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Denis Veynante Directeur de Recherche CNRS, École Centrale Paris
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Résumé

Dans cette thèse, différentes problématiques liées à la simulation numérique des écou-
lements turbulents sont abordées. La simulation d’un jet d’air impactant sur une paroi
adiabatique a mis en évidence toute une série de difficultés, notamment numériques et de
modélisation de sous-maille de la turbulence, dans le cadre de la Simulation aux Grandes
Échelles (SGE).

Deux points essentiels ont été abordés, le traitement des conditions aux limites et la
modélisation fine des interactions de sous-maille pour représenter, au mieux, la région de
proche paroi.

Pour ce qui concerne le problème des conditions aux limites, leur formulation ca-
ractéristique a été considérée et une nouvelle procédure 3D-NSCBC est proposée qui, en
assurant une bonne reproduction du comportement physique attendu, induit très peu de
perturbations à caractère numérique sur l’écoulement étudié. Inspirée par les Condition
Limites Caractéristiques pour les équations de Navier-Stokes développées par Poinsot and
Lele [58], la procédure proposée dans ce travail autorise la prise en compte des termes de
convection et des gradients de pression transverses afin de mieux reproduire la tridimension-
nalité de l’écoulement sur les frontières. Les conditions limites précédemment développées
supposaient en effet une direction de propagation orthogonale aux frontières du domaine de
calcul, ce qui est rarement le cas dans les écoulements turbulents, où la rotation du fluide
joue un rôle essentiel. La prise en compte des termes transverses mentionnés ci-dessus pose
des difficultés additionnelles au niveau des angles et des coins du maillage de calcul, car
les termes transverses des différentes surfaces connectées conduisent à un couplage des
ondes caractéristiques voyageant le long des directions orthogonales. De plus, la présence
des différentes typologies de frontières pose des problématiques ultérieures de stabilité nu-
mérique liées à l’imposition simultanée des variables d’écoulement interconnectées (e.g. la
pression et la vitesse).

Une méthodologie pour résoudre ce couplage, avec les conditions de compatibilité
nécessaires, a été développée et validée pour le cas de conditions aux limites d’entrée et de
sortie subsoniques, ainsi que pour des parois adiabatiques.

La deuxième partie du manuscrit s’intéresse à la modélisation numérique de la turbu-
lence dans le cadre de la Simulation des Grandes Échelles, en particulier lorsque l’écoule-
ment est dominé par des interactions de proche paroi. En relation à la simulation d’un jet
rond avec un nombre de Reynolds de 23000 et impactant sur une paroi plane, l’utilisation
de modèles de sous-maille purement dissipatifs basés sur l’hypothèse de viscosité tourbillon-
naire, a mis en évidence des difficultés pour reproduire correctement la dynamique de la
turbulence à la paroi. Notamment, la dissipation excessive peut comporter le ralentissement
des phénomènes d’évolution des structures tourbillonnaires et un développement insuffisant
des petites structures induisant une durée de vie trop longue des grandes structures. Une
surestimation des fluctuations de vitesse dans la région de proche paroi est le résultat global
de ce mécanisme.

Pour mieux prendre en compte l’anisotropie du tenseur des contraintes de sous-maille,
l’adoption d’un modèle structural est envisageable. Un modèle structural fondé sur l’hy-
pothèse de similarité, initialement proposé par Bardina et al. [3], est développé pour des
écoulements modérément compressibles. L’insuffisante dissipation d’un modèle de similarité
pur conduit à adopter la formulation mixte, comprenant un terme de viscosité tourbillon-
naire. Le comportement correct en région de proche paroi est assuré par l’adoption de la
formulation WALE proposé par Nicoud and Ducros [53], au lieu d’utiliser une procédure
dynamique. La reproduction du transfert local inverse d’énergie des petites échelles aux
grandes, i.e. backscatter, par le modèle proposé s’est révélée être un ingrédient essentiel
pour la représentation correcte du transport énergétique moyen dans la couche limite tur-
bulente.
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La dernière section de cette thèse présente des Simulations Numériques Directes de la
combustion turbulente. Différents aspects ont été considérés. En premier lieu, une procédure
pour prendre en compte les termes sources de la chimie dans les conditions aux limites
3D-NSCBC a été développée. Ces termes sont traités de la même façon que les termes
transverses et sont, par conséquent, inclus dans les relations qui déterminent les variations
temporelles des ondes entrantes. Les résultats obtenus par Simulation Numérique Directe
d’une flamme jet prémélangée turbulente de type Bunsen pour des Reynolds de 2000 et
4500 ont été utilisés, entre autre, pour valider un modèle permettant de reconstruire la
surface de flamme tridimensionnelle à partir de mesures expérimentales bidimensionnelles.
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t Time
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T , Ti Transverse terms (vector and tensor notation)
Tij , Qj SGS stress tensor and heat flux at test filter level
T
k, Tki Characteristic transverse terms ⊥ xk (vector and tensor notation)

T
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YF Fuel mass fraction
Z Passive scalar

Greek symbols

Symbol Definition
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α∗ Turbulence-flame interaction coefficient, Ret/ReG
α1, α2, β1, β2 Artificial dissipation coefficients
αij , αj , βij , βj LDSM: Smagorinsky kernels
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β Zeldovitch number, αTAc/Tb

βLL Dimensionless self-similar longitudinal structure function
βt Transverse relaxation coefficient
γ Specific heat ration, cp/cv
Γ Turbulence-flame scales ratio, ℓ0/δL
δ Vortex dipole spacing; pressure pulse amplitude
δij Kronecker delta
δL, δ

∗
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1/3
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∆tI , ∆tV Inviscid and viscous time-steps
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∆x Grid spacing for mono-dimensional uniform mesh

ǫ
(2)
i , ǫ

(4)
i , ǫO4

i Artificial dissipation factors
ǫijk Levi-Civita symbol
ε Average rate of energy dissipation
εglb Global pressure error
εLij , ε

K
j LDSM: local errors

εr Relative error
εω Global vorticity error
η Kolmogorov length-scale
η1, . . . , η6 Subsonic non-reflecting inflow relaxation coefficients
θ∗ Flame semi-aperture angle
θL, θK LDSM: characteristic times’ coefficients
ϑ Macrotemperature
ϑ∗ Reduced macrotemperature
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Z
sgs SGS thermal and scalar diffusivities

κ γ − 1
λ Thermal conductivity; Taylor micro-scale
λ1, . . . , λ6 Characteristic waves’ propagation velocities along x1

λi+1/2 Artificial dissipation scaling factor
Λi Eigenvalues’ diagonal matrix of F i

µ Dynamic viscosity
µ1, . . . , µ6 Characteristic waves’ propagation velocities along x2

µeff Effective dynamic viscosity
µref Dynamic viscosity at reference temperature Tref

µR Reference dynamic viscosity, ρRuRℓR
ν Kinematic viscosity, µ/ρ
ν1, . . . , ν6 Characteristic waves’ propagation velocities along x3

νratio Normalized SGS energy transfer coefficient
νt Eddy-viscosity
̟ Macropressure
̟∗ Reduced macropressure
Π Energy flux per unit mass down the cascade process
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σ Subsonic non-reflecting outflow relaxation coefficient
σij Total stress tensor
ς Characteristic sign switching function
τij Viscous stress tensor; SGS stress tensor
τw Surface shear stress
ϕ1 Dimensionless self-similar longitudinal 1D spectrum
Ψ Stream function
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Subscripts

Symbol Definition
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ex Exact
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Superscripts

Symbol Definition
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max Maximum
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s Smagorinsky
w WALE
wsm WALE-Similarity Model
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+ Sub-layer scaled value
′ SGS value, ϕ− ϕ or ϕ− ϕ̃
′′ Fluctuating value, ϕ− 〈ϕ〉
′e Experimentally measured fluctuating value

Special operators

Symbol Definition
ϕ Filtering
ϕ̃ Favre-filtering, ρϕ/ρ
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Symbol Definition
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DNS Direct Numerical Simulation
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Numerical Simulation of Turbulence
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CHAPTER 1
Introduction

The statement that turbulence remains an unsolved problem can hardly be debated. Yet, there
is no consensus on how the problem of turbulence should be formulated. Half a century after
Kolmogorov’s work on the statistical theory of fully developed turbulence, we still wonder how his
work can be reconciled with Leonardo’s half a millennium old drawings of eddy motion in the study
for the elimination of rapids in the river Arno. Here, I shall not even attempt to face this challenge.

U. Frisch, 1991

Contents

1.1 Background and Motivations . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Ce 1er Chapitre présente un résumé synthétique des principaux aspects de la simulation
numérique appliquée à la Mécanique des Fluides. L’importance que la modélisation de la
turbulence revêt dans la représentation numérique des écoulements est examinée.

Les trois principales techniques de simulation de la turbulence, que sont la Simulation
Directe, la Simulation aux Grandes Échelles et la Simulation des Équations de Navier-Stokes
Moyennées, sont brièvement présentées, et notamment leur niveau de détail dans la représen-
tation du spectre d’énergie cinétique caractérisant l’écoulement étudié.

En particulier, lorsqu’une grande partie du spectre des échelles turbulentes est résolue, les
problématiques liées à l’utilisation de schémas discrets avec un niveau d’approximation élevé,
et la nécessité de conditions aux limites « transparentes » du point de vue numérique, sont
abordées. Ces aspects représenteront les prémisses de la première partie de cette thèse.

Étant donné que la Simulation aux Grandes Échelles et la Simulation des Équations de
Navier-Stokes Moyennées sont basées sur une reproduction partielle du spectre énergétique de
la turbulence, leurs différences fondamentales sont considérées. Si, d’un côté, les modèles de
sous-maille pour la Simulation aux Grandes Échelles sont de caractère plus général, l’utilisa-
tion des opérateurs de filtrage au lieu des opérateurs de moyenne (temporelle ou d’ensemble)
détermine l’introduction d’une série d’interactions qui doivent être prises en compte. Cette
considération sera la base de la deuxième partie de ce travail.

Pour finir, la dernière partie du chapitre introduira le plan de la thèse.
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1. Introduction

1.1 Background and Motivations

Many engineering applications and fundamental studies are often connected with Fluid Me-
chanics and, as with any other physical phenomenon which is described by a more or less
complex set of partial differential equations, the huge complexity of the relevant mathematical
representation make it necessary to rely upon the use of numerical simulations. Computational
Fluid Dynamics (CFD), hence, is a standard tool of investigation which has gained considerable
attention in the past decades and which still undergoes significant evolution.

In order to be able to make an accurate representation of fluid flows, three main aspects
must be considered: (a) turbulence modeling, (b) mathematical theories relevant to the discrete
representation of the continuum and (c) efficient algorithms for grid generation. Though, these
three ingredients are significantly well connected, turbulence modeling represents one of the
driving mechanisms in the definition of standards and requirements that CFD is expected to
fulfill. Despite the relatively simple form of the equations that govern the fluid motion, in
fact, their solution turns out to be extremely complex, all the relevant details being far from
being fully understood, and the numerical schemes used to represent the complexity of the
underlining physics with increasing levels of detail need to be continuously improved.

It is probably not far from the reality to affirm that the mathematical tools used in CFD
are way more accurate than the turbulence models they solve. And it is also clear that most of
the difficulties encountered when dealing with turbulent flows and the relevant transport phe-
nomena come from the non-linear nature of the equations governing fluid dynamics, first of all,
because there would not be any turbulence if the equations were linear, but also because non-
linear interactions are responsible for the enormous proliferation of the typical scales of fluid
motion, which, in principle, should be represented altogether—as well as for the proliferation
and amplification of numerical perturbations, which should be avoided by all means—and be-
cause discrete representations of the non-linear term pose energy conservation problems which
are anything but trivial.

It is indeed the above mentioned broad variety of scales of turbulence, i.e., its broad en-
ergy spectrum, that makes it necessary to develop turbulence models, which, in turn, represent
generally the Achille’s heel of Computational Fluid Dynamics. In fact, most of the problems
of practical engineering interest are characterized by a spectrum of frequencies that is just
too wide to be represented with the available computational resources. Hence, the necessity
to represent only part of it and devolve the reproduction of the missing part to the turbu-
lence model. When a large part of the turbulence spectrum is modeled, as when Reynolds
Averaged Navier-Stokes (RANS) equations are solved, the model itself is charged with such a
variety of physical details and problem dependent features that its generality is often question-
able. Moreover, since the relevant solution represents the time- or ensemble-averaged flow, its
applicability is limited to configurations which admit a statistically steady solution.

When the model extent is reduced, as for instance in Large-Eddy Simulation (LES), its
complexity becomes generally less demanding because a smaller part of the turbulent spectrum,
supposedly more universal in character, needs to be reproduced. At the other extremum
with respect to RANS, Direct Numerical Simulation (DNS) resolves the entire spectrum and
no model is required. The resolved range of scales, of course, is handled by the numerical
scheme and the solution becomes necessarily unsteady. Therefore, if on one hand, the range of
applicability is extended to unsteady turbulent flows, the additional detail imposes increased
accuracy standards to the numerical scheme.
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Outline

High-order low dissipative—typically centered—numerical schemes which are generally
used in Direct and Large-Eddy Simulations are generally more prone to amplify numerical
spurious perturbations and the unsteady complex nature of the solution for which they repre-
sent the numerical substructure may represent an additional source of disturbances, especially,
as far as boundary conditions are concerned. The increasing standards in the definition of
numerically “transparent” open boundary conditions motivated the first part of the present
work. On these lines, the characteristic formulation of boundary conditions, in particular,
was addressed in order to derive a formulation capable of dealing with complex and randomly
oriented turbulent flow fields, while maintaining a sufficiently low level numerical reflection.

With regards to LES, the reduction of the modeled frequency range is, supposedly, accom-
panied by a certain decrease of model complexity. And indeed when Large-Eddy Simulation
of free shear flows are performed, even a simple Sub-Grid Scale model based on the eddy-
viscosity assumption may perform surprisingly well. Nonetheless, when the energy spectrum
is partly modeled different types of interactions between resolved and unresolved scales, re-
quiring more specific treatment, may appear. When the Reynolds-averaging operator used in
RANS is regarded as particular sub-class of the filtering operator, in effect, it turns out that
it has peculiar properties that the filters generally used in LES do not possess. Notably, the
Reynolds-averaging operator is idempotent, whereas the filters which are generally applied in
LES are not. Hence, LES unclosed terms contain a series of interaction terms which are not
present in RANS.

It is well known, for instance, that turbulence, in average, is a dissipative process where
kinetic energy is transfered from the large energy containing scales, down the small dissipative
scales, through the energy cascade mechanism. Hence, dissipative turbulence models in RANS
are expected to fulfill this requirement. A priori tests of DNS results, on the other hand,
have revealed that, when local interactions in the neighborhood of a certain frequency within
the energy spectrum are observed, local events of reverse energy transfer, namely backscatter,
may happen. In such cases, then, purely dissipative models are not expected to perform with
sufficient accuracy. LES models should be then properly designed to account for this kind of
peculiar features.

This observation was the premise of the second part of this thesis which dealt with the
formulation of a structural sub-grid scale model for moderately compressible LES, based on
the similarity hypothesis, with particular attention to the correct representation of near-wall
dynamics. The model was then tested on the impinging round-jet configuration, which, due
to its intrinsic complexity, represents a particularly tough test bench for turbulence modeling.
Alongside the validation of the proposed model, some specific features about local energy
transfer and scalar mixing within the near-wall region were also addressed.

As a final task, DNS of turbulent Bunsen flames at different Reynolds numbers were per-
formed, in the framework of the last CTR Summer Program 2008, in order to achieve more
insight into typical issues connected with the comparison of LES results with experimental
measurements. Some questions about the treatment of chemical source terms at the boundary
and flame resolution were also addressed.

1.2 Outline

The present thesis is organized in 6 chapters:
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1. Introduction

Chapter 2 contains a brief summary about the physical description of the motion of fluids.
The equations governing compressible viscous flows are presented in Section 2.1 together
with the hypothesis and approximations relevant to the present specific applications.
Section 2.2 reports a synthetic overview about the phenomenology of turbulence, with
particular emphasis on the peculiar features observed in turbulent motion and the rele-
vant typical scalings. At the end of the Section, the main results from the Kolmogorov’s
K41 Theory are described in some detail.

Chapter 3 describes in detail the problem formulation from the numerical point of view.
The numerical solver which was used during these three years of studies is described
in Section 3.1. The boundary conditions’ problem and its formulation in characteristic
form is detailed in Section 3.2 where the ideas behind the novel 3D-NSCBC procedure
are presented together with the numerical tests performed to validate the method. The
adaptation of the synthetic turbulence injection method to the 3D-NSCBC technique is
described in Section 3.3.

Chapter 4 will introduce some fundamentals about the numerical computation of turbulence
by means of the Large-Eddy Simulation methodology. Section 4.2 deals with the filtering
operator and the filtered Navier-Stokes equations when, in particular, compressibility
needs to be accounted for, at least partially. Some Sub-Grid Scale functional models
based on the Eddy-Viscosity assumption are presented in Section 4.3, where particu-
lar emphasis is made on the relevant asymptotic behavior at the wall. In Section 4.4,
structural Sub-Grid Scale models based on the Similarity Hypothesis are first described.
Then, the new WALE-Similarity Model is presented in detail in a weakly compressible
formulation. The validation of the new model follows in Section 4.5, where the WALE-
Similarity Model is tested on the impinging round-jet configuration at different Reynolds
numbers. Some interesting features about modeled energy backscatter and scalar mixing
within the near-wall region are also addressed.

Chapter 5 deals with Direct Numerical Simulation with particular emphasis on turbulent
combustion. The mathematical description of the combustion process is presented in
Section 5.2 for lean premixed flames. The treatment of chemical source terms at the
boundary making use of the 3D-NSCBC technique and the requirements in terms of
flame resolution are also analyzed. Direct Numerical Simulation of the turbulent Bunsen
flame is described in detail in Section 5.3 for three Reynolds numbers.

Chapter 6 finally, will contain a summary of the different topics developed and the relevant
conclusions will be drawn. Some possible research perspectives, originating from the
present work, will be also put forward.

Part II collects the archival publications relevant to this Ph.D. Thesis, namely the articles
about the 3D-NSCBC procedure, the WALE-Similarity Model and the Proceedings of
the CTR Summer Program 2008.
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CHAPTER 2
Fundamentals

It seems that nature (God?) has a nice sense of irony. On the one hand we have a physical quantity,
u, which behaves in a random fashion, yet is governed by a simple, deterministic equation. On the
other hand the statistical properties of u appear to be well-behaved and reproducible, yet we know
of no closed set of equations which described them!

P.A. Davidson, 2004

Contents

2.1 The Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 The Adimensional Formulation . . . . . . . . . . . . . . . . . . . . . 10

2.2 Turbulent Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Les équations qui gouvernent le mouvement des fluides visqueux, dites équations de Navier-
Stokes, sont ici présentées dans le cas d’un écoulement compressible. Une équation de transport
additionnelle décrivant l’évolution d’un scalaire passif dans l’écoulement est ajoutée. En parti-
culier, on fera l’hypothèse que le fluide est un gaz parfait Newtonien mono-composant avec une
viscosité dynamique décrite par la loi de Sutherland. On fera aussi l’hypothèse que les forces
de volume peuvent être négligées et que le transport diffusif de la chaleur et du scalaire passif
suivent respectivement la loi de Fourier et de Fick.

Dans la deuxième section, la formulation adimensionnelle des équations susmentionnées,
basée sur les grandeurs de référence de densité, vitesse, échelle et température, sera dérivée.

Une introduction synthétique des concepts fondamentaux relatifs à la description phéno-
ménologique de la turbulence est présentée. En particulier, la classification des écoulements
laminaires et turbulents sur la base du rapport entre les actions inertielles et visqueuses, no-
tamment le nombre de Reynolds [61], ainsi que les principaux critères de classification des
échelles caractéristiques de la turbulence, sont décrits.

Enfin, un résumé très concis de la célèbre Théorie K41 proposée par Kolmogorov [36, 37]
est présenté. En particulier, l’existence d’une région d’Equilibre Universel est introduite, et les
deux Hypothèses de Similarité relatives sont citées. Leurs formulations en terme de la fonc-
tion de structure de deuxième ordre et du spectre d’énergie monodimensionnel longitudinaux,
respectivement dans la région de dissipation et la sous-gamme inertielle, sont dérivées.
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2. Fundamentals

2.1 The Governing Equations

The motion of a compressible viscous fluid is fully described by imposing the conservation
laws for mass, momentum and energy. Using Einstein summation convention for repeated
indices, the local formulation on a cartesian coordinates system of each conservation law may
be formalized with the following transport equations:

• conservation of mass (continuity equation),

∂ρ

∂t
+
∂ρuj
∂xj

= 0, (2.1)

where ρ is the fluid’s density and uk is the velocity component along direction xk;

• conservation of the three components of momentum,

∂ρui
∂t

+
∂ρuiuj
∂xj

− ∂σij
∂xj

− ρfi = 0, (i = 1, 2, 3), (2.2)

where σij = τij − pδij1 is the tensor of surface stresses accounting for viscous actions τij
and thermodynamic pressure p and fk is the kth component of the body forces per unit
mass acting on the fluid element;

• conservation of total energy,

∂ρe

∂t
+
∂ρeuj
∂xj

− ∂uiσij
∂xj

− ρuifi +
∂qj
∂xj

= 0, (2.3)

where e = eI + ukuk/2 is the total energy (internal + kinetic), eI is the internal energy
and qk is the kth component of the heat flux vector.

The above five equations (two scalar and one vector transport equations) represent the
compressible Navier-Stokes (NS) equations set. In the present study, an additional transport
equation is introduced to describe the evolution of a scalar quantity Z. For the moment, we
will assume that Z is a passive scalar, therefore the relevant transport equation is completely
decoupled from the other balanced equations, meaning that Z is transported by the flow field
but the flow field itself is not affected by Z:

∂ρZ

∂t
+
∂ρZuj
∂xj

+
∂ρJj
∂xj

= 0, (2.4)

where Jk is the kth component of the diffusion flux vector.
The following additional hypotheses will be assumed in the present work:

1. the fluid is Newtonian and follows the Stokes Law for mono-atomic gases:

τij = 2µAij , (2.5)

where µ is the dynamic viscosity and Aij is the deviator of the deformation tensor

Aij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
− 1

3
δij
∂uk
∂xk

; (2.6)

1δij is the Kronecker’s delta

8



The Governing Equations

2. the heat flux qk is given by the Fourier’s law

qk = −λ
∂T

∂xk
= −µcp

Pr

∂T

∂xk
, (2.7)

where λ is the thermal conductivity, T is the temperature, cp is the specific heat capacity
at constant pressure and Pr is the Prandtl number;

3. the fluid evolves following the equation of state for a calorically perfect gas:

p = ρRT, (2.8)

eI = cvT (2.9)

cp = cv +R, (2.10)

γ = cp/cv, (2.11)

where R = R/Mw is the gas constant computed from the universal gas constant R =
8.31451 J/(molK) and the gas molar weight Mw, cv is the specific heat capacity at
constant volume and γ = 1.4. The total energy density, in particular, may be expressed
as

ρe =
1

2
ρukuk +

p

γ − 1
; (2.12)

4. the scalar Z diffuses following the Fick’s Law:

Jk = −D
∂Z

∂xk
= − µ

ρSc

∂Z

∂xk
, (2.13)

where D is the diffusion coefficient and Sc is the Schmidt number;

5. the dynamic viscosity of the fluid µ may be computed from the temperature T using the
Sutherland’s law:

µ(T ) = µref

(
T

Tref

)3/2Tref + S

T + S
; (2.14)

6. body forces can be neglected, i.e. fk = 0.

If we introduce the vector of conservative variables,

U =
(
ρ ρu1 ρu2 ρu3 ρe ρZ

)T
,

and the flux and diffusion vectors F k and Dk the problem may be then conveniently described
in vector form by the following equation:

∂U

∂t
+
∂F k

∂xk
+
∂Dk

∂xk
= 0, (2.15)

with

F k =




ρuk
ρu1uk + δ1kp
ρu2uk + δ2kp
ρu3uk + δ3kp
(ρe+ p)uk
ρZuk



, Dk =




0
−2µA1k

−2µA2k

−2µA3k

−2µujAkj −
µcp
Pr

∂T

∂xk

− µ

Sc

∂Z

∂xk




, (2.16)
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2. Fundamentals

2.1.1 The Adimensional Formulation

The numerical solver used in the present work (see Section 3.1) integrates the non-dimensional
set of Navier-Stokes equations. The relevant normalization procedure is summarized below.

Let ρR, uR, ℓR and TR be the reference density, velocity, length and temperature respec-
tively. The relevant adimensional quantities are

ρ∗ = ρ/ρR, u∗i = ui/uR, x∗i = xi/ℓR, T ∗ = T/TR, (2.17)

where the superscript ∗ is now used to address normalized non-dimensional quantities. The
reference time, pressure and viscosity may be derived by dimensional analysis as:

tR = ℓR/uR, pR = ρRu
2
R, µR = ρRuRℓR. (2.18)

The dynamic viscosity is adimensionalized dividing Eq. (2.14) by µR and using the definition
of dimensionless temperature:

µ∗(T ∗) =
µ(T )

µR
=

µref

ρRuRℓR

(
T ∗TR

Tref

)3/2 Tref + S

T ∗TR + S
=

1

Re0

(
T ∗

T ∗ref

)3/2T ∗ref + S∗

T ∗ + S∗
, (2.19)

where Re0 = ρRuRℓR/µref , T
∗
ref = Tref/TR and S∗ = S/TR. Moreover, the dimensionless

equation of state is obtained from Eq. (2.8) as

p∗ = ρ∗R∗T ∗, (2.20)

with

R∗ =
1

γM 2
0

and M0 =
uR√
γRTR

; (2.21)

dividing the internal energy by u2
R and the total energy by ρRu

2
R and using the identity R∗ =

RTR/u
2
R, the following relations descend immediately:

e∗I =
R∗T ∗

γ − 1
= c∗vT

∗, and ρ∗e∗ =
1

2
ρ∗u∗ku

∗
k +

p∗

γ − 1
, (2.22)

where c∗v = R∗/(γ−1) = cvTR/u
2
R is related to γ and M0. Evidently, the dimensionless specific

heat at constant volume and pressure are related to their dimensional counterparts by the
following identities:

c∗v = cvTR/u
2
R, and c∗p = γc∗v = cpTR/u

2
R. (2.23)

Using Eqs. (2.17), (2.18), (2.19), (2.21) and (2.23) and related identities, the dimensionless
Navier-Stokes equations become:

∂ρ∗

∂t∗
+
∂ρ∗u∗j
∂x∗j

= 0, (2.24)

∂ρ∗u∗i
∂t∗

+
∂

∂x∗j

(
ρ∗u∗iu

∗
j + p∗δij

)
=

∂

∂x∗j

(
2µ∗A∗ij

)
, (2.25)

∂ρ∗e∗

∂t∗
+

∂

∂x∗j

[
(ρ∗e∗ + p∗)u∗j

]
=

∂

∂x∗j

(
2µ∗u∗iA

∗
ij +

µ∗c∗p
Pr

∂T ∗

∂x∗j

)
, (2.26)

∂ρ∗Z

∂t∗
+

∂

∂x∗j

(
ρ∗Zu∗j

)
=

∂

∂x∗j

(
µ∗

Sc

∂Z

∂x∗j

)
, (2.27)
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Turbulent Flows

which are formally identical to the dimensional counterparts, with all the quantities replaced by
starred ones. Based on this consideration, in all the next sections, no distinction will be made
anymore between dimensional and dimensionless formulations, being anyway understood that
all the results presented have been obtained by numerical integration of the non-dimensional
equations. It is worthwhile mentioning the relations existing between the adimensional diffusion
coefficients and the dimensionless characteristic numbers of the flow:

µ∗ =
f(T ∗)

Re0
, (2.28)

µ∗c∗p
Pr

=
f(T ∗)

(γ − 1)Re0 M 2
0 Pr

, (2.29)

µ∗

Sc
=

f(T ∗)

Re0 Sc
, (2.30)

where f(T ∗) represents the functional relation between non-dimensional dynamic viscosity and
temperature (cf. Eq. (2.19)).

2.2 Turbulent Flows: A Synthetic Overview

Looking closer to Eq. (2.28)–(2.30), the first thing that can be noticed is that for extremely
high values of the parameter Re0, the viscous effects become less and less important, hence
the flow tends to be almost inviscid. On the other hand, when Re0 is small, viscous effects
become more and more important.

The importance of this parameter was first pointed out by Reynolds [61] while making
experimental observations of the flow along straight smooth pipes. He noticed that, for some
certain value of the ratio

ρUℓ

µ
,

with U the average fluid velocity in the pipe and ℓ its radius, the flow was changing radically
from “direct” motion into “sinuous” motions, indicating what nowadays is commonly referred
to as “laminar” and “turbulent” flow regimes.

If U is the typical velocity of the flow, ℓu is the typical length of the streamline pattern
and ℓv is the typical length of cross-stream velocity gradients, it is easily shown, by simple
dimensional considerations, that the inertial and viscous forces for unit volume of fluid scale
as ρU2/ℓu and µU/ℓ

2
v respectively. Hence, provided that ℓ is properly chosen

2,

Re =
ρUℓ

µ
, (2.31)

namely the Reynolds number, represents the relative intensity of inertial forces compared to
the viscous ones. When inertial forces are predominant over viscous forces, the fluid motion is
more prone to instabilities. And, since the quadratic nature of the Navier-Stokes equations—
expressed by the term ρuiuj in Eq. (2.16)—makes them extremely sensitive to small differences
in the initial conditions, chaotic, or turbulent, motion is generally the outcome of those insta-
bilities.

2In the Reynolds’s experiment, for instance, choosing ℓ equal to the length of the tube would have given
completely incongruent results.
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2. Fundamentals

It should be mentioned that the limiting value Recr of the Reynolds number, above which
transition to turbulence is observed, depends on the intensity, u′/U , of external perturbations
affecting the flow. If particular care is made to keep perturbations as low as possible, the value
of Recr, for the same flow configuration, may be generally increased.

If on one hand, there exists a minimum value Remin
cr below which, regardless of the pertur-

bation intensity, the flow is always laminar, on the other hand, a maximum value Remax
cr , i.e.

the value of Reynolds number for which turbulent transition is ensured for any perturbation,
however small, does not always exists. If, for instance, for a boundary layer there seems to
be a maximum value of Recr, of the order of 3× 106, above which the flow becomes turbulent
no matter how small is the perturbation level, for a pipe flow, a limiting value of the critical
Reynolds number does not exists, hence Recr → ∞ for u′/U → 0 and the Reynolds number
can be increased indefinitely, while keeping the flow laminar, provided that a sufficiently low
level of perturbation can be guaranteed [50].

From a mathematical point of view, if the fluid motion is decomposed into elementary
components—i.e. it is expanded in terms of orthogonal functions, each of them describing
elementary motions at different scales—such that each of them is defined by a limited number
of parameters and their energy sum up to the total energy of the flow, then the total number
of parameters may be considered as the total number of degrees of freedom of the flow. The
elementary functions, as well as the number of degrees of freedom, depend on the initial and
boundary conditions for the flow.

For steady laminar flows, the value of the above mentioned parameters, or generalized co-
ordinates, is defined by the boundary conditions, hence the number of degrees of freedom is
zero. This is not the case for turbulent flows which can have quite a large amount of degrees of
freedom. The total number is anyway limited due to viscosity, which prevents fluctuations of
too small scales from existing. If viscosity decreases, smaller and smaller scales are permitted,
hence the degrees of freedom increase with increasing Re number. For sufficiently large Reyn-
olds numbers, if N is the total number of degrees of freedom of turbulence in a finite volume,
it is well known that

N ∝ Re9/4, (2.32)

where Re is the typical Reynolds number for the flow. We may want, for instance, to make
a discrete representation of a turbulent velocity field by means of its Fourier transformation.
If Nx, Ny and Nz are the total number of frequencies which are necessary for a sufficiently
accurate approximation of the relevant spectra (one for each coordinate direction), then it is
clear that the full representation will involve the solution of the Fourier transformed Navier-
Stokes equations over, at least, N = Nx × Ny × Nz wave-numbers. This number, which
corresponds to the total number of grid points in physical space which are necessary to make
a full representation of the flow, scales with the Reynolds number as expressed by Eq. (2.32).

In the most simple case of statistically steady turbulence, the velocity field may be decom-
posed into a mean flow and a random, fluctuating, component of motion:

u(x, t) = 〈u〉(x) + u′(x, t), (2.33)

with

〈u〉(x) = lim
T→∞

1

T

∫ T

0
u(x, t)dt. (2.34)

12



Turbulent Flows

For fully developed turbulence, the fluctuating velocity u′ may be regarded as a random
broad collection of vortices, or eddies, of different typical scales, the bigger being typically
comparable, in size, with a characteristic geometric length-scale for the flow, namely the inte-
gral length ℓ0. Those eddies are created by instabilities and are themselves subject to inertial
instabilities, hence, smaller and smaller eddies are generated by break-up of the bigger ones.
Kinetic energy is then passed down into a cascade process from big structures to small struc-
tures until the typical size of the eddies is so small that they are destroyed by the action of
viscous forces. If vη and η are the typical velocity- and length-scales of the smallest eddies,
viscous forces are predominant, hence the relevant Reynolds number is of the order of unity:

vηη

ν
∼ 1. (2.35)

If u′ is a measure of the norm of the fluctuating velocity u′ and

Ret =
u′ℓ0
ν

(2.36)

is sufficiently large, the life-span of a big eddy of size ℓ0 is of the order of its turn-over time
ℓ0/u

′, therefore, as a first approximation, we may conjecture that the rate at which energy per
unit mass is passed down the energy cascade is of the order of

Π ∼ u′2

ℓ0/u′
=
u′3

ℓ0
. (2.37)

On the other hand, considering for simplicity the incompressible case, the rate of energy
dissipation ε is of the order of νSijSij , where Sij is the strain rate tensor, and, since dissipation
is mainly acting at small scales, where velocity gradients attain the most intense values, we
may write:

ε ∼ ν
v2
η

η2
. (2.38)

When the conditions are statistically steady, i.e., under the equilibrium hypothesis, the rate
at which energy is passed down the cascade, must be equal to the rate of energy dissipation:

Π ∼ u′3

ℓ0
∼ ν

v2
η

η2
∼ ε. (2.39)

From the above condition and Eq. (2.35), it can be easily verified that:

η ∼ ℓ0Re
−3/4
t ∼ (ν3/ε)1/4, (2.40)

vη ∼ u′Re
−1/4
t ∼ (νε)1/4. (2.41)

The scales η and vη are known as the Kolmogorov microscales. The above relation is in
accordance with what has been said about the total number of degrees of freedom in a turbulent
flow: if the typical scales characterizing the flow spans from the biggest, of the order of ℓ0, to
the smallest, of the order of η, then the breadth ℓ0/η of the scales’ range, per integral scale, is

of the order of Re
3/4
t .
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2. Fundamentals

Due to the chaotic nature of turbulence, a statistical theory [50, 51] is clearly a powerful
tool to tackle the problem. Among the many statistical quantities that can be used, the
second-order (longitudinal) structure function,

DLL(r) = 〈[u′1(x+ r)− u′1(x)]2〉, r = |r|, (2.42)

is a particularly useful one.3 In particular, if ℓ0, u
′, t and ν are the integral scale, the typical

velocity of the large eddies, the time and the kinematic viscosity, by dimensional considerations,
Eq. (2.42) may be written as:

DLL(r) = u′2f

(
r

ℓ0
,
u′t

ℓ0
,Ret

)
, (2.43)

where f is a non-dimensional function of the dimensionless groups in parentheses. The above
relation, even if not explicitly stated, is, in general, also a function of the boundary conditions
of the flow.

If the Reynolds number is sufficiently large to ensure enough scale separation, although
the large scales of motion cannot be assumed to be isotropic, eddies of size r ≪ ℓ0 are likely
not to retain much of the information relevant to the large scales. Moreover, since typical
time-scales of small eddies are much smaller than those of the large scales, i.e., small scale
dynamics evolves much faster than large scale dynamics, small structures should not directly
feel instantaneous changes of large structures. Hence, small scales are more or less unaware of
large scales anisotropy (i.e., they are locally isotropic) and feel the time evolution of the large
scales through the instantaneous flux of energy Π(t) only (i.e., small scales are in statistical
equilibrium with large scales).

Scales r ≪ ℓ0, under the above hypotheses, represent the universal equilibrium range (cf.
Figure 2.1) envisaged by Kolmogorov in his renowned K41 Theory [36, 37]. In particular, under
the First Similarity Hypothesis, for sufficiently large Re and r ≪ ℓ0, the statistical properties of
turbulence have a universal nature and depend on ε = 〈2νSijSij〉 and ν, hence, by dimensional
considerations, Eq. (2.43) becomes:

DLL(r) = v2
ηβLL

(
r

η

)
, for r ≪ ℓ0, (2.44)

with η and vη given in Eqs. (2.40) and (2.41) and βLL a non-dimensional universal function.
Introducing the velocity correlation

BLL(r) = 〈u′1(x+ r)u′1(x)〉, (2.45)

its Fourier transformation E1(k1), with k1 = π/r the relevant wave-number, represents the
longitudinal one-dimensional energy spectrum:

E1(k1) =
2

π

∫ ∞

0
BLL(r) cos(k1r)dr. (2.46)

3The fact that in Eq. (2.42) the explicit dependancy on r only is indicated, implies that turbulence is
assumed to be, at least, locally isotropic [51], hence its statistical properties do not change under translations,
rotations and mirror reflections.
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Figure 2.1: Qualitative representation of the normalized longitudinal one-dimensional spectrum
E1(k1)/(ηv

2
η) as a function of the normalized wave-number ηk1.

Resorting again to dimensional considerations, the Kolmogorov’s first similarity hypothesis
may be written for the longitudinal one-dimensional energy spectrum as follows:

E1(k1) = ηv2
ηϕ1(ηk1), for k1 ≫ 1/ℓ0, (2.47)

with ϕ1 another dimensionless universal function [51]. Moreover, there exists a sub-domain,
η ≪ r ≪ ℓ0, of the universal equilibrium range where scales are sufficiently large not to be
affected by viscosity anymore. Accordingly, within this range, the Kolmogorov’s Second Sim-
ilarity Hypothesis states that, for sufficiently large Re, the statistical properties of turbulence
have a universal nature and depend on ε only. From Eqs. (2.44), (2.40) and (2.41), we have:

DLL(r) = (νε)1/2βLL

(
rε1/4

ν3/4

)
, (2.48)

hence the only possibility to cancel out ν is that βLL(ξ) = Cξ2/3 and we get:

DLL(r) = Cε2/3r2/3, for η ≪ r ≪ ℓ0, (2.49)

and the relevant relation for the longitudinal one-dimensional energy spectrum may be ob-
tained, by analogous reasoning4, from Eq. (2.47):

E1(k1) = CKε
2/3k

−5/3
1 , for 1/ℓ0 ≪ k1 ≪ 1/η, (2.50)

4From Eqs. (2.47), (2.40) and (2.41), we have

E1(k1) = ν5/4ε1/4ϕ1

„

ν3/4

ε1/4
k1

«

,

hence, the only way to cancel out ν is that ϕ1(ξ) = CKξ−5/3.

15
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where CK is commonly indicated as Kolmogorov constant.
The Second Similarity Hypothesis and Eqs. (2.49)–(2.50) define the so called inertial sub-

range, indicated in Figure 2.1 on a qualitative representation of the one-dimensional longitu-
dinal energy spectrum.

The two similarity hypotheses of the K41 Theory has been extensively demonstrated by
experimental measurements. By representing the normalized energy spectrum as in Figure 2.1,
in fact, the universal character of the universal equilibrium range implies that spectra extracted
from different turbulent flows should collapse onto a single curve. This is indeed the case. The
values of the universal constants within the inertial sub-range were found to be C ≃ 2 and
CK ≃ 0.76C ≃ 1.5 for Re →∞ (cf. Section 23.3 in Monin and Yaglom [51]).
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CHAPTER 3
Mathematical Formulation

The discretization can yield linear but also nonlinear difference equations to determine the unknown
velocity components defined at the grid points. The number of unknowns is obtained from the
number of grid points. Since the spacing between them must be small in order for the model to be
as accurate as possible, the number of unknowns is always large. For this reason, computers must
be used to solve the difference equations.

H. Schlichting and K. Gersten, 2000

Contents

3.1 The SiTCom Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.1 The Finite Volume Formulation . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Convective Numerical Fluxes . . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 The Artificial Dissipation Term for LES . . . . . . . . . . . . . . . . 23
3.1.4 Viscous Numerical Fluxes . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.5 Time Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Characteristic Boundary Conditions . . . . . . . . . . . . . . . . . . 27
3.2.1 3D Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 Characteristic Formulation for Faces . . . . . . . . . . . . . . . . . . 34
3.2.3 Characteristic Formulation for Edges . . . . . . . . . . . . . . . . . . 43
3.2.4 Characteristic Formulation for Corners . . . . . . . . . . . . . . . . . 51
3.2.5 Testing the 3D-NSCBC . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Artificial Turbulence Injection . . . . . . . . . . . . . . . . . . . . . . 79

Les détails mathématiques concernant la mise en œuvre d’une approche Volumes Finis de
la résolution des équations de Navier-Stokes, dans leur formulation de type conservative, sont
donnés dans ce 3e Chapitre. Les équations discrètes du code numérique, utilisé dans le cadre
de cette thèse, des termes de transport convectif et diffusif, ainsi que des termes de dissipation
artificielle employée pour la Simulation aux Grandes Échelles sont présentées en premier lieu.

La formulation caractéristique des conditions aux limites est ensuite décrite. La dérivation
de la forme caractéristique des équations de transport, dans le cas tridimensionnel, est présentée
et les principales problématiques concernant l’utilisation de l’hypothèse d’écoulement mono-
dimensionnel non-visqueux, propre aux Conditions Limites Caractéristiques des équations de
Navier-Stokes [58], sont envisagées.

Puis, une nouvelle procédure pour prendre en compte les effets tridimensionnels dans
la solution des dérivées temporelles de l’amplitude des ondes entrantes est proposée. Cette
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3. Mathematical Formulation

technique, qui représente l’un des objectifs principaux de cette thèse et qui a été publiée
dans Lodato et al. [43], comporte des problèmes de couplage des ondes se déplaçant le long des
différentes directions, et les solutions relatives pour les conditions d’entrée/sortie subsoniques
non-réfléchissantes et de paroi adiabatique sont détaillées.

Cette procédure, nommée 3D-NSCBC, est, ensuite, testée sur des configurations simplifiées
relatives à la convection de tourbillons à différents régimes de Mach, et à la propagation
d’une impulsion sonore sphérique. L’application des conditions 3D-NSCBC à la Simulation
aux Grandes Échelles d’un jet libre turbulent est aussi présentée afin de tester la robustesse et
la stabilité de la nouvelle technique dans le cas d’une configuration complexe.

Enfin, la dernière section sera dédiée à la formulation, non triviale, de la méthode d’injection
d’un signal de turbulence corrélé [35] lorsque la condition d’entrée subsonique non-réfléchissante
est utilisée.

3.1 The SiTCom Solver

All the simulations presented in this work have been performed using the MPI parallelized
implementation of the SiTCom (Simulating Turbulent Combustion) code: a home made solver
based on an explicit Finite Volume (FV) scheme written for cartesian grids. This code was
previously developed and extensively validated at CORIA in a sequential version [11, 12]. Then,
in collaboration with Modelys [18] a parallel version was developed. From this point, this thesis
reports on further development concerning boundary conditions, Sub-Grid Scale modeling and
massively parallel computations, typically performed on more than 1000 processors.

This solver, which is entirely coded in FORTRAN 77, approximates the convective terms
resorting to the fourth-order centered skew-symmetric-like scheme proposed by Ducros et al.
[15] and the diffusive terms with a fourth-order centered scheme. The scheme is augmented by
a blend of second- and fourth-order artificial dissipation terms [74, 76]; these terms are added
in order to suppress spurious oscillations and damp high-frequency modes. Time integration is
performed using a particular implementation of the third-order Runge-Kutta scheme [26, 34].
A brief overview of the above mentioned main numerical features is presented in the next
sections.

All the boundary conditions are enforced using the 3D-NSCBC approach [43], which con-
stitutes one of the main topics of the present work and that will be discussed in detail in
Section 3.2.

With regards to the computation of turbulent flows, the solver can be used to perform either
Direct Numerical Simulations (DNS)1 or Large-Eddy Simulations (LES). LES in particular may
be performed choosing between different Sub-Grid Scale (SGS) models, which will be presented
in Chapter 4: (a) the Smagorinsky model [70]; (b) the Filtered Structure Function (FSF)
model [14]; (c) the Wall Adapting Local Eddy-viscosity (WALE) model [53]; (d) a compressible
implementation of the Lagrangian Dynamic Smagorinsky Model (LDSM) originally developed
for incompressible flows by Meneveau et al. [48]; (e) and the WALE Similarity mixed Model
(WSM), which constitutes the second main topic of this work and which will be described in
detail in Section 4.4.1.

1When DNS are performed, the artificial dissipation is switched off.
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Figure 3.1: Schematic representation of the discrete control volume Vi,j,k.

3.1.1 The Finite Volume Formulation

The numerical scheme used within the code is based on the Finite Volume (FV) approach.
The governing transport equations, Eqs. (2.15)–(2.16) are therefore rewritten in integral for-
mulation, by integrating over a control volume V—with frontier S—and applying the Gauss’
Theorem to the divergence-like terms:

∫

V

∂U

∂t
dV +

∫

S
F j njdS +

∫

S
Dj njdS = 0. (3.1)

The above compact equation corresponds to the following integral transport relations:

∫

V

∂ρ

∂t
dV +

∫

S
ρujdSj = 0, (3.2)

∫

V

∂ρui
∂t

dV +

∫

S
(ρuiuj + δijp)dSj =

∫

S
2µAijdSj , (i = 1, 2, 3), (3.3)

∫

V

∂ρe

∂t
dV +

∫

S
(ρe+ p)uidSi =

∫

S

(
2µujAij +

µcp
Pr

∂T

∂xi

)
dSi, (3.4)

∫

V

∂ρZ

∂t
dV +

∫

S
ρZuidSi =

∫

S

µ

Sc

∂Z

∂xi
dSi, (3.5)

where dSk = nkdS represent the surface element’s component in the kth direction.
The physical domain is then subdivided in small polyhedral control volumes Vi,j,k, which

are delimited by a finite number of plane surfaces as depicted in Figure 3.1 (hexahedra in
the present case where the computational grid is cartesian), where the equations are solved
resorting to the approximations2

∫

Vi,j,k

ϕdV ≃ ϕ̂Vi,j,k and

∫

S
ϕdSm ≃

∑

i

[ϕ]iSmi , (3.6)

2In order to overcome the difficulties related to the proliferation of indices when dealing with discrete
transport equations, we will stick to the convention that i, j, k indices refer to the discretization (in general, cell
numbering along the three coordinate directions) and we will use m, l indices to refer to vector components. To
avoid any confusion, Einstein convention won’t be used throughout the remainder of this section when referring
to discrete equations and summation, when necessary, will be explicitly indicated.
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where ϕ̂ is the average value of a generic scalar quantity ϕ over the control volume Vi,j,k and the
summation in the second equation is extended to all the elementary plane surfaces delimiting
the control volume; [ϕ]i is a measure of the value of ϕ over the ith surface Smi delimiting the
discrete control volume Vi,j,k.

Considering, in particular, the case of a structured cartesian computational grid, as in the
present solver, the discrete flux integral for a generic vector ϕm, at cell location i, j, k, may be
written as (see Figure 3.1):

∫

S
ϕmdSm ≃ [ϕ1]i+1/2,j,kS1

i+1/2,j,k − [ϕ1]i−1/2,j,kS1
i−1/2,j,k

+ [ϕ2]i,j+1/2,kS2
i,j+1/2,k − [ϕ2]i,j−1/2,kS2

i,j−1/2,k

+ [ϕ3]i,j,k+1/2S3
i,j,k+1/2 − [ϕ3]i,j,k−1/2S3

i,j,k−1/2. (3.7)

As it can be seen from the above equation, the mathematical details of the numerical
scheme used may be conveniently analyzed considering one coordinate direction at a time; this
is what it will be done throughout the next sections by addressing the mono-dimensional FV
transport equation. Considering the ith control volume Vi, this may be written on the 1D
stencil depicted in Figure 3.2 as:

∂ϕ̂i
∂t

+
FCi+1/2Si+1/2 −FCi−1/2Si−1/2

Vi
=
FV i+1/2Si+1/2 −FV i−1/2Si−1/2

Vi
, (3.8)

where

FCi±1/2 = [ϕu]i±1/2 and FV i±1/2 =

[
κ
∂φ

∂x

]

i±1/2

are generic convective and viscous discrete fluxes for the transported quantity ϕ = ρφ computed
on the cell interfaces and κ represent the diffusion coefficient for the relevant primitive variable
φ.

The Finite Volume Taylor Series

In the framework of the FV technique, Taylor series expansions must be computed taking into
account that the value of a generic quantity in cell i is actually its averaged value over the
cell volume. Considering the mono-dimensional cartesian grid with uniform spacing ∆x, i.e.
Vi = S∆x, the volume averaged value of ϕ at cell i may be computed as:

ϕ̂i =
1

Vi

∫

Vi

ϕdV =
1

∆x

∫

∆x
ϕ(x)dx.

With reference to Figure 3.2, the Taylor expansion of ϕ(x) around the interface location
xi+1/2 is:

ϕ(x) = [ϕ]i+1/2 + ϕ′δx+ 1
2ϕ
′′δx2 + 1

6ϕ
′′′δx3 + 1

24ϕ
(4)δx4 +O(δx5), (3.9)

where δx = x− xi+1/2 and with all the derivatives evaluated at xi+1/2.
Eq. (3.9) will be referred as Finite Difference (FD) Taylor Expansion in order to distinguish

from the FV Taylor Expansion formulas which are derived below. The values of ϕ̂ at the cell’s
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Figure 3.2: Four-nodes stencil used for surface integral approximations.

centers can be expressed in terms of [ϕ]i+1/2 by integrating the above Taylor expansion:

(ϕ̂i−1 + ϕ̂i)∆x =

∫ x

x−2∆x
ϕ(x)dx,

ϕ̂i∆x =

∫ x

x−∆x
ϕ(x)dx,

ϕ̂i+1∆x =

∫ x+∆x

x
ϕ(x)dx,

(ϕ̂i+1 + ϕ̂i+2)∆x =

∫ x+2∆x

x
ϕ(x)dx,

leading to

ϕ̂i−1 = [ϕ]i+1/2 − 3
2ϕ
′∆x+ 7

6ϕ
′′∆x2 − 15

24ϕ
′′′∆x3 +O(∆x4), (3.10)

ϕ̂i = [ϕ]i+1/2 − 1
2ϕ
′∆x+ 1

6ϕ
′′∆x2 − 1

24ϕ
′′′∆x3 +O(∆x4), (3.11)

ϕ̂i+1 = [ϕ]i+1/2 +
1
2ϕ
′∆x+ 1

6ϕ
′′∆x2 + 1

24ϕ
′′′∆x3 +O(∆x4), (3.12)

ϕ̂i+2 = [ϕ]i+1/2 +
3
2ϕ
′∆x+ 7

6ϕ
′′∆x2 + 15

24ϕ
′′′∆x3 +O(∆x4). (3.13)

Linear combinations of Eqs. (3.10)–(3.13) with suitable coefficients may be used to deter-
mine centered fourth- and second-order approximations of the interface value [ϕ]i+1/2 [19]:

[ϕ]O4
i+1/2 =

7
12(ϕ̂i + ϕ̂i+1)− 1

12(ϕ̂i+2 + ϕ̂i−1) +O(∆x4), (3.14)

[ϕ]O2
i+1/2 =

1
2(ϕ̂i + ϕ̂i+1) +O(∆x2), (3.15)

which, evidently, are strictly valid on uniform grids only. With reference to Figure 3.3, the
following one-sided third-order approximations, which will be used to compute boundary gra-
dients, can be derived with a similar procedure:

[ϕ]O3
i+1/2 =

1
3 ϕ̂i+1 +

5
6 ϕ̂i − 1

6 ϕ̂i−1 +O(∆x3). (3.16)

[ϕ]O3
i+3/2 =

11
6 ϕ̂i+1 − 7

6 ϕ̂i +
1
3 ϕ̂i−1 +O(∆x3), (3.17)

the last relation being obtained by first deriving the FV Taylor expansion around the interface
point [ϕ]i+3/2.
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Figure 3.3: Three-nodes boundary stencil (dx). The open symbol indicate the additional
exterior boundary node.

3.1.2 Convective Numerical Fluxes

The numerical flux FCi+1/2 is computed resorting to the fourth-order skew-symmetric-like FV
formulation proposed by Ducros et al. [15] on the four-nodes stencil depicted in Figure 3.2:

FCO4
i+1/2 =

1
3 (ϕ̂i + ϕ̂i+1) (ûi + ûi+1)

− 1
24 [(ϕ̂i + ϕ̂i+2) (ûi + ûi+2) + (ϕ̂i−1 + ϕ̂i+1) (ûi−1 + ûi+1)]

+ 1
3

[
1
2 (ϕ̂iûi + ϕ̂i+1ûi+1)− 1

4 (ϕ̂i + ϕ̂i+1) (ûi + ûi+1)
]
, (3.18)

where ϕ = ρφ is the convected quantity and the ·̂ operator indicates averaging over the control
volume. Plugging Eqs. (3.10)–(3.13) into Eq. (3.18), it can be verified that the first two lines
in Eq. (3.18)—which is the strict skew-symmetric formulation as it can be verified in the FD
context [15]—are equal to3

[ϕu]i+1/2 − 1
12ϕ

′u′∆x2 +O(∆x4),

and the third line is equal to
1
12ϕ

′u′∆x2 +O(∆x4),

so that the order of the skew-symmetric-like4 formulation above is readily verified:

FCO4
i+1/2 = [ϕu]i+1/2 +O(∆x4).

The numerical fluxes on the frontier of the domain are obtained using an additional exterior
boundary node (see Figure 3.3)—computed resorting to the 3D-NSCBC procedure [43] which
will be presented in detail in Section 3.2—and reducing the order of the scheme. The second-
order skew-symmetric-like formulation is then used:

FCO2
i+1/2 =

1
4 (ϕ̂i + ϕ̂i+1) (ûi + ûi+1) , (3.19)

which, as it can be immediately verified from Eqs. (3.11) and (3.12), is equivalent to the
second-order approximation of the interface flux [ϕu]i+1/2.

3We use the compact notation [ϕu]i+1/2 to indicate [ϕ]i+1/2[u]i+1/2.
4Strictly speaking, talking of skew-symmetric formulation in the FV context is meaningless as convective

fluxes are not computed as ∂(ϕu)/∂x. This is actually the reason why Eq. (3.18) is referred to as skew-symmetric-
like: it represent a fourth order approximation of [ϕu]i+1/2, which is formally similar to the FD skew-symmetric
scheme.
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3.1.3 The Artificial Dissipation Term for LES

In order to suppress spurious oscillations and damp high-frequency modes, the numerical
scheme is augmented by the High-Resolution Switched Scheme [76]. This artificial dissipa-
tion scheme, originally proposed by Jameson et al. [33], is essentially a blend of fourth- and
second-order terms, the former being responsible for high frequency damping and the latter
acting in the vicinity of shock waves, if any. The switch between the two terms is done by
means of an improved version [74] of the pressure sensor. Moreover, in order to recover a true
upwinding for the skew-symmetric-like fourth-order flux, Eq. (3.18), a fourth-order corrective
factor ǫO4 is added [15].

When the artificial dissipation is active, the convective flux at cell interface i+1/2 is written
as:

FCi+1/2 = FCO∗i+1/2 −ADi+1/2, (3.20)

where FCO∗i+1/2 is either the fourth- or second-order convective flux computed from Eqs. (3.18)–

(3.19) and the artificial dissipation term, for a generic transported variable ϕ̂, is defined as:

ADi+1/2 = ǫ
(2)
i+1/2

∣∣λi+1/2

∣∣∆ϕi+1/2

− ǫ(4)
i+1/2

∣∣λi+1/2

∣∣(∆ϕi+3/2 − 2∆ϕi+1/2 +∆ϕi−1/2

)

− ǫO4
i+1/2λi+1/2

(
∆ϕi+3/2 −∆ϕi−1/2

)
, (3.21)

with ∆ϕi+1/2 = (ϕ̂i+1 − ϕ̂i) and

ǫ
(2)
i+1/2 = min

(
α1, α2Ψi+1/2

)
, (3.22)

ǫ
(4)
i+1/2 = max

(
0, β1 − β2ǫ

(2)
i+1/2

)
, (3.23)

ǫO4
i+1/2 =

{
1
6ǫ

(2)
i+1/2 if fourth-order flux is used Eq. (3.18),

0 if second-order flux is used Eq. (3.19).
(3.24)

The switch Ψi+1/2 is computed as the maximum between the pressure sensors evaluated at
cells i and i+ 1, namely

Ψi+1/2 = max
(
Ψi,Ψi+1

)
, (3.25)

the pressure sensor being defined as:

Ψi =
|p̂i+1 − 2p̂i + p̂i−1|

(1− ωΨ)PTVD + ωΨPJST + ǫ0
, (3.26)

where

PTVD = |p̂i+1 − p̂i|+ |p̂i − p̂i−1| , (3.27)

PJST = p̂i+1 + 2p̂i + p̂i−1. (3.28)

The value of ωΨ is typically 0.5 and ǫ0 is a threshold to ensure that the denominator in
Eq. (3.26) cannot be zero. For ωΨ = 1 the original JST switch is recovered [33], while for
ωΨ = 0 a TVD replacement for the switch is obtained [74]; the modified switch is, therefore, a
blend of the two.
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3. Mathematical Formulation

The variable scaling factor λi+1/2 is computed as the convective velocity at cell interface
i+ 1/2, evaluated either from Eq. (3.14) or Eq. (3.15):

λi+1/2 =

{
[u]O4

i+1/2 within the computational domain,

[u]O2
i+1/2 at the boundary.

(3.29)

In the present work, for all the simulations which have been done using artificial dissipation,
the relevant constants have been set at α1 = α2 = 0.5, β1 = 0.016 and β2 = 1.0. The α1 and α2

coefficients are related to the second-order shock capturing term (first line in Eq. (3.21)) and the
relevant values are set in order to scale the diffusion to the upwind level5, while β1 determines
the strength of the fourth-order high-frequency damping term (second line in Eq. (3.21)) and
β2 is used to tune the promptness of the scheme in switching off the fourth-order term when
a shock wave is detected.

The fourth-order dissipative flux near the boundary is computed resorting to the zeroth-
order extrapolation, as suggested by Swanson and Turkel [74]. With reference to Figure 3.3, for
instance, the artificial dissipation flux is computed from Eq. (3.21) by simply setting ∆ϕi+3/2 =
∆ϕi+1/2:

ADi+1/2 = ǫ
(2)
i+1/2

∣∣λi+1/2

∣∣∆ϕi+1/2 − ǫ(4)i+1/2

∣∣λi+1/2

∣∣(∆ϕi−1/2 −∆ϕi+1/2

)
. (3.30)

This boundary condition alone produces significant oscillations (see Figure 3.4a) at sub-
sonic non-reflecting inflow and outflow boundaries (cf. Section 3.2). Preliminary testing has
shown that this numerical noise may be completely eliminated (see Figure 3.4b) by applying a
zeroth-order extrapolation, from the interior region, of the net artificial dissipation flux at the
boundary location. Considering again Figure 3.3, this is actually achieved by subtracting to the
convective flux at node i+1—which is computed using characteristic boundary conditions—a
net artificial dissipation term ∆ADi+1 equal to the one computed in the leftmost neighbor cell:

∆ADi+1 = ADi+1/2 −ADi−1/2. (3.31)

3.1.4 Viscous Numerical Fluxes

Diffusive fluxes are computed in the following two stages:

5Upwinding may be easily checked by switching off the fourth-order term and by setting a uniform velocity
u in the vicinity of an hypothetical shock and ǫ

(2)

i+1/2 = 1/2. When the skew-symmetric-like scheme is used, from

Eqs. (3.18) and (3.21), we get:

FCO4
i+1/2 = 2

3
u(ϕ̂i + ϕ̂i+1)− 1

12
u(ϕ̂i + ϕ̂i+2 + ϕ̂i−1 + ϕ̂i+1),

ADi+1/2 = 1
2
|u|(ϕ̂i+1 − ϕ̂i)− 1

12
u(ϕ̂i+2 − ϕ̂i+1 − ϕ̂i + ϕ̂i−1).

Note that the last term in the above equation is due to the fourth-order corrective factor (third line in
Eq. (3.21)). The net numerical flux is then computed from Eq. (3.20) as:

⇒ FCi+1/2 = 1
2
u(ϕ̂i + ϕ̂i+1)− 1

2
|u|(ϕ̂i+1 − ϕ̂i) =

(

u ϕ̂i for u ≥ 0,

u ϕ̂i+1 for u < 0.

which gives, as expected, a true upwind flux.
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(a) (b)

Figure 3.4: Normalized pressure map of a convected single-vortex at the instant it goes through
a subsonic non-reflecting outflow without specific treatment of the artificial dissipation at the
boundary (a) and with zeroth-order extrapolation of the net artificial dissipation flux (b).

1. Gradients are computed resorting to the Gauss’ Theorem on the cell’s control volume:

∫

V

∂φ

∂xm
dV =

∫

S
φdSm ≃

∑

i

[φ]iSmi ,

where, again, the operator [ · ]i represent averaging over the ith surface Smi of the con-
trol volume V. In the mono-dimensional case, the last relation leads to the following
approximation for the cell-averaged value of the gradient:

[
∂φ̂

∂x

]

i

=
[φ]O4

i+1/2Si+1/2 − [φ]O4
i−1/2Si−1/2

Vi
, (3.32)

where [φ]O4
i±1/2 are evaluated resorting to the fourth-order average, with Eq. (3.14). It

should be noted that, as it can be inferred on a regular mesh where Si+1/2 = Si−1/2 = S
and Vi = S∆x, the above relation gives a third-order approximation of the gradient.

2. Numerical diffusive fluxes at interface i + 1/2 are then computed with the fourth-order
approximation by applying again Eq. (3.14):

FVO4
i+1/2 =

7

12

([
κ
∂φ̂

∂x

]

i

+

[
κ
∂φ̂

∂x

]

i+1

)
− 1

12

([
κ
∂φ̂

∂x

]

i+2

+

[
κ
∂φ̂

∂x

]

i−1

)
, (3.33)

where [κ∂φ̂/∂x]i represent the product between the diffusive coefficient and the gradient
in the ith cell, i.e. κi[∂φ̂/∂x]i.

At the boundary, gradients are computed switching the scheme to second-order by us-
ing one-sided approximations Eqs. (3.16) and (3.17). With reference to Figure 3.3, average
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gradients in cell i and the external node i+ 1 are respectively6:

[
∂φ̂

∂x

]

i

=
[φ]O3

i+1/2Si+1/2 − [φ]O4
i−1/2Si−1/2

Vi
, (3.34)

[
∂φ̂

∂x

]

i+1

=
[φ]O3

i+3/2Si+1/2 − [φ]O3
i+1/2Si−1/2

Vi+1
. (3.35)

Moreover, numerical diffusive fluxes at the last fluid-cell interface before the boundary are
computed with the third-order approximation by applying again Eq. (3.16):

FVO3
i+1/2 =

1

3

[
κ
∂φ̂

∂x

]

i+1

+
5

6

[
κ
∂φ̂

∂x

]

i

− 1

6

[
κ
∂φ̂

∂x

]

i−1

. (3.36)

Normal diffusive fluxes at the boundary location are computed either by imposing the
relevant boundary condition (e.g., zero heat flux is imposed on adiabatic walls) or by computing
FVO3

i+3/2 using Eq. (3.17), which leads to the second-order one sided difference approximation

(cf. Footnote 6):

[
∂

∂x

(
κ
∂φ̂

∂x

)]

i+1

=
FVO3

i+3/2Si+3/2 −FVO3
i+3/2Si+3/2

Vi

=
1

2∆x

(
3

[
κ
∂φ̂

∂x

]

i+1

− 4

[
κ
∂φ̂

∂x

]

i

+

[
κ
∂φ̂

∂x

]

i−1

)
. (3.37)

3.1.5 Time Integration

The solution is advanced in time using the third-order TVD (Total Variation Diminishing)
Runge-Kutta scheme proposed by Gottlieb and Shu [26], which is briefly summarized in this
section.

Introducing a first-order approximation of the time derivative, Eq. (3.8) may be conve-
niently written as:

ϕ̂n+1
i − ϕ̂ni
∆t

+Ri

(
ϕn

)
= 0, (3.38)

where the residualR includes convective and diffusive fluxes, as well as, the artificial dissipation
and source terms, if any, and ϕn represents the solution of the numerical simulation at the nth

6Considering a regular mesh, Eq. (3.35) reduces to:

»

∂φ̂

∂x

–

i+1

=
3φ̂i+1 − 4φ̂i + φ̂i−1

2∆x
+O(∆x2),

which is formally identical to the one-sided second-order FD approximation of the gradient (the only difference
being the hat operator on the variable φ). This is consistent with the observation that FD and FV approxima-
tions can be confused up to the second-order [15].
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time-step7. Time integration is then performed through the following three steps:

ϕ̂
(1)
i = ϕ̂ni −∆tRi

(
ϕn

)
, (3.39)

ϕ̂
(2)
i = 3

4 ϕ̂
n
i +

1
4 ϕ̂

(1)
i − 1

4∆tRi

(
ϕ(1)

)
, (3.40)

ϕ̂n+1
i = 1

3 ϕ̂
n
i +

2
3 ϕ̂

(2)
i − 2

3∆tRi

(
ϕ(2)

)
, (3.41)

The time-step is limited by the Courant-Friedrichs-Lewy (CFL) condition involving an
inviscid time ∆tI and a viscous time ∆tV :

∆t

min (∆tI ,∆tV)
≤ C, (3.42)

where C is the CFL coefficient8. The inviscid and viscous time-steps are respectively:

∆tI =
Vi,j,k∑

m

(
|ûm|+ â

)
Smi,j,k

, (3.43)

∆tV =
ρ̂V2

i,j,k

2µ̂eff
∑

m

(
Smi,j,kSmi,j,k

) , (3.44)

where the hat operator implies volume averaging within Vi,j,k, a =
√
γp/ρ is the speed of sound

and µ̂eff is the effective dynamic viscosity, which, when Large-Eddy Simulation is performed,
includes the contribution of sub-grid viscosity (cf. Chapter 4), namely

µeff =





µ for DNS,

µ+
1

2

∣∣∣∣∣

∑
l

∑
m τ

d
lmÃlm∑

l

∑
m ÃlmÃlm

∣∣∣∣∣ for LES9.
(3.45)

3.2 Characteristic Boundary Conditions

The treatment of boundary conditions is one of the most recurrent issues in computational
fluid dynamics. Compressible solvers’ accuracy, in general, is strongly sensitive to boundary
solution, which may be spoiled by spurious numerical reflections generated at open boundaries.

High-order numerical schemes widely used in Direct Numerical Simulation (DNS) and
Large-Eddy Simulation (LES), do not dissipate the spurious modes that may be generated at
the boundaries and hence, boundary conditions must ensure that physically correct solutions

7In general, the residual at cell i is a function of the solution over a certain number of physically neighbor
points, the number depending on the used stencil in the discretization scheme.

8In the present formulation, the maximum CFL coefficient for the scheme to be TVD is 1 [26].
9The formula used to compute the sub-grid viscosity is designed to account for the additional difficulties

related to the use of similarity mixed models (cf. Section 4.4.1). It is worth underlining that, in the case of
eddy-viscosity models, the sub-grid viscosity is automatically recovered:

1

2
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˛

˛
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= ρνt.

27
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are produced, while minimizing the amplitude of any extraneous perturbation. Moreover, in
DNS and LES a wide range of length and time scales is resolved and transported by the flow;
the open boundaries are therefore invested with a complex set of sound and entropy waves
and convected vorticity. Any excess in numerical reflection can lead to the buildup of spurious
oscillations, thus negatively affect the physical properties of the flow itself.

Several approaches have been proposed to tackle boundary conditions. Many of them
are oriented toward the definition of transparent frontiers for Computational Aero-Acoustics
(CAA), where the high standards in this regard, make the task particularly challenging (see Bo-
gey and Bailly [6], Hixon et al. [31], Nicoud [52], Tam [75] for review and applications). Among
them, techniques based on characteristics waves have motivated much attention. Initially de-
veloped for hyperbolic systems of Euler equations, these approaches decompose the flow in
terms of characteristic waves traveling in the direction normal to the boundary, thus reducing
the boundary problem to a suitable imposition of the incoming waves. The identification of
incoming waves allows a direct control over boundary reflection, as the boundary condition
can be designed to prevent incoming perturbations or to damp their amplitude while allowing
smooth transients [62, 78, 79]. The extension to the Navier-Stokes equations was then devel-
oped, by accounting for viscous terms, leading to the Navier-Stokes Characteristic Boundary
Conditions (NSCBC) [5, 54, 58, 73]. A “plane masking” approach for the linear relaxation term
was proposed by Polifke et al. [59] in order to reduce of the reflection coefficient low-frequency
normal incident waves. A low Mach number expansion has been discussed by Prosser [60], in
order to decouple convective and acoustic effects, thus allowing non-reflective conditions for
the acoustic length scales.

These methods mostly rely on the assumption that the flow at the boundary can be regarded
as Locally One-Dimensional and Inviscid. While, this assumption has proven to perform well
when the flow is almost aligned orthogonally to the boundary, flow distortion and high reflection
may appear when the flow crosses the boundary along different directions. The role played by
the transverse terms was carefully identified by Yoo and Im [84], Yoo et al. [85], who proposed
a modification to the NSCBC approach. They showed that an appropriate treatment of the
transverse and source terms in the computation of incoming waves improves the accuracy
and convergence rate toward target values for selected relaxed quantities, while reducing flow
distortion even in regions characterized by strong transverse convection.

Within the framework of the NSCBC procedure [58], the Navier-Stokes equations are rewrit-
ten in such a way that their dependancy on the characteristic waves traveling across the bound-
ary is made explicit. As it will be shown in more detail in the following sections, characteristic
waves are represented by their amplitude time variations Li,Mi and Ni, corresponding to the
three physical-space directions with the subscript ‘i’ ranging from 1 to the total number of
transport equations used; with reference to Eqs. (2.15) and (2.16) then, there will be a total
of 6 characteristic waves in each coordinate direction. In the most general case, i.e., when the
characteristic waves traveling along the three coordinate directions are considered altogether,
the Navier-Stokes equations assume the form

∂U

∂t
+ f1(Li) + f2(Mi) + f3(Ni) +D = 0, (3.46)

where U is the vector of primitive variables10, fk represents the explicit functional relation

10As it will be shown in the following sections, a formally identical relation may be obtained for conservative
variables too (cf. Eqs. (3.161) and (3.162)).
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existing between convective terms—and pressure gradients—along the kth direction and the
relevant characteristic waves and D includes viscous and diffusive terms only.

A point located on the frontier of the computational domain, the waves propagate in such
a way that some of them leave the domain, while the others enter from outside. As outgoing
waves can be computed from interior points and one-sided differences by directly applying their
definition (cf. Eqs. (3.35), (3.66), (3.112) and (3.160)), the boundary problem is reduced to the
development of strategies and physical—or numerical—conditions which allow the computation
of the unknown incoming waves. Once all the wave amplitude variations and the vector D

are computed, the solution can be advanced in time. Then, the following key points may be
identified:

• definition of boundary conditions that allow the computation of all the incoming wave
amplitude variations;

• definition of strategies and/or boundary conditions in order to compute viscous and
diffusive terms at the boundary.

With regard to the first point, the standard NSCBC approach proposed by Poinsot and
Lele [58] prescribes that all the incoming wave amplitudes are imposed under the hypothesis
that the flow at the boundary can be regarded as Locally One-Dimensional and Inviscid. If the
boundary is normal to the x1 direction, under these hypotheses, f2, f3 and D in Eq. (3.46)
are neglected leading to the following relation:

∂U

∂t
+ f1(Li) = 0. (3.47)

The above equation, the so called LODI system (see Eq. (3.71) for more details), represents
a direct link between characteristic waves traveling across the boundary and time derivatives of
primitive variables, and may be used to translate physical boundary conditions—corresponding
to Euler boundary conditions—expressed in terms of time derivatives of the primitive variables,
into analytical relations involving the wave amplitude variations, such that the unknown incom-
ing ones can be computed. Well-posedness of boundary conditions for Navier-Stokes equations
is then ensured by supplying the necessary additional viscous conditions, thus allowing the
computation of the D term.

When the flow is strongly three-dimensional at boundaries, the LODI assumption becomes
too restrictive to keep boundary reflection at an acceptable level and unphysical flow distortions
appear, especially in regions where the flow is not aligned with the direction normal to the
boundary (cf. Figure 3.5). From a mathematical point of view, there appears a residual term
R in the LODI system and this residual, which includes transverse convection and pressure
gradients11, is no more negligible:

∂U

∂t
+ f1(Li) = R. (3.48)

Apart from the already mentioned problems of flow distortion and numerical reflection, in
regions where strong convection in the boundary plane exists, this residual may negatively affect

11We will assume that diffusive and viscous effects can be still considered to be much weaker than convection
and pressure gradients.
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(a) (b)

Figure 3.5: Impinging jet simulation using standard LODI non-reflecting outflow boundary
conditions (a) and modified NSCBC accounting for transverse effects (b): iso-surfaces of ve-
locity colored by velocity magnitude and pressure map over the impingement wall.

the convergence rate and the accuracy of boundary relaxed quantities12 toward their physical
target value. This problem can be easily shown considering, for simplicity, one single wave
propagation direction as follows. With reference to the above equation, a linear transformation
A is introduced in order to have one single wave amplitude variation in each equation:

A
∂U

∂t
+L = R∗, (3.49)

where L is the vector of components Li and R∗ = A ·R is the transformed residual. In the
standard NSCBC approach, if we consider the subset Lin of incoming waves, relaxation may
be expressed as

Lin = σ(U in − U∞in ), (3.50)

where σ is a matrix defining the relaxation coefficients, U in is the vector of boundary imposed
quantities involved in the computation of incoming waves13 and U∞in represents the relevant
target values. In the steady solution limit, if any, i.e. when ∂U/∂t → 0, from Eqs. (3.49)
and (3.50) we get

lim
t→∞

U in = U∞in + σ−1R∗
in, (3.51)

where R∗
in is the subset of transverse terms involved in the computation of incoming waves.

From the above relation it is evident how strong convection and pressure gradients in the
boundary planes will prevent relaxed quantities from reaching the relevant target values unless
the relaxation coefficient are high enough to sufficiently reduce the effect of R∗

in, thus increasing
the overall level of boundary reflection [59].

12Relaxed quantities are often used within characteristic boundary conditions in order to reduce numerical
reflection while ensuring convergence of boundary parameters toward prescribed physical states.

13In general, U in may contain either a subset of the components of U or other physical quantities suitable
for the computation of incoming waves.
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Figure 3.6: Transverse terms influence on boundary accuracy. Time evolution of the nor-
malized computed inlet velocity (a) and outlet pressure (b): standard LODI assumption;

modified NSCBC accounting for transverse effects.

Provided that the R∗
in terms can be computed at the boundary, the above mentioned

problems may be, in principle, solved by including transverse effects in the computation of
incoming waves

Lin = σ(U in − U∞in ) +R∗
in; (3.52)

in this way, transverse effects cancel out and the correct target values can be enforced at the
boundaries. This is, in summary, what was proposed by Yoo et al. [85] for two-dimensional
computations of counterflow flames and then extended to include also transverse diffusion and
source terms [84]. Figure 3.6 shows the impact, in terms of convergence toward target values,
when transverse effects are neglected in the simulation of an impinging round jet: if, at the
inflow, the convergence toward the inlet target velocity is only delayed (during the initial
transient the jet tends to spread radially but, eventually, the velocity becomes axially aligned,
thus making transverse terms gradually disappear), at the outflow the target pressure is never
recovered, because the established flow field is radially oriented (cf. Figure 3.5).

Away from edges and corners of the computational domain, transverse terms can be evalu-
ated from the computed solution using interior points. This direct approach, indeed, does not
pose additional issues for inlet boundaries but, as already mentioned by Yoo et al. [85], can
lead to serious numerical instabilities at outflow boundaries. One effective remedy for this is
to add a small relaxation toward a reference value for the transverse terms, thus introducing a
transverse damping coefficient βt, which is directly linked to the typical Mach number in the
flow under study [43, 84].

If the inclusion of transverse effects within boundary conditions does not poses particular
problems for points located inside a boundary plane, where transverse convective fluxes and
pressure gradients are immediately available from in-plane points, at the edges and the corners
of the computational domain a specific treatment is, however, necessary. At these locations in
fact, transverse terms in a given boundary plane may relate to characteristic waves traveling
along directions that are orthogonal to adjacent boundary planes, thus introducing a coupling
between characteristic waves traveling along different directions [80]. Moreover, when different
types of boundary conditions have to be enforced, it is in general necessary to prescribe com-
patibility conditions when well-posedness is not inherently ensured. The 3D-NSCBC approach,
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Computational Domain Corner

Edge

Face

Figure 3.7: Schematic representation of a 3D computational domain.

which will be presented in the following sections, represents a systematic procedure to address
3D characteristic wave coupling and to derive the relevant boundary conditions.

A detailed review of the three-dimensional characteristic formulation of the Navier-Stokes
equations is first presented, then the boundary treatment for nodes away from edges and
corners will be addressed and, finally, a specific methodology will be proposed for boundary
edges (two orthogonal characteristic directions) and corners (three orthogonal characteristic
directions).

3.2.1 3D Characteristics

In order to transform the Navier-Stokes equations in characteristic form, it is convenient to
reduce conservation laws expressed by Eq. (2.15) in quasi-linear form, apply the transforma-
tion matrix from conservative variables to primitive variables and then diagonalize the non-
conservative Jacobian matrices [30, 78, 79]. In this way, conservation laws are reformulated
such that their dependency on characteristic waves becomes explicit. As it will be shown, the
characteristic formulation in both conservative and primitive variables can be readily derived
by applying the relevant transformation matrix (namely P, in what follows).

Let the vector of primitive variables be

U =
(
ρ u1 u2 u3 p Z

)T
,

as it can be easily verified, the transformation matrix P = ∂U/∂U , i.e. the Jacobian matrix
to switch between primitive and conservative variables, reads

P =




1 0 0 0 0 0
u1 ρ 0 0 0 0
u2 0 ρ 0 0 0
u3 0 0 ρ 0 0

1
2ukuk ρu1 ρu2 ρu3 1/κ 0
Z 0 0 0 0 ρ



, (3.53)

32



Characteristic Boundary Conditions

and the relevant inverse matrix is

P−1 =




1 0 0 0 0 0
−u1/ρ 1/ρ 0 0 0 0
−u2/ρ 0 1/ρ 0 0 0
−u3/ρ 0 0 1/ρ 0 0
κ

2 ukuk −κu1 −κu2 −κu3 κ 0
−Z/ρ 0 0 0 0 1/ρ



, (3.54)

with κ = γ − 1.
The quasi-linear form of the Navier-Stokes equations may be obtained pre-multiplying

Eq. (2.15) by P−1 and using the identity P−1∂U/∂U = I14:

∂U

∂t
+F j ∂U

∂xj
+D = 0 (3.55)

where

D = P−1∂Di

∂xi

includes all the viscous and diffusive terms andFk = ∂F k/∂U is the non-conservative Jacobian
matrix relevant to the kth direction. In the present case, we get:

Fk =




uk δ1kρ δ2kρ δ3kρ 0 0
0 uk 0 0 δ1k/ρ 0
0 0 uk 0 δ2k/ρ 0
0 0 0 uk δ3k/ρ 0
0 δ1kγp δ2kγp δ3kγp uk 0
0 0 0 0 0 uk



. (3.56)

The characteristic form is finally obtained after diagonalizing the non-conservative Jacobian
matricesFk, that is, looking for the linear transformation Sk that satisfy the following identity:

Sk
−1FkSk = Λk (3.57)

where Λk is a diagonal matrix of the eigenvalues of Fk. In the present case, if a =
√
γp/ρ is

the speed of sound, we find:

Λk =




uk − a 0 0 0 0 0
0 uk 0 0 0 0
0 0 uk 0 0 0
0 0 0 uk 0 0
0 0 0 0 uk + a 0
0 0 0 0 0 uk



, (3.58)

Sk =




1/(2a2) δ1k/a
2 δ2k/a

2 δ3k/a
2 1/(2a2) 0

−δ1k/(2ρa) 1− δ1k 0 0 δ1k/(2ρa) 0
−δ2k/(2ρa) 0 1− δ2k 0 δ2k/(2ρa) 0
−δ3k/(2ρa) 0 0 1− δ3k δ3k/(2ρa) 0

1/2 0 0 0 1/2 0
0 0 0 0 0 1



, (3.59)

14I represents the identity matrix.

33



3. Mathematical Formulation

and

Sk
−1 =




0 −δ1kρa −δ2kρa −δ3kρa 1 0
δ1ka

2 1− δ1k 0 0 −δ1k 0
δ2ka

2 0 1− δ2k 0 −δ2k 0
δ3ka

2 0 0 1− δ3k −δ3k 0
0 δ1kρa δ2kρa δ3kρa 1 0
0 0 0 0 0 1



. (3.60)

Depending on the type of boundary condition considered (face, edge or corner), a dif-
ferent number of characteristic directions should be taken into account (one, two or three)
simultaneously: the three cases are summarized in the following sections.

3.2.2 Characteristic Formulation Along One Direction for Faces

In the most simple case where the computational point is located inside the boundary surface,
a single characteristic direction has to be taken into account, namely the direction orthogonal
to the boundary itself. Supposing that the boundary is orthogonal to the x1 direction, the
characteristic waves considered will be those traveling along x1; therefore only F1 needs to be
diagonalized and Eq. (3.55) can be written as:

∂U

∂t
+ S1Λ

1S1
−1 ∂U

∂x1
+F2 ∂U

∂x2
+F3 ∂U

∂x3
+D = 0, (3.61)

where the diagonal matrix of the eigenvalues, i.e. the propagation velocities of the characteristic
waves, and the transformation matrices are obtained from Eqs. (3.58)– (3.60):

Λ1 =




u1 − a 0 0 0 0 0
0 u1 0 0 0 0
0 0 u1 0 0 0
0 0 0 u1 0 0
0 0 0 0 u1 + a 0
0 0 0 0 0 u1



, (3.62)

S1 =




1/(2a2) 1/a2 0 0 1/(2a2) 0
−1/(2ρa) 0 0 0 1/(2ρa) 0

0 0 1 0 0 0
0 0 0 1 0 0
1/2 0 0 0 1/2 0
0 0 0 0 0 1



, (3.63)

S1
−1 =




0 −ρa 0 0 1 0
a2 0 0 0 −1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 ρa 0 0 1 0
0 0 0 0 0 1



. (3.64)

Following the procedure proposed by Thompson [78], a vector L may be conveniently
defined as
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L = Λ1S1
−1 ∂U

∂x1
(3.65)

whose components Li are the amplitude time variations of the characteristic waves [58]:

L =




λ1

(
∂p

∂x1
− ρa∂u1

∂x1

)

λ2

(
a2 ∂ρ

∂x1
− ∂p

∂x1

)

λ3
∂u2

∂x1

λ4
∂u3

∂x1

λ5

(
∂p

∂x1
+ ρa

∂u1

∂x1

)

λ6
∂Z

∂x1




, (3.66)

where λi are the eigenvalues.
Eq. (3.61) is finally rewritten as a function of the wave amplitude variations and the relevant

formulation in terms of conservative variables can be obtained pre-multiplying by P :

∂U

∂t
+ d+F2 ∂U

∂x2
+F3 ∂U

∂x3
+D = 0, (3.67)

∂U

∂t
+ Pd+

∂F 2

∂x2
+
∂F 3

∂x3
+
∂Di

∂xi
= 0, (3.68)

where

d = S1L =




1

a2

[
L2 +

1

2
(L5 + L1)

]

1

2ρa
(L5 − L1)

L3

L4
1

2
(L5 + L1)

L6




, (3.69)

and

Pd =




d1

d1u1 + ρd2

d1u2 + ρd3

d1u3 + ρd4

d1
ukuk
2

+ ρujdj+1 +
d5

γ − 1
d1Z + ρd6




. (3.70)

Recalling what has been said in the previous section regarding the Locally One-Dimensional
and Inviscid assumption of the standard NSCBC procedure [58], the analytical formulation of
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the LODI system, for the actual specific choice of primitive variables, can be immediately
derived from Eq. (3.67) by simply neglecting transverse derivatives and diffusive terms:





∂ρ

∂t
+

1

a2

[
L2 +

1

2
(L5 + L1)

]
= 0

∂u1

∂t
+

1

2ρa
(L5 − L1) = 0

∂u2

∂t
+ L3 = 0

∂u3

∂t
+ L4 = 0

∂p

∂t
+
1

2
(L5 + L1) = 0

∂Z

∂t
+ L6 = 0

(3.71)

Face Boundary Conditions

In the present section, we will make a brief review of the procedure to be followed in order
to design boundary conditions accounting for transverse effects when one single direction is to
be considered for characteristic waves’ propagation, that is, for computational nodes located
within a boundary face; we will assume, for the sake of simplicity, that this direction coincides
with x1, i.e., the boundary is orthogonal to x1. This is the first natural step toward the
development of boundary conditions involving two characteristic directions (for edge nodes)
and three characteristic directions (for corner nodes) and it constitutes, basically, the procedure
proposed by Yoo et al. [85].

It is worthwhile stressing again that the numerical solution at the boundary is anyway
advanced in time using the full Navier-Stokes equations (3.67) or (3.68). In order to do so,
all the wave amplitude variations Li needs to be computed; since the outgoing waves can
be computed from interior points using one-sided derivatives and Eq. (3.66), the boundary
problem is reduced to the computation of incoming waves. More precisely, we need a set of
relations linking the wave amplitude variations to primitive variables, which are generally more
suitable for physical boundary conditions to be enforced. These relations are obtained from
Eq. (3.67) by neglecting viscous and diffusive terms, namely the D vector, only (cf. Eq. (3.71)):

∂U

∂t
+ d− T = 0, (3.72)
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or, in components,





∂ρ

∂t
+

1

a2

[
L2 +

1

2
(L5 + L1)

]
− T1 = 0

∂u1

∂t
+

1

2ρa
(L5 − L1)− T2 = 0

∂u2

∂t
+ L3 − T3 = 0

∂u3

∂t
+ L4 − T4 = 0

∂p

∂t
+
1

2
(L5 + L1)− T5 = 0

∂Z

∂t
+ L6 − T6 = 0

(3.73)

where the vector T represents the transverse fluxes and pressure gradients along x2 and x3:

T = −F t ∂U

∂xt
=




−∂ρut
∂xt

−ut
∂u1

∂xt

−ut
∂u2

∂xt
− 1

ρ

∂p

∂x2

−ut
∂u3

∂xt
− 1

ρ

∂p

∂x3

−ut
∂p

∂xt
− γp∂ut

∂xt

−ut
∂Z

∂xt




, (t = 2, 3). (3.74)

It should be noted that transverse effects, which are expressed in terms of primitive vari-
ables’ gradients in the above relations, may also be expressed in terms of transverse fluxes
computed on conservative variables, as it is often more suitable when using Finite Volume
solvers. In fact, by definition, the non-conservative Jacobian matrix Fk is related to the flux
vector F k by the following relation:

PFk ∂U

∂xk
=
∂F k

∂xk
. (3.75)

Pre-multiplying by P−1, the alternative expression for T then becomes:

T = −P−1∂F t

∂xt
, (t = 2, 3), (3.76)
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with components:





T1 = −
∂F t1
∂xt

T2 = −
1

ρ

(
∂F t2
∂xt

− u1
∂F t1
∂xt

)

T3 = −
1

ρ

(
∂F t3
∂xt

− u2
∂F t1
∂xt

)

T4 = −
1

ρ

(
∂F t4
∂xt

− u3
∂F t1
∂xt

)

T5 = −(γ − 1)

(
∂F t5
∂xt

+
ukuk
2

∂F t1
∂xt

− uk
∂F tk+1

∂xt

)

T6 = −
1

ρ

(
∂F t6
∂xt

− Z∂F
t
1

∂xt

)

(3.77)

Finally, pre-multiplying Eq. (3.72) by S1
−1 and recalling Eq. (3.69), we obtain the following

more appropriate relations between wave amplitude variations and primitive variables’ time
derivatives (cf. Eq. (3.49)):

S1
−1∂U

∂t
+L−T

1 = 0. (3.78)

Expanding the components of the above vectorial relation we obtain a set of relations
expressing each wave amplitude variation as a function of primitive variables and transverse
terms: 




(
∂p

∂t
− ρa∂u1

∂t

)
+ L1 − T

1
1 = 0

(
a2∂ρ

∂t
− ∂p

∂t

)
+ L2 − T

1
2 = 0

∂u2

∂t
+ L3 − T

1
3 = 0

∂u3

∂t
+ L4 − T

1
4 = 0

(
∂p

∂t
+ ρa

∂u1

∂t

)
+ L5 − T

1
5 = 0

∂Z

∂t
+ L6 − T

1
6 = 0

(3.79)

where the notation Tmk is now used to indicate a characteristic transverse term in the plane per-
pendicular to xm relevant to the kth characteristic variable. In the present case, in particular,
we have:

T
1 = S1

−1T =




T5 − ρaT2

a2T1 − T5

T3

T4

T5 + ρaT2

T6



. (3.80)
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The unknown incoming waves Li are determined from the system (3.79), once physical
boundary conditions are provided to approximate the time derivatives of the primitive variable.
These physical boundary conditions for subsonic non-reflecting inflows and outflows and for
adiabatic no-slip walls are now discussed.

Subsonic Non-Reflecting Outflow. In the case of subsonic non-reflecting outflows, the
physical boundary condition may be obtained from the pressure relaxation condition pro-
posed by Rudy and Strikwerda [62] with an additional transverse relaxation term as discussed
by Lodato et al. [43], Yoo and Im [84], Yoo et al. [85]. Depending on the sign of the propa-
gation velocities of the characteristic waves, namely the eigenvalues given in Eq. (3.62), and
depending on the location of the boundary with respect to the computational domain, some
wave amplitude variations Li refer to entering waves, which are unknown and need to be de-
termined, while the others refer to waves leaving the domain: the last are known using their
definition in Eq. (3.66). For subsonic outflows, there will be only one unknown incoming wave,
which is either L1, if the boundary is located at x1 = Lx, or L5, if the boundary is located at
x1 = 0.

The former is obtained from the first equation in (3.79) and the latter from the fifth equation
in (3.79). These two equations may be conveniently condensed as

[
∂p

∂t
+ ς(φ)ρa

∂u1

∂t

]
+ Lφ − T

1
φ = 0, (3.81)

with
T

1
φ = T5 + ς(φ)ρaT2, (3.82)

where the wave index φ, which is equal to either 1 or 5, selects the unknown entering wave
and ς sets the correct sign accordingly:

φ =

{
5 if x1 = 0,

1 if x1 = Lx.
(3.83)

ς(φ) =
φ− 1

2
− 1 =

{
−1 if φ = 1,

+1 if φ = 5.
(3.84)

The relevant physical boundary condition, expressing relaxation toward a target pressure
p∞ and toward a known set of exact transverse terms T1

φ,ex [85], is:

[
∂p

∂t
+ ς(φ)ρa

∂u1

∂t

]
+ σ

a(1−M 2
max)

Lx
∆p− βt

(
T

1
φ − T

1
φ,ex

)
= 0, (3.85)

where σ is the pressure relaxation coefficient, Mmax is the maximum Mach number, Lx is the
characteristic size of the computational domain along x1, ∆p = p−p∞ is the difference between
the actual pressure and its target value and βt ∈ [0 : 1] is the transverse damping parameter.

For most free shear flows, the boundary condition is expected to well behave with T1
φ,ex =

0 [43, 84], however, when an analytical steady solution of the flow is known at the boundary,
the target value of the transverse term T1

φ,ex may be obtained applying Eqs. (3.74) and (3.80):

T
1
φ,ex = −ût

∂p̂

∂xt
− γp̂∂ût

∂xt
− ς(φ)ρ̂âût

∂û1

∂xt
, (t = 2, 3), (3.86)
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where the (̂·) accent indicates the known analytical solution for the target flow. Further details
about the introduced transverse relaxation parameter βt are given in the next paragraph and
in occasion of the presentation of the validation test-cases in Section 3.2.5.

Combining Eq. (3.85) with the corresponding characteristic equation from system (3.79),
namely Eq. (3.81), the unknown incoming wave is then obtained as:

Lφ = σ
a(1−M 2

max)

Lx
∆p+ (1− βt)T

1
φ + βtT

1
φ,ex. (3.87)

It is interesting to note that, for T1
φ,ex = 0 and βt = 1, the standard NSCBC non-reflecting

outflow [58] is recovered.
Finally, the Navier-Stokes boundary conditions are obtained by complementing the above

inviscid condition with the following viscous conditions:

∂τ12
∂x1

=
∂τ13
∂x1

=
∂q1
∂x1

=
∂ρJ1

∂x1
= 0. (3.88)

A priori choice of the transverse relaxation coefficient βt. One of the most striking
features of the novel implementation of the subsonic non-reflecting outflow, i.e. Eq. (3.87),
is the introduction of an additional relaxation parameter, namely, the transverse relaxation
coefficient βt. It seems then, that the improved tridimensional character of the proposed
boundary procedure can be achieved at the expense of an additional parameter, which needs
to be properly tuned.

And indeed, the transverse relaxation coefficient may play a key role in the correct behavior
of the proposed outflow boundary condition. In accordance with the results by Yoo et al. [85],
preliminary tests on the proposed technique, without any transverse relaxation, led to problems
of numerical stability and to improper reproduction of the flow field, this last showing a marked
tendency to align parallel to the boundary plane, as this was a sort of semi-permeable wall.

The above mentioned problems disappeared after introducing a small amount of transverse
relaxation. Moreover, tests performed on convected vortices, as those which will be presented
later on, suggested a pronounced dependancy of the optimal transverse relaxation to the typical
Mach number in the flow [43]. This results is again consistent with the findings of Yoo et al.
[85], who suggested that the relaxation coefficient βt was connected with the flow speed at the
outflow.

Applying the asymptotic analysis for low Mach number flows to the simplified two-dimen-
sional case with identically zero exact transverse terms, i.e. T1

φ,ex = 0 in Eq. (3.87), Yoo and
Im [84] demonstrated that the leading order continuity equation is violated in the presence of
strong transverse velocity gradients unless βt is set equal to the reference Mach number for
the flow, giving evidence of the strong connection existing between the transverse relaxation
and the Mach number. It is worthwhile mentioning that all the test performed within the
framework of our study highlighted that the underestimation of βt with respect to the actual
Mach may cause catastrophic effects, whereas setting βt ≥ M does not pose major problems.

The above considerations suggest that, since βt is strictly connected with the flow param-
eters, the additional relaxation parameter cannot be considered just as an additional “tuning”
parameter for the boundary condition, but rather as a physical parameter of the tridimensional
characteristic formulation. In fact, it is possible to set a proper value for βt, a priori, on the
base of the typical Mach number of the flow.
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For instance, for all the simulations of free and impinging jets presented in this thesis, a first
estimation of the transverse relaxation coefficient, set equal to the Mach number computed
on the bulk velocity of the jet, produced correctly behaved outflow boundaries, regardless of
the fact that the actual value of the Mach number in the flow regions close to the boundaries
was considerably lower than the inlet Mach number. Making a first run with this preliminary
estimation of βt and then reducing it to a more representative local value produced efficient,
stable and unperturbed solutions through the outflow boundaries.

In view of the observed Mach dependancy, it may seem reasonable to compute the transverse
relaxation coefficient on the base of the local Mach number. Unfortunately, tests performed on
different flow configurations, where βt was set equal to the local time-varying Mach number,
were affected by problems of numerical instability at the boundary, in perfect agreement with
the observations of Yoo and Im [84]. On the other hand, stable solutions were obtained, by
setting the transverse relaxation equal to the maximum Mach number evaluated over the entire
boundary plane, in the most critical case of reactive flows (cf. 3D-NSCBC implementation for
reactive flows in Section 5.2.1). This last approach, which would clearly eliminate the problem
of choosing the optimal value for βt, is currently under more thorough evaluation and suggests
that the transverse relaxation may be computed from the local instantaneous properties of the
flow, provided that “excessive” variability from point to point is somehow prevented.

Subsonic Non-Reflecting Inflow. For subsonic inflows, the same procedure proposed
by Yoo et al. [85] is followed for computational nodes away from edges and corner. At the inlet
there will be five entering waves15, therefore five physical boundary conditions are necessary
in order to close the problem. In the present case, we choose to impose temperature, velocity
and passive scalar; other choices are possible like density or mass flow rate that will not be
discussed here. The characteristic relations relevant to the unknown waves are obtained from
Eqs. (3.79) and (3.80):

[
∂p

∂t
+ ς(φ)ρa

∂u1

∂t

]
+ Lφ − T

1
φ = 0, (3.89)

[
a2∂ρ

∂t
− ∂p

∂t

]
+ L2 − T

1
2 = 0, (3.90)

∂u2

∂t
+ L3 − T

1
3 = 0, (3.91)

∂u3

∂t
+ L4 − T

1
4 = 0, (3.92)

∂Z

∂t
+ L6 − T

1
6 = 0, (3.93)

where T1
φ is obtained according to Eq. (3.82), whereas φ and ς are given by Eqs. (3.83)

and (3.84) respectively. In the case of subsonic non-reflecting inflow, in particular, no transverse
relaxation is necessary and the relevant physical boundary conditions are obtained, according

15As in the case of the subsonic outflow, in particular, if the boundary is located at x1 = 0 (x1 = Lx), L5

(L1) enters the computational domain and L1 (L5) leaves it.
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to the suggestion of Yoo et al. [85], as:

[
∂p

∂t
+ ς(φ)ρa

∂u1

∂t

]
+ ηφ

ρa2(1−M 2
max)

Lx
∆u1 = 0, (3.94)

[
a2∂ρ

∂t
− ∂p

∂t

]
+ η2

ρaR

Lx
∆T = 0, (3.95)

∂u2

∂t
+ η3

a

Lx
∆u2 = 0, (3.96)

∂u3

∂t
+ η4

a

Lx
∆u3 = 0, (3.97)

∂Z

∂t
+ η6

a

Lx
∆Z = 0, (3.98)

where η1, . . . , η6 are relaxation parameters (note that η1 and η2 are negative) and ∆uk =
uk − uk0 , ∆T = T − T0, ∆Z = Z − Z0 are the differences between the actual values of the
velocity components, the temperature and the passive scalar respectively and the relevant
target values, denoted by the subscript 0.

The equations for the unknown entering wave amplitudes are obtained from the character-
istic relations, Eqs. (3.89)–(3.93), closed with Eqs. (3.94)–(3.98):

Lφ = ηφ
ρa2(1−M 2

max)

Lx
∆u1 + T

1
φ, (3.99)

L2 = η2
ρaR

Lx
∆T + T

1
2, (3.100)

L3 = η3
a

Lx
∆u2 + T

1
3, (3.101)

L4 = η4
a

Lx
∆u3 + T

1
4, (3.102)

L6 = η6
a

Lx
∆Z + T

1
6, (3.103)

with T1
φ from Eq. (3.82) and the other characteristic transverse terms from Eq. (3.80).

It should be noted that this particular inflow condition does not require any additional vis-
cous condition as the density ρ—the only remaining unknown—is obtained from the continuity
equation, which does not involve any viscous term [58].

Adiabatic No-Slip Wall. Even considering transverse effects, the adiabatic no-slip wall
boundary condition remains identical to the one proposed by Poinsot and Lele [58]. This is
due to the fact that the no-slip condition (all the components of velocity are zero) makes the
transverse terms involved in the calculation of the incoming wave vanish.

If, for instance, we consider the wall to be normal to x1, since the velocity at the wall is
zero, the only non-zero wave amplitude variations are L1 and L5; the transverse terms T1, T2,
T5 and T6 are zero as well (cf. Eq. (3.74)). The unknown incoming wave amplitude variation
is L1 (L5) when the boundary is located at x1 = Lx (x1 = 0). The only necessary physical
boundary condition prescribes that the normal velocity u1, initially set to zero, cannot change
value:

∂u1

∂t
= 0. (3.104)
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From the second equation in the system (3.73), we get the identity

L1 = L5, (3.105)

which allows the computation of the incoming wave amplitude variation from the outgoing
one. The viscous conditions for the adiabatic case are obtained by setting to zero normal heat
transfer and diffusion:

q1 = 0, J1 = 0. (3.106)

3.2.3 Characteristic Formulation Along Two Directions for Edges

When the computational point is located over an edge joining two different boundary surfaces,
two characteristic directions, which are orthogonal to the boundary faces considered, have to
be considered simultaneously. As it will be shown in more detail, when dealing with nodes
located on the edges of the computational domain, there arise two main issues:

• the two boundaries adjacent to the edge considered may be of different types, thus leading
to the necessity for ad hoc compatibility conditions;

• the inclusion of transverse effects in the computation of the incoming waves may lead to
characteristic waves coupling [80], as the characteristic waves traveling in one direction
represent transverse effects in the other direction and vice versa.

Supposing that the edge is aligned along x3, i.e. the boundary is orthogonal to x1 and x2

directions, the characteristic waves considered on the connecting edge will be those traveling
along x1 and x2; F1 and F2 are then diagonalized and Eq. (3.55) is written as:

∂U

∂t
+ S1Λ

1S1
−1 ∂U

∂x1
+ S2Λ

2S2
−1 ∂U

∂x2
+F3 ∂U

∂x3
+D = 0. (3.107)

The eigenvalues and the transformation matrices for F1 are obtained from Eqs. (3.62)–
(3.64), while the analogous quantities for F2 are:

Λ2 =




u2 − a 0 0 0 0 0
0 u2 0 0 0 0
0 0 u2 0 0 0
0 0 0 u2 0 0
0 0 0 0 u2 + a 0
0 0 0 0 0 u2



, (3.108)

S2 =




1/(2a2) 0 1/a2 0 1/(2a2) 0
0 1 0 0 0 0

−1/(2ρa) 0 0 0 1/(2ρa) 0
0 0 0 1 0 0
1/2 0 0 0 1/2 0
0 0 0 0 0 1



, (3.109)
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S2
−1 =




0 0 −ρa 0 1 0
0 1 0 0 0 0
a2 0 0 0 −1 0
0 0 0 1 0 0
0 0 ρa 0 1 0
0 0 0 0 0 1



. (3.110)

Wave amplitude time variations are defined as for the mono-dimensional case as

L = Λ1S1
−1 ∂U

∂x1
, M = Λ2S2

−1 ∂U

∂x2
, (3.111)

where L is expressed by Eq. (3.66) and the components of M are:

M =




µ1

(
∂p

∂x2
− ρa∂u2

∂x2

)

µ2
∂u1

∂x2

µ3

(
a2 ∂ρ

∂x2
− ∂p

∂x2

)

µ4
∂u3

∂x2

µ5

(
∂p

∂x2
+ ρa

∂u2

∂x2

)

µ6
∂Z

∂x2




, (3.112)

with µi the eigenvalues of F2, namely the non-zero elements over the diagonal of Λ2. The
conservation laws in terms of primitive and conservative variables are respectively:

∂U

∂t
+ d+ e+F3 ∂U

∂x3
+D = 0 (3.113)

∂U

∂t
+ Pd+ Pe+

∂F 3

∂x3
+
∂Di

∂xi
= 0 (3.114)

where d and Pd are obtained from Eqs. (3.69) and (3.70), while e and Pe are:

e = S2M =




1

a2

[
M3 +

1

2
(M5 +M1)

]

M2
1

2ρa
(M5 −M1)

M4
1

2
(M5 +M1)

M6




, (3.115)
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Pe =




e1
e1u1 + ρe2
e1u2 + ρe3
e1u3 + ρe4

e1
ukuk
2

+ ρujej+1 +
e5

γ − 1
e1Z + ρe6




. (3.116)

Edge Boundary Conditions

The procedure and the formalism which are needed to implement characteristic boundary
conditions accounting for transverse effects will be presented now in the case that two different
characteristic directions are considered simultaneously; as it has been already mentioned, this
is the case when the computational node is located on a boundary edge of the domain. We
will Suppose that the edge is aligned along x3, therefore the face boundaries adjacent to the
edge are normal to x1 and x2.

The set of relations linking primitive variables with the wave amplitude variations Li and
Mi, traveling along directions x1 and x2, is obtained from the two-dimensional characteristic
analysis developed in the previous section and, precisely, by taking Eq. (3.113) and neglecting
the viscous and diffusive effects, namely the vector D:

∂U

∂t
+ d+ e− T = 0. (3.117)

The above vectorial relation represents the following set of relations:





∂ρ

∂t
+

1

a2

[
L2 +

1

2
(L5 + L1)

]

+
1

a2

[
M3 +

1

2
(M5 +M1)

]
− T1 = 0

∂u1

∂t
+

1

2ρa
(L5 − L1) +M2 − T2 = 0

∂u2

∂t
+ L3 +

1

2ρa
(M5 −M1)− T3 = 0

∂u3

∂t
+ L4 +M4 − T4 = 0

∂p

∂t
+
1

2
(L5 + L1) +

1

2
(M5 +M1)− T5 = 0

∂Z

∂t
+ L6 +M6 − T6 = 0

(3.118)
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The vector T now represents the transverse fluxes and pressure gradients along x3 only:

T = −F3 ∂U

∂x3
=




−∂ρu3

∂x3

−u3
∂u1

∂x3

−u3
∂u2

∂x3

−u3
∂u3

∂x3
− 1

ρ

∂p

∂x3

−u3
∂p

∂x3
− γp∂u3

∂x3

−u3
∂Z

∂x3




, (3.119)

which, again, may be expressed in terms of flux vector gradients as

T = −P−1∂F 3

∂x3
. (3.120)

A procedure similar to the one discussed for face boundaries may be used. It should be
noted, anyway, that, since the transformation matrices S1

−1 and S2
−1 are different16, a rigorous

characteristic form similar to Eq. (3.79) cannot be derived now and the characteristic waves
traveling in different directions are then coupled. It is possible, anyway, to write pseudo-
characteristic relations where unknown waves traveling along different directions are isolated
one at the time. This is basically done pre-multiplying Eq. (3.117) by either S1

−1 or S2
−1,

S1
−1∂U

∂t
+L−T

1 = 0, (3.121)

S2
−1∂U

∂t
+M−T

2 = 0, (3.122)

the former being formally identical to Eq. (3.79) and the latter giving the following equations:




(
∂p

∂t
− ρa∂u2

∂t

)
+M1 − T

2
1 = 0

∂u1

∂t
+M2 − T

2
2 = 0

(
a2∂ρ

∂t
− ∂p

∂t

)
+M3 − T

2
3 = 0

∂u3

∂t
+M4 − T

2
4 = 0

(
∂p

∂t
+ ρa

∂u2

∂t

)
+M5 − T

2
5 = 0

∂Z

∂t
+M6 − T

2
6 = 0

(3.123)

Characteristic transverse terms are now computed from the following relations:

T
1 = S1

−1(T − e), (3.124)

T
2 = S2

−1(T − d), (3.125)

16This is basically due to the fact that Jacobian matrices F
1 and F

2 cannot be diagonalized simultaneously.
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or, in components,

T
1 =




T5 −
1

2
(M5 +M1)− ρa(T2 −M2)

a2T1 − T5 −M3

T3 −
1

2ρa
(M5 −M1)

T4 −M4

T5 −
1

2
(M5 +M1) + ρa(T2 −M2)

T6 −M6




, (3.126)

T
2 =




T5 −
1

2
(L5 + L1)− ρa(T3 − L3)

T2 −
1

2ρa
(L5 − L1)

a2T1 − T5 − L2

T4 − L4

T5 −
1

2
(L5 + L1) + ρa(T3 − L3)

T6 − L6




. (3.127)

Note that, since by definition

e = F2 ∂U

∂x2
,

the above expression for T
1 is perfectly consistent with Eq. (3.80) and the relevant definition

of the vector T , namely Eq. (3.74).
The equations from system (3.79) and (3.123) can be then still combined with physical

boundary conditions to compute the unknown incoming wave amplitude variations of both
boundaries but, since these wave amplitude variations are now coupled through the definitions
of the transverse terms (cf. Eqs. (3.126) and (3.127)), in general, a linear system of equations in
the unknown will have to be solved. An additional problem arises when the boundaries sharing
the edge are of different kind; in this case, not only different characteristic directions have to
be considered simultaneously but, depending on the boundary types, additional compatibility
conditions must be introduced to ensure numerical stability.

The physical boundary conditions and the relevant compatibility conditions are now dis-
cussed for the following edge typologies:

1. boundary edge between two subsonic non-reflecting outflows;

2. boundary edge between a subsonic non-reflecting outflow and a subsonic non-reflecting
inflow;

3. boundary edge between a subsonic non-reflecting outflow and an adiabatic no-slip wall.

Outflow/Outflow Edge. Focusing on the case of a boundary edge located between two
outflows, we know from Section 3.2.2 that, for each boundary, there is only one entering wave:
in the present case the entering waves are L1 (resp. L5) if the boundary face normal to x1 is
located at x1 = Lx (resp. x1 = 0) and M1 (resp. M5) if the boundary face normal to x2 is
located at x2 = Ly (resp. x2 = 0).
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x1

x2

φ = 5

ψ = 5

φ = 1

ψ = 1

φ = 5

ψ = 1

φ = 1

ψ = 5

Computational Domain
L1L5

M5

M1

Figure 3.8: Schematic representation of a 2D computational domain showing the values of the
indices φ and ψ depending on edge location.

The relevant two pseudo-characteristic relations are selected from Eqs. (3.79) and (3.123)
and can be conveniently written as

[
∂p

∂t
+ ς(φ)ρa

∂u1

∂t

]
+ Lφ − T

1
φ = 0, (3.128)

[
∂p

∂t
+ ς(ψ)ρa

∂u2

∂t

]
+Mψ − T

2
ψ = 0, (3.129)

with

T
1
φ = T5 −

1

2
(M5 +M1) + ς(φ)ρa(T2 −M2), (3.130)

T
2
ψ = T5 −

1

2
(L5 + L1) + ς(ψ)ρa(T3 − L3), (3.131)

where φ is given in Eq. (3.83), ψ is defined in analogy as

ψ =

{
5 if x2 = 0,

1 if x2 = Ly.
(3.132)

(see Figure 3.8) and ς, which is defined in Eq. (3.84), selects the correct signs accordingly.
The two necessary physical boundary conditions are obtained, as before, from Eq. (3.85),

which is now written for u1 and u2:

[
∂p

∂t
+ ς(φ)ρa

∂u1

∂t

]
+ σ

a(1−M 2
max)

Lx
∆p− βt

(
T

1
φ − T

1
φ,ex

)
= 0, (3.133)

[
∂p

∂t
+ ς(ψ)ρa

∂u2

∂t

]
+ σ

a(1−M 2
max)

Ly
∆p− βt

(
T

2
ψ − T

2
ψ,ex

)
= 0, (3.134)
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where T1
φ,ex and T2

ψ,ex, if needed, may be computed from a reference steady flow by applying
the definition (3.74) written for boundaries orthogonal to x1 and x2 respectively:

T
1
φ,ex = −ût

∂p̂

∂xt
− γp̂∂ût

∂xt
− ς(φ)ρ̂âût

∂û1

∂xt
, (t = 2, 3) (3.135)

T
2
ψ,ex = −ût

∂p̂

∂xt
− γp̂∂ût

∂xt
− ς(ψ)ρ̂âût

∂û2

∂xt
, (t = 1, 3) (3.136)

From Eq. (3.128), (3.129), (3.133) and (3.134), the unknown wave amplitude variations
may then be computed solving the following linear system of equations:





Lφ +
1− βt

2
Mψ = σ

a(1−M 2
max)

Lx
∆p+ (1− βt)T̃

1
φ + βtT

1
φ,ex

1− βt

2
Lφ +Mψ = σ

a(1−M 2
max)

Ly
∆p+ (1− βt)T̃

2
ψ + βtT

2
ψ,ex

(3.137)

with the known terms:

T̃
1
φ = T5 −

Mψ∗

2
− ς(φ)ρa(M2 − T2), (3.138)

T̃
2
ψ = T5 −

Lφ∗
2
− ς(ψ)ρa(L3 − T3), (3.139)

where φ∗ = 6− φ and ψ∗ = 6− ψ.
It should be noted that, since 0 ≤ βt ≤ 1, the system (3.137) always admits solution, the

determinant of the relevant matrix of coefficient being zero for βt = −1 and βt = 3.
Boundary conditions for Navier-Stokes equations are finally obtained after enforcing viscous

conditions identical to those used for a face outflow (see Section 3.2.2).

Inflow/Outflow Edge. On the inflow/outflow edge there are 5 incoming waves on the inflow
side and 1 incoming wave on the outflow side, therefore six physical boundary conditions.
Therefore, inlet and outlet boundary conditions could be, in principle, simultaneously imposed
by selecting six suitable relations from Eqs. (3.79) and (3.123), and enforcing inflow (e.g.,
velocity and temperature) and outflow (pressure) boundary conditions. Nonetheless, it is well
known that imposing velocity and pressure represents an ill-posed problem and, even allowing
smooth transients for pressure, i.e., using relaxation toward a target pressure, the two boundary
conditions have shown problems of stability when simultaneously set.

A simple remedy, which has proven to be effective for the configurations studied in this
work, is to set to zero the incoming wave amplitude variation relevant to the outflow boundary
(“perfectly non-reflecting” outflow [78]): this is what we call a “compatibility condition” for
inflow/outflow edge boundaries. In this way, the pressure is left free to adapt to the local
flow field and tends anyway to the expected value due to the effect of the neighboring outflow
regions. Furthermore, as the only unknown wave amplitude on the outflow side is directly
imposed and set to zero, the edge become decoupled on the two characteristic directions and
the remaining incoming waves on the inlet side can be computed directly.

Supposing, for instance, that the inlet is normal to x1 and the outflow normal to x2, the
unknown waves are L5 (L1) and L2,3,4,6 if the edge is located at x1 = 0 (x1 = Lx) and M5

(M1) if the edge is located at x2 = 0 (x2 = Ly). The characteristic relations are formally
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identical to Eqs. (3.89)–(3.93) and the boundary conditions are given by Eqs. (3.94)–(3.98),
therefore the expressions for the unknown wave amplitude variations are:

Lφ = ηφ
ρa2(1−M 2

max)

Lx
∆u1 + T

1
φ, (3.140)

L2 = η2
ρaR

Lx
∆T + T

1
2, (3.141)

L3 = η3
a

Lx
∆u2 + T

1
3, (3.142)

L4 = η4
a

Lx
∆u3 + T

1
4, (3.143)

L6 = η6
a

Lx
∆Z + T

1
6. (3.144)

From the compatibility condition Mψ = 0 and Eq. (3.126), the transverse terms in the
above relations are:

T
1
φ = T5 −

Mψ∗

2
+ ς(φ)ρa(T2 −M2), (3.145)

T
1
2 = a2T1 − T5 −M3, (3.146)

T
1
3 = T3 +

ς(ψ)

2ρa
Mψ∗ , (3.147)

T
1
4 = T4 −M4, (3.148)

T
1
6 = T6 −M6. (3.149)

Again, indices φ and ψ and the value of ς can be obtained from Eqs. (3.83), (3.132) and
Eq. (3.84) (see Figure 3.8) and ψ∗ = 6 − ψ is the index relevant to the outgoing wave on the
outflow side. The equation for T1

3, in particular, has been obtained using the compatibility
condition and the following identity:

1

2ρa
(M5 −M1) =

ς(ψ)

2ρa
(Mψ −Mψ∗) (3.150)

As already observed in Section 3.2.2 when talking about the subsonic non-reflecting inflow,
the only necessary viscous conditions for the Navier-Stokes equations are those relevant to the
outflow side and are identical to those used for a face boundary.

Wall/Outflow Edge. On this kind of edge, in principle, one should impose the pressure
for what concerns the outlet condition, and velocity for what concerns the wall condition (the
time derivative of the velocity component normal to the wall is set to zero). As suggested
by Poinsot and Lele, just imposing all these quantities at the same time is not effective,
but allowing smooth transient for the pressure, namely relaxing outlet pressure, improves the
stability of the boundary condition.

Let the wall be normal to x1 and the outflow be normal to x2. Since the velocity at the wall
is zero, the only non-zero wave amplitude variations are L1,5 andM1,5 (those characterized by
characteristic speeds u1∓a and u2∓a respectively). Transverse terms T1, T2, T3, T5 and T6 are
zero as well, as it can be verified from Eq. (3.119). The second equation from system (3.118)
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and the pseudo-characteristic relation relevant to the outflow side (cf. Eq. (3.123)) reduce to:

∂u1

∂t
+

1

2ρa
(L5 − L1) = 0, (3.151)

[
∂p

∂t
+ ς(ψ)ρa

∂u2

∂t

]
+Mψ − T

2
ψ = 0, (3.152)

with ψ given in Eq. (3.132), ς setting the correct sign according to Eq. (3.84) and

T
2
ψ = −

1

2
(L5 + L1). (3.153)

The physical boundary conditions are expressed by Eq. (3.104) and (3.134) leading to the
following solution for the incoming wave amplitude variations Lφ andMψ:





Lφ = Lφ∗

Mψ = σ
a(1−M 2

max)

Ly
∆p− (1− βt)Lφ∗ + βtT

2
ψ,ex

(3.154)

with φ given from Eq. (3.83) and φ∗ = 6−φ. Velocity components u2 and u3 are simply forced
to zero and T2

ψ,ex may be computed from Eq. (3.136).
Finally, the necessary viscous conditions for the Navier-Stokes equations are added in anal-

ogy to what has been done for the other edge typologies in the previous sections.

3.2.4 Characteristic Formulation Along Three Directions for Corners

When the computational point is located on the corner belonging to three boundaries, three
characteristic directions need to be considered. This case may be regarded as a generalization
of the procedure described in Section 3.2.3 for edges, therefore there remain the main issues
of wave coupling and compatibility conditions. As it will be shown in the next section, since
now all the flux matrices are diagonalized, there cannot be any T vector anymore and the
characteristic transverse terms Tk are computed entirely from wave amplitude variations.

Characteristic waves are considered in all the three directions; all the flux matrices are
diagonalized and Eq. (3.55) becomes:

∂U

∂t
+ S1Λ

1S−1
1

∂U

∂x1
+ S2Λ

2S−1
2

∂U

∂x2
+ S3Λ

3S−1
3

∂U

∂x3
+D = 0. (3.155)

The eigenvalues and the transformation matrices relevant to F1 and F2 are obtained
from Eqs. (3.62)–(3.64) and Eqs. (3.108)–(3.110) respectively and F3 is diagonalized with the
following matrices:

Λ3 =




u3 − a 0 0 0 0 0
0 u3 0 0 0 0
0 0 u3 0 0 0
0 0 0 u3 0 0
0 0 0 0 u3 + a 0
0 0 0 0 0 u3



, (3.156)
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S3 =




1/(2a2) 0 0 1/a2 1/(2a2) 0
0 1 0 0 0 0
0 0 1 0 0 0

−1/(2ρa) 0 0 0 1/(2ρa) 0
1/2 0 0 0 1/2 0
0 0 0 0 0 1



, (3.157)

S3
−1 =




0 0 0 −ρa 1 0
0 1 0 0 0 0
0 0 1 0 0 0
a2 0 0 0 −1 0
0 0 0 ρa 1 0
0 0 0 0 0 1



. (3.158)

The wave amplitude time variations are defined as

L = Λ1S−1
1

∂U

∂x1
, M = Λ2S−1

2

∂U

∂x2
, N = Λ3S−1

3

∂U

∂x3
, (3.159)

where L and M are expressed by Eq. (3.66) and (3.112) respectively and N is:

N =




ν1

(
∂p

∂x3
− ρa∂u3

∂x3

)

ν2
∂u1

∂x3

ν3
∂u2

∂x3

ν4

(
a2 ∂ρ

∂x3
− ∂p

∂x3

)

ν5

(
∂p

∂x3
+ ρa

∂u3

∂x3

)

ν6
∂Z

∂x3




, (3.160)

νi being the eigenvalues of F3. The conservation laws in terms of primitive and conservative
variables are respectively:

∂U

∂t
+ d+ e+ f +D = 0 (3.161)

∂U

∂t
+ Pd+ Pe+ Pf +

∂Di

∂xi
= 0 (3.162)

where d, Pd, e and Pe are obtained from Eqs. (3.69), (3.70), (3.115), and (3.116) respectively
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while f and Pf are:

f = S3N =




1

a2

[
N4 +

1

2
(N5 +N1)

]

N2

N3
1

2ρa
(N5 −N1)

1

2
(N5 +N1)

N6




, (3.163)

Pf =




f1

f1u1 + ρf2

f1u2 + ρf3

f1u3 + ρf4

f1
ukuk
2

+ ρujfj+1 +
f5

γ − 1
f1Z + ρf6




. (3.164)

Corner Boundary Conditions

The definition of tools and procedures to be used when solving the corners of the computational
domain follows, basically, the same steps discussed in Section 3.2.3: (a) define the relations
linking wave amplitude variations to the primitive variables; (b) derive a more suitable pseudo-
characteristic formulation and the relevant characteristic transverse terms.

The system relating primitive variables with the characteristic waves is now obtained from
Eq. (3.161) by neglecting the D term as usual:

∂U

∂t
+ d+ e+ f = 0. (3.165)

Note that now, as already mentioned in the previous section, there is no T vector. The
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above compact relation may be written in components as:





∂ρ

∂t
+

1

a2

[
L2 +

1

2
(L5 + L1)

]

+
1

a2

[
M3 +

1

2
(M5 +M1)

]

+
1

a2

[
N4 +

1

2
(N5 +N1)

]
= 0

∂u1

∂t
+

1

2ρa
(L5 − L1) +M2 +N2 = 0

∂u2

∂t
+ L3 +

1

2ρa
(M5 −M1) +N3 = 0

∂u3

∂t
+ L4 +M4 +

1

2ρa
(N5 −N1) = 0

∂p

∂t
+
1

2
(L5 + L1) +

1

2
(M5 +M1) +

1

2
(N5 +N1) = 0

∂Z

∂t
+ L6 +M6 +N6 = 0

(3.166)

The relevant pseudo-characteristic relations are obtained from Eq. (3.165) after pre-multi-
plying by the transformation matrices Sk

−1:

S1
−1∂U

∂t
+L−T

1 = 0, (3.167)

S2
−1∂U

∂t
+M−T

2 = 0, (3.168)

S3
−1∂U

∂t
+N −T

3 = 0, (3.169)

the first two being formally identical to Eqs. (3.79) and (3.123) and the third representing the
following system:





(
∂p

∂t
− ρa∂u3

∂t

)
+N1 − T

3
1 = 0

∂u1

∂t
+N2 − T

3
2 = 0

∂u2

∂t
+N3 − T

3
3 = 0

(
a2∂ρ

∂t
− ∂p

∂t

)
+N4 − T

3
4 = 0

(
∂p

∂t
+ ρa

∂u3

∂t

)
+N5 − T

3
5 = 0

∂Z

∂t
+N6 − T

3
6 = 0

(3.170)
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Characteristic transverse terms are computed from the following relations:

T
1 = −S1

−1(e+ f), (3.171)

T
2 = −S2

−1(d+ f), (3.172)

T
3 = −S3

−1(d+ e), (3.173)

which may be explicitly written as

T
1 =




−1
2
(M5 +M1 +N5 +N1) + ρa(M2 +N2)

−M3 −N4

− 1

2ρa
(M5 −M1)−N3

−M4 −
1

2ρa
(N5 −N1)

−1
2
(M5 +M1 +N5 +N1)− ρa(M2 +N2)

−M6 −N6




, (3.174)

T
2 =




−1
2
(L5 + L1 +N5 +N1) + ρa(L3 +N3)

− 1

2ρa
(L5 − L1)−N2

−L2 −N4

−L4 −
1

2ρa
(N5 −N1)

−1
2
(L5 + L1 +N5 +N1)− ρa(L3 +N3)

−L6 −N6




, (3.175)

T
3 =




−1
2
(L5 + L1 +M5 +M1) + ρa(L4 +M4)

− 1

2ρa
(L5 − L1)−M2

−L3 −
1

2ρa
(M5 −M1)

−L2 −M3

−1
2
(L5 + L1 +M5 +M1)− ρa(L4 +M4)

−L6 −M6




. (3.176)

The physical boundary conditions and the relevant compatibility conditions are now dis-
cussed for the following corner typologies:

1. boundary corner belonging to three subsonic non-reflecting outflows;

2. boundary corner belonging to two subsonic non-reflecting outflows and a subsonic non-
reflecting inflow;

3. boundary corner belonging to two subsonic non-reflecting outflows and an adiabatic no-
slip wall.
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Outflow/Outflow/Outflow Corner. Since there are three unknown entering waves, one
for each direction, three pseudo-characteristic relations are taken from Eqs. (3.79), (3.123)
and (3.170). Depending on the location of the corner, the incoming waves are L5 (L1) for
x1 = 0 (x1 = Lx), M5 (M1) for x2 = 0 (x2 = Ly) and N5 (N1) for x3 = 0 (x3 = Lz); the
relevant pseudo-characteristic relations are written as:

[
∂p

∂t
+ ς(φ)ρa

∂u1

∂t

]
+ Lφ − T

1
φ = 0, (3.177)

[
∂p

∂t
+ ς(ψ)ρa

∂u2

∂t

]
+Mψ − T

2
ψ = 0, (3.178)

[
∂p

∂t
+ ς(χ)ρa

∂u3

∂t

]
+Nχ − T

3
χ = 0, (3.179)

with

T
1
φ = −

1

2
(M5 +M1 +N5 +N1)− ς(φ)ρa(M2 +N2), (3.180)

T
2
ψ = −

1

2
(L5 + L1 +N5 +N1)− ς(ψ)ρa(L3 +N3), (3.181)

T
3
χ = −

1

2
(L5 + L1 +M5 +M1)− ς(χ)ρa(L4 +M4), (3.182)

where φ and ψ are given in Eqs. (3.83) and (3.132) respectively, χ identifies the entering wave
along x3

χ =

{
5 if x3 = 0,

1 if x3 = Lz.
(3.183)

and ς (see Eq. (3.84)) selects the correct signs accordingly.
The three necessary boundary conditions are obtained from Eq. (3.85) plus analogous

relations for u2 and u3:

[
∂p

∂t
+ ς(φ)ρa

∂u1

∂t

]
+ σ

a(1−M 2
max)

Lx
∆p− βt

(
T

1
φ − T

1
φ,ex

)
= 0, (3.184)

[
∂p

∂t
+ ς(ψ)ρa

∂u2

∂t

]
+ σ

a(1−M 2
max)

Ly
∆p− βt

(
T

2
ψ − T

2
ψ,ex

)
= 0, (3.185)

[
∂p

∂t
+ ς(χ)ρa

∂u3

∂t

]
+ σ

a(1−M 2
max)

Lz
∆p− βt

(
T

3
χ − T

3
χ,ex

)
= 0, (3.186)

Exact transverse terms T1
φ,ex, T2

ψ,ex and T3
χ,ex, if needed, may be computed for a reference

steady flow, respectively, from Eqs. (3.135), (3.136) and the following relation:

T
3
χ,ex = −ût

∂p̂

∂xt
− γp̂∂ût

∂xt
− ς(χ)ρ̂âût

∂û3

∂xt
, (t = 1, 2) (3.187)

Combining the pseudo-characteristic relations in Eqs. (3.177)–(3.182) with the physical
boundary conditions Eqs. (3.184)–(3.186), the following linear system of equations is obtained
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to solve for the wave amplitude variations of the unknown incoming waves:





Lφ +
1− βt

2
Mψ +

1− βt

2
Nχ = σ

a(1−M 2
max)

Lx
∆p+ (1− βt)T̃

1
φ + βtT

1
φ,ex

1− βt

2
Lφ +Mψ +

1− βt

2
Nχ = σ

a(1−M 2
max)

Ly
∆p+ (1− βt)T̃

2
ψ + βtT

2
ψ,ex

1− βt

2
Lφ +

1− βt

2
Mψ +Nχ = σ

a(1−M 2
max)

Lz
∆p+ (1− βt)T̃

3
χ + βtT

3
χ,ex

(3.188)

with the known terms

T̃
1
φ = −

1

2
(Mψ∗ +Nχ∗)− ς(φ)ρa(M2 +N2), (3.189)

T̃
2
ψ = −

1

2
(Lφ∗ +Nχ∗)− ς(ψ)ρa(L3 +N3), (3.190)

T̃
3
χ = −

1

2
(Lφ∗ +Mψ∗)− ς(χ)ρa(L4 +M4), (3.191)

and starred indices φ∗ = 6 − φ, ψ∗ = 6 − ψ and χ∗ = 6 − χ. Observe that the determinant
of the relevant coefficients matrix is −1

4β
3
t +

3
4βt +

1
2 and is zero for βt = −1 (two coincident

roots) and βt = 2, therefore the system (3.188) always admits solution for βt ∈ [0 : 1].

Inflow/Outflow/Outflow Corner. The presence of the inlet boundary condition makes it
necessary to impose compatibility conditions and, in analogy to what is done on inflow/outflow
edge boundaries, the “perfectly non-reflecting” condition is imposed on the outflows, thus
decoupling the inlet from the outlets.

If, for instance, the inflow is normal to x1 and the outflows are normal to x2 and x3

respectively, then, the compatibility conditions are:

Mψ = 0, Nχ = 0, (3.192)

where ψ and χ are given in Eqs. (3.132) and (3.183) respectively.
Since the inflow is decoupled from the outflows, the unknown wave amplitude variations

on the inflow side are directly solved from the characteristic relations (3.89)–(3.93) and the
boundary conditions (3.94)–(3.98):

Lφ = ηφ
ρa2(1−M 2

max)

Lx
∆u1 + T

1
φ, (3.193)

L2 = η2
ρaR

Lx
∆T + T

1
2, (3.194)

L3 = η3
a

Lx
∆u2 + T

1
3, (3.195)

L4 = η4
a

Lx
∆u3 + T

1
4, (3.196)

L6 = η6
a

Lx
∆Z + T

1
6, (3.197)
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Making use of the compatibility conditions, the characteristic transverse terms in the above
relations are obtained from Eq. (3.174):

T
1
φ = −

1

2
(Mψ∗ +Nχ∗)− ς(φ)ρa(M2 +N2), (3.198)

T
1
2 = −M3 −N4, (3.199)

T
1
3 =

ς(ψ)

2ρa
Mψ∗ −N3, (3.200)

T
1
4 =

ς(χ)

2ρa
Nχ∗ −M4, (3.201)

T
1
6 = −M6 −N6, (3.202)

with ψ∗ = 6 − ψ and χ∗ = 6 − χ. An analogous identity as in Eq. (3.150) has been used to
derive the equation for T1

4:

1

2ρa
(N5 −N1) =

ς(χ)

2ρa
(Nχ −Nχ∗) (3.203)

Wall/Outflow/Outflow Corner. In analogy with the wall/outflow edge condition, the
adiabatic no-slip condition is imposed on the wall side while allowing smooth transients for
the pressure, through relaxation, on the outflow sides.

Let the wall be normal to x1 and the outflows be normal to x2 and x3. Since the velocity at
the wall is zero, the only non-zero wave amplitude variations are L1,5,M1,5 andN1,5 (i.e., those
characterized by characteristic speeds u1 ∓ a, u2 ∓ a and u3 ∓ a respectively). Consequently,
the characteristic transverse terms T1

2, T1
6, T2

3, T2
6, T3

4 and T3
6 are zero, as it can be verified

from Eqs. (3.174)–(3.176).
The characteristic relations to be used are obtained from Eqs. (3.166), (3.123) and (3.170):

∂u1

∂t
+

1

2ρa
(L5 − L1) = 0, (3.204)

[
∂p

∂t
+ ς(ψ)ρa

∂u2

∂t

]
+Mψ − T

2
ψ = 0, (3.205)

[
∂p

∂t
+ ς(χ)ρa

∂u3

∂t

]
+Nχ − T

3
χ = 0, (3.206)

with

T
2
ψ = −

1

2
(L5 + L1 +N5 +N1), (3.207)

T
3
χ = −

1

2
(L5 + L1 +M5 +M1), (3.208)

ψ, χ and ς being defined, as usual, through Eqs. (3.132), (3.183) and (3.84) respectively.
The boundary conditions are obtained from Eq. (3.104) and Eqs. (3.185)–(3.186) respec-

tively, which, combined with the above characteristic relations, lead to the equality between
incoming and outgoing waves traveling along x1, namely

Lφ = Lφ∗ , (φ from Eq. (3.83) and φ∗ = 6− φ), (3.209)
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Value Ref.

Mw 28.9× 10−3 kg/mol Eq. (2.8)

γ 1.4

Pr 0.72

Sc 0.72

µref 1.827× 10−5 kg/(m s) Eq. (2.14)

Tref 291.15 K Eq. (2.14)

S 120.0 K Eq. (2.14)

Table 3.1: Air properties.

and to the following linear system of two equations in the unknown incoming waves on the
outflow sides:





Mψ +
1− βt

2
Nχ = σ

a(1−M 2
max)

Ly
∆p+ (1− βt)T̃

2
ψ + βtT

2
ψ,ex

1− βt

2
Mψ +Nχ = σ

a(1−M 2
max)

Lz
∆p+ (1− βt)T̃

3
χ + βtT

3
χ,ex

(3.210)

with the known transverse terms

T̃
2
ψ = −Lφ∗ −

1

2
Nχ∗ , (3.211)

T̃
3
χ = −Lφ∗ −

1

2
Mψ∗ , (3.212)

and ψ∗ = 6 − ψ and χ∗ = 6 − χ. Exact transverse terms T2
ψ,ex and T3

χ,ex, if needed, are
computed from Eqs. (3.136) and (3.187) respectively.

3.2.5 Testing the 3D-NSCBC

Tests of 3D-NSCBC on simple flow configurations are presented in this section. These tests
are mainly designed to assess the behavior of the boundary conditions when perturbations of
various type travel across open boundaries. Some of the configurations presented have been
chosen to allow a direct comparison with other characteristic boundary conditions that can be
found in literature [58, 60].

All the simulations presented in the next sections have been performed with air, the relevant
properties being summarized in Table 3.1. Qualitative results from a Large-Eddy Simulation17

of a turbulent free-jet are also presented.

Single Vortex Test-Case

This is a classical test-case for open boundary conditions and it is often adopted to assess the
behavior of non-reflecting outflows when coherent vortical structures, like those characterizing
turbulent flows, cross the boundary. A single vortex is superimposed to a uniform flow field,

17Details about Large-Eddy Simulations and the relevant modeling techniques will be analyzed in the next
chapter.
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(a)

(b)

(c)

p
∗

max
= +4.10

p
∗

min
= −4.17

(d)

(e)

(f)

Figure 3.9: Vortex test: M = 0.00575. Standard NSCBC (a-c-e) and 3D-NSCBC (b-d-f).
Normalized pressure field (see Eq. (3.220)) and longitudinal velocity contours (a-b); vorticity
contours (c-d); Q contours (e-f). Frames at increasing time from left to right.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.10: Vortex test: M = 0.575. Standard NSCBC (a-c-e) and 3D-NSCBC (b-d-f).
Normalized pressure field (see Eq. (3.220)) and longitudinal velocity contours (a-b); vorticity
contours (c-d); Q contours (e-f). Frames at increasing time from left to right.

61



3. Mathematical Formulation

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.11: Vortex test: M = 0.863. Standard NSCBC (a-c-e) and 3D-NSCBC (b-d-f).
Normalized pressure field (see Eq. (3.220)) and longitudinal velocity contours (a-b); vorticity
contours (c-d); Q contours (e-f). Frames at increasing time from left to right.
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which is aligned along the x1 direction in the present case, and convected downstream through
the outflow. The relevant vorticity is then expected to be conserved18, the accompanying low
pressure core (cf. Eq. (3.217)) remaining unchanged. The initial flow field is defined in terms
of the stream function as:

Ψ = Cv exp

(
− r2

2R2
v

)
+ U0x2, (3.213)

u1 =
∂Ψ

∂x2
, u2 = −

∂Ψ

∂x1
, (3.214)

where Cv is the vortex strength, r =
√
x2

1 + x2
2 is the radial distance from the vortex’s axis x3

and Rv is a measure of the vortex radius. U0 is the speed of the uniform flow field along x1.
The pressure, density and temperature can be obtained from an analytical solution. In fact,
by imposing the balance of centrifugal forces by the pressure distribution, it can be shown [7]
that the pressure is solution of the following equation:

∂p

∂r
=
ρu2

φ

r
, (3.215)

where uφ is the tangential velocity field in a reference frame attached to the vortex center, i.e.,

uφ =
Cvr

R2
v

exp

(
− r2

2R2
v

)
. (3.216)

Assuming that the temperature is constant and equal to T0, the initial pressure and density
distributions can be computed integrating Eq. (3.215) as:

p(r) = p∞ exp

[
−γ
2

(
Cv
aRv

)2

exp

(
− r2

R2
v

)]
, (3.217)

ρ(r) =
p(r)

RT0
, (3.218)

with a =
√
γRT0 the sound speed.

In order to assess the behavior of the 3D-NSCBC at different Mach numbers, three test-
cases with increasing Mach number have been performed on a square computational domain
of side L; the relevant details are summarized in Table 3.2 (SV1). Note that the Reynolds and
Mach numbers are defined from the convective velocity U0, the characteristic size of the vortex
Rv and the temperature T0.

The right side of the computational domain is a subsonic non-reflecting outflow with the
pressure relaxation parameter σ set at 0.28, which corresponds to the optimal value proposed
by Rudy and Strikwerda [62]. Increasing this value leads to a more reflective boundary condi-
tion. All the other boundaries are periodic.

Figures 3.9, 3.10 and 3.11 show a comparison of results obtained using the standard LODI
assumption of the NSCBC non-reflecting outflow and the 3D-NSCBC. The represented quanti-
ties are the normalized pressure field, the vorticity contours, the longitudinal velocity contours

18Strictky speaking, no change of vorticity in the fluid element due to vortex stretching may happen (cf. terms
ωi∂uj/∂xj and −ωj∂ui/∂xj in the vorticity compressible transport equation) because vorticity is orthogonal to
the velocity gradient and the flow is divergence-free; therefore, the only vorticity variation mechanism is related
to viscous forces.
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SV1 SV2 VD

L [m] 0.013

p∞ [atm] 1

T0 [K] 300

Rv 10% L

δ – – 15% L

Cv [m2/s] 5× 10−3 3× 10−1 1.25× 10−3

U0 [m/s] 2 200 300 100 0.5

M 0.00575 0.575 0.863 0.286 0.00144

Re 166 16600 24900 8300 42

Table 3.2: Convected vortices test-cases’ parameters: single vortex (SV1), single vortex with
flow inversion (SV2) and vortex dipole (VD).

and the contours of the second invariant of the velocity gradient tensor:

Q = −1
2

∂ui
∂xj

∂uj
∂xi

= −1
2

(
SijSij −

1

2
ω2

)
, (3.219)

where Sij is the strain rate tensor and ω is the vorticity vector (ǫkij is the Levi-Civita symbol):

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, and ωi = ǫijk

∂uk
∂xj

.

The frames have been taken at four different times and each figure refers to a different
Mach number test. The pressure, in particular, is expressed in terms of its relative value, with
respect to the far field pressure p∞, normalized by the initial maximum pressure drop at the
center of the vortex:

p∗(x, t) =
p∞ − p(x, t)
p∞ − p(0, 0)

. (3.220)

The initial map of p∗ is then expected to be equal to 1 in the vortex center and 0 in the
far field; once the vortex has left the domain, p∗ is expected to be identically 0 all over the
domain.

All the computations have been done setting T1
1,ex = 0 (cf. Eq. (3.87)); as already ob-

served, under this particular assumption—motivated by the fact that no transverse terms are
expected for such a flow after the vortex has left the domain—the standard LODI assumption
is retrieved in the limit of the transverse damping parameter βt equal to 1. As it was discussed
in Section 3.2.2, it may be shown that, in general, the optimal value for βt is related to the
typical Mach number for the specific flow [43, 84]. For M ≥ 1, therefore, we would expect the
modified boundary condition to recover the standard NSCBC conditions, which, in agreement
with the M = 1.1 test case presented by Poinsot and Lele [58], produces negligible flow dis-
tortion; moreover, no acoustic waves (either physical or numerical) can re-enter the domain as
the flow regime is supersonic.

When the flow is subsonic, the standard NSCBC is still able to prevent fairly well distortion
of vorticity iso-lines when the vortex leaves the domain. This is true for M = 0.575 and M =
0.863 but not for very low Mach number flows (see Figure 3.9a): in agreement with the results
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(a) (b)

Figure 3.12: Vortex test: pressure contours as the vortex crosses the boundary (M = 0.00575).
Standard NSCBC non-reflecting outflow (a); 3D-NSCBC non-reflecting outflow (b).

obtained by Prosser [60], vorticity, the contours of which are expected to remain concentric
circles, undergoes significant distortion at the boundary. Moreover, the standard non-reflecting
boundary produces significant distortion of the longitudinal velocity and Q contours: the
effect is more and more pronounced when reducing the Mach number but it seems that these
quantities are slightly more affected than the vorticity. This can be explained observing that
the flow tends to align orthogonally to the boundary producing an unphysical disturbance in
the strain rate, thus leading to the observed variation in Q.

On the other hand, the pressure field shows a somehow opposed behavior: boundary gen-
erated pressure noise amplitude becomes more and more important when increasing the Mach
number but, obviously, also less and less able to re-enter the domain. For the M = 0.575 test,
a pressure perturbation with a total amplitude that is about 44 times higher than the initial
vortex pressure drop is observed at the boundary (see Figure 3.10a). Pressure field distortion
is more important at low Mach, as shown in Figure 3.12a, but the accompanying disturbance
is much less pronounced than in higher Mach number flows.

The proposed 3D-NSCBC produces almost no distortion in vorticity, longitudinal velocity
and Q contours: vorticity is well conserved and the inclusion of transverse effects prevents
additional strain to be generated at the boundary at any Mach number (Figures 3.9, 3.10
and 3.11 b-d-f). At low Mach, the pressure field distortion is dramatically reduced: pressure
contours for the low Mach number case are shown in Figure 3.12b where the expected profiles—
concentric circles—are perfectly reproduced. The residual pressure perturbation amplitude is
reduced of about a factor 6, 214 and 60 for the low, mid and high Mach test-cases respectively,
with a maximum amplitude of about 20% of the initial pressure drop at M = 0.575.

The error on the computed centerline boundary pressure (at x1 = L/2 and x2 = 0) has
been quantified by comparison with a benchmark solution computed over an extended domain
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Figure 3.13: Vortex test: time evolution of the relative error in pressure εr(x0, t) with respect
to the benchmark solution on the extended domain: , 3D-NSCBC; , Standard LODI.
Sampling point x0 is located at the boundary, on the vortex centerline; tR = L/(5U0).

of length 2L. The relative error for the three tests, computed as

εr(x, t) =
p(x, t)− p0(x, t)

p0(x, t)
, (3.221)

with x the sampling location and p0 the pressure computed on the benchmark simulation, is
shown in Figure 3.13.

The improvement with the modified boundary condition is more evident at higher Mach
numbers where the amplitude of the pressure disturbance generated using the LODI non-
reflecting outflow is higher; in these cases, using the modified approach, the spurious pressure
wave is almost completely damped down and the computed solution follows quite well the
benchmark one. Even at low Mach, the new proposed method reduces the error of about a
factor 2. In any case, the novel approach avoids any oscillatory behavior: the relative error is
always positive during all the vortex transition event, meaning that the pressure drop at the
vortex core is slightly under-predicted when the vortex reaches the boundary.

Single Vortex with Flow Inversion

Another two-dimensional vortex test is presented in this section. The vortex strength Cv has
now been increased in order to produce a relatively strong reversed flow at the outflow. This is a
particularly stringent test for non-reflecting boundary conditions, as the reversed flow requires
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Figure 3.14: Vortex test with flow reversal: initial u1 velocity profile along a vertical plane
passing through the vortex center.

the specification of additional informations, coming from the outside of the computational
domain, which are hard to be prescribed a priori.

The computation’s parameters are summarized in Table 3.2 (SV2). With regards to the
outflow boundary, the relaxation parameter for pressure σ is set at 0.28 and the transverse
terms are relaxed toward T1

1,ex = 0 with relaxation coefficient βt equal to 0.286, the reference
Mach number for this flow.

The value of Cv is now high enough to create a region of reversed flow, as it can be observed
from the initial velocity profile in Figure 3.14, where the horizontal velocity attains a negative
peak of about 40m/s for 0.0007 < x2 < 0.002. In those parts of the outflow boundary where
reversed flow is created, the standard perfectly non-reflecting procedure [78, 79] is applied and
all the entering waves traveling with convective velocity u1—namely, L2, L3, L4 and L6—are
set to zero.

Figure 3.15 shows the behavior of the 3D-NSCBC technique compared to the standard
NSCBC in terms of pressure and vorticity errors; as in the previous section, the error has
been estimated over a benchmark solution computed on an extended computational domain (2
times longer). The top plot in Figure 3.15a shows a normalized global error measure defined
as:

εglb(t) =

[∑
i,j,k

(
pi,j,k(t)− p0

i,j,k(t)
)2
]1/2

[∑
i,j,k

(
p0
i,j,k(t)

)2
]1/2

, (3.222)

where the i, j, k subscript refers to the grid location and p0 is the pressure computed on the
benchmark simulation. The bottom plot on the same figure is the relative error measured on
a point located at the outflow boundary on the vortex centerline (cf. Eq. (3.221)).

Figure 3.15b shows the normalized global error in vorticity, which is defined in analogy
with Eq. (3.222) as:

εω(t) =

[∑
i,j,k

(
ωi,j,k(t)− ω0

i,j,k(t)
)2
]1/2

[∑
i,j,k

(
ω0
i,j,k(0)

)2
]1/2

. (3.223)

Even when the vortex strength is enough to create flow inversion at the outflow, a certain
improvement is observed over the standard NSCBC approach, when using the 3D-NSCBC
technique. In terms of normalized global measures, pressure error is reduced by a factor of
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Figure 3.15: Vortex test with flow reversal: time evolution of the normalized global pressure
error (a), the relative error on the centerline boundary point x0 (b) and the vorticity normalized
error (c): , 3D-NSCBC; , Standard LODI. tR = L/(5U0).

about 2; with regards to the vorticity, the error peak is more than 4 times less than in the
simulation performed with standard mono-dimentional boundary conditions. This is not sur-
prising, as the 3D-NSCBC approach is expected to get advantage by the inclusion of transverse
effects, therefore allowing a correct propagation of vorticity across the boundary.

Vortex Dipole

In this section a convected dipole of co-rotating vortices is analyzed in order to assess the
3D-NSCBC for problems characterized by a certain level of unsteadiness. The two vortices,
in fact, slowly rotate around each other while being convected downstream. The flow field is
initialized with the following stream function [60]:

Ψ = Cv

[
exp

(
− r21
2R2

v

)
+ exp

(
− r22
2R2

v

)]
+ U0x2, (3.224)

with

r1 =
√
x2

1 + (x2 + δ)2, (3.225)

r2 =
√
x2

1 + (x2 − δ)2, (3.226)
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(d) εr(x2, t)

Figure 3.16: Vortex test with flow reversal: time evolution of the normalized global pressure
error (a), the normalized vorticity error (b), the boundary pressure relative error at the upper
vortex centerline x1 (c) and at the lower vortex centerline x2 (d): , 3D-NSCBC; ,
Standard LODI. tR = L/(5U0).

the relevant parameters being listed in Table 3.2 (VD). The relaxation parameter for pressure
σ and the transverse relaxation parameter βt are 0.28 and 0.00144 respectively (T1

1,ex = 0),
the latter being the reference Mach number computed on the convective velocity U0.

A reference simulation is performed over a longer domain of length 2L in order to have a
benchmark solution to compare with. The relevant results, in terms of pressure (Eqs. (3.221)
and (3.222)) and vorticity (Eq. (3.223)) errors are shown in Figure 3.16. Local relative error,
in particular, has been sampled at the boundary on two points, P1 and P2, corresponding
approximately to the upper and lower vortex centers respectively.

Pressure and vorticity errors are generally in line with those observed on the single vortex
test case. Due to the slow rotation of the two vortices around each other, the lower and the
upper vortex’s centers cross the outflow boundary at different times: these may be inferred
observing the pressure time history on the benchmark solution—i.e., looking for the instant
the low pressure peak in the vortex’s core reach the x1 = L/2 plane—and are equal to ≃ 2.1tR
and ≃ 3.2tR respectively. As the maximum normalized pressure error is, in general, attained
at the moment the vortex core leave the domain, the two peaks in the global normalized error
curve (Figure 3.16a) indicate precisely those two instants. Interestingly, the standard NSCBC
boundary produces a shift to the left of the peaks, indicating that the pressure field is perturbed
in such a way that the two vortices seem to leave the domain earlier than expected. On the
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(a)

(b)

(c)

Figure 3.17: Vortex dipole test. Benchmark solution on first half of domain (a), 3D-NSCBC
(b) and Standard NSCBC (c) on full domain. Normalized pressure field (see Eq. (3.220)) color
map and longitudinal velocity contours. Frames at increasing time from left to right.

other hand, no shift is observed in the error curve relevant to the simulation performed using
the 3D-NSCBC outflow.

The inclusion of transverse effects, again, produces a significant reduction in vorticity per-
turbations, leading to a reduction of about 3 times in the relevant normalized global error.

The normalized pressure p∗ (cf. Eq. (3.220)) and the iso-contours of the longitudinal velocity
component u1 at three consecutive instants in time are shown in Figure 3.17. The benchmark
solution over the first half of its computational domain is depicted on top (Figure 3.17a),
the solution computed using the 3D-NSCBC approach in the middle (Figure 3.17b) and the
solution computed using the standard NSCBC at the bottom (Figure 3.17c). The frames have
been chosen to show the moment the lower vortex leaves the domain. The 3D-NSCBC is still
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Figure 3.18: Spherical pressure wave test: position of the cutting planes P1 and P2 and of the
sampling locations L1, L2 and L3.

able to allow a fairly good reproduction of the expected solution, both in terms of pressure
map and velocity field, whereas the standard LODI assumption produces a strong perturbation
on the pressure field—a peak in the pressure perturbation’s total amplitude which is about
5.6 times the initial pressure drop can be observed in the second frame of Figure 3.17b—and
the velocity field undergoes significant distortion, especially after the lower vortex has left the
domain.

Spherical Pressure Wave

The behavior of the proposed approach for edges and corners is assessed on this tridimensional
flow configuration where a spherical pressure pulse is left free to develop within a cubic compu-
tational domain of side L = 0.013m with subsonic non-reflecting outflows on its 6 faces; the 12
edges are solved using the outflow/outflow boundary condition and outflow/outflow/outflow
conditions are enforced on the relevant 8 corners.

The pressure field is initialized with a Gaussian-shaped pressure pulse of amplitude δ and,
assuming a constant temperature T0, the initial density distribution is obtained from the state
equation:

p(r) = p∞

[
1 + δ exp

(
− r2

2R2
p

)]
, (3.227)

ρ(r) =
p(r)

RT0
, (3.228)

where r =
√
x2

1 + x2
2 + x2

3 is the distance from the center of the computational domain and Rp
is the characteristic dimension of the pressure pulse.

71



3. Mathematical Formulation

(a) (b) (c) (d)

Figure 3.19: Spherical pressure wave test T3: pressure map and pressure contours on plane P1
(a,b) and P2 (c,d). Standard NSCBC non-reflecting outflows (a,c); 3D-NSCBC non-reflecting
outflows (b,d).

The flow field has been initialized at rest with δ = 0.001, Rp = 0.05L, p∞ = 1atm, and T0

= 300K. The 3D-NSCBC are assessed checking the correct evolution of the spherical pressure
wave front, especially when it approaches the computational domain edges and corners.

As in the previous tests, the computation has been done setting Tk∗,ex = 0 (subscript ∗
equal to 1 or 5 depending on the outflow’s location and k = 1, 2, 3) over all the outflows,
as the steady state is expected to be characterized by uniform pressure and zero velocity.
With regards to the transverse damping parameter βt, a typical Mach number for this kind
of flow—computed on the maximum local fluid displacement produced by the acoustic wave—
has been used at first with fairly good results. On the other hand, some tests carried out
varying βt have given an optimal value of about 0.5, which is 4 order of magnitude higher than
the mentioned Mach number. We report in what follows the results from three tests which
have been made changing both the transverse relaxation coefficient and the pressure relaxation
coefficient: (T1) βt = Mmax and σ = 0.28; (T2) βt = Mmax and σ = 3.00; (T3) βt = 0.5 and
σ = 0.28.

With regards to test T3, Figure 3.19 shows the pressure field and pressure contours over
the two cutting planes P1 and P2 depicted in Figure 3.18; two slightly different time-steps have
been selected in order to show the moment when the pressure wave fronts are well cut by the
domain boundaries. As the flow field is characterized by spherical symmetry, this represent a
typical example where the introduction of transverse effects at the boundaries helps in reducing
flow distortion. The LODI assumption is strictly applicable only at the center of the boundary
surfaces; the spherical acoustic wave front tends to become distorted, especially in regions
where the flow field is not perpendicular to the outlet (i.e. toward edges and corners). The
3D-NSCBC technique helps in preserving pressure wave front curvature, whereas the standard
non-reflecting outflow shows a tendency to reduce curvature or even to reverse it (cf. pressure
contours at the top left corner of Figure 3.19c). The level of numerical reflection is significantly
reduced too, as it can be observed in the region just behind the pressure wave. The results
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(a) (b)

Figure 3.20: Spherical pressure wave: visualization of the local displacement flow on the
benchmark simulation (a) and of the back-flow occurring on simulation T3 (b). Velocity field
and normalized pressure map, p∗ = (p− p∞)/(δp∞), on plane P1.

from tests T1 and T2 (not shown) are slightly worse but, still, the inclusion of transverse effects
helps in preserving the pressure wave shape. Interestingly, no significant difference has been
observed in tests T1 and T2, meaning that the modified NSCBC allow a certain freedom in
the choice of the pressure relaxation coefficient σ.

It is worthwhile mentioning that the present configuration is a particularly tough test-
case for both NSCBC and 3D-NSCBC non-reflecting outflows. The pressure wave, in fact,
is accompanied by two opposed local displacements, as depicted in Figure 3.20a, where the
velocity field is superimposed to the normalized pressure map. The presence of local back-flow
regions at the outlet (see Figure 3.20b) poses the additional problem of imposing incoming
characteristic waves traveling with the convective velocity, namely characteristic waves with
indices 2, 3, 4 and 6. Previous tests have shown that just “ignoring” the possibility of a reversed
flow event and keep computing the relevant entering characteristic wave amplitudes using
interior points may lead to instability problems, especially when the back-flow is particularly
persistent in time. An efficient solution is to set these convected incoming waves to zero in
regions of local back-flow. The drawback of this simplistic approach is, of course, a slight
reduction of boundary transparency.

A measure of the error has been extracted using a benchmark solution computed on a two
times wider domain. Three different locations on the boundary (see Figure 3.18) have been
taken into account: (L1) boundary face center, (L2) boundary edge center and (L3) boundary
corner. The local relative absolute error on pressure for these points has been measured as:

εr(x, t) =

∣∣p(x, t)− p0(x, t)
∣∣

p0(x, t)
, (3.229)

where x denotes the sampling location and p0 is the pressure computed on the reference simu-
lation. Furthermore, the overall performance of the 3D-NSCBC approach has been quantified
resorting to the normalized global error measure defined in Eq. (3.222).
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Figure 3.21: Spherical pressure wave test: normalized error on pressure for test-case T1 (a)
and test-case T2 (b). Global normalized error on the top graph (see Eq. (3.222)) and local
relative error at boundary locations L1, L2 and L3. The vertical arrows mark the instants
when the pressure pulse crosses locations L1, L2 and L3 respectively (tR = 2.8× 10−4 s).

Figures 3.21 and 3.22 show the relevant results. It should be noted that for t/tR ≃ 0.2 the
reference solution on the wider domain is expected to become more and more affected by its
own boundary and the comparison becomes meaningless: this is marked by a vertical dashed
line limiting the region of interest.

In general, the maximum error—as per Eq. (3.222)—occurs, of course, during the period
when the boundaries are crossed by the pressure pulse. With regards to tests T1 with low
relaxation the error level is less than about 0.14% and no significant improvement is observed
using 3D-NSCBC approach (cf. Figures 3.21a). On the other hand, when the relaxation coeffi-
cient is increased (Figures 3.21b), the simulation performed resorting to the LODI hypothesis
is characterized by a higher error, meaning that the boundary conditions are less transpar-
ent and numerical reflected pressure waves have higher amplitude. The 3D-NSCBC, on the
other hand, maintains the error almost unchanged, and the level of boundary reflection is only
slightly increased.

In terms of local relative error, the novel approach gives, in general, more accurate results,
showing a favorable tendency to produce numerical reflected waves of small amplitude; when
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Figure 3.22: Spherical pressure wave test T3: normalized error on pressure (a) and normalized
pressure wave evolution (b). Plot (a): global normalized error on the top graph (cf. Eq. (3.222))
and local relative error at boundary locations L1, L2 and L3. Plot (b): symbols represent radial
pressure plots at different normalized time-steps; lines are temporal pressure plots at locations
L1, L2 and L3 rescaled as radial plots under the assuption that the pressure pulse is a signal
traveling with speed a ≃ 347.6m/s. (tR = 2.8× 10−4 s)

the pressure relaxation coefficient σ is increased, the LODI approximation produces higher
reflection, whereas the modified approach remains significantly more transparent, the level of
boundary reflection being marginally affected by the pressure relaxation coefficient. Test-case
T3 gives the better performance (cf. Figure 3.22a). In this particular case, the normalized
maximum error is reduced of about a factor 2 and the local relative error is significantly
reduced even when the pressure pulse crosses the critical locations (L2) and (L3).

Figure 3.22b shows a comparison about the evolution of the pressure wave. The pressure
wave was looked at different time-steps before it had reached the boundary and radial plots were
extracted at each time-step (symbols). As expected for a spherical wave, the pulse amplitude
decreases continuously as the wave front expands. Regarding the pressure pulse as a signal
traveling with the speed of sound a, the time evolution of pressure can be rescaled as a radial
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Figure 3.23: Spherical pressure wave test T3: pressure iso-surfaces evolution (iso-value p/pR =
1000.98). 3D-NSCBC non-reflecting outflows (a–c), standard NSCBC non-reflecting outflows
(d–f).

plot using the following equivalence relation between space and time for such a wave:

f(r − c t0) = f(r0 − a t), with a t0 = r0,

⇒ r − r0 = r0 − a t,

with a ≃ 347.6m/s and r0 the radial distance of the time signal’s sampling location.
Once the pressure front meets the boundary, the LODI assumption is unable to retain

the correct physical information about the tridimensionality of the flow: the pressure front
stops behaving as a spherical wave and reaches the edge and, later on, the corner, retaining
almost the same amplitude. The 3D-NSCBC outflow and the proposed edge/corner procedure
is remarkably capable of preserving the correct physical information and the pressure front
reaches the boundary edges and corners with a reduced amplitude.

Deformation of the wave front is assessed by a qualitative comparison of the computed
wave front at three subsequent time-steps, as shown in Figure 3.23. The wave front is
shown by means of pressure iso-surfaces relevant to a normalized pressure value of 1000.98
(pR = 101.23Pa) and is expected to be perfectly spherical; results are relevant to the test-
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case T3. The innermost and the outermost surfaces have been chosen in order to enclose the
pressure pulse. Spurious numerical reflection is expected to be generated starting from the
moment the outermost surface crosses the boundary; the effects are then visible on what fol-
lows, namely, the innermost surface. As it can be observed, the 3D-NSCBC outflows allow the
wave front curvature to be correctly preserved. Negligible reflection is produced and the wave
front undergoes minimal distortion even when the pressure pulse is well outside the computa-
tional domain (Figure 3.23c). Significant distortion of the core pressure field is observed when
transverse effects are not accounted for; the outermost surface itself is progressively deformed
with local regions of reversed curvature (cf. Figures 3.23e and 3.23f).

Turbulent Free Round-Jet

We have analyzed some basic test-cases on simple configurations so far, in order to assess
the behavior of the 3D-NSCBC non-reflecting outflows when compared to the standard LODI
(NSCBC) assumption. In this section we present qualitative results from the more complex
geometry of a compressible turbulent free round-jet. Though only qualitative this test reveals
some interesting features of the novel approach on a configuration involving non-reflecting
inlet/outlet coupling.

This simulation, which is mainly intended to assess boundary reflection in the presence of
complex and chaotically oriented vortical structures and to test the inlet/outlet proposed com-
patibility condition, was performed in turbulent regime resorting to the Large-Eddy Simulation
technique, the details of which are deferred to Chapter 4. The computational domain is a box
of dimensions 14D× 5D× 5D with D = 0.0026m the jet diameter (200× 80× 80 grid points).
The grid is uniform along x1 and slightly stretched along x2 and x3 in order to better resolve
the jet shear layer; transverse refinement was limited to maintain a maximum stretching ratio
of about 1.06 over consecutive cells. The resulting grid spacing is: ∆xt/D ≃ 0.0527 on the
axis, ∆xt/D ≃ 0.0431 at xt = ±D/2 and ∆xt/D ≃ 0.1312 at xt = ±2.5D (t = 2, 3).

The inflow is located at x1 = 0 and the modified subsonic non-reflecting inflow is used,
with the velocity relaxation parameter η5 set at 3.58. The same value is used for the other
inlet relaxation parameters: η2 = −3.58 and η3 = η4 = η6 = 3.58. The target inlet velocity is
prescribed using the power law profile for turbulent pipe flow:

U(r)

Ucl
=

(
1− 2r

D

)1/n

, (3.230)

where r =
√
x2

2 + x2
3 is the distance from the jet axis, Ucl is the centerline velocity and the

parameter n = 7.4; the ratio between bulk velocity Ub and centerline velocity Ucl is about 0.82.
The value of Ub has been computed fixing the value of the jet’s Reynolds number at 23000:
ReD = ρUbD/µ = 23000. A correlated random noise [35] is superimposed to the velocity
profile with an intensity of 0.8% of the bulk velocity Ub. The inlet temperature is fixed at
300K.

The lateral and downstream boundaries are subsonic non-reflecting outflows with pressure
relaxation parameter σ = 0.28 and target pressure equal to 1 atm. No assumed exact trans-
verse terms have been imposed. The transverse relaxation parameter βt is equal to 0.19, a
typical value of the Mach number for this specific flow, as it was evaluated from a precur-
sor simulation performed with βt equal to Ub/a. Inflow/Outflow edge conditions are used on
the 4 bottom edges and Inflow/Outflow/Outflow corner conditions are used on the relevant 4
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(a) Standard NSCBC (t = 158.1D/Ub) (b) 3D-NSCBC (t = 157.1D/Ub)

Figure 3.24: Free round-jet with standard NSCBC (a) and 3D-NSCBC (b): Q = 0.5 contours
(center), passive scalar (left) and pressure (right) distributions over orthogonal axial planes.

joining corners; Outflow/Outflow edge conditions are used on the 8 remaining edges and Out-
flow/Outflow/Outflow corner conditions on the 4 top corners (see Figure 3.24). The simulation
was started from fluid at rest and at reference condition (1 atm, 300K) all over the domain.

The developed flow field is depicted in Figure 3.24b, where the coherent vortical structures
are represented resorting to the iso-surfaces of Q = 0.5, Q being the second invariant of the ve-
locity gradient tensor normalized by the jet diameter D and the bulk velocity Ub. Pressure and
passive scalar distributions over axial planes are also shown. Despite the fairly narrow compu-
tational domain used, no perturbation coming from the boundaries is observed. The pressure
field reflects the presence of vortical structures with alternating low- and high-pressure regions
but maintains the expected target value in regions not affected by the flow. The compatibility
conditions for inlet/outlet edges and corners allow perfect transition from the inlet to the out-
flow boundaries without producing any unphysical pressure disturbance. Regardless of their
orientation with respect to the boundary plane, the complex ensemble of vortical structures
which develops along the jet, is able to leaves the domain through the outflows without being
significantly perturbed (see Figure 3.25).
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Figure 3.25: Free round-jet with 3D-NSCBC: detail of Q = 0.5 contours at the boundary.

On the other hand, the same simulation performed using the standard NSCBC approach
underwent a destabilization of the pressure, originating on an outflow’s corner with a peak of
low pressure; this destabilization caused the jet to collapse toward the low pressure region as
it can be observed in Figure 3.24a. Moreover, the inlet side is far more noisy and a chessboard
pattern is visible on the pressure map at the inlet plane. Coherent vortical structures at the
beginning of the jet appear to be less developed. The problem is clearly linked to the observed
inlet pressure noise (see axial pressure map on the right of Figure 3.24a), which, interacting with
the shear layer development, prevents the appearance of Kelvin-Helmholtz-type instabilities
up to a distance of about one diameter from the jet’s nozzle.

The above results suggest that such a simulation with standard NSCBC would have re-
quired: (a) a greater value of the pressure relaxation coefficient σ in order to better control
the pressure at the boundary (thus leading to higher reflection); (b) a wider computational
domain in order to limit the influence of the boundaries on turbulence development and to
prevent the jet from falling into a lateral outflow. This notwithstanding, the inlet noise could
remain an issue.

3.3 Artificial Turbulence Injection

When performing Direct or Large-Eddy Simulations, it is generally necessary to prescribe a
specific time signal at the inlet in order to: (a) comply with the specific configuration to
be studied (e.g., the simulation of turbulence development in a jet originating from a fully
developed pipe flow, which is not included in the computational domain); (b) trigger particular
modes or instabilities which would be otherwise absent in the numerical simulation (e.g., all
those stochastic small perturbation, which characterize a real experiment and which cannot
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be reproduced by mathematical models19). In both cases, a random perturbation may be
necessary and this can be obtained, for instance, by stochastic reconstruction of its time
evolution from a prescribed energy spectrum, by precursor simulations or by some sort of
extraction/re-scaling technique [63]. In any case, a Random Numbers Generator (RNG) is
often needed, thus obtaining what is typically referred to as a synthetic signal.

The simplest way to generate a turbulent inlet signal is to superimpose random fluctuations
to the prescribed mean velocity profile. Since RNGs are generally designed to reproduce
random signals with flat frequency spectrum, the so called white noise, the relevant pseudo-
turbulence is immediately damped due to a lack of energy in the low wave number range [35].
In order to have a more realistic representation of inlet turbulence, the synthetic signal should
have the same statistical features of the real one.

We adopt the technique described by Klein et al. [35], who propose the use of digital filters
in order to reproduce a correlated random noise with prescribed correlation length-scales,
starting from a white noise.

Instead of computing the correlated noise for each time step, as suggested by Klein et al.,
in particular, assuming that the random perturbation enters the computational domain with
a typical velocity Ub, the sampling frequency of the pseudo-turbulent signal is computed from
the inlet grid spacing ∆x in the direction normal to the inflow boundary:

fti = Ub/∆x. (3.231)

When characteristic boundary conditions are used, wave amplitude time variations are
imposed at the inlet (cf. Section 3.2), therefore any prescribed inlet signal must be imposed
specifying its time derivative rather than its time evolution itself. In the case of the subsonic
non-reflecting inflow, if dU0

k/dt (k = 1, 2, 3), dT 0/dt and dZ0/dt are the time derivatives of
prescribed time-evolving signals for the velocity, the temperature and the scalar respectively,
Eqs. (3.99)–(3.103) are rewritten as [58]:

Lφ = ηφ
ρa2(1−M 2

max)

Lx
∆u1 + T

1
φ − ς(φ)ρa

dU0
1

dt
, (3.232)

L2 = η2
ρaR

Lx
∆T + T

1
2 + γρR

dT 0

dt
, (3.233)

L3 = η3
a

Lx
∆u2 + T

1
3 −

dU0
2

dt
, (3.234)

L4 = η4
a

Lx
∆u3 + T

1
4 −

dU0
3

dt
, (3.235)

L6 = η6
a

Lx
∆Z + T

1
6 −

dZ0

dt
. (3.236)

Therefore, focusing on the fluctuating velocity signal only, the time derivative of the cor-
related random noise needs to be reconstructed from its discrete sequence of values with the
requirement that the variance of the resulting velocity is equal to the variance of the correlated
noise, thus ensuring the injection of the proper amount of turbulent energy.

If Unrnd is the sequence of realizations of a correlated random noise of variance I2U2
b (I is

the intensity of the injected noise) and sampling frequency fti (i.e., n is incremented every

19Roundoff errors of the numerical scheme may be, in principle, regarded as a source of perturbation. How-
ever, their stochastic nature is questionable.
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Figure 3.26: Time evolution of the fluctuating inlet velocity imposing inlet turbulence through
the reconstructed time derivative only (a) and adding the correction of the target value (b).

, computed velocity at the first grid point; , discrete correlated random noise.

1/fti seconds), the simplest way to approximate its time derivative is to connect the discrete
values by straight lines, thus setting

dUrnd

dt
≃ fti∆U

n
rnd, for t ∈ [tn : tn+1], (3.237)

with ∆Unrnd =
(
Un+1

rnd − Unrnd

)
. Unfortunately, when this approximation is used, due to the

time response of the characteristic implementation of the boundary condition, the variance of
the resulting signal is significantly underestimated: the above approximation is too weak to
reproduce the injected noise through Eq. (3.232). Better results are obtained if the discrete
values of the random sequence are linked together using a sinusoidal curve:

Urnd(t) = Unrnd +
1
2∆U

n
rnd

{
1− cos

[
πfti(t− tn)

]}
, for t ∈ [tn : tn+1], (3.238)

Since fti = 1/(tn+1 − tn), it is easy to show that the above relation represent a sinusoidal
change from Unrnd to Un+1

rnd . The approximation of the time derivative of the signal in the
interval [tn : tn+1] is then obtained as:

dUrnd

dt
≃ π

2 fti∆U
n
rnd sin

[
πfti(t− tn)

]
, for t ∈ [tn : tn+1]. (3.239)

This approximation, which gives a maximum value of the time derivative π/2 times higher
than the first-order approximation in Eq. (3.237), allow good representation of the injected
noise with a relatively correct value for the variance. The time history of the velocity field
computed at the first grid point is depicted in Figure 3.26a, where the difference between the
computed inlet velocity signal u1 and the relevant target value u10 (solid line) is compared to
the original sequence of correlated random numbers (dotted line): after the initial transient,
during which the solution reaches the target value, the velocity starts following the injected
random noise and the resulting variance is about 18% lower than expected.

The above error in the variance is directly linked to the relaxation procedure toward the
target value. When the time derivative of the injected noise makes the velocity move away
from its target value, the relaxation term (first term on the right-hand side of Eq. (3.232))
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acts in opposition. The resulting variance is then reduced and this reduction depends on the
relaxation coefficient for the velocity. A simple and effective way to “neutralize” the relaxation
term contribution, is to correct the target velocity by accounting for the injected noise. If u10

is the target value of velocity, then the term ∆u1 in Eq. (3.232) is rewritten as:

∆u1 = u1 − u10 − Un+1
rnd , for t ∈ [tn : tn+1]. (3.240)

With the above correction on the relaxation term and the reconstructed derivative from
Eq. (3.239), the error in the variance of the inlet velocity with respect to the injected noise is
reduced to about 3% (cf. Figure 3.26b). It is worthwhile underlining that the target velocity
correction alone would be ineffective as the velocity would never be able to follow the fluctuating
signal unless being characterized by a time constant much smaller than the injection period
1/fti.

20

20The time constant of the inlet velocity response may be evaluated taking Eq. (3.94) and neglecting the
effect of the pressure:

∂∆u1

∂t
= − ηφ

ς(φ)

a(1−M 2
max)

Lx
∆u1.

Since η1 < 0 and η5 > 0, ηφ/ς(φ) = |ηφ|, therefore, approximating the above relation as an ordinary first-order
differential equation, the time response of the inlet velocity results equal to:

∆u1(t) = C exp

„

− t

τu

«

, with τu =
Lx

|ηφ|a(1−M 2
max)

,

where C is a constant of integration and τu is the the time constant. Evidently, for the inlet velocity to be able
to follow a signal that changes value with frequency fti, we should have a sufficiently small value of τufti, which
is not always the case.
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CHAPTER 4
Large-Eddy Simulation (LES)

[. . .] However, for turbulent motion, an enormous number of degrees of freedom are always ex-
cited, and hence the variation with time on any physical value will be described here by functions
containing a vast number of Fourier components, i.e., by functions of an extremely complicated
nature.

A.S. Monin and A.M. Yaglom, 1971
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Au regard de l’extraordinaire variété d’échelles qui caractérise les écoulements turbulents
d’intérêt pratique, une approche « simplifiée » est souvent nécessaire.

Le caractère aléatoire de la turbulence et, en même temps, sa description statistique
extrêmement régulière, ont historiquement suggéré l’analyse statistique comme un instrument
puissant d’investigation numérique. Et, en effet, la plupart des applications d’ingénierie est
souvent concernée par des écoulements stationnaires, au sens statistique, pour lesquelles, la
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connaissance des moyennes donne déjà un important niveau de détail. D’ailleurs, la non-
linéarité des équations de Navier-Stokes empêche la formulation mathématique des grandeurs
statistiques sans encourir des problèmes complexes de fermeture.

Néanmoins, lorsque le phénomène étudié n’est pas stationnaire, sa description en termes
de moyennes temporelles devient impossible, et les variations temporelles doivent être prise
en compte, au moins de manière grossière. Si un niveau de détail plus élevé nécessite donc
des ressources de calcul plus importantes, la nature plus universelle des termes de fermeture
détermine une certaine simplification des modèles de turbulence utilisés. La Simulation aux
Grandes Échelles (SGE ou LES) est basée sur cette considération et devient, de plus en plus,
un instrument d’analyse d’intérêt pratique.

Ce 4e Chapitre présente une introduction de la formulation mathématique à la base de
la SGE et l’opérateur de filtrage utilisé dans ce contexte est défini. Ensuite, la formulation
des équations de Navier-Stokes filtrées, lorsque les effets de compressibilité sont partiellement
pris en compte, est détaillée. Certains modèles de sous-maille, basés sur l’hypothèse de visco-
sité tourbillonnaire, sont analysés, avec une attention particulière quant à leur comportement
asymptotique en présence d’une paroi.

Ensuite, une introduction des modèles de sous-maille structurels, basés sur l’hypothèse de
similarité [3, 4], sera faite et un nouveau modèle de sous-maille de similarité mixte, spécifique-
ment conçu pour conserver un comportement correct en région de proche paroi, est proposé.

Le nouveau modèle est, tout d’abord, testé lors de la simulation d’un jet d’air impactant sur
une paroi plane et les résultats obtenus par différents modèles de sous-maille sont comparés.
Le transport inverse d’énergie turbulente, notamment le backscatter, est identifié comme un
mécanisme clé pour la représentation correcte des dynamiques turbulentes en région de proche
paroi. Enfin, une brève analyse du caractère statistique du mélange du scalaire passif dans la
configuration étudiée est aussi présentée.

4.1 Different Levels of Detail

Turbulent flows are generally characterized by a very broad variety of length- and time-scales,
therefore, in order to make an accurate representation of the relevant features, numerical
resolution should be high enough to capture each and every detail. Such an approach, namely
the Direct Numerical Simulation (DNS) of turbulence, turns out to be so computationally
demanding that its applicability remains quite limited, even with computer resources available
today.

Considering for instance the most simple case of homogeneous isotropic turbulence, by
typical scaling considerations, it is possible to show that, if ℓ is the size of the most energetic
length-scale, the number of degrees of freedom necessary to fully represent all the length-scales
is of the order of Re3/4 in each coordinate direction; the same holds for characteristic time
scales, so that, the numerical simulation of the evolution of the solution within a cube ℓ3

for a duration equal to the characteristic time of the most energetic scale, would require the
integration of the Navier-Stokes equations ∼ Re3 times. The situation may get even worse
when multi-physical phenomena are addressed—as is it the case, for instance, when chemical
reactions take place—and the range of typical scales of turbulent motion is just a subset of the
whole range of physically relevant scales.

A possible way to tackle the problem is to try to obtain as much information as it is
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necessary from a reduce set of degrees of freedom. The numerical integration of Reynolds
Averaged Navier-Stokes (RANS) equations, for example, pushes this concept to the limit and
aims at finding a numerical solution of the statistically averaged (often time averaged) Navier-
Stokes equations. If, on one hand, the statistical properties of turbulent flows are generally
quite well-behaved and smooth, thus requiring a comparatively low resolution to be represented,
on the other hand the non-linear interactions between scales of different size makes it necessary
to model, in a statistical sense, the effect of scales which are not resolved. Considering the
Fourier representation of the solution, RANS solve the zero mode only, i.e. the mean, and hence
the entire spectrum needs to modeled, leading generally to a big deal of model complexity,
especially when some level of generality is looked for1.

Midway between DNS and RANS, Large-Eddy Simulations (LES) try to split the spectrum
in an optimized way. Starting from the consideration that the large scale structures of the
flow are supposedly strongly related to the flow configuration (boundary conditions, external
excitations, etc.), thus being typically highly problem-dependant, and that there exist a range
of small scales which is expected to have a more universal character, LES aim at resolving
the large scales while modeling the small ones. This is the reason why LES are particularly
appealing from the modeling point of view: the so called Sub-Grid Scale (SGS) model, which
represents the coupling term arising from the non-linear convective term, is not supposed to
show a strong problem-dependancy, except near the wall, this last statement motivating this
study.

4.2 The Filtered Navier-Stokes Equations

Length-scale separation, on a generic quantity ϕ(x, t), is achieved in physical space by means
of the convolution product

ϕ(x, t) =

∫ +∞

−∞
ϕ(ξ, t)G∆(x− ξ)d3ξ, (4.1)

where G∆ is the convolution kernel associated to the filter operation at cutoff length ∆2. Using
the superscript ⋆ to indicate Fourier transformed quantities, Eq. (4.1) correspond, through the
Convolution Theorem, to point-wise multiplication in Fourier space:

ϕ⋆(k, ω) = ϕ⋆(k, ω)G⋆kc
(k), (4.2)

where G⋆kc
(k) is the transfer function, namely the Fourier transform, associated with the con-

volution kernel G∆(x), k and ω are the wavelength and the phase respectively and kc = 2π/∆
is the cutoff wave-number. The spectral representation of ϕ may be then truncated at wave-
number kcby an appropriately chosen low-pass filter G

⋆
kc
. For the filtered Navier-Stokes to be

tractable, the filter has to:

1The most energetic scales are directly affected by boundary conditions and external forcing, therefore a
general model should be able to efficiently adapt to a quite broad range of flow configurations.

2The filter is assumed here isotropic. Moreover the tridimensional kernel G∆ is assumed to be the product
of mono-dimensional kernels:

G∆(x − ξ) =
Y

i=1,3

Gi∆(xi − ξi).
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G∆(xi − ξi) = G⋆kc
(ki) =

Top-Hat

{
1
∆ for |xi − ξi| ≤ ∆

2 ,

0 otherwise.

sin (ki∆/2)

ki∆/2

Gaussian

√
Γ

π∆2
exp

(−Γ|xi − ξi|2
∆2

)
exp

(−∆2k2
i

4Γ

)

Cutoff
sin [kc(xi − ξi)]
kc(xi − ξi)

{
1 for |ki| ≤ kc = π/∆,

0 otherwise.

Table 4.1: Convolution kernels and transfer functions of typical mono-dimensional filters at
cutoff length-scale ∆. Γ is a parameter of the Gaussian filter, typically taking a value of 6 [63].

• conserve constant values; this is equivalent to the normalization condition [63]

∫ +∞

−∞
G∆(ξ)d

3ξ = 1;

• be linear, i.e. ϕ+ ψ = ϕ+ ψ;

• commute with derivation in space and time:

∂ϕ

∂t
=
∂ϕ

∂t
,

∂ϕ

∂xi
=
∂ϕ

∂xi
.

The first two requirements are generally met with a properly defined filter (the second con-
dition, in particular, is ensured by the linearity of the convolution operation). The third
requirement is a bit more complex in nature. Commutation errors arise when the filter is
anisotropic (e.g., when solid boundaries are present or when the computational grid is not
uniform) or, for instance, when Favre-filtering (the relevant definition will be given later) is
adopted. On this regard, additional approximations will be made case by case. In all the
developments which follow, it is assumed that the filter operator commutes with spatial and
temporal differentiation.

Typical filters used to perform spatial scale separation are the top-hat, the Gaussian and the
spectral cutoff filters which are summarized in Table 4.1. The top-hat and Gaussian filters allow
frequency overlap between ϕ and ϕ′ = ϕ−ϕ, while the sharp cutoff filter does not. Moreover,
the cutoff filter is idempotent in spectral space, i.e., G⋆cutoff(ki)G

⋆
cutoff(ki) = G⋆cutoff(ki), thus

for this filter we have: ϕ = ϕ.
Using the above definitions and applying the commutation property, the filtered Navier-

Stokes equations are obtained after applying the bar filter operator to Eq. (2.15):

∂U

∂t
+
∂F

k

∂xk
+
∂D

k

∂xk
= 0, (4.3)
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with

U =




ρ
ρu1

ρu2

ρu3

ρe

ρZ



, F

k
=




ρuk
ρu1uk + δ1kp
ρu2uk + δ2kp
ρu3uk + δ3kp

(ρe+ p)uk
ρZuk



, D

k
=




0

−2µA1k

−2µA2k

−2µA3k

−2µujAkj − µcp
Pr

∂T
∂xk

− µ
Sc

∂Z
∂xk



, (4.4)

the filtered energy and the filtered equation of state being given by the following relations

ρe = ρcvT +
1

2
ρukuk =

p

γ − 1
+
1

2
ρukuk, and p = ρRT . (4.5)

Following the same methodology generally applied when solving the compressible RANS
equations, in order to avoid unclosed SGS terms in the continuity equation, a density-weighted
Favre filter operator tilde may be introduced; this operator, which represents filtering per unit
filtered density, is defined for a given quantity ϕ as3:

ϕ̃ =
ρϕ

ρ
, ⇒ ρϕ = ρϕ̃. (4.6)

The non-linear interaction terms in the flux vector F
k
are then decomposed in resolved

and SGS parts, the former being accessible from the filtered solution and the latter, namely

the SGS terms now included into the diffusive flux vector D
k
, requiring modeling:

F
k
=




ρuk

ρu1ũk + δ1k
(
p− 1

3τjj
)

ρu2ũk + δ2k
(
p− 1

3τjj
)

ρu3ũk + δ3k
(
p− 1

3τjj
)

(ρe+ p)ũk

ρZũk




, D
k
=




0

−2µA1k − τd
1k

−2µA2k − τd
2k

−2µA3k − τd
3k

−2µujAkj − µcp
Pr

∂T
∂xk

− qk
− µ

Sc

∂Z
∂xk

− qZk




, (4.7)

3It should be mentioned that, contrary to the more traditional Favre time averaging, if the turbulent field
is decomposed, based on the Favre-filter operator, as

ϕ = eϕ + ϕ′,

we have the following inequalities:

ρeeϕ = ρeϕ 6= ρeϕ

⇒ e

eϕ 6= eϕ and eϕ′ 6= 0.

Moreover, as already mentioned, the Favre-filter operator does not commute with the derivative. This is
readily verified:

∂ eϕ

∂xi
=

∂

∂xi

»

ρϕ

ρ

–

=
1

ρ

∂(ρϕ)

∂xi
+ ρϕ

∂(1/ρ)

∂xi
=

1

ρ

∂(ρϕ)

∂xi
− ρϕ

ρ2

∂ρ

∂xi
=

g∂ϕ

∂xi
+

1

ρ
ϕ

∂ρ

∂xi
− eϕ

ρ

∂ρ

∂xi
| {z }

Commutation Error

.
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where τij , qk and q
Z
k are the unclosed SGS terms

τij = ρuiũj − ρuiuj , (4.8)

qk = (ρe+ p)ũk − (ρe+ p)uk = cv(ρT ũk − ρTuk)
+ pũk − puk
+ 1

2(ρujuj ũk − ρujujuk), (4.9)

qZk = ρZũk − ρZuk, (4.10)

whereas superscript ‘d’ denotes the deviatoric part of the SGS stress tensor τd
ij = τij − 1

3δijτkk.
Using the above decomposition and the Favre-filtering operator, Eq. (4.5) becomes:

ρe = ρcvT̃ +
1

2
ρukũk −

1

2
τkk =

p

γ − 1
+
1

2
ρukũk −

1

2
τkk, and p = ρRT̃ . (4.11)

4.2.1 A Weakly Compressible Approach

As mentioned, in the Eq. (4.7) above, some terms can be computed from the resolved flow
field, namely the convective terms in F , whereas the other are unclosed SGS terms which need
to be modeled. Among them, two main groups may be recognized: (a) the terms related to
sub-grid turbulent transport, τij , qk and qZk , from Eqs. (4.8), (4.9) and (4.10) respectively;
(b) the remaining terms in D which are related to sub-grid viscous and diffusive transport.
With regards to the SGS stresses, an issue which needs some particular attention is related to
the necessity to model separately the deviator of τij and its spherical part

1
3τkk. The latter is

present in the momentum equation as well as in the filtered total energy through Eq. (4.11).
A separate model for this term is derived by Yoshizawa [86] under the assumption that

length and time scales of the fluctuating fields were small compared to those of the main
field: this hypothesis restricts the use of the model to low Mach number flows with small
density fluctuations. Even at low Mach numbers, the modeled isotropic SGS stress shows
poor correlation with the exact one, with a correlation coefficient of about 15% at 〈M 〉 =
0.14 [16, 72]. A dynamic version of this model is then developed by [49] and tested on isotropic
decaying turbulence at Mt = 0.519.

Erlebacher et al. [16], Speziale et al. [72] proposed a compressible version of the similarity
mixed model [4]—with fixed model constants determined from a priori analysis of DNS data—
where the Yoshizawa’s model is retained for the trace of the SGS Reynolds stress tensor (more
details about similarity models will be discussed in Section 4.4.1). At 〈M 〉 = 0.1, a correlation
coefficient of 0.85 is obtained for the isotropic SGS stress but is is also pointed out that this
has a negligible influence on the modeled total stresses on the vector and scalar level up to
〈M 〉 = 0.4.

Erlebacher et al. [17] conjectured that the trace of the SGS stress tensor is dominated by
the thermodynamic pressure for SGS Mach numbers Msgs < 0.4, with M 2

sgs = ρu′ku
′
k/(γp)

computed from the SGS Reynolds stress, and hence neglected the isotropic part of the SGS
Reynolds term. This assumption is confirmed by Zang et al. [88].

An alternative solution is proposed by Ducros et al. [13], Lesieur et al. [40], who incorporate
the trace of the SGS stress tensor within a macropressure and macrotemperature. Hence, the

4〈M 〉 is the average Mach number over the computational domain.
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isotropic SGS stress is not modeled. This approach, which is briefly summarized below, when
applied to similarity mixed modeling (cf. Section 4.4.1) leads to a condition over the SGS Mach
number, which is similar but less stringent than the one suggested by Erlebacher et al. [17].

The resolved macropressure is defined as the sum of the resolved pressure and the trace of
the SGS stress tensor,

̟ = p− 1

3
τkk, (4.12)

hence, the flux vector F
k
in Eq. (4.7) is rewritten as:

F
k
=




ρuk
ρu1ũk + δ1k̟
ρu2ũk + δ2k̟
ρu3ũk + δ3k̟
(ρe+̟)ũk
ρZũk



, (4.13)

where, since the filtered pressure p is no more accessible from LES, the SGS energy flux qk has
been redefined in terms of the resolved macropressure:

qk = (ρe+̟)ũk − (ρe+ p)uk. (4.14)

Moreover, observing that the filtered total energy (cf. Eq. (4.11)) contains the trace of the
SGS stresses, a resolved macrotemperature may be defined in such a way that the total energy
is computable from resolved quantities:

ρe = ρcvϑ̃+
1

2
ρukũk, with ϑ̃ = T̃ − 1

2ρcv
τkk. (4.15)

The filtered state equation in terms of macropressure and macrotemperature reads:

̟ = ρRT̃ − 1

3
τkk = ρRϑ̃+ ρR

1

2ρcv
τkk −

1

3
τkk = ρRϑ̃+

3γ − 5

6
τkk, (4.16)

suggesting that, for τkk sufficiently small, macropressure and macrotemperature may be related
by the usual equation of state, i.e.,

̟ = ρRϑ̃ (4.17)

Defining the sub-grid Mach number as

M 2
sgs =

τkk
ρa2

=
τkk
γp

, (4.18)

this condition becomes:
|3γ − 5|

6
γM 2

sgs ≪ 1. (4.19)

For γ = 1.4 for instance, this condition is ∼ 1.6 times less restrictive on Msgs than just
neglecting the effects of the SGS stress’ trace compared to the filtered thermodynamic pressure:

1

3
τkk ≪ p, ⇒ 1

3
γM 2

sgs ≪ 1.
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A final remark needs to be done regarding the definition of the SGS energy flux, which is
now defined using Eq. (4.15) as:

qk = (ρe+̟)ũk − (ρe+ p)uk = ρcv(ϑ̃ũk − T̃ uk)
+̟ũk − puk
+ 1

2ρ(ũj ũj ũk − ũjujuk), (4.20)

Using Eqs. (2.8) and (4.17) and introducing the internal energy eI = cvT and the resolved
internal energy ẽI = cvϑ̃, the SGS energy flux becomes finally

qk = γρ(ẽI ũk − ẽIuk) + ρDk + 1
2τjj ũk. (4.21)

where ρDk = 1
2ρujuj ũk − 1

2ρujujuk represents the SGS turbulent diffusion of kinetic energy.
Furthermore, according to the approach proposed by Lesieur et al. [40], viscous and diffusive

sub-grid contributions, arising from the non-commutativity of Favre-filtering (cf. note 3 at
page 87), are neglected. This is consistent with compressible LES models derived by different
authors [17, 38, 39, 49, 72, 88]. From a priori tests on compressible turbulent mixing layer,
Vreman [81], Vreman et al. [82], in particular, show that SGS viscous diffusion and SGS thermal
diffusion may be neglected for a reasonably wide range of Mach numbers (tests are performed
up to M = 1.2), namely

2µujAkj − 2µũjÃkj ≃ 0, (4.22)

µcp
Pr

∂T

∂xk
− µcp

Pr

∂ϑ̃

∂xk
≃ 0. (4.23)

From the same tests, they also conclude that the SGS viscous term in the momentum
equation is much smaller than the SGS stress tensor:

2µAij − 2µÃij ≃ 0. (4.24)

In a similar fashion, we assume that the SGS scalar diffusion is also negligible:

µ

Sc

∂Z

∂xk
− µ

Sc

∂Z̃

∂xk
≃ 0. (4.25)

The SGS viscous diffusion, in particular, is found to be the smallest of the SGS terms in
the total energy equation in Mart́ın et al. [46]. Its contribution, which, from a priori tests on
decaying isotropic turbulence at turbulent Mach number Mt = u′′/c = 0.52 (the velocity u′′

here represents the fluctuating velocity extracted from Reynolds time averaging), is about 5%
of the divergence of the SGS heat flux ρT ũk − ρTuk and may be reasonably neglected: the
relatively poor performances of the SGS viscous diffusion model proposed therein [46] do not
justify the additional modeling effort for such a small term.

Based on the above considerations, the filtered diffusive flux D
k
is then written as:

D
k ≃




0

−2µÃ1k − τd
1k

−2µÃ2k − τd
2k

−2µÃ3k − τd
3k

−2µũjÃkj − µcp
Pr

∂eϑ
∂xk

− qk
− µ

Sc

∂ eZ
∂xk

− qZk




, (4.26)
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where Ãij is the deviator of the deformation tensor computed on the resolved velocity field
using Eq. (2.6),

Ãij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
− 1

3
δij
∂ũk
∂xk

, (4.27)

and the dynamic viscosity µ is computed with Eq. (2.14) from the resolved macrotemperature:

µ(ϑ̃) = µref

(
ϑ̃

Tref

)3/2Tref + S

ϑ̃+ S
. (4.28)

It should be noted that all the above equations have been derived under the implicit
assumption that the gas constant R and the specific heat capacities, cv and cp, are constant—
as it is the case for a calorically perfect gas—or, at least, constant to the filtering operator.

4.2.2 Near-Wall Scaling

Before going on with the description of sub-grid scale modeling procedures for the SGS stress
tensor, it is worthwhile deriving some useful relations regarding near-wall scaling, which will be
used in the next sections to assess SGS models’ behavior close to solid boundaries. Supposing
that the wall is orthogonal to x2, Taylor series expansions at the wall of the instantaneous
velocity field in the x2 direction may be used in order to check proper wall scaling. If the wall
is located at x2 = 0, the above expansions read:

u1(x1, x2, x3) = A0(x1, x3) +A1(x1, x3)x2 +A2(x1, x3)x
2
2 +O(x3

2), (4.29)

u2(x1, x2, x3) = B0(x1, x3) +B1(x1, x3)x2 +B2(x1, x3)x
2
2 +O(x3

2), (4.30)

u1(x1, x2, x3) = C0(x1, x3) + C1(x1, x3)x2 + C2(x1, x3)x
2
2 +O(x3

2), (4.31)

where the coefficients Ak, Bk and Ck represent the kth-order derivatives of the velocity com-
ponents with respect to x2, evaluated at the wall, namely

Ak =
1

k!

∂ku1

∂xk2

∣∣∣∣
x2=0

, Bk =
1

k!

∂ku2

∂xk2

∣∣∣∣
x2=0

, Ck =
1

k!

∂ku3

∂xk2

∣∣∣∣
x2=0

. (4.32)

From the no-slip condition, the zeroth-order terms, of course, have to be identically zero:
A0 = B0 = C0, ∀(x1, x3) ∈ R2. Moreover, the incompressibility constraint5 on the divergence
of the velocity field reads:

∂uk
∂xk

=
∂A1

∂x1
x2 +B1(x1, x3) +

∂C1

∂x3
x2 +O(x2

2) = 0, (4.33)

which, for x2 = 0, implies that also B1 must be identically zero, hence, the following Taylor
expansions in x2 are obtained [53]:

u1(x1, x2, x3) = A1(x1, x3)x2 +A2(x1, x3)x
2
2 +O(x3

2), (4.34)

u2(x1, x2, x3) = B2(x1, x3)x
2
2 +O(x3

2), (4.35)

u3(x1, x2, x3) = C1(x1, x3)x2 + C2(x1, x3)x
2
2 +O(x3

2). (4.36)

5Due to the weakly compressible nature of the present implementation, we assume reasonable to neglect
density fluctuations within the viscous sublayer.
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From the above relations we may conclude that, in the near-wall region, the average velocity
components scale as [42, 63]:

〈u1〉 ∼ x2, 〈u2〉 ∼ x2
2, 〈u3〉 ∼ x2,

where angled brackets designate statistical averaging. Moreover, the velocity gradient tensor
gij = ∂ui/∂xj shows the following wall-scaling:

g =




∂A1

∂x1
x2 +O(x2

2) A1 + 2A2x2 +O(x2
2)

∂A1

∂x3
x2 +O(x2

2)

∂B2

∂x1
x2

2 +O(x3
2) 2B2x2 +O(x2

2)
∂B2

∂x3
x2

2 +O(x3
2)

∂C1

∂x1
x2 +O(x2

2) C1 + 2C2x2 +O(x2
2)

∂C1

∂x3
x2 +O(x2

2)



, (4.37)

where the explicit indication of the dependence on x1 and x3 has been omitted for simplicity
of notation. Consequently, the near-wall behavior of the average strain rate tensor is obtained
as:

〈S11〉 ∼ x2, 〈S22〉 ∼ x2, 〈S33〉 ∼ x2, (4.38)

〈S12〉 ∼ 1, 〈S13〉 ∼ x2, 〈S23〉 ∼ 1, (4.39)

where the notation ∼ 1 is used to indicate that the leading term in the relevant Taylor expan-
sion is constant with respect to x2. Wall-scaling for the deviator of the strain rate tensor is
immediately obtained from the above relations by subtracting the trace of 〈Sij〉 from its own
diagonal components:

〈A11〉 ∼ x2, 〈A22〉 ∼ x2, 〈A33〉 ∼ x2, (4.40)

〈A12〉 ∼ 1, 〈A13〉 ∼ x2, 〈A23〉 ∼ 1. (4.41)

Finally, the wall scaling of turbulent stresses may be derived from the theory of turbulent
boundary layers [50, 66] and, accordingly, the statistical asymptotic behavior of the sub-grid
stress is expected to be:

〈τ11〉 ∼ x2
2, 〈τ22〉 ∼ x4

2, 〈τ33〉 ∼ x2
2, (4.42)

〈τ12〉 ∼ x3
2, 〈τ13〉 ∼ x2

2, 〈τ23〉 ∼ x3
2. (4.43)

If we consider the deviator of the SGS stress tensor, the above scalings are still valid except
that 〈τ22〉 now scales as x2

2. All the above results will be used in the next sections to check
near-wall SGS models’ behavior.

4.3 Eddy-Viscosity Hypothesis

The Eddy-Viscosity or Sub-Grid Viscosity models belong to the class of Functional Models in
physical space, i.e., models that aim at reproducing the effects of sub-grid terms on the resolved
flow field, without necessarily reproduce also their structure [63]. Considering, for instance,
the momentum transport equation, the effects of the sub-grid scales on the resolved field is
linked to the divergence of the SGS stress tensor ∂τij/∂xj . Functional models try to compute
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this divergence without necessarily reproduce the SGS tensor itself and its components and
hence, they correlate with the SGS stresses at vector level6.

If the energy transfer from the resolved to the sub-grid scales is assumed to be similar to
the molecular diffusion mechanism—which involves the kinematic viscosity and the thermal or
scalar diffusivity—the sub-grid contributions may be modeled by introducing the eddy-viscosity
νt, the sub-grid thermal diffusivity κsgs and the sub-grid diffusivity κZsgs and by resorting to
the Boussinesq assumption and the Prandtl analogy [50, 66], which, in the LES perspective,
lead to the following approximations:

(ρuiũj − ρuiuj)d ≃ 2ρνtÃij , (4.44)

ρϑũk − ρTuk ≃ ρκsgs
∂ϑ̃

∂xk
=
ρνt

Pr t

∂ϑ̃

∂xk
, (4.45)

ρZũk − ρZuk ≃ ρκZsgs
∂Z̃

∂xk
=
ρνt

Sct

∂Z̃

∂xk
, (4.46)

where Pr t and Sct are the sub-grid Prandtl and Schmidt numbers respectively7. Supposing
that the SGS turbulent diffusion Dk and the isotropic SGS stress term τjj ũk in Eq. (4.21) are
much smaller than the SGS heat flux, the SGS total energy flux becomes

qk ≃
ρcpνt

Pr t

∂ϑ̃

∂xk
= γ

ρνt

Pr t

∂ẽI
∂xk

. (4.47)

Using the above approximations, the flux vectors Eqs. (4.26) and (4.13) may be conveniently
rewritten in the following form:

F
k
=




ρuk

ρu1ũk + δ1k̟

ρu2ũk + δ2k̟

ρu3ũk + δ3k̟

(ρe+̟)ũk

ρZũk




, D
k ≃




0

−2(µ+ ρνt)Ã1k

−2(µ+ ρνt)Ã2k

−2(µ+ ρνt)Ã3k

−2µũjÃkj − µcp
Pr

∂eϑ
∂xk

− γ ρνt
Prt

∂ eeI
∂xk

−
( µ

Sc
+ ρνt

Sct

)
∂ eZ
∂xk




, (4.48)

with

ρe = ρcvϑ̃+
1

2
ρukũk =

̟

γ − 1
+
1

2
ρukũk, (4.49)

ẽI = cvϑ̃ =
ρe

ρ
− 1

2
ũkũk. (4.50)

6The performances of SGS models may be checked, in a statistical sense, a priori, by comparison with
exact SGS contributions extracted from Direct Numerical Simulation (DNS) data or, a posteriori, by analysis
of experimental measurements. Correlations coefficients between modeled and exact sub-grid terms may be
then computed. Since functional SGS models reproduce the divergence of the SGS stress tensor, correlation
coefficients can be computed, at most, on the three components of the divergence vector.

With regards to scalar transport equations (e.g., the energy equation), the divergence of the SGS flux vector
is modeled, hence the correlations can be checked at scalar level only.

7The subscript ‘t’,i.e. “turbulent”, is frequently used and is reminiscent of the terminology commonly
adopted for Reynolds averaged Navier-Stokes equations. Anyway, in this context, it would be more appropriate
to use symbols like νsgs, Pr sgs or Scsgs to underline the fact that we are really talking about “sub-grid scale”
quantities.
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The problem is closed once νt, Pr t and Sct are specified. The next two sections will
provide two examples of eddy-viscosity models, resorting to static or dynamically computed
model constants, which have been used in the present work.

4.3.1 The Smagorinsky Model (SM)

Among the most used sub-grid scale eddy-viscosity models, the Smagorinsky model [70] com-
putes the sub-grid viscosity νt as:

νt = C2
s∆

2|S̃|, (4.51)

where the tensor norm term is computed from the resolved strain rate tensor with the following
relation

|S̃| =
(
2S̃ijS̃ij

)1/2
, (4.52)

and ∆ is the grid level filter width, which, in the present case, is evaluated as: resorting to the
formula,

∆ = f(a1, a2)∆eq, (4.53)

where ∆eq = (∆1∆2∆3)
1/3 [10]—∆k being the local grid spacing in the kth direction—and

f(a1, a2) is the corrective factor for anisotropic grids proposed by Scotti et al. [69], where a1

and a2 are the aspect ratios of the two smaller sides of the computational cell to the biggest
one.

The model constant Cs can be theoretically determined, from Local Equilibrium Hypothesis
considerations or adapted for the specific problem. Typical values range from 0.1 to 0.2 (cf.
Sagaut [63] and therein cited references for more details).

The Smagorinsky model alone shows quite poor wall-scaling properties. In fact, as it can
be easily deduced from Eqs. (4.38), (4.39), (4.40) and (4.41), the predicted sub-grid viscosity
scales as 〈νt〉 ∼ 1, leading to an over-dissipative behavior in the near-wall region [42]:

〈τ s
11〉 ∼ x2, 〈τ s

22〉 ∼ x2, 〈τ s
33〉 ∼ x2, (4.54)

〈τ s
12〉 ∼ 1, 〈τ s

13〉 ∼ x2, 〈τ s
23〉 ∼ 1. (4.55)

On this regard, a possible remedy is to introduce ad hoc damping functions that try to
recover the correct scaling toward solid boundaries. Alternatively, the dynamic procedure,
which is presented in Section 4.3.3, may be adopted.

4.3.2 The WALE Model

Specifically designed to reproduce correct scaling when wall boundary conditions are present,
the Wall-Adapting Local Eddy-viscosity (WALE) model proposed by Nicoud and Ducros [53]
computes the eddy-viscosity νt from the velocity gradient tensor’s invariants resorting to the
following relation:

νt = C2
w∆

2
(s̃dij s̃

d
ij)

3/2

(S̃ijS̃ij)5/2 + (s̃dij s̃
d
ij)

5/4
, (4.56)

where Cw is a true model constant, ∆ is evaluated from Eq. (4.53), S̃ij = 1/2(∂ũi/∂xj +
∂ũj/∂xi) is the strain rate tensor of the resolved field and s̃

d
ij is the traceless symmetric part
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of the square of the resolved velocity gradient tensor g̃ij = ∂ũi/∂xj , namely

s̃dij =
1

2

(
g̃2
ij + g̃2

ji

)
− 1

3
δij g̃

2
kk, (4.57)

with g̃2
ij = g̃ikg̃kj . Moreover, sub-grid thermal and scalar diffusivities are computed from the

eddy-viscosity assuming constant Pr t and Sct respectively. A model constant value Cw =
0.5 was found to be optimal from a priori tests on freely decaying isotropic homogeneous
turbulence [53].

Using the results obtained in Section 4.2.2, it is easy to show that the eddy-viscosity from
Eq. (4.56) is of the order of x3

2 [53], thus leading to the following behavior for the deviatoric
part of the SGS modeled stress tensor (cf. Eq. (4.44)):

〈τw
11〉 ∼ x4

2, 〈τw
22〉 ∼ x4

2, 〈τw
33〉 ∼ x4

2, (4.58)

〈τw
12〉 ∼ x3

2, 〈τw
13〉 ∼ x4

2, 〈τw
23〉 ∼ x3

2. (4.59)

As a direct consequence of the fact that 〈νt〉 ∼ x3
2, the most important sub-grid stress

components in the near wall region [63], namely 〈τw
12〉 and 〈τw

23〉, retain the correct scaling.
Furthermore, the other components are two order of magnitude smaller then expected from
theory. This last fact will play a key role in the development of the WALE-Similarity Model,
which will be presented in Section 4.4.1.

4.3.3 The Compressible Lagrangian Dynamic Smagorinsky Model (LDSM)

When the eddy-viscosity model is not able to retain the expected near-wall behavior, as it is the
case for the Smagorinsky model, dynamic procedures for computing sub-grid model constants
may be adopted in order to minimize an estimate of the error introduced by the model itself, in
the least square sense [25, 41, 49]. One of the major drawbacks of dynamic models is the need
to resort to a constant regularization procedure, typically based on averaging operations along
homogeneous directions, in order to prevent numerical instabilities related to anti-dissipative
model predictions.

In the Lagrangian Dynamic Smagorinsky Model (LDSM), originally developed by Meneveau
et al. [48] for incompressible flows, in particular, averaging is performed along fluid particles
trajectories, thus extending the applicability of the dynamic procedures to complex geometries,
for which the definition of homogeneous directions is seldom possible.

The main features of the model are summarized below. In parallel, the Lagrangian dynamic
procedure is extended to the computation of the turbulent Prandtl number in the compressible
case as suggested by Moin et al. [49]8. The least squares procedures proposed by Lilly [41], in
particular, will be adopted.

Following the idea of Germano et al. [25], the dynamic procedure aims at evaluating SGS
model constants using the information contained in the resolved flow field. Introducing the
hat test filter operator at cutoff length ∆̂ = 2∆, the following identities are introduced:

Ld
ij = τ̂d

ij − T d
ij , (4.60)

Kj = q̂j −Qj , (4.61)

8Even though the turbulent Schmidt number could also be dynamically computed, we assume unity SGS
Lewis number, hence the turbulent Schmidt number is set equal to the turbulent Prandtl number.
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where Tij and Qj represent the SGS stress tensor and the SGS heat flux as they would have
been computed from a LES at the test filter level, τ̂ij and q̂j are the SGS terms at level ∆
filtered at the test level; Lij and Kj are the modified Leonard terms [24] expressing interactions
between scales ∆ and ∆̂:

T d
ij =

(
ρ̂ui

̂̃uj − ρ̂uiuj
)d
, Qj = γ

(
ρ̂eI ̂̃uj − ρ̂eIuj

)
, (4.62)

τ̂d
ij =

(
ρ̂uiũj − ρ̂uiuj

)d
, q̂j = γ

(
ρ̂eI ũj − ρ̂eIuj

)
, (4.63)

Ld
ij =

(
ρ̂uiũj − ρ̂uî̃uj

)d
, Kj = γ

(
ρ̂eI ũj − ρ̂eI ̂̃uj

)
. (4.64)

with the tilde-hat operator being used to symbolically indicate mass wighted Favre-filtering at
the test level:

̂̃ϕ ≡ ρ̂ϕ

ρ̂
.

Note that Ld
ij and Kj are computable from the resolved field, therefore, if the Smagorinsky

model is used to approximate the SGS eddy-viscosity, the relevant errors in the Germano’s
identity read

εLij = Ld
ij − Ĉ2

s αij + C2
s βij = Ld

ij − C2
sMij , (4.65)

εKj = Kj − Ĉ2
s

Prt
αeI
j + C2

s
Prt

βeI
j = Kj − C2

s
Prt
Hj , (4.66)

where, using Eqs. (4.44) and (4.47) and the Smagorinsky model, Eq. (4.51), to express the
sub-grid viscosity νt, we may write the various terms as:

αij = 2ρ∆2|S̃|Ãij , βij = 2ρ̂∆̂2|̂̃S| ̂̃Aij , Mij = α̂ij − βij , (4.67)

αeI
j = γρ∆2|S̃|∂ẽI

∂xj
, βeI

j = γρ̂∆̂2|̂̃S|∂
̂̃eI

∂xj
, Hj = α̂eI

j − βeI
j , (4.68)

with the tensor norms |S̃| and |̂̃S| being computed, according to Eq. (4.52), from the filtered
and test filtered strain tensors respectively. It is worthwhile underlining that both ∆ and
∆̂ may be computed, in analogy to Eq. (4.53), including the relevant anisotropic corrective
factor [67, 68].

The last equality in Eqs. (4.65) and (4.66) is obtained under the assumption of scale-
invariance of the model constant Cs and the turbulent Prandtl number Pr t

9.
If z(t′) is the position of the fluid particle at some earlier time t′, the Lagrangian averaged

square errors are defined as:

EL =
∫ t

−∞
εLij(z(t

′), t′)εLij(z(t
′), t′)W (t− t′)dt′, (4.69)

EK =

∫ t

−∞
εKj (z(t

′), t′)εKj (z(t
′), t′)W (t− t′)dt′, (4.70)

9Even if not explicitly indicated, the model constant, in general, is a parameter which depends on the filter
size. The scale-invariance assumption states that this dependancy may be neglected between ∆ and b∆, thus
allowing taking the model constant out of the test filtering operator:

Ĉ2
s αij ≃ C2

s bαij , and
Ĉ2

s

Prt
αeI

ij ≃
C2

s

Prt
bαeI

i .
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where W (t − t′) is a weighting function introduced to control the memory of the total error
function with respect to earlier times. The above errors can be minimized in the least squares
sense, with respect to a model constant C2, by solving the following general condition:

∂E
∂C2

=

∫ t

−∞
2ε

∂ε

∂C2
W (t− t′)dt′ = 0. (4.71)

which is applied to EL and EK in order to minimize the error with respect to C2
s and the ratio

C2
s /Pr t respectively. Using Eq. (4.65) and (4.66), we finally get

C2
s (x, t) =

ILM
IMM

, and
[ C2

s
Prt

]
(x, t) =

IKH
IHH

, (4.72)

with

ILM =

∫ t

−∞
Ld
ijMij(z(t

′), t′)W (t− t′)dt′, (4.73)

IMM =

∫ t

−∞
MijMij(z(t

′), t′)W (t− t′)dt′, (4.74)

IKH =

∫ t

−∞
KjHj(z(t

′), t′)W (t− t′)dt′, (4.75)

IHH =

∫ t

−∞
HjHj(z(t

′), t′)W (t− t′)dt′. (4.76)

Choosing exponential weighting functions, the above integrals may be obtained as the
solution of the following relaxation-transport equations (a demonstration of this statement is
reported in Appendix A):

DILM
Dt

=
1

TL
(Ld

ijMij − ILM ),
DIMM

Dt
=

1

TL
(MijMij − IMM ), (4.77)

DIKH
Dt

=
1

TK
(KjHj − IKH),

DIHH
Dt

=
1

TK
(HjHj − IHH), (4.78)

which are solved in a Lagrangian sense as suggested by Meneveau et al. [48]10.
According to the original formulation of the Lagrangian dynamic model, both ILM and

IKH are clipped to zero in order to avoid negative values of the constants, thus preventing the

10The generic transport equation
Dφ

Dt
=

1

T
[f(x, t)− φ(x, t)] ,

is approximated as
φn+1(x)− φn(x − eun∆t)

∆t
=

1

Tn

ˆ

fn+1(x)− φn+1(x)
˜

,

where the value of φn at the upstream location x − eun∆t is obtained by multilinear interpolation. The new
value φn+1 is then obtained as a weighted sum of the interpolated prior value and the current source term at
the grid point location:

φn+1(x) = ǫfn+1(x) + (1− ǫ)φn(x − eu
n∆t),

with ǫ = ∆t/(Tn + ∆t).
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model from predicting energy backscatter; by dimensional considerations, the characteristic
times TL and TK are computed as:

TL =
θL∆ρ

1/2

(ILMIMM )1/8
, with θL = 1.5, (4.79)

TK =
θK∆ρ

1/3

(IKHIHH)1/12
, with θK = 3.5. (4.80)

The different value of the coefficient θK , which is proportional to the amount of memory of
the Lagrangian averaging procedure, was chosen based on preliminary tests in order to limit the
excessive oscillatory behavior of the dynamically computed Prandtl number. It is reasonable
to expect that the difference between θL and θK is related to the different magnitude of the
other terms involved in the computation of TL and TK respectively. The eddy-viscosity and
the diffusivity coefficients are finally obtained:

νt = C2
s (x, t)∆

2|S̃|, (4.81)

κsgs =
[ C2

s
Prt

]
(x, t)∆2|S̃|, (4.82)

κZsgs =
[ C2

s
Prt

]
(x, t)Let∆

2|S̃|, (4.83)

where Let is the SGS Lewis number, which, as already mentioned, is actually set to 1.
With regards to wall scaling, observing that 〈|S|〉 ∼ 1 and that 〈Lij〉 and 〈Mij〉 scale as

〈τij〉 and 〈Aij〉 respectively [42], it is easy to show that 〈Ld
ijMij〉 ∼ x3

2 and that 〈MijMij〉 ∼ 1

and hence, from Eq. (4.72), that the eddy-viscosity retain the proper x3
2 scaling leading to the

same near-wall behavior observed for the WALE model (cf. Eqs. (4.58) and (4.59)).

4.3.4 The Filtered Structure Function Model (FSF)

The Filtered Structure Function (FSF) model, developed by Ducros et al. [14] for LES of
turbulent transition in the boundary layer, evaluates the sub-grid viscosity from the energy of
the highest resolved frequencies E(kc), computed from the second order structure function of
the resolved velocity field:

F2(x,∆, t) = 〈||ũ(x+ r, t)− ũ(x, t)||〉||r||=∆, (4.84)

where angled brackets indicate spatial averaging.
In order to better select resolved high frequency modes, the structure function is evaluated

after applying a high-pass filter on the resolved velocity field, which is actually implemented
resorting to a discrete Laplacian filter in physical space11

HP(1)(ũi,j,k) = ũi+1,j,k − 2ũi,j,k + ũi−1,j,k

+ ũi,j+1,k − 2ũi,j,k + ũi,j−1,k

+ ũi,j,k+1 − 2ũi,j,k + ũi,j,k−1, (4.85)

HP(n)(ũi,j,k) = HP(1)
[
HP(n−1)(ũi,j,k)

]
, (4.86)

11The used high-pass filter is actually the discrete approximation of the Laplacian operator [63]:

HP(1)(eu) ≃ ∆2∇2
eu.
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iterated, as recommended by Ducros et al. [14], 3 times:

F
(3)
2 (x,∆, t) = 〈||ũ(3)(x+ r, t)− ũ(3)(x, t)||〉||r||=∆

≃ 1
6

(
||ũ(3)

i+1,j,k − ũ
(3)
i,j,k||+ ||ũ

(3)
i,j,k − ũ

(3)
i−1,j,k||

+ ||ũ(3)
i,j+1,k − ũ

(3)
i,j,k||+ ||ũ

(3)
i,j,k − ũ

(3)
i,j−1,k||

+ ||ũ(3)
i,j,k+1 − ũ

(3)
i,j,k||+ ||ũ

(3)
i,j,k − ũ

(3)
i,j,k−1||

)
, (4.87)

with ũ(3) = HP(3)(ũ).
The value of the sub-grid viscosity is then obtained as:

νt = 0.0014C
−3/2
K ∆

√
F

(3)
2 (x,∆, t), (4.88)

where CK ∼ 1.5 is the Kolmogorov constant in the five-thirds law [51] (cf. Eq. (2.50) at page 15)
and ∆ is computed from Eq. (4.53).

It should be noted that, when Eq. (4.87) is evaluated as a local statistical average of square

velocity differences over the six neighbor nodes (on cartesian grids), then 〈F (3)
2 〉 ∼ 1 and hence

near-wall scaling for the sub-grid viscosity is of the same order [53]. Better results may be
obtained averaging (and filtering) on four neighbor nodes lying on the plane parallel to the
wall [14].12 In that case, the structure function scales as x2

2, hence, the eddy viscosity behaves
like 〈νt〉 ∼ x2, therefore zero eddy-viscosity is recovered at the wall, even though not as fast
as expected.13

12If the wall is orthogonal to x2, the four nodes formulations for Eqs. (4.85) and (4.87) become:

HP(1)(eui,j,k) = eui+1,j,k − 2eui,j,k + eui−1,j,k

+eui,j,k+1 − 2eui,j,k + eui,j,k−1,

F
(3)
2 (x, ∆, t) ≃ 1

4

“

||eu(3)
i+1,j,k − eu

(3)
i,j,k||+ ||eu

(3)
i,j,k − eu

(3)
i−1,j,k||

+ ||eu(3)
i,j,k+1 − eu

(3)
i,j,k||+ ||eu

(3)
i,j,k − eu

(3)
i,j,k−1||

”

.

13If rk is the kth component of the spacing r used to compute the structure function, form Eqs. (4.34)–(4.36)
is is readily verified that:

δ1[u1] = δ1[A1]x2 +O(x2
2), δ2[u1] = A1r2 +O(x2), δ3[u1] = δ3[A1]x2 +O(x2

2),

δ1[u2] = δ1[B2]x
2
2 +O(x3

2), δ2[u2] = B2r
2
2 +O(x2), δ3[u2] = δ3[B2]x

2
2 +O(x3

2),

δ1[u3] = δ1[C1]x2 +O(x2
2), δ2[u3] = C1r2 +O(x2

2), δ3[u3] = δ3[C1]x2 +O(x2
2),

where the notation δk[·] has been introduced to synthetically indicate a difference between locations xk and
xk + rk. From these relations, the norms of the velocity differences along the three coordinate axes have
scalings:

||δ1[u]|| = δ1[u1]
2 + δ1[u2]

2 + δ1[u3]
2 ∼ x2

2,

||δ2[u]|| = δ2[u1]
2 + δ2[u2]

2 + δ2[u3]
2 ∼ 1,

||δ3[u]|| = δ3[u1]
2 + δ3[u2]

2 + δ3[u3]
2 ∼ x2

2,

hence, when the structure function is evaluated with the six neighbor formulation, the leading term is O(1)
relevant to ||δ2[u]||, whereas in the four neighbor formulation the leading term is O(x2

2) from in-plane differences
only, ||δ1[u]|| and ||δ3[u]||.
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4.4 Scale Similarity Hypothesis

As opposed to Functional Models, as those based on the Eddy-Viscosity hypothesis, the Struc-
tural Models are designed to make the best approximation of the sub-grid scale contributions
using informations contained within the resolved scales. Considering the momentum transport
equation, for instance, structural models aim at reproducing the SGS stress tensor and its
structural features, hence they would be expected to well correlate at tensor level also.

Among the Structural Models, similarity models are based on the hypothesis that the
statistical features of tensors constructed on the sub-grid scales are similar to those of analogous
tensors computed on the basis of the smallest resolved scales [1, 3, 4, 42].

Focusing on the incompressible case, if tsgsij = uiuj − uiuj is the SGS stress tensor relevant
to a LES at filter size ∆, corresponding to the bar filter operator, the Leonard decomposition
reads

−tsgs
ij = uiuj − uiuj︸ ︷︷ ︸

Lij

+uiu′j + u′iuj︸ ︷︷ ︸
Cij

+u′iu
′
j︸︷︷︸

Rij

, (4.89)

where u′i = ui − ui is the sub-grid velocity and Lij , Cij and Rij are the Leonard term, the
Cross term and the SGS Reynolds term respectively. Since the Leonard term is computable
from the resolved flow field, the closure problem reduces to the approximation of the Cross and
Reynolds terms only, which are computed on the SGS velocity u′i. Under the scale similarity
assumption, we may construct those tensors on the small-scale components of the resolved
field, which may be estimated as the difference between the filtered field and the twice-filtered
field, this difference representing a reasonable estimate of the filtered SGS velocity [3].

Assuming that u′iu
′
j ≃ u′iu′j and that uiu′j ≃ uiu′j and approximating u

′
i with ui − ui, the

Cross and SGS Reynolds terms become

Cij ≃ ui(uj − uj) + (ui − ui)uj , (4.90)

Rij ≃ (ui − ui)(uj − uj), (4.91)

which, using Eq. (4.89), lead to the following approximation for the SGS stress tensor, namely
the original Bardina et al. [4] model14:

−tsgs
ij ≃ uiuj − uiuj + uiuj − uiuj︸ ︷︷ ︸

Cij+Rij

= uiuj − uiuj , (4.94)

The above hypothesis was then generalized by Liu et al. [42] splitting the energy spectrum
into a certain number of bands and filtering at two different levels, ∆ and ∆̂ = α∆ (with
α ≥ 1):

−tsgsij = CL(ûiuj − ûiûj), (4.95)

14The same approximation may be obtained using the generalized central moments proposed by Germano
[24] and neglecting the modified Cross and Reynolds terms:

−tsgsij = uiuj − uiuj
| {z }

Lij

+ uiu′j + u′iuj − uiu′j − u′iuj
| {z }

Cij

+ u′iu
′

j − u′iu′j
| {z }

Rij

, (4.92)

Cij ≃ 0,Rij ≃ 0, ⇒ −tsgsij ≃ Lij . (4.93)
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where the model coefficient CL may be assigned a priori—typically CL is set equal to one in
order to preserve Galilean invariance of the model [71]—or dynamically computed [42].

Differently from models based on the eddy-viscosity assumption, similarity models remove
the hypothesis of alignment between the proper axes of the sub-grid scale stress tensor and those
of the resolved shear stress tensor, thus achieving very good correlation between expected and
computed SGS stresses. Good correlation was also observed between real and modeled local
SGS energy flux, even in regions characterized by energy backscatter, meaning that the Leonard
tensor is able to predict reversed energy transfer on a reasonable physical ground [42, 64].

On the other hand, tests performed on LES show that similarity models are not dissipative
and the addition of an eddy-viscosity term is anyway advisable in practice [3, 4]. The resulting
closures are the so-called similarity mixed models and a number of versions have been proposed
which, generally, resort to the classical eddy viscosity Smagorinsky model and to dynamic
modeling, in order to retain the correct wall-scaling that the eddy-viscosity term may have
affected [1, 2, 64, 89]. In the perspective of the modified Leonard decomposition (cf. Eq. (4.92)),
a similarity mixed model may be obtained by neglecting Cij and the second term in Rij

and by modeling the first term in the modified SGS Reynolds term using the eddy-viscosity
hypothesis [64]:

−tsgs
ij ≃ uiuj − uiuj + u′iu

′
j ≃ uiuj − uiuj − 2ρνtS̃ij (4.96)

The similarity mixed model was generalized to the compressible case using the Favre-
filtering formalism and a priori determined model coefficients—namely, CL for the modified
Leonard term and Cs for the eddy-viscosity term—by Erlebacher et al. [16, 17], Speziale et al.
[72]. A dynamic version of the same model was then proposed by Salvetti and Banerjee [64].
Strong correlation at tensor level was observed in both cases.

4.4.1 The WALE-Similarity Model (WSM)

In the perspective of developing a similarity mixed model with proper near-wall scaling without
resorting to dynamic procedures, we put forward the idea of modeling the eddy-viscosity term
resorting to the WALE formulation. In this way, on one hand, the explicit filtering operator is
applied for the computation of the modified Leonard tensor only, whereas a dynamic procedure
would require additional test filtering to apply the Germano’s identity (cf. Eq. (4.60)); on the
other hand, no spatial or Lagrangian averaging, generally required when dynamic procedures
are implemented, is needed.

Introducing the velocity decomposition into resolved and unresolved parts, namely uj =
ũj +u

′
j , the SGS stress tensor is decomposed according to the Leonard decomposition and the

modified Leonard decomposition as

−τij = Lij + Cij +Rij︸ ︷︷ ︸
Leonard

decomposition

= Lij + Cij +Rij︸ ︷︷ ︸
modified
Leonard

decomposition

, (4.97)

with

Lij = ρ
(˜̃uiũj − ũiũj

)
, Lij = ρ

(˜̃uiũj − ˜̃ui˜̃uj
)
, (4.98)

Cij = ρ
( ˜̃uiu′j + ũ′iũj

)
, Cij = ρ

( ˜̃uiu′j + ũ′iũj − ˜̃uiũ′j − ũ′i˜̃uj
)
, (4.99)

Rij = ρu′iu
′
j , Rij = ρ

(
ũ′iu

′
j − ũ′iũ′j

)
. (4.100)
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The compressible extension of the similarity mixed model [3, 4] is obtained by neglecting Cij
and the second term in Rij or, equivalently, by using the approximation Cij ≃ ρũiũj − ρ˜̃ui˜̃uj ;
the SGS stress tensor is then modeled as:

−τij ≃ ρ
(˜̃uiũj − ˜̃ui˜̃uj

)
︸ ︷︷ ︸

Lij

+ ρu′iu
′
j︸ ︷︷ ︸

Rij

, (4.101)

and, modeling the deviatoric part of the SGS true Reynolds term with the eddy-viscosity
hypothesis (Eq. (4.44)), the sub-grid stress becomes:

−τij ≃ ρ
(˜̃uiũj − ˜̃ui˜̃uj

)
− 2ρνtÃij +

1
3δijρu

′
ku
′
k. (4.102)

The last term in the above relation, namely the trace of Rij , may be modeled, as proposed
by Speziale et al. [72], Zang et al. [88], who use the formulation by Yoshizawa [86], or neglected
as in Erlebacher et al. [17]15. In this work, a modified version of the already discussed procedure
of Ducros et al. [13], Lesieur et al. [40] is adopted, in which reduced macropressure ̟∗ and
macrotemperature ϑ̃∗ are defined accounting for the trace of the SGS Reynolds term only. In
fact, since the modified Leonard tensor is directly accessible from the resolved field, there is
no need to incorporate its spherical part into the macropressure and the filtered momentum
and total energy transport equation can be rewritten as (cf. Eq. (4.7))16:

∂ρui
∂t

+
∂

∂xj

[
ρuiũj + δij

(
̟∗ + 1

3Lkk
)]
=

∂

∂xj

(
2µÃ1k + τd

ij

)
, (4.104)

∂ρe

∂t
+

∂

∂xk

[
(ρe+̟∗)ũk

]
=

∂

∂xk

(
2µũjÃkj +

µcp
Pr

∂ϑ̃∗

∂xk
+ qk

)
, (4.105)

where

̟∗ = p+
1

3
ρu′ku

′
k = p+

1

3
Rkk, (4.106)

and
τd
ij = 2ρνtÃij − ρ

(˜̃uiũj − ˜̃ui˜̃uj
)d
. (4.107)

In a similar fashion, the reduced macrotemperature may be defined from the filtered total
energy using Eq. (4.11) and Eq. (4.102):

ρe = ρcvT̃ + 1
2ρukũk − 1

2τkk = ρcvϑ̃
∗ + 1

2ρukũk +
1
2Lkk, (4.108)

15It is interesting to note that a priori tests on moderately compressible isotropic homogeneous turbulence
by [88] revealed almost no change in the results when varying the model coefficient for the isotropic part of
the SGS true Reynolds term between 0 and 10 times its standard value. This result corroborate the choice
of Erlebacher et al. [17], who neglected the Yoshizawa term for turbulent Mach number up to 0.4.

16Consistently with the definition of reduced macrotemperature, it is assumed that:

µcp

Pr

∂T

∂xk
− µcp

Pr

∂eϑ∗

∂xk
≃ 0.

Moreover, the dynamic viscosity µ is computed from Eq. (2.14) using the reduced macrotemperature:

µ(eϑ∗) = µref

„

eϑ∗

Tref

«3/2
Tref + S

eϑ + S
. (4.103)
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where

ϑ̃∗ = T̃ +
1

2ρcv
ρu′ku

′
k = T̃ +

1

2ρcv
Rkk, (4.109)

and the filtered internal energy is now expressed as

ẽI = cvϑ̃
∗ =

ρe

ρ
− 1

2
ũkũk −

1

2

Lkk
ρ
. (4.110)

Provided that the true SGS Mach number is sufficiently small (cf. Section 4.2.1), namely

M∗2

sgs =
ρu′ku

′
k

γp
=
Rkk
γp

, (4.111)

|3γ − 5|
6

γM∗2

sgs ≪ 1, (4.112)

the reduced macropressure and macrotemperature are related by the usual equation of state,

̟∗ = ρRϑ̃∗. (4.113)

In the present case, where γ = 1.4, the condition Eq. (4.112) is ∼ 1.6 times less restrictive
on M ∗

sgs than the analogous one prescribed by Erlebacher et al. [17].
Due to the present redefinition of macropressure, macrotemperature and filtered energy

(Eqs. (4.106), (4.108) and (4.109)), the sub-grid total energy flux qk is now rewritten as:

qk = (ρe+̟∗)ũk − (ρe+ p)uk = ρcv(ϑ̃
∗ũk − T̃ uk)

+̟∗ũk − puk
+ 1

2ρ(ũj ũj ũk − ũjujuk) + 1
2Ljj ũk, (4.114)

Using Eqs. (4.110), (2.8) and (4.113), the first two terms on the right-hand side in the
above equation may be written as

ρcv(ϑ̃
∗ũk − T̃ uk) +̟∗ũk − puk = γρ(ẽI ũk − ẽIuk), (4.115)

whilst the last two terms are rearranged using the definition of SGS turbulent diffusion Dk (cf.
Section 4.2.1):

1
2ρ(ũj ũj ũk − ũjujuk) + 1

2Ljj ũk = 1
2(ρuj ũj − ρujuj + Ljj)ũk + ρDk. (4.116)

Under the scale-similarity hypothesis, the term in parentheses in the above equation is
equal to the trace of the SGS true Reynolds term, hence the SGS energy flux becomes:

qk = γρ(ẽI ũk − ẽIuk) + 1
2Rjj ũk + ρDk. (4.117)

Assuming that ρDk and Rjj ũk are much smaller than the SGS heat flux and introducing
the internal energy decomposition eI = ẽI + e′I = cv(ϑ̃

∗ + T ′)17, the SGS energy is written,
resorting to the usual triple decompositions, as:

−qk = LeI
k + CeI

k +ReI
k︸ ︷︷ ︸

Leonard
decomposition

= LeI
k + CeI

k +ReI
k︸ ︷︷ ︸

modified
Leonard

decomposition

, (4.118)

17It is worthwhile underlining that, since both the temperature and the reduced macrotemperature are
present, i.e.,

eeIeuk −geIuk = cv

`

eϑ∗euk − fTuk

´

,
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with

LeI
k = γρ

(˜̃eI ũk − ẽI ũk
)
, LeI

k = γρ
(˜̃eI ũk − ˜̃eI ˜̃uk

)
, (4.119)

CeI
k = γρ

( ˜̃eIu′k + ẽ′I ũk
)
, CeI

k = γρ
( ˜̃eIu′k + ẽ′I ũk − ˜̃eI ũ′k − ẽ′I ˜̃uk

)
, (4.120)

ReI
k = γρe′Iu

′
k, ReI

k = γρ
(
ẽ′Iu

′
k − ẽ′I ũ′k

)
. (4.121)

Assuming the validity of the scale similarity hypothesis, namely neglecting CeI
k and the

second term in ReI
k , and using the eddy-viscosity hypothesis, Eq. (4.47), to model the SGS

true Reynolds term ReI
k , the similarity mixed model for the SGS energy becomes:

qk ≃ γ
ρνt

Pr t

∂ẽI
∂xk

− γρ
(˜̃eI ũk − ˜̃eI ˜̃uk

)
. (4.122)

In the perspective of the similarity mixed model, the sub-grid flux for the passive scalar Z
may be easily obtained by introducing the decomposition Z = Z̃ + Z ′ and following a similar
reasoning:

qZk ≃
ρνt

Sct

∂Z̃

∂xk
− ρ

( ˜̃
Zũk − ˜̃

Z˜̃uk
)
. (4.123)

The WALE Similarity Model (WSM) is finally obtained by computing the eddy-viscosity νt

in Eqs.(4.107), (4.122) and (4.123) resorting to the WALE closure, Eq(4.56), with fixed model
constants Cw = 0.5, Pr t and Sct. For the sake of clarity, the filtered flux vectors, namely
Eqs. (4.13) and (4.26), are summarized below for the WSM formulation:

F
k
=




ρuk

ρu1ũk + δ1k
(
̟∗ + 1

3Ljj
)

ρu2ũk + δ2k
(
̟∗ + 1

3Ljj
)

ρu3ũk + δ3k
(
̟∗ + 1

3Ljj
)

(ρe+̟∗)ũk

ρZũk




, D
k
=




0

−2µÃ1k − τd
1k

−2µÃ2k − τd
2k

−2µÃ3k − τd
3k

−2µũjÃkj − µcp
Pr

∂eϑ∗

∂xk
− qk

− µ
Sc

∂ eZ
∂xk

− qZk




, (4.124)

the decomposition in terms of resolved and unresolved internal energy may, in principle, pose an issue. In
fact, by analogy with the procedure used to obtain the Leonard decomposition for the SGS stress tensor, the
temperature and the reduced macrotemperature must be decomposed into their resolved and unresolved parts:

T = eT + T ′, ϑ∗ = eϑ∗ + ϑ′.

It should be noted, anyway, that the fully resolved reduced macrotemperature ϑ∗ is physically meaningless,
being the macrotemperature strictly connected with the introduction of sub-grid terms in the filtered set of
equations. Nonetheless, we may observe that, if a resolved macrotemperature ϑ∗ could be defined, this would
be the temperature field obtained from a very well resolved LES, i.e., the Direct Numerical Simulation (DNS)

limit of eϑ∗. Observing that, in the DNS limit, the trace of the SGS true Reynolds term Rkk vanishes, we
conclude, from Eq. (4.109), that ϑ∗ ≡ T . It is therefore assumed that, if the temperature is decomposed as

T = eϑ∗+T ′ (i.e., the unresolved temperature T ′ is defined as the difference between the temperature T and the

reduced macrotemperature eϑ∗), then the same decomposition will hold for the fully resolved macrotemperature,

namely ϑ∗ = eϑ∗ + T ′, and we can write:

eϑ∗ = ẽϑ∗ + T ′,

with T ′ = T − eϑ∗ ≡ ϑ∗ − eϑ∗. The above decomposition allows the definition of a consistent measure of the
sub-grid internal energy as e′I = cvT ′
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with

ρe = ρcvϑ̃
∗ +

1

2
ρukũk +

1

2
Lkk =

̟∗

γ − 1
+
1

2
ρukũk +

1

2
Lkk, (4.125)

ẽI = ẽ− 1

2
ũkũk −

1

2

Lkk
ρ
. (4.126)

With regard to wall-scaling, since the modified Leonard tensor is, by construction, charac-
terized by correct wall scaling on each of its components,

〈Ld
11〉 ∼ x2

2, 〈Ld
22〉 ∼ x2

2, 〈Ld
33〉 ∼ x2

2,

〈Ld
12〉 ∼ x3

2, 〈Ld
13〉 ∼ x2

2, 〈Ld
23〉 ∼ x3

2,

using the WALE closure scaling, Eqs. (4.58)–(4.59), the SGS stress wall-scaling results correctly
predicted by the WSM:

〈τwsm
11 〉 ∼ x2

2, 〈τwsm
22 〉 ∼ x2

2, 〈τwsm
33 〉 ∼ x2

2, (4.127)

〈τwsm
12 〉 ∼ x3

2, 〈τwsm
13 〉 ∼ x2

2, 〈τwsm
23 〉 ∼ x3

2, (4.128)

the above relations referring to the deviator of the modeled sub-grid stress when the wall is
orthogonal to x2.

4.4.2 The Explicit Filtering Procedure

The SGS contributions are modeled by means of an eddy-viscosity term, which is computed
from resolved quantities, and the modified Leonard term, which involves explicit filtering of
resolved quantities. Within the framework of mixed similarity modeling [3, 4], scale invari-
ance is assumed to postulate that the structure of the velocity field at scales below a certain
length-scale ∆ is similar to that at scales above ∆. As already mentioned, this idea was then
generalized [42] by subdividing the inertial subrange in a series of contiguous narrow bands of
length-scales, thus introducing filtering at two different levels, ∆ and ∆̂ ≥ ∆. Accordingly, the
WSM closures are, more generally, rewritten as:

τd
ij = 2ρνtÃij − ρ

(̂̃uiũj − ̂̃uî̃uj
)d
, (4.129)

qk = γ
ρνt

Pr t

∂ẽI
∂xk

− γρ
(̂̃eI ũk − ̂̃eI ̂̃uk

)
, (4.130)

qZk =
ρνt

Sct

∂Z̃

∂xk
− ρ

( ̂̃
Zũk − ̂̃

Ẑ̃uk
)
, (4.131)

the hat operator now representing filtering at cutoff length ∆̂ = α∆, with α ≥ 1. The spherical
part of the modified Leonard term in Eqs.(4.124), (4.125) and (4.126) is computed accordingly
as

Lkk = ρ
(̂̃ukũk − ̂̃uk̂̃uk

)
. (4.132)

It is worthwhile emphasizing that, from a priori analysis of filtered experimental data,
Liu et al. [42] obtained very low correlation when using a spectral cutoff filter. Hence they
concluded that, in order to preserve similarity between scales, the filter used should have
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enough localization in physical space. In particular, similar level of correlation at tensor level
was achieved with the top-hat or Gaussian filters. Different choices of α have been proposed:
filtering at the grid level (α = 1) is a possible solution [3, 4, 17, 64, 89], whereas Liu et al. [42]
and Akhavan et al. [1] use α = 2 and α = 4/3 respectively.

Akhavan et al., in particular, in their Dynamic Two-component SGS Model (DTM), distin-
guish two contributions: (a) the non-local interactions which are responsible for a low-intensity
forward energy transfer and (b) the local interactions near the cutoff length scale which are
responsible for intense and coherent regions of forward and reverse energy transfer. The former
contribution is modeled by the eddy-viscosity assumption, while the latter is represented by an
approximation of the modified Leonard term, measuring the interactions between the resolved
scales and a narrow band of sub-grid wavenumbers. This idea is then applied using pseudo-
spectral methods and results from incompressible LES of turbulent planar jet and turbulent
channel flow are validated against DNS data obtaining quite good agreement.

The same assumption, generalized to the compressible case, is adopted in this study, where
the Leonard terms are computed filtering the resolved filed using a discrete top-hat filter of
characteristic width 4/3∆, the details of which are presented in the next section.

The 4/3 Discrete Filter

The filtering operation at length-scale 4/3∆ has been obtained as a generalization of the
discrete filter used by Zang et al. [89]. With reference to Figure 4.1, in the case of uniform
grid, the filtered quantity ϕ̂ is obtained with the trapezoidal rule as:

ϕ̂i,j,k =
1
8

(
ϕi+ 1

3
,j+ 1

3
,k+ 1

3
+ ϕi− 1

3
,j+ 1

3
,k+ 1

3

+ϕi+ 1
3
,j− 1

3
,k+ 1

3
+ ϕi− 1

3
,j− 1

3
,k+ 1

3

+ϕi+ 1
3
,j+ 1

3
,k− 1

3
+ ϕi− 1

3
,j+ 1

3
,k− 1

3

+ϕi+ 1
3
,j− 1

3
,k− 1

3
+ ϕi− 1

3
,j− 1

3
,k− 1

3

)
, (4.133)

where each of the values in parentheses is obtained by multilinear interpolation of the sur-
rounding nodes. The explicit formulation for interpolated quantities—indicated in Figure 4.1
with solid circles—can be expressed as

ϕi± 1
3
,j± 1

3
,k± 1

3
= 1

27ϕi±1,j±1,k±1 +
8
27ϕi,j,k

+ 2
27

(
ϕi±1,j±1,k + ϕi±1,j,k±1 + ϕi,j±1,k±1

)

+ 4
27

(
ϕi±1,j,k + ϕi,j±1,k + ϕi,j,k±1

)
, (4.134)

where the signs in the triplets of indices of the terms on the right-hand side must be chosen in
accordance with the signs in the triplet of indices of the relevant interpolated quantity on the
left-hand side.

The above formulation may be readily generalized to the case of non-uniform grids. An
isotropic filter operator can be built, in this particular case, by computing a different set of the
interpolation coefficients for each grid point, thus ensuring the correct filtering cutoff length
along the three coordinate directions. The local value of the grid length-scale ∆, in particular,
may be conveniently computed resorting to the anisotropic grid correction factor proposed
by Scotti et al. [69]. It is worth stressing that maintaining moderate grid anisotropy [63]
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i+1,ji,ji–1,j

i+1,j+1i,j+1i–1,j+1

i+1,j–1i,j–1i–1,j–1

Filtering Volume Interpolated Values

Figure 4.1: Explicit filtering volume in two dimensions.

and paying particular attention to pencil-like computational cells [67, 68] is anyway advisable.
If ∆̂ = 4/3∆ is the filter cutoff length-scale, the non-uniform grids version of Eqs. (4.133)
and (4.134) may be rewritten as

ϕ̂i,j,k =
1
8

[
ϕ(x+, y+, z+) + ϕ(x−, y+, z+)

+ϕ(x+, y−, z+) + ϕ(x−, y−, z+)

+ϕ(x+, y+, z−) + ϕ(x−, y+, z−)

+ϕ(x+, y−, z−) + ϕ(x−, y−, z−)
]
, (4.135)

with

ϕ(x±, y±, z±) = a0 ϕi±1,j±1,k±1 + b0 ϕi,j,k

+ c1 ϕi±1,j±1,k + c2 ϕi±1,j,k±1 + c3 ϕi,j±1,k±1

+ d1 ϕi±1,j,k + d2 ϕi,j±1,k + d3 ϕi,j,k±1, (4.136)

and x± = xi ± ∆̂/4, y± = yj ± ∆̂/4 and z± = zk ± ∆̂/4.
Again the signs in the triplets of indices on the right-hand side must be chosen according

to the location of the interpolated quantity with respect to the filtering location; the same
signs shall be used when computing all the following relevant quantities. The multilinear
interpolation coefficients in Eq. (4.136) are defined by the following relations:

a0 = ξ±η±ζ±, b0 = [1− ξ±][1− η±][1− ζ±],

c1 = ξ±η±[1− ζ±], d1 = ξ±[1− η±][1− ζ±],
c2 = ξ±[1− η±]ζ±, d2 = [1− ξ±]η±[1− ζ±],
c3 = [1− ξ±]η±ζ±, d3 = [1− ξ±][1− η±]ζ±.
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Lx

Ly

X1

D

Figure 4.2: Schematic of the flow configuration and position of the coordinate system.

ξ±, η± and ζ± being computed as the ratio between ∆̂/4 and the separation along the three
coordinate axes between the filtering location and the neighbor nodes:

ξ± =
∆̂

4 |xi±1 − xi|
, η± =

∆̂

4 |yj±1 − yj |
, ζ± =

∆̂

4 |zk±1 − zk|
.

As it can be easily verified, Eq. (4.133)—or the analogous non-uniform grid version from
Eq. (4.135)—reduces, globally, to a linear combination of the 27 points involved in the multi-
linear interpolation procedure:

ϕ̂i,j,k =
∑

ε

αi+ε,j+ε,k+εϕi+ε,j+ε,k+ε, (4.137)

the factors α being computed from the multilinear interpolation coefficients and the summation
being performed over all the possible combinations of indices obtained for ε = −1, 0, 1.

The presence of wall boundary conditions poses an additional problem within the near-
wall region, when the filter size becomes greater than the available distance to the wall. In
this case, the filtering volume is cut by the wall and a strictly isotropic filter is difficult to
define. In the present implementation, the scheme is switched to bi-dimensional filtering over
the plane parallel to the solid boundary whenever the filter cutoff length becomes greater than
the distance from the wall.

4.5 Impinging Round-Jet Simulation

The flow configuration under study consists of an unconfined impinging round-jet as schema-
tized in Figure 4.2. The jet axis is aligned along x1 and the coordinate system origin is
located at the impingement wall. The jet-nozzle to wall distance, Lx, is equal to twice the
jet diameter D. Two values of jet Reynolds number have been studied on three test-cases:
(C1) ReD = 23000 on a 2.9M nodes coarse grid, (C2) ReD = 23000 on a 5.5M nodes refined
grid and (C3) ReD = 70000 on a 3.5M nodes coarse grid, ReD being defined with the bulk
velocity Ub,

ReD =
ρUbD

µ
. (4.138)
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This configuration has been chosen in order to directly compare numerical results against
the experimental database provided by Cooper et al. [8], for both turbulence regimes, and
by Geers [22], Geers et al. [23] for the lower Reynolds number test-case. The computational
domain is a cartesian grid of dimensions 2D × 7D × 7D for test-case C1, 2D × 6D × 6D for
test-case C2 and 2D × 5D × 5D for test-case C3.

All the simulations which will be presented, have been performed using the parameters
summarized in Table 3.1 at page 59. In particular, for the WALE and the WSM models, Pr t

and Sct have been set at 0.5 [17, 72].

4.5.1 Boundary Conditions

Details about the numerical solver and the implementation of boundary conditions may be
found in Sections 3.1 and 3.2. The bottom boundary is an adiabatic no-slip wall, the lateral
sides are subsonic non-reflecting outflows while the top side is a subsonic non-reflecting inflow.
The following edge/corner boundary conditions have been used:

• Inflow/Outflow edge conditions on the 4 top edges;

• Wall/Outflow edge conditions on the 4 bottom edges;

• Outflow/Outflow edge conditions on the 4 lateral edges;

• Inflow/Outflow/Outflow corner conditions on the 4 top corners;

• Wall/Outflow/Outflow corner conditions on the 4 bottom corners.

In order to ensure acceptable accuracy within the wall-layer, the computational grid is
stretched toward the wall. This stretching is included in the computation of the filter cutoff
length ∆, used to obtain the eddy-viscosity for the WALE model (cf. Eq. (4.56)) and in the
determination of the cutoff length in the explicit filter operator ∆̂ used in the WALE-Similarity
Model, by means of a corrective function for non-uniform grids [69] (cf. Eq. (4.53)).

The lateral open boundaries, in particular, are characterized by the pressure relaxation
coefficient σ = 0.28 and transverse relaxation coefficient βt = 0.18; no target transverse terms
have been prescribed, therefore Tmk = 0 (cf. Eq. (3.87)). On this regard, it should be noted
that the three test-cases have been designed in order to have the same Mach number, which is
equal to about 0.4 based on the bulk velocity.

In the inflow section, the relaxation coefficient η5 is set at 3.28. Target velocity components
are prescribed using the Power Law profile for turbulent pipe flow, Eq. (3.230), the coefficient
n being set at 7.23, 7.42 and 8.3 for the test-cases C1, C2 and C3 respectively. These values
have been chosen in order to attain the same ratio of bulk and centerline inlet velocities as in
the experiments by Cooper et al. [8]:

Ub

Ucl
= 0.811 + 0.038

[
log (ReD)− 4

]
. (4.139)

To reproduce a turbulent inflow condition, a correlated random noise [35] is superimposed
to the average velocity profile with a sampling rate computed from the jet’s characteristic
time-scale (cf. Section 3.3). The amplitude of the injected noise varies along the jet diameter
from 0.028Ub at the axis, to a peak value of 0.075Ub within the jet’s shear layer.
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ReD 23000 70000

D 2.6mm 8mm

Ub 141m/s 139.4m/s

M 0.41 0.40

30η/D 3.2× 10−2 1.4× 10−2

∆1min/D 3.5× 10−3 9.3× 10−4 1.7× 10−3

∆1max/D 4.6× 10−2 3.5× 10−2 4.3× 10−2

∆2,3/D 4.0× 10−2 3.1× 10−2 2.8× 10−2

ℓ0/6D 8.3× 10−2 8.3× 10−2

∆+
1 4.7–6.3 1.2–1.7 5.7–8.4

∆+
r,φ 64.2–87.4 49.7–67.7 113.3–165.7

Nodes 90× 1782 146× 1942 110× 1782

CPU time 1360 h 18650 h 2510 h

Processors 32 512 128

Table 4.2: Impinging round-jet simulations: computational grid properties. Subscript 1 in-
dicates wall-normal direction (minimum spacing is attained at the wall, whereas maximum
spacing refers to the inlet) and subscript 2 and 3 indicate lateral directions. Subscripts r and
φ refer to radial and azimuthal directions respectively.

4.5.2 Grid Spacing

The computational grids and the relevant spacing have been chosen fulfilling three main re-
quirements:
1. maintain the low-pass filter cutoff length within the inertial subrange in order to perform

correctly resolved LES;
2. ensure proper resolution of the wall-layer while keeping grid stretching to a minimum;
3. retain a reasonable computational cost.

With regards to the first point, the assumption has been made that the inertial subrange in-
cludes length-scales from approximately ℓ0/6 down to length-scales of the order of 30η [21],
ℓ0 ∼ D/2 being an estimation of the integral length-scale and η ∼ ℓ0Re−3/4 being the Kol-
mogorov length-scale, with Re = u0ℓ0/ν and u

2
0 ∼ 0.1U2

b (10% turbulence is assumed).
Regarding to the second point, it should be noted that the numerical scheme which has

been used, is designed for uniform grids. This choice, motivated by the necessity of conserving
stability properties of the scheme, leads to a variable local discretization error [15]. In order
to limit accuracy reductions and commutation errors in the refined regions, grid stretching has
been done maintaining the maximum stretching ratio between contiguous cells below 1.04.

Indicating, as usual, with the superscript + distances measured in wall units18, in the wall-
jet region, namely for radial distance r/D ≥ 1.0, wall-normal grid spacing ∆+

1 ranges from

18If τw is the value of the shear stress measured at the wall and uτ =
√

τw is the relevant friction velocity,
wall units are obtained by normalizing with respect to the viscous length ℓτ = ν/uτ . In the present case,
in particular, τw has been approximated from the experimental average velocity profiles [8] by applying the
definition:

uτ =

s

ν
∂ur

∂x1

˛

˛

˛

˛

w

,
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∼ 4.7 to ∼ 6.3 for test-case C1, from ∼ 1.2 to ∼ 1.7 for test-case C2 and from ∼ 5.7 to ∼ 8.4
for the higher Reynolds number test-case C3, the maximum values being attained near the
stagnation region where the average shear stress is higher.

Due to the use of a cartesian grid, both radial and azimuthal spacings vary going around the
jet’s axis, from a minimum of ∆2,3 to a maximum of

√
2∆2,3, where ∆2,3 is the grid resolution

measured along the coordinate axes x2 or x3 (equal grid spacing is used along the lateral
directions). We will refer, for simplicity, to its average value ∼ 1.2∆2,3. Radial and azimuthal
spacings ∆+

r and ∆+
φ , for the lower Reynolds number case, are in the range 64.2–87.4 for

test-case C1 and 49.7–67.7 for the more resolved test-case C2; for the higher Reynolds number
test-case, radial and azimuthal spacings are in the range 113.3–165.7. Again, maximum values
are attained close to the stagnation region. A detailed summary of grid dimensions and mesh
spacing for the three test-cases is reported in Table 4.2.

Grid resolution for test-cases C1 and C3 is quite low, compared, for instance, to the recom-
mendations given by Zang [87], who suggests that the minimum spacing to capture near-wall
dynamics should be ∆+

str < 80 and ∆+
spn < 30 in the streamwise and spanwise directions respec-

tively, with a minimum of three points for ∆+
1 < 10 in the wall-normal direction. A very strong

influence of grid resolution in LES of detached boundary layers was reported by Temmerman
et al. [77], who found high sensitivity of the reattachment position to grid spacing—especially
in the streamwise direction—around the mean separation position. They concluded that the
use of the no-slip condition at the location where detachment occurs, in conjunction with in-
sufficient grid resolution in the streamwise direction, may lead to substantial errors, even if
sufficient wall-normal resolution is used.

Nevertheless, the relevant computational effort when increasing resolution at high Reynolds
number may grow significantly (cf. Table 4.2), therefore it is of practical interest to assess the
model behavior in cases where a significant percentage of the energy is in the sub-grid scales
and when the near-wall resolution is marginal. Moreover, the impinging jet features some
peculiarities which make it profoundly different from other wall-bounded flows. As opposed
to turbulent boundary layers, where length scales are usually determined by the distance from
the wall, the impinging jet is characterized by local turbulent length scales in the near-wall
region that are strongly affected by the scales of the jet’s turbulence. Hence, the criteria on
mesh resolution developed for turbulent boundary layers may not be used as guide line for an
impinging jet.

It should be mentioned, again, that for LES of channel flow at high Reynolds numbers,
Piomelli [55] used grid spacings ∆+

str = 172, ∆+
spn = 26, ∆+

1 ∈ [1.25 : 51] for Re = 23700

(based on the centerline velocity) and ∆+
str = 244, ∆+

spn = 40, ∆+
1 ∈ [1.5 : 77] for Re = 47100.

Despite the fairly coarse grids used, first- and second-order statistical moments were predicted
accurately. The author conjectured that the explanation for that was to be related to the model
ability to reproduce backscatter. Purely dissipative models necessitate the energy production
events to be resolved by the grid, hence, under-resolution of near-wall dynamics may lead to
underestimation of the related energy production. On the other hand, models which are able
to account for reverse energy transfer, like the WALE-Similarity Model presented in this work,
may effectively give a correction to the average sub-grid dissipation, which is reduced due to
sufficiently frequent local backscatter. This point will be further discussed in Section 4.5.7.

where ur denotes the velocity component in the radial direction, x1 is the direction normal to the wall and
subscript ‘w’ indicate that the relevant quantity is evaluated at the wall.
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Figure 4.3: Schematic representation of the geometrical relations between the streamwise and
radial components of velocity, us and ur and the relevant components along the coordinate
axes.

Moreover, for ReD = 23000, the impact of grid resolution in the wall-boundary layer will be
assessed comparing the results from the above mentioned two different computational grids C1
and C2.

4.5.3 The Measurement of Statistical Properties

Statistical results have been evaluated by time averaging an ensemble of 600 samples of the
resolved quantities for a total period of about 17D/Ub and 13D/Ub for test-cases C1 and
C3 respectively. Due to the reduction in time-step of the higher resolved simulation C2 at
ReD = 23000 and the relatively high computational cost, an ensemble of 900 samples for a
period of just ∼ 8D/Ub was collected. Global statistical convergence for the three test-cases
has been checked continuously calculating the L2-norm of the change in the statistical quantity
〈φ〉 of interest between two successive samplings, indicated with superscripts n and n− 1:

〈φ〉{n}L2 =

√∑

i,j,k

(
〈φ〉{n}i,j,k − 〈φ〉

{n−1}
i,j,k

)2
, (4.140)

where the summation is extended to the whole computational domain. In particular, statis-
tical sampling was stopped for L2-norm of first-order moments below 10−1 and L2-norm of
second-order moments below 10−2. Assuming the validity of the Taylor hypothesis, statis-
tical convergence has been further improved by averaging around the jet’s axis, for a total
statistical ensemble spanning from 50400 to 637200 depending on the radial location and the
computational grid used. Time/space averaging will be denoted by angled brackets hereafter.

According to the experimental setup used by Cooper et al. [8], velocity components and
relevant second-order moments are measured along the streamwise and wall-normal directions
with Hot-Wire Anemometry (indicated as HWA hereafter), whereas Geers [22], Geers et al.
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[23] measure radial and wall-normal components using Laser-Doppler Anemometry (LDA) and
Particle Image Velocimetry (PIV). Subscripts s, r and n will be used to indicate “streamwise”,
“radial” and “wall-normal” directions respectively. In order to avoid confusion with sub-grid
scale quantities, which have been indicated with the prime mark so far, the ′′ accent will be
used to refer to statistically fluctuating quantities19. If, on one hand, wall-normal statistics
are directly obtained from the u1 component of velocity, radial and streamwise velocities have
been computed as (cf. Figure 4.3):

ũr = ũ2 cos(φ) + ũ3 sin(φ), (4.141)

ũs =

√
ũ2

1 +
[
ũ2 cos(φ) + ũ3 sin(φ)

]2
, (4.142)

where φ is the azimuthal angle relevant to the plane where the projection take place. The
relevant second order moments are then obtained from the relations

〈u′′ru′′r 〉 = 〈ũrũr〉 − 〈ũr〉〈ũr〉, (4.143)

〈u′′su′′s〉 = 〈ũsũs〉 − 〈ũs〉〈ũs〉, (4.144)

〈u′′su′′n〉 = 〈ũsũ1〉 − 〈ũs〉〈ũ1〉. (4.145)

When needed (cf. Section 4.5.6), the projected average sub-grid stress tensor in cylindrical
coordinates, 〈τ c〉, is obtained by means of the following transformation:

〈τ c〉 = Φ〈τ 〉Φ−1, (4.146)

where Φ is the matrix of rotation around the jet’s axis,

Φ =



1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)


 ; (4.147)

the stress tensor components in the axial plane are then computed as

〈τ c
nn〉 = 〈τ11〉, (4.148)

〈τ c
rr〉 = 〈τ22〉 cos2(φ) + 〈τ33〉 sin2(φ) + 2〈τ23〉 sin(φ) cos(φ), (4.149)

〈τ c
rn〉 = 〈τ12〉 cos(φ) + 〈τ13〉 sin(φ). (4.150)

4.5.4 ReD = 23000 Test-Case (C1)

Results for the ReD = 23000 test-case are shown in Figures 4.4–4.6, error-bars relevant to
HWA measurement uncertainties [8] are displayed for experimental second order moments.
In order to better show the results in the near-wall region, streamwise average velocity and
streamwise velocity variance are also represented in Figure 4.5, on logarithmic scale, with
respect to the wall distance normalized with the viscous length (see note 18 at page 111). For
the same configuration, Figure 4.7 shows the comparison between the results obtained using
the WSM and the LDSM and the experimental measurements obtained by Geers [22], Geers

19Note that, right after the stagnation point, the average field becomes almost completely aligned parallel
to the wall, hence 〈us〉 ≃ 〈ur〉 and 〈u′′s u′′s 〉 ≃ 〈u′′r u′′r 〉. This is readily verified comparing the experimental data
from Cooper et al. and Geers et al..
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Figure 4.4: ReD = 23000 test-case C1. Streamwise average velocity (a), streamwise fluctuating
velocity (b), wall-normal fluctuating velocity (c) and turbulent shear stress (d): , WSM;

, WALE; , LDSM; ◦ , HWA measurements [8].
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Figure 4.5: ReD = 23000 test-case C1. Streamwise average velocity (a) and streamwise fluctu-
ating velocity (b), represented with logarithmic scale in wall units: , WSM; , WALE;

, LDSM; ◦ , HWA measurements [8].

et al. [23] using LDA technique. The WSM is compared to the standard WALE model and
the Lagrangian Dynamic Smagorinsky model. Test filtering for the latter model has been
performed using the same isotropic filter implementation described in Section 4.4.2, but with
cutoff length equal to 2∆.

With regards to the average velocity profiles (cf. Figures 4.4a and 4.5), all three models
perform well and no appreciable difference between them is visible. In any case, the correct
slope down to the viscous sub-layer indicates clearly that correct scaling of SGS stresses is
achieved as expected by the three models and no additional sub-grid viscosity is produced in
regions where this is not expected to be present.

On the other hand, the three models perform quite differently in terms of resolved second
order moments. With regards to the streamwise fluctuations, both the WALE and the LDSM
models predict fairly well measurements far from the wall, for x1/D ≥ 0.1, but produces
a significant overestimation in the near-wall region, especially between the buffer layer and
the logarithmic layer, for x+

1 ∈ (20 : 200), where the flow undergoes strong curvature (cf.
Figures 4.4b–4.5b). It seems reasonable to affirm that the dynamic computation of the model
constant in the LDSM and the relatively moderate SGS dissipation of the WALE model allow
for a correct reproduction of sub-grid interactions far from the wall. Nonetheless, close to the
wall, even the dynamic procedure is not able to adjust properly the sub-grid model viscosity.
These shortcomings are probably due to the fact the both the WALE and the LDSM do not
allow backscatter and require alignment of the SGS stress and the resolved deformation tensors,
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WSM; , WALE; , LDSM; ◦ , HWA measurements [8].

the former mechanism being anyway the main responsible, as it will be shown in Section 4.5.7.
The introduction of the modified Leonard term in the WSM has a strong impact on the

resolved streamwise velocity fluctuations, these last being just slightly underestimated far
from the wall in the wall-jet region. It is reasonable to expect, on this regard, a certain
improvement in the results if the isotropic SGS contribution is included before comparing with
the measurements, as it will be shown for the ReD = 70000 test-case.

With regards to wall-normal fluctuations, different behaviors are observed when comparing
with HWA (Figure 4.4c) and LDA (Figure 4.7c) measurements. The WALE and the LDSM
models predict significant overestimation of vertical fluctuations in the wall-jet region (r/D ≥
2.5). This fact, combined with the observed tendency to overestimate streamwise fluctuations
in the near-wall region, leads to the prediction of an excess of resolved turbulent kinetic energy
(Figure 4.6). Since significant backward energy cascade may be generally observed within the
buffer layer [28, 29], purely dissipative models are then expected to give poor results, such as
the WALE and the LDSM20. On the other hand, as already mentioned, the WSM intrinsically
allows backscatter and this could be one of the leading mechanism involved in the significant
reduction in vertical fluctuations compared to the other two models. The mentioned reduction
allows for a significant improvement of the results in terms of turbulent kinetic energy.

Moreover, it is interesting to note that the WALE model is able to give results analogous
to the more expensive LDSM. This fact is not surprising considering that both formulations
are eddy-viscosity models with relatively low SGS dissipation and correct wall-scaling.

If a particularly bad agreement in vertical fluctuations is observed when comparing with
HWA measures, results from the WSM are in fairly good agreement with the experimental data
extracted from LDA measurements (cf. Figure 4.7c). Good agreement is also observed on av-
erage profiles (Figure 4.7a,b) and radial fluctuations (Figure 4.7d). The discrepancies observed
between the experimental results by Cooper et al. and by Geers et al. in the measurements of
the vertical fluctuations, makes it difficult to draw conclusions on this regard.

20As in the original formulation by Meneveau et al., the dynamically computed model constant is clipped to
prevent it from assuming complex values, thus not allowing backscatter.
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Figure 4.7: ReD = 23000 test-case C1. Average wall-normal velocity (a), average radial
velocity (b), r.m.s. wall-normal velocity (c) and r.m.s. radial velocity (d): , WSM; ,
LDSM; , LDA measurements [22, 23]; ◦ , HWA measurements [8].

Turbulent shear stress (Figure 4.4d) results are quite satisfactory, the proposed WSM giving
the best agreement. The observed disagreement in statistical quantities relevant the vertical
component of velocity does not allow an unbiassed assessment of the curves, especially at
r/D ≤ 1.0. Alternative measurements of the shear stress are not available anyway.

4.5.5 ReD = 23000 Test-Case (C2)

In order to better quantify LES resolution, a normalized SGS energy transfer coefficient is
computed as:

νratio =
τd
ijÃij

2µÃijÃij
, (4.151)

which measures the relative intensity between sub-grid and viscous energy transfers; note that
νratio reduces to the ratio νt/ν for an eddy-viscosity model and becomes negative in regions
characterized by backward SGS energy transfer. The average value of νratio has to be positive
anyway, i.e., even if, locally, reverse energy transfer may happen, globally, turbulence is a
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grid); , ReD = 23000 test-case (refined grid); , ReD = 70000 test-case.

dissipative phenomenon and the relevant kinetic energy is expected to flow down the energy
cascade.

Experience shows that a typical threshold for a well resolved LES is νratio, in average,
less than about 10. Figure 4.8 shows the average value of νratio produced by the WSM over
horizontal planes. With regards to the ReD = 23000 test-case, the computation performed
on the coarse mesh is well resolved, the average νratio being always below 6, whereas the
computation carried out on the more refined grid has even less energy within the sub-grid
scales and νratio < 2 everywhere in the wall-jet region. The higher Reynolds number test-case,
on the other hand, appears slightly under-resolved, with νratio taking values up to ∼ 12. This
is consistent with the results which will be presented in the next section, where the resolved
turbulent kinetic energy results slightly under predicted for the ReD = 70000 test-case.

With regard to the 23000 Reynolds number jet simulations, the statistical moments com-
puted using the proposed WSM, extracted from the coarse 2.8M nodes mesh and the highly
refined 5.5M nodes mesh, are compared in Figures 4.9; again, wall units logarithmic represen-
tations are depicted in Figure 4.10 for streamwise average velocity and relevant fluctuations.
First order moments match almost perfectly, while some slight difference is visible on second
order moments. The only curve which shows significant improvement is the one related to
wall-normal fluctuations at r/D = 1.0 (cf. Figure 4.9c). Clearly the more resolved simulation
has less energy in the sub-grid scales and statistical fluctuations extracted from the resolved
flow field give a more accurate representation of the data obtained from the experiments.

No significant improvement of results is observed in the near-wall region where the better
resolution of the viscous sub-layer in the more refined grid would have suggested a more
marked improvement. Model behavior in the coarser grid simulation, for x+

1 ≤ 20, appears
quite remarkable (cf. Figure 4.10). This result confirm what has been previously said about the
positive impact that a model allowing correct energy backscatter may produce when dealing
with not well resolved wall-bounded flows like those presented in this work.

It is worthwhile mentioning that, in order to obtain equivalent results, the more refined
computational grid required about 14 times more CPU time than that required by the coarse
grid simulation (cf. Table 4.2); the increase in computational time was marginally due to the
increased number of grid points and mostly related to the reduction of the allowed time-step,
due to the use of explicit time integration and the application of the relevant CFL limitation
within the viscous sub-layer. Moreover, the reduced time-step resulted also in a significant
reduction of statistical convergence rate; sufficiently converged statistical data required about
56% of the total computational resources.
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Figure 4.9: ReD = 23000 test-case. Streamwise average velocity (a), streamwise fluctuating
velocity (b), wall-normal fluctuating velocity (c) and turbulent shear stress (d): , WSM on
refined grid (C2); , WSM on coarse grid (C1); ◦ , HWA measures [8]; , LDA measures [22,
23].
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Figure 4.10: ReD = 23000 test-case. Streamwise average velocity (a) and streamwise fluctuat-
ing velocity (b), represented with logarithmic scale in wall units: , WSM on refined grid
(C2); , WSM on coarse grid (C1); ◦ , HWA measures [8]; , LDA measures [22, 23].

In view of these results and the significant extra-cost that follows from increasing resolu-
tion, especially for relatively high Reynolds numbers as in the present study, and considering
the small improvements in the results which may be expected, the suitability of such a compu-
tational effort is questionable. We would rather envisage the possibility of developing improved
modeling for the spherical part of the SGS stress tensor, in order to better reproduce streamwise
and normal fluctuations for slightly under-resolved LES.

4.5.6 ReD = 70000 Test-Case (C3)

The results obtained with the WSM on the ReD = 70000 test-case are shown in Figures 4.11–
4.13. Also in this case, error-bars are shown to indicate measurement errors on second order
moments. Solid curves refer to statistical quantities extracted directly from the resolved flow
field (as in the previous test-case), while dashed lines have been obtained including the SGS
contribution. If the statistical fluctuation of the resolved velocity is expressed as ũ′′i and u

′e
i is

the exact fluctuation (measured from experiments or obtained from DNS), we may write [63]:

〈u′ei u′ej 〉 ≃ 〈ũ′′i ũ′′j 〉+ 〈τij〉, (4.152)

where τij is the SGS stress tensor used within the simulation or computed from the resolved
field with another SGS model. In the present case, we adopt the former choice and compute
the SGS contribution by time/space averaging the WALE-Similarity SGS stress tensor used to
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Figure 4.11: ReD = 70000 test-case C3. Streamwise average velocity (a), streamwise fluctu-
ating velocity (b), wall-normal fluctuating velocity (c) and turbulent shear stress (d): ,
resolved fluctuations; , resolved fluctuations plus SGS contributions; ◦ , HWA measure-
ments [8].
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Figure 4.12: ReD = 70000 test-case C3. Streamwise average velocity (a) and streamwise fluctu-
ating velocity (b), represented with logarithmic scale in wall units: , resolved fluctuations;

, resolved fluctuations plus SGS contributions; ◦ , HWA measurements [8].

perform the simulations (cf. Eq. (4.102)),

〈τij〉 = 〈2ρνtÃij − Lij〉, (4.153)

and extracting the relevant components in the axial plane from Eqs. (4.148)–(4.150). Note
that Lij accounts for both the deviatoric and spherical parts, whereas the spherical part of

the SGS true Reynolds term, i.e. ρu′ku
′
k, which is included into the reduced macropressure (cf.

Eq. (4.106)), is still not included.
For the average velocity profiles, depicted in Figures 4.11a and 4.12a, the matching between

experimental data and computed solution is satisfactory but not perfect, as it can be seen from
the logarithmic plots. Close to the wall, for x+

1 ≤ 40, profiles tend to become underestimated.
Similar trend is observed with streamwise fluctuations in the near-wall region (cf. Fig-

ure 4.12b). As for the lower Reynolds number test-case, streamwise fluctuations at the far
end of the buffer layer and in the following regions departing from the wall are well predicted
and the “saddle” shaped behavior observed where the flow undergoes strong curvature is well
captured. The second peak around x1/D ≃ 0.1 is slightly underestimated. The inclusion
of the SGS part produces better agreement but, still, results remain below the measurement
errors, especially far from the jet’s axis. No significant improvement is obtained close to the
wall. Since it is the spherical part of the SGS stress tensor which plays the key role in this
context, it is reasonable to expect that the inclusion of the modeled trace of the SGS true
Reynolds term, would further improve the results (as it has been pointed out, this is the only
missing contribution in the presented results). In the near-wall region, anyway, it seems more
reasonable to connect the observed error to insufficient grid resolution or excess of dissipation.
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Figure 4.13: ReD = 70000 test-case C3. Turbulent kinetic energy 1
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, resolved fluctuations; , resolved fluctuations plus SGS contributions; ◦ , HWA mea-

surements [8].

Results for wall-normal fluctuations (Figure 4.11c), again, shows the most marked deviation
from the experimental measurements. In sight of the discrepancy observed between HWA and
LDA measurements for the lower Reynolds number test-case, it would have been interesting to
compare computed vertical fluctuations against alternative measurements; unfortunately such
a database is not available for this Reynolds number. The only reasonable conclusion which
may be drawn is that vertical fluctuations profiles display similar trends as those observed at
ReD = 23000.

Turbulent shear stresses (cf. Figure 4.11d) are well predicted everywhere, except at r/D =
0.5 and 1.5. Results are globally consistent with those obtained for the previous test-cases;
the bad agreement on the r/D = 1.5 profile is quite strange though, considering that the two
profiles right ahead and behind it show results in much better agreement with experimentally
measured shear stresses. The inclusion of the SGS part, which in this case accounts for all
the modified Leonard decomposition’s terms, produces a relatively significant improvement in
results representing about 10% of the expected turbulent shear stress (note that error-bars in
the relevant plot represent 9% error [8]).

Despite the problems observed in streamwise fluctuations in the near-wall region, the overall
behavior of the WSM, as it may be inferred from the computed turbulent kinetic energy,
represented in Figure 4.13, is satisfactory. Although a certain tendency to “align” to the bottom
limit of the error range is observed, all the curves fall within the measurement uncertainties.
This behavior clearly reflects similar tendencies observed in the streamwise and wall-normal
directions and could, in principle, be improved by accounting for the full trace of the SGS
stress tensor.
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(a) x1/D = 0.001, (x+
1 ∼ 2) (b) x1/D = 0.004, (x+

1 ∼ 7) (c) x1/D = 0.006, (x+
1 ∼ 10)

(d) x1/D = 0.015, (x+
1 ∼ 26) (e) x1/D = 0.02, (x+

1 ∼ 34) (f) x1/D = 0.04, (x+
1 ∼ 68)

Figure 4.14: ReD = 23000 test-case C1. Localization of regions of negative νratio (Eq. (4.151))
over horizontal planes at different heights. Red circle in (a) indicate radial distances in steps
of 0.5D.

4.5.7 Energy Backscatter

Even though kinetic energy, in average, is always transfered from the mean motion to the
fluctuating one through the well known energy cascade process, the possibility of the existence
of isolated events of reverse energy transfer, or backscatter, from the turbulent motion to the
mean flow was already envisaged by Monin and Yaglom [50] and extensively demonstrated
using results from DNS, for turbulent boundary layer in particular, by many authors [27–
29, 32, 55–57]. In all these studies, strong anisotropy in a priori evaluated sub-grid stresses
was observed, the mean responsible for energy backscatter being identified in the wall SGS
shear stress. Therefore, structural SGS models capable of capturing energy backscatter, as
it is the case for similarity mixed models, appear to be particularly suited for wall bounded
turbulent flows.

In certain regions of the turbulent boundary layer, in fact, typically within the buffer
layer [27–29], the backward energy cascade can become largely dominant over the forward
energy cascade. As it has been already observed in Section 4.5.4, both the standard WALE
model and the LDSM show a marked tendency to overestimate velocity fluctuations in the
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(a) x1/D = 0.001, (x+
1 ∼ 2) (b) x1/D = 0.004, (x+

1 ∼ 7) (c) x1/D = 0.006, (x+
1 ∼ 10)

(d) x1/D = 0.015, (x+
1 ∼ 26) (e) x1/D = 0.02, (x+

1 ∼ 34) (f) x1/D = 0.04, (x+
1 ∼ 68)

Figure 4.15: ReD = 23000 test-case C2. Localization of regions of negative νratio (Eq. (4.151))
over horizontal planes at different heights. Red circle in (a) indicate radial distances in steps
of 0.5D.

near-wall region, whereas the WSM gives much better results. It is then natural to expect
that this behavior may be connected with intrinsic differences between these SGS closures,
e.g., the ability of reproducing backscatter, and that computations performed using the WSM
should feature some backward energy transfer close to the wall. It is worthwhile mentioning
that the similarity closure for the cross and Reynolds terms (cf. Eqs. (4.90) and (4.91)) play a
crucial role for backscattering within the buffer layer [32]. This fact was confirmed by Härtel
and Kleiser [27], who also emphasize the importance of maintaining Galilean invariance of the
model in order to prevent it from reproducing reverse energy transfer in regions where there
should not be any.

Energy backscatter is quantified resorting to the normalized SGS energy transfer coefficient
from Eq. (4.151). For the ReD = 23000 test-case on the coarse grid (C1), in Figure 4.14, black
regions indicate the occurrence of backscatter over horizontal planes, of dimension 5D × 5D,
located at different distances from the impingement wall. Approaching the wall, reverse energy
transfer regions become more and more numerous, the maximum backscatter activity being
observed at a distance x1/D ≃ 0.015 (x+

1 ≃ 26), and then tend to disappear closer to the
viscous sub-layer (note that data on the plane at x1/D = 0.001 were extracted from the first
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-20.9 2.04 25.0 48.0 70.9

νratio

(a) ReD = 23000 (C1) (b) ReD = 70000 (C3)

Figure 4.16: Maps of normalized SGS energy transfer coefficient νratio Eq. (4.151) over an
horizontal plane located at x1/D = 0.1.

computational cell at the wall). Intense backscatter appears for x1/D in the range 0.006–
0.02 (x+

1 ∼ 10–34), which corresponds pretty well with the region where the WALE and the
LDSM produce excessive streamwise fluctuations (cf. Figure 4.4b). The most intense activity is
visible in the stagnation region, approximately for r < 1.5, which is also in agreement with the
observed behavior of the three models. For the ReD = 70000 test-case (not shown), maximum
backscatter activity was registered slightly closer to the wall, at x1/D ≃ 0.01 (x+

1 ≃ 40), which
is consistent with the thinning of the boundary layer at higher Reynolds number.21

The same plots for the more resolved grid (C2) are depicted in Figure 4.15. The overall
behavior is similar to that observed with the less refined mesh. The less frequent events of
energy backscatter, registered in the refined grid at x1/D equal to 0.004 and 0.006, confirm that
reverse energy transfer plays a key role in under-resolved turbulent boundary layers, giving
a sort of automatic compensation mechanism that results anyway in the correct amount of
average sub-grid dissipation being produced [55].

The visual examination of Figure 4.14 also agrees with the observations of Piomelli et al.
[56], who found the fraction of points, in planes parallel to the wall, experiencing backscatter
to be between 30% to 50%, when a box filter in physical space was applied to DNS data
from channel simulations at different Reynolds numbers, including transitional turbulence and
compressible isotropic decay. No dependence on Mach number was observed, on this regard,
in the case of compressible turbulence.

21Due to the boundary layer evolution going radially outwards, sub-layer scaled heights of the planes depicted
in Figures 4.14 and 4.15 are estimated from the average value of the viscous length ℓτ within the region of interest.
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νratio

-10.16 -3.02 4.13 11.27 18.41

Figure 4.17: ReD = 23000 test-case C2: map of normalized SGS energy transfer coefficient
νratio over an horizontal plane located at x1/D = 0.1.

The occurrence of reverse energy transfer is little affected by the Reynolds number [28],
even though higher Reynolds number flows are typically slightly more susceptible to show
backscatter [56]. More frequent occurrence of energy backscatter is expected, anyway, when
the near-wall dynamics of the flow are under-resolved [55]. This is consistent with the above
mentioned dependancy on the Reynolds number, as, increasing Re, grid resolution requirements
become more stringent.

Instantaneous spatial distributions of νratio over a horizontal plane located at x1/D = 0.1
reveal that, when the Reynolds number is increased, sub-grid energy transfer becomes much
more intermittent, with more frequent occurrence of high peaks of forward energy transfer (cf.
Figures 4.16 and 4.17). Note that, although the two maps in Figures 4.16 are represented with
the same scale in order to allow direct comparison, the range of values for the lower Reynolds
number case was from −12.5 to 96.7, the maximum being attained in the single red spot which
can be observed in the upper left quadrant of Figure 4.16a; that is the only location where
values of νratio greater than ∼ 55 were measured. Also note that, due to the much lower level
of SGS energy in the refined ReD = 23000 test-case C2, the relevant map in Figure 4.17 is
represented with its own scale. Some regions of backscatter are observed in the stagnation
region (less visible in the low Reynolds number case due to the used scale) where the flow field
undergoes significant straining. Anyway, at this height forward energy transfer is dominant.

Figure 4.18 shows maps of νratio and the the normalized second invariant of the resolved
velocity gradient tensor,

Q∗ = − D2

2U2
b

∂ũi
∂xj

∂ũj
∂xi

, (4.154)

over a radial plane extending from the wall up to x1/D = 0.8. Consistently with the findings
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νratio

-9.93 4.52 19.0 33.4 47.9

νratio

-7.46 11.8 31.0 50.3 69.5

(a) ReD = 23000 (C1) (b) ReD = 70000 (C3)

Figure 4.18: Maps of normalized SGS energy transfer coefficient νratio (top) and second in-
variant of the resolved velocity gradient tensor Q∗ (bottom) over a vertical axial plane in the
range x1/D ∈ [0 : 0.8]. For the Q∗ maps, regions of strong vorticity are colored in red, whereas
regions of intense strain are colored in blue.

of Piomelli et al. [57], peaks in forward scatter are well correlated with regions of strong
vorticity (indicated in red in the Q∗ maps), for the most coming from the jet’s shear layer, and
backscatter events generally occur in the middle of intense forward scatter regions. Long and
thin pockets of fluid, where backward energy transfer is predominant, originate mostly near
the wall and propagate into the boundary layer and downstream in the wall-jet. As expected,
regions of negative νratio are relatively well correlated with regions of negative Q∗ (in blue),
meaning that the most important events of SGS energy backscatter are observed where the
resolved flow field undergoes intense straining, due to sweeping motions induced by coherent
vortical structures.

4.5.8 Flow Field and Scalar Mixing

In the this section we present a brief qualitative comparison of the two test-cases, with partic-
ular emphasis on the observed differences in turbulence development and scalar mixing.

With regards to scalar mixing, in particular, Figure 4.19 shows the relevant statistical
quantities extracted at ReD = 23000 from the refined simulation (C2). The profiles are plotted
with respect to wall-units normalized distance to the wall x+

1 . Even though the flow field
undergoes continuous transition within the region under study, i.e., the computed wall-jet
region is too short and to close to the stagnation region to allow fully developed turbulence
to be established, some sort of similarity between profiles at various radial distances is visible.
Right after r/D = 1.5, all the curves are fairly well scalable between each other and the
maximum values are located at the same wall distance.

Scalar variance (see Figure 4.19b) peaks at x+
1 ≃ 300, corresponding, approximately, to

the maximum in turbulent kinetic energy, and a nearly logarithmic behavior may be seen in
the range x+

1 > 30, x+
1 < 100. Within the region of strong flow curvature (r/D ≤ 1.5), a

peak in streamwise turbulent scalar transport is observed between x+
1 ≃ 10 and x+

1 ≃ 20
(cf. Figure 4.19c). This correspond exactly with the analogous peak observed in streamwise
velocity fluctuations and is probably mostly related to the interactions between coherent struc-
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Figure 4.19: ReD = 23000 test-case C2. Average scalar (a), scalar variance (b), streamwise
scalar flux (c) normal scalar flux (d). The distance to the wall is indicated in wall-units (viscous
length obtained from experimental average velocity profiles [8]).
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(a) ReD = 23000 (C1)

(b) ReD = 70000 (C3)

Figure 4.20: Tridimensional visualization of the flow: iso-surfaces of passive scalar Z (center),
iso-contours of Q∗ = 0.5 (left) and passive scalar map (right) over axial planes.
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(a) ReD = 23000 (C1) (b) ReD = 70000 (C3)

(c) x1/D = 0.1 (d) x1/D = 0.1

(e) x1/D = 0.05 (f) x1/D = 0.05

Figure 4.21: Maps of passive scalar Z ∈ [0 : 1] over axial planes (a,b) and horizontal planes at
x1/D = 0.1 (c,d) and x1/D = 0.05 (e,f). ReD = 23000 (a,c,d) and ReD = 70000 (b,d,e).
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tures coming from the jet’s shear layer and secondary structures originating at the wall. A
second more intense peak is attained at x+

1 ≃ 200, corresponding to the region of maximum
turbulent kinetic energy. No significant wall-normal turbulent scalar transport is observed, in
Figure 4.19d, until x+

1 ≃ 30, corresponding to approximately x1/D = 0.017, which is consis-
tent with the initial flat zone visible at the beginning of the wall-normal velocity fluctuations’
profiles (cf. Figure 4.9). The maximum in vertical turbulent transport is located at x+

1 ≃ 130
and corresponds fairly well with the maximum value of scalar variance 〈Z ′′Z ′′〉.

A tridimensional representation of the flow field is presented in Figure 4.20 for the two test-
cases. Instantaneous iso-surfaces of passive scalar Z are shown, together with its distribution
over an axial plane; the development of coherent vortical structures is also represented by means
of iso-contours of Q∗. Passive scalar distribution over axial planes and horizontal planes at
x1/D = 0.1 and x1/D = 0.05 for the two Reynolds numbers is also shown in Figure 4.21.

As expected, the higher Reynolds number test-case presents an earlier development of tur-
bulence within the jet’s shear layer, which is characterized by finer structures and increased
intermittency, which is particularly evident from the distributions of Z parallel to the im-
pingement wall. Also, increased mixing in the near-wall region is promoted at higher Reynolds
number, as it may be inferred from the presence of numerous and extended white pockets of
fluid with Z ∼ 0, just around the stagnation region (cf. Figure 4.21f).

132



CHAPTER 5
Direct Numerical Simulation (DNS)

To make an accurate numerical simulation (i.e., a full time-dependent three-dimensional solution)
of a turbulent flow, all physically relevant scales must be resolved. While more and more progress
is being made with such simulations, computers of the early 1990’s have insufficient memory and
speed to solve any turbulent flow problem of practical interest.

D.C. Wilcox, 1993
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Le 5e Chapitre de cette thèse est dédié à la Simulation Numérique Directe (ou DNS)
des écoulements turbulents. Dans ce contexte, le spectre d’énergie est résolu complètement,
c’est-à-dire que le maillage de calcul, ainsi que le schéma numérique adopté, sont conçus pour
représenter la gamme entière des échelles caractéristiques du phénomène étudié.

La très grande taille du spectre d’énergie des écoulements d’intérêt pratique nécessite, en
général, un énorme effort du point de vue de l’utilisation de ressources de calcul. La DNS reste
donc souvent confinée à l’analyse des configurations plutôt simplifiées.

Néanmoins, la simulation directe représente un instrument d’investigation capable de four-
nir un niveau de détail que même les moyens d’analyse expérimentale les plus sophistiqués ne
peuvent donner.

Dans ce chapitre, la DNS est adoptée dans le but d’analyser les détails topologiques de
la surface d’une flamme prémélangée de type Bunsen et d’évaluer l’erreur commise lorsque
les donnes bidimensionnelles obtenues par mesure expérimentale sont comparées aux résultats
tridimensionnels d’une simulation numérique. La formulation mathématique de la chimie est
d’abord présentée. Par la suite, les problématiques liées à l’introduction des termes sources
de la chimie, dans le contexte de la méthodologie 3D-NSCBC développée dans la Section 3.2,
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sont détaillées et la généralisation des conditions aux limites d’entrée/sortie subsoniques est
présentée.

Ensuite, les paramètres pour la définition de la résolution minimale nécessaire à la simu-
lation directe d’une telle flamme sont analysés. Il sera montré, notamment, que la résolution
de l’épaisseur de la zone de réaction, pour une flamme de longueur fixée, peut représenter une
contrainte bien plus forte que la résolution du spectre d’énergie turbulente.

En dernier lieu, trois simulations directes d’une flamme Bunsen turbulente à différents
nombres de Reynolds sont détaillées. Les résultats de deux d’entre elles ont été utilisés pendant
le CTR Summer Program 2008 de l’Université de Stanford, dont les Proceedings sont joints
dans la Deuxième Partie de la thèse.

5.1 Accounting for the Whole Spectrum

As already mentioned at the beginning of the previous Chapter, when the numerical scheme and
grid spacing are able to resolve the whole spectrum of time- and length-scales of the physical
phenomenon under study, the Navier-Sokes equations can be directly integrated. This means
that, on one hand, the number of grid points and of time-steps per second is sufficiently large
to represent all the degrees of freedom of the problem and, on the other hand, the discrete
numerical scheme used to perform time- and space-integration is accurate enough to prevent
numerical errors from polluting the solution. When these two requirements are met, we talk
about Direct Numerical Simulation (DNS) of turbulence.

Remembering that the number of degrees of freedom is of the order of ∼ Re3 (Re9/4 in
the tridimensional space and Re3/4 in time), it is clear that DNS of configurations of practical
interest, from the engineering point of view, may be just unfeasible, even with the enormous
computational power which is available nowadays. It is worthwhile underlining that the above
scaling refers to homogeneous isotropic turbulence. Other physical phenomena, characterized
by smaller scales, may be generally involved making the situation even worse. Nonetheless,
when simple configurations are considered, DNS may represent a quite powerful tool in order
to obtain a number of informations and a richness of detail that laboratory experimental setups
cannot generally provide.

Hence, Direct Numerical Simulation represents an alternative “experimental” procedure,
as well as a powerful diagnostic tool to assess, a priori, the performances of Sub-Grid Scale
models for Large-Eddy Simulation1.

In summary, given the energy spectrum of the physical problem to be solved, RANS does
not resolve it all, LES resolves part of it and DNS resolves it all, the transition between one
approach to the other requiring more and more computational effort. In partial compensation
of this, modeling complexity is reduced: since DNS resolves the entire spectrum, there does not
need to be any model, therefore the Navier-Stokes equations are integrated directly without
any additional unclosed term.

1As opposed to a posteriori evaluation of model performances by comparing the relevant statistical results
with experimental or DNS data from an identical flow configuration, a priori evaluation is performed when the
comparison is made between exact and modeled quantities extracted from the same experimental/DNS data.
The large amount of details that can be extracted from DNS, makes it a unique tool for a priori evaluation of
LES models. Since DNS data represent the full spectrum, both resolved and unresolved quantities are available.
Hence, filtered DNS data can be used to compute exact SGS stresses, as well as modeled ones, thus allowing
direct comparison.
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Although in principle, the transition between LES and DNS could be regarded as a “con-
tinuous” process, in which, increasing resolution, the SGS model contribution progressively
disappears, thus attaining DNS conditions, there turns out to be a discontinuity. In fact,
SGS models are often designed under the assumption that the cutoff wave-number lies in
the inertial subrange, therefore, when the resolution is such that the spectrum is cut within
high-frequencies of the dissipation range, some corrections to the model should be anyway
introduced, as proposed by Meneveau and Lund [47] for the dynamic model (cf. Section 4.3.3
at page 95). The same holds true for the transition between RANS and LES. If, on one hand,
LES models are not designed for the spectrum being truncated within the low-frequencies of
the production range, on the other hand, RANS models are designed to represent the effect
of the entire spectrum in strictly statistically steady turbulent flows. Hence, “coarse LES” or
“unsteady RANS” are meaningless, unless the models are re-adapted for the particular case.

In the following sections, Direct Numerical Simulation of the turbulent Bunsen flame a three
different Reynolds numbers is presented. The relevant DNS database were used in occasion of
the Summer Program 2008 at the Center for Turbulence Research (CTR), Stanford University.
The article [44] that followed is included in the second Part of this thesis.

5.2 The Description of Combustion

A simplified mathematical representation of premixed combustion is sufficient for the purposes
of the present study, which is focused on flame surface’s topology and reaction rate’s statistical
description. It is then assumed that the mixture is very lean (i.e., combustion takes place in
excess of air) and that combustion weakly modifies the oxidizer mass fraction. Under these
hypotheses, the burning rate of the fuel mass fraction YF may be described by means of an
Arrhenius relation of the form:

ω̇F = −ρK YF exp

(
−EAc

RT

)
, (5.1)

where K is the pre-exponential factor, EAc = RTAc is the activation energy (TAc is the relevant
activation temperature) and T the temperature. Moreover, the combustion process may be
described introducing an adimensional scalar c ∈ [0 : 1], representing the progress of reaction,
which is equal to 0 where no reaction has yet taken place and 1 where combustion has been
completed:

c =
T − T0

Tb − T0
, (5.2)

T0 and Tb being the temperature of the fresh (c = 0) and burnt gases (c = 1) respectively. The
activation temperature, in particular, may be obtained from the Zeldovitch number, namely

β = α
TAc

Tb
, (5.3)

where α = (Tb − T0)/Tb is the heat release parameter, using the following relation:

TAc = Tb
β

α
=

β T0

α(1− α) . (5.4)

If Pr is the Prandtl number and Sc is the Schmidt number related to the diffusion process of
the fuel mass fraction YF , when the Lewis number Le = Pr/Sc [66] is equal to one, equivalence
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between scalar and temperature diffusion is achieved. Therefore, assuming unity Lewis number,
the progress of reaction, Eq. (5.2), may be also computed as

c = 1− YF
YF,0

, (Le = 1), (5.5)

with YF,0 the fuel mass fraction in the fuel jet. The burning rate Eq. (5.1) then becomes:

ω̇F = −ρK YF,0(1− c) exp
(
−TAc

T

)
. (5.6)

Furthermore, since from Eq. (5.5) it is readily verified that

∂c

∂t
= − 1

YF,0

∂YF
∂t

, (5.7)

and since, by definition, ω̇F = ∂YF /∂t, a source term for the progress of reaction c may be
defined as:

ω̇c = ρK(1− c) exp
(
−TAc

T

)
. (5.8)

Finally, the amount of heat release per unit mass of fuel QF is related to the reference
temperatures T0 and Tb through the relation

QF = cp (Tb − T0) = cpT0

(
α

1− α

)
, (5.9)

leading to the following relevant source term for the energy equation:

ω̇e = cpT0

(
α

1− α

)
ω̇c. (5.10)

In the perspective of the above description of combustion, therefore, the compressible
Navier-Stokes equations set which describes the problem under study is obtained from Eq. (2.15)
by introducing the source term vector s and by replacing the passive scalar Z with the progress
variable c:

∂U

∂t
+
∂F k

∂xk
+
∂Dk

∂xk
= s, (5.11)

with F k and Dk givex by Eq. (2.16) and

s =
(
0 0 0 0 ω̇e ω̇c

)T
. (5.12)

5.2.1 The Reaction Rate’s Boundary Treatment

In order to better control the behavior of relaxed boundary quantities under the presence of
heat release by chemical reactions, the source terms may be accounted for in the computation of
characteristic incoming waves [73, 84]. Source terms, in fact, can be treated in analogy to what
has been described in Section 3.2 with regards to transverse convective terms and transverse
pressure gradients. The modification to be introduced in the subsonic non-reflecting inflow
and outflow boundary conditions, will now be described, for simplicity, in the case of face
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boundaries, where a single characteristic direction—say x1—is considered (cf. Section 3.2.2).
The generalization for edges and corners is straightforward and will be omitted.

Taking Eq. (5.11) and pre-multiplying by P−1, defined in Eq. (3.54), and following the same
procedure that has been described in Section 3.2, the relationship linking primitive variables
to wave amplitude variations and the relevant characteristic formulation read respectively:

∂U

∂t
+ d− T = S, (5.13)

S1
−1∂U

∂t
+L−T

1 = S
1, (5.14)

with S1
−1 being obtained from Eq. (3.64) and

S = P−1s =




0
0
0
0

(γ − 1)ω̇e
ω̇c/ρ



, S

1 = S1
−1S =




(γ − 1)ω̇e
−(γ − 1)ω̇e

0
0

(γ − 1)ω̇e
ω̇c/ρ



, (5.15)

Using now Eq. (5.14) in place of Eq. (3.78) and combining it with boundary conditions
Eq. (3.85) and Eqs. (3.94)–(3.98), the unknown incoming wave amplitude variations, relevant
to the subsonic non-reflecting inflow and outflow respectively, take the form:





Lφ = ηφ
ρa2(1−M 2

max)

Lx
∆u1 + T

1
φ +S

1
φ,

L2 = η2
ρaR

Lx
∆T + T

1
2 +S

1
2,

L3 = η3
a

Lx
∆u2 + T

1
3,

L4 = η4
a

Lx
∆u3 + T

1
4,

L6 = η6
a

Lx
∆c+ T

1
6 +S

1
6,

(5.16)

Lφ = σ
a
(
1−M 2

max

)

Lx
∆p+ (1− βt)

(
T

1
φ +S

1
φ

)
+ βtT

1
φ,ex, (5.17)

where T1
k and S1

k are the kth components of the vectors given in Eq. (3.80) and (5.15) respec-
tively. With regards to the outflow, in particular, it has to be noted that, due to numerical
stability issues altogether similar to those related to the transverse convective terms them-
selves, the boundary condition is much better behaved when also the source terms are relaxed.
In the above Eq. (5.17), the same relaxation coefficient βt is used and source terms’ relaxation
is performed toward zero reaction rate, i.e. S1

φ,ex = 0.
It is worthwhile mentioning that the above relations could have been obtained by defining

pseudo-transverse terms T
k
psd = T

k+S
k, with S

k = Sk
−1P−1s, and computing the incoming

waves by applying the same relations obtained in Section 3.2 with T
k
psd in place of T

k. Bearing

this in mind, the 3D-NSCBC for edges and corners are readily generalized to the reactive case.2

2This is strictly true for the simplified description of the chemical process herein presented. More complex
chemistry may lead to additional difficulties (cf. Baum et al. [5]).
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5.2.2 Proper Resolution and Scaling Parameters

When DNS of a turbulent flame is to be performed, it is of course necessary to check that grid
resolution is sufficiently high to represent the entire range of length-scales involved, namely
turbulence length-scales and combustion length-scales. The first, by usual turbulence scaling,
may be estimated as extending from the integral length-scale ℓ0, down to the Kolmogorov
microscale η, these two being related by the following relation:

η ∼ ℓ0Re
−3/4
t , with Ret =

u′ℓ0
ν
, (5.18)

u′ being a measure of turbulence activity extracted from the turbulent kinetic energy per unit
mass k

u′2 ∼ 2k = 〈u′iu′i〉.
With regard to the combustion process, when the study is focused on a particular flame

surface topology, as in the present case, there turn out to be a certain number of interlinked
parameters, which make their determination not quite immediate. First of all, the computa-
tional grid must be fine enough to resolve the flame thickness. If δL is the real flame thickness

3

and SL is the laminar flame speed, which is directly linked to the pre-exponential factor (cf.
Eq. (5.8)), experience shows that the flame Reynolds number

ReL =
SLδL
ν

, (5.19)

for a typical hydrocarbon fuel, is ∼ 5, hence, we may assume that δL ∼ 5ν/SL and define a
flame scaling parameter

δ∗L =
ν

SL
. (5.20)

It is then evident that, in order for the grid to be able to resolve the flame, the maximum
grid spacing must be a certain fraction of δ∗L. A practical way to define a flame resolution
criterion, is to perform a direct numerical simulation of a laminar 1D flame and check that the
plot of the reaction rate versus the progress of reaction is well resolved.

On the other hand, on a reference frame moving with the flame speed, the mono-dimensional
transport equation for the progress of reaction c becomes:

SL
d(ρc)

dx
+

d

dx

(
ρν

Sc

dc

dx

)
= ω̇c, (5.21)

which, integrated over a control volume [x0 : xb] long enough to sufficiently enclose the flame,
i.e. dc/dx = 0 over the control volume’s frontier, c(x0) = 0 and c(xb) = 1 (cf. Figure 5.1a),
gives the following relation:

SL =
1

ρb

∫ xb

x0

ω̇cdx, (5.22)

with ρb the density of the burnt gases. Hence, on the same simulation, the actual flame speed
may be obtained by integrating the reaction rate across the flame front.

3Practically, δL is of the order of the flame thickness measured from the temperature profiles through the
flame:

δL ≃
Tb − T0

max(∂T/∂xn)
,

where subscript n indicates the direction orthogonal to the flame front.
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Figure 5.1: Mono-dimensional laminar flame test: progress variable c versus x (a); reaction rate
ω̇c versus progress variable c (b). The flame speed was set at SL,max according to Eq. (5.24).

These tests have revealed that a good estimation of the maximum grid spacing hmax, needed
to resolve a flame that propagates at velocity SL, can be evaluated from the parameter δ∗L as:

hmax ≃ 0.3 δ∗L, (5.23)

therefore, for a given computational grid with resolution h (assumed, for simplicity, to be the
same in each coordinate direction), there exist a maximum resolvable flame speed, which is
approximately equal to:

SL,max ≃ 0.3
ν

h
. (5.24)

Figure 5.1b shows the plot of ω̇c versus progress variable c for a 1D laminar flame obtained
setting the maximum flame speed according to the threshold given in Eq. (5.24). As it can be
seen, although c is fairly well resolved in physical space (Figure 5.1a), in composition space,
the grid is just able to resolve the peak of reaction rate with about 3 points, which may be
regarded as a minimum requirement. Turning now the attention on the average flame shape,
referring to Figure 5.2, if D is the diameter of the Bunsen burner, injecting fresh mixture with
bulk velocity Ub, the semi-aperture angle θ

∗ ∈ (0 : π/2) of the conical laminar flame satisfies
the following relations:

tan(θ∗) =
D

2HL
, and sin(θ∗) =

SL
Ub
, (5.25)

The flame height may be then computed as:

HL =
D/2

tan
[
sin−1(SL/Ub)

] . (5.26)

Therefore, from Eq. (5.24), the maximum semi-aperture angle or, otherwise, the minimum
flame height, that can be resolved on a given mesh may be obtained as

sin(θ∗max) ≃
0.3D

hReD
, (5.27)

Hmin ≃
0.5D

tan

[
sin−1

(
0.3D

hReD

)] , (5.28)
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Figure 5.2: Schematic representation of a conical laminar flame.

where ReD = UbD/ν is the jet’s Reynolds number. If N = D/h is the number of nodes
along the diameter, the above relation states that, for a given flame semi-aperture angle θ∗,
the number of degrees of freedom necessary to resolve a tridimensional conical flame scales as
∼ Re3, which is even more demanding than the classical turbulence resolution requirement,
namely ∼ Re9/4.

Just to fix the ideas, should we intend to perform a direct numerical simulation of the
wrinkled laminar flame presented by A. Yoshida in the book by Samimy et al. [65], we may
want to make an a priori estimation of the necessary resolution to resolve both chemistry and
turbulence. The experiment was conducted with a Propane/Air mixture injected through a
diameter of 30mm and bulk velocity of 2.36m/s (with an annular pilot flame). The equivalence
ratio was 0.68, the flame height was ∼ 85mm, corresponding to a semi-aperture angle θ∗ ≃ 10◦,
and the laminar flame speed, obtained from the flame height, the diameter and the bulk
velocity, was ∼ 0.41m/s.

Considering a kinematic viscosity of 1.59×10−5m2/s, the jet’s Reynolds number is ∼ 4440,
hence, from Eq. (5.27), the maximum grid spacing to resolve chemistry is

h ≃ 0.3D

sin(θ∗)ReD
=

0.3× 0.03m

0.1736× 4440.0
≃ 11.6µm.

With regards to turbulence resolution, the Taylor micro-scale λ was about 1.81mm and the
relevant Reynolds number was Reλ ≃ 17.4, corresponding to u′ ≃ 0.15m/s and Ret ≃ 303 [30],
hence we have:

ℓ0 ≃
νRet

u′
≃ 30mm, and η ∼ ℓ0Re

−3/4
t ∼ 0.4mm.

For this particular problem the Kolmogorov scale is around 40 times bigger than the esti-
mated limit for sufficient chemistry resolution. It should be noted that Eq. (5.24) represents an
approximate upper limit for resolvable flame speed, i.e., a DNS based on that criterion would
represent the less resolved DNS which can be made still sufficiently resolving the flame. Sup-
posing that we want to economize CPU time, and design the grid using the maximum allowed
spacing in the three directions, for a tridimensional cartesian computational grid 2D wide and
4D long, the total number of mesh points would be ∼ 2.8× 1011.4 As it will be shown in the

4Of course, using grid stretching the mesh may be optimized but, still, the above estimation gives an idea
of the computational effort for such a relatively small Reynolds number.
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Figure 5.3: Viscosity (a) and density (b) variations as a function of temperature: , nor-
malized kinematic viscosity ν/ν0; , normalized dynamic viscosity µ/µ0; , normalized
density ρ/ρ0 (ν0, µ0 and ρ0 evaluated at 300K).

next sections, in order to be able to compute a Bunsen flame with Reynolds number of 4500
and with a reasonable computational cost, the angle θ∗ must be so small, that the resulting
flame becomes actually almost tubular, hence the need for robust boundary conditions which
allow the flame to pass through without posing major stability issues (cf. Section 5.2.1).

Another important issue, when dealing with turbulent Bunsen flames, regards the way the
expected behavior of the flame and its interactions with the flow field can be prescribed. When
the flame is quite close to the burner, turbulence in jet’s shear layer cannot generally develop
early enough to interact with the flame, unless the jet’s Reynolds number is high enough to
allow full development within a relatively short distance. If the interactions between turbulence
and the flame front need to be investigated, clearly, fully developed turbulence must be already
available at the jet’s nozzle. For instance, the flame may be fed by artificially generated grid
turbulence, as in the case of the above mentioned wrinkled flame. And, indeed, such turbulence
must be strong enough in order for it not to be damped by the significant increase of viscosity
arising from higher temperature in the burnt gases. If, for instance, Ret is the turbulent
Reynolds number measured in the fresh gases just before the flame front, a temperature jump
from 300K to 1200K would increase the kinematic viscosity of a factor 10 (cf. Figure 5.3),
thus leading to a 10 times lower Ret right after the flame front. Therefore, if

Ret =
u′ℓ0
ν
,

either u′ or ℓ0 must be sufficiently high.
5

Two useful parameters in order to control flame wrinkling are the ratio Γ between the
integral scale of turbulence ℓ0 and the flame thickness δL and the ratio α

∗ between the typical
velocity fluctuation u′ and the laminar flame speed SL. The ratio between the turbulent
integral length scale and the flame thickness may be written as:

Γ =
ℓ0
δL

=
ReG
ReL

, with ReG =
ℓ0SL
ν

. (5.29)

5It should be mentioned that both u′ and ℓ0 are limited. The former cannot be more than a fraction of Ub

(e.g., u′ ∼ 0.5Ub can be considered as a huge velocity fluctuation to be superimposed on the inlet profile and
the gain is just 25% turbulent intensity). The latter, of course, cannot be more than just a fraction of the jet’s
diameter D. Increasing those limits, in the end, is a matter of increasing ReD.
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ReD 600 (F1) 2000 (F2) 4500 (F3)

Type Round Jet Round Jet Slot Jet

D 0.1mm 0.5mm 1.0mm

Ub 95.61m/s 63.74m/s 71.71m/s

T0 300.0K 300.0K 300.0K

M 0.28 0.18 0.21

η ∼0.9µm ∼1.8µm ∼1.7µm
h/η 0.50–3.88 1.49–7.96 1.98–15.2

ℓ0/D 0.04 0.04 0.025

SL 12.0m/s 1.7m/s 1.4m/s

SL,max 8.6m/s 1.72m/s 1.41m/s

θ∗max 5.15◦ 1.55◦ 1.13◦

u′/SL 2.5 11.9 16.4

ℓ0/δL ∼2.2 ∼2.1 ∼2.2
Ret 7.5 25.4 36.0

ReG 3.0 2.1 2.2

α 0.3 0.8 0.8

β 8 8 8

K 7.0× 1019 s−1 6.0× 1010 s−1 1.2× 1011 s−1

Tb 428.6K 1500.0K 1500.0K

Nodes 214× 1622 226× 1942 610× 3862

Dimensions 4D × 2D × 2D 4D × 2D × 2D 3D × 3D × 1.3D

Processors 256 2048 4096

Table 5.1: Turbulent Bunsen flame DNS parameters.

Moreover, the turbulent Reynolds number can be written as:

Ret =
u′ℓ0
ν

=
u′ℓ0
SLδL

ReL = α∗ReG = α∗ΓReL, (5.30)

with

α∗ =
u′

SL
. (5.31)

Hence, as a preliminary criterion, in order to have a sufficiently wrinkled flame, turbulent
fluctuations must be strong enough to interact with the flame, i.e. α∗ = u′/SL > 1, and the
integral scales must be large enough to distort the flame front, i.e. Γ = ℓ0/δL > 1; using the
above relations we must have Ret > ReG and ReG > ReL, therefore Ret must be greater than
ReL.

5.3 Turbulent Bunsen Flame Simulation

All the results presented in this section were obtained using the SiTCom solver (see Section 3.1)
without artificial dissipation and setting the physical properties of the fluid according to the
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Figure 5.4: Prescribed inlet profiles: , axial velocity component normalized by the
bulk velocity Ub; , progress variable or, equivalently, normalized temperature T ∗ =
(T − T0)/(Tb − T0).

values in Table 3.1 at page 59. Three different flow configurations have been computed at
different Reynolds numbers: (F1) a ReD = 600 round conical flame, (F2) a ReD = 2000 round
tubular flame and (F3) a ReD = 4500 slot tubular flame, with ReD, as usual, computed on
the bulk velocity Ub and on the viscosity in the fresh mixture, i.e. at 300K. Round flames
were computed using subsonic non-reflecting inlet condition at x1 = 0 (η5 = −η2 = η3 =
η4 = η6 = 3.28) and subsonic non-reflecting outflows (σ = 0.28 and βt set according to the
characteristic Mach number of the flow) on all the other five boundaries, whereas the slot
burner configuration had periodic boundary conditions in the spanwise direction. Boundary
conditions were enforced using the 3D-NSCBC technique [43] with the modification described
in Section 5.2.1. Outlet target pressure was set at 1 atm and inlet target velocity profile was
obtained using the Power Law profile for turbulent pipe flow, Eq. (3.230), with a small 4%Ub

coflow of burnt gases at temperature Tb. Inlet target progress variable and temperature were
set at 0 and 300K respectively (cf. Eqs. (5.16) and (5.17)) by means of a slightly smoothed top-
hat profile (see Figure 5.4). All the chamber was initially filled with burnt gases at temperature
Tb.

In any case, turbulence was promoted by injecting a correlated random noise [35], with
specified correlation length lt and uniform intensity u′ throughout the inlet (see Section 3.3 at
page 79). A summary of the parameters of the three computations is reported in Table 5.1.

Note that α = 0.3 for test-case F1, corresponding to a temperature in the burnt gases of
just ∼ 430K. This unrealistic parameter was chosen in order to limit the increase of kinematic
viscosity to a factor of about 2 (cf. Figure 5.3), hence preventing turbulent fluctuations from
being completely damped within the burnt gases. Thanks to the higher Reynolds number,
the other two flames have a more realistic value of Tb = 1500K. Also note that flame speed
in simulation F1 is higher than the maximum limit from Eq. (5.24), hence chemistry is not
completely resolved. That value of SL was set in order to prevent the flame from reaching the
outlet, by increasing the semi-aperture angle θ∗ to a value of about 7.2◦.
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Grid spacing has been chosen in order to correctly resolve all the relevant scales of turbu-
lence, as well as the flame thickness based on the criteria developed in the previous section (cf.
Eq. (5.24)). With regards to the first point, the Kolmogorov length-scale η has been evaluated

from the classical scaling η ∼ ℓ0Re
−3/4
t , where ℓ0 is the correlation length of the injected noise

(grid turbulence is assumed at the inlet) and Ret ∼ u′ℓ0/ν, with u
′ set at 0.32Ub, correspond-

ing to ∼ 10% turbulence. As it can be seen in Table 5.1, grid spacing h is of the order of η
in flow regions; the maximum values, which are reported for the sake of completeness, refer to
the far lateral ends of the computational domain.6

5.3.1 ReD = 600 Round-Jet Simulation (F1)

Qualitative results from test-case F1 are depicted in Figures 5.5 and 5.6. The map of progress
variable is shown in Figure 5.5a and the iso-surfaces of the normalized second invariant of the
velocity gradient (cf. Eq. (4.154) at page 127) colored by density indicate coherent vortical
structures in Figure 5.5b. The black lines indicate the trace of the theoretic flame cone as it
may be inferred from Eq. (5.25).

It is worthwhile mentioning that, as already said, the flame in this simulation was under-
resolved. Going on with the computation, this fact led to a numerical instability in a small
pocket of reacting mixture which had detached from the flame tip. This pocket is visible in
Figure 5.5a as a small orange spot right ahead of the flame tip. Hence the key role of correct
flame resolution in this kind of DNS.

At this Reynolds number, the damping effect of the increased temperature may be observed,
despite the relatively small increase in viscosity, looking at the coherent vortical structures
(cf. Figure 5.5b). Injected turbulence propagates downstream for about 1.6D and then almost
disappears; the relevant Ret is reduced down to about 3.75 by the increased kinematic viscosity
(cf. Tabel 5.1). The few structures which are observed further downstream are reminiscent of
Kelvin-Helmholtz instabilities generated in the jet’s shear layer.

As it can be seen in Figure 5.6 by observing the typical size of the flame front’s wrin-
kling, the lower part of the flame interacts mainly with the finer structures of the injected
turbulence, whereas, further downstream interactions with bigger structures from the shear
layer are dominant. Hence the importance of both mechanisms: lower Reynolds number, i.e.,
higher temperature in the burnt gases in this case, would have laminarized the jet’s shear layer
and the flame front would have been almost perfectly smooth and conical with the base only
slightly wrinkled.

The damping effect of temperature may be also noted by comparing the local curvature of
the flame front at c = 0.2, i.e. T ≃ 326K, (Figure 5.6a) and at c = 0.8 (Figure 5.6b), where
the temperature is around 403K.

5.3.2 ReD = 2000 Round-Jet Simulation (F2)

When the Reynolds number is increased, as already mentioned, correct flame resolution trans-
late in a requirement over the semi-aperture angle θ∗, hence, in order to keep the computational

6In order to allow some reduction in computational cost, while ensuring a sufficiently wide domain, the grid
for test-cases F1 and F2 was stretched in the lateral direction with the maximum refinement toward the center.
The computational grid for test-case F3 was stretched in the transverse direction and uniform in the spanwise
direction (i.e. the direction of periodicity).
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(a) (b)

Figure 5.5: ReD = 600 test-case F1. Map of progress variable c over an axial plane (a) and
iso-surfaces of normalized Q∗ = 0.5 colored by density (b). In (a): c = 0 colored in blue
and c = 1 colored in red. In (b): ρ/ρ0 = 1 colored in red and ρ/ρ0 = 0.7 colored in blue
(ρ0 = 1.174 kg/m3). Black lines indicate θ∗ = 7.2◦.

cost reasonably low, it is necessary to switch to tubular shaped flames. At ReD = 2000, a
computational domain 4D long and 2D wide, with around 8.5M nodes, allows a maximum θ∗

of about 1.5◦, these data referring to sufficiently resolved chemistry (cf. Table 5.1).
Figure 5.7 shows the map of progress variable c over an axial plane and the iso-surfaces of

Q∗ = 0.5, cut over the same plane, colored by the density. As expected, the increased Reynolds
number allows turbulence to develop and propagate further downstream, despite the fact that,
in this case, the temperature in the burnt gases is around 1500K, with a consequent kinematic
viscosity more than 10 times higher than in the fresh mixture.

Again, the reaction zone undergoes distortion due to the interactions between the injected
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(a) (b)

Figure 5.6: ReD = 600 test-case F1. Iso-surfaces of progress variable c = 0.2 (a) and c = 0.8
(b).

turbulence and the instabilities generated within the jet’s shear layer, the two mechanisms hav-
ing quite different typical length-scales. The damping effect of temperature is now particularly
strong, as it can be observed in Figure 5.8, where the flame front at 540K is characterized by
strong local curvature, whereas at 1260K the surface appears much smoother.

Instantaneous cross-sections of the flame at various streamwise positions are depicted in
Figure 5.9, where contours of Q∗ = 0.5 (in black) are superimposed to the maps of progress
variable. Close to inlet, the core of the flame is populated by a variety of coherent structures,
coming from the inlet turbulence, which, interacting with the flame front, induce strong local
curvature. The increased viscosity through the reaction zone, induce the reduction of local
curvature due to dissipation. Few bigger structures are visible in the burnt gases’ side; these
last, according to Figure 5.7b are mostly related to the jet’s shear layer development. Further
downstream, small structures tend to disappear and, at x1/D = 3.0, only few big structures
are still visible. The flame front is now heavily distorted but the local curvature is much lower
and reflects the typical size of the remaining coherent structures. Indeed, since the hot gases
do not allow turbulent development of the jet itself (i.e., there is no external forcing), on a
reference frame moving with the flow, the situation may be considered similar to freely decaying
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(a) (b)

Figure 5.7: ReD = 2000 test-case F2. Map of progress variable c over an axial plane (a) and
iso-surfaces of normalized Q∗ = 0.5 colored by density (b). In (a): c = 0 colored in blue
and c = 1 colored in red. In (b): ρ/ρ0 = 1 colored in red and ρ/ρ0 = 0.2 colored in blue
(ρ0 = 1.174 kg/m3). Black lines indicate θ∗ = 1.53◦.

turbulence, where the total turbulent kinetic energy declines due to viscous dissipation, with
the smallest eddies decaying fastest. This is the reason why, obtaining a highly wrinkled flame
is so difficult: the high kinematic viscosity depletes any external forcing. The solution, clearly,
is to increase Reynolds.

5.3.3 ReD = 4500 Slot-Jet Simulation (F3)

The image of the wrinkled laminar flame by A. Yoshida [65], which has been described in
Section 5.2.2 served as inspiration for this last test-case. Of course, according to chemistry
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(a) (b)

Figure 5.8: ReD = 2000 test-case F2. Iso-surfaces of progress variable c = 0.2 (a) and c = 0.8
(b).

resolution issues already discussed, the semi-aperture angle θ∗ was reduced from the 10◦ of
the experiment to about 1.13◦. Yet the computational grid was around 91M nodes and the
simulation required 4096 processors on an IBM Blue Gene/P machine. Moreover, it was decided
to switch to a bi-dimensional configuration for reasons connected to the studies carried out
during the CTR Summer Program 20087, namely to check for the influence of anisotropies on
the statistical behavior of the flame curvature’s parameters. The details of the simulation are
summarized in Table 5.1.

The general features of the flame are, again, represented in Figure 5.10 by means of the
coherent vortical structures, colored by the density, and the flame front obtained from the

7The relevant proceedings are reported at the end of Part II, where the archival publications relevant to
this thesis are collected.
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(a) x1/D = 0.5 (b) x1/D = 1.0

(c) x1/D = 2.0 (d) x1/D = 3.0

Figure 5.9: ReD = 2000 test-case F2. Maps of progress variable over transversal sections at
various heights. Black contours are iso-lines of Q∗ = 0.5.

iso-surface of c = 0.2. Even if not shown in this case, the theoretical semi-aperture angle was
confirmed by the simulation. Accordingly, the flame speed was well reproduced.

Again the two mechanism of jet’s instabilities and injected grid noise can be observed. The
increased Reynolds number promotes, as expected, a wider spectrum of wave-lengths. Also
note that the correlation length of the injected noise was 1.6 times lower than in the previous
test. The ratio ℓ0/δL, anyway, was the same.

Looking closer at the flame structure in Figure 5.11, nothing really new is observed with
respect to the other two test-cases, except that now the flame is way more distorted, even on
the hot side (cf. Figure 5.11b). After about 0.7D (note that the spanwise dimension is 1.3D),
the smallest scales coming from the inlet have almost disappeared. Jet’s instabilities, which
are visible in red (i.e., within the hot gases) in Figure 5.11c, are damped out after about one
diameter. What remains, again, is freely decaying turbulence that, this time, has increased
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(a) (b)

Figure 5.10: ReD = 4500 test-case F3. Iso-surfaces of normalized Q∗ = 0.5 colored by density
(a) and iso-surfaces of progress variable c = 0.2 (b). In (b): ρ/ρ0 = 1 colored in red and
ρ/ρ0 = 0.2 colored in blue (ρ0 = 1.174 kg/m3).

“life” thanks to the higher ReD. This fact is readily confirmed by analyzing the cross-sections
in Figure 5.12 where, again, the iso-contours of Q∗ = 0.5 are shown over the maps of progress
variable.

It is reasonable to expect that a shorter flame, i.e., a larger θ∗, for this Reynolds number,
would have been significantly more distorted by earlier interaction with core turbulence. This
notwithstanding, the qualitative examination of the DNS results is in fairly good agreement
with the above mentioned wrinkled laminar (conical) flame.
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(a) (b) (c)

Figure 5.11: ReD = 4500 test-case F3. Iso-surfaces of progress variable c = 0.2 (a), c = 0.8
(b) and Q∗ = 0.5 colored by c (c).
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(a) x1/D = 0.5 (b) x1/D = 1.0

(c) x1/D = 1.7 (d) x1/D = 2.5

Figure 5.12: ReD = 4500 test-case F3. Maps of progress variable over transversal sections at
various heights. White contours are iso-lines of Q∗ = 0.5.
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CHAPTER 6
Conclusions & Perspectives

Cette thèse, essentiellement axée autour de la Simulation Directe et aux Grandes Échelles
des écoulements turbulents caractérisés par une faible compressibilité, peut être divisée en
deux parties principales : (a) la formulation des conditions caractéristiques tridimensionnelles
non-réfléchissantes basées sur le méthode NSCBC [58] et (b) la dérivation d’un modèle de
sous-maille structurel, basé sur l’hypothèse de similarité [3, 4], capable de conserver un com-
portement asymptotique correct dans la région de proche paroi.

En ce qui concerne le premier point, une méthodologie, dénommée 3D-NSCBC [43], a été
développée, tandis que, pour le deuxième point, le Modèle WALE-Similarity (ou WSM) a été
présenté et testé sur un jet d’air impactant sur une paroi plane.

En prenant en compte les termes de convection et les gradients de pression transverse
par rapport à la surface frontière du domaine de calcul, la méthode 3D-NSCBC a démontré
sa capacité de reproduction fidèle de la tridimensionnalité de l’écoulement ; réduisant ainsi le
niveau des perturbations numériques au bord, même lorsque l’écoulement est caractérisé par
des structures tourbillonnaires très complexes. De plus, le niveau de contrôle sur les variables
relaxées, typiques des conditions aux limites non-réfléchissantes, peut être amélioré, même si
les coefficients de relaxation imposés sont très faibles.

À ce propos, la prise en compte des termes transverses engendre des problèmes de cou-
plage des ondes caractéristiques se déplaçant le long des directions orthogonales, ainsi que la
nécessité d’imposer des conditions de compatibilité, lorsque différentes typologies de frontières
se rejoignent aux coins et aux arêtes du domaine de calcul. Des procédures systématiques
pour résoudre le couplage des ondes, et des conditions de compatibilité, ont été développées
et détaillées dans le 3e Chapitre, en particulier, pour toutes les combinaisons des conditions
d’entrée/sortie subsoniques et de paroi adiabatique. Plusieurs tests sur des configurations sim-
plifiées et sur un jet libre turbulent ont été aussi présentés.

Au sujet des modèles de sous-maille pour la Simulation aux Grandes Échelles (SGE), la
simulation d’un jet d’air impactant sur une paroi plane à deux différents nombres de Reynolds
a mis en évidence les limites des modèles purement dissipatifs basés sur l’hypothèse de viscosité
tourbillonnaire (i.e., eddy-viscosity), qui : (a) en imposant les mêmes axes propres au tenseur
des contraintes de sous-maille et au tenseur du taux de déformation, ne peuvent pas reproduire
correctement les anisotropies des interactions de sous-maille ; (b) en utilisant l’hypothèse de
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Boussinesq, ne peuvent pas, en général, donner une représentation correcte des interactions
particulières de l’opérateur de filtrage, qui, habituellement, ne satisfait pas les propriétés des
opérateurs de Reynolds. De cette dernière considération, dérive, par exemple, l’incapacité des
modèles à viscosité tourbillonnaire de reproduire des évènements locaux de transfert inverse
d’énergie turbulente, i.e. backscatter, à moins de recourir à des procédures dynamiques qui,
néanmoins, ont souvent besoin d’opérations de moyenne afin d’assurer la stabilité numérique
(à ce propos, le modèle Dynamique Lagrangien [48] utilisé dans cette thèse ne peut en aucune
manière engendrer du backscatter).

D’ailleurs, les modèles structuraux peuvent s’adapter de façon plus efficace au contexte de
la SGE et démontrent généralement un degré très élevé de corrélation au niveau du tenseur.
C’est pourquoi un modèle de similarité mixte employant un terme de viscosité tourbillonnaire
de type WALE [53] a été proposé. Par cette formulation, on peut démontrer que le com-
portement asymptotique correct vers la paroi est conservé pour chacune des composantes du
tenseur des contraintes de sous-maille. De plus, l’introduction des termes de Leonard croisés,
typique de la formulation de similarité, a montré sa capacité de reproduction d’un transfert
énergétique global correct, surtout en région de proche paroi. Cette propriété s’est révélée être
un mécanisme clé pour la modélisation de la dynamique de la couche limite turbulente, no-
tamment dans le cas de la configuration étudiée, qui a montré un taux très élevé de backscatter
dans la région de stagnation et aussi dans la région du jet à la paroi.

Le comportement statistique du mélange du scalaire passif en région de proche paroi a été
aussi brièvement analysé.

Pour finir, une application de la Simulation Numérique Directe au le cas d’une flamme
pré-mélangée Bunsen turbulente a été détaillée. La méthode 3D-NSCBC a été adaptée pour
prendre en compte la présence des termes source chimiques dans le calcul des amplitudes des
ondes entrantes aux frontières dans le cas de conditions aux limites d’entrée/sortie subsoniques.
Cette procédure est basée sur la définition des termes pseudo-transverses, et peut donc être
aisément généralisée à la formulation présentée pour les coins et les arêtes. Par ailleurs, il a été
démontré que la résolution d’une telle flamme peut représenter une contrainte bien plus forte
que la résolution de la turbulence même. Par conséquent, la simulation directe avec un nombre
de Reynolds relativement élevé, pour un coût de calcul raisonnable, a nécessité la réduction de
l’angle de semi-ouverture du cône de la flamme, jusqu’à avoir une forme quasi-tubulaire.

6.1 Conclusions

This thesis, which is mainly concerned with Direct and Large-Eddy Simulation of turbulence,
may be considered as a twofold work: (a) on one side, numerical aspects regarding the imple-
mentation of numerically transparent boundary conditions were addressed; (b) on the other
side, a structural SGS model for LES of weakly compressible turbulent confined flows was
proposed.

A three-dimensional procedure for characteristic boundary conditions at edges and corners
was discussed. This very sensitive point of boundary conditions was found to be closely related
to convection and pressure gradient developing in the direction parallel to boundary faces, also
called transverse terms.

A method involving the inclusion of these transverse effects in the computation of the
incoming wave amplitude variations was presented. This method, which is based on the NSCBC

154



Conclusions

approach [58], removes the original one-dimensional inviscid assumption that is, in general,
too stringent to correctly deal with turbulent flows. The work was grounded on the method
proposed by Yoo and Im [84], which, nonetheless, poses additional problems of wave coupling
at the edges and corners of three-dimensional computational domains. Hence, a systematic
procedure to solve edges and corners was presented and compatibility conditions for mixed
boundaries were discussed.

The presented technique showed significant reduction of flow distortion and boundary re-
flection even when the configuration is characterized by high tridimensionality of the flow field,
accompanied by obliquely propagating waves. The obtained 3D-NSCBC non-reflecting out-
flow, in particular, is characterized by an additional relaxation parameter for transverse terms.
On this regard, tests performed on different flow configurations demonstrated that, for the
majority of the flows, transverse relaxation can be done toward identically zero terms and, in
agreement with the findings of Yoo and Im [84], the optimal choice for the transverse relaxation
parameter is, in general, related to the typical Mach number for the flow considered.

The proposed solution to the edge/corner wave coupling problem and the relevant compat-
ibility conditions for connecting regions of different boundary types, revealed good numerical
stability and low level of spurious boundary reflection for acoustic waves traveling toward the
edges and corners of the computational domain, thus allowing high boundary transparency
even when computing complex flows.

The 3D-NSCBC method is applicable to compressible turbulent flows in the full subsonic
range and is then suitable for a wide range of flow configurations and engineering applica-
tions. The method was extended to chemically reacting flows and tested on DNS of turbulent
Bunsen flames. The increased level of control over relaxed quantities, which may be achieved
by accounting for chemical source terms in the computation of incoming waves, allowed the
simulation of “tubular” flames crossing the boundary.

With regards to LES of weakly compressible turbulent flows, a WALE-Similarity mixed
model was presented and tested on the impinging round-jet at Reynolds numbers 23000 and
70000. The difficulties of purely dissipative functional models based on the eddy-viscosity
hypothesis, when dealing with such a complex flow, were addressed and the necessity to improve
the modeling strategy by better accounting for the peculiar interaction terms arising from the
use of non Reynolds operators was analyzed.

The eddy-viscosity term together with the modified Leonard tensor allows good represen-
tation of non-local interactions as well as local interactions near the cutoff length, these last
being responsible for reverse energy transfer, a key mechanism in near-wall dynamics. The use
of the WALE model [53], in particular, allows proper wall scaling of the wall shear stresses
without the necessity of a dynamic procedure. Near wall scaling of each component of the
SGS stress tensor was checked and the proposed model was found to correctly reproduce the
average theoretical scaling within the viscous sub-layer.

The model was compared to the standard WALE model and a compressible implementation
of the Lagrangian Dynamic Smagorinsky model [48] on the lower Reynolds number test-case
on a relatively coarse grid. A significant improvement in the results in terms of second order
moments was observed, especially in the near-wall region, where the other two models have a
marked tendency to overestimate streamwise turbulent fluctuations due to excessive dissipation
and, supposedly, incorrect azimuthal redistribution of turbulent energy.

On the higher Reynolds number test-case, the new model provided quite satisfactory results.
The relatively low grid resolution used for such a high Reynolds number, made it necessary to
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account for SGS contributions when comparing with experiments. By accounting for the SGS
part, results were generally improved. Yet, the necessity to either increase near wall resolution
or introduce an efficient model for the spherical part of the SGS tensor was observed for this
Reynolds number.

Correct representation of energy backscatter was found to play an essential role for the
estimation of the average sub-grid dissipation, especially when the computational grid does
not allow for sufficient resolution in the near-wall region. In that case, it was found that
energy backscatter by the SGS model may determine a sort of automatic compensation process
for energy production events related to under-resolved near-wall dynamics. The impinging
round-jet, in particular, was found to be extremely prone to show energy backscatter in the
vicinity of the stagnation region. This fact would clearly explain the difficulties encountered
by purely dissipative models in reproducing the early development of the wall jet region.
Statistical properties of near wall scalar mixing and relevant qualitative features were also
briefly investigated.

Alongside these two topics, Direct Numerical Simulations of a turbulent Bunsen flame at
three different Reynolds numbers were performed. The inclusion of the chemical source terms
within the 3D-NSCBC procedure to solve subsonic non-reflecting inflows and outflows was
detailed. In particular, it was found that the formalism developed in the case of non-reacting
flows may be conveniently extended to the case where reactions take place by simply defining
pseudo-transverse terms that include the relevant source terms, as they appear in the charac-
teristic formulation of the Navier-Stokes equations. This procedure allowed the simulation of
tubular-shaped flames which cross the outflow boundaries without major problems of numerical
stability.

Moreover, scaling criteria for the specific case under study were analyzed. It was found that
the number of degrees of freedom, in space, of a conical Bunsen flame of specified height, i.e., of
specified semi-aperture angle, scale as the third power of the characteristic Reynolds number.
Hence, in this specific case, the resolution of chemistry was found to be a more stringent
requirement than the resolution of turbulence that, according to typical scaling criteria, would
require at least a number of degrees of freedom of the order of the Reynolds number to the
power of nine fourths, i.e. 2.25.

Considering the stabilizing effect connected to the increase of kinematic viscosity within
the burnt gases, on the base of the above mentioned findings, DNS of turbulent Bunsen flames
with a “reasonable” computational cost and with sufficiently high Reynolds number, i.e., with
sufficiently developed turbulence, required the reduction of the flame’s semi-aperture angle,
thus leading to tubular-shaped configurations.

6.2 Perspectives

The present work has highlighted some interesting aspects that possibly would deserve further
investigation. Although, as already mentioned in the first introductory chapter, numerical and
modeling aspects should be considered as closely interconnected features of Computational
Fluid Dynamics, considering the “dual” nature of the work described in this thesis, the possible
relevant perspectives will be put forward here subdivided in two main groups: (a) boundary
conditions and (b) LES modeling of compressible flows.

3D Characteristic Boundary Conditions, as it has been demonstrated may represent a
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powerful strategy for dealing with Direct and Large-Eddy Simulation of turbulent flows.
The reason is essentially twofold and pertains to the necessity of preventing numerical
perturbations that high-order numerical schemes would further amplify and to the at-
tainable reduction in computational effort that the reduction of computational domain
size—permitted by the use of sufficiently “transparent” frontiers—would imply.
The 3D-NSCBC procedure has proven to be an efficient and relatively simple method
to produce low boundary reflection when complex flows, with cylindrical and spherical
symmetries, are computed within cartesian orthogonal grids. Yet, the necessity for an
additional parameter, namely the transverse relaxation coefficient βt, has been under-
lined in relation with subsonic non-reflecting outflows.
Although the majority of flows do not pose particular issues on this regard, for certain
configurations, a proper choice of this parameter may be crucial (cf. the spherical pressure
wave test). The DNS of turbulent Bunsen flames for instance, highlighted the necessity
for a properly chosen value of βt when the reactive front crosses the boundary. On the
other hand, a certain dependancy of this parameter on the Mach number was observed
and this feature is, indeed, quite promising: the transverse relaxation parameter could
be in principle automatically determined by the flow itself.
Further investigation on the exact mathematical and physical meaning of the transverse
relaxation parameter in order to better establish the envisaged properties would be ad-
visable.
Alongside this aspect, the extension of the edge/corner strategy to other different types
of Dirichlet boundary conditions, as well as to Neumann boundary problems would be
of sure interest.
In Chapter 5, the possible extension of 3D-NSCBC strategy to the solution of reactive
flows was anticipated in the case of a quite simplified description of chemistry. The use
of more complex combustion models, in consideration of the extremely delicate nature of
the interconnections between characteristic boundary conditions and density variations,
would require better understanding and further investigation.

The WALE-Similarity Model has demonstrated good performances, especially in consid-
eration of the complexity of the analyzed configuration and the relatively simple imple-
mentation.
Nonetheless, the proposed SGS model entails a series of assumption and approximations
which limit its range of applicability. Notably, the inclusion of part of the trace of the
sub-grid scale stress tensor within the reduced macropressure and macrotemperature
imposes a limit on the maximum SGS Mach number, hence a limit to the level of com-
pressibility that the model can take charge of.
In consideration of the increasing interest in transonic and hypersonic turbulent flows,
for instance, removing any limitation on the Mach number would represent an attractive
perspective from the engineering point of view.
The necessity of modeling the isotropic part of the sub-grid contribution has been al-
ready mentioned. On the other hand, existing models often fail to live up to expecta-
tions [17, 72] and further investigation is still needed. Moreover, when the flow is char-
acterized by strong interactions with boundary layers, Smagorinsky-type models [86] do
not possess the correct asymptotic behavior, this fact being supposedly a limiting factor.
Hence, the generalization of the WSM model to the fully compressible case, though non-
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trivial, should involve a more suitable definition of the modeled spherical part of the SGS
true Reynolds term.
Other approximations were made with particular regard to the SGS energy flux term.
The neglected terms, in general, are not supposed to have strong impact to the flow,
anyway some of them, notably the SGS turbulent diffusion term ρDk, may be compara-
ble with the divergence of the SGS heat flux [46]. Better understanding of the physical
relevance of similar unclosed terms, especially in the presence of significant density fluctu-
ations, is clearly of great interest in the perspective of applications to high Mach number
flows.
A final remark needs to be made with regards to the discrete explicit filter operation.
The WSM model presented in this thesis makes use of a discrete box filter in physical
space, which was implemented resorting to the trapezoidal rule.
It has been shown that this kind of implementation may not be particularly accurate in
reproducing the expected filter width [45]. Although the impact of this kind of inaccuracy
on a similarity mixed model is, supposedly, considerably less influential if compared to
the dynamic procedure, where a discrepancy between the assumed and effective test filter
size introduces a systematic error, more insight on this regard would be clearly advisable,
as well as on the possibility to implement more accurate discrete filtering techniques in
the near-wall region.
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Abstract

Navier–Stokes characteristic boundary conditions (NSCBC) usually assume the flow to be normal to the boundary
plane. In this paper, NSCBC is extended to account for convection and pressure gradients in boundary planes, resulting
in a 3D-NSCBC approach. The introduction of these additional transverse terms requires a specific treatment for the com-
putational domain’s edges and corners, as well as a suited set of compatibility conditions for boundaries joining regions
associated to different flow properties, as inlet, outlet or wall. A systematic strategy for dealing with edges and corners is
derived and compatibility conditions for inlet/outlet and wall/outlet boundaries are proposed. Direct numerical simulation
(DNS) tests are carried out on simplified flow configurations at first. 3D-NSCBC brings a drastic reduction of flow distor-
tion and numerical reflection, even in regions of strong transverse convection; the accuracy and convergence rate toward
target values of flow quantities is also improved. Then, 3D-NSCBC is used for large-eddy simulation (LES) of a free jet
and an impinging round-jet. Edge and corner boundary treatment, combining multidirectional characteristics and compat-
ibility conditions, yields stable and accurate solutions even with mixed boundaries characterized by bad posedness issues
(e.g. inlet/outlet). LES confirms the effectiveness of the proposed boundary treatment in reproducing mean flow velocity
and turbulent fluctuations up to the computational domain limits.
Ó 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The treatment of boundary conditions is one of the most recurrent issues in computational fluid dynamics.
Compressible solvers’ accuracy, in general, is strongly sensitive to boundary solution, which may be spoiled by
spurious numerical reflections generated at open boundaries. This motivates the necessity for strategies to
reduce reflection and set up transparent boundary conditions.

0021-9991/$ - see front matter Ó 2008 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2008.01.038

* Corresponding author.
E-mail addresses: guido.lodato@coria.fr, guido.lodato@gmail.com (G. Lodato), pascale.domingo@coria.fr (P. Domingo), luc.

vervisch@coria.fr (L. Vervisch).

Available online at www.sciencedirect.com

Journal of Computational Physics 227 (2008) 5105–5143

www.elsevier.com/locate/jcp



The boundary conditions provide a way to anticipate the flow behavior at the very limit of the computa-
tional domain. The flow properties at the boundaries must derive from the knowledge of the inside of the com-
putational domain, coupled with some approximations of the outside flow features. Departures between inside
and boundary flows add numerical noise to the solutions. High-order numerical schemes widely used in direct
numerical simulation (DNS) and large-eddy simulation (LES), do not dissipate the spurious modes that may
be generated at the boundaries; the boundary conditions must therefore be designed so that physically correct
solutions are produced, while minimizing the amplitude of any extraneous perturbation added to the flow.

The situation gets even more complicated when dealing with turbulent flows, where an excess of numerical
reflection at open boundaries can significantly affect important physical flow properties, such as vorticity. As
opposed to Reynolds-averaged Navier–Stokes computations (RANS), in LES a wide range of length and time
scales is resolved and transported by the flow; the open boundaries are therefore, invested with a complex set
of sound and entropy waves and convected vorticity. Any excess in numerical reflection can lead to the
buildup of spurious oscillations, which, being superposed to the computed solution, negatively affect the phys-
ical properties of the flow itself.

Several approaches have been proposed to tackle boundary conditions. Many of them are oriented toward
the definition of transparent frontiers for computational aero-acoustics (CAA), where the high standards in
this regard, make the task particularly challenging (see [19,9,6,2] for review and applications). Among them,
techniques based on characteristics waves have motivated much attention. Initially developed for hyperbolic
systems of Euler equations, these approaches decompose the flow in terms of characteristic waves traveling in
the direction normal to the boundary, thus reducing the boundary problem to a suitable imposition of the
incoming waves. The identification of incoming waves allows, in principle, a direct control over boundary
reflection, as the boundary condition can be designed to prevent incoming perturbations [21,22] or to damp
their amplitude while allowing smooth transients [15]. An extension to the Navier–Stokes equations has been
thoroughly discussed by Poinsot and Lele [12], who have developed a systematic approach to account for vis-
cous terms, known as Navier–Stokes characteristic boundary conditions (NSCBC). The method has been
extended to multicomponent reactive flows [1,11] with different choices of primitive variables along with
the inclusion of chemical source terms at the domain’s frontiers [17]. Polifke et al. [13] proposed a reduction
of the reflection coefficient for low-frequency normal incident waves, using a ‘‘plane masking” approach for
the linear relaxation term. A low Mach number expansion has been discussed by Prosser [14], in order to
decouple convective and acoustic effects, thus allowing non-reflective conditions for the acoustic length scales.

These methods mostly rely on the assumption that the flow at the boundary can be regarded as locally one-
dimensional, aligned with the normal to the boundary. The incoming waves are therefore computed resorting
to the so-called LODI system, which directly derives from the Navier–Stokes equations written for primitive
variables in characteristic form. The terms involving derivatives in the directions defining the local boundary
plane (convection, pressure gradient and viscous fluxes) are then computed from the interior of the computa-
tional domain, but without any specific coupling with the boundary treatment. In the following, these in-plane
directions are called ‘transverse directions’ and the related terms are called ‘transverse terms’. The single-
dimensionality assumption, combined with transverse terms computed from the known interior, has proven
to perform well when the flow is almost aligned orthogonally to the boundary. Nevertheless, flow distortion
and high reflection appear when the flow crosses the boundary along different directions. The role played by
the transverse terms in these distortions has been carefully identified by Yoo et al. [24], who proposed a mod-
ification to the NSCBC approach for two-dimensional turbulent counterflow flames. They show that an
appropriate treatment of the transverse terms in the computation of incoming waves improves the accuracy
and convergence rate toward target values for selected relaxed quantities, while reducing flow distortion even
in regions characterized by strong transverse convection.

When transverse effects are included in three-dimensional computation of incoming waves, the problem
arises on how to enforce proper boundary conditions on the edges and the corners of the computational
domain. As discussed by Valorani and Favini [23], transverse terms on edges and corners are coupled with
characteristic waves traveling along directions orthogonal to adjacent boundaries. Therefore, three-dimen-
sional characteristic coupled waves must be considered. Furthermore, when different types of boundary con-
ditions have to be enforced, it is in general necessary to prescribe compatibility conditions for those boundary
conditions whose well-posedness is not inherently ensured (e.g. inlet/outlet boundary conditions where veloc-
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ity, temperature and pressure are simultaneously imposed). Not much on this regard can be found in literature
and the formulation of boundary conditions for edges and corners remains a feature somehow related to each
specific problem.

The objective of this paper is threefold. First the NSCBC improvement proposed by Yoo et al. [24], who
included transverse terms in the boundary analysis, is extended to three-dimensional flows. A systematic proce-
dure to deal with three-dimensional computational domain’s edges and corners is then proposed. Finally, com-
patibility conditions for inlet/outlet and wall/outlet nodes are presented. The resulting 3D-NSCBC approach is
tested on simplified configurations. LES results of a turbulent free jet and a turbulent impinging round-jet are
also reported. For the sake of clarity, all the details of the three-dimensional characteristic formulation leading
to the explicit derivation of the equations for the edges and corners solution are recalled in Appendix A.

2. Governing equations

The dynamics of compressible viscous flow is described by the Navier–Stokes equations, which impose the
conservation of mass, momentum and energy within the fluid element. In the present case, the system is aug-
mented with an additional transport equation for a passive scalar Z (diffusing according to the Fick law),
which carries informations on turbulent scalar mixing. In cartesian coordinates (with the Einstein summation
convention) the system of equations reads

oq

ot
þ o

oxi
ðmiÞ ¼ 0; ð1Þ

omi

ot
þ o

oxj
ðmiujÞ þ

op

oxi
¼ osij

oxj
ði ¼ 1; 2; 3Þ; ð2Þ

oqE

ot
þ o

oxi
½ðqE þ pÞui� ¼

o

oxi
ðujsijÞ ÿ

oqi
oxi

; ð3Þ

oqZ

ot
þ o

oxi
ðqZuiÞ ¼

o

oxi
qD

oZ

oxi

� �
; ð4Þ

where q is the fluid mass density, p is the thermodynamic pressure, mi ¼ qui is the momentum density along
the direction xi and qE is the total energy density (kinetic + thermal); under the assumption that the fluid is
Newtonian and described by the ideal single-component gas law, the above system is closed by the following
relations:

p

q
¼ RT ; ð5Þ

qE ¼ 1

2
qukuk þ

p

cÿ 1
; ð6Þ

Aij ¼
1

2

oui

oxj
þ ouj

oxi

� �
ÿ 1

3
dij

ouk

oxk
; ð7Þ

sij ¼ 2lAij: ð8Þ
Here, T is the absolute temperature, R is the gas constant R�=Mw, where R

� ¼ 8:32 J=ðmol KÞ and Mw is the
gas molar weight; c ¼ cp=cv is the ratio between specific heat capacities at constant pressure and constant vol-
ume, which, in the present case, are expressed as

cv ¼
R

cÿ 1
; ð9Þ

cp ¼ cv þR: ð10Þ
The dynamic viscosity of the fluid l is expressed by the Sutherland’s law:

lðT Þ ¼ lref

T

T ref

� �3=2
T ref þ S

T þ S
: ð11Þ
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Finally, the heat flux along xi, namely qi, is described by the Fourier law, while the thermal conductivity k

and the diffusion coefficient D are expressed from the dynamic viscosity, the Prandtl and Schmidt numbers:

qi ¼ ÿk
oT

oxi
; k ¼ lcp

Pr
; D ¼ l

qSc
ð12Þ

(see Table 2 for a summary of the parameters’ values used for the test-cases presented in the present paper).

3. Three-dimensional NSCBC

In NSCBC [12] the Navier–Stokes equations are written in their characteristic form to make explicit their
dependency on the acoustic waves traveling across the boundary. Characteristic waves are represented by their
amplitude time variations Li, Mi and N i, corresponding to the three physical-space directions (see Appendix
A for details). The waves propagate in such a way that some of them leave the domain, while the others enter
from outside. Incoming waves must be specified to close the boundary problem, as the outgoing ones can be
computed from interior points and one-sided differences by directly applying their definition (Eqs. (A.16),
(A.26) and (A.37)). The NSCBC approach prescribes that all the incoming wave amplitudes are imposed
under the hypothesis that the flow at the boundary can be regarded as locally one-dimensional and inviscid.
The resulting LODI system (A.20) is used to translate physical boundary conditions, expressed in terms of
time derivatives of the primitive variables, into analytical relations involving the wave amplitude variations,
such that the unknown incoming ones can be computed [12]. Once all the wave amplitudes are known, balance
equations are used to advance the solution in time ((A.17) or (A.18) if the solver integrates the equations in
conservative form).

When the flow is strongly three-dimensional at boundaries, the LODI assumption becomes too restrictive
to keep boundary reflection at an acceptable level and nonphysical flow distortions appear, especially in
regions where the flow is not aligned with the direction normal to the boundary. Furthermore, the pressure
and any other relaxed quantity cannot reach the relevant physical target value in regions where strong con-
vection in the boundary plane exists. Improved results are obtained by including in the computation of incom-
ing wave amplitudes the transverse terms, namely convection and pressure gradients developing in the
boundary plane [24].

Away from edges and corners of the computational domain, transverse terms can be evaluated from the
computed solution using interior points. This direct approach, indeed, does not pose additional issues for inlet
boundaries but, as already mentioned by Yoo et al. [24], can lead to serious numerical instabilities at outflow
boundaries. One effective remedy for this is to add a small relaxation toward a reference value for the trans-
verse terms, thus introducing a transverse damping coefficient b. As it will be shown when presenting results
from selected test-cases, an expression can be proposed to relate b to flow properties and dynamically adjust
this additional parameter.

At edges and corners of three-dimensional simulations a specific treatment is, however, needed. At these
locations, transverse terms in a given boundary plane relate to characteristic waves traveling along directions
that are orthogonal to adjacent boundary planes. The corresponding characteristic waves become coupled,
leading to the need for a 3D-NSCBC approach.

The boundary treatment is first discussed for nodes away from edges and corners, then a specific method is
proposed for edges and corners. In all the developments below, well-posedness of boundary conditions for
Navier–Stokes equations is ensured following the approach used by Poinsot and Lele [12]: inviscid relations,
corresponding to Euler boundary conditions, are first obtained and the correct number of boundary condi-
tions for the Navier–Stokes equations is then achieved supplying additional viscous conditions. For each
boundary type, the modification proposed in the present paper does not affect viscous conditions, which
are then identical to those used by Poinsot and Lele.

3.1. Face boundaries

The solution at a face boundary is advanced in time using the Navier–Stokes equations (A.17) or (A.18).
These equations have been written in terms of wave amplitudes Li.
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For a boundary that is orthogonal to x1, the Li are obtained from their relations with time derivative of
primitive variables, which are given by the system including transverse terms (in plane pressure gradient
and convection) obtained from Eq. (A.17) by neglecting the viscous and diffusive terms D only:

oq

ot
þ 1

c2
L2 þ 1

2
ðL5 þ L1Þ

� �
ÿ T 1 ¼ 0;

ou1
ot
þ 1

2qc
ðL5 ÿ L1Þ ÿ T 2 ¼ 0;

ou2
ot
þ L3 ÿ T 3 ¼ 0;

ou3
ot
þ L4 ÿ T 4 ¼ 0;

op

ot
þ 1

2
ðL5 þ L1Þ ÿ T 5 ¼ 0;

oZ
ot
þ L6 ÿ T 6 ¼ 0

8
>>>>>>>>>><
>>>>>>>>>>:

ð13Þ

with the transverse contribution:

T ¼

ÿ omt

oxt

ÿut
ou1
oxt

ÿut
ou2
oxt

ÿ 1
q

op

ox2

ÿut
ou3
oxt

ÿ 1
q

op

ox3

ÿut
op

oxt
ÿ cp out

oxt

ÿut
oZ
oxt

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ðt ¼ 2; 3Þ: ð14Þ

An alternative definition of T , using transverse fluxes computed on conservative variables, is given in
Appendix B. The waves Li are determined from this system, once physical boundary conditions are provided
to approximate oq=ot, ou=ot, op=ot, oZ=ot. These physical boundary conditions are now discussed on the basis
of Eq. (13) reorganized in terms of characteristic variables:

op

ot
ÿ qc ou1

ot

ÿ �
þ L1 ÿ T1

1 ¼ 0;

c2 oq

ot
ÿ op

ot

ÿ �
þ L2 ÿ T2

1 ¼ 0;
ou2
ot
þ L3 ÿ T3

1 ¼ 0;
ou3
ot
þ L4 ÿ T4

1 ¼ 0;
op

ot
þ qc ou1

ot

ÿ �
þ L5 ÿ T5

1 ¼ 0;

oZ
ot
þ L6 ÿ T6

1 ¼ 0;

8
>>>>>>>>>><
>>>>>>>>>>:

ð15Þ

where Tm
k indicates a characteristic transverse term in the plane perpendicular to xk relevant to the mth char-

acteristic variable

T
1
1 ¼ T 5 ÿ qcT 2;

T
2
1 ¼ c2T 1 ÿ T 5;

T
3
1 ¼ T 3;

T
4
1 ¼ T 4;

T
5
1 ¼ T 5 þ qcT 2;

T
6
1 ¼ T 6:

8
>>>>>>>>><
>>>>>>>>>:

ð16Þ

3.1.1. Subsonic non-reflecting outflow

The physical boundary condition, which links primitive variables to wave amplitudes, is obtained from the
pressure relaxation condition proposed by Rudy and Strikwerda [15] with an additional transverse relaxation
term as discussed by Yoo et al. [24]. The waves velocities are given by Eqs. (A.8)–(A.10) and depending on
their sign, Li are entering (unknown and needing an equation to be determined) or leaving the domain
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(known). For boundaries orthogonal to x1, depending on their location, the unknown incoming wave is either
L1 (at x1 ¼ Lx) or L5 (at x1 ¼ 0). The relevant boundary condition can be conveniently expressed as follows:

op

ot
þ 1qc

ou1

ot

� �
þ r

cð1ÿM2Þ
Lx

ðp ÿ p1Þ ÿ bðT/
1 ÿ T/

1;exÞ ¼ 0; ð17Þ

where r is the pressure relaxation coefficient,M is the maximum Mach number, Lx is the characteristic size of
the computational domain along x1 and b 2 ½0 : 1� is a transverse damping parameter. 1 is a function which
sets the correct sign for the velocity term depending on the value of the wave index /:

1ð/Þ ¼ /ÿ 1

2
ÿ 1 ¼

ÿ1 if / ¼ 1;

þ1 if / ¼ 5:

�
ð18Þ

For most free shear flows, the boundary condition is expected to well behave with T/
1;ex ¼ 0, as shown in the

next section. However, when an analytical steady solution of the flow is known at the boundary, the target
value of the transverse term T

/
1;ex is obtained applying equations (14) and (16):

) T
/
1;ex ¼ ÿût

op̂

oxt
ÿ cp̂

oût

oxt
ÿ 1q̂ĉût

oû1

oxt
ðt ¼ 2; 3Þ; ð19Þ

where the ð̂�Þ accent indicates the known analytical solution for the target flow.
Combining Eq. (17) with the corresponding characteristic equation from system (15), the unknown incom-

ing wave becomes

L/ ¼ r
cð1ÿM2Þ

Lx

ðp ÿ p1Þ þ ð1ÿ bÞT/
1 þ bT

/
1;ex ð20Þ

with

T
/
1 ¼ T 5 þ 1qcT 2: ð21Þ

Navier–Stokes boundary conditions are obtained by complementing the above inviscid condition with the
following viscous conditions:

os12

ox1
¼ os13

ox1
¼ oq1

ox1
¼ o

ox1
qD

oZ

ox1

� �
¼ 0: ð22Þ

3.1.2. Subsonic non-reflecting inflow

The procedure of Yoo et al. [24] is followed for inflow, away from edges and corner. The inlet is composed
of five entering waves, leading to five closures for boundary conditions. Here it is chosen to impose temper-
ature and velocity and passive scalar; other choices are possible like density or mass flow rate that will not be
discussed here. The closed system reads

op

ot
þ 1qc

ou1

ot

� �
þ g/

qc2ð1ÿM2Þ
Lx

ðu1 ÿ u10Þ ¼ 0; ð23Þ

c2
oq

ot
ÿ op

ot

� �
þ g2

qcR

Lx

ðT ÿ T 0Þ ¼ 0; ð24Þ

ou2

ot
þ g3

c

Lx

ðu2 ÿ u20Þ ¼ 0; ð25Þ

ou3

ot
þ g4

c

Lx

ðu3 ÿ u30Þ ¼ 0; ð26Þ

oZ

ot
þ g6

c

Lx

ðZ ÿ Z0Þ ¼ 0 ð27Þ

with g1; . . . ; g6 relaxation parameters (g1 and g2 negative) and the subscript 0 denoting target values for the
relevant quantities. In Eq. (23) the index / is equal to 1 or 5 depending whether the inlet is located at
x1 ¼ Lx or x1 ¼ 0, respectively; 1 sets the sign accordingly (Eq. (18)).
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The equations for the unknown entering wave amplitudes are obtained from system (15) closed with Eqs.
(23)–(27):

L/ ¼ g/
qc2ð1ÿM2Þ

Lx

ðu1 ÿ u10Þ þ ðT 5 þ 1qcT 2Þ; ð28Þ

L2 ¼ g2
qcR

Lx

ðT ÿ T 0Þ þ ðc2T 1 ÿ T 5Þ; ð29Þ

L3 ¼ g3
c

Lx

ðu2 ÿ u20Þ þ T 3; ð30Þ

L4 ¼ g4
c

Lx

ðu3 ÿ u30Þ þ T 4; ð31Þ

L6 ¼ g6
c

Lx

ðZ ÿ Z0Þ þ T 6: ð32Þ

It should be noted that this particular inflow condition does not require any additional viscous condition as
the density q—the only remaining unknown—is obtained from the continuity equation, which does not
involve any viscous term [12].

3.2. Edge boundaries

Supposing that the edge is aligned along x3 (face boundaries composing the edge are normal to x1 and x2),
the system linking primitive variables with amplitude of the waves Li and Mi, traveling in both directions x1
and x2 is obtained from a two-dimensional characteristic analysis (Eq. (A.27)) by neglecting the D term only:

oq

ot
þ 1

c2
L2 þ 1

2
ðL5 þ L1Þ

� �
þ 1

c2
M3 þ 1

2
ðM5 þM1Þ

� �
ÿ T 1 ¼ 0;

ou1
ot
þ 1

2qc
L5 ÿ L1ð Þ þM2 ÿ T 2 ¼ 0;

ou2
ot
þ L3 þ 1

2qc
ðM5 ÿM1Þ ÿ T 3 ¼ 0;

ou3
ot
þ L4 þM4 ÿ T 4 ¼ 0;

op

ot
þ 1

2
ðL5 þ L1Þ þ 1

2
M5 þM1ð Þ ÿ T 5 ¼ 0;

oZ
ot
þ L6 þM6 ÿ T 6 ¼ 0

8
>>>>>>>>>><
>>>>>>>>>>:

ð33Þ

with

T ¼

ÿ om3

ox3

ÿu3
ou1
ox3

ÿu3
ou2
ox3

ÿu3
ou3
ox3

ÿ 1
q

op

ox3

ÿu3
op

ox3
ÿ cp ou3

ox3

ÿu3
oZ
ox3

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

: ð34Þ

Aprocedure similar to the one discussed for face boundaries may be used. System (33) is combined with phys-
ical boundary conditions to compute the unknown incoming wave amplitude variations of both boundaries.
These wave amplitude variations are now coupled, therefore, in general, a linear system in the unknown waves
has to be solved. An additional problem arises when the boundaries sharing the edge are of different kind; in this
case, not only different characteristic directions have to be considered simultaneously but, depending on the
boundary types, additional compatibility conditions must be introduced to ensure numerical stability.

Note that the wall boundary condition presented in what follows is always considered as adiabatic no-slip,
therefore, the relevant inviscid conditions are augmented by the addition of the following viscous conditions:

qn ¼ 0; qD
oZ

oxn
¼ 0; ð35Þ
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subscript n indicating the direction normal to the wall. Viscous conditions for inflow and outflow boundaries
are enforced as for face boundaries (see Sections 3.1.1 and 3.1.2).

3.2.1. Outflow/outflow edge

Two characteristic-type relations may be written combining the second, the third and the fifth equations in
system (33):

op

ot
þ 1ð/Þqc ou1

ot

� �
þ L/ þ

M5 þM1

2
ÿ T 5 þ 1ð/ÞqcðM2 ÿ T 2Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ÿT/

1

¼ 0; ð36Þ

op

ot
þ 1ðwÞqc ou2

ot

� �
þMw þ

L5 þ L1

2
ÿ T 5 þ 1ðwÞqcðL3 ÿ T 3Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ÿTw

2

¼ 0; ð37Þ

where / and w are indices taking either the values 1 or 5 depending on the location of the edge as summarized
in Table 1; 1 is the switch defined in Eq. (18).

The boundary conditions are obtained from Eq. (17) written for u1 and u2:

op

ot
þ 1ð/Þqc ou1

ot

� �
þ r

cð1ÿM2Þ
Lx

ðp ÿ p1Þ ÿ bðT/
1 ÿ T/

1;exÞ ¼ 0; ð38Þ

op

ot
þ 1ðwÞqc ou2

ot

� �
þ r

cð1ÿM2Þ
Ly

ðp ÿ p1Þ ÿ bðTw

2 ÿ T
w

2;exÞ ¼ 0; ð39Þ

where T/
1;ex and Tw

2;ex may be computed from a reference steady flow by applying definition (14) written for
boundaries orthogonal to x1 and x2, respectively:

T
/
1;ex ¼ ÿût

op̂

oxt
ÿ cp̂

oût

oxt
ÿ 1ð/Þq̂ĉût

oû1

oxt
ðt ¼ 2; 3Þ; ð40Þ

T
w
2;ex ¼ ÿût

op̂

oxt
ÿ cp̂

oût

oxt
ÿ 1ðwÞq̂ĉût

oû2

oxt
ðt ¼ 1; 3Þ: ð41Þ

From Eqs. (36)–(39), the unknown waves are then solution of the system:

L/ þ 1ÿb

2
Mw ¼ r

cð1ÿM2Þ
Lx

ðp ÿ p1Þ þ ð1ÿ bÞeT/
1 þ bT

/
1;ex;

1ÿb

2
L/ þMw ¼ r

cð1ÿM2Þ
Ly

ðp ÿ p1Þ þ ð1ÿ bÞeTw

2 þ bT
w

2;ex

8
>>><
>>>:

ð42Þ

with the known terms

eT/
1 ¼ T 5 ÿ

Mw�

2
ÿ 1ð/ÞqcðM2 ÿ T 2Þ; ð43Þ

eTw

2 ¼ T 5 ÿ
L/�

2
ÿ 1ðwÞqcðL3 ÿ T 3Þ; ð44Þ

Table 1

Values of the indices / and w depending on edge location
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where /� ¼ 6ÿ / and w� ¼ 6ÿ w. It should be noted that, since 0 6 b 6 1, system (42) always admits solu-
tion, the determinant of the relevant matrix of coefficient being zero for b ¼ ÿ1 and b ¼ 3; nonetheless, some
care has to be taken in general as, depending on the particular boundaries considered, a check on this regard is
recommended.

3.2.2. Inflow/outflow edge

An analogous procedure as the one used for the outflow/outflow boundary edge could be followed in
this case. On the inflow/outflow edge, in fact, there are five incoming waves on the inflow side and one
incoming wave on the outflow side for a total number of six physical boundary conditions. Therefore, inlet
and outlet boundary conditions could be, in principle, simultaneously imposed. Nonetheless, even allowing
smooth transients for pressure, the two boundary conditions have shown problems of stability when simul-
taneously imposed. A simple remedy, which has proven effective for the configurations studied in this
work, is to set to zero the incoming wave amplitude relevant to the outflow boundary (‘‘perfectly non-
reflecting” outflow). In this way, the pressure is left free to adapt to the local flow field and tends anyway
to the expected value due to the effect of the neighboring regions. Furthermore, as the only unknown wave
amplitude on the outflow side is directly imposed, the edge become uncoupled on the two characteristic
directions and the remaining incoming waves can be computed directly from system (33) and Eqs. (23)–
(27).

Supposing for instance the inlet normal to x1 and the outflow normal to x2, the expression for the unknown
wave amplitude variations are

Mw ¼ 0 ðcompatibility conditionÞ; ð45Þ

L/ ¼ g/
qc2ð1ÿM2Þ

Lx

ðu1 ÿ u10Þ ÿ
Mw�

2
þ T 5 þ 1ð/ÞqcðT 2 ÿM2Þ; ð46Þ

L2 ¼ g2
qcR

Lx

ðT ÿ T 0Þ ÿM3 þ ðc2T 1 ÿ T 5Þ; ð47Þ

L3 ¼ g3
c

Lx

ðu2 ÿ u20Þ þ
1ðwÞ
2qc

Mw� þ T 3; ð48Þ

L4 ¼ g4
c

Lx

ðu3 ÿ u30Þ ÿM4 þ T 4; ð49Þ

L6 ¼ g6
c

Lx

ðZ ÿ Z0Þ ÿM6 þ T 6; ð50Þ

where the indices / and w and the value of 1 can be obtained from Table 1 and Eq. (18) and w� ¼ 6ÿ w. The
equation for L3 has been obtained using the following identity:

1

2qc
ðM5 ÿM1Þ ¼

1ðwÞ
2qc

ðMw ÿMw�Þ: ð51Þ

3.2.3. Wall/outflow edge

On this kind of edge, in principle, one should impose the pressure for what concerns the outlet condition,
and velocity for what concerns the wall condition (the time derivative of the velocity component normal to the
wall is set to zero). As suggested by Poinsot and Lele [12], just imposing all these quantities at the same time is
not effective, but allowing smooth transient for the pressure, namely relaxing outlet pressure, improves the
stability of the boundary condition.

Let the wall be normal to x1 and the outflow be normal to x2. Since the velocity at the wall is zero, the only
non-zero wave amplitude variations are L1;5 and M1;5 (those characterized by characteristic speeds u1 � c

and u2 � c, respectively). T 1, T 2, T 3 and T 5 are zero as well. The physical boundary conditions are expressed
by

ou1

ot
¼ 0 ð52Þ
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and Eq. (17) (written for u2). From system (33) the relevant equations are

ou1

ot
þ 1

2qc
ðL5 ÿ L1Þ ¼ 0; ð53Þ

op

ot
þ 1ðwÞqc ou2

ot

� �
þMw þ

1

2
ðL5 þ L1Þ
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

ÿTw

2

¼ 0 ð54Þ

and the solving system for the unknown L/ and Mw reads

L/ ¼ L/� ;

Mw ¼ r
cð1ÿM2Þ

Ly
ðp ÿ p1Þ ÿ ð1ÿ bÞL/� þ bT

w

2;ex

(
ð55Þ

with /� ¼ 6ÿ /. Velocity components u2 and u3 are simply forced to zero and Tw

2;ex is expressed by Eq. (41).

3.3. Corner boundaries

The system relating primitive variables with the characteristic waves is obtained from Eq. (A.38) by neglect-
ing the D term as before

oq

ot
þ 1

c2
L2 þ 1

2
ðL5 þ L1Þ

� �
þ 1

c2
M3 þ 1

2
ðM5 þM1Þ

� �
þ 1

c2
N 4 þ 1

2
ðN 5 þN 1Þ

� �
¼ 0;

ou1
ot
þ 1

2qc
ðL5 ÿ L1Þ þM2 þN 2 ¼ 0;

ou2
ot
þ L3 þ 1

2qc
ðM5 ÿM1Þ þN 3 ¼ 0;

ou3
ot
þ L4 þM4 þ 1

2qc
ðN 5 ÿN 1Þ ¼ 0;

op

ot
þ 1

2
ðL5 þ L1Þ þ 1

2
ðM5 þM1Þ þ 1

2
ðN 5 þN 1Þ ¼ 0;

oZ
ot
þ L6 þM6 þN 6 ¼ 0:

8
>>>>>>>>>><
>>>>>>>>>>:

ð56Þ

The procedure is similar to the one used for face and edge boundaries, except that in this case all the trans-
verse terms are expressed by wave amplitude variations. Once the incoming waves are solved using physical
boundary conditions, viscous conditions are enforced and the boundary nodes are advanced in time.

As in Section 3.2, we will only consider adiabatic no-slip wall boundary conditions and the relevant addi-
tional viscous conditions are obtained from Eq. (35). Viscous conditions for inflow and outflow boundaries
are enforced as for face boundaries (see Sections 3.1.1 and 3.1.2).

3.3.1. Wall/outflow/outflow corner

Let the wall be normal to x1 and the outflows be normal to x2 and x3. Since the velocity at the wall is zero,
the only non-zero wave amplitude variations are L1;5, M1;5 and N 1;5 (those characterized by characteristic
speeds u1 � c, u2 � c and u3 � c, respectively). The boundary conditions are expressed by Eq. (17) (written
for u2 and u3) and Eq. (52). From system (56) the equations to be considered are

ou1

ot
þ 1

2qc
L5 ÿ L1ð Þ ¼ 0; ð57Þ

op

ot
þ 1ðwÞqc ou2

ot

� �
þMw þ

L5 þ L1 þN 5 þN 1

2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ÿTw

2

¼ 0; ð58Þ

op

ot
þ 1ðvÞqc ou3

ot

� �
þN v þ

L5 þ L1 þM5 þM1

2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ÿTv

3

¼ 0; ð59Þ

where w and v are indices taking either the values 1 or 5 depending on the location of the corner and 1 is the
switch defined by Eq. (18). In particular, w is obtained from Table 1 and v, by analogy, is equal to 1 for x3 ¼ Lz

and 5 for x3 ¼ 0. The incoming wave relevant to the wall condition is readily solved by setting L1 ¼ L5; there-
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fore, the remaining unknown waves can be solved by applying a procedure similar to the one described for
outflow/outflow edges. The solving system then reads

L/ ¼ L/� ;

Mw þ 1ÿb

2
N v ¼ r

cð1ÿM2Þ
Ly

ðp ÿ p1Þ þ ð1ÿ bÞeTw
2 þ bT

w
2;ex;

1ÿb

2
Mw þN v ¼ r

cð1ÿM2Þ
Lz

ðp ÿ p1Þ þ ð1ÿ bÞeTv
3 þ bT

v
3;ex

8
>><
>>:

ð60Þ

with Tw
2;ex computed from Eq. (41) and

eTw

2 ¼ ÿL/� ÿ 1

2
N v� ; ð61Þ

eTv
3 ¼ ÿL/� ÿ 1

2
Mw� ; ð62Þ

T
v
3;ex ¼ ÿût

op̂

oxt
ÿ cp̂

oût

oxt
ÿ 1ðvÞq̂ĉût

oû3

oxt
ðt ¼ 1; 2Þ; ð63Þ

where /� ¼ 6ÿ /, w� ¼ 6ÿ w and v� ¼ 6ÿ v.

3.3.2. Inflow/outflow/outflow corner

The presence of the inlet condition makes it necessary to impose compatibility conditions. In analogy to
what is done on inflow/outflow boundaries, the ‘‘perfectly non-reflecting” condition is imposed on the out-
flows, thus decoupling the inlet from the outlets.

Let the inflow be normal to x1 and the outflows be normal to x2 and x3, respectively. Then, the compatibility
conditions are

Mw ¼ 0; ð64Þ
N v ¼ 0 ð65Þ

and the unknown wave amplitude variations on the inflow side are directly solved from the system (56) and the
boundary conditions (23)–(27):

L/ ¼ g/
qc2ð1ÿM2Þ

Lx

ðu1 ÿ u10Þ ÿ
Mw� þN v�

2
ÿ 1ð/ÞqcðM2 þN 2Þ; ð66Þ

L2 ¼ g2
qcR

Lx

ðT ÿ T 0Þ ÿM3 ÿN 4; ð67Þ

L3 ¼ g3
c

Lx

ðu2 ÿ u20Þ þ
1ðwÞ
2qc

Mw� ÿN 3; ð68Þ

L4 ¼ g4
c

Lx

ðu3 ÿ u30Þ þ
1ðvÞ
2qc

N v� ÿM4; ð69Þ

L6 ¼ g6
c

Lx

ðZ ÿ Z0Þ ÿM6 ÿN 6 ð70Þ

with w� ¼ 6ÿ w and v� ¼ 6ÿ v. An analogous identity as in Eq. (51) has been used to derive the equation for
L4.

3.3.3. Outflow/outflow/outflow corner

The three characteristic equations relevant to the unknown wave amplitude variations are obtained from
system (56):

op

ot
þ 1ð/Þqc ou1

ot

� �
þ L/ þ

M5 þM1 þN 5 þN 1

2
þ 1ð/ÞqcðM2 þN 2Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ÿT/

1

¼ 0; ð71Þ
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op

ot
þ 1ðwÞqc ou2

ot

� �
þMw þ

L5 þ L1 þN 5 þN 1

2
þ 1ðwÞqcðL3 þN 3Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ÿTw

2

¼ 0; ð72Þ

op

ot
þ 1ðvÞqc ou3

ot

� �
þN v þ

L5 þ L1 þM5 þM1

2
þ 1ðvÞqcðL4 þM4Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ÿTv

3

¼ 0: ð73Þ

The three necessary boundary conditions are obtained from Eq. (17) plus analogous relations for u2 and u3.
The unknown waves are then computed by solving the following system:

L/ þ 1ÿb

2
Mw þ 1ÿb

2
N v ¼ r

c 1ÿM2ð Þ
Lx

ðp ÿ p1Þ þ ð1ÿ bÞeT/
1 þ bT

/
1;ex;

1ÿb

2
L/ þMw þ 1ÿb

2
N v ¼ r

c 1ÿM2ð Þ
Ly

ðp ÿ p1Þ þ ð1ÿ bÞeTw

2 þ bT
w

2;ex;

1ÿb

2
L/ þ 1ÿb

2
Mw þN v ¼ r

c 1ÿM2ð Þ
Lz

ðp ÿ p1Þ þ ð1ÿ bÞeTv
3 þ bT

v
3;ex

8
>>>>><
>>>>>:

ð74Þ

with T/
1;ex, T

w
2;ex and Tv

3;ex obtained from Eqs. (40), (41) and (63), respectively and

eT/
1 ¼ ÿMw� þN v�

2
ÿ 1ð/ÞqcðM2 þN 2Þ; ð75Þ

eTw

2 ¼ ÿL/� þN v�

2
ÿ 1ðwÞqcðL3 þN 3Þ; ð76Þ

eTv
3 ¼ ÿL/� þMw�

2
ÿ 1ðvÞqcðL4 þM4Þ; ð77Þ

where /� ¼ 6ÿ /, w� ¼ 6ÿ w and v� ¼ 6ÿ v. Observe that the determinant of the relevant coefficients matrix
is ÿ 1

4
b3 þ 3

4
bþ 1

2
and is zero for b ¼ ÿ1 (two coincident roots) and b ¼ 2, therefore, system (74) always admits

solution for b 2 ½0 : 1�.

4. Results

Tests of 3D-NSCBC have been performed by means of a parallel solver based on the explicit finite volumes
(FV) scheme for cartesian grids. The convective terms are computed resorting to the fourth-order centered
skew-symmetric-like scheme proposed by Ducros et al. [4], while the diffusive terms are computed using a
fourth-order centered scheme. In LES tests, a blend of second- and fourth-order artificial dissipation terms
[20,18] is added in order to suppress spurious oscillations and damp high-frequency modes. Time integration
is performed using a third-order Runge–Kutta scheme [7]. Within the framework of the FV scheme, the
boundary problem reduces to the computation of boundary fluxes. On the other hand, the NSCBC approach
is generally well suited for finite differences (FD) schemes, therefore its implementation, in the present case,
requires the use of a hybrid FV–FD scheme at the boundary. We compute, then, boundary fluxes using values
of the flow variables computed on an extra grid point located at the center of each computational cell’s bound-
ary face, the extra nodes being computed using the FD approach in order to integrate the relevant equation in
conservative form (see Eqs. (A.18), (A.28) and (A.39)).

All the tests presented in the following sections have been performed using air and the relevant properties
are summarized in Table 2.

4.1. Single vortex test-case

The first test is the two-dimensional compressible vortex convected through a non-reflecting boundary. This
is a typical test used to evaluate boundary conditions and it is particularly suited to assess non-reflecting
outflows for turbulent flow simulations. The configuration corresponds to a single vortex superimposed on
a uniform flow field aligned along the x1-direction. The initial flow field is defined in terms of the stream func-
tion as
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W ¼ Cv exp ÿ r2

2R2
v

� �
þ U 0x2; ð78Þ

u1 ¼
oW

ox2
; ð79Þ

u2 ¼ ÿ oW

ox1
; ð80Þ

where Cv is the vortex strength, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
is the radial distance from the reference frame’s x3 axis and Rv is

the vortex radius. U 0 is the speed of the uniform flow field along x1. The pressure, density and temperature
can be obtained from an analytical solution. In fact, it can be shown [3] that the pressure distribution is solu-
tion of

op

or
¼ qu2h

r
; ð81Þ

where uh is the tangential velocity field in a reference frame attached to the vortex center:

uh ¼
Cvr

R2
v

exp ÿ r2

2R2
v

� �
: ð82Þ

Assuming that the temperature is constant and equal to T 0, the initial pressure and density distributions can
be computed as

pðrÞ ¼ p1 exp ÿ c

2

Cv

cRv

� �2

exp ÿ r2

R2
v

� �" #
; ð83Þ

qðrÞ ¼ pðrÞ
RT 0

ð84Þ

with c ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
cRT 0

p
the sound speed.

For the present tests, Cv was set at 5� 10ÿ3 m2=s, Rv was set at 10% of the domain size L; p1 and T 0 were
1 atm, and 300 K, respectively.

Three test-cases are presented with U 0 equal to 2 m/s, 200 m/s and 300 m/s, respectively, in order to assess
3D-NSCBC at different Mach numbers (Ma = 0.00575, 0.575 and 0.863, respectively, based on the velocity
U 0). The Reynolds number (computed from the velocity U 0 and the vortex radius Rv) for the three tests is
about 166, 16,600 and 24,900, respectively.

The computational domain is a square of dimension L ¼ 0:013m with uniform U 0 inlet velocity at the left
(x1 ¼ ÿ0:0065 m) boundary, and non-reflecting outflow at the right boundary; the relaxation parameter for
pressure r was equal to 0.28 for all the tests, which corresponds to the optimal value proposed by Rudy
and Strikwerda [15]. Increasing this value leads to a more reflective boundary condition. All the other bound-
aries were periodic.

Table 2

Air properties

Value Ref.

Mw 28:9� 10ÿ3 kg=mol Eq. (5)

c 1.4 Eq. (9)

Pr 0.72 Eq. (12)

Sc 0.72 Eq. (12)

PrT 0.90

ScT 0.90

lref 1:827� 10ÿ5 kg=ðm sÞ Eq. (11)

T ref 291.15 K Eq. (11)

S 120.0 K Eq. (11)

PrT and ScT are the turbulent Prandtl and Schmidt numbers, respectively, which have been used in LES computations.
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Figs. 1–3 show a comparison of results obtained using the standard NSCBC non-reflecting outflow and the
3D-NSCBC. The represented quantities are the pressure field, the vorticity contours, the longitudinal velocity
contours and the contours of the velocity gradient tensor invariant Q defined as

Q ¼ ÿ 1

2

oui

oxj

ouj

oxi
¼ ÿ 1

2
SijSij ÿ

1

2
x

2

� �
; ð85Þ

where Sij is the strain tensor and x is the vorticity vector (�kij is the Levi–Civita symbol):

Sij ¼
1

2

oui

oxj
þ ouj

oxi

� �
; ð86Þ

xi ¼ �ijk
ouk

oxj
: ð87Þ

The frames have been taken at three different times and each figure refers to a different Mach number test.
The pressure, in particular, is expressed in terms of its relative value, with respect to the far field pressure p1,
normalized by the initial maximum pressure drop at the center of the vortex:

p�ðx; tÞ ¼ pðx; tÞ ÿ p1
pð0; 0Þ ÿ p1

: ð88Þ

The initial map of p� is then expected to be equal to 1 in the vortex center and 0 in the far field; once the
vortex has left the domain, p� is expected to be identically 0 all over the domain.

All the computations have been done setting T1
1;ex ¼ 0 (see Eq. (20)); it is interesting to note that, under this

particular assumption—motivated by the fact that no transverse terms are expected for such a flow after the
vortex has left the domain—the standard LODI assumption is retrieved in the limit of the transverse damping
parameter b equal to 1. On the other hand, from numerical tests performed, it appears that in general the opti-
mal value for b is related to the typical Mach number for the specific flow. For the vortex problem, indeed, the
best choice for the transverse relaxation coefficient is

b ’ Ma ¼ U 0ffiffiffiffiffiffiffiffiffiffiffiffi
cRT 0

p : ð89Þ

For MaP 1, therefore, we would expect the modified boundary condition to recover the standard LODI
assumption, which, in agreement with the Ma = 1.1 test-case presented by Poinsot and Lele [12], produces
negligible flow distortion and no acoustic waves re-entering the domain as the flow regime is supersonic.

When the flow is subsonic, standard NSCBC is still able to prevent fairly well distortion of vorticity iso-
lines when the vortex leaves the domain; this is true forMa ¼ 0:575 andMa ¼ 0:863 but not for very low Mach
number flows (see Fig. 1(a)), as already shown by Prosser [14], where vorticity contours undergo significant
distortion at the boundary. Furthermore, the standard non-reflecting boundary produces significant distortion
of the longitudinal velocity and Q contours: also in this case, the effect is more and more pronounced when
reducing the Mach number but it seems that these quantities are slightly more affected (the flow tends to align
orthogonally to the boundary and a disturbance in the strain is produced). On the other hand, the pressure
field shows a somehow opposed behavior: boundary generated pressure noise amplitude becomes more and
more important when increasing the Mach number but, obviously, also less and less able to re-enter the
domain. For the Ma = 0.575 test, a pressure perturbation with a total amplitude that is about 43 times higher
than the initial vortex pressure drop is observed at the boundary (see Fig. 2(a)). Nonetheless, even at low
Mach, the pressure field is significantly distorted as shown in Fig. 4(a).

The proposed 3D-NSCBC produces almost no distortion in vorticity, longitudinal velocity and Q contours
meaning that vorticity is well conserved and no additional strain is generated at the boundary for all the Mach
numbers (Figs. 1–3(b–d–f)). Furthermore, the pressure field distortion is dramatically reduced and the pres-
sure perturbation amplitude is reduced of about a factor 6, 214 and 60 for the low, mid and high Mach
test-cases, respectively. Pressure contours for the low Mach number case are shown in Fig. 4(b) where the
expected profiles—concentric circles—are quite well reproduced.
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Fig. 1. Vortex test: Ma ¼ 0:00575. Standard NSCBC (a–c–e) and 3D-NSCBC (b–d–f). Normalized pressure field (see Eq. (88)) and

longitudinal velocity contours (a, b); vorticity contours (c, d); Q contours (e, f). Frames at increasing time from left to right.
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Fig. 2. Vortex test: Ma = 0.575. Standard NSCBC (a–c–e) and 3D-NSCBC (b–d–f). Normalized pressure field (see Eq. (88)) and

longitudinal velocity contours (a, b); vorticity contours (c, d); Q contours (e, f). Frames at increasing time from left to right.
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Fig. 3. Vortex test: Ma = 0.863. Standard NSCBC (a–c–e) and 3D-NSCBC (b–d–f). Normalized pressure field (see Eq. (88)) and

longitudinal velocity contours (a, b); vorticity contours (c, d); Q contours (e, f). Frames at increasing time from left to right.
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Fig. 5 shows, for the three test-cases, the error on the computed centerline boundary pressure (at x1 ¼ L=2
and x2 ¼ 0) relative to a benchmark solution computed over an extended domain of length 2L:

Fig. 4. Vortex test: pressure contours as the vortex crosses the boundary (Ma = 0.00575). Standard NSCBC non-reflecting outflow (a);

3D-NSCBC non-reflecting outflow (b).
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Fig. 5. Vortex test: time evolution of the relative error in pressure with respect to the benchmark solution on the extended domain.

Sampling point is located at the boundary, on the vortex centerline; tref ¼ L=ð5U 0Þ.
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erðx; tÞ ¼
pðx; tÞ ÿ p0ðx; tÞ

p0ðx; tÞ ; ð90Þ

where x denotes the sampling location and p0 is the pressure computed on the benchmark simulation.
As expected, the improvement with the modified boundary condition is more evident at higher Mach num-

bers where the amplitude of the pressure disturbance generated using the LODI non-reflecting outflow is
higher; in these cases, using the modified approach, the spurious pressure wave is almost completely avoided
and the computed solution follows quite well the benchmark solution. Even at low Mach, the new proposed
method reduces the error of about a factor 2. In any case, the novel approach avoids any oscillatory behavior:
the relative error is always positive during all the vortex transition event, meaning that the pressure drop at the
vortex core is slightly under-predicted when the vortex reaches the boundary.

4.2. Single vortex with flow inversion

Another two-dimensional vortex test is presented in this section. The vortex strength Cv has now been
increased in order to produce a relatively strong reversed flow at the outflow. This is a particularly stringent
test for non-reflecting boundary conditions, as the reversed flow requires the specification of additional infor-
mation, coming from the outside of the computational domain, which is hard to be prescribed a priori.

For the present test, Cv ¼ 3� 10ÿ1 m2=s, Rv was set at 10% of the domain size L, p1 ¼ 1 atm, T 0 ¼ 300 K
and the convective velocity U 0 was set at 100 m/s (Ma ¼ 0:286 and Re ¼ qU 0Rv=l ’ 8300). The relaxation
parameter for pressure r was set at 0.28 and the transverse relaxation parameter b ¼ 0:286 ðT1

1;ex ¼ 0Þ.
The value of Cv is now high enough to create a region of reversed flow, as it can be observed in the initial

velocity profile in Fig. 6, where horizontal velocity attains a negative peak of about 40 m/s for
0:0007 < x2 < 0:002. In those parts of the outflow boundary where reversed flow is created, the standard per-
fectly non-reflecting procedure is applied and all the entering waves traveling with convective velocity u1—
namely, L2, L3, L4 and L6—are set to zero.

Fig. 7 shows the behavior of the 3D-NSCBC technique compared to the standard NSCBC in terms of pres-
sure error; as in the previous section, the error has been estimated over a benchmark solution computed on an
extended computational domain (two times longer). The top plot shows a normalized global error measure
defined as

eðtÞ ¼
P

i;j;kðpi;j;kðtÞ ÿ p0i;j;kðtÞÞ
2

h i1=2

P
i;j;kðp0i;j;kðtÞÞ

2
h i1=2 ; ð91Þ

where the i; j; k subscript refers to the grid location and p0 is the pressure computed on the benchmark sim-
ulation. The bottom plot shows the relative error measured on a point located at the outflow boundary on the
vortex centerline (see Eq. (90)).

Fig. 8 shows the normalized global error in vorticity, which is defined in analogy with Eq. (91) as
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Fig. 6. Vortex test with flow reversal: initial u1 velocity profile along a vertical plane passing through the vortex center.
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exðtÞ ¼
P

i;j;kðxi;j;kðtÞ ÿ x0
i;j;kðtÞÞ

2
h i1=2

P
i;j;kðx0

i;j;kð0ÞÞ
2

h i1=2 : ð92Þ

Even when the vortex strength is enough to create flow inversion at the outflow, a certain improvement is
observed over the standard NSCBC approach, when using the 3D-NSCBC technique. In terms of normalized
global measures, pressure error is reduced by a factor of about 2; with regards to the vorticity, the error peak is
more than four times less than in the simulation performed with standard mono-dimensional boundary con-
ditions. This is not surprising, as the 3D-NSCBC approach is expected to get advantage by the inclusion of
transverse effects, therefore allowing a correct propagation of vorticity across the boundary.

4.3. Vortex dipole

In this section a test is presented concerning a convected dipole of co-rotating vortices. This problem is
characterized by a certain level of unsteadiness as the two vortices slowly rotate around each other. The flow
field is initialized with the following stream function [14]:

W ¼ Cv exp ÿ r21

2R2
v

� �
þ exp ÿ r22

2R2
v

� �� �
þ U 0x2 ð93Þ
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Fig. 7. Vortex test with flow reversal: time evolution of the pressure error. Global normalized error (top); relative error (bottom) for a

point located at the boundary, on the vortex centerline; tref ¼ L=ð5U 0Þ.
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Fig. 8. Vortex test with flow reversal: time evolution of vorticity normalized error; tref ¼ L=ð5U 0Þ.
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with

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ ðx2 þ dÞ2

q
; ð94Þ

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ ðx2 ÿ dÞ2

q
: ð95Þ

The vortex strength Cv was equal to 1:25� 10ÿ3 m2=s, Rv and d were set at 10% and 15% of the transverse
domain size L, respectively and the free-stream velocity U 0 was set at 0.5m/s (Ma=0.00144 and
Re ¼ qU 0Rv=l ’ 42). The relaxation parameter for pressure r and the transverse relaxation parameter b were
0.28 and 0.00144, respectively ðT1

1;ex ¼ 0Þ.
Again in this case we performed a reference simulation over a longer domain of length 2L in order to have a

benchmark solution to compare with. The relevant results, in terms of pressure (Eqs. (90) and (91)) and vor-
ticity (Eq. (92)) errors are shown in Figs. 9 and 10, respectively. Local relative error, in particular, has been
sampled at the boundary on two points, P1 and P2, corresponding approximately to the upper and lower vor-
tex centers, respectively.

Results, both in terms of pressure and vorticity errors, are generally in line with those presented in the pre-
vious sections. It should be noted that, due to the slow rotation of the two vortices around each other, the
lower and the upper vortex’s centers cross the outflow boundary at different times, namely t=tref ’ 2:1 and
t=tref ’ 3:2, respectively (as it was inferred observing the pressure field computed on the benchmark solution).
As the maximum normalized pressure error is, in general, attained at the moment the vortex core leave the
domain, the two peaks in the global normalized error curve (Fig. 9 on top) indicate precisely those two
moments. Interestingly, the standard NSCBC boundary produces a shift to the left of the peaks: the pressure
field is perturbed in such a way that the two vortices seem to leave the domain earlier than expected. On the
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Fig. 9. Vortex dipole test: time evolution of the pressure error. Global normalized error (top); relative error for a point located at the

boundary, on the upper vortex centerline (middle); relative error for a point located at the boundary, on the lower vortex centerline

(bottom); tref ¼ L=ð5U 0Þ.
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other hand, no shift is observed in the error curve relevant to the simulation performed using the 3D-NSCBC
outflow.

Again, the most evident improvement is obtained in terms of vorticity, the relevant normalized global error
is about three times lower when using the 3D-NSCBC technique.

Fig. 11 shows the normalized pressure p� (see Eq. (88)) and the iso-contours of the longitudinal velocity u1
at three consecutive instants in time. The benchmark solution over the first half of its computational domain is
depicted on top (Fig. 11(a)), the solution computed using the 3D-NSCBC approach in the middle (Fig. 11(b))
and the solution computed using the standard NSCBC at the bottom (Fig. 11(c)). The frames have been cho-
sen to show the moment the lower vortex leaves the domain. The 3D-NSCBC is still able to allow a fairly good
reproduction of the expected solution, both in terms of pressure map and velocity field. On the other hand, the

0.0e+00

1.2e-01

2.4e-01

 0  1  2  3  4  5
ε

ω

t/t
ref

Standard NSCBC

3D-NSCBC

Fig. 10. Vortex dipole test: time evolution of vorticity normalized error; tref ¼ L=ð5U 0Þ.

Fig. 11. Vortex dipole test. Benchmark solution on first half of domain (a), 3D-NSCBC (b) and Standard NSCBC (c) on full domain.

Normalized pressure field (see Eq. (88)) color map and longitudinal velocity contours. Frames at increasing time from left to right.
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standard NSCBC produces a strong perturbation to the pressure field—a pressure perturbation with a total
amplitude of about 370% the initial pressure drop is observed in the second frame of Fig. 11(b)—and the vec-
tor field becomes quite distorted, especially after the lower vortex has left the domain.

4.4. Spherical pressure wave

The fourth test-case is a tridimensional flow configuration designed to assess the behavior of the proposed
approach for edges and corners. The computational domain is a cube of side L ¼ 0:013 m with non-reflecting
outflows on all the six faces, Outflow/outflow edge conditions on all the 12 edges and Outflow/outflow/out-
flow corner conditions on all the eight corners.

The pressure field was initialized with a spherical pressure pulse of amplitude d:

pðrÞ ¼ p1 1þ d exp ÿ r2

2R2
p

 !" #
; ð96Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23

p
is the distance from the center of the computational domain and Rp is the character-

istic dimension of the pressure pulse. Assuming that the temperature is constant and equal to T 0, the initial
density distribution can be computed from the state equation: qðrÞ ¼ pðrÞ=ðRT 0Þ.

For the present test, d was set at 0.001, Rp was set at 5% of the domain size L, p1 ¼ 1 atm, and T 0 ¼ 300 K.
The flow field was initialized at rest and then left to evolve in order to compare the evolution of the spherical
pressure wave front—especially when approaching the computational domain edges and corners—when using
standard NSCBC and 3D-NSCBC approach.

As in the previous test, the computation was done setting T�
k;ex ¼ 0 (superscript � equal to 1 or 5 depending

on the outflow’s location and k ¼ 1; 2; 3) over all the outflows, as the steady state is expected to be character-
ized by uniform pressure and zero velocity. With regards to the transverse damping parameter b, considering
what has been observed in the vortex test-case, it seemed reasonable to use a value somehow related to a typ-
ical Mach number for this particular flow. A possible choice is then the maximum Mach number relevant to
the local fluid displacement produced by the acoustic wave. As it will be shown, this simple approach gives
fairly good results. On the other hand, some tests carried out varying b have given an optimal value of about
0.5, which is 4 order of magnitude higher than the mentioned Mach number. We report in what follows the
results from three tests which have been made changing both the transverse relaxation coefficient and the pres-
sure relaxation coefficient: b ¼ Mamax and r ¼ 0:28; b ¼ Mamax and r ¼ 3:00; b ¼ 0:5 and r ¼ 0:28.

Qualitative results in terms of pressure field have been extracted over the two cutting planes P1 and P2
depicted in Fig. 12. These planes were chosen to assess the pressure field distortion on corners and edges,
respectively.

With regards to test T3, Fig. 13 shows the pressure field and pressure contours, at two slightly different time-
steps, when the pressure wave fronts are well cut by the domain boundaries. As expected, the LODI assumption
(standard NSCBC) is too restrictive for such a tridimensional flow and the introduction of transverse effects at
the boundary helps in reducing flow distortion, especially in regions where the flow field is not perpendicular to
the outlet (i.e. toward edges and corners). The 3D-NSCBC technique, instead, is able to preserve pressure wave
front curvature, whereas the standard non-reflecting outflow shows a tendency to reduce curvature or even to
reverse it (see, for instance, pressure contours at the top left corner of Fig. 13(c)). The level of numerical reflec-
tion is significantly reduced too, as it can be observed in the region just behind the pressure wave. The results
from tests T1 and T2 (not shown) are slightly worse but still better than those obtained with the LODI assump-
tion. Moreover, no significant difference has been observed when increasing r, meaning that the modified
NSCBC allow a certain freedom in the choice of the pressure relaxation coefficient.

It should be noted that the present configuration is a particularly tough test-case for both NSCBC and 3D-
NSCBC non-reflecting outflows. The pressure wave, as expected, is accompanied by two opposed local dis-
placements of equal amplitude, as it is shown in Fig. 14, where the velocity field is superimposed to the pres-
sure map. The presence of local back-flow regions at the outlet poses the additional problem about how
incoming characteristic waves traveling with the convective velocity (i.e. characteristic waves with indices 2,
3, 4 and 6) should be imposed. Previous tests have shown that just ‘‘ignoring” the possibility of a reversed flow
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event and keep computing the relevant characteristic wave amplitudes using interior points may lead to insta-
bility problems, especially when the back-flow is particularly persistent in time. An efficient solution is to set
these convected incoming waves to zero in regions of local back-flow. The drawback of this simplistic
approach is, of course, a slight reduction of boundary transparency.

A measure of the error has been extracted using a benchmark solution computed on a two times wider
domain. Three different locations on the boundary (see Fig. 12) have been taken into account: boundary face
center (L1), boundary edge center (L2) and boundary corner (L3). The local relative absolute error on pressure
for these points has been measured as

erðx; tÞ ¼
jpðx; tÞ ÿ p0ðx; tÞj

p0ðx; tÞ ; ð97Þ

where x denotes the sampling location and p0 is the pressure computed on the reference simulation. Further-
more, the overall performance of the 3D-NSCBC approach has been quantified resorting to the normalized
error measure defined in Eq. (91).

Fig. 12. Spherical pressure wave test: position of the cutting planes P1 and P2 and of the sampling locations L1, L2 and L3.

Fig. 13. Spherical pressure wave test T3: pressure map and pressure contours on plane P1 (a,b) and P2 (c,d). Standard NSCBC non-

reflecting outflows (a, c); 3D-NSCBC non-reflecting outflows (b, d).
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Figs. 15 and 16 show the relevant results. It should be noted that for t=tref ’ 0:2 the reference solution (big-
ger domain) is expected to become more and more affected by its own boundary and the comparison becomes
meaningless: this is marked by a vertical dashed line limiting the region of interest.
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Fig. 15. Spherical pressure wave test: normalized error on pressure for test-case T1 (a) and test-case T2 (b). Global normalized error on
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Fig. 14. Spherical pressure wave test: velocity field and pressure map on plane P1 (benchmark simulation). U ref ¼ 9:29 m=s,

pref ¼ 101:23 Pa.
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In general, the maximum error—as per Eq. (91)—occurs, of course, during the period when the boundaries
are crossed by the pressure pulse. With regards to tests T1 (low relaxation) the error level is less than about
0.14% and no significant improvement is observed using 3D-NSCBC approach. On the other hand, when the
relaxation coefficient is increased (T2), the simulation performed resorting to NSCBC hypothesis is character-
ized by a higher error, meaning that the boundary conditions are less transparent and numerical reflected pres-
sure waves have higher amplitude. The 3D-NSCBC, on the other hand, maintains the error almost unchanged,
and the level of boundary reflection is only slightly increased.

In terms of local relative error, the novel approach gives, in general, more accurate results, showing a favor-
able tendency to produce numerical reflected waves of small amplitude; also in this case, when increasing r,
the LODI approximation (standard NSCBC) produces higher reflection, whereas the modified approach
remains significantly more transparent, the level of boundary reflection being marginally affected by the pres-
sure relaxation coefficient r.

Test-case T3 gives the better performance (see Fig. 16). In this particular case, the normalized maximum
error is reduced of about a factor 2 and the local relative error is significantly reduced even when the pressure
pulse crosses the critical locations L2 and L3.

Fig. 17 shows a comparison about the evolution of the pressure wave. The pressure wave was looked at
different time-steps before it had reached the boundary and radial plots were extracted at each time-step (sym-
bols). As expected for a spherical wave, the pulse amplitude decreases continuously as the wave front expands.
Regarding the pressure pulse as a signal traveling with the speed of sound c, the time evolution of pressure can
be rescaled as a radial plot using the following equivalence relation between space and time for such a wave:

f ðr ÿ ct0Þ � f ðr0 ÿ ctÞ with ct0 ¼ r0; ð98Þ
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) r ÿ r0 ¼ r0 ÿ ct ð99Þ
with c ’ 347:6 m=s and r0 the radial distance of the time signal’s sampling location.

Once the pressure front meets the boundary, the LODI assumption is unable to retain the correct physical
information about the tridimensionality of the flow: the pressure front stops behaving as a spherical wave and
reaches the edge and, later on, the corner retaining almost the same amplitude. On the other hand, the 3D-
NSCBC outflow and the proposed edge/corner technique, is remarkably capable of preserving the correct
physical information and the pressure front reaches the boundary edges and corners with the expected reduced
amplitude.

Finally, a qualitative comparison of the computed wave front at three subsequent time-steps is shown in
Fig. 18. The wave front is shown by means of pressure iso-surfaces relevant to a normalized pressure value
of 1000.98 (pref ¼ 101:23 Pa) and is expected to be perfectly spherical; results are relevant to the test-case
T3. The innermost and the outermost surfaces have been chosen in order to ‘‘enclose” the pressure pulse. Spu-
rious numerical reflection is expected to be generated starting from the moment the outermost surface crosses
the boundary; the effects are then visible on what follows, namely, the innermost surface. As it can be
observed, the 3D-NSCBC outflows allow the wave front curvature to be correctly preserved. Negligible reflec-
tion is produced and the wave front undergoes minimal distortion even when the pressure pulse is well outside
the computational domain (Fig. 18(c)). On the contrary, the computation performed resorting to the LODI
assumption is characterized by significant distortion of the core pressure field; even the outermost surface itself
is progressively deformed with local regions where the curvature is reversed (see Fig. 18(e) and (f)).

4.5. Jet flow configurations

We have analyzed some basic test-cases on simple configurations so far, in order to assess the behavior of
the 3D-NSCBC non-reflecting outflows when compared to the standard LODI (NSCBC) assumption. In this
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section we present qualitative results from two simulation of more complex geometries: (a) LES of compress-
ible turbulent free round-jet and (b) LES of compressible turbulent impinging round-jet.

Though only qualitative, as already said, these test were chosen to apply the novel approach on configura-
tions involving non-reflecting inlet/outlet coupling, as well as all the types of edge/corner conditions presented
in the precedent sections.

As just mentioned, both the simulation were performed in turbulent regime resorting to the LES technique.
Within the framework of LES approach, the Navier–Stokes equations are filtered with a low-pass filter, the
low-frequency components of the flow field—those which represent the large scale structures of the flow—
being directly resolved, and the coupling term arising from the non-linear convective term being modeled
by the sub-grid scale (SGS) model. We adopt an implicit filtering approach, therefore, the filter’s cutoff length
D is equal to the local grid spacing, while SGS terms are modeled using the eddy viscosity assumption of the
wall-adapting local eddy-viscosity model proposed by Nicoud and Ducros [10].

4.5.1. Turbulent free round-jet

The computational domain is a box of dimensions 14D� 5D� 5D with D ¼ 0:0026 m the jet diameter
(200� 80� 80 grid points). The grid is uniform along x1 and slightly stretched along x2 and x3 in order to bet-
ter resolve the jet shear layer; transverse refinement was limited to maintain a maximum stretching ratio of
about 1.06 over consecutive cells. The resulting grid spacing is: Dxt=D ’ 0:0527 on the axis, Dxt=D ’ 0:0431
at xt ¼ �D=2 and Dxt=D ’ 0:1312 at xt ¼ �2:5D ðt ¼ 2; 3Þ.

The inflow is located at x1 ¼ 0 and the modified subsonic non-reflecting inflow is used, with the velocity
relaxation parameter g5 set at 3.58. The same value was set for the other inlet relaxation parameters:

Fig. 18. Spherical pressure wave test (T3): pressure iso-surfaces evolution (iso-value p=pref ¼ 1000:98). 3D-NSCBC non-reflecting outflows

(a–c), standard NSCBC non-reflecting outflows (d–f).
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g2 ¼ ÿ3:58 and g3 ¼ g4 ¼ g6 ¼ 3:58. The target inlet velocity was imposed using the power law profile for tur-
bulent pipe flow:

UðrÞ
U cl

¼ 1ÿ 2r

D

� �1=n

; ð100Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 þ x23

p
is the distance from the jet axis, U cl is the centerline velocity and the parameter n was set

at 7.4; the ratio between bulk velocity Ub and centerline velocity U cl is about 0.82. The value of Ub was com-
puted fixing the value of the jet’s Reynolds number: ReD ¼ qUbD=l ¼ 23; 000. A correlated random noise [8]
was superimposed to the velocity profile with an intensity of 0.8% of the bulk velocity Ub. The inlet temper-
ature was fixed at 300 K.

All the other boundaries are non-reflecting outflows with pressure relaxation parameter r set at 0.28 and
target pressure equal to 1 atm. The assumed exact transverse terms were set at zero, which seemed a reason-
able approach in consideration of the results obtained in the previous tests. The transverse relaxation param-
eter b was set at 0.19, a typical value of the Mach number for this specific flow, as it has been evaluated from a
precursor simulation performed with b equal to Ub=c. Inflow/outflow edge conditions are used on the four
bottom edges and Inflow/outflow/outflow corner conditions are used on the relevant four joining corners;
Outflow/outflow edge conditions are used on the eight remaining edges and Outflow/Outflow/Outflow corner
conditions on the four top corners (see Fig. 19). The simulation was started from fluid at rest and at reference
condition (1 atm, 300 K) all over the domain.

The developed flow field is depicted in Fig. 19, where the coherent vortical structures are represented resort-
ing to the Q criterion. Pressure and passive scalar distributions over axial planes are shown too. Despite the
fairly small computational domain used, no perturbation coming from the boundaries is observed: the

Fig. 19. Free round-jet with 3D-NSCBC: Q ¼ 0:5 contours (center), passive scalar (left) and pressure (right) distributions over orthogonal

axial planes (t ¼ 157:1D=Ub).
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pressure field reflects the presence of vortical structures and is smooth and on the target values in regions not
affected by the flow. The compatibility conditions for inlet/outlet edges and corners allow perfect transition
from the inlet to the outflow boundaries without producing any ‘‘square-shaped” pressure pattern. The com-
plex of vortical structures which develops along the jet, is able to leaves the domain through the outflows with-
out being significantly perturbed (see Fig. 20).

On the other hand, the same simulation performed using the standard NSCBC approach—see Fig. 21—
underwent a destabilization of the pressure, originating on an outflow’s corner with a peak of low pressure;
this destabilization caused the jet to collapse toward the low pressure region as it can be observed in the figure.
Moreover, the inlet side is far more noisy and a chessboard pattern is visible on the pressure map over the inlet
plane. Looking at the vortical structures, turbulent structures seem a bit less developed, especially at the begin-
ning of the jet. The problem is clearly linked to the observed inlet pressure noise (see axial pressure map on the
right of Fig. 21), which interacts with the shear layer development and prevents the appearance of Kelvin–
Helmholtz-type instabilities up to a distance of about one diameter from the jet’s nozzle.

From the above results, it is clear that such a simulation is not feasible with standard NSCBC unless: (a) a
greater value of the pressure relaxation coefficient r is used in order to better control the pressure at the
boundary (thus leading to higher reflection); (b) a wider computational domain is used in order to prevent
the jet from falling into a lateral outflow. This notwithstanding, the inlet noise could remain an issue.

4.5.2. Turbulent impinging round-jet

For this last test-case, the computational domain is a box of dimensions 2D� 7D� 7D with D ¼ 0:0026 m
the jet diameter (90� 146� 146 grid points). The grid is refined along x1 in the near-wall region and slightly
stretched along x2 and x3 in order to better resolve the jet shear layer; refinements in the three directions were
limited to maintain a maximum stretching ratio of about 1.04 over consecutive cells. The resulting grid spacing
along x1 is: Dx1=D ’ 0:0443 at the jet’s nozzle exit and Dx1=D ’ 0:0042 at the wall. The grid spacing along x2
and x3 is: Dxt=D ’ 0:033 on the axis, Dxt=D ’ 0:0261 at xt ¼ �D=2 and Dxt=D ’ 0:1251 at xt ¼ �3:5D
ðt ¼ 2; 3Þ.

The inflow is located at x1 ¼ 0 with the following inlet relaxation parameters: g3;4;5;6 ¼ ÿg2 ¼ 1:28. The tar-
get inlet velocity was imposed using the power law profile for turbulent pipe flow (Eq. (100)) with n ¼ 7:215
ðUb=U cl ¼ 0:8247Þ. The value of Ub was computed fixing the value of the jet’s Reynolds number:
ReD ¼ qUbD=l ¼ 23; 000. Also in this case, a correlated random noise was superimposed to the velocity pro-
file (intensity 0:8%Ub) and the imposed inlet temperature was fixed at 300 K.

The four lateral boundaries are non-reflecting outflows with r ¼ 0:28 and target pressure equal to 1 atm.
The assumed exact transverse terms were set according to the inviscid potential solution for the axisymmetric

stagnation-point flow [16] with b ¼ 0:18, the typical outflow Mach number for this flow. The bottom boundary
is an adiabatic no-slip wall. Inflow/outflow edge conditions are used on the four top edges and inflow/outflow/
outflow corner conditions are used on the relevant four joining corners; outflow/outflow edge conditions are

Fig. 20. Free round-jet with 3D-NSCBC: detail of Q ¼ 0:5 contours at the boundary.
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used on the four lateral edges, wall/outflow edge conditions are used on the four bottom edges and wall/out-
flow/outflow corner conditions are used on the four bottom corners (see Fig. 23). The simulation was started
from fluid at rest and at reference condition (1 atm, 300 K) all over the domain.

Fig. 21. Free round-jet with standard NSCBC: Q ¼ 0:5 contours (center), passive scalar (left) and pressure (right) distributions over

orthogonal axial planes ðt ¼ 158:1D=UbÞ.

Fig. 22. Impinging round-jet: transverse terms influence on flow distortion. Iso-surfaces of velocity field and wall pressure map in the early

stages of the simulation with standard NSCBC boundary conditions (right) and with 3D-NSCBC (left).

G. Lodato et al. / Journal of Computational Physics 227 (2008) 5105–5143 5135



A preliminary test, made on a quite coarse mesh (20� 42� 42 grid points), is presented in Fig. 22 where the
standard NSCBC non-reflecting outflow is compared with the 3D-NSCBC in terms of flow-field distortion.
Iso-surfaces of velocity and wall pressure map are shown at the moment the big initial toroidal vortex encoun-
ters the domain boundaries. The inclusion of transverse terms allows for a significant reduction in terms of
flow distortion and numerical noise; the latter, can be observed as a small perturbation in the vicinity of
the impingement zone.

The developed flow field is shown by its coherent vortical structures (Q ¼ 0:5 iso-surfaces) in Fig. 23. Pres-
sure and passive scalar distributions over axial planes are projected to the sides and the wall temperature map
is shown at the bottom. No significant numerical perturbation is observed on turbulence development, nor in
the pressure field; moreover, the wall/outflow compatibility conditions exhibit fairly good robustness and
numerical stability.

5. Concluding remarks

A three-dimensional treatment of boundary conditions at edges and corners of fully compressible flow com-
putational domains has been discussed. This very sensitive point of boundary condition was found related to
the treatment of convection and pressure gradient developing in the direction parallel to boundary faces, also
called transverse terms.

A method involving the inclusion of these transverse effects in the computation of the incoming wave ampli-
tude variations is presented. This method removes the original LODI assumption which is, in general, too
stringent to correctly deal with turbulent flows. The work is grounded on the method proposed by Yoo
et al. [24] regarding bidimensional flows, which poses additional problems of wave coupling at the edges

Fig. 23. Impinging round-jet: Q ¼ 0:5 contours (center), passive scalar (left) and pressure (right) distributions over orthogonal axial planes

and temperature (bottom) distribution over the impingement wall ðt ¼ 52:4D=UbÞ.
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and corners of three-dimensional computational domain. A systematic approach to solve edges and corners
has been presented and compatibility conditions for inflow/outflow and wall/outflow boundaries discussed.
The general methodology to organize the incoming and outcoming waves approximation is based on the
NSCBC approach by Poinsot and Lele [12].

The novel technique has shown significant reduction of flow distortion and boundary reflection even when
the configuration is characterized by high tridimensionality of the flow field, accompanied by obliquely prop-
agating waves. The obtained 3D-NSCBC non-reflecting outflow, in particular, is characterized by an addi-
tional relaxation parameter for transverse terms damping. This poses the problem of specifying a
reasonable exact solution for the flow under study. The tests performed have revealed a quite interesting fea-
ture on this regard: even when no information is available a priori for the steady solution, transverse relaxa-
tion can still be done toward identically zero terms. However, the optimal choice for the transverse relaxation
parameter is, in general, related to the typical Mach number for the flow considered.

The proposed solution to the edge/corner wave coupling problem, as well as the compatibility conditions
for inflow/outflow and wall/outflow connecting regions, have revealed good numerical stability and low level
of spurious boundary reflection for acoustic waves traveling toward the edges and corners of the computa-
tional domain, thus allowing high boundary transparency even when computing complex flows.

The 3D-NSCBC method is applicable to compressible turbulent flows in the full subsonic range and is then
suitable for a wide range of flow configurations and engineering applications. Furthermore, the method can be
readily extended to chemically reacting flows with some additional development.
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Appendix A. The characteristic form of the Navier–Stokes equations

Eqs. (1)–(4) are more conveniently recast in vector form as follows:

o eU
ot

þ oeF i

oxi
þ oeD i

oxi
¼ 0; ðA:1Þ

where eU ¼ jq qu1 qu2 qu3 qE qZjT is the vector of conservative variables and eF k is the flux vector of
conservative variables along direction xk; vectors eDk represent viscous and diffusive terms only. eF k and eDk are
explicitly written as follows (dij is Kronecker’s delta):

eF k ¼

quk

m1uk þ d1kp

m2uk þ d2kp

m3uk þ d3kp

ðqE þ pÞuk
qZuk

0
BBBBBBBB@

1
CCCCCCCCA

; eDk ¼

0

ÿ2lA1k

ÿ2lA2k

ÿ2lA3k

ÿ2lujAkj þ qk

ÿqD oZ
oxk

0
BBBBBBBBB@

1
CCCCCCCCCA

; ðA:2Þ

the relevant quantities being defined in Section 2.
Let the vector of primitive variables be U ¼ jq u1 u2 u3 p ZjT; following the same analysis proposed

by Hirsch [5] and Thompson [21,22], Eq. (A.1) is then rewritten in terms of primitive variables as

oU

ot
þ F i oU

oxi
þD ¼ 0; ðA:3Þ

where D ¼ Pÿ1
oeD i=oxi includes all the viscous and diffusive terms and Fk is the non-conservative Jacobian

matrix relevant to the kth direction. In the present case
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Fk ¼

uk d1kq d2kq d3kq 0 0

0 uk 0 0 d1k=q 0

0 0 uk 0 d2k=q 0

0 0 0 uk d3k=q 0

0 d1kcp d2kcp d3kcp uk 0

0 0 0 0 0 uk

0
BBBBBBBB@

1
CCCCCCCCA

: ðA:4Þ

P ¼ o eU=oU is the Jacobian matrix to switch between primitive and conservative variables:

P ¼

1 0 0 0 0 0

u1 q 0 0 0 0

u2 0 q 0 0 0

u3 0 0 q 0 0
1
2
ukuk qu1 qu2 qu3

1
j

0

Z 0 0 0 0 q

0
BBBBBBBB@

1
CCCCCCCCA

; ðA:5Þ

Pÿ1 ¼

1 0 0 0 0 0

ÿu1=q 1=q 0 0 0 0

ÿu2=q 0 1=q 0 0 0

ÿu3=q 0 0 1=q 0 0
j
2
ukuk ÿju1 ÿju2 ÿju3 j 0

ÿZ=q 0 0 0 0 1=q

0
BBBBBBBB@

1
CCCCCCCCA

ðA:6Þ

with j ¼ cÿ 1.
Each Fk may be diagonalized resorting to the usual transformation:

Sÿ1
k FkSk ¼ K

k; ðA:7Þ
the eigenvalues being

kk1 ¼ uk ÿ c; ðA:8Þ
kk2;3;4;6 ¼ uk; ðA:9Þ
kk5 ¼ uk þ c; ðA:10Þ

where c is the speed of sound and

Sk ¼

1
2c2

d1k
c2

d2k
c2

d3k
c2

1
2c2

0

ÿ d1k
2qc

1ÿ d1k 0 0 d1k
2qc

0

ÿ d2k
2qc

0 1ÿ d2k 0 d2k
2qc

0

ÿ d3k
2qc

0 0 1ÿ d3k
d3k
2qc

0

1
2

0 0 0 1
2

0

0 0 0 0 0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

; ðA:11Þ

Sÿ1
k ¼

0 ÿd1kqc ÿd2kqc ÿd3kqc 1 0

d1kc
2 1ÿ d1k 0 0 ÿd1k 0

d2kc
2 0 1ÿ d2k 0 ÿd2k 0

d3kc
2 0 0 1ÿ d3k ÿd3k 0

0 d1kqc d2kqc d3kqc 1 0

0 0 0 0 0 1

0
BBBBBBBBB@

1
CCCCCCCCCA

: ðA:12Þ
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Depending on the type of boundary condition considered (face/edge/corner), a different number of charac-
teristic directions should be taken into account (one/two/three) simultaneously: the three cases are summa-
rized in the following sections.

A.1. Characteristic formulation along one direction for faces

Supposing that the boundary is orthogonal to the x1 direction, the characteristic waves considered will
be those traveling along x1; therefore, only F1 needs to be diagonalized and Eq. (A.3) can be then written
as

oU

ot
þ S1K

1Sÿ1
1

oU

ox1
þ F2 oU

ox2
þ F3 oU

ox3
þD ¼ 0: ðA:13Þ

The eigenvalues (i.e. the propagation velocities of the characteristic waves) are

k1 ¼ u1 ÿ c; k2;3;4;6 ¼ u1; k5 ¼ u1 þ c: ðA:14Þ

Following the procedure proposed by Thompson [21], a vector L may be conveniently defined as

L ¼ K
1Sÿ1

1

oU

ox1
; ðA:15Þ

whose components Li are the amplitude time variations of the characteristic waves [12]:

L ¼

k1
op

ox1
ÿ qc ou1

ox1

� �

k2 c2 oq

ox1
ÿ op

ox1

� �

k3
ou2
ox1

k4
ou3
ox1

k5
op

ox1
þ qc ou1

ox1

� �

k6
oZ
ox1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

: ðA:16Þ

Eq. (A.13) is finally rewritten as a function of the wave amplitude variations and the relevant formulation in
terms of conservative variables can be obtained pre-multiplying by P:

oU

ot
þ d þ F2 oU

ox2
þ F3 oU

ox3
þD ¼ 0; ðA:17Þ

o eU
ot

þ Pd þ oeF 2

ox2
þ oeF 3

ox3
þ oeDi

oxi
¼ 0; ðA:18Þ

where

d ¼ S1L ¼

1
c2

L2 þ 1
2
ðL5 þ L1Þ

� �

1
2qc

ðL5 ÿ L1Þ
L3

L4

1
2
ðL5 þ L1Þ

L6

0
BBBBBBBB@

1
CCCCCCCCA

: ðA:19Þ

It should be noted that Eq. (A.17) without transverse derivatives and diffusive terms constitutes the so-
called LODI system of the standard NSCBC approach [12]:
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oq

ot
þ 1

c2
L2 þ 1

2
ðL5 þ L1Þ

� �
¼ 0;

ou1
ot
þ 1

2qc
ðL5 ÿ L1Þ ¼ 0;

ou2
ot
þ L3 ¼ 0;

ou3
ot
þ L4 ¼ 0;

op

ot
þ 1

2
ðL5 þ L1Þ ¼ 0;

oZ
ot
þ L6 ¼ 0:

8
>>>>>>>>><
>>>>>>>>>:

ðA:20Þ

A.2. Characteristic formulation along two directions for edges

Supposing that the boundary is orthogonal to x1- and x2-directions, the characteristic waves considered on
the connecting edge will be those traveling along x1 and x2; F

1 and F2 are then diagonalized and Eq. (A.3) is
written, with a slightly different notation, as

oU

ot
þ S1KS

ÿ1
1

oU

ox1
þ S2MSÿ1

2

oU

ox2
þ F3 oU

ox3
þD ¼ 0: ðA:21Þ

The eigenvalues of F1 and F2 are ki and li, respectively:

k1 ¼ u1 ÿ c; k2;3;4;6 ¼ u1; k5 ¼ u1 þ c; ðA:22Þ
l1 ¼ u2 ÿ c; l2;3;4;6 ¼ u2; l5 ¼ u2 þ c: ðA:23Þ

Wave amplitude time variations are defined as

L ¼ KSÿ1
1

oU

ox1
; ðA:24Þ

M ¼ MSÿ1
2

oU

ox2
; ðA:25Þ

where L is expressed by Eq. (A.16) and M is

M ¼

l1
op

ox2
ÿ qc ou2

ox2

� �

l2
ou1
ox2

l3 c2 oq

ox2
ÿ op

ox2

� �

l4
ou3
ox2

l5
op

ox2
þ qc ou2

ox2

� �

l6
oZ
ox2

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

: ðA:26Þ

Conservation laws in terms of primitive and conservative variables are respectively:

oU

ot
þ d þ eþ F3 oU

ox3
þD ¼ 0; ðA:27Þ

o eU
ot

þ Pd þ Peþ oeF 3

ox3
þ o eD i

oxi
¼ 0; ðA:28Þ

where d is expressed by Eq. (A.19) and e is

e ¼ S2M ¼

1
c2

M3 þ 1
2
M5 þM1ð Þ

� �

M2

1
2qc

ðM5 ÿM1Þ
M4

1
2
ðM5 þM1Þ

M6

0
BBBBBBBB@

1
CCCCCCCCA

: ðA:29Þ
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A.3. Characteristic formulation along three directions for corners

Characteristic waves are considered in all the three directions; all the flux matrix are diagonalized and Eq.
(A.3) becomes

oU

ot
þ S1KS

ÿ1
1

oU

ox1
þ S2MSÿ1

2

oU

ox2
þ S3NSÿ1

3

oU

ox3
þD ¼ 0: ðA:30Þ

The eigenvalues of F1, F2 and F3 are ki, li and mi, respectively:

k1 ¼ u1 ÿ c; k2;3;4;6 ¼ u1; k5 ¼ u1 þ c; ðA:31Þ
l1 ¼ u2 ÿ c; l2;3;4;6 ¼ u2; l5 ¼ u2 þ c; ðA:32Þ
m1 ¼ u3 ÿ c; m2;3;4;6 ¼ u3; m5 ¼ u3 þ c: ðA:33Þ

Wave amplitude time variations are defined as

L ¼ KSÿ1
1

oU

ox1
; ðA:34Þ

M ¼ MSÿ1
2

oU

ox2
; ðA:35Þ

N ¼ NSÿ1
3

oU

ox3
; ðA:36Þ

where L and M are expressed by Eqs. (A.16) and (A.26), respectively and N is

N ¼

m1
op

ox3
ÿ qc ou3

ox3

� �

m2
ou1
ox3

m3
ou2
ox3

m4 c2 oq

ox3
ÿ op

ox3

� �

m5
op

ox3
þ qc ou3

ox3

� �

m6
oZ
ox3

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

: ðA:37Þ

Conservation laws in terms of primitive and conservative variables are respectively:

oU

ot
þ d þ eþ f þD ¼ 0; ðA:38Þ

o eU
ot

þ Pd þ Peþ Pf þ oeDi

oxi
¼ 0; ðA:39Þ

where d is expressed by Eq. (A.19), e is expressed by Eq. (A.29) and f is

f ¼ S3N ¼

1
c2

N 4 þ 1
2
N 5 þN 1ð Þ

� �

N 2

N 3

1
2qc

N 5 ÿN 1ð Þ
1
2
N 5 þN 1ð Þ

N 6

0
BBBBBBBBB@

1
CCCCCCCCCA

: ðA:40Þ
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Appendix B. Computing the transverse terms from conservative variables’ fluxes

When the solver integrates the Navier–Stokes equations written in conservative form, it may be more con-
venient to directly relate the transverse terms vector T to the flux vector eF k. Considering, for instance, a face
boundary orthogonal to x1, Eq. (13) in vector form reads

oU

ot
þ d ÿ T ¼ 0; ðB:1Þ

where ÿT represents the transverse fluxes and pressure gradients along x2 and x3:

T ¼ ÿF t oU

oxt
ðt ¼ 2; 3Þ: ðB:2Þ

By definition, the non-conservative Jacobian matrix Fk is related to the flux vector eF k by the following
relation:

PFk oU

oxk
¼ oeF k

oxk
: ðB:3Þ

Pre-multiplying the above equation by Pÿ1, the expression for T then becomes

T ¼ ÿPÿ1 o
eF t

oxt
ðt ¼ 2; 3Þ ðB:4Þ

with components

T 1 ¼ ÿ oF t
1

oxt
; ðB:5Þ

T 2 ¼ ÿ 1

q

oF t
2

oxt
ÿ u1

oF t
1

oxt

� �
; ðB:6Þ

T 3 ¼ ÿ 1

q

oF t
3

oxt
ÿ u2

oF t
1

oxt

� �
; ðB:7Þ

T 4 ¼ ÿ 1

q

oF t
4

oxt
ÿ u3

oF t
1

oxt

� �
; ðB:8Þ

T 5 ¼ ÿðcÿ 1Þ oF t
5

oxt
þ ukuk

2

oF t
1

oxt
ÿ uk

oF t
kþ1

oxt

� �
; ðB:9Þ

T 6 ¼ ÿ 1

q

oF t
6

oxt
ÿ Z

oF t
1

oxt

� �
: ðB:10Þ

The same relations for an edge boundary can be easily obtained by considering that, in that case, the vector T
represents fluxes and pressure gradients along the edge direction only.
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Wall-jet interaction is studied with large-eddy simulation sLESd in which a mixed-similarity subgrid
scale sSGSd closure is combined with the wall-adapting local eddy-viscosity sWALEd model for the
eddy-viscosity term. The macrotemperature and macropressure are introduced to deduce a weakly

compressible form of the mixed-similarity model, and the relevant formulation for the energy

equation is deduced accordingly. LES prediction capabilities are assessed by comparing flow

statistical properties against experiment of an unconfined impinging round jet at Reynolds numbers

of 23 000 and 70 000. To quantify the benefit of the proposed WALE-similarity mixed model, the

lower Reynolds number simulations are also performed using the standard WALE and Lagrangian

dynamic Smagorinsky approaches. The unsteady compressible Navier–Stokes equations are

integrated over 2.9 M, 3.5 M, and 5.5 M node Cartesian grids with an explicit fourth-order finite

volume solver. Nonreflecting boundary conditions are enforced using a methodology accounting for

the three-dimensional character of the turbulent flow at boundaries. A correct wall scaling is

achieved from the combination of similarity and WALE approaches; for this wall-jet interaction, the

SGS closure terms can be computed in the near-wall region without the necessity of resorting to

additional specific treatments. The possible impact of turbulent energy backscatter in such flow

configurations is also addressed. It is found that, for the present configuration, the correct

reproduction of reverse energy transfer plays a key role in the estimation of near-wall statistics,

especially when the viscous sublayer is not properly resolved. © 2009 American Institute of

Physics. fDOI: 10.1063/1.3068761g

I. INTRODUCTION

Impinging jets are of great interest in many practical

engineering applications where high heat- and mass-transfer

performances need to be achieved. This relatively simple

configuration can be regarded as characterized by three main

regions: sad free jet flow, sbd stagnation, and scd wall jet flow.
Partly due to this heterogeneity and partly due to some pe-

culiar features, such as the effect of strong curvature over the

wall jet turbulence development or the interaction of primary

vortices coming from the free jet region and secondary vor-

tices generated close to the wall, the impinging jets are char-

acterized by a series of hard to predict physical phenomena,

which are still to be thoroughly understood and described.

Thus the intrinsic complexity of this flow configuration
1–3

makes the impinging round jet a particularly tough test bench

for turbulence modeling.

If Reynolds averaged Navier–Stokes computations of

impinging jets are well documented ssee Hofmann et al.
4
for

a reviewd, most of the studies which can be found in litera-
ture regarding large-eddy simulation sLESd of impinging
round jets are generally focused on wall thermal exchange,

without particular attention on subgrid scale sSGSd modeling
performances within the most critical near-wall region. A

thorough study of wall-round-jet interaction and heat trans-

fer, with particular emphasis on the case of jet’s Reynolds

number of 20 000 and nozzle to wall distance equal to twice

the jet’s diameter, was presented by Hällqvist
5,6
using low-

Mach number highly resolved LES on a 6 M cells Cartesian

grid without any explicit SGS model. A similar test case,

with Reynolds number of 23 000, was analyzed by Hadžiab-

dić and Hanjalić
7
using a fully compressible quite well re-

fined LES and the dynamic Smagorinsky model
8
with

clipped model constant, grids ranging from 7.5 M to about

10 M cells and a single quadrant grid with 5 M cells were

used, this last representing a total equivalent cell number of

about 20 M. In both cases, a precursor simulation of fully

developed pipe flow was performed to build the inlet bound-

ary condition. Related flow configurations were also consid-

ered with the wall-adapting local eddy-viscosity sWALEd
SGS model,

9
which was used for LES of twin impinging jets

in cross flow;
10
while LESs of impinging jets in a confined

flow
11
have been reported separately.

LES of such wall bounded flows still represents a par-

ticularly challenging problem, especially when grid reso-

lution at the wall is kept as low as possible in order to reduce

computational cost when the jet-wall interaction is only part

of the flow problem to be simulated. When wall boundaries

are present, most SGS models, as those based on the eddy-

viscosity hypothesis, are generally inadequate in reproducing

the correct wall scaling for unresolved quantities. The dy-

namic approach
8,12

can be used to recover with success the

correct wall scaling, after introducing some spatial or time

ad
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averaging along fluid particles’ path lines.
13
Nevertheless, the

standard eddy-viscosity assumption implies the alignment of

the SGS stress tensor with the deformation tensor, which

constitutes a quite strong hypothesis and the energy back-

scatter, which is theoretically permitted using dynamic mod-

els, may remain more a mathematical outcome than a fully

intended physical model prediction.

Similarity models ssee Meneveau and Katz,14 Sagaut,15

and references therein for a detailed reviewd remove the hy-
pothesis of alignment between the SGS stress and the re-

solved shear stress tensor, thus achieving strong correlation

between expected and measured SGS stresses. Moreover,

they are able to provide correct wall scaling on each compo-

nent of the SGS stress tensor
16
and, a priori, to predict en-

ergy backscatter on a more physical ground. Unfortunately,

similarity models are generally not enough dissipative and

the addition of an eddy-viscosity term is anyway advisable in

practice. The resulting closures are the so-called mixed-

similarity models and a number of versions have been pro-

posed which, again, resort to the classical eddy-viscosity hy-

pothesis by Smagorinsky
17
and to dynamic modeling, in

order to retain the correct wall scaling that the eddy-viscosity

term may have affected.
18–21

In this context, the WALE model
9
is of interest, as it is

intrinsically able to retain the correct wall scaling by con-

struction. Along these lines, a compressible version of the

similarity mixed model
20,22

is discussed below, where the

eddy-viscosity term is computed by the WALE approxima-

tion. The model is tested on turbulent impinging round jets

with Reynolds numbers of 23 000 and 70 000; results are

compared against the experimental data provided by Cooper

et al.
23
for both turbulence regimes and by Geers

24
and Geers

et al.
25
for the lower Reynolds number. A comparison with

the standard WALE model and a compressible extension of

the Lagrangian dynamic Smagorinsky model sLDSMd origi-
nally developed by Meneveau et al.

13
is also presented for

the ReD=23 000 test case.

Section II reports on the model problem and numerics;

the filtered balance equations scontinuity, momentum, en-
ergy, and scalard are discussed along with the explicit filter-
ing procedure, then the flow configuration, the numerical for-

mulation, and the grid are discussed. In the subsequent part,

the results are analyzed and compared with experimental

measurements. In Appendix, the practical use of the explicit

filtering is detailed.

II. MODEL PROBLEM AND NUMERICS

A. Filtered balance equations

The flow problem is described by the compressible

Navier–Stokes equations set for a Newtonian fluid following

the ideal single-component gas law plus one additional

transport equation for a passive scalar Z. After introducing

the vector of conservative variables U

= ur ru1 ru2 ru3 re rZuT and the flux vector F
k, the prob-

lem is formalized as follows:

]U

]t
+

]F
i

]xi

= 0 , s1d

with

F
k =1

ruk

ru1uk + d1kp − 2mA1k

ru2uk + d2kp − 2mA2k

ru3uk + d3kp − 2mA3k

sre + pduk − 2mu jAkj − l
]T

]xk

rZuk − rD
]Z

]xk

2 , s2d

p = rRT , s3d

re =
1

2
rukuk +

p

g − 1
, s4d

Aij =
1

2
S ]ui

]x j

+
]u j

]xi

D − 1
3

dij

]uk

]xk

. s5d

In the above equations, r is the fluid mass density, p is

the thermodynamic pressure, re is the total energy density

skinetic+thermald, T is the absolute temperature, R=Rp
/Mw

is the gas constant computed from the universal gas constant

Rp=8.32 J / smol Kd and the gas molar weight Mw, and dij is

the Kronecker’s delta; g=cp /c
v
is the ratio between specific

heat capacities at constant pressure and constant volume,

which, in the present case, can be expressed as

c
v
=

R

g − 1
, s6d

cp = c
v
+ R . s7d

The dynamic viscosity of the fluid m is expressed by the

Sutherland’s law,

msTd = mrefS T

Tref
D3/2Tref + S

T + S
. s8d

Finally, the thermal conductivity l and the diffusion co-

efficient D are computed using the dynamic viscosity and the

Prandtl and Schmidt numbers,

l =
mcp

Pr
, D =

m

r Sc
. s9d

1. The filtered continuity and momentum
equations

In LES, the Navier–Stokes equations are filtered with a

low-pass filter, the low frequency components of the flow

field, those which represent the large-scale structures of the

flow, being directly resolved, and the coupling term arising

from the nonlinear convective term being modeled by the

SGS model. In the present study, implicit filtering is used,

therefore the low-pass filter’s cutoff length D coincides with

the grid spacing. Introducing the filter operator bar and the
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Favre-filter operator tilde snamely, r̄w̃=rw for any quantity

wd, the filtered Navier–Stokes equations can be written in the
following form:

26,27

]U

]t
+

]F
i

]xi

= 0 , s10d

where U= ur̄ ru1 ru2 ru3 re rZuT.
The part of the filtered flux vector relevant to mass and

momentum transport equations can be expressed as

Fm
k =1

ruk

ru1ũk + d1kp̄ − 2mA1k − t1k

ru2ũk + d2kp̄ − 2mA2k − t2k

ru3ũk + d3kp̄ − 2mA3k − t3k

2 , s11d

where tij is the subgrid stress tensor,

tij = ruiũ j − ruiu j . s12d

Introducing the velocity decomposition into resolved and

unresolved parts, namely, u j= ũ j+u j8, into Eq. s12d, the SGS
stress tensor may be written according to the Leonard de-

composition as

− tij = Lij + Cij + Rij , s13d

with

Lij = r̄ũiũ̃ j − r̄ũiũ j , s14d

Cij = r̄ũiu j8̃ + r̄ui8ũ j
˜ , s15d

Rij = rui8u j8. s16d

In the perspective of the scale-similarity hypothesis,
28,29

generalized to the compressible case,
22,30

it is postulated that

the statistical features of tensors constructed on the SGSs are

similar to those of analogous tensors computed on the basis

of the smallest resolved scales, which may be estimated as

the difference between the filtered field and the twice-filtered

field, this difference representing a reasonable estimate of the

filtered SGS velocity.
28
Hence the cross term and the Rey-

nolds term are approximated as

Cij . r̄fũ̃isũ j − ũ̃ jd + sũi − ũ̃idũ̃ jg , s17d

Rij . r̄sũi − ũ̃idsũ j − ũ̃ jd , s18d

thus leading to the following approximation for the SGS

stress tensor:

− tij . r̄ũiũ̃ j − r̄ũiũ j + r̄ũiũ j − r̄ũ̃iũ̃ j

Cij+Rij

= r̄ũiũ̃ j − r̄ũ̃iũ̃ j .

s19d

If the generalized central moments proposed by

Germano
31
are introduced, the SGS stress tensor is decom-

posed according to the modified Leonard decomposition as

− tij = Lij + Cij +Rij , s20d

with

Lij = r̄ũiũ̃ j − r̄ũ̃iũ̃ j , s21d

Cij = r̄ũiu j8̃ + r̄ui8ũ j
˜ − r̄ũ̃iu j8̃ − r̄ui8̃ũ̃ j , s22d

Rij = rui8u j8 − rui8u j8̃. s23d

Comparing Eq. s19d and the above decomposition, it is
clear that the scale-similarity hypothesis is equivalent to ne-

glecting Cij and Rij. If on one hand, similarity models give

very accurate predictions of the structural features of the

SGS stresses, on the other hand, they are not generally ef-

fective in reproducing the correct average energy transfer,

i.e., they are not dissipative enough.
15
A similarity mixed

model may be then constructed by adding an eddy-viscosity

term to Eq. s19d.29 In view of the modified Leonard decom-
position, this turns out to be equivalent to assume that Cij

. r̄ũiũ j− r̄ũ̃iũ̃ j sRef. 22d or, as it can be easily verified, that

Cij .0 and r̄ui8̃u j8̃.0. Hence, the SGS stress tensor is mod-
eled as

tij . − rui8u j8 − r̄sũiũ̃ j − ũ̃iũ̃ jd . s24d

To obtain the proposed WALE-similarity model, the de-

viatoric part of the SGS true Reynolds term, namely, the first

term in the right-hand side of the above equation, is modeled

using the eddy-viscosity WALE model proposed by Nicoud

and Ducros
9
as

− rui8u j8
d . 2r̄ntÃij , s25d

where Ãij is the deviator of the deformation tensor computed

on the resolved velocity field using Eq. s5d and

nt = Cw
2D2

ss̃ij
d s̃ij

d d3/2

sS̃ijS̃ijd
5/2 + ss̃ij

d s̃ij
d d5/4

, s26d

where D is the grid level filter width, which, in the present

case, is evaluated as

D = fsa1,a2dDeq, s27d

where Deq= sD1D2D3d1/3 sRef. 32d—Dk being the local grid

spacing in the kth direction—and fsa1 ,a2d is the corrective
factor for anisotropic grids proposed by Scotti et al.,

33
where

a1 and a2 are the aspect ratios of the two smaller sides of the

computational cell to the biggest one.

In Eq. s26d, Cw=0.5 is a true model constant, S̃ij is the

strain rate tensor of the resolved field, and s̃ij
d is the traceless

symmetric part of the square of the resolved velocity gradi-

ent tensor g̃ij, namely,

s̃ij
d =

1

2 sg̃ij
2 + g̃ ji

2 d − 1

3dijg̃kk
2 , s28d

with g̃ij
2 = g̃ikg̃kj. It should be noted that the WALE model has

the distinct advantage that it automatically recovers proper

scaling in the near-wall region. The following approximation

of the SGS stress tensor is then obtained:

tij . 2r̄ntÃij −
1

3dijruk8uk8 − r̄sũiũ̃ j − ũ̃iũ̃ jd , s29d

where only the second term on the right-hand side is not yet

closed. Following an analogous approach as in Refs. 26 and
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27, we introduce a macropressure, which includes the men-

tioned unclosed term,

Ã̄ = p̄ +
1

3ruk8uk8, s30d

and neglecting viscous subgrid contributions, namely, mAij

− m̄Ãij .0, the flux vector Eq. s11d then becomes

Fm
k =1

ruk

ru1ũk + d1ksÃ̄ +
1

3L j jd − 2m̄Ã1k − t1k
d

ru2ũk + d2ksÃ̄ +
1

3L j jd − 2m̄Ã2k − t2k
d

ru3ũk + d3ksÃ̄ +
1

3L j jd − 2m̄Ã3k − t3k
d
2 , s31d

where m̄ is computed from the resolved macrotemperature

frefer to Eqs. s35d and s63d in Sec. II A 2g and tij
d is the

deviatoric part of the SGS stress tensor, namely,

tij
d = 2r̄ntÃij − r̄sũiũ̃ j − ũ̃iũ̃ jd

d. s32d

2. The filtered energy equation

The filtered total energy may be expressed as

re = rc
v
T +

1

2rukuk

= r̄c
v
T̃ +

1

2rukũk +
1

2 srukuk − rukũkd . s33d

It should be noted that, in the above equation, the spe-

cific heat capacity c
v
has been assumed constant to the fil-

tering operator; this hypothesis, which holds for cp and R as

well, will be implicitly assumed henceforth. Using the modi-

fied Leonard decomposition and the scale-similarity hypoth-

esis ssee Sec. II A 1d, the above equation may be rewritten as

re . r̄c
v
T̃ +

1

2rukũk +
1

2 r̄sũkũ̃k − ũ̃kũ̃kd +
1

2ruk8uk8, s34d

where, again, the last term on the right-hand side is not

closed. It seems natural, therefore, to define a macrotempera-

ture,

q̃ = T̃ +
1

2r̄c
v

ruk8uk8, s35d

which includes the resolved temperature and the spherical

part of the SGS true Reynolds term. In this way, the resolved

total energy may be computed from resolved quantities,

re = r̄c
v
q̃ +

1

2rukũk +
1

2Lkk. s36d

Taking the filtered ideal gas law, Eq. s3d, namely p̄

=rRT, and substituting the definitions of macropressure, Eq.

s30d, and macrotemperature, Eq. s35d, the following relation
is obtained:

Ã̄ = r̄Rq̃ −
3g − 5

6
ruk8uk8. s37d

In particular, under the assumption that the SGS turbu-

lence Mach number,

MSGS
2 =

ruk8uk8

gp̄
, s38d

is sufficiently small, namely,

gMSGS
2

u3g − 5u

6
! 1, s39d

the filtered equation of state results formally identical to its

unfiltered counterpart fEq. s3dg, the pressure and temperature
being replaced by the macropressure and macrotemperature,

respectively,

Ã̄ = r̄Rq̃ . s40d

Erlebacher et al.
22
arrived at a similar conclusion by the

assumption that all the spherical part of the Reynolds term

could be neglected if

1

3gMSGS
2 ! 1. s41d

On the other hand, the present approach, which only

requires macrotemperature and macropressure to be related

via the equation of state, leads to the analogous but less

restrictive condition expressed by Eq. s39d, which gives a
prefactor of about 1/7.5 instead of 1/3 for g=1.4, thus ex-
tending the range of applicability to higher Mach numbers.

The following relations hold for the resolved total and

internal energies:

re =
Ã̄

g − 1
+
1

2
rukũk +

1

2
Lkk, s42d

ẽI =
re

r̄
−
1

2
ũkũk −

Lkk

2r̄
, s43d

where r̄ẽI= r̄c
v
q̃=Ã̄ / sg−1d.

In view of the above development, it seems natural to

write the filtered fifth component of the flux vector fEq. s2dg,
which is the component relevant to the total energy transport

equation, in terms of the resolved quantities just defined,

F5
k = sre + Ã̄dũk − 2mu jAkj − l

]T

]xk

− qk, s44d

where qk is the subgrid total energy flux vector, which ac-

counts for heat and kinetic energy subgrid transport and is

defined as

qk = sre + Ã̄dũk − sre + pduk. s45d

The above SGS energy flux, as it has been defined, is a

combination of the following different terms:

− qk = reIuk − r̄ẽIũk + puk − Ã̄ũk

+
1

2ru ju juk −
1

2 r̄ũ jũ jũk −
1

2L j jũk. s46d

From Eqs. s3d, s6d, and s40d, the last two terms in the
first line of the above equation can be rewritten as

puk − Ã̄ũk = sg − 1dsreIuk − r̄ẽIũkd , s47d

and Eq. s46d then becomes

− qk = gsreIuk − r̄ẽIũkd +
1

2ru ju juk −
1

2 r̄ũ jũ jũk −
1

2L j jũk.

s48d
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With regards to the SGS heat flux term, before proceed-

ing with the modified Leonard decomposition, it is worth

underlining that, since both the temperature and the mac-

rotemperature are present, i.e.,

reIuk − r̄ẽIũk = r̄c
v
sTũk − q̃ũkd , s49d

the decomposition in terms of resolved and unresolved inter-

nal energies is not straightforward. By analogy with the pro-

cedure used to obtain the modified Leonard decomposition

for the SGS stress tensor, the temperature and the macrotem-

perature must be decomposed into their resolved and unre-

solved parts,

T = T̃ + T8, q = q̃ + q8. s50d

It should be noted anyway that the fully resolved mac-

rotemperature q is physically meaningless, being the mac-

rotemperature strictly connected with the introduction of

SGS terms in the filtered set of equations. Nonetheless, we

may observe that, if a resolved macrotemperature q could be

defined, this would be the direct numerical simulation sDNSd
limit of q̃. Observing that, in the DNS limit, the trace of the

SGS true Reynolds term vanishes, we conclude that q;T.

We may therefore conclude that if the temperature is decom-

posed as T= q̃+T8 si.e., the unresolved temperature T8 is

defined as the difference between the temperature T and the

macrotemperature q̃d, then the same decomposition will hold
for the fully resolved macrotemperature, namely, q= q̃+T8,

and we can write

q̃ = q̃ + T8̃. s51d

The above decomposition allows the definition of a con-

sistent measure of the unresolved internal energy as eI8

=c
v
T8, and the SGS heat flux can be then decomposed in the

usual way,

− qk
eI = Lk

eI + Ck
eI +Rk

eI, s52d

with

Lk
eI = gsr̄ẽIũ̃k − r̄ẽ̃Iũ̃kd , s53d

Ck
eI = gsr̄ẽIũk8 + r̄eI8ũ̃k − r̄ẽ̃Iuk8̃ − r̄eI8̃ũ̃kd , s54d

Rk
eI = gsreI8uk8 − r̄eI8̃uk8̃d . s55d

By analogy to what has been done with the subgrid

stress tensor in Sec. II A 1, we resort to the scale-similarity

hypothesis by neglecting Ck
eI and the second term in Rk

eI; we

then model the SGS true Reynolds term by the eddy-

viscosity assumption, thus obtaining

qk
eI . g

r̄nt

Prt

]eI
˜

]xk

− gr̄sẽIũ̃k − ẽ̃Iũ̃kd , s56d

where the eddy viscosity nt is computed from Eq. s26d and
Prt=0.5 sRefs. 22 and 30d is the subgrid Prandtl number.

The remaining terms in Eq. s48d may be rearranged as

1

2 r̄su ju jũk − ũ jũ jũkd −
1

2L j jũk

=
1

2 sru ju j − r̄ũ jũ j − L j jdũk − r̄Dk, s57d

where r̄Dk=
1

2
ru ju jũk−

1

2
ru ju juk, evidently, represents the

SGS turbulent diffusion of kinetic energy; furthermore, using

the usual modified Leonard decomposition and the scale-

similarity hypothesis, the term in parentheses in Eq. s57d
results equal to ru j8u j8, and Eq. s46d is finally rewritten in the
following way:

qk = g
r̄nt

Prt

]eI
˜

]xk

− gr̄sẽIũ̃k − ẽ̃Iũ̃kd + r̄Dk −
1

2
R j jũk. s58d

The last two terms in the above equation are not closed,

and we make the additional hypothesis that they can be ne-

glected under the reasonable assumption that their effect can

be considered to be much smaller than that related to the

SGS heat flux.
34
This hypothesis conforms to that which has

been implicitly assumed by Ducros et al.
26
and Lesieur et

al.,
27
who modeled the SGS transport of total energy using

the heat transport contribution only.

Finally, neglecting viscous and diffusive subgrid contri-

butions, namely,

mu jAkj − m̄ũ jÃkj . 0, s59d

l
]T

]xk

−
m̄cp

Pr

]q̃

]xk

. 0, s60d

the energy flux component, Eq. s44d, becomes

F5
k = sre + Ã̄dũk − 2m̄ũ jÃkj −

m̄cp

Pr

]q̃

]xk

− qk, s61d

with

qk = g
r̄nt

Prt

]eI
˜

]xk

− gr̄sẽIũ̃k − ẽ̃Iũ̃kd , s62d

and m̄ computed from the resolved macrotemperature using

Eq. s8d,

m̄sq̃d = mrefS q̃

Tref
D3/2

Tref + S

q̃ + S
. s63d

3. The filtered scalar equation

The filtered transport equation for the passive scalar Z

can be obtained by analogy to what has been done so far for

the momentum and energy equations. The main steps are

therefore synthetically summarized below.

The filtered scalar flux component is obtained by filter-

ing the sixth component in Eq. s2d,

F6
k = rZũk − rD

]Z

]xk

− qk
Z, s64d

where qk
Z is the SGS scalar flux vector,

qk
Z = rZũk − rZuk. s65d
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Introducing the passive scalar decomposition Z= Z̃+Z8,

the SGS scalar flux may be decomposed as

− qk
Z = Lk

Z + Ck
Z +Rk

Z, s66d

with

Lk
Z = r̄Z̃ũ̃k − r̄Z̃

˜
ũ̃k, s67d

Ck
Z = r̄Z̃uk8̃ + r̄Z8ũ̃k − r̄Z̃

˜
uk8̃ − r̄Z8̃ũ̃k, s68d

Rk
Z = rZ8uk8 − r̄Z8̃uk8̃. s69d

Under the scale-similarity hypothesis, i.e., neglecting Ck
Z

and the second term in Rk
Z, and resorting to the eddy-

viscosity assumption in order to model the SGS true Rey-

nolds term, the SGS scalar flux then becomes

qk
Z =

r̄nt

Sct

]Z̃

]xk

− r̄sZ̃ũ̃k − Z̃
˜

ũ̃kd , s70d

where nt is obtained from the WALE model fEq. s26dg and
Sct=0.5 is the turbulent Schmidt number. Finally, neglecting

molecular subgrid contributions,

rD
]Z

]xk

−
m̄

Sc

]Z̃

]xk

. 0, s71d

the scalar flux component can be computed from resolved

quantities and Eq. s70d,

F6
k = rZũk −

m̄

Sc

]Z̃

]xk

− qk
Z, s72d

with m̄ computed from Eq. s63d.

4. The explicit filtering procedure

As it has been presented in the previous sections, the

SGS contributions are modeled by means of an eddy-

viscosity term, which is computed from resolved quantities,

and the modified Leonard term, which involves explicit fil-

tering of resolved quantities. Within the framework of

mixed-similarity modeling,
28,29

scale invariance is assumed

to postulate that the structure of the velocity field at scales

below a certain length scale D is similar to that at scales

above D. Consequently, the above closures are, more gener-

ally, rewritten as

tij
d = 2r̄ntÃij − r̄sũiû̃ j − û̃iû̃ jd

d, s73d

qk = g
r̄nt

Prt

] ẽI

]xk

− gr̄sẽIû̃k − ễIû̃kd , s74d

qk
Z =

r̄nt

Sct

]Z̃

]xk

− r̄sZ̃ũk
̂ − Z̃

ˆ
û̃kd , s75d

the hat operator representing filtering at cutoff length aD,

with a$1. Note that the spherical part of the modified Le-

onard term in Eqs. s31d, s42d, and s43d is computed accord-
ingly as

Lkk = r̄sũkû̃k − û̃kû̃kd . s76d

Different choices of a have been proposed: filtering at

the grid level sa=1d is a possible solution,20–22,28,29 whereas
Liu et al.

16
and Akhavan et al.

18
used a=2 and a=4 /3,

respectively.

Akhavan et al.,
18
in particular, in their dynamic two-

component SGS model, distinguished two contributions: sad
the nonlocal interactions which are responsible for a low-

intensity forward energy transfer and sbd the local interac-
tions near the cutoff length scale which are responsible for

intense and coherent regions of forward and reverse energy

transfer. The former is modeled by the eddy-viscosity as-

sumption, while the latter is represented by an approximation

of the modified Leonard term, measuring the interactions be-

tween the resolved scales and a narrow band of subgrid

wavenumbers. This idea is then applied using pseudospectral

methods and results from incompressible LES of turbulent

planar jet and turbulent channel flow are validated against

DNS data obtaining quite good agreement.

The same assumption generalized to the compressible

case is adopted in this study, the details about the implemen-

tation of explicit filtering at length 4 /3D being presented in

Appendix. It is worthwhile to stress that the above closures

fEqs. s73d–s75dg have been obtained under the assumption
that, as far as the local interactions term in the subgrid con-

tributions are concerned, filtering and Favre-filtering opera-

tors behave similarly, as implicitly assumed in Refs. 20 and

22. Moreover, it is assumed that r̂, r̄, so that we can write:

rŵ. r̄ŵ. These approximations are indeed a necessity dic-

tated by the fact that the fully resolved density is anyway

unaccessible and r̂ cannot be computed rigorously nor can it

be any other term of the form rŵ̃.

B. Flow configuration

The flow configuration under study consists of an uncon-

fined impinging round jet as schematized in Fig. 1. The jet

nozzle to wall distance, namely, Lx, is equal to twice the jet

diameter D. Two values of jet Reynolds number have been

studied, ReD=23 000 and ReD=70 000, ReD being defined

with the bulk velocity Ub,

ReD =
rUbD

m
. s77d

Lx

Ly

X1

D

FIG. 1. Schematic of the flow configuration and position of the coordinate

system.
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These test cases have been chosen in order to be com-

pared against the experimental database collected by Cooper

et al.,
23
Geers,

24
and Geers et al.

25
The bottom boundary is

an adiabatic no-slip wall, while the lateral and top sides are

open boundaries. The jet axis is aligned along x1, and the

coordinate system origin is located at the impingement wall,

hence the impingement wall is contained in the x2-x3 plane

of equation x1=0. Hereafter, r will be used to indicate the

distance from the jet’s axis, namely, sx2
2+x3

2d1/2.

All the simulations discussed have been performed using

the parameters summarized in Table I.

C. Numerical formulation

The simulations have been performed using a parallel

solver based on an explicit finite volume scheme written for

Cartesian grids. The convective terms are computed resorting

to a fourth-order centered skew symmetric-like scheme,
35

and the diffusive terms are computed using a fourth-order

centered scheme. The scheme is augmented by a blend of

second- and fourth-order artificial dissipation terms;
36–38

these terms are added in order to suppress spurious oscilla-

tions and damp high-frequency modes. Time integration is

performed using a third-order Runge–Kutta scheme.
39,40

The computational grid is stretched toward the wall to

ensure accuracy in the wall layer. This stretching is included

in the computation of the filter cutoff length D, used to ob-

tain the eddy viscosity and also in the determination of the

explicit filter operator by means of the corrective function for

nonuniform grids
33 fcf. Eq. s27dg.

The impacts of in-plane pressure gradient and convec-

tion salso called transverse terms’ contributiond on the flow
at the face boundaries are included in the three-dimensional

Navier–Stokes characteristic boundary conditions s3D-
NSCBCd approach recently developed by Lodato et al.,

41

which is adopted for boundary conditions’ treatment. The

lateral open boundaries, in particular, are nonreflecting out-

flows with pressure relaxation coefficient s=0.28 and trans-

verse relaxation coefficient b=0.18 sno target transverse
terms have been prescribedd, the latter representing a typical
value of the Mach number over the outflow boundaries.

41,42

The incoming wave amplitude variations are prescribed as

Mc = s
cs1 −M2d

Ly

Dp + s1 − bdTc
2 s78d

for boundaries orthogonal to x2 and

Nx = s
cs1 −M2d

Lz

Dp + s1 − bdTx
3 s79d

for boundaries orthogonal to x3. In the above relations, c
sresp. , xd is equal to 1 for the outflow located at x2=Ly

sresp. , x3=Lzd and 5 for the outflow located at x2=0

sresp. , x3=0d, Dp=Ã̄−p` sp`=1 atmd, c2=gRq̃ is the

speed of sound and M is the maximum Mach number in the

flow. The relevant transverse terms are computed from the

following relations:

Tc
2 = − ũ j

]Ã̄

]x j

− gÃ̄
] ũ j

]x j

− §scdr̄cũ j

] ũ2

]x j

sj = 1,3d , s80d

Tx
3 = − ũ j

]Ã̄

]x j

− gÃ̄
] ũ j

]x j

− §sxdr̄cũ j

] ũ3

]x j

sj = 1,2d , s81d

with §s1d=−1 and §s5d= +1.
In the inflow section, a nonreflecting inlet is applied with

relaxation coefficient h5=−h2=h3=h4=3.28, the relevant
incoming wave amplitude variations being computed as

L5 = h5
r̄c2s1 −M2d

Lx

Du1 + T5
1 − r̄c

dU1
0

dt
, s82d

L2 = h2
r̄cR

Lx

DT + T2
1, s83d

L3 = h3
c

Lx

Du2 + T3
1 −

dU2
0

dt
, s84d

L4 = h4
c

Lx

Du3 + T4
1 −

dU3
0

dt
, s85d

where Duk= ũk−Uk and DT= q̃−T0 sT0=300 Kd are the dif-
ferences between velocity and temperature, and the relevant

target values and dUk
0
/dt are the time derivatives of a vari-

able inlet signal to be superimposed to the constant target

values.
43
The transverse terms are obtained from the follow-

ing equations:

T5
1 = − ũ j

]Ã̄

]x j

− gÃ̄
] ũ j

]x j

− r̄cũ j

] ũ1

]x j

, s86d

T2
1 = − c2

]ru j

]x j

+ ũ j

]Ã̄

]x j

+ gÃ̄
] ũ j

]x j

, s87d

T3
1 = − ũ j

] ũ2

]x j

−
1

r̄

]Ã̄

]x2
, s88d

T4
1 = − ũ j

] ũ3

]x j

−
1

r̄

]Ã̄

]x3
, s89d

with summation over j=2,3. For more details about the

above relations and 3D-NSCBC implementation on the

TABLE I. Air properties.

Value Reference

R 287.7 J / skg Kd Equation s40d

g 1.4 Equation s6d

Pr 0.72 Equation s9d

Sc 0.72 Equation s9d

Cw 0.5 Equation s26d

Prt 0.50 Equation s62d

Sct 0.50 Equation s70d

mref 1.827310−5 kg / sm sd Equation s63d

Tref 291.15 K Equation s63d

S 120.0 K Equation s63d
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edges and the corners of the computational domain, the

reader is referred to the original cited paper. The target ve-

locities in the lateral directions were set to zero, while the

axial component was prescribed using the power law profile

for turbulent pipe flow,

U1srd
Ucl

= S1 − 2r

D
D1/n

, s90d

where r represents the distance from the axis and Ucl is the

centerline velocity. The coefficient n has been tuned, for each

simulation s7.23 and 8.3 for Reynolds number 23 000 and
70 000, respectivelyd, in order to attain the same ratio of bulk
and centerline inlet velocities as in the experiments,

23

Ub

Ucl

= 0.811 + 0.038flogsReDd − 4g . s91d

To reproduce a turbulent inflow condition, a correlated

random noise
44
is superimposed to the average velocity pro-

file through the terms dUk
0
/dt in Eqs. s82d–s85d, with a sam-

pling rate computed from the jet’s characteristic time scale.

The amplitude of the injected noise varies along the jet di-

ameter from 0.028Ub at the axis to a peak value of 0.075Ub

within the jet’s shear layer. These values of amplitude have

been determined with a priori tests in order to attain correct

streamwise fluctuations along the jet axis.

D. Grid spacing

The computational grids and the relevant spacing have

been chosen fulfilling three main requirements.

s1d Maintain the low-pass filter cutoff length within the in-
ertial subrange in order to perform correctly resolved

LES.

s2d Ensure proper resolution of the wall layer while keeping
grid stretching to a minimum.

s3d Retain a reasonable computational cost.

With regards to the first point, the assumption has been

made that the inertial subrange includes length scales from

approximately ,0 /6 down to length scales of the order of

30h,45 ,0,D /2 being an estimation of the integral length

scale and h,,0 Re
−3/4 being the Kolmogorov length scale,

with Re=u0,0 /n and u0
2,0.1Ub

2 s10% turbulence is as-

sumedd.
Regarding to the second point, it should be noted that the

numerical scheme, which has been used, is designed for uni-

form grids. This choice, motivated by the necessity of con-

serving stability properties of the scheme, leads to a variable

local discretization error.
35
In order to limit accuracy reduc-

tions in the refined regions, grid stretching has been done

maintaining the maximum stretching ratio below 1.04.

Three different grids were used: sC1d 2.9 M nodes, rela-

tively coarse mesh with dimensions 2D37D37D, for ReD

=23 000; sC2d 5.5 M nodes, more refined grid with dimen-

sions 2D36D36D, with increased resolution, especially in

the near-wall region, for ReD=23 000; sC3d 3.5 M nodes,

relatively coarse grid with dimensions 2D35D35D, for

ReD=70 000. The reduction in the computational domain

width for test cases C2 and C3 allowed for higher resolution

without increasing too much the number of grid points. Re-

ducing the domain size was made possible because of the use

of the recently developed 3D-NSCBC boundary

conditions,
41
which ensure low numerical perturbations at

open boundaries.

With regards to the wall-jet region sr /D$1.0d, wall-
normal grid spacing D1

+ ssuperscript + indicates wall units,

i.e., normalization with respect to the viscous length ,t

=n /ut, the friction velocity ut=tw
1/2 being estimated from the

experimental average velocity profiles
23d ranges from ,4.7

to ,6.3 sresp., from ,1.2 to ,1.7d for the ReD=23 000

test-case C1 sresp., C2d and from ,5.7 to ,8.4 for the
ReD=70,000 test case C3, the maximum values being at-

tained near the stagnation region where the average shear

stresses are higher.

Due to the use of a Cartesian grid, both radial and azi-

muthal spacings vary going around the jet’s axis, from a

minimum of D2,3 to a maximum of Î2D2,3, where D2,3 is the

grid resolution measured along the coordinate axes x2 or x3
sequal spacing was used in both the lateral directionsd. We
will refer, for simplicity, to its average value of ,1.2D2,3.
Radial and azimuthal spacings Dr

+ and Df
+ , for the lower Rey-

nolds number case, are in the ranges of 64.2–87.4 for the

coarser grid sC1d and 49.7–67.7 for the more resolved grid
sC2d; for the higher Reynolds number test case sC3d, radial
and azimuthal spacings are in the range of 113.3–165.7.

Again, maximum values are attained close to the stagnation

region. A detailed summary of grid dimensions and mesh

spacing for the three test cases is reported in Table II.

Grid resolution for test cases C1 and C3 is quite low,

compared, for instance, to the recommendations given by

Zang,
46
who suggested that the minimum spacings to capture

near-wall dynamics should be Dstr
+ ,80 and Dspn

+ ,30 in the

streamwise and spanwise directions, respectively, and a

minimum of three points for D1
+,10 in the wall-normal

TABLE II. Computational grid properties.

ReD 23 000 70 000

D 2.6 mm 8 mm

Ub 141 m/s 139.4 m/s

M 0.41 0.40

30h /D 3.2310−2 1.4310−2

D1min /D 3.5310−3 9.3310−4 1.7310−3

D1max /D 4.6310−2 3.5310−2 4.3310−2

D2,3 /D 4.0310−2 3.1310−2 2.8310−2

,0 /6D 8.3310−2 8.3310−2

D1
+ 4.7–6.3 1.2–1.7 5.7–8.4

Dr,f
+ 64.2–87.4 49.7–67.7 113.3–165.7

Dimensions 2D3 s7Dd2 2D3 s6Dd2 2D3 s5Dd2

Nodes 9031782 14631942 11031782

CPU time 1360 h 18 650 h 2510 h

Processors 32 512 128
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direction. A very strong influence of grid resolution in LES

of detached boundary layers was reported by Temmerman

et al.,
47
who found high sensitivity of the reattachment posi-

tion to grid spacing, especially in the streamwise direction,

around the mean separation position. They concluded that

the use of the no-slip condition at the location where detach-

ment occurs, in conjunction with insufficient grid resolution

in the streamwise direction, may lead to substantial errors,

even if sufficient wall-normal resolution is used.

Nevertheless, the relevant computational effort when in-

creasing resolution at high Reynolds number may grow sig-

nificantly scf. Table IId, therefore it is of practical interest to
assess the model behavior in cases where a significant per-

centage of the energy is in the SGSs and when the near-wall

resolution is marginal. Moreover, the impinging jet features

some peculiarities which make it profoundly different from

other wall-bounded flows. As opposed to turbulent boundary

layers, where length scales are usually determined by the

distance from the wall, the impinging jet, in particular, is

characterized by local turbulent length scales in the near-wall

region that are strongly affected by the scales of the jet’s

turbulence. Hence, the criteria on mesh resolution developed

for turbulent boundary layers may not be used as a guide line

for an impinging jet.

For LES of channel flow at high Reynolds numbers,

Piomelli
48

used grid spacings Dstr
+ =172, Dspn

+ =26, D1
+

P f1.25:51g for Re=23 700 sbased on the centerline veloc-
ityd and Dstr

+ =244, Dspn
+ =40, D1

+
P f1.5:77g for Re=47 100.

Despite the fairly coarse grids used, first- and second-order

statistical moments were predicted accurately. The author

conjectured that the explanation for that was to be related to

the model ability to reproduce backscatter. Purely dissipative

models necessitate the energy production events to be re-

solved by the grid, hence under-resolution of near-wall dy-

namics may lead to underestimation of the related energy

production. On the other hand, models which are able to

account for reverse energy transfer, such as the WALE-

similarity model swhich will be indicated as WSM hereafterd
presented in this paper, may effectively give a correction to

the average subgrid dissipation, which is reduced due to suf-

ficiently frequent local backscatter. This point will be further

discussed in Sec. III D. Moreover, for ReD=23 000, the im-

pact of grid resolution in the wall-boundary layer will be

assessed comparing the results from the above mentioned

two different computational grids.

III. RESULTS AND DISCUSSION

The WALE-similarity model behavior has been assessed

by comparison against the experimental results
23–25

in terms

of resolved average and fluctuating velocities.

Statistical results have been evaluated by time averaging

an ensemble of 600 samples of the resolved quantities for

total periods of about 17D /Ub and 13D /Ub for ReD

=23 000 sC1d and ReD=70 000, respectively. Due to the re-

duction in time step of the higher resolved simulation at

ReD=23 000 sC2d and the relatively high computational cost,
statistical sampling was stopped after ,8D /Ub; an ensemble

of 900 samples was collected. Global statistical convergence

for the three test cases has been checked continuously calcu-

lating the L2-norm of the change in the statistical quantity

kfl of interest se.g., the streamwise average velocity, the
streamwise fluctuation, and the streamwise/wall-normal cor-

relationd between two successive samplings, indicated with
superscripts n and n−1,

kflL2
hnj =Îo

i,j,k

skfli,j,k
hnj − kfli,j,k

hn−1jd2, s92d

where the summation is extended to the whole computational

domain. In the present case, statistical sampling was stopped

when the L2-norm was below 10−1 and 10−2 for first- and

second-order moments, respectively. Assuming the validity

of the Taylor hypothesis, statistical convergence has been

further improved by averaging around the jet’s axis, for a

total statistical ensemble spanning from 50 400 to 637 200,

depending on the radial location and the computational grid

used. Time/space averaging will be denoted by angled brack-

ets hereafter.

It should be noted that, according to the experimental

setup used by Cooper et al., velocity components are mea-

sured along the streamwise and wall-normal directions,

which are indicated by us and un, respectively. On the other

hand, radial components of velocity are measured by Geers

et al.: these will be indicated as ur in the following sections.

In order to avoid confusion with SGS quantities, which have

been indicated with the prime mark so far, the double prime

mark will be used to refer to statistically fluctuating quanti-

ties.

A. ReD=23 000 test-case C1 validation

Results for the ReD=23 000 test case sC1d, obtained on

the coarse grid, are shown in Figs. 2 and 3; error bars rel-

evant to hot-wire anemometry sHWAd measurement

uncertainties
23
are displayed for experimental second-order

moments. For the same configuration, Figs. 4 and 5 show the

comparison against the experimental measurements obtained

by Geers
24
and Geers et al.

25
using laser-Doppler anemom-

etry sLDAd and particle image velocimetry sPIVd. The WSM

is compared to the standard WALE model and the LDSM.

Test filtering for the latter model has been performed using

the same isotropic filter implementation described in Appen-

dix, but with cutoff length equal to 2D.

With regards to the average velocity profiles fFig. 2sadg,
all the three models perform well and no appreciable differ-

ence between them is visible. In any case, the correct slope

down to the viscous sublayer indicates clearly that correct

scaling of SGS stresses is achieved as expected by the three

models, and no additional eddy viscosity is produced in re-

gions where this is not expected to be present.

On the other hand, the three models perform quite dif-

ferently in terms of resolved second-order moments. With

regards to the streamwise fluctuations, both the WALE and

the LDSM predict fairly well measurements far from the

wall but produce a significant overestimation in the near-wall

region, especially for r /D#2.0, where the flow undergoes

strong curvature fFig. 2sbdg. It seems reasonable to affirm

that the dynamic computation of the model constant in the
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LDSM and the relatively low dissipation of the WALE

model allow for a correct representation of subgrid interac-

tions far from the wall. Nonetheless, close to the wall, even

the dynamic procedure is not able to adjust properly the sub-

grid viscosity. These shortcomings are probably due to the

fact the both the WALE and the LDSM do not allow energy

backscatter, hence resulting, in average, more dissipative

than the WSM. The higher subgrid viscosity slows down the

process of vortex breakup, thus reducing azimuthal fluctua-

tions and promoting the persistence of toroidal large-scale

structures coming from the jet’s shear layer, which eventu-

ally result in high levels of resolved radial fluctuations.

The introduction of the modified Leonard term in the

WSM has a strong impact on the resolved streamwise veloc-

ity fluctuations, these last being slightly underestimated far

from the wall in the wall-jet region. It should be noted on

this regard that results are expected to improve if the isotro-

pic SGS contribution is included when comparing with mea-

surements, as it will be shown for the ReD=70 000 test case.

With regards to wall-normal fluctuations, different be-

(a) (b)

(c) (d)

FIG. 2. ReD=23 000 test case scoarse gridd. Streamwise average velocity kusl /Ub sad; streamwise fluctuating velocity kus9us9l /Ub
2 sbd; wall-normal fluctuating

velocity kun9un9l /Ub
2 scd; and turbulent shear stress kus9un9l /Ub

2 sdd; s—d WSM; s– – –d WALE; s–· – d LDSM; ssd HWA measures sRef. 23d.
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haviors are observed when comparing with HWA fFig. 2scdg
and LDA/PIV sFig. 5d measurements. The WALE and

LDSM models predict significant overestimation of vertical

fluctuations in the wall-jet region sr /D$2.5d. This fact,

combined with the observed tendency to overestimate

streamwise fluctuations in the near-wall region, leads to the

prediction of an excess of resolved turbulent kinetic energy

over the whole range of interest sFig. 3d. It should be noted
that significant backward energy cascade may be generally

observed within the buffer layer;
49–52

purely dissipative mod-

els are then expected to give poor results, such as the WALE

and the LDSM, as in the original formulation by Meneveau

et al.,
13
the dynamically computed model constant is clipped

to prevent it from assuming complex values, thus not allow-

ing backscatter. On the other hand, as already mentioned, the

WSM intrinsically allows backscatter, and this could be one

of the leading mechanism involved in the significant reduc-

tion in vertical fluctuations compared to the other two mod-

els for r /D$1.0 son this regard more details will be shown
with the ReD=70 000 test cased. The mentioned reduction

allows significant improvement of the results in terms of

turbulent kinetic energy.

If a particularly bad agreement in vertical fluctuations is

observed when comparing with HWA measures, WSM re-

sults reproduce fairly well the experimental data extracted

from LDA and PIV measurements over the whole range, as it

can be seen in Fig. 5sad. Good agreement is also observed on
average profiles sFig. 4d and radial fluctuations fFig. 5sbdg.
The discrepancies observed between the experimental results

by Cooper et al. and by Geers et al. in the measurements of

the vertical fluctuations makes it difficult to draw conclu-

sions on this regard.

With regards to the turbulent shear stresses fFig. 2sddg,
results are fairly satisfactory far from the jet’s axis, the pro-

posed WSM giving the best agreement.

(a)

(b)

FIG. 4. ReD=23 000 test case scoarse gridd. Average wall-normal velocity
kunl /Ub sad and average radial velocity kurl /Ub sbd. s—d WSM; s–· – d
LDSM; s¯d PIV measures sRef. 25d; shd LDA measures sRef. 25d.

(a)

(b)

FIG. 5. ReD=23 000 test case scoarse gridd. RMS wall-normal velocity

Îkun9un9l /Ub sad and RMS radial velocity Îkur9ur9l /Ub sbd. s—d WSM; s–· – d
LDSM; s¯d PIV measures sRefs. 24 and 25d; shd LDA measures sRefs. 24
and 25d; ssd HWA measures sRef. 23d.

FIG. 3. ReD=23 000 test case scoarse gridd. Turbulent kinetic energy
1

2
skus9us9l+ kun9un9ld /Ub

2: s—d WSM; s– – –d WALE; s–· – d LDSM; ssd HWA
measures sRef. 23d.
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B. Grid sensitivity assessment

In order to better quantify LES resolution, a normalized

SGS energy transfer coefficient is computed as

nratio =
tij

d Ãij

2m̄ÃijÃij

, s93d

which measures the relative intensity between subgrid and

viscous energy transfers; note that nratio reduces to the ratio

nt /n for an eddy-viscosity model and becomes negative in

regions characterized by backward SGS energy transfer. The

average value of nratio has to be positive, anyway, i.e., even

if, locally, reverse energy transfer may happen, globally, tur-

bulence is a dissipative phenomenon and the relevant kinetic

energy is expected to flow down the energy cascade.

Experience shows that a typical threshold for a well re-

solved LES is nratio, in average, less than about 10. Figure 6

shows the average value of nratio produced by the WSM over

horizontal planes. With regards to the ReD=23 000 test case,

the computation performed on the coarse mesh is relatively

well resolved, the average nratio being always below 6,

whereas the computation carried out on the more refined grid

has even less energy within the SGSs and nratio,2 every-

where in the wall-jet region. The higher Reynolds number

test case, on the other hand, appears slightly under-resolved,

with nratio taking values up to ,12. This is consistent with

the results which will be presented in Sec. III C, where the

resolved turbulent kinetic energy results slightly underpre-

dicted for the ReD=70 000 test case.

With regards to the 23 000 Reynolds number jet simula-

tions, the statistical moments computed using the proposed

WSM, extracted from the coarse 2.8 M nodes mesh and the

refined 5.5 M nodes mesh, are compared in Fig. 7. Results

obtained with the WALE and LDSM on the refined grid are

also shown. With regards to the new WSM, first order mo-

ments match almost perfectly, while some slight difference is

visible on second-order moments. The only curve which

shows significant improvement is the one related to wall-

normal fluctuations at r /D=1.0 fcf. Fig. 7scdg. Clearly the

more resolved simulation has less energy in the SGSs, and

statistical fluctuations extracted from the resolved flow field

give a more accurate representation of the real fluctuations

obtained from the experiments.

No significant improvement of the results is observed in

the near-wall region where the better resolution of the vis-

cous sublayer in the more refined grid should have implied a

more marked improvement.

This result confirms what has been previously said about

the positive impact that a model allowing for a correct rep-

resentation of local interactions near the cutoff length,
18
i.e.,

the modified Leonard tensor’s contribution, connected with

local energy backscatter in the simulation, may produce

when dealing with not fully resolved wall-bounded flows

such as those presented in this paper.

It is worthwhile mentioning that, in order to obtain

equivalent results, the more refined computational grid re-

quired about 14 times the CPU time required by the coarse

grid simulation scf. Table IId, this increase being essentially

due to the increased number of grid points and to the reduc-

tion in the allowed time step due to the use of explicit time

integration and the application of the relevant Courant–

Friedrichs–Lewy sCFLd limitation within the viscous sub-

layer. Moreover, the reduced time step resulted also in a

significant reduction in statistical convergence rate and suf-

ficiently converged statistical data required about 56% of the

total computational resources.

With regards to the two eddy-viscosity models, i.e., the

WALE and the LDSM, results are now slightly improved due

to the increased resolution. Yet the streamwise fluctuations

are overestimated for x1 /DP f0:0.1g close to the stagnation
region fcf. Fig. 7sbdg, giving additional evidence of the in-

ability of purely dissipative models of correctly predicting

the average energy transfer in the region where the flow un-

dergoes strong curvature. Similar trends, as in the coarse

mesh simulations, are observed on vertical fluctuations fFig.
7scdg, which are significantly overestimated, and shear

stresses fFig. 7sddg. The observed inaccuracies in vertical and
streamwise fluctuations resulted in the turbulent kinetic en-

ergy snot shownd being overpredicted by the WALE and the

LDSM at r /D=1.0 and x1 /DP f0:0.1g of about 50%,

whereas the WSM results were within experimental mea-

surements’ errors. Similar errors were obtained using the dy-

namic Smagorinsky model swith model constant bound to

zero as in the present cased by Hadžiabdić and Hanjalić,
7

who also observed that, in the early wall-jet region, the tur-

bulent shear stress is not proportional to the mean velocity

gradient, thus underlining the weaknesses of the eddy-

viscosity hypothesis for this configuration.

In view of these results and the significant extracost that

follows from increasing resolution, especially for relatively

high Reynolds numbers as in the present study, and consid-

ering the small improvements in the results which may be

expected scf. also Sec. III Cd, the suitability of such a com-

putational effort is questionable. We would rather envisage

the possibility of developing improved modeling for the

spherical part of the SGS stress tensor in order to better

reproduce streamwise and wall-normal fluctuations for

slightly under-resolved LES.

C. ReD=70 000 test-case C3 validation

The results obtained with the WSM on the ReD

=70 000 test case are shown in Figs. 8 and 9. Also in this

case, error bars are shown to indicate measurement errors on

second-order moments. The solid curves refer to statistical

quantities extracted directly from the resolved flow field sas

0
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12

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

x
1
/D

FIG. 6. Average value of nratio over horizontal planes: s—d ReD=23 000 test

case C1 scoarse gridd; s–· – d ReD=23 000 test case C2 srefined gridd; s– – –d
ReD=70 000 test case C3.
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in the previous test cased, while the dashed lines have been

obtained including the SGS contribution. If the statistical

fluctuation of the resolved velocity is expressed as ūi9 and ui8
e

is the exact fluctuation smeasured from experiments or ob-

tained from DNSd, we may write15

kui8
e
u j8

el . kūi9ū j9l + ktijl , s94d

where tij is the SGS stress tensor used within the simulation

or computed from the resolved field with another SGS

model. In the present case, we adopt the former choice and

compute the SGS contribution by time/space averaging the

WALE-similarity SGS stress tensor used to perform the

simulations,

ktijl = k2r̄ntÃij − Lijl . s95d

Note that Lij accounts for both the deviatoric and spheri-

cal parts. Also note that, in the above formula, the spherical

part of the SGS true Reynolds term, i.e., ruk8uk8, which is

“absorbed” into the macropressure fsee Eq. s30dg, is still not
included.

(a) (b)

(c) (d)

FIG. 7. ReD=23 000 test case. Streamwise average velocity kusl /Ub sad; streamwise fluctuating velocity kus9us9l /Ub
2 sbd; wall-normal fluctuating velocity

kun9un9l /Ub
2 scd; and turbulent shear stress kus9un9l /Ub

2 sdd; s—d WSM on highly refined grid sC2d; s– – –d WSM on coarse grid sC1d; s¯d WALE on highly

refined grid sC2d; s–· – d LDSM on highly refined grid sC2d; ssd HWA measures sRef. 23d; shd LDA measures sRefs. 24 and 25d.
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For the average velocity profiles fFig. 8sadg, the match-
ing between experimental data and computed solution is

nearly perfect at any location within the computational grid.

As for the ReD=23 000 test case, the most demanding

issue is the computation of the second-order moments. With

regards to the streamwise fluctuations fFig. 8sbdg, results
show similar trends as in the lower Reynolds number test

case. The model predicts a slight underestimation of fluctua-

tions for x1 /DP s0.05:0.2d. The inclusion of the SGS part

produces better agreement but, still, results remain below the

measurement errors, especially far from the jet’s axis. It

should be noted that it is the spherical part of the SGS stress

tensor which is playing the key role in this context: it is then

reasonable to expect that the inclusion of the modeled trace

(a)

(b)

(c)

(d)

FIG. 8. ReD=70 000 test case. Streamwise average velocity kusl /Ub sad; streamwise fluctuating velocity kus9us9l /Ub
2 sbd; wall-normal fluctuating velocity

kun9un9l /Ub
2 scd; and turbulent shear stress kus9un9l /Ub

2 sdd; s—d resolved fluctuations; s–· – d resolved fluctuations plus SGS contributions; ssd HWA measures

sRef. 23d.
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of the SGS true Reynolds term
53
would further improve the

results; as it has been pointed out, this is the only missing

contribution in the presented results.

Results for wall-normal fluctuations fFig. 8scdg, again,
show the less satisfactory agreement with the experimental

results. This is especially true in the impingement region and

in the first stages of wall-jet development. Anyway, in sight

of the discrepancies observed between HWA and LDA/PIV

measurements for the lower Reynolds number test case, it

would have been interesting to compare computed vertical

fluctuations against alternative measurements; unfortunately,

such a database is not available for this Reynolds number.

The only reasonable conclusion which may be drawn is that

vertical fluctuation profiles show similar trends as those ob-

served at ReD=23 000.

Turbulent shear stresses fFig. 8sddg are well predicted

everywhere, except at r /D=0.5 and 1.5. Again, results are

globally consistent with those obtained for the ReD=23 000

test case; the bad agreement on the r /D=1.5 profile is quite

strange though, considering that the two profiles right ahead

and behind it show results in much better agreement with

experimentally measured shear stresses. The inclusion of the

SGS part, which in this case accounts for all the modified

Leonard decomposition’s terms, produces a relatively signifi-

cant improvement in results representing about 10% of the

turbulent shear stress snote that error bars in the shear stress
plot represent 9% error

23d.
The overall behavior of the WSM, as it may be inferred

from the computed turbulent kinetic energy in Fig. 9, is quite

satisfactory with all the curves falling within the measure-

ment error range. A certain tendency to “align” to the bottom

limit of the error range is observed though; this behavior

reflects similar tendencies observed in the streamwise and

wall-normal directions and is clearly a direct consequence of

the actual distribution of energy between resolved and SGSs

for this simulation. Since a significant part of the energy is in

the SGSs scf. Fig. 6d, statistically fluctuating quantities ex-

tracted from the resolved field cannot match real fluctuations

from experiments, unless all the SGS energy is accounted

for.

D. Energy backscatter

Even though kinetic energy, in average, is always trans-

ferred from the mean motion to the fluctuating one through

the well known energy cascade process, the possibility of the

existence of isolated events of reverse energy transfer, or

backscatter, from the turbulent motion to the mean flow was

already envisaged by Monin and Yaglom
54
and extensively

demonstrated using results from DNS, for turbulent bound-

ary layer, in particular, by many authors.
48–52,55,56

In all these

studies, strong anisotropy in a priori evaluated subgrid

stresses was observed, the main responsible for energy back-

scatter being identified in the wall SGS shear stress. There-

fore, structural SGS models capable of capturing energy

backscatter, as it is the case for similarity mixed models,

appear to be particularly suited for wall bounded turbulent

flows.

In certain regions of the turbulent boundary layer, in

fact, typically within the buffer layer,
49,50,55

the backward

energy cascade can become largely dominant over the for-

ward energy cascade. As it has been already observed in

Secs. III A and III B, both the standard WALE model and the

LDSM show a marked tendency to overestimate velocity

fluctuations in the near-wall region, whereas the WSM gives

much better results. It is then natural to expect that this be-

havior may be connected with intrinsic differences between

these SGS closures, e.g., the ability of reproducing backscat-

ter, and that computations performed using the WSM should

feature some backward energy transfer close to the wall. It is

worthwhile mentioning that the similarity closure for the

cross and Reynolds terms fcf. Eqs. s17d and s18dg plays a
crucial role for backscattering within the buffer layer.

56
This

fact was confirmed by Härtel and Kleiser,
55
who also empha-

sized the importance of maintaining the Galilean invariance

of the model in order to prevent it from reproducing reverse

energy transfer in regions where there should not be any.

Energy backscatter is quantified resorting to the normal-

ized SGS energy transfer coefficient from Eq. s93d. For the
ReD=23 000 test case on the coarse grid sC1d, in Fig. 10,

black regions indicate the occurrence of backscatter over

horizontal planes, of dimension 5D35D, located at different

distances from the impingement wall. Approaching the wall,

reverse energy transfer regions become more and more nu-

merous, the maximum backscatter activity being observed at

a distance x1 /D.0.015, and then tend to disappear closer to

the viscous sublayer snote that data on the plane at x1 /D

=0.001 were extracted from the first computational cell at

the walld. Intense backscatter appears for x1 /D in the range

of 0.006–0.02, which corresponds pretty well with the region

where the WALE and the LDSM produce excessive stream-

wise fluctuations fcf. Figs. 2sbd and 7sbdg. The most intense
activity is visible in the stagnation region, approximately for

FIG. 9. ReD=70 000 test case. Turbulent kinetic energy
1

2
skus9us9l

+ kun9un9ld /Ub
2: s—d resolved fluctuations; s–· – d resolved fluctuations plus

SGS contributions; ssd HWA measures sRef. 23d.
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r,1.5, which is also in agreement with the observed behav-

ior of the three models. For the ReD=70 000 test case snot
shownd, maximum backscatter activity was registered

slightly closer to the wall, at x1 /D.0.01, which is consistent

with the thinning of the boundary layer at higher Reynolds

number.

The same plots for the more resolved grid sC2d are de-
picted in Fig. 11. The overall behavior is similar to that ob-

served with the less refined mesh. The less frequent events of

energy backscatter, registered in the refined grid at x1 /D

equal to 0.004 and 0.006, confirm that reverse energy trans-

fer plays a key role in under-resolved turbulent boundary

FIG. 10. sColor onlined ReD=23 000 test-case C1 scoarse gridd. Localization of regions scolored in blackd of negative nratio fEq. s93dg over horizontal planes
at different heights: x1 /D=0.001 sad, x1 /D=0.004 sbd, x1 /D=0.006 scd, x1 /D=0.015 sdd, x1 /D=0.02 sed, and x1 /D=0.04 sfd. Circles in sad indicate radial
distances in steps of 0.5D.

FIG. 11. sColor onlined ReD=23 000 test case C2 srefined gridd. Localization of regions scolored in blackd of negative nratio fEq. s93dg over horizontal planes
at different heights: x1 /D=0.001 sad, x1 /D=0.004 sbd, x1 /D=0.006 scd, x1 /D=0.015 sdd, x1 /D=0.02 sed, and x1 /D=0.04 sfd. Circles in sad indicate radial
distances in steps of 0.5D.
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layers, giving a sort of automatic compensation mechanism

that results anyway in the correct amount of average subgrid

dissipation being produced.
48

The visual examination of Figs. 10 and 11 also agrees

with the observations of Piomelli et al.,
51

who found the

fraction of points, in planes parallel to the wall, experiencing

backscatter to be between 30% and 50%, when a box filter in

physical space was applied to DNS data from channel simu-

lations at different Reynolds numbers, including transitional

turbulence and compressible isotropic decay. No dependence

on Mach number was observed, on this regard, in the case of

compressible turbulence.

The occurrence of reverse energy transfer is little af-

fected by the Reynolds number,
49
even though higher Rey-

nolds number flows are typically slightly more susceptible to

show backscatter.
51

More frequent occurrence of energy

backscatter is expected when the near-wall dynamics of the

flow are under-resolved.
48
This is consistent with the above

mentioned dependency on the Reynolds number, as, increas-

ing Re, grid resolution requirements become more stringent.

In Figs. 12 and 13, instantaneous spatial distributions of

nratio over a horizontal plane located at x1 /D=0.1, i.e., the

approximate location of maximum turbulent energy produc-

tion scf. Figs. 3, 6, and 9d, reveal that, when the Reynolds

number is increased, subgrid energy transfer becomes much

more intermittent, with more frequent occurrence of high

peaks of forward energy transfer. Note that, although the two

maps in Figs. 12 are represented with the same scale in order

to allow direct comparison, the range of values for the lower

Reynolds number case was from 212.5 to 96.7, the maxi-

mum being attained in the single black spot which can be

observed in the upper right quadrant of Fig. 12sad; that is the
only location where values of nratio greater than ,55 were

measured. Also note that, due to the much lower level of

SGS energy in the refined ReD=23 000 test case C2, the

relevant map in Fig. 13 is represented with its own scale.

Black contours delimit regions of reverse energy transfer

that, of course, at this height has become less frequent.

For the ReD=70 000 test case, Fig. 14 shows maps of

nratio over a radial plane extending from the wall up to

-20.92 2.04 25.00 47.96 70.92

νratio

(a)

(b)

FIG. 12. Maps of normalized SGS energy transfer coefficient nratio over a

horizontal plane located at x1 /D=0.1 for ReD=23 000 on coarse grid C1 sad
and for ReD=70 000 sbd. The black contours indicate regions of energy

backscatter.

-10.16 -3.02 4.13 11.27 18.41

νratio

FIG. 13. ReD=23 000 test case C2 srefined gridd: map of normalized SGS

energy transfer coefficient nratio over an horizontal plane located at x1 /D

=0.1. The black contours indicate regions of energy backscatter.
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x1 /D=0.8; black contours are used to mark regions of nega-

tive nratio in sad, intense strain in sbd, and strong vorticity in
scd. The last have been identified by contours at Q=−10 and

Q=2, respectively, Q representing the normalized second in-

variant of the resolved velocity gradient tensor,

Q = −
D2

2Ub
2

] ũi

]x j

] ũ j

]xi

. s96d

Consistent with the findings of Piomelli et al.,
52
peaks in

forward scatter are well correlated with regions of strong

vorticity, for the most coming from the jet’s shear layer, and

backscatter events generally occur in the middle of intense

forward scatter regions. Long and thin pockets of fluid,

where backward energy transfer is predominant, originate

mostly near the wall and propagate into the boundary layer

and downstream in the wall jet. As expected, regions of

negative nratio are relatively well correlated with regions of

negative Q, meaning that the most important events of SGS

energy backscatter are observed where the resolved flow

field undergoes intense straining due to sweeping motions

induced by coherent vortical structures.

E. Flow field and scalar mixing

In the this section, we present a brief qualitative com-

parison of the two test cases C1 and C3, with particular

emphasis on the observed differences in turbulence develop-

ment and scalar mixing. Analogous results from test case C2

snot shownd are consistent with those obtained from test case

C1, which is quite expected considering that the WSM gave

almost identical statistical features on the two different grids

scf. Sec. III Bd. A tridimensional representation of the flow

field is presented in Fig. 15 for the two test cases. Instanta-

neous isosurfaces of passive scalar Z are shown, together

with its distributions over an axial plane; the development of

coherent vortical structures are also represented by means of

isocontours of Q. Passive scalar distribution over horizontal

planes at x1 /D=0.1 and x1 /D=0.05 for the two Reynolds

numbers is also shown in Figs. 16 and 17, respectively.

As expected, the higher Reynolds number test case pre-

sents an earlier development of turbulence within the jet’s

shear layer, which is characterized by finer structures and

increased intermittency, which is particularly evident from

the distributions of Z parallel to the impingement wall. Also,

increased mixing in the near-wall region is promoted at

FIG. 14. ReD=70 000 test case. Maps of normalized SGS energy transfer

coefficient nratio ssame scale as in Fig. 12d over a vertical plane in the range
x1 /DP f0:0.8g, r /DP f0:2.5g. The black contours: sad regions of reverse
energy transfer, sbd intense strain, and scd vorticity.

FIG. 15. Tridimensional visualization of the flow at ReD=23 000 on coarse

grid C1 sad and at ReD=70 000 sbd: isosurfaces of passive scalar Z scenterd,
isocontours of Q=0.5 sleftd, and passive scalar map srightd over axial planes.

FIG. 16. ReD=23 000 test case C1: maps of passive scalar Z over a hori-

zontal plane at x1 /D=0.1 sad and x1 /D=0.05 sbd.
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higher Reynolds number, as it may be inferred from the pres-

ence of numerous and extended white pockets of fluid with

Z,0, just around the stagnation region fcf. Fig. 17sbdg.

IV. CONCLUSIONS

A WALE-similarity mixed model for LES of compress-

ible turbulent flows was presented and tested on the imping-

ing round jet at two Reynolds numbers: 23 000 s2.8 M and

5.5 M cellsd and 70 000 s3.5 M cellsd, respectively. The use
of the WALE eddy-viscosity term together with the modified

Leonard tensor allows a good representation of nonlocal in-

teractions as well as local interactions near the cutoff length,

these last being responsible for reverse energy transfer, while

maintaining proper wall scaling. Furthermore, the unphysical

alignment between the SGS stress tensor and the resolved

strain tensor—a condition which is intrinsically enforced by

any eddy-viscosity model—is automatically removed.

The model was compared to the standard WALE model

and the LDSM on the lower Reynolds number test case on

two different grids, one relatively coarse and the other with

increased resolution. A significant improvement in the results

in terms of second-order moments was observed, especially

in the near-wall region, where the other two models have a

marked tendency to overestimate streamwise turbulent fluc-

tuations. In the outer layer of the wall-jet region, an exces-

sive level of vertical fluctuations was observed with the stan-

dard WALE and LDSM models, the proposed mixed model

giving better results.

The impact of mesh refinement on the results was also

addressed for the ReD=23 000 test case. An empirical crite-

rion for LES resolution, based on nratio—the ratio between

subgrid and viscous energy transfer—was assessed. The

comparison between resolved fluctuations and exact fluctua-

tions measured from experiments was found to be quite sat-

isfactory for average values of nratio lower than about 10. The

addition of SGS contributions on resolved fluctuations was

deemed to be necessary for less resolved LES, i.e., for aver-

age nratio greater than 10.

On the higher Reynolds number test case, the new model

provided quite satisfactory results on the streamwise fluctua-

tions, the turbulent shear stresses, and the turbulent kinetic

energy, the vertical fluctuations representing, again, the most

critical issue. On this regard, the unavailability of alternative

measurements leaves the question still open for further ex-

amination. The relatively low grid resolution used for such a

high Reynolds number made it necessary to account for SGS

contributions when comparing with experiments. By ac-

counting for the SGS part, results were generally improved.

Correct representation of energy backscatter was found

to play an essential role for the estimation of the average

subgrid dissipation, especially when the computational grid

does not allow for sufficient resolution in the near-wall re-

gion. In that case, backscatter may determine an automatic

compensation process for energy production events related to

under-resolved near-wall dynamics.

Nonetheless, it is worthwhile stressing that strong back-

scatter effect using LES may not be always a necessary out-

come, as numerical and modeling approximations can easily

lead to wrong interpretation of the detail of the physics.

Modeled backscatter, in fact, is strictly related with the use

of non-Reynolds filtering operators such as the box filter in

physical space or the Gaussian filter—the cross term in the

usual SGS triple decomposition being the main

responsible—and with the location of the cutoff frequency,

i.e., the LES resolution. This consideration is consistent with

the idea of local interactions near the cutoff length put for-

ward by Akhavan et al.,
18
based on a priori evaluations on

DNS results. Rather, a combination of scale-similarity as-

sumption and WALE model, in order to obtain the proper

transient wall-flow behavior in the impinging jet problem,

was discussed; indeed, with this modeling formulation and

with the modified Leonard term evaluated with a box filter in

physical space, backscatter was present due to the aniso-

tropic part of the resolved SGS turbulent transport.

Such a flow configuration, indeed, gave evidence of the

weaknesses of functional SGS model based on the Bouss-

inesq approximation and the eddy-viscosity assumption

alone, suggesting the use of more performing structural mod-

els, as the proposed WSM, in order to correctly capture the

complex nature of SGS interactions, in particular, within the

strong curvature flow region around the stagnation point.

The proposed model produces a correct representation of

the statistical character of the problem under study and dem-

onstrates quite interesting features, especially in consider-

ation of its relatively low computational cost and the com-

plexity of the analyzed flow configuration.
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APPENDIX: EXPLICIT FILTER IMPLEMENTATION

The filtering operation at length scale 4 /3D has been

obtained as a generalization of the discrete filter used by

Zang et al.
21
With reference to Fig. 18, in the case of uniform

grid, the filtered quantity ŵ is obtained with the trapezoidal

rule as

FIG. 17. ReD=70 000 test case C3: maps of passive scalar Z over a hori-

zontal plane at x1 /D=0.1 sad and x1 /D=0.05 sbd.
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ŵi,j,k =
1

8 swi+1/3,j+1/3,k+1/3 + wi−1/3,j+1/3,k+1/3

+ wi+1/3,j−1/3,k+1/3 + wi−1/3,j−1/3,k+1/3

+ wi+1/3,j+1/3,k−1/3 + wi−1/3,j+1/3,k−1/3

+ wi+1/3,j−1/3,k−1/3 + wi−1/3,j−1/3,k−1/3d , sA1d

where each of the values in parentheses is obtained by mul-

tilinear interpolation of the surrounding nodes. The explicit

formulation for interpolated quantities—indicated in Fig. 18

with solid circles—can be expressed as

wi61/3,j61/3,k61/3 =
1

27wi61,j61,k61 +
8

27wi,j,k

+
2

27swi61,j61,k + wi61,j,k61 + wi,j61,k61d

+
4

27swi61,j,k + wi,j61,k + wi,j,k61d , sA2d

where the signs in the triplets of indices of the terms on the

right-hand side must be chosen in accordance with the signs

in the triplet of indices of the relevant interpolated quantity

on the left-hand side.

The above formulation may be readily generalized to the

case of nonuniform grids. An isotropic filter operator can be

built, in this particular case, by computing a different set of

the interpolation coefficients for each grid point, thus ensur-

ing the correct filtering cutoff length along the three coordi-

nate directions. The local value of the grid length scale D, in

particular, may be conveniently computed resorting to the

anisotropic grid correction factor proposed by Scotti et al.
33

fcf. Eq. s27dg. It is worth stressing that maintaining moderate
grid anisotropy

15
and paying particular attention to pencil-

like computational cells
57,58

are anyway advisable. If D̂

=4 /3D is the filter cutoff length scale, the nonuniform grid

version of Eqs. sA1d and sA2d may be rewritten as

ŵi,j,k =
1

8 fwsx+,y+,z+d + wsx−,y+,z+d + wsx+,y−,z+d

+ wsx−,y−,z+d + wsx+,y+,z−d + wsx−,y+,z−d

+ wsx+,y−,z−d + wsx−,y−,z−dg , sA3d

wsx6,y6,z6d = a0wi61,j61,k61 + b0wi,j,k

+ c1wi61,j61,k + c2wi61,j,k61 + c3wi,j61,k61

+ d1wi61,j,k + d2wi,j61,k + d3wi,j,k61, sA4d

with x6=xi6D̂ /4, y6=y j 6D̂ /4, and z6=zk6D̂ /4.

Again, the signs in the triplets of indices on the right-

hand side must be chosen according to the location of the

interpolated quantity with respect to the filtering location; the

same signs shall be used when computing all the following

relevant quantities. The multilinear interpolation coefficients

in Eq. sA4d are defined by the following relations:

a0 = j6h6z6, b0 = f1 − j6gf1 − h6gf1 − z6g ,

c1 = j6h6f1 − z6g, d1 = j6f1 − h6gf1 − z6g ,

c2 = j6f1 − h6gz6, d2 = f1 − j6gh6f1 − z6g ,

c3 = f1 − j6gh6z6, d3 = f1 − j6gf1 − h6gz6.

j6, h6, and z6 being computed as the ratio between D̂ /4 and

the separation along the three coordinate axes between the

filtering location and the neighbor nodes,

j6 =
D̂

4uxi61 − xiu
,

h6 =
D̂

4uy j61 − y ju
,

z6 =
D̂

4uzk61 − zku
.

As it can be easily verified, Eq. sA1d—or the analogous

nonuniform grid version, Eq. sA3d—reduces, globally, to a

linear combination of the 27 points involved in the multilin-

ear interpolation procedure,

ŵi,j,k = o
«

ai+«,j+«,k+«wi+«,j+«,k+«, sA5d

the factors a being computed from the multilinear interpola-

tion coefficients and the summation being performed over

all the possible combinations of indices obtained for «

=−1,0 ,1.

The presence of wall boundary conditions poses an ad-

ditional inevitable issue within the near-wall region, when

the filter size becomes greater than the available distance

from the wall. In this case, the filtering volume is cut by the

wall and a strictly isotropic filter is difficult to be defined. In

the present implementation, the scheme is switched to bidi-

mensional filtering over the plane parallel to the solid bound-

ary whenever the filter cutoff length becomes greater than

the distance from the wall.
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Scalar variances: LES against measurements and
mesh optimization criterion; scalar gradient: a

three-dimensional estimation from planar
measurements using DNS

By G. Lodato†, P. Domingo†, L. Vervisch† AND D. Veynante‡

Large-eddy simulation (LES) provides space-filtered quantities to compare with mea-
surements, which may have been obtained using a different filtering operation; hence,
numerical and experimental results can be examined side-by-side in a time-averaged sta-
tistical sense only. Instantaneous, space-filtered and statistically time-averaged signals
feature different characteristic length scales, which can be combined in dimensionless
ratios. From a manufactured turbulent flame solution, the critical values of these ra-
tios under which measured and computed variances (resolved plus subgrid scale) can be
compared without resorting to additional residual terms are first determined. Then, it is
shown that the difference in filter sizes imposes the knowledge of the magnitude of the
scalar gradient, to accurately compare LES results against measurements. In premixed
turbulent flames, scalar gradients are usually obtained from two-dimensional planar ex-
perimental diagnostics, for instance when measuring flame surface density. A transfor-
mation to evaluate three-dimensional flame surface density from two-dimensional mea-
surements is discussed and evaluated from direct numerical simulation (DNS) of round
and planar premixed jet flames.

1. Introduction

Scalar variances are widely used in large-eddy simulation (LES) of turbulent combus-
tion (Pitsch 2006). These variances appear under different forms, time-averaged, filtered,
resolved or at the subgrid scale level. Typically, a scalar signal (e.g. species mass fraction,
enthalpy, temperature) is denoted ϕ(x, t) and 〈ϕ〉 (x) is the time average of this signal:

〈ϕ〉 (x) = lim
T→∞

1

T

T∫

0

ϕ(x, t)dt (1.1)

and ϕ(x, t) is the space filtered average:

ϕ(x, t) =

+∞∫

−∞

ϕ(x′, t)G∆(x − x′)dx′ (1.2)

where G∆ is a space filter of characteristic scale ∆. Mass weighted filtered and time
averaged quantities are also defined from these operators as: {ϕ} = 〈ρϕ〉 / 〈ρ〉 and ϕ̃ =

† LMFN, CORIA - CNRS, Institut National des Sciences Appliquées de Rouen, France
‡ EM2C - CNRS, Ecole Centrale Paris, France
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ρϕ/ρ. The three signals ϕ(x, t), {ϕ} (x) and ϕ̃(x, t) have three characteristic thicknesses
and length scales δL, δT and δ∆, respectively. In LES, δL < δ∆ ≈ ∆ < δT .

From their definitions, filtering and averaging operators commute; then whatever above
length scales 〈ϕ〉 = 〈ϕ〉. Moreover, for ∆ << δT the time averaged signal does not evolve
much at the LES scales and 〈ϕ〉 is left unchanged by the filtering operation: 〈ϕ〉 ≈ 〈ϕ〉.
Combining the commutation of operators and the condition ∆ << δT , the relation 〈ϕ〉 ≈
〈ϕ〉 is obtained (Veynante & Knikker 2006). This paper discusses the interplay between
these relations and scalar variance measurements, along with implications regarding the
estimation of 3-D flame surface density from 2-D measurements.

2. Variance decomposition: Resolved, subgrid scale (SGS) and residual parts

2.1. Definitions

In LES of real combustion systems (Boileau et al. 2008), the asymptotic condition ∆ <<
δT is not always verified and non-negligible residual terms rρ, rρϕ and rρϕ2 appear which
may be defined so that:

〈ρ〉 = 〈ρ〉+ rρ (2.1)

〈ρϕ〉 = 〈ρϕ̃〉+ rρϕ (2.2)
〈
ρϕ2

〉
=

〈
ρϕ̃2

〉
+ rρϕ2 (2.3)

then, ϕv, the time-averaged variance may be written:

ϕv =
{
ϕ2

}
− {ϕ}

2
=

〈
ρϕ̃2

〉

〈ρ〉
−

(
〈ρϕ̃〉

〈ρ〉

)2

+ Rρϕ2 −Rρϕ (2.4)

with

Rρϕ2 =
〈ρ〉 rρϕ2 −

〈
ρϕ2

〉
rρ

〈ρ〉 (〈ρ〉+ rρ)
; Rρϕ =

〈ρ〉
2
rρϕ(rρϕ + 2 〈ρϕ〉)− 〈ρϕ〉

2
rρ(rρ + 2 〈ρ〉)

〈ρ〉2 (〈ρ〉2 + r2
ρ + 2 〈ρ〉 rρ)

(2.5)
Introducing

〈
ρϕ̃2

〉
into Eq. (2.4) leads to:

ϕv =
{
ϕ2

}
− {ϕ}

2
=

〈
ρϕ̃2

〉

〈ρ〉
−

(
〈ρϕ̃〉

〈ρ〉

)2

︸ ︷︷ ︸
TR: Resolved part

+

TSGS : SGS part︷ ︸︸ ︷〈
ρ(ϕ̃2 − ϕ̃2)

〉

〈ρ〉
+Rv (2.6)

This last relation provides the exact decomposition of the total variance ϕv into TR and
TSGS, resolved and SGS parts, with an additional residual term Rv = Rρϕ2 −Rρϕ. TR is
the variance of the filtered field and TSGS the mean of the SGS variance. The constant
density case is easily recovered by setting rρ = 0 and ρ = cst in the above equations.

LES meshes and filters are so that ∆ = αδL = βδT with α > 1 and β < 1. The SGS
part decreases when α → 1 and would vanish when α < 1, as in DNS. The resolved part
is negligible when β → 1, while the contribution of the residual term Rv decreases with
β. For a given reactive front, for β > βR, the residual term Rv cannot be expected to
be small compared to other contributions, where βR is a critical value to be determined.
When comparing LES variances obtained from their resolved and SGS parts, the mesh
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must therefore verify β = ∆/δT < βR, which also implies α = (∆/δL) < βR(δT /δL). The
value of βR is now evaluated for a premixed turbulent flame brush in the flamelet regime.

2.2. Manufactured premixed flame solution and LES meshes optimization

Obviously, the analysis of the three terms entering Eq. (2.6) can be performed only in
turbulent flame solutions where a sufficiently large number of scales is present. With
actual computer capabilities, DNS does not offer the possibility of covering a sufficiently
large range of scales to fully investigate these energy-budget questions; a manufactured
solution is therefore needed. A synthetic turbulent field is thus manufactured from a
large number of laminar flamelets of thickness δL, which are randomly distributed to
build a mean flame brush. Typically, this solution mimics DNS performed in the flamelet
regime; flamelet profiles are transported by turbulence without modification of their
internal structure.

The instantaneous progress variable is defined as:

c(x, t) = FL(x− xL(t)) (2.7)

xL(t) = xo + ξ(t)κ(t)δT (2.8)

where FL(x) is the single flamelet distribution obtained from the solution of a methane-
air stoichiometric premixed flame computed with detailed GRI chemistry (Smith et al.
1999). The progress variable (c = 0 in fresh gases and c = 1 in fully burnt products) is
defined from Yc = YCO +YCO2 , normalized by its value in equilibrium products. xo is the
position of the mean flame brush, xL(t) the position of the flamelet within the turbulent
flame brush at time t, ξ(t) is a uniformly distributed random number taking the values
±1 and κ(t) a random Gaussian distribution. The average progress variable profiles of
the manufactured solution may be written:

〈c〉 (x) =

x∫

−∞

P (x∗L)dx∗L (2.9)

with P (x∗L) the probability density function (pdf) of the flamelets positions. The man-
ufactured solution is operated over a duration t = T , so that P (x∗L) is statistically
converged.

The terms of Eq. (2.6) extracted from c(x, t) for various values of α and β are displayed
in Fig. 1. As expected, TR, the resolved part decreases when β = ∆/δT increases, while
the SGS contribution, TSGS, becomes greater; the decay of TR versus β is almost linear.
The budget (TR + TSGS)/cv does not sum to unity, untill the always-negative residual
part Rv/cv is added. The sensitivity to α = ∆/δL is weak for β < 0.2 and stays mod-
erate for TSGS. For a given β, the resolved part (resp. the SGS part) decreases (resp.
increases) when α increases. For a scalar variance budget closed at 1% with the addition
of resolved and SGS parts (Rv/cv < 0.01), then β must respect β < βR ≈ 0.06 (Fig. 1),
corresponding to δT /∆ > 16.

In LES of a reactive front of characteristic size δL, the scalar energy budget can then
be completed without resorting to additional residual terms for

αR = ∆/δL < βR(δT /δL) . (2.10)

In a typical premixed swirling flow burner (Galpin et al. 2008), δT ≈ 0.01 m and δL ≈ 0.1
mm, leading to αR ≈ 6. This criterion can be used to optimize LES meshes; after a first
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Figure 1. (a) - dots: c(x, t) given by Eq. (2.7) for δT /δL = α/β = 12; line: 〈c〉 (x). (b) - (c)
- (d): Normalized three terms of Eq. (2.6) vs β = ∆/δT , normalization is done using cv. Line
with Circle: α = ∆/δL = 2; Square: α = 3; Triangle up: α = 4; Triangle down: α = 5.

simulation performed on a given mesh to estimate δT , the grid can be refined at locations
where the criterion defined by Eq. (2.10) is not fulfilled.

2.3. Scaling of SGS variance

The SGS variance is usually approximated from mixing modeling closures, mostly derived
for non-reactive scalars (Pierce & Moin 2004, Domingo et al. 2005), under a production-
dissipation hypothesis:

TSGS =

〈
ρ(c̃2 − c̃2)

〉

〈ρ〉
∝

〈
ρ (∆|∇c̃|)

2
〉

〈ρ〉
. (2.11)

Another approach may be followed (Veynante & Knikker 2006) where the flame is sup-
posed as infinitely thin:

TSGS ∝
〈ρc̃(1 − c̃)〉

〈ρ〉
and

〈ρ|∇c̃|〉

〈ρ〉
∝
〈ρc̃(1− c̃)〉

∆ 〈ρ〉
(2.12)

leading to:

TSGS ∝
〈ρ∆|∇c̃|〉

〈ρ〉
. (2.13)
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/ 〈ρ〉. Circle: α = ∆/δL = 2;

Square: α = 3, Triangle up: α = 4; Triangle down: α = 5.

Analyzing local flame front measurements to estimate SGS variances, Veynante & Knikker
(2006) found that the best approximation of the SGS variance was obtained with the
linear correlation (Eq. (2.13)). Figure 2(a) shows that the manufactured solution repro-
duces this result, TSGS scales linearly with the filter size and with the gradient of the
filtered field, but not with the square of these quantities. For β > βR, no scaling was
found when the residual term Rv is added to the SGS variance.

Scalar measurements, for instance using Raman or PLIF, are obtained from filtering at
a level ∆∗, which may differ from the LES filter ∆. The total variance (lhs of Eq. (2.6))
is decomposed for both filters into resolved and SGS parts; using Eq. (2.13), the resolved
parts are related according to:

〈
ρ
∗
ϕ̃2
∗

〉

〈ρ
∗
〉
−

(
〈ρ
∗
ϕ̃∗〉

〈ρ
∗
〉

)2

︸ ︷︷ ︸
Measured

=

〈
ρϕ̃2

〉

〈ρ〉
−

(
〈ρϕ̃〉

〈ρ〉

)2

︸ ︷︷ ︸
LES

+ Cv

(
1−

∆∗
∆

〈ρ
∗
|∇ϕ̃∗|〉 / 〈ρ∗〉

〈ρ|∇ϕ̃|〉 / 〈ρ〉

)
(2.14)

where the subscript ∗ indicates measured quantities. This last relation suggests that the
knowledge of the gradient is useful when comparing measured and LES variances.

3. Evaluation of 3-D scalar gradients and flame surface density from 2-D
measurements

3.1. Background

In premixed turbulent combustion, the gradient of c(x, t), the progress variable, is directly

related to the flame surface density Σ(c∗; x, t) =
(
|∇c||c∗

)
P (c∗; x, t), where P (c∗; x, t)

is the probability density function of c and
(
|∇c||c∗

)
the conditional mean value of the

gradient for c = c∗, the c-value used to locate the flame surface (Pope 1989; Vervisch et
al. 1995). Integrating overall surfaces leads to (Veynante & Vervisch 2002):

1∫

0

Σ(c∗; x, t)dc∗ =

1∫

0

(
|∇c||c∗

)
P (c∗; x, t)dc∗ = |∇c| = Ξ|∇c| (3.1)
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with Ξ the wrinkling factor of the turbulent flame; therefore the knowledge of the flame
surface also provides information on gradients, useful in Eq. (2.14).

Flame surface density Σ measures the available flame surface per unit volume and
its modeling is one of the key approaches to express reaction rates in RANS or LES
(Poinsot & Veynante 2005). The mean (or filtered) reaction rate of a species k is written:
ω̇k = 〈Ω̇k〉sΣ, where 〈Ω̇k〉s is the surface averaged reaction rate of the k-species per unit
of flame area, generally estimated from laminar flame studies under flamelet assumptions.
The flame surface density may be determined either from algebraic expressions (Bray et
al. 1989; Boger et al. 1998) or by solving a balance equation (Veynante & Vervisch
2002; Hawkes & Cant 2000). Unfortunately, well-resolved instantaneous flame front 3-D
visualizations are not yet available and the experimental determination of flame surface
densities, either from planar laser tomography (Veynante et al. 1996; Lachaux et al.
2005) or planar laser-induced fluorescence measurements (Knikker et al. 2002), requires
the assumption of a 2-D instantaneous flow (e.g. the instantaneous flame front is not
wrinkled in the direction normal to the measuring plane).

The objective of this section is to investigate, from DNS, the uncertainties linked to this
assumption and to explore whether the actual flame surface density Σ may be inferred
from 2-D measurements. Note that similar attempts have been conducted to determine
scalar dissipation rate distributions from two-dimensional measurements (Dahm & Buch
1989; Hawkes et al. 2009). However, the approach proposed here is quite different as we
do not attempt to directly estimate the flame surface density distribution.

3.2. DNS of a Bunsen flame

DNS of a turbulent Bunsen flame was performed using the SiTCom code, a CNRS-
CORIA MPI parallelized, fully compressible and explicit Finite Volume flow solver based
on cartesian grids. This solver approximates the convective terms resorting to the fourth-
order centered skew-symmetric-like scheme (Ducros et al., 2000) and the diffusive terms
with a fourth-order centered scheme. Time integration is performed using the third-order
Runge-Kutta scheme of Gottlieb & Shu (1998). All the boundary conditions are enforced
using the 3D-NSCBC approach (Lodato et al., 2008), which has been modified in order
to properly account for the chemical source terms, as discussed below.

Assuming that the equivalence ratio of the mixture is lean (e.g. there is an excess of air
so that the combustion weakly modifies the oxidizer mass fraction), the progress variable
and energy source terms ω̇c and ω̇e relevant to a single-step chemistry may be written:

ω̇c = ρK(1− c) exp

(
−

TAc

T

)
, and ω̇e = cpT0

(
αe

1− αe

)
ω̇c, (3.2)

where usual notations are adopted; K is the pre-exponential factor, TAc the activation
temperature and αe = (Tb−T0)/Tb the heat release parameter, which may be related to
TAc by the Zeldovitch number βe = αe TAc/Tb. All the results presented were obtained
fixing αe = 0.8 and βe = 8.

To better control the behavior of the acoustic-sensitive boundary conditions under the
presence of heat release, the chemical source terms are accounted for in the computation
of characteristic incoming waves (Yoo & Im, 2007). Source terms, in fact, can be treated in
analogy to what is done with transverse terms (in-plane convection and pressure gradient,
Lodato et al., 2008). This specific treatment of acoustic boundary conditions allows for
the reactive front to cross any boundaries of the computational domain.

Two different flow configurations have been computed: (a) a ReD = 2000 round flame
and (b) a ReD = 4500 slot flame (ReD computed on the bulk velocity Ub). The former
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ReD D Lx × Ly × Lz Ub η h/η lt/D SL u′/SL lt/δl Nodes Cores
– mm – m/s µm min–max – m/s – – – (CPUs)

2000 0.5 4D × 2D × 2D 63.74 2.2 1.2–6.4 0.04 1.7 11.9 2.1 8.5M 2048

4500 1.0 3D × 3D × 1.3D 71.71 2.4 1.4–10.8 0.025 1.4 16.4 2.2 91M 4096

Table 1. Premixed turbulent flame DNS parameters.

Figure 3. Left: ReD = 2000 round jet flame, Q-criterion and flame surface. Right:
ReD = 4000 slot burner flame, flame surface.

was computed using subsonic non-reflecting inlet condition and subsonic non-reflecting
outflows on all the other five boundaries, the latter had identical boundary types, except
in the spanwise direction where periodic conditions were enforced. In both cases, turbu-
lence was promoted by injecting a correlated random noise (Klein et al., 2003) at the
inlet, with correlation length lt and intensity u′.

Grid spacing has been chosen in order to correctly resolve all the relevant scales of
turbulence, as well as the flame thickness. With regard to the first point, the Kolmogorov

length-scale η has been evaluated from the classical scaling η ∼ ℓRe
−3/4
t , ℓ ∼ 0.1D being

an estimation of the integral length-scale, Ret ∼ u′ℓ/ν and u′2 ∼ 0.1U2
b , estimations

checked from results. As can be seen in Table 1, grid spacing h is of the order of η in
regions where turbulence develops, and the maximum values are attained far from the
shear layers, where velocity fluctuations do not exist.

With regard to the flame resolution, 1-D preliminary tests have revealed that a good
estimation of the maximum grid spacing hmax can be obtained from the laminar flame
speed SL and the cinematic viscosity ν as hmax ∝ 0.3ν/SL. This criterion, actually, fixes
the maximum laminar flame speed that can be resolved on a given computational grid;
SL was set accordingly for both simulations. The main parameters for the two DNS are
summarized in Table 1.
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3.3. Basic geometrical flame properties

For clarity, the following derivations are conducted for a statistically 2-D turbulent flame
in Cartesian coordinates. The proposed relations are easily recast in terms of cylindrical
coordinates, considering a statistically axisymmetrical turbulent flame, as observed in
the DNS round-jet flame. Let x denote the downstream direction and (x, y) the mea-
suring plane, for which Mie diffusion or laser-induced fluorescence instantaneous flame
front visualizations are available. No measurements are conducted along the transverse
direction z. In the following, θ is the angle of the projection, in the measuring plane, of
the unit vector n normal to the instantaneous flame front with the transverse direction
y, while φ measures the angle between n and the measuring plane (x, y), as shown in
Fig. 4(a). θ is known from measurements and −π ≤ θ ≤ +π. For instantaneous flame
front parallel to the downstream direction x, θ = 0. The off-measuring plane angle φ is
unknown and −π/2 ≤ φ ≤ +π/2. For instantaneous 2-D flame front, φ = 0.

According to these notations, the unit vector normal to the flame front in the (x, y)-
plane and in the 3-D field are respectively:

n(x,y) = (sin θ, cos θ, 0) and n = (sin θ cosφ, cos θ cosφ, sin φ) (3.3)

The density of the isosurface c = c∗, Σ, and the corresponding value extracted from 2-D
measurements in the (x, y) plane, Σ(x,y), are given by Pope (1988):

Σ =
(
|∇c| | c∗

)
P (c∗) (3.4)

Σ(x,y) =
(
|∇c|(x,y) | c

∗

)
P (c∗) . (3.5)

the subscript (x, y) denotes 2-D measurements in the (x, y)-plane. Then:

Σ(x,y) =
(
cosφ |∇c| | c∗

)
P (c∗) = 〈cosφ〉sΣ (3.6)

Two- and three-dimensional flame surface densities are thus linked through 〈cosφ〉s, the
surface averaged value of cosφ. For φ = 0, both flame surface densities are equal. Two-
and three dimensional mean values of the scalar dissipation rate, proportional to |∇c|2

are related through mean values of cos2 φ. Dahm & Buch (1989) and Hawkes et al.
(2009) then propose to estimate the distribution of the scalar dissipation rate from the
probability density function of cos2 φ; an equivalent approach for flame surface density
will be investigated in the future but is not retained here.

Figure 4(b) displays histograms of angles θ and φ as extracted from the DNS database.
As expected, their mean values are close to zero because of the axi-symmetry of the mean
flowfield. They have similar variances, meaning that flame front movements around the y-
direction in the plane (x, y) (θ angles) are comparable to off-plane movements (φ angles).
Also, θ and φ are found to be poorly correlated (not shown here) and may be assumed
statistically independent.

The vector n normal to the instantaneous flame front is a unit vector:

〈nxnx〉s + 〈nyny〉s + 〈nznz〉s = 1 . (3.7)

where ni denotes the component along the i-th direction. Decoupling each component
into mean and fluctuation, ni = 〈ni〉s + mi, with 〈mi〉s = 0 gives:

〈nx〉s〈nx〉s + 〈mxmx〉s + 〈ny〉s〈ny〉s + 〈mymy〉s + 〈nz〉s〈nz〉s + 〈mzmz〉s = 1 (3.8)

Three additional assumptions are now introduced:



LES scalar variances and 3-D projection of 2-D measurements from DNS 395

(a)

-1,5 -1 -0,5 0 0,5 1 1,5

Angles

0

5000

10000

15000

H
is

to
g

ra
m

(b)

Figure 4. (a): x is the downstream direction, instantaneous flame front visualizations are per-
formed in the (x, y) plane. θ (respectively φ) measures the angle of the projection, in the mea-
suring plane, of the unit vector n normal to the instantaneous flame front with the y-direction
(respectively off the measuring plane). (b): Histograms of angles θ (empty circles) and φ (filled
circles) from DNS (round-jet flame, points in the flame front 0 < c < 1, |∇c| > 0).

(a) In mean, the flow is 2-D (or axi-symmetric), hence 〈nz〉s = 0.
(b) According to Eq. (3.3), nx = (cos φ)nx(x,y)

and ny = (cosφ)ny(x,y)
, where ni(x,y)

are the components of n(x,y), the unit vector normal to the flame front in the (x, y)-
plane. When angles θ and φ are statistically independent, these relations give 〈ni〉s ≈

〈cos φ〉s〈ni(x,y)
〉2D

s
and suggest the introduction of 〈mimi〉s ≈ 〈cos φ〉2s〈mi(x,y)

mi(x,y)
〉2D

s
,

where i = x, y and the suffix 2D denotes surface averages in the (x, y) plane.
(c) The fluctuations of the normal vector in the z-direction, 〈mzmz〉s, remain un-

known. Assuming similar statistics for θ and φ angles provides an estimation of this
quantity from the fluctuations of the normal vector in the plane (x, y) around the y-
direction:

〈mzmz〉s ≈ 〈mymy〉s ≈ 〈cos φ〉
2
s〈my(x,y)

my(x,y)
〉
2D

s
(3.9)

Eq. (3.8) then becomes:

〈cosφ〉
2
s

(
1 + 〈my(x,y)

my(x,y)
〉
2D

s

)
= 1 (3.10)

leading to, using Eq. (3.6):

Σ ≈

(√
1 + 〈my(x,y)

my(x,y)
〉
2D

s

)
Σ(x,y) (3.11)
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Figure 5. Flame surface by Eq. (3.12). (a): vs x, normalized bunsen flame downstream location.
(b): transverse profile vs mean progress variable. Bold line (a) and Circle (b): DNS 3-D-Σ;
Thin line (a) and Square (b): 2-D measurements (Σ(x,y)); dashed line (a) and cross (b): 3-D
reconstruction from Eq. (3.11).

providing an estimation of the 3-D flame surface density from 2D measurements per-
formed in the (x, y)-plane.

3.4. 3-D estimation against DNS results

Relation (3.11) is now investigated from the DNS data. Flame surface densities are ex-
tracted identifying the flame front with the isosurface c∗ = 0.88, corresponding to the
maximum value of the reaction rate. To increase the number of samples, all possible
(x, y)-planes are considered, e.g. 2-D statistics are extracted from all planes containing
the burner centerline (x-axis).

Figure 5(a) displays the evolution of the total flame surface along the burner centerline.
This total surface depends on the downstream location and is defined as:

Σtot (x) =

+∞∫

−∞

+∞∫

−∞

Σ dy dz (3.12)
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Two-dimensional measurements are found to underestimate the flame surface by about
16% while Eq. (3.11) recovers the true value with an error of about 0.3% on the total
flame surface. This finding is confirmed in Fig. 5(b), showing transverse profiles of the
flame surface density as a function of the progress variable c. Similar results are found
with the slot burner configuration (not shown).

4. Conclusion

A manufactured turbulent premixed flame solution has been introduced to discuss a
LES mesh criterion based on characteristic laminar flame and mean flame brush thick-
nesses. The scaling of scalar variance in terms of scalar gradient was also addressed with
this synthetic solution and previous experimental observations recovered. The 3-D esti-
mation of this scalar gradient from 2-D measurements was then addressed using both
geometrical derivations and DNS results.
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APPENDIX A
The Lagrangian Averaging

Operation

Let f(x, t) be the value of a generic quantity at position x and time t, then its weighted average,
backward in time, along the fluid particle path-line originating at x, namely its Lagrangian
average, may be obtained as the convolution integral

φ(x, t) =

∫ t

−∞
f(z(t′), t′)W (t− t′)dt′, (A.1)

where W (t) is the weighting function and z(t′) defines the Lagrangian trajectory of the fluid
particle at some earlier time t′ [48],

z(t′) = x−
∫ t

t′
u(z(t′′), t′′)dt′′. (A.2)

In the case the weighting function is a decaying exponential function with characteristic
time T, Eq. (A.1) becomes:

φ(x, t) =

∫ t

−∞

f(z(t′), t′)

T
exp

(
− t− t

′

T

)
dt′. (A.3)

We want to show that, for any sufficiently regular (i.e. continuous and differentiable) func-
tion f(x, t), the above Lagrangian average is also solution of the following transport equation:

Dφ

Dt
=
1

T
[f(x, t)− φ(x, t)] . (A.4)

In order to evaluate the material derivative Dφ/Dt, the fluid particle has to be followed
along its path-line and the rate of change of the property φ needs to be measured, i.e. the
following limit is evaluated between two close positions along the pathline:

Dφ

Dt
= lim

dt→0

φ(x+ dx, t+ dt)− φ(x, t)
dt

, (A.5)
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with the infinitesimal displacement dx lying along the Lagrangian trajectory. From Eq. (A.3)
it is easily verified that

φ(x+ dx, t+ dt) =

∫ t+dt

−∞

f(z(t′), t′)

T
exp

(
− t+ dt− t′

T

)
dt′, (A.6)

which may be, more conveniently, written as:

φ(x+ dx, t+ dt) =

∫ t+dt

−∞

f(z(t′), t′)

T
exp

(
− t− t

′

T

)
dt′

+

∫ t+dt

−∞

f(z(t′), t′)

T

[
exp

(
− t+ dt− t′

T

)
− exp

(
− t− t

′

T

)]
dt′. (A.7)

From the above relation and Eq. (A.3), the difference ∆φ = φ(x + dx, t + dt) − φ(x, t)
reads:

∆φ =

∫ t+dt

−∞

f(z(t′), t′)

T

[
exp

(
− t+ dt− t′

T

)
− exp

(
− t− t

′

T

)]
dt′

+

∫ t+dt

t

f(z(t′), t′)

T
exp

(
− t− t

′

T

)
dt′ (A.8)

and, splitting the first integral between (−∞ : t] and [t : t+ dt], the ratio ∆φ/dt becomes

∆φ

dt
=

1

dt

∫ t

−∞

f(z(t′), t′)

T

[
exp

(
− t+ dt− t′

T

)
− exp

(
− t− t

′

T

)]
dt′

+
1

dt

∫ t+dt

t

f(z(t′), t′)

T

[
exp

(
− t+ dt− t′

T

)
− exp

(
− t− t

′

T

)]
dt′

+
1

dt

∫ t+dt

t

f(z(t′), t′)

T
exp

(
− t− t

′

T

)
dt′. (A.9)

Assuming that the integrand in the above equation are continuous in [t : t + dt] and
differentiable in (t : t+dt), we may invoke the Mean-Value Theorem and say that there exists
a t∗ ∈ (t : t+ dt) such that

1

dt

∫ t+dt

t
g(t′)dt′ = g(t∗), (A.10)

therefore, the second and third integrals become respectively:

f(z(t∗1), t
∗
1)

T

[
exp

(
− t+ dt− t∗1

T

)
− exp

(
− t− t

∗
1

T

)]
, (A.11)

f(z(t∗2), t
∗
2)

T
exp

(
− t− t

∗
2

T

)
, (A.12)

where t∗1 and t
∗
2 are some suitable instants in (t : t+ dt). In the limit for dt→ 0, both t∗1 and

t∗2 tend to t and since, by definition, z(t′) = x for t′ = t (cf. Eq. (A.2)), the above quantities
assume the following values:

lim
dt→0

{
f(z(t∗1), t

∗
1)

T

[
exp

(
− t+ dt− t∗1

T

)
− exp

(
− t− t

∗
1

T

)]}
= 0, (A.13)

lim
dt→0

[
f(z(t∗2), t

∗
2)

T
exp

(
− t− t

∗
2

T

)]
=
f(x, t)

T
. (A.14)
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Taking the limit for dt → 0 of Eq. (A.9) and using Eq. (A.5), as well as the above two
identities, the material derivative of φ then becomes:

Dφ

Dt
= lim

dt→0

1

dt

∫ t

−∞

f(z(t′), t′)

T

[
exp

(
− t+ dt− t′

T

)
− exp

(
− t− t

′

T

)]
dt′

+
f(x, t)

T
. (A.15)

Since, in the above equation, dt is not present in the integral limits anymore, the limit
operator can be moved inside the integral sign. Moreover, observing that the term in square
brackets represents nothing more than a infinitesimal increment in the exponential function
(i.e. its time derivative is being taken), the following identity holds true,

lim
dt→0

1

dt

[
exp

(
− t+ dt− t′

T

)
− exp

(
− t− t

′

T

)]
= − 1

T
exp

(
− t− t

′

T

)
, (A.16)

and Eq. (A.15) is rewritten as

Dφ

Dt
= − 1

T

∫ t

−∞

f(z(t′), t′)

T
exp

(
− t− t

′

T

)
dt′ +

f(x, t)

T
, (A.17)

which, making use of Eq. (A.3), finally proves that the Lagrangian averaging operator φ(x, t),
of a function f(x, t), with exponential weighting function may be obtained as solution of
Eq. (A.4).
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Conditions aux Limites Tridimensionnelles pour la Simulation Directe
et aux Grandes Échelles des Écoulements Turbulents.

Modélisation de Sous-Maille pour la Turbulenceen Région de Proche Paroi.

Deux points essentiels ont été abordés dans cette thèse : le traitement des conditions aux limites et la
modélisation fine des interactions de sous-maille pour représenter, au mieux, la région de proche paroi.
La formulation caractéristique des conditions aux limites a été analysée et une nouvelle procédure

3D-NSCBC est proposée qui autorise la prise en compte de l’évolution de la vitesse et de la pression dans
le plan des frontières, afin d’introduire le caractère tridimensionnel de l’écoulement dans les conditions
limites. Les difficultés au niveau des arêtes et des coins du maillage de calcul, liées au couplage des
ondes caractéristiques voyageant le long des directions orthogonales et à l’imposition simultanée des
différentes conditions aux limites, ont nécessité le développement des nouvelles formulations.
Dans le cadre de la Simulation des Grandes Échelles, pour reproduire correctement la dynamique de

la turbulence à la paroi et pour mieux prendre en compte l’anisotropie du tenseur des contraintes de
sous-maille, un modèle structural fondé sur l’hypothèse de similarité est développé pour des écoulements
modérément compressibles. La reproduction du transfert local inversé d’énergie des petites échelles vers
les grandes par le modèle proposé s’est révélée être un ingrédient essentiel contribuant à la représentation
correcte du transport énergétique moyen dans la couche limite turbulente.
Des Simulations Numériques Directes de la combustion turbulente sont discutées dans une dernière

partie. Une procédure pour prendre en compte les termes sources de la chimie dans les conditions
aux limites 3D-NSCBC a été développée, et les résultats obtenus sur une flamme jet prémélangée
turbulente de type Bunsen utilisés pour valider un modèle permettant de reconstruire la surface de
flamme tridimensionnelle à partir de mesures expérimentales bidimensionnelles.

Mots clés : conditions aux limites caractéristiques non-réfléchissantes ; Simulation aux Grandes
Échelles ; modèles de Sous-Maille de similarité-mixte ; comportement asymptotique en région de
proche paroi ; transfert inverse d’énergie turbulente ; Simulation Numérique Directe ; combustion
turbulente.

Three-dimensional Boundary Conditions for Direct
and Large-Eddy Simulation of Turbulent Flows.

Sub-Grid Scale Modeling for Near-Wall Region Turbulence.

Two main topics have been addressed within the present thesis: the treatment of boundary conditions
and sub-grid scale interactions’ modeling, with particular attention to the near-wall region.
The characteristic formulation of boundary conditions has been analyzed and a novel procedure 3D-

NSCBC is proposed, which, accounting for the evolution of velocity and pressure on the boundary
planes, allows a better representation of the three-dimensional character of the flow at the boundary.
The difficulties on the edges and corners of the computational domain, related to the coupling of
characteristic waves traveling along orthogonal directions and to the simultaneous imposition of different
boundary conditions, have necessitated new formalisms to be developed.
Within the framework of the Large-Eddy Simulation, in order to give a correct reproduction near-wall

turbulence dynamics and in order to better account for the sub-grid scale stress tensor’s anisotropy, a
structural model based on the similarity hypothesis has been developed for weakly compressible flows.
The reproduction of local reversed energy transfer from the small scales to the big ones obtained with
the proposed model, has been identified as a key mechanism for the correct representation of the average
energy transfer within the turbulent boundary layer.
Direct Numerical Simulations of turbulent combustion are discussed in the last section of this thesis.

A procedure to account for chemical source terms in the 3D-NSCBC procedure has been developed, and
the results obtained on a premixed turbulent Bunsen flame have been used to validate a model for three-
dimensional flame surface reconstruction starting from two-dimensional experimental measurements.

Keywords: non-reflecting characteristic boundary conditions; Large-Eddy Simulation; Sub-Grid
scale similarity-mixed modelling; near-wall asymptotic behaviour; energy backscatter; Direct Nu-
merical Simulation; turbulent combustion.


