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Preface

Version Française
Ce travail porte sur l’étude du transport électronique dans le graphène, en par-
ticulier à fort champs magnétique, en régime d’Effet Hall Quantique. Il a pu
être mis en évidence les mecanismes de transport electronique à énergie finie
dans ce régime, les lois d’universalité de l’effet Hall quantique observées dans
les gaz bidimensionnels d’électrons ont été retrouvées. Nous avons aussi pu
observer pour la première fois la transition entre un régime de transport avec
interactions et un sans interaction éléctronique grâce aux effets d’écrantage de
la grille permettant de doper le graphene. Cette transition permet de confirmer
une loi de saut à pas variable donnée par Efros-Shklovskii comme mécanisme
de transport dominant dans l’effet Hall quantique.

Très récemment découvert le graphène a beaucoup retenu l’attention de la
communauté scientifique ces 6 dernières années, et ses découvreurs, Andrey
Geim et Kostya Novoselov viennent juste d’être récompensés du prix Nobel de
physique 2010.

Nous allons voir que le graphène est particulier en bien des aspects. D’abord
c’est le premier solide cristallin naturel à 2 dimensions qui ait pu être observé.
Ce n’est ni un métal ni vraiment un semi-conducteur, les électrons se propageant
à l’intérieur sont décrit par une équation bien particulière qui est l’équation de
Dirac ultra relativiste normalement réservé aux particules sans masses de très
haute énergie.

L’effet Hall quantique est aussi un sujet passionnant se apparaissant dans les
gaz bidimensionnels d’électrons dans lequel se manifeste une résistance trans-
verse appelé résistance de Hall, quantifié en paliers de h/e2 en fonction d’un
champ magnétique appliqué perpendiculairement. Cet effet a donné lieu à deux
prix Nobel, un en 1985 à K.v.Klitzling pour la découverte de l’effet Hall quan-
tique entier et l’autre en 1998 à D.C. Tsui, H.L.Störmer (experience) et R.B
Laughlin (théorie) and pour la découverte de l’effet Hall quantique fractionnaire.

L’effet Hall quantique entier a été observé dans le graphène en 2005 simul-
tanément par l’équipe de A.Geim et celle de P. Kim révélant expérimentalement
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la nature particulière des porteurs de charges. Dans ce matériau cet effet montre
des points communs avec celui observé par K.V.Klitzling dans les gaz d’électrons
régis par une relation de dispersion conventionnelle ainsi que d’importantes dif-
férences qui permettent d’étudier l’effet Hall quantique sous un nouvel angle.

Cette thèse se constitue en deux parties d’abord une partie résumant les
propriétés physique du graphène et de l’effet Hall quantique puis une partie
expérimentale.

La première partie offre d’abord une introduction générale sur le graphène.
Puis le calcul de la relation de dispersion dans le graphène est rappelé à par-
tir de l’approximation des liaisons fortes. De ce calcul et, due au réseau en
nid d’abeille, on peut déduire que la relation de dispersion à basse énergie
peut s’assimiler à celle donnée par l’équation de Dirac où la vitesse de la lu-
mière est remplacé par la vitesse de Fermi. Ceci débouche sur une présentation
de l’équation de Dirac et certaines propriétés particulières à cette équation se
retrouvant dans la physique du graphene.

Nous nous intéresserons ensuite aux phénomènes de transport électronique
à deux dimensions dans un domaine dit diffusif et cohérent, où la longueur de
cohérence de phase électronique est du même ordre que celle de l’échantillon au-
torisant l’observation d’effets d’interférences quantiques. Pour cela nous adapterons
les équations de Drude et de diffusion d’Einstein à ce type de transport.

Enfin un chapitre est réservé à l’effet Hall quantique qui est le cœur de
ma thèse, dans ce chapitre la physique de cet effet est détaillée. Nous abor-
derons d’abord le calcul des niveaux de Landau dans les gaz conventionnels
d’électrons ainsi que dans le graphène. Puis nous nous intéresserons aux pro-
priétés de transport électronique dans ce régime. Dans la suite il sera présenté
une étude qui se veut la plus exhaustive possible sur les mécanismes de la rup-
ture de l’effet Hall quantique à énergie finie ainsi que la transition métal isolant.
Ces sujets ont longuement été débattus dans les années 90, et sont toujours
d’actualité. La rupture de l’effet Hall quantique peut être vue comme due à
la conduction à travers l’échantillon perpendiculairement au courant alors que
la quantification de l’énergie cyclotron alliée au principe de Pauli empêche nor-
malement l’existence de chemin continu au niveau de Fermi d’un bord à l’autre
de l’échantillon. Différents mécanismes expliquent ce transport en fonction de
l’énergie mise en jeu. Quand l’énergie est comparable à l’écart entre niveaux
d’énergie, l’activation thermique vers des niveaux de Landau non occuppés ex-
plique ce processus. Nous nous arrêterons plus longuement sur les processus
de basse énergie se produisant à l’intérieur du niveau de Landau rempli le plus
proche de l’énergie de Fermi et perturbé par le désordre, en particulier sur la
description de Poliakov et Shklovskii en termes de saut inélastique à portée
variable entre états localisés au niveau de Fermi. La transition métal isolant
s’observe quand l’énergie se rapproche d’un niveau de Landau (ou exactement
sur le niveau de Landau pour un échantillon de taille infinie à température nulle),

11



CONTENTS

cette transition est associée à une divergence de la longueur de localisation, où
au-delà d’une certaine limite les états localisés s’étendent pour offrir un passage
continu d’un bord à l’autre de l’échantillon. Fait remarquable, cette divergence
suit une loi de puissance avec un exposant universel expliqué en termes de per-
colation quantique. Nous pourrons voir que deux visions s’opposent pour la
transition de plateau à plateau, celle de Poliakov-Shklovskii l’expliquant avec la
loi de saut à portée variable et celle de Pruisken l’expliquant via une transition
métal isolant basée sur la comparaison entre la longueur de localisation et la
longueur de cohérence de phase.

Nous arrivons ensuite à la deuxième partie, la partie expérimentale, où est
d’abord présenté la fabrication d’échantillons permettant de mesurer les pro-
priétés électroniques graphène. Celle-ci délicate a occupé une bonne partie
de mon travail de thèse. La méthode utilisée pour obtenir du graphène est
similaire à celle mis au point par K.Novoselov et consiste en l’exfoliation de
graphite naturel. Le dépôt de contacts se fait essentiellement grâce aux tech-
niques de lithographie électroniques et évaporation de métal après avoir carac-
térisé le graphène. Nous nous arrêterons sur le repérage et la caractérisation
du graphène car ces étapes ne sont pas triviales. En effet trouver un feuillet de
3 Angström d’épaisseur pour quelques dizaines à centaines de microns carré de
surface et pourvoir déterminer si il s’agit d’une ou plusieurs couche n’a rien de
simple. Une méthode efficace pour discriminer entre une ou plusieurs couches
de graphène qui sera décrite est la spectroscopie Raman basée sur l’étude des
propriétés vibratoire d’un cristal.

Ensuite sont présentés des résultats de transport électronique élémentaire
caractérisant le graphène. Ces résultats, bien que pas novateurs car déjà mesurés
par plusieurs équipes ces dernières années, sont importants car ils illustrent les
propriétés particulières du graphène et sont une étape clés dans la caractérisa-
tion, la compréhension et l’amélioration du graphène.

Puis il est présenté une étude sur les temps de transport réalisée par l’équipe
d’Hélène Bouchiat à laquelle j’ai eu la chance de participer. Cette étude a permis
la mesure du temps électronique de transport entrant dans la conductivité de
Drude et le temps de vie électronique qui est le temps entre 2 collisions. De par
le rapport de ces deux temps, il peut être déduit des propriétés importantes sur
la nature des impuretés limitant la mobilité électronique. Ici cette étude aura
permis de conclure que les impuretés limitantes dans des échantillons typique
de graphène exfolié sont de petits (taille bien inférieur à la longueur d’onde de
Fermi, de l’ordre de la distance entre 2 atomes du graphène) défauts neutres,
tel par exemple des trous dans le réseau cristallin, ou des atomes adsorbés sur
la surface du graphene.

Enfin les résultats sur la rupture de l’effet Hall quantique à énergie finie et
la transition plateau-plateau dans le graphene qui représentent le cœur de mon
travail de thèse sont présentés. En particulier nous avons pu mesurer que la rup-
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ture de l’effet Hall quantique suivaient des lois similaires à celles observées dans
les gaz 2D conventionnels mais avec des énergies caractéristiques plus impor-
tantes, ce qui pourrait être très intéressant pour des applications métrologiques.
Nous avons aussi pu observer que la divergence de la longueur de localisation
à l’approche de la transition métal-isolant suivait les mêmes lois d’universalité
que celles observées précédemment dans le régime d’effet Hall quantique avec
des hetérojonctions de semiconducteurs. Le résultat le plus marquant de cette
étude est sans doute l’observation du passage entre deux régimes de transport
inélastiques à travers le centre de l’échantillon toujours en régime d’effet Hall
quantique grâce à l’écrantage des interactions électronique par la grille mé-
tallique utilisée pour régler la densité du graphene. Ces régimes sont le variable
range hopping de Mott (sans interaction) et le variable range hopping d’Efros-
Shklovskii (avec interactions). Ce résultat apporte un argument expérimental
essentiel permettant de clore une question longuement débattue sur la nature
des mécanismes de transport dominant dans l’effet Hall quantique au voisinage
de la transistion entre plateaux de Hall.

Dans le dernier chapitre de la partie expérimentale nous découvrirons l’insert
cryogénique fabriqué durant ma thèse qui est un élément essentiel pour les
mesures de transport électronique à basse température. Ce dispositif permet
d’effectuer des mesures sous vide cryogénique à une température de 1,6K au
centre d’une bobine permettant d’appliquer un champ magnétique de 20 Tesla.
La particularité de cet insert est que une fois plongé dans l’hélium liquide nous
avons la possibilité d’élever la température de l’échantillon jusqu’à 450K, per-
mettant de faire dégazer le graphène ce qui, nous allons le voir améliore consid-
érablement les propriétés électroniques.

English version
This work deals with the electronic transport in graphene, particularly at high
magnetic fields under quantum Hall effect. The finite energy mechanisms of
transport have been established, confirming the universal laws of the quan-
tum Hall effect observed in two-dimensional electron gases. We first observed
the cross-over between two transport mechanisms, with and without electronic
interactions thanks to screening by the backgate used to control the density
of carriers in graphene. This cross-over confirmed the Efros-Shklovskii variable
range hopping (VRH) law as the dominant mechanism of transport under quan-
tum Hall effect conditions.

Since its recent discovery graphene has drawn much of the scientific commu-
nity’s attention these last six years. The discoverers of graphene, Andrey Geim
and Kostya Novoselov, have just been awarded the 2010 Nobel Price in Physics.

We will see that graphene is very special in many aspects. First of all, it is
the first two-dimensional natural crystalline (without any confinement potential)
solid to be observed. It is neither metal nor conventional semiconductor. The
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propagation of electrons in graphene is described by an ultra-relativist Dirac
equation, normally reserved for high energy or massless particles.

The quantum Hall effect (QHE) is in itself an exciting phenomenon which
occurs in two-dimensional electron gases. Under QHEconditions a transverse
potential appears which is linearly related to the current by a Hall resistance
which is quantized in multiples of h/e2 as a function of a perpendicular magnetic
field. This effect led to the attribution of two Nobel Prizes, one in 1985 to K.von
Klitzing for the integer quantum Hall effect, the other in 1998 to D.C. Tsui, R.B
Laughlin and H.L.Störmer for the fractional quantum Hall effect.

In 2005, the integer quantum Hall effect in graphene was observed simulta-
neously by A. Geim’s and P. Kim’s teams and seen to show the peculiar nature
of charge carriers obeying a Dirac like equation of motion. The quantum Hall
effect in this new material has aspects in common with the observed by K. von
Klitzing in electron gases subject to a conventional dispersion relation but also
differences that give a new angle to the quantum Hall effect.

This thesis is divided into two parts, the first one will summarize the phys-
ical properties of graphene and the quantum Hall effect while the second will
deal with the experiments done in this work.

The first part is a general introduction about graphene and the calculation
of the dispersion relation deduced from a tight-binding approximation. From
this calculation and as a result of the honeycomb lattice, it is seen that the low
energy dispersion relation can be assimilated to the massless Dirac equation. A
presentation of the Dirac equation with some peculiar properties applicable to
graphene will be done.

In order to understand the two-dimensional electronic transport in the dif-
fusive and in the coherent regime where the phase coherence length is of the
same order of the sample’s length which enables the observation of quantum in-
terferences effects, we recall how the Drude approach and the Einstein diffusion
relation can be adapted to this type of transport.

Finally, a full chapter is devoted to the quantum Hall effect, which is the
core of this thesis. We will first study Landau levels in conventional electron
gases and then in graphene, to see how their structure affects the electronic
transport properties in this regime. This will be followed by an as exhaustive
as possible study of the quantum Hall effect breakdown mechanisms at finite
energy and the metal insulator transition. These subjects were much debated in
the nineties and are still open topics. The disappearance of the quantum Hall
effect can be seen as of conduction throughout the sample, in contradiction to
the low temperature situation where the quantization of the cyclotron energy
together with the Pauli principle normally prevents the existence of a continuous
path at Fermi level between the two edges of the sample. Various mechanisms
may explain this transport as a function of the energy involved. When the
energy is comparable to the Landau level energy gap, the thermal activation
towards non occupied Landau levels explains this process. We will focus on the
low-energy processes occurring inside the filled Landau level closest to Fermi
level, and particularly on the description by Poliakov and Shklovskii based on
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variable range hopping between states at the Fermi level. The metal insulator
transition is observed when the Fermi energy is close to a Landau level (or on
a Landau level in an infinite sample at zero temperature). This transition is
associated with a divergence of the localization length, where beyond a certain
limit, localized states extend to provide a continuous path from one side to the
other in the sample. Remarkably, this divergence follows a power law with a
universal exponent explained in terms of quantum percolation. We will see that
two opposing views for the transition from plateau to plateau were proposed:
that of Poliakov-Shklovskii explaining it with the variable range hopping law
and that of Pruisken explaining it via a metal-insulator transition based on the
comparison between the localization length and the phase coherence length.

In the second experimental, part starts with the presentation of the making of
samples for measuring graphene electronic properties. This delicate task took up
a considerable part of the time allotted to my thesis. The method used to obtain
graphene is similar to that developed by K. Novoselov and consists of exfoliating
natural graphite. The deposition of contacts was performed essentially by using
the techniques of lithography and evaporation of metal after graphene has been
identified and characterized. I focus on the identification and characterization of
graphene as these steps are delicate. In point of fact, finding a three-angstrom-
thick layer for several tens to hundreds of microns square surface and being able
to determine if there are one or more layers is not straightforward. An efficient
method to discriminate between one or several layers of graphene is based on the
Raman spectroscopy which makes it possible to study the vibrational properties
of a crystal.

Afterwards, we will present the results of the elementary electronic transport
characterizing graphene. These results, measured by several groups in recent
years, are not innovative, but are important in that they illustrate the peculiar
properties of graphene and are a key step in the characterization, understanding
and improvement of the samples.

This will be followed by a study on transport scattering times by the team of
Helene Bouchiat in which I had the chance to participate. This study resulted
in the measurement of the electronic transport time entering the Drude con-
ductivity and that defining the lifetime of an electronic state, which is the time
between two collisions. By the ratio of these two times, important properties
can be inferred about the nature of impurities limiting electrons mobility. In
this regard, the study has found that impurities limiting the mobility in typical
samples of exfoliated graphene are small neutral defects (well below the Fermi
wavelength and in the range of the distance between two atoms of graphene)
such as vacancies in the crystal lattice, or adsorbed atoms on the surface of the
graphene.

A final section will present the results on the disappearance of the quantum
Hall effect at finite energy and the plateau-plateau transition in graphene, which
are the core of my thesis. In particular we were able to show that the disappear-
ance of the quantum Hall effect follows laws similar to those seen in conventional
2D electron gases, but with higher characteristic energies, which could be very
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interesting for metrological applications. We also observed that the divergence
of the localization length on approaching the metal-insulator transition followed
the same law of universality as previously observed in the conventional quan-
tum Hall effect regime. The most striking result of this study is probably the
observation of the cross-over between two inelastic bulk transport regimes re-
vealed by the screening of electron interactions by the metal backgate used to
tune the density of graphene. These regimes are Mott’s variable range hopping
(without interaction) and the Efros-Shklovskii’s variable range hopping (with
interactions). This result provides experimental evidence, to conclude a long
debate about the nature of the dominant transport mechanisms in the quantum
Hall effect near the transition between Hall plateaus.

In the last chapter of the experimental section, the cryogenic insert built
during my thesis will be described. It is essential for measurements of electronic
transport at low temperature. This device enables measurements under cryo-
genic vacuum at a temperature of 1.6 K, at the center of a coil permitting the
application of a magnetic field of up to 20 Tesla. The particularity of this insert
is that once it is immersed in liquid helium, the temperature of the sample can
be raised to 450K, enabling degassing of adsorbed molecules from the graphene,
which, we will later see, greatly improves its electronic properties.
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Part I

The physics of graphene
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Chapter 1

Electronic structure of
graphene

1.1 Introduction
Graphene is a two-dimensional crystal of carbon atoms arranged in a honeycomb
lattice.

Carbon, the very well-known sixth element of Mendeleev table is the fifteenth
most abundant element on Earth and the fourth in the universe [1]. It is also the
second most abundant element in the human body. It forms more compounds
than any other material and is central to life on Earth through the carbon cycle.

Carbon has many properties: it is transparent and insulating in diamond,
opaque in graphite, and its allotropes vary considerably in terms of thermal and
electrical conductivity. It has been known since Human prehistory as charcoal
or soot, and was probably used by the Chinese in its diamond form as early as
2500 BCE [2]. Graphite, one of carbon’s many allotropes, came into common
use in 1564 with the invention of pencils.

The knowledge that all these allotropes (diamond, graphite, amorphous car-
bon) come from one element is quite recent: in 1772, Lavoisier showed that
a diamond is composed of carbon and, in 1779, Carl Wilhelm Scheele showed
that graphite, which had been believed to come from lead, produces the same
amount of carbon dioxide gas per gram as amorphous carbon.

In 1889, a report on carbon filaments was presented to the French Academy
of Science [3]; these were later recognized as carbon nanotubes in 1952 by
Radushkevich and Lukyanovich[4]. [5]. In 1991, Iijima’s observation of nan-
otubes drew the attention of the scientific community to that allotrope of car-
bon, which has since become an intense field of research in materials science.

More recently, in 1985, the fullerene allotrope of carbon was discovered by
Robert Curl, Harold Kroto and Richard Smalley, who were awarded the Nobel
prize in chemistry for their discovery.

Although its band structure was calculated as early as 1947[6], graphene did
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not become a laboratory reality until the work of A.K Geim and K.Novoselov
in 2004[7].

Graphite, nanotubes, fullerenes, and graphene have one common point: they
are all composed of a honeycomb lattice of carbon atoms. Graphene is a purely
two-dimensional crystal, consisting of a monolayer of carbon atoms arranged
as a honeycomb lattice. A carbon nanotube can be seen as a rolled graphene
sheet. A fullerene molecule, also known as a Buckyball, can be described as a
soccer football made with graphene where some hexagons have been replaced
by pentagons (the basic ball is composed of 60 carbon atoms).1.1

Figure 1.1: Figure from K.Novoselov

Several reasons can explain the recent interest shown by the scientific com-
munity in studying graphene which is illustrated by figure 1.2. Firstly, the
combination of its conductivity and two-dimensional nature makes it the ulti-
mate two-dimensional charge gas. Secondly, we are currently reaching the limit
of silicon’s capacity in terms of size (50nm) and Geim reports the engineering of
a field device [7] smaller than the smallest presently engineered electronic tran-
sistor which allows one to think that it could be a good candidate for replacing
silicon. There is, in addition, the possibility of controlling the carrier density
through zero.

Its electronic properties are perhaps the most exciting aspect from a funda-
mental point of view. Due to its honeycomb lattice, the charge carriers have a
linear energy-momentum relationship at the Fermi energy and obey a 2D mass-
less Dirac equation appropriate to ultrarelativistic particles (such as neutrinos)
with the speed of light replaced by a Fermi velocity (vF ∼ c/300). That makes
it a toy for doing "benchtop" Quantum electrodynamic experiments.
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Figure 1.2: Number of preprint on arXiv with graphene in the title

1.2 Graphene atomic structure
Carbon has a nucleus of 6 protons and 6 neutrons. It is surrounded by 6 electrons
which, are in the atomic configuration 1s22s22p2. In this configuration, there
are two electrons in the inner 1s shell, very close to the nucleus, making them
irrelevant for chemical reactions of the four outer electrons, 2 of which are in
the 2s shell and 2 in the 2p shell, the latter having an energy about 4eV above
the former. However, in the presence of other atoms like H, O, C etc. a covalent
bond of lower energy can advantageously be formed by exciting an electron of
the 2s band.

The covalent bonds are described by a a combination of four states: |2s〉,
|2px〉, |2py〉,|2pz〉 . A quantum superposition of the state |2s〉with n |2pj〉 is
called spn hybridization.

Graphene is sp2 hybridized, which means in orbital terms

|sp2
1〉 =

1√
3
|2s〉 −

√
2

3
|2px〉 (1.1)

|sp2
2〉 =

1√
3
|2s〉+

√
2

3
(

√
3

2
|2py〉+

1

2
|2px〉) (1.2)

|sp2
3〉 = − 1√

3
|2s〉+

√
2

3
(−
√

3

2
|2py〉+

1

2
|2px〉) (1.3)

These hybridizations are shown schematically in fig. 1.3
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Figure 1.3: schema of the different hybridizations

These hybrid orbitals create σ bonds between carbon atoms, which are strong
bonds between in-plane orbitals. The electron in the remaining pZ orbital is free
to move and accounts for electron transport. In the following sections, we will
only consider the pZ electrons , since they are the only mobile electrons.

1.3 Electronic properties
Drawing on ref [8, 9, 10, 11], we saw that the electrons which account for elec-
tronic transport are those in the pZ orbital. In order to compute the electronic
bandstructure in graphene, we will examine the properties of electrons in this
orbital, which are less bound to the atoms than are the core electrons. To do
this, we will use Schrödinger’s equation in an atomic potential H =

~p2

2m + V (~r).
The lattice symmetries are very important here and will make it possible for us
to compute this equation for an infinite number of atoms.

In later sections, we will introduce the necessary tools before outlining the
calculation specific to graphene.
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1.3.1 Introduction to bandstructure calculation
1.3.1.1 Bravais lattice

A Bravais lattice is a lattice where one can find all node of the lattice knowing
the position of one node and N vectors (where N is the dimension). In 2D we
can write−→

R = n1
−→a1 + n2

−→a2 where n1, n1 are integers and −→a2 ,−→a1 are linearly indepen-
dent vectors.

A reciprocal lattice facilitating a Fourier analysis can be computed from the
Bravais lattice to obey the condition using ei ~K.~R = 1. This is a very powerful
tool to calculate bandstructures using the symmetries of the lattice.

In the Bravais lattice, we can define a primitive cell called Wigner-Seitz cell.
This cell is the region surrounding a node of the lattice which is nearer to this
node than to any other node.

The reciprocal cell of the Wigner-Seitz cell is called the first Brillouin zone.
A honeycomb lattice is not a Bravais lattice. Figure 1.4 shows that B atoms

see three A atoms, one up left, one up right and one down; contrarily, A atoms
see the B atoms on their down right, down left and top. The way to construct
the reciprocal lattice in graphene is to take a triangular lattice with two atoms
per unit cell or two triangular sublattices. The reciprocal lattice of a triangular
lattice is also a triangular lattice rotated by π/2.

1.3.1.2 Bloch’s theorem

In the Hamiltonian H =
~p2

2m +V (~r), V is the atomic potential and has a transla-
tion symmetry implying that V (~r+ ~R) = V (~r) for all ~R belonging to the Bravais
lattice.

This symmetry imposes a Hamiltonian which is invariant under all discrete
translationsT (~R) from which Bloch’s theorem results.

We use Schrödinger’s equation: Hψn~k(~r) = εn(~k)ψn~k(~r) where n stands for
all the quantum numbers linked to observables.

Bloch’s theorem stipulates that the wave function can be written as ψn~k(~r) =

ei
~k.~run~k(~r) where un~k(~r) = un~k(~r + ~R).
As a result, we have ψn~k(~r + ~R) = ei

~k.~rψn~k(~r) and also the modulus of
the wavefunction is preserved for Bravais lattice translations | ψn~k(~r + ~R) |2=|
ψ(~r) |2

A consequence of Bloch’s theorem is that ψ~k(~r) = ψ~k+ ~K(~r) and ε(~k+ ~K) =

ε(~k) where ~K is a lattice vector of the reciprocal lattice.

1.3.1.3 Tight binding approximation

In an atomic lattice, there are different situations possible for the charge trans-
port. The simplest case is that of atoms very far from one another, where the
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atomic wavefunctions do not overlap and the electrons can be considered located
in atomic levels on the lattice node.

The tight binding approximation applies to situations where atomic wave-
functions are overlapping enough to allow electron transfer but not enough to
make an atomic description totally inappropriate.

This approximation consists of taking electrons in an atomic potential and
allowing hopping from one atom to another with a barrier of height t to the
nearest neighbors.

1.3.2 Bandstructure
We use a tight binding model to compute the bandstructure of graphene.

1.3.2.1 Honeycomb lattice

Figure 1.4: hexagonal lattice showing the vectors of the Bravais lattice

First of all, we need to define the Bravais lattice in which we will work and
its associated first Brillouin zone. We take vectors as defined on figure 1.4.
Note that many other choices would have led to the same final result. The
point here is to find the most convenient basis vectors in the Bravais lattice for
computation. We have:

~a1 = a0
2 (
√

3, 3), ~a2 = a0
2 (−
√

3, 3) (1.4)

where a0 is the distance between two carbon atoms (∼ 1.42 ).
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Also, it is important to know the position of the nearest neighbors of A and
B atoms. For an A atom at (0,0) the positions of the 3 B atoms surrounding it
are:

~δ1 = a0
2 (
√

3, 1), ~δ2 = a0
2 (−
√

3, 1), ~δ3 = a0(0,−1) (1.5)

A B atom is surrounded by 3 A atoms at relative positions ~δ′1 = −~δ1 ,
~δ′2 = −~δ2, and ~δ′3 = −~δ3.

The reciprocal lattice is calculated in accordance with the condition ~ai.~bj =
2πδij :

~b1 = 2π
3a0

(
√

3, 1), ~b2 = 2π
3a0

(−
√

3, 1) (1.6)

As mentioned previously, the reciprocal lattice for a hexagonal lattice has the
same shape: it is composed of two triangular sublattices subtending a hexagon.
As a consequence, the first Brilloin zone is a hexagon, the symmetry labels being
Γ for the center and K and K’ for the two groups of three equivalent points at
the six corners. The reciprocal lattice hexagons are rotated by π/2 with respect
to the real space hexagons.

The positions of K and K’ are

~K = 2π
3a0

( 1√
3
, 1), ~K ′ = 2π

3a0
(− 1√

3
, 1) (1.7)

Figure 1.5: Reciprocal lattice: the hexagons defines the First Brillouin zone
where Γ is the center of the FBZ and K and K’ its corners; M is located on a
side of the FBZ between a K and K’ point.

24



CHAPTER 1. ELECTRONIC STRUCTURE OF GRAPHENE

1.3.2.2 Nearest neighbor hopping

We will slightly diverge from the classical tight binding model by applying the
principle of tight bonding to models with two atoms per cell. Therefore, we
need to take two-component wavefunctions

ψ(−→r ) =
∑
k

[αkψ
A
k (~r) + βkψ

B
k (~r)]

.
with a hopping probability t between A and B sites.
It is useful to write the wavefunction in the form of a two-components spinor

where the sites A and B are represented by the two pseudo-spin components

ψk =

(
αk
βk

)
Both α and β are Bloch wavefunctions, so they can be written in the form

of (
αk
βk

)
=
∑
i

exp ik.Ri

(
akφ

(A)
k (~r)

bkφ
(B)
k (~r)eik.δl

)
(1.8)

Here we have set the origin R0 on an A atom.
We must now solve Schrödinger’s equation:

Hψk = Ekψk (1.9)

In order to have a scalar equation, we multiply it from the left by ψ†k:

ψ†kHψk = Eψ†kψk (1.10)

(
α∗k β∗k

)( ∆V AA ∆V AB

∆V BA ∆V BB

)(
αk
βk

)
= E

(
α∗k β∗k

)( αk
βk

)
(1.11)

Hk = EkSk (1.12)

The Hamiltonian can be written as a 2 ∗ 2 matrix:

Hk =

(
tAAk tABk
tBAk tBBk

)
(1.13)

To compute tABk and tBAk we have to consider that 3 atoms surround the A
(or B) atom, resulting in a phase shift

tABk = t
∑
l e
ik.δl = tγk, tBAk = t

∑
l e
ik.δ′l = tγ∗k (1.14)
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γk = e−ikya0

(
1 + 2e+3ikya0/2 cos

kxa0

√
3

2

)
(1.15)

γ∗k = e+ikya0

(
1 + 2e−3ikya0/2 cos

kxa0

√
3

2

)
(1.16)

The distance between 2 nearest-neighbor A or B atoms is around 1.7 times
smaller than the distance between a pair of A or B atoms. As the probability of
hopping diminishes exponentially with the distance we can neglect the hopping
between A and A or B and B atoms, as confirmed by experiments [12] from
which t′ ∼ 0.1t was assessed.

Sk =

(
α∗kαk α∗kβk
β∗kαk β∗kβk

)
=

(
sAAk sABk
sBAk sBBk

)
For the overlap matrice, we can reasonably suppose that the overlap of the A

and B wavefunctions is very low because, as said in section 1, the electrons which
account for transport are in pz orbitals, which have a small spatial extension
in the x,y plane. Therefore, we will ignore non-diagonal terms sABand sBA.
Normalization of the wavefunction imposes sAAk = sBBk = 1.

We can now simplify equation 1.10(
Ek tABk
tBAk Ek

)
= 0 (1.17)

which results in

E2
k = t2γkγ

∗
k (1.18)

Ek = ±t

√
1 + 4 cos

kxa0

√
3

2
cos

3kya0

2
+ cos2

kxa0

√
3

2
(1.19)

From this equation, we notice that the energy vanishes at two inequivalent
points:

~K = 2π
3a0

( 1√
3
, 1), ~K ′ = 2π

3a0
(− 1√

3
, 1) (1.20)

We saw earlier that these points are the corners of the first Brillouin zone. This
is a special and central property of graphene: its valence and conduction bands
cross. As a consequence, graphene is neither a semiconductor nor a metal, and
is often referred to as a zero-gap semiconductor. Plots of the bandstructure are
given in fig.1.6a and 1.7.
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1.3.2.3 Low energy linearization

We can linearize the energy dispersion around the crossing points as follows

~K = 4π
3
√

3a0
~ex, ~K ′ = − 4π

3
√

3a0
~ex

Where vectors K and K’ are the same as defined before, apart from a trans-
lation by a reciprocal lattice vector for simplifying the calculation.

γk = exp

(
ikx

a0

√
3

2
+ iky

a0

2

)
+ exp

(
−ikx

a0

√
3

2
+ iky

a0

2

)
+ exp(−iky)

(1.21)
For the linearization around the K point we define the wave vector

~k′ = ~k − ~K

in terms of which we have

γk′ = exp

(
ik
′

x

a0

√
3

2
+ ik

′

y

a0

2
− 2i

π

3

)
+exp

(
−ik

′

x

a0

√
3

2
+ ik

′

y

a0

2
+ 2i

π

3

)
+exp(−ik

′

y)

(1.22)
For this linearization, we consider only the first-order terms. We will see

later that this linearization is well adapted for most experiments at realistic
situation for transport.

γk′ =

(
−1

2
− i
√

3

2

)(
1 + i

a0

2

(
k
′

x

√
3 + k

′

y

))
+

(
−1

2
+ i

√
3

2

)(
1 + i

a0

2

(
−k
′

x

√
3 + k

′

y

))
+1−ik

′

y

(1.23)

γk′ =
3a0

2

(
k
′

x − ik
′

y

)
(1.24)

For the linearization around the K’ point we define the wave vector

~k′′ = ~k − ~K ′

γk′′ = −3a0

2

(
k
′′

x + ik
′′

y

)
(1.25)

In a similar way, we can compute the results for B atoms:

γ∗k′ =
3a0

2

(
k
′

x + ik
′

y

)
(1.26)
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γ∗k′′ = −3a0

2

(
k
′′

x − ik
′′

y

)
(1.27)

These results highlight the necessity of including both sublattices A and B
as well as both crossing points K and K’ in our wave functions, which are noted
ψ
A/B
± , where ±is the valley indice.

Ψ =


ψA+
ψB+
ψA−
ψB−


We set γk = 3a0

2 (kx − iky) and by remarking that γ∗
k′′ = −γk′we can write

the following Hamiltonian

H = t


0 γk 0 0
γ∗k 0 0 0
0 0 0 γ∗−k
0 0 γ−k 0

 (1.28)

Note that this linearization precludes charge carriers from passing from K
to K’ valleys and vice versa.

We set vF = 3a0t/2~, denoting the Fermi velocity: vF = 1.106m/s ' c/300.
By choosing this wavevector, the diagonalized Hamiltonian for the K band

is equal to that for K’

H = ~vF
( √

γkγ∗k 0
0 −

√
γ∗kγk

)
(1.29)

The eigenvalues of this Hamiltonian are:

ελξ=± = λ~vF
∣∣∣~k∣∣∣ (1.30)

Where λ is the band subscript, λ = + applies to the conduction band with
positive energy and λ = − to the valence band associated with negative energy.

We can remark that charge carriers in the different sublattices will propagate
with a momentum phase shifted by θk = arctan(ky/kx).

The minus sign in γ of the K’ band brings forward the notion of chirality
(which will be detailed in section 1.3.3.2). To have a simple view, if the angle
between the kxand ky in the K band is represented by the angle of the thumb
and forefinger of the right hand, in K’ valley it would be represented by the
same angle in the left hand.

All these parameters can be expressed in the wavefunction:
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Ψ =


ψA+
ψB+
ψB−
ψA−

 =


1

λeiθk

1
−λeiθk

ϕ

Note that the A and B sublattices are exchanged in the K’ spinor for con-
venience.

The Hamiltonian for such a wavefunction is:

H = ~vF
(
σ.k 0
0 −σ.k

)
(1.31)

where σ are the Pauli matrices representing a pseudo-spin

σx =

[
0 1
1 0

]
, σy =

[
0 −ı
ı 0

]

H = ~vF ~α~k (1.32)

With α =

(
σ 0
0 −σ

)
.

The pseudospin represents the weight on the A and B sublattices.
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(a)

(b)

Figure 1.6: Bandstructure of graphene. On the left, for the full Brilloin zone
and, on the right, the low energy linear relation around K point.
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(a) (b)

Figure 1.7: 2D views of the bandstructure of graphene. (a) is a view from the
top and while (b) is a plot of energy versus position in the FBZ cell.

As shown in fig. 1.8, the bandstructure of graphene was experimentally
measured by angle resolved photo-emission (ARPES).

Figure 1.8: ARPES measurement of graphene on SiC substrate in ref [12]. (a)
Experimental energy distribution of states as a function of momentum along
principal directions; (b) Constant-energy map of the states at binding energy
corresponding to Dirac energy and Brillouin zone boundaries (dashed line); (c)
Constant-energy map at Fermi level; (d) ED-1 eV

1.3.2.4 Energy scale and limit of the linearization approximation

The previous section contained a linearization focusing only on the first-order
terms in the Hamiltonian, the validity of which must now be examined.

Because in experiments the density is linearly tuned by backgate to sample
potential (see section 6.2), it should prove useful to express all energies in terms
of density.

Typical gate efficiency leads to n = αVg where α = 7.1014m−2.V −1, where
the maximum achievable gate voltage (above which graphene is destroyed) is
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Vgmax ≈ 100V leading to a density n ≈ 7.1016m−2, therefore, we will consider
nmax = 1.1017m−2.

In two dimensions linear dispersion EF = ~vF kF and a four fold degeneracy,
n = k2/π , which implies that:

EF = ~vF
√
πn

n = 3, 7.1017.m−2 ∗ E(eV )2

Therefore, the maximum attainable energy in typical electronic measure-
ments is

Emax ≈ 0.5eV

where

kmaxF ≈ 6.108m−1, λminF ≈ 1.10−8m

The linearization described in paragraph 1.3.2.3 implied that kFa � 1, or
λ� a, therefore, if we consider that a = 1, 42.10−10m, we can reasonably con-
clude that this approximation remains valid for all our electronic measurements.
On a more quantitative note, we can compare the second-order term of kFa

(kmaxF a)2

kmaxF a
= 8.5%

1.3.3 The Dirac equation and some of its special proper-
ties

Quantum mechanics is usually described using Schrödinger’s equation, which
is focused on non-relativistic particles. In 1928, Dirac formulated a quantum
description for relativistic fermions by way of the so-called Dirac equation.

A major point of his formulation is the discovery of the concept of antipar-
ticles. Indeed this equation has two solutions: one with positive energy and an-
other with negative energy (identified as anti particles). In 1932, the positron,
the antiparticle of the electron was observed by Carl Anderson , thus demon-
strating the validity of the novel concepts expressed in Dirac’s equation.

The ultra-relativistic Dirac equation is usually linked with high energy par-
ticles (like neutrinos) and predicts some novel effects.

Due to the honeycomb lattice structure of graphene, an effective ultra-
relativistic Dirac equation can be used to describe the electron while making it
possible to observe some of the novel effects predicted by Dirac’s equation.
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1.3.3.1 Dirac’s Equation

This part is largely inspired by [8, 13].
Klein-Gordon’s equation was the first to be proposed for the description of

a relativistic particle within a quantum mechanics approach.
It is constructed in a similar way to Schrödinger’s equation where

H =
p2

2m
(1.33)

and we make the substitution H → i~ ∂
∂t and ~p → −i~~∇ and apply these

operators to a wavefunction Ψ

i~
∂

∂t
Ψ =

1

2m
(−i~~∇)2Ψ (1.34)

The Klein-Gordon equation is built from a relativistic Hamiltonian

H2 = p2c2 +m2c4 (1.35)

A substitution in 1.33 gives us:

(
1

c2
∂2

∂t2
−4+

m2c2

~2
)Ψ = 0 (1.36)

This equation is a second-order in time and differs from Schrödinger’s in
that the knowledge of the state vector ψ(~r, t = 0) is not sufficient to describe it
at subsequent times.

To restore a first-order equation in time, we can use multi-component wave-
functions and write Eq. 1.36 as(

1 +
i~
mc2

∂

∂t

)(
1− i~

mc2
∂

∂t

)
Ψ =

~2

mc2
4Ψ (1.37)

Where we set ΨA = Ψ + i~
mc2

∂Ψ
∂t and ΨB = Ψ − i~

mc2
∂Ψ
∂t to obtain a system of

differential equations of first order in time as expressed by:

i~
∂Ψ

∂t

[
ΨA

ΨB

]
=

[
mc2 − ~2

2m4 − ~2

2m4
~2

2m4 −mc2 + ~2

2m4

] [
ΨA

ΨB

]
(1.38)

Most of the problems posed by this equation can be solved. However, one
part of it will, by nature, prevent the description of relativistic fermions.

The two components are non symmetric: in the non-relativistic limit, ΨB

is of the order of zero whereas ΨA is of the order of 1. Which leaves us with a
one-component wavefunction that is not sufficient to describe the electron spin.

A four-components wave function is needed if space and time coordinates
are to play a symmetric role: Ψµ where µ = (1, 2, 3, 4) can be written has a
column matrix
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Ψ =


Ψ1

Ψ2

Ψ3

Ψ4


We will see later that all the components correspond to physical quantities:

in a combination of spin and helicity, both of which can take 2 values.
The position probability is then given by

P (~r, t) =

4∑
µ=1

|Ψµ|2

The equation is in the form

i
∂Ψ

∂t
= HDΨ

In the case of a particle without external field, HD has to be invariant to
translation, thus independent of ~r and t

HD = ~α.~pc+ βmc2 (1.39)

Where ~p corresponds to ~p → −i∇. ~α = (αx, αy, αz) and β denotes 4 her-
mitean operators acting on the four-component wavefunction, all of which mix
the components of the wavefunction.

We can now express the Dirac equation with E = i~ ∂
∂t[

E − c~α.~p− βmc2
]

Ψ(~r, t) = 0 (1.40)

Our next step is to determine ~α and β. To do so, we use the correspondence
principle, bearing in mind that the solutions of this equation must satisfy Klein-
Gordon’s equation [

E2 − ~p2c2 −m2c4
]

Ψ(~r, t) = 0 (1.41)

When we multiply eq.1.40 by [E + ~α.~p+ βm], we obtain :

[
E2 −

∑
k

(αk)2(pk)2 − β2m2 −
∑
k<l

(αkαl + αlαk)pkpl −
∑
k

(αkβ + βαk)mpk

]
Ψ = 0

This expression was simplified by setting c = 1, however, coming back to
usual notation can easily be performed by dimensional argument.

By identification with equation 1.41 we have

(αk)2 = 1 αkαl + αlαk = 0 (k 6= l)
β2 = 1 αkβ + βαk = 0

(1.42)

Solving these equations gives us

34



CHAPTER 1. ELECTRONIC STRUCTURE OF GRAPHENE

~α =

[
0 ~σ
~σ 0

]
, β =

[
1 0
0 −1

]
where ~σ are the Pauli matrices

σx =

[
0 1
1 0

]
, σy =

[
0 −ı
ı 0

]
, σz =

[
1 0
0 −1

]
.

We can now express the Dirac equation in an external field quite easily by
making the substitution:

E → E − V, ~p→ ~p− e ~A

to obtain [
(E − V )− ~α(~pc− e ~A)− βmc2

]
Ψ = 0 (1.43)

If we consider the case of a free electron without field to find stationary
states, we can set

Ψ(~r, t) = e
Et
i~ ψ(~r) (1.44)

Eψ(~r) = HDψ(~r) (1.45)

Now, if we decompose the wavefunction in terms of planar waves ψµ(~r) =

ei
~k.~rCµ(~k), where Cµ(~k) is independent of ~r (µ = 1, 2, 3, 4), we have

(c~~k.~α+ βmc2)Cµ(~k) = ECµ(~k)

Solving this equation gives eigenvalues:

E = ±
√

(mc2)2 + (pc)2 (1.46)

This result shows two possible eigenvalues for energy: one positive, the other
negative. A priory a negative value for energy has no physical meaning and can
be ignored, however we can imagine some experiments where it can not be
ignored like in the Klein paradox (described in 1.3.3.4). This led Dirac to pos-
tulate that all negative states are occupied by electrons in the “vacuum”. If we
add one electron to this vacuum, it will necessarily be in a positive energy state
because all negative states are full and electrons obey Fermi-Dirac statistics.
Dirac asserts that the possible negative energy states are holes or missing elec-
trons in a sea of electrons. Thus, the hole differs from the missing electron in
that it has an opposite charge, energy and impulsion, which means that the hole
would carry a charge +e and have its momentum ~p antiparallel to its velocity ~v.
Dirac’s postulates led to the novel concept of antiparticle. In 1932, four years
after Dirac’s prediction, Carl D. Anderson observed an electron antiparticle for
the first time and named it a positron.
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The inherently problematic aspect of this theory is that it presupposes that
the negative energy states are filled by an infinity of electrons while it is a
one-electron theory. Furthermore, the idea of electrons not interacting in the
vacuum appears fairly suspicious. Both problems are solved in the framework of
quantum electrodynamic, notwithstanding, Dirac’s equation gives a good pic-
ture of simple quantum relativistic problems and accurate predictions for many
phenomena. As we will see later, some of the phenomena which were predicted
by Dirac’s equation can be observed in graphene.

If we express the ultra-relativistic Dirac Hamiltonian in 2 dimensions without
a mass, we obtain

HD = ~α.~pc = ~c~k.~α (1.47)

where α is now composed of the two Pauli matrices σx and σy. Here it
denotes the isospin, which is linked to helicity in the case of neutrinos. This
Hamiltonian is remarkably similar to that for graphene, while, in the latter, c,
the speed of light is replaced by the Fermi velocity, the Pauli σ matrices act on
the pseudospin and the two-component state vectors represent a superposition
of the sublattices. The similarity does end with the comparison of the Hamilto-
nians, for the effects predicted by Dirac’s equation should find their equivalent
in graphene, making it a nice tool examine phenomena of usually very high
energy with a low-energy physical system.

It is also interesting to note that the disappearance of the mass leads to
a constant velocity; the β matrices, which are linked to time transformation
disappear. As a conclusion, the energy depends only on the wavevector, which
is proportional to the inverse wavelength.
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1.3.3.2 Valley, band and chirality

Figure 1.9

There is a set of parameters which are important to know in order to understand
the properties of an electron in graphene.

Chirality, helicity. A figure is said to be chiral if it is not identical to its
mirror image. For example, our hands are chiral, the image of our right hand in
a mirror, as a rule, is our left hand. We can distinguish right from left chirality.
It is interesting to note that most of the molecules constituting living beings on
Earth have a left chirality.

A DNA helix or a propeller plane provide simple examples of helicity, which
is the projection of the rotating direction on the direction of motion. The
conventional approach for describing rotation is used to determine right- and
left-handed helicity: we assume that a standard clock, tossed face forward, has
a left-handed helicity. As is the case with chirality, nature manifestly favors
left-handed helicity as demonstrated by DNA or neutrinos, for instance.

For particles which obey the Dirac equation we can define helicity as the
projection of its spin onto the propagation direction: h = ~p.~σ

|~p| . It is a hermitian
operator with eigenvalues η = ±:

h | η = ±〉 = ± | η = ±〉 (1.48)
As mentioned, all neutrinos in nature are “left-handed” which means that

η = − whereas all antineutrinos are right-handed (η = +).
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For a massless Dirac equation, helicity commutes with the Hamiltonian,
which results in a good quantum number. Also, for massless particles helicity
is the same as chirality. Due to its too abstract nature, the chirality of massive
Dirac particles will not be dealt with here.

For graphene, which obeys a massless Dirac equation, chirality and helicity
are the same. As the two different projections of pseudospin result in a chiral
image, chirality is the expression generally used to describe the projection of
the pseudospin onto the propagation direction.

The Band (valence band or conduction band). A major difference be-
tween dispersion relation in graphene and Dirac’s equation is that the negative
part of the Dirac cones are truly filled with the Valence Band electrons. As we
can tune the density in graphene, the Fermi level can lie in the conduction band
(positive energy ) or in the valence band (negative energy). This is not possible
with the Dirac equation (and a bit paradoxical): we can not remove “vacuum
electrons” (by electron-positron pair creation).

The band index is labeled λ, and considered positive for the conduction band
and negative for the valence band.

The valley (K or K’) We saw earlier that charge carriers are doubly degen-
erate and can propagate in the K or K’ valley, with opposite chiralities. Here
we will define the valley subscript by ξ, which can take ±1 values, positive for
K and negative for K’.

The relation which links valley, band and chirality is

λ = ξη (1.49)

This relation is shown in figure 1.9.

1.3.3.3 Berry’s phase

Berry introduced the notion for quantum mechanics of a phase acquired by the
wavefunction in a cyclic adiabatic process.

As shown in fig.1.10, a simple view of a Berry’s phase can be obtained by
imagining the trajectory of a point on a sphere with which, 2 vectors are as-
sociated, one always parallel to the propagation direction and the other always
perpendicular. At the end of a loop on the sphere, there is an angle correspond-
ing to a rotation between the initial and final position of the vectors.
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Figure 1.10: Berry’s phase

In the case of graphene a Berry’s phase of π is acquired along a rotation of
the Pseudospin.

A simple view of this phase can be obtain recalling the wave function in the
K valley:

Ψ(k) =

(
1

λeiθk

)
ϕ

The phase φ (Ψ(k)eiφ) accumulated along one adiabatic rotation of the
wavevector k during a time t = T can be expressed as follows:

φ = −i
ˆ T

0

〈Ψ(k(t)) | ∂
∂t

Ψ(k(t))〉dt = π

This phase shift was observed [14] and leads to interesting phenomena such
as weak antilocalization (describe in 2.4.3).

For a graphene bilayer Berry’s phase is 2π.

1.3.3.4 Klein Tunneling

The massless nature of the charge carriers has an interesting effect: it causes
an observable Klein paradox within the Dirac equation. Such a phenomenon
is intuitively understandable since there is no bandgap in the massless Dirac
equation. As a result, a tunnel barrier shifts the energies by a potential V0;
whatever the value of V0, there will always be available states for electrons to
go.

In high-energy physics, this effect occurs for ultrarelativistic particles, like
neutrinos, for which a tunnel barrier is transparent in the case of perpendicular
incidence.

We should now consider the details of this phenomenon.
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Figure 1.11: Potential barrier in graphene

In figure 1.11, three regions are defined: regions 1 and 3 are the “normal”
regions of zero-applied potential. Region 2 corresponds to the tunnel barrier at
potential V0.

The equation of motion for regions 1 and 3 is

HΨ = EΨ

whereas for region 2

HΨ = (E − V0)Ψ

The calculation is done for valley K and would have the same results if done
with the other valley; also, scattering between valleys is highly improbable.
We consider two component wave functions composed of incident and reflected
waves:

ψ1 = eikxx+kyy

(
1

λeiφ

)
+ re−ikxx+kyy

(
1

−λe−iφ
)

ψ2 = t′eiqxx+qyy

(
1

λ′eiθ

)
+ r′e−iqxx+qyy

(
1

−λ′e−iθ
)

ψ3 = teikxx+kyy

(
1

λeiφ

)
kF = 2π/λ, kx = kF cosφ and ky = kF sinφ, qx =

√
(E − V0)2/~2v2

F − k2
y

θ = tan−1(ky/qx) , λ is the band subscript, for K valley λ = + in the conduction
band (for positive energy) and λ = − in the valence band (negative energy) so
we can set λ = signE, also λ′ = sign(E − V0).

To compute the transmission t and reflection r parameters, we have to equate
the following pairs of wave functions:

ψ1(0, y) = ψ2(0, y)

ψ2(d, y) = ψ3(d, y) (1.50)
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Which leads to the system of equations:

{
1 + r = t′ + r′

λ(eiφ − re−iφ) = λ′(t′eiθ − r′e−iθ)
(1.51)

{
t′eiqxd + r′e−iqxd = teikxd

λ′(t′ei(qxd+θ) − r′e−i(qxd+θ)) = λtei(kxd+φ)
(1.52)

If we consider V0 >> E , θ angles can be neglected implying that for λ = 1,
λ′ = −1:

{
1 + r = t′ + r′

(1eiφ − re−iφ) = −(t′ − r′)
(1.53)

{
t′eiqxd + r′e−iqxd = teikxd

−(t′eiqxd − r′e−iqd) = tei(kxd+φ)
(1.54)

From the second system of equation we have

t′ = r′
e−2iqxd(1− eiφ)

1 + eiφ

From the second equation of the first system we have

r′ =
(eiφ − re−iφ)(1 + eiφ)

2e−iqxd(i sin(qxd) + eiφ cos(qxd)

t′ =
(eiφ − re−iφ)(1− eiφ)

2eiqxd(i sin(qxd) + eiφ cos(qxd)

Thus with the first equation of the first system we obtain

r =
ieiφ sin(qxd) sinφ

cosφ cos(qxd)− i sin(qd)

Here we are interested in the transmission probability T = |t|2 = 1 − |r|2.
Solving these equations we get:

T =
cos2φ

1− cos2(qxd)sin2φ
(1.55)
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Figure 1.12: Calculation from M.I Katsnelson et al [15] of the transmission
probability T through a 100-nm-wide barrier as a function of the incident angle
for single- (a) and bi-layer (b) graphene.
The electron concentration n outside the barrier is chosen as 0.5.1012cm−2 for all
cases. Inside the barrier, hole concentrations p are 1.1012cm−2 and 3.1012cm−2

for red and blue curves, respectively (such concentrations are most typical in
experiments with graphene). This corresponds to the Fermi energy E of inci-
dent electrons approximately 80 and 17 meV for single- and bi-layer graphene,
respectively, and λ ∼ 50nm. The barrier heights V0 are (a) 200 and (b) 50 meV
(red curves) and (a) 285 and (b) 100 meV (blue curves).

In figure 1.13 a charge carrier arriving on a potential gap is represented. The
system is at equilibrium so the Fermi level is constant everywhere, to represent
the potential barrier we have to shift the Dirac cone.

When a charge carrier arrives on the shifted Dirac cone it can pass from
conduction band to valance band. If the potential is smooth it must remain in
the same valley. This implies that it will propagate in the same valley, but in a
different band, with an opposite wave vector. The momentum is conserved, so
in the valance band the momentum will be antiparallel to the wavevector [15].
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Figure 1.13: schematic diagram of the low energy bandstructure in graphene on
top and potential barrier of high V0 and width D at the bottom. extracted from
[15].

This was seen experimentally in ref [16] and [17].

1.4 Bilayer graphene
Bilayer graphene is a very interesting 2DEG in that both its layers are vertically
coupled, which induces a change in its bandstructure.

The bandstructure can be calculated by extending the tight-binding model
developed for graphite to a finite number of graphene layers. Computation is
based on ref. [18]
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Figure 1.14: The bandstructure of bilayer graphene [18]

The detailed calculation for bilayers would be an unnecessary digression
given the core subject of this work. However, an overview on the bandstructure
of a bilayer could prove judicious at this point.

The calculation is similar to that for the monolayer, but a little more com-
plicated, because there are 2 layers with 2 atoms per cell, which causes more
hopping paths for the electrons.

We consider here bilayer graphene in an A2-B1 Bernal-stacking configura-
tion. Fig. 1.14 shows that the A1 and B1 atoms are on the lower layer and the
A2 and B2 atoms on the upper layer; every B1 atom is situated directly under
an A2 atom, whereas A1 and B2 atoms are not aligned in the z direction.

This leads us to write the Hamiltonian in the following basis

Ψξ=+ =


ΨA1

ΨB2

ΨA2

ΨB1

 , Ψξ=− =


ΨB2

ΨA1

ΨB1

ΨA2



H = ξ


−∆

2 v3π 0 vπ†

v3π
† ∆

2 vπ 0
0 vπ† ∆

2 ξγ1

vπ 0 ξγ1 −∆
2

 (1.56)

Where γ12 is the hopping term between a site 1 and a site 2.
The dominant hopping term is between A and B atoms of the same layer:

γA1B1 = γA2B2 = γ0

vF =
3

2

a0γ0

~
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Due to the Bernal stacking, the main hopping term between layers is

γA2B1 = γ1

The other term coupling both layers is

γA1B2 = γ3

v3 =
3

2

a0γ3

~
where v3 � vF .

∆ = ε1 − ε2

where ε1 and ε2 stand for the on-site energy of layers 1 and 2.
The Hamiltonian has four valley degenerate bands. Solving it gives us the

energy eigenvalues Eα±, (α = 1, 2 )

(Eα)2 =
γ2

1

2
+

∆2

4
+

(
v2 +

v2
3

2

)
p2

+(−1)α

((
γ2

1 − v2
3p

2
)2

4
+ v2p2

(
γ2

1 + ∆2 + v2
3p

2
)

+ 2ξγ1v3v
2p3cos3φ

)1/2

where p = p(cosφ, sinφ)

As regards the lower-band energy

E1
± = ±1

2
γ1

(√
1 + 4v2p2/γ2

1 − 1

)
(1.57)

which leads to the definition of an effective mass

mc =
p
∂E1

∂p

=
γ1

2v2

√
1 +

4π~2v2n

γ2
1

(1.58)

A low-energy Taylor expansion of 1.57 leads to a quadratic energy spectrum
E1 ≈ p2/2mc, wheremc ≈ γ1/2v

2, which experiment gives to bemc ≈ 0, 035me;
at high energy the energy, spectrum becomes linear E1 ≈ vp and the crossover
takes place at p ≈ γ1/2v. Computing experimental values for graphite showed
that the crossover occurs at a density n = 4, 36.1016m−2. The estimated den-
sity at which the higher-energy band begins to be filled is n(2) = 3, 49.1017m−2,
which is not attainable by classical-transport experiments.

Remarkably, setting both layers at different potentials (i.e.∆ 6= 0) makes it
possible to open a gap at the Fermi level (see ref.[19]).
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At low energy, in the quadratic regime, it is possible to write an effective
Hamiltonian in a simple way

H = − 1

2mc

(
0

(
π†
)2

π2 0

)
(1.59)

where π = px + ipy.
This Hamiltonian is applied to the following wavefunction, using the same

notation as in graphene for the K and K’ valleys:

Ψξ=+1 =

(
ψA1

ψB2

)
, Ψξ=−1 =

(
ψB2

ψA1

)
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Chapter 2

Electronic Transport

2.1 Mesoscopic physics
Mesoscopic physics is a field of condensed-matter physics and describes materials
at and below an intermediate lengthscale, defined as coherence length, which
separates the quantum from the classical behavior of a conductor.

In order to provide an accurate picture of the transport properties of graphene,
we will firstly introduce some concepts of mesoscopic physics, and then examine
basic results concerning electronic transport. As a conclusion, we will see how
these concepts apply to graphene.

Physics has two distinct approaches: the microscopic and macroscopic ap-
proaches. The microscopic phenomena are best described by the laws of quan-
tum physics whereas, for the macroscopic phenomena, classical physics applies.
Microscopic physics’ first scope of study was centered on very small objects,
typically of atomic size (< 1nm). For many years, the observation of quantum
effects was confined to atomic-size objects or to the properties of light. Larger
objects, by nature, made it very hard to observe let alone maintain coherence.
During the past three decades, a vast series of advances have been made when
it comes to building intermediate-size devices. Intermediate size ranges from
objects comprised of a few molecules to objects of naked-eye visibility. Such
progress, combined to low-temperature technology, made it possible to reach
phase coherence for micron-size objects and to study decoherence processes, as
well as the crossover from quantum to classical physics.

The following chapter will be centered on the transport of charge carriers in
mesoscopic-size 2DEGs.
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2.2 Two-dimensional electron gases
A 2-dimensional electron gas (2DEG) is a gas composed of electrons moving
freely in two directions x and y and in a very confined sort of way in a third
one z.

Up to 2004, all the 2DEG were made by means of heterojunctions of semi-
conductors with a different band gap, silicon oxide semiconductor interface (like
in MOS-FETs), or at the surface of liquid helium.

Most 2DEGs are made with semiconductors, which we will thereafter call
conventional 2DEG.

So far, the better-quality conventional 2DEG have been produced by means
of the heterojuntion of aluminum-gallium-arsenide (AlGaAs) and gallium-arsenide
(GaAs). In the widegap AlGaAs, the conduction band is higher than in the nar-
rowgap GaAs. As a consequence the electrons exit the n-doped AlGaAs leaving
positively charged donors behind. In order to maintain the equilibrium with a
flat Fermi level everywhere, the conduction and valence bands in the narrowgap
GaAs side are bent downwards to form a quantum well. As a result, the elec-
tron motion perpendicular to the interface is frozen in the ground state and the
electron density is sharply peaked near the GaAs-AlGaAs interface, as shown
in fig.2.1.

Figure 2.1: Schematic view of a 2DEG at the interface of 2 semiconductors

The carrier concentration in conventional 2DEGs typically ranges from 2.1011cm−2

to 2.1012cm−2. Therefore, a 2DEG is a very practical structure: its density can
be controlled with metallic gates, which results in the possible engineering of
constriction, quantum dots, tunnel barriers and many other useful probing de-
vices for the study of electrons properties. The electronic mobility (define in
eq. 2.2) is a good tool to compare the 2DEGs quality. Figure 2.2 shows the
maximal mobility obtained in conventional 2DEG over the year.
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Figure 2.2: Mobility versus temperature in conventional 2DEGs over the years

Our interest in graphene has arisen from our long standing interest in elec-
tronic properties in conventional 2DEG.

2.3 Lengthscales
A series of length scales are central in characterizing the transport regime.

• λF is the Fermi wavelength, it is the wavelength of an electron at the
Fermi level, i.e. electrons participating in transport. In most cases, the
Fermi wavelength is the shortest length in our problem: it can vary from
few of a nanometer tenths in metals to few tens of nanometers in graphene
and conventional semiconductor heterojunctions.

• lφ the phase coherence length. The phase of the wavefunction is always
defined within this length scale, which is the most important length to con-
sider when looking for quantum effects. It varies with temperature: below
1K it ranges from few tenths of a micron to few microns and decreases
very quickly when temperature increases.

• le is the elastic mean free path between two collisions with impurities.
An elastic collision maintains phase coherence but favors multiple inter-
ferences of the wavefunction with itself.
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Figure 2.3: Various characteristic lengthscales

When we consider the relation between these lengthscales and the length l
of the sample, then transport is said to diffusive when l > le and ballistic when
l < le.

2.4 Transport, from macro to micro via meso
In this section, we examine electronic transport from a macroscopic scale where
classical physics is valid to a microscopic scale where quantum phenomena have
to be taken into account.

2.4.1 Drude model
Electron transport in macroscopic devices is generally described using the clas-
sical Drude model. It is also valid for a mesoscopic system in which interferences
effects average as is the case to first order in a diffusive conductor with many
elastic impurities.

It is based on the classical description of free electrons with a charge q = −e
and a mass m.

Inspired by the kinetic theory of gas, Drude introduced this model in 1900.
In this model the electron is free to move in response to an electric field in
a conductor, with ions and impurities randomly distributed and considered as
static. The electrons collide with these impurities, either elastically or inelas-
tically. Also, electrons may collide with other electrons. We suppose here that
the velocity of an electron is randomly redistributed after a collision, therefore
we can write 〈~v〉 = ~0 when the system is not driven by an electric field.

This model is not aimed at describing the microscopic path of the electrons.
Consequently, the drift velocity under an electric field E: vdrift = 〈~v〉is now
different from zero.

The drift velocity is defined as

~vdrift = −eτ
m
~E (2.1)
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and the mobility as

µ =
|~vdrift|∣∣∣ ~E∣∣∣ (2.2)

where τ is the time between 2 collisions. Originally seen as the transport
time τtr calculated using the Boltzmann equation, with two basics assumptions:

• between collisions, electrons move as classical particles, subject only to
the external field;

• collisions are independent instantaneous events, which occur with a prob-
ability 1/τtr per unit of time.

The current density which is defined by the density of charge crossing a con-
ductor per unit of time is written

~j =
ne2τ

m
~E (2.3)

from which we define the conductivity

~j = σ ~E

σD =
ne2τtr
m

(2.4)

This model explains Ohm’s law.

Although the Drude model provides us with a valid result, it comes with
reservations:

• in metals, the electric field vanishes due to electron screening; as a conse-
quence the system is not fully described using a view of a motion related
to an electrical field;

• the Coulomb interactions are not taken to account;

• a priory there is no reason to presuppose that electrons have a classical
motion and that their collisions must be considered independent.

Also, τ can hide a multitude of collisions of various types.

2.4.1.1 Collision time τ

τtr is not easily computed.
At this point, it is important to draw the distinction between the transport

time τtr and the lifetime τe of an electronic wavefunction: τe depends on the
number of collisions; τtr depends on the number of collisions and the scattering
angle and will not account for collisions with zero scattering angles. A large
τtr/τe ratio indicates a predominance of scattering in the forward direction.
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Figure 2.4: Schematic of scattering

The general expression for τtr as per the Boltzmann law is:

1

τtr
= nimpvF

ˆ
(1− cosθ) | f(θ) |2 dθ (2.5)

while, for τe

1

τe
= nimpvF

ˆ
| f(θ) |2 dθ (2.6)

f(θ), the scattering amplitude at 2 dimensions, is has the dimension of a
length, is a non trivial function correlated with the type of scatterers.

2.4.2 Coherent diffusive transport
The Drude law can be applied to this type of transport after a slight adaptation.

Schrödinger electrons have a 2D density of

N =
2S

(2π)2

ˆ
d2k =

2S

(2π)2
πk2

F

n =
k2
F

2π

We can now express the Drude conductivity

σD =
k2
F

2π

e2

m
τtr =

e2

h
kF ltr

where ltr = vF τtr is the mean free path, vF = ~kF /m is the Fermi velocity
of particles with parabolic dispersion.

In coherent systems, conductance is meaningful, not conductivity. Therefore,
we will describe transport properties in terms of conductance G

G = σ
W

L

with sample width W and length L
The Drude conductance is:
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GD =
e2

h
kF ltr

W

L

At this point, we can introduce the number of electronic modes which the
sample can contain , as for a waveguide, it is M = W

λF /2

GD = M
2e2

h

˜ltr
L

where ˜ltr = π
2 ltr

We must now include the value of the contact resistance Rc = h/2e2M
(calculated considering a ballistic conductor and assuming that the contact are
reflectionless) in the value of the total resistance.

Rclassic =
h

2e2M
+

1

GD
(2.7)

As a result

Gclassic =
2e2M

h

˜ltr

L+ ˜ltr
(2.8)

The above applies to semi-classical diffusive conductance, when all interfer-
ence effects are disregarded. When interference effects are taken into account,
correction terms have to be applied to conductance

GQ = Gclassic + ∆Gwl + δGucf (2.9)

where ∆Gwl is the weak localization correction and δGucf the universal
conductance fluctuation term, both terms will be described in the following two
sections.

2.4.3 Weak localization
Weak localization was first calculated in ref. [20] after a publication [21], which
offered a scaling theory for localization, as well as a method to compute quantum
corrections. The weak localization correction consists of a correction of the order
of 1/kF ltr . Its origin lies to coherent backscattering of electrons with momenta
k and −k , it leads to a decrease of the conductivity compared to its classical
value. A series of simple arguments will help us fully appreciate this correction.

If an electron is backscaterred, the reverse path is also possible. If the length
of the electron’s paths is less than the coherence length, they will interfere
positively leading to an increase of the probability of return.
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Figure 2.5: Schematic of different electronic paths. The colored arrows represent
the electronic paths while the black crosses represent the scatterers; in a WL
regime, the equal but opposite the red and green paths interfere constructively.

The classical probability of return is given by:

P = |
∑
i

Ai|2 =
∑
i

|Ai|2 +
∑
j 6=i

A∗jAi +A∗iAj

Where i and j are all the ruturn paths.
In the case of coherent transport, our model must take the inverse path into

account.

P = |
∑
i

Ai +A−i|2 (2.10)

P =
∑
i

(|Ai|2 + 2
∑
i

A∗iA−i +A∗−iAi +
∑
j 6=i,−i

A∗j (Ai +A−i) +Ai(Ai +A−i)
∗

(2.11)

The interference term
∑
iA
∗
iA−i + A∗−iAi causes the probability of return

to double, thus making it possible to calculate conductivity.

∆Gwl =
2e2

πh
ln

(
lφ
le

)
(2.12)

A simple and detailed computation of the weak localization can be found in
[22] or in [23].

It is interesting to note that the weak localization is suppressed by a magnetic
field:

Ai ∝ exp

(
i

ˆ
π.dl

~

)
where π = p− eA
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We can now easily demonstrate that

Ai(B) = Ai(0) exp

(
i2π

φi
φ0

)
and:

A−i(B) = Ai(0) exp

(
−i2π φi

φ0

)
Where φi is the magnetic flux in a closed backscattering path and φ0is the

flux quantum, φ0 = h/e.
As a result, the interference term can be expressed as

A∗iA−i +A∗−iAi = |Ai(0)|2 2 cos

(
4π
φi
φ0

)
A critical magnetic fieldBc can be define, beyond which the weak localization

effects are suppressed. Considering that the maximum closed path is given by
the coherence length lφ, the maximale surface (circle) is l2φ/4π.

Bc ∼
φ0

l2φ
(2.13)

We needn’t consider resonance when φi = nφ0 because the closed interfering
paths have sizes ranging from l = 0 to l = lφ.

In graphene, the interferences in the returning path can be destructive due
to the Berry phase π, while they are constructive in a conventional 2DEG.
This can result in an increase in conductance at zero field (manifestation of the
weak antilocalization phenomenon). As per ref. [24], both weak localization and
antilocalization were observed in graphene. The referenced article demonstrated
that antilocalization takes place when dephasing time is small compared to
elastic scattering time for intravalley scattering.

2.4.4 Universal conductance fluctuations (UCF)
The UCF are reproducible fluctuations in the conductance and are a function
of the density or of the magnetic fields. These fluctuations are caused by quan-
tum interferences between the many electronic paths which contribute to the
conductance in the diffusive case. These fluctuations have an amplitude of the
order of e2/h for a sample smaller than lφ.

δG ∼ e2

h

For a sample of length L larger than lφ:

δG ∼ e2

h

1

N
4−d
2

ucf
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where Nucf = L/lφ, d is the dimension.
Temperature limits the phase coherence length, thus leading to variations

in the UCF amplitude. If kBT > ~/τφ, then thermal energy can be viewed as
Nucf uncorrelated channels in parallel, having a width of ~/τφ each

Nucf =
kBT

~τφ
where l2φ = Dτφ.

2.4.5 Einstein-Smoluchowski’s diffusion approach
In 1905, Einstein and Smoluchowski proposed a diffusion relation based on the
study of Brownian motion. This relation is a first instance of the fluctuation
dissipation theorem (formulated later in 1928 by Nyquist and proved by Callen
and Welton in 1951). Einstein’s relation brings a new vision to electron trans-
port. It introduce the fact that transport can happen not only with an electrical
field but also due to chemical potential difference.

This general diffusion relation can be applied to charged particles motion,
and expressed as

σE = e2 ∂n

∂µ
D (2.14)

where D is the diffusion coefficient.
Here n is the density of charged particle and µ the chemical potential, the

ratio ∂n/∂µ can be viewed as a compressibility, and D is the diffusion coefficient

µ = FN+1 − FN
where N is the number of particles in the system.
F = U−TS is the Helmholtz energy. It is a thermodynamic potential which

measure the work obtainable from a closed system.
To take both in account:

j = σE + eD∇n

The electrochemical potential can be used to take both contributions into
account µel = µ−eφ where E = −∇φ. µel is constant in space when the system
is at thermodynamic equilibrium.

2.4.6 Landauer’s description of quantum transport
If we consider smaller systems (L ∼ le < lφ), Drude’s and Einstein’s law prove
insufficient to explain transport phenomena such as conductance quantization
or the fact that the conductance does not increase linearly with the width.
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At this point, an introduction to the Landauer formalism will be useful to
describe transport under the quantum Hall effect. This description is based on
the diffusive approach.

The Landauer equation states that

G =
2e2

h
MT (2.15)

where T represents the average probability that an electron injected from
the source contact transmits to the drain contact at the other end of the sample
and M is the number of electronic transverse modes.

In this description, graphically represented in fig. 2.6, both contacts are
considered as infinite electron reservoir. The conductor is connected to these
contacts by 2 leads. Contact resistance is taken in account in this formula.

Figure 2.6

This approach is very useful to describe ballistic conductors when conduc-
tion through a small number of channel is achievable needing a full quantum
description. Is also useful in the quantum Hall effect as we will see later. It is
very well described in ref. [22]

However, we will not use this approach to describe transport in graphene at
zero magnetic field, because all our experiments on graphene are in the diffu-
sive regime. Until very recently the ballistic regime had not been observed in
graphene. A regime approaching ballistic conditions was observed in suspended
graphene in ref [25].

2.5 Transport in graphene
In most experiments with graphene, only diffusive transport was observed.
Therefore, some theoretical calculations for this regime will be introduced in
this section. Note that conductivity was computed using Drude’s and Einstein’s
laws.
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The nature of the scattering defect plays an essential role in the value of
conductivity and has a major effect on the transport collision time τtr. There is
still an ongoing debate to determine which impurity is the dominant scatterer.

2.5.1 Magnitudes
Monolayer Characteristic lengths:

50Å . λF . 0.3µm

vF ∼ c/300

Fermi wave vector

n = gsgv

ˆ ~dk

(2π)2
→ kF =

√
4πn

gsgv

where gs = 2 is the spin degeneracy and gv = 2 is the valley degeneracy.
Fermi Energy

EF = ~vF kF = ~vF
√

4πn

gsgv

Density is usually tuned using a back gate:
n = CVg where C ∼ 7.2.1010cm−2

The typical energies that we can probe are:

0.05eV < EF < 0.3eV

The maximal energy is limited by the maximum gate potential that we can
apply without breaking the graphene (around VG = 100V ) , the minimal energy
is due to some residual doping at low density.

Bilayer In bilayer the energies reachable are of the same order as in monolayer.
The important change here is given by the quadratic energy dispersion:

EF =
~2k2

F

2m∗
=

2π~2n

m∗gsgv

with:

m∗ = 0, 035me
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2.5.2 Incoherent diffusive transport
Two factors enter in the expression of conductivity:

- current flows due to external electric field (Drude law)
−−−→
jdrift = σ

−→
E

- the other factor is diffusion; current is given by Fick’s law:
−−→
jdiff = −qD

−→
∇n

where D is the Diffusion coefficient.

~j =
−−−→
jdrift +

−−→
jdiff = −qD

−→
∇n+ σ

−→
E

We can set ~E in order that ~j = 0
We consider the system at thermodynamic equilibrium, which implies that

~∇µ=0

µ(~r) ' µhomogeneous(n(~r)) + qV (~r)

∂µhomogeneous
∂n

~∇rn+ q ~∇rV = 0

σ = q2D
∂n

∂µh

In graphene, D =
v2F τ

2

σ =
e2v2

F

2
τtr

∂n

∂µ

if T � TF : ∂n
∂µh

= ρ(εF ), ρ(εF ) is the density of states

σ =
2e2

h

τtr
~
| εF |

Now, if we haveT � TF [26]

µ = kBT ln(nλ2
T )

λT '
~vF
kBT

∂µ

∂n
=
kBT

n

σ = 4ln2
e2

h

kBT

~
τtr

σ(T, Vg) '
e2

h

τtr
~
max(kBT, ~vF

√
αVg) (2.16)
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2.5.3 Scattering processes
Here we will introduce some scattering processes which were found relevant for
the electronic transport in graphene.

This part is largely inspired by the supplementary material of [27] and ex-
planations of J.N. Fuchs.

Firstly, we should recall the definition of the transport time τtr

1

τtr
= nimpvF

ˆ
(1− cosθ) | f(θ) |2 dθ (2.17)

where the transport cross-section is

Atr =

ˆ
(1− cosθ) | f(θ) |2 dθ (2.18)

The cross-section which accounts for τe is:

A =

ˆ
| f(θ) |2 dθ (2.19)

We remind that f(θ) is the scattering amplitude, a non trivial function which
depends on the type of scatterers.

2.5.3.1 Resonant impurities

This section will focus on a specific type of resonance, called ln2 resonance, which
is the result of electrons scattering on high potential impurities of a range R,
shorter than the Fermi wavelength R� λF .

This result comes essentially from ref [28] explained by J.N. Fuchs in the
supplementary material of ref. [27].

Considering as sketch on fig 2.7 a potential where U(r) = Vo > 0 for r < R
and U(r) = 0 for r > R we have

f(θ) =
ei2δ(k) − 1

i
√

2πk
[1 + e−iθ] =

√
π/2k

J0(k̃R)

kRJ1(k̃R)
+ ln( 2

γEkR
) + iπ2

[1 + e−iθ] (2.20)

Here δ(k) is the s wave scattering phase shift, Jn are Bessel functions and
γE = eγ ∼ 1, 78. The wavevector k̃ = |ε− V0| /~vF .
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Figure 2.7

We can now compute A and Atr:

A =
8sin2δ

k
(2.21)

Atr =
4sin2δ

k
=
A

2
(2.22)

There are three resulting cases:

• The most probable case happens when the logarithmic term wins because
J0(k̃R) ≈ 0. This is possible when ε� V0 because k̃R ≈ V0R/~vF can be
larger than 1 and reach the zero of the Bessel function.

f(θ) ≈
−
√
π/2k

ln( 2
γEkR

)
[1 + e−ıθ] ≈

√
π/2k

ln(kR)
[1 + e−ıθ] (2.23)

This corresponds to a phase shift:

δ(k) ≈ − π

2ln(kR)
→ 0 (2.24)

leading to a transport cross-section:

Atr ≈
4δ2

k
≈ π2

kln2(kR)
(2.25)

and a transport time

τtr ≈
kln2(kR)

nimpvFπ2
∝ kln2(kR) (2.26)

As a result, conductivity is

σ ≈ 2

π

e2

h

ncln2(R
√
πnc)

nimp
(2.27)

where nc is the density of charge carriers
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• When the term J0/J1 wins,

δ(k) ≈ kRπJ1(k̃R)

2J0(k̃R)
(2.28)

the resulting cross section is

Atr ≈
4δ2

k
≈ (

πJ1(k̃R)

2J0(k̃R)
)2kR2 (2.29)

which gives us

σ ≈ e2

h

1

nimpR2
(2.30)

This result implies that constant conductivity would be reached, which has
never been observed.

• When ıπ/2 wins, then J0(k̃R)

kRJ1(k̃R)
+ ln( 2

γEkR
) = 0. This implicates both k̃R

and kR; this can happen at a given density, but there is no reason for it
to happen throughout the range of density we can achieve. In this case
σ ≈ π

2
e2

h
nc
nimp

2.5.3.2 Charged impurities

The following calculation was done by Nomura and MacDonald in ref. [29].
For charged impurities, we can use the Fermi golden rule to compute τtr.

1

τtr
=

2π

~
nimp| Ṽ (q) |2ρ(εF ) (2.31)

Ṽ (q) = 2πe2

q , if the potential is not screened. As no intervalley scattering
is allowed, q must link one edge to another at the Fermi level, implying that
q = kF , as shown in the figure below.
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Figure 2.8: Intravalley scattering

As a consequence, we obtain

1

τtr
=

2π

~
nimp(

2πe2

kF
)2ρ(εF ) (2.32)

1

τtr
= nimp(

e2

~vF
)2 vF
kF

= nimprs
vF
kF

(2.33)

σ(nc) ∼
e2

h

nc
nimp

(2.34)

Adding electronic screening of the charged impurities like Thomas-Fermi
screening Ṽ (q) = 2πe2

q+κ , will result in the addition of a numerical factor in the
expression of σ without altering its dependency on nc.

2.5.4 Experimental transport results
Many interesting experiments have been done on this subject and it seems that
there is no clear consensus to the question of which scatterers limit the mobil-
ity. Both types of scatterers described before are present : Coulomb impurities
leading to long range disorder and neutral impurities leading to short range dis-
order. Recent experiments tend to show that the short range neutral impurities
are those which limit the mobility even though Coulomb scatterers are present.

An experiment done by M. Monteverde et al measured that transport is
dominated by short-range impurities [27], this experiment will be detailed in
chapter 7.
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M. Fuhrer studied σ as a function of doping in [30] and claims that it is the
long range Coulomb impurity scatterers which limit mobility.

In another article [31] M.Fuhrer showed that both short-range and long-range
impurities are active. Long range are coulomb impurity leading to σ ∼ n while
the short-range impurities led to σ = cte. For these measurements, the dielectric
constant was changed (by adding ice) to screen the long-range impurities.

Experiments were carried out on different substrates and in different envi-
ronments with different dielectric constants (between 1 and 80) by Geim’s group
[32]. If Coulomb impurities had been the major source of scattering they should
have observed a large difference in the values of the mobility µ whereas they
did not. M. Fuhrer’s experiments showed that the major source of scattering
was not the charges trapped in substrates, by using different substrates; also,
the difference in kappas showed that the major scatterers were not the charges
trapped underneath graphene.

2.5.5 Adsorption on Graphene
As is the case with graphite, graphene has an efficient atom-adsorbing surface.
Interestingly, the electronic properties of graphene change when its surface ad-
sorbs atoms. The adsorbed atoms cause a change in the electronic density of
graphene, which results in a shift of the Fermi level from the Dirac point.

K. Novoselov et al showed that the adsorption or desorption of even a single
atom can be observed by transport measurement, as shown in fig. 2.9 ref.[33].
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Figure 2.9: (a) measurement of Hall resistivity ρxy at 10 Tesla as a function
of the time during adsorption of NO2(blue curve), during annealing at 50°C
(red curve), and reference (green curve). (b) statistical distribution of events
with graphene in helium; (c) compared statistical distribution of events with
graphene in helium and during adsorption and desorption of NO2[33].

Graphene-based electronic devices could make for very sensitive gas detec-
tors. Graphene layers might become a powerful tool to study the adsoption
properties of different atoms.

Figure 2.10: Imaging of the adsorbed water layer with AFM from ref.[34]

The adsorbates also have an effect on the electronic mobility: as shown in
fig. 2.11 from ref [35], a larger amount adsorbed atoms lowers the electronic
mobility. Atom adsorption provides us with a means to measure the electronic
properties of graphene at a given electronic density but with different mobility
values.
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Figure 2.11: Conductivity as a function of backgate doping for different concen-
trations of adsorbate [35]

However, a new difficulty arises: these adsorbates must be removed under
ultra high vacuum conditions just before measuring, so that a better mobility
level is achieved.

2.5.6 Approaching the Dirac point
Theoretically speaking, the density of graphene can be tuned to zero. However,
experiments showed that electron-hole puddles, generated by random doping
by either charged impurities or adsorbed donor or acceptor molecules, make it
difficult. According to ref. [36], typical fluctuations of the density of graphene
on SiO2 are ∆n = ±2, 3.1011cm−2(corresponding to ∆Vg ∼ ±3V ).

66



CHAPTER 2. ELECTRONIC TRANSPORT

Figure 2.12: (a) Imaging of the density on the Dirac point with scanning tun-
neling spectroscopy, (b) histogram of the residual density [36]

Greater mobility levels were achieved on suspended graphene (after anneal-
ing to remove adsorbed molecules), revealing interaction effects. Bolotin et al
reported that ∆n = ±2.1010cm−2 [37] on suspended graphene, which was a
great improvement compared to experimentation on unsuspended graphene.

2.5.7 Quality of the graphene as a function of the sub-
strate.

Silicon, with a top layer of insulating silicon oxide, is frequently used to measure
the electronic properties of graphene. As will be detailed in section 6.2, this
substrate enables the tuning of the density of graphene; this substrate was
shown to limit mobility in graphene as silicon oxide is not free of defects and can
trap charges. Typical mobility levels for graphene on this substrate is between
1000cm2V −1s−1 and 15000cm2V −1s−1.

P. Kim’s and E. Andrei’s groups considerably improved mobility by exper-
imenting on suspended graphene, which generated mobility levels greater than
100000cm2V −1s−1 with a residual density of about δn ∼ 2.1010cm−2[37, 25].

Very recently, Kim’s group reported high mobility 80000cm2V −1s−1 and low
residual density at δn < 7.1010cm−2 after they used graphene on top of boron
nitride, which is an isomorph of graphene [38].
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Quantum Hall effect

In 1879, eighteen years before Joseph J. Thomson discovered the electron, Edwin
H. Hall discovered the eponymous Hall effect, while working on his doctorate.
The Hall effect is the appearance of a potential difference perpendicular to the
current in a conductor placed in a magnetic field. It is best observed in a
thin metallic plate with the magnetic field set perpendicular to the thin plane.
The Hall voltage varies linearly with the magnetic field according to VHall =
RHallIDS where RH = B

enS
(B is the magnetic field, nS the electron density per

area) defining a Hall resistance.

Figure 3.1: Hall bar

During the night between “the 4th to the 5th of February 1980 at around
2 a.m.”[39] , K.V.Klitzling discovered plateaus in the Hall resistance[40] while
measuring the transport properties of silicon field effect transistor. He found
these plateaus to be quantized as a fraction of h

e2 and independent on the sample
characteristics like size or disorder. With these plateaus he found that the
potential drop along an edge parallel to the current direction (we will call it
longitudinal potential V xx associated with a longitudinal resistance Rxx) goes
to 0 when RH shows a plateau. This was the birth of the Quantum Hall effect
which led to a Nobel prize in 1985.
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Figure 3.2: First quantum Hall measurement

For the description of Quantum Hall transport we will follow the same path
as in the transport chapter (2). A description of the classical Hall transport will
first be done using the Drude model, then a semi classical model will be used
based on a quantum calculation of the energy spectrum and Einstein’s diffusion
equation to explain Shubnikov-De Haas effect. Finally a full quantum model
will be used to describe the quantum Hall effect.

3.1 Motion of an electron in a magnetic field
We describe first the motion of an electron in an infinite plate in a perpendicular
magnetic field B.

The x and y axes are chosen to lie in the plane with unit vectors, the two
units vector are ~ex and ~ey, while the magnetic field is oriented perpendicularly
to the plane:

~B = B~ez

The vector potential A is defined by:

~B = ~∇∧ ~A

It is important to notice that the magnetic field B is translation invariant
whereas the magnetic potential A is not.

B = ∂xAy − ∂yAx
T he symmetric gauge gives a vector potential A satisfying this equation
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A =
1

2
(−By,Bx, 0)

The Hamiltonian for a free electron in 2 dimensions is

H =
1

2m
(p2
x + p2

y)

Where p = mṙ is the momentum conjugated to r.
In a magnetic field, the electron is subjected to the Lorentz force ~F = q~v∧ ~B,

proportional to the electron velocity, and can be taken into account by writing
new expression for the kinetic momentum π in terms of the conjugate momentum
p: ~π = ~p−e ~A. This quantity is proportional to the velocity of an electron under
a magnetic field. {

πx = px + eB
2 y

πy = py − eB
2 x

The Hamiltonian in magnetic field becomes

H =
1

2m
(π2
x + π2

y) =
1

2
mv2 (3.1)

This Hamiltonian is the same as the one of a harmonic oscillator, indeed,
by looking at the motion projected on the x or y axis, the harmonic oscillator
motion can be recognized.

We can solve the equation of motion using the Hamiltonian formalism

π̇x =
∑
i

∂πx
∂qi

q̇i +
∂πx
∂pi

ṗi = {πx, H} (3.2)

{πx, πy} = eB (3.3)

{
π2
y, πx

}
= 2πy {πy, πx} = −2eBπy (3.4)

{
π̇x = − eBm πy

π̇y = eB
m πx

(3.5)

The movement is cyclic and can therefore be written in the form π(ω) =
eiωtχ; as a result the derivative can be expressed as follow:{

iωπx = − eBm πy

iωπy = eB
m πx

(3.6)

ω2 =
e2B2

m2

To express the energy, it is convenient to use the action angle variable:
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H(πx, πy)→ H(J, θ)

where J is the area of the πx, πy circle.

J =
1

2π

ˆ
πy(πx)dπx

J and θ are conjugate variables{
θ̇ = ∂H

∂J = ω(J) = cte

J̇ = ∂H
∂θ = 0

hence

E = Jω

ω is a constant at a given magnetic filed, thus the energy does not depend
on the position on the πx, πycircle.

Electronic motion can be described here by using the motion of the the cy-
clotron orbit centers, called the guiding center coordinates Rx and Ry.

{
ẋ = ∂H

∂px
= 1

m (px − eB
2 y) = πx

m = − eBm (y −Ry)

ẏ = ∂H
∂py

= 1
m (py + eB

2 x) =
πy
m = eB

m (x−Rx)

Rx and Ry move along equipotential lines in the plane whereas x and y
describe the cyclotron motion.{

Rx = 1
eB (−py + eB

2 x)

Ry = 1
eB (px − eB

2 x)

We can show that Rx and Ry are constant of motion:

{Rx, πx} = {Rx, πy} = {Ry, πx} = {Ry, πy} = 0

Thus Rx and Ry are translation generator, indeed these quantities are con-
served through any space translation in the xy plane. So the motion can be
described from the guiding center coordinates (this sketched on fig. 3.3).
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Figure 3.3

3.2 Classical Hall effect
First, we consider the motion of charge without magnetic field:

We recall here the Drude model

~vd = −e
~Eτ

m
(3.7)

where ~E is the electric field and m the charge carrier mass. The density of the
current is:

~j = −ne~vd = σ0
~E (3.8)

where:

σ0 =
ne2τ

m
(3.9)

is the conductivity and n is here the surface density of charge carriers.
For the two dimensional problem, electrons are free to move in the x and y

direction and ~E is assumed to be oriented in the x direction.
We apply a perpendicular magnetic field

~B = B~ez

Under a magnetic field the Lorentz force has to be added to the electric force
in order to compute the drift velocity:

3.7 :
~vd = −e( ~E + ~vd ∧ ~B)

τ

m
(3.10)

The conductivity and resistivity tensors are written

σ =

(
σxx σxy
σyx σyy

)
and

ρ =

(
ρxx ρxy
ρyx ρyy

)
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with ~j = σ ~E and ~E = ρ~j
in the xy plan , we get

σ0Ex = ωcτjy + jx (3.11)
σ0Ey = −ωcτjx + jy (3.12)

with: ωc = eB
m

Eq. 3.11 and 3.12 result in

ρxx = ρyy = 1/σ0 (3.13)

ρxy = −ρyx =
ωcτ

σ0
(3.14)

Combining eq. 3.14 and 3.9 we obtain

ρxy =
B

ne
= RH (3.15)

In 2 dimensions the resistivity has the same units as a resistance. Here the
transverse resistivity does not depend on sample characteristics. It can be as-
similated to the Hall resistance and increases linearly with the magnetic field.

The conductivity is

σxx = σyy =
σ0

1 + (ωcτ)2
(3.16)

σxy = −σyx = − σ0ωcτ

1 + (ωcτ)2
= − 1

RH

1

1 + (ωcτ)2
(3.17)

leading directly to the relation between conductivity and resistivity

σxx =
ρxx

ρ2
xx + ρ2

xy

⇐⇒ ρxx =
σxx

σ2
xx + σ2

xy

(3.18)

σxy = − ρxy
ρ2
xx + ρ2

xy

⇐⇒ ρxy = − σxy
σ2
xx + σ2

xy

(3.19)

In accordance with the inversion of the equation 3.19 it is seen that when
the longitudinal resistivity (ρxx) goes to zero so does the the longitudinal con-
ductivity (σxx ).

3.3 The Landau quantization

3.3.1 Bohr’s semi-classical quantization
The Bohr’s calculus gives an initial insight to the quantification of the energy in
a magnetic field. For a Newtonian (finite mass) charge in an infinite 2 dimen-
sional conductor, a magnetic fields leads that the trajectories of the electrons
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become circle, the radius of which we can estimate classically by balancing the
centripetal Lorentz force against the acceleration

m |r̈| = m
ṙ2

a
= q |ṙ|B

The radius is a = mṙ/eB.

Now we can take in account the wave nature of electrons with a wavefunction
where the motion part is expressed by exp(ik.s) where s is the trajectory. The
probability of presence of a particle is proportional to the square of the wave-
function, this probability is maximum when there is a constructive interference
of the wavefunction and evanescent if not. The condition of interference is that
there is a phase shift of 2nπ on one revolution (n is a integer):

2πk.a = 2nπ

We can now express energy:

E =
~2k2

2m
=

~2

2m

n2

a2

E = ~
eB

m
n = ~ωcn

Here, the energy is quantized due to the wave nature of electrons. We will
see later with an appropriate quantum computation that the energy is in fact:

E = hωc(n+
1

2
)

where the 1/2 term comes from an exact calculation (as usual Bohr-Sommerfeld
calculation cannot give such extra term but only the leading term rising with
the quantum number n)

3.3.2 Quantum mechanical computation
The motion of a particle in a magnetic field exhibits energies quantized into
a series of levels named after Landau who was the first to solve this problem.
In the following we will describe how the Landau equation is obtain from the
Schrödinger equation.

The calculation is reproduced in numerous books , not least of all in Landau
and Lifshitz "Quantum Mechanics". Nonetheless we will outline the reasoning
to be able to extend it to the case of massless Dirac mechanics of graphene
which is as yet less widespread.

In the quantum description there are major changes. The wave mechanics
of the particle has to be taken into account so the equation of motion becomes a
wave equation. Momentum is now an operator which acts on the wavefunctions:
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pi → −i~∂ri . Poisson brackets which we used for the classical motion of the
electron in a magnetic field are replaced by commutators with the relations:

[ri, rj ] = 0; [pi, pj ] = 0; [ri, pj ] = i~δij
These relations are reflected in the Heisenberg principle which is intimately

related to the wave nature of the particle.
With these relations we can determine the commutator values of the quan-

tities previously introduced in the harmonic oscillator calculus 3.1:

[Πx,Πy] = −i~eB, [Rx, Ry] = i~ 1
eB , [Πx, Ry] = 0

The Schrödinger equation in an external magnetic field in the absence of any
confining potential becomes:

(
1

2m
(p− eA)2)|Ψ〉 = E|Ψ〉 (3.20)

Defining a and a† operators which describe the coordinates in a phase space
circle:

a = 1√
2~eB (πx + iπy), a† = 1√

2~eB (πx − iπy) (3.21)

The commutator of a and a† is non zero:[
a, a†

]
= 1

As a result, the Hamiltonian can be simplified as

H = ~ωc(a†a+
1

2
) (3.22)

This notation for the Hamiltonian is clearly reminiscent of the notation ac-
tion angle that we set in the classical calculation of the harmonic oscillator (3.1).
Here the energy at fixed magnetic fields does not vary with the position of the
phase space circle (given by ωc) but only with the radius of the phase space
circle which is the operator

n = a†a

As we made very clear in the previous paragraph, this operator takes on quan-
tized values, thus giving the eigenvalues of the Hamiltonian.

E = hωc(n+
1

2
) (3.23)

The quantized energy is sketched on figure 3.4.
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Figure 3.4: Harmonic potential of E versus k at different energy levels

Guiding center coordinate and Landau Level degeneracy An im-
portant aspect is contained in the commutation relation of the coordinates of
guiding center. With the quantum treatment they do not commute. As a
consequence dynamics of the guiding center coordinate is like that of a one-
dimensional system (although Rx and Ry pertains to the real 2D plane) where
Rx would play de role of ’X’ coordinate and Ry the role of the conjugate mo-
mentum ’P’ or vice versa. There is a quantum uncertainty ∆Rx∆Ry = ~/eB
in determining the position of the guiding centers coordinates.

The magnetic length is usually expressed as

lc =

√
~
eB

Due to to uncertainty principle a quantum state of a LL have a size which
is inversely proportional to the magnetic field. The size of the quantum state
is equivalent to the size equal to an action quantum h of a state of a one-
dimensional system in the phase-space. The 2D plane is like a phase space.The
physical plane can be described as divided into disjoint cells of area 2πl2c , where
only one electron can stay in each cell due to the Pauli principle. This area is
equal to that of one magnetic flux quantum Φ0 = h/e.

With these considerations it is possible to count the number of energetically
degenerate independent eigenstates on one level as equal to the surface divided
by one cell, and in terms of flux it is

N =
Φ

Φ0
(3.24)

where Φ = B ∗ S is the total magnetic flux threading the sample.
When a level is fully occupied, the Pauli principle implies that one additional

electron must acquire an extra energy ~ω to put it into the next Landau level.
We can introduce here the filling factor ν which corresponds to the number of
levels occupied at a given density ns.
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ν =
h

e2

ns
N

= ns
h

eB
(3.25)

With this definition ν is a positive real number; however, usually only the
integer part is considered to reflect the quantized nature of the energy and
to indicate the last completely filled Landau level. It is important to keep in
mind this notion of filling factors because it is very convenient to use it in the
experimental description of the quantum Hall effect.

3.3.3 Eigenfunctions in the Landau gauge
It is interesting to look at the eigenfunctions of electrons in Landau Levels. For
that we will use the Landau gauge where the results find simpler expressions:

Â = (0,−Bx, 0) (3.26)

In this gauge the Schrödinger equation becomes

H =
p̂2
x

2m
+

(p̂y − eBx̂)2

2m
(3.27)

We can do a similar computation as previously stated{
πx = px

πy = py + eBx

We can see easily that [Ĥ, P̂y] = 0, So we can write the wave functions as
follows

ψ(x, y) = e−ikyyφn(x+ xk) (3.28)

φk0(x) = exp

(
− (x− xk)2

2l2c

)

φkn(x) = Hn

(
x− xk
lc

)
exp

(
− (x− xk)2

2l2c

)
where Hn is an Hermite polynomial solution of the harmonic oscillator prob-

lem.

As En,k does not depend on k, the degeneracy is given by the number of "k"
possible.

The periodic boundary condition imposes ky = m∗ 2π
Ly

, where m is an integer.
This implies∆ky = 2π

Ly
, therefore

∆x = xk=(m+1) πL
− xk=m π

L
=

~
eB

∆ky =
h

eBLy

77



CHAPTER 3. QUANTUM HALL EFFECT

Again we find the result of eq.3.24 for the number of states:

N =
Lx
∆x

=
BLxLy
h/e

=
Φ

Φ0

3.4 Zeeman splitting
So far spin has been disregarded. It plays an important role under high magnetic
field. To take account of it we have to add a Zeeman term to the energy expres-
sion. In order to introduce this term we will use the Pauli Hamiltonian which
is a simplified version of the Dirac Hamiltonian, this will allow to understand
easily the spin effect.

H =
1

2m
(~σ · (~P − e ~A))2 (3.29)

with the relation: (~σ~a)(̇~σ~b) = ~a~b+ ı~σ(~a×~b)

H =
(~P − e ~A)2

2m
+ ı

~σ(~P − e ~A)× (~P − e ~A)

2m
(3.30)

(~P − e ~A)× (~P − e ~A) = e(~P × ~A) + ( ~A× ~P ) =
e~
ı

(~∇× ~A) (3.31)

H =
(~P − e ~A)2

2m
+ ı~σ(−i~ ~B) (3.32)

~~σ ~B has for eigenvalue BSz.
We can now determine the eigenvalues of the Hamiltonian :

En = (n+
1

2
+ γ

1

2
)~ωC with ωC = eB/m (3.33)

where γ = ±1 corresponds to the spin-up and spin-down states.
In fact quantum electrodynamics and interactions impose to add a gyromag-

netic factor g:

En = (n+ 1/2)~ωC +
1

2
gµBB (3.34)

where µB = e~/2me is the Bohr magneton.
In the QHE regime it can be shown, and this is consistent with observations,

that the g-factor is enhanced by the exchange interactions (calculated in ref [41]):

g = gz + α
ns↑ − ns↓
ns↑ + ns↓

where ns↑, ns↓ are the density of spin up and spin down electron.
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In QHE regime, interactions can eventually strengthen this factor g by an
exchange term which linearly depend of the population difference between spin
up and down. Here the terms ns↑−ns↓

ns↑+ns↓
is proportional to 1/ν for odd filling

factor and 0 for even filling factors. As a consequence high filling factors show
less interaction effect and very weak Zeeman splitting is remaining.

This explains why at high magnetic field spin splitting in conventional 2DEGs
is observed only at low filling factors (high field). As manifestation of interac-
tions require low disorder, it is more easily seen in high mobility samples. In
standard Graphene samples as those used here, we will not observe spin splitting
as disorder is too high.

3.5 Landau Levels in graphene

3.5.1 Monolayer graphene
In graphene the Landau levels spectrum is following the zero field case quite
different as in conventional 2DEG. Here its computation is shown with the help
of [42, 43].

The Dirac Hamiltonian under a magnetic field can be expressed as:

H = ~vFα.π (3.35)

Where:
π = −i~∇+ eA

H = ~vF
(

0 σ.π
σ.π 0

)
=

(
0 Q
Q 0

)
(3.36)

This matrix applies to four component wavefunctions of the type seen in
section 1.3.2.3:

Ψ =


ψA+
ψB+
ψB−
ψA−

 =


1

λeiθk

1
−λeiθk

ϕ

As in the previous chapter we will use the notation :

a = lB
~
√

2
(πx + iπy), a† = lB

~
√

2
(πx − iπy) (3.37)

Here lc =
√
~/eB is the magnetic length. Also we can set A = ~ωca with

ωc = vF
√

2eB/~
With these notations we have:

Q = ~vFσ.π = ~vF
(

0 πx − iπy
πx − iπy 0

)
=

(
0 A†

A 0

)
(3.38)
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Linearizing the Hamiltonian is pretty easy and gives:

H =

( √
QQ 0
0 −

√
QQ

)
(3.39)

Nicely the multiplication of two off diagonal matrices gives a diagonal matrix:

QQ =

(
A†A 0

0 AA†

)
= (~ωc)2

(
a†a 0
0 aa†

)
(3.40)

In The K valley the Hamiltonian can be written:

Eξ=+
N = ~ω


√
N 0 0 0
0

√
N + 1 0 0

0 0 −
√
N 0

0 0 0 −
√
N + 1

 (3.41)

And in the K’ valley:

Eξ=−N = ~ω


√
N + 1 0 0 0

0
√
N 0 0

0 0 −
√
N + 1 0

0 0 0 −
√
N

 (3.42)

Associated with the wave function:

Ψ =


ψA,λ=+
ξ=±

ψB,λ=+
ξ=±

ψB,λ=−
ξ=±
ψA,λ=−
ξ=±


To remind, subscript are defined in section 1.3.2, λ correspond to the band,

ξ to the valley, A and B to the 2 sublattices.
Here the diagonalized Hamiltonian is very instructive because it shows the

different eigenvalues of the energy for each sublattice and each band. All the
eigenvalues elements are 2 times degenerate due to valley degeneracy (K and
K’). We can see that each value of the energy will be composed of 2 different
energy levels coming from the 2 sublattices, for example the levels E = 2 ∗ E0

will be composed by the N = 4 level for an electron of the A sublattice in the
conduction band and by the N = 3 level for an electron of a B sublattice also
in the conduction band.

Something remarkable is the fact that the zero Energy level is shared by
electrons and holes.

As a result all the energy levels are four fold degenerated, 2 for the real spin
and 2 for the valley except the E = 0 as we can discriminate electron and hole
(in Quantum Hall effect this discrimination is done by the direction of their
motion).
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EλN,ξ=± = λ~vF
√

2eBN (3.43)

Here two remarkable things: Compared to Schrödinger electrons the energy
has a square root dependence on the magnetic field and there is a zero energy
Landau Level.

Also an other important fact for graphene is that the characteristic cyclotron
energy ~vF√

~/2eB
≈ 420K/

√
T (for the 2 first Landau levels), is much larger than

in a conventional 2DEG. For example in an heterojunction of GaAs/AlGaAs
~ωc ≈ 20K/T . This high cyclotron gap allows observation of quantum hall
effect at room temperature ([44]).

Infrared spectroscopy provided to measure the gap between Landau levels
in graphene in ref. [45]

3.5.2 Bilayer Graphene
For the case of the Bilayer we will consider only the lower energy bands of a
Bernal configuration (see 1.4).

The effective low energy Hamiltonian can be written under the form of:

HD =

( √
Q±Q± 0

0 −
√
Q±Q±

)
(3.44)

applied to the wavefunctions:

Ψ =


ψA1

+

ψB2
+

ψB2
−
ψA1
−


where:

Q+ = ~ωc
(

0 (πx + iπy)2

(πx − iπy)2 0

)
=

(
0 A†

A 0

)
(3.45)

and

Q− =

(
0 A
A† 0

)
(3.46)

Here A = ~ωa2 and A† = ~ωa†2
Here we assume the same wave functions that we use for the monolayer

graphene, the Hamiltonian is now expressed as
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(Hξ=+
D )2 = ~ω


a2†a2 0 0 0

0 a2a2† 0 0
0 0 −a2†a2 0
0 0 0 −a2a2†

 (3.47)

(Hξ=−
D )2 = ~ω


a2a2† 0 0 0

0 a2†a2 0 0
0 0 −a2†a2 0
0 0 0 −a2†a2†

 (3.48)

By using the relation a2†a2 = a†a(a†a−1) the energy spectrum can be found.
The eigenvalues of the energy are:

EA,ξ=+
N = EB,ξ=−N = ~ωc

√
N(N − 1) (3.49)

EB,ξ=+
N = EA,ξ=−N = ~ωc

√
(N + 2)(N + 1) (3.50)

As in monolayer there is a zero energy state, however here 2 Landau levels
give rise to this state, thus this state has the same degeneracy as the other
energy states.

Another difference with a monolayer is that here the space between Landau
levels is quasi constant at fixed magnetic fields and the variation is linear with
the magnetic field.

The estimated mass in bilayer graphene is m∗ ∼ 0.035me, thus the cyclotron
energy is ∼ 40K/T is about twice as much as in AlGaAs.

3.6 Landau levels comparison
We can conclude these description of Landau levels by showing a plot of the
different cyclotron energies on fig. 3.5. This graph makes very clear the interest
of studying the quantum Hall effect in graphene.
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Figure 3.5: Comparison of cyclotron energies for graphene and typical 2DEG

3.7 Shubnikov-De Haas (SDH) oscillations, a first
observation of Landau quantization

Shubnikov and De Haas[46] discovered oscillations in the field dependence of the
magneto-resistance of a metal. It is a consequence of the Landau quantization
that we saw before in 3.3 and which first gives rise to a modulation of the density
of states before displaying well resolved Landau levels with higher magnetic field.

SDH oscillations arise when the coherence length exceeds the cyclotron
length and when the cyclotron frequency ωc is such that electrons have a high
probability of making an elastic collision with an impurity before completing
one revolution

ωc ∼
1

τe

lφ > le ∼ lc
To describe electronic transport in such conditions we have to take into

account the quantized density of states.
The Einstein relation relating mobility and diffusion constant can be used

here (presented in 2.4.5):

σl = e2Dg(EF ) (3.51)

Where g(EF ) is the density of states at the Fermi level.
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As the energy is quantized the density of states will oscillate as sketched on
figure 3.6

Figure 3.6: Schematic view of the density of states (blue curves) as a function
of the energy. The red curve represents the harmonic approximation

The density of states in conventional 2DEG can be calculated using the
harmonic approximation of the broadened Landau levels, as is done in ref [47,
48]:

∆g(ε)

g0
= 2

∞∑
s=1

exp

(
− πs

ωcτe

)
cos

(
2πsε

~ωc
− sπ

)
(3.52)

Here the cosine term represents the harmonic approximation of the density
of states (represented by the curve in red on fig.3.6).

The exponential represents the amplitude of the oscillations, assuming lorentzian
broadening of the Landau levels of a width Γ independent of the energy and
magnetic field such as τe = ~/2Γ.

The expression for the resistivity tensor of graphene is then [27]:

δρxx(B)

ρ0
= 4DT exp

(
− π

ωcτe

)
cos

(
jπEF
~ωc

− jπ
)

(3.53)

ρxy(B) = ρ0ωcτtr −
δρxx(B)

2ωτtr
(3.54)

Where ρ0 is the zero field resistivity.
This formula is valid for both monolayer and bilayer with slight changes:

84



CHAPTER 3. QUANTUM HALL EFFECT

ωc = eB/m∗where m∗ = ~kF /vF for a monolayer and m∗ about equal to
meff ∼ 0.035me at low energy for a bilayer. j is equal to 1 in the case of
monolayer and 2 in the case of bilayer.

Thermal damping of the oscillations is expressed in: DT = γ/ sinh γ where
γ = 2π2kBT/~ωc.

For a monolayer we can write the expression as follows to make appear
explicitly the quadratic dependence of the oscillation on the energy

δρxx(B)

ρ0
= 4DT exp

(
− π

ωcτe

)
cos

(
πE2

F

v2
F

− π
)

(3.55)

These expressions have been used for the determination of the elastic time
τe and the transport time τtr at low magnetic field in graphene (see chapter 7).

3.8 Transport in the regime of Integer Quantum
Hall effect

In this section we will describe the transport at higher magnetic field, in the
integer quantum Hall effect regime. Here the two striking phenomena are that
the Hall resistance reaches quantized plateaus as a function of the field or density
while at the same time the longitudinal resistance vanishes. This effect occurs
when the energy scale given by kBT is significantly smaller than the energy gap
between Landau levels ~ωc.

3.8.1 Hall bar geometry
The so called Hall bar probe geometry is the usual geometry used to observe
the quantum Hall effect.

The Hall and the longitudinal resistance can be simultaneously recorded with
four potential probes.

3.8.1.1 Four probe measurement

With the 2 probe method, the device resistance is measured in series with the
wire and the contact resistance. It is accurate only when the resistance of the
device is much higher than the wire and contact resistance.

A four point measurements avoids this problem. A current is applied through
two probes that we call the source and the drain, and the two other probes are
used to measure a potential drop. This way no current passes through the two
measuring probes allowing one to measure only the resistance of the sample.

3.8.1.2 Hall bar, a 6 probe geometry to measure separately Hall and
longitudinal resistance

It is interesting to separate the Hall and the longitudinal contributions to the
resistance. The idea of the Hall bar is to have two contacts as a drain and a
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source at the ends of the sample and 3 potential probes to measure separately
the 4 point resistance along one edge and between the two opposite edges. This
is sketched in figure 3.1.

3.8.2 Landau level in presence of an external edge con-
finement potential

We have seen that under a magnetic field the charge carriers are subject to
Landau quantization. The energy spectrum is discrete and takes the following
values for Schrödinger electrons

En = (n+ 1/2)~ωC (3.56)

Transport occurs if there is some free state at the Fermi level. Here if the
Fermi level is between two Landau levels there should not be any transport.
We have to add an important ingredient which is the confinement potential.
Thanks to this confinement there is a continuum of energy on the edge, this
confinement enables to have some states at the Fermi level to carry the current.

We can see it in a classical way with figure 3.7. Charge carriers in the bulk
perform circular trajectories around a fixed point (the guiding center coordinate
Rx, Ry) due to the Lorentz force, so they cannot participate in the transport.
However, on the edges, assuming a hard wall for simplicity, they bounce and
move forward along the edge and backward along the opposite edge. Then there
is a permanent current circulating along the edges while no current occurs in
the bulk.
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Figure 3.7: 2DEG with a perpendicular magnetic field applied, electron trajec-
tories are represented by the black arrows.
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Figure 3.8: Diagram of energy levels as a function position across the sample
and representation of electronic trajectories

For a confinement potential Vc(y), independent of x for simplicity, the energy
can be expressed (neglecting mixing between LLs):

En = (n+ 1/2)~ωC + Vc(yk) (3.57)

From this equation we can compute the drift velocity of the electrons:

vd(n, k) =
1

~
∂E(n, k)

∂k
=

1

~
∂Vc(yk)

∂k
=

1

~
∂Vc(yk)

∂yk

∂yk
k

=
1

eB

∂Vc(yk)

∂yk
(3.58)

as ∂U/∂y = −eEy it comes:

vd = − 1

B
Ey (3.59)

Leading to a current:
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I = 2e
∑
n

ˆ µg

µd

1

2π
v(n, k)dk (3.60)

I = 2e
∑
n

ˆ µg

µd

1

2π

1

~
∂E(n, k)

∂k
dk (3.61)

I =
2e

~
∑
n

ˆ µg

µd

dE (3.62)

I =
2e

~
M(µg − µd) (3.63)

The Hall resistance is then:

RH =
VH
I

=
h

2e2M
(3.64)

RH =
25, 8128kΩ

2M
(3.65)

Where M is the number of filled Landau levels.
In the case of graphene, confinement is abrupt (on an atomic scale) and a

full quantum mechanical treatment is needed leading qualitatively to the same
picture.

3.8.3 Edge states
As we saw above, the transport in QHE takes place at the edges of the sample.
On the plateau these states behave as perfect channels of conduction with no
scattering. As mentioned earlier in 2.4.6 the conductance (excluding degener-
acy) of such a channel is σ = e2/h due to Pauli principle and does not depend
on its length.

These edge states are chiral (this is not linked to Dirac equation), a drift
velocity VD = E×B

B2 is imposed on the electrons due to the potential and the
magnetic field, the sign of VD depending on the edge, so along one edge the
transport is unidirectional. Therefore all the electrons on the same edge re-
gardless of the Landau Level have the same chirality. If an electron is scattered
from a channel to another on the same edge it will not change direction and
the transmission of the edges will not change. The only way the transmission
can differ from T = 1 is to scatter an electron onto the opposite edge. This
phenomena is strongly suppressed in QHE because the edges are separated by a
large distance w (from µm to mm) with respect to the typical extension of the
wavefunction under magnetic field lB which is of the order of nm at high field.

The consequence of this absence of back scattering is that there is no po-
tential drop along an edge, thus ρxx = 0. However we will see in the following
back scattering can occur more easily as the energy is increased.
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3.8.4 Buttiker equation for transport
A simple view of transport in quantum Hall effect with the edge states picture
can be given using the Buttiker formula [49]:

Ii =
e

h
((M − rii)µi −

∑
tijµj) (3.66)

describing the current flowing between two contacts, i and j.

Figure 3.9: Schematic of Buttiker’s formula application in a Hall bar

Here we assume that the channels are perfect 1D channels with no back
scattering. Then it is easy to know the conductivity, we just have to count
the M channels present between two contacts assuming a channel to have a
conductance of G = 2e/h (x2 if we count the spin). If we note p the contact
from which the channel starts and q the contact at the end, then the conductivity
matrix between the 6 contacts can be expressed by:

Gpq q = 1 q = 2 q = 3 q = 4 q = 5 q = 6
p = 1 0 0 0 0 0 Gc
p = 2 Gc 0 0 0 0 0
p = 3 0 Gc 0 0 0 0
p = 4 0 0 Gc 0 0 0
p = 5 0 0 0 Gc 0 0
p = 6 0 0 0 0 Gc 0

Where GC = 2e2M
h

Ip =
∑
q

Gpq(Vp − Vq) (3.67)


I1
I2
I3
I4
I5
I6

 =


Gc 0 0 0 0 −Gc
−Gc Gc 0 0 0 0

0 −Gc Gc 0 0 0
0 0 −Gc Gc 0 0
0 0 0 −Gc Gc 0
0 0 0 0 −Gc Gc




V1

V2

V3

V4

V5

V6


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V4 is usually the drain of the circuit so it is set to be zero. Also a bias current
is imposed on the circuit via the source contact which is here the contact 1, so
we set I1 = I

Here we can easily see that a same edge remains always at the same potential
thus the potential drop is zero:

V1 = V2 = V3 = I
Gc
, V4 = V5 = V6 = −I

Gc

The longitudinal resistance is:

RL =
V2 − V3

I
=
V6 − V5

I
= 0

and the Hall resistance is:

RH =
V2 − V6

I
=
V3 − V5

I
=

1

Gc

This is a simple and powerful tool to know the potential on each contact and
to understand different geometries like 3 point measurements.

3.8.5 Quantum Hall transport in graphene
3.8.5.1 Monolayer

QHE in graphene is special due to the Dirac nature of its charge carrier. Geim’s
group and Kim’s group were able to measure this effect in graphene for the
first time in 2005 ([50, 14]). The results are different from the conventional
QHE. They measure that the indexing of quantum Hall plateaus is σxy =
±(4e2/h)(N + 1/2) (where N is an integer) whereas in conventional 2DEG
σxy = (2e2/h)N . For this reason QHE in graphene is often called a half in-
teger quantum Hall effect.
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Figure 3.10: Hall conductivity σxy and longitudinal resistivity ρxx of graphene
as a function of their concentration at B = 14 T and T = 4K. Inset shows σxy
for a bilayer graphene from[50]

Each channel contributes a quantum of conductance σ = e2

h . All Landau
levels have degeneracy 4 (2 for the valley and 2 for the spin) except the zero
energy Landau level which is shared by electrons and holes thus the conductance
for this level is σ = 2 e

2

h and for the other levels it is σ = 4 e
2

h . As the resistance
is the inverse of the conductance (on the Hall plateaus) we can see easily that

RH =
h

e2(4n+ 2)

On figure 3.11 we show a diagram of the Landau levels in graphene as a func-
tion of the distance in the y direction (transverse to the current). At the edge
the A and B lattice become in-equivalent due to an asymmetry A and B (except
on a perfect armchair edge) leading to a splitting of the valley degeneracy.
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Figure 3.11: Landau Level of graphene.

Since the first observation many group have done experiments to measure
graphene’s properties in quantum Hall regime.

P.Kim’s group was able to observe some degeneracy splitting leading to the
apparition of plateau at ν = 1 (spin and valley splitting) and ν = 4 (spin
splitting) in ref.[51].

The fractional quantum Hall effect has been observed in 2-probe geometry
suspended samples [52, 53]. It has also been observed very recently with multi-
probe geometry on suspended graphene [54] and graphene deposited on top of
boron nitride [55].

Intriguing quantum Hall state at ν = 0
The zero energy level addressed many questions. A lifting of a degeneracy

allowing to observe ν = 0 was mentioned in several experiments [56, 57, ?, 58].
In particular the question whereas when the degeneracy is lifted, it is a quantum
Hall insulator or not (the 2 possibilities are sketched on figure 3.12) was very
discussed.

The lifting of ν = 0 can be observed only in the conductivities σxx and σxy:
here both conductivities vanish when the degeneracy is lifted.

Several different behaviors for the longitudinal resistivity ρxx at the charge
neutrality point were reported, some groups observed at low temperature ρxx <
h/e2 [59, 14, 56, 60, 61] whereas other observed ρxx � h/e2[57, 62, 58]. The
observation of ρxx � h/e2 was coupled with decreasing values along with in-
creasing temperature, this indicates an insulating state; whereas observation
ρxx < h/e2 was often coupled with increasing values of ρxx along with the tem-
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perature. From previous references the lifting of degeneracy at ν = 0 seem to
be associated with ρxx � h/e2 and an insulator state, whereas, the degener-
acy seem to be unlifted in the case of ρxx < h/e2; however we can note the
interesting case of ref [60] which measure a degeneracy lifting on ν = 1 surely
associated with a one at ν = 0 (the geometry did not not allow to compute σxx
and σxy) coupled with ρxx < h/e2 increasing with the temperature.

Corbino measurement on good mobility samples could help to answer this
question.

(a) (b)

Figure 3.12: schematic of 2 possibilities in spin and valley splitting

3.8.5.2 Bilayer

Quantum Hall effect in bilayer graphene was also measured (it is shown on the
inset of figure 3.10). The plateau sequence is different from both monolayers
and conventional 2DEG. The indexing is nowσxy = ±(4e2/h)N . This is due to
the four for degeneracy of the Landau levels, and as we saw in 3.5.2 contrary to
graphene the zero energy Landau level has the same degeneracy than the other
Landau levels, thus the 1/2 factor disappears.

An observation of quantum Hall effect in bilayer graphene associated with a
2π berry’s phase was done in ref.[63].

3.8.6 Corbino geometry
Quantum Hall effect can be seen in other than the four probe geometry we have
studied. One interesting variant is the Corbino geometry which allows direct
measurement of the longitudinal conductivity σxx, although the Hall conduc-
tivity σxy in this configuration requires a delicate inductive method. This is of
considerable interest because the physics of the transport is contained in the
conductivity (~j = σ ~E) as the information comes from the way the current is
established under an electric field. Also as in Corbino geometry there is no edge
one can probe the physics of the bulk. We saw that in four probe measurements
QHE edges play an important role, so it is interesting to be able to look only
at what happens in the bulk.
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The Corbino geometry was introduce by Orso Mario Corbino in 1912 [64]. It
is composed of 2 contacts, one external which has the form of a ring surrounding
the sample and the other has the form of a circle at the center of the sample, it
is attached to the electric circuit by a bridge over the sample.

Figure 3.13: Corbino geometry

In the four probe geometry a potential drop is measured, knowing the bias
current the values of the Hall resistance RH and the longitudinal resistance Rxx
can easily be calculated. However for the resistivity it is not so simple. In 2D,
resistivity is defined as a resistance per square. The calculation at B 6= 0 requires
solving the current density distribution and the electric field everywhere in the
sample and has no straightforward expression except in simple geometries.

In practice the aspect ratio of the sample is not easy to determine. It is not
a problem for RH because it is independent of the aspect ratio thus RH = ρH .
But for ρxx one needs to know the exact aspect ratio to determine it. And as
we saw in eqs. 3.18 and 3.19 , to determine the conductivities in the quantum
Hall effect one needs to know ρxx.

This problem is eliminated with Corbino geometry (the calculation is parphras-
ing ref [65]):

We consider a time dependent magnetic field

B(t) = B0 +B1sin(ωt) (3.68)

A current J(Jr, Jφ) is applied, the angular electric field is given by

Eϕ = ρϕϕJϕ + ρϕrJr =
1

2
r
dB

dt
(3.69)

and The radial electric field is given by
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Er = −ρϕrJϕ + ρϕϕJr (3.70)

Er = Jr
(ρ2
xx + ρ2

xy)

ρxx
− 1

2
r
dB

dt
(3.71)

The potential drop in between the contact is

V = − I

2πσxx
ln

(
r0

r1

)
+

ρxy
4ρxx

(r2
0 − r2

1)
dB

dt
(3.72)

At constant magnetic field the expression is :

V = − I

2πσxx
ln

(
r0

r1

)
(3.73)

The longitudinal conductivity is directly accessible by measuring the cur-
rent as a function of the applied potential. The Hall conductivity can also be
measured with an oscillating magnetic field but it is more delicate.

One can find an example of Corbino measurement in conventional 2DEG in
ref [66].

3.8.7 Compressibility
Compressibility is an important ingredient for understanding some properties
of the quantum Hall effect.

The compressibility κ is defined by:

κ = − 1

V

∂V

∂P
(3.74)

Where P is the pressure and V is the volume.
This expression can be linked with the Energy E considering an adiabatic

transformation where δE = PδV :

1

κ
= −V ∂P

∂V
= V

∂2E

∂V 2
(3.75)

We can link this expression to the chemical potential. For a systems with
N � 1 particles with a density n = N/V . The chemical potential is µ = ∂E/∂N

1

κ
= n2 dµ

dn
(3.76)

In QHE when the Fermi level lies between two Landau levels the density
does not vary with the potential ie dn/dµ = 0 implying that κ = 0 which means
that the system is incompressible.

This view doesn’t yield anything really new but it is interesting to explain
the fact that there is no screening when the Fermi level lies between 2 Landau
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Levels meaning that the Hall resistance is on a Hall plateau. Because the liquid
of electrons is not compressible, it can not be rearranged to screen an external
field or Coulomb interactions.

3.8.8 Disorder and localization
From the very beginning we have not considered disorder to explain the QHE.
Samples are always disordered and one astonishing fact is that this disorder does
not change any of the QHE properties we discussed before, the Hall resistance
always takes the same quantized values with metrological accuracy regardless
of the amount and type of disorder at zero temperature. More than that, the
disorder which leads to localization was shown to improve the quality of the
quantum Hall effect and allows its observation in macroscopic samples (typically
mm size).

The effect of disorder is to add hills and valleys of potential with random
size and distribution.

To take the example of Newtonian dynamics (usual 2DEGs), the Landau
level energies become:

En = (n+ 1/2)~ωC + Vc(y) + Vl(x, y) (3.77)

As a result there will be states available at the Fermi level for electrons in
the bulk of the sample, these states are localized and they have small spatial
extension compared to the size of the sample.

When the Fermi level lies between two Landau levels, these random hills
or valleys of potential provide local crossing between the Fermi level and the
Landau level allowing electrons to circle the hills and valleys with a speed VD =
E×B
B2 , enclosing an area A = i.φ0where i is an integer and φ0 = h/e is the

quantum of flux.
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Figure 3.14: Schematic representation of disorder and localized states

This potential is disordered and breaks the symmetry along x and y direction.
We can distinguish two types of impurity

• Charged impurities which change locally the density of states and make a
smooth potential shift

• Defects(like missing atoms, or dislocations) which make sharp potential
shifts like on the edge of the sample.

Figure 3.15: Image of localized state by probing the LDOS with scanning tun-
neling spectroscopy for different energies around a Landau Level.[67]

Figure 3.15 shows experimental image of the localized states realized with
scanning tunneling spectroscopy at different energy. Far from a Landau level,
localized states can be viewed as small islands at the Fermi level. When the
Fermi level approaches a Landau level, these localized states increase in size
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until they percolate opening channel at the Fermi levels. The metal-insulator
transition in QHE arises when continuous channels are open between sample
edges. When the system is insulating the localized state will play an important
role in the variable range hopping conduction (detailled in section 3.10.2).

In graphene, images of localized state were achieved using scanning single-
electron transistor by Yacobi et al [68].

3.8.9 Broadening of the Landau levels
Disorder leads to broadening of the Landau Levels. If the potential is perfectly
flat there is no broadening but if there is some disorder making some hills and
valleys, there are regions of energy around the Landau levels that electrons can
occupy. This is shown schematically on figure 3.16.

3.9 Metal insulator transition
The quantum Hall effect offers an interesting example of a quantum phase tran-
sition in the plateau to plateau transition. Indeed when this transition occurs
the longitudinal resistance is non zero and at one single point the system is
metallic.

In 2 dimensions in zero magnetic field it is thought that no metallic system
can exist because of localization.

3.9.1 Localization length
The localization length ξ which is very near to the size of the localized states
provides a good understanding of what happens at the metal insulator transition
in QHE. At a critical energy EC which corresponds to a critical filling factor
νC , ξ diverges leading to the percolation of the localized state.

For an infinite sample at zero temperature the localization diverges and the
system becomes metallic at a single point EC = En where EN is the unperturbed
energy of a Landau level. For finite temperature the system behaves like a metal
when the localization length is longer than the sample width allowing electronic
backscattering.

This divergence is explained in percolation theory. When the filling factor
ν is moved from the middle of a plateau in the direction of an unperturbed
Landau level energy the size of localized states extends to open channels of the
size of the width of the sample. This is the percolation transition illustrated in
fig 3.16.
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Figure 3.16

From this percolation theory we can express ξ as:

ξ(ν) = ξ(ν − νc)−γ

For 2 dimensions classical percolation theory gives γ = 4/3 ref [69]
In the quantum Hall effect γ was measured several times to be γ ∼ 7/3

which is in apparent contradiction with the percolation theory. However when
quantum tunneling between states is included it was found that γ = 7/3

Numerical calculation confirms this exponent [70, 71, 72]

ξ ∝| E − EC |−γ

Direct measurement of γ is possible deducing the localization length from
VRH theory, as done in ref [73, 74].

Such measurements have also been done in graphene in ref [75]. The results
are shown in fig 3.17, but the localization lengths shown are strange because
the localization length should mimic the magnetic length and decrease with
increasing magnetic field and this is not what is observed.
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Figure 3.17: Measurement of the localization length in ref [75], The authors
took C=1 (which will be define later in equation 3.90)

3.10 Finite energy Quantum Hall effect
In the previous section all the physics was at zero temperature, the study of
which offers a very powerful tool to understand the physics of the quantum Hall
effect.

Also this zero temperature study is justified at low temperature where the
value of the longitudinal resistance can be as low as ρxx ∼ 10−16Ω [76].

It is also very interesting to probe the quantum Hall effect at finite temper-
ature. As we see on the figure 3.18, the Hall and longitudinal resistance vary
dramatically with temperature and with bias current. Measuring the quantum
Hall effects as a function of the temperature or of the bias current provides
much interesting physical information. We will see that at low energy this pro-
vides information about the localization defined in the previous section. When
the energy is sufficiently high activation energies appear, which indicate of the
energy gap between Landau levels.
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Figure 3.18: Measurement of ρxx and ρxy has a function of the magnetic field
for different temperatures at fixed bias current (top figure) and for different bias
current at fixed temperature (bottom figure)[77]

3.10.1 Thermal activation
Thermal activation usually follows an Arrhenius law which is an empirical law
that appeared in the measurement of chemical reactions. In this law the rate of
a chemical reaction k is expressed as follow:

k = Ae−Ea/RT

R is the gas constant. The dominant parameter here is the activation energy
Ea. The statistical mechanism was later explained by Eyring [78].

The probability for an electron to jump onto a higher Landau level is also
given by an Arrhenius law. The expression of the conductivity as a function of
the temperature is thus expressed as follows:

σxx = σ0
xx exp

(
− Ea
kBT

)
Theoretical calculations for the conductivity in the activated regime can be
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found in ref. [79, 80, 81] , the universality of the prefactor σ0
xx was addressed

in ref [82]and found to be σ0
xx = 2e2/h.

The energy gap ∆ between Landau levels can be deduced from the activation
energy when the Fermi levels lies in the middle of 2 Landau levels, there ∆ =
2Ea.

The Activation law has been demonstrated both in conventional 2DEG [83,
84] and in graphene [61]. For both it is usual to get lower values of the activation
gap than those predicted by the theory because of the broadening of the Landau
levels by the disorder (as mentioned in 3.8.9).

A measurement of the prefactor finding the value of 2e2/h is done in ref.
[85].

Figure 3.19: Energy gap 2∆ for ν = 2 and ν = 6 graphene QHE plotted as a
function of the magnetic fields. These gaps are deduced from the Arrhenius plots
of ρxx. The dashed (red) and dotted (blue) lines are the theoretically expected
energy gaps for sharp Landau levels. The inset shows schematically the density
of states for a sharp zeroth Landau level and broadened higher Landau levels
for electrons and holes at 30 T . figure from [61]

The values of the activation gap were determined for both monolayers (see
figure 3.19) and bilayers [19].
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3.10.2 Transport through localized states.
3.10.2.1 Variable Range Hopping (VRH)

Mott VRH
The variable range hopping law was originally derived by Mott to describe a

conduction process at finite energy in some insulators.
Here I would like to introduce a calculation of this process which is amenable

to a good physical interpretation.
A complete and rigorous computation is not easy, but a good example can

be found in ref [86]

To derive this law we emphasis that there are some states occupied by charge
carriers and other states which are empty but can be occupied and which are
separated by a distance R and by an energy w (as shown on the figure 3.20).
The probability of hopping from an occupied to an empty state is given by

P = e−R/ξ.e−w/kBT (3.78)

where ξ is the spatial extension of the wavefunction. An electron is able to hop
if there is an empty state within the radius considered. This condition takes the
form:

αρwRd = 1 (3.79)
where α is a constant, ρ is the density of states and d the dimensionality. With
this expression we can express w as a function of R, then replace it in the
expression 3.78.

Figure 3.20: representation of occupied and empty states

The next step is to maximize the probability of a hopping as a function of
the distance.

Here we consider a small energy interval w near the Fermi level. Assuming
density of states is constant over this interval we can write the probability for
N hopping as follows:

P = e−(Rξ +
T0R

d
0

RdT
).N (3.80)

where T0R
d
0 = 1

ραkB
. Maximizing this probability we get the most probable

hopping distance R:
d

dR
(
R

ξ
+
T0R

d
0

RdT
) = 0 (3.81)
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R = β.T−1/(d+1) (3.82)

where β = (ξdRd0T0)1/(d+1)

Putting this expression for R in equation 3.78 and assuming the conductivity
is proportional to the probability of hopping we get Mott’s law:

σ ≈ e−(T0/T )1/(d+1)

(3.83)

Efros-Shklovskii VRH
Efros and Shklovskii re-derived this law for electrons with Coulomb interac-

tions [87]. The effect of the Coulomb interaction is to empty the density of
states near the Fermi energy. In the Mott law the density of states was assumed
constant, but when one includes the Coulomb interaction it varies with energy
below a critical energy Ec from the Fermi level and vanishes at the Fermi level.

We take into account Coulomb interactions to express the energy that an
electron needs to hop from an empty state j to an occupied one i :

∆Eij = Ej − Ei −
U

2rij
(3.84)

where U = e2/4πε is the interaction parameter.
This energy needs to be positive, thus

∆Eij > 0 (3.85)

We consider a small energy interval ε = Ei−Ej centred at the Fermi surface.
With the assumption that ε < Ec, Ecis the size in energy of the coulomb gap.
As a result of the inequality 3.85: U/2rij < ε.

Assuming that the N(ε) states are homogeneously distributed in a volume
Ld we have N(ε) ∼ (L/rij)

d.
The density of states is:

ρ(ε) =
1

Ld
N(ε)

ε
< A

εd−1

Ud
(3.86)

Where A is a constant. It can be shown that this inequality is in fact an
equality.

Indeed, if g(ε) ∝ εν , at 2 dimensions, ν < 1 would contradict the inequality
3.85 and if ν > 1 the mean distance between the states in the energy interval ε
would be so large that the interactions may be neglected.

This equality remains valid when the density g(ε) is small compared to the
density g0 at the Fermi level, so the width of the gap can be given by the equa-
tion g(Ec) = g0.

Thus the density of state for 2 dimensions is:

105



CHAPTER 3. QUANTUM HALL EFFECT

{
g(ε) = 2

π
ε2

e4 | ε− εF | ε < EC

g(ε) = cte ε > EC
(3.87)

The derivation of the hopping probability with this density of states leads
to a conductivity independent of the space dimension:

σ ≈ e−(T0/T )1/2 (3.88)

The crossover from ES VRH to Mott VRH has been measured in several
different materials at zero magnetic field [88, 89].

A detailed calculation of Mott and ES VRH can be found in ref. [86].

3.10.2.2 Variable range hopping and quantum hall effect

Variable range Hopping with Efros-Shklovskii law
Poliakov and Shklovskii proposed [90] that VRH explain transport through

localized states in the Quantum Hall system.

σxx = σ0 exp(−(T0/T )1/2) (3.89)

where :

kBT0 =
Ce2

4πεε0ξ(ν)
(3.90)

Here ξ is the localization length which represents the typical size of localized
states. C is a constant; for 2 dimensions it was found that C = 6.2 [91].

It is interesting to express the E-S formula in terms of the characteristic
length ξ:

σxx ∝ σ0 exp(−(LE−S/ξ)
1/2) (3.91)

where LE−S(T ) = 4πε0εkBT/Ce
2.

This law was measured many times in conventional 2DEG [73, 74, 92, 93, 94]

VRH Prefactor
The VRH prefactor rises the question of its possible temperature dependence.

Most experiments which had observed VRH behavior (cited just before) found
that σ0

xx ∝ 1/T .

In Ono’s theory the prefactor found is in agreement with most of the obser-
vation::

σ0
xx =

e2γ0

kBT
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Where γ0 is an electron-phonon coupling constant.

Poliakov and Shklovskii found in their derivation of ES VRH for quantum
Hall effect:

σ0
xx =

e2

h
f

(
T

T3

)
Here f is a dimensionless function. Experimentally it was observed that

f ∝ 1/T . To my knowledge no precise calculation of f has been done, P-S
argue that it cannot be derived in the framework of a conventional theory of
phonon-assisted hopping and suggest doing the calculation from the starting
point of electron electron scattering.

Pepper and Shlimak use this argument to derive the prefactor based on
electron-electron scattering [95]: they found a universal temperature indepen-
dent value:

σ0
xx =

e2

h

Experimentally such a prefactor has been measured in ref.[96, 97].
However they argue that under a high magnetic field phonon assisted hop-

ping is restored and σ0
xx ∝ 1/T .

Variable range Hopping with Mott law
Aleiner and Shklovskii [98] predicted that there should be a cross over be-

tween E-S VRH and Mott VRH when interactions are screened as for example
in the case of a gated Hall bar.

The Mott formula:

σxx ∝
1

T
exp(−(TM/T )1/3) (3.92)

can be written as a function of the characteristic length which gives a better
physical image as in this problem we are looking at typical hopping distances:

σxx ∝ (
1

LM (T )
)2 exp(−(

LM (T )

ξ
)2/3) (3.93)

Where LM (T ) =
√

1/πg(EF )kBT , here g(EF ) is the energy independent
density of states at the Fermi energy.

The prefactor of the Mott law in the quantum Hall effect has not been
investigated theoretically but there is no reason that it differ from the 1/T
prefactor in ES-VRH as this prefactor is due to the electron-phonon coupling.

This crossover was observed for the first time in the QHE regime in our
experiments (see chapter 8).

107



CHAPTER 3. QUANTUM HALL EFFECT

Variable range hopping with bias current
Variable range hopping has also been derived as a function of the Hall field

which is proportional to the bias current. It is based on the fact that there exists
a quasi-Fermi level tilted by the electric field EH . Zero temperature hopping
with phonon emission then becomes possible. The local Fermi distribution takes
on an effective temperature of ∼ eEHξ where ξ is the localization length. The
exponent of the current voltage characteristic can then be obtained by replacing
the temperature as follows: T → eEHξ/2. The VRH conductivity can then be
expressed by replacing the temperature in 3.89:

σxx = σ0 exp

(
−
(

2T0

eEHξ

)1/2
)

(3.94)

Comparing this equation to 3.89 we can easily extract an effective tempera-
ture

kBTeff =

(
ce3

2k2
Bεε0

EH

)1/2

The effective temperature can be expressed in terms of the bias current using
the fact that on the center of a Hall plateau where ρxx = 0 there is a relation
between bias current J and the Hall field EH : J = ρxyEH

kBTeff (I) = eξ
ρxyI

2αLy
(3.95)

where α is a coefficient depending on the way of decrease of Hall potential
in the sample and Ly is the sample width. (see section 3.10.4)

In this expression we see that bias current plays the role of a temperature
with a linear power law.

The prefactor σ0 with bias current should be similar as in the temperature
VRH and proportional to 1/I.

3.10.3 Breakdown of the QHE
Usually the longitudinal resistivity ρxx and the deviation of the Hall plateau
in ρxy from the quantized values increases in a smooth monotonic way with
temperature. In contrast, with increasing bias current, a sudden increase of
ρxx(by several orders of magnitude) was reported when the current exceeded a
certain value. This was reported as the breakdown of the quantum Hall effect.
Here we will only give a short introduction and a few references to this vast
subject. A good introduction to can be found in ref. [99] and a detailled review
in ref.[100]
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Figure 3.21: Longitudinal potential Vxx as a function of the bias current for
different temperature on ν = 2 at 6 Tesla for a 380µm wide sample. The sharp
increase of Vxx at low temperature is a typical example of breakdown [101].

The critical breakdown current was found to increase linearly with the sam-
ple size in most experiments (references can be found in ref.[99]) but sublinearly
in high mobility samples[102]. Also several experiments report a B3/2 depen-
dence of the critical current with the magnetic field [99].

Several models have been proposed to explain this breakdown which are well
described in [100] . One which can explain both the linear dependence on the
critical current with the size of the sample and the B3/2 dependence has been
introduced by Kominaya and Kawagashi [103]; they propose an avalanche type
electron-hole pair multiplication when the Hall field exceeds a critical value. As
shown on figure 3.22, the Landau levels are tilted due to the Hall field and when
the total tilt becomes of the same order as the Landau level spacing, it becomes
energetically advantageous for charge carriers to hop into a higher index empty
Landau level leading to backscattering. This gives rise to an avalanche effect
which explain the sharpness of the ρxxincrease. This process was found to need
a minimal distance LM for developping the electron-hole pair creation cascade.
Measurement of cyclotron emission spatially resolved by Y. Kawano and S.
Komiyama [104] confirmed this idea of avalanche. They also measured cyclotron
emission as a function of the width [105] and found that above w ∼ 100µm
the breakdown was preceded by a local breakdown near the drain and source
contacts whereas for smaller values it was not.

Note that Y. Kawaguchi et al observed the disappearance of the breakdown
in short devices (less than 30µm) [106]. As we will see, graphene samples studied
in our work do not show sharp breakdown and this may be due to too narrow
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samples.

Figure 3.22: schematic of the breakdown of QHE

3.10.4 Hall Field distribution
In the previous section we represented the Hall potential as decreasing linearly
across the sample. A more realistic view is given in figure 3.23 where the decrease
of potential on the Hall plateaus take place mostly within a short distance of
the sample edges, whereas in the insulating bulk where screening is very low
the potential decreases more slowly. This can be explained by the fact that
the electron liquid in the bulk of the sample is nearly incompressible, charges
cannot rearrange to screen the potential whereas at the edges they can, thus an
important part of the potential is screened on the edges. Several experiments
measured this non-homogeneity of the Hall field distribution on a plateau by
placing contacts in the bulk of the Hall bar [107, 108, 109]. Also, it was measured
optically on very large sample by Fountein et al [110], the results are presented
in fig. 3.23, for a 2mm wide Hall bar they measured that the Hall potential
decreases to 80% at a distance of 70µm from the edges; here the 70µm represents
the spatial resolution of the experiment and therefore represents an upper bound
on the length. This length depends on the shape of the confinement potential:
if it is abrupt, Buttiker’s model [111] predicts that it is approximately equal to
the cyclotron length lc whereas other approaches consider a length of the order
of the Bohr radius a [112]; Mac Donald et al. calculated it using the Hartree
approximation for slowly varying potentials and found a length of the order of
l2c/πa which is of the order of λF in graphene[113]. Here the important result
is that on a Hall plateau the Hall field decrease is distributed near the edges on
a lengthscale which is very small compared to the size of the sample.
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Figure 3.23: Hall potential measured electro-optically across a 2mm wide Hall
bar in a conventional 2DEG, at a current of 5 A. The scans were taken within
the 4th QH plateau, at B=5,0T (N) and 5,25 T (+). Full line: calculated profile.
Data from Fontein et al. [110]

3.10.5 Width of the ρxx peak
An interesting and widely studied aspect of the QHE is the transition from
plateau to plateau which gives rise to a non zero longitudinal conductivity. In
many experiments the width ∆ν of the resistivity peak was found to shrink as
T → 0 according to a power law ∆ν ∝ Tµ.

Two main theories explain this fact and up to now there has been no clear
experimental evidence for choosing between them.

3.10.5.1 Pruisken theory, Anderson Transition

Pruisken [114] was the first to give an explanation for the width of the ρxx peak,
in terms of a metal-insulator transition. He argued that at finite temperature
the phase coherence length Lφ is inversely proportional to the temperature T .
If Lφ � ξ(εF ) the localization is destroyed and the electron system exhibits
metallic behavior.

In this theory, the effective sample length is taken as L = (Dτφ)1/2 where
D is a diffusion constant and τφ ∝ T−p a phase coherence time which follows
a non-universal power law, p = 2 usually. As a consequence the FWMH ∆ν of
the conductance peaks obeys the temperature power law

∆ν = (T/T1)µ (3.96)

with
µ = p/2γ (3.97)

Also considering that the quantized plateau occurs when ρxx = 0, we can easily
understand that the slope of the Hall resistance RH is related to the width of
the peak of ρxx, indeed it was shown that [114]:
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(
∂ρxy
∂B

)max
∝ Tµ

This scaling was also verified with bias current measurements by Wei [115,
77] which led to:

∆ν = (J/J1)µ
′

(3.98)

µ′ = p/4γ (3.99)

Many experiments were carried out to measure µ. Historically it was the
first method for the determination of γ but it is not direct as it involves p. This
was originally observed by Wei et al [116]

The first extensive measurement of µ was done by Wei and Tsui in ref [117]
who found the classical values of µ = 0.42 and γ = 2.3. The experimental
results are shown in fig 3.24.

Figure 3.24: The upper portion shows the temperature dependence of
(∂ρxy/∂B)max for N=0 and N=1,. The lower part shows the temperature de-
pendence of the width of the ρxx peak (1/∆B ). Figure from ref. [117].

In an experiment performed by Koch et al [118] shown in figure 3.25, the
µ exponent was measured as a function of the sample width. It is shown to
be independent of the sample width except at low temperature, where the ρxx
peak width saturates when the localization length attain the size of the sample.
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Figure 3.25: The width of ρxx as a function of the temperature in the Landau
level N = 1 ↑, data from ref. [118]

Much measurements and debates have been centred around on the value and
universality of µ as a function of different parameters such as spin [119] or the
type of disorder [120, 121]. A good review exists in ref. [122].

3.10.5.2 VRH

E-S VRH: PS argument The argument of Poliakov and Shklovskii to ex-
plain the width of the ρxx peak is that it should be proportional to the value of
T0 as when T = T0 in eq 3.89 , the value of the conductivity σ is not vanish-
ing any more . This theory doesn’t involve the coherence length for the metal
insulator transition.

From the equation 3.90 we can express a universal behavior with T0:

T0(ν) = α(ν − νc)γ (3.100)

Where α is a constant.
With the argument of P-S we can easily compute the width of the peak

which is linked to the metal-insulator transition:

∆ν = (
T

T1
)µ (3.101)

with:
µ = 1/γ

and

T1 = A
1

kB

e2

εξ0
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where A is a numerical coefficient.
The same argument for the width of ρxx peak with increasing bias current

leads to:

∆ν = (
J

J1
)µ
′

(3.102)

µ′ = 1/2γ

The same factor was found from Pruisken’s argument with p = 2 in agree-
ment with Wei’s experimental values, so a priory it is impossible to distinguish
which is the better adapted. Except, as we shall see, if there is a metallic gate
which can screen the interactions beyond a certain length scale.

Mott: Aleiner and Shklovskii argument Aleiner and Shklovskii use the
same argument as P-S to compute µand µ′ but in the Mott VRH regime.

For the behavior of ∆ν with the temperature, they found:

∆ν = (
T

T2
)µ (3.103)

µ = 1/2γ

where

T2 = B
1

kB

e2d

εξ2
0

B ∼ 140 is a constant.
The same argument for bias current leads to:

∆ν = (
J

J1
)µ
′

(3.104)

µ′ = 1/3γ

Pruisken’s theory predicts no change in the ∆ν exponent if the interactions
are screened.

Thus, a good way to distinguish between the PS argument and Pruisken’s
is provided by measuring the universal exponent in the Mott VRH regime.

To our knowledge, VRH in the QHE has been always observed in the ES
regime and no transition from ES to Mott has been observed in QHE before our
own experiments.

3.10.5.3 To summarize:

Theory Pruisken P-S
Transport regime all E-S VRH Mott’s VRH

µ p/2γ 1/γ 1/2γ
µ′ p/4γ 1/2γ 1/3γ
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3.11 Metrology
Since the discovery of the quantum Hall effect it became evident that the very
precise quantized value of the Hall resistance could be used for metrological
purposes. Indeed K. Von Klitzling cites in ref [39] “discussions with Prof. Kose
at the PTB about this new quantum phenomenon started already one day after
the discovery of the quantized Hall resistance”. Only 10 years after its discovery
the CIPM (conférence internationale des poids et mesures) recommended using
QHE for ohm metrology.

The quantum Hall resistance gives access to the value of h/e2 = 25812.807···Ω.
This measured value is universal: it does not depend on the shape, disorder or
microscopic details of the sample. This universality makes it a very interesting
candidate for the metrologist.

The international system of units is based on the “second”, the “meter”, the
“kilogram” and the “Ampere”. The first three are well defined with very good
accuracy, in contrast to the Ampere which has a relative uncertainty of 10−6.
The Ampere is that constant current which, if maintained in two straight parallel
conductors of infinite length, of negligible circular cross-section, and placed 1
meter apart in vacuum, would produce between these conductors a force equal to
2.10−7 newton per meter of length [123]. The ohm is derived from the Ampere:
1Ω = 1s−3.m2.kg.A−2, so it should have a larger uncertainty than the Ampere.
This is not the case, with the measurement of A.C. impedance R = 1

ωC of a
capacitor C[124], 10−7 uncertainty is achievable. Knowing the Ω value in SI it
was thought to use the QHE for a better accuracy in the fine structure constant
measurement (max 10−7) .

The precision and accuracy of the quantum Hall resistance is better than
any A.C. resistor, so metrologists have sought instead to use this resistance as
a standard for the Ω. The Comité Consultatif d’Electricité recommended “that
exactly 25 812.807 Ohm should be adopted as a conventional value, denoted
by RK−90, for the Von Klitzling constant RK” and that this value should be
used starting on 1.1.1990 to form laboratory reference standards of resistances
all over the world[124].

We collaborated with the Laboratoire National de Métrologie et d’Essais
(LNE) on the fabrication of graphene samples for metrology.

Graphene is very promising for metrology due to its high cyclotron energy
(excited state energies). For fundamental metrology it is important to demon-
strate the universality of QHE by comparing it in several materials with different
bandstructures. Also, because it accepts a higher bias current than in conven-
tional 2DEGs without change in the Hall resistance, it affords better accuracy.

For applications it opens the possibility of making commercial devices to
compare resistances based on the quantum Hall effect which work at nitrogen
temperature with magnetic field of the order of 1 Tesla (achievable with a simple
magnet).

J.Guignard et al at the LNEmade quantitative tests on an exfoliated graphene
sample made in CEA (with the same technique as described in 4), by compari-
son of a 100Ω resistor previously calibrated with the QHE of an AlGaAs/GaAs
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Figure 3.26

heterostructure.
They found ∆RH/RH = 3.10−7 on the plateau ν = 2 with a monolayer at

12 Tesla, for a temperature of 1,3K .
On a bilayer they measured ∆RH/RH = 5.10−7. (to be published soon)
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Chapter 4

Graphene Fabrication

In this chapter the fabrication of electronic device centered on graphene will
be described from the exfoliation of the graphene to the deposition of metal
contacts.

4.1 Obtaining graphene
The method used during my PhD was the graphene exfoliation. I will first
introduce briefly the other method found for graphene deposition, then I will
focus on the exfoliation method.

4.1.1 Epitaxy
Epitaxy is a depositing method using chemical reaction. This technique allows
deposition of a monocrystalline film on a monocrystalline substrate. The term
epitaxy comes from the Greek, epi, meaning "above", and taxis, meaning "in
ordered manner".

Epitaxial films may be grown from gaseous or liquid precursors. Because the
substrate acts as a seed crystal, the deposited film takes on a lattice structure
and orientation identical to those of the substrate. If a film is deposited on a
substrate of the same composition, the process is called homoepitaxy; otherwise
it is called hetero-epitaxy.

This process is widely used for the fabrication of conventional 2DEGs (Het-
erojunction of AsGaAs/AlGaAs). It allows high purity in the growth crystal
resulting in a very high mobility.

4.1.1.1 Epitaxy on SiC

Graphene can be grown by the thermal decomposition of SiC. This method leads
to a few layers of graphene decoupled one from the other: wafer size graphene
should be possible via this method [125]. Electronic properties of graphene
including the half integer quantum Hall effect have already been observed.[126]
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Several methods had been tried, on different kind of SiC on both faces.
Heating first with argon seems to generate large domains.

4.1.1.2 Epitaxy on Ruthenium

Epitaxy growth of graphene was also achieved on ruthenium. This technique
allows a controlled graphene manufacturing layer by layer [127].

4.1.2 Liquid phase exfoliation
An other method than the conventional scotch tape for exfoliate graphite is the
dispersion of graphite in organic solvent. This method was shown to allow the
production of graphene monolayers in [128] but do not seem to be very used.

4.1.3 Chemical Vapor Deposition (CVD)
CVD is a process often used in the semiconductor industry to produce high
purity solids. In a typical CVD process the substrate is exposed to a heated
vapor precursor to allow activated chemical reaction with the substrate. The
chemical reaction can either be decomposition or combination. For graphene
the usual precursor is CH4. Nickel and copper substrates have been used in
CVD process with good results, indeed this method allows the production of
good mobility graphene comparable to those obtained with the Exfoliation tech-
nique. [129, 130]. This technique seems to be the most promising for future
graphene development in industry and some applications such as a touchscreen
have already been achieved.

4.1.4 Exfoliation
This is the method I used for the fabrication of the devices. This was the first
method to obtain graphene discovered by Geim and Novoselov[7]. When I begun
my PhD it was the only known method to make a sample in which QHE was
observable. This method consists of pealing graphite with tape, and depositing
it on a Silicon wafer.

I will describe here in details all the manufacturing processes as it was the
one I developed thanks to K.Novoselov’s advice.

4.1.4.1 Preparation of the substrate.

An array of gold marks to avoid being lost
Before depositing Graphene it is important to prepare the SiO2 substrate.
The first step is to put an array of gold crosses on the sample. For that

I used optical lithography to put an array of crosses with numbers, so that
when a graphene is located its position on the substrate can be saved. Also
these crosses are essential for alignment in manufacturing devices. We evapo-
rate 3/70nm Cr/Au for these crosses. Chromium is an interesting adhesive layer
because unlike titanium it is resistant to the cleaning process. Gold which has
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a higher density allows it to be seen with E-beam microscope under a PMMA
resist (see lithography 4.3.2).

Cleaning, a critical step for graphene adhesion
The next step is to divide the 2-inch wafer into four parts (it is more convenient

to deposit graphene on one fourth of a wafer).
Then, a very important step is the cleaning. As van der Waals forces enable

graphene to stick to the substrate, the cleaner it is the more graphene will
stick. If some dust or other small things remains on the substrate the surface of
adherence for graphene will decrease resulting a lower probability of gripping.

We must therefore be extremely careful during this step. First we clean the
substrate with acetone and isopropyl alcohol then with a Piranha solution.

Piranha solution is a mixture of hydrogen peroxide (H2O2) and sulfuric acid
(H2SO4) in ratio of 1:3. This mixture is a strong oxidizer and removes most of
the organic matter. It reacts with heat release and the temperature typically
rises to around 100°C, then slowly decreases. We leave the wafer in this solution
for 1 hour with a heater at 90°C to maintain the temperature during all the
process.

This process is done in a clean room in an extractor hood which is specifically
used for acids.

4.1.4.2 Graphite exfoliation

At this point graphite is exfoliated with tape. As explained before graphite is
composed by graphene layers bonded by van der Waals forces. It is possible
to separate graphite by pulling on both sides. Doing that the graphite will
randomly split at the interface of two graphene layers.

The process is as follows:

• A few graphite flakes are put on the adhesive tape.

• The tape is folded and unfolded to obtain a homogeneous distribution of
graphite all over the tape (see photo 4.1)

• A new piece of tape is put on the tape with graphite in order to have
the homogeneous distribution on a tape with good adhesive (sticking)
properties (this is important for good deposition)

• The tape is folded on itself, so when it is unfolded (just before putting on
the substrate) we have a fresh surface of graphite.
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Figure 4.1: photography of tape with exfoliated graphite

4.1.5 Deposition
When this is done and the wafer spent an hour in the piranha solution it is
taken out of the acid solution, rinsed with deionized water, and then dried with
clean nitrogen. Finally we open the tape with graphite and press it onto the
wafer.

The deposition is done.
The last step is to put the wafer with the tape under a press for a few days.

This step was found to enhance the graphene deposition.

Figure 4.2: graphene exfoliation
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4.1.6 Removing the tape
The final step is to remove the tape in a clean room. The tape is removed very
slowly with tweezers (∼ 1cm/mn).

Then the sample is put in acetone for 1 mn and in isopropyl alcohol for
another mn in order to remove adhesive residues and overly fragile layers of
graphene (if graphene layers don’t go through this treatment, they will never
survive the lithography processes). Here we avoid ultrasound, because it is
deleterious for graphene: indeed we have observed that with ultrasound the
larger flakes detach very easily from the substrate.

4.2 Location of the graphene
Locating the small (a few micrometers) graphene flakes is not easy as a mono-
layer of graphene is only 3 Angstrom thick.

A priory an optical microscope would be unable to image graphene but a
matter of luck led K. Novoselov [7]to deposit graphitic layers on silicon with a
300nm thick oxide layer.

The light interfering through the silicon oxide and graphene makes a phase
shift in these interferences as it is shown schematically on fig.4.3, in such a
way that the contrast of monolayers is enhanced. This allows direct observa-
tion of graphene with an optical microscope, which is very convenient. Indeed
with optical microscopy it is reasonably fast to scan a large area compared to
other imaging techniques. Furthermore it is totally non destructive and very
accessible.
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Figure 4.3: schema of light interfering in the silicon oxide. The graphene is
represented in green.

A computation of the visibility of the graphene enhanced by the interference
has been done in ref.[131]. The computation may not be of great fundamental
interest and can be viewed in the paper, but the result as it is shown on fig.4.4
is very useful for the experimentalist researcher when choosing a silicon oxide
thickness.

Figure 4.4: Visibility of a graphene monolayer as a function of the oxide thick-
ness for different color from ref.[131].

Despite the fact that the contrast is enhanced, it remains very low. And to
observe monolayers by eye in the microscope remains a challenge especially at
the beginning.

It took me a long time at the beginning of my PhD to manage and find
some graphene layers and to have good images. I should however say that
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the thickness of the oxide layer of our silicon wafers (sold to be 300nm)was
340nm (we measured it many months after beginning working with them). As
a consequence graphene was almost invisible and therefore it was very hard to
obtain good images in order to design our electronic circuit.

Another challenge at the beginning of my PhD was to discriminate between
monolayers and multilayers, as no reproducible method available set to do so
before measuring the electronic properties of the sample (which requires making
the electronic circuit on graphene, and as we will see, that it is not immediate),
we will see in sec 5.1 that this problem can be solve with a Raman spectrometer.

4.2.1 Optical microscope and CCD imagery
The microscope used to locate graphene is a Zeiss AX10 equipped with Scion
Corporation CFW-1308C CCD device.

At the start I spent hours and hours straining my eyes scanning with the
microscope to locate and observe monolayers. But without knowing what a
monolayers looked like at the beginning of my work, it was not very easy. Nev-
ertheless soon I got used to locating tenuous thin films of graphite.

A microscope alone cannot discriminate between monolayers and multilayers,
but for a given wafer, a given number of layers always has the same contrast.
So once a monolayer is unambiguously identified by another characterization
technique, the search for monolayers can be done with an optical microscope.

Making a good image of the graphene flake is essential for the sample design.
At the beginning imaging graphene was not easy. Classical microscope CCDs
do not give good results on a 340nm thick oxide layer, so we had to stack
many pictures to increase the signal to noise ratio to be able to distinguish
the graphene with classical image processing. A technique found to do rapid
stacking is inspired by techniques used by amateur astronomers for imaging
planets. It is the use of a web cam which is a fast imaging CCD: a web cam was
mounted on the microscope and a video of graphene was acquired. Adapted
softwares select automatically the sharpest images and stack them. An example
is shown on figure 5.11 right image.

Then with the arrival of new 300nm oxide thick wafer and a new microscope
it became easier to image it, by playing with RGB parameters and contrast, it
became possible to acquire directly our images with the CCD. However some-
times this stacking method was still useful to see clearly a defect on a small
region (∼ 1µm).

Finally after training it took me around 3 hours to scan 1/4 of a 2 inches
wafer.

The images I took during my PhD represent 4,2Go for more than 1500 files
There are a few instruments able to image such a thin object like scanning

electronic microscope or atomic force microscope, but they make the scanning
for graphene very long and they may damage it. And as monolayer exfoliated
graphene flakes are small and not very numerous on a substrate we can guess
that it would never have been discovered with such imaging techniques.
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4.3 Lithography
The lithography processes were mostly done in a class 10000 clean room to avoid
contaminant.

Figure 4.5

4.3.1 UV lithography
UV lithography allows one to imprint large patterns on a substrate with better
than 1µm resolution. It is essentially a stencil technique. The principle is to
illuminate a UV sensitive resist through a mask. The non-shadowed parts are
removed with a developer and a metal is evaporated onto the substrate through
the removed pattern.

The masker I mainly used is a Karl Suss MJB4 which was delivered during
my PhD. This machine disposes of a sample holder and a mask holder. A vacuum
is established between the sample and the mask to ensure good contact which
is extremely important to achieve homogeneous lithography on a full wafer. I
found the MJB4 fairly good for achieving very homogeneous and reproducible
lithography without taking special precautions.

The mask is a 3 inches quartz plate with a chromium pattern. I designed it
with Auto-cad and the manufacturing was done by Toppan Photomasks.

The resist I used is Microposit S1813 with exposure time of 3s at 300 watt.
It was developed in Shipley MF319 for 60 seconds.
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4.3.2 E-beam Lithography

Figure 4.6: lithography process

This lithography technique uses an electronic microscope coupled with an electro-
sensitive resist. The parts of the resist which are irradiated by electrons is re-
moved with a developer (see fig 4.6). This technique achieves 50nm resolution
and 100nm precision on the alignment. And it is very convenient because we
can adapt the pattern to the graphene shape.

Usually I used a PMMA-A8 resist, spun at 4000 rpm, resulting in a thickness
of 1µm. I also used a bi-layer resist with MAA and PMMA, that technique allow
to make an undercut: the bottom resist is more sensitive than the top one, thus
bottom resist is more develop allowing to avoid contact between the deposited
metal on top of the resist (which will be remove) and the one on the developed
part. This technique avoid lift off problems such as resist which doest leave
every well, but is a little bit less precise than using one layer resist. I found that
with one thick layer of PMMA, lift off problems are rare.

For the E-beam lithography: I used a Phillips Scanning Electron beam Mi-
croscope (SEM) type XL30 with 25kV energy , and irradiated the smaller parts
with 20 % less dose than the larger ones to avoid proximity effect with the
electrons. I developed the resist in MIBK.

The E-beam microscop disposes of different fields (from 96µm2 to 3mm2)
coupled with different spots which deliver a current from 10pA to 100nA, these
fields and spots allow to draw patterns very precisely on small scales and rapidly
on large scales.
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4.4 Metal deposition: Physical vapor deposition
For deposition of the alignment mark or the metallic track I used two types of
Physical Vapor deposition: E-beam Vapor deposition (EBPVD) and joule vapor
deposition (JPVD).

4.4.1 E-beam Vapor deposition (EBPVD)
The EBPVD is a form of physical vapor deposition allowing the deposition of
high quality thin film of many types of metals.

A target is bombarded with an electron beam given off by a tungsten filament
allowing the transformation of the target’s atoms into a gas phase. This e-
beam bombing is done under deep vacuum (typically bellow 10−5mbar) which
enables vapor atoms to go directly on the sample without any collision with
stray gas molecules. This process allows deposition of nm size films at a very
well controlled rate (the minimum rate is 0.2nm/s).

4.4.2 Joule evaporator (JPVD)
The JPVD is an other kind physical vapor deposition with typically the same
characteristics as the EBPVD except that the the metal is heated by joule effect
passing a high current (∼ 250A) through a resistive plate that holds it. This
technique allows to deposit the magnetic materials such as chromium. As in
the JPVD machine of the lab a lower vacuum is achievable than in the EBPVD
machine, I used mainly the EBPVD except for the chromium deposition.

4.5 plasma etching
In order to cut the graphene at the shape we used a plasma etcher (shown in
figure 4.7). Our plasma oven is a simple machine dedicated to graphene. It is
composed of a vacuum chamber where oxygen can be injected and a radiofre-
quency source which cause the ionization of oxygen. In this machine the ionized
gas is not accelerated.

As oxygen is a reactive gas, it will combine with organic materials to form
ash which are removed by the vacuum pump.

It is a very efficient solution to etch graphene: first we achieve a E-beam
lithography to let uncover by the resist the graphene part we want to etch. The
the sample is put around 30s per layer in oxygen plasma. The plasma also
removes the resist at a rate of around 100nm/mn, so we have to be careful not
to let graphene in plasma too much time.
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Figure 4.7: Plasma etcher

Oxygen plasma is also useful to make suspended devices (see section4.8). We
could measure that in silicon wafer with silicon oxide on top which was exposed
to oxygen plasma, the etching of silicon oxide with hydrofluoric acid was not
isotropic. For 1nm etched vertically around 5nm were etched horizontally.

4.6 Device Fabrication
When a suitable layer of graphene is found, we can build a device with it.

The first step is to take many pictures of the graphene layer and its sur-
roundings in order to design the device.

To make the design which will be used for E-beam irradiation I used Autocad,
a very powerful software for drawing. The design made with this software can
be converted to a file readable by the E-beam control software.

To design a sample we need to:

• Draw contacts adapted to the shape of the graphene flake with a 10nm
resolution (E-Beam resolution) taking into in account possible alignment
errors of 100nm

• Draw 500 square micron pads which for connecting the circuit to the
measurement system

• Draw tracks between pads and contact, avoiding interconnection with
graphite flakes
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• Take care of avoiding large exposure time (which results on misalignment)
by making different layers of appropriate size for the different spots.

The first step in the design is to combine some pictures done with an optical
microscope with different magnification.

Next step is the metal deposition

(a) A large graphene layer (b) After irradiating and developing PMMA

(c) after depositing gold, an other lithography is
done to etch the graphene at the desired shape

(d) Finished sample (with side gate)

Figure 4.8

After that we put an electro-sensitive resist for the lithography

For the measurement I did three types of device:

• Hall bar with back gate

• Hall bar with side gate

• Corbino sample
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4.7 Corbino

4.7.1 Metallic air bridges
To make a Corbino sample, the most difficult part is building an insulated golden
air bridge to connect to the inner contact.

Figure 4.9: schema of how the insulated resist

As represented in fig.4.9, in order to build a bridge we can play with dif-
ferent irradiation of resist, resulting in different thicknesses after development.
This manufacturing needed many tests and many hours behind the E-beam
microscope.

Spinning resist To make the step as represented on fig 4.9 I used 3 layers of
electro sensitive resist. The idea was that the first layer will define the height
of the bridge, so it needed to be exposed for the starting points of the bridge
but not for the suspended part. This layer is done with PMMA. The second
layer is to make an undercut for the suspended part, achieved with MAA resist
which is much more sensitive than PMMA. This way it is possible to expose
it without exposing the first layer of PMMA. The top layer is PMMA, similar
to the bottom layer. This layer provides a well defined suspended part of the
bridge.

This sandwich with 1 more sensitive layer in the middle enables one to expose
only the top and the middle layers or all the layers.

The recipe is:

• 1 layer of PMMA-A6 spun at 2000 rpm (leading to a 600nm thickness)
and dried 3mn at 170° C

• 1 layer of MAA-EL10 spun at 2000 rpm (500nm) and dry 1mn at 170° C

• 1 layer of PMMA-A6 spun at 2000 rpm.
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E-Beam irradiation We insulate the different part of the bridge with differ-
ent relative doses.

The dose where 0.64 for the suspended part, 0,9 and 1,6 for the basement of
the bridge 210mC.m−2.

Figure 4.10: Tilted (50°) E-Beam picture of some test of metallic air bridges

Metal deposition The metal deposition is also an important step to have a
bridge. For that I used the E-Beam evaporator which facilitates angle deposi-
tion. In order to join the foundation to the suspended part of the bridge a step
was done with the resist but it was not sufficient due to proximity effects with
the E-Beam irradiation. It was nearly impossible to realize a 1µm large step in
the resist. Tilting the sample at 45° provide a good way to make this link. And
indeed experiment has proved to me that it helps.

The recipe for the metallic evaporation:

• 5nm of Titanium for adhesion

• 160nm of gold at 0 tilt

• 50nm of gold at tilted at +45°

• 50nm of gold at tilted at -45°

Obviously the tilting direction is the same as the bridge direction.

Corbino fabrication For the corbino fabrication a first step lithography is
done to make the inner and outer contacts, tracks and pads. A second step is to
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make the bridge. A E-beam picture of a Corbino is presented on figure 4.11. One
can notice that the bridge looks fragile, I emphasis that due to backscattering
by the gold on the outer ring the doses are somewhat shifted.

(a) (b)

Figure 4.11: E-beam picture of a Corbino sample

4.8 Suspended Sample
Suspended Graphene shows a better mobility and possibility of attaining lower
density. Two techniques are mainly used, the first consists of depositing graphene
and etching the silicon oxide under the graphene with hydrofluoric acid, as was
done in ref [37, 25].

The second technique consists in etching an array of holes and then deposit-
ing the graphene as was done in ref. [132].

Neither of these techniques is straightforward, the first may provoke graphene
collapse, and for the second one needs to be lucky or to make a lot of graphene
deposition.
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(a) (b)

Figure 4.12: Suspended Hall bar from Kim’s group. On the left the Hall bar
callapsed due to electrostatic forces exerted by the back gate (at Vg ∼ 5V )

I tried to build Corbino suspended samples with the second technique. Here
the first method is not possible because there is no edge from which the hy-
drofluoric acid can attack the underside of the graphene.

I designed a mask for making the pattern of holes with optical lithography.
The holes are rings where the external diameter is 5µm and the internal diameter
is 1µm. separated by 7µm.

The ring geometry is to avoid collapsing caused by the gate. Indeed the
electrostatic force exerted by the back gate is very strong; in Kim’s experiment
he observed a typical collapsing gate voltage of 5 Volts.

As the graphene sticks to the substrate thanks to Van de Waals forces it
is important to have some surface on silicon oxide for the graphene to stick
to. Also it is necessary to put the trenches close enough together in order to
have a chance to see a graphene layer on a hole. The density of structures
(7µm between holes) was set to provide 70% of the substrate not drilled for the
graphene to stick to.

4.9 Contacting the sample
To connect the sample with the measurement setup we have to connect the
500µm contact pad to the sample holder (see 10.3.6 with a 25µm width gold
wire.

Normally a commercial ultrasonic bounding machine is used for this purpose.
I stopped using such a machine for two reasons:

• The principle reason is that the probability of drilling a hole in the silicon
oxide was high leading to backgate leakage

• The sample Holder is in Vespel (a polyimide of plastic) and the ultrasonic
bonding is not efficient.

The solution I found to solve this problem is to use silver epoxy glue (Epotek
H20E) which conducts at low temperature and is very resistant. This glue takes
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15mn at 170°C to stick. So the trick was to put the sample holder with the
sample on a hot plate. The wire was put into the epoxy glue to make a small
ball of glue at an extremity which was then put on the contact pad during 15mn
with a micro-manipulator.

Figure 4.13: Picture of a contacted sample

4.10 Cause of death during the fabrication
I think it is important to dedicate a paragraph on the causes of death during
the manufacturing process as most of the samples never reached the fridge.

• back gate leakage is the biggest cause of invalidity of cooled down samples.
I used mainly two types of highly doped silicon wafers which came from
NEYCO and SILTRONIX. I found that on the first I had more than 50
% probability of boring a hole in the oxide doing the wire bonding (I
used a conventional Karl Suss machine with the smallest possible force
parameter). In the second the probability of piercing the oxide was lower
but still too high!

• lithography problem: it happened often that there was a hidden problem
in the drawing or a bogue of the machine... that damage the lithography.

• dust on the sample: occasionally a large dust particle would fall onto the
sample with no way to remove it (example on image 4.14)
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• lift off problems; especially for the annular part of the Corbino samples as
shows picture 4.15a. We think the annular part was removed and stuck
there by Van der Waals force.

• graphene disappearance, as the picture 4.14 shows it happend often that
graphene was torn or disappeared during lithography process, even but
rarely when the contact deposition was done.

• exploding due to electrostatic choc. Here the picture 4.15b of a Corbino
sample after a probable electrostatic choc speaks from itself (picture 4.11
show it before the blast).

• graphene torn. As shows the picture 6.4, many contacts were lost due to
a graphene tear (see section 6.1.3).

Figure 4.14: Optical microscope picture of torn graphene. Here a dust came
between 2 contacts during lithography process.

(a) Lift off problem on a suspended corbino
sample (e-beam picture)

(b) Explosion of a Corbino sample probably due
to an electrostatic choc (e-beam picture)

Figure 4.15
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Phonons and Raman
spectroscopy in Graphene

The study of the phonons in graphene turned out to be very important for the
characterization of graphene monolayer. As it will be describe here it allow to
discriminate between one and few layers graphene.

5.0.1 Different phonon modes in graphene
As graphene has 2 atoms per unit cell, there are optical (O) and acoustical (A)
phonon modes. Thus with longitudinal (L) and transverse (T) modes there are
four combinations of in plane phonon modes : LA, TA, LO, TO. Also there are
two transverse out of plane phonon modes which are called ZA, ZO.

A schematic illustration of LA, LO, TO phonons is given in figure 5.1 and
5.2.
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(a) LA phonons in Graphene (b) LO phonons in Graphene

Figure 5.1

Figure 5.2: TO phonons in graphene

The calculation of phonon bandstructure in graphene was done in several
ways, a review can be found in ref.[133]. An example done by ab-initio calcula-
tion [133] is shown on figure 5.3.
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Figure 5.3: (Color online): Experimental data points for the phonon dispersion
relation of graphite. Diamonds: neutron scattering, squares: EELS, circles:
X-ray scattering, triangles: IR absorption, asterisks: data of various double
resonant Raman scattering experiments. These data are compared with ab
initio calculations form Ludger Wirtz and Angel Rubio: dashed line: local-
density approximation, solid line: generalized-gradient approximation.

5.1 Raman Spectroscopy, a way to ensure that
we have monolayers

The contrast of monolayers for a given thickness of silicon oxide is always the
same. Optical microscope alone can be used to look for graphene once we have
identified the contrast of a monolayer. We tried several methods to determine
the numbers of layers: SEM, AFM, Raman spectroscopy.

SEM gives a better contrast than optical microscopes but gives no informa-
tion on the thickness of the sheet.

AFM could be a good way to distinguish a monolayer from few layer because
we can theoretically know the thickness of one layer. Notwithstanding, the
height of the first layer of graphene is not well resolved with AFM: it appears to
be between 6 and 12 Angstrom whereas a graphene layer is 3 angstrom thick.
Two possible causes for this are:

• water adsorbed underneath

• the interaction between the tip and the sample may be different than
between the tip and the silicon oxide[134].

Raman spectroscopy seems to be the best option to distinguish monolayers
before contacting the sample. It is fast, sure and nondestructive.

On figure 5.4 is shown an example of Raman spectrum of graphene and
graphite obtained by Ferrari et al [135] who first put in evidence the interest
of Raman spectroscopy for graphene characterization. We can see on these
figure that the shape of the peak at 2700cm−1 is very different from graphene
to graphite.

138



CHAPTER 5. PHONONS AND RAMAN SPECTROSCOPY IN
GRAPHENE

(a) D and G peak of graphene and graphite

(b) G peak for different number of graphene layers and for different excitation
wavelength

Figure 5.4: This figure are extracted from ref.[135]
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5.1.1 Raman principle
Raman spectroscopy is a very powerful tool for probing vibrational properties
of a molecule or an atom in a crystal.

There are several types of scattering processes when light hits an object.
The most probable process is Rayleigh scattering which is an elastic scattering
on objects much smaller than the wavelength (typically atoms or molecules).
Raman scattering is another process, but which is inelastic. As this is a higher
order process involving in addition a phonon, it is weaker than the Rayleigh
scattering. Classically, it depends on the modulation of the polarizability by
the vibration.

The light thus interacts with a vibration mode resulting in an energy shift
of the re-emitted light. From this energy shift we can know the frequency of the
phonon.

There are two possible processes for Raman scattering: Stokes (emission of
a phonon) and anti-Stokes (absorption of a phonon).

Figure 5.5: Energy levels involved in Raman scattering.

A Raman spectrometer based on this principle measures the re-emission fre-
quency and thereby the frequency shift corresponding to the frequency of the
Raman active mode. By means of a confocal microscope with very low depth of
field, the sample is illuminated intensely on the focal plane with monochromatic
laser light. The backscattered light from a very thin space is then collected by
the microscope. A notch filter at the frequency of the light source is used to
remove the Rayleigh scattered light. Then the signal passes through a spec-
trometer which measures precisely the frequency shift.
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(a) (b)

Figure 5.6

5.1.2 Raman spectroscopy of graphene
It is based on the electron-optical phonon coupling: electron-photon coupling
drives the absorption of an incident photon to mix a virtual excited state (photo-
electron with respect to the Fermi level in our case) which by absorption (or
emission) of a phonon is mixed with another virtual excited state by electron-
phonon coupling before returning to the original energy by emission of an energy
conserving photon ωStokes(anti−Stokes) = ωincident±ωphonon. Raman spectrom-
eter probes the gain or the loss of energy due to absorption or emission of a
phonon.

A simple interpretation of electron-phonon coupling for electron described
using tight binding approximation is given assuming that the vibrating ions
carry the electron orbitals when vibrating. As a consequence, the tight binding
parameter t is shifted. A simple description of the t shift is given by Harrison
law (see ref.[43] and references therein)

t′ = t+ δt = t+
∂t

∂a
δa

∂t

∂a
' −2

t

a
∼ 4, 3eV.A

Here we will describe the possible processes of de-excitation of a photoelec-
tron. There are 5 important peaks in the Raman spectrum of graphene:

• The G peak is the graphite-like peak. The single phonon mode Raman
peak corresponding to the emission of an in plane optical mode phonon
(E2g) with zero wave vector, i.e close to Γ point. This peak is located at
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about 1582cm−1 from the incident energy and is the first order allowed.
With the 2D peak, it is the most prominent peak in graphene.

• The D and D’ peaks, called D for disorder and arising from a double
resonant Raman scattering , are located at around 1350cm−1 shift for D
and 1620cm−1 for D’. They are also due to optical phonons, here with a
wavevector near K or K’ for D inter-valley mode and very small of about
ε/v for D’ for the intra-valley mode. D peak is observable essentially at the
edge of graphene and is weak in the bulk where there is low concentration
of disorder. This is sketched on fig. 5.8 and 5.7.

• The 2D peak, Raman shift around 2700cm−1, corresponds to the emission
of two phonons with opposite wavevectors at K(K’) and -K(K’). This
peak is particularly interesting as it changes shape, width and position as
a function of the number of graphene layers allowing to discern between
mono, bi, and few layers graphene. The change in the shape is due to
the fact that in multilayer graphene the 2D peak has several components
whereas in monolayer it has only one component. The multiple component
is attributed to a splitting in phonon branch. (seer ref.[135] and references
therein). This is sketched on fig. 5.9.

• The 2G peak corresponds to the emission of two phonons with opposite
wavevectors near the Γ point.

Figure 5.7: Intravalley double resonant process, explaining the origin of the D’
band

142



CHAPTER 5. PHONONS AND RAMAN SPECTROSCOPY IN
GRAPHENE

Figure 5.8: intervalley double resonant process explaining the origin of the D
band

Figure 5.9: Intervalley two phonon mode, responsible for the 2D band.

5.1.3 Measurement of Raman on graphene
We often used Raman spectroscopy to probe graphene. First measurement were
done thanks to Y.Dewilde in ESPCI ant to A.Filoramo in CEA. In 2009 the
group acquired a Raman spectrometer (Jobin-Yvon Labraham Aramis shown
on fig.5.10). This spectrometer was specially designed for making high speed
large cartography.

This spectrometer is equipped of an Electron Multiplying Charge Coupled
Device (EMCCD), this CCD amplifies signal before readout, thus the readout
noise is negligible, also this CCD is back-illuminated allowing to use the full
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surface of the sensor to collect light. As a result this type of CCD introduced
by Andor technology is single photon sensitive.

This detector coupled to a 100mW laser source allows to have a signal over
noise ratio higher than 3 for the 2D peak after a 10ms exposure. This very
low exposure time coupled with a fast scanning mode (technology from Jobin-
Yvon called SWIFT) allows high speed mapping. This high speed cartography
adaptation of Labram Aramis spectrometer was the first done, designed for
graphene mapping and searching application.

Figure 5.10: The Raman spectrometer, model Jobin-Yvon Labraham Aramis

Figure 5.11 shows the 2D band of 1,2,3 layer(s) and bulk graphene.

144



CHAPTER 5. PHONONS AND RAMAN SPECTROSCOPY IN
GRAPHENE

Figure 5.11: spectra from a monolayer (red), a bilayer (green) a trilayer (blue)
and multilayers of graphene (light blue). Measurement made in Y.Dewilde’s lab
at ESPCI. On left is an E-beam picture and right optical picture (using the
stacking method described in section 4.2.1) of the graphene flake used for this
spectroscopy.

Figure 5.12 shows the result of a small size cartography. The red part on
this figure represents the area of the G peak.

Figure 5.12: Image of sample 3 (monolayer): superposition of an optical and a
false colour Raman image (the represents the area of the G peal)
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Figure 5.13: Large Raman cartography of graphene flakes.

Raman spectrum image of graphene and graphite flakes on a Si/SiO2 sub-
strate is shown on fig. 5.13. The scanned area is 4mm², with a resolution of
5µm. This mapping last approximately 3h. The colors represent the area under
the curve given by one spectrum of the intensity versus the wavelength between
2650cm−1 and 2750cm−1. On this map thick flakes of graphene appears in green
and thin (between 1 and 3 layers) appears in orange. The software provides to
view each spectrum by clicking on a location on this map. The gold cross makes
a shift in all the spectrum, as a result they appears in yellow.

As a conclusion, Raman spectrometer is the ultimate tool to probe graphene,
it is fast, sure and non destructive, also Raman mapping allows the deposition
of graphene on other substrates than SiO2, where graphene would not be visible
with optical microscope.
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Chapter 6

Setup and basic electronic
Measurements

In this chapter we will show a description of the samples and and of their
preparation followed by a presentation of basic electronic measurements which
are very important for the characterization of graphene and for the comparison
with results obtained by other group.

Figure 6.1: Experiment room
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6.1 Cleaning the graphene

For our measurements, it is very important to have good mobility , one of the
keys to which is good sample cleaning.

Graphene, like graphite, can adsorb many things, in particular water as
discussed in 2.5.5 . These adsorbates dope the graphene and shift the Dirac
point away from 0 gate voltage[33]. Also their random spatial distribution on
the graphene surface introduces density inhomogeneity. It has been shown that
doped graphene has always lower mobility. Indeed we can easily imagine that
the adsorbates are randomly located, as a result the doping is not homogeneous
giving rise to electron scattering[136, 137].

Another source of graphene pollution is residues of photoresist which is used
in the processing of the sample.

In order to remove these we have different techniques at our disposal.

6.1.1 Annealing the sample in Situ:
The easiest way to remove adsorbates is to heat the graphene under vacuum
for several hours. To avoid new adsorbates we have to heat the sample in the
fridge under cryogenic vacuum, before measuring. The temperature at which
the adsorbates begin to desorb is around 400K. As said in chapter 10, heating
the graphene at more than 400K when the fridge is immersed in 4.2K liquid
helium, may be difficult and requires some care and a good thermal design of
the fridge and the sample mount.

We typically heat the sample at 450K for several hours. During this op-
eration we monitor the 4-probe or 2-probe resistance. As molecules desorb,
graphene is less doped, implying that the resistance measured increases. Note
that in 2-point measurements which probe the contact resistance in series there
is a competition between the decrease of the contact resistance (contact may
improve while heating) and the increase of the sample resistance. The moni-
toring allows us to determine at which temperature molecules desorb and also
a way to find the right moment to stop heating: we heat until the value of the
resistance remains stable.

6.1.2 Current annealing:
Another method discovered by J.Moser to clean graphene is to send a high
current through it[138].

Here a high current is injected in the sample typically of the order of mA
(which is really huge for a monolayer). The method is to increase very slowly
the voltage on the sample while measuring the current until the value of the
current decreases for a fixed voltage. This means that the resistance is rising.
This method is hazardous because it doesn’t give reproducible results (sometime
graphene’s density become smaller, other times it doesn’t). It is also a bit
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dangerous because it can damage the sample. Too much current tears Graphene
[139] till breaking it, and that occurs very quickly.
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Figure 6.2: Plot of different current annealing on a sample. It died after the 5th

at a current near 1mA which is unbelievably high. The surface of the sample
was around 5µm2, so the density of current was of 4.107A.m−2 and the power
dissipated was around 1, 4GWatt.m−2, in a one single atom thick layer.
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6.1.3 AR/H2 Heating

Figure 6.3: tubular oven for AR/H2 heating

After the lithography process some resist residues remain on the graphene. One
way to remove them was found by Fuhrer [140]. It consists in heating the
graphene in a Hydrogen and Argon mixture at temperatures above 600K. This
way it is possible to heat graphene to relatively high temperature without oxi-
dizing it. This technique was shown to remove resist residues.

I tried to set up this technique but I encountered several problems. A tubular
oven was bought. Also a mixture of Ar/H2 with ratio 9:1 was used.

The oven is composed of a quartz tube and 2 caps, one with an entry for
the gas and the other with 2 entries, one to provide an exit for the gas and the
other for a nacelle. The nacelle allows us to introduce the sample. It looks like
a shovel for a pizza oven: a long tube of quartz allows us to put it in the middle
of the oven and a 2 inch quartz plate supports the sample. A leak proof joint
lets us remove a part of our shovel from the oven tube.

Several heating cycles were done on 5 samples. The temperatures were
set between 550K and 650K with low ramping rate (1K/hours). The sample
remained about two hours at the highest temperature.

The major problem that I encounter is the loss of contacts. Most of contacts
were lost after heating. This was due to graphene break after heating or when
cooled down after heating as it is possible to see on fig 6.4.

A possible explanation comes from C.N.Lau results about thermal expan-
sion coefficient of graphene[132] which is negative below 350K. There is a strong
differential thermal stress between graphene and the substrate. As the mono-
layer is glued at some points in Ti/Au contacts, when it is heated its strong
contraction opposed to the substrate expansion induces strong stress and even-
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tually tears graphene near the contact region. Also when cooling down the
revers thermal expansion process may lead to favor ripples which degrade the
Graphene mobility.

(a) (b)

Figure 6.4: E-beam picture of tearing in the graphene near the contacts.

An other consequence of this heating is that the gold of the contacts becomes
very soft and do not offer the possibility to be bonded anymore.

Thermal properties Graphene also has rather special thermal properties, in
that its thermal expansion coefficient changes sign at around 350K.[132]

6.2 Doping graphene using gates

6.2.1 Back gate

Figure 6.5: schematic of back gated graphene

A so-called back gate is the more commonly way to tune the density in graphene.
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To make a back gate, graphene is deposited on top of an insulating silica layer
deposited on a conducting highly doped silicon substrate. The graphene then
plays the role of one electrode of a parallel plate capacitor with the conducting
silicon and applying a potential puts a controlled charge on the graphene. The
value of the capacitor is:

C =
Q

VG
= ε0ε

A

d

the density is then

n =
C.VG
A

= 7, 4.1010cm−2.V −1

for a 300nm silicon oxide layer.
This provides a simple tool to tune the density .

Back gate is a very useful and simple way to vary the density in a sample, but
the doping is not homogeneous and charges tend to accumulate on the edges
of the sample on a lengthscale of the order of the SiO2 thickness. A simple
explanation for this is that the field lines are not perpendicular to the sample
on the edges due to a sharp potential drop. A calculation is done in ref [141].
This can alter the quantum Hall effect because in Hall bar geometry it is very
sensitive to what happens at the edges.

6.2.2 The side Gate
In order to be free from the homogeneity problems we first left some graphene
just near the edge of the sample by patterning a Hall bar in a large flake of
graphene and cutting a trench of 300nm. This was done for sample 1.

Then we tried to make samples with a side gate and no back gate. Here one
can guess that near the edge the electric fields should be stronger. In order to
avoid that, we used a strip line geometry.

A conformal transformation which allows to make the correspondence be-
tween the upper half plane and a rectangle provides a way to calculate the
electrostatic problem of parallel plate capacitor. The density is:

ns(x) = ns
1√

1− u2
√

1− k2u2
(6.1)

where u = 2x
w and k is linked to the gate distance.(see fig 6.6),

ns =
Q

eLwK(k)

K is an elliptic integral. The charge Q = CV can be calculated using a software
(for example AppCad) to compute the value of the capacitance. Equation 6.1
shows that the density varies rapidly on the edge. By putting metal lines along

152



CHAPTER 6. SETUP AND BASIC ELECTRONIC MEASUREMENTS

the graphene at its potential we can avoid that problem and choose the homo-
geneity we want inside the graphene by varying the distance between the gates
and the line’s width. So in our sample these line were contacting the graphene
on the edges and were used to measure the potential (a picture is in 6.8). The
counterpart is that the gate is less efficient especially if we want a very good
homogeneity, and this limits the width of the sample.

Figure 6.6

6.3 Transport measurement

6.3.1 Devices
15 devices where cooled down, 14 monolayers and 1 bilayer.

4 monolayers and 1 bilayer had good electronic properties: meaning that the
gate was efficient, the Dirac point was not too shifted and the Quantum Hall
effect was observable.

For these studies we measured four Hall bars made with monolayer graphene
with different properties. The Aspect ratio Rasp was estimated using a numer-
ical electrostatic calculation.

Sample 1: It was the 3rd cooled down and the first sample in which we were
able to observe quantum Hall effect. It was covered with PMMA resist. As it
is possible to see on the picture the Hall bar was designed in a larger graphene
layer allowing to let some graphene spaced by a gap of 300nm connected to the
voltage probes to have a better homogeneity at the edge. Four contacts were
available on this sample (those numbered on the picture 6.7).
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Figure 6.7: Optical image of sample 1

Sample 2: This sample was side gated. This side gate was less efficient than
back gate by approximately a factor of 5. It was also covered with PMMA.

Figure 6.8: E-beam picture of sample 2
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Figure 6.9: E-beam picture of S3, here some contacts had been destroyed by
Ar/H2 heating

Sample 3: Sample 3 was a simple Hall bar of graphene with a backgate to
control the charge density. 4 contacts were available on this sample which
allowed four point measurement of the longitudinal resistance. The aspect ratio
used for ρxx is Rasp = 1, 29.

Sample 4: Samples show the QHE of a monolayer but the doping with the
back gate was around twice less efficient than it should be with a 300nm thick-
ness of silicon oxide. All the contacts were available allowing the measurement
of Hall and longitudinal resistance. The aspect ratio used for ρxx is Rasp = 4, 94.

Figure 6.10: E-beam picture of S4

To summarize:

sample 1 2 3 4
gate back gate side gate back gate back gate
cover PMMA PMMA no no

Mobility cm2.V −1.s−1 2900 2000 6400 10000
at n = 1.1012cm−2
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Sample 5: Corbino sample A bilayer with a corbino geometry was also
measured. A photograph of it can be found in fig. 4.11

The first two samples were measured with the old setup: they were immersed
in liquid helium in a tube with the measurement wires going upwards. We were
unable to heat them, so we found that putting PMMA on top protected them
from too much residual doping. The three other samples were measured in the
new fridge after in situ heating. The electronic measurements where done using
a classical low frequency Lock-in method applying a bias current of 10nA.

6.3.2 Conductance and mobility
6.3.2.1 Monolayers

Electronic measurement at zero magnetic field provides a lot of useful informa-
tion on the sample. We mainly measure the 2 point and 4 point resistance as
a function of the density. The first information we can have is the position of
the Dirac point. which tells us if the residual doping is high or low. With the
four point measurements, the aspect ratio, and the density we can calculate the
mobility, providing a very useful comparison with results from other groups. By
comparing 2 and 4 probe measurements we can have some information on the
quality of the contacts.
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Figure 6.11: Conductivity as a function of the density for the different samples
at 4,2 Kelvin and fitting curve for the resonant impurities model.

Also as mentioned in 2.5 measuring σ(nc) gives us information on the origin
of scatterers limiting the mobility.

In sample S3 and S4 the dominant scatterers seem to be resonant impurities
(explanation in 2.5.3.1), the conductivity is well described by (eq.2.27):

σ ≈ 2

π

e2

h

ncln2(R
√
πnc)

nimp

The results of the fit are:

Sample S3 S4
nholeimp 5, 7± 0, 5.1012cm−2 3, 4± 0, 5.1012cm−2

Rhole 9± 5.10−12m 1, 3± 0, 5.10−11m

ne
−

imp 2, 2± 0, 5.1012cm−2 1, 72± 0, 5.1012cm−2

Re
−

8± 2.10−11m 1, 1± 0, 2.10−10m

These fitting parameters show a density of impurities which is different for
electrons and for holes
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Figure 6.12

Also the size of the impurities is in agreement with the assumption that
R < λF and is different from electron to hole. On the hole side it seems to
be very small, this let open the question wether there is an other mechanism
that have a significant contribution. To give an example if a mechanism such
as weak scattering contributes to a constant conductivity of 5e2/h, R would be
2 orders of magnitude higher.

On samples S1 and S2 which was covered by PMMA resist the conductivity
does not seem be govern by the same law and it is harder to draw a conclusion
on the dominant scatterers.

6.3.2.2 Bilayer

The bilayer measured shows a lower mobility. Transport was also found to be
limited by resonant scattering impurities.
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Figure 6.13: Measurement of the conductivity and mobility on the Corbino at
1.6K

The same law than for monolayers in applicable in case of resonant impurities
for bilayer. From the fit of conductivity we get these parameters:

Sample Corbino
nholeimp 1, 9.1014cm−2

Rhole 3, 0.10−11m

ne
−

imp 8, 8.1013cm−2

Re
−

1, 0.10−10m

These values have to be taken carefully because it was not possible to extract
the contact resistance and substract it in the value of the conductivity. From
results in monolayer we emphasise it to be low but with no certainty.

The fitting parameters and the value of the mobility seem to be quite lower
than in our monolayers indicating more disorder. This was confirmed by quan-
tum Hall measurements.
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6.3.3 Universal Conductance Fluctuations
Universal Conductance Fluctuations (UCF) were usually seen on sample with
typical value of ∼ e2/h . On our sample we observed some reproducible fluc-
tuation attributed to UCF. The reproducibility was checked by sweeping the
magnetic field in both directions.
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Figure 6.14: 4 point measurement of the conductance G on S3 at n ∼
4, 5.1012cm2 as a function of the magnetic field for temperature ranging from
4.2K to 90K

Figure 6.14 shows an evolution of the UCF as a function of the temperature,
here we can see the UCF disappeared around 40K and saturate around 10K
with a value of δGucf ∼ 1

2
e2

h , which are the typical value expected for UCF.
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Figure 6.15: 4 points measurement of the conductance G − G0 on S3 as a
function of the magnetic field for different values of the density at T=4.2K . G0

is a subtracted constant.

Figure 6.15 shows the UCF at different values of the density. We can see
here that there is no substantial difference is the amplitude of the UCF near
and far from the Dirac point.

Here these measurements are more qualitative than quantitative, they allow
to confirm that the electronic transport was in the coherent diffusive regime.

More complet measurement of UCF in graphene can be found in ref. [142,
143], also imaging of UCF with scanning probe microscope can be found in
ref.[144].

6.4 Quantum Hall measurements
To observe quantum Hall effect in graphene we can sweep the magnetic field at
fixed density or sweep the the density using the gate at a fixed magnetic field,
while measuring the 4-probe resistance.

6.4.0.1 3-point measurements

For sample 1, as we had only four contacts available, we were able to measure
Rxy with a four probe measurement and Rxx with a three point measurement.
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Figure 6.16

These measurements are particularly interesting because they show special
features of the graphene. We were able to see Rxx for hole doping and Rxy +
Rxx for electron doping, showing that electron and hole propagate in opposite
directions.

Indeed in QHE plateaus, an edge channel remains always at the potential
of the lead from which the current originates. As shown on Fig. 6.16, in our
3-point measurements one probe was the drain (connected to the ground), an
other is the source and the third is a voltage probe (no current passes through
this contact). The potential drop was always measured between the grounded
contact and the voltage probe.

When the Fermi level lies in the valence band, the charge carriers are holes.
As it is shown on the upper of figure 6.16, the channel leaves from the grounded
contact implying that the entire edge is at the ground potential. The potential
difference measured is just V xx , which is the potential drop along a channel in
the quantum Hall regime, giving Rxx + a contact resistance (here less than 10 Ω,
so it can be neglected). In contrast when the Fermi level lies in the conduction
band, the charge carriers are electrons. In that case the channel leaves from
the source contact which is at the Hall potential. The potential drop measured
is now V Hall + Vxx . These results are particularly clear, it is plotted on 6.17
where the red dots are the Hall resistance and the black dots are the 3 points
resistance.
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Figure 6.17: Hall and 3 point resistance as a function of gate voltage for B=16.5
Tesla at 4.2 Kelvin

6.4.0.2 Measurements on other samples.

Figure 6.18 shows measurement of the longitudinal resistivity versus the mag-
netic field for different value of the gate voltage. SDH oscillations arise here
around 6 Tesla, which is a typical value for our samples.
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Figure 6.18: Magnetic field sweeps for different gate voltages on S3 at 4.2 Kelvin

On sample S4, it was possible to measure ρxx and ρxy thus it was possible
to extract σxx and σxy. Figure 6.19 shows a flow diagram i.e σxxversus σxy on
the sample S4 at a fixed magnetic field (B=16.5T). The inset is an enlargement
of the transition from ν = −2 to ν = −6. The striking features here is the
large circle representing the Dirac point which means that it can be possible
to describe σxx and σxy with only one variable parameter. Similar figure than
the half ellipse representing the transition between ν = −2 and ν = −6 was
already observed in conventional 2DEGs in [115] and used as an argument for
a behavior governed by an universal law in ref. [114].

164



CHAPTER 6. SETUP AND BASIC ELECTRONIC MEASUREMENTS

-10 -8 -6 -4 -2 0 2 4 6 8 10 12
0

4

8

12

16

20

 

 

xx

xy

B=16.5T

2 4 6
0.0

0.2

0.4

0.6

0.8

 

 

xx

xy

Figure 6.19: Flow diagram for sample S4, the circle of the main figure represents
the flow around the Dirac point at 1.6K. Inset is a zoom on the transition
between ν = −2 and ν = −6

6.4.1 The effect of the contacts
The usual contact resistance on good contacts was of the order of 10Ω which
is quite low. We did not systematically measure the resistance of the contacts
as we were usually measuring in a 4-point configuration. However the 2-point
(fig.6.20) and 3-point (fig. 6.17) measurements we did in QHE regime gives
accurate informations on the contacts resistances. Indeed on the Hall plateaus
at low temperature the resistance of the sample is 0 on one edge and RHall
between edges, thus we can determinate the contact resistance. As can be seen
on figure 6.20 the 3-point resistance vanishes for hole transport and on 6.17 the
2-point resistance shows values very close to the quantized plateaus indicating
a very low contact resistance.

Another important aspect to notice is that our 2-probe measurements in
QHE show a clear asymmetry between electrons and holes. Electron doping
by the contact can explain this fact: a right shift (electron side) of the 2-point
resistance can explain why we see a peak around −20V (on ν = −2) and no
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peak at 20V (on ν = 2). Due to this doping the ρxx peak appears on the Hall
plateau on one side and in the Hall plateau transition on the other side.

The doping by the contact has been measured in ref:[145, 146].
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Figure 6.20: Four probe (Rxx) and 2 probe resistance as a function of gate
voltage on S3 for B=16.5 Tesla at 4.2 Kelvin

6.5 Corbino measurements on a bilayer
Figure 6.21 shows measurement of the Quantum Hall effect in the Corbino
sample done at various temperature. The interpretation of these measurements
is not yet fully achieved and will not be presented in this thesis.
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Figure 6.21: σxx on a corbino at B=16.5 Tesla for temperature ranging from
1.6K to 300K
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Chapter 7

Measurement of the transport
and elastic scattering time

The goal of this study was to measure the transport time τtr and the scattering
time τe in graphene. From the ratio τtr/τe interesting physical properties of the
scattering mechanisms can be extracted. Here we recall the discussion in section
2.4.1.1: τtr is the transport time entering the Drude conductivity and τe is the
life time of an electronic wavefunction. τe is sensitive to the number of collisions
whereas τtr depends on the number of collisions and the scattering angle. A large
ratio τtr/τe indicates that the scattering is predominant in the forward direction
as in 2DEG made at the interface of GaAs/AlGaAs heterojunctions where this
ratio was found to be larger than 10.

This study was mainly done in the LPS Orsay, led by M.Monteverde in
H.Bouchiat’s team, it is published in ref [27].

The study was done on 5 samples. It is mostly focused on two samples man-
ufactured and measured by C.Ojeda in Orsay, one monolayer (sample A) and
one bilayer (sample B). Both have 2 contacts made with 40nm thick palladium.
The samples were manufactured by the same procedure as described in chap-
ter 4 except for metal deposition which was made with a sputtering technique.
4-probe measurements were made on 2 of our samples (S2, S3) to confirm the
results of the two probe experiment.
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Figure 7.1: E-beam picture of sample A (left) and sample B (right)
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Figure 7.2: Example of our 4 point SDH measurement as function of the tem-
perature from 4K to 200K on sample S3

We saw in 3.7 that both τe and τtr enter in the formula of the low field
Shubnikov de Haas resistivity:

δρxx(B)

ρ0
= 4DT exp

(
− π

ωcτe

)
cos

(
sπEF
~ωc

− sπ
)

(7.1)

ρxy(B) = ρ0ωcτtr −
δρxx(B)

2ωτtr
(7.2)
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Thus simultaneous measurements of ρxx(B) and ρxy(B) allow the extraction
τe and τtr separately.

On two point samples ρxx(B) and ρxy(B) can be extracted from the two
point resistance with the following formula involving the Hall and longitudinal
resistances R(B)−Rc =

[
ρ2
xx + ρ2

xy

]1/2 for a square geometry and R(B)−Rc =

(L/W )
[
ρ2
xx + ρ2

xy

]
/ρxx for short and wide samples. Rc is the contact and wire

resistance, and is not well known.

In 2-probe samples τtr was extracted from the low field magnetoresistance
measurement. Using eq.7.1 and the considerations about the magnetoresistance
in 2-probe samples we have at low magnetic field:

R(B)−R(0) =
h

2e2

L

W

1

kF vF τtr
αg(ωcτtr)

2

Where ρ0 = 1/σ comes from the Drude conductivity, and αg is a numerical
coefficient depending on the aspect ratio of the sample. This method removes
the dependence on contact resistances.

kF was extracted from the periodicity of the SDH oscillations which is much
more reliable than using the capacitance model to compute the density from the
gate voltage especially near the Dirac point where electron-hole puddles induce
a residual density.

For 4-probe measurements, τtr can be extracted directly from the Drude
conductivity at zero field σ = (2e2/h)kF vF τtr as the contact resistance does
not contribute in the measurement of σ. The density nc was extracted from
tabulating the values of the density as a function of the gate voltage with the
quantum Hall effect (nc = k2

F /π).
Figure 7.3 shows results of τtr measurements on sample A and Sample S3.
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Figure 7.3: Transport time. The green curves are extracted from SDH oscillation
on a 2-probe monolayer measured in LPS, the blue curves from the zero field
conductivity on sample S3 at Saclay.

τe was extracted from the SDH oscillations on all samples by measuring their
amplitude and fitting them with an exponential law (as shown in fig. 7.4 and
7.5).
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Figure 7.4: δRxx(B)/Rxx(0) as a function of 1/B on S3 at n = 5, 2.1012cm−2.
The fit of this curve gives τe = 31fs. Fit done by M.Monterverde.
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The data acquired in Orsay are extensive, τe and τtr were measured for
nearly all the accessible densities. For our samples, 3 points for τe in S3 and 1
point for S2 were measured.

The values of τtr and τe (extracted by M.Monteverde) for our samples are:

n(cm−2) kF (m−1) τtr (fs) τe (fs) τtr/τe

S3
5, 2.1012 −4, 1.108 59 31 1, 9± 0, 3
4, 1.1012 3, 6.108 63 24 2, 6± 0, 4
5, 9.1012 4, 3.108 68 26 2, 6± 0, 4

S2
5, 1.1012 4, 0.108 21 16 1, 3± 0, 2

Figure 7.5: left panel shows magnetoresistance for monolayer sample A at 1K
(dots) and the red line is the fitting curve according to eq. 7.1 and 7.2. Inset
shows the same measurement for different values of the gate voltage. Right
panel shows δR(B) for a bilayer after substraction of the quadratic background
as a function of B for temperatures ranging from 1K to 22K. Inset shows a fit
of the temperature dependence of SDH oscillations, from this fit it was possible
to extract meff = 0, 035± 0, 2me. (figure from M.Monteverde)

Figure 7.6 shows the measured values of the ratio τtr/τe as a function of kF .
For all samples r = τtr/τe was found to be nearly independent of kF . It is equal
to r = 1, 7±0, 3 in samples A,C and S2 and r = 1, 8±0, 2 in sample B (bilayer)
whereas sample S3 exhibits slightly higher ratio r ' 2, 4 at high electron doping.
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Figure 7.6: Value of τtr/τe for the four monolayers measured as a function of
kF

These measurements give an indication of the type of dominant scatterers at
zero magnetic field in graphene. A computation made by Hwang and Das Sarma
[147] predicts that the ratio τtr/τe for graphene is slightly less than 2 for short
range neutral impurities and around 8 for charged impurities. As a consequence,
charged impurities appear not to dominate the scattering. Further evidence for
that is the dependence of the zero field conductivity σ on the density that is
sublinear in our sample, and should be linear in the case of charged impurity
scattering.

Neutral resonant impurities as described in section 2.5.3.1 appear to be a
good candidate as the major source of scattering. The ratio τtr/τe is below 2
for all the samples except S3 (which is slightly higher but far from the ratio
predicted for charged impurities). The sublinear variation of σ too is well fitted
by a resonant neutral impurity model (results are shown in section 6.3.2) .

To conclude we can say that strong resonant neutral defects with range
shorter than the Fermi wavelength are the major source of scattering in our
samples. Candidates for this type of scattering are vacancies, adatoms or short-
range ripples. This does not exclude other types of scattering, especially for
large samples like S3 where as we saw in 6.3.2 and from the value of τtr/τe, the
electronic transport is probably limited by several different types of impurity.
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Chapter 8

Mechanism of the
disappearance of the QHE at
finite energy

This chapter addresses the central part of the PhD thesis and concerns the
disappearance of the Quantum Hall effect.

We will show that graphene mono-layers combined with 300nm close Si-
doped backgate allow the first time observation of a cross-over from Efros-
Shklovskii to Mott variable range hopping transport in the quantum Hall regime.

Since its recent discovery [50, 14], the anomalous Quantum Hall Effect
(QHE) displayed by the relativistic like electrons of Graphene monolayers has
been most closely investigated in the search for quantum Hall ferromagnetism
[148] and the Fractional Quantum Hall effect [52, 53] in very low disorder sam-
ples to favor interaction effects. Here we address the opposite regime where
disorder is strong enough to overcome electron interactions, as it is the case for
standard exfoliated Graphene monolayers deposited on the oxide layer of a sili-
con substrate. Graphene offers a new set of parameters to revisit the quantum
phase transition of localization in the Quantum Hall regime. In particular, we
show that the screening of interactions by the 300 nm distant back-gate provided
by highly doped silicon allows one to observe for the first time the transition
from Efros-Shklovskii (E-S) to Mott Variable Range Hopping (VRH) in QHE
for large localization length. The universal scaling exponents of quantum local-
ization at Hall plateau transitions deduced from our entire set of temperature
and bias current data, together with the E-S to Mott VRH transition, defini-
tively validate the Polyakov-Shklovskii (P-S) suggestion that VRH transport is
sufficient to describe the quantum Hall electrical transport [90].

In this chapter we present a complete set of data in temperature and bias
current on the QHE regime performed on Graphene monolayers. The silicon
back-gate at set back distance of d = 300nm gives first time access to the cross-
over from Mott to ES VRH regime on conductivity peaks for the highest filling
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factors where ξ is large. All the scaling exponents agree with the P-S and A-S
predictions in the screened and unscreened regime. This provides a definitive
confirmation of these models. The scaling exponent found to be γ ' 2.3 is
the same for first two n = ±1,±2 LLs and the n = 0 LL where no anomalous
behavior is observed as found in Ref.[75].

8.1 Transport measurement procedure and overview
of the transport data.

8.1.1 Temperature measurements
Observing the variation of the conductivity (or resistivity) as a function of
temperature for different magnetic fields is the first step in determining the
basic transport mechanisms at work in the QH regime.

We have performed very extensive measurements on 2 samples, samples 3
and 4 (described in section 6.3.1). We will concentrate mostly on the measure-
ments done on sample 3.

Longitudinal resistance Rxx was recorded on varying the electron density for
about 50 fixed temperature values ranging from 1.6K to 300K and similar runs
were repeated for different fixed high magnetic fields from 6 to 17 Tesla. The
bias current was fixed at 10nA for all temperature measurements. Longitudinal
resistivity ρxx was calculated from the Rxx values knowing the aspect ratio of the
sample. Fig. 8.1 displays the whole set of data of ρxx at different temperatures
for B = 16, 5 Tesla.

For these measurements we varied the density slowly (less than 2 volts per
minute) in order to avoid hysteresis effects due to trapped charges in the silicon
oxide. The gate was swept in both directions, but in order to get rid of the
weak remaining hysteresis for a given sample we always considered data for the
same direction of gate voltage sweeping. The typical range of gate to sample
potential at fixed temperature was -70V to +70V. During each sweep around
3000 data points were acquired.

Data acquisition was piloted automatically by computer using Labview soft-
ware.
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Figure 8.1: Longitudinal resistance ρxx versus filling factor at B=16,5 Tesla for
temperature ranging from 4.2K to 300K on S3 in steps of around 5K at bias
current of 10nA.
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Figure 8.2: Hall resistance RHall versus filling factor at B=16,5 Tesla for tem-
peratures ranging from 1.6K to 300K on S4

On sample 4 we were able to measure both ρxx and ρxy . Figure 8.2shows the
evolution of the Hall resistance as function of the filling factor (or gate voltage)
at fixed magnetic field B=16.5T for different temperatures.

Figure 8.3 shows a color plot of the Hall resistance as a function of the
temperature for different fixed high magnetic fields. The part in red is the Hall
plateau at ν = −2, this figure provides to have a visualization of how the width
of the plateau decreases with the temperature at different magnetic fields. At
16,5 Tesla, the Hall resistance on ν = −2 deviates from the quantized value of
h/2e2 above a temperature of ∼ 100K and on ν = −6 it deviates from the value
of h/6e2 above ∼ 40K. These temperatures vary strongly with magnetic field.
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(a) (b)

(c) (d)

Figure 8.3: Color plot of RHall versus temperature and gate voltage for different
magnetic fields. Red corresponds to the ν = −2 Hall plateau

Both figures show that QHE effect is maintained at very high temperature
compared to conventional 2DEGs, and even at room temperature some remain-
ing oscillations can be seen in the longitudinal resistance as in ref [44].

8.1.2 Bias Current measurements
Studying the quantum Hall effect as a function of the bias current is also very
interesting as it gives information about eventual breakdown. If no trivial heat-
ing accompanies the large currents, it can also confirm a hopping law or probe
the Hall field profile in the sample which, up to now, has not been done with
graphene.

For these measurements we fix temperature and magnetic field, and vary
the bias current. As for the temperature measurements, the gate was swept for
fixed bias current ranging from 10nA to 100µA in non equal steps. Some 50
curves were acquired for each magnetic field from 6 Tesla to 16,5 Tesla. The
size of the steps was set to vary linearly between 10nA and 10µA and to give
the wanted number of curves.

The bias current was injected from a constant voltage source in series with a

178



CHAPTER 8. MECHANISM OF THE DISAPPEARANCE OF THE QHE
AT FINITE ENERGY

large resistor. Several resistors were used ranging from 20MΩ to 100kΩ to access
all the bias current range. As for high bias current the graphene resistance is
non negligible compared to the 100kΩ source resistor and vary from around 2kΩ
to more than 12kΩ, 2 points measurement of graphene was recorded to access all
the values of the bias current. This is important for the analysis; as we measure
the 4-probe potential drop, a precise value of the current is needed to compute
the resistivity ρxx and it is also needed to determine the evolution of ρxx with
bias current. For the analysis, each value of ρxx was associated with the precise
value of the bias current at this point.

These measurements were done for all four samples, but the most complete
set of measurements was done on sample 3.
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Figure 8.4: Longitudinal resistance ρxx versus filling factor at B=16,5 Tesla for
bias current ranging from 10 nA to 100 µA with variable step ranging from
10nA to 10µA on sample S3 at T=4K

Note that additional bias current measurements on samples S1 and S2 are
presented in the appendix (chapter 11).
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8.1.3 Analysis of the data
Our measurement of ρxx versus temperature or bias current clearly showed
2 distinct behaviors. We attributed the non zero values of ρxx to variable
range hopping at low energy and to activation at higher energy. This has been
confirmed by a long series of function fits through nearly all the filling factor
range. In this paragraph we will detail our fitting method and the way we
extract relevant physical parameters such as the VRH temperature leading to
the localization length or the activation energy, giving us the energy gap between
Landau levels.

An example of the 2 distinct regions is given by figure 8.5 which shows the
typical evolution of ρxx with temperature on a plateau (here on the minimum
of ρxx at ν = −2, which we will call ρxx(−2) in the following); here we have
plotted Tρxx(−2) on a logarithmic scale versus 1/T 1/2. This corresponds to
the Efros-Shklovskii (E-S) VRH law, which fits well from 1.6K to '80K. Above
100K however the departure from the E-S VRH law signals the onset of an of
activated law.
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Figure 8.5: Example of a plot T.ρxx as a function of
√

1/T on the center of the
plateau ν = −2 at 16.5 Tesla and fitted by VRH and activated laws. This plot
clearly supports the ES-VRH picture for T<100K.(here for

√
1/T > 0, 1 ).
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Here we show in more detail how our fitting function based on a combination
of activated and E-S VRH law allows us to extract the characteristic energies.
As shown in chapter 3.10 it is very informative to know the parameter T0 which
is proportional to the inverse of the localization length over all the filling factor
range to check the universal laws of the QHE.

ξ(ν) =
Ce2

4πεε0kBT0(ν)

In this study we focus mostly on the analysis of ρxx and not σxx which,
although it has the most physical sense, is not strictly speaking available for
sample S3 because ρxy could not be measured.

Recalling the relation between ρxx and σxx :

σxx =
ρxx

ρ2
xx + ρ2

xy

We see that on the Hall plateaus when ρxx values are very low ρxx = kσxx
where k = 1/R2

H is a constant, so fitting ρxx or σxx leads to the same results.
On the edge of the plateau ρxx increases but is still low compared to ρxy (at
the transition between ν = 2 and ν = 6, ρmaxxx ∼ 2kΩ when 4kΩ < ρxy < 13kΩ)
as the contributions are squared, fitting ρxx or σxx should not change much.
To make sure of that we fitted both ρxx and σxx over the entire range of filling
factors for sample S4 where ρxy data was available leading to very similar results.

Because of the huge amount of data (about 3000 data points per voltage
bias sweep) we have had to construct reliable tools to fit the data as a sum of
VRH and activated laws.

The first step was to build a temperature-gate voltage matrix of the data.
This was done with the help of a 2000 point extrapolation of each set of data
at fixed temperature. As there are around 50 temperatures, at the end of this
process we have a matrix including 2000 curves of around 50 points of ρxx as a
function of the temperature (for each magnetic field).

Another challenge was to generate automatically fitting curves representing
two different behaviors (activated and VRH) with exponential dependence on
the fitting parameters (the energy) and to ensure that the minimization occurs
properly and reliably such that the values extracted are not meaningless. The
transition between those 2 behaviors happens at different temperatures for dif-
ferent filling factors; the simpler alternative strategy of fitting separately the
two laws for two different temperature ranges was not applicable here. Also in
the transition region which can extend over about 20K, both contributions are
present.

The total longitudinal conductance σxx sums the VRH and activated contri-
butions, and as the ρxx is proportional to σxx, the best solution found to make
these automatic fits was to use a function adding the two contributions:

ρxx =
A

T
exp

(
−
(
T0

T

)1/2
)

+B exp

(
− Ea
kBT

)
(8.1)
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Figure 8.6: Activated (blue) and VRH (black) contribution to the resistivity
(red), the functions of equation 8.1 are plotted with typical fitting parameters
on ν = 2.

This gives four fitting parameters (A, B, T0, Ea).
Non sensible fitting parameter results can be avoided by making a care-

ful choice of the initialization and bounds of the fit parameters. As shown on
figure 8.6, below ∼ 100K the activated part is vanishing and the VRH part
A/T.exp(−

√
T0/T ) is the sole fitting function. Above 100K the activated con-

tribution starts to dominate, and grows exponentially whereas the VRH part
can be viewed as a nearly constant contribution. In order to find good bounds
for the parameters many curves were fitted manually before the automation.
Also, to avoid that the activated part which is orders of magnitude higher than
the VRH part, taking all the weight in the least square minimization, we fitted
the logarithmic values of the data.

Figure 8.7 shows a color plot of the ratio of the experimental data over the
data generated by the fit. A ratio equal to one indicates a perfect fit. As
mentioned above, the fitting law contains both activated and E-S VRH. We
can clearly see when the E-S law fits well. At high temperature, the activated
part leads to good fits almost everywhere. At low temperature fits are not good
everywhere. Particularly around ν = ±2 the fits are not good below 20K. This
is due to a saturation of the variation of ρxx at low temperature arising when
the hopping distance is longer than the sample width.
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Figure 8.7: Comparison between fit and data

For the value of ρxx as a function of the bias current we followed the same
procedure and use a law combining an activated part and a variable range
hopping part.

ρxx =
A

T
exp

(
−
(
I0
I

)1/2
)

+B exp

(
−Ia
I

)
(8.2)

As we saw in section 3.10.2.2, and will be recalled in section 8.4, the bias
current in VRH is proportional to the temperature but in the activated part
there is no particular reason that is should be the case. Thus we do not expect
to find a meaningful parameter in the activated part, but maintaining this part
facilitates automatic fitting. Here these fitting were more difficult to make
because the longitudinal resistance saturates below a certain bias current which
depends on the filling factor; in fact the true parameter here is VHall = I.RHall
which varies with the filling factor. At high magnetic field, however, it was
possible to get meaningful values of I0.

8.2 High energy transport: thermal Activation
energy

The activation process involves two contributions, if the Fermi level is somewhere
in between two Landau levels (LL), an electron can jump from the Fermi level to
the next LL or from the LL below to the Fermi level. Here we will not consider
the higher order process, ie electrons jumping on LL higher than the nearest
one.
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If we set µ = 0 in the middle of two LL (and corresponding ideally to the
middle of a Hall plateau) we can write

ρxx ∼
[
exp

(
−∆− µ
kBT

)
+ exp

(
−∆ + µ

kBT

)]
where µ(ν) depends on the filling factor ν.
So at the center of two LL this expression becomes:

ρxx ∼ exp

(
− ∆

kBT

)
This tells us the spacing between LL which is equal to 2 ∗∆.
When the Fermi level is moved, one of the exponentials becomes rapidly

dominant, thus we can fit ρxx by a single exponential which is the second term
in equation 8.1

ρxx = ρ0
xx exp

(
− Ea
kBT

)
(8.3)

where the prefactor will double upon approaching the midpoint between LL.

The theoretical maximum activation energy separating theN th and (N+1)th

LL obtained from the Dirac equation in magnetic field is

4 =
1

2
(EN+1 − EN ) =

1

2
(
√
N + 1−

√
N)
√

2e~v2
FB (8.4)

The probability for an electron to occupy the next LL follows an Arrhenius
law P ∼ exp(−Ea/kBT ), which is thus directly reflected in the conductivity
(resistivity). When an electron occupies a higher empty LL it can backscatter
to the opposite edge. As a consequence the conductance is proportional to the
probability of occupation of the higher LL. At low energy it is not the dominant
effect (from the gap values ρxx would show extremely small values) and the intra
LL mechanism called VRH (see next paragraph) dominates. Our measurements
show that this effect dominates only beyond 100K.

Activation energies were extracted from our automatic fitting procedure and
are plotted on fig 8.8 as a function of filling factor for different magnetic fields.

As we do not know exactly where the midpoint between two LL lies, we take
for values of the gap ∆ the maximum of the activation energy Ea for each Hall
plateau; these values are plotted as a function of the magnetic field on fig.8.9
for S3 and S4.

It is expected that the gaps ∆ measured should be smaller than those pre-
dicted by LL separation because of disorder broadening of the levels. By com-
paring the experimental gap and the theoretical gap we can estimate the LL
broadening by disorder. On the first sample we find a broadening of 200K at
17T and in the second sample 70K.
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Figure 8.8: Activation energy as a function of filling factors for different mag-
netic fields ranging from 8,2T to 16,5T on S3.
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Figure 8.9: Activation gap for S3 and S4 at different magnetic fields for ν =
±2,±6,±10. Squares are for sample S3 and triangles for S4. Solid lines are
the theoretical gaps given by the Dirac equation, blue line for ν = ±2 and light
blue line is for ν = ±6. The red lines are the fitting curve with ∆n and ∆V
contributions (see below).

The values of the activation gaps measured for sample 3 are very close to
those measured in ref.[61] (see figure 3.19). In sample S4 the values of the mea-
sured gaps are higher, in agreement with expectations as this sample shows a
higher mobility.

These values should vary with the square root of the magnetic field. Here
our values are clearly lower than theoretical gaps, in transport measurement the
fact that values of the extracted gap are lower than the theoretical values can
be explained by two phenomena:

• Density fluctuations which are responsible for the fact that the chemical
potential is not clearly defined. To compute these density fluctuations we
can write:

∆ν

ν
=

∆n

n
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∆ν = ∆n
h

eB
Thus a variation ∆n should lead to a variation in ∆ν proportional to 1/B.

These variations are due to rearrangement of the charge to screen fluctuations
of potential: on a Hall plateau the screening is weak but till present.

As we measure an energy gap we cannot extract an exact value of the density
fluctuation since the variation of ν with the energy is not known but we can
extract a maximum value using the derivative of the energy, as sketched on
figure 8.10.

Figure 8.10: Filling factor as a function of the potential. The green curve
sketches a realistic variation of ν with µ whereas the blue curve shows the linear
variation used to compute a upper bound for ∆n.

• As mentioned in section 3.8.9, the potential fluctuations broaden the Lan-
dau levels: these fluctuations make a constant contribution ∆U to the
lowering of the gap.

By fitting the gap values on S3 with both contributions

∆(B) =
1

2
(
√
N + 1−

√
N)
√

2e~v2
FB −∆U −∆n/B

(represented by red curves on figure 8.9) we can extract ∆U and ∆nmax

∆U ∆nmax

ν = 2 2, 0.10−2V 1, 9.1015m−2

ν = −2 0V 3, 5.1015m−2

ν = 6 1, 6.10−2V 2, 4.1012m−2

ν = −6 1, 4.10−2V 8, 6.1013m−2
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It is interesting that these results show a clear difference between electrons
and holes doping. On the electron side the screening seems to be weaker, result-
ing in a lower ∆n and higher ∆U fluctuations. The fluctuations of density are
larger on ν = 2 than on ν = 6, a result which can be understood in view of the
results of ref. [146] which clearly show that the density fluctuations are higher
at low density around the Dirac point than at high density. The asymmetry
between electrons and holes could be due to charged impurities affecting more
one side than the other. This may seem in contradiction with results of chapter
7 but it is not; it is important to recall that the impurities limiting the zero field
mobility are different from those limiting the quantum Hall effect. Trapped
charges in the silica may result in large and smooth fluctuations which do not
much affect the zero field conductivity, whereas these fluctuations may provide
large localized states at the Fermi level limiting the QHE and also contribute
to density fluctuations.

Prefactor of the conductivity for the activated law
It is interesting to look at the prefactor as it was predicted to have an universal
value of σ0

xx = 2e2/h (see 3.10.1). On sample 3 and sample 4 following values
were found at B=16,5 Tesla:

sample S3 S4
ν = 2 (e2/h) 2,9 -
ν = −2 (e2/h) 3,7 2,8
ν = 6 (e2/h) 0,24 -
ν = −6 (e2/h) 0,26 0,15

The values on the ν = ±2 plateaus are close to the theoretical prediction
of a universal value for σ0

xx and measured values in 2 DEG: σ0
xx ∼ 2e2/h for

ν = 2, 3, 4 in ref [85]; whereas for the ν = ±6 they are around 10 times lower.

8.3 Breakdown of QHE at high bias current?
We have also investigated the current dependence of the longitudinal resistance.

From the smooth evolution of the longitudinal resistance shown in Fig. 8.4,
it is clear that in our sample we do not observe a sharp breakdown of the QHE
(as observed in large conventional 2DEGs), but rather a smooth increase of
Rxx. Plotting Rxx directly versus bias current leads us to define a characteristic
current Ic above which Rxx starts to grow significantly as shown in figure 8.11.

Breakdown is related to transport through a higher Landau level. It varies
with the size of the sample and is an avalanche effect resulting in a sharp increase
in the longitudinal resistance. A smooth increase of the longitudinal resistance
may be related to intra Landau levels transport via localized states. In this case
the characteristic current Ic is related to the quality of the sample.
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Ic was found to be of the same order for samples 1,2 and 3: a few µA on
ν = ±2. It was considerably higher in sample 4: Ic ∼ 40µA. Note that compared
with (real) current breakdown in conventional samples, this corresponds to a
similar and even higher current density of several A/m. It is however difficult
to make a direct comparison without a precise criterion.

We emphasize that the sharp breakdown in 2DEGs will be more difficult
to observe in graphene than in conventional 2DEGs because the mechanism
involves a transition between LLs and the gaps in Graphene are much higher.
On the other hand, for a mechanism involving only intra Landau level process,
the size of the Landau states, localized or not, is much the same so that one
might expect the transport within the Landau level should be similar. Also, as
was mentioned in section 3.10.3, the small size of our sample may also explain
the fact that breakdown was not observable.

Is sample 4 the critical current was around 10 times higher than in the others
, a difference that we can attribute to a better mobility. We shall see in what
follows that the localized states in this sample are around 10 times smaller than
in sample 3 which confirms the better quality of sample 4.
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Figure 8.11: Rxx as a function of the bias current at the center of the ν = −2
plateau at 16,5 Tesla for sample 1 and 3 at 4,2K and for sample 4 at 1,6K
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8.4 Low energy transport, Mott or Efros-Shklovskii
variable range hopping?

It is generally accepted that transport occurs via phonon assisted inelastic tran-
sitions between localized states, the so-called variable range hopping mechanism.
For non-interacting electrons in two dimensions, the VRH Mott law gives

σxx ∝
TM
T

exp(−(TM/T )1/3) (8.5)

or equivalently σxx ∝ ( ξ
LM (T ) )2 exp(−(LM (T )/ξ)2/3), which defines the char-

acteristic length L(T ) labeled as LM (T ) =
√

1/πg(εF )kBT , where g(ε) is the
energy independent density of states at the Fermi energy. However, in the
QHE regime screening is poor and Coulomb repulsion must be included. One
thus enters the Efros-Shklovskii (E-S) VRH regime, where the density of states
g(E) ∝ |E − EF | yields

σxx ∝
T0

T
exp(−(T0/T )1/2) (8.6)

or σxx ∝ ( ξ
LE−S

) exp(−(LE−S/ξ)
1/2)[87], with both the length LE−S(T ) =

4πε0εkBT/Ce
2 and the energy kBT0 = Ce2/4πεε0ξ given by the Coulomb en-

ergy. C ' 6.2 is a numerical constant [149]. Measuring T0 thus allows one to
determine ξ and to probe the scaling law far from the conductance peaks. Still
in the same regime, passing a current I trough the sample while keeping a fixed
low temperature gives an E-S VRH like law for σxx where the current plays
the role of the temperature. This is the P-S model [90] which uses the effective
electronic temperature kBT → eEHξ/2 where the local Hall electric field EH is
proportional to the current I. This leads to

σxx ∝ exp(−((E0/EH)1/2) (8.7)

and
σxx ∝ exp(−((E1/EH)1/3) (8.8)

for E-S and Mott’s VRH respectively.

8.4.1 Variable range hopping with temperature
So far, according to the literature on quantum Hall effect in 2DEGs, only E-S
VRH has been observed. In graphene it is also expected as the leading mecha-
nism for backscaterring at low energy.

ρxx =
A

T
exp

(
−
(
T0

T

)1/2
)

(8.9)

Indeed we observed that the evolution of ρxx with temperature is well de-
scribed by E-S VRH law on the Hall plateaus at high magnetic field.
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Figure 8.5 illustrates that fact. One can clearly see that below 100K (
√

1/T >

0.1K−1/2), ρxx ∝ 1/T exp(−
√
T0/T ). The same type of behavior is found on

other plateaus (ν = +2,±6,±10).
From these fits we can extract T0 which is related to the localization length

via

ξ(ν) =
Ce2

4πεε0kBT0(ν)
(8.10)

T
1/2
0 is plotted as a function of the filling factor on fig 8.12 for different

magnetic fields.
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Figure 8.12: Square root of E-S VRH temperature T0 versus filling factor for
sample S3 at different magnetic fields ranging from 6.6T to 16.5T.

The extracted localization length ξ is plotted on figure 8.13.
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Figure 8.13: Localization length versus filling factor for S3 for different magnetic
fields. The horizontal solid line ξ = 600nm shows the limit above which the
screening of interactions by the gate begins to play a role. (a and b points are
the location of curves extracted in fig 8.15)

We see that there are maxima on the filling factor ν = ±2,±6,±10. The
maxima of T0 correspond to minima of localization length ξ, we will call it
ξmin.

Figure 8.14 represents ξmin as a function of the filling factor for different
magnetic fields. The solid line curves correspond to the magnetic length, we
can see that with the sample 3 we get ξmin ∼ 40nm for ν = ±2 which is around
seven times larger than the magnetic length lB whereas in sample 4 we find a
smaller value for ξmin which was of the order of lB indicating a smaller size of
localized states due to a higher sample quality.

Data measured on sample S3 are found to be very close to the value of
ξ measured by tunneling spectroscopy measurement in ref [68] but are quite
smaller than those of ref [75].
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Figure 8.14: ξmin as a function of the magnetic field. Squares are for sample S3
and triangles S4. The solid curve is for the magnetic length lc.

Far from the center of the plateau or at lower magnetic fields the E-S law
does not fit ρxx so well, as shown on fig 8.15. Indeed, as we saw in 3.10.2.2,
Aleiner and Shklovskii have predicted that in gated 2DEG, due to the gate
screening of the electronic interaction (as described in section 3.10.2.2) Mott’s
VRH is observable when ξ is larger than the screening distance. As the gate is
d = 300nm distant from the graphene the electronic interactions are screened
for ξ � 2d = 600nm (2d represents the distance of image charges).

On fig 8.13, the horizontal line at ξ = 600nm denotes the E-S to Mott
VRH cross over. On fig 8.15 ρxx is plotted as a function of the temperature
for different filling factors around ν = 6, the curves corresponding to filling
factors away from ν = 6 and corresponding to ξ ∼ 800nm do not exhibit E-S
VRH behavior (i.e. a linear variation when plotted in log scale as a function of√

1/T ) but they are well fitted by Mott’s law. An example of Mott VRH fitting
is displayed for the ν = −4.32 curve.

This is the first evidence for the existence of a cross-over from the E-S to
the Mott VRH regime in a system showing the Quantum Hall effect. But this
is not sufficient to show it unambiguously. One other clear sign of Mott’s VRH
can be found by the dependence of the width of the ρxx peak on temperature
and on bias current, according to the scaling laws of quantum localization as
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will be shown below.
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Figure 8.15: Different curves of ρxx as a function of the temperature around
ν = −6. The lower curves show the E-S VRH law, the upper curves clearly fit
a Mott VRH law, i.e. the Coulomb interaction is screened. The localization of
a and b curves can be visualized on fig. 8.13.

8.4.1.1 VRH observation under large bias currents

Poliakov and Shklovskii predict that in the VRH regime a bias current should
act as an effective temperature Teff (see 3.10.2.2) by tilting the Hall potential
across the sample.

kBTeff (I) = eξ
ρxyI

2αLy
(8.11)

where I is the current Ly the width of the sample and α a numerical coeffi-
cient depending on the profile of the potential decrease in the sample.

Thus the longitudinal transport should obey the same VRH law with the
real temperature replaced by this effective temperature. The VRH result may
then be rewritten in the form:
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ρxx = ρ0 exp

(
−
(
I0
I

)1/2
)

(8.12)

Where: I0 =
2kBT0αLy
eξρxy
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Figure 8.16: VHall ∗ Rxx as a function of
√

1/VHall on sample 3 for B=16,5
Tesla at 4,2K. Black and red curves are for ν = 2 and ν = −2 (the y scale for
these curves is on the right) . Blue curves are for ν = ±6 (corresponding scale
on the left). Here, as for the figure in temperature (8.5), we can clearly see the
ES-VRH behavior of these curves. For ν = 2, ρxx saturates at the lower bias
current. Dashed lines are straight lines showing VRH part.

Figure 8.16 shows plot of VHall.Rxx as a function of 1/V
1/2
Hall on ν = −2 at

16.5 Tesla for sample 3 at 4.2K. On this plot, as for the temperature plot, we
can see a linear part on the curves with bias current which is a sign of ES VRH.
On the ν = ±6 curves , however, we can distinguish 2 parts: the VRH part and
the activated one, whereas on ν = ±2 there are 3 parts, the first one at low bias
current corresponds to the saturation of the variation of ρxx with bias current
and the two others are the same as for ν = ±6. This saturation can be due to
the higher probability of a hopping due to temperature at 4.2K or to hopping
distance longer than the sample width.

Compared with the similar previous study of VRH transport where the tem-
perature was varied, it is more difficult to make automatic fits to the data. Here
the longitudinal resistance saturates below a certain bias current which depends
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on filling factor because the true parameter here is VHall = I.RHall which varies
with filling factor. At high magnetic field, however, it was possible to get some
meaningful fit parameters like those shown on figure 8.17.
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Figure 8.17: I0 resulting from the fitting of ρxx as a function of bias current on
S3.

Comparing Eq.8.9 and 8.12 we can write (EH0

EH
)β1 = (T0

T )β2 + k where k =

ln(ρI0/ρ
T
0 ) is a constant and EH is the Hall field. If E-S VRH law is obeyed for

bias current one should see β1 = β2 = 1/2. In order to check this, we define the
effective temperature Teff (I) such that ρxx(I) = ρxx(Teff ). On Fig.8.18, Teff
is shown as a function of the bias current on a log-log plot for ν = ±2,±6. It is
clear that below 100K (no thermal activation) Teff ∝ I showing that β1 = β2

and a VRH like law for current is well obeyed by σxx. Normally Teff should start
at 4K, however this effective temperature is possible to extract only when ρxx
varies with the temperature and at the center of the plateau,we saw previously
that the variation of ρxx saturates for the lower temperature curves.
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Figure 8.18: Effective temperature for sample S3 at B=16,5 Tesla for different
integer filling factors. The red line shows a power 1 slope.

Here, we emphasize that bias current is not inducing thermal heating by
joule effect in the VRH part, but it tilts the Hall plateaus inducing hopping
in the Landau level. The power law of Teff as a function of the current I is
different on the resistivity peak or in activated part where homogeneous joule
heating is more likely to appear in the sample due to a higher ρxx. An example
of these different power laws is shown on fig. 8.19 which is a plot similar those
in fig. 8.18 but not at the center of the plateau when activated temperature is
a bit lower, allowing us to see clearly both regions.
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Figure 8.19: Effective temperature for sample S3 at B=16,5 Tesla on the plateau
ν = −2 away from the center. The VRH part shows a power 1 slope whereas
the activated part shows a power 0.4 slope.

Recalling

kBTeff (I) = eξ
ρxyI

2αLy
(8.13)

it is interesting to compare the value of α obtained from the value of Teff
and from the values of the fitting parameters I0 and T0 where the same relation
can be applied:

ν = 2 ν = −2 ν = 6 ν = −6

α from ES-VRH fitting 6,1 8,45 2,1 2,2
α from Teff extrapolation 5,6 5,1 1,5 1,5

The results of the extrapolation and the comparison between the value of
I0 and T0 (which are the fitting parameters of VRH with bias current and
temperature) lead to 5 < α < 9 for ν = ±2 and 1, 5 < α < 2, 2 for ν = ±6.
We can interpret this result by recalling the discussion of section 3.10.4 about
the Hall field distribution. This distribution is not uniform across the sample:
as sketched on figure 8.20, the variation of the Hall field is fast on the edges of
the sample and slower in between. The region limiting the conductivity is that
of the hopping conductivity, i.e. at the center of the sample where Hall field is
small. Thus the VRH energy is given by an effective energy proportional to the
potential Veff = VH/α.
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Figure 8.20: schematic of the Hall potential decrease across the sample

8.5 Universal laws in QHE
Probing the localization scaling law for large localization length requires un-
derstanding the conduction mechanism close to the conductance peaks, in the
plateau transition region where the Fermi level approaches an unperturbed LL.
Historically, the first conduction mechanism proposed for conductance peaks
was a metallic regime. The Pruisken model [114] sets the characteristic length
L(T ) as the phase coherence length Lφ(T ) = (Dτφ)1/2. Here D is a diffusion
constant and the phase coherence time τφ ∝ T−p follows a non-universal power
law with T (p = 2 accounts for most observations). The localization scaling
exponent γ can be indirectly accessed by the temperature dependence of the
Full Width at Half Maximum (FWHM) ∆ν of the conductance peaks. The
latter is obtained when ξ(∆ν/2) ' Lφ(T ) giving ∆ν = (T/T1)κ with the non
universal exponent κ = p/2γ. However Polyakov and Shklovskii proposed that
the VRH regime should last in the plateau transition region and the FWHM
obtained from ξ(∆ν/2) ' LE−S(T ) (or T ' T0) ) giving ∆ν = (T/T1)κ and the
now universal κ = 1/γ. Here kBT1 = Ae2/4πεε0ξ with A a numerical constant.
Similarly, the dependence of the FWHM with bias current using P-S model is
∆ν = (I/I1)µ with µ = 1/2γ = κ/2 while using the phase coherence length
approach µ = p/4γ. As we saw in chapter 3, p = 2 is a reasonable exponent for
τφ, thus the scaling law of the FWHM with temperature cannot discriminate
between the two scenarii nor that with bias current.

A further criterion is thus needed to discriminate between the two scenarios,
and that is addressed experimentally here. The idea originates from the Aleiner
Shklovskii (A-S) [98] prediction that a cross-over from E-S to Mott VRH occurs
when interactions are screened, for example by a gate parallel to the 2DEG at a
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distance d. This requires ξ > 2d which is likely to occur on conductance peaks
for sample size � 2d. In the Mott VRH regime the FWHM conductance peak
now becomes ∆ν ∝ (T/T2)κ with κ = 1/2γ and ∆ν ∝ (I/I1)µ with µ = 1/3γ.
On the contrary in the Pruisken scenario screening is not expected to impact the
temperature dependence of the FWHM. This yet never observed E-S to Mott
cross-over in the QH regime would definitely establish the P-S scenario, that
VRH describes transport almost everywhere in the QHE regime even close to
the maximum of the conductance peaks and that the phase coherence length
approach is not appropriate.

Previous measurements performed in conventional 2DEGs, including Si-
MOSFETs, and InAs/InGAAs or GaAs/AlGAAs heterojunctions have been
able to probe the localization length scaling exponent of ξ (described in sec-
tion 3.9.1) . Experiments using direct determination of ξ from the E-S VRH
[73] and even more directly by geometrical comparison with sample width [118]
have given γ ' 2.3. Probing the scaling law using the conductance peak width is
less direct and showed a dispersion in the extracted values of κ. Works combin-
ing temperature and bias current have shown excellent agreement with the P-S
model [74, 73, 77, 118]. Recently the scaling law has been studied in Graphene
using temperature, but no current bias study was done [75]. Except on the
n = 0 LL level the results were found compatible with γ = 2.3.

8.5.1 Universal localization length scaling exponents
As discussed in section 3.9.1, the transition between two Hall plateaus occurs
when the Fermi level lies in the middle of a disorder energy broadened LL. For an
infinite size sample, the localized state size ξ diverges at a single energy Ec ≈ En
resulting in backscattering and a longitudinal conductance peak. According to
the quantum localization theory [122] ξ ∼ |E−Ec|−γ ∼ |ν−νc|−γ with γ ' 7/3,
a value confirmed in many experiments on conventional 2DEGs [116, 73]. The
better agreement was obtained when extracting ξ(ν) from T0(ν)or with direct
geometrical comparison of ξ with the sample width.
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Figure 8.21: Efros-Shklovskii temperature T0 to the power 1/2, 3 plotted as a
function of the filling factor for magnetic fields ranging from 10 to 16,5 Tesla.
Lines have been added to show that the expected universal exponent γ = 2.3 is
qualitatively observed here.

The plot of Figure 8.21 shows that our results are in good agreement with
a universal behavior of the localization length exponent γ = 2.3 for transition
between ν = ±2 and ν = ±4, ν = 0 and ν = ±2 and also between ν = ±4 and
ν = ±6. On this figure, the scale in T 1/2.3

0 begins at 5.7, which correspond to
ξ = 600nm, thus only the data for ES-VRH regime appears here.

Figure 8.22, shows a plot of the ES-VRH temperature To (which is inversely
proportional to ξ) to the power 1/2.3 versus the deviation of filling factor from
the filling factor νc of the metal-insulator transition. Most of the data plots
seems to be linear in ν within a range of between 0, 5 and 1 ν.
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Figure 8.22: T 1/2.3
0 plotted as a function of ν − νC for ν = [±2,±4] and ν =

[±2, 0] at different magnetic field, the black curve is for S4 while the other are
for S3.

The transition between ν = ±6 and ν = ±10 shows also this universal
behavior as shown in figure 8.21 at high magnetic fields, albeit a little bit less
clearly.

8.6 Transition between Hall plateaus: Evidence
for a Universal Regime driven by VRH

As we saw in 3.10.5 the full width at half maximum (FWHM) of the ρxx peak
is also predicted to follow a universal law such as:

∆ν = (T/T1)µ (8.14)

∆ν = (J/J1)µ
′

(8.15)

Two theories describe the metal insulator transition: the Pruisken and the
Poliakov-Shklovskii theories, Although it is not possible to discriminate between
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them for ES-VRH transport, it becomes possible for Mott VRH for which the
two theories predict different universal laws.

We recall the exponents predicted by the two scenarios:

Theory Pruisken P-S
Transport regime all E-S VRH Mott’ VRH

µ p/2γ 1/γ 1/2γ
µ′ p/4γ 1/2γ 1/3γ

Where p is non universal and equal to 2 in most of the experiments.

Our data on figure 8.23 on S3 and S4 show clearly that the widths of the ρxx
peaks follow universal laws. The FWHM of ρxx as a function of the temperature
is plotted in figure 8.23a and the width is plotted as a function of bias current
in figure 8.23b .

203



CHAPTER 8. MECHANISM OF THE DISAPPEARANCE OF THE QHE
AT FINITE ENERGY

1 10

1

1.5

2

 

 

FW
M

H
 (

)

T/TM

B=16.5T

(a) Log-log plot of FWHM of ρxx as a function of the temperature at B=16,5
Tesla

1 10 100

1

1.5

2

  

 

I/IM

B=16.5T

FW
M

H
(

)
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Figure 8.23: On both figures blue curves are for the peaks between ν = ±10
and ±6, denoted [±10,±6], green curves are for ν = [±6,±2] and red are for
ν = [−2,+2] (Dirac point). Squares are for S3 and triangles are for S4. The
black straight lines correspond to the expected exponents for E-S or Pruisken’s
(with p=2) law, the red lines correspond to the one for Mott law.
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The exponents found from our analysis are µ = 0.21 ± 0, 02 and µ′ =
0.13 ± 0, 01, these are in good agreement with Mott’s VRH. This is consis-
tent with Aleiner and Shklovskii prediction and with our supposition in 8.4.
Also it is a supplementary proof of the validity of the VRH theory and it allows
us to discriminate between two much debated scenarios.

Here it is important to mention that we do not observe any substantial differ-
ence between the plateau transitions on the electron and hole sides and passing
the Dirac point itself. As it is possible to see on figure 6.19, the degeneracy was
not lifted in our samples and it was not possible to observe the quantum Hall
state at ν = 0 . Also as shown on figure 8.1, we do not observe any insulating
behavior at the Dirac point for all our samples as was observed by some groups
(references and description in section 3.8.5.1).

It would have been interesting to check if only the E-S VRH law was followed
in sample 2 which was side gated (implying no screening by the back gate).
Unfortunately only data near the center of the ν = 6 plateau was taken on this
sample and we cannot conclude anything on the non-observation of a crossover
from ES to Mott VRH.

8.7 Conclusion
We have revisited quantum localization in the quantum Hall effect using graphene.
Graphene brings several new features: first of all it is a different system than
conventional 2DEGs where the preceding studies of localization took place thus
it is very interesting to observe if the universal laws observed in conventional
2DEGs will pertain. The main difference between graphene and conventional 2
DEGs are the energy scales, the VRH hopping is similar in both system whereas
the Dirac nature of the charge carriers leads to a much higher cyclotron energy
in graphene. Thus a larger range in energy is available for measuring localiza-
tion effects. Also, most of the time graphene is backgated allowing the screening
of the electronic interactions.

In our study, the standard localization length scaling was found for all stud-
ied Landau levels including the Dirac point, confirming the universality of the
previous observation in 2DEGs.

The most important result is the observation of the cross-over between Mott
and E-S Variable range hopping in the study of ρxx with temperature for all
filling factors from ν = −10 to ν = 10 and the width of the ρxx peak. This cross-
over is provided by the back gate which screens the Coulomb interactions. These
observations allow one to discriminate between two scenarii for the plateau to
plateau transition, the Poliakov Shklovskii scenario based on the variable range
hopping and the Pruisken one based on a metal-insulator transition.
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Conclusion

9.1 Conclusion
In this manuscript is presented an experimental study of electronic transport in
graphene. It describes all the steps from the fabrication of graphene samples to
electronic transport measurement. The transport in quantum Hall regime was
particularly studied in this work.

As study of graphene was a starting project in the group, fabrication of
graphene and some adapted tools had to be adapted in our laboratory.

Fabrication of graphene samples with a mobility between 1000 and 10000
cm2.V−1.s−1 has been done using conventional exfoliation method set by K.Novoselov
with scotch tape.

A cryogenic insert was design and built with adapted capacity for graphene
measurement such as the possibility of varying the temperature from 1K to
450K when the insert is in liquid helium.

Basic electronic transport measurement such as zero field conductivity or
quantum Hall effect have been done to confirm the results of other groups, they
allowed the observation of graphene particular properties and confirmation of
good samples quality.

Transport time τe and the scattering time τtr had been measured in col-
laboration with H.Bouchiat’s group. The ratio τtr/τe was found to be on the
order of 2 and independent of kF , indicating that the dominant scatterers at
0 magnetic field are small neutral impurities. These results are confirmed by
the fitting of the zero field conductivity with a resonant neutral impurity model.

The main work of this thesis has been to study of transport in the quantum
Hall effect using graphene. For a temperature inducing an energy comparable
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to Landau level spacing, activated law was found to drive the values of ρxx.
The comparison between cyclotron gaps predicts by Dirac’s equation and mea-
sured gaps gave us information about the density and potential fluctuations.
The ratio of the density fluctuations over the potential fluctuations linked to
the screening of electrons in Landau levels, which is supposed to be low when
Fermi levels lies between Landau levels, was found to be larger on the ν = ±2
plateaus than in other plateaus. This ratio was also found to differ from elec-
trons to holes, indicating that charged impurities played a relevant role here.
However this interpretation is done with results of one sample and would need
other measurement to be claimed with certainty.

At lower temperature, the transport across the sample limiting the QHE was
found to obey Efros-Shklovskii Variable range hopping law on large domains of
filling factors around the center of the Hall plateaus, fitting data with this law
allows us to extract the localization length; this length was found to diverge near
the transition plateau to plateau, following the universal exponent of quantum
percolation as it was previously observed in conventional 2DEGs: ξ(ν) = ξ(ν −
νc)
−γ with γ = 2, .3. The large size of localized states compared to the size

of defects limiting the zero field mobility and the asymmetry between electrons
and holes seem to point the charged impurities as responsible of localized states
in QHE.

ES VRH law was also found to govern the values of ρxx with increasing bias
current confirming Poliakov-Shklovskii prediction describing the bias current
as an effective temperature. The comparison of the characteristic values of
the current to the one of temperature leads to suppose that the Hall potential
variation was around 5 times larger near the edge than is the bulk of the sample
on the plateaus at ν = ±2.

Finally the major result of this work is the observation of the cross-over
between Mott and E-S Variable range hopping conduction when the localization
length exceed 2 times the distance from graphene to the screening gate. The
width of the ρxx peak where ξ is the larger was found to be well described
by Mott’s law. These observations allow to discriminate between two scenarii
for the plateau to plateau transition, the Poliakov-Shklovskii scenario based on
the variable range hopping and the Pruisken one based on a metal-insulator
transition.
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Variable temperature insert

In order to make the electronic measurements we built a variable temperature
insert for placing the sample in the bore of the liquid helium cooled 20 Tesla
superconducting magnet. The construction was largely carried out by Patrice
Jacques, the technician of our group.

The insert is made to control sample temperature between 1.6 K and room
temperature. intermediate between helium bath at 4.2K in a cryostat (describe
later in this chapter) and the room. The temperatures from 4.2K to 1.6K are
attained by evaporation of a stream of liquid helium drawn from the magnet
Dewar bath.

The requirements needed for the graphene measurements are:

• lowest temperature of 1.6K with He4 from the Dewar Helium liquid bath.
For quantum Hall effect in graphene we do not need very low temperatures.

• upper temperature of 450K when the fridge is in liquid helium to be able
to clean the sample in a cryogenic vacuum (see 6.1).

• ultra high (cryogenic) vacuum.

• restricted outer diameter to fit 30 mm magnet bore.

• at least 14 measurement and control wires thermalized to the lowest tem-
perature

• ability to implement for high frequency measurement.

10.1 Remarks on thermal exchanges in a solid
Here the main mechanisms providing heat exchange will be presented. This was
a very important point for the conception of the insert.

The heat transfer is expressed by the Fourier relation:
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Q̇ =
A

L

T1ˆ

T2

κ(T )dT

κ is the thermal conductivity.
There are two main mechanisms contributing to the thermal conductivity in

solids:

• the phonons (vibrating mode of the lattice)

• the electrons

In metals, electronic contribution is 2 to 3 magnitudes higher, so we can consider
solely this contribution whereas in insulating materials phonons are the only
mechanism of heat transport.

10.1.1 Phonons
A general expression for the thermal conductivity due to phonons is similar to
that of a perfect gas:

κ(T ) =
1

3
Cvcl =

1

3
Cvc

2τ

This is an approximation for monoatomic Bravais lattice, where the phonon
spectrum is uniquely constituted by acoustic branch. c is the phonon’s velocity
using the Debye approximation ω = ck. CV is the specific heat in the Debye
approximation (for acoustic branch) Cv = 12π4

5 nkB( T
ΘD

)3 where n is the atom
number density and ΘD is the Debye temperature treated as an an empirical
parameter.

l is the mean free path and τ is the time between two collisions.
Here τ is not easy to determine and the question whether it is temperature

dependent or not is subtle.
We can distinguish two cases:

• High temperature when T � ΘD

At high temperature the number of phonons is proportional to the temperature
ns(k) ≈ kBT

~ωs(k) . As a consequence there are more probabilities for a phonon to
be scattered and τ to decrease with the temperature. Also at high temperature
Cv is given by the Dulong and Petit’s law and is independent of temperature.
As a consequence κ = 1

Tx where x has a value between 1 and 2.

• low temperature when T � ΘD

Here τ ∼ eT0/T , below a certain temperature τ become exponentially long and
the mean free path has to be replaced by a length linked to impurities of the
lattice which is not temperature dependent. The latter leads to κ ∼ Cv ∼ T 3.
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10.1.2 Electrons
In metals, the electronic contribution plays a major role in the thermal con-
ductivity. The ratio for the electronic contribution to thermal conductivity (κ)
to electrical conductivity (σ) is proportional to temperature T . This is ex-
pressed by the Wiedemann-Franz law (1853): κ

σ = LT where L is a constant.
L = π2

3 (kBe )2 = 2, 44.10−8WΩK−2.
The electronic role in κ was supposed by Drude in order to explain origi-

nally this empirical law. Observation of much better thermal conductivity in
metals than in insulators led him to speculate that the ionic contribution is less
important than the electronic one in metals.

The thermal conductivity in an electron gas is expressed similarly to a perfect
gas obeying Fermi-Dirac statistics: κ(T ) = 1

3CvvF l = 1
3Cvv

2
F τ where v2

F =

2εF /m and Cv = π2

2 (kBTεF )nkB

From Drude law:σ = ne2τ
m . L arises from the ratio κ

σ .

10.2 The cryostat
The magnet cryostat is a standard stainless steel Dewar with a superinsulated
liquid nitrogen radiation shield. It is designed to hold about 40 l of liquid he-
lium which can be cooled to the lambda point (2.2K) on pumping with a 50
m3h−1 vacuum pump. The helium boil_off rate is about 10 l per day. The
helium constitutes the cooling bath for the 20 Tesla, 30mm bore Nb-Sn super-
conducting coil. The cryostat and magnet were supplied by Oxford Instruments
in 1992. The variable temperature cryogenic insert containing the sample and
measurement probes is introduced into the liquid helium in the magnet bore as
sketched in figure 10.1

Figure 10.1: scheme of a cryostat
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10.3 The insert assembly

1K pot 

1K  
thermalization 

4K 
thermalization 

Thermal 
exchanger 

Wire connexion 

Figure 10.2: Successive unveiling of the cryogenic insert. 3D sketch of the fridge
on the left, and photography of it on the last right image.
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10.3.1 Bonding techniques
Metal-metal bonding is assured by TIG (Tungsten Inert Gas) electric arc welding
where possible. Bonds between different metals are usually hard brased with Ag-
Cu alloy in an oxy-acetylene flame. Certain joints which have to be periodically
dismounted are sealed with soft Pb_Sn solder. Plastics such as Kel-F are glued
to metallic substrates with epoxy (Araldite or Stycast).

10.3.2 The body
The essential constraints on the body of the insert are:

• low heat conductivity: the insert is partially immersed in liquid helium
but its top part remains at room temperature . It is then wires important
that the head be thermally insulated from the lower immersed part to
avoid excessive evaporation of the liquid helium.

• leak tightness to be able to maintain cryogenic vacuum (10−10mbar)

• robustness

Stainless steel was chosen for its low thermal conductivity, its availability in
thin walled tubing, its non magnetic composition and its amenity to good TIG
welds.

The main body consists of an exterior 45 mm diameter tube to fit the mouth
of the magnet Dewar enveloping two smaller diameter tubes which carry the
measurement and control cables. The outer tube doubles as a pumping tube for
a 1K evaporation refrigerator used to cool the sample.
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10.3.3 Connection head tulip

Figure 10.3: The connection head "tulip" with its 14 hermetic coaxial feed
through connectors.

The tulip is made of a stainless steel cup with a hole at the bottom to allow a
path for the wires and a cover with the 14 connectors. The parts are joined with
indium, a heavy metal which has the particularity of being very soft. When the
two parts are tighten indium vacuum seals to assure optimum electromagnetic
shielding.

10.3.4 1K Pot

Figure 10.4: 1K Pot

The "1 K pot" is a small volume of a few cm3 supplied with liquid helium
from the magnet bath through a flow impedance and pumped by a vacuum
pump for evaporative cooling. The flow impedance (compressed alumina powder
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giving 20l.s−1 STP He flow with 1 bar differential) determines the maximum
cooling rate while the pressure maintained by the vacuum pump determines
the temperature according to the pressure-temperature characteristic of liquid
helium. In our case, 1.6 K is achieved with a cooling power of 20mW.

Figure 10.5

10.3.5 thermalization of measurement wires
There are two termalizations for this fridge, one at the helium bath temperature
and the other at the 1K pot temperature.

Figure 10.6: 4K thermalization
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4K thermalization
the first thermalizer at 4K is composed of a copper heat l exchanger in copper

which is in the cold helium vapor pumped from the 1K pot. This exchanger
is linked to a copper plate (see figure 10.6) where there are 16 copper tracks
separated from the plate by a thin Kapton film (50µm). These tracks are 1 cm
long and 2mm large, they provide a good thermalization at 4K.

Figure 10.7: 1K thermalization

1K thermalization The second thermalization is at the bottom of the fridge,
near the sample. It is a copper ring which is thermally linked to the 1K pot.
2mm copper wires pass through the material of the ring electrically insulated
from it by a varnish.

Wires For the wires between the tulip and 4K thermalization and between 2
two termalizations we used lakeshore coaxial wires with a resistivity of 50 Ω.m−1
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10.3.6 The sample Holder

Figure 10.8: The sample holder.

The sample holder is specially adapted for our procedure for cleaning and mea-
suring graphene in situ. graphene measurement. The constraint is to be able
to heat graphene to 450K under cryogenic vacuum, imposing low thermal ex-
change at high temperature. At low temperature however, good thermalization
is needed to ensure that the sample is at 1.6K.

It is composed of two parts: an inner piece of copper with a cylinder at the
back in order to wind resistive wire for the heater. The other part is an outer
ring in Kel_F.

The Kel_F ring provides insulation to the rest of the fridge when the sample
is heated to 450K. The thermal contact at low temperatures is provided by the
50µm cold wires thermalized with the 1K pot.

10.3.7 Thermometer
The thermometer is a lakeshore model CX-1050-SD-HT-1.4M made with a Cer-
nox resistor . This thermometer has a temperature range going from 1.4K to
420K which is perfect for our experiments.
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Additional measurements

We show here some measurement done on samples S1 and S2 confirming variable
range hopping in our samples.

-14 -7 0
0

2

4

6

8

10

12

14

16

longitudinal

Hall
B = 16.5 Tesla
T = 4.2 K

 

 

R
es

is
ta

nc
e 

( k
 )

gate voltage VG

 10nA
 80nA
 160nA
 320nA
 500nA
 1µA
 2µA
 3,5µA
 5µA
 7,2µA
 10µA
 16µA
 20µA
 28µA

Figure 11.1: Rxx and RHall around ν = −2 is sample S1 at B=16,5 Tesla,
T=4.2K, for different bias current ranging from 10nA to 28µA.
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Figure 11.2: I ∗ ρxx as a function of
√

1/I on the center of the plateau ν = −2
on sample S1 at B=16.5 Tesla and T=4.2K. The linear behavior confirms E-S
VRH law
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Figure 11.3: I ∗ ρxx as a function of
√

1/I on the center of the plateau ν = 6
on sample S2 at B=16.5 Tesla and T=4.2K. The linear behavior also confirms
E-S VRH law
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