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for the He50 cluster in particles per Å 3. . . . . . . . . . . . . . . . . . . . . 144

9.22 3d density helium density as a function of the fixed distance, dcst, for the

MgHe20 droplet. The density is expressed in particles per Å 3. . . . . . . . 146
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Å−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
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Résumé
Ces dernières années, les agrégats d’hélium superfluides ont fait l’objet de nombreuses

études aussi bien expérimentales que théoriques. Le fruit de ces études a permis le

développement de méthodes spectroscopiques innovantes (HENDI) utilisant les nanogouttes

d’hélium comme l’ultime matrice, exploitant ainsi la très faible température de ce milieu

particulier et sa faible intéraction avec les dopants pour une meilleure résolution spectrale.

Cependant, un nombre important de questions subsistent quant aux agrégats d’hélium

dopés, particulièrement, ceux dopés par les alcalino-terreux. En effet, la position d’une

impureté au sein de la gouttelette d’hélium est loin d’être un problème trivial pour cer-

taines espèces telles les alcalino-terreux. Ceci est particulièrement vrai dans le cas où

l’impureté est l’atome de magnésium. Des preuves expérimentales d’un état solvaté du

magnésium sont annoncées dans la littérature tandis que de récentes expériences laissent

penser à une position plutôt surfacique du magnésium dans les agrégats d’hélium. Du

point de vue théorique, la même ambigüıté persiste quant à la position de Mg dans la

nanogouttes d’helium. Dans le but de contribuer a une meilleure compréhension des clus-

ters d’hélium dopés par les métaux alcalino-terreux (Mg et Ca), nous avons, au cours de

ce travail, du déterminer avec précision les energies d’intéractions des états fondamentaux

des systèmes van der Waals CaHe et MgHe. Pour ce faire, des méthodes ab initio telles les

approaches des clusters couplés (CC) mais aussi perturbationnelles (MP2 et MP4) ont été

appliquées à ces deux systmes avec succès. Les meilleurs potentiels d’intéraction ont été

utilisés par la suite comme potentiels d’intéractions de paire dans l’approche Monte Carlo

à diffusion (DMC) en combinaison de deux types de potentiel d’intéraction pour l’hélium.

Aussi bien pour CaHen que pour MgHen, des simulations DMC ont été produites depuis

n = 1 jusqu’ à n = 220, le résultat principal en est une position surfacique de l’impureté

quelque soit l’alcalino-terreux considéré. Dans le cas particulièrement délicat des clusters

d’hélium dopés par le magnésium, des calculs de DMC avec des contraintes géométriques

montrent que le potentiel radial effectif de Mg dans He20 et He50 est plutôt plat. En fin,

sont présentés également les résultats concernant la recombinaison dynamique de deux

atomes de magnésium à l’intérieur d’un agregat d’environ 2000 atomes d’hélium utilisant

une méthode basée sur un potentiel effectif pour l’intéraction He-He.
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Abstract
During the last decades, superfluid helium clusters have been widely studied both

experimentally and theoretically. As a result of the latter studies, a new spectroscopic

domain has emerged (HENDI) where helium nanodroplets are used as ultimate matrices

for accurate spectroscopic measurements, taking advantage of their very low temperature

and their weak interaction with the impurity. However, many questions still are remaining

about the helium nanodroplets, especially those doped with alkaline-earth atoms. In fact,

the simple position of an impurity in this medium is far from being trivial for some doping

species like the alkaline-earth atoms. This is particularly true when the impurity is the

magnesium atom. Experimental evidence of a completely Mg solvated state is announced

in the literature whereas very recent experiments advance the opposite situation for the Mg

atom (near the surface). From the theoretical point of view, the position of the Mg atom in

the helium droplet still remain ambiguous in the actual literature. In order to contribute

to a better understanding of the alkaline-earth (Mg and Ca) doped helium clusters, we

have determined, in this work, accurate interaction energies for both CaHe and MgHe van

der Waals systems. For this aim, ab initio methods such as the coupled clusters (CC) as

well as Møller-Plesset approaches (MP2 and MP4) have been successfully applied to both

systems. The best interaction potentials have been then used as pair interactions for the

diffusion Monte Carlo (DMC) approach in combination with two accurate helium pair

interactions. For both CaHen and MgHen, DMC calculations have been carried out for

n = 1 up to 220, the result was a surface location of the dopant whatever the latter is. In

the particularly delicate case of Mg doped helium clusters, constrained DMC calculations

have been performed for He20 and He50. The results were a very flat energy profile in

both cases. Finally, results concerning the dynamics of recombination of two Mg atoms

based on an effective potential for helium inside an almost 2000 helium atom cluster are

given.



Chapter 1

General introduction

Since the first experiments on doped 4He droplets [1–8], this ultra-cold environment has

become an attracting and intriguing domain of physical and chemical research for all the

scientific community : experimentalists [9] as well as theoreticians [10]. Why these exciting

features of helium droplets ? We would simply say because this unusual medium presents

unique properties. In fact the helium nanodroplets still are liquid at a temperature [11–15]

of about 0.4 K. Furthermore, these droplets are superfluid and therefore present absence

of internal friction which allows a quasi-free rotation of the molecular dopants [12, 16–18].

On the other hand, the extremely weak interaction energies with a doping impurity are

at the same time a great advantage for spectroscopic experiments and a real challenge for

theoreticians who aim at an accurate determination of those interactions. Among many

other interesting properties of helium nanodroplets, we can cite the ability of the latter

to rapidly dissipate the excess energy of excited impurities [19]. All these exceptional

characteristics of helium droplets make them ideal matrices in order to carry out highly

accurate spectroscopic experiments. The latter constitute a recently emerged domain: the

HElium Nanodroplet Isolation Spectroscoy (known under the acronym HENDI). Finally,

helium nanodroplets have given to scientists the unique opportunity for studying chemical

reactions and very reactive species in this medium [20–23].

However, the highly quantum nature of helium nanodroplets in addition to its inter-

action weakness with dopants make the ”simple” solvation process of an atomic dopant

not really understood nor rationalized up to now.

Considering the alkaline atom cases, despite their extremely weak van der Waals in-

teractions with helium, they support at least one bound state and theoretical calculations

as well as experiments have demonstrated a surface location for all alkaline atoms [24–27].

On the other hand the location of the neutral alkaline-earth atoms is more ambiguous
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especially for the magnesium atom. Some experiments advance a completely solvated state

of this impurity. In fact Reho et al. [28] measured the laser-induced fluorescence spectra

of the 31P 0
1 ← 31S0 transition of Mg solvated in helium nanodroplets and compared their

result to the same kind of spectra of Mg in bulk liquid helium measured by Moriwaki et

al. [29]. The relatively good overlap between the two spectra led Reho et al. to suppose

a completely solvated state of Mg. Other experiments imply a surface location of the Mg

atom. Ren and co-workers [30] have recently measured the electron energy dependence

of the ionization yield of alkaline-earth and Xenon atoms picked-up by helium clusters

and found a qualitative shape difference between the yield curves of species completely

solvated in the droplet (Xe) and species located in the surface region (Ca, Sr and Ba).

The measurements also suggest a surface location of Mg.

From the theoretical point of view the situation is not clearer. In fact, Mella et al. [31]

have performed diffusion quantum Monte Carlo (DMC) calculations of the Mg@Hen sys-

tems with n up to 50. The results of these calculations led to ambiguous mixed cluster

structures since the position of the Mg impurity in the helium nanodroplets seems to

depend on the cluster size. Secondly, the results published by Mella et al. appear to fail

to reproduce a bound state for very small Mg doped clusters.

On the other hand, an alternative theoretical approach has been applied to the Mg

doped helium clusters by Hernando et al. [32, 33]. Using a density functional theory

(DFT) treatment, the authors found a completely solvated state of Mg. However, we are

not very confident in these results since the DFT is a semi-empirical method the results

of which directly depend on the parametric functional used to describe the correlation

part of the energy.

In order to bring some contributions to the understanding of the Mg doped helium

nanodroplets, we have performed accurate diffusion Monte Carlo calculations exactly

(within statistical errors) solving the many-body Schrödinger equation for MgHen system,

with n up to 220, using two types of helium pair potentials [34, 35] in combination with a

very accurate MgHe ground state pair potential which we calculated. The less ambiguous

CaHen has also been treated by the DMC method and some results are also reported.

The weakness of the van der Waals interactions, which are briefly introduced in Chap-

ter 2, involving helium and a dopant implies the choice of appropriate and accurate ab ini-

tio methods to determine the dopant-helium interactions. For this aim, ab initio methods

are briefly introduced in Chapter 3. The most accurate among the latter have been used

in order to calculate the ground state potential energy interactions of CaHe and MgHe

respectively in Chapter 4 and Chapter 5. While Chapter 6 is dedicated to the presenta-

tion of the variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo
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(DMC) methods, Chapter 7 exposes some interesting characteristics of helium droplets.

In Chapter 8, the computational details allowing accurate and robust DMC calculations

are given. DMC results for both Ca@Hen and Mg@Hen are presented in Chapter 9. Fi-

nally, a classical dynamics simulation based on an effective potential for helium, which

takes into account the large zero point energy and well estimates the helium density, is

presented in Chapter 10.



6 Chapter 1. General introduction



Chapter 2

Weak interactions

2.1 Introduction

The weak interaction energies between atomic or molecular system have been named van

der Waals interactions in recognition of Johannes van der Waals work about the equation

of state of ideal gas :

P V̄ = RT (2.1)

which he modified into the following equation of state to better take into account the

imperfection aspect of real gases:

(P +
a

V̄ 2
)(V̄ − b) = RT (2.2)

In Eqs. 2.1 and 2.2 R is the gas constant, T , the temperature and V̄ , the molar volume

of the fluid. However, in equation 2.2 two new parameters appear in the equation of

state : a and b. The first reflects the strength of molecular or atomic attraction and

the second (b) is proportional to the volume of the particle. The work of van der Waals

has encouraged scientists of the 20th century (Debye, Keesom, London,...) to study the

interactions between molecules and atoms.

2.2 Dispersion interactions

After the main investigations of London in this domain [36–38], four primary types of

intermolecular interaction energies have been established : electrostatic, induction, dis-

persion and exchange. These interactions belong to two main categories : long range

interactions and short range interactions. Long range effects occur by definition at large
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interatomic (intermolecular) distances, where the wave functions of each components do

not overlap whereas the short range interactions are due to the overlap of the wave func-

tions.

Here, we are confronted with dispersion forces since all the pair interactions we need

in this study (He2, CaHe and MgHe) only imply atomic species which obviously do not

have permanent multipoles. Moreover, the closed shell nature of the systems excludes

chemical bonding.

London provided the first expression of the long range attractive interactions (known

as London forces) based on quantum mechanics [39] :

Udis(r) =
−3α2EI

4(4πǫ0)2r6
=
−C6

r6
(2.3)

where α and EI are respectively the polarizability and the ionization energy of the system

and ǫ0 the permittivity of vacuum. On the other hand the short range interaction, due

to the overlap of the electronic cloud of atoms, can be generally expressed as

Urep(r) = Ae−βr (2.4)

where A and β are real parameters depending on the nature of the system and r is the

interatomic (or intermolecular) distance.

Combination of the long range interaction, ie Eq. 2.3, and the short range repulsion, ie

Eq. 2.4, leads to the basic description of the system by means of the following expression:

Utot = Urep + Udis (2.5)

= Ae−βr − C6

r6
(2.6)

(2.7)

Since the dispersion energy contains higher order terms arising from the contributions

of other instantaneous multipoles such as quadrupoles and octopoles, the total function

with which we model (fit) the pair interaction energies of our systems is written as :

Vpair(r) = Ae−βr − C6

r6
− C8

r8
− C10

r10
(2.8)

where Ci are ith order dispersion coefficients.



Chapter 3

Electronic Structure Methodology

In this chapter we will describe the main electronic structure theories in order to under-

stand how the time-independent Schrödinger equation is solved. Most of these methods

have been used to determine the electronic energy curves of the MgHe and CaHe van der

Waals systems. All the following methods, which allow to solve the nonrelativistic time-

independent Schrödinger equation, are based on the Born-Oppenheimer approximation.

It assumes a separation between the motion of the electrons and the nuclei, leading to

two eigenvalue equations: the electronic and the nuclear Schrödinger equations. In this

chapter we will show how we can extract the two main unknowns, the energy and the

wave function, from those equations using different approaches.

3.1 Time-independent Schrödinger Equation

All ab initio methods which are presented in this chapter to perform quantum chemical

calculations, aim at solving the stationary nonrelativistic Schrödinger equation [40]. This

(time-independent) equation is given as

Ĥ|Ψ〉 = E|Ψ〉 (3.1)

In the previous equation the total energy, E, is calculated by applying the time-independent

molecular Hamiltonian, Ĥ , on the wave function, |Ψ〉, describing the system’s properties.

The molecular Hamiltonian can be described in terms of distinct parts as

Ĥ = T̂e + T̂N + V̂Ne + V̂NN + V̂ee (3.2)

In the expression above one can notice that the spin contributions due to the electronic

and nuclear particles of the system are neglected. The different parts of the right hand
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side of equation ( 3.2) are explicitly expressed as :

T̂e = − h̄2

2me

∑

i

△i (3.3)

T̂N = − h̄
2

2

∑

A

△A

MA
(3.4)

VNe = − e2

4πǫ0

∑

A

∑

i

ZA
riA

(3.5)

VNN =
e2

4πǫ0

∑

A

∑

B>A

ZAZB
RAB

(3.6)

Vee =
e2

4πǫ0

∑

i

∑

j>i

1

rij
(3.7)

where h̄ is the reduced Planck’s constant, △ is the Laplacian operator, me and MA are

the mass of the electron and the nucleus, respectively. These masses are used for the

definition of the two kinetic energy operators, T̂e and T̂N , respectively for the electrons

and the nuclei. The term VNe represents the Coulomb potential between an electron i

and a nucleus A. Finally, the last two terms, Vee and VNN , represent the overall Coulomb

repulsion between pairs of electrons and nuclei, respectively. ZA describes the atomic

number of nucleus A, rij the distance between electron i and j, riA the distance between

electron i and nucleus A, RAB that between two nuclei A, B. Notice that e and ǫ0 are

respectively the elementary charge and the permittivity constant of vacuum. A purely

potential operator V̂ can be defined as

V̂ = VNe + VNN + Vee (3.8)

In order to solve equation ( 3.1), some approximations are necessary, among them, the

main approximation used is the Born-Oppenheimer approximation.

3.1.1 Born-Oppenheimer Approximation

Unfortunately, the Schrödinger equation, eq. 3.1, is not exactly solvable for most systems,

except in the case of one-electron systems such as the hydrogen atom or the H+
2 molecule.

One way to overcome this inability is a separation between the nuclear terms and the

electronic terms [41]. The most common way to do so is applying the Born-Oppenheimer

approximation (BOA) [42] to equation 3.1. Since the mass difference between the electron

and the nucleus is very important, for example in the case of the helium atom, the
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mass ratio of the nucleus to the electron is more than 3600, electrons are assumed to

instantaneously adapt to the nuclear motion. In other words, the geometry of the nuclei

can be considered as fixed when studying the electrons. Applied to the time-independent

Schrödinger equation, the BOA leads to two distinct equation : the electronic Schrödinger

equation and the nuclear Schrödinger equation which are introduced in the following.

3.1.2 Electronic Schrödinger Equation

Under the Born-Oppenheimer approximation (BOA) a separation between the motion of

the electrons and the nuclei is done. Ĥe, the electronic Hamiltonian in Eq. 3.2, is the part

of the total Hamiltonian which accounts for the electrons. In this electronic operator,

Ĥe, the kinetic energy term for the nuclei and the electrostatic nuclear interaction, are

dropped :

Ĥe = T̂e + VNe + Vee (3.9)

= − h̄2

2me

∑

i

△i −
1

4πǫ0

(∑

A

∑

i

ZAe
2

riA
+
∑

i

∑

j>i

e2

rij

)

(3.10)

The purely electronic Schrödinger equation then becomes

Ĥe|Ψe(ri,RA)〉 = Ee(RA)|Ψe(ri,RA)〉 (3.11)

In Eq. 3.11 |Ψe(ri,RA)〉 is the electronic wave function and explicitly depends on the elec-

tron coordinates, ri, and parametrically on the nuclear coordinates, RA. The electronic

energies, Ee(RA), also parametrically depend on the vector-coordinate RA.

In practice, the stationary electronic Schrödinger equation, Eq. 3.11, is solved and

Ee(RA) determined. The potential energy operator for a given electronic state - that is

to say a point in the potential energy surface - is determined as

V̂e(RA) = Ee(RA) + V̂NN(RA) (3.12)

The stationary points evaluated at different nuclear coordinates, by operation of the V̂e

operator onto the wave function, will produce potential energy surfaces or potential energy

curves in case of diatomic molecules.
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3.1.3 Nuclear Schrödinger Equation

Another consequence of the Born-Oppenheimer approximation is the appearance of the

following nuclear Schrödinger equation

ĤN |ΨN(ri,RA)〉 = EN |ΨN(ri,RA). (3.13)

The average values of the electronic coordinates calculated over the electronic wave func-

tion can be applied to the motion of the nuclei. The nuclear Hamiltonian, ĤN , is written

as the sum of the electronic operator Ve(RA) of Eq. 3.12 and the kinetic energy operator

for the nuclei T̂N given in Eq. 3.2 :

ĤN = − h̄2

2MA

∑

A

△A +
1

4πǫ0

∑

A

∑

B>A

ZAZB
RAB

+ Ee(RA) (3.14)

= − h̄2

2MA

∑

A

△A + V̂e(RA) (3.15)

The nuclear energy, EN , in Eq. 3.13, now describes the total energy, Et, in the Born-

Oppenheimer approximation and accounts for the electronic and vibrational energy of a

given system. The BOA is suited for cases when electronic and nuclear Hamiltonians

are well separated, in other words, when nuclear motion cannot cause a change in the

electronic state. The potential energy curves described in this work concern the electronic

ground states, which are well separated from the excited electronic states. This justifies

the use of the BOA.

3.2 The Variational Principle

Given an arbitrary wavefunction for a system, the corresponding total energy is, by defi-

nition, the expectation value of the Hamiltonian operator. This concept is translated into

the following equation :

E =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 (3.16)

The wave function can be expanded in terms of eigenfunctions of the Hamiltonian oper-

ator, Ĥ , as :

|Ψ〉 =
∑

k

ck|Φk〉 (3.17)

where the coefficients in the expansion are complex numbers defined as : ck = 〈Φk|Ψ〉.
Introducing Eq. 3.17 in Eq. 3.16 leads to the following equations :

E =

∑

k,l c
∗

kcl〈Φk|Ĥ|Φl〉
∑

k,l c
∗

kcl〈Φk|Φl〉
(3.18)
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=

∑

k,l c
∗

kclEl〈Φk|Φl〉
∑

k,l c
∗

kcl〈Φk|Φl〉
(3.19)

=

∑

l |cl|2El
∑

l |cl|2
(3.20)

By definition of Eq. 3.17, the ground state energy is E0. It is therefore clear that :

E0 ≤ E (3.21)

The variational theorem gives an approximation to the ground state wave function : given

a parameterized wave function, its parameters are adjusted to obtain the lowest energy.

The optimized function is then an approximation to the ground state wave function.

3.3 Solving the Electronic Schrödinger Equation

The solutions of the electronic Schrödinger equation (Eq. 3.11) for different geometries

provide potential energy surfaces or curves. These curves will be used as pair potentials in

DMC and dynamic calculations. In order to solve Eq. 3.11 it is important to appropriately

represent the electronic wave functions. A simple and approximate way to represent a

wave function is the use of Slater determinants.

3.3.1 Slater Determinant

According to the Pauli exclusion principle, a wave function must be antisymmetric under

exchange of two fermions. This principle is satisfied by using a Slater determinant to

antisymmetrize a wave function which can then describe the ground state of a molecule.

The Slater determinant in its abbreviated form,

ψ = |ϕ1ϕ2 · · ·ϕn| (3.22)

is written, in a less compact shape, as

ψ =
1√
n!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ϕ1(x1) ϕ2(x1) · · · ϕn(x1)

ϕ1(x2) ϕ2(x2) · · · ϕn(x2)
...

...
. . .

...

ϕ1(xn) ϕ2(xn) · · · ϕn(xn)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(3.23)
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is described by mono-particle functions, ϕ(x), also called spin orbitals. A spin orbital is

composed as a product of a spatial orbital, φ(r), and a spin function α(σ) or β(σ)

ϕ(xi) = ϕ(r, σ) = φ(r)
{ α(σ)

β(σ)
(3.24)

The spin-orbitals are assumed to be orthonormal that is to say, they verify the following

relation

〈ϕi|ϕj〉 = δij (3.25)

where δij is the Kronecker delta which equals 0 if i 6= j and 1 otherwise. The variational

principle (see section 3.2) states that the best wave function Ψ0(x) is the one that gives

the lowest energy

E0 = 〈Ψ0(x)|Ĥe|Ψ0(x)〉 (3.26)

Now, after having applied the BOA to the Schrödinger equation, in a first step the energy

minimization, within the model of an antisymmetrized product, according to the varia-

tional principle, leads to the Hartree-Fock equations.

3.3.2 Hartree-Fock Equations

The Hartree-Fock (HF) method [43–45] is an approximation which determines the ground

state energy and wave function for an N-electron system. It approximates the exact wave

function by a single antisymmetrized product (a determinant) that is optimized by solving

the Hartree-Fock equations iteratively, in a process known as the self-consistent field (SCF)

method.

Minimizing the energy in Eq. 3.26 is made by varying the space part of the spin-orbitals.

The Hartree-Fock equation

f̂(xi)|ϕ(xi)〉 = εi|ϕ(xi)〉 (3.27)

is an eigenvalue equation whose solution gives the minimum energy of the system, E0,

and also the optimal spin-orbitals, ϕ(xi). The single particle Fock operator

f̂(xi) = ĥ(xi) + v̂HF (xi) (3.28)

with

ĥ(xi) = − h̄2

2me
△i +

∑

A

ZAe
2

4πǫ0riA
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v̂HF (xi) =
N∑

j

[

Ĵj(xi) + K̂j(xi)
]

is defined by the single electron Hamiltonian, written as ĥ(xi), and the effective Hartree-

Fock potential operator v̂HF (xi). The latter is defined by two components : the first term

is the classical Coulomb operator

Ĵj(x1)|ϕi(x1)〉 =
[ ∫

ϕ∗

j (x2)
e2

4πǫ0r̂12
ϕj(x2)dx2

]

|ϕi(x1)〉. (3.29)

This operator represents the interaction of one electron, in this case electron i, with the

remaining N − 1 electrons. The second term is known as the exchange operator and is of

purely quantum nature :

K̂j(x1)|ϕi(x2)〉 =
[ ∫

ϕ∗

j(x2)
e2

4πǫ0r̂12
ϕi(x2)dx2

]

|ϕj(x1)〉. (3.30)

The two-electron potential operator 1
r̂12

describes the electrostatic potential energy be-

tween electron 1 and electron 2. Application of K̂ causes the position and spin of electron

i to be exchanged with that of electron j.

3.3.3 Restricted Closed-Shell Hartree-Fock

When solving the Hartree-Fock (HF) equation, Eq. 3.27, one needs to evaluate the shape

of the spin orbitals. For a closed-shell molecule, the pair of spin orbitals have the same

spatial function :

ϕ2i(x) =

{ ψi(r)α(σ)

i = 1, 2, ...K

ψi(r)β(σ)

(3.31)

Introducing this equation into the HF Eq. 3.27 results in two distinct HF equations,

f̂(x1)|ψi(r1)α(σ1)〉 = εi|ψi(r1)α(σ1)〉 (3.32)

f̂(x1)|ψi(r1)β(σ1)〉 = εi|ψi(r1)β(σ1)〉 (3.33)

given in terms of their spin functions, α(σi) and β(σi). In order to get an expression

exclusively in terms of the spatial orbitals, it is necessary to remove the spin function

from the Fock operator. To do so, the spin orbital is replaced by its spatial orbital and

spin functions. In a closed-shell system, the contributions from the α terms and those

from β are equal. It is then sufficient to multiply Eq. 3.32 from the left by α∗(σi) and

integrate over its spin
[ ∫

α∗(σ1)f̂(x1)α(σ1)dσ1

]

|ψi(r1)〉 = εk|ψk(r1)〉 (3.34)
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In Eq. 3.34, f̂ is the closed-shell Fock operator and is written in the following form

f̂(r1) = ĥ(r1) +
N/2
∑

i=1

(

2Ĵi(r1)− K̂i(r1)
)

(3.35)

where N/2 is the number of α or β electronic particles. Introducing the permutation

operator, the Fock operator can be written in terms of spatial orbitals as

f̂(r1) = ĥ(r1) +
N/2
∑

i=1

∫

ψ∗(r2)
e2

4πǫ0r̂12

(2− P̂12)ψi(r2)dr2 (3.36)

This involves that the Coulomb and exchange operators are now defined with respect to

the spatial orbitals and are respectively written as

Ĵi(r1)|ψk(r1)〉 =
[ ∫

ψ∗

i (r2)
e2

4πǫ0r̂12

ψi(r2)
]

dr2|ψk(r1)〉 (3.37)

and

K̂i(r1)|ψk(r1)〉 =
[ ∫

ψ∗

j (r2)
e2

4πǫ0r̂12

ψk(r2)
]

dr2|ψj(r1)〉. (3.38)

Since the Fock operator has been defined in terms of the spatial orbitals, the Roothaan-

Hall equations provide an algebraic method that allows to solve the Hartree-Fock equa-

tions. These equations are introduced in the following section.

3.3.4 Roothaan-Hall Equations

In the previous section it has been demonstrated that the spatial orbitals were obtained

by integrating out the spin functions. Now, The Hartree-Fock Eq. 3.27 can be rewritten

in terms of these spatial orbitals following the equation below

f̂(r1)|ψk(r1)〉 = εk|ψk(r1)〉 (3.39)

Unfortunately, in case of molecular systems, Eq. 3.39 can not be solved analytically,

it is hence converted into a set of algebraic equations by introducing a set of known

functions, as introduced by Roothaan and Hall [46, 47]. The advantage of the Roothaan-

Hall equation formalism is that the molecular orbitals can be expanded into a linear

combination of known one-electron functions :

|ψk〉 =
K∑

µ=1

Cµk|φµ〉 (3.40)
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In the previous expression, the basis functions are written with Greek indices and the

molecular orbitals with Latin ones. Inserting Eq. 3.40 into Eq. 3.39, multiplying from the

left with φ∗

ν and integrating gives

K∑

µ

Cµk

Fνµ
︷ ︸︸ ︷∫

φ∗

ν(r1)f̂(r1)φν(r1)dr1 = εk
K∑

µ

Cµk

Sνµ
︷ ︸︸ ︷∫

φ∗

ν(r1)φν(r1)dr1 (3.41)

Eq. 3.41 can be written in a more compact shape as

FC = SCε (3.42)

where F is the Fock matrix, S the overlap matrix and the matrix C which contains the

coefficients for the molecular orbitals φi in the column i. The molecular orbital energies

are given by the diagonalized matrix ε. All these matrices are hermitian which means

that for real orbitals, they are real and symmetric.

The Fock matrix F depends on the coefficients, C. This makes the Roothaan-Hall

equations nonlinear and in order to solve a nonlinear system an iterative approach is used

: the self-consistent field procedure which is discussed below (Section 3.3.5).

3.3.5 Self-consistent Field

The Self-consistent Field procedure (SCF) is an iterative method which is used to solve

the Hartree-Fock equations [43]. It has also been applied to the Roothaan-Hall equations.

The SCF method first solves the nonlinear equations with a guessed set of molecular

orbital coefficients, obtained for example by diagonalizing the one-electron part of the

Hamiltonian. Since the Fock operator depends on these coefficients, after one iteration

new coefficients are calculated with new energies. The procedure is repeated until self-

consistency has been reached and the Hartree-Fock energy is then given as

EHF = 〈Ψ0(x)|Ĥe|Ψ0(x)〉 (3.43)

The Hartree-Fock energies depend on the basis set quality and the Hartree-Fock limit is

reached (saturation of the one electron basis) when increasing the basis set quality does

not change the energy.
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3.4 Configuration Interaction (CI)

The correlation energy, Ecorr, is defined with respect to the Hartree-Fock energy and the

total non-relativistic energy (≡ Ee from eq. 3.11) as

Ecorr = ETot. −EHF (3.44)

This correlation energy is a negative quantity since the Hartree-Fock energy defines an

upper bound to the total exact energy. To account for the correlation energy, many

methods exist. One way to do so is to expand the exact electronic wave function into a

linear combination of Slater determinants (CI). A single determinant ground-state wave

function for the N electrons, following the HF scheme, is composed with a set of 2K spin

orbitals

|Ψξ
0〉 = |ϕ1ϕ2...ϕiϕj...ϕN 〉 (3.45)

The configuration interaction method is based on the fact that the single Slater deter-

minant is not sufficient to correctly describe the wave function. In fact, many other

determinants can be formed from different possible excitations of the electrons. A single

excited determinant with respect to the HF determinant is written as (motion of and

electron from an occupied spin orbital to a virtual spin orbital)

|Ψξ
i 〉 = |ϕ1ϕ2...ϕξϕj...ϕN 〉 (3.46)

This determinant describes the fact that a single electron is relocated from its occupied

spin orbital i to one of the virtual spin orbitals ξ. By analogy a doubly excited determinant

can be formed by relocating two electrons from their initial positions, i and j, to two

virtual spin orbitals, ξ or κ

|Ψξκ
ij 〉 = |ϕ1ϕ2...ϕξϕκ...ϕN〉. (3.47)

The excitations of higher order continue until all N electrons have been moved to various

virtual spin orbitals. The full−CI wave function is a sum of the excited determinants and

the HF determinant :

|Φ0〉 = |Ψ0〉+
∑

i,ξ

cξi |Ψξ
i 〉+

∑

i>j;ξ>κ

cξκij |Ψξκ
ij 〉+

∑

i>j>k;ξ>κ>η

cξκηijk |Ψξκη
ijk 〉+ ...

A linear combination of the initial configurations is done so that the configurations are

eigenfunctions of the spin and angular momentum operators. The configurations obtained

by this linear combination are termed CSF (configuration state functions). In practice,
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for large systems a full CI calculation is computationally infeasible. A common way to

overcome this inability is to truncate the CI method to only singles and doubles excitations

(CISD). But a problem appears with the truncation: the truncated method is no longer

size consistent nor size extensive. In fact, a method is size extensive when the calculated

energy for N non-interacting atoms equals the sum of N times the energy of the single

atoms. Whereas the size consistency notion refers to the fact that at the dissociation of a

molecule, the energy of the molecule should be equal to the sum of energies of each part.

3.5 Perturbational theories

Until now, we have dealt with variational methods which solve the many-body time-

independent Schrödinger equation. All these methods are governed by the variational

theorem (Section 3.2). Another alternative approach to perform accurate quantum cal-

culations is using perturbational methods, where the remaining correlation contribution

to the wave function beyond a HF-SCF or MCSCF wave function is assumed to be small.

3.5.1 Møller-Plesset Perturbation Theory

The Møller-Plesset Perturbation Theory (MPPT) [48, 49] uses the perturbation theory to

calculate the coefficients of the CI expansion. Basically, the electronic correlation effects

are assumed as a perturbation, V̂ , in front of the all-electron Fock operator, F̂ , (described

in Section 3.3.2). This assumption leads to decomposition of the Hamiltonian as :

Ĥ = F̂ + V̂ (3.48)

The V̂ operator in Eq. 3.48 is called the fluctuation operator. The starting point is the

Hartree-Fock wave function (the unperturbed state). The Rayleigh-Schrödinger pertur-

bation theory is applied and gives the perturbative corrections to the wavefunction Ψ(1),

Ψ(2), ..., which are constructed from the single, double, etc. excitations as shown in the

CI expansion of Eq. 3.4. According to the perturbation theory, the corrections to the

energy to first order (E(1)), second order (E(2)), ... and the corresponding contributions

to the coefficients (cξi , c
ξκ
ij , etc.) in the CI expansion are determined. Perturbation theory

to first order in the energy just gives the Hartree-Fock energy.

Concerning the second order energy correction, E(2), in the basis of the occupied

(i, j, ...) and unoccupied (ξ, κ, ...) spin orbitals, it is evaluated to be [41] :

E(2) =
1

4

∑

i,j;α,β

〈ij||αβ〉2
εi + εj − εα − εβ

(3.49)
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In the previous equation ( 3.49), the quantity, E(2), is termed the MP2 correlation energy

and εi, εj, ... are the Hartree-Fock orbital energies. The quantity 〈ij||αβ〉 is defined as the

difference between two-electron integrals over spin orbitals :

〈ij||αβ〉 = 〈ij|αβ〉 − 〈ij|βα〉. (3.50)

Møller-Plesset perturbation theory to second order (in the energy), MP2, is a compu-

tationally inexpensive correlation method commonly used, especially for large systems.

A higher order perturbation theory (in energy) exist : MP4. The latter needs the

second order correction to the wavefunction, Ψ(2). MP4 has, therefore, contributions

from single, double, triple and quadruple excitations. However, accounting for triple

excitations is more difficult (and time consuming) than accounting for the quadruples.

For this reason the triple excitations are often neglected, giving MP4(SDQ) theory. The

MP4 theory which explicitly accounts for triple excitations is denoted MP4(SDTQ).

When higher accuracy is required, it appears more interesting to use coupled cluster

methods. The latter make the subject of the next section.

3.6 Coupled Cluster Theory

Electron correlation calculations can be performed by means of another approach which

is the coupled cluster (CC) theory [50, 51]. Via the cluster operator, T̂ , a coupled cluster

wavefunction is formulated in these terms :

Ψ = eT̂Ψ0 (3.51)

where Ψ0 is the HF determinant. The cluster operator ,T̂ , is constructed from one body,

two body, ..., cluster terms, T̂1, T̂2, etc. These cluster terms represent single excitation,

double excitation, etc. operators :

T̂ = T̂1 + T̂2 + T̂3 + ... (3.52)

The right hand side terms of Eq. 3.52 are explicitly written as :

T̂1 =
∑

i,a

tai â
+
a âi (3.53)

T̂2 =
∑

i<j;a<b

tabij â
+
a âiâ

+
b âj (3.54)

T̂3 =
∑

i<j<k;a<b<c

tabcijk â
+
a âiâ

+
b âjâ

+
c âk (3.55)

(3.56)
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The operators {â+
a } are creation operators that is to say they generate an electron in spin

orbital a whereas {âi} are annihilation operators which remove an electron from orbital

i. Once applied together, they represent the excitation of an electron from orbital i to

orbital a. The numerical coefficients, {tai }, {tabij }, {tabcijk}, etc., are known as the cluster

amplitudes. Asymptotically expanding the eT̂ operator leads to the following equations :

eT̂ = 1 + T̂ +
1

2
T̂ 2 +

1

3!
T̂ 3 + ... (3.57)

= 1 + T̂1 +
[

T̂2 +
1

2
T̂ 2

1

]

+
[

T̂3 + T̂1T̂2 +
1

6
T̂ 3

1

]

+ ... (3.58)

= 1 + ĉ1 + ĉ2 + ĉ3 + ... (3.59)

(3.60)

In the previous equation ( 3.60), the terms ĉ1, ĉ2, ..., are one body, two body, ..., clusters

which respectively represent the one electron, two electron, ..., excitations from occupied

spin orbitals to virtual spin orbitals.

By comparison with the coefficients for the simple, double, ... , excitations of the CI

expansion, now these coefficients are defined in terms of one body, two body, ..., cluster

amplitudes as follows :

aabij = tabij + tai t
b
j (3.61)

aabcijk = tabcijk + tai t
bc
jk +

1

6
tai t

b
jt
c
k (3.62)

In a similar manner, as in the CI case, the coupled cluster is in practice truncated after

double excitations :

Ψ = eT̂1+T̂2Ψ0 (3.63)

= {1 + T̂1 + T̂2 +
1

2
T̂ 2

1 + T̂1T̂2 +
1

2
T̂ 2

1 T̂2 +
1

6
T̂ 3

1 +
1

2
T̂ 2

1 +
1

24
T̂ 4

1 + ...}Ψ0 (3.64)

Since the wave function is not linear in the cluster amplitudes, {tai },{tabij }, etc., it cannot be

calculated using standard eigenvalue methods, it is rather obtained iteratively by solving

the Schrödinger equation in the space of the configurations used (reference state, single

and double excitations). Iteratively solved are the following equations :

〈Ψ0|Ĥ|eT̂Ψ0〉 = E (3.65)

〈Φa
i |Ĥ|eT̂Ψ0〉 = taiE (3.66)

〈Φab
ij |Ĥ|eT̂Ψ0〉 = tabijE (3.67)

In Eqs. 3.65, 3.66 and 3.67, the eigenvalue, E, represents the coupled cluster energy.

Solving the latter three equations leads to the CCSD method (coupled cluster with singles
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and doubles excitations). To increase the accuracy of the CCSD method, the triple

excitations are accounted for by a perturbative treatment, using the coupled cluster wave

function as the reference state [52] :

∆Etriples =
∑

i<j<k;a<b<c

〈(1 + T̂1 + T̂2 + T̂3)Ψ0|Ĥ|Φabc
ijk〉〈(1 + T̂2)Ψ0|Ĥ|Φabc

ijk〉
(εi + εj + εk)− (εa + εb + εc)

(3.68)

where εi, εj, ... are the HF orbital energies.

The method obtained (CCSD with perturbative triples) is called CCSD(T). It has been

used in this work for generating accurate energies for CaHe and MgHe molecules.

Truncating the cluster expansion after the T̂3 term, becomes an interesting alternative

since modern computers have large memory and high frequency CPU. When explicitly

including the connected components of the triple excitations, the method is denoted as

the CCSDT method. Although the computational cost is nowadays too high to allow this

method to be commonly used, we have managed to obtain a complete potential energy

curve for the MgHe ground state complex.

As the coupled cluster theory is based on a single reference determinant (HF de-

terminant), the accuracy of the results strongly depend on the fact that the reference

determinant is dominant in the coupled cluster expansion for all the molecular geome-

tries.

3.7 Basis Sets

In this work the basis sets used are the augmented correlation consistent (cc) basis sets,

aug-cc-pVXZ [53, 54]. They have been constructed so that, as the cardinal number of

the basis set, X, increases, the description of electron correlation becomes systematically

better and predictable. The minimal basis set is cc-pVDZ. The latter is improved by

adding atomic functions which are chosen so as to maximise their contribution to the

electron correlation. In this way a systematic improvement in the description of the

correlation energy is observed when the cardinal, X, increases. The main advantage

of such systematic improvements of electron correlation description is that the energies

from a sequence of correlation consistent calculations can be fitted to smooth monotonic

functions. It is a way to extrapolate the finite-basis energies to the complete basis set

limit (see Section 3.9).

The aug-cc-pCVXZ basis sets [55] have also been used for the alkaline earth atoms

(Ca and Mg); these basis sets are based on the corresponding aug-cc-pVXZ. However,
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the aug-cc-pCVXZ basis sets have additional tight functions added which allow them

a better description of the correlation of core electrons and between core and valence

electrons. These additional correlations are of extreme importance especially in the case

of alkaline-earth bound with the helium atom since the interaction is very weak.

3.8 Basis Set Superposition Error

Using finite basis sets in calculations of potential energy surfaces involves the presence of

basis set superposition errors. This phenomenon is due to the fact that for a given bound

molecule AB, the atom A can be stabilised by the close presence of the basis functions

of atom B and vice versa. The system is hence not only bound by any true interaction

between A and B but also by this additional superposition effect.

A possible and approximate correction of this effect is obtained via the counterpoise

method of Boys and Bernardi [56]. This method involves the calculation of the energy

of each atom or fragment both with its basis functions, EA , EB , and with the basis

functions of the entire system EA(B) , E(A)B. This counterpoise correction is respectively

given for A and B by:

∆ECP
A = EA(B) − EA (3.69)

∆ECP
B = E(A)B − EB (3.70)

The total counter poise correction to the interaction energy is the sum of the counterpoise

corrections, ∆ECP
A + ∆ECP

B . The counter poise corrected interaction energy is finally

written as:

Ecorrected
AB = EA + EB − EAB + ∆ECP

A + ∆ECP
B (3.71)

Another way to accurately determine interaction energies can be achieved by the

complete basis set extrapolation limit which is the subject of the next section.

3.9 Complete Basis Set Extrapolation

In order to extrapolate energies to the complete basis set, complete basis set extrapo-

lation methods represent, in principle, the highest level of theory available for this aim.

These methods employ an accurate ab initio method in combination with the correlation

consistent basis sets. This method gives reliable results for strongly bound systems. It

seems, however, to not be satisfying for weakly bound systems (refer to Chapter 5).
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3.9.1 Binding energy definition

In the case of a diatomic molecule, the binding energy is defined as the difference between

the molecular electronic energy and those of its components. This definition, of course,

can be generalised to any molecule which contains more than two atomic components.

For the AB molecule, we can formulate 1 its binding energy as

Ebind = EAB − (EA + EB) (3.72)

In the previous relation, Ebind is the binding potential energy between atom A and B,

EA and EB their respective energies. Each of these energies can be decomposed into two

contributions: a Hartree-Fock part and a correlation one.

3.9.2 Hartree-Fock energy

The Hartree-Fock part of the energy, EHF , is expected to evolve, when increasing the

number of ζ , x as

EHF (x) = E∞

HF + αe−βx (3.73)

where E∞

HF is the Hartree-Fock energy for an infinite basis, α and β are the fitting pa-

rameters. The Dunning-Feller [53, 57, 58] (exponential form (Eq. 3.73)) has extensively

been shown to better extrapolate the HF part of the binding energy [59] than any power

law does.

3.9.3 The correlation energy

A large number of extrapolation schemes have been proposed in the literature for this

purpose over the last years. One of the most commonly used is the ”1
3
” scheme of Helgaker

et al. [60]:

Ecorr(x) = A1 +
B1

x3
(3.74)

Another extrapolation scheme not so far from the previous one has been proposed by

Gdanitz [61] and is expressed in the following way

Ecorr(x) = A2 +
B2

(x− 1
4
)3

(3.75)

Two possible other extrapolation schemes have been used in this work. The first one is

(Eq. 3.76) similar to the extrapolation scheme of Eq. 3.74, except that the exponent is

1Equation 3.72 follows the convention which means that Ebind is zero for a completely dissociated

molecule.
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now an adjustable parameter (C3). The other scheme assumes both Hartee-Fock energy

and correlation energy can be extrapolated using the same functional form (Eq. 3.77).

Ecorr(x) = A3 +
B3

xC3

(3.76)

Ecorr(x) = A4 +B4e
−C4x (3.77)

In Eqs. 3.73 to 3.77, x is the cardinal number of the basis set, E∞

HF , α, β, Ai, Bi and

Ci are fitted parameters. The extrapolation schemes should use at least energy points

obtained at up to the cc-pVQZ basis sets. Morever, basis sets containing diffuse functions

are necessary for weakly bound molecules (alkaline-earth atoms bound with He in our

case). Although, CBS extrapolation usually gives accurate results for classical system ,ie,

strongly bound molecules via a real chemical bond, one can notice in Section 5.5 that it

is not really the case for very weakly bound van der Waals system.
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Chapter 4

The CaHe X1Σ+ state

4.1 Introduction

In this chapter, we deal with different electronic structure calculations for the CaHe ground

state potential energy curves. These calculations employ large sets of basis functions

centered on He atom and Ca atom with addition of diffuse mid-bond functions to better

describe the electronic binding interactions. Appropriate ab initio methods, such as MP2,

MP4, and CCSD(T), are used to determine the van der Waals potential energy curves for

the CaHe molecule. The contributions of core-valence correlation effects and mid-bond

functions effects have been studied. Also, the basis set superposition error (BSSE) has

been taken into account using the counter poise approximation of Boys and Bernardi [56].

Hence, all energies reported in this chapter are counter-poise corrected.

4.2 Computational details

The binding interaction between the closed shell Ca and He (1s2) atoms belongs to the

range of very weakly bound van der Waals systems. Because of this very small interaction

the CaHe ground state system requires an accurate and appropriate ab initio treatment.

All calculations have been carried out in the C2v symmetry point group by means of the

Molpro suite of programs [62]. We first performed electronic structure calculations at the

coupled cluster level including explicitly single and double excitations and a perturbative

treatment of triple excitations (denoted as CCSD(T)) [52] in combination with several

kinds of Dunning type basis sets (aug)-cc-pVXZ where X=D, T or Q. Then we calculate

the interaction energy of our system using the second and fourth-order Møller -Plesset

perturbation method, respectively symbolized by MP2 and MP4 [48]. All ab initio elec-
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tronic potential energy points fall into the distance range from 6.0 a0 (Bohr) to 35.0a0

with variable intervals so that the PES is well represented around the minimum. The

basis sets used in this work were (aug-)cc-pCVXZ for the calcium atom (X=D,T,Q) [63]

and aug-cc-pVXZ for the helium atom (X=D,T,Q,5) [64]. However, X should reach a min-

imum value in order to obtain smooth potential energy curve (see Section 4.2.1). After

this we treat the CaHe molecule with the CCSD(T) method in combination with large and

diffuse basis set : aug-cc-pV5Z for the helium atom and the well adapted aug-cc-pCVQZ

for the calcium atom. Furthermore interatomic bond functions [65] have been used in

order to better describe the binding interaction. These interatomic functions have been

placed at the geometrical center of the system, however an other alternative approach

can be used : placing the bond function at the center of mass of the molecule. This

latter method was not used in this work since following the arguments in Ref. [66], no real

difference is found between these two choices. In the present work, all electrons -except

the (1s2) of the calcium atom- were correlated. For all electronic correlation calculations

(CCSD(T), MP2, MP4), the starting point (the reference determinant) was the restricted

Hartree-Fock (RHF) determinant.

We define binding energies of the system, ∆E, as the difference between the CaHe van

der Waals molecule electronic energy in its ground state(1Σ+) and these of the atoms in

their ground states (1S0 for both atoms). ∆E is defined as follows :

∆E = ECaHe −ECa − EHe

The next sections describe the influences of various parameters ( basis size, bond

functions, ...) on the CaHe ground state calculations.

4.2.1 Influence of basis sets size

The following figure 4.1 shows the potential energy curves as a function of the interatomic

distance for the CaHe molecule determined at the CCSD(T)/cc-pVDZ and CCSD(T)/cc-

pVTZ levels. It is well known, especially in the case of variational methods, that the

electronic energies increase in absolute value with respect to the range X of the Dunning

type basis set, (aug)-cc-pVXZ. As the variable X which equals the number of exponents

ζ in the definition of the gaussian basis set increases, the number of basis functions

becomes larger. Thus the energy tends to the exact value, which is simply implied by the

variational principle. The purpose is then to see if there is any binding energy at small

nζ . It is also interesting to know how the potential binding energy varies against the

basis set used. So we have made calculations at the CCSD(T) level of theory first using
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Figure 4.1: Potential energy curves of the CaHe 1Σ+ state obtained at the CCSD(T)

level of theory : circles picture the curves obtained by the use of cc-pVDZ and aug-

cc-pVDZ respectively for calcium and helium. The second curves represents the use of

cc-pVTZ for calcium and aug-cc-pVTZ for helium at the same level of theory. For both

curves, the complete set of mid-bond functions (33211) has been used.

the cc-pVDZ basis for the Helium atom and the cc-pCVDZ one for the calcium atom

with additional mid-bond functions 33211 recommended by Tao et al. The complete set

of bond functions is reported in table 4.1. Secondly, cc-pVTZ basis for the helium

atom and the cc-pCVTZ one for the calcium atom have been utilized in combination with

the same set of bond functions. The potential energy curves are depicted in figure 4.1.

During these calculations, all the core (1s22s22p63s23p6) electrons of Ca have been kept

frozen. The double ζ curve is characterized by a well depth of 0.4 cm−1 and an equilibrium

distance of 13.16 a0, whereas examination of the triple ζ curve gives 1.16 cm−1 as well

depth and 12.27 a0 as equilibrium distance. The conclusion is that the double or triple ζ

basis sets, especially when diffuse function are absent, are not able to properly describe

the electronic interaction for this type of system, since the final CCSD(T) calculations

(where aug-cc-pV5Z and aug-cc-pCVQZ have been used for respectively He and Ca in
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Bond functions (BF) Exponents

3s 0.9, 0.3, 0.1

3p 0.9, 0.3, 0.1

2d 0.6, 0.2

1f 0.3

1g 0.3

Table 4.1: Exponents of the gaussian bond function basis from Ref. [65].

addition of the 33211 bond functions) give 3.27 cm−1 and 11.26 a0 for respectively the

well depth and the equilibrium distance of the CaHe ground state. In the other hand,

we have performed standard calculations at the same level of theory (CCSD(T)) with

the same basis functions except that the interatomic set of functions were absent and the

active space was constructed using only valence electrons of He and Ca. But in this case,

calculations have not converged in a reasonable threshold in energy which was equal to

10−7a.u. These results should not be interpreted as very surprising since our system is a

very weakly bound van der Waals systems.

4.2.2 Bond-functions role

Figure 4.2 graphically illustrates the influence of the mid-bond functions on the CaHe

ground state binding energy. Bond functions are known to improve the description of

the electronic interaction when one deals with very weakly interacting systems. Although

modest basis sets such as aug-cc-pVDZ+BF and aug-cc-pVTZ+BF basis sets yield rea-

sonable estimates of bond energies, in most cases, these results cannot be considered

highly accurate [67]. On the other hand bond functions (BF) with large and diffuse basis

sets with Nζ = 4 or 5, for example, tend to give accurate binding energies. In order to

see how the potential evolves upon changing the number and type of bond functions, we

have made calculations at the CCSD(T) level using aug-cc-pV5Z for helium atom and

aug-cc-pCVQZ for calcium atom. As we can notice in table 5.2, the well depth increases

when increasing the number of bond functions (listed as BFs). Thus without BF, the

equilibrium potential energy is -14.90 µHartree (3.27 cm−1) at bond length of 11.26 a0

(5.96 Å ) whereas a complete set of functions 3s3p2d1f1g (listed as 33211) gives -15.09

µhartree (3.31 cm−1) for a binding distance of 11.25 a0(5.95 Å ). Thus the potential well

depth becomes deeper when adding bond functions. The use of an intermediate size of

the bond function set (332) gives an equilibrium distance of 5.95 Å and a corresponding
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Figure 4.2: Influence of the bond functions for CaHe X1Σ+ state at the CCSD(T) level.

Basis sets are aug-cc-pV5Z for He and aug-cc-pCVQZ for Ca : curve with circles are

obtained without bond functions, whole squares take into account the addition of the

322 set of mid-bond functions and diamonds result from the use of the complete set of

mid-bond functions (33211)

potential energy of -3.29 cm−1. Studying these equilibrium distances and corresponding

energies lets us suggest that with the 332 set of bond function (see table 4.2) the saturation

limit is nearly reached.

4.3 Comparison of methods

As seen in section 4.1, several electronic structure calculation methods have been used in

order to determine the X1Σ+ CaHe ground state potential energy curves. If one refers

to figure 4.3, one can easily notice that all the curves calculated at different levels of

theory are, however, in fairly good agreement. We say this because in the literature,

as explained in section 4.5, the well depth of the CaHe ground state energy surfaces

can differ by a factor of 3 or more. However the situation is different considering the
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method Ca basis He basis BFs re ǫ

CCSD(T) aCVQZ aV5Z 0 11.2617 (5.9574) -14.8987 (-3.2698)

CCSD(T) aCVQZ aV5Z 322 11.2526 (5.9526) -15.0118 (-3.2947)

CCSD(T) aCVQZ aV5Z 32211 11.2456 (5.9489) -15.0908 (-3.3120)

MP2 aCVQZ aV5Z 32211 11.0243 (5.8318) -19.2994 (-4.2357)

MP4 aCVQZ aV5Z 32211 11.0465 (5.8435) -18.6789 (-4.0995)

Table 4.2: Equilibrium distances and corresponding potentials for the CaHe ground

state 1Σ+. Distances are in a0 (Å ) whereas energies are expressed in µhartree (cm−1).

The notation aCVQZ and aV5Z are respectively for aug-cc-pCVQZ and aug-cc-pV5Z.

The Ca core is 1s2.

equilibrium distances, they are in quite good agreement. In our case, the equilibrium

distances and corresponding energies of the CaHe ground state complex are reported in

table 4.2. One can notice, for the three methods (CCSD(T), MP2 and MP4), that the

equilibrium distances stand in the range 5.83-5.95 a0, whereas the equilibrium energies

stand in the range 3.31-4.24×10−6 a.u. (in absolute value). This makes us think that

the true potential is situated in the ranges previously mentioned. We can advance this

assumption because the results deduced from all the methods are consistent with each

other and do not differ by an important factor.

On the other hand, in the case of the most accurate method, at least in our opinion,

ie, CCSD(T), the potential energy surface’s characteristics (re and ǫ) are in excellent

agreement with those reported in literature (see Section 4.5). On the other hand the

most accurate ab initio energy points are given in table 4.3.

4.4 Determination of dispersion coefficients

When we deal with extremely weak interaction as it is the case for the CaHe van der

Waals complex, we have to keep in mind that the results we get must be verified in any

case. One way to verify the coherence of the ab initio potential energy curves given by

the different methods used here is to extract from them the dispersion coefficients and

study the difference between them and those given in the literature. It is assumed that

interaction between neutral closed shell atoms is mainly governed by dispersion energy

[69, 70] which can be expressed as :
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Figure 4.3: X1Σ+ CaHe potential energy curves derived from different ab initio ap-

proaches in combination with aug-cc-pV5Z for He and aug-cc-pCVQZ for Ca plus bond

functions (33211): curve with triangles are the CCSD(T) results, squares are for MP2,

stars for MP4. Dots are results from Ref. [68] (calculated at the CCSD(T) level with the

wtMCP pseudo-potential for Ca) and smooth curve represents the unpublished data from

W. Meyer.
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R/a0 CCSD(T)a CCSD(T)b CCSD(T) MP2 MP4

6.00 4272.14 4265.56 4261.48 4375.55 4231.60

7.00 1451.50 1448.20 1445.79 1453.18 1415.71

7.50 795.71 793.34 791.61 785.32 766.83

8.00 415.46 413.82 412.65 401.47 392.90

8.50 202.85 201.76 200.94 188.91 185.49

8.75 136.54 135.67 134.99 123.35 121.38

9.00 88.39 87.69 87.20 76.22 75.25

9.25 54.04 53.58 52.82 42.66 42.50

9.50 29.75 29.29 28.92 19.46 19.73

9.75 12.92 12.55 12.36 3.71 4.25

10.00 1.54 1.24 1.10 -6.63 -5.96

10.50 -10.55 -10.75 -10.91 -16.88 -16.16

11.00 -14.52 -14.66 -14.76 -19.30 -18.67

11.50 -14.66 -14.76 -14.82 -18.21 -17.72

12.00 -13.21 -13.27 -13.31 -15.81 -15.45

12.50 -11.26 -11.31 -11.33 -13.16 -12.91

13.00 -9.33 -9.36 -9.37 -10.74 -10.55

14.00 -6.16 -6.08 -6.05 -6.93 -6.85

15.00 -4.07 -4.03 -4.19 -4.50 -4.44

16.00 -2.71 -2.78 -2.67 -2.94 -2.92

17.00 -1.84 -1.91 -1.80 -1.98 -1.97

18.00 -1.28 -1.24 -1.24 -1.36 -1.36

19.00 -0.91 -0.77 -0.87 -0.96 -0.96

20.00 -0.67 -0.53 -0.62 -0.69 -0.69

22.00 -0.33 -0.33 -0.33 -0.38 -0.38

24.00 -0.19 -0.15 -0.18 -0.22 -0.22

26.00 -0.11 -0.11 -0.11 -0.14 -0.13

28.00 -0.06 -0.06 -0.11 -0.09 -0.08

30.00 -0.04 -0.03 -0.03 -0.06 -0.06

Table 4.3: CaHe interaction energies calculated at different level of theories in combina-

tion of the aug-cc-pV5Z basis set for He and aug-cc-pCVQZ basis set for Ca. The complete

set of bond functions (33211) has been used except in case a where no bond functions are

used and case b where only the 332 bond functions have been used. All energies are in

10−6 a.u. and are counter-poise corrected. All the Ca electrons are correlated, except the

1s electrons.



4.5 Comparison with literature 35

V (r) = −
∞∑

k=3

C2k

r2k

where r describes the interatomic distance and C2k is the 2kth order dispersion coefficient.

If we just consider the first three terms in the equation above and neglect all others, we

can rewrite the equation as :

V (r) = −C6

r6
− C8

r8
− C10

r10
− ...

Deriving dispersion coefficients from ab initio energy points consists in fitting these points

following the equation above by means of the non-linear least squares algorithm introduced

by Levenberg and Marquardt. Although, the function V (r) is linear in C2k thus a simpler

algorithm is sufficient to evaluate the C2k coefficients, we have preferred to develop a

general non-linear fitting code which is useful in fitting ab initio data into a HFD functional

form, as we will see later. Thus the strategy first consists in choosing an interval where

dispersion interaction dominates, otherwise, C6, C8 and C10 will be affected by other

phenomena such as overlaps between atomic electronic clouds. This will involve repulsive

forces and then a perturbation of the dispersion interaction which are strictly attractive

by definition. Concretely, we have defined our dispersion domain as starting from 20a0

to up to 40a0. We think it is a reasonable choice since the minima of all potential energy

curves are located around bond lengths values of 11 a0 (see table 4.2). So we hope from

r = 20a0 the exchange repulsion is negligible. Generally, for the determination of C6 and

C8 constants one just needs the final two calculated points of the potential energy curve.

However, we have preferred to fit more that two final points. This is justified by the fact

that energy point calculations become inaccurate for long distances. This well known

effect is first intrinsic to the basis set used because long bond length imply very diffuse

basis functions that is to say with very small exponents. Secondly, these diffuse functions

often suffer from linear dependence. Finally when the two atom centers are placed too

far from each other, numerical integration (among other) problems can arise in the sense

that for example integrals become too small to be reliably computed numerically.

4.5 Comparison with literature

Most of the previous calculations were in conflict on the determination the CaHe potential

energy curves. They predict binding energies that differ by up to a factor of 3 or more, [71–

73]. Fortunately, the recent theoretical calculations which are summarized in table 4.4, are

in relatively close agreement [66, 74] with those of this work which are listed in table 4.2.
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Methods re/Å ǫ/cm−1

CCSD(T), ref [66] 5.95 3.33

Surface integral, ref [76] 5.10 10.3

CCSD(T), ref [74] 5.85 4.2

CCSD(T), ref [78] 6.04 3.14

CCSDT, ref [77] 5.9 3.43

MRCI, ref [75] 5.45 11.6

This work:

CCSD(T) 5.95 3.31

Table 4.4: Potential energy curve parameters, ie re and ǫ

METHODS C6 C8 C10

MP2 37.9 2.6 × 103 1.3× 104

MP4 37.3 2.53 × 103 8.6× 104

CCSD(T) 29.4 4.3 × 103 6.× 105

calc. [68] 36.9 2.51 × 103 -

exp. [81] 45.1-48.5 (1.48 − 2.19) × 103 (1.08 − 1.29) × 105

Table 4.5: Dispersion coefficients in atomic units.

As can be noticed from the table 4.2, the present results for CaHe are in agreement with

the results of Partridge et al. [66], obtained with the same approach (CCSD(T)). However,

our results differ from those reported by Stienkemeier et al. [75] and Kleinekathöfer [76].

This proves that a contradiction still exists about the CaHe ground state energy curve.

Hinde [77], using the CCSDT method, ie coupled cluster theory including single, double,

and triple excitations, reported, for the CaHe complex, an equilibrium distance of 5.9

Å and a corresponding energy of 3.43 cm−1 (refer to table 4.4). These results nicely

agree with our CCSD(T) results listed in table 4.2 since the equilibrium energies only

differ by 0.12 cm−1. In reference [68] C.C. Lovallo and co-workers have developed a

new parameterization of the model core potential method (MCP) [79], developed by

Huzinaga and co-workers, the wtMCP [80] expected to reproduce all-electron calculations

nearly exactly by using a large valence basis set. Using this wtMCP pseudo-potential in

combination with the CCSD(T) method, they calculated a potential well depth of 3.22

cm−1 (15.63 µhartree) and an re value equal to 6.02 Å (11.38 a0) [78]. These values are

in good agreement with ours (see table 4.2).
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Method E0/cm
−1 r0/Å B0/cm

−1

CCSD(T) -0.69 7.43 0.09

MP2 -0.86 7.45 0.09

MP4 -0.82 7.50 0.09

Table 4.6: First vibrational energy levels for various ab initio methods.

4.6 Vibrational levels of the CaHe 1Σ+ state

Variational vibrational calculations have been carried out considering the CCSD(T), MP2

and MP4 ground state potential energy curve of the CaHe molecule and using a basis set

of 200 optimized Laguerre functions. There is evidence of, at least, one bound state whose

energy is reported in Table 4.6 as -0.69 cm−1 when the CCSD(T) interaction potential is

used. The mean equilibrium distance is, for the CCSD(T) method, 7.43 Å . Table 4.6 also

provides an estimation of the rotational constant which is found to be around 0.09 cm−1

for all methods.

4.7 Conclusion

Accurate binary potentials were calculated for the interaction between helium and calcium

atoms using appropriate and very sensitive ab initio methods. Potential curves parame-

ters ǫ and re are in good agreement with the most recent results found in the literature.

As a proof of a good accuracy, the dispersion parameters are in excellent agrement with

those calculated in Ref. [66, 68]. The radial Schrödinger equation has been solved with

the CCSD(T), MP2 and MP4 aug-cc-pCVQZ+BF pair potentials and evidence of at least

one vibrational level was found.

Since the coupled-cluster method with single and double excitations and a perturbational

treatment of the triple excitations -CCSD(T)- is widely used to accurately calculate the

interaction energies for weakly bound systems, we will therefore use the CCSD(T) poten-

tial surface as our CaHe binary potential in the Diffusion Monte Carlo simulations of Ca

in helium nanodroplets.
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Chapter 5

The MgHe 1Σ+ state

5.1 Introduction

In this section we present several ab initio calculations for the MgHe potential energy

curves. These calculations employ large basis function sets centered on helium atom and

magnesium atom. Furthermore diffuse mid-bond functions are used to better describe the

interatomic electronic interactions. Appropriate ab initio methods, such as MP2, MP4,

CCSD(T) and CCSDT, are employed to determine the van der Waals potential energy

curves. The contributions of core-valence correlation effects and mid-bond functions have

been studied in detail. Also, the basis set superposition errors have been corrected via

the counter poise method of Boys and Bernardi [56]. Finally, we have tried to apply

the complete basis set extrapolation (CBS) to this molecule in order to determine the

binding energy for infinite ζ basis sets. Since the binding energy in the MgHe complex is

mainly due to the dispersion interaction, this system belongs to the van der Waals ones

and the binding energies are expected to be extremely weak. Taking into account this

energy weakness, a great problem is the determination of the potential energy interaction

function versus the internuclear distance. Furthermore, as, we will see in Chapter 9,

particle solvation in helium droplets among other properties — in particular for alkaline

earth atoms —, strongly depends on their binary interaction potential with helium atoms.

For this reason MgHe potential curves must be calculated as accurate as possible.

5.2 Computational details

The binding interaction between the closed shell Mg (1s22s23p63s2) and He (1s2) atoms

belongs to the range of very weak van der Waals interactions. Because of this very
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small interaction the MgHe ground state system requires accurate and appropriate ab

initio methods. As will be discussed later, the use of the CCSDT method seems to be

very suitable for the MgHe system. All calculations have been carried out in the C2v

symmetry point group by means of the Molpro suite of programs [62], except calculations

which involve the use of the CCSDT method. In order to perform the latter calculations,

the ACES2 code [82] has been used instead. We first performed electronic structure

calculations at the coupled cluster level including explicit single and double excitations

and a perturbative treatment of triple excitations (commonly abbreviated CCSD(T)) [52]

in combination with several types of Dunning basis sets [55, 64] listed in Table 5.1. Then

we calculate the interaction energy of our system (MgHe) utilizing the second and fourth-

order Møller-Plesset perturbation method, respectively symbolized by MP2 and MP4 [48].

All ab initio electronic potential energy points stand in the distance range from 7.0 a0

(Bohr) to 26.0 a0 with variable step so that the PES is well represented around the

minimum. After this we treat the MgHe molecule with the coupled cluster method taking

into account explicit treatment of triple excitations (ie, CCSDT) combined with large and

diffuse basis set : aug-cc-pV5Z for the helium atom and the appropriate aug-cc-pCVQZ

for the magnesium atom. Furthermore, in order to improve the bond description, the

complete basis set of bond functions (33211), given in Table 4.1, has been used.

The binding energies of the system, ∆E, are defined as the difference between the

MgHe van de Waals molecule electronic energy in its ground state (1Σ+) and these of the

atoms in their ground states (1S0 for both atoms). ∆E is defined as follows :

∆E = EMgHe −EMg −EHe (5.1)

All the ab initio energies presented in the following are counter-poise corrected. Moreover,

if no specified, all the Mg electrons have been correlated except the 1s core electrons. The

reference determinant for the correlation calculation methods was the restricted Hartree-

Fock (RHF) determinant.

5.3 Results and discussions

In the following sections, the influence of various technical parameters (basis set sizes,

core correlation effects, ...) on the geometry and energy of the MgHe X1Σ+ state are

studied and main results presented.
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Methods He basis BF Mg basis ǫ/10−6a.u re/a0 E0/cm
−1 r0/Å

cc-pVQZ no cc-pVQZ -16.03 9.82

cc-pVQZ 33211 cc-pVQZ -16.31 9.77 -0.31 7.80

cc-pVQZ 33211 cc-pVQZ∗ -15.60 9.85 -0.29 8.05

aug-cc-pV5Z 33211 Roos -21.64 9.63 -0.78 6.76

cc-pV5Z 33211 cc-pV5Z -18.85 9.69 -0.49 7.17

cc-pV5Z 33211 cc-pV5Z∗ -17.60 9.81 -0.42 7.40

CCSD(T) aug-cc-pV5Z 33211 aug-cc-pVQZ -21.51 9.64 -0.76 6.78

aug-cc-pV5Z 33211 cc-pVQZ -21.42 9.66 -0.75 6.79

aug-cc-pV5Z 33211 cc-pV5Z -21.56 9.63 -0.77 6.77

aug-cc-pV5Z no aug-cc-pCVQZ -21.38 9.64 -0.76 6.78

aug-cc-pV5Z 332 aug-cc-pCVQZ -21.54 9.63 -0.78 6.76

aug-cc-pV5Z 33211 aug-cc-pCVQZ -21.72 9.62 -0.79 6.75

aug-cc-pV5Z 33211 aug-cc-pCVQZ∗ -20.64 9.72 -0.80 6.91

CCSDT aug-cc-pV5Z 33211 aug-cc-pCVQZ -23.04 9.58 -0.90 6.59

MP2 aug-cc-pV5Z 33211 aug-cc-pCVQZ -19.97 9.75 -0.66 6.95

MP4 aug-cc-pV5Z 33211 aug-cc-pCVQZ -25.98 9.50 -1.16 6.40

Table 5.1: Equilibrium distances, re, and the corresponding potential energy values, ǫ,

using different basis sets and bond functions. E0 is the ground state energy and r0 the

ground state distance expectation value. ∗Only the 2 valence electrons of Mg have been

correlated in the calculations.

5.3.1 Basis set

Table 5.1 shows, re, the classical equilibrium bond length and the minimum of the po-

tential energy curves of the MgHe molecule ǫ. The fundamental vibrational energy level

and the mean value distance of the first vibrational level, r0, are also reported. All these

values are estimated for a given level of theory, that is to say, an ab initio method and a

set of basis functions for Mg and He completed in most cases with a set of interatomic

functions; this is made in order the study the influence of atom-centered basis sets and

that of the bond function (BF) as well as the consistency of the different methods used

here.

Since calculations with double and triple ζ are insufficient (Chapter 4), we have di-

rectly started with quadruple ζ type basis sets. One can notice that at the ”CCSD(T),

cc-pVQZ + 33211 BF” level, the binding energy of the system (−16.31× 10−6 a.u) is not

saturated since increasing the basis set for both atoms to cc-pV5Z + 33211 BF, we get
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−18.85 × 10−6 a.u as potential energy minimum, that is to say a gain of −2.54 × 10−6

a.u which could seem insignificant, but not negligible relatively to the well depth. The

equilibrium bond length also changes passing from re = 9.77 a0 at the cc-pVQZ level to

9.63 a0 at the cc-pV5Z level.

On the other hand, we have performed calculations with the CCSD(T) method respec-

tively using aug-cc-pV5Z and aug-cc-pVQZ for He and Mg atoms with the complete set

of interatomic bond functions (33211). This gives −21.55× 10−6a.u as a value for ǫ and

9.64 a0 for re. The same calculations have been repeated taking the cc-pVQZ basis for the

Mg atom. The results were small variations of ǫ (−0.13× 10−6) and re (0.02 a0). Hence,

when the complete set of bond functions is used, the contribution of diffuse basis function

(aug-) becomes insignificant in front of the non-augmented basis set (cc-pVQZ).

Table 5.2 provides ground state energies of MgHe determined at the CCSD(T) level

of theory in combination of various basis sets.

5.3.2 Influence of core correlation effect

Calculations at the CCSD(T) level with the cc-pV5Z basis set for both helium and mag-

nesium atoms, with addition of the 33211 bond function set have been carried out. First,

only the 1s core orbital of the magnesium atom has been kept frozen, we found a well

depth of -18.85×10−6 a.u at the equilibrium geometry of 9.69 a0. Then we have only

let the 3s orbitals participating to the valence space, this gives -17.60×10−6 a.u as well

depth for the potential energy curve and an equilibrium distance of about 9.81 a0 (see

Table 5.1). One can notice in absolute value a difference between the two minima of

1.25×10−6 a.u. Although this difference may seem very weak, in case of very weakly

bound system, electronic core correlation effect is relatively important to take into ac-

count. The core correlation has a less important influence on the equilibrium radius, but

not negligible (around 0.1 a0), however. Fig. 5.1 pictures the potential energy curves

obtained by using the CCSD(T) method in combination with the complete set of bond

functions and two types of basis sets : cc-pVQZ for both He and Mg and aug-cc-pCVQZ

( aug-cc-pV5Z) for Mg (He), the latter method is termed the b1 method. In both cases,

the Mg core is considered to be 1s2 or 1s22s22p6 (real core). In the cc-pVQZ case, the

following characteristics of the PES are determined (when the Mg core is only represented

by the 1s electrons) : −16.31× 10−6 a.u for ǫ and 9.77 a0 for re whereas considering the

real core for Mg, lightly different results are obtained (−15.60 × 10−6 a.u for ǫ and 9.85

a0 for re). On the other hand, similar approach have been made using the b1 method

(see Fig. 5.1), the difference between the PES characteristics is clearly visible in Fig. 5.1.
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R/a0 VQZ1 VQZ2 apVQZ pVQZ apCVQZa apCVQZb

6.00 2068.35 1993.06 1949.70 1953.12 1924.81 1919.83

7.00 489.98 462.48 442.87 444.22 433.18 431.07

7.50 213.63 198.33 183.32 184.17 178.42 177.07

8.00 79.61 71.81 60.18 60.67 57.75 56.88

8.50 18.68 14.65 5.71 6.05 4.69 4.15

8.75 3.21 0.25 -7.65 -7.35 -8.20 -8.60

9.00 -6.27 -8.46 -15.49 -15.27 -15.71 -16.02

9.25 -11.71 -13.31 -19.62 -19.44 -19.62 -19.86

9.50 -14.47 -15.62 -21.34 -21.17 -21.19 -21.38

9.75 -15.53 -16.31 -21.44 -21.34 -21.28 -21.43

10.00 -15.46 -15.96 -20.65 -20.54 -20.47 -20.63

10.50 -13.68 -13.88 -17.77 -17.68 -17.60 -17.71

11.00 -11.21 -11.29 -14.49 -14.41 -14.34 -14.43

11.50 -8.84 -8.87 -11.51 -11.44 -11.39 -11.46

12.00 -6.86 -6.86 -9.00 -8.98 -8.94 -9.00

12.50 -5.29 -5.27 -7.03 -7.02 -6.99 -7.04

13.00 -4.08 -4.05 -5.49 -5.49 -5.48 -5.53

14.00 -2.67 -2.55 -3.39 -3.41 -3.41 -3.45

15.00 -1.83 -1.62 -2.14 -2.17 -2.17 -2.16

16.00 -1.36 -1.08 -1.43 -1.41 -1.42 -1.41

17.00 -0.70 -0.70 -0.96 -0.90 -1.00 -0.94

18.00 -0.57 -0.50 -0.61 -0.61 -0.69 -0.64

19.00 -0.43 -0.37 -0.41 -0.42 -0.49 -0.44

20.00 -0.40 -0.29 -0.28 -0.29 -0.36 -0.31

22.00 - - -0.13 -0.17 -0.20 -0.20

24.00 - - -0.05 -0.09 -0.11 -0.11

26.00 - - 0.00 -0.05 -0.07 -0.07

Table 5.2: Ground state MgHe interaction energies calculated at the CCSD(T) level of

theory in combination of the aug-cc-pV5Z basis set for He and the indicated basis set for

Mg, except in cases1,2 where the basis indicated is also used for He. In all cases, only the

Mg 1s electrons have been kept frozen in calculations, exception made for case1 where only

the Mg 3s electrons have been correlated. The complete set of bond functions (33211) has

been used except in case a where no bond functions are used and case b where only the

332 bond functions have been used. All energies are in 10−6 a.u. and are counter-poise

corrected.
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Figure 5.1: The core-valence correlation influence studied at the CCSD(T) level of

theory in combination with the following basis sets : VQZ for both He and Mg, and

aug-cc-pCVQZ ( aug-cc-pV5Z) for Mg (He). All curves are calculated taking into account

the complete set of bond functions (33211). Notice that the CCSD(T) level with aug-cc-

pCVQZ ( aug-cc-pCV5Z) for Mg (He) + BF is abbreviated as b1.

Therefore, it is important to correlate core electrons for the Mg atoms to better satu-

rate the active space so that the van der Waals bond will be well described by molecular

orbitals descended from atomic orbitals.

5.3.3 Influence of bond functions

Bond functions are known to improve the description of the electronic interaction when

one deals with very weakly interacting systems [83]. Although modest basis sets such as

aug-cc-pVDZ+BF and aug-cc-pVTZ+BF basis sets yield reasonable estimates of bond

energies, in most cases, these results cannot be considered highly accurate [67]. On the

other hand bond functions (BF) in combination with large and diffuse basis sets with (at

least) Nζ = 4 or 5 for example give accurate binding energies [83]. In order to see how
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Figure 5.2: Influence of bond functions considering the CCSD(T),b1 method.

the potential evolves changing the number and type of bond functions, we have made

calculation at the CCSD(T) level using aug-cc-pV5Z for helium atom and aug-cc-pCVQZ

for Mg. As we can see in Fig. 5.2, the well depth increases (in absolute value) when

increasing the number of bond functions. This influence can be quantitatively verified

analysing Table 5.3. Thus without bond functions, the equilibrium potential energy is

-21.38 ×10−6 a.u at bond length of 9.62 a0 whereas a complete set of functions 3s3p2d1f1g

(listed as 33211) gives -21.72 ×10−6 a.u for a binding distance of 9.63 a0. Therefore the

potential well depth becomes deeper when adding bond functions. Similar changes are also

noticed for the average bond length distances (r0) and zero vibrational levels (E(v = 0)).

Although not necessary in case of usual systems (strongly bound), bond functions are

revealed to bring an important contribution to the interaction energy (-0.31 ×10−6).

5.3.4 PES characteristics : r0 and ǫ

As one can see in Fig. 5.3, the curves corresponding to the different approaches are well

consistent. Around the classical equilibrium distances, we have -19.97, -25.98, -21.72



46 Chapter 5. The MgHe 1Σ+ state

Methods He basis BF Mg basis ǫ/10−6a.u re/a0 E0/cm
−1 r0/ Å

aug-cc-pV5Z no aug-cc-pCVQZ -21.38 9.64 -0.76 6.78

CCSD(T) aug-cc-pV5Z 332 aug-cc-pCVQZ -21.54 9.63 -0.78 6.76

aug-cc-pV5Z 33211 aug-cc-pCVQZ -21.72 9.62 -0.79 6.75

Table 5.3: Equilibrium distances, re, and the corresponding potential energy values, ǫ,

using different sets of bond functions. All the the electrons of Mg have been correlated in

the calculations, except the 1s electrons. E0 is the ground state energy and r0 the ground

state distance expectation value.

and -23.04 (×10−6) a.u. for respectively MP2, MP4, CCSD(T) and CCSDT methods

considering aug-cc-pV5Z basis set for the helium atom and the aug-cc-pCVQZ one in the

case of the magnesium atom (see Table 5.1), in addition of the 33211 bond functions. On

the other hand, all our curves converge to the value of the first atomic asymptote Mg(1S0

)+ He( 1S0 ) which is taken as the zero energy reference. In our opinion, the suitable

method is the CCSDT one : as the MP2 level of theory is known to underestimate

electronic correlations [84, 85] and the MP4 method over-estimate it [86]. Perturbative

methods are not reliable enough for such a system whereas coupled cluster methods are to

give reasonable results especially taking into account the monoconfigurational character

of the MgHe ground state [86]. These methods are known to stay self-consistent, this is

an advantage in determining very low binding energy.

The energy points used to picture the MgHe ground state potential energy curves

(shown in Fig. 5.3) are listed in Table 5.4 of Section 5.4.

5.3.5 Difference between basis and C-basis set

Final calculations have been done using the aug-cc-pCVQZ basis set which contains more

flexible valence orbital (sp), more polarization (dfg) and core polarization functions (spdf)

and a better description of the core (s) than the aug-cc-pVQZ version. Referring to

Table 5.1 and Fig. 5.4, one can notice that the CCSD(T) method in combination with

aug-cc-pCVQZ ( aug-cc-pV5Z for He) basis set for Mg (for He) gives a larger well depth

(-21.72 ×10−6 at re = 9.62 a0) than that from the use of aug-cc-pVQZ basis set for Mg

( aug-cc-pV5Z for He) which is -21.55 ×10−6 at re = 9.64 a0 . Therefore, using the

aug-cc-pCVQZ basis set for the magnesium atom describes more accurately the potential

energy of MgHe molecule since this basis contains functions which take into account the

core-valence (and subvalence) electronic interactions. And this is important in this very
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Figure 5.3: Graphic representation of the ground state potential energy surfaces of

the MgHe molecule at the MP2-4, CCSD(T) and CCSDT level of calculations associated

with the aug-cc-pV5Z basis set for He and aug-cc-pCVQZ for Mg and completed with the

complete set of bond functions.
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Figure 5.4: Comparison between the aug-cc-VQZ and aug-cc-pCVQZ for the magne-

sium atom.

weakly bound system.

5.3.6 Basis set superposition error (BSSE)

The graph 5.5 pictures the BSSE correction in the case of CCSD(T) level of calculations.

The basis sets used are aug-cc-pV5Z for He and aug-cc-pCVQZ for Mg. One can notice

that this correction goes to zero for large value of the interatomic distances. Around the

minimum of the potential, the BSSE correction is about 2.82 ×10−6, at a bond length of

9.75 a0 (see figure 5.5). This correction could not be neglected taking into account the

case of our very weak interaction. The BSSE energy correction is defined as :

EBSSE(r) = ECP (r)−EnoCP (r) (5.2)

where EBSSE(r) represents the pure BSSE contribution which is defined as the difference

between binding energies respectively with (ECP (r)) and without (EnoCP (r)) the counter

poise (CP) correction. The function EBSSE(r) is plotted in Fig. 5.5 with stars. This curve

presents a smooth monotonic shape. It decreases from short bond lengths to larger ones.
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Figure 5.5: Basis set superposition error as a function of interatomic distance at the

CCSD(T) level of theory. The atomic basis sets used are aug-cc-pV5Z for He and aug-cc-

pCVQZ for Mg. CP means that energies are counter-poised corrected. Numerical data

are given in table A.9.

It tends to zero for large r values and relatively important values could be noticed for

short r values. In fact this phenomenon could be easily explained considering the fact that

at short interatomic distance, physically the overlap between electronic cloud of helium

and magnesium is stronger than at larger distances. Since electronic density is simulated

by atomic orbitals the overlap between the two atoms follows the same tendency.

5.4 Fit quality

We have fitted our CCSDT energy points by a least square algorithm we coded in fortran

90 language. The fit is very accurate since it reproduces dispersion coefficient Ci,i =

6, 8, 10 in good agreement with experimental ones as we can see in the following. Using

the CCSDT energy points (see Table 5.4), we have fitted these points following an HFD-B
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shape. In this case the analytical potential energy curve is well expressed by the function:

V (r) = Ae−βr −
5∑

i=3

C2i

r2i
(5.3)

In order to quantify the quality of the fitting process, we have evaluated the root mean

square (RMS) error which can be expressed as follows [87] :

RMS =

√
√
√
√

∑Np
k=1(V

fit
k − V meth.

k )2

Np
(5.4)

where Np is the number of ab initio points. For all methods, we obtain a reasonable RMS

(0.03 - 0.30 ×10−6 a.u.), especially in the CCSDT calculation case. This last method

presents a RMS of only 0.03×10−6 a.u. This can be noticed observing Table 5.5 which also

gives the fitting parameters for all the highest level of calculations performed. Table 5.4

also provides an indication on the fit quality since the relative errors between the CCSDT

energy points and the corresponding fitting function, given in the last colmn, are very

small. Another advantage of our fitting process is its capacity to reproduce the dispersion

coefficients C6, C8 and C10 which stay in good agreement with those reported in the

literature, given in Table 5.6, although in the fitting process all the fitting parameters

are let free. In the case of the C6 and C8 coefficients, our values from the most accurate

CCSDT method are respectively 1.889×101 and 1.279×103 in atomic units. The same

conclusion can be hold for MP2, MP4 and CCSD(T) calculations : according to Table 5.6,

all the dispersion coefficients we obtain are consistent and generally in good agreement

with the literature. For comparison, Hinde [77] reported 2.0×101 and 1.1×103 respectively

as C6 and C8 values. The dispersion coefficients which we have determined also nicely

agree (see Table 5.6) with those determined by Standard et al. [81]. However, our C10 is

out of the range given by Standard.

5.5 Conventional CBS approximation

In this section we will study in detail the application of the Complete Basis Set (i.e CBS)

approach to the MgHe complex. Logically, ab initio expectation values for any hermitian

operator can be exact value only if the number of basis functions tends to infinity. And

this is true when considering any method (RHF, CCSD(T), ...) and any system. Of course

it is reasonable to suggest that this ideal limit, without being very pessimistic, will never

be reached and will stay infeasible whatever the future computer power is. Furthermore it

stays quite interesting making calculations using ”infinite” basis set. The more interesting
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r/a0 VMP2 VMP4 VCCSD(T ) VCCSDT V CCSDT
fit (r) ∆V (r)(%)

7.00 464.12 412.82 429.69 420.44 419.21 0.29

7.50 197.19 162.72 176.20 169.93 170.32 0.23

8.00 68.72 45.85 56.32 52.04 52.21 0.32

8.50 10.96 -4.18 3.78 0.91 0.89 2.69

8.75 -3.58 -15.83 -8.92 -11.38 -11.33 0.41

9.00 -12.29 -22.25 -16.28 -18.33 -18.29 0.20

9.25 -17.12 -25.22 -20.08 -21.72 -21.76 0.20

9.50 -19.37 -25.97 -21.56 -22.97 -22.98 0.02

9.75 -19.96 -25.36 -21.58 -22.78 -22.77 0.03

10.00 -19.52 -23.95 -20.71 -21.76 -21.73 0.14

10.50 -17.13 -20.14 -17.76 -18.54 -18.51 0.15

11.00 -14.11 -16.20 -14.45 -15.02 -15.02 0.02

11.50 -11.28 -12.76 -11.47 -11.90 -11.91 0.06

12.00 -8.90 -9.96 9.00 -9.28 -9.34 0.64

12.50 -6.98 -7.76 -7.05 -7.21 -7.26 0.69

13.00 -5.48 -6.07 -5.53 -5.73 -5.72 0.10

14.00 -3.44 -3.78 -3.45 -3.57 -3.57 0.05

15.00 -2.21 -2.42 -2.21 -2.34 -2.29 2.30

16.00 -1.47 -1.60 -1.46 -1.50 -1.51 0.53

17.00 -1.00 -1.09 -0.99 - - -

18.00 -0.69 -0.76 -0.63 - - -

19.00 -0.49 -0.54 -0.43 - - -

20.00 -0.36 -0.39 -0.30 - - -

22.00 -0.20 -0.21 -0.14 - - -

24.00 -0.11 -0.12 -0.11 - - -

26.00 -0.07 -0.07 -0.06 -0.07 -0.07 3.04

28.00 -0.04 -0.05 -0.04 - - -

30.00 -0.03 -0.03 -0.02 - - -

35.00 -0.01 -0.01 -0.00(7) - - -

40.00 -0.00(5) -0.00(6) -0.00(1) - - -

Table 5.4: Ab initio counter-poise corrected interaction energies : calculations have been

carried out with an aug-cc-pV5Z (aug-cc-pVQZ) for He (Mg) basis set in combination of

the complete set of bond function (33211). All energies are in ×10−6 a.u. ∆V (r) is the

relative error between V CCSDT
fit (r) and VCCSDT .
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Methods A β C6 C8 C10 RMS

MP2 1.58×101 1.37 1.86×101 1.15×103 7.20×104 0.20

MP4 1.90×101 1.39 2.09×101 1.10×103 9.14×104 0.30

CCSD(T) 1.66×101 1.38 1.87×101 1.15×103 6.95×104 0.15

CCSDT 1.60×101 1.38 1.89×101 1.28×103 7.03×104 0.03

Table 5.5: HFD-B fit parameters and dispersion coefficients from the highest levels of

calculation. Use of ab initio methods in combination of the largest basis sets for both

helium ( aug-cc-pV5Z) and magnesium (aug-cc-pVQZ) with addition of the complete set

of bond functions (33211). All data are in atomic units.

C6 C8 C10

Standard et al. [81] (2.11 - 2.21)×101 (0.843 - 0.924)×103 (3.55 - 4.19)×104

R. Hinde [77] 2.0×101 1.1×103 -

Partridge [66] 1.978×101 - -

This work :

MP2 1.86×101 1.15×103 7.20×104

MP4 2.09×101 1.10×103 9.14×104

CCSD(T) 1.87×101 1.15×103 6.95×104

CCSDT 1.89×101 1.28×103 7.03×104

Table 5.6: Dispersion parameters in atomic units.
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thing is, in my opinion, performing accurate calculations using a very small number of

basis functions but at present accurate data are obtained using at least triple or quadruple

ζ basis sets. Another mean to treat is to extrapolate energies to the complete basis set

limit as we will discuss in detail in the following. The aim of this section is to determine

if the CBS approximation can still be applied for extremely weakly bound systems like

Mg@Hen which are the main subject of this work.

From here, all the ab initio energies presented do correspond to the MgHe geometry

of 9.5 a0 (5.03 Å ). This distance is chosen because it is close to the equilibrium distance

of 5.01 Å .

The total CCSDT energies of the MgHe molecule can be decomposed as a sum of

a Hartree-Fock contribution and a correlation part : ECCSDT = EHF + Ecorr.. In the

following sections, we present and discuss the different ways to perform the CBS approach

for both the HF part and the correlation part of the energy. During the fitting process of

the CBS approximation, an arbitrary weight proportional to n3 has been applied, with n

the number of ζ in the basis sets. This is done in order to reproduce as well as possible

the ab initio points with high n ζ by the fitting functions.

5.5.1 Fitting of the HF energies

The Hartree-Fock energy contribution obtained from calculations with several basis sets,

i.e aug-cc-pCVnZ for Mg and aug-cc-pVnZ for He where n takes 2-4 values and 2-6 values

respectively for Mg and He, has been fitted to the following Dunning-Feller function [53,

57, 58]

EHF (n) = E∞

HF + αe−βn. (5.5)

where α, β and E∞

HF are fitting parameters. The important quantity to be remembered

is E∞

HF which represents an extrapolation the HF energy for an infinite basis.

5.5.2 Fitting of the correlation energies

In the system we are studying (MgHe), since its atomic components, ie He and Mg, are

both close shell atoms, the major part of the binding energy is induced by the dispersion

forces (London forces). Taking this fact into account, it reveals extremely important to

correctly fit the correlation part of the binding energy. For this aim a choice of an appro-

priate fitting function is crucial, that is why we have first decided to use the conventional

fitting function [60] described in the following

Ecor1(n) = E∞

cor1 +
C1

n3
. (5.6)
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This method will be abbreviated as cor1 in the next sections. Then, we used the function

reported in Ref. [61] which is said to take into account, via the 1
4

factor, higher order of

inverse polynomial than 1
n3 . This function (denoted in the following sections as cor2) is

written as

Ecor2(n) = E∞

cor2 +
C2

(n− 1
4
)3

(5.7)

Finally, we have introduced a new fitting function, called cor3 in the next section, more

flexible since it has one more adjustable parameter than the two previously presented

(Eqs. 5.6 and 5.7) . This function takes the following form

Ecor3(n) = E∞

cor3 +
C3

nβ3

(5.8)

Mg and He without BF neither BSSE (methodI)

First of all, ab initio calculations have been performed for the MgHe complex, at a geom-

etry of 9.5 a0 close to the equilibrium bond length, using the CCSDT method in combi-

nation of several basis set sizes (aug-cc-pCVnZ for Mg and aug-cc-pVnZ for He where n

takes 2-4 values and 2-6 values respectively for Mg and He). Fig. 5.6 depicts the fitting of

the correlation energies. In all these figures, curves with solid lines draw the results of the

cor1 method (Eq. 5.6), those with dots are from the cor2 method (Eq. 5.7) and those with

dashed lines are derived from the cor3 method (Eq. 5.8). Observing the corresponding

horizontal curves, one can notice that the lowest are obtained by the mean of the cor1

method (dashed lines). Referring to Table 5.7, one can notice that the most reasonable

extrapolated binding energy is obtained when fitting ab initio points from methodI via the

cor3 fitting method. In fact an extrapolated energy of -2.65×10−5 ± 5.85× 10−5 a.u. is

found which can be a reasonable extrapolated value since the quadruple ζ points evaluated

at the methodI level gives -2.482×10−5 a.u as binding energy (Table 5.8). However the

extrapolated value is statistically insignificant because the error is too large (5.85× 10−5

a.u.).

Mg and He with BF and without BSSE (methodII)

Fig. 5.7(d) shows the fitting of the HF energies obtained by methodII, curve depicted by

the solid line takes into account the double ζ energies whereas that represented by dots

does not. The insert in figure 5.7(d) better shows the light difference between these two

curves. This lightness is due to the fact that the fit is a weighted fit and the weight is

very low for the double ζ energies (see section 5.5.2). Fig. 5.7(a,b and c) represent the
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Figure 5.6: Complete basis set extrapolation for the correlation energy of the He (a),

Mg (b), MgHe (c) using for each system the three fitting methods (cor1, cor2 and cor3).

Ab initio points are performed at the methodI level of theory. Fig.(d) shows the fitting

of HF energies of He. In Fig. (a,b and c) solid lines draw the results of the cor1 method

(Eq. 5.6), dots those from the cor2 method (Eq. 5.7) and dashed lines those from the cor3

method (Eq. 5.8).
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fitting of the correlation energies. In all the figures, curves drawn with solid lines are from

the cor1 extrapolation method, curves with dots are derived from the cor2 method and

finally the dashed curves are from the HF like fitting function 5.5. Generally, what can

be noticed observing the horizontal curves is that the conventional cor1 method gives the

best results since lowest correlation energies are obtained with it.

However no bound fundamental state is found (by fitting ab initio points from the

methodII) because when observing Table 5.7 all the binding energies are positive with

moreover very large error bars and this is true whatever the correlation fitting method is.

Mg and He with BF and BSSE (methodIII)

Fig. 5.8 picture the fitting processes of the correlation energies obtained with several basis

set qualities. Curves with solid lines and dots take into account the energy points obtained

using the double ζ basis sets in the fitting process. Dots and bold dashed curve are from

the cor2 method that is to say that the fitting function is that described in equation 5.6.

Whereas dashed lines and solid lines depict curves obtained by the cor1 method. Dashed

and bold dashed lines represent the results without considering correlation energies given

at the double ζ level. While horizontal curves represent the CBS extrapolated energies in

each case.

The general tendency for both the atomic fragments (He and Mg) and the MgHe

complex is that the lowest correlation energy is obtained when the double ζ energies

are not used in combination of the cor2 method. However the balance sheet of the

total correlation is not encouraging since the extrapolated correlation energies are around

−6.3 × 10−5 ± 0.008 a.u for both cor1 and cor2 methods. The first problem is that

value has huge error bars, moreover, it can not compensate the HF energies (7.405 ×
10−5 a.u) enough to give a bound state. As a result, observing Table 5.7, one can see

that the only extrapolated energy value (-2.65×10−5 ± 5.85× 10−5 a.u.) is obtained by

methodI in conjunction of the correlation method cor3 (Eq. 5.8). This value is in fairly

good agreement with that obtained by the various methods at the quadruple ζ level (see

Table 5.8). However, the relative huge error of 5.85 × 10−5 a.u. gives no sense to the

extrapolated value (of -2.65×10−5 a.u.). The conclusion is that the CBS schemes applied

here do not provide convincing results for MgHe. And this may be generalized to very

weakly bound systems.
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Figure 5.7: CBS extrapolation for the correlation energy of the He (a), Mg (b), MgHe (c)

using for each system the three fitting methods (cor1, cor2 and Eq. 5.5). Ab initio points

are performed at the methodII level of theory. Fig. (d) shows the fitting HF energies :

Curve with dots does not take into account the double ζ energies. In Fig. (a,b and c)

solid lines draw the results of the cor1 method (Eq. 5.6), dots those from the cor2 method

(Eq. 5.7) and dashed lines those from (Eq. 5.8).

Correlation methods

Methods : cor1 cor2 cor3

methodI 0.000196 ± 0.0065 0.00034 ± 0.005 -2.65×10−5 ± 5.85 × 10−5

methodII 0.000109 ± 0.006 0.00032 ± 0.005 0.00052 ± 3.6× 10−5

methodIII 1.089×10−5 ± 0.0075 1.084×10−5 ± 0.0078 -

Table 5.7: Conventional CBS extrapolated binding energies of MgHe at an internuclear

distance of 9.5 a0. All energies are in Hartree.
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Figure 5.8: CBS extrapolation for the correlation energy of the He (a), Mg (b), MgHe (c)

using for each system the two fitting methods (cor1, cor2). Ab initio points are performed

at the methodIII level of theory. In all figures, curves with dots and solid lines do not

take into account the double ζ energies. In Fig. (a,b and c) solid and dashed lines draw

the results of the cor1 method (Eq. 5.6). The other curves are from the cor2 method

(Eq. 5.7).
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ζ MgHe Mg He Ebind.

MethodI

2 -202.700781499197 -199.811190856630 -2.88954848536500 -4.215×10−5

3 -202.819839094287 -199.919205797995 -2.90059792292100 -3.537×10−5

4 -202.857663988173 -199.955105560225 -2.90253359941800 -2.482×10−5

MethodII

2 -202.702527509942 -199.812669557783 -2.88970704855300 -1.509×10−4

3 -202.820659294376 -199.919858964530 -2.90062443463900 -1.758×10−4

4 -202.857892065172 -199.955295788877 -2.90253937811400 -5.689×10−5

MethodIII

2 -202.702527509942 -199.812786977035 -2.88971969254700 -2.084×10−5

3 -202.820659294376 -199.920006721584 -2.90062997961200 -2.259×10−5

4 -202.858559201765 -199.955332903497 -2.90320333069200 -2.296×10−5

Table 5.8: Energies (in a.u.) of the MgHe ground state from MethodI, MethodII and

MethodIII evaluated at an interatomic distance of 9.5 a0 in combination with various basis

sets.

5.6 Non conventional CBS approximation

In the section above, we have tried to extrapolate the CCSDT potential energy for the

MgHe system for a bond length of 9.5 a0 without real success in the sense that all energies

for the different methods have given unreasonable values. So we discuss below another

approach which consists in directly extrapolating binding energies at a given basis set

level n. As in the section above, we consider that the binding energies consist of two

parts : Ebind.
CCSDT = Ebind.

HF + Ebind.
corr. The strategy thus consists in fitting the Hartree-Fock

contribution, Ebind.
HF , following the same expression as in the case of atoms

Ebind.
HF (n) = Ae−Bn + E∞

bind. (5.9)

Equation 5.9 supports some approximations because if the atomic energies can be fitted

by a function like that of eq. 5.9, the binding energy will be a sum of exponential functions

but this sum is not an exponential type function. However, in our special case the use

of eq. 5.9 can be justified because the helium atom energies are negligible versus those of

Mg and MgHe systems. This approximation involves that the Mg and MgHe energies are

nearly identical (ie, the fitting function are not so far from each other), this allows us to

fit the binding energies following expression 5.9.



60 Chapter 5. The MgHe 1Σ+ state

Correlation methods

Methods cor1 cor2 cor3

methodI -2.1891×10−5 ± 3.9×10−6 -2.3545×10−5 ± 3.7×10−6 9.7680×10−3

methodII -3.4555×10−5± 5.5×10−5 -4.3023×10−5 ± 5.2×10−5 3.2210×10−2

methodIII -2.3298×10−5 ± 6.5×10−8 -2.3234×10−5 ± 3.4×10−8 -2.3129×10−5

Table 5.9: CBS extrapolated binding energies. All energies are in atomic units.

On the other hand, the fitting processes of the correlation contribution to the binding

energies can be made following equations 5.10 and 5.11 without any approximation. For

clarity, we give again the equations that we use for the fitting process. The cor1 method

uses the following equation in the fitting process :

Ebind.
cor1 (n) = E∞

bind1 +
C1

n3
. (5.10)

whereas the cor2 methods accounts for the following equations :

Ebind.
cor2 (n) = E∞

bind2 +
C2

(n− 1
4
)3

(5.11)

The third correlation method (termed cor3) is now chosen to be fitted with the same

function (Eq. 5.9) than the HF binding energies.

Table 5.9 summarizes the extrapolated binding energies. Observing this table, espe-

cially the last line, one notices that the extrapolated binding energies are 5.1(1), -5.10(7)

and -5.08 cm−1 for respectively the cor1, cor2 and cor3 fitting methods of the correla-

tion part of the binding total energy, when considering the ab initio methodIII, ie, the

method which uses the BSSE correction and BFs. These values are very similar and in

good agreement with those calculated at the methodIII level of theory which is listed in

Table 5.8 as equal to -22.96 µHartree (=-5.03 cm−1).

However, in the case of the two other methods (methodI and methodII) presented in

Table 5.9, the resulting binding energies are far from the ab initio points (-5.03 cm−1).

Moreover, large error bars are observed. For example, the methodII gives an energies of

-7.58 ± 12.07 cm−1 (-3.4555×10−5 ± 5.5× 10−5 a.u).

Thus, the appropriate CBS method seems to be the non conventional method devel-

oped in the current section in combination with methodIII.
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J=: 24Mg4He 25Mg4He 26Mg4He

0 -0.902 -0.909 -0.915

1 -0.651 -0.659 -0.666

2 -0.176 -0.185 -0.193

B0 0.1269 0.1264 0.1260

Table 5.10: Rotational levels for main magnesium isotopes, for v = 0 and possible

rotational constants for the three main magnesium isotopes. Energy units are cm−1.

5.7 Vibrational level of MgHe ground state

Numerically solving the radial Schrödinger equation by a variational method [88] using

the CCSDT pair potential for the MgHe system gives us three bound rovibrational levels.

For the 3 main isotopes, Table 5.10 presents rovibrational levels with v=0 and J=0 to 2,

it also provides the expectation value of the rotational constants (B0) for each isotope.

Compared to Ref. [89], our rovibrational energies seem to be greater than those reported

by between 20 % to more than 130 %. This could be interpreted by their shallower MP4

potential which only has 21 µHartree as well depth at an equilibrium geometry of 9.75 a0.

The rotational constant values (B0) do not have a large dependence on the Mg isotopes

and all are about 0.12 cm−1. The MgHe ground state seems to only support a unique

vibrational level (v = 0) whose energy is -0.90 cm−1.
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5.8 Conclusion

Along this chapter, we have shown that the MgHe ground state energy curve is particularly

difficult to determine. Since this system belongs to the very weakly bound van der Waals

systems. However, we have used the accurate CCSDT method in combination of large and

diffuse basis set functions to perform calculations of our potential energy curve (PEC).

Furthermore, we have taken into account several effects which influence the system energy

such as the core-valence correlation (cv), the bond function (BF), etc. Doing this, we have

obtained a PEC whose characteristics are in good agreement with those in literature.

On the other hand, dispersion coefficients obtained from our PEC are also in excellent

agreement with those reported in literature. Finally, the rovibrational calculations carried

out with the highest PEC (from CCSDT) have shown the existence of only three bound

rovibrational states (v = 0, j = 0, 1, 2). Furthermore, various CBS approaches have been

attempted without real success; although, the ”non conventional” technique seems to give

relatively satisfying results, the large error bars presented do not allow any conclusion.



5.8 Conclusion 63



64 Chapter 5. The MgHe 1Σ+ state



Chapter 6

Introduction to quantum Monte

Carlo methods

Among quantum theoretical methods, Quantum Monte Carlo methods (QMC) are be-

coming very interesting for highly accurate quantum calculations of both electronic and

bosonic systems. QMC is a family of very diversified methods. Some of them are based on

the variational principle like Variational Monte Carlo (VMC) [90], others on the diffusion

equation such as Diffusion Monte Carlo (DMC) [90] and others on the path integral for-

malism like Path Integral Monte Carlo (PIMC) [91]. By means of these methods, a large

number of atomic and molecular systems have been studied [92–96], as well as rare-gas

bosonic clusters [97–99]. QMC methods can almost scale linearly [100] or as a low-order

polynomial with system size, N , in practice not worse than order N3. Thanks to this low

scaling rate 1, it is possible to study large systems which are impossible to approach with

other methods. This is the case of doped helium clusters which are the subject of this

work. QMC methods have a wide domain of application, they are useful in physics as well

as in chemistry to perform molecular electronic structure calculations. In this chapter,

we will orient our attention in briefly introducing two main QMC methods: Variational

Quantum Monte Carlo (VMC) and Diffusion Quantum Monte Carlo (DMC).

6.1 Variational Quantum Monte Carlo

The VMC method [101] is based on the variational principle in the sense that a wave

function which depends on a set of arbitrary parameters p is formulated : Ψ(r,p). The

1Whereas, ab initio methods have a high-order polynomial scaling with system size, for example the

coupled cluster methods, scale, at least as N6.
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set of parameters is then adjusted so that the energy (or its variance) of the system is

minimal. If the energy derived from the previous wave function is E(p) and the exact

energy is E0 for a given state of a system, the variational theorem proves that for a set

of optimum parameters popt the energy, E(popt), may be a good approximation of the

exact energy E0. In the sense that both values are linked by this relation : E(popt) ≥ E0,

the equality is verified in the case where Ψ(r,p) is the exact wave function. In practice

minimizing the variance of the energy expectation value rather than energy itself seems

to be less troublesome and is a common way to efficiently optimize wave function.

6.1.1 Energy point calculation

For any hermitian operator Â, the expectation value (reported as 〈A〉) is given by the

following integral equation :

< A >=
〈Ψ|Â|Ψ〉
〈Ψ|Ψ〉 (6.1)

where Ψ is the wave function governing the system. Now, if we are interested in the ground

state energy of the system, which will always be the case in our study, the interesting

operator will be the Hamiltonian and equation 6.1 takes the following form

< E0 >=
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 (6.2)

which is equivalent in more explicit notation to

< E0 >=

∫

Ψ∗(r)ĤΨ(r)dr3n

∫

Ψ∗(r)Ψ(r)dr3n
(6.3)

where Ψ(r) is, in our case, a bosonic wave function 2, Ĥ is the Hamiltonian operator

for the system, n is the number of particles (helium atoms) in the system, and r is a

3n-dimensional vector containing the positions of all n particles. Some manipulations of

expression 6.2 yield

< E0 >=

∫

Ψ∗(r)Ψ(r)El(r)dr
3n

∫

Ψ∗(r)Ψ(r)dr3n
(6.4)

We can rewrite the last equation as:

< E0 >=
∫

pvmc(r)El(r)dr
3n (6.5)

2As, in our case, Ψ(r) is a real function so that Ψ∗(r) = Ψ(r), we will write indifferently Ψ∗(r) or

Ψ(r) for the complex conjugate of Ψ(r).
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where:

pvmc(r) is the normalised probability for particles to occupy positions r and El(r) = Ĥψ(r)
ψ(r)

is the corresponding energy (the local energy) for the system at these positions. Many

approaches to solve equation ( 6.5) exist. One of them is the standard grid integration.

But this method suffers from a high scaling of the computational cost since it scales as

2n. Fortunately the high scaling of standard integration methods can be overcome when

VMC is used. In fact VMC employs Monte Carlo integration to evaluate equation 6.5. It

can be shown that Monte Carlo integration is faster than standard integration algorithms

when the integral’s dimensionality is greater than about 7 [102].

In Monte Carlo integration, N random vectors, rk, distributed with respect to pvmc(r)

are generated. The energy expectation value is then found to be:

< E0 >≈
1

N

k=N∑

k=1

El(rk) +O
( 1√

N

)

(6.6)

One can notice in the previous equation ( 6.6) that the standard deviation in the expected

energy decreases with the square root of the number of samples (N). An advantage of

this integration scheme is that the error is independent of the system dimensionality.

On the other hand, a disadvantage of the VMC method is that optimizing the wave

function parameters is a difficult task since expectation values (energy or its variance) are

stochastic quantities.

6.1.2 VMC wave functions

In principle any symmetric wave function may be used as the bosonic wave function for

VMC calculations of helium clusters(4He). Nevertheless, the closer the wave function is

to the exact wave function, the faster the VMC calculations converge. Furthermore an

appropriate wave function should have a restricted number of parameters to simplify its

optimization in order to obtain the optimal state. Generally Jastrow type wave functions

may serve as one and two-body components wave function φjasij and the total wave func-

tion, Ψ, is constructed following the form :

ψ(r) =
∏

i<j

φjasij (rij)
∏

i

φ
jas/fer
i (ri) (6.7)

where φJasij (rij) is a Jastrow type function and explicitly takes the form :

φjasij (rij) = e
−(

c1
r5

ij

+
c2
r2

ij

+c3rij+c4 ln(rij))

(6.8)
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and φ
jas/fer
i (ri) is a Jastrow/Fermi type function which is given as :

φ
jas/fer
i (ri) =

e
−(

a1

r5

i

+
a2

r2

i

)

1 + ea3(ri−a4)
(6.9)

In the previous equations rij refers to the distance between atom i and atom j, ri to

the distance of particle i from the overall center of mass. The ai and ci are constant

parameters to be optimized.

6.2 Metropolis algorithm

It is almost impossible to dissociate the Metropolis algorithm from QMC methods be-

cause of its important application in the acceptance probability of a move attempt. This

algorithm [103] starts by the following equation for the time evolution of a density

∂ρ(r, t)

∂t
=
∫

[T (r′ → r)ρ(r′, t)− T (r → r′)ρ(r, t)]dr′ (6.10)

In equation 6.10, the function ρ(r, t) is any probability distribution at time t. The function

T (r → r′) represents the transition probability for moving from position r to position r′

and is normalized so that
∫

T (r → r′)dr′ = 1. Furthermore, if the system is in equilibrium

we have a stationary density with ∂ρ(r,t)
∂t

= 0. The equilibrium assumption implies a time

independent character of the system so that ρ(r, t) is just r dependent (ρ(r, t) = ρ(r)).

Taking into account these two assumptions transforms equation 6.10 into the simpler one

below :

0 =
∫

[T (r′ → r)ρ(r′)− T (r → r′)ρ(r)]dr′ (6.11)

Equation 6.11 has an infinite number of solutions but the simplest and most used solution

invokes detailed balance. This solution is based on the fact that an equivalence exists

between
∫

f(r)dr = 0 and f(r) = 0. If we let f(r) = T (r′ → r)ρ(r′)− T (r → r′)ρ(r), we

obtain the following relation, also known as the detailed balance solution :

T (r′ → r)ρ(r′) = T (r → r′)ρ(r) (6.12)

From equation 6.12, the probability for accepting a move attempt from position r to

position r′ is given by

A(r′, r) = min
(

1,
T (r′ → r)ρ(r′)

T (r→ r′)ρ(r)

)

(6.13)
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In eq. ( 6.13), it should be noted that in most implementations of the Metropolis algo-

rithm, the transition 3 probability T is chosen so that T (r′ → r) = T (r → r′).

Now, we are able to produce random numbers distributed with respect to any given

distribution ρ(r) even if the distribution is complicated. The random numbers distributed

with respect to ρ(r) are the samples ri. The algorithm can be summarized by the following

steps :

• choose an initial point r0

• choose a random point r′i to generate the (i+ 1)th random sample.

• generate a uniform random number ξ

• if ξ > A(r′i, ri), ri+1 ← ri

else ri+1 ← r′i

Repeating this process a certain number of times finally gives the desired random numbers

distributed according to ρ(r). The initial point r0 should, however, be chosen carefully so

that the ρ(r) distribution is rapidly sampled.

6.3 Diffusion Monte Carlo

The disadvantages of the VMC method can be overcome by the diffusion quantum Monte

Carlo (DMC) method at the cost of a more expensive simulation. The DMC method [104]

has been extensively discussed in the literature [90, 105, 106]. In this section we aim at

summarizing the main features of the method.

6.3.1 Why diffusion?

First of all, we can wonder about the meaning of the word ”diffusion”. In fact the key idea

of the DMC method is the analogy between the time dependent many body Schrödinger

equation and a classical diffusion equation with anisotropic diffusion coefficients. The

time dependent many body Schrödinger equation for a system composed of n particles is

written as

ih̄
∂ψ(~r, t)

∂t
=
[

− h̄2

2

n∑

j=1

1

mj

∇2
j + V (~r)

]

ψ(~r, t) (6.14)

3However more intelligent choices for T (r′ → r) can be used to increase the probability of accepting

an attempted move and, therefore, to improve the algorithm efficiency.
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where ~r is a 3n-dimensional vector which stores the system coordinates and mj the mass

of particle j.

Now, if we introduce an imaginary time variable τ = it/h̄ and shift the absolute energy

scale by an arbitrary quantity Eref , we obtain the following equation :

∂ψ(~r, τ)

∂τ
=
[ n∑

j=1

h̄2

2mj
∇2
j − (V (~r)− Eref)

]

ψ(~r, τ) (6.15)

The multidimensional reaction diffusion phenomenon for n particles is governed by

the following relation
∂C(~r, t)

∂t
=
[ n∑

j=1

Dj∇2
j − k(~r)

]

C(~r, t) (6.16)

If we identify the inverse mass terms with diffusion coefficients Dj and the shifted po-

tential V (~r) − Eref with the position dependent rate terms k(~r), the analogy between

equation 6.15 and 6.16 becomes obvious.

6.3.2 DMC method

Diffusion Quantum Monte Carlo (DMC) can give exact expectation values for N-body

quantum problems within statistical errors. The DMC method solves the time dependent

Schrödinger equation exploiting the isomorphism between the latter and the multidimen-

sional diffusion equation. The Hamiltonian operator, Ĥ , for a system of n particles is

described by the formula below

Ĥ = − h̄
2

2

n∑

i

1

mi

△i + {V̂ − Eref} (6.17)

where V̂ is the potential energy and Eref a shifting energy constant. The derivatives

involved by the Laplacian operator, △, are with respect to the 3n coordinates.

The Schrödinger eigenvalue equation satisfies the following equation

Ĥ|Φk(r)〉 = Ek|Φk(r)〉 (6.18)

Ek and Φk(r) are the eigenvalue and eigenfunction pairs.

From the Hamiltonian in equation 6.17, it is possible to construct a new Hamiltonian,

H̃ , which has eigenvalue-eigenfunction pairs of Ek and ϕk = Φk(r)Ψtrial(r) and where

Ψtrial(r) is a guiding wave function.

H̃ =
n∑

i

( −1

2mi

△i +
1

mi

∇i · ∇ ln |Ψtrial(r)|
)

+ El(r) (6.19)
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The local function El(r) = ĤΨtrial(r)
Ψtrial(r)

has the same meaning as in the VMC case. It

is the local energy of the system for given positions of particules. The time-dependent

Schrödinger equation for H̃ in imaginary time τ is

− ∂

∂τ
|ϕ(τ)〉 = (H̃ − Eref)|ϕ(τ)〉 (6.20)

Assuming that the Hamiltonian H̃ is time-independent, equation 6.20 has the formal so-

lution :

|ϕ(τ)〉 = e−(H̃−Eref )τ |ϕ(0)〉 (6.21)

Expanding the formal solution in terms of the eigenfunctions of H̃ gives

ϕ(r, τ) =
∑

k

cke
−(Ek−Eref )τΦk(r)Ψtrial(r) (6.22)

where ck = 〈Φk(r)Ψtrial(r)|ϕ(r, τ = 0)〉. One can notice that the high-energy components

in expansion 6.22 die out exponentially with τ and :

lim
τ→∞

|ϕ(r, τ)〉 = lim
τ→∞

cγe
−(Eγ−Eref )τ |Φk(r)Ψtrial(r)〉 (6.23)

where |Φγ〉 is the lowest energy state. Furthermore, if Eref is chosen to equal Eγ , equa-

tion 6.23 becomes

lim
τ→∞

|ϕ(τ)〉 = cγ |Φγ(r)Ψtrial(r)〉 (6.24)

which is proportional to |ΦγΨtrial〉. Therefore, random coordinates generated with the

distribution ϕ(r, τ →∞), are also distributed with respect to |ΦγΨtrial〉. This is what is

required to evaluate the DMC energy using Monte Carlo integration.

6.3.3 Time evolution and Green’s function

Equation 6.21 can not be exploited by the DMC algorithm in its present shape and must

be expressed in terms of a Green’s function :

ϕ(r′, τ) =
∫

G(r′, r, τ)ϕ(r, τ = 0)d3nr (6.25)

where

G(r′, r, τ) = 〈r′|e−(H̃−Eref )τ |r〉 (6.26)

is the Green’s function for the problem. In most interesting physical problems, it is im-

possible to correctly evaluate G(r′, r, τ) for arbitrary τ . Only a small amount of physical



72 Chapter 6. Introduction to quantum Monte Carlo methods

problems has an analytical Green’s function solution. However, in the small time step ap-

proximation, dτ , G(r′, r, dτ) can be factored 4 into two independent parts, via the Trotter

formula [107], easy to evaluate.

G(r′, r, dτ) = Gdiff (r
′, r, dτ)Gbranch(r

′, r, dτ) +O(dτ 2) (6.27)

Gdiff (r
′, r, dτ) is the ”diffusion” function which describes the probability of moving from

a point r to r’ in dτ imaginary time [98]

Gdiff (r, r
′, dτ) =

∏

j







(
mj

2πdτ

) 3

2

exp



−mj

2dτ

[

rj − r′j −
dτ

2mj
Fj(r)

]2









(6.28)

where mj is the mass of particle j and Fj(r) = Ψtrial∇ lnΨtrial is a quantum drift force.

The branching part of the Green’s function, Gbranch(r
′, r, dτ), is a factor evaluating

how the value of ϕ changes in going from (r, τ) to (r′, τ + dτ)

Gbranch(r
′, r, dτ) = exp

{

−dτeff
(

El(r) + El(r
′)

2
− Eref

)}

(6.29)

Under the small time step approximation, equation 6.25 is transformed into a recursive

form

ϕ(r′, (k + 1)dτ) =
∫

G(r′, r, dτ)ϕ(r′, kdτ)dr3n +O(dτ 2) (6.30)

Iteratively applying equation 6.30 offers a good approximation of ϕ(r, τ) for large imagi-

nary time τ . Equation 6.30 is 3n-dimensional, which represents an equation of about 600

dimensions if a helium cluster composed of 200 atoms is simulated. Thus Monte Carlo

integration is a reasonable way to determine the integral. In the stochastic evaluation of

this integral, a correspondence can be established where ϕ(r, τ) is represented by

ϕ(r, τ) ≈
∑

j

ωj(τ)δ(r− rj(τ)) (6.31)

where ωj(τ) represents a statistical weight and δ(r− rj(τ)) is the well-known Dirac delta

function centered at rj(τ) . The couple {rj(τ), ωj(τ)} is known as a walker. Combination

of equations 6.30 and 6.31 leads to

ϕ(r′, (k + 1)dτ) ≈
∑

j

ωj(kdτ)Gdiff (r
′, rj(kdτ), dτ)Gbranch(r

′, rj(kdτ), dτ). (6.32)

4Other schemes exist for factoring the Green’s function and for recovering the delta function repre-

sentation of ϕ(r′, (k + 1)dτ . The details of these algorithms and their advantages and disadvantages are

covered in the literature [90, 93]. Umrigar’s algorithm [93] seems to be the most used since it is stable,

and has a small time-step bias.
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Equation 6.32 can be transformed into the delta function form. To do this, each of the

new delta function positions, rj((k + 1)dτ) , is randomly chosen from the distribution

Gdiff (r
′, rj(kdτ), dτ). The new weights are then given by

ωj((k + 1)dτ) = Gbranch(r
′, rj(kdτ), dτ)ωj(kdτ) (6.33)

This new set of walkers is a stochastic representation of ϕ(r, (k + 1)dτ). The new set

of random points, rj((k + 1)dτ), given the appropriate statistical weights, ωj((k + 1)dτ),

are random points distributed with respect to rj((k + 1)dτ). By choosing ϕ(r, τ = 0)

to be |Ψtrial(r)|2, a stochastic representation of ϕ(r, τ = 0) can be generated by setting

ωj(τ = 0) = 1 and rj(τ = 0) equal to random points generated with respect to |Ψtrial(r)|2
using the Metropolis algorithm. After many applications of equation 6.30, the walkers

will provide a stochastic representation of ϕ(r, τ → ∞), which equation 6.24 showed to

be proportional to the distribution we are trying to sample, Φ0(r)Ψtrial(r). This produces

the samples required to evaluate the DMC energy.

6.3.4 Move acceptance

As implied above accepting a move attempt is made by the Metropolis criterion following

the probability :

P (r→ r′) = min{1, A(r→ r′)} (6.34)

where

A(r→ r′) =
|ψtrial(r′)|2G(r′ → r)

|ψtrial(r|2G(r→ r′)
(6.35)

The asymmetric transfer function G(r′ → r) has to be explicitly taken into account in

this acceptance 5 decision. In the branching part of this function, eq. ( 6.29), the effective

time step δτeff is defined through the ratio of accepted displacements and attempted

displacements according to

δτeff =
< δ~racc >

2

< δ~ratt >2
(6.36)

6.3.5 DMC wave function

A common ansatz for atomic clusters and bulk systems (see for example [98]) expresses

Ψtrial as a product over a set of one-dimensional functions φjasij defined over all pairs of

5In this work, the acceptance rates were typically between 98% and more than 99%, depending on the

droplet size and the time step used in our simulation.
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particles. Just like in VMC this result is multiplied by the product of φ
jas/fer
i

Ψtrial(r) =
n∏

i<j

φjasij (rij)
n∏

i

φ
jas/fer
i (ri) (6.37)

where rij is the distance between particles i and j, ri is the distance between atom i and

the center of mass.

In our case of an alkaline-earth (Ca or Mg) atom embedded in an atomic helium environ-

ment, we used a guiding function (Ψtrial) determined in equation 6.37. We write Ψtrial

as a product over pair wise radial functions φjas as above connecting the helium atoms

and a product over isotropic functions φjas/fer which make hold the cluster together by

an attractive long range tail.

6.3.6 DMC Energy Evaluation

The DMC energy can be evaluated by two main way: the local energy estimator which

will be presented first and the growth estimator.

Local energy estimator

The DMC energy, Edmc, is evaluated using a mixed estimator :

< Edmc >=
〈Φ0(r)|Ĥ|Ψtrial(r)〉
〈Φ0(r)|Ψtrial(r)〉

(6.38)

< Edmc >=

∫

Φ0(r)ĤΨtrial(r)dr
3n

∫

Φ(r)Ψtrial(r)dr3n
(6.39)

In the equation above, |Ψtrial(r)〉 should be an approximation to the desired ground state

|Φ0〉 and r is a 3N-dimensional vector containing the coordinates of the N particles.

Since Ĥ is an Hermitian operator and both |Φ0〉 and |Ψtrial〉 are real, 〈Φ0|Ĥ|Ψtrial〉 =

〈Ψtrial|Ĥ|Φ0〉, it can be shown that Edmc = E0. Rearranging equation 6.38 yields to :

< Edmc >=

∫

Φ0(r)Ψtrial(r)El(r)dr
3n

∫

Φ0(r)Ψtrial(r)dr3n
(6.40)

where El(r) = ĤΨtrial(r)
Ψtrial(r)

is the local energy of the particle positioned at coordinates r.

In practice, as shown in section 6.3.3, the instantaneous weights are a stochastic repre-

sentation of the ground state wave function. Since in the DMC method, only expectation

values of local operators are directly accessible, the integration reduces to an average
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over operator values. Here we are interested in the ground state energy (Edmc) which is

approximated by :

< Edmc >=

∑N
i=1 ωiEl(ri)

Ω
(6.41)

where El is the local Hamiltonian operator (the local energy previously defined), ωi the

current relative weight of the random walker i or its weight multiplied by the sum of

descendant weights [108] and Ω is the total sum of walkers’ weights

Ω =
N∑

i=1

ωi (6.42)

Use of the random walkers’ instantaneous weights amounts to a ”mixed” expectation value

〈Ψtrial|Ô|Ψ〉. From the mixed DMC expectation values, one can compute the extrapolated

quantity

〈Ψ|Ô|Ψ〉 = 2〈Ψtrial|Ô|Ψ〉 − 〈Ψtrial|Ô|Ψtrial〉+O(∆Ψ2) (6.43)

∆Ψ = Ψ−Ψtrial

but this approach can give bad DMC expectation values and its results are not taken

into account in our final results. We rather use the collection of descendant weights to

generate a statistical estimate of the true |Ψ|2 distribution [108].

Growth estimator

Another way to determine the DMC energy is the use of the growth estimator method.

The latter has the advantage of presenting a smaller time step error [98] compared to

local energy estimator method, discussed in the previous section(6.3.6). The imaginary

time evolution of the walker i is determined by the following equation

ωi(ri, τ + δτ) = exp{−(El(ri)− Eref)δτ}ωi(ri, τ). (6.44)

The growth energy, Egrowth, is proportional to the logarithmic derivative of the total

weight with respect to imaginary time

Egrowth = Eref −
d lnΩ(τ)

dτ
(6.45)

where Ω(τ) is the sum over all the weights of walkers

Ω(τ) =
∑

i

ωi (6.46)
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6.4 Error analysis

Error analysis of data is central to Monte Carlo simulations. For this reason, statistical

techniques used to compute the expectation values and their error bars are presented in

the following sections.

6.4.1 Correlated samples

Quantum Monte Carlo simulations (VMC as well as DMC) calculate expectation values

of physical systems, < X >, usually using a high-dimensional probability distribution

function, p(x), in combination of a multidimensional integral.

< X >=
∫

p(x)φ(x)dx (6.47)

Although the previous expression seems simple and compact, in most physical interesting

cases, it is too time consuming to directly solve equation ( 6.47) using modern computers.

Instead, it is typically useful and more convenient to calculate the (time) average of X,

denoted as X̄.

X̄ =
1

N

i=N∑

i=1

φ(xi) (6.48)

In equation 6.48, the index i is related to the Monte Carlo step number, and xi is a

3n-dimensional coordinate vector which is sampled from the distribution p(x). Assuming

ergodicity, < X > and X̄ can be related through the following relationship

〈X〉 = lim
N→∞

X̄ =
1

N

i=N∑

i=1

φ(xi) (6.49)

To approach equality in equation 6.49, very large sample sets should be used. But, in

any case, since the number of samples (N) is necessarily finite, X̄ will fluctuate as the

calculation progresses because of its non-zero variance V ar(X̄). This variance can be

written as

V ar(X̄) =
1

N

N∑

i,j=1

[〈φ(xi)φ(xj)〉 − 〈φ(xi)〉〈φ(xj)〉] (6.50)

In the simple case of uncorrelated data ({φ(xi)}), the covariance terms are zero, and

equation 6.50 reduces to the well-known variance relation :

V ar(X̄) =
〈X2〉 − 〈X〉2

N
=
σ2(X)

N
(6.51)

Since DMC (as well as VMC) calculations are based on a random walk [103] they pro-

duce {φ(xi)} with non-zero covariances which means a serial correlation between data.
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In fact the probability of picking xi depends on the value of xi−1. (see section 6.2). The

Metropolis algorithm generates by this way a Markov chain [109]). If one utilizes equa-

tion 6.51 to calculate the variance of such markovian systems, the result will be incorrect

and statistical error bars are underestimated because the covariance between samples is

missing.

6.4.2 Correlation analysis

To decorrelate data given by a Markov process, one has to take into account the correlation

length of data.

Autocorrelation function

Since of the Markov chain data are serial correlated, the determination of the correlation

time, τc, is crucial. The latter gives an estimate of how long the system takes to evolve

between states that are practically independent. The autocorrelation function of the data,

γ(t), which is given here in its normalized form,

γ(t) =

∫+∞

−∞
f(t′)f(t′ + t)dt′
∫+∞

−∞
f 2(t′)dt′

(6.52)

is required to define the correlation time. For discrete data, the autocorrelation function,

given by Eq. 6.52, is estimated by the following expression :

γ(t) = γ(jδτ) =
Cov(xi, xi+j)

V ar(xi)
(6.53)

which is explicitly computed as

γ(jδτ) =

∑M−j
i=1 (xi − x̄)(xi+j − x̄)
∑M−j
i=1 (xi − x̄)2

(6.54)

where δτ is the DMC time step, M is the number of samples and x̄ is the average of the

xi

x̄ =
1

M

M∑

i=1

xi (6.55)

The important quantity to be computed in order to correct the DMC energy variance

is the correlation length, that is to say τc. This is defined as :

τc = 2
∫

∞

0
γ(t)2dt (6.56)
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In our case, the autocorrelation function is defined such that τc = 1 for uncorrelated

data and τc > 1 for correlated data. The size of the correlation length indicates the degree

of correlation between data.

In practice, since the autocorrelation function γ(t) is computed following its discrete

formula (equation 6.53), τc is evaluated via equation 6.56 using a numerical integration

method such as Simpson’s formula.

6.4.3 The DMC case

Considering a DMC expectation value < X >, typically energy, for a given system, in

practice, for each block, we calculate < X > as a mean over time steps. The standard

deviation of the observable < X > is then given by the following relation [110]

σb =

√
√
√
√
√

1

Mb − 1

Mb∑

j=1

(< X2
j > − < X >2

b) , (6.57)

In Eq. 6.57, Mb is the total number of blocks. < Xj > and < X >b are respectively

averages over block j and over all blocks. The standard deviation, σb, is expected to

increase with block length until a limiting value which corresponds to the true standard

deviation if samples were not correlated. Since the latter are necessary correlated, σb is

finally corrected by multiplication by a factor which is the root square of the correlation

length, τc to give the ”true” standard deviation of the expectation value, σ

σ =
√
τcσb. (6.58)

6.4.4 Statistical errors

In the previous section, we have presented the way to properly determine error bars, ie,

statistical errors committed during simulation. In the following we list the main origin of

statistical errors encountered during our DMC simulations :

• insufficient number of walker.

• insufficient number of blocks.

• bad guiding function (trial wave function)
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6.4.5 Systematic errors

The statistical techniques previously presented are unable to detect nor correct any sys-

tematic errors below, except in the first case:

• Average with non-relaxed data.

• Time step error due to the approximation for the Green’s function.

• Too short simulation.

• not enough random walkers.

6.5 Calculation of main properties

The current section presents the different properties which are necessary in visualizing

the helium droplets. We also discuss technical details which allow their computation.

All histograms shown in the figures contained in the chapter on DMC results have been

computed with descendant weights [108].

6.5.1 Radial distribution

The descendent weights approach is in particular applicable to the positional correlation

function which is very useful in visualizing the structure of the clusters. The radial

distribution of helium atoms relative to the center of mass of the whole cluster is computed

as

Prad(r) =
1

n

n∑

i

〈δ(ri − r)
r2

〉walk (6.59)

This quantity is very interesting in judging the density of a helium cluster compared to

the bulk helium density. We can also qualitatively determine the magnesium or calcium

position in the helium droplet when visualizing the density histogram of the Mg (or Ca)

atom.

6.5.2 Pair correlation function

In a similar way we compute the discrete version of the helium pair correlation function

according to

Ppair(r) =
2

n(n− 1)

n∑

i<j

〈δ(rij − r)
r2

〉walk (6.60)
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and the He-Mg or He-Ca pair correlation function. Both expressions are normalized such

that
∫

∞

0
Pradr

2dr =
∫

∞

0
Ppairr

2dr = 1 (6.61)

The radial distribution function can be easily converted to the spherically averaged radial

density distribution ρ(r) using

n = 4π
∫

∞

0
ρ(r)r2dr (6.62)

and then

ρ(r) =
4π

n
Prad (6.63)

6.5.3 Two-dimensional histograms

In a similar way we compute two-dimensional histograms in cylinder coordinates to an-

alyze the density distribution ρ(r, z) of helium around the magnesium or calcium atom.

The z-axis is defined by the center of mass of the droplet and the alkaline-earth dopant.

On the other hand the perpendicular distance of helium atoms to this axis defines the

polar radius r. The origin coincides with the center of mass of the droplet and Mg or Ca

is on the positive z-axis. The density distribution is computed by the following expression

ρ(r, z) =
n

2π

n∑

i

〈δ(ri − r)
r

δ(zi − z)〉walk (6.64)

The quantity ρ(r, z) is accumulated on a grid which is equidistant in z and r2 which

eliminates the need to take square roots during the data collection.

The number of helium atoms, n, can be found by integration of the density distribu-

tion ρ(r, z) following the expression

n = 2π
∫

∞

0

∫
∞

−∞

ρ(r, z)rdrdz (6.65)

and was used as a check for the completeness of the histogram.

6.6 Pseudo-codes

In the following paragraphs, we present Fortran pseudo-codes to illustrate the implemen-

tation of VMC and DMC methods adapted from [111]. These codes aim at presenting the

main steps of both methods. In reality, the implementation is a little bit more difficult

while the algorithms are easy to understand.
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6.6.1 VMC

call initstate(rold) ! Initialize the ensemble of states

Psi old =Ψtrial(rold) ∗Ψtrial(rold) ! Evaluate Ψtrial

for i=1,nblocks ! Loop over blocks

for j=1,nsteps ! Loop over time steps

for k=1,nwalkers ! Loop over walkers

call sample (rold, rnew, Tnew) ! Sample new state from drifted Gaussian

Psi new=Ψtrial(rnew) ∗Ψtrial(rnew) ! Evaluate Ψtrial

call sample (rnew, rold, Told) ! Find transition probability for going backward

A = Psi2new/Tnew

Psi2
old
/Told

! Determine the probability of acceptance.

if(A > rand () ) then

rold = rnew

Psiold = Psinew

endif

enddo

call averages(rold)

enddo

call output()

enddo

6.6.2 DMC

call initstate(rold) ! Initialize the ensemble of states

Psi old = Ψtrial(rold) ! Evaluate Ψtrial

Dold = Drift(rold) ! Evaluate ∇Ψtrial

for i=1,nblocks ! Loop over blocks

for j=1,nsteps ! Loop over time steps

for k=1,nwalkers ! Loop over walkers

call sample (rold, rnew, Tnew, Dold) ! Sample new state from drifted Gaussian

Psi new=Ψtrial(rnew) ! Evaluate Ψtrial

Dnew = Drift(rnew) ! Evaluate ∇Ψtrial

call sample (rnew, rold, Told, Dnew) ! Find transition probability for going backward

A = Psi2new/Tnew

Psi2
old
/Told

! Determine the probability of acceptance.

if(A > rand () ) then

rold = rnew
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Psiold = Psinew

naccept = naccept + 1

endif

weight(rold) = weight(rold) ∗ exp(−dτ ∗ (El(rold −Eref))
enddo

call reweight(rold)

call averages(rold)

enddo

call output()

enddo

6.7 Conclusion

In short, we have seen in the current chapter that the VMC method can reasonably

determine some properties of the system (energy, structure,...) with a modest calculation

cost, but the main disadvantage is the strong dependence of the results on the quality

of the wave function. In the sense that a bad wave function systematically provides bad

expectation values and this, whatever the simulation length is. These inconveniences

can be overcome by the DMC method which exactly solves the many-body Schrödinger

equation (within statistical errors). But this is done at the cost of longer simulations

because DMC is more time consuming than VMC.
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Chapter 7

Doped helium nanodroplets

7.1 Introduction

Helium nanodroplets present interesting characteristics. Some of the most important

questions to be clarified are : Are the droplets superfluid? What is the temperature of

these systems in the extreme conditions where they are produced? Some elements of

answers are detailed in the next sections. However, an interesting question can be about

the shape of the droplets which are generally said as spherical but since the droplets are

produced with non-zero angular momentum, the spherical form is not especially preserved.

The main properties as well as some applications are given in the following.

7.2 4He nanodroplet properties

7.2.1 Superfluidity

One of the first interesting experiments on doped helium clusters was performed by Scoles

et al. [2] during the year 1992. They mesured infrared absorption spectra of the SF6

monomer and noticed a line width much smaller than in other rare gas matrices. After

this, Toennies et al. [12] measured a similar spectrum of the same system and it appears

that SF6 freely rotates in the droplets (a well defined rotational structure was observed).

The same conclusion was found by Grebenev et al. [16] for the OCS molecule.

The final demonstration of the superfluid character of the helium (4He) droplet is

attributed to Grebenev during the year 1998. In fact Grebenev et al. [16] performed an

IR spectroscopic experiment of both 3He and 4He systems doped with the OCS molecule.

The spectra of OCS in 3He and 4He nanodroplets show very different shapes in these two
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Figure 7.1: An expanded view of the OCS IR spectrum in pure 4He droplets with

N̄4He = 6000 atoms (A) and in pure 3He droplets with N̄3He = 12000 atoms (B). The

depletion is plotted versus the change in wave number with respect to the origin of the

spectrum in (A) at ν0 = 61.64 cm−1. From Ref. [16].

systems. In Fig. 7.1, from Ref. [16], the spectra measured present a well resolved rotational

structure (spectra (A) corresponding to the bosonic system) whereas the spectra implied

by the 3He system only shows a broad band. The difference demonstrates the superfluid

character of the (4He) droplets since 3He is not superfluid at this temperature (0.4 K).

The superfluidity of the helium droplet is confirmed by theoretical calculations. Pure

and doped 4He nanodroplets are supposed to be superfluid at a temperature of about 0.4

K for a minimal number of 4He atoms (40) [17, 18] or at least have a significant superfluid

component.

Moreover, Grebenev et al. give an indication on the minimum size of the helium 4

droplet which make it superfluid. It appears that quasi-free rotation is observed (see

figure 7.2) when about 60 4He atoms solvate the OCS molecule. So manifestation of

superfluidity is provided by at least 60 helium 4He at this operating temperature (0.4 K).
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Figure 7.2: A series of OCS IR spectra in 3He similar to Fig. 7.1 (B) but with increasing

average numbers N̄4He of added 4He atoms [N̄4He=0 (A), 7 (B), 25 (C), 35 (D), 60 (E),

and 100 (F)]. The change in wave number in the abscissa is with respect to ν0 = 2061.71

cm−1. From Ref. [16].
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7.2.2 Temperature of the droplets

Hartmann et al. [12] experimentally studied the rotational structure of the infrared spec-

tra of the SF6 molecule. Thanks to this spectrum the temperature of the droplets was

determined to be 0.37 ± 0.05 K. The same temperature (0.37± 0.02 K) has been deter-

mined by Grebenev et al. [15] using the IR spectra of the OCS molecule embedded in

large 4He droplets.

On the other hand, Nauta et al. [14] deduced a temperature of 0.34± 0.01 K from the

rotational spectra of the HF dimer in 4He clusters and Callegari and co-workers found a

similar temperature of 0.348(2) K when they measured the IR spectra of cyanoacetylene

in 4He droplets.

The light difference between the temperature experimentally obtained can be explained

by the fact that the temperature depends on the size of the droplets [13].

The experimental values for the droplet temperature are in good agreement with the

theoretical prediction of 0.32 K [1, 11].

7.3 Experimental aspects

7.3.1 Production of helium nanodroplets

Actually, many ways exist for the formation of helium droplets with sizes starting from a

few helium atoms to macroscopic aggregates. These helium droplets are often formed by

supersonic expansion of helium gas but many other approaches can be applied in order

to accomplish this aim. Producing the helium droplets is a real challenge, at least at

the beginning, because of the extreme working conditions : very low temperatures, high

helium pressures, etc. However, nowadays, the supersonic expansion technique can be

divided into two categories :

- continuous helium droplet beam [2, 5, 112]

- pulsed helium droplet beam [113].

In both cases physical characteristics of the apparatus must be well controlled in order to

obtain droplets in a given size range. The helium droplet formation is well discussed in

Ref. [19] and references inside. The droplet size depend on the initial conditions, pressure

and temperature, at the nozzle (respectively P0 and T0). The nozzle diameter also has

an effect on the droplets sizes.
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7.3.2 Doping of droplets

Doping the helium droplets is generally achieved by means of collisions between atomic

(or molecular) impurity and the helium droplet beam in a scattering cell. This method is

known as the pick-up technique [112, 114]. In the case of helium clusters doped with Mg

atom, the doping process is performed by heating metallic Mg until a partial pressure is

reached in magnesium (typically between 0.01 to 0.1 Pa [28, 115], depending of the mean

number of Mg wanted in the droplets) within the doping cell (see figure 7.3). This cell

is crossed by the nanodroplet beam. The droplets are then doped by inelastic collisions

with the Mg atoms. The number of the Mg atoms in a droplet depends on the partial

pressure of Mg and the cross section of this droplet. The mean number of the dopant in

the droplet follows the Poisson statistics and is given by

Pn =
µn

n!
e−µ

where n is the number of atoms picked up and µ is the mean number of n, which is

proportional to pressure in the pick-up cell. The pressure dependence has been studied

for many impurities (see for example [116]). The mean number of dopants, µ, can be

approximated as µ = σρL where ρ is the density of Mg in the pick-up cell, L is the cell

length and σ is the cross section of the droplet.

7.4 Applications of helium nanodroplets

7.4.1 Helium Nanodroplet Isolation Spectroscopy

The group of Toennies was one of the first to perform Helium Nanodroplet Isolation

Spectroscopy experiments (HENDI) [118]. Then Scoles et al. [4] experimentally studied

the SF6 (monomer and dimer) embedded in helium nanodroplets. Since this time, the

field has continuously progressed.

Spectroscopy in He nanodroplets presents numerous advantages. The main ones can

be listed as :

• Resolved rotational spectra [12–15, 119].

• Controlled size of the droplets [120].

• Fast cooling of the impurities (ability to stabilize reactive species) [20, 21]. HENDI

appears to be a very promising technique since it uses an ideal isolation matrix.
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Figure 7.3: Schematic representation of the laser-depletion apparatus used for the pick-

up and depletion spectroscopy of molecules inside helium droplets (from Ref. [117]).
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7.4.2 Other applications

All the applications of the helium nanodroplets are far to have been discovered. We just

list in the following the main field of applications :

• Production of very pure magnesium clusters [121, 122]

• Chemistry of cryogenic medium [20, 21, 23]

• Kinetics at very low temperature (0.4 K) [22]

Another important application we imagine is the possibility to use helium droplets in

order to separate species whose separation is infeasible by other ways. Since some species

are completely solvated in the helium droplets and others are not, it may be possible to

separate them using helium droplets. For example, if we have to separate a mixture of

Ag and Na atoms, we can pick-up these species by a beam of helium droplets. The silver

atoms will be solvated and the sodium atoms will stay at the surface. Then, after the

pick-up cell, if we are interested in the silver atoms, we can make leave sodium atoms by

ionizing them and redirecting them by an electric field for example.
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Chapter 8

DMC computational details

8.1 Introduction

In the current section we will deal with the manner to properly make DMC calculations.

As we have seen in section 6, observables obtained from the DMC algorithm should not

depend, at least in theory, on the wave function parameters or the random number suite

used to advance the walkers. Furthermore, observables are by definition exact in the limit

of an infinite number of walkers and a time step equal to zero. But in practice these ideal

limits can never be achieved. Thus, in concrete terms DMC observables such as energies

or dopant positions are expected to depend on the wave function parameters. Bad results

could also be produced if, for example, the imaginary time step is too large. On the

other hand, an insufficient number of walkers may affect the accuracy of the calculations.

Statistical errors increase when an insufficient number of blocks is used. So, the calculation

strategy consists in optimizing all the technical parameters as well as possible. For this,

we introduce in the following sections a systematic study of all the technical parameters.

Of course, when we study a particular parameter all the others are kept constant. That

is to say, if we are interested, for example, in the effect of the number of walkers, Nw, all

the simulations we will run to test this variable will have the same technical parameters,

except for Nw.

8.2 Influence of the number of walkers

It can be demonstrated that the DMC mean energy, Edmc
mean, for a given number of walkers

Nw has a strictly positive error proportional to 1
Nw

. This is true even when δt, the time
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step is zero. Thus Edmc
mean can be written, in the limit δt = 0 as :

Edmc
mean = E∞ +

C

Nw

. (8.1)

Where E∞ is the exact energy for Nw → ∞ and C a positive constant related to the

variance of the local energy and depending on the nature of the system.

Thus the ”exact” energy is reached when an infinite number of walkers is used. Of course,

this is a physical and philosophical limit which is not realizable in practice. Nevertheless,

we want to get the best possible honest estimate of the exact energy and for a reasonable

accuracy, we can run calculations with a finite number of walkers.

Fig. 8.1 depicts the DMC energy as a function of the number of walkers Nw, points with

error bars are DMC mean energies for the MgHe12 cluster at a given ensemble size. The

solid curve represents the fitting function :

Efit(Nw) = E∞ +
C

Nw

(8.2)

where E∞ expresses the DMC energy extrapolated to an infinite number of walkers. The

general tendency is that the computed energy is well fitted by the formula above and

the error bars are significatively reduced when the population size (number of walkers)

is important. The DMC points of Fig. 8.1 have been fitted following the formula above

(Eq. 8.1) and the asymptotic energy is found to be -18.76(1) cm−1. The latter is in

excellent agreement with that obtained using 1600 walkers (-18.75(2) cm−1). It is then

not necessary to systematically make extrapolation to extract the DMC energy since a

finite number of walkers is usually sufficient for this aim.

On the other hand, the accuracy of properties like the helium density in the droplet

is also dependent on the population size. Figs 8.2 and 8.3 depict the helium density

respectively for simulations with 100 and 12800 walkers. One can notice that in the first

case (100 walkers), the 2d and 3d density profiles are very noisy whereas in the case

of 12800 walkers, the situation is strongly different : the density profiles have become

much smoother. But this has a cost, the last simulation is 130 times more expensive in

time. Thus, once again, the good decision, at least in my opinion, is to adapt the number

of walkers to the system size. For small clusters, we can use large number of walkers,

typically 4000 to 6000, and for larger ones a number of walkers varying from 1000 to

2000. In any case, for our final DMC calculations, whatever the droplet size is, we use at

least 1000 walkers to stay in a reasonable accuracy.
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Figure 8.1: Evolution of the MgHe12 energy versus the number of walkers Nw. Circles

with error bars are the DMC points. The solid curve represents the fitting function of

Eq. 8.2. The extrapolated energy is found to be -18.76(1) cm−1

.
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Figure 8.2: 3d and 2d helium density in the MgHe12 droplet for Nw = 100

.
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Figure 8.3: 3d and 2d helium density in the MgHe12 cluster for Nw = 12800
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8.3 Influence of the time step

DMC observables are exact in the limit of a time step, δτ , which equals zero (see sec-

tion 6.3.3). Bearing this in mind, we are aware that using a non zero δτ inevitably

introduces systematic time step errors. So we have to find a compromise between a small

time step (10-25 a.u) which make simulations long in the case of large systems (N atoms

> 50) and a larger one (25-100 a.u) which is likely to cause more errors. This because,

for example, the DMC mean energy, Edmc
mean, can formally be expressed in a polynomial

expansion of δτ :

Edmc
mean =

∞

∑

i=0

Ciδτ
i (8.3)

If we truncate the previous equation into the second order, we can write

Edmc
mean = Eδτ=0 + C1δτ + C2δτ

2 +O(δτ 2) (8.4)

One can observe in the previous equation, an error in energy which is proportional to δτ 2

that is why a large time step may produce more errors. One way to reasonably evaluate

the DMC exact energy, Eδτ=0, is running calculations for at least 3 different time steps

and then fitting the data to the previous expansion. This has been done for the MgHe25

cluster : the curve resulting from the fitting process (see Fig. 8.4) gives an absolute energy

of −49.2± 0.1 cm−1 as δt equals zero.

Another important property is the magnesium atom radial probability density, p(Rcom):

Fig. 8.5 shows this quantity (p) for two distinct time steps. Circles and crosses respec-

tively represents the helium density for a time step of 25 and 50 (a.u). It is important to

underline that in both cases, the total length of simulation is the same, ie 10000 a.u. The

two curves generally coincide well at large value of Rcom (which is the radial distance of

the particles from the center of mass),ie, for Rcom ≥ 6 Å . Whereas at shorter distances

(for Rcom ≈ 2 Å ), the two histograms are distinguishable. However, although the two

distribution present different shapes, they are statistically equivalent since the error bars

generally overlap.

8.4 Influence of the duration of the simulation

Among influencing parameters, the simulation length takes an important position. A

small number of time steps may give false expectation values. In fact, considering for

example the Mg@Hen system, an insufficient simulation length will not let us determine

correctly the position of the magnesium atom because walkers have not received enough
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Figure 8.4: Evolution of the MgHe25 mean energy versus the time step length.
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Figure 8.5: Density (in Å−3) of He atoms in the MgHe25 cluster for two time steps (in

atomic units): 25 (circles) and 50.
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Figure 8.6: Evolution of the MgHe12 mean energy versus the simulation length, ie, the

number of steps, Nsteps. For all simulations, the time step, δτ was 25 a.u.

”time” to explore the droplets and will consequently stay close to its initial coordinates.

Another main aspect of the simulation length resides in the fact that a short length gives

bad energy values for the ground state of the system since statistical errors are increase

by the shortness of the simulation. Figure 8.6 deals with a concrete case : the MgHe12

cluster. It presents the variation of energy versus the number of time steps, Nsteps. One

can notice that the energy becomes ”stable” from a sufficient simulation length which is

here around 100 time steps. This represents simulation time length of 2500 a.u. As a

result, we can say the longer the simulation is the smaller the error bars are. Thus it

is essential to choose an optimum number of time steps because a too long simulation is

much more expensive and on the other hand a too short one gives noisy expectation values.

So the optimum simulation length must be chosen so that the smallest overall brownian

walk radius is satisfied. In this case all the particles have been given the opportunity to

travel through the droplet.

The smallest overall brownian walk radius is deduced from the Einstein diffusion relation:

〈r〉2 = 6Dt (8.5)
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Figure 8.7: Evolution of the helium probability density in the MgHe12 droplet for

Nsteps = 10 (squares) and 500 (triangles)

where r is the brownian radius of the diffusing particle, D its diffusion constant and t

the time. Another consequence of the shortness of the simulation can be a bad helium

probability density p, as we can notice in figure 8.7 which shows two helium probability

density distributions for a simulation length of 250 a.u. (square points) and 12500 a.u.

(triangles). Curve presenting the short simulation shows a variation around the maximum

probability density whereas the latter is expected to be smoother. This can be noticed in

the second case where the distribution is smooth.

8.5 Influence of the number of blocks

Another important parameter which may strongly affect expectation values or histogram

properties is the number of blocks which is used in the simulation to determine averaged

quantities. Figure 8.8 shows the evolution of the DMC mean energy as a function the

number of blocks in the case of a 12 helium atom cluster doped with a magnesium atom.
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Figure 8.8: Evolution of the MgHe12 absolute energy versus number of blocks Nb

Each point corresponds to an entire simulation. From one point to another, all parameters

are identical except the number of blocks, Nb. One can notice that generally the error bars

decrease when Nb increases. The energy tends to an asymptotic limit (-18.74(2) cm−1)

for a number of blocks greater than 450. The horizontal line represents the energy mean

value estimated from Nb=450 to 1700. This shows that from 450 blocks in the simulation,

all error bars overlaps. We can conclude that for such a typical system size, one has to

use at least a number of blocks greater or equal to 450. Figure 8.9 presents two particle

pair correlation function, π, between the magnesium atom and helium atoms. Curve with

triangles shows π for a simulation of 50 blocks whereas the other curve is derived from a

calculation where 1700 blocks were used. We can notice that these two curves are similar

but do not overlap for all R values. The overlap can be seen for short and large R values.

However, around the maximum of the distributions, these latter differ. In fact the π

function in the case of a 50 blocks simulation seems to overestimate the number of helium

atoms surrounding a given He atom since its maximum is higher than the 1700 blocks

distribution. However, the two distributions are statistically equivalent since error bars

overlap for both distributions.
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Figure 8.9: Evolution of the helium pair particle distribution function, π, in case of 50

blocks (triangles) and 1700 blocks (squares) in the MgHe12 cluster.
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Figure 8.10: Evolution of the MgHe12 energy against seed numbers.

8.6 Influence of the random number seed

As implied above DMC expectation values (energies, etc) (lightly) depends on the tech-

nical parameters. When changing the random number seed, fluctuations in energy can be

noticed. Nevertheless, as one can notice observing figure 8.10, the energy value fluctuates

around a mean value of -18.77(4) cm−1. The fluctuation should be, however, reduced if a

longer simulation is made. The fluctuation may be explained by two main factors : firstly

the simulation of the current nanodroplet is made with a modest population ensemble

size (2000 walkers and 200 blocks), secondly the randomness of the random numbers is

not perfect. Thus we should better call them pseudo-random numbers.

Now, if we consider other properties such as the particle probability densities (here

the particles in question are helium and magnesium atoms), we can say as expected that

these properties also depend on the random number seed utilized for the calculations

for a short simulation. If we refer to figure 8.11, one can remarkably notice a sensitive

difference for the probability density curves of the magnesium atom when two different
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Figure 8.11: Radial probability density of particles in the MgHe12 cluster using different

random number generator seeds.

random number seeds are used. However, the two curves are statistically equivalent if one

takes into account the error bars. In fact, the latter overlap for both distributions.

8.7 Trial wavefunction and parameters

Optimization of a trial wave function with many nonlinear parameters is a difficult task,

especially in the field of quantum Monte Carlo simulations, where usually one uses trial

wave functions to sample the system. To optimize our trial wave functions we use the

variational Monte Carlo method (VMC). But in our study, we do not consider the VMC

method as a final method since the DMC method is used to numerically evaluate expecta-

tion values such as energy or other properties of the system. Since VMC is directed by the

variational principle, there is an optimal set of parameters a for which the energy is mini-

mal and the trial wave function, Ψ(R, a), the closest to the exact wave function Ψexact(R).

Thus, the methodology consists in running the DMC program (DMCCOM [123]) in which

all weights (of walkers) are set to one in running the DMC program and large time steps
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Figure 8.12: Typical pair particle trial wave function components : function drawn with

circles represents φ
jas/fer
i .The curve with crosses shows a representation of φjasi . Dashed

line is the product φ
jas/fer
i × φjasi which is the trial wave function for a couple of binary

particles, and solid line is the square of the trial wave function.

are used to better sample the helium droplets, changing the trial wave function param-

eters. This is done several times until a minimal energy is found. Furthermore others

properties are verified such as the helium density or pair correlation functions. The set

of parameters a which gives the minimum energy is then used in DMC calculations.

The many body wave functions we have utilized is a pair product of a Jastrow type wave

functions and Jastrow/Fermi ones (see example in figure 8.12). As an example of the

trial wave function parameter influence, we depict in figure 8.13 the helium density in

cases of optimized and non optimized wave functions for a pure helium droplet containing

12 atoms. Both curves show the helium radial density, but one can see that the density

calculated with bad wave function parameters (curve with triangles) is broadly overes-

timated since its maximum is very close to the bulk helium density (horizontal curve).
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Figure 8.13: Radial helium densities (ρ) of the He12 cluster : curves with triangles and

diamonds show the densities respectively obtained with a non optimized wave function

and an optimized one. Horizontal solid line is for the bulk helium density. ρ is in Å−3

and Rcom in Å .
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8.8 Conclusion

Although the DMC method algorithm is quite easy to implement (at least in case of a

serial code), in practice we have seen during the previous sections that several technical

parameters have to be optimized by test calculations. This is because the DMC method

uses random numbers but in any case we do not want our results to be random. In this

way, we hope to have demonstrated that optimization parameters importance to properly

perform accurate calculations. The technical parameters such as time step, simulation

length among others, as well as trial wave function should be optimized for each typical

system size.
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Chapter 9

DMC results for MgHen and CaHen

clusters

9.1 Introduction

While some atoms (Ag, Xe, ...) [30, 124] or molecules (SF6, OCS, ...) [4, 16] are completely

solvated in the helium nanodroplet environment, other species like alkali atoms are found

to reside at the surface of the droplet [25–27]. However, the situation of the alcaline-earth

atoms is more interesting, in particular that of the Mg atom whose position with respect

to the helium droplet is more ambiguous since the experiments are still in conflict. In fact,

Reho et al. [28] have studied the 31P 0
1 ← 31S0 transition of Mg in helium nanodroplets.

They compared their spectrum with that obtained for the Mg atom in bulk helium (where

the Mg atom is solvated) by Moriwaki et al. [29]. The good overlap between the two

spectra (see Fig. 9.1) demonstrates, according to the authors, that the Mg atom is also

solvated in the helium droplets. On the other hand, Ren et al. [30], in their recent

ionization experiments, find evidence for the solvation of all the alkaline-earth atoms.

From the theoretical point of view the same contradiction persists. In fact, DMC

calculations performed by Mella et al. [31] show solvation of Mg only for large clusters

whereas DFT calculations produced by Hernando et al. [32] clearly identify a central

position of the Mg atom.

In the following, we present the main results from our DMC calculations for both

calcium and magnesium atoms. External positions are found for both calcium and mag-

nesium. The Mg position is not influenced by replacing the helium pair potential of Aziz

et al. [34] by that recently published by Jeziorska et al. [35].
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Figure 9.1: Comparison of the 31P 0
1 ← 31S0 transition of Mg atoms picked up by He

nanodroplets (thin line) and solvated in bulk liquid helium (thick line). This figure is

reported in Ref. [28].
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9.2 Ancilotto’s model

9.2.1 Principle

A simple and approximate way to estimate whether an impurity is solvated or not is given

within the Ancilotto model [24]. The essential idea of this model is based on the fact that

the gain in interaction energy due to dopant-helium interactions is balanced with the

cost in energy needed to produce a cavity inside the helium droplet for the dopant. The

balance is quantified by a dimensionless parameter λ. The latter allows the determination

of the surface location or its complete solvation. The adimensional parameter λ based on

the well depth ǫ (in cm−1) and the corresponding equilibrium distance re (in Å ) of the

interaction potential between the impurity and the helium atom is defined as :

λ = ρǫre/(2
1

6σ)

where ρ = 0.022 Å−3 and σ = 0.179 cm−1 Å−2 are respectively the density and surface

tension of bulk liquid helium. The threshold for solvation in 4He is [24] λ ≈ λ0 = 1, 90. If

λ < 1.90, an energetically favoured surface position of the impurity is expected, otherwise

(if λ > 1.90) the impurity solvation is energetically favoured. Species with small λ(<<

1.90) values, like alkali atoms, are effectively on the surface of the droplets whereas atoms

of silver which presents a large (compared to 1.90) λ value (5) are solvated.

9.2.2 Limits of the model

Since the model is based on a Lennard-Jones type interaction potential, the shape of

the real interaction potential is not taken into account. This is not a real problem for

species characterized by λ values far from the threshold value (1.90). However, the shape

of the binary potential between impurities and He remains important when the λ value

are close to the threshold value. This situation is encountered when the impurity are Mg

or Ca atoms. The model uses the density and the surface tension of bulk liquid helium

to determine the λ parameter but we know that the density of helium in the droplets is

not uniform and the surface tension of the latter may depend on their sizes. All these

approximations make the Ancilotto model applicable to delicate cases like alkaline-earth

doped helium droplets.

9.2.3 The alkaline earth case

Alkaline earth atoms are very interesting system because of their extremely weak interac-

tion with helium atoms. Because of this weakness, the λ parameter of Ancilotto is close to
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Complex Method ǫ(cm−1) re(Å ) λ

MgHe MP2 4.37 5.16 2.39

MP4 5.69 5.03 3.03

CCSD(T) 4.76 5.09 2.57

CCSDT 5.05 5.07 2.71

CaHe MP2 3.31 5.95 2.09

MP4 4.23 5.83 2.61

CCSD(T) 4.10 5.84 2.54

Table 9.1: λ values corresponding to different ab initio methods used for MgHe and

CaHe. Large basis sets have been used in combination with bond functions for both

systems.

the threshold value of 1.90. For Mg and Ca, the λ parameter values are given in table 9.1.

These values, as one can notice, are very close to the critical value. This is true for all

the ab initio methods used. Thus, we can not use the Ancilotto model in the specific case

of Mg@Hen and Ca@Hen

9.3 Pair potential of the He2, MgHe and CaHe

In chapter 9, we have shown that the DMC method needs interaction potentials for each

type of particle pairs. In principle, the pair potential should take into account two-body

terms, three-body terms and terms of higher order. Since it has been demonstrated that,

in the case of the interaction between helium atoms, the three body-terms are negligible

versus the two-body ones [125, 126], we have only constructed our potential for the helium

atoms as a sum over two-body interaction :

VHe =
∑

i>j

v(rij) (9.1)

where v(rij) is the analytical pair potential of Aziz et al. [34] or the more recent one of

Jeziorska and co-workers [35]. and in the same way the contribution due to the XHe (X

= Ca or Mg) complex is written as

VMg =
∑

i

vCCSDT (ri) (9.2)

VCa =
∑

i

vCCSD(T )(ri) (9.3)
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where vCCSDT (rij) is the pair potential calculated at the CCSDT level of theory and is

mentioned in chapter 5. In Eqs. 9.1 and 9.3, rij is the distance between particle i and

particle j and ri the distance between particle X and particle i. The total CaHe potential

energy is determined following Eq. 9.3 and using the CCSD(T) pair potential reported

in chapter 4. Within this approach the interaction energy in the ground-state clusters is

predicted simply by summing up all the pair wise HeHe (= Vhe) and XHe (= VX).

9.4 Energy calculation

For a doped helium droplet with an X atom (X = Mg or Ca), we define the binding energy

as the energy difference between the doped droplet and the pure helium droplet

Ebind = EXHeN
− EHeN

(9.4)

Using Eq. 9.4, we produce the binding energies reported in table 9.2 which are plotted in

Fig. 9.2. These energies are obtained considering the Jeziorska potential for the helium

dimer. Fig. 9.3 represents the absolute energies of the helium clusters (circles) and the

absolute energies of the same clusters doped with a magnesium atom(triangles). One can

notice that both curves have the same general monotonic shape and present a negative

curvature for small cluster sizes (for N < 25). For clusters with N up to around 25

helium atoms, the absolute energies become quasi-linear versus N. This phenomenon can

be explained in both cases (doped and pure clusters) by a ”saturation effect”. This means,

in case of doped clusters, that from a certain size the magnesium atom does not feel the

presence of more helium atoms. By a similar assumption, it is possible to explain the

shape of the curve drawing the absolute energies of pure helium clusters. In fact each

helium atom will feel the interactions of the first shells because the potential interaction

rapidly decreases with the distance between two particles. That is why, for large pure

helium clusters, the absolute energy is almost linear in N. The same conclusion can be

done for the energy point presented in Fig. 9.4 where the points are obtained using the

helium pair potential of Aziz al. [34]. Absolute and binding energies, in the latter case,

are given in Table 9.3. The binding energies, obtained according to the latter helium

binary potential, are reported in Fig. 9.5 and the binding energy limit is close to that in

Fig. 9.2 (about -20.25 cm−1).

On the other hand, in Fig 9.6, for the Ca doped clusters, the binding energies (b) and

absolute DMC mean energies (a) are plotted. The pair potential used for helium atoms is

from Ref. [34] and that between Ca and He is the CCSD(T) pair potential calculated in

Chapter 4. The binding energy of the CaHeN (when N → ∞) is around -16.0(3) cm−1.
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Figure 9.2: Binding energies of the Mg@HeN complexes when using helium pair potential

of [35]. Solid line is the fitting function from Eq. 9.17.
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Figure 9.3: Absolute DMC energies obtained by using the Jeziorska pair potential for

the helium atoms [35]. Circles are the energies of pure helium clusters (Hen) and triangles

are that of the MgHen clusters.
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Figure 9.4: Absolute DMC energies of the MgHen clusters obtained by using the Aziz

pair potential for the helium atoms [34].



9.4 Energy calculation 119

n δt/a.u. E(Hen) δE(Hen) E(MgHen) δE(MgHen) En δEn

2 25 -0.00009 0.00 -1.97 0.00 -1.96 0.01

6 25 -1.64 0.01 -7.59 0.01 -5.95 0.01

7 25 -2.53 0.00 -9.29 0.01 -6.76 0.01

8 25 -3.58 0.00 -11.05 0.01 -7.48 0.01

12 25 -8.92 0.00 -18.78 0.01 -9.86 0.01

15 50 -13.89 0.01 -25.11 0.03 -11.22 0.03

18 50 -19.46 0.01 -31.81 0.02 -12.36 0.03

20 50 -23.46 0.01 -36.60 0.03 -13.14 0.03

25 50 -34.25 0.02 -48.81 0.08 -14.56 0.08

32 50 -50.86 0.02 -66.98 0.09 -16.12 0.10

53 50 -107.61 0.06 -126.18 0.26 -18.57 0.26

75 50 -173.88 0.13 -193.84 0.32 -19.95 0.34

83 50 -199.16 0.21 -219.14 0.41 -19.97 0.46

100 100 -254.22 0.22 -275.72 0.45 -21.51 0.50

133 100 -364.67 0.30 -386.00 0.36 -21.33 0.56

170 100 -495.61 0.28 -516.44 0.88 -20.83 0.92

220 100 -673.71 0.63 -695.46 0.56 -21.75 0.83

Table 9.2: DMC mean energies for pure and corresponding doped helium clusters. The

last two columns give the binding energies for a given N. All energies and standard de-

viations are expressed in cm−1. The helium pair potential of Jeziorska [35] was used in

combination with the CCSDT potential for Mg-helium interaction.
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Figure 9.5: Binding energies of the Mg@HeN complexes when using helium pair potential

of [127].
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n δt E(MgHen) δE(MgHen) E(Hen) δE(Hen) En δEn

4 25.00 -4.54 0.01 -0.40 0.00 -4.14 0.01

6 25.00 -7.62 0.01 -1.65 0.00 -5.97 0.01

8 25.00 -11.06 0.01 -3.58 0.00 -7.48 0.01

12 25.00 -18.78 0.01 -8.85 0.03 -9.93 0.03

15 50.00 -25.12 0.02 -13.89 0.03 -11.23 0.04

18 50.00 -31.83 0.01 -19.48 0.02 -12.35 0.02

25 50.00 -48.76 0.04 -34.20 0.05 -14.55 0.06

32 50.00 -67.00 0.06 -50.93 0.04 -16.08 0.07

75 50.00 -193.93 0.17 -173.42 0.05 -20.51 0.18

83 25.00 -218.87 0.00 -199.02 0.13 -19.85 0.13

100 100.00 -273.79 0.22 -253.38 0.17 -20.42 0.28

133 100.00 -385.05 0.31 -364.59 0.18 -20.46 0.35

220 100.00 -691.66 0.38 -671.13 0.51 -20.53 0.63

Table 9.3: DMC mean energies for pure and corresponding Mg doped helium clusters.

The last two columns give the binding energies for a given n. All energies and standard

deviations are expressed in cm−1. The data are obtained using the helium pair potential

of Ref. [34] in combination with the CCSDT potential for the MgHe pair interaction.
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n δt E(CaHen) δE(CaHen) E(Hen) δE(Hen) En δEn

4 25.00 -3.08 0.01 -0.40 0.00 -2.68 0.01

6 25.00 -5.52 0.01 -1.65 0.00 -3.88 0.01

8 25.00 -8.41 0.01 -3.58 0.00 -4.82 0.01

12 25.00 -15.29 0.01 -8.85 0.03 -6.44 0.03

15 50.00 -21.19 0.01 -13.89 0.03 -7.30 0.04

18 25.00 -27.56 0.02 -19.48 0.02 -8.08 0.02

25 25.00 -43.84 0.02 -34.20 0.05 -9.64 0.06

32 25.00 -61.57 0.03 -50.93 0.04 -10.65 0.04

53 50.00 -120.54 0.06 -107.74 0.05 -12.80 0.08

75 50.00 -187.62 0.21 -173.42 0.05 -14.20 0.22

83 50.00 -213.44 0.12 -199.02 0.13 -14.42 0.18

100 100.00 -269.66 0.11 -253.38 0.17 -16.29 0.20

133 100.00 -379.59 0.22 -365.59 0.18 -14.00 0.28

170 50.00 -511.18 0.23 -494.71 0.32 -16.47 0.40

190 100.00 -583.10 0.18 -566.80 0.32 -16.30 0.37

Table 9.4: DMC mean energies for pure and corresponding Ca doped helium clusters.

The last two columns give the binding energies for a given n. All energies and standard

deviations are expressed in cm−1 and the time step, δt in atomic units. The helium

pair potential of Ref. [34] have been used in the DMC calculations. The Ca-helium pair

interaction was described by the CaHe CCSD(T) potential.

Since no model is presented in the literature (at our best knowledge) for fitting the

binding energies, we have developed a model in next section. This model is based on an

analytical expression of the pair potentials.

9.4.1 Binding energy model

In the aim to determine an analytical fitting function for the binding energies, we have

proposed a new method which is based on pair interactions between particles. We suppose

that the interaction between atom i and atom j is given by

Vij(rij) = A exp(−βrij)−
C6

r6
ij

(9.5)



9.4 Energy calculation 123

-600

-500

-400

-300

-200

-100

 0

 0  20  40  60  80  100  120  140  160  180  200

E
/c

m
-1

n
(a)

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0  20  40  60  80  100  120  140  160  180  200

E
b
in

d
/c

m
-1

n
(b)

Figure 9.6: Absolute DMC energies (a) of the CaHeN clusters (crosses) obtained by

using the Aziz pair potential for the helium atoms [34] and our CaHe CCSD(T) potential.

Circles depict the helium energies. Fig. (b) shows the DMC binding energies correspond-

ing to those potentials.
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The total potential energy for a pure helium cluster is then described by

VHeN
=

N∑

i>j

Vij = V1 (9.6)

whereas for an X doped helium cluster Eq. 9.6 becomes

VXHeN
=

N∑

i>j

Vij +
N∑

i

ViX(riX) = V ′

1 +
N∑

i

ViX(riX) (9.7)

and the total absolute energies of the pure helium cluster is written

EHeN
= VHeN

+ THeN
(9.8)

where the new term in Eq. 9.8, THeN
, represents the total quantum kinetic energy of the

pure helium cluster. Whereas in the X doped helium clusters, we obtain the following

formula

EXHeN
= VXHeN

+ TXHeN
(9.9)

where TXHeN
is the total quantum kinetic energy of the X doped helium cluster. If we

remember that the binding energy is defined as

Ebind.(N) = EXHeN
− EHeN

(9.10)

Taking into account that the difference between TXHeN
and THeN

we can be supposed

constant, Eq. 9.10 can be rewritten as

Ebind.(N) ≈ VXHeN
− VHeN

(9.11)

Ebind.(N) = V ′

1 +
N∑

i

ViX(riX)− V1 (9.12)

Now, if we assume that the impurity does not really ”disturb” the helium environment,

especially true for low interacting surface located impurities or large size system, we can

then suggest that V ′

1 ≈ V1 so that equation 9.12 becomes

Ebind.(N) =
N∑

i=1

(

A exp(−βriX)− C6

r6
iX

)

(9.13)

Transforming the sums in equation 9.13 into integrals the following relation is obtained :

Ebind.(N) =
∫ rmax

r0

(

A exp(−βy)− C6

y6

)

y2dy (9.14)

Ebind.(N) =
∫ N1/3

N0

(

A exp(−βt)− C6

t6

)

t2dt (9.15)
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Finally after integration of equation 9.15, the binding energies could be fitted to the

following formula which has a physical sense :

E(N) = −a1(
N2/3

a2
+

2N1/3

a2
2

+
2

a3
2

) exp(−a2N
1/3) +

a3C6

N
+ E∞ (9.16)

In the previous relation the ai are positive real parameters C6 is the the dispersion co-

efficient and E∞ the extrapolated binding energy. An equivalent form which is more

convenient for the fitting process is given below:

E(N) = (b1N
2/3 + b2N

1/3 + b3) exp(−b4N1/3) +
b5C6

N
+ E∞ (9.17)

where bi are real parameters and E∞ has the same meaning as previously discussed (in

Eq. 9.16). The fitting model is also based on the approximations that the helium density

is constant and the droplets are spherical. Obviously, this simple model can be improved

by explicitly introducing a modelling function for the real density of the droplets. It can

also be generalized to the many-doped droplet case.

In order to verify the validity of our model (Eq. 9.17) we have summarized in ta-

ble 9.5 the difference between the DMC data and the corresponding energies derived from

Eq. 9.17. One can hence remark a very good agreement between DMC values and the

fitting model. Following the fitting function presented in Eq. 9.17, we obtain an extrap-

olated binding energy (for N →∞ ) of −20.9± 0.8 cm−1. This value is already reached

for MgHe100 whose binding energy is -21.51 cm−1 (±0.56).

9.5 Comparison with literature

The structural problem of Mg doped helium clusters has been treated in the literature. In

Ref. [31], a DMC calculation has been done in order to determine the magnesium location

in the droplet. The authors (Mella et al) found that the Mg atom is fully solvated in case

of helium clusters composed whith more than 25 helium atoms whereas for smaller helium

clusters an opposite situation is predicted for the Mg atom. A transitional situation was

found for the MgHe25 cluster (Fig. 9.7). Performing these calculations the authors have

used as a pair wise interaction potential between He and Mg the CCSDT pair potential

determined by Hinde [77]. What can be surprising in the results given by Mella et al.

is that the position of the Mg atoms depends on the cluster size. Secondly, the DMC

method used by Mella seems to fail to produce bound states for very small Mg doped

helium clusters.
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n En δEn Efit ∆En

2 -1.97 0.01 -1.97 0.001

6 -5.95 0.01 -5.90 0.042

7 -6.76 0.01 -6.77 0.013

8 -7.48 0.01 -7.52 0.044

12 -9.86 0.01 -9.87 0.008

15 -11.22 0.03 -11.23 0.012

18 -12.36 0.03 -12.38 0.027

20 -13.14 0.03 -13.06 0.072

25 -14.56 0.08 -14.51 0.046

32 -16.12 0.10 -16.07 0.047

53 -18.57 0.26 -18.81 0.243

75 -19.95 0.34 -20.14 0.196

100 -21.51 0.50 -20.86 0.642

133 -21.33 0.56 -21.27 0.050

170 -20.83 0.92 -21.44 0.614

220 -21.75 0.83 -21.48 0.260

Table 9.5: Comparison between the DMC binding energies (En) and the extrapolated

energies (Efit) from the fitting process according to Eq. 9.17. δEn and ∆En are respectively

DMC error bars and absolute errors of the fitting function with respect to the DMC points.

Energy units are cm−1.
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(a)

(b)

Figure 9.7: Fig.(a) : Mg probability density in the Mg@Hen clusters. Fig.(b) : Density

of the Mg atom in the Mg@Hen complexes according to Ref. [31].
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Another approach has been applied to the Mg doped helium cluster. Hernando et

al [32] have used the DFT method in combination with the MgHe pair potential of [77].

They have studied clusters whose sizes were between 300 and 5000 helium atoms. They

found a completely solvated Mg atom whatever the cluster sizes are. Fig. 9.8(b), from [32],

depictes the helium density for clusters with size from N=300 to N=5000 and figure 9.8(a)

represents the helium probability density for MgHe220 which we computed. Comparing

these two figures we notice that the helium density profile computed by means of the DFT

method in Ref. [32] shows a lack of helium density at the origin of the diagram, where our

helium density profile (Fig. 9.8(a)) does not. Hence the DFT method places the Mg atom

at the center of the droplet whereas we find a near surface location for this atom. Since the

DFT method is a semi-empirical method, its results may strongly depend on the choice

of the functional. Hence, the DFT method does not appear to be the method of choice to

determine the location for such a subtle impurity. We are then not very confident in the

results given by this method. We are more confident in the DMC method since it solves

the Schrödinger without significant approximations (see Chapter 6 for further details).

In the experimental way, Ren et al. [30] have measured the electron energy dependence

of the ionization yield of alkaline-earth and xenon picked-up atoms. They found a qual-

itative shape difference between the yield curves of species solvated in the middle of the

droplet (Xe atom) and species located in the surface region (alkaline-earth atoms). Their

measurements, which can be seen in figure 9.9 demonstrate that all the alkaline-earth

atoms reside at or near the droplet surface. These experimental results all agree with our

theoretical results in the sense that a surface location is found for both Ca and Mg for

any helium pair potential.

9.6 Ca and Mg positions on the droplets

Except the DMC energy of the doped helium clusters, an important expectation value to

consider is the structure of the system that is to say the position of the impurity with

respect to the center of mass of the droplet. This can be determined by observing the

radial probability density of the alkaline earth atoms or the helium density in cylinder

coordinates. The system of coordinates is defined so that the origin coincides with the

center of mass of the system and the impurity with the positive Z-axis.
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Figure 9.8: Radial helium density (ρ in Å−3) in the MgHe220 droplet (a) and density

profiles for Mg@4HeN drops for N = 300, 500, 1000, 2000, 3000, and 5000 (from [32])(b).
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Figure 9.9: From [30]: ion yield curves for Ca, Sr, Ba, and Xe atoms picked up by a

helium nanodroplet beam (on the left). The shape difference reflects the fact that the

metal atoms are located at the droplet surface and the xenon atom is solvated inside the

droplet. The same conclusion is true in the case of the Mg atom (the right of the figure).



9.6 Ca and Mg positions on the droplets 131

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 4  6  8  10  12  14  16  18  20

N=15

N=32

N=53

N=83

N=133

P

Rcom(100pm)

Figure 9.10: Radial probability densities of Ca in helium clusters whose size are respec-

tively, from the left to the right of the figure, 15, 32, 53, 83 and 133. These distributions

are obtained when using helium pair potential from Ref. [34].

9.6.1 Radial probability densities

Figures 9.10 and 9.11 respectively depict the radial probability densities of Ca and Mg

atoms for several cluster sizes. One can notice independently from the cluster size, for

both Calcium and magnesium atoms, that the radial probability densities of the dopant

take maximum values far from the center of the droplets. This is a proof of a surface

location for both Mg and Ca.

9.6.2 Helium densities in cylinder coordinates

Now if we orient our attention into the helium density for several sizes of doped helium

clusters, one can clearly notice that Mg resides at the surface of the droplets considering

Fig. 9.12. A lack of helium density can be observed for external positions which imply

the presence of the impurity (Mg) at these positions. The contour plots of the helium

densities (figures 9.15 and 9.13) better shows the lack of helium density and these figures
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Figure 9.11: Radial probability densities of Mg in helium clusters whose size are

respectively, from the left to the right of the figure, 18, 25, 32, 53, 83 and 170. These

distributions are obtained with the helium pair potential from Ref. [35].
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show that both Mg (Fig. 9.13) and Ca (Fig. 9.15) reside at the surface of the droplets.

In the interesting case of the Mg atom, the helium pair potential of Jeziorska et al. [35]

or that of Aziz et al. [34] does not influence the position of the foreign atom. In this

way, Fig. 9.14 also demonstrates an external position for Mg when the Aziz potential

is used for helium in the DMC simulations in case of MgHe20 and MgHe100. Fig. 9.12

shows the three-dimensional helium density for several MgHeN clusters and Fig. 9.13

the corresponding projections where the Mg position is manifested by the lack of helium

density on the bottom left corner of each subfigure. Fig. 9.13 clearly supports a surface

location of the Mg atom whatever the cluster size is.

9.6.3 Structural relaxation of the MgHeN cluster

A concrete view of the MgHeN clusters can be imagined. Let us consider the specific cases

of a small and a relatively large cluster (MgHe32 and MgHe170). Fig. 9.16 shows a example

of the evolution of the MgHe32 in the imaginary time τ . The DMC calculation has started

with an initial configuration, optimized at the classical dynamic level, with Mg near the

center of mass. One can qualitatively notice on the bottom left corner that the cluster

presents a very organized structure which is not foreseen for a quantum system whereas

the typical DMC state shows a very disordered helium cluster where Mg has moved to the

surface. This difference between classical dynamic structure optimization and the DMC

resulting state is noteworthy and can be seen for the MgHe170 droplet in Fig. 9.17.

9.7 Pair density distributions

Figure 9.18 shows the pair density distributions of helium atoms in case of doped helium

cluster with different sizes. The maximum density corresponds to the nearest neighbour

distance between 2 helium atoms. In figure 9.18, all curves show a coincidence for the first

maximum which is situated at a distance of 3.6 Å . However the distance corresponding to

the maximum of the distributions decreases when the size of the helium clusters increases.

This phenomenon can be explained by the fact that the density of small helium cluster

is below that of bulk helium. The bigger the clusters are the closer to the bulk helium

density are their densities. In the other hand, figure 9.19 presents the same type of

curves than previously, for magnesium doped helium cluster. In figure 9.19 the maxima

of the Mg-helium pair particle distributions are all situated at a distance of ≈ 5.4 Å . The

evolution of the curve maxima can be explained as just discussed above.
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Figure 9.12: Helium density in the Mg@Hen clusters. In figures a, b, c and d n takes

respectively 4, 6, 15 and 18. The helium pair potential of Jeziorska et al. [35] have been

used.
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Figure 9.13: Helium contour density in the Mg@Hen clusters. In figures a, b, c and d n

takes respectively 4, 6, 15 and 18.
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Figure 9.14: Helium density in cylinder coordinates for MgHe12 and MgHe100 clusters.

The contours of the helium density are also plotted on the right of the figure. r and z are

in Å and the helium density in Å−3.
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Figure 9.15: Projection of the helium densities on the (rz) plane for different CaHen

clusters. In all figures, r and z are in Å .
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Figure 9.16: Schematic evolution of the position of the Mg atom in the He32 cluster.

Horizontal axis represents the evolution in imaginary time τ . Figure below this axis pic-

ture the projection of the helium density in the (rz) plane. Representative corresponding

particle arrangements are also shown.



9.7 Pair density distributions 139

Figure 9.17: Structural difference between classical dynamic optimization of the

MgHe170 and a typical DMC configuration (picture on the right).
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Figure 9.18: Pair particle distance distributions for helium atoms in case of Mg doped

with 18, 25, 32, 53, and 83 helium atoms. All curves are normalized to one.
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Figure 9.19: Helium-Mg pair particle distance distributions for clusters with 12, 25,

32, 53, and 83 helium atoms. All curves are normalized to unity.
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9.8 Adiabatic model for Mg solvation

9.8.1 Energy profile with a geometrical constraint

In order to determine the energy profile of the MgHeN system, a ”pseudo-shake” algorithm

has been used in the DMC code. This gives us the possibility of fixing the distance between

an atomic impurity and the center of mass of the helium atoms. The only constraint

concerns this distance and the impurity has, however, the ability to make free rotations.

Applying this constraint, we have performed DMC calculations for four typical sys-

tems: MgHe50, CaHe50, NaHe50 and AgHe50. For all these systems, the DMC mean

energy has been calculated in a range started from 0 to up to 20 a0, steps of 0.5 a0 of

the constraint. Figures 9.20 and 9.21 depict the DMC mean energy as a function of the

length of constraint for the four systems. As expected, Fig. 9.20, shows that the energy of

the AgHe50 system (curve with circles) increases with respect to the constraint distance

(R) and the minimum is found for a distance of zero. Recalling the definition of the

constraint, the silver atom is then energetically favourable to a complete solvation. This

fact is in excellent agreement with both theoretical [124] and experimental [128] results.

The same conclusions are valid for the calcium atom since in Fig. 9.21 the energy profile

is minimum for a distance corresponding to a surface location of this dopant (curves with

bold circles).

In the other hand, the sodium dopant shows a completely opposite energy profile

compared to the the previous cases (Ag and Ca) : the DMC energy (curve with circles)

generally decreases with respect to the constraint length (Fig. 9.21). Sodium atom is hence

energetically favoured by a surface location. This is experimentally well known [24, 25].

Now, if we consider the case of the MgHe50 system, observing figure 9.20 (bold circles),

it presents a noticeable aspect in the sense that the energy curve is very flat in the inter-

esting domain. This demonstrates that the magnesium atom is energetically indifferent

about its position in the droplet.

However, observing figure 9.20, the energy curve of MgHe50 shows ”some structure”.

In fact in the area of small constraint distances the curve presents local minima and

maxima. But this structure may not be interpreted as a real one if statistical errors are

taken into account. Moreover, applying the constraint algorithm between the center of

mass of the helium atoms and the impurity does not lead to a clear dissociation balance

because the dopant leaves the droplet with generally some rare gas atoms, depending on

the pair interaction between the dopant and the helium atoms. The balance for a large



9.8 Adiabatic model for Mg solvation 143

-124

-122

-120

-118

-116

-114

-112

-110

 0  5  10  15  20
 0

 0.005

 0.01

 0.015

 0.02

 0.025

E
/c

m
-1

ρ

R/a0

Figure 9.20: Evolution of the MgHe50 and AgHe50 system energies as a function of

the distance between Mg (or Ag) and the helium atom group center. Bold circles and

circles respectively depict the DMC absolute mean energies for MgHe50 and AgHe50 for a

given constrained distance. Solid line represents the helium density for the He50 cluster

in particles per Å 3.

distance of constraint is rather

XHeN → HeN−P +XHeP

than

XHeN → HeN +X

9.8.2 Evolution of the helium density

The constrained DMC method has been applied to two Mg doped helium clusters: MgHep,

p = 20 and 50. We have selected some figures picturing the 3d helium density, in the

study of the MgHe20 cluster, which can be seen in Fig. 9.22. The evolution of the density
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Figure 9.21: DMC absolute mean energies of the CaHe50 cluster (bold circles) and the

NaHe50 system with respect to the distance between Ca (or Na) and the helium atom

group center of mass. Solid line represents the helium density for the He50 cluster in

particles per Å 3.



9.8 Adiabatic model for Mg solvation 145

presents some strange aspect in the sense that when progressively moving Mg away from

the center of the droplet by varying the constraint, this density shows irregularities. This

can demonstrate that the droplet does not keep a spherical shape and Mg moves keeping

with it some helium atoms. The same observations have been made in the MgHe50 cluster.

Fig. 9.23 and 9.24 depict the 2d-projection of the helium density when MgHe20 and MgHe50

are respectively considered. One can clearly notice the evolution of the Mg atom in the

droplet when the constraint distance increases. This shows that the constraint algorithm

works well.

9.8.3 Rovibrational calculation in the constrained potential

In this section, we performed rovibrational calculation using the potential descended from

the energy scanning to determine the fundamental rovibrational level of the MgHe50 com-

plex. For this purpose the radial Schrödinger equation is solved using a variational pro-

gram.The radial Hamiltonian is written as :

Ĥ = − h̄
2

2µ

∂2

∂r2
+ V̂ (r)

where h̄ is the reduced Planck constant and V̂ (r) the potential energy operator formed

by the DMC energy of the MgHe50 scanned over the distance between the center of the

helium atoms and the single magnesium atom. And µ is the reduced mass of the system

defined as :

µ =
mMg

∑50
i=1mHe

mMg +
∑50
i=1mHe

The radial Schrödinger equation is variationally solved in a set of 200 Laguerre basis

functions. A rovibrational level whose energy is -119.74 cm−1 is found. The average

distance between the helium group and the Mg atom is 4.48 Å . According to these results

the Mg atom is situated at an intermediate distance between the surface and the center

of the droplets since the classical radius of this droplet is about 8 Å . For comparison, a

DMC calculation (without constraint) of the same system gives an energy of -117.0 ± 0.1

cm−1 which is sensibly different from that previously found for the rovibrational state. As

expected the Mg atom is located near the surface as one can notice observing Fig. 9.25.

However, in the rovibrational calculations the problem is how to choose the reduced

mass of the system since the separation between the helium group and the Mg atom is

not clear as previously discussed. In fact when Mg moves in the droplet, some helium

atoms accompany its motion. Hence there is no simple way to determine the reduced

mass. And the latter can change with the Mg motion.
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Figure 9.22: 3d density helium density as a function of the fixed distance, dcst, for the

MgHe20 droplet. The density is expressed in particles per Å 3.
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Figure 9.23: Projection of the helium density of MgHe20 in the (rz) plane as a function

of the fixed distance, dcst.
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Figure 9.24: Projection of the helium density in the (rz) plane for the MgHe50 cluster

as a function of the fixed distance, dcst.
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Figure 9.25: Three-dimensional helium density (in Å−3 in the MgHe50 cluster (figure

a) and the rz projection of the density (figure b).
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Figure 9.26: Fundamental rovibrational state (horizontal line which is shifted by 115

cm−1). The thick curve shows the fundamental rovibrational wave function (×15) and

the thin curve represents the ”constrained” potential shifted by 115 cm−1.
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9.9 Conclusion

DMC calculations based on very accurate ab initio, ie, CCSDT potential for the Mg-He

pair interactions, CCSD(T) potential for the Ca-He pair potential, in combination with

two accurate helium pair potentials [34, 35], have demonstrated a surface location for

both Mg and Ca atoms. In particular the position of the Mg atom, as well as its binding

energy to the helium droplet, is very robust with respect to the choice of a particular

helium potential. Although the recent Jeziorska helium pair potential [35] is deeper than

the Aziz potential [127], the latter is sufficient for studying such systems and its main

advantage is that the calculations become less time consuming.

In comparison with Mella et al. who have performed calculations of the MgHeN

clusters with N up to 50 and found a surface location of Mg for small clusters and solvated

state for larger one, our calculations of the same system (with N up to 220) always give a

surface position of Mg whatever the cluster size is. Furthermore our predictions for both

Mg and Ca are in good agreement with the recent ionization experiments of Ren et al..

From an energetically point of view, our constrained DMC methods has shown a very

flat potential for both MgHe20 and MgHe50. The Mg atom seems to have no energy

preference when travelling in the droplets. The binding energies are about -16 and -21

cm−1 for respectively calcium and magnesium doped clusters.

However, the Mg@HeN system is far from being completely understood since for

example, when helium nanodroplets are doped with more than one Mg, the presence of

single Mg atomic transition is detected [115].
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Chapter 10

Dynamics of Mg doped Helium

Clusters

10.1 Introduction

The main goal of this dynamics study of Mg doped helium clusters (with one and two Mg

atoms) is an attempt to understand the experiment performed by Przystawik et al [115]

which shows evidence of single atoms in multiply Mg doped helium droplets. The key

idea of our dynamic simulations is to know whether two Mg atoms rapidly collapse or

slowly diffuse in a droplet composed of around 2000 helium atoms. Dynamic calculations

based on the ZPAD (Zero Point Averaged Dynamics, explained in Ref. [129]) have been

carried out and methods and main results are detailed in the following.

10.2 Potential energy curves

10.2.1 Mg2 (X1Σ+
g )

For the dynamics simulations of helium clusters doped with more than one magnesium

atom in their ground states, the Mg2 pair potential is needed. One of the most accurate

Mg2 ground state potential available in the literature is the RKR one [130]. Unfortunately,

the RKR potential is restricted to relatively short interatomic distances. For this reason,

we had to fit the RKR data into an HFD-B type function, V (r), where dispersion forces

have only been taken into account by the C6 coefficient :

V (r) = A exp(−βr)− C6

r6
(10.1)
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Figure 10.1: Mg2 X1Σ+
g potential energy surface. Solid curve represents the fitting

function 10.1. Squares are the experimental RKR data [130]. Data are obtained from

NIST [131].

With the model of Eq. 10.1, we have obtained long range points which allow us to perform

dynamic simulations of multiply Mg doped helium clusters. The fitting function is in

relatively good agreement with the RKR points as can be seen in Fig. 10.1. The RKR Mg2

potential has an equilibrium geometry equal to 3.89 Å and a well depth of 424.00 cm−1

whereas our value from the fitting functions are lightly different, however in reasonable

agreement (re=3.88 Å and De = 427.07 cm−1). This difference is not really important

since the re and De values present larger uncertainties in the literature [132–134].

10.2.2 MgHe (X1Σ+)

The ground state MgHe pair potential used in the dynamic simulations is that calculated

and fully detailed in chapter 5. We just recall that this potential energy curve is ob-

tained at the coupled clusters level of theory with explicit treatment of double and triple

electronic excitations (CCSDT). The CCSDT method has been used in combination with
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Figure 10.2: MgHe X1Σ+ potential energy surface. Solid curve represents the fitting

function (Eq. 5.3). Triangles our CCSDT potential.

large basis sets for both helium (aug-cc-pV5Z) and magnesium (aug-cc-pCVQZ) with

additional set of bond functions (BF). According to the heavy ab initio treatment, the

X1Σ+ MgHe state is depicted in Fig. 10.2. This potential will be used in the dynamic

simulation.

10.2.3 Effective He2 potential

Helium clusters are known to be dominated by quantum effects which influence the binding

energy per particle as well as the helium density. For example the ground state binding

energy of He2 contains more than 99.99% of the well depth as zero point energy (ZPE).

Because of these quantum effects, dopant embedding dynamics will differ from classical

dynamics. In the present section, we describe an approximate technique which attempts

to include part of the quantum effects for the helium clusters through an effective potential

for the helium pair interaction. Basically, each particle is represented by a single particle

wave function. Particle positions evolve according to classical dynamics on the effective
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potential. This iterative approach is described in Ref. [129] and is basically composed

of 5 steps. Conceptually, each particle is replaced by a probability distribution Φ2(r)

centered on its classical position, and assumed to have spherical symmetry. Starting from

the original pair potential Vcl(R) = Vq,0(R), where R = |R| represents the interatomic

distance, a delta distribution Φ2
0(r), and known masses, the construction is based on the

following sequence of calculations, which is repeated until the nth-order quantum effective

potential Vq,n and all distributions have reached self-consistency:

1. construction of the pair correlation function Pn(R) between classical particle po-

sitions from a classical molecular dynamics simulation at temperature T with the

current potential Vq;n(R).

2. convolution of the pair correlation function with the current single particle distri-

bution Φ2
n(s) according to

Pq;n(|R|) =
∫

Pn(|R|)Φ2
n(|R−R′|)dR′ (10.2)

3. construction of the radial potential Vrad;n(r) experienced by each particle in the

”cage” formed by the other particles by integration over the pair potential and the

particle distribution following

Vrad;n(|r|) =
∫

Vcl(|r−R|)Pq;n(|R|)dR (10.3)

4. solution of the radial Schrödinger equation in the radial potential Vrad;n(r) in order

to find Φn+1(r) for each particle in the mean field of the others.

( −h̄2

2m4He

d2

dr2
+ Vrad;n(r)

)

Φn+1(r) = En+1Φn+1(r) (10.4)

5. construction of the next generation effective pair potential Vq;n+1(R) by the convo-

lution

Vrad;n+1(|R|) =
∫ ∫

Vcl(|R + r− r′|)Φ2
n+1(|r|)Φ2

n+1(|r′|)drdr′ (10.5)

Following the previous five step algorithm an effective potential for the He-He inter-

action has been constructed. It is also possible to construct an effective potential for the

MgHe interaction in a similar fashion but we have judged that it was not primordial since

the ZPE of this system is not as extreme as that of helium.
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Figure 10.3: Convergence of the effective He2 potential at T = 0.38 K. The deepest well

curve represents the classical potential of Ref. [35], the successive lines the first iteration

steps. Convergence is reached after 6 iterations.

Interpolation by cubic splines is used for the pair potentials computed on a grid for the

dynamic simulations (step 1) and for the solution of the Schrödinger equation (step 4).

Five or six iterations are required to reach convergence. The convergence of the effective

helium pair potential can be seen in Fig. 10.3. In this figure, the deepest curve is the

classical potential. After five iterations, the effective potential seems to approach conver-

gence. Observing Fig. 10.3 one notices that the well depth corresponding to the converged

effective potential (-1.55 cm−1) is much shallower than that of the classical potential (-7.6

cm−1). The classical equilibrium distance (2.96 Å ) is shifted to a larger value of 4.19 Å .

These changes in well depth and equilibrium distance lead to an approximately correct

amount of zero point energy in the system and a correct bulk helium density (0.022 Å−3).
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10.3 Dynamic results

The classical trajectories, based on the effective potential previously discussed, have been

integrated using a velocity Verlet algorithm [135]. For both MgHe1998 and Mg2He1997,

simulations have been carried out using a time step of 20 fs which enough accurate since

the relative energy fluctuation is only 4.6×10−7 for both systems. Four hundreds consec-

utive simulations have been made, each of them has a length of 200 ps. Each simulation

waits 2000 fs before starting the computation of histograms and expectation values. The

total simulation length, when cumulating all the sub-simulations, is 80 ns. This duration

is sufficient to allow to the Mg atoms a brownian radius comparable to the droplet diam-

eter of 32 Å . In the case of the MgHe1998 system, the initial position of the Mg atom has

been set near the center of the droplets whereas for the Mg2He1997 cluster the two Mg

atoms were solvated in the helium droplet and the initial distance between them was 28.7

Å . The latter value is sufficiently large so that the two Mg atoms do not immediately

recombine since Przystawik et al. predict a metastable state of the Mg2 dopant dimer

with a equilibrium length of 10 Å .

10.3.1 MgHe1998

Thanks to the Zero Point Averaged Dynamics, abbreviated as ZPAD (classical dynamics

based on an effective potential), we have a quasi-stationary position for the magnesium

atom in the droplet. In fact, in Fig. 10.4(a) is drawn the evolution of Mg projected onto

the (XY) plane. The initial coordinates of Mg have been set to the origin of the graph.

Each point in Fig. 10.4(a) is the result of a 200 ps simulation. It can be noticed in the

latter figure that the Mg atom has a brownian diffusive motion but it stabilizes in an

area near the center as if it was caged. These effects are also visible in Fig. 10.4(b) which

shows the MSD (mean square displacement) of Mg (curve with oscillations). The latter

curve shows a stationary position of Mg since the MSD does not grow with respect to

time but only presents some oscillations. Whereas the MSD of He is a monotonic growing

function with respect to time; this is a proof of a diffusive motion of helium atoms and

equally demonstrates the liquid character of the droplet at the temperature of 0.38 K.

The liquid character of the droplet at T=0.38 K is also clearly visible when observing

Fig. 10.5 which depicts the radial pair particle distribution of helium. In fact, the Prad

curve only shows three main peaks which correspond to the three shell neighbours. This

is a typical feature of a disordered system, hence a liquid phase.

In order to understand how Mg moves inside the helium droplets, we have plotted

in Fig. 10.6(a) the distance between the initial Mg position and its position at time t.
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Figure 10.4: (a) : MSD (in Å 2) of helium depicted by the curve with points and the

second curve is that of Mg. (b) : Brownian move of Mg in He1998 projected in the (XY)

plane. The coordinates have been shifted so that the initial position of Mg is the origin

of the sytem axies.
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The results obtained in this figure show a maximum distance of Mg of about 3 Å from

its initial position at a simulation length of 50 ns. Beyond this time, the distance starts

decreasing. This tendency is confirmed observing Fig. 10.6(b) which represents the Mg

radial density for a long simulation of 80 ns (curve with triangles) and a short one (0.2

ns). The two distributions almost overlap. In brief, Mg seems to be not very mobile in

this medium. This fact is quantified by the weak average diffusion constant of Mg which

is 7.5(2)× 10−11 m2s−1.

The self-diffusion constant of helium averaged over four hundred simulations is found to

be 4.1(7)× 10−9 m2s−1. This value is in excellent agreement which those reported in the

literature : 5.7−5.8×10−9 m2s−1 in Ref. [136] and 4.5−5.8×10−9 m2s−1 in Ref. [137] at a

temperature of 4 K. The difference between our result and those reported in the literature

is probably due to the temperature at which the diffusion constant are calculated. In our

case self-diffusion constant of helium are extracted from a 0.38 K simulation. The diffusion

constant of Mg is equal to 7.5×10−11 m2s−1 at the same temperature. The weak constant

can explain the slow diffusion of Mg in helium droplets. On the other hand, as announced

in the introduction, our effective potential fairly well reproduces the helium density as

can be seen in Fig. 10.7. One can see that our computed density is fairly close to the bulk

one which is 0.022 Å 3.

10.3.2 Mg2He1997

Concerning the interesting case of the Mg2He1997 cluster, the dynamics simulations whose

total length is 80 ns give a very surprising result. In fact, despite their relatively strong

interaction, the two Mg atoms seem to not recombine and conserve the initial distance

between them as can be noticed in Fig. 10.8(a). In the latter, the distance between the

two Mg atoms is drawn as a function of the simulation length. This distance just oscillates

around a value of 29 Å close to the initial separation distance of 28.7 Å . This fact is better

shown in Fig. 10.8(b) which is a zoom of the former one. The quasi-constant distance

between the two Mg atoms is also shown in Fig. 10.9(a). One can notice a stationary

distance between the Mg atoms. The apparent rotation of Mg2 is in reality due to the

rotation of the whole system which has a non zero angular momentum. Fig. 10.9(b) is

a zoom of the motion of the Mg atom located near the center of the droplet. It shows

a similar feature to Fig. 10.4(a). The Mg atoms when sufficiently far from each other

seem to independently diffuse and do not recombine after a simulation length of 80 ns.

This can be an interpretation of evidence of the single Mg presence in multiply Mg doped

helium droplets found in the literature [115].
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Figure 10.6: (a) : Distance (D) of Mg from its initial position with respect to the time

t. D is in Å . (b) : Density (ρ in Å−3) of the Mg atom in the Mg@He1998 complex : curve

with triangles is for a simulation length of 0.2 ns and the second one is from a simulation

of 80 ns. r represents the distance from the center of mass (in Å ).
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Figure 10.8: (a) : Distance (R in Å ) between the two Mg in the Mg2He1997 cluster with

respect to the time t. (b) : Zoom of the beginning of figure (a).
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Figure 10.9: (a) : Motion of the two Mg atoms in Mg2He1997 projected onto the (xy)

plane. (b) : Projected motion of the Mg atom located near the center of the doplet.
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10.4 Conclusion

Along this chapter, the dynamic results based on an effective helium pair potential have

been presented for two typical systems : MgHe1998 and Mg2He1997, typical because these

systems are large enough to allow us comparisons with experiments. Classical trajectories

have been integrated using the velocity Verlet algorithm [135] with a time step of 20 fs

which leads to relative energy fluctuation of only about 4×10−7. The RKR potential [130]

has been extrapolated to large interatomic distances via a HFD-B form and has been used

as the Mg pair interaction. For the MgHe interaction, our calculated CCSDT potential has

been used in the simulations in combination with the Jeziorska pair potential for helium.

As results from the dynamic simulations, the self-diffusion constant of He, at 0.38 K,

has been found to 4.1(7)× 10−9 m2s−1 in good agreement with the literature [136, 137].

For Mg, the diffusion constant has been found equal to 7.5 × 10−11 m2s−1 at the same

temperature but no data are available in the literature at our best knowledge. Finally this

dynamics study the Mg2He1997 cluster shows a diffusive brownian motion for the two Mg

atoms. The Mg atoms do not recombine after 80 ns, this fact can explain the experiment

of Przystawik et al [115] which shows evidence of single atoms in multiply Mg doped

helium clusters.
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General conclusions

In this thesis, we have presented a deep theoretical study of calcium and magnesium he-

lium doped clusters. In particular the MgHen systems with n up to 220 helium atoms

have been highlighted. The study has been performed using the DMC method in combi-

nation with accurate interaction potentials. Since the latter are known to be of extremely

weak van der Waals interaction type, we have carried out intensive ab initio calculations

at high level of theories such as MP2, MP4, CCSD(T) and CCSDT in combination with

large and diffuse basis sets and a large bond function set.

Concerning the Mg-helium ground state (X1Σ+) pair interactions, the well depth and

corresponding equilibrium distance are respectively evaluated to -5.06 cm−1 and 5.07 Å ,

using the highest level of theory (CCSDT). These results nicely agree with the recent

theoretical predictions [77] and are also consistent since CCSD(T) gives -4.77 cm−1 and

5.09 Å , MP2 -4.38 cm−1 and 5.16 Å , and MP4 -5.70 cm−1 and 5.03 Å , respectively for

the depth well and the equilibrium distance. On the other hand, for the CaHe ground

state PES, we have obtained from the CCSD(T) methods a well depth of -3.31 cm−1

and an equilibrium bond length equals to 5.83 Å , results which are in good agreement

with those presented in the literature [66, 68, 77]. Moreover, for both CaHe and MgHe

ground states, accurate dispersion coefficients (C6, C8 and C10) have been obtained. The

latter are consistent for all the ab initio approaches used. Furthermore, for the two

complexes (CaHe and MgHe) the dispersion coefficients are in good agreement with both

theoretical predictions [66, 68, 77] as well as with experimental values [81]. According to

the previously discussed informations (Ci, ǫ and re) we think to have determined accurate

PES for MgHe and CaHe ground states.

The highest level PES therefore calculated have been used in the DMC method as

a sum over pair interactions in combination with accurate analytical helium pair poten-
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tials [34, 35]. For both, helium potentials and the CCSDT ground state pair potential of

MgHe, DMC calculations systematically place the Mg impurity near the surface of the

helium droplet whatever the droplet size is. The binding energies of the MgHen systems

(with n from one to up to 220) have been computed as a function of n. For both helium

potentials used, the binding energies converge to a value of around -21 cm−1. The latter is

only reached from a hundred atom helium droplet. In order to better predict the asymp-

totic binding energies (n→∞), a fitting function model based on HFD pair interactions

has been developped. The latter seems to be promising in extrapolating binding energies

(from helium droplets to bulk helium).

Concerning the DMC results of the CaHen clusters, the ground state CaHe CCSD(T)

pair potential has been used to carry out DMC calculations with n up to 190. The results

obtained by using the CCSD(T) CaHe PES in the DMC calculation have been reported

and provide a surface location of the calcium atom and a binding energy equals to around

-16 cm−1.

Although our DMC results for both Ca and Mg doped clusters are in good agreement

with the recent experiment of Ren [30], we have computed the MgHen energy as a function

of the Mg position in the droplets in order to understand the conflicting structural results

in the published literature. In order to determine the energetically favoured position of Mg

in the helium clusters, we have used a constrained DMC algorithm. Energy calculations

via the latter have been carried out scanning the distance between the impurity and the

helium center of mass. Four typical systems (AgHe50, CaHe50, Na50 and MgHe50) have

been treated by the constrained DMC method. All systems present a discriminating

energy profile, except the MgHe50 cluster which gives a very flat energy profile. This,

therefore, means that the Mg atoms does not seem to have energetically preferred position

in the droplets.

Finally, in order to compare with experiments, classical dynamics trajectories based

on an effective potential have been computed for MgHe1998 and Mg2He1997. The effective

potential have well reproduced the helium density as well as the droplet energy. The

Mg2He1997 study has been motivated by the fact to know whether the two Mg atoms

rapidly meet thanks to their relatively strong interaction (with a well depth of -424 cm−1)

or they adopt a purely brownian moves before meeting. The results we get is that they

do not rapidly meet. This can be a reasonable explanation for both experiments and

theoretical calculations which find a metastable state (with a large equilibrium distances)

of Mg2 in helium nanodroplets.

This work is a first step of a wide project and can be completed by studying dynamic

and structural properties of multiply Mg (and Ca) doped helium clusters. It is also
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interesting to perform constrained DMC simulations with more than an alkaline-earth

atom. It also appears interesting to investigate mixed alkaline-earth reactions in helium

droplets by mean of our ZPAD method.
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Figure A.1: Potential energy curves of the MgHe 1Σ+ state obtained at different levels

of theories. For all methods, the basis sets used are aug-cc-pV5Z for He and aug-cc-

pCVQZ for Mg in combination with the complete set of bond functions (33211). The

BSSE has only been taken into account for the bond functions.



173

R/a0 EHF
Mg/a.u. EHF

He /a.u. EHF
MgHe/a.u. EBind./10−6a.u.

6 -199.614237253371 -2.861628334937 -202.472939001330 2926.58697799686

7 -199.614236841842 -2.861627921598 -202.474966284092 898.479347995362

7.5 -199.614236764396 -2.861627843658 -202.475375705491 488.902563007265

8 -199.614236613148 -2.861627815398 -202.475600963225 263.465321003409

8.5 -199.614236343878 -2.861627817846 -202.475723348263 140.813461002587

8.75 -199.614236180136 -2.861627823617 -202.475761321331 102.682422011391

9 -199.614236010491 -2.861627827347 -202.475789076721 74.7611170126561

9.25 -199.614235842790 -2.861627824592 -202.475809317790 54.3495919997916

9.5 -199.614235682070 -2.861627811267 -202.475824041614 39.4517229849178

9.75 -199.614235531730 -2.861627784640 -202.475834720799 28.5955709888874

10 -199.614235394590 -2.861627744147 -202.475842442002 20.6967349920539

10.5 -199.614235169505 -2.861627631249 -202.475852009979 10.7907750006575

11 -199.614235015802 -2.861627507756 -202.475856947544 5.57601399231444

11.5 -199.614234916487 -2.861627411154 -202.475859495305 2.83233599063237

12 -199.614234838088 -2.861627354300 -202.475860804994 1.38739400989962

12.5 -199.614234757441 -2.861627321503 -202.475861450018 0.62892602370467

13 -199.614234672983 -2.861627286563 -202.475861721993 0.23755300349037

14 -199.614234529431 -2.861627168522 -202.475861740084 -0.04213101201244

15 -199.614234433091 -2.861627059084 -202.475861570555 -0.07837998383664

16 -199.614234351943 -2.861627027767 -202.475861440291 -0.06058100110450

17 -199.614234282491 -2.861627028126 -202.475861351044 -0.04042699108808

18 -199.614234239042 -2.861627012578 -202.475861278593 -0.02697299583687

19 -199.614234221026 -2.861626984093 -202.475861223127 -0.01800798798967

20 -199.614234216401 -2.861626959469 -202.475861187837 -0.01196701004957

22 -199.614234208508 -2.861626938395 -202.475861152391 -0.00548798162469

24 -199.614234186090 -2.861626935460 -202.475861124241 -0.00269100519645

26 -199.614234162872 -2.861626935366 -202.475861099494 -0.00125600241318

28 -199.614234152106 -2.861626935350 -202.475861088171 -0.00071499384191

30 -199.614234150027 -2.861626935328 -202.475861085779 -0.00042401371302

35 -199.614234140198 -2.861626935319 -202.475861075860 -0.00034300251527

40 -199.614234132909 -2.861626935319 -202.475861068627 -0.00039902170456

45 -199.614234131375 -2.861626935319 -202.475861067150 -0.00045597881026

50 -199.614234131052 -2.861626935319 -202.475861066721 -0.00034999425579

Table A.1: Hartree-Fock energies for the MgHe complex and its components. The

binding energies — EBind. — are counter-poise corrected with respect to the (33211) bond

functions. The aug-cc-pV5Z and aug-cc-pCVQZ basis sets were respectively used for He

and Mg in combination with the bond functions (33211).
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R/a0 E
CCSD(T)
Mg /a.u. E

CCSD(T)
He /a.u. E

CCSD(T)
MgHe /a.u. EBind./10−6a.u.

6.00 -199.9556511 -2.90310671 -202.8569799 1777.97184

7.00 -199.9555419 -2.90310474 -202.8583107 335.923151

7.50 -199.9554852 -2.90310406 -202.8584933 95.8837417

8.00 -199.9554319 -2.90310355 -202.8585421 -6.63927088

8.50 -199.9553870 -2.90310314 -202.8585407 -50.5503243

8.75 -199.9553660 -2.90310297 -202.8585288 -59.8903644

9.00 -199.9553450 -2.90310281 -202.8585109 -63.0599434

9.25 -199.9553240 -2.90310266 -202.8584885 -61.9326831

9.50 -199.9553031 -2.90310251 -202.8584640 -58.3088383

9.75 -199.9552830 -2.90310236 -202.8584390 -53.5889434

10.00 -199.9552640 -2.90310221 -202.8584149 -48.6778002

10.50 -199.9552312 -2.90310193 -202.8583730 -39.8374685

11.00 -199.9552067 -2.90310168 -202.8583408 -32.4342284

11.50 -199.9551897 -2.90310150 -202.8583169 -25.6353610

12.00 -199.9551779 -2.90310136 -202.8582985 -19.2465887

12.50 -199.9551683 -2.90310126 -202.8582833 -13.7626599

13.00 -199.9551595 -2.90310117 -202.8582703 -9.60004536

14.00 -199.9551438 -2.90310097 -202.8582497 -4.97785962

15.00 -199.9551331 -2.90310081 -202.8582372 -3.21440251

16.00 -199.9551276 -2.90310077 -202.8582308 -2.37648371

17.00 -199.9551246 -2.90310076 -202.8582272 -1.77550618

18.00 -199.9551222 -2.90310073 -202.8582242 -1.29683175

19.00 -199.9551198 -2.90310070 -202.8582214 -0.92908047

20.00 -199.9551177 -2.90310067 -202.8582191 -0.65817136

22.00 -199.9551154 -2.90310065 -202.8582164 -0.32675210

24.00 -199.9551147 -2.90310064 -202.8582155 -0.16278713

26.00 -199.9551142 -2.90310064 -202.8582150 -0.08236839

28.00 -199.9551137 -2.90310064 -202.8582144 -0.04271112

30.00 -199.9551133 -2.90310064 -202.8582139 -0.02216530

35.00 -199.9551130 -2.90310064 -202.8582136 -0.00193361

Table A.2: CCSD(T) energies for the MgHe complex and its components. The binding

energies are counter-poise corrected with respect to the (33211) bond functions. The Mg

basis was aug-cc-pCVQZ+BFs and the He one was aug-cc-pV5Z+BFs.
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R/a0 ECCSDT
Mg /a.u. ECCSDT

He /a.u. ECCSDT
MgHe /a.u. EBind./10−6a.u.

7.00 -199.955534662055 -2.903205125395 -202.858415185247 324.60220298968

7.50 -199.955477887023 -2.903204352680 -202.858594280167 87.959535982395

8.00 -199.955424584146 -2.903203752537 -202.858642421821 -14.085138015484

8.50 -199.955379614875 -2.903203276150 -202.858638679048 -55.788022999436

8.75 -199.955358587930 -2.903203070835 -202.858625814753 -64.155988004355

9.00 -199.955337613764 -2.903202880919 -202.858607147478 -66.652795024158

9.25 -199.955316588953 -2.903202701962 -202.858584291235 -65.000319994013

9.50 -199.955295788876 -2.903202530272 -202.858559201765 -60.882617003876

9.75 -199.955275669493 -2.903202363432 -202.858533709197 -55.676271985216

10.00 -199.955256718110 -2.903202200714 -202.858509232428 -50.313603983998

10.50 -199.955223936874 -2.903201893204 -202.858466620782 -40.790703990545

11.00 -199.955199386483 -2.903201628751 -202.858434042896 -33.027661991091

11.50 -199.955182477596 -2.903201426434 -202.858409968980 -26.064950001458

12.00 -199.955170627296 -2.903201283642 -202.858391495934 -19.584995987642

12.50 -199.955161069996 -2.903201176077 -202.858376278163 -14.032090012161

13.00 -199.955152260942 -2.903201075583 -202.858363149712 -9.8131870189810

14.00 -199.955136557298 -2.903200861506 -202.858342531413 -5.1126089966047

15.00 -199.955125928129 -2.903200706144 -202.858329937272 -3.3029989960908

16.00 -199.955120425703 -2.903200658254 -202.858323521320 -2.4373629874396

20.00 -199.955110521366 -2.903200562093 -202.858311763496 -0.6800369951598

26.00 -199.955107021423 -2.903200530034 -202.858307645879 -0.0944219911147

Table A.3: CCSDT energies for the MgHe complex and its components. The binding

energies are counter-poise corrected with respect to the bond functions (BFs=33211).

The Mg basis was aug-cc-pCVQZ+BFs and that of He was aug-cc-pV5Z+BFs.
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R/a0 EHF
Mg/a.u. EHF

He /a.u. EHF
MgHe/a.u. EBind./10−6a.u.

6 -199.614238079211 -2.861630283239 -202.472939001379 2929.36107100239

7 -199.614237316696 -2.861629668422 -202.474966284093 900.701025005724

7.5 -199.614237250685 -2.861629256766 -202.475375705491 490.801960004283

8 -199.614237120348 -2.861628854330 -202.475600963226 265.011452022179

8.5 -199.614236768109 -2.861628560230 -202.475723348262 141.980077015269

8.75 -199.614236529951 -2.861628444091 -202.475761321330 103.652712002855

9 -199.614236284097 -2.861628344596 -202.475789076721 75.5519720034847

9.25 -199.614236048407 -2.861628257302 -202.475809317790 54.9879189990499

9.5 -199.614235831711 -2.861628175332 -202.475824041615 39.9654280007766

9.75 -199.614235637879 -2.861628091999 -202.475834720800 29.0090779966334

10 -199.614235469154 -2.861628003329 -202.475842442002 21.0304810055462

10.5 -199.614235213141 -2.861627812234 -202.475852009980 11.0153949983705

11 -199.614235062123 -2.861627631433 -202.475856947543 5.74601297875788

11.5 -199.614234983586 -2.861627498072 -202.475859495304 2.98635398010569

12 -199.614234929927 -2.861627421820 -202.475860804994 1.54675299457452

12.5 -199.614234868556 -2.861627380173 -202.475861450018 0.79871100933104

13 -199.614234793075 -2.861627340109 -202.475861721992 0.41119200933081

14 -199.614234636810 -2.861627211269 -202.475861740084 0.10799499694513

15 -199.614234507458 -2.861627091208 -202.475861570555 0.02811101085242

16 -199.614234395885 -2.861627051672 -202.475861440291 0.00726600779543

17 -199.614234306236 -2.861627046566 -202.475861351043 0.00175900582988

18 -199.614234251311 -2.861627027474 -202.475861278594 0.00019097923242

19 -199.614234227310 -2.861626995724 -202.475861223127 -0.00009300515912

20 -199.614234219700 -2.861626967921 -202.475861187838 -0.00021701174190

22 -199.614234209541 -2.861626942488 -202.475861152391 -0.00036199487851

24 -199.614234186444 -2.861626937359 -202.475861124241 -0.00043798431548

26 -199.614234162992 -2.861626936094 -202.475861099495 -0.00040900083320

28 -199.614234152145 -2.861626935572 -202.475861088171 -0.00045399906056

30 -199.614234150039 -2.861626935385 -202.475861085779 -0.00035499159167

35 -199.614234140198 -2.861626935320 -202.475861075860 -0.00034200242637

40 -199.614234132909 -2.861626935319 -202.475861068627 -0.00039902170456

45 -199.614234131375 -2.861626935319 -202.475861067150 -0.00045597881026

50 -199.614234131052 -2.861626935319 -202.475861066721 -0.00034999425579

Table A.4: Hartree-Fock energies for the MgHe complex and its components. Atomic

basis sets are aug-cc-pV5Z+BFs and aug-cc-pVQZ+BFs for respectively He and Mg.
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R/a0 E
CCSD(T)
Mg /a.u. E

CCSD(T)
He /a.u. E

CCSD(T)
MgHe EBind./10−6a.u.

6.00 -199.9551568 -2.90310310 -202.8563236 1936.35382450

7.00 -199.9551282 -2.90310215 -202.8577902 440.15793711

7.50 -199.9551238 -2.90310180 -202.8580419 183.77180007

8.00 -199.9551224 -2.90310149 -202.8581621 61.82334241

8.50 -199.9551210 -2.90310124 -202.8582145 7.76337396

8.75 -199.9551201 -2.90310114 -202.8582268 -5.54162708

9.00 -199.9551191 -2.90310106 -202.8582336 -13.42364382

9.25 -199.9551182 -2.90310100 -202.8582369 -17.67206166

9.50 -199.9551173 -2.90310096 -202.8582378 -19.53665870

9.75 -199.9551166 -2.90310094 -202.8582374 -19.88100698

10.00 -199.9551160 -2.90310092 -202.8582362 -19.29455934

10.50 -199.9551152 -2.90310090 -202.8582329 -16.78019754

11.00 -199.9551148 -2.90310088 -202.8582294 -13.78773968

11.50 -199.9551145 -2.90310085 -202.8582264 -11.02421501

12.00 -199.9551144 -2.90310082 -202.8582239 -8.70738566

12.50 -199.9551141 -2.90310079 -202.8582218 -6.85118982

13.00 -199.9551139 -2.90310077 -202.8582201 -5.39658208

14.00 -199.9551134 -2.90310072 -202.8582176 -3.39377789

15.00 -199.9551131 -2.90310070 -202.8582160 -2.18853907

16.00 -199.9551130 -2.90310068 -202.8582152 -1.44978821

17.00 -199.9551130 -2.90310067 -202.8582147 -0.98507627

18.00 -199.9551131 -2.90310067 -202.8582144 -0.68470101

19.00 -199.9551130 -2.90310066 -202.8582142 -0.48519593

20.00 -199.9551130 -2.90310066 -202.8582140 -0.34975236

22.00 -199.9551129 -2.90310065 -202.8582137 -0.18941705

24.00 -199.9551128 -2.90310065 -202.8582136 -0.10681075

26.00 -199.9551128 -2.90310064 -202.8582135 -0.06156083

28.00 -199.9551128 -2.90310064 -202.8582135 -0.03562621

30.00 -199.9551128 -2.90310064 -202.8582134 -0.01996546

35.00 -199.9551128 -2.90310064 -202.8582134 -0.00186446

Table A.5: CCSD(T) energies for the MgHe complex and its components. The Mg

basis was aug-cc-pCVQZ and the He one was aug-cc-pV5Z. The binding energies are

counter-poise corrected.



178 Chapter A. Electronic energies

R/a0 E
CCSD(T)
Mg /a.u. E

CCSD(T)
He /a.u. E

CCSD(T)
MgHe /a.u. EBind./10−6a.u.

6.00 -199.9557854 -2.90311127 -202.8569799 1916.69871316

7.00 -199.9556320 -2.90310837 -202.8583107 429.69749106

7.50 -199.9555626 -2.90310691 -202.8584933 176.20733587

8.00 -199.9554927 -2.90310569 -202.8585421 56.32209377

8.50 -199.9554397 -2.90310471 -202.8585406 3.78292432

8.75 -199.9554156 -2.90310427 -202.8585288 -8.92175149

9.00 -199.9553907 -2.90310388 -202.8585108 -16.28438787

9.25 -199.9553649 -2.90310353 -202.8584885 -20.08607066

9.50 -199.9553391 -2.90310322 -202.8584639 -21.56724813

9.75 -199.9553144 -2.90310294 -202.8584389 -21.58345853

10.00 -199.9552915 -2.90310268 -202.8584149 -20.71706228

10.50 -199.9552530 -2.90310224 -202.8583730 -17.76313960

11.00 -199.9552244 -2.90310189 -202.8583407 -14.45797110

11.50 -199.9552037 -2.90310164 -202.8583168 -11.47596248

12.00 -199.9551880 -2.90310147 -202.8582984 -9.00945938

12.50 -199.9551749 -2.90310135 -202.8582833 -7.05210434

13.00 -199.9551635 -2.90310125 -202.8582702 -5.53011091

14.00 -199.9551452 -2.90310102 -202.8582497 -3.45354422

15.00 -199.9551341 -2.90310085 -202.8582371 -2.21618834

16.00 -199.9551285 -2.90310079 -202.8582308 -1.46303134

17.00 -199.9551254 -2.90310077 -202.8582271 -0.99144577

18.00 -199.9551227 -2.90310074 -202.8582241 -0.63654772

19.00 -199.9551202 -2.90310070 -202.8582213 -0.43852737

20.00 -199.9551180 -2.90310067 -202.8582190 -0.30475255

22.00 -199.9551155 -2.90310064 -202.8582163 -0.14681694

24.00 -199.9551147 -2.90310064 -202.8582154 -0.11288577

26.00 -199.9551142 -2.90310063 -202.8582149 -0.06755062

28.00 -199.9551136 -2.90310063 -202.8582143 -0.04159176

30.00 -199.9551132 -2.90310063 -202.8582139 -0.02592751

35.00 -199.9551129 -2.90310063 -202.8582135 -0.00782336

40.00 -199.9551128 -2.90310063 -202.8582135 -0.00142214

Table A.6: CCSD(T) energies for the MgHe complex and its components. The binding

energies are counter-poise corrected. The Mg basis was aug-cc-pCVQZ and the He one was

aug-cc-pV5Z. The complete set of bond functions (BFs) has also been used in combination

of the atomic basis sets.
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R/a0 EMP2
Mg /a.u. EMP2

He /a.u. EMP2
MgHe/a.u. EBind./10−6a.u.

6 -199.940459856573 -2.897972427569 -202.836577952610 1854.3315319856

7 -199.940330657151 -2.897968813876 -202.837936751885 362.71914201258

7.5 -199.940264340727 -2.897967509828 -202.838122164951 109.68560400970

8 -199.940201691106 -2.897966465269 -202.838168181502 -0.0251269871576

8.5 -199.940147819917 -2.897965619570 -202.838161061748 -47.622260995083

8.75 -199.940122718348 -2.897965259874 -202.838146061546 -58.083324019353

9 -199.940097795168 -2.897964929291 -202.838124901407 -62.176948027126

9.25 -199.940072978741 -2.897964625232 -202.838099340044 -61.736071010454

9.5 -199.940048511094 -2.897964342627 -202.838071439951 -58.586229988666

9.75 -199.940024825167 -2.897964077198 -202.838043066130 -54.163765011772

10 -199.940002399516 -2.897963826242 -202.838015640785 -49.415026984078

10.5 -199.939962919139 -2.897963369618 -202.837966963307 -40.674550004560

11 -199.939932257442 -2.897962976800 -202.837928454413 -33.220171007375

11.5 -199.939909957105 -2.897962666715 -202.837898990497 -26.366677008393

12 -199.939893579174 -2.897962435402 -202.837875947975 -19.933398995863

12.5 -199.939880375596 -2.897962257233 -202.837857026315 -14.393485987973

13 -199.939868700045 -2.897962101857 -202.837840955142 -10.153240016741

14 -199.939848996883 -2.897961812465 -202.837816152589 -5.3432409985454

15 -199.939835892424 -2.897961611437 -202.837800929759 -3.4258980123880

16 -199.939828898454 -2.897961532306 -202.837792929499 -2.4987389779518

17 -199.939825050986 -2.897961505542 -202.837788406628 -1.8500999914294

18 -199.939822137718 -2.897961473032 -202.837784956328 -1.3455779832582

19 -199.939819512430 -2.897961434335 -202.837781909415 -0.9626500081516

20 -199.939817314194 -2.897961403985 -202.837779401148 -0.6829690097909

22 -199.939814780240 -2.897961377136 -202.837776500504 -0.3431279926857

24 -199.939813981651 -2.897961372467 -202.837775529765 -0.1756469831804

26 -199.939813499393 -2.897961371603 -202.837774964765 -0.0937689921265

28 -199.939812954716 -2.897961371308 -202.837774379522 -0.0534979989197

30 -199.939812524314 -2.897961371213 -202.837773928203 -0.0326760134505

35 -199.939812190267 -2.897961371183 -202.837773573647 -0.0121970216149

40 -199.939812113781 -2.897961371180 -202.837773490621 -0.0056600155673

45 -199.939812036980 -2.897961371179 -202.837773411197 -0.0030380045146

50 -199.939811998076 -2.897961371179 -202.837773370972 -0.0017169918820

Table A.7: MP2 energies for the MgHe complex and its components. The binding

energies are counter-poise corrected with respect to the bond functions (BFs=33211).

The Mg basis was aug-cc-pCVQZ+BFs and the He one was aug-cc-pV5Z+BFs.
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R/a0 EMP4
Mg /a.u. EMP4

He /a.u. EMP4
MgHe/a.u. EBind./10−6a.u.

6 -199.954182608015 -2.902919215860 -202.855348886187 1752.93768801499

7 -199.954072304410 -2.902917255787 -202.856671299822 318.260374993606

7.5 -199.954014919792 -2.902916584666 -202.856849800962 81.7034959914587

8 -199.953961163656 -2.902916075930 -202.856894912771 -17.6731849932388

8.5 -199.953915819213 -2.902915677923 -202.856890561410 -59.0642740170289

8.75 -199.953894617934 -2.902915510197 -202.856877427612 -67.2994810080318

9 -199.953873430345 -2.902915350376 -202.856858265147 -69.4844259983007

9.25 -199.953852184251 -2.902915197623 -202.856834859132 -67.4772580024907

9.5 -199.953831166324 -2.902915048617 -202.856809292480 -63.0775390004779

9.75 -199.953810843032 -2.902914901258 -202.856783426449 -57.6821590110299

10 -199.953791710178 -2.902914755173 -202.856758653972 -52.1886210127498

10.5 -199.953758638172 -2.902914476914 -202.856715546575 -42.4314890130617

11 -199.953733940371 -2.902914231695 -202.856682515150 -34.3430840032966

11.5 -199.953716975231 -2.902914044842 -202.856658054604 -27.0345309938413

12 -199.953705106161 -2.902913915197 -202.856639290222 -20.2688639960868

12.5 -199.953695528992 -2.902913818758 -202.856623860874 -14.5131240092411

13 -199.953686686718 -2.902913727288 -202.856610573871 -10.1598650084078

14 -199.953670901675 -2.902913524277 -202.856589740674 -5.31472199982731

15 -199.953660219151 -2.902913374941 -202.856577029808 -3.43571598993009

16 -199.953654684306 -2.902913327202 -202.856570542202 -2.53069400502071

17 -199.953651637380 -2.902913318753 -202.856566841679 -1.88554600644153

18 -199.953649127831 -2.902913296326 -202.856563800155 -1.37599798755161

19 -199.953646713282 -2.902913263259 -202.856560964567 -0.98802598325065

20 -199.953644641429 -2.902913236292 -202.856558581085 -0.70336400259662

22 -199.953642279589 -2.902913213041 -202.856555848306 -0.35567599709907

24 -199.953641577610 -2.902913209537 -202.856554970805 -0.18365800702469

26 -199.953641136079 -2.902913208999 -202.856554444072 -0.09899400321700

28 -199.953640602837 -2.902913208781 -202.856553868578 -0.05696000604515

30 -199.953640176655 -2.902913208701 -202.856553420359 -0.03500300627123

35 -199.953639858096 -2.902913208675 -202.856553079889 -0.01311800001957

40 -199.953639792998 -2.902913208673 -202.856553007737 -0.00606601568975

45 -199.953639719880 -2.902913208672 -202.856552931788 -0.00323601456742

50 -199.953639681872 -2.902913208672 -202.856552892365 -0.00182098292000

Table A.8: MP4 energies for the MgHe complex and its components. Binding energies

are counter-poise corrected with respect to the bond functions (33211). The Mg basis was

aug-cc-pCVQZ+BFs and that of He was aug-cc-pV5Z+BFs.
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R/a0 EnoCP ECP EBSSE

6.00 1889.81862 1936.35382 46.5352

7.00 423.252521 440.157937 16.905416

7.50 171.553588 183.7718 12.218212

8.00 51.3416022 61.8233424 10.4817402

8.50 -1.05002917 7.76337396 8.81340313

8.75 -13.3567173 -5.54162708 7.81509022

9.00 -20.2008464 -13.4236438 6.7772026

9.25 -23.4470477 -17.6720617 5.774986

9.50 -24.406826 -19.5366587 4.8701673

9.75 -23.9822784 -19.881007 4.1012714

10.00 -22.777333 -19.2945593 3.4827737

10.50 -19.4414472 -16.7801975 2.6612497

11.00 -16.0209862 -13.7877397 2.2332465

11.50 -13.0092176 -11.024215 1.9850026

12.00 -10.475111 -8.70738566 1.76772534

12.50 -8.37262274 -6.85118982 1.52143292

13.00 -6.64590317 -5.39658208 1.24932109

14.00 -4.13928427 -3.39377789 0.74550638

15.00 -2.62046674 -2.18853907 0.43192767

16.00 -1.76299457 -1.44978821 0.31320636

17.00 -1.28494861 -0.985076269 0.299872341

18.00 -0.991451572 -0.684701007 0.306750565

19.00 -0.777463413 -0.485195926 0.292267487

20.00 -0.602005429 -0.349752355 0.252253074

22.00 -0.335068705 -0.189417051 0.145651654

24.00 -0.172353708 -0.106810745 0.065542963

26.00 -0.0862668799 -0.0615608258 0.0247060541

28.00 -0.0437262315 -0.0356262149 0.0081000166

30.00 -0.0223201084 -0.0199654551 0.0023546533

35.00 -0.00193281835 -0.00186446414 0.0000683542

Table A.9: CCSD(T) energies for the MgHe complex. Cp means that energies are

counter-poise corrected. All energies are expressed in micro-hartree. The Mg basis was

aug-cc-pCVQZ and the He one was aug-cc-pV5Z (see Fig. 5.5).
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Figure B.1: Radial probability density of Mg in the MgHe53 cluster for different

interaction potentials. The reference potential is the CCSDT one. Increasing the CCSDT

potential by only 10% is sufficient to give a fully solvated state of the impurity.
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