mm=1 and {tk}Kk=1;

2. Initialize the ambient space trajectory s(0) from the visual space trajectory f using the

regularization procedure (3.39)- (3.49) and interpolate it to the timestamps {tn}Nn=1;

3. Initialize the microphone locations θ(0) = {s(0)Mℓ
, s

(0)
Mr
} and parameters ψ(0) using

the EM algorithm, as described in Section 3.3.3;

4. q ← 1

5. Compute the ambient space trajectory s(q) and parameters ψ(q−1/2) from

{s(q−1),θ(q−1),ψ(q−1)} using the EM algorithm, as described in Section 3.3.2;

6. Compute the microphone locations θ(q) and parameters ψ(q) from

{s(q),θ(q−1),ψ(q−1/2)} using the EM algorithm, as described in Section 3.3.3;

7. Terminate on convergence, otherwise q ← q + 1 and go to Step 5;

To improve calibration quality one can perform trajectory sampling on Step 2 instead of

considering only one trajectory s(0). Procedure proposed in Section 3.3.2 could be used to

initialize multiple trajectories. The overall complexity of the proposed algorithm isO(N2).

3.4 Experimental Validation

To verify performance of our model, we tested the algorithm on simulated and real datasets.

Parameter values close to the ones observed for real configurations were used in simulated

experiments. Different versions of the calibration algorithm for various penalty terms with

p ∈ [1; 2] are compared. Real-life experiment part contains calibration rig description,

shows data obtained for both modalities and calibration results.

3.4.1 Experiments with Simulated Data

We aim at modelling the multimodal data as close as possible to the real data. Assume the

calibration rig follows a spiral trajectory, given by

s(t) = (30t cos(3t), 30t sin(3t), 100t)⊤, t ∈ [5π, 9π]. (3.53)

This trajectory was chosen to get the ITD values and associated visual disparities at various

depths and angles. We imitated the natural limits to the visual field of view that restricts

visual observations to lie within a fixed conic volume. The observations in visual and

auditory spaces were produced according to models (3.23) and (3.24). Detector failure

levels 1 − π∗ and 1 − λ∗ are taken to be equal to 0.05 for both modalities. Detector noise

is taken normally distributed with (co)variances

Σ =





10−4 0 0

0 10−4 0

0 0 10−11



 and κ = 10−1/2, (3.54)
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(a) (b)

Figure 3.3: Simulated experiments data. (a) Reconstructed video observations f =

{fm}Mm=1 in the ambient space, and (b) audio observations g = {gk}Kk=1 in the ITD

space for a spiral trajectory s(t) = (30t cos(3t), 30t sin(3t), 100t)⊤. Data is simulated us-

ing generative observation models, visual data is mapped to auditory domain using ground

truth microphone locations sMℓ
and sMr .

for visual and auditory data respectively. Microphones are located at s∗Mℓ
=

(−85, 120, 10)⊤ and s∗Mr
= (75, 110,−15)⊤. These coordinates are given in millime-

ters, so the inter-microphone distance is about 16cm. The generated data in auditory and

visual domains is shown in Figure 3.3. Visual observations are mapped into the ambient

3D space and into the ITD domain using ground truth microphone locations s∗Mℓ
and s∗Mr

.

Auditory data is taken rounded to imitate the discretization effect.

We assume the auditory and visual data to be acquired at different frequencies: 25Hz

for video and 75Hz for audio. This results in total of aboutM = 3000 video andK = 9000

audio observations that are not aligned. Below we provide details on the stages of the

optimization algorithm.

The initial sampling of the trajectory s(0) follows the procedure described in Sec-

tion 3.3.2. The regularization parameter γ̃ is taken uniformly distributed on [10−7, 10−3].

Sometimes when the regularization term is overweighted, the model tends to infer trajecto-

ries f̃ that are too smooth. As a side effect, the algorithm assigns all the observations to the

uniform component, considering them as erroneous and converges to very small values of

the prior π̃, as can be seen from (3.43). Two solutions can be proposed in this case. Firstly,

one can reduce the support of the distribution for γ̃. Secondly, if one has some a priori

knowledge on the amount of detector failures, it is possible to include prior distribution on

the values of π̃ into (3.39) and (3.40). Then the E-step of the EM algorithm is still given by

(3.41). The M-step expression (3.43) for the optimal value of π̃ would change. Assuming
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γ̃ = 10−7 γ̃ = 10−3 γ̃ = 6 · 10−3

Figure 3.4: Regularized sampled trajectories for various parameter γ̃ values, resulting in

underweighted (left), normal (centre) and overweighted (right) regularization term cases,

are shown in the ambient 3D space S. Green dots correspond to visual observations mapped

into S. Trajectories are depicted with red lines.

Gaussian prior N (π̃; π0, ̺) on π̃ leads to a cubic equation

π̃
(

M + 2̺−2(π̃ − π̃0)(1− π̃)
)

=

M
∑

m=1

α̃(q)
m , (3.55)

for 0 < π̃ < 1. In our experiments we used the second approach and took π0 = 0.9 and

̺ = 0.01 for the prior distribution. Examples of regularized trajectories for γ̃ = 10−7,

γ̃ = 10−3 and γ̃ = 6 · 10−3 are given in Figure 3.4.

The left and right microphone locations were initialized to sMℓ
= (−120, 0, 0) and

sMr = (120, 0, 0) respectively. To set up the initial algorithm parameters ψ(0) and find

θ(0) = {s(0)Mℓ
, s

(0)
Mr
} we ran 10 iterations of the EM algorithm (3.51) with 100 optimization

iterations of the M-step (3.52). Two possibilities were considered for the prior distribution

P (θ) in (3.52).

Uniform microphone locations prior U(θ,Θ) was based on the assumption that the

microphone pair center 1
2(sMℓ

+ sMr) is known up to 10cm in each coordinate, and micro-

phone rotations with respect to the center lie within a range of π/4. These conditions are

naturally verified, as soon as a real-life head-like device has microphones that are physi-

cally located close to the cameras and the mentioned precision in support domain estima-

tion can be easily achieved.

Normal prior N (θ; θ̂,Γ) was taken centered at the initial microphone locations

guesses sMℓ
= (−120, 0, 0) and sMr = (120, 0, 0) with the covariance matrix Γ = 50I,

where I is the identity matrix.

The results on the initialized microphone positions θ(0) = {s(0)Mℓ
, s

(0)
Mr
} are presented

in Table 3.1. The estimated initial left and right microphone locations s
(0)
Mℓ

and s
(0)
Mr

are

compared to the corresponding ground truth values s∗Mℓ
and s∗Mr

. The absolute errors eℓ
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p = 1 p = 1.5 p = 2

x y z x y z x y z

N

s
(0)
Mℓ

-87.69 70.22 9.91 -92.78 45.34 7.56 -75.3 67.62 11.56

s∗Mℓ
-85 120 10 -85 120 10 -85 120 10

eℓ 2.69 49.78 0.09 7.78 74.66 2.44 9.7 52.38 1.56

s
(0)
Mr

75.48 60.02 -15.08 69.37 34.24 -17.64 85.76 57.24 -12.5

s∗Mr
75 110 -15 75 110 -15 75 110 -15

er 0.48 49.98 0.08 5.63 75.86 2.64 10.76 62.76 2.5

L(0) 1400.18 2931.79 3523.09

L∗ 1237.75 2828.76 3442.6

U

s
(0)
Mℓ

-81.39 139.89 5.03 -89.82 120.72 -7.07 -86.36 146.88 -9.47

s∗Mℓ
-85 120 10 -85 120 10 -85 120 10

eℓ 3.61 19.89 4.97 4.82 0.72 17.07 1.36 26.88 19.47

s
(0)
Mr

82.56 129.73 -19.81 73.54 110.54 -32.35 76.17 137.05 -34.63

s∗Mr
75 110 -15 75 110 -15 75 110 -15

er 7.56 19.73 4.81 1.46 0.54 17.35 1.17 27.05 19.63

L(0) 1437.45 2970.74 3563.53

L∗ 1351.75 2942.76 3556.6

Table 3.1: Microphone locations initialization results for simulated data. Tables show

estimated initial left and right microphone locations s
(0)
Mℓ

and s
(0)
Mr

, their ground truth values

s∗Mℓ
and s∗Mr

and the absolute errors eℓ and er (in mm), evaluated for each coordinate

between ground truth and estimated microphone positions. Dependency on the generalized

Gaussian distribution parameter p and the type of prior P (θ) - uniform (U ) or Gaussian

(N ), is shown. For every p we also give the log-likelihoods L(0) and L∗ of the observed

data based on estimated microphone locations and the ground truth ones respectively.

and er are evaluated for each coordinate. The dependency on the generalized Gaussian

distribution parameter p and the prior distribution on the misrophone locations P (θ) -

uniform (U ) or Gaussian (N ), is shown. For every p we provide the log-likelihoods L(0)
and L∗ of the observed data based on estimated microphone locations and the ground truth

ones respectively.

Further optimization was performed by 10 iterations of the alternating EM algorithm

with 100 optimization iterations on each M-step. The final results are given in Table 3.2.

Initial left and right microphone locations s
(0)
Mℓ

and s
(0)
Mr

are compared to the corresponding

final estimated locations ŝMℓ
and ŝMr . Changes in absolute errors with respect to initial

estimates are colour-coded: improvement is shown in green, deterioration - in red.

These results show that in general a uniform prior with reasonable bounds gives much

better results than a Gaussian prior, unless the mean of the latter lies in proximity of the

ground truth microphone locations, which one cannot presume. There is no clear depen-

dency on the generalized Gaussian distribution parameter p, so preference should be given

to the standard Gaussian distribution (p = 2) to gain in computation speed.
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p = 1 p = 1.5 p = 2

x y z x y z x y z

N

s
(0)
Mℓ

-87.69 70.22 9.91 -92.78 45.34 7.56 -75.3 67.62 11.56

ŝMℓ
-88.8 55.15 6.61 -84.92 59.62 5.46 -75.3 67.62 11.56

s∗Mℓ
-85 120 10 -85 120 10 -85 120 10

eℓ 3.8 64.85 3.39 0.08 60.38 7.56 9.7 52.38 1.56

s
(0)
Mr

75.48 60.02 -15.08 69.37 34.24 -17.64 85.76 57.24 -12.5

ŝMr 75.04 43.65 -18.37 77.32 49.17 -19.22 85.76 57.24 -12.5

s∗Mr
75 110 -15 75 110 -15 75 110 -15

er 0.04 66.35 3.37 2.32 60.83 4.22 10.76 62.76 2.5

L(0) 1400.18 2931.79 3523.09

L̂ 1402.02 2935.57 3523.09

U

s
(0)
Mℓ

-81.39 139.89 5.03 -89.82 120.72 -7.07 -86.36 146.88 -9.47

ŝMℓ
-86.7 132.42 -1.82 -89.82 120.72 -7.07 -85.06 140.9 -7.74

s∗Mℓ
-85 120 10 -85 120 10 -85 120 10

eℓ 1.7 12.42 11.82 4.82 0.72 17.07 0.06 20.9 17.74

s
(0)
Mr

82.56 129.73 -19.81 73.54 110.54 -32.35 76.17 137.05 -34.63

ŝMr 77.61 122.23 -26.99 73.54 110.54 -32.35 77.33 131 -32.78

s∗Mr
75 110 -15 75 110 -15 75 110 -15

er 2.61 12.23 11.99 1.46 0.54 17.35 2.33 21 17.78

L(0) 1437.45 2970.74 3563.53

L̂ 1437.59 2970.74 3563.62

Table 3.2: Estimated microphone locations for simulated data. Tables show initial left

and right microphone locations s
(0)
Mℓ

and s
(0)
Mr

, the corresponding final estimated locations

ŝMℓ
and ŝMr and ground truth values s∗Mℓ

and s∗Mr
and the absolute errors eℓ and er (in

mm), evaluated for each coordinate between ground truth and estimated microphone posi-

tions. Colour designates whether the initial result was improved (green) or not (red). For

every p we also give the log-likelihoods L(0) and L̂ of the observed data based on initial

microphone locations and the estimated ones respectively.

The ground truth parameters do not represent a stationary point of the log-likelihood

due to ITD observations discretization effect that is not included explicitly into the model.

So the optimal estimates are likely to lie in some neighbourhood of the ground truth pa-

rameters, but not coincide with them. The size of this neighbourhood tends to be smaller

for the uniform distribution, as soon as it influences less the target function (3.52) and

the log-likelihood. The resulting precision is about 1-2cm for each microphone, which is

comparable to the sensor size. This gives perfect observation alignment in the auditory

domain.

Likelihood values comparison shows that the principal role in the optimization pro-

cedure is played by the microphone locations inference (3.51) and the initial trajectory

sampling (see Table 3.1). Further point-by-point trajectory optimization alternated with
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(a) (b) (c)

Figure 3.5: Calibration rig Altair and the acquired data used for audio-visual head-like

calibration. (a) The rig consists of a speaker with an LED light bulb mounted on its top.

Small source of bright light emitting white noise provides high quality of auditory and

visual observations in most of the environments. (b) Reconstructed visual observations

f = {fm}Mm=1 in the ambient space, and (c) auditory observations g = {gk}Kk=1 in the ITD

space. Trajectory is chosen so as to produce as much correspondences between auditory

and visual domains, as possible.

microphone locations optimization does not improve the results much, (see Table 3.2).

3.4.2 Experiments with Real Data

When performing real-data experiments, it is essential to assure the best possible precision

of observations in both modalities. Therefore in our case the calibration rig should fulfil

two requirements. Firstly, it should be clearly detected in both camera images in regular

lighting conditions and should be small enough to be considered as a point in 3D. Secondly,

it should emit sound such that the ITD calculation method is robust to natural reverberations

and acoustic noise.

The calibration rig Altair used in our experiments is presented in Figure 3.5(a). It

consists of a speaker with an LED light bulb mounted on its top. While Altair was moving

inside the room white noise played through its speaker. Together with a bright light source

this ensures high quality of auditory and visual observations for most of the environments.

The spiral trajectory was chosen, as in the simulated data case, to better cover the hidden

space locations.

We used feature detection algorithms described in detail in Sections 2.2 and 2.3. The

extracted data is shown in Figure 3.5(b) and (c). The auditory and visual observation

sets resemble the ones that were generated for simulated data experiments, Figure 3.3. To

synchronize auditory and visual streams we use a clapper device, as when recording the

CAVA database. Images from the stereoscopic camera pair are acquired at 25fps, each one

of them is timestamped. The two audio streams are sampled at 44.1kHz.
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(a) (b)

Figure 3.6: Calibration results for the audio-visual data acquired in real environment.

(a) Reconstructed visual observations f = {fm}Mm=1 (green) and the estimated trajectory

s = {sn}Nn=1 (red) are shown in the ambient space, (b) Auditory observations g = {gk}Kk=1

(blue) with visual observations and the estimated trajectory mapped through F and G into

the ITD space. Estimated microphone locations sMℓ
and sMr correspond well to the con-

figuration used in the experiments, perfect alignment of the trajectories in the ITD space is

achieved.

The estimated trajectory and microphone locations are shown on Figure 3.6. Left mi-

crophone position sMℓ
= (−101.866021, 27.905023, 48.918872)⊤ and right microphone

position sMr = (51.322268, 75.526212, 56.759726)⊤ that were found using the calibra-

tion procedure correspond well to the configuration we used to gather the data. Figure 3.6

shows that auditory and visual domains are well aligned for all the positions that lie on the

spiral trajectory.

3.5 Discussion

Multimodal multisensor calibration is a challenging task that is characterized by high di-

mensionality of the parameter space, diversity of modality spaces and considerable obser-

vation noise levels. In such conditions both, the calibration rig and the calibration method

should be developed so as to reduce noise effects. We presented a general approach to mul-

timodal multisensor calibration based on calibration rig simultaneous tracking in multiple

modalities.

The problem formulation and the algorithm that we proposed in this Chapter possess

several benefits that we outline below

• Geometry Consistency: as opposed to a number of methods built over approximat-

ing assumptions on affine dependency between auditory and visual observations that
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hold only for the visible region and only at a certain distance from the sensors, we

base on physical models of the sensors, so that our assumptions are consistent with

the 3D geometry of the ambient space;

• Robustness: various kinds of noise are taken into account by the model, such as

detector failures and observation noise; the outliers are automatically detected and

not included into the calibration;

• Persistent Target Function Increase: the alternating optimization approach uses

the EM algorithm for the two maximization steps that possesses the non-decrease

property;

• Acceleration: various techniques to speed-up the calibration can be employed, in

case of AV head-like device we propose visual space trajectory sampling as to in-

crease the convergence speed;

• Prior Information: there is a possibility to include prior information on calibration

parameters that does not affect much the optimization procedure, but can signifi-

cantly improve the results;

The comparison of performance on simulated data showed that 1-2cm precision on

microphone locations is achieved. These results are confirmed by the real-data experi-

ments that produce very good alignment of the auditory and visual spaces. Considering

the calibration task in the ambient 3D space, we found a good trade-off between the ex-

pressiveness of the calibration process model and efficiency of the calibration procedure.

Multiple constraints allow us to improve the convergence speed, while keeping the results

precise.

Future developments for AV head-like device calibration can address the issue of visual

field restriction. Indeed, the more different audio-visual correspondances one gets, the

more precise are the obtained results. In case of a motor-controlled robot head one could

verge the cameras while keeping the microphones still. This would increase the set of

possible trajectories s allowing for better calibration results.



CHAPTER 4

Spatial Multimodal Clustering

Sommaire

4.1 Unsupervised Clustering of Multimodal Data . . . . . . . . . . . . . . . 43

4.2 Conjugate Mixture Models for Multimodal Data . . . . . . . . . . . . . 46

4.3 Conjugate KP Algorithm for Clustering Multimodal Data . . . . . . . . 49

4.3.1 The Penalization Step . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.2 The Maximization Step . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.3 Generalized KP for Conjugate Mixture Models . . . . . . . . . . . 52

4.3.4 Identifiability and Algorithm Convergence . . . . . . . . . . . . . 53

4.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

The general problem of how to determine properties of several objects that are ob-

served simultaneously by different sensors is considered in this Chapter. The goal is to

split each sensor’s data set into groups that correspond to the objects, so that these groups

stay coherent across data sets from different sensors. In what follows we refer to this task

as ‘multimodal clustering’. We formalize the problem considering it in the framework of

conjugate mixture models. We discuss convergence properties of the proposed algorithm

and consider different strategies to infer the object properties. The algorithms are verified

on simulated data, their performance in various cases depending on object and detector

properties is compared.

4.1 Unsupervised Clustering of Multimodal Data

The unsupervised clustering of multimodal data is a key capability whenever the goal

is to group observations that are gathered using several physically different sensors. A

typical example is the computational modelling of biological multisensory perception.

This includes the issues of how a human detects objects that are both seen and touched

[Pouget 2002a, Ernst 2002], seen and heard [Anastasio 2000, King 2004, King 2005] or

how a human localizes one source of sensory input in a natural environment in the

presence of competing stimuli and of a variety of noise sources [Haykin 2005]. More

generally, multisensory fusion [Hall 2004, Mitchell 2007] is highly relevant in vari-

ous other research domains, such as target tracking [Smith 2006] based on radar and
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sonar data [Naus 2004, Coiras 2007], mobile robot localization with laser rangefind-

ers and cameras [Castellanos 1999], robot manipulation and object recognition us-

ing both tactile and visual data [Allen 1995, Joshi 1999], underwater navigation based

on active sonar and underwater cameras [Majumder 2001], audio-visual speaker de-

tection [Beal 2003, Perez 2004, Fisher III 2004], speech recognition [Heckmann 2002,

Nefian 2002, Shao 2008], and so forth.

When the data originates from a single object, finding the best estimates for the ob-

ject’s characteristics is usually referred to as a pure fusion task and it reduces to combin-

ing multisensor observations in some optimal way [Beal 2003, Kushal 2006, Smith 2006].

For example, land and underwater robots fuse data from several sensors to build a 3D

map of the ambient space not considering individual objects present in the environ-

ment [Castellanos 1999, Majumder 2001]. The problem is much more complex when

several objects are present and when the task implies their detection, identification, and

localization. In this case one has to consider two processes simultaneously: (i) segrega-

tion [Fisher III 2001] which assigns each observation either to an object or to an outlier

category and (ii) estimation which computes the parameters of each object based on the

group of observations that were assigned to that object. In other words, in addition to fus-

ing observations from different sensors, multimodal analysis requires the assignment of

each observation to one of the objects.

This observation-to-object association problem can be cast into a probabilistic frame-

work. Recent multisensor data fusion methods able to handle several objects are based on

particle filters [Checka 2004, Chen 2004, Gatica-Perez 2007]. Notice, however, that the

dimensionality of the parameter space grows exponentially with the number of objects,

causing the number of required particles to increase dramatically and augmenting com-

putational costs. A number of efficient sampling procedures were suggested [Chen 2004,

Gatica-Perez 2007] to keep the problem tractable. Of course this is done at the cost of loss

in model generality, and hence these attempts are strongly application-dependent. Another

drawback of such models is that they cannot provide estimates of accuracy and importance

of each modality with respect to each object. The sampling and distribution estimation

are performed in the parameter space, but no statistics are gathered for the observation

spaces. Recently [Hospedales 2008] extended the single-object model of [Beal 2003] to

multiple objects: several trained single-object models are incorporated into the multiple-

object model that uses an additional type of audio association to detect situations where

audio signal is speech, but does not correspond to person’s location in an image. This

method’s complexity is linear in the number of objects. However, we would like to address

the problem of clustering of AV data in a completely unsupervised context and rely only

on spatial and temporal coherence of the observations, but not on any trained parameters.

In the case of unimodal data, the problems of grouping observations and of associating

groups with objects can be cast into the framework of standard data clustering which can

be solved using a variety of parametric or non-parametric techniques. The problem of clus-

tering multimodal data raises the difficult question of how to group together observations

that belong to different physical spaces with different dimensionalities, e.g., how to group

visual data with auditory data? When the observations from two different modalities can
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be aligned pairwise, a natural solution is to consider the Cartesian product of two unimodal

spaces. Unfortunately, such an alignment is not possible in most practical cases. Different

sensors operate at different frequency rates and hence the number of observations gathered

with one sensor can be quite different from the number of observations gathered with an-

other sensor. Consequently, there is no obvious way to align the observations pairwise.

Considering all possible pairs would result in a combinatorial blow-up and typically create

abundance of erroneous observations corresponding to inconsistent solutions.

Alternatively, one may consider several unimodal clusterings, provided that the rela-

tionships between a common object space and several observation spaces can be explicitly

specified. Multimodal clustering then results in a number of unimodal clusterings that are

jointly governed by the same unknown parameters characterizing the object space. We

note that binding unimodal clusters through common parameters allows to correctly model

situations where object is not observed in one of the observation spaces (e.g. a person that

is visible and silent).

The original contribution of this Chapter is to show how the problem of clustering mul-

timodal data can be addressed within the framework of mixture models [McLachlan 2000].

We consider the Kullback-Proximal (KP) algorithm [Chrétien 2000, Chrétien 2008] specif-

ically designed to estimate object-space parameters that are indirectly observed in sev-

eral sensor spaces. As a special case it includes the expectation-maximization (EM) al-

gorithm [Dempster 1977] for a certain choice of the gain sequence. The convergence

properties of the proposed KP algorithm are thoroughly investigated and several efficient

implementations are described in detail. The proposed model is composed of a number

of modality-specific mixtures. These mixtures are jointly governed by a set of common

object-space parameters (which will be referred to as the tying parameters), thus ensur-

ing consistency between the sensory data and the object space being sensed. This is done

using explicit transformations from the unobserved parameter space (object space) to each

of the observed spaces (sensor spaces). Hence, the proposed model is able to deal with

observations that live in spaces with different physical properties such as dimensionality,

space metric, sensor sampling rate, etc. We believe that linking the object space with the

sensor spaces based on object-space-to-sensor-space transformations has more discrimina-

tive power than existing multisensor fusion techniques and hence performs better in terms

of multiple object identification and localization. To the best of our knowledge, there has

been no attempt to use a generative model, such as ours, for the task of multimodal data

interpretation.

In Section 4.2 we formally introduce the concept of conjugate mixture models. Stan-

dard Gaussian mixture models (GMM) are used to model the data in each modality. The

parameters of these Gaussian mixtures are governed by the object parameters through

a number of object-space-to-sensor-space transformations (one transformation for each

sensing modality). In Section 4.3 we cast the multimodal data clustering problem in the

framework of maximum likelihood estimation and we explicitly derive the penalization

and maximization steps of the associated KP algorithm that lead to a set of fixed point

equations. The convergence properties are discussed and various existing optimization

methods [Polyak 1987, Zhigljavsky 1991, Zhigljavsky 2008] are considered to solve the



46 Chapter 4. Spatial Multimodal Clustering

equations. Section 4.4 illustrates the proposed method with the task of audio-visual ob-

ject detection and localization using binocular vision and binaural hearing and analyses in

detail the performances of the proposed model under various practical conditions on sim-

ulated data. Finally, Section 4.5 concludes the Chapter and provides directions for further

improvements.

4.2 Conjugate Mixture Models for Multimodal Data

We consider N objects n = 1 . . . N . Each object n is characterized by a parameter vector

of dimension d, denoted by sn ∈ S ⊆ R
d. The set s = {s1, . . . , sn, . . . , sN} corresponds

to the unknown tying parameters. The objects are observed with a number of physically

different sensors. Although, for the sake of clarity, we will consider two modalities, gener-

alization is straightforward. Therefore, the observed data consists of two sets of observa-

tions denoted respectively by f = {f1, . . . ,fm, . . . ,fM} and g = {g1, . . . , gk, . . . , gK}
lying in two different observation spaces of dimensions r and p, fm ∈ F ⊆ R

r and

gk ∈ G ⊆ R
p.

We introduce the conjugate mixture models framework that explicitly takes into account

dependencies between the observation spaces. One key ingredient of our approach is that

we consider the transformations:

{ F : S→ F

G : S→ G
(4.1)

that map S into the observation spaces F and G respectively. These transformations are

defined by the physical and geometric properties of the sensors and they are supposed to

be known. We treat the general case when both F and G are non-linear.

An assignment variable is associated with each observation, thus indicating the ob-

ject that generated the observation: A = {A1, . . . , Am, . . . , AM} and B = {B1, . . . , Bk,

. . . , BK}. Hence, the segregation process is cast into a hidden variable problem. The no-

tation Am = n (resp. Bk = n) means that the observation fm (resp. gk) was generated by

object n. In order to account for erroneous observations, an additional N + 1-th fictitious

object is introduced to represent an outlier category. The notation Am = N + 1 (resp.

Bk = N + 1) means that fm (resp. gk) is an outlier. Note that we will also use the fol-

lowing standard convention: upper case letters for random variables (A and B) and lower

case letters for their realizations (a and b). The usual conditional independence assumption

leads to:

P (f, g|a, b) =
M
∏

m=1

P (fm|am)
K
∏

k=1

P (gk|bk). (4.2)

In addition, all assignment variables are assumed to be independent, i.e.:

P (a, b) =

M
∏

m=1

P (am)

K
∏

k=1

P (bk). (4.3)
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Figure 4.1: Graphical representation of a general conjugate mixture model. Circles denote

random variables, plates (rectangles) around them represent multiple similar nodes, their

number being given in the plates.

As discussed in Section 4.5, more general cases could be considered. However, we fo-

cus on the independent case for it captures most of the features relevant to the conju-

gate clustering task and because more general dependence structures could be reduced

to the independent case via the use of appropriate variational approximation techniques

[Jordan 1998, Celeux 2003].

Next we define the following probability density functions, for all n = 1 . . . N,N + 1,

for all fm ∈ F and for all gk ∈ G:

P F
n (fm; θn) = P (fm|Am = n; θn), (4.4)

and PG
n (gk; θn) = P (gk|Bk = n; θn), (4.5)

with parameters θn that describe cluster properties. We introduce the prior probabilities

π = (π1, . . . , πn, . . . , πN+1) and λ = (λ1, . . . , λn, . . . , λN+1):

πn = P (Am = n), ∀m = 1 . . .M, (4.6)

λn = P (Bk = n), ∀k = 1 . . .K. (4.7)

Therefore, fm and gk are distributed according to two (N + 1)-component mixture

models:

P F(fm; θ) =

N+1
∑

n=1

πnP
F
n (fm; θn), (4.8)

and PG(gk; θ) =

N+1
∑

n=1

λnP
G
n (gk; θn), (4.9)

where θ = {πn, . . . , πN+1,θ1, . . . ,θN+1}. The log-likelihood of the observed data is:

L(f, g,θ) =
M
∑

m=1

logP F(fm; θ) +

K
∑

k=1

logPG(gk; θ) =

=
M
∑

m=1

log

(

N+1
∑

n=1

πnP
F
n (fm; θn)

)

+
K
∑

k=1

log

(

N+1
∑

n=1

λnP
G
n (gk; θn)

)

. (4.10)
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Figure 4.2: Graphical representation of Gaussian conjugate mixture models. Circles de-

note random variables, plates (rectangles) around them represent multiple similar nodes,

their number being given in the plates.

The graphical representation of our conjugate mixture model is shown in Figure 4.1.

We adopted the graphical notation introduced in [Bishop 2006] to represent similar nodes

in a more compact way: the M (resp. K) similar nodes are indicated with a plate. The two

sensorial modalities are linked by the tying parameters θ1, . . .θN+1 shown in between the

two plates.

Various choices can be made for parameters θn and distributions P F
n and PG

n . In this

Chapter we consider Gaussian distribution family for both modalities and n = 1, . . . , N

P F
n (fm,θn) = N (fm; F(sn),Σn), (4.11)

and PG
n (gk,θn) = N (gk; G(sn),Γn), (4.12)

where θn = {sn,Σn,Γn}. We denoted

N (fm; F(sn),Σn) =
1

(2π)r/2|Σn|1/2
exp

(

−1

2
‖fm −F(sn)‖2Σn

)

. (4.13)

The notation ‖v −w‖2
Σ

stands for the Mahalanobis distance (v −w)⊤Σ−1(v −w) and
⊤ stands for the transpose of a matrix. Formula analogous to (4.13) is taken for PG

n . Of

course, other distribution families could also have been employed. In fact, the model per-

mits to parametrize each cluster in any observation space in its own manner. Though with-

out any prior knowledge on the objects we chose distributions from the same family for the

same observation space.

The outlier class is taken to be uniform

P F
N+1(fm) = U(fm;V ), (4.14)

PG
N+1(gk) = U(gk;U), (4.15)

where V and U denote the respective support volumes. In what follows we consider Gaus-

sian mixture models with uniform outliers. However, an example of how to employ Student

t-distribution mixtures for the same task is presented in Appendix A.2. The graphical model

for the conjugate Gaussian mixtures is given on Figure 4.2.
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We rewrite the mixtures (4.8) and (4.9) for the case of Gaussian distribution

P F(fm,θn) =
N
∑

n=1

πnN (fm; F(sn),Σn) + πN+1U(fm;V ), (4.16)

PG(gk,θn) =
N
∑

n=1

λnN (gk; G(sn),Γn) + λN+1U(gk;U), (4.17)

and the log-likelihood function

L(f, g,θ) =
M
∑

m=1

log

(

N
∑

n=1

πnN (fm; F(sn),Σn) + πN+1U(fm;V )

)

+

+
K
∑

k=1

log

(

N
∑

n=1

λnN (gk; G(sn),Γn) + λN+1U(gk;U)

)

(4.18)

where:

θ = {π1, . . . , πN , πN+1, λ1, . . . , λN , λN+1, s1, . . . , sN ,Σ1, . . . ,ΣN ,Γ1, . . . ,ΓN}
(4.19)

denotes the set of all unknown parameters to be estimated.

4.3 Conjugate KP Algorithm for Clustering Multimodal Data

Given the probabilistic model just described, we wish to determine the parameter vectors

θn associated with the objects that generated observations in two different sensory spaces.

The problem is stated as maximum likelihood (ML) estimation:

θML = argmax
θ∈Θ

L(f, g,θ), (4.20)

and considered in the Kullback proximal framework.The basic idea of the KP algorithm

resembles that of the Levenberg-Marquardt method [Polyak 1987]: it is an iterative opti-

mization technique where the target function is penalized by an additional distance term at

every iteration.

Definition 1 Let (hq)q∈N be a sequence of positive real numbers. Then, the Kullback-

proximal algorithm is defined by

θ(q+1) = argmax
θ∈Θ

Lpen(f, g,θ,θ(q)), (4.21)

with Lpen(f, g,θ,θ(q)) = L(f, g,θ)− hqH(θ,θ(q)), (4.22)

and H(θ, θ̃) = −E[logP (A,B | f, g;θ)|f, g; θ̃]. (4.23)

The expectation in (4.23) is taken over the hidden variables A and B. The following

two results can be easily shown [Chrétien 2008]:
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Proposition 1 For any iteration q ∈ N, the sequence θ(q) satisfies

L(f, g,θ(q+1))− L(f, g,θ(q)) ≥ hq(H(θ(q+1),θ(q))−H(θ(q),θ(q))) ≥ 0. (4.24)

Proposition 2 The EM algorithm is a special instance of the Kullback-proximal algorithm

with hq ≡ 1.

Remark 1 In case hq ≡ 0 the Kullback-proximal algorithm reduces to direct optimization

of the log-likelihood function L(f, g,θ).

Each iteration q of KP proceeds in two steps:

• Penalization. For the current values θ(q) of the parameters, compute the penalization

term as the conditional expectation with respect to variablesA andB:

H(θ,θ(q)) = −
∑

a∈{1...N+1}M

∑

b∈{1...N+1}K

P (a, b|f, g; θ(q)) logP (a, b|f, g; θ)

(4.25)

• Maximization. Update the parameter set θ(q) by performing maximization (4.21).

Proposition 1 shows that KP algorithm always increases the target function L(f, g,θ)
in (4.18). Though the closed-form solution for (4.21) exists only in special cases. When

the maximization (4.21) is difficult to achieve, various generalizations of KP are proposed.

The maximization step can be relaxed by requiring just an increase rather than an opti-

mum. This yieds Generalized KP (GKP) procedures that search for some θ(q+1) such

that Lpen(f, g,θ(q+1),θ(q)) ≥ Lpen(f, g,θ(q),θ(q)). Therefore it provides a sequence of

estimates that still verifies the non-decreasing likelihood property (4.24) although the con-

vergence speed is likely to decrease and global optimality is not guaranteed. In the case of

conjugate mixture models, we describe in more detail the specific forms of the two steps

of the algorithm in the following Sections.

4.3.1 The Penalization Step

Using independency assumptions (4.2)-(4.3) the penalization term (4.25) can be decom-

posed as:

H(θ,θ(q)) = HF (θ,θ
(q)) +HG(θ,θ

(q)), (4.26)

with

HF (θ,θ
(q)) = −

M
∑

m=1

N+1
∑

n=1

αmn(θ
(q)) logαmn(θ), (4.27)

HG(θ,θ
(q)) = −

K
∑

k=1

N+1
∑

n=1

βkn(θ
(q)) log βkn(θ), (4.28)
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where αmn and βkn denote the posterior probabilities as functions of parameters αmn(θ) =

P (Am = n|fm;θ) and βkn(θ) = P (Bk = n|gk;θ). Their expressions can be derived

straightforwardly from Bayes’ theorem, ∀n = 1 . . . N :

αmn(θ) =
πnP

F
n (fm; θn)

P F(fm; θ)
=

πnN (fm;F(sn),Σn)
N
∑

i=1
πiN (fm;F(si),Σi) + V −1πN+1

, (4.29)

βkn(θ) =
λnP

G
n (gk; θn)

PG(gk; θ)
=

λnN (gk; G(sn),Γn)
N
∑

i=1
λiN (gk;G(si),Γi) + U−1λN+1

, (4.30)

and αm,N+1(θ) = 1−
N
∑

n=1
αmn(θ) and βk,N+1(θ) = 1−

N
∑

n=1
βkn(θ).

4.3.2 The Maximization Step

We start with rewriting the expression for the penalized likelihood (4.21) using the expres-

sions (4.18) and (4.26):

Lpen(f, g,θ,θ(q)) =
M
∑

m=1

(

logP F(fm; θ) + hq

N+1
∑

n=1

αmn(θ
(q)) logαmn(θ)

)

+

+
K
∑

k=1

(

logPG(gk; θ) + hq

N+1
∑

n=1

βkn(θ
(q)) log βkn(θ)

)

=

=

M
∑

m=1

(

(1− hq) logP F(fm; θ) + hq

N+1
∑

n=1

αmn(θ
(q)) log(πnP

F
n (fm; θn))

)

+

+

K
∑

k=1

(

(1− hq) logPG(gk; θ) + hq

N+1
∑

n=1

βkn(θ
(q)) log(λnP

G
n (gk; θn))

)

, (4.31)

In order to carry out the maximization of (4.31), its derivatives with respect to the

model parameters are set to zero. In case of priors one obtains

∂Lpen(f, g,θ,θ(q))
∂πn

= π−1
n

M
∑

m=1

(

(1− hq)αmn(θ) + hqαmn(θ
(q))
)

. (4.32)

We denote

αmn(θ, θ̃) = (1− hq)αmn(θ) + hqαmn(θ̃), (4.33)

and repeat the same steps for λn to obtain the usual update expressions, i.e. ∀n =

1, . . . , N + 1:

π(q+1)
n =

1

M

M
∑

m=1

αmn(θ
(q+1),θ(q)), (4.34)

λ(q+1)
n =

1

K

K
∑

k=1

βkn(θ
(q+1),θ(q)). (4.35)
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We note that these are not the closed form solutions, but rather fixed point equations that

the solution should verify. However, for the EM algorithm hq ≡ 1 the expressions (4.34)

and (4.35) are closed form solutions, as soon as the first term in (4.33) disappears. Similar

equations are derived for the optimal covariance matrices, ∀n = 1, . . . , N + 1:

Σ
(q+1)
n =

M
∑

m=1
αmn(θ

(q+1)
,θ

(q)
)
(

fm−F(s(q+1)
n )

)(

fm−F(s(q+1)
n )

)⊤

M
∑

m=1
αmn(θ

(q+1)
,θ

(q)
)

, (4.36)

and Γ
(q+1)
n =

K
∑

k=1
βkn(θ

(q+1)
,θ

(q)
)
(

gk−G(s(q+1)
n )

)(

gk−G(s(q+1)
n )

)⊤

K
∑

k=1
βkn(θ

(q+1)
,θ

(q)
)

. (4.37)

For every n = 1, . . . , N , the optimal tying parameter vector s
(q+1)
n is such that:

ᾱn(θ
(q+1),θ(q))(f̄n −F(s(q+1)

n ))⊤
(

Σ
(q+1)
n

)−1
F ′(s(q+1)

n ) +

+β̄n(θ
(q+1),θ(q))(ḡn − G(s(q+1)

n ))⊤
(

Γ
(q+1)
n

)−1
G′(s(q+1)

n ) = 0, (4.38)

where we denoted F ′ and G′ the Jacobian matrices of F and G respectively and

ᾱn(θ
(q+1),θ(q)) =

M
∑

m=1

αmn(θ
(q+1),θ(q)), (4.39)

and β̄n(θ
(q+1),θ(q)) =

K
∑

k=1

βkn(θ
(q+1),θ(q)), (4.40)

and f̄n = ᾱn(θ
(q+1),θ(q))−1

M
∑

m=1

αmn(θ
(q+1),θ(q))fm, (4.41)

and ḡn = β̄n(θ
(q+1),θ(q))−1

K
∑

k=1

βkn(θ
(q+1),θ(q))gk. (4.42)

The optimal solution θ(q+1) for the penalized likelihood maximization problem (4.21)

is found as a fixed point of the system of equations (4.34)-(4.37) and a solution to the

implicit function equation (4.38). If one of the mappings, F(s) or G(s) is injective such

that its differential dF(s) or dG(s) is isomorphic, it is possible to transform (4.38) into

the fixed point equation (FPE) as well and apply existing methods to solve the FPE prob-

lem [Polyak 1987]. Another possibility is to apply general iterative techniques to (4.34)-

(4.38).

4.3.3 Generalized KP for Conjugate Mixture Models

Assume the total number of clusters N is known beforehands and the initial values for

parameters

θ(0) = {π(0)1 , . . . , π
(0)
N+1, λ

(0)
1 , . . . , λ

(0)
N+1, s

(0)
1 , . . . , s

(0)
N ,Σ

(0)
1 , . . . ,Σ

(0)
N ,Γ

(0)
1 , . . . ,Γ

(0)
N }

(4.43)
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are chosen. The procedures Select to estimateN and Initialize to initialize parameter values

θ(0) are described in detail in Chapter 6. Then the overall KP algorithm is outlined below:

1. P step: compute H(θ,θ(q)) using equations (4.26) to (4.30);

2. M step: find θ(q+1) as a fixed point of (4.34)-(4.38);

3. Check for convergence: go to Step 1, if convergence not achieved;

If the number of optimization iterations is taken constant, the overall complexity of the

Generalized KP algorithm is O(N(M +K)).

4.3.4 Identifiability and Algorithm Convergence

Before actually solving the optimization problem (4.21) we would like to verify that the

method is capable of finding the unbiased parameter estimates, provided the number of

observations is sufficiently large. As soon as the original problem is symmetric with respect

to cluster permutations, we would like to split possible parameter values into classes of

equivalence and introduce the following definition.

Definition 2 The number of components N in a model θN (called also the model order)

is the smallest integer such that the triplets {(sn,Σn, σk)}Nn=1 are all different and the

associated priors satisfy πn + λn > 0, n = 1, . . . , N .

Remark 2 When deriving asymptotical properties, we consider the behaviour of fraction
M

M+K as M,K → ∞. We’ll use the word ‘sequence’ for M
M+K , meaning that there exists

an enumeration scheme {M(i),K(i)}∞i=1, such that M(i) → ∞ and K(i) → ∞ as i →
∞. When considering asymptotical properties as M,K →∞ we would implicitly assume

asymptotical properties as i→∞.

Theorem 1 (Asymptotical Identifiability) Assume the true number of objects N∗ is

known and denote θN∗
the true model. Then θN∗

belongs to the set of fixed points of

the algorithm (4.21) a.s. for any choice of hq, as M,K →∞.

Proof: By the strong law of large numbers, the normalized log-likelihood
M

M+KL(f, g,θ) has a.s. finite accumulation points of the form

γEθN∗

logP F(F ,θ) + (1− γ)EθN∗

logPG(G,θ), (4.44)

where γ is an accumulation point of the sequence M
M+K as M,K →∞. At the same time

H(θ,θN∗
) ≥ H(θN∗

,θN∗
), (4.45)

and the equality holds if and only if θ = θN∗
by Definition 2. The inequality would still

hold for any accumulation point of sequence M
M+KH(θ,θN∗

), asM,K →∞. This can be
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seen from (4.22) taking into account that both, the log-likelihood (4.18) and the penalized

likelihood (4.31) converge a.s. to finite accumulation points as M,K → ∞ by the strong

law of large numbers.

From here we can conclude that θ = θN∗
maximizes (4.44) and thus belongs to the set

of stationary points of (4.21) a.s. for any choice of hq, as M,K →∞. �

This result shows that the generalized KP algorithm is capable of finding the true pa-

rameter values asymptotically for any choice of the sequence hq. However, other stationary

points may exist and one should avoid convergence to local maxima of the penalized log-

likelihood Lpen(f, g,θ,θ(q)). This could be achieved through the proper choice of hq or by

standard methods involving stochastic perturbations [Spall 2003].

Another important factor is the convergence speed, which again can be improved by

adjusting the sequence hq. We’ve seen that in the case hq ≡ 0 the algorithm would perform

direct constrainted optimization of the log-likelihood (4.20) by iteratively solving pure

fixed point problem for various θ(q). At the same time, Proposition 2 shows that in case of

the EM algorithm hq ≡ 1 the solutions of equations (4.34)-(4.37) are available in closed

form, so it is only (4.38) that should be solved iteratively for each θ(q). It was pointed

out by [Chrétien 2000] that in some particular cases (e.g. strictly concave log-likelihood),

choosing hq → 0 may increase convergence speed from linear to quadratic. In our case,

however, the results mentioned above are not applicable because of the likelihood function

that does not satisfy the necessary conditions (for finite M and K there can exist several

maximizers of the log-likelihood). We compare the performance of different versions of

the GKP algorithm on the task of audio-visual integration in the next Section.

4.4 Experimental Evaluation

We illustrate the method in the case of audio-visual (AV) objects. Objects could be charac-

terized both by their locations in space and by their auditory status, i.e., whether they are

emitting sounds or not. These object characteristics are not directly observable and hence

they need to be inferred from sensor data, e.g., cameras and microphones. These sen-

sors are based on different physical principles, they operate with different bandwidths and

sampling rates, and they provide different types of information. On one side, light waves

convey useful visual information only indirectly, on the premise that they reflect onto the

objects’ surfaces. A natural scene is composed of many objects/surfaces and hence the

task of associating visual data with objects is a difficult one. On the other side, acoustic

waves convey auditory information directly from the emitter to the receiver but the ob-

served data is perturbed by the presence of reverberations, of other sound sources, and of

background noise. Moreover, very different methods are used to extract information from

these two sensor types. A wide variety of computer vision principles exist for extract-

ing 3D points from a single image or from a pair of stereoscopic cameras [Forsyth 2003]

but practical methods are strongly dependent on the lighting conditions and on the prop-

erties of the objects’ surfaces (presence or absence of texture, color, shape, reflectance,
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etc.). Similarly, various algorithms were developed to locate sound sources using a micro-

phone pair based on interaural time differences (ITD) and on interaural level differences

(ILD) [Wang 2006, Christensen 2007], but these cues are difficult to interpret in natural set-

tings due to the presence of background noise and of other reverberant objects. A notable

improvement consists in the use a larger number of microphones [Dibiase 2001]. Never-

theless, the extraction of 3D sound source positions from several microphone observations

results in inaccurate estimates. We show below that our method can be used to combine

visual and auditory observations to detect and localize objects. A typical example where

the conjugate mixture models framework may help is the task of locating several speaking

persons.

Using the same notations as above, we consider two sensor spaces. The multimodal

data consists of M visual observations f and of K auditory observations g. We consider

data that are recorded over a short time interval [t1, t2], such that one can reasonably assume

that the AV objects have a stationary spatial location. Nevertheless, it is not assumed here

that the AV objects, e.g., speakers, are static: lip movements, head and hand gestures are

tolerated. Generalization of multimodal clustering to multimodal tracking for dynamic

scenes will be considered further.

We address the problem of estimating the spatial locations of all the objects that are

both seen and heard. Let N be the number of objects and in this case each object is

described by a three dimensional parameter vector sn = (xn, yn, zn)
⊤.

The AV data are gathered using a pair of stereoscopic cameras and a pair of omnidi-

rectional microphones, i.e., binocular vision and binaural hearing. A visual observation

vector fm = (um, vm, dm)⊤ corresponds to a 2D image location (um, vm) and to an asso-

ciated binocular disparity dm. Considering a projective camera model [Faugeras 1993] it

is straightforward to define an invertible function F : R3 → R
3 that maps s = (x, y, z)⊤

onto f = (u, v, d)⊤:

F(s) =
(

x

z
,
y

z
,
1

z

)⊤

and F−1(f) =

(

u

d
,
v

d
,
1

d

)⊤

. (4.46)

This model, introduced in Chapter 2, corresponds to a rectified camera pair [Hartley 2003]

and it can be easily generalized to more complex binocular geometries [Hansard 2007,

Hansard 2008]. Without loss of generality one can use a sensor-centered coordinate system

to represent the object locations.

Similarly one can use the auditory equivalent of disparity, namely the interaural time

difference (ITD) widely used by auditory scene analysis methods [Wang 2006]. The func-

tion G : R3 → R, introduced in Chapter 2, maps s = (x, y, z)⊤ onto a 1D audio observa-

tion:

g = G(s; sMℓ
, sMr) =

1

c

(

‖s− sMℓ
‖ − ‖s− sMr‖

)

. (4.47)

Here c is the sound speed and sMℓ
and sMr are the 3D locations of the two microphones in

the sensor-centered coordinate system. The setup is supposed to be calibrated, so that the

left and right microphone positions sMℓ
and sMr are known. To simplify the notation we

would further write G(s) instead of G(s; sMℓ
, sMr).
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Object 1 Object 2 Object 3 Outliers

sWS (300,−400, 1800) (100,−300, 2050) (−150,−181, 1950) –

sMS (200,−400, 1800) (100,−300, 2050) (−50,−181, 1950) –

sPS (150,−400, 1800) (100,−300, 2050) (0,−181, 1950) –

Σ





2.7 · 10−4 0 0

0 9 · 10−4 0

0 0 7.5 · 10−10









3.3 · 10−4 0 0

0 9.4 · 10−4 0

0 0 8.6 · 10−11









1.4 · 10−4 0 0

0 7.9 · 10−4 0

0 0 1.5 · 10−10



 V = 10−4

π 0.32 0.28 0.35 0.05

σ 0.1 0.2 0.1 U = 90

λ 0.3 0.2 0.3 0.2

Table 4.1: Ground truth parameter values θ for the well separated (WS), moderately sepa-

rated (MS) and poorly separated (PS) object configurations. Cluster means in the observa-

tion spaces are calculated through applying mappings F and G to locations sn, n = 1, 2, 3.

Observations are then sampled from mixture models of Gaussians with an outlier (uniform)

component in auditory and visual spaces.

The performance of the conjugate KP algorithm is verified on the simulated audio-

visual localization task. We generate the data using the conjugate mixture models that

were introduced in Section 4.2. Three objects that are both seen and heard are supposed

to be present in the scene. The tying parameters in this case are object locations in the 3D

ambient space sn ∈ S, n = 1, 2, 3. The rest of parameters characterize object images in the

observation spaces. Their values that were used to generate the auditory and visual data are

summarized in Table 4.1. The parameters were taken so as to imitate observations obtained

in real-world scenarios.

We suppose three objects that are present in the scene are defined in S by sn, n = 1, 2, 3.

Different configurations were considered: well separated (WS), moderately separated

(MS) and poorly separated (PS) cases. The modality-associated parameters Σn, σk, πn
and λn for n = 1, 2, 3 that account for object and detector properties are kept the same

across the configurations, whereas the object ambient space positions sn vary.

The data was sampled in the visual and auditory observation spaces using the mapped

mean values F(sn) and G(sn), covariance matrices Σn and variances σn and priors πn
and λn respectively. Microphone locations were taken to be sMℓ

= (−85.9,−80.3, 20.4)⊤
and sMr = (85.8,−80,−15)⊤.

In total M = 1000 and K = 100 samples were drawn from the corresponding mixture

models. The simulated data for the three configurations is shown in Figure 4.3. In each

case a scatter plot of visual observation projections on the (u, d) coordinates is shown in

the upper part of a plot. The corresponding means and covariance matrices are depicted

with points and ellipsoids. Auditory observations are shown as an ITD domain histogram

in the lower part of each plot. Auditory means and variances are depicted with coloured

bars, their height designates prior probabilities. The same colour is used for each object in

both domains. Dashed black lines show the boundaries of the field of view mapped to the

visual and auditory spaces.
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(a) WS configuration (b) MS configuration

(c) PS configuration

Figure 4.3: Simulated data for the (a) well separated, WS, (b) moderately separated,

MS and (c) poorly separated, PS object configurations. Scatter plot of visual observation

projections on the (u, d) coordinates is shown in the upper part of each plot. The corre-

sponding means and covariance matrices are depicted with points and ellipsoids. Auditory

observations are shown as an ITD domain histogram in the lower part of each plot. Au-

ditory means and variances are depicted with coloured bars, their height designates prior

probabilities. The same colour is used for each object in both domains. Each one of the

two mixtures models (associated with each sensorial modality) contains four components:

three objects and one outlier class. Dashed black lines show the boundaries of the field of

view in visual and auditory spaces.
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We compare the performance of different versions of the KP algorithm with gain se-

quence hq ≡ 1 (EM algorithm, EM), hq = 1/q (relaxed EM algorithm, REM) and hq ≡ 0

(direct log-likelihood optimization, DO). Every run of the KP algorithm comprised 30 iter-

ations. To carry out the maximization step, we performed 5 fixed point iterations, recalcu-

lating αmn(θ
(q+1),θ(q)) every time through (4.33) and updating the parameters by (4.34)-

(4.38). The optimization (4.38) with respect to tying parameters sn was performed using

1000 iterations of the simultaneous perturbation stochastic approximation (SPSA) algo-

rithm [Spall 2003]. The performance of the fixed point iteration is defined majorly by

theoretical properties of the system itself (contracting property, conditions on the Jacobian

matrix, we refer to [Polyak 1987] for more details). But it is also largely dependent on the

quality of its optimization subtask solutions. Thus we needed to perform more optimization

iterations for (4.38) to ensure the fixed point iteration uses an appropriate value.

To investigate the dependency of the results on initialization, the parameters values

θ(0) were sampled from the ground truth values using close (CI), intermediate (II) and

far (FI) initialization settings. The x, y and z coordinates of object locations s
(0)
n were

drawn from Gaussian distributions centered in the corresponding ground truth values with

variances ̺2x = 103, ̺2y = 103, ̺2z = 103 (CI), ̺2x = 103, ̺2y = 103, ̺2z = 104 (II) and ̺2x =

104, ̺2y = 104, ̺2z = 104 (FI) respectively. Eigenvalues of visual space covariance matrices

Σ
(0)
n and auditory space variances σ

(0)
n were sampled using Rice distribution Rice(ν, κ) to

ensure their positiveness. This distribution always has a mode (which is not always the case

for the Gamma distribution) and is fairly easy to simulate. Its density function is given by

p(x | ν, κ) = x

κ2
exp

(−(x2 + ν2)

2κ2

)

I0

(xν

κ2

)

, (4.48)

where I0(x) is the modified Bessel function of the first kind with order zero. The ν pa-

rameter in each case was taken to be the corresponding ground truth value, the κ parameter

was chosen for different settings to be κu = 10−3, κv = 10−3, κd = 10−8, κg = 1 (CI),

κu = 5 · 10−3, κv = 5 · 10−3, κu = 5 · 10−8, κg = 2.5 (II) and κu = 10−2, κv =

10−2, κd = 10−7, κg = 5 (FI). The initial priors in both modalities are always taken to be

equal. Examples of the obtained parameter values θ(0) for the WS configuration are shown

in Figure 4.4.

The detailed results of the REM version of the KP algorithm with hq = 1/q for the

WS, MS and PS configurations in the CI initialization setting are presented in Table 4.3.

Estimated locations ŝWS and their images in visual f̂WS and auditory ĝWS spaces are com-

pared to the ground truth values sWS, fWS and gWS respectively. Absolute and relative errors

εabs = ‖ŝWS − sWS‖ and εrel = ‖ŝWS − sWS‖/‖sWS‖ are calculated for object locations ŝWS

and their observation space images f̂WS and ĝWS using similar formulas. The results are

averaged over 10 runs of the algorithm with random initializations. The estimated errors

show that when given good initial values, all versions of the KP algorithm converge to a so-

lution that is very close to the ground truth. Matching in the observations spaces is perfect.

In our simulations the distances in ambient space are measured in millimetres, so 3-4mm

precision is typically achieved.
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(a) CI initialization setting (b) II initialization setting

(c) FI initialization setting

Figure 4.4: Sampled initializations θ(0) for the well-separated WS configuration: (a) close

initialization, CI, (b) intermediate initialization, II and (c) far initialization, FI. The visual

means and covariance matrices are depicted with points and ellipsoids in (u, d) coordinates

in the upper part of each plot. The corresponding auditory means and variances are shown

with the same colour in the lower part of each plot. Dashed black lines show the boundaries

of the field of view in visual and auditory spaces.

We compared different versions of the multimodal KP algorithm (EM, REM and DO)

to a unimodal EM algorithm based on visual observations only (VEM). Summary of av-

erage absolute error values εabs for object location estimates ŝ for WS, MS and PS object

configurations and IC, II and IF initial values settings is given in Table 4.2. All the algo-

rithms show acceptable performance (3-5mm precision) on various configurations. Thus

the primary criteria on the algorithm choice would be (i) convergence speed; (ii) com-

putation speed; (iii) algorithm stability. To compare the convergence speeds we plotted

likelihood evolution graphs shown in Figure 4.5. DO and REM are the most efficient on

the initial stage of the optimization (bootstrap period). They admit certain fluctuations in

the likelihood values on the final stage (see the close-up in Figure 4.6), which is the con-

sequence of complexity of the optimization task (4.21). These fluctuations are acceptable
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IC II IF

EM REM DO VEM EM REM DO VEM EM REM DO VEM

WS 4.62 3.92 4.48 3.92 4.33 4.16 4.05 3.92 4.5 3.96 4.38 3.92

MS 3.22 3.63 3.3 4.66 2.81 3.56 3.33 4.66 3.58 3.08 3.57 4.66

PS 2.93 2.94 3.08 3.72 3.13 3.38 3.44 3.73 3.1 3.4 3.26 3.74

Table 4.2: Summary of average absolute error εabs values for object location estimates ŝ

for WS, MS and PS object configurations. Dependency on initial values setting (IC, II or

IF) and the optimization algorithm version (EM, REM, DO, VEM) is shown.

(a) WS configuration (b) PS configuration

Figure 4.5: Likelihood evolution graphs for (a) WS object configuration and (b) PS object

configuration for FI initialization setting. The faster the sequence hq decreases, the more

efficient the bootstrap period of the KP algorithm is and the less stable the behaviour of the

estimate becomes afterwards. Dashed black lines show the likelihood of the ground truth

parameters.

in the case of well separated objects, though in the case of more complex object config-

urations they can become crucial for performance. At the same time the VEM strategy

does well in the case when visual information is rich and not too corrupted, but heavily

relies on the data quality. Computation speed depends directly on the optimization method

complexity, which favours the VEM and EM algorithms.

The conjugate EM algorithm has an advantage over the EM algorithms operating on

single modalities (like VEM algorithm) as soon as it can perform optimization in cases

when data from an object in one modality is almost absent (see Figure 4.6). At the same

time, single modality EM algorithms are a particular cases of ConjEM with zero auditory

weights αmn or βkn, so we would further concentrate on ConjEM and try to improve its

convergence speed to that of DO and REM and reduce the complexity.
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(a)

(b)

Figure 4.6: Missing data case showing the best the advantages of the ConjEM algorithm

over single modality EM algorithms and other algorithms from the KP family. (a) Con-

jEM converges properly for configurations where certain objects are absent in one modality,

whereas single modality EM algorithms fail in this case. Data in auditory and visual do-

mains contains two strong and one weak cluster. Ground truth is depicted with red, green

and cyan colours in both domains, the corresponding estimated clusters have darker colours

(they are quite accurate and overlap with the ground truth in the image). ConjEM extends

the EM algorithms that operate on a single modality, and can be reduced to them in spe-

cial cases. (b) ConjEM shows stable behaviour always increasing the likelihood function,

which is not always the case for other algorithms from the KP family.

4.5 Discussion

We proposed a novel framework to cluster heterogeneous data gathered with physically

different sensors. Our approach differs from other existing approaches in that it combines

in a single statistical model a number of clustering tasks while ensuring the consistency

of their results. In addition, the fact that the clustering is performed in observation spaces

allows one to get useful statistics on the data (i.e. variances and covariance matrices, pri-

ors), which is an advantage of our approach over particle filtering models. The task of

simultaneous clustering in spaces of different nature, related through known functional de-

pendencies to a common parameter space, was formulated as a likelihood maximization

problem. We built the conjugate KP algorithm to perform the multimodal clustering task

using the standard KP theory.

One of the strong points of the formulated model is that it is open to different use-

ful extensions. It can be easily extended to an arbitrary number J of observation spaces

F1, . . . ,FJ . The sum of two terms, related to spaces F and G, would have to be replaced

by a sum of J terms corresponding to F1, . . . ,FJ in the formulas of Sections 4.2 and 4.3.

Additional features can be added to the unimodal mixture models. This would increase
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the dimensionality of F and G spaces, but the KP algorithm would stay unchanged. Also,

the assumption that assignment variables a and b are independent could be relaxed. An

appropriate approach to perform inference in a non independent case would be to consider

variational approximations [Jordan 1998] and in particular a variational EM framework.

The general idea would be to approximate the joint distribution P (a) by a distribution

from a restricted class of probability distributions that factorize as P̃ (a) =
M
∏

m=1
P̃ (am).

For any such distribution, our model would be applicable without any changes, so that

for a variational version of the conjugate EM algorithm, all the results from this Chapter

would hold. Thus one can consider generalizations, such as conjugate random fields and

conjugate point processes. Finally, each of the Gaussian mixtures (4.16) and (4.17) can be

replaced by any other mixture. Some distribution choices would not require any significant

changes. We consider Student t-distribution mixtures as an example in Appendix A.2.

A non trivial audio-visual localization task was considered to illustrate the conjugate

KP performance on simulated data. These experiments allowed us to assess the average

method behaviour for different algorithm options, various object configurations and initial-

ization properties. They showed that the obtained clustering results were precise in deter-

mining object locations in the hidden ambient space and in the observation spaces. Certain

peculiarities regarding bootstrap time and solution stability were revealed. It occured that

though KP algorithms with fastly decreasing gain sequence show better convergence on the

initial stage, they demonstrate worse stability on the final stage, which leads to precision

loss. The conjugate EM (ConjEM) version of the algorithm takes more time to converge,

but is more stable. At the same time, the simple EM algorithm based on visual data only

(VEM), which is the particular case of ConjEM, showed good results on simple object con-

figurations. Thus the best would be to find the way to accelerate ConjEM to benefit from

both, speed and accuracy.

To summarize we outline the major advantages of the proposed framework:

• Information integration: the use of tying parameters guarantees coherent results in

both modality spaces;

• Efficient optimization: simultaneous inference of assignment labels and object pa-

rameters allows to avoid exponentially hard binding problems;

• Identifiability: the method is proved to be capable of finding the optimal parameters

asymptotically;

• Automatic modality weighting: data statistics are estimated, so that more precise

and richer data is automatically assigned greater weight;

• Integration reinforcement: the algorithm does not rely on the quality of a particular

modality and efficiently combines the data, showing good performance on various

object configurations;
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• Extensibility: the model can be extended onto any number of modalities, various

modality-specific properties can be included, different statistical models can be in-

corporated;

It appears that as a generalization of Gaussian mixture models, our approach has larger

modelling capabilities. It is entirely based on a mathematical framework in which each step

is theoretically well-founded. Its ability to provide good results in a non trivial multimodal

clustering task is particularly promising for applications requiring the integration of sev-

eral heterogenious information sources. Therefore, it has advantages over other methods

that include ad-hoc processing while being open to incorporation of more task dependent

information.

The proposed framework aligns well with the findings from neurobiology in what con-

cerns multisensory integration. Adopting the assumption that the objects are co-localized

and co-incident the model reinforces the integration process the way the multisensory en-

hancement phenomenon does. The case of weaker modality signals (less observations or

more complex object configurations) shows greater improvement of multimodal algorithm

with respect to the unimodal one. At the same time the model is quite flexible and can

automatically weight the modalities, which is an important feature for multimodal appli-

cations. The single-modality algorithms are the particular cases of our approach, so strong

unimodal signals are treated in the unimodal way and are almost not enhanced. The mul-

timodal binding happens naturally in our model and the consistency is verified across the

modalities.
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Object 1 Object 2 Object 3

W
el

l
S

ep
ar

at
ed

,
W

S L
o
ca

ti
o
n sWS (300,−400, 1800) (100,−300, 2050) (−150,−181, 1950)

ŝWS (300.8,−397.25, 1794.46) (99.25,−297.47, 2053.58) (−149.66,−182.03, 1950.07)
εabs 6.23 4.45 1.09

εrel 0.0033 0.0021 0.00056

V
is

u
al

f
WS

(0.16,−0.22, 0.00056) (0.49,−0.15, 0.00049) (−0.077,−0.09, 0.00051)
f̂

WS
(0.17,−0.22, 0.00056) (0.048,−0.14, 0.00049) (−0.077,−0.09, 0.00051)

εabs 0.0013 0.0016 0.0006

εrel 0.0046 0.01 0.0046

A
u
d
it

o
ry

gWS −0.88 −3.59 −6.47
ĝWS −0.86 −3.6 −6.46
εabs 0.021 0.01 0.004

εrel 0.024 0.003 0.0006

M
o
d
er

at
el

y
S

ep
ar

at
ed

,
M

S

L
o
ca

ti
o
n sMS (200,−400, 1800) (100,−300, 2050) (−50,−181, 1950)

ŝMS (201.05,−402.79, 1802.13) (96.73,−299.34, 2049.69) (−47.11,−181.83, 1947.55)
εabs 3.66 3.35 3.88

εrel 0.002 0.0016 0.002

V
is

u
al

f
MS

(0.11,−0.22, 0.00056) (0.049,−0.15, 0.00049) (−0.026,−0.09, 0.00051)
f̂

MS
(0.11,−0.22, 0.00056) (0.047,−0.15, 0.00049) (−0.024,−0.09, 0.00051)

εabs 0.0014 0.0016 0.0016

εrel 0.0055 0.0105 0.0161

A
u
d
it

o
ry

gMS −2.13 −3.59 −5.31
ĝMS −2.12 −3.62 −5.27
εabs 0.011 0.037 0.033

εrel 0.005 0.01 0.006

P
o
o
rl

y
S

ep
ar

at
ed

,
P

S L
o
ca

ti
o
n sMS (150,−400, 1800) (100,−300, 2050) (0,−181, 1950)

ŝMS (150.57,−398.07, 1799.01) (100.93,−301.48, 2047.57) (1.65,−182.76, 1952.68)
εabs 2.24 2.99 3.6

εrel 0.0012 0.0014 0.0018

V
is

u
al

f
MS

(0.08,−0.22, 0.00056) (0.05,−0.15, 0.00049) (0,−0.09, 0.00051)
f̂

MS
(0.08,−0.22, 0.00056) (0.05,−0.15, 0.00049) (0.0008,−0.09, 0.00051)

εabs 0.001 0.001 0.0011

εrel 0.0043 0.0067 0.0123

A
u
d
it

o
ry

gMS −2.77 −3.59 −4.72
ĝMS −2.76 −3.6 −4.7
εabs 0.008 0.012 0.019

εrel 0.003 0.003 0.004

Table 4.3: Results of the REM version (hq = 1/q) of the KP algorithm for the well sepa-

rated (WS), moderately separated (MS) and poorly separated (PS) object configurations in

the close initialization (CI) setting. They resemble the results of other versions of the KP

algorithm, REM was chosen as an ‘average’ representative. Estimated locations ŝWS and

their images in visual f̂WS and auditory ĝWS spaces are compared to the ground truth values

sWS, fWS and gWS respectively. Absolute εabs and relative εrel errors are calculated for object

locations and their observation space images.
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The general approach to multimodal clustering based on Kullback-Proximal (KP)

framework considered in the previous Chapter cannot be significantly improved. As we’ve

seen, in practice it is quite difficult to ensure both, the stability and the algorithm efficiency.

In this Chapter we concentrate on one particular instance from the KP family, namely the

conjugate Expectation-Maximization (ConjEM) algorithm. It is shown to guarantee the

increase of target function for a large class of observation space mappings and a number

of possibilities are proposed to accelerate the convergence. We demonstrate the perfor-

mance of the ConjEM algorithm on the task of audio-visual localization considering both,

simulated and real data.

5.1 Conjugate EM Algorithm for Clustering Multimodal Data

Performing direct optimization of the observed data log-likelihood function (4.18) and ap-

plying general penalized optimization techniques presents certain difficulties. The opti-

mization methods do not guarantee permanent increase of the target function which leads

to undesirable fluctuations. At the same time, one instance of the KP family showed more

regular behaviour, though slower convergence speed.
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The expectation-maximization (EM) algorithm [Dempster 1977, McLachlan 2007] is

a standard approach to maximize likelihood functions of type (4.18). It is a particular case

of the considered previously KP algorithm with hq ≡ 1, as stated in Proposition 2. Each

iteration q of EM proceeds in two steps:

• Expectation. For the current values θ(q) of the parameters, compute the conditional

expectation with respect to variablesA andB:

Q(θ,θ(q)) =
∑

a∈{1...N+1}M

∑

b∈{1...N+1}K

P (a, b|f, g; θ(q)) logP (f, g,a, b; θ)

(5.1)

• Maximization. Update the parameter set θ(q) by maximizing (5.1) with respect to θ:

θ(q+1) = argmax
θ

Q(θ,θ(q)) (5.2)

As soon as the EM algorithm is an instance of the KP algorithm family, the increasing

property (4.24) stated in Proposition 1 remains valid for the cases when the M-step 5.2

has a closed form solution. This is the case for standard EM that deals with the parameter

estimation of a single mixture model. For the case when the maximization (5.2) is difficult

to achieve, various generalizations of EM are proposed. As in the case of KP algorithm,

the M step can be relaxed by requiring just an increase rather than an optimum. This yields

Generalized EM (GEM) procedures [McLachlan 2007] (see [Boyles 1983] for a result on

the convergence of this class of algorithms). GEM occurs to be more stable than the GKP

algorithm in the sense that increases in the target function are easier to achieve. Below we

describe in more detail the specific forms of the E and M steps for the case of conjugate

mixture models.

5.1.1 The Expectation Step

Using the independency assumptions (4.2)-(4.3), the conditional expectation (5.1) can be

decomposed as:

Q(θ,θ(q)) = QF (θ,θ
(q)) +QG(θ,θ

(q)), (5.3)

with

QF (θ,θ
(q)) =

M
∑

m=1

N+1
∑

n=1

α(q)
mn log

(

πnP (fm|Am = n; θ)
)

, (5.4)

QG(θ,θ
(q)) =

K
∑

k=1

N+1
∑

n=1

β
(q)
kn log

(

λnP (gk|Bk = n; θ)
)

, (5.5)

where α
(q)
mn and β

(q)
kn denote the posterior probabilities α

(q)
mn = P (Am = n|fm;θ(q)) and

β
(q)
kn = P (Bk = n|gk;θ(q)) that can be easily computed by equations (4.29) and (4.30).
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Using likelihood expressions (4.11)-(4.15) further leads to:

QF (θ,θ
(q)) =− 1

2

M
∑

m=1

N
∑

n=1

α(q)
mn

(

‖fm −F(sn)‖2Σn
+ log((2π)r|Σn|π−2

n )
)

−

− 1

2

M
∑

m=1

α
(q)
m,N+1 log(V

2π−2
N+1), (5.6)

QG(θ,θ
(q)) =− 1

2

K
∑

k=1

N
∑

n=1

β
(q)
kn

(

‖gk − G(sn)‖2Γn
+ log((2π)p|Γn|λ−2

n )
)

−

− 1

2

K
∑

k=1

β
(q)
k,N+1 log(U

2λ−2
N+1). (5.7)

5.1.2 The Maximization Step

In order to carry out the maximization (5.2) of the conditional expectation (5.1), its deriva-

tives with respect to the model parameters are set to zero. This leads to the standard update

expressions for priors, more specifically ∀n = 1, . . . , N + 1:

π(q+1)
n =

1

M

M
∑

m=1

α(q)
mn, (5.8)

λ(q+1)
n =

1

K

K
∑

k=1

β
(q)
kn . (5.9)

The covariance matrices are governed by the tying parameters s
(q+1)
n ∈ S through the

functions F and G, ∀n = 1, . . . , N :

Σ
(q+1)
n (s(q+1)

n ) =
1

M
∑

m=1
α
(q)
mn

M
∑

m=1

α(q)
mn(fm −F(s(q+1)

n ))(fm −F(s(q+1)
n ))⊤,(5.10)

Γ
(q+1)
n (s(q+1)

n ) =
1

K
∑

k=1

β
(q)
kn

K
∑

k=1

β
(q)
kn (gk − G(s(q+1)

n ))(gk − G(s(q+1)
n ))⊤. (5.11)

For every n = 1, . . . , N , the parameter vector s
(q+1)
n is computed such that:

s(q+1)
n = argmax

s
Q(q)

n (s), (5.12)

where

Q(q)
n (s) = −

M
∑

m=1

α(q)
mn(‖fm −F(s)‖2Σn(s) + log |Σn(s)|)−

−
K
∑

k=1

β
(q)
kn (‖gk − G(s)‖2Γn(s) + log |Γn(s)|). (5.13)
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We stress that the covariances Σn(s) and Γn(s) in (5.10) and (5.11) are considered as

functions of s ∈ S. Hence, at each iteration of the algorithm, the overall update of the

tying parameters can be split into N identical optimization tasks of the form (5.13). These

tasks can be solved in parallel. In general, F and G are non-linear transformations and

hence there is no simple closed-form expression for the estimation of the tying parameters.

5.1.3 Generalized EM for Conjugate Mixture Models

We assume the initial parameters θ(0) to be selected for the conjugate EM (ConjEM) al-

gorithm. An efficient procedure Initialize would be proposed in Chapter 6 to choose θ(0).

The maximization step uses two procedures, referred to as Choose and Local Search which

are explained in detail in Sections 5.1.4 and 5.1.5 respectively. To determine the number

of objects N we define the procedure Select that is derived in Chapter 6. The overall EM

procedure is outlined below:

1. Apply procedure Initialize to initialize the parameter vector:

θ(0) = {π(0)1 , . . . , π
(0)
N+1, λ

(0)
1 , . . . , λ

(0)
N+1, s

(0)
1 , . . . , s

(0)
N ,Σ

(0)
1 , . . . ,Σ

(0)
N ,Γ

(0)
1 , . . . ,Γ

(0)
N };

2. E step: compute Q(θ,θ(q)) using equations (4.29), (4.30), (5.6) and (5.7);

3. M step: estimate θ(q+1) using the following sub-steps:

(a) The priors. Compute π
(q+1)
1 , . . . , π

(q+1)
N+1 and λ

(q+1)
1 , . . . , λ

(q+1)
N+1 using (5.8) and

(5.9);

(b) The tying parameters. For each n = 1 . . . N :

• Apply procedure Choose to determine an initial value, denoted by s̃
(0)
n , as

proposed in Section 5.1.5;

• Apply procedure Local Search to eachQ
(q)
n (s) as defined in (5.13) starting

from s̃
(0)
n and set the result to s

(q+1)
n using the equation (5.14) specified

below;

(c) The covariance matrices. For every n = 1 . . . N , use (5.10) and (5.11) to

compute Σ
(q+1)
n and Γ

(q+1)
n ;

4. Check for convergence: Terminate, otherwise go to Step 2;

5. Apply procedure Select, use the criterion from Chapter 6 specified below to deter-

mine the best N ;

If the number of optimization iterations on Step 3b is taken constant, the overall com-

plexity of the Generalized EM algorithm is O(N(M +K)). This algorithm uses the fol-

lowing procedures:

• Initialize: this procedure aims at providing the initial parameter values θ(0). Its

performance has a strong impact on the time required for the algorithm to converge.

In Chapter 6 we propose an efficient initialization strategy based on single-space

probability density estimation and cluster detection.
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• Select: this procedure applies the information criterion for conjugate mixture models

to determine the number of objects N . In Chapter 6 we show that the proposed

criterion is consistent in the case of conjugate mixture models.

• Choose: the goal of this procedure is to provide at each M step initial values

s̃
(0)
1 , . . . , s̃

(0)
N which are likely to be close to the global maxima of the functions

Q
(q)
n (s) in (5.13). The exact form of this procedure is important to ensure the ability

of the subsequent Local Search procedure to find these global maxima. We will use

results on global search algorithms [Zhigljavsky 2008] and propose different variants

in Section 5.1.5.

• Local Search: an important requirement of this procedure is that it finds a local

maximum of the Q
(q)
n (s)’s starting from any arbitrary point in S. We will consider

procedures that consist in iterating a local update of the form (ν is the iteration in-

dex):

s̃n
(ν+1) = s̃n

(ν) + H(q,ν)
n ∇Q(q)

n (s̃n
(ν)), (5.14)

with H
(q,ν)
n being a positive definite matrix that may vary with ν. When the gradient

∇Q
(q)
n (s) is Lipschitz continuous with some constant L

(q)
n , an appropriate choice

that guarantees the increase ofQ
(q)
n (s̃(ν)) at each iteration ν, is to choose H

(q,ν)
n such

that it verifies ‖H (q,ν)
n ‖ ≤ 2/L

(q)
n .

Different choices for H
(q,ν)
n are possible and they correspond to different optimiza-

tion methods that belong, in general, to the variable metric class. For example

H
(q,ν)
n = 2

L
(q)
n

I leads to gradient ascent, while taking H
(q,ν)
n as a scaled inverse of

the Hessian matrix would lead to a Newton-Raphson optimization step. Other possi-

bilities include Levenberg-Marquardt and quasi-Newton methods [Polyak 1987].

5.1.4 Analysis of Local Search Procedure

Each instance of (5.13) for n = 1, . . . , N can be solved independently. In this Section we

focus on providing a set of conditions under which each iteration of our algorithm guaran-

tees that the objective function Q
(q)
n (s) in (5.13) is increased. We start by rewriting (5.13)

more conveniently in order to perform the optimization with respect to s ∈ S. To sim-

plify the notation, the iteration index q is sometimes omitted. We simply write Qn(s) for

Q
(q)
n (s).

Let ᾱn =
∑M

m=1 α
(q)
mn and β̄n =

∑K
k=1 β

(q)
kn denote the average object weights in

each one of the two modalities. We introduce αn = ᾱ−1
n (α

(q)
1n , . . . , α

(q)
Mn) and βn =

β̄−1
n (β

(q)
1n , . . . , β

(q)
Kn) the discrete probability distributions obtained by normalizing the ob-

ject weights. We denote by F and G the random variables that take their values in the

discrete sets {f1, . . . ,fm, . . . ,fM} and {g1, . . . , gk, . . . , gK}. It follows that the expres-
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sions for the optimal variances (5.10) and (5.11) as functions of s, can be rewritten as:

Σ
(q+1)
n (s) =Eαn [

(

F −F(s)
)(

F −F(s)
)⊤

], (5.15)

Γ
(q+1)
n (s) =Eβn

[
(

G− G(s)
)(

G− G(s)
)⊤

], (5.16)

where Eαn and Eβn
denote the expectations with respect to the distributions αn and βn.

Using some standard projection formula, it follows that the covariances are:

Σ
(q+1)
n (s) =Vf + vfv

⊤
f , (5.17)

Γ
(q+1)(s) =Vg + vgv

⊤
g , (5.18)

where Vf and Vg are the covariance matrices of F and G respectively under distributions

αn and βn, and vf and vg are vectors defined by:

vf = Eαn [F ]−F(s), (5.19)

vg = Eβn
[G]− G(s). (5.20)

For convenience we omit the index n for Vf , Vg, vf and vg. Let f̄n = Eαn [F ] and

ḡn = Eβn
[G]. This yields:

f̄n = ᾱ−1
n

M
∑

m=1

α(q)
mnfm, (5.21)

ḡn = β̄−1
n

K
∑

k=1

β
(q)
kn gk, (5.22)

Vf = ᾱ−1
n

M
∑

m=1

α(q)
mnfmf

⊤
m − f̄nf̄

⊤
n , (5.23)

Vg = β̄−1
n

K
∑

k=1

β
(q)
kn gkg

⊤
k − ḡnḡ⊤n . (5.24)

Next we derive a simplified expression for Qn(s) in (5.13) in order to investigate its prop-

erties. Notice that one can write (5.13) as the sum Qn(s) = Qn,F (s) +Qn,G(s), with:

Qn,F (s) = −
M
∑

m=1

α(q)
mn(‖fm −F(s)‖2

Σ
(q+1)
n (s)

+ log |Σ(q+1)
n (s)|), (5.25)

and a similar expression for Qn,G(s). Equation (5.25) can be written:

Qn,F (s) = −ᾱn(Eαn [(F −F(s))⊤Σ(q+1)
n (s)−1(F −F(s))]+ log |Σ(q+1)

n (s)|). (5.26)

The first term of (5.26) can be further divided into two terms:

Eαn [(F −F(s))⊤Σ(q+1)
n (s)−1(F −F(s))] =

=Eαn [(F − f̄n)
⊤
Σ

(q+1)
n (s)−1(F − f̄n)] + v

⊤
f Σ

(q+1)
n (s)

−1
vf . (5.27)
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The Sherman-Morrison formula applied to (5.17) leads to

Σ
(q+1)
n (s)−1 = V−1

f − V−1
f vfv

⊤
f V−1

f /(1 +Dn,F (s)), (5.28)

with:

Dn,F (s) = ‖F(s)− f̄n‖2Vf
. (5.29)

It follows that (5.27) can be written as the sum of:

Eαn [(F − f̄n)
⊤
Σ

(q+1)
n (s)−1(F − f̄n)] = Cf −

Dn,F (s)

1 +Dn,F (s)
, (5.30)

and of

v⊤f Σ
(q+1)
n (s)

−1
vf =

Dn,F (s)

1 +Dn,F (s)
. (5.31)

Hence the first term of (5.26), namely (5.27) is equal to Cf which is constant with respect

to s. Moreover, applying the matrix determinant lemma to the second term of (5.26) we

successively obtain:

log |Σ(q+1)
n (s)| = log |Vf + vfv

⊤
f | = log |Vf |+ log(1 + v⊤f V−1

f vf ) =

= log |Vf |+ log(1 +Dn,F (s)). (5.32)

It follows that there is only one term depending on s in (5.26):

Qn,F (s) = −ᾱn (Cf + log |Vf |+ log(1 +Dn,F (s))) . (5.33)

Repeating the same derivation for the second sensorial modality we obtain the following

equivalent form of (5.13):

Qn(s) = −ᾱn log(1 +Dn,F (s))− β̄n log(1 +Dn,G(s)) + C, (5.34)

where C is some constant not depending on s.

Using this form of Qn(s), we can now investigate the properties of its gradient

∇Qn(s). It appears that under some regularity assumptions on F and G, the gradient

∇Qn(s) is bounded and Lipschitz continuous. The corresponding theorem is formulated

and proved. First we establish as a lemma some technical results, required to prove the

theorem. In what follows, for any matrix V, the matrix norm used is the operator norm

‖V‖ = sup
‖v‖=1

‖Vv‖. For simplicity, we further omit the index n.

Lemma 1 Let V be a symmetric positive definite matrix. Then the function

ϕ(v) = ‖Vv‖/(1 + v⊤Vv)

is bounded by ϕ(v) ≤ Cϕ(V) with Cϕ(V) =
√

‖V‖/2 and is Lipschitz continuous:

∀v, ṽ ‖ϕ(v)− ϕ(ṽ)‖ ≤ Lϕ(V)‖v − ṽ‖,

where Lϕ(V) = ‖V‖(1 + µ(V)/2) is the Lipschitz constant and µ(V) = ‖V‖‖V−1‖ is the

condition number of V.
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Proof: We start by introducing w = Vv so that ϕ(v) = ϕ̃(w) = ‖w‖/(1 +

w⊤V−1w). As soon as w⊤V−1w ≥ λmin‖w‖2 (where we denoted by λmin the smallest

eigenvalue of V−1, so that in fact λmin = ‖V‖−1), to find the maximum of ϕ̃(w) we

should maximize the expression t/(1+λmint
2) for t = ‖w‖ ≥ 0. It is reached at the point

t∗ = λ
−1/2
min . Substituting this value into the original expressions gives ϕ(v) ≤

√

‖V‖/2.

To compute the Lipschitz constant Lϕ we consider the derivative:

‖∇ϕ̃′(w)‖ =
∥

∥(1 +w⊤V−1w)w − 2‖w‖2V−1w
∥

∥

‖w‖(1 +w⊤V−1w)2
≤ 1 +

2‖V−1‖‖w‖2
(1 +w⊤V−1w)2

,

from where we find that ‖∇ϕ̃′(w)‖ ≤ 1 + µ(V)/2, and so Lϕ = ‖V‖(1 + µ(V)/2). �

This lemma yields the following main result for the gradient ∇Q:

Theorem 2 Assume functions F and G and their derivatives F ′ and G′ are Lipschitz con-

tinuous with constants LF , LG , L′
F and L′

G respectively. Then the gradient ∇Q is bounded

and Lipschitz continuous with some constant L.

Proof: From (5.34) the gradient ∇Q can be written as:

∇Q(s) = ∇QF (s) +∇QG(s) =

=
2ᾱF ′⊤(s)V−1

f (f̄ −F(s))
1 +DF (s)

+
2β̄G′⊤(s)V−1

g (ḡ − G(s))
1 +DG(s)

. (5.35)

It follows from Lemma 1 that ‖∇QF (s)‖ ≤ 2LF ᾱCϕ(V
−1
f ) and

‖∇QG(s)‖ ≤ 2LG β̄Cϕ(V
−1
g ). The norm of the gradient is then bounded by:

‖∇Q(s)‖ ≤ 2LF ᾱCϕ(V
−1
f ) + 2LG β̄Cϕ(V

−1
g ). (5.36)

Considering the norm ‖∇QF (s)−∇QF (s̃)‖, we introduce v1 = f̄ − F(s) and v2 =

f̄ −F(s̃). Then we have:

‖∇QF (s)−∇QF (s̃)‖ ≤ 2ᾱ





∥

∥

∥

∥

∥

∥

(F ′(s)−F ′(s̃))⊤V−1
f v1

1 + ‖v1‖2Vf

∥

∥

∥

∥

∥

∥

+

+

∥

∥

∥

∥

∥

∥

F ′⊤(s̃)V−1
f v2

1 + ‖v2‖2Vf

−
F ′⊤(s̃)V−1

f v1

1 + ‖v1‖2Vf

∥

∥

∥

∥

∥

∥



 . (5.37)

Using Lemma 1 with V−1
f we have:

‖∇QF (s)−∇QF (s̃)‖ ≤ 2ᾱ
(

L′
FCϕ(V

−1
f ) + L2

FLϕ(V
−1
f )
)

‖s− s̃‖.
The same derivations can be performed for ∇QG(s), so that finally we get:

‖∇QG(s)−∇QG(s̃)‖ ≤ L‖s− s̃‖, (5.38)

where the Lipschitz constant is given by:

L = 2ᾱ
(

L′
FCϕ(V

−1
f ) + L2

FLϕ(V
−1
f )
)

+ 2β̄
(

L′
GCϕ(V

−1
g ) + L2

GLϕ(V
−1
g )
)

. (5.39)

�
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To actually construct the non-decreasing sequence in (5.14), we make use of the fol-

lowing fundamental result on variable metric gradient ascent algorithms.

Theorem 3 ([Polyak 1987]) Let the function Q : Rd → R be differentiable on R
d and its

gradient ∇Q be Lipschitz continuous with constantL. Let the matrix H be positive definite,

such that ‖H‖ ≤ 2
L . Then the sequence Q(s̃(ν)), defined by s̃(ν+1) = s̃(ν) + H∇Q(s̃(ν))

is non-decreasing.

This result shows that for any functions F and G that verify the conditions of The-

orem 2, using (5.14) with H = 2
LI, we are able to construct a non-decreasing sequence

and an appropriate Local Search procedure. Notice however, that its guaranteed theoretical

convergence speed is linear. It can be improved in several ways.

First, the optimization direction can be adjusted. For certain problems, the matrix H

can be chosen as in variable metric algorithms, such as Newton-Raphson method, quasi-

Newton methods or Levenberg-Marquardt method, provided that it satisfies the conditions

of Theorem 3. Second, the optimization step size can be increased based on local properties

of the target function. For example, at iteration ν, if when considering the functions F and

G on some restricted domain S
(ν) there exist smaller local Lipschitz constants L

(ν)
F , L

(ν)
G ,

L
′(ν)
F and L

′(ν)
G , H can be set to H = 2

L(ν) I with L(ν) smaller than L. It follows that

‖s̃(ν+1) − s̃(ν)‖ ≤ 2
L(ν) ‖∇Q(s̃(ν))‖, which means that one can take the local constants,

L
(ν)
F , L

(ν)
G , L

′(ν)
F and L

′(ν)
G if they are valid in the ball Bρ(ν)(s̃

(ν)) with

ρ(ν) =
2

L(ν)

(

2L
(ν)
F ᾱCϕ(V

−1
f ) + 2L

(ν)
G β̄Cϕ(V

−1
g )
)

. (5.40)

5.1.5 Global Search and the Choose Procedure

Theorem 2 allows us to use the improved global random search techniques for Lipschitz

continuous functions [Zhigljavsky 1991]. These algorithms are known to converge, in the

sense that generated point sequences fall infinitely often into an arbitrarily small neigh-

bourhood of the optimal points set. For more details and convergence conditions see The-

orem 3.2.1 and the discussion that follows in [Zhigljavsky 1991]. A proper choice of the

initial value s̃(0) not only guarantees to find the global maximum, but can also be used to

increase the convergence speed. A basic strategy is to draw samples in S, according to

some sequence of distributions over S, that verifies the convergence conditions of global

random search methods. However, the speed of convergence of such an algorithm is quite

low.

Global random search methods can also be significantly improved by taking into ac-

count some specificities of the target function. Indeed, in our case, function (5.34) is made

of two parts for which the optimal points are known and are respectively f̄ and ḡ. If there

exists s̃(0) such that s̃(0) ∈ F−1(f̄)∩G−1(ḡ), then it is the global maximum and the M step

solution is found. Otherwise, one can sample S in the vicinity of the set F−1(f̄)∪G−1(ḡ)
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to focus on a subspace that is likely to contain the global maximum. This set is, gener-

ally speaking, a union of two manifolds. For sampling methods on manifolds we refer

to [Zhigljavsky 1991]. An illustration of this technique is given in the Appendix A.1.

Another possibility is to use a heuristic that function (5.34) does not change much after

one iteration of the EM algorithm. Then, the initial point s̃(0) for the current iteration can

be set to the optimal value computed at the previous iteration. However, in general, this

simple strategy does not yield the global maximum, as can be seen from the results in

Section 5.3.

5.2 Clustering Using Auditory and Visual Data

As in the previous Chapter, we illustrate the method in the case of audio-visual (AV) ob-

jects. The objects are characterized both by their locations in space sn and by their auditory

status, i.e., whether they are emitting sounds or not. These object characteristics are not

directly observable and hence they need to be inferred from sensor data. A typical example

where the conjugate mixture models framework may help is the task of locating several

speaking persons.

Using the same notations as above, we consider two sensor spaces. The multimodal

data consists of M visual observations f and of K auditory observations g. We consider

data that are recorded over a short time interval [t1, t2], such that one can reasonably assume

that the AV objects have a stationary spatial location. Nevertheless, it is not assumed here

that the AV objects, e.g., speakers, are static: lip movements, head and hand gestures are

tolerated. We address the problem of estimating the spatial locations of all the objects that

are both seen and heard. Let N be the number of objects and in this case each object is

described by a three dimensional parameter vector sn = (xn, yn, zn)
⊤.

As in previous Chapters we define an invertible function F : R3 → R
3 that maps a 3D

location s = (x, y, z)⊤ onto a visual space 3D pointf = (u, v, d)⊤:

F(s) =
(

x

z
,
y

z
,
1

z

)⊤

and F−1(f) =

(

u

d
,
v

d
,
1

d

)⊤

. (5.41)

We remind that this model, introduced in Chapter 2, corresponds to a rectified camera

pair [Hartley 2003] and can be easily generalized to more complex binocular geome-

tries [Hansard 2007, Hansard 2008]. Without loss of generality one can use a sensor-

centered coordinate system to represent the object locations.

Similarly we introduce the ITD function G : R3 → R defined in Chapter 2 that maps a

3D location s = (x, y, z)⊤ onto a 1D auditory observation:

g = G(s; sMℓ
, sMr) =

1

c

(

‖s− sMℓ
‖ − ‖s− sMr‖

)

. (5.42)

Here c is the sound speed and sMℓ
and sMr are the 3D locations of the two microphones

in the sensor-centered coordinate system. Again, the setup is supposed to be calibrated,
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so that the left and right microphone positions sMℓ
and sMr are known. To simplify the

notation we would further write G(s) instead of G(s; sMℓ
, sMr).

In order to perform audio-visual clustering based on the conjugate EM algorithm, The-

orem 2 (Section 5.1.4) must hold for both (5.41) and (5.42), namely the functions F and G
and their derivatives are Lipschitz continuous. We prove the following theorem:

Theorem 4 The functions F , F ′, G and G′ are Lipschitz continuous with constants LF =

z−1
min

√
3, L′

F = z−2
min, LG = ‖sM1 − sM2‖(cR)−1 and L′

G = 3(cR)−1 in the domain

S = {|z| > zmin > 1} ∩
{

min{‖s− sM1‖, ‖s− sM2‖} > R > 1
}

.

Proof: The derivatives of F and G are given by:

F ′(s) =
1

z





1 0 −x/z
0 1 −y/z
0 0 −1/z



 (5.43)

G′(s) =
1

c

(

s− sM1

‖s− sM1‖
− s− sM2

‖s− sM2‖

)

. (5.44)

The eigenvalues of F ′(s) are 1/z and −1/z2, so ‖F ′(s)‖ ≤ max{z−1, z−2} ≤ z−1
min,

from which it follows that LF can be taken as LF = z−1
min

√
3. Also ‖F ′(s) − F ′(s̃)‖ ≤

max{|z−1 − z̃−1|, |z−2 − z̃−2|} ≤ z−2
min‖s− s̃‖, so that L′

F can be set to L′
F = z−2

min.

Introducing e1 = s−sM1
‖s−sM1

‖ and e2 = s−sM2
‖s−sM2

‖ , it comes ‖e1‖ = ‖e2‖ = 1 and

G′(s) = 1
c (e1 − e2). Provided that ‖s − sM1‖ and ‖s − sM2‖ are both greater than R, it

follows ‖G′(s)‖ = 1
c‖e1−e2‖ ≤ ‖sM1−sM2‖(cR)−1 and so LG = ‖sM1−sM2‖(cR)−1.

Then, the second derivative of G is given by

G′′(s) = 1

c‖s− sM1‖
(I− e1e⊤1 )−

1

c‖s− sM2‖
(I− e2e⊤2 ).

so that ‖G′′(s)‖ ≤
∣

∣

∣

1
c‖s−sM1‖

− 1
c‖s−sM2‖

∣

∣

∣
+ sup

‖v‖=1

2e1e⊤
1 v

cmin{‖s−sM1‖,‖s−sM2‖}
≤ 3(cR)−1,

and L′
G can be set to L′

G = 3(cR)−1. �

This result shows that under some natural conditions (The AV objects should not be too

close to the sensors) the conjugate EM algorithm described in Section 5.1.3 can be applied.

The constant L given by Lemma 2 guarantees a certain (worst-case) convergence speed.

In practice, we can use the techniques mentioned in Sections 5.1.4 and 5.1.5 to accelerate

the algorithm. First, to speed up the local optimization step, local Lipschitz constants

can be computed based on the current value of parameter s̃(ν). Equation (5.40) gives the

largest possible step size ρ(ν), so setting z
(ν)
min = z(ν) − ρ(ν) and R(ν) = min{‖s̃(ν) −

sM2‖, ‖s̃(ν) − sM1‖} − ρ(ν), provides local Lipschitz constants that ensure the update not

to quit S(ν) = {|z| > z
(ν)
min} ∩

{

min{‖s − sM1‖, ‖s − sM2‖} > R(ν)
}

. Second, we

propose four possibilities to set the initial object parameter values s̃
(0)
n : (i) it can be taken
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(a) WS configuration (b) PS configuration

Figure 5.1: Likelihood function evolution for the ConjKP and ConjEM algorithms for the

cases of (a) well-separated objects, and (b) poorly separated objects.

to be the previously estimated object position s
(q−1)
n , (ii) it can be set to F−1(f̄) (as soon

as F is injective in S), (iii) it can be found through sampling of the manifold G−1(ḡ)

by selecting the sampled value which gives the largest Q value, or (iv) similarly through

sampling directly in S. Comparisons are reported in the following Sections.

5.3 Experimental Validation

5.3.1 Experiments with Simulated Data

Our algorithm is first illustrated on the simulated data described in Section 4.4. The goal

is to compare the performance to that of the algorithms from the Chapter 4. As previously,

three cases are considered: well separated (WS), moderately separated (MS) and poorly

separated (PS) object configurations, the observations are shown in Figure 4.3. The ini-

tialization settings are the same as in the experiments with the KP algorithm: close (CI),

intermediate (II) and far (FI).

The convergence speed of the accelerated ConjEM algorithm was verified on the WS

and PS object configurations. The likelihood evolution graphs are presented in Figure 5.1

(cf. Figure 4.5). The three versions of the ConjKP algorithm from the previous Chapter

– direct optimization (DO), relaxed ConjEM (REM), ConjEM (EM), – along with sim-

ple visual data-based EM (VEM) are compared The convergence speed of the accelerated

version of ConjEM algorihtm is the same as the convergence speed of direct optimiza-

tion, whereas the complexity of the algorithm was significantly reduced. Also, the newly

designed algorithm is well established from the point of view of optimization theory. It is

guaranteed to improve the log-likelihood function value, even in the case of the generalized

ConjEM algorithm.
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Average absolute error values εabs for object location estimates ŝ are summarized in

Table 5.2 (cf. Table 4.2). Three versions are compared: normal conjugate EM algorithm

(EM), accelerated conjugate EM algorithm (AEM) and a simple EM based on visual data

only (VEM).

To determine, which acceleration strategy is the best, we compare the performance

of several versions of the ConjEM algorithm based on various Choose and Local Search

strategies. For the initial values s̃
(0)
n in (5.14), we considered the following possibilities:

the optimal value computed at a previous run of the algorithm (IP), the value predicted

from visual data (IV), the value predicted from audio data (IA) and the value obtained by

global random search (IG). More specifically:x

• When initializing from visual data (IV), the average value f̄n, calculated in the cur-

rent E-step of the algorithm for every n, was mapped to the parameter space and

s̃n
(0) set to s̃n

(0) = F−1(f̄n) using the injectivity of F .

• When initializing from audio data (IA), G−1(ḡn) defines a manifold. The general

strategy here would be to find the optimal point that lies on this surface. We achieved

this through random search based on a uniform sampling on the corresponding part

of the hyperboloid (see [Zhigljavsky 1991] for details on sampling from an arbitrary

distribution on a manifold and Appendix A.1 for details on sampling the surface

defined by G−1(ḡn)); in our experiments we used 50 samples to select the one pro-

viding the largest Q (likelihood) value.

• The most general initialization scheme (IG) was implemented using global random

search in the whole parameter space S; 200 samples were used in this case.

Local optimization was performed either using basic gradient ascent (BA) or the locally

accelerated gradient ascent (AA). The latter used the local Lipschitz constants to augment

the step size, as described in Section 5.1.4. Each algorithm run consisted of 30 iterations

of the EM algorithm with 10 non-decreasing iterations during the M step.

To check the convergence speed of different versions of the algorithm for the WS and

PS object configurations we compared the likelihood evolution graphs that are presented in

Figure 5.2. Each graph contains several curves that correspond to five different versions of

the algorithm. The acronyms we use to refer to the different versions (for example, IPAA)

consist of two parts encoding the initialization (IP) and the local optimization (AA) types.

The black dashed line on each graph shows the ‘ground truth’ likelihood level, that is the

likelihood value for the parameters used to generate the data. The meaning of the acronyms

is recalled in Table 5.1.

As expected, the simplest version IPBA that uses none of the proposed acceleration

techniques appears to be the slowest. The other variants using basic gradient ascent are then

not reported. Predicting a single object parameter value from visual observations (IVAA)

gives certain improvement over IPAA, where s̃(0) is taken from the previous EM iteration.

When s̃(0) is obtained by sampling the hyperboloid predicted from audio observations
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(a) WS configuration (b) PS configuration

Figure 5.2: Likelihood function evolution for five variants of the algorithm for the cases

of (a) well-separated objects, and (b) poorly separated objects.

Acronym s̃(0) initialization (Choose) Local optimization (Search)

IPBA previous iteration value basic gradient ascent

IGAA global random search accelerated gradient ascent

IVAA predicted value from visual data accelerated gradient ascent

IPAA previous iteration value accelerated gradient ascent

IAAA audio predicted manifold sampling accelerated gradient ascent

Table 5.1: Acronyms used for five variants of the conjugate EM algorithm. Variants

correspond to different choices for the Choose and Local search procedures.

(IAAA), a significant impact on the convergence speed is observed, especially on early

stages of the algorithm, where the predicted value can be quite far from the optimal one.

However, ‘blind’ sampling of the whole parameter space does not bring any advantage:

it is much less efficient regarding the number of samples required for the same precision.

This suggests that in the general case, the best strategy would be to sample the manifolds

F−1(f̄n) and G−1(ḡn) with possible small perturbations to find the best s̃(0) estimate

and to perform an accelerated gradient ascent afterwards (IAAA). We note that IAAA

succeeds in all the cases to find parameter values that are well-fitted to the model in terms

of likelihood function (likelihood is greater or equal than that of real parameter values).

Parameter evolution trajectories for the IAAA version of the algorithm in the WS case

are shown in Figures 5.3-5.4. The estimate changes are reflected by the node sizes (from

smaller to bigger) and colours (from darker to lighter). The final values are very close to

the real cluster centers in all three audio, visual and object spaces. The convergence speed

is quite dependent on the initialization. In the provided example the algorithm spent certain

number of iterations to disentangle the estimates trying to decide which one corresponds

to which class. Another possibility here would be to predict the initial values through

sampling in the audio domain. We demonstrate this strategy further when working with
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Figure 5.3: IAAA algorithm: parameter evolution and assignment results for the WS case

in audio and visual spaces (note the scale change which corresponds to a zoom on the

cluster centers). Ground truth means are marked with squares. The evolution is shown

by circles from smaller to bigger, from darker to brighter. Observations assignments are

depicted by different markers (◦, ∗ and × for the three object classes) in visual space and

are colour-coded in audio space. Due to the zoom, outliers are not visible on these figures.
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Figure 5.4: IAAA algorithm: parameter evolution for the WS case in object space. Ground

truth means are marked with squares. The evolution is shown by circles from smaller to

bigger, from darker to brighter.

IC II IF

EM AEM VEM EM AEM VEM EM AEM VEM

WS 4.62 3.9 3.92 4.33 3.9 3.92 4.5 3.9 3.92

MS 3.22 4.48 4.66 2.81 4.48 4.66 3.58 4.48 4.66

PS 2.93 3.71 3.72 3.13 3.71 3.73 3.1 3.71 3.74

Table 5.2: Summary of average absolute error εabs values for object location estimates ŝ

for WS, MS and PS object configurations. The conjugate EM (EM), accelerated ConjEM

(AEM) and the EM based on visual data only (VEM) are compared, dependency on initial

values setting (IC, II or IF) is shown.

real data.

It appears that the localization precision is quite high. In a realistic setting such as

that of Section 5.3.2, the measurement unit can be set to a millimeter. In that case, the

observed precision, in a well-separated objects configuration, it is at worse about 5mm.

However, precision in the z coordinate is quite sensitive to the variance of the visual data

and the object configuration. To get a better idea of the relationship between the vari-

ance in object space and the variance in visual space, F−1 can be replaced by its linear

approximation given by a first order Taylor expansion. Assuming then that visual data

are distributed according to some probability distribution with mean µF and variance ΣF ,

it follows that through the linear approximation of F−1, the variance in object space is
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∂F−1(µF )

∂f
ΣF

∂F−1(µF )

∂f

⊤
. Then, the z coordinate covariance for an object n is approxi-

mately proportional to the d covariance for the object multiplied by z4n. For distant objects,

a very high precision in d is needed to get a satisfactory precision in z. At the same time we

observe that the likelihood of the estimate configuration often exceeds the likelihood for

real parameter values. This suggests that the model performs well for the given data, but

cannot get better precision than that imposed by the data. The same reasoning, however,

can be applied to the EM algorithms that work on single modalties.

These results on simulated data show that the ConjEM algorithm allows an efficient

implementation and can be significantly accelerated with respect to the basic version pre-

sented in Chapter 4. At the same time it keeps all the advantages outlined previously for

the KP algorithm family.

5.3.2 Experiments with Real Data

In this section we evaluate the effectiveness of our algorithms in estimating the 3D locations

of AV objects, i.e., a person localization task. The examples used below are from the CAVA

database described in detail in Chapter 2.

The experimental setup consists of a mannequin equipped with a pair of microphones

fixed into its ears and a pair of stereoscopic cameras mounted onto its forehead (this device

was developed within the POP1 project). Each data set comprises two audio tracks, two

image sequences, as well as the calibration information. All the recordings were performed

in an ordinary room with no special adjustments to its acoustics or appearance. Thus the

data contain both visual background information, and auditory noise, reverberations in

particular. This configuration best mimics what a person would hear and see in a standard

indoor environment.

We tested our multimodal clustering method with three scenarios: a meeting, a moving

target and a cocktail party, Table 5.3:

• The meeting scenario2 is a recording of a discussion held by five persons sitting

around a table, only three of them being visible. It lasts 25 seconds and contains a

total of about 8000 visual and 600 audio observations. The three visible persons per-

form head and body movements while taking speech turns. Sometimes two persons

(visible or not) speak simultaneously.

• The moving target scenario3 involves a person walking along a zig-zag trajectory

towards the camera while speaking. It also contains various ambient sounds such as

footsteps. The scenario lasts 9 seconds and contains a total of about 3500 visual and

260 audio observations.

1http://perception.inrialpes.fr/POP/
2 http://perception.inrialpes.fr/CAVA_Dataset/Site/data.html#M1
3 http://perception.inrialpes.fr/CAVA_Dataset/Site/data.html#TTOS1

http://perception.inrialpes.fr/POP/
http://perception.inrialpes.fr/CAVA_Dataset/Site/data.html#M1
http://perception.inrialpes.fr/CAVA_Dataset/Site/data.html#TTOS1
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scenario
visible
persons

speaking
persons

visual back-
ground

audio
noise

occluded
speakers

audio
overlap

meeting 3 5 yes yes no yes

tracking 1 1 yes yes no no

cocktail
party 3 3 yes yes yes yes

Table 5.3: Summary of the main characteristics of the three scenarios used to evaluate the

multimodal clustering algorithm.

• The cocktail party scenario4 shows a dynamic scene with three persons walking in a

room and taking speech turns. Occasionally, one speaker is hidden by another person

and two persons may speak simultaneously. Speakers may go in and out of the two

cameras field of view. Moreover, there are sounds emitted by the persons’ steps. The

recording lasts 30 seconds and contains a total of about 12500 visual and 3400 audio

observations.

Visual and auditory observations f and g were obtained using the methods described

in detail in Chapter 2. In order to initialize the algorithm’s parameter values we used

the Initialize procedure based on random data-driven sampling and bootstrap techniques.

Further details on this procedure are given in Chapter 6. Although real-data distributions do

not strictly correspond to the case of Gaussian mixtures, the initialization strategy that we

have adopted remains relevant. This originates from the fact that parameter space sampling

with configuration restrictions plays the role of a global optimization method similar to

Monte-Carlo sampling in the method of generations [Zhigljavsky 2008]. It helps to avoid

local maxima and allows to quickly find a set of appropriate initial parameters. Local

distribution density modes occur to be good candidates to initialize cluster centers. As in

the case of simulated data, we used a BIC-like information criterion to select the optimal

number of audio-visual clusters. Details on the selection procedure would be given further

in Chapter 6.

The experimental validation described below was performed with two goals in mind.

Firstly, we wanted to check that our method was stable and robust with real data gathered

in complex situations, that it correctly finds the number of clusters and that it efficiently

determines the model’s parameters, i.e., the 3D positions of the audio-visual objects com-

posing a scene. Secondly, we wanted to test the model’s capability to deal with dynamic

changes in the scene, yet in the presence of acoustic noise/reverberations and visually oc-

cluded persons, etc. Below we provide a detailed account of the results obtained with the

meeting and cocktail-party audio-visual sequences.

The audio-visual recordings are split into “segments”, each segment lasts 0.3 seconds.

At 25 frames/second this corresponds to approximately eight video frames. The initializa-

4 http://perception.inrialpes.fr/CAVA_Dataset/Site/data.html#CTMS3

http://perception.inrialpes.fr/CAVA_Dataset/Site/data.html#CTMS3
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tion method described in Section 6.2 and the model selection method described in Section

6.3 are combined and applied to the first segment in order to find initial parameter values

and to estimate the number of components (the number of audio-visual objects) to be used

by the conjugate EM algorithm. Consequently, the parameters estimated for one segment

are used to initialize the parameters for the next segment, while the number of components

remains constant.

• Quasi-static scene. The meeting situation corresponds to the well-separated case

which is referred to as WS in the previous Section. The initialization strategy per-

forms well and the candidate configuration obtained by the initialization step is rel-

atively close to the optimal one found by the EM algorithm described in detail in

Section 5.1.3. In fact, the likelihood evolution reported in Figure 5.5 shows that

convergence is reached in about 20 iterations of EM, which is comparable to the

simulated WS case reported in Figure 5.2. The 3D position estimates are quite ac-

curate, in particular the natural alignment of the speakers along the table is clearly

seen in the XZ plane. Even though in practice, the data are not piecewise Gaussian

and the outliers are not uniformly distributed, our method performs quite well, which

illustrates its robustness when dealing with real-data distributions. Figure 5.6 shows

sequential results obtained in this case. The speech sources are correctly detected

even in the case when two persons are simultaneously active, the overall statistics on

auditory activity are presented in Table 5.4.

• Simple dynamic scene. The tracking scenario was included to check whether the

algorithm can cope with tracking an audio-visual object that moves in the scene

without any special tuning. Figure 5.7 shows sequential results obtained in this case,

Table 5.4 contains auditory activity detection statistics and Figure 5.9 shows the

estimated trajectory in ambient space.

• Dynamic scene. The cocktail party situation corresponds to the partially occluded

case which is referred to as PS in the previous Chapter. In this case, the audio-visual

object locations vary over time, as well as their number. Nevertheless, we assume

that these changes are rather slow. We did not attempt to tune our algorithm to the

dynamic case. Hence, we use the same initialization strategy as in the quasi-static

case which is briefly summarized above. Figure 5.8 shows the results obtained in

this case, Table 5.4 summarizes auditory activity detection statistics and Figure 5.9

shows the estimated audio-visual object trajectories in ambient space.

Overall, the proposed method performs well on data collected in a natural environment.

The initialization strategy and the model selection criterion proved to be robust to noise and

to minor deviations from the Gaussian distribution assumption. It possesses the features of

a global optimization method which enables to find initial parameter values that are close to

the optimal ones. In all the examples, the parameter initialization and model selection were

performed on the first audio-visual data segment. This certainly biases the overall results.

Indeed, in all the cases, the initialization and model selection algorithms dealt with a case
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Figure 5.5: An example of applying the proposed EM algorithm to a time interval of 20

seconds of the meeting scenario. The results are shown in the visual and auditory obser-

vation spaces as well as in the parameter space. The initial parameter values are shown

with three stars while the parameter evolution trajectories are shown with circles of in-

creasing size. The final observation-to-cluster assignments are shown in colour: red, blue,

and green for the three Gaussian components and light-blue for the outlier component. The

log-likelihood curve (bottom-right) shows that the algorithm converged after 20 iterations.
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(a) frames 1001-1010 (b) frames 1011-1020

(c) frames 1021-1030 (d) frames 1031-1040

(e) frames 1041-1050 (f) frames 1051-1060

Figure 5.6: Results obtained in the case of the meeting scenario shown overlapped onto

the left image. Sixty frames (1001 to 1060) were split into six segments. Parameter initial-

ization and model selection were performed on the first segment (frames 1-10) and are not

shown. The “visual” covariance matrices associated with the 3 Gaussian components are

projected onto the image plane. The white dots correspond to the projected 3D locations

estimated by the algorithm. The blue, green, and red colours encode the observation-to-

cluster assignments and the active speaker is marked with a corresponding symbol. The

algorithm correctly estimates speech sources, even in the case when two speakers are ac-

tive.
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(a) frames 281-290 (b) frames 291-300

(c) frames 301-310 (d) frames 311-320

(e) frames 321-330 (f) frames 331-340

Figure 5.7: Results obtained in the case of the tracking scenario shown overlapped onto the

left image. Sixty frames (281 to 340) were split into six segments. Parameter initialization

and model selection were performed on the first segment (frames 1-10) and are not shown.

The “visual” covariance matrix associated with the Gaussian component is projected onto

the image plane. The red color encodes the observation-to-cluster assignments and the au-

ditory activity is shown with the speaker symbol. The algorithm correctly tracks a moving

target without any special tuning.
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(a) frames 181-190 (b) frames 191-200

(c) frames 201-210 (d) frames 211-220

(e) frames 221-230 (f) frames 231-240

Figure 5.8: Results obtained in the case of the cocktail party scenario shown overlapped

onto the left image. As in the previous case, sixty frames (181 to 240) were split into six

segments. Parameter initialization and model selection were performed on the first segment

(frames 1-10) and are not shown. As expected, well separated objects, (a)-(c), are correctly

handled. While partial occlusion, (d)-(e) is also handled correctly, the algorithm fails to

deal with a complete occlusion, (f).
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intervals speaking detected E1 E2

M1 166 89 75 0.16 0.14

TTOS1 76 69 60 0.13 0.43

CTMS3 219 97 62 0.36 0.52

Table 5.4: Comparative results of the algorithm for the three scenarios: meeting (M1),

moving target (TTOS1) and cocktail party (CTMS3). In each case the total number of

frames, ground truth on the total number of auditory activity events to be detected, the total

number of actually detected auditory activity and the probabilities of ‘missed target’ and

‘false alarm’ errors are given.

(a) moving target, TTOS1

(b) cocktail party, CTMS3

Figure 5.9: Estimated ambient space trajectories for the (a) moving target (TTOS1), and

(b) cocktail party (CTMS3) scenarios. Motion is shown with colour gradient: from blue

to red for a single target in TTOS1 and from darker to lighter colours in CTMS3. Dashed

lines in the right image show the estimated trajectories after complete occlusion.

were the objects were well separated. One could rerun initialization and model selection

on every data segment, at the cost of a less efficient procedure.

The conjugate clustering method automatically weights the auditory and visual modal-

ities, in terms of precision and amount of observations, to infer the parameter values. We

noticed that, in general, the visual data are considered by the algorithm as more reliable.

This can be explained by the fact that, in practice, the auditory signals are contaminated

with noise and reverberations. This typically smooths the histogram peaks in the ITD do-

main and adds false peaks, as can be seen in Figures 5.6-5.8. As reverberations are natural

for most of the environments and sound sources, we added auditory cluster variances to

model the local smoothing effect, as well as an outlier category to treat false peaks. In

general, if the data is gathered using a small time interval, reverberations and noise have

higher effect, the observations are scattered and auditory spatial localization is poor. At

the same time, widening the time interval would result in sharper peaks for sound sources

that are smoothed due to reverberations and dynamics of the scene, and hence the auditory

temporal localization will be less accurate. Thus the auditory data are typically sparse both
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in time and space. The temporal discontinuity of the auditory data together with the lack

of resolution makes it less reliable than the visual data.

One advantage of the proposed conjugate clustering method is that while it performs

audio-visual object ambient space position estimation, its auditory activity is detected si-

multaneously based on the number of auditory observations associated to the object at each

time interval. We use maximum a posteriori (MAP) association principle based on calcu-

lated posterior probabilities αmn and βkn to assign each observation to an object or to an

outlier class. The results of auditory activity detection are summarized in Table 5.4. For

each scenario the first column contains the total number of time intervals being consid-

ered. The second one gives the total number of persons involved in auditory activity (it was

counted for each time interval separately and then summed). The third column contains

the total number of correctly detected speakers (which should ideally be equal to the pre-

vious value). And finally, the two last numbers are the probability of ‘missed target’ (i.e.

the probability of a speaking person being marked as non-speaking) and the probability of

‘false alarm’ (i.e. the probability of a non-speaking person being marked as speaking).

As expected, the estimates contain less errors in case of well-separated objects. The

‘false alarm’-type errors are typically generated by reverberations that tend to smooth out

the histogram peaks in the auditory domain and generate false peaks, as mentioned earlier.

Another reason is ambient sounds that originate from the same direction as the considered

audio-visual object. The ‘missed target’ errors are most of the time due to the discretization

effect (artificial splitting of the time line into intervals) and reverberations that sometimes

produce stronger localization cues than the real signals. One way to eliminate these errors

is to adapt the proposed ConjEM algorithm to the dynamic case, so that the instantaneous

noise (such as reverberations) is smoothed out through considering larger time scales and

the discretization effect is no longer present. Another possibility is to make more assump-

tions on auditory sources and include high-level detectors that consider only sounds of

certain type, such as speech.

Although our multimodal clustering model has no built-in dynamic capability, as is the

case with target-tracking methods based on the Kalman filter, the implemented algorithm

performs quite well in the case of simple tracking tasks as well as more complex dynamic

scenes, as shown in Figure 5.9. In particular, it is capable to deal with partial visual occlu-

sions, as illustrated in the cocktail party scenario, Figure 5.8. In general the object position

estimates are precise (within 10cm from the ground truth object position). However, Fig-

ure 5.9 shows that the algorithm admits high estimate fluctuations and can fail on complete

visual occlusions, Figure 5.8(f).

5.4 Discussion

We proposed an efficient acceleration technique for the conjugate EM (ConjEM) algorithm

from the KP family considered in the previous Chapter. Using the ideas underlying the

classical EM algorithm we built the ConjEM algorithm to perform the multimodal clus-

tering task, while keeping attractive convergence properties. The analysis of the conjugate
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EM algorithm and, more specifically, of the optimization task arising in the M-step, re-

vealed several possibilities to increase the convergence speed. We proposed to decompose

the M-step into two procedures, namely the Local Search and Choose procedures, which

allowed us to derive a number of acceleration strategies. We exhibited appealing properties

of the target function which induced several implementations of these procedures resulting

in a significantly improved convergence speed.

We used both simulated and real data to illustrate the performance of ConjEM on a non

trivial audio-visual localization task. Simulated data experiments allowed us to assess the

average method behaviour in various configurations and initialization settings compared to

the other KP algorithms and single-modality EM algorithms. These experiments showed

that while keeping the important stability and precision qualities found in the previous

Chapter, we were able to significantly improve the convergence speed to match the other

KP algorithms. They also illustrated the theoretical dependency between the precisions in

observation and parameter spaces. Real data experiments then showed that the observed

data precision was high enough to guarantee high precision in the parameter space.

One strong point of our approach is that it allows to detect object activity in each

modality along with its parameters estimation. This feature was used when detecting audi-

tory activity of several persons in the audio-visual localization task. The results obtained

on real data from various scenarios show that the proposed model is able to perform robust

detection in the case of well-separated objects without any special assumptions on sound

sources. However, in the case of dynamic scene the error rates are increased. It is argued

here that they are likely to be improved by incorporating the scene dynamics into model.

The strong points of the KP framework, such as extensibility to an arbitrary number

of feature spaces and various clustering models (likelihood distributions) are inherited by

the ConjEM algorithm. The main results, including Local Search and Choose accelera-

tion strategies stay valid with minor changes. At the same time, one important feature

of the ConjEM algorithm is that it can be easily extended to the dynamic case. In par-

ticular, adding Gaussian priors on parameters (i.e., priors, covariance matrices and objet

locations) would not essentially change the formulae. For a large class of dynamics equa-

tions, the update expressions (5.8)-(5.11) for priors and variances will remain in closed

form, whereas the function Q
(q)
n (s) in (5.13) will receive an additional term logP (s).

For instance, multimodal dynamic inference of parameter values for Brownian dynam-

ics [van Kampen 2007] can be performed by means of the formulated model. Gaussian

priors would add a quadratic term similar to the others in (5.13), that can be viewed as an

‘observation’ from the ambient space modality. Thus the optimization algorithm would not

require any changes and would give an unbiased estimate. Various possibilities to adapt the

ConjEM algorithm to the dynamic case are discussed in Chapter 7.

The major advantages of the proposed algorithm are summarized below:

• Acceleration possibilities: several efficient and theoretically well-founded acceler-

ation strategies were proposed to improve the convergence speed of ConjEM;



5.4. Discussion 91

• Activity detection: object activity in every modality is estimated along with its pa-

rameters, the detection was shown to be robust in various real data scenarios;

• Inherent to the KP family: all the strong points formulated for the KP family in

general remain valid for the accelerated version of the ConjEM algorithm;

• Extensibility to the dynamic case: system dynamics can be included into the model

so that the fast convergence property is kept;

The conjugate clustering framework together with the ConjEM algorithm offers a pow-

erful tool to perform multimodal clustering that possesses most of the features that charac-

terize the integration processes in mammals responsible for the creation of unified percepts

that were outlined in the introduction in Chapter 1. The complex modality processing al-

gorithms can be used to extract high-level features, the proposed framework keeps all the

information without stripping parts that are not required for the integration. The principle

of co-localization and co-incidence is used to bind the high-level features based on low-

level localization cues. The modalities are weighted automatically based on the amount of

information provided by each modality. The ConjEM algorithm can be reduced to single

modality EM algorithms in the limiting cases. The state of sensory systems is encoded into

the mappings F and G, so that the algorithm occurs to be invariant to changes in sensory

systems states (or, using the terminology of Chapter 3, inter-system calibration data).
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So far we have considered the task of multimodal clustering under the assumption that

the number of objects as well as their initial parameter values were known. The algorithms

proposed previously are then viewed as local optimization methods that, given a current

point, converge to some stationary solution. In practice, however, the efficiency of such

algorithms is highly dependent on the choice of that point.

In this Chapter we address the problem of how to choose initial parameter values for the

multimodal clustering algorithms. The procedure Initialize based on predictive probability

density function in the object space is proposed. We also develop a framework to compare

conjugate mixture models using Bayesian information criterion (BIC). The initialization

and model selection methods are verified on simulated and real data.

6.1 Multimodal Cluster Initialization and Model Selection

Multimodal approaches that generate observations from different sensors in different

spaces are more and more common in real-world applications. The need for efficient algo-

rithms that are capable of consistent treatment of several modalities increases. Multimodal

clustering algorithms are proposed in Chapters 4 and 5 within the framework of Gaussian
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mixture models. They are detailed for two modalities in the context of audio-visual object

detection but their extension to more than one modality is straightforward. The associ-

ated conjugate Expectation-Maximization (ConjEM) performs several unimodal clustering

tasks that are coupled using explicit relationships between a common object space and

each one of the observation spaces. Objects are shared by all modalities. Each object is as-

sumed to be responsible for a possibly different number of observations in each modality.

The clustering task it therefore recast as that of recovering the observations assignments

to the different objects. The parameters of the modality-specific Gaussian mixtures are

conditioned by a common set of object-space parameters through explicit object-space-to-

observation-space mappings, one mapping for each modality. It follows that each modality-

specific mixture shares the same number of components corresponding to the number of

objects.

While the E-step of ConjEM is rather standard, the M-step implies non-linear opti-

mization with respect to the model parameters. In Chapter 5 we proved that if the object-

to-sensor mappings and their first derivatives are Lipschitz continous functions (which they

are in the audio-visual example), the gradient of the expected complete-data log-likelihood

function is Lipschitz continous as well. Consequently, the recently proposed optimization

algorithm specifically designed to solve Lipschitzian global optimization problems can be

used within the M-step of ConjEM [Zhigljavsky 2008]. This implies that the ConjEM

algorithm has guaranteed convergence properties.

However, like any other EM procedure, ConjEM suffers from two limitations: (i) the

number of components must be determined in advance, and (ii) the parameters must be

properly initialized. The first one of these problems, referred to as model selection, is

critical in our case because it means that one needs to know in advance the number of mul-

timodal objects under consideration (e.g. the number of audio-visual objects composing a

scene, like the number of speaking persons in a complex meeting scenario). The second

problem is also very important because without a proper initialization, ConjEM is likely to

be trapped in a local maximum.

This Chapter contains two original contributions. First, we propose to extend informa-

tion criteria for model selection for multimodal data and show that such criteria provide

consistent estimators of the number of objects. To our knowledge, there has been no proce-

dure so far that properly selects the model dimensionality for multimodal case in a consis-

tent manner. Standard results on information criteria are shown for identically distributed

data, which is typically not the case in the multimodal setting. Second, we introduce the

initialization algorithm based on predictive probability density function that has two bene-

fits: (i) it provides parameters that are close to local maxima, so that the ConjEM algorithm

converges faster; (ii) the algorithm samples the object space in a way global optimization

methods do, which increases the chance to find a global optimal solution with the ConjEM

algorithm. With these two contributions we are able to derive an appropriate information

criterion with a BIC-like penalty and illustrate the performance of the conjugate EM algo-

rithm on the task of detecting and localizing audio-visual objects.

In Section 6.2 we present the method to initialize multimodal clusters. The model se-
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lection criteria are introduced and investigated further in Section 6.3, a consistency result

is given. We demonstrate the performance of model selection and initialization on simu-

lated data and realistic scenarios. A discussion of the results and future work concludes the

Chapter.

6.2 Initialization

We consider the maximum likelihood (ML) estimation problem formulated in Chapter 4.

The aim is to perform optimization (4.20) of the log-likelihood function L given by (4.18).

The Expectation-Maximization (EM) algorithm is a popular technique to compute ML

estimates for such problems with incomplete data. Though the solution depends a lot on

its starting position. The EM algorithm for Gaussian mixtures can be viewed as a local

optimization method similar to a variable metric method [Ma 2000], so it can get stuck in

a local maximum point.

At the same time, finding the parameters that maximize the likelihod is important for

two reasons. Firstly, one would like to obtain sensible values for the model. Secondly, the

ML estimates are often used in model selection procedures.

The problem of choosing initial values for the EM algorithm for multivariate Gaus-

sian mixtures received considerable attention during the past years due to its importance.

Several methods were proposed.

Random initialization is one of the most popular techniques employed for the EM ini-

tialization [Meila 2001, Biernacki 2003]. It consists in initializing the parameters or some

part of them at random. Sampling can be performed based on some prior distribution or it

can also be data-dependent. This way random initialization resembles search algorithms in

global optimization [Zhigljavsky 2008].

Bootstrap initialization is a technique that includes either several iterations of other al-

gorithms (K-means, K-medoids, CEM, SEM) [Biernacki 2003], or a sequence of solutions

to relaxed problems [Ueda 1998] as the initial solution.

Our problem is different from the ones considered in the above cited papers. Firstly,

we work with conjugate mixture models that perform simultaneous clustering in several

physically different observation spaces. This implies that the initialization algorithm should

be multimodal as well. Secondly, certain restrictions apply to the object configurations and

we would like to come up with a more efficient technique than the general ones.

The method we propose combines the features of both, random data-driven and boot-

strap initializations. We use data points to compute the predictive density that we sample

subsequently to select the initial parameters values and perform a short run of the ConjEM

algorithm.
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6.2.1 EM Initialization for Conjugate Gaussian Mixture Models

Consider conjugate Gaussian mixture models with outliers introduced in Section 4.2. They

are governed by the parameters θ given by

θ = {π1, . . . , πN+1, λ1, . . . , λN+1, s1, . . . , sN ,Σ1, . . . ,ΣN ,Γ1, . . . ,ΓN}, (6.1)

of which the tying parameters sn are inferred using both modalities and the rest of θ is

modality-specific parameters that govern cluster shape in auditory and visual spaces. We

would like sometimes to consider these groups of parameters separately, so we denote

θS = {s1, . . . , sn, . . . , sN}, (6.2)

θF = {π1, . . . , πN , πN+1,Σ1, . . . ,ΣN}, (6.3)

θG = {λ1, . . . , λN , λN+1,Γ1, . . . ,ΓN}. (6.4)

Then the initialization task can be formulated as follows: given the observation sets f =

{f1, . . . ,fm, . . . ,fM} and g = {g1, . . . , gk, . . . , gK} initialize θ, so that for every object

n located at sn its cluster shapes {πn,Σn} and {λn,Γn} align well with the observed

visual and auditory data respectively.

This task can be viewed as simultaneous probability density estimation through

parametrized density families. That is, given ρF(f) and ρG(g) one has to find

ρ̂F(f ; θS,θF) and ρ̂G(g; θS,θG) that correspond to the observed densities in certain

sense.

Our approach is based on iterative local approximations of ρF(f) and ρG(g). At it-

eration n classes 1, . . . , n − 1 are supposed to be initialized, therefore we sample object

location sn from the predictive distribution ρ
(n)
S (s) and choose optimal {πn,Σn, λn,Γn}

to construct ρ̂
(n)
F (f ; θS,θF) and ρ̂

(n)
G (g; θS,θG). The predictive distribution is calculated

through kernel estimators of the observation space distributions ρF(f) and ρG(g). Every

observation fm and gk is assigned a weight α
(n)
m and β

(n)
k respectively, that corresponds to

the posterior probability of an observation to belong to the outlier class:

α(n)
m =

πn+1U(fm; V )
n−1
∑

i=1
πiN (fm;F(si),Σi) + πn+1U(fm; V )

, (6.5)

and β
(n)
k =

λn+1U(gk; U)
n−1
∑

i=1
λiN (gk;G(si),Γi) + λn+1U(fm; V )

. (6.6)

The kernel estimators are then computed by

ρ̃F(f) =
1

M
∑

m=1
α
(n)
m

M
∑

m=1

α(n)
m N (f ; fm,Λ), (6.7)

and ρ̃G(g) =
1

K
∑

k=1

β
(n)
k

K
∑

k=1

β
(n)
k N (g; gk,Υ), (6.8)
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where the choice of the bandwidths Λ and Υ is based on the properties of the feature

detector algorithms.

We therefore sample L particles {s(n)l }Ll=1 in the parameter space S. They are obtained

through drawing f̃ l ∼ ρ̃F(f) or g̃l ∼ ρ̃G(g), and subsequently applying the corresponding

inverse mapping, F−1 or G−1. Each particle s
(n)
l is then assigned a weight

γ
(n)
l = ρ̃F

(

F(s(n)l )
)

ρ̃G

(

G(s(n)l )
)

, l = 1, . . . , L. (6.9)

Without loss of generality, we suppose the weights to be normalized, so that
L
∑

l=1

γ
(n)
l =

1. The object location sn is sampled from a discrete probability distribution defined by
{

(s
(n)
l , γ

(n)
l )
}L

l=1
.

After having obtained the new estimate sn, we need to initialize the associated

modality-specific parameters πn, Σn, λn and Γn. We use the standard empirical covariance

matrix formulas for Σn and Γn:

Σn =
1

M
∑

m=1
α
(n)
m

M
∑

m=1

α(n)
m (fm −F(sn))(fm −F(sn))⊤, (6.10)

and Γn =
1

K
∑

k=1

β
(n)
k

K
∑

k=1

β
(n)
k (gk − G(sn))(gk − G(sn))⊤, (6.11)

and the priors are set to be equal

π1 = . . . = πn = πn+1 = 1/(n+ 1), (6.12)

and λ1 = . . . = λn = λn+1 = 1/(n+ 1). (6.13)

Finally, we run several iterations of the ConjEM algorithm with s1, . . . , sn being fixed to

bootstrap and improve the computed parameter values θ.

It is possible to choose covariance matrices and priors that provide a better local fit

to the data than the simple empirical formulas (6.10)-(6.13). For example, one can use

the fitted local likelihood (FLL) technique, presented in [Katkovnik 2008]. It proposes a

method based on hypothesis testing to choose the appropriate scale for parameters estima-

tion. This approach is likely to give even better initial values, but we choose here to use

simpler formulas for a fixed scale that provide satisfactory results.

6.2.2 The Initialize Procedure

The overall procedure for parameters θ initialization is outlined below:

1. Set α
(1)
m = 1, ∀m = 1, . . . ,M and β

(1)
k = 1, ∀k = 1, . . . ,K;
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2. For n = 1, . . . , N do

(a) Sample particles s
(n)
l from ρ̃F(f) and ρ̃G(g) given by (6.7) and (6.8);

(b) Compute particle weights γ
(n)
l through (6.9);

(c) Sample sn from the discrete distribution
{

(s
(n)
l , γ

(n)
l )
}L

l=1
;

(d) Compute covariance matrices Σn and Γn using (6.10) and (6.11);

(e) Reset the priors π1, . . . , πn+1 and λ1, . . . , λn+1 using (6.12) and (6.13);

(f) Bootstrap current parameter values θ running several iterations of the ConjEM

algorithm with fixed or slowly varying {s1, . . . , sn};
(g) Compute weights α

(n+1)
m and β

(n+1)
k using (6.5) and (6.6);

6.2.3 Experimental Validation

The proposed initialization method in verified on the audio-visual (AV) data, letting, as

before, F, G and S denote the visual, auditory and ambient spaces respectively. The mul-

timodal data consists of M visual observations f and of K auditory observations g. Each

object is described by a 3D parameter vector sn = (xn, yn, zn)
⊤. As previously, we sup-

pose the AV device to be calibrated and use the projective visual feature space mapping F
defined by

F(s) =
(

x

z
,
y

z
,
1

z

)⊤

and F−1(f) =

(

u

d
,
v

d
,
1

d

)⊤

, (6.14)

and the auditory feature space mapping G defined by

g = G(s) = 1

c

(

‖s− sMℓ
‖ − ‖s− sMr‖

)

. (6.15)

The choice of the kernel estimator matrices Λ and Υ is based entirely on detector

properties and in our case they are taken to be

Λ =





10−4 0 0

0 10−4 0

0 0 10−10



 and Υ = 0.1. (6.16)

6.2.3.1 Experiments with Simulated Data

We consider two simulated configurations described in detail in Chapter 4: well separated

(WS) and poorly separated (PS). In these experiments we used the Initialize procedure

with the inhibited update of position parameters s1, . . . , sn. The step by step initialization

results for WS and PS configurations are shown in Figures 6.1 and 6.2 respectively. Images

in the left column show the probability densities ρ̃F(f) (upper part) and ρ̃G(g) (lower part)

in the corresponding feature spaces. The visual space density is colour-coded, blue colour
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corresponds to lower values, red colour – to higher values. Below the distribution density

ρ̃G(g) is plotted in the ITD space.

The obtained initialization results are depicted in the right column. Clusters are shown

with coloured ellipsoids (visual covariance matrix projections onto the (u, d) coordinates)

centered in the visual space mean values (upper part) and with rectangles of the correspond-

ing colour (auditory variance) centered in the auditory space mean values (lower part).

We note that the results obtained for the WS and PS configurations correspond to the

intermediate initialization (II) sampling setting considered in Chapters 4 and 5. Thus we

conclude that the proposed strategy is relevant to the task of multimodal initialization,

even in the case of poorly separated (PS) objects. Of course, we relied heavily on the

assumptions concerning object configurations and detector properties. Firstly, the objects

are supposed to be sufficiently separated (at least as in the PS case). Secondly, the detector

properties are supposed to be known, so that the kernel estimator matrices Λ and Υ can be

chosen respectively. In return, the formulated method occurred to be more efficient than

simple random algorithms. The ‘no free lunch’ principle can be stated: the quality of the

initialization results depends on the validity of the assumptions.

One advantage of the proposed method is that it is able to treat correctly situations

with partially observed objects. The initialization process, for the example with missing

data given in Figure 4.6, is depicted in Figure 6.3. A cluster that is almost invisible in

one modality is compensated with high particle weights from another modality and the

overall predictive density for the cluster occurs to be strong. Thus the initialization strategy

complies with the multisensory enhancement principle discussed in the introduction in

Chapter 1.

Another advantage is that the Initialize procedure is naturally integrated into the Con-

jEM framework as an extension that gives the EM – typically local optimization algorithm,

– the features of a global optimization procedure. By making restrictive assumptions men-

tioned before we narrow down the parameter search domain increasing the algorithm effi-

ciency.

The initialization strategy that we propose has an iterative nature, so provided the ob-

ject tying parameters are forced to have small deviation from their current locations, one

can track dynamic changes in scene formation. We use this observation to construct the

multimodal multiobject tracking method in Chapter 7. The assumption of slow system

evolution there plays the role of the inhibiting force for the object tying parameters.

In general, this kind of parameter space sampling can be considered as a marked point

process with leading measure given by the predictive density. Such a point process can

be used in jump-diffusion [Grenander 1994, Jacobsen 2006] optimization schemes, which

proves to be useful when considering dynamic tracking tasks. We further discuss this in

Chapter 7.
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Figure 6.1: Iterations n = 1, . . . , 4 of the Initialize procedure for the well separated (WS)

object configuration. The left column shows the predictive distributions ρ̃F(f) and ρ̃G(f)

in the corresponding feature spaces. The initialization result obtained using the densities

on the left are shown on the right.
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Figure 6.2: Iterations n = 1, . . . , 4 of the Initialize procedure for the poorly separated (PS)

object configuration. The left column contains the predictive distributions ρ̃F(f) and ρ̃G(f)

in the corresponding feature spaces. The initialization result obtained using the densities

on the left are shown on the right.
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Figure 6.3: Iterations n = 1, . . . , 4 of the Initialize procedure for partially observed ob-

jects show the multisensory enhancement behaviour. Left column contains predictive dis-

tributions ρ̃F(f) and ρ̃G(f) in the corresponding feature spaces. The initialization result

obtained using the densities on the left are shown on the right.
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6.2.3.2 Experiments with Real Data

We demonstrate the performance of the Initialize procedure on different time intervals of

the cocktail party (CTMS3) scenario from the CAVA database described in detail in Chap-

ter 2. This scenario is the most interesting benchmark as it contains various objects con-

figurations including well separated, poorly separated (partially occluded) and completely

occluded objects.

The initialization procedure for the well separated AV objects configuration (frames

181–190 of the scenario) is illustrated in Figure 6.4. The results for iterations n = 1, . . . , 6

are shown projected onto the left image plane. Visual covariance matrices are repre-

sented by ellipses drawn around projected cluster mean values. The colours encode the

observation-to-cluster assignments.

The performance on a more complicated configuration which corresponds to the sim-

ulated poorly separated case is demonstrated in Figure 6.5. The same objects as in the

previous case are partially occluded (frames 211–220 of the scenario). One by one the

initialization procedure adds 6 clusters using the predictive densities.

These results show that the Initialize procedure is quite robust to changes in object

configurations and is capable of providing meaningful starting values for the ConjEM al-

gorithm that are close to the optimal ones. At the same time we note that in real scenarios

the performance is dominated by visual data as soon as it is richer and more precise.

6.3 Model Selection

We address the problem of consistent model selection in the conjugate mixture model

framework introduced in Section 4.2. Conjugate Gaussian mixture models with outliers

are governed by N groups of parameters {θn}Nn=1 that define conjugate clusters in the

two modality spaces F and G. The problem of model selection in this case consists in

estimating the number of clusters N .

The model selection is a well known but difficult problem in statistics. Numer-

ous approaches aiming to solve this task are based on penalized likelihood maximiza-

tion: Akaike Information Criterion (AIC) [Akaike 1973], Bayesian Information Cri-

terion (BIC) [Schwarz 1978], Minimum Description Length (MDL) [Rissanen 1978],

Normalized Entropy Criterion (NEC) [Celeux 1996], Integrated Complete Likelihood

(ICL) [Biernacki 2000] etc. Though they are usually developed for the case of indepen-

dent and identically distributed (i.i.d) observations. Thus we need to adopt the developed

theory to our case of multiple modalities and observations sets lying in different spaces F

and G and being bound through common parameters.

The aim is to generalize the existing approaches to prove consistency in the case of

conjugate mixture models. We start with introducing some basic notations. Let F and G

denote respectively the sets of probability densities on F ⊆ R
r and G ⊆ R

p with respect to
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n = 1 n = 2

n = 3 n = 4

n = 5 n = 6

Figure 6.4: Iterations n = 1, . . . , 6 of the Initialize procedure for frames 181–190 of the

cocktail party scenario (well separated objects). The ‘visual’ covariance matrices associ-

ated with the Gaussian components are projected onto the image plane. They are shown

with ellipses around the projected cluster mean values. The colours encode the observation-

to-cluster assignments.
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n = 1 n = 2

n = 3 n = 4

n = 5 n = 6

Figure 6.5: Iterations n = 1, . . . , 6 of the Initialize procedure for frames 211–220 of

the cocktail party scenario (partially occluded objects). The ‘visual’ covariance matrices

associated with the Gaussian components are projected onto the image plane. They are

shown with ellipses around the projected cluster mean values. The colours encode the

observation-to-cluster assignments.
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some positive measures νF and νG and some positive integers r and p. Let F and G be two

sets of i.i.d. random variables with respective densities P F
0 ∈ F and PG

0 ∈ G:

F = {F 1, . . . ,Fm, . . . ,FM}, Fm ∼ P F
0 dνF ∀m = 1, . . . ,M (6.17)

and G = {G1, . . . ,Gk, . . . ,GK}, Gk ∼ PG
0 dνG ∀k = 1, . . . ,K (6.18)

The densities P F
0 and PG

0 correspond to the true models for the Fm’s and Gk’s. They are

not generally mixture densities. For any P F ∈ F and PG ∈ G, let LM,K(P F, PG) be the

log-likelihood of all the observed data:

LM,K(P F, PG) =
M
∑

m=1

logP F(fm) +
K
∑

k=1

logPG(gk) = LM (P F) + LK(PG), (6.19)

where LM (P F) and LK(PG) denote the log-likelihoods for observations

{f1, . . . ,fm, . . . ,fM} and {g1, . . . , gk, . . . , gK} respectively. Note that it is the

sum of two terms, that correspond to data from different spaces in (6.19), that prevents us

to use standard results on information criteria that are derived for log-likelihoods of i.i.d

data.

In practice, the general unknown P F
0 and PG

0 are often approximated by parametric

densities. In our case these parametric densities are families of mixtures (4.8) and (4.9):

MF =
∞
⋃

N=1

MF
N , (6.20)

and MG =
∞
⋃

N=1

MG
N . (6.21)

We denoted MF
N and MG

N the sets of all N -mixtures with outliers

MF
N =

{

P F =
N
∑

n=1

πnρ
F(θn) + πN+1U , θn ∈ Θ, 0 ≤ πn ≤ 1,

N+1
∑

n=1

πn = 1

}

,

(6.22)

and MG
N =

{

PG =

N
∑

n=1

λnρ
G(θn) + λN+1U , θn ∈ Θ, 0 ≤ λn ≤ 1,

N+1
∑

n=1

λn = 1

}

,

(6.23)

where θn = {sn,Σn,Γn}. These definitions imply MF
1 ⊂ . . . ⊂ MF

N−1 ⊂ MF
N and

MG
1 ⊂ . . . ⊂MG

N−1 ⊂MG
N . We introduce

MN =
{

(P F, PG) ∈MF
N ×MF

N | θn is common for P F and PG, n = 1, . . . , N
}

,

(6.24)

so that again M1 ⊂ . . . ⊂MN−1 ⊂MN .
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Suppose the upper bound for N is fixed, we denote it Nmax. Since in the general

case the true densities P F
0 and PG

0 are not necessarily mixtures, we define the so-called

quasi-true densities P F
∗ and PG

∗ as follows. Let

KL∗ = inf
(P F,PG)∈MNmax

{

KL(P F
0 ||P F) + KL(PG

0 ||PG)
}

, (6.25)

where KL denotes the Kullback-Leibler divergence. Then we define

N∗ = min
{

N | ∃(P F, PG) ∈MN s.t. KL(P F
0 ||P F) + KL(PG

0 ||PG) = KL∗
}

,

(6.26)

and

(P F
∗ , P

G
∗ ) = argmin

(P F,PG)∈MN∗

{

KL(P F
0 ||P F) + KL(PG

0 ||PG)
}

. (6.27)

We note that additional assumptions are required for the set in (6.26) to be non-empty, they

would be considered further.

Definition 3 The maximum penalized likelihood estimator of N∗ is a maximizer N̂ over

{1, . . . , Nmax} of

TM,K(N) = sup
(P F,PG)∈MN

LM,K(P F, PG)− aM,K(N), (6.28)

where aM,K(N) is some penalty term.

The task is to determine the estimator N̂ consistency, that is whether N̂ converges

to N∗ in some sense as M,K → ∞ (we refer to Remark 2 in Chapter 4 for the exact

meaning of convergence of “sequences” under M,K → ∞). The existing approaches

are not directly applicable to the case of conjugate mixture models (P F, PG) ∈ MN and

associated log-likelihoods LM,K(P F, PG), so the existing consistency proofs need to be

generalized. We provide the proof of consistency of N̂ for multimodal information criteria

in Section 6.3.2. The multimodal information criterion is tested on the simulated and real

data in Section 6.3.3.

6.3.1 The Select Procedure

The overall procedure to determine the number of multimodal clustersN is outlined below:

1. For n = 1, . . . , Nmax do

(a) Initialize n clusters using the Initialize procedure;

(b) Apply the ConjEM algorithm to converge to maximum likelihood (ML) param-

eter estimates {θ̂1, . . . , θ̂n, θ̂n+1};

2. Apply the criterion (6.28) to determine the number of clusters N∗;
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6.3.2 Weak Consistency of Multimodal Information Criteria

We start with providing a general inequality on likelihood ratios proved in [Gassiat 2002].

For any P F, P F
∗ ∈ F consider the subset of the unit sphere in L2(P

F
0 dνF) defined as

{

SF
P =

P F/P F
∗ − 1

‖P F/P F
∗ − 1‖F,2

, P F ∈ F \ P F
∗

}

, (6.29)

where ‖.‖F,2 denotes the norm in L2(P
F
0 dνF) and we let SF

P∗
≡ 1. Such functions SF

P

satisfy

‖SF
P ‖2F,2 =

∫

(SF
P )

2P F
0 dνF = 1, (6.30)

and

∫

SF
PP

F
∗ dνF = 0. (6.31)

The inequality 1.2 of [Gassiat 2002] indicates that

sup
P F∈F

LM (P F)− LM (P F
∗ ) ≤

1

2
sup
P F∈F

(

M
∑

m=1
SF
P (fm)

)2

M
∑

m=1
(SF

P )
2
−(fm)

, (6.32)

where (SF
P )−(f) = min{0, SF

P (f)} is the negative part of SF
P . A similar set can be con-

structed for densities PG, PG
∗ ∈ G. We denote SF and SG the set of functions SF

P for

P F ∈MF
Nmax

and SG
P for PG ∈MG

Nmax
respectively.

The consistency derivation would require the following assumptions.

(A1) The mixture components ρF(f ,θ) and ρG(g,θ) are continuous functions of their

second argument θ for all values of f and g. Moreover, there exist functions φ ∈
L1(P

F
0 dνF) and ψ ∈ L1(P

G
0 dνG) such that for any (P F, PG) ∈ MNmax one has

| logP F| ≤ φ and | logPG| ≤ ψ.

This assumption restricts possible types of mixtures. The likelihood of a Gaussian mixture,

does not verify (A1) unless the parameter space is bounded. In practice one has to lower

bound the variances.

(A2) The parameter support Θ is compact.

The assumptions (A1), (A2) and the fact that the KL function in (6.25) is continuous im-

ply the existence of the optimal N∗ in (6.26). This assumption is not satisfied for general

mixtures of Gaussians without any constraint on the parameter space. However, as men-

tioned in [Ciuperca 2003] (see also references therein), it is common to consider restrained

parameter spaces.
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(A3) The penalty term aM,K(N) is increasing and aM,K(N) = o(M + K). Also,

aM,K(N1)− aM,K(N2)→∞ as M,K →∞ for all N1 > N2.

This assumption on the penalty term is rather standard and is verified by all the information

criteria mentioned in the beginning, except for AIC, for which the last condition does not

hold.

(A4) S2
F

and S2
G

are Glivenko-Cantelli classes.

Definition 4 A class S of measurable functions S is called Glivenko-Cantelli with respect

to a probability measure µ, if

‖Pm − Eµ‖S = sup
S∈S
|Pm(S)− EµS| → 0 a.s. (6.33)

(A5) The true densities (P F
0 , P

G
0 ) ∈MNmax .

(A6) The “sequence” M
M+K converges to the limit κ = 1/2.

The last two assumptions are rather strong, but we shall use one of them to prove the

consistency of the penalized maximum likelihood criterion family. However, as can be

seen from the proof, one can think of some less restrictive assumptions. We discuss this

later in the Section.

Now everything is ready for the proof of the main result.

Theorem 5 Let assumptions (A1), (A2), (A3), (A4) hold and one of the conditions (A5)

or (A6) be satisfied. Then the estimator N̂ converges in probability to the true number of

components N∗ when M,K →∞ with M
M+K converging to some finite limit 0 ≤ κ ≤ 1.

Proof: 1. Underestimation. We start from the traditionally easier part and show that

N∗ cannot be underestimated. Suppose the opposite, N̂ < N∗ and consider TM,K(N̂) −
TM,K(N∗). By definition of N̂ and TM,K(N) one has

sup
(P F,PG)∈M

N̂

LM,K(P F, PG)− aM,K(N̂) ≥ sup
(P F,PG)∈MN∗

LM,K(P F, PG)− aM,K(N∗).

(6.34)

Under (A1) and (A2) (see example 19.8, p.272 of [van der Vaart 2004]), for all N the

set
{

(log P F

P F
0
, log PG

PG
0
), (P F, PG) ∈MN

}

is Glivenko-Cantelli. This means that if we di-

vide (6.34) by M +K and consider the limit under M,K →∞, we obtain

sup
(P F,PG)∈M

N̂

(

κ(KL(P F
0 ||P F

∗ )−KL(P F
0 ||P F))+

+(1− κ)(KL(PG
0 ||PG

∗ )−KL(PG
0 ||PG))

)

≥ 0, (6.35)
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where we used (A3), the definition of the model (P F
∗ , P

G
∗ ) given by (6.27) and the definition

of κ. Suppose now that (A5) is fulfiled. Then P F
0 = P F

∗ and (6.35) must be strictly negative,

which leads to a contradiction. If (A6) is verified, from the definition (6.27) it follows again

that (6.35) is strictly negative. Thus the estimator N̂ is a.s. greater than N∗.

2. Overestimation. We now prove that N∗ cannot be overestimated by showing that

P (N̂ > N∗) tends to zero as M,K →∞. Indeed,

P (N̂ > N∗) = P (∃Nmax ≥ N > N∗ s.t. TM,K(N) ≥ TM,K(N∗)) ≤

≤
Nmax
∑

N=N∗+1

P (TM,K(N) ≥ TM,K(N∗)). (6.36)

By definition of TM,K(N) each event in the sum (6.36) can be written as

sup
(P F,PG)∈MN

LM,K(P F, PG)− aM,K(N) ≥ sup
(P F,PG)∈MN∗

LM,K(P F, PG)− aM,K(N∗).

(6.37)

Using the definition (6.27) of the optimal densities, (6.37) is equivalent to

sup
(P F,PG)∈MN

LM,K(P F, PG)− LM,K(P F, PG) ≥ aM,K(N)− aM,K(N∗), (6.38)

since (P F
∗ , P

G
∗ ) belongs to MN∗

. We can further bound (6.36) from above by

Nmax
∑

N=N∗+1

P

(

sup
P F∈MF

N

LM (P F)− LM (P F
∗ ) + sup

PG∈MG

N

LK(PG)− LK(PG
∗ ) ≥

≥ aM,K(N)− aM,K(N∗)

)

. (6.39)

Then we use inequality (6.32) and the definitions of SF and SG to write an upper bound

for (6.39)

Nmax
∑

N=N∗+1

P

(

1

2
sup
S∈SF

(

M
∑

m=1
S(fm)

)2

M
∑

m=1
S2
−(fm)

+ sup
S∈SG

(

K
∑

k=1

S(gk)

)2

K
∑

k=1

S2
−(gk)

≥

≥ aM,K(N)− aM,K(N∗)

)

. (6.40)

We would like to show that sup
S∈SF

(

M
∑

m=1
S(fm)

)2

M
∑

m=1
S2
−
(fm)

and sup
S∈SG

(

K
∑

k=1

S(gk)

)2

K
∑

k=1

S2
−
(gk)

are bounded. In-

deed,

sup
S∈SF

(

M
∑

m=1
S(fm)

)2

M
∑

m=1
S2
−(fm)

≤
sup
S∈SF

(

M
∑

m=1
S(fm)

)2

inf
S∈SF

M
∑

m=1
S2
−(fm)

≤
sup
S∈SF

1
M

M
∑

m=1
S2(fm)

inf
S∈SF

1
M

M
∑

m=1
S2
−(fm)

. (6.41)
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Using the assumption (A4) that S2
F

is Glivenko-Cantelli we get

lim
M→∞

sup
S∈SF

1

M

M
∑

m=1

S2(fm) = sup
S∈SF

∫

S2P F
0 dνF = 1,

and lim
M→∞

inf
S∈SF

1

M

M
∑

m=1

S2
−(fm) = inf

S∈SF

‖S−‖2F,2. (6.42)

By construction we have ‖S−‖2F,2 > 0. Indeed, if it were not the case, there would exist

a function S ∈ SF such that ‖S−‖2F,2 = 0, as soon as SF is compact. Assuming P F
0 > 0

would imply S ≡ 0. But this contradicts the definition of S ∈ SF that must satisfy

‖S‖F,2 = 1.

Thus we proved that sup
S∈SF

(

M
∑

m=1
S(fm)

)2

M
∑

m=1
S2
−
(fm)

was bounded. Similar developments show

that sup
S∈SG

(

K
∑

k=1
S(gk)

)2

K
∑

k=1
S2
−
(gk)

is bounded as well. But aM,K(N) − aM,K(N∗) → ∞ by (A3),

from where using (6.40) we conclude that P (N̂ > N∗) converges to zero asM andK tend

to infinity. �

This result shows that criteria that belong to the penalized maximum likelihood class

provide asymptotically consistent estimates. The proof required one of the assump-

tions, (A5) or ((A6)) to be made. The first of them restrains the unknown distributions P F
0

and PG
0 to belong to the considered parametrized class. The second one assumes certain

asymptotic relation between the number of observations in the modalities. These assump-

tions are quite restrictive. However, the issue that required such a coarse decision is worth

to pay attention to. We are convinced that these assumptions, in fact, can be significantly

weakened.

Indeed, the only place where we had to use them is the equation (6.35), to show that its

left-hand side was negative. The latter consists of two weighted differences KL(P F
0 ||P F

∗ )−
KL(P F

0 ||P F) and KL(PG
0 ||PG

∗ ) − KL(PG
0 ||PG). It can be easily proved that at most one

of them is positive. If this was not true, we could have estimated the sum from below

by a similar expression, where instead of κ and 1 − κ, the minimum of the two is used.

On the one hand, that expression is supposed to be positive. From the other hand, the

definition (6.27) implies that it is strictly negative.

Thus we deal with the case where a pair of conjugate distributions (P F
∗ , P

G
∗ ) is an

optimal approximation to (P F
0 , P

G
0 ) when both modalities are equally observable. But in

real conditions, when the number of observations in different modalities is proportional to κ

and 1−κ, distributions (P F
∗ , P

G
∗ ) may lose this optimality property. One solution is to make

the assumption (A6) and fix the proportions, which we consider to be inappropriate when

dealing with real-world scenarios. At the same time, we note that so far no assumption

was made on relation between the two distributions P F
0 and PG

0 . It would be reasonable to
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suppose that as they correspond to the same object configuration in the hidden space, there

should be some connection between them. Assumption (A5) is one possibility to impose

such a relation. Of course, one can think of milder conditions.

6.3.3 Experimental Validation

The Select procedure was tested on the audio-visual (AV) object localization task where

the aim is to determine the number of AV objects present in the scene. We first considered

the simulated data examples that were used to verify the initialization algorithm, namely

the well separated (WS), poorly separated (PS) and partially observed (PO) object config-

urations.

For each configuration we take the parameter initializations θn, n = 1, . . . , Nmax and

run the ConjEM algorithm till convergence. The obtained parameter estimates θ̂n are used

to compute the ‘model score’ – a penalized likelihood value given by (6.28). The corre-

sponding results are depicted in Figure 6.6. The graphs show model scores for different

numbers of objects. The selection criterion chooses the model with the best (maximal)

score, which is marked by a white circle.

We note that the criterion performed well both, in the case of well separated and poorly

separated objects and did not underestimate or overestimate their number. From here we

conclude that such a criterion is robust to configuration changes and could be used for real

data, where the distributions are not necessarily Gaussian.

At the same time, the Select procedure choses correctly the number of objects in the

case of partially observed data. This is an important property, since the multimodal crite-

rion is the only way to detect all the objects: each modality contains two strong clusters and

the third cluster appears only in the case of multimodal integration. This way the selection

criterion together with the initialization strategy and the ConjEM algorithm implements the

multimodal enhancement principle.

Next we consider scenarios with real data from the CAVA database. Two time intervals

from the cocktail party (CTMS3) scenario are taken that were used in the previous Section

to check the Initialize procedure: the well separated objects case (frames 181–190) and the

partially occluded objects case (frames 211–220). The ConjEM algorithm is run on the

initialization results to get the maximum likelihood (ML) parameter estimates. The latter

are used to compute model scores for various numbers of objects. The score graphs are

given in Figure 6.7.

6.4 Discussion

The two procedures proposed in this Chapter - Initialize and Select, play important role in

the multimodal clustering task. Efficiency of the ConjEM algorithm derived in Chapter 5

is highly dependent on the initial parameters and model choice strategies. Moreover, in

order to fully benefit from the ConjEM multimodal integration capabilities, they need to
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(a) well separated, WS (b) poorly separated, PS (c) partially observed, PO

Figure 6.6: Simulated data experiments. Model scores obtained by the multimodal Select

procedure for the three configurations of object. Each model is characterized by the number

of objects it contains and is assigned a score based on the penalized likelihood value. The

selection criterion chooses the model with the best (maximal) score. In all the cases the

correct number of objects (three) is chosen. For the partially observed data multimodal

criterion is the only way to detect all the objects, as soon as each modality contains only

two strong clusters.

(a) well separated, WS (b) partially occluded, PO

Figure 6.7: Real data experiments. Model scores obtained by the multimodal Select pro-

cedure for the two configurations of objects that correspond to frames 181–190 (well sepa-

rated objects) and 211–220 (partially occluded objects) of the cocktail party scenario. Each

model is characterized by the number of objects it contains and is assigned a score based

on the penalized likelihood value. The selection criterion chooses the model with the best

(maximal) score. Even in the case of partially occluded objects the correct number of

objects (three) is chosen.



114 Chapter 6. Algorithm Initialization and Model Selection

be fully multimodal and consider observations from different sensors on equal basis. The

Initialize and Select procedures fulfil these requirements, being symmetric with respect to

the modalities.

Assuming certain detector properties to be known we developed an original cluster

sampling technique based on multimodal predictive distributions. It proved to be efficient

on both simulated and real data. The initial estimates are close to the optimal parame-

ter values, so only a few iterations of the ConjEM algorithm are required afterwards to

converge.

The multimodal selection criterion was developed to choose the best model matching

the data. It was inspired by the existing model selection strategies. Though standard con-

sistency results could not be applied directly to the multimodal case. Thus we prove the

multimodal consistency of our criterion and show its performance on simulated and real

data. One important feature of our criterion is that it allows for multimodal enhancement:

weak cluster from one modality can be enhanced by a cluster from another modality lead-

ing to multimodal object detection where single modality models fail.

The Select and Initialize procedures are based on the same framework as the Con-

jEM algorithm, so that they can be naturally integrated. This way ConjEM obtains the

good properties of a global optimization method. The more so, even though in the ex-

amples we used the initialization, optimization and model selection procedures in an of-

fline manner, it is easy to make them work online. By analogy with jump-diffusion pro-

cesses [Grenander 1994, Jacobsen 2006], one can consider the ConjEM algorithm as a dif-

fusion, the Initialize procedure as the jump proposal method and the Select procedure as

the jump acceptance criterion. This leads to efficient optimization schemes and multimodal

tracking algorithms. We use such an approach to perform multimodal multiobject audio-

visual tracking in Chapter 7.

We outline the strong points of our initialization and model selection approach below:

• Fully multimodal: both procedures do not assume any of the modalities as the lead-

ing one, they are completely symmetric with respect to observation spaces;

• Multimodal enhancement: the Select procedure is able to enhance stimuli from one

modality with stimuli from other modalities to detect weak clusters;

• Efficient sampling: the initialization strategy is based on assumptions on data that

are always verified, which leads to a more efficient Initialize procedure;

• Consistent selection: the model selection criterion is theoretically well-founded and

possesses asymptotic consistency property;

• Online use: the Initialize and Select procedures are designed in such a way that

they can be incorporated into the dynamic scene model and used to track multiple

multimodal objects;
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Multimodal multiobject tracking is a difficult problem that involves various types of

noise, complex object configuration dynamics and nontrivial object appearance changes.

Some of these events can completely ruin the observed short-term data. This may confuse

an algorithm that relies on data obtained for short time intervals. The most efficient way

to deal with abrupt changes and short-term data corruption is to incorporate an appropriate

dynamics model.

The case of unaligned multimodal observations gives rise to the ‘multimodal filter-

ing’ task (by analogy with the multimodal clustering task for the stationary case). We

use the formalism of conjugate mixture models together with the associated optimization

procedures and show how it can be adjusted to the dynamic case. The ways to perform

multimodal filtering are discussed. Real-data results are provided that show the dynamic

model superiority over the simple stationary model adjustments presented in Chapter 5.

7.1 Multimodal Multiobject Tracking

The task of multimodal multiobject tracking arises naturally whenever several ob-

jects need to be tracked based on observations arriving from different sensors. Nu-

merous potential applications can be found in perception modelling ([Pouget 2002a,

Ernst 2002, Anastasio 2000, King 2004, King 2005, Haykin 2005]), military target track-

ing ([Luo 2002, Pannetier 2008]), robotics ([Castellanos 1999, Allen 1995, Joshi 1999])

and various other research domains.

The tracking problem is usually formulated as a filtering task that aims at inferring the

most recent hidden object state by all the available observations. This treatment has re-

ceived much attention because of the development of efficient filtering techniques. Kalman
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filter [Kalman 1961] and its various extensions [Wan 2000, Lefebvre 2001] are popular

and efficient parametric techniques that use a multivariate Gaussian distribution for the

posterior over the hidden state (belief). Their generalizations to the multiple objects case

exist [Mahler 2005]. Particle filters [Doucet 2001] is a popular nonparametric technique

that uses weighted particle sets to approximate the belief. This approach is more general,

though it typically requires more computational effort. Particle filters can also be general-

ized to the multiple objects case [Khan 2005].

There have been several models that aimed at extending the particle filters approach to

the multimodal case [Checka 2004, Chen 2004, Gatica-Perez 2007]. However, as already

mentioned in Chapter 4, the dimensionality of the parameter space grows exponentially

with the number of objects, causing the number of required particles to increase dramat-

ically and augmenting computational costs. A number of efficient sampling procedures

have been suggested [Chen 2004, Gatica-Perez 2007] to keep the problem tractable. Of

course this is done at the cost of a loss in model generality, and hence these attempts are

strongly application-dependent. Another drawback of such models is that they cannot pro-

vide estimates of accuracy and importance of each modality with respect to each object.

The sampling and distribution estimation are performed in the parameter space, but no

statistics are gathered for the observation spaces.

So far there has been no attempt to apply parametric approaches to the task of mul-

timodal multiobject tracking. The single-object localization model of [Beal 2003] was

extended for single-object tracking tasks in [Kushal 2006] and for multiple-object local-

ization tasks in [Hospedales 2007, Hospedales 2008]. The latter approach incorporated

several single-object models into the multiple-object model and tracking was performed

through inference of filtering distributions. However, a learning phase for each of the ob-

ject was required to perform multiobject tracking.

In this Chapter we show how the conjugate muxture model can be extended to the

non-stationary case to perform robust multimodal multiobject tracking. We note that in

Chapter 5 we have already tried to apply our conjugate muxture model directly to the

multimodal multiobject tracking task relying on the model’s attractor stability. It performed

well on simple scenarios, though failed in the case of complete occlusion. We formally

introduce the non-stationary case extension in Section 7.2, show its performance on real

data in Section 7.3 and conclude the Chapter with a discussion on the results.

7.2 Conjugate Filtering for Multimodal Multiobject Tracking

As in Chapter 4, we assume that the system consists of N objects observed in two fea-

ture spaces F ⊆ R
r and G ⊆ R

p. The objects are described by tying parameters

s1, . . . , sn, . . . , sN ∈ S ⊆ R
d. We assume that transformations

{ F : S→ F

G : S→ G
(7.1)
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are known, that map S into the observation spaces F and G respectively. These transfor-

mations are defined by the physical and geometric properties of the sensors and they are

supposed to be known. We treat the general case when both F and G are non-linear.

One way to account for configurations of varying number of objects Nt that exhibit

dynamic behaviour in space S is to introduce a jump diffusion process [Grenander 1994,

Jacobsen 2006]. This is a marked point process defined on

(

T,
∞
⋃

N=0

ΘN

)

consisting of

the timestamp set T and the set of configurations, we denoted ΘN the configuration space

containing N objects, N = 0, 1, . . .. Jumps between configurations are performed accord-

ing to a point process that generates their times τ ∈ T and destinations θ ∈
∞
⋃

N=0

ΘN .

Between the jumps objects are supposed to follow some system dynamics. When dealing

with parametric estimation tasks, a popular way to describe dynamics with random effects

is to define an associated stochastic differential equation (SDE) [Rozovskii 1990]. The

general SDE for the task of multimodal multiobject tracking is given by the following Itō

equation

dθS(t) = µ(t,θS(t))dt+Λ(t,θS(t))dW
Θ
t , (7.2)

where θS = {s1, . . . , sn, . . . , sN} is the set of tying parameters, µ is the drift field, Λ

is the diffusion field and WΘ is a multidimensional Brownian motion. In case when the

dynamic models for different objects can be assumed to be independent, the equation (7.2)

can be split into a system of N simpler equations

dsn(t) = µn(t, sn(t))dt+Λn(t, sn(t))dW
(n)
t , (7.3)

where W (n) are independent d-dimensional Brownian motions. Assuming, as previously,

independent observation models for every object n, we can write

dZ
(n)
F

(t) = F(sn(t))dt+Σn(t, sn(t))dW
F
t , (7.4)

and dZ
(n)
G

(t) = G(sn(t))dt+ Γn(t, sn(t))dW
G
t , (7.5)

whereZ
(n)
F

(t) =
t
∫

0

f(τ)dτ andZ
(n)
G

(t) =
t
∫

0

g(τ)dτ are the observed processes in modal-

ity spaces F and G respectively, and Σn and Γn are the corresponding diffusion fields. The

task is thus to compute the filtering density dP
(

θS(t) ∈ dθ|ZF
t ,ZG

t

)

/dθ, where ZF
t and

ZG
t are the σ-algebras, generated by Z

(n)
F

(τ) and Z
(n)
G

(τ) respectively for n = 1, . . . , N

and all τ ∈ [0, t]. The equations for dP
(

θS(t) ∈ dθ|ZF
t ,ZG

t

)

/dθ for a system defined

by (7.2), (7.4) and (7.5) do not admit a closed-form solution even in the simpler case of one

observation space. The derivation and general solution of the corresponding differential

equation can be found, for example, in [Rozovskii 1990]. In fact, the explicit solution is

rarely available and some kind of approximation is required.

Approximate filtering. One way to perform inference of the approximate filtering dis-

tribution is to derive the multimodal analogue of one of the extensions of the Kalman
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filter based on weighted approximations of feature space densities dP (f(t) ∈ df) /df

and dP (g(t) ∈ dg) /dg in the parameter space S. This leads, for example, to multimodal

extended Kalman filter (parametric approach), multimodal unscented Kalman filter (semi-

parametric approach) schemes. We do not consider these algorithms here in detail, since

their derivation is similar to the case of a single modality. However, we would like to point

out one advantage of our framework for such algorithms.

Suppose that the filtering algorithm at time instant t1 < t2 approximates the distribu-

tion P (sn(t2) ∈ ds)|ZF
t1 ,ZG

t1) by a Gaussian distribution in the model given by (7.3), (7.4)

and (7.5) with Σn(t, sn(t)) = Σn(t) and Γn(t, sn(t)) = Γn(t). Then the maximum a

posteriori (MAP) estimate of the position ŝn(t2) can be found using the conjugate EM

(ConjEM) algorithm, all the acceleration techniques from Chapter 5 apply.

Indeed, instead of the log-likelihood function (4.18) introduced in Chapter 5, we con-

sider the log-posterior function:

L(f, g,θ) =
M
∑

m=1

logP F(fm; θ) +

K
∑

k=1

logPG(gk; θ) +

N
∑

n=1

logP S(sn; θ), (7.6)

where P S(sn; θ) is a Gaussian. Then the E step of the accelerated ConjEM algorithm

given by (5.6) and (5.6) would remain the same. The only change in the M step would

concern the function Q
(q)
n (s) given by (5.13) which would become

Q(q)
n (s) = −

M
∑

m=1

α(q)
mn(‖fm −F(s)‖2Σn(s) + log |Σn(s)|)−

−
K
∑

k=1

β
(q)
kn (‖gk − G(s)‖2Γn(s) + log |Γn(s)|)− ‖s̃− s‖2Υ, (7.7)

where s̃ and Υ are the mean and the variance of the Gaussian distribution P S(sn; θ). We

note that the expression (7.7) has the same form as (5.13) from Chapter 5. That is adding a

Gaussian prior on the object position would be treated as making the object observed in the

parameter space. Thus this change is equivalent to the increase in modality spaces number

and all the results concerning acceleration strategies of the ConjEM algorithm apply.

Stochastic approximation. Another possibility for the parameter θ(t) inference consists

in applying stochastic approximation [Wasan 1969, Nevelson 1976, Benveniste 1990].

This method, designed to solve statistical estimation problems, updates iteratively the ex-

isting estimator θ̂(t) based on new information f(t) and g(t). The general algorithm takes

the form

dθ̂(t) = γ(t)
(

H(θ̂(t),f(t), g(t))dt+Υ(t, θ̂(t))dŴ S
t

)

, (7.8)

where γ(t) is the gain function, H(θ̂(t),f(t), g(t)) is the drift field, usually chosen so

that EF ,GH(θ̂(t),F (t),G(t)) = 0 if and only if the estimate θ̂(t) is equal to the real

parameter values θ∗(t), and Υ(t, θ̂(t)) is the diffusion field accounting for small algorithm

perturbations. We refer to the sources cited above for specific choices of γ, H and Υ and

convergence conditions.
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intervals speaking detected E1 E2

M1 166 89 82 0.08 0.06

TTOS1 76 69 65 0.06 0.23

CTMS3 219 97 71 0.27 0.39

Table 7.1: Comparative results of the dynamic algorithm for the three scenarios: meeting

(M1), moving target (TTOS1) and cocktail party (CTMS3). In each case the total number

of frames, ground truth on the total number of auditory activity events to be detected, the

total number of actually detected auditory activity and the probabilities of ‘missed target’

and ‘false alarm’ errors are given.

7.3 Experimental Results

We evaluated the dynamic version of the ConjEM algorithm on the meeting, tracking and

cocktail party scenarios (sequences M1, TTOS1 and CTMS3 of the CAVA database pre-

sented in Chapter 2). Both auditory activity estimation and tracking accuracy were consid-

ered, as previously in Chapter 5.

Since the exact system dynamics in the general audio-visual tracking task are not

known and one can only assume the speed of dynamic scene changes, we adopt the stochas-

tic approximation approach to multimodal multiobject tracking for the diffusion part. The

gain function was taken to be constant γ(t) ≡ 0.1. We assumed independent object dy-

namics, and took the drift term that coincided with the direction of the ConjEM algorithm

optimization. Thus the stationarity condition is asymptotically fulfiled. The diffusion part

of (7.8) was not included.

To account for scene configuration changes (objects that enter and exit the scene, com-

lete occlusions), we run the Initialize and Select procedures to propose new clusters and

accept/reject them or to delete existing clusters that no longer receive observations. This

strategy resembles a jump-diffusion process [Grenander 1994, Jacobsen 2006], where dif-

fusion is carried out through (7.8) and jumps are generated by the initialization and selec-

tion procedures. Similar approaches can be found in video-based tracking [Yao 2008].

One advantage of considering the dynamic model is that different time scales can be

used for different modalities to estimate the object activity. Considering longer time inter-

vals for auditory data leads to the auditory activity detection improvement, see Table 7.1

and Table 5.4. Some short-term effects of ambient sounds and reverberations are eliminated

which decreases ‘false alarm’ probabilities.

Spatial localization results are also improved with respect to those from Chapter 5. The

dynamic version of the ConjEM algorithm can handle not only partial, but also complete

occlusions. Different cases are demonstrated on the cocktail party (CTMS3) sequence in

Figure 7.2. After the objects are initialized (a), one of them gets completely occluded (b)-

(c) which results in track loss and consequent detection (d). Another occlusion happens to

be more rapid (e)-(f), so that the object reappears before the cluster was eliminated.
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(a) moving target, TTOS1 (b) cocktail party, CTMS3

Figure 7.1: Estimated ambient space trajectories for the (a) moving target (TTOS1), and

(b) cocktail party (CTMS3) scenarios. Motion is shown with colour gradient from darker

to lighter colours. Points where the algorithm lost/regained track of an object are marked

with coloured points. Green object is occluded several times. The first time track is lost and

as it is regained, the estimate captures part of the red object that goes nearby and follows

it (right green segment). But after the second occlusion the green object is redetected and

properly tracked (middle green segment). The third occlusion (leftmost green segment)

does not spoil the estimate. Blue object was not lost even after one occlusion.

In general the trajectories obtained with the dynamic version of the ConjEM algorithm

are smoother and more precise - the position estimates are within 5cm from the object

location in the XZ-plane. The precision in the Y coordinate (vertical axis) is typically worse

because of the cluster shapes that are typically elongated in the scenarios we consider and

admit greater variability in vertical direction. The summary on estimated trajectories for

moving target (TTOS1) and cocktail party (CTMS3) scenarios is given in Figure 7.1. See

Figure 5.9 for comparison. Object motion is shown with colour gradient from darker to

lighter colours. Points where the algorithm lost/regained track of an object in the CTMS3

sequence are marked with coloured points.

7.4 Discussion

The multimodal multiobject tracking task is a hard problem due to various strong noise

contaminating the observations and scene dynamics that are usually hard to estimate even

without noise. In this Chapter we addressed this problem within the ConjEM framework.

We showed how our approach could be efficiently combined with different tracking tech-

niques to benefit from integration of both spatial information coming from multiple modal-

ities and temporal information kept by a system.

On the one hand, the powerful ConjEM framework with efficient Initialize and Select

procedures provides parameter inference from multiple modalities, automatically weight-

ing the data according to the amount of information it contains. It enhances weak multi-

modal clusters that can be then detected and tracked and hence is responsible for the scene

configuration representation.
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(a) frames 281-290 (b) frames 320-329

(c) frames 326-335 (d) frames 338-347

(e) frames 346-355 (f) frames 351-360

Figure 7.2: Cocktail party scenario tracking results. After the objects are initialized (a),

one of them gets completely occluded (b)-(c) which results in track loss and a detection

that follows (d). Another occlusion happens to be more rapid (e)-(f), so that the object

reappears before the cluster is eliminated. The results are shown projected onto the left

image plane. Colours encode the observation-to-cluster assignments and the auditory ac-

tivity is shown with the speaker symbol. The “visual” covariance matrix associated with

the Gaussian component is projected onto the image plane.
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On the other hand, a well-established framework for parameter inference in dynamic

systems accounts for proper temporal tracks of multiple multimodal objects. They can

become completely invisible for a short period of time and nevertheless still be followed

using the estimated trajectory information.

The results show a clear advantage for the joint multimodal tracking over the single

ConjEM algorithm, as well as potential benefits over single modality tracking techniques

through multimodal enhancement. Both, object auditory activity and ambient space posi-

tion estimates were improved with respect to the ConjEM results presented in Chapter 5.

We outline the advantages of the dynamic ConjEM framework:

• Fully multimodal: the framework benefits from the ConjEM capability of putting

all the modalities on equal basis, weighting them based on the amount of information

they provide and integrating the multimodal data;

• Multimodal enhancement: the ability of the Initialize and Select procedure to de-

tect and enhance stimuli from one modality with stimuli from other modalities to

reinforce weak clusters can also be exploited within the dynamic ConjEM frame-

work;

• Extensibility: as with the ConjEM framework, various multimodal features can be

added to the dynamic ConjEM to improve tracking;

• Robust tracking: ConjEM allows for efficient integration with well-established

tracking techniques that can handle temporal invisibility of an object;
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The goal of my thesis was to develop a full and efficient framework for audio-visual

integration and, in particular, for audio-visual object detection and localization.

I first address the problem making a simplifying assumption of a quasi-stationary or

slowly varying object configuration. Under this assumption, I developed a full frame-

work possessing attractive theoretical properties that solves a number of important issues:

i) hardware calibration (Chapter 3); ii) estimation of the number of objects (Chapter 6);

iii) efficient and accurate initialization (Chapter 6); iv) consistent multimodal integration

(Chapters 4 and 5) with v) guaranteed accuracy and reliability (Chapter 5). The ideas

and models that I developed in this framework are general and can be potentially applied

to any multimodal clustering task. All the theoretical facts proved about the models are

application-independent. However, in the experimental results sections of this thesis I

demonstrate how to tune every proposed technique for the particular case of audio-visual

integration.

Then I show that this framework could be still used without the assumption on scene

dynamics and address the problem of inclusion of object dynamics in the multimodal in-

tegration model (Chapter 7). Again, the proposed approach is general and uses a well-

established methodology. It can be applied to various multimodal tasks. I believe that this

combination of multimodal integration model with system dynamics is very promising in

that it further improves the conjugate clustering approach towards the conjugate filtering

framework. The latter offers broader range of applications and better performance in terms

of robustness to configuration changes (such as visual occlusion) and track losses.

We proceed with the summary of major contributions of the thesis and discussion of

perspectives for future research.

8.1 Main Contributions

This thesis contains a number of original contributions that can be split into two groups: i)

the theoretical models and facts on multimodal integration, and ii) their versions tuned for
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the task of the audio-visual integration. Below we provide the summary of both groups.

Theoretical models and facts

• Conjugate mixture models (CMM): the formalism of conjugate mixture models

was introduced to address the multimodal integration task. It allows to preserve char-

acteristics that are specific to the modalities, while reinforcing integration through

the features that are common. Asymptotic identifiability of CMM’s is proved and

various extensions are proposed concerning different choices of single modality mix-

tures, conjugate random fields and conjugate point processes;

• Kullback Proximal optimization algorithm family for CMM: a class of optimiza-

tion algorithms for Gaussian CMM was derived within the Kullback Proximal (KP)

framework, their convergence properties are discussed;

• Efficient conjugate EM implementation for CMM: the multimodal EM algorithm

(ConjEM) that belongs to the KP family was improved by transforming the opti-

mization problem to a more convenient form. Several acceleration strategies were

proposed. Attractive convergence properties were proved for a large class of CMM

models;

• CMM initialization based on predictive densities: an efficient method for CMM

initialization was proposed based on predictive densities constructed from multi-

modal data. This method is fully multimodal in the sense that it puts all the modal-

ities on equal footing. It plays role of a sampling technique for an optimization

algorithm for CMM, providing the characteristics of a global optimization method

and improving the convergence speed and the final estimate.

• Multimodal criterion for model selection: a multimodal criterion for CMMs was

formulated, its consistency properties were proved. Together with the multimodal

initialization strategy and the ConjEM optimization algorithm it provides an efficient

multimodal integration strategy that enables multimodal enhancement;

• Multimodal filtering algorithms: several possibilities for extending CMMs to the

multimodal tracking tasks were offered; their way to efficiently combine filtering

algorithms with the CMM initialization and model selection algorithms is described.

Audio-visual (AV) integration contributions

• CAVA database: a set of realistic AV scenarios was designed and acquired to pro-

vide the evaluation ground for multimodal algorithms that work with head-like de-

vices comprising two microphones and two cameras; annotation was performed for

certain scenarios;

• AV calibration: the AV calibration algorithm was developed to ensure proper align-

ment of A and V data; its evaluation on synthetic and real data is provided;
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• AV localization and activity detection: the theoretical CMM framework was ap-

plied to the task of localization of multiple AV objects; we consider the AV integra-

tion task in the 3D space which reinforces the integration; the acceleration strategies

for the case of AV data are derived and demonstrated, different implementational

aspects of the optimization algorithms are discussed; the performance is shown on

simulated data and CAVA database scenarios; localization is verified for both, quasi-

static and dynamic scenes;

• AV object detection: the proposed AV object detection method is based on the multi-

modal initialization and model selection strategies; it demonstrates AV enhancement,

efficiently combining input AV data to detect objects that are poorly represented in

one of the modalities; AV object detection is demonstrated on simulated and real

data from the CAVA database;

• AV object tracking: the AV object tracking task is addressed within the proposed

framework of multimodal filtering algorithms; our approach uses all the techniques

developed for the case of AV data for multimodal object localization and detection;

the verification is performed on CAVA database recordings, among which we in-

cluded the challenging cocktail party scenario.

8.2 Future Work

The work presented in the current thesis is inspired by biological principles of multimodal

integration and contains models that implement low-level multimodal integration bases.

There are numerous directions in which these models can be extended for the task of audio-

visual (AV) multiobject tracking or adjusted for other types of applications. Below we

outline the prospective directions of research.

Motion cues for AV integration. In our multimodal integration approach we used colo-

calization as the core principle, binding different modalities through the 3D object loca-

tion. Dynamics information could also be included into the common unobserved parameter

space. Motion cues can be extracted from both, auditory [Lu 2010] and visual [Shi 1994]

data. On the one hand, this would reinforce multimodal integration by increasing the di-

mensionality of the parameter space and better separating the objects being observed. On

the other hand, these cues could occur to be less reliable in the realistic setting, such as

found in CAVA database scenarios. As mentioned in Chapter 5, the increase in observa-

tions covariance leads to significant losses in precision.

Modality-specific features. Multimodal tracking can be improved by extending the

model with various modality-specific features. Low-level photometric and spectral charac-

teristics and high-level appearance and acoustic models can be added to the audio-visual
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integration framework to reinforce clustering and perform more robust tracking. How-

ever, the increase of dimensionality of the observation spaces can increase the risk of track

losses.

Adding feature spaces. The conjugate clustering model that we developed allows for an

arbitrary number of feature spaces. One can include detectors of different nature, such as

sonar or infra-red range finders for the localization task, to improve the model performance.

Object statistical models. In this thesis we performed AV tracking under the assump-

tion that objects are represented by feature distribution and features are independently

generated. Other statistical models can be used. One possible generalization would be

to consider features to be generated by a marked cluster point process, where the child

point processes are governed by some potential function. In fact, conjugate mixtures is

the particular case of such a model. This allows for more sophisticated object shapes and

appearances. The optimization is usually performed using the variational approach, such

as mean field (or force field in physics), simulated field, etc. This kind of model is good to

account for sophisticated spatial scene structures with known statistical properties.

Another possibility is to consider partially observed particle diffusion models, governed

by drift and diffusion fields, as those considered in Chapter 7, but without any indepen-

dency assumptions. These models are potentially capable of reconstructing dependencies

between spatial points and thus restituating object forms. Moreover, clustering can be per-

formed based on regularity assumption for drift and diffusion fields. Though inference

in such models is a hard problem, that requires efficient numerical approximations to be

developed.

Considering other applications. The multimodal integration can be useful in various

other domains, where temporal parameter inference is performed based on unaligned data

arriving from physically different sensors. Examples could include tracking of chemical

reaction state in biophysics, airplane tracking by sonar and turbulence data from several

independent stations, disease state tracking by multiple biological factors etc.
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A.1 Manifold Sampling for the ITD function Pre-image.

The goal is to develop a method to sample isosurfaces of the auditory observation space

(ITD) function G defined by (2.4):

G(s; sMℓ
, sMr) =

1

c

(

‖s− sMℓ
‖ − ‖s− sMr‖

)

. (A.1)

We assume the system to be fully calibrated and microphones sMℓ
and sMr to be fixed.

Thus to simplify the notation we further write G(s) instead of G(s; sMℓ
, sMr). The sam-

pling technique proposed below follows the general principle of sampling method con-

struction described in Chapter 6 of [Zhigljavsky 1991].

Let’s take the orthonormal coordinate system such that its x axis goes through the two

microphones sMℓ
and sMr , from the left to the right microphone, and its center is located

at (sMℓ
+ sMr)/2. The orientation of the y and z axes can be arbitrary. Microphone

coordinates sMℓ
and sMr are then (−xF, 0, 0) and (xF, 0, 0) respectively for some xF ≥ 0.

The locus G(s) = g0 is defined by equation

‖s− sMℓ
‖ − ‖s− sMr‖ = cg0, (A.2)

that can be written in the (xyz) coordinates

√

(x+ xF)2 + y2 + z2 −
√

(x− xF)2 + y2 + z2 = cg0, (A.3)

which after some basic algebraic transformations leads to the surface equation

− y2

x2F − (cg0/2)2
− z2

x2F − (cg0/2)2
+

x2

(cg0/2)2
= 1. (A.4)

A surface S defined by (A.4) is a hyperboloid of two sheets with microphone locations

being its foci. The sign of g0 defines which part of the hyperboloid to consider, left or
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right. From (A.2) we find that x2F ≥ (cg0/2)
2, so by letting a2 = x2F − (cg0/2)

2 and

b2 = (cg0/2)
2, the equation (A.4) becomes

− y2

a2
− z2

a2
+
x2

b2
= 1, (A.5)

which is the canonical representation of a two sheet hyperboloid. Its asymptotic cone,

known also in auditory analysis as “the cone of confusion” is given by

− y2

a2
− z2

a2
+
x2

b2
= 0. (A.6)

We parametrize the surface (A.5) by







x = bt,

y = a
√
t2 − 1 cosφ,

z = a
√
t2 − 1 sinφ,

(A.7)

where t ≥ 1 and φ ∈ [0; 2π]. We denote θ = (t, φ) ∈ Θ the 2D surface coordinates and

s(θ) = (x(θ), y(θ), z(θ))⊤ the associated mapping (A.7).

The goal is to establish a distribution P (ds) = p(s)ds of some pre-defined density

p(s) on a hyperboloid (A.5), where p ≥ 0 is such that
∫

S p(s)ds = 1 and ds is the

surface measure on Ω = s(Θ). We make use of a well-known fact on measure transform

(see [Schwarz 1993], §2 of Chapter 6)

∫

Ω

p(s)ds =

∫

Θ

p(s(θ))D(θ)µ(dθ), (A.8)

where

D(θ) =

√

det(JJ⊤), (A.9)

J is the Jacobian matrix of s(θ) and µ is the Lebesgue measure on R
2. In particular, for the

mapping s(θ) defined by (A.7) one has

D(θ) =
√

a2b2(t2 − 1) + a4t2. (A.10)

We can define the sampling algorithm for P (ds) on the hyperboloid surface. For that

one has to draw realizations of a random vector ζ with distribution

P2(dθ) = p(s(θ))D(θ)µ(dθ), (A.11)

and consider a random vector ξ = s(ζ) that is distributed according to P (ds).

For the important case of ξ being distributed uniformly on a hyperboloid s(θ), θ ∈ Θ

for parameter domain Θ = [1, T ]× [0, 2π], one should consider

ζ ∼ α
√

a2b2(t2 − 1) + a4t2dθ (A.12)
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with

α =

(

2π|a|
∫ T

1

√

t2(a2 + b2)− b2dt
)−1

. (A.13)

The latter integral can be readily computed, which gives the following expression

α =

(

π|a|
[

T
√

(a2 + b2)T 2 − b2 − |a| − a2√
a2 + b2

log
T +

√

T 2 − b2/(a2 + b2)

1 +
√

a2/(a2 + b2)

])−1

.

(A.14)

The most natural way to sample the random variable ζ by (A.12) is the acceptance-rejection

method [Ermakov 1975].

A.2 Parameter Inference for Student-t Mixtures.

In Chapter 4 we mentioned that distributions P F
n (f ; θn) and PG

n (g; θn) in mixtures (4.8)

and (4.9) for modalities F and G respectively should not be necessarily Gaussian. In the

most general case P F
n (f ; θn) is different for every n and for every modality. Though

when no additional information on clusters is available, it is reasonable to consider the

same distribution family for all n. But one can choose different families for modalities F

and G according to statistical properties of feature detectors. In certain cases the algorithm

derivation presented in Chapters 4 and 5 would not change significantly.

In this Section we show how the Student t-distribution can be used in the context of

inference for conjugate mixture models. The obtained optimization scheme resembles the

one developed for Gaussian mixtures.

Without loss of generality we consider the modality F. Let’s take P F
n (f ; θn) to belong

to a Student t-distribution family for n = 1, . . . , N and keep the outlier class P F
N+1(f)

uniform

P F(f ; θ) =
N+1
∑

n=1

πnP
F
n (f ; θn), (A.15)

with P F
n (f ,θn) = St(f ; F(sn),Σn, ϑn), n = 1, . . . , N, (A.16)

and P F
N+1(f) = U(f ; V ). (A.17)

Here St(f ; F(sn),Σn, ϑn) is the Student t-distribution density function given by

St(f ; F(sn),Σn, ϑn) =
Γ(ϑn+r

2 )

Γ(ϑn

2 )

|Σn|−1/2

(πϑn)r/2

(

1 +
1

ϑn
‖f −F(sn)‖2Σn

)−ϑn+r
2

, (A.18)

where sn, Σn, and ϑn are included into θn.

Following [Peel 2000] we introduce two sets of latent variables. The assignment vari-

ables A = {A1, . . . , Am, . . . , AM} define the component of origin for each observa-

tion, the notation and the meaning are the same as in Chapter 4. The auxiliary variables
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U = {U1, . . . , Um, . . . , UM} are taken such that for n = 1, . . . , N

Fm | um, am = n; θn ∼ N (F(sn),Σn/um), (A.19)

and Um | am = n; θn ∼ Gamma(ϑn/2, ϑn/2), (A.20)

and Um,m = 1, . . . ,M are conditionally independent given a and the density function of

the gamma distribution Gamma(ϑ, ϑ̃) is given by

p(u; ϑ, ϑ̃) = {ϑ̃ϑuϑ−1/Γ(ϑ)} exp(−ϑ̃u)I(0,∞)(u), (A.21)

where ϑ, ϑ̃ > 0, the indicator function I(0,∞)(u) = 1 for u > 0 and is zero elsewhere

and Γ(ϑ) is the Gamma function. Then Fm are distributed by the Student law (A.18). We

adopt the following standard convention: upper case letters for random variables (A and

U ) and lower case letters for their realizations (a and u).

The penalization term HF (θ,θ
(q)) of the general KP algorithm is given by

HF (θ,θ
(q)) = − 1

P F(fm; θ)

M
∑

m=1

[

N+1
∑

n=1

αmn(θ
(q))
(

log πn +
ϑn
2

log
ϑn
2
− 1

2
log |Σn|+

+
ϑn + r − 2

2

(

ψ((ϑ(q)n + r)/2)− log((ϑ(q)n + ‖fm −F(s(q)n )‖2
Σ

(q)
n

)/2)
)

−

− log Γ

(

ϑ

2

)

− r

2
log(2π)− 1

2
γmn(θ

(q))(ϑ+ ‖fm −F(sn)‖2Σn
)
)

+

+ αm,N+1(θ
(q))
(

log πN+1 + logU(fm; V )
)

]

, (A.22)

where αmn and γmn denote posterior probabilities αmn(θ) = P (Am = n|fm;θ) and

γmn(θ) = P (Um|fm, Am = n;θ) as functions of parameters, and

ψ(t) =
∂Γ(t)

∂t

1

Γ(t)
(A.23)

is the Digamma function.

The expression for αmn can be derived straightforwardly from Bayes’ theorem, ∀n =

1 . . . N :

αmn(θ) =
πnP

F
n (fm; θn)

P F(fm; θ)
=

πnSt(fm;F(sn),Σn, ϑn)
N
∑

i=1
πiSt(fm;F(si),Σi, ϑn) + V −1πN+1

, (A.24)

and αm,N+1(θ) = 1−
N
∑

n=1
αmn(θ). The derivation for γmn is presented in [Peel 2000]

γmn(θ) =
ϑn + r

ϑn + ‖fm −F(sn)‖2Σn

. (A.25)
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The update expressions for {π1, . . . , πN+1,Σ1, . . . ,ΣN} are similar to those derived

in Chapter 4:

π(q+1)
n =

1

M

M
∑

m=1

αmn(θ
(q+1),θ(q)), (A.26)

Σ
(q+1)
n =

M
∑

m=1
κmn(θ

(q+1)
,θ

(q)
)
(

fm−F(s(q+1)
n )

)(

fm−F(s(q+1)
n )

)⊤

M
∑

m=1
αmn(θ

(q+1)
,θ

(q)
)

, (A.27)

where we introduced

αmn(θ, θ̃) = (1− hq)αmn(θ) + hqαmn(θ̃), (A.28)

and κmn(θ, θ̃) = (1− hq)αmn(θ)γmn(θ) + hqαmn(θ̃)γmn(θ̃). (A.29)

Moreover, the equation for optimal tying parameters s1, . . . , sN resembles that from Chap-

ter 4, only the weights are adjusted so that the first part of (4.38) becomes

κ̄mn(θ
(q+1),θ(q))(f̄n −F(s(q+1)

n ))⊤
(

Σ
(q+1)
n

)−1
F ′(s(q+1)

n ), (A.30)

where we denoted F ′ and G′ the Jacobian matrices of F and G respectively and

κ̄mn(θ
(q+1),θ(q)) =

M
∑

m=1

κmn(θ
(q+1),θ(q)), (A.31)

and f̄n = κ̄mn(θ
(q+1),θ(q))−1

M
∑

m=1

κmn(θ
(q+1),θ(q))fm. (A.32)

If the ‘degrees of freedom’ parameters ϑ1, . . . , ϑN are fixed to some values, the algorithms

presented in Chapters 4 and 5 would require only minor changes, so we suppose that their

performance would be essentially the same. Otherwise, if one considers ϑ1, . . . , ϑN+1 as

parameters to estimate, their optimal values should be found from an equation that does

not admit a closed form solution. In the case of the efficient EM algorithm described in

Chapter 5 (with hq ≡ 1), this equation is given below

1
M
∑

m=1
αmn(θ

(q))

M
∑

m=1

αmn(θ
(q))
(

log γmn(θ
(q))− γmn(θ

(q))
)

+ 1 =

= log
(

(ϑ(q)n + r)/2
)

− ψ
(

(ϑ(q)n + r)/2
)

− (log(ϑn/2)− ψ(ϑn/2)) . (A.33)

We note that the left-hand side of (A.33) is non-positive, as soon as log t ≤ t − 1. At the

same time, the function ϕ(t) = log t − ψ(t) is strictly decreasing and strictly convex for

t > 1. Indeed, one can use the expression

ψ(t) = log t−
1
∫

0

1
∫

0

1− x
(1− xy)(− log(xy))

(xy)t−1dxdy, (A.34)
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to show that ϕ′(t) < 0 and ϕ′′(t) > 0 for t > 1. This means that the optimization prob-

lem (A.33) is convex. Moreover, the optimization domain can be restrained as soon as

ϑ
(q+1)
n < ϑ

(q)
n + r. Thus one can consider this restrained domain and apply efficient tech-

niques that solve covex optimization problems [Polyak 1987] to find the optimal ‘degrees

of freedom’ parameters ϑ1, . . . , ϑN .
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[Bailly-Bailliére 2003] E. Bailly-Bailliére, S. Bengio, F. Bimbot, M. Hamouz, J. Kit-
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Modèles de Mélanges Conjugués pour la Modélisation de la Perception

Visuelle et Auditive

Résumé:

Dans cette thèse, nous nous intéressons à la modélisation de la perception audio-visuelle

avec une tête robotique. Les problèmes associés, notamment la calibration audio-visuelle,

la détection, la localisation et le suivi d’objets audio-visuels sont étudiés. Une approche

spatio-temporelle de calibration d’une tête robotique est proposée, basée sur une mise

en correspondance probabiliste multimodale des trajectoires. Le formalisme de modèles

de mélange conjugué est introduit ainsi qu’une famille d’algorithmes d’optimisation

efficaces pour effectuer le regroupement multimodal. Un cas particulier de cette famille

d’algorithmes, notamment l’algorithme EM conjugué, est amélioré pour obtenir des

propriétés théoriques intéressantes. Des méthodes de détection d’objets multimodaux

et d’estimation du nombre d’objets sont développées et leurs propriétés théoriques sont

étudiées. Enfin, la méthode de regroupement multimodal proposée est combinée avec des

stratégies de détection et d’estimation du nombre d’objets ainsi qu’avec des techniques

de suivi pour effectuer le suivi multimodal de plusieurs objets. La performance des

méthodes est démontrée sur des données simulées et réelles issues d’une base de données

de scénarios audio-visuels réalistes (base de données CAVA).

Mots clés : modèles de mélanges conjugués, analyse audio-visuel de scène, calibration

audio-visuelle, détection multimodale d’objets, suivi multimodal d’objets

Conjugate Mixture Models for the Modelling of Visual and Auditory

Perception

Abstract:

In this thesis, the modelling of audio-visual perception with a head-like device is

considered. The related problems, namely audio-visual calibration, audio-visual object

detection, localization and tracking are addressed. A spatio-temporal approach to the

head-like device calibration is proposed based on probabilistic multimodal trajectory

matching. The formalism of conjugate mixture models is introduced along with a family

of efficient optimization algorithms to perform multimodal clustering. One instance of this

algorithm family, namely the conjugate expectation maximization (ConjEM) algorithm is

further improved to gain attractive theoretical properties. The multimodal object detection

and object number estimation methods are developed, their theoretical properties are

discussed. Finally, the proposed multimodal clustering method is combined with the

object detection and object number estimation strategies and known tracking techniques to

perform multimodal multiobject tracking. The performance is demonstrated on simulated

data and the database of realistic audio-visual scenarios (CAVA database).

Keywords: conjugate mixture models, audio-visual scene analysis, audio-visual calibra-

tion, multimodal object detection, multimodal object tracking


	Introduction
	Biological View on Audio-Visual Perception
	Overview of Computational Models for Audio-Visual Perception
	Modelling Audio-Visual Perception: Ideas and Goals
	Outline of the Thesis

	Audio-Visual Scene Analysis Using a Head-like Device
	Audio-Visual Acquisition Devices
	Binocular Visual Features
	Binaural Hearing
	CAVA Database
	Discussion

	Spatio-temporal Approach to Audio-Visual Calibration
	Multisensor Calibration Task
	Calibration Through Multimodal Trajectory Matching
	Trajectory Reconstruction and Parameter Estimation.
	Problem Discretization and Relaxation
	Hidden Trajectory Inference Using the EM Algorithm
	Microphone Locations Inference Using the EM Algorithm.
	Calibration Algorithm.

	Experimental Validation
	Experiments with Simulated Data
	Experiments with Real Data

	Discussion

	Spatial Multimodal Clustering
	Unsupervised Clustering of Multimodal Data
	Conjugate Mixture Models for Multimodal Data
	Conjugate KP Algorithm for Clustering Multimodal Data
	The Penalization Step
	The Maximization Step
	Generalized KP for Conjugate Mixture Models
	Identifiability and Algorithm Convergence

	Experimental Evaluation
	Discussion

	Conjugate EM Algorithm for Clustering Multimodal Data
	Conjugate EM Algorithm for Clustering Multimodal Data
	The Expectation Step
	The Maximization Step
	Generalized EM for Conjugate Mixture Models
	Analysis of Local Search Procedure
	Global Search and the Choose Procedure

	Clustering Using Auditory and Visual Data
	Experimental Validation
	Experiments with Simulated Data
	Experiments with Real Data

	Discussion

	Algorithm Initialization and Model Selection
	Multimodal Cluster Initialization and Model Selection
	Initialization
	EM Initialization for Conjugate Gaussian Mixture Models
	The Initialize Procedure
	Experimental Validation

	Model Selection
	The Select Procedure
	Weak Consistency of Multimodal Information Criteria
	Experimental Validation

	Discussion

	Spatio-temporal Multimodal Clustering
	Multimodal Multiobject Tracking
	Conjugate Filtering for Multimodal Multiobject Tracking
	Experimental Results
	Discussion

	Conclusion
	Main Contributions
	Future Work

	Appendix
	Manifold Sampling for the ITD function Pre-image.
	Parameter Inference for Student-t Mixtures.

	Bibliography

