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RésuméQue e soit dans le domaine des transports, des énergies ou des banques, lessystèmes informatiques sont immanquablement présents. Nous on�ons e que nousavons de plus her, à savoir nos vies et nos biens, à des programmes informatiques.Parallèlement, ela va sans dire que es systèmes sont de plus en plus omplexes.Une omplexité due essentiellement à une expansion sans préédent de systèmeslargement distribués et hétérogènes. Sans parler de l'utilisation d'Internet ommeprinipal réseau de transport de données, partagé par un nombre olossal de servieset d'appliations Web. Fae à ette omplexité roissante, tout dysfontionnement,même temporaire, de es systèmes peut avoir de lourdes onséquenes éonomiques,voire dans ertains as, humaines. A�n de s'assurer de la �abilité de tels systèmes,il importe don de véri�er leurs omportements de la manière la plus rigoureusepossible.L'utilisation des méthodes formelles pour le test de logiiels est probablement equ'il y a de plus sûr en matière de tehniques de véri�ation. Cei s'explique sansdoute par les fondements mathématiques sur lesquels se basent es méthodes, e quipermet de développer un raisonnement plus rigoureux et de e fait, plus �able.On peut requérir aux méthodes formelles pour spéi�er les propriétés impor-tantes du système testé, mais aussi pour véri�er es propriétés sur l'implantation�nale. L'utilisation de es méthodes a permis de développer une théorie du test deonformité dont l'objetif est de réaliser un test fontionnel qui permet de véri�er sile produit �ni orrespond à la spéi�ation de référene. La reherhe aadémique apublié de nombreux travaux sur le test de onformité. Globalement, on peut lassi-�er l'ensemble de es travaux en deux grandes atégories: les méthodes de test atifet les méthodes de test passif.Le test atif onsiste à appliquer au système sous test un ensemble de tests et àomparer le omportement observé ave la spéi�ation de référene. De nombreusesméthodes de génération automatique de tests de onformité ont été proposées dansla littérature. Elles traitent généralement des systèmes protoolaires et appliatifsréatifs en faisant l'hypothèse de pouvoir interagir ave l'implantation sous test.



Le prinipe étant de stimuler le système testé en émettant des entrées partiulièrespour le faire réagir et de olleter les sorties produites pour les omparer ave ellesattendues.Ce type de test n'est malheureusement pas toujours possible à exéuter. Dansles systèmes de protooles en ouhes par exemple, il est rare qu'on puisse béné-�ier d'un aès diret pour interagir ave une ouhe partiulière du système etainsi appliquer les séquenes de test. Aussi dans ertains as, la phase de test quimonopolise omplètement le système, peut être très outeuse pour les industriels.Dans e genre de situations, le test passif s'avère partiulièrement intéressant.En e�et, le test passif ne requiert pas une interation direte ave le systèmetesté. Il onsiste à observer et à olleter les entrées et les sorties produites parl'implantation sous test, et à analyser ette séquene par rapport à la spéi�ationde référene. On véri�e alors si le omportement de l'implantation est onforme àelui prévu par la spéi�ation.La réalisation d'un test de onformité suppose que le système sous test s'exéutedans des onditions environnementales normales. On estime que dans de telles on-ditions, le omportement du système testé doit être onforme à sa spéi�ation fon-tionnelle. Cependant, lorsqu'un système informatique est suseptible d'évoluer dansun ontexte hostile où les onditions environnementales sont plus ou moins stres-santes, le test de onformité n'est plus su�sant. En e�et dans e genre de situations,on doit étudier le omportement du système en tenant ompte de es ontraintesontextuelles. Cei dé�nit un autre type de test qu'on appelle : test de robustesse.L'objetif prinipal du test de robustesse est d'étudier le omportement d'une im-plantation s'exéutant dans un environnement hostile. L'implantation testée estonsidérée robuste si elle ontinue à avoir une exéution orrete en présene defautes [1℄.Les approhes de test de robustesse peuvent être empiriques ou formelles. Lesapprohes empiriques déterminent le niveau de robustesse du système étudié, tan-dis que les approhes formelles s'intéressent à la véri�ation des propriétés de ro-bustesse [2℄. Les tehniques d'injetion de fautes sont ouramment utilisées pour



l'évaluation empirique de la robustesse d'une implantation. L'injetion de fautesonsiste à introduire de façon délibérée, des erreurs dans un système lors de sonexéution et d'observer sa réation. Cela permet, lors de la réalisation d'un test derobustesse, de simuler un environnent hostile. Par ailleurs, les approhes de test derobustesse formelles ont pour but de déterminer formellement la robustesse d'uneimplantation en véri�ant la satis�abilité d'un ensemble de propriétés de robustessesur ette implantation. Ces dernières s'inspirent fortement des méthodes de test deonformité atives à la di�érene près que le domaine d'entrées est ii augmenté parl'introdution d'un ensemble d'aléas (fautes). Ainsi, au lieu de stimuler le systèmesous test par des entrées valides, le testeur de robustesse, génère et exéute desséquenes d'entrées orrompues pour perturber le fontionnement du système testé.ContributionsLe test de robustesse est très important pour assurer la séurité et la �abilitédes systèmes logiiels. Les tehniques d'injetion de fautes appliquées au test derobustesse ont montré des résultats très intéressants. Elles sou�rent ependant de nepas disposer d'orales de tests performants leurs permettant d'évaluer la robustessedu système testé de manière plus rigoureuse. En e�et, es tehniques ne véri�ent pasformellement la robustesse d'un système. Une implantation est onsidérée robustesi elle peut ontinuer son exéution en présene de fautes. En d'autres termes, si lesystème testé ne se bloque pas, il est onsidéré omme robuste. On sait ependant,qu'un système peut très bien ontinuer son exéution sans pour autant fournir leomportement attendu. De e fait, nous avons besoins de requérir à des approhesplus rigoureuses pour évaluer la robustesse d'un système.En outre, les tehniques d'injetion de fautes ne ontr�lent pas e�aement leproessus d'injetion. Les fautes sont injetées de manière plus ou moins aléatoire etil n'y a auun moyen de s'assurer de la bonne exéution des ampagnes d'injetions(est e que toutes les fautes ont été injetées orretement ?).D'autre part, les tehniques formelles de test de robustesse dé�nissent formelle-ment toutes les étapes du test. Les fautes sont générées à partir d'un modèle formelet les propriétés de robustesse sont véri�ées sur la base d'un orale de test bien dé�ni.



Toutefois, deux grandes questions peuvent être soulevées au sujet de es méthodes.Tout d'abord, l'ensemble des fautes injetées est limité par le domaine d'entrées del'appliation testée. A l'opposé des approhes d'injetion de fautes empiriques quipeuvent injeter n'importe quel type de fautes, les tehniques formelles existantesréent le modèle de fautes en se référant au modèle fontionnel du système testé.Cei à l'avantage de permettre une injetion mieux iblée et plus adaptée au systèmetesté, mais les types de fautes onsidérées sont limitées par le modèle fontionnel. Sie dernier ne prend pas en ompte les aspets temporels par exemple, on ne pourrapas injeter de fautes temporelles. En plus, le modèle fontionnel d'une implantationn'est pas toujours disponible.En�n, les méthodes formelles existantes appliquées au test de robustesse repren-nent la même arhiteture que elle utilisée par les méthodes atives de test deonformité. Cette arhiteture impose que le testeur interagisse diretement avele système testé. Par onséquent, es méthodes ne peuvent pas être utilisées pourtester des omposants systèmes qui n'o�rent pas d'interfaes d'interations diretes,ou lorsque le système testé ne peut pas être monopolisé par le testeur pour unedurée importante.Le travail que nous présentons dans e doument, onsiste en un ensemble depropositions qui ont pour objetif de répondre aux dé�s auxquels font fae les ap-prohes de test de robustesse existantes. Nous ontribuons sur quatre prinipauxaxes :En premier lieu, nous nous intéressons aux tehniques d'injetion de fautes etplus partiulièrement au problème de ontr�le du proessus d'injetion. Nous pro-posons de formaliser les fautes injetées en utilisant une extension temporelle de lalogique de Hoare [42℄. Notre étude étant plus portée sur les systèmes ommuniants,nous proposons de spéi�er haque opération d'injetion par un triplet de Hoaredérivant les pré-onditions qui doivent être satisfaites par les messages de ommu-niation intereptés avant l'exéution de l'opération d'injetion, ainsi qu'un ensemblede post-onditions spéi�ant omment l'exéution de ette opération devrait mod-i�er les états de es messages. Nous utiliserons ensuite ette formalisation omme



orale de test pour véri�er la bonne exéution du proessus d'injetion. Ainsi, nousproposons un algorithme de test passif qui véri�e la onformité de l'ensemble desfautes injetées (spéi�ées omme un ensemble de triplets de Hoare), sur une traed'injetion. De ette manière, nous pourrons ontr�ler les ampagnes d'injetionset ainsi apporter plus de �abilité à nos expérimentations.Notre seonde ontribution onerne la spéi�ation et la véri�ation des pro-priétés de robustesse. Nous proposons de formaliser les propriétés de robustesse enutilisant une extension de la logique temporelle linéaire qui permet la spéi�ationde ontraintes temps réel. Il s'agit de la logique temporelle à horloge expliite,XCTL (eXpliit Clok Temporal Logi) [32℄, dont l'expressivité permet à la fois despéi�er des propriétés simples et omplexes ave une aisane partiulière.Pour la véri�ation de es propriétés, nous proposons un algorithme de test passifqui véri�e la onformité des formules XCTL sur une trae d'événements. Le hoixd'une approhe basée sur le test passif permet de s'a�ranhir des limitations du testatif, mentionnées préédemment.Nous ontribuons aussi par une nouvelle approhe de test de robustesse. Nousproposons une approhe hybride basée sur l'injetion de fautes et le test passif.L'injetion de fautes est utilisée pour réer des onditions environnementales stres-santes, et le test passif permet de véri�er la satis�abilité des propriétés de robustessesur les traes d'exéution olletées. Les fautes injetées ainsi que les propriétés derobustesse sont formellement spéi�ées. Nous utilisons la logique de Hoare pour laspéi�ation des fautes et la logique XCTL pour la formalisation des propriétés derobustesse. Ce qui nous permet de véri�er à la fois le proessus d'injetion et lesexigenes de robustesse en appliquant les approhes de test passif proposées dansnos ontributions préédentes.Finalement, nous proposons une plateforme de modélisation et de véri�ationde la robustesse des servies Web. Les servies Web sont une tehnologie émergentequi tend progressivement à s'imposer omme un standard du paradigme de om-muniation programme-à-programme. Ils fournissent aussi un exellent exemple desystèmes hétérogènes fortement distribués. Les servies Web peuvent être simples



ou omposés et ils sont largement utilisés pour la réation d'appliations e-ommereet de systèmes d'information distribués. Par onséquent, ils onstituent un très bonexemple de systèmes ritiques où le test de robustesse prend toute sa dimension.La plateforme de test que nous proposons ii, est en réalité une instaniation denotre approhe de test de robustesse, adaptée aux servies Web. Cette plateforme in-tègre un injeteur de fautes innovant (WSInjet) que nous avons onçu et développépour pouvoir simuler un environnement d'exéution hostile. WSInjet [36℄ est uninjeteur de fautes pour servies Web apable d'injeter des fautes d'interfaes etde ommuniations, ou même de ombiner les deux types de fautes en une seuleinjetion. Il peut être utilisé pour le test de servies simples ou omposés.Nous avons aussi implanté et intégré les algorithmes de test passif proposés pourla véri�ation du proessus d'injetion et des exigenes de robustesse et nous avonsonduit des expérimentations sur deux as d'études pour illustrer l'utilisation denotre plateforme de test.Organisation du manusritLe présent manusrit de thèse est organisé omme suit :1. Dans le seond hapitre, nous présentons l'état de l'art des approhes de testde onformité et de robustesse. Pour le test de onformité, nous introduisonsd'abord l'utilisation des méthodes formelles pour le test des systèmes logi-iels. Ensuite, nous dérivons les approhes les plus importantes des deuxgrandes familles de test : le test atif et le test passif. La deuxième partie dee hapitre est onsarée aux méthodes de test de robustesse. Nous lassonses méthodes en deux grandes atégories. D'abord, nous exposons les teh-niques empiriques basées sur l'injetion de fautes et ensuite nous abordons lestehniques formelles.2. Le troisième hapitre présente notre première ontribution. Il s'agit de laformalisation et la véri�ation de l'injetion de fautes. L'idée de base est despéi�er les fautes injetées par un ensemble de triplets de Hoare, puis d'utiliser



ette spéi�ation omme orale de test pour véri�er la bonne exéution duproessus d'injetion. Nous dé�nissons pour ela un algorithme de test passifqui véri�e la satis�abilité des spéi�ations de fautes sur une trae d'injetion.Nous présentons aussi quelques exemples de spéi�ation pour illustrer notreapprohe.3. Dans le quatrième hapitre, nous présentons notre approhe de test de on-traintes temps réel. Nous disutons en premier, les travaux existants qui trait-ent des méthodes formelles pour le test de propriétés temps réel. Ensuite, nousprésentons les formalismes permettant de spéi�er e type de propriétés et jus-ti�ons notre hoix de XCTL [32℄. Nous présentons aussi notre algorithme detest passif pour la véri�ation de formules XCTL sur des traes d'exéutionset disutons les résultats obtenus au terme d'une évaluation expérimentale del'algorithme.4. Dans le hapitre inq, nous dérivons notre approhe de test de robustesse. Ils'agit d'une approhe omplémentaire, basée sur l'injetion de fautes et le testpassif. Nous étudions d'abord les travaux existants sur le test de robustesse.Ensuite, nous présentons l'arhiteture générale de notre approhe et détaillonshaune de ses omposantes. Nous utilisons dans ette approhe, la logiquede Hoare pour la spéi�ation et la validation des ampagnes d'injetion et lalogique temporelle à horloge expliite (XCTL) pour le test des propriétés derobustesse.5. Finalement, dans le hapitre six, nous présentons notre plateforme de test derobustesse pour les servies Web. Cette plateforme est une instaniation denotre approhe de test appliquée aux servies Web. Nous dérivons son arhi-teture générale et haun de ses omposants, plus partiulièrement l'injeteurde fautes WSInjet. Pour e dernier, nous motivons notre hoix de développerun injeteur de fautes pour les servies Web et présentons son arhiteture etses fontionnalités.Nous présentons aussi dans e hapitre, l'appliation de notre plateforme de



test sur deux as d'études et montrons omment ela a permis de déteter er-tains modes de défaillanes que nous n'aurions pas pu déeler ave les méthodesde test traditionnelles.6. Le dernier hapitre onlut notre travail. Nous rappelons nos prinipales on-tributions, que e soit dans le domaine du test de onformité, de l'injetionde fautes ou du test de robustesse ; et nous présentons quelques perspetivespotentielles qui vont dans la ontinuité de notre travail.



AbstratRobustness is a speialized dependability attribute, haraterizing a system rea-tion with respet to external faults. Aordingly, robustness testing involves testinga system in the presene of faults or stressful environmental onditions to study itsbehavior when faing abnormal onditions.Testing system robustness an be done either empirially or formally. Faultinjetion tehniques are very suitable for assessing the robustness degree of thetested system. They do not rely however, on formal test orales for validating theirtest. On the other hand, existing formal approahes for robustness testing formalizeboth the fault generation and the result analysis proess. They have however somelimitations regarding the type of the handled faults as well as the kind of systemson whih they an be applied.The work presented in this thesis manusript aims at addressing some of theissues of the existing robustness testing methods. First, we propose a formal ap-proah for the spei�ation and the veri�ation of the fault injetion proess. Thisapproah onsists in formalizing the injeted faults as a set of Hoare triples and then,verifying the good exeution of the injetion ampaigns, based on a passive testingalgorithm that heks the fault spei�ation against a olleted injetion trae.Our seond ontribution fouses on providing a test orale for verifying real timeonstraints. We propose a passive testing algorithm to hek real time requirements,spei�ed as a set of XCTL (eXpliit Clok Temporal Logi) formulas, on olletedexeution traes.Then, we propose a new robustness testing approah. It is a omplementaryapproah that ombines fault injetion and passive testing for testing system ro-bustness. The injeted faults are spei�ed as a set of Hoare triples and veri�edagainst the injetion trae to validate the injetion proess. The robustness re-quirements are formalized as a set of XCTL formulas and are veri�ed on olletedexeution traes. This approah allows one to injet a wide range of faults and anbe used to test both simple and distributed systems.Finally, we propose an instantiation of our robustness testing approah for Web



servies. We hose Web servies tehnology beause it supports widely distributedand heterogeneous systems. It is therefore, a very good appliation example to showthe e�ieny of our approah.Keywords: Robustness Testing, Formal Spei�ation, Fault Injetion, PassiveTesting, Trae Analysis.



Contents
1 Introdution 181.1 General Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201.3 Thesis plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 State of the Art 252.1 Formal Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.1.1 Ative testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 262.1.2 Passive testing . . . . . . . . . . . . . . . . . . . . . . . . . . 312.2 Robustness Testing: Tehniques and Tools . . . . . . . . . . . . . . . 402.2.1 Fault injetion approahes . . . . . . . . . . . . . . . . . . . . 412.2.2 Model-based approahes . . . . . . . . . . . . . . . . . . . . . 453 Spei�ation and Veri�ation of Fault Injetion Proess 493.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503.2 Fault injetion spei�ation . . . . . . . . . . . . . . . . . . . . . . . 523.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 523.2.2 Fault injetion formalism . . . . . . . . . . . . . . . . . . . . 533.2.3 Time extension . . . . . . . . . . . . . . . . . . . . . . . . . . 533.2.4 Spei�ation language . . . . . . . . . . . . . . . . . . . . . . 543.3 Spei�ation examples . . . . . . . . . . . . . . . . . . . . . . . . . . 553.3.1 Operation Delete . . . . . . . . . . . . . . . . . . . . . . . . . 553.3.2 Operation Delay . . . . . . . . . . . . . . . . . . . . . . . . . 5612



Contents3.3.3 Operation Repliate . . . . . . . . . . . . . . . . . . . . . . . 563.3.4 Operation Insert . . . . . . . . . . . . . . . . . . . . . . . . . 573.3.5 Operation Corrupt . . . . . . . . . . . . . . . . . . . . . . . . 573.4 Passive testing approah . . . . . . . . . . . . . . . . . . . . . . . . . 573.5 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604 A Formal Approah for Cheking Real Time Constraints 624.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644.3 LTL and real time logis . . . . . . . . . . . . . . . . . . . . . . . . . 664.3.1 Real time extensions . . . . . . . . . . . . . . . . . . . . . . . 684.4 Passive testing algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 704.4.1 XCTL and passive testing . . . . . . . . . . . . . . . . . . . . 704.4.2 Test algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 714.4.3 Corretness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794.5 Real time patterns and experimental results . . . . . . . . . . . . . . 804.5.1 Periodiity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804.5.2 Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804.5.3 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814.5.4 Alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814.6 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825 A Complementary Approah for Testing System Robustness 845.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865.3 Proposed approah . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875.3.1 Experimentation phase . . . . . . . . . . . . . . . . . . . . . . 885.3.2 Veri�ation of the injetion proess . . . . . . . . . . . . . . . 905.3.3 Veri�ation of robustness requirements . . . . . . . . . . . . . 915.4 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9213



Contents6 A Framework for Modeling and Testing Web Servies Robustness 946.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 956.2 Web servies tehnology . . . . . . . . . . . . . . . . . . . . . . . . . 956.2.1 Servie Oriented Arhiteture . . . . . . . . . . . . . . . . . . 966.2.2 Web servies . . . . . . . . . . . . . . . . . . . . . . . . . . . 976.2.3 Web servies omposition . . . . . . . . . . . . . . . . . . . . 1006.3 Instantiation of the robustness approah for Web servies . . . . . . 1026.3.1 Spei�ation of robustness requirements . . . . . . . . . . . . 1046.3.2 Spei�ation of the injetion proess . . . . . . . . . . . . . . 1066.4 WSInjet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086.4.2 Tool presentation . . . . . . . . . . . . . . . . . . . . . . . . . 1106.5 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1186.5.1 The Heater Controlling System (HCS) . . . . . . . . . . . . . 1186.5.2 The Travel Reservation Servie (TRS) . . . . . . . . . . . . . 1246.6 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1317 Conlusion 1327.1 Perspetives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135Bibliography 137

14



List of Figures
2.1 Ative Testing Methodology . . . . . . . . . . . . . . . . . . . . . . . 272.2 Passive Testing Methodology . . . . . . . . . . . . . . . . . . . . . . 322.3 Dedution of variable values . . . . . . . . . . . . . . . . . . . . . . . 342.4 Information loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353.1 The passive testing approah: (a) Colleting the trae. (b) Chekingtrae onformane w.r.t. injetion rules spei�ation. . . . . . . . . 584.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 825.1 Arhiteture of the proposed robustness testing approah . . . . . . . 885.2 Observation points for distributed systems . . . . . . . . . . . . . . . 906.1 Funtional model of an SOA arhiteture . . . . . . . . . . . . . . . . 966.2 Web servies model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 976.3 SOAP message struture . . . . . . . . . . . . . . . . . . . . . . . . . 996.4 BPEL in the Web servies arhiteture stak . . . . . . . . . . . . . . 1026.5 A framework for testing Web servies robustness . . . . . . . . . . . 1036.6 An example of a Web servies orhestration senario . . . . . . . . . 1056.7 A lient-side fault injetion arhiteture . . . . . . . . . . . . . . . . 1096.8 WS-FIT arhiteture . . . . . . . . . . . . . . . . . . . . . . . . . . . 1106.9 WSInjet arhiteture . . . . . . . . . . . . . . . . . . . . . . . . . . 1116.10 Sript language grammar . . . . . . . . . . . . . . . . . . . . . . . . 1126.11 An example of an Abstrat Syntax Tree . . . . . . . . . . . . . . . . 11615



List of Figures6.12 Initialization of WSInjet's main omponents . . . . . . . . . . . . . 1176.13 WSInjet's GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1176.14 Sequene diagram of the Heater Controlling System . . . . . . . . . . 1186.15 Testbed arhiteture of the heater ontrolling system . . . . . . . . . 1206.16 Sequene diagram of the TRS system . . . . . . . . . . . . . . . . . . 1266.17 Testbed arhiteture of the TRS system . . . . . . . . . . . . . . . . 1276.18 Sequene diagram of the injetion proess applied on TRS . . . . . . 127

16



List of Tables
6.1 Available onditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1136.2 Available faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

17



Chapter 1
Introdution
1.1 General ContextNowadays, software systems are everywhere : transportation, health, banking, en-ergy, et. We are atually entrusting our lives and our goods to programs andmahines. On the other hand, the inreasing omplexity of those systems as well astheir widely distributed arhitetures make them more di�ult to ontrol and/or tomanage. Moreover, the introdution of modular and reusable omponents in om-muniation systems reates new hallenges. It is possible now and relatively easy, tobuild omplex distributed systems based on a set of several heterogeneous ompo-nents (as Web servies for example). It is however, more painful to have a ompleteontrol on those systems. Sometimes, developers do not even know where someof their system omponents are hosted not to mention the environment onditionswhere they are running in.Parallel to this, every single bug or failure that an be raised in suh systems,may lead to serious �nanial or even human damages. Therefore, the testing ofsoftware systems during and after the development proess is essential and must beundertaken with the greatest possible are. This testing step aims at guarantying theorretness of a system behavior and at ensuring its reliability and its onformanewith respet to the expetations made by its developers.Probably, the most rigorous approah for performing testing ativities is to rely18



Chapter 1. Introdutionon formal methods. Formal methods allow one to reason about system orretnessbased on mathematial foundations. They an be used to formalize the systemrequirements (as expeted by its administrators), as well as to verify their orretimplementation in the �nal produt. The use of formal methods in testing per-mitted the emergene of a testing theory alled: onformane testing. The goal ofonformane testing, is to ensure that a given implementation veri�es its expetedfuntional requirements. The literature of the testing ommunity has produed ahuge number of ontributions dealing with this theory. Basially, we an lassify theset of existing onformane testing approahes into two main ategories: ative andpassive testing approahes. This lassi�ation is due to the way the test proess isperformed. In ative testing, the tester interats diretly with the tested system toissue a verdit about the onformane of the system behavior with respet to thespei�ed requirements. In passive testing however, the tester does not ommuniatediretly with the tested system. Instead, an exeution trae is olleted during thesystem exeution and then, the passive tester heks on this trae the onformaneof the spei�ed requirements. Usually, we rely on passive testing when the testedimplementation does not provide any interfae to interat with the tester or whenwe are testing a system omponent that we ould not aess diretly.In onformane testing, we assume that the tested system is running in its nor-mal environmental onditions. We expet that in suh situations, the funtionalrequirements should be veri�ed. However, when a given system or one of its ompo-nents is likely to run in a hostile environment or stressful environmental onditions,onformane testing is no more su�ient to validate its behavior. In suh situa-tions, we need also to hek the behavior of the tested system when faing abnormalenvironmental ontexts. This kind of test is known as robustness testing. The goalhere is to study the system behavior when running in a hostile environment. Thesystem is onsidered as robust if it ontinues to have a orret exeution in disturbedonditions [1℄.Robustness testing approahes an be either empirial or formal. Empirial ap-proahes usually aim at evaluating the degree of robustness of a given system; while19



1.2. Contributionsformal approahes fous on the veri�ation of robustness properties [2℄. For empir-ial evaluation, fault injetion tehniques are very ommonly used. Fault injetiononsists in introduing deliberate errors in a system and observe its reation. Thistehnique is used in robustness testing to reate stressful environmental onditions.Then, we observe if the tested system is robust enough to keep running. Formalrobustness veri�ation tehniques however, aim at formally assessing the robustnessof a system by heking the satis�ability of a set of robustness requirements on thissystem. These tehniques usually inspire from onformane testing approahes, par-tiularly from ative testing. The main di�erene with respet to ative testing, isthe fault dimension of the input domain. Instead of stimulating the tested systemwith the valid inputs, robustness methods generate and exeute invalid entries todisturb the system behavior.1.2 ContributionsRobustness testing is very important to ensure the safety and the reliability ofsoftware systems. Most existing approahes however, still present some limitationsregarding their onsisteny and their apabilities. Fault injetion tehniques appliedfor robustness testing have shown interesting results, yet they are su�ering from alak of soundness, mainly beause they rely exlusively on empirial analysis. In thiskind of approahes, we do not speify formally the robustness requirements that thetested system must guarantee. A system is onsidered robust simply if it ontinuesits exeution in presene of faults. In other words, if the tested system does nothang or rash, it is onsidered as robust. We know however, that a system may wellontinue its exeution without providing the expeted behavior. Therefore, we needa more rigorous way to hek the robustness of the tested implementations. Also,fault injetion tehniques do not ontrol e�iently the injetion proess. Faults areinjeted in a more or less random manner and we have no feedbak about the goodexeution of the injetion ampaigns (did all faults have been injeted orretly ornot?).On the other hand, formal robustness testing tehniques de�ne formally all the20



Chapter 1. Introdutiontesting steps. Faults are generated from a formal model and the robustness require-ments are veri�ed based on a formal test orale. As far as we know, all the existingformal approahes for testing system robustness follow the ative testing arhiteture[46, 40, 37℄. Two main issues an be raised regarding this kind of methods. First,the set of injeted faults is limited by the set of the input domain. At the oppositeto fault injetion approahes whih an injet any kind of faults, existing formaltehniques are onstrained by the behavioral model of the tested system whih theyuse to generate the set of faults to injet (usually, a set of invalid inputs). Thus, ifthe behavioral model does not support time spei�ation for example, there will beno temporal faults! Also, formal ative testing tehniques for robustness veri�a-tion present some limitations when applied on omposed systems. These tehniquesrequire diret interations with the tested system omponents whereases, it is notalways possible to have a diret aess to those omponents. It is therefore, di�-ult to injet faults or to disturb ommuniation between the di�erent modules ofa omposed appliation.The work we present in this PhD thesis, is a set of propositions whih aimat solving the main issues faing the existing robustness testing tehniques. Ourontributions are then spread over four main axes:First, we are interested in fault injetion tehniques beause they an improve thefaults detetion power of the testing methods. To address the problem of soundnessin fault injetion, we propose a formal approah to speify and verify the injetionproess. We propose to formalize the fault injetion using a timed extension of Hoarelogi [42℄. We fous here on fault injetion for ommuniation systems. Therefore,eah injetion operation is spei�ed as a Hoare triple desribing a set of preondi-tions that must be satis�ed by the interepted ommuniation messages before theinjetion and a set of postonditions whih speify how the exeuted injetion oper-ations should modify the state of those messages. This formalization is then used asa test orale. We propose a passive testing algorithm to verify the good exeution ofthe injetion proess by heking the spei�ation of the injeted faults (given as aset of Hoare triples) against the injetion trae, olleted during experimentations.21



1.2. ContributionsThis way, one an ontrol the injetion proess by verifying whether the injetionexperiments were well performed or not.Our seond ontribution onerns the spei�ation and the veri�ation of robust-ness requirements. We believe that robustness requirement ould be di�erent fromthe funtional ones. Therefore, instead of relying on a funtional model, we pro-pose to model system robustness as a set of real-time safety and liveness properties.We believe also that some requirements an be rather omplex. Thus, we proposeto speify those requirements using a real-time extension of linear temporal logi,alled XCTL (eXpliit Clok Temporal Logi) [32℄, whih an handle both simpleand omplex properties. For the veri�ation, we propose a passive testing algorithmto hek XCTL properties on exeution traes, and we study its e�ieny.We also ontribute by a new robustness testing approah. We propose an hy-brid approah for testing system robustness, ombining fault injetion and passivetesting tehniques. Fault injetion is used to simulate the stressful environmentalonditions. Then, we use a passive testing tehnique to hek the satis�ability of therobustness requirements against the olleted exeution traes. The injeted faultsas well as the robustness properties are formally spei�ed. We use Hoare triples forfault spei�ation and XCTL for robustness requirements. The spei�ation of theinjeted faults is then used to validate the injetion proess and the spei�ation ofrobustness requirements allows to assess formally the system robustness.Finally, we propose a robustness testing framework for modeling and verifyingWeb servies robustness. Web servies are an emerging tehnology whih tends pro-gressively to beome a standard for program-to-program ommuniation paradigm.They are also a very good example of widely distributed systems. Web servies anbe either simple or very omplex, integrating heterogeneous servie omponents.They are widely used for building business proess and distributed information sys-tems. Therefore, they provide a very interesting illustration of ritial distributedappliations. The framework we propose is atually an instantiation of our robust-ness testing approah for Web servies. It integrates an innovative Web serviesfault injetor (WSInjet [36℄) whih we developed to simulate hostile environments.22



Chapter 1. IntrodutionWe also implemented the proposed passive testing algorithms to verify both theinjetion proess and the robustness requirements, and we tested our framework ontwo ase studies to show its apabilities.1.3 Thesis planThis thesis manusript is organized as follows:1. In the seond hapter, we present the state of the art of both onformane androbustness testing tehniques. For onformane testing, we �rst introdue theuse of formal methods for system testing. Then, we desribe the most relevantexisting approahes for both ative and passive testing. The seond part of thishapter presents robustness testing. We lassify robustness testing approahesinto two main ategories. First, we expose those whih rely on fault injetiontehniques and then, we present the formal robustness testing methods.2. The third hapter presents our �rst ontribution. It desribes our formal ap-proah for the spei�ation and the veri�ation of fault injetion proess. Thebasi idea onsists in formalizing the injeted faults as a set of Hoare triplesand then, to use this spei�ation to verify the good exeution of the injetionexperiment. This veri�ation is based on a proposed passive testing algorithmwhih heks the spei�ed injetion operations on a olleted injetion trae.A set of examples of injetion rules is also presented as matter of illustration.3. In the fourth hapter, we present our passive testing approah for hekingreal-time onstraints. We �rst disuss the related work takling with formalapproahes for testing temporal properties. Then, we present the existingreal-time formalisms and justify our hoie of the XCTL [32℄ language. Wealso present our passive testing algorithm for heking XCTL properties onexeution traes and disuss the obtained results of an experimental evalua-tion of the proposed algorithm. This evaluation onsisted in alulating theneessary exeution time for heking a set of real-time patterns on traes ofdi�erent lengths. 23



1.3. Thesis plan4. In the hapter �ve, we desribe our robustness testing approah. It is a omple-mentary approah based on fault injetion and passive testing tehniques. We�rst disuss the related work and the existing robustness testing approahes.Then, we present the general arhiteture of our approah and detail eahstep of the testing proess. In this approah, Hoare logi is used to speifythe injeted faults; while the robustness requirements are spei�ed as a set ofsafety and liveness properties formalized as XCTL formulas.5. Finally in the sixth hapter, we present our framework for testing Web serviesrobustness. This framework is an instantiation of the proposed robustness test-ing approah, for Web servies. We �rst introdue Web servies tehnologyand its main features. Then, we present the framework arhiteture and de-sribe eah of its omponents. This hapter also presents WSInjet whih isa fault injetion tool for Web servies. We motivate our hoie of developingsuh tool and desribe its arhiteture and its apabilities. We show in thishapter also, how the abstrat onepts presented in the previous hapters areinstantiated for Web servies (spei�ation of the injetion proess and therobustness requirements) and we arry out two ase studies to illustrate theuse of our framework. We desribe for eah ase study all the testing phasesand disuss the obtained results. We show partiularly how our frameworkwas able to detet important failures that ould not be revealed by traditionaltesting methods.6. The last hapter of this manusript onludes our work. We summarize ourontributions in the �elds of both onformane and robustness testing, andpresent some perspetives and possible future diretions to extend our work.
24



Chapter 2
State of the ArtContents2.1 Formal Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.1.1 Ative testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 262.1.2 Passive testing . . . . . . . . . . . . . . . . . . . . . . . . . . 312.2 Robustness Testing: Tehniques and Tools . . . . . . . . . . 402.2.1 Fault injetion approahes . . . . . . . . . . . . . . . . . . . . 412.2.2 Model-based approahes . . . . . . . . . . . . . . . . . . . . . 45
2.1 Formal TestingThe use of formal methods for software testing is motivated by the fat that, per-forming mathematial analysis an ontribute e�iently to the reliability and theonsisteny of any testing approah. The main advantage of using formal languagesis to be able to automate the veri�ation proess of any software system based ondediated tools.We an rely on formal methods at di�erent system development phases, as fol-lows:
• The system behavior (i.e. what the system is supposed to do) an be modeledusing a formal system. This model, alled also system spei�ation, is in fat25



2.1. Formal Testinga mathematial representation of the studied system.
• The Veri�ation step onsists to hek that the system spei�ation does notontain any errors. For example, we an hek that some spei� systemproperties are orretly represented by the formal model.
• In the Implementation phase, the system beomes real. In this step, we donot rely on any abstrat model. The system developers are in harge of odingthe system behavior using the most suitable programming language.
• Testing is usually the last step in the development proess. It onsists to hekwhether the implemented system is onform to its formal spei�ation.We an lassify the set of existing formal testing methods into two main ate-gories: the ative testing methods and the passive testing methods. Eah ategoryontains various approahes and eah approah an use di�erent tehniques. In thefollowing we present the basi onepts of eah testing family and introdue themost known approahes from eah lass.2.1.1 Ative testingAtive testing onsists at exeuting a set of test senarios on an ImplementationUnder Test (IUT) and hek whether its behavior is onform to the spei�ed re-quirements. In this kind of test, the tester interats diretly with the IUT via itsexternal interfaes. Its provides the IUT with a set of inputs (test ases) and olletsthe returned outputs whih it analyzes to issue a verdit about the onformane ofthe IUT with respets to its requirements.Conformane testingConformane testing aims at verifying whether the behavior of a given system or-responds to its spei�ation. This kind of test an be performed following either ablak-box, a white-box or a gray-box strategy.26



Chapter 2. State of the Art
• Blak-box testing, also alled funtional testing, onsists at observing the ex-hanged inputs and outputs between the tester and the IUT without onsid-ering the internal ations. The verdit is issued based on the analysis of theobserved events.
• White-box or strutural testing onsiders the test of the implementation ode.Here, we do not observe only the exhanged messages but also internal ations,data strutures, loops, et. There exist spei� tools for this kind of test whihare able to generate and exeute test ases aounting the implementationstruture.
• Gray-box testing orresponds to an intermediate approah between the blakand the white box tehniques. The idea here, is to onsider some internal a-tions and other implementation features while observing the exhanged mes-sages, without neessarily having aess to all implementation ode details.A typial ative testing approah proeeds in two steps. First, an automatigeneration of a set of test ases from the system spei�ation is performed. Then,the tester runs these test ases on the IUT and dedues a onformane verdit basedon the analysis of the system reation to the stimulation (test inputs). Figure 2.1desribes the general ative testing arhiteture.

Figure 2.1: Ative Testing MethodologyThe standard ISO/IEC 9646 [3℄ suggests some useful de�nitions for di�erentonformane testing onepts. Thus, the issued verdit an be either Pass, Fail or27



2.1. Formal TestingInonlusive. The verdit Pass is returned when the IUT outputs are the same asthe spei�ed ones. In this ase, we say that the IUT is onform to its spei�ationas regard to the applied test ases. However, if the IUT outputs are di�erent fromthe spei�ed ones, the issued verdit would be Fail whih means that the IUT is notonform to its spei�ation. In the ase where the exeution of a test sequene doesnot lead to a Pass or a Fail verdit. The tester dedues an Inonlusive verdit.This verdit does not reveal an IUT failure, rather the exeution of the test asesdo not allow the veri�ation of the test purpose. This ould be due, for example,to a non-deterministi spei�ation where a single input an lead to di�erent paths.We need in this ase to rerun the test ases for a better analysis.This same standard [3℄ also introdues a set of terms to desribe the tests appliedon an IUT. A test ase is de�ned as an elementary test. For a reative system, atest ase desribes a set of interations between the tester and the IUT whih leadsto a validation of a partiular property of the tested system. This property is alleda test purpose and is usually extrated from the system spei�ation.A test ase is generally omposed of a preamble, a test body, an identi�ationsequene and a postamble.The preamble is the initial part of a test ase. It is a set of interation sequenesused to bring the implementation in a partiular state where the test body an beexeuted. The test body is the part of the test ase used to verify the test purpose.The identi�ation sequene is an interation sequene whih allows the tester toidentify the state in whih the IUT is, after the appliation of the test body. Thepostamble is used to bring the IUT to a well identi�ed state (usually the initial state)to be able to apply another test ase. Finally, we de�ne a test suite as a set of testases.Overview of ative testing approahesA wide set of ative testing tehniques use Finite State Mahines (FSMs) as areferene spei�ation for modeling the behavior of the tested system. A �nite statemahine is a behavioral model with a �nite number of states, transitions between28



Chapter 2. State of the Artthose states and ations. It is formally de�ned as follows:De�nition 2.1 A �nite state mahine is a 6-tuple < S, I,O, σ, λ, s0 > where:
• S is a �nite set of states, where s0 ∈ S is the initial state;
• I is a �nite set of input events;
• O is a �nite state of output events;
• σ : S×I → S is the state transition funtion. We an extend σ to σ∗ : S×I∗ →

S where I∗ is the set of all �nite input sequenes inluding the empty sequene
ε;

• λ : S × I → O. We an extend λ to λ∗ : S × I∗ → O∗ where I∗ is the set ofall �nite input sequenes inluding the empty sequene ε and O∗ is the set ofall �nite output sequenes inluding the empty sequene ε;FSM-based testing methods suppose that we have a omplete spei�ation modelSpe and that we an observe all inputs/outputs (I/O) of the implementation ma-hine Imp. The spei�ation mahine must be minimal, omplete and strongly on-neted. Sine the implementation is tested as blak-box, the strongest onformanerelation that an be onsidered is the trae-equivalene.De�nition 2.2 Two FSMs are trae-equivalents if they annot be told apart by anyinput sequene. That is, both the spei�ation and the implementation will generatethe same outputs (a trae) for all spei�ed input sequenes.To hek whether two mahines are equivalents, one needs to show that:
• There is a set of implementation states that are isomorphi to the states ofthe spei�ation.
• Every transition in the spei�ation has a orresponding isomorphi transitionin the implementation. 29



2.1. Formal TestingTo hek for isomorphi states, one needs to haraterize eah state of the ma-hine. Thus, the main di�erene between the various FSM-based ative testing ap-proahes lies in the way they haraterize the mahine states. [30℄ disusses the mostrelevant FSM-based tehniques. We an for example haraterize mahine states us-ing transition tours [51℄, distinguishing sequenes [38℄, harateristi sequenes [28℄or unique I/O sequenes [64℄. The algorithms proposed for these methods are allpolynomial in time and memory onsumption.There is also another lass of ative testing approahes whih do not rely onequivalene relation between the spei�ation and the implementation. This kindof approahes onsider that a system Imp an implement a system Spe while thetwo systems are not neessarily equivalents. For example, it is ommonly aeptablethat a system implementation would be more deterministi than its spei�ation.In fat, in this ase, the abstrat spei�ation does not represent all implementationdetails.Therefore, in this kind of approahes, we need �rst to de�ne a formal onfor-mane relation between the implementation and its spei�ation. Then, the testerwould be able to hek the onformane of an implementation with respet to itsspei�ation, based on this onformane relation.E. Brinskma de�nes in [27℄ a onformane relation onf based on Labeled Tran-sition System (LTS) whih an hek whether an implementation ontains non-expeted loks. This onformane relation does not distinguish between systemevents whih are ontrollable by the environment (the inputs) and those whih anbe only observed (the outputs). The di�erene is however very important in pra-tie as the tester needs to hoose a set of inputs to stimulate the IUT so that it anobserve the system outputs. Therefore, more expressiveness models were proposedto be able to reason about inputs and outputs suh as Input Output State MahineIOSM in [54℄ and Input Output Transition Systems IOTS in [67℄. In this kind ofmodels, transitions represent either an input, an output or an internal ation.In [67℄, the behavior of the spei�ation and the implementation is formalized asIOTS. The authors de�ned a onformane relation ioo whih onsider spei�ation30



Chapter 2. State of the Arttraes as well as loks. An implementation Imp is onform to its spei�ation Spefor ioo if after every trae σ from Spe, the set of outputs of Imp (inluding loks)is inluded in the set of outputs of Spe. The author onsiders three kind of loks:the deadlok, the outputlok and the livelok. The deadlok ours when the testedsystem annot progress; the outputlok ours when the system is bloked while it iswaiting for an input from its environment, and the livelok ours when the systemloops for an in�nite sequene of internal ations.A work inspired from [27℄ was proposed in [54℄ and uses a spei�ation formalismbased on IOSM. The author de�nes �ve implementation relations denoted by Ri asfollows:
• The relation R1 guarantees that all implementation outputs are expeted bythe spei�ation. However, it aepts that the implementation does not re-sponse even if the spei�ation expet an output.
• The relation R2 re�nes the relation R1 by onsidering lok situations.
• The relation R3 is based on the inlusion of spei�ation traes into imple-mentation traes.
• The relation R4 onsider that the tested system must implement at least allthe behavior expeted by its spei�ation. The tested system an howeverpresent more omplex funtionalities.
• The relation R5 requires that the implementation behaves exatly as it isexpeted by its spei�ation. R5 is in fat a trae equivalene relation.2.1.2 Passive testingPassive testing (also alled monitoring) onsists at observing input and output eventsof a running appliation without disturbing its exeution. The reorded observationis alled an event trae. It will be analyzed by the passive tester aording to thesystem spei�ation to determine the onformane relation between the appliationand its spei�ation. It is important to note here, that when an event trae is31



2.1. Formal Testingonform to the spei�ation, it does not mean that the whole appliation is onformto the spei�ation. However, in the ase where the trae does not onform to thespei�ation, we an a�rm that the appliation does not onform also.Unlike ative testing, passive testing does not in�uene the system under test.This has the huge advantage of not troubling the appliation exeution. Thus, wean test a system running in its natural environmental ondition. Also, passivetesting an be run during all system life time in the opposite of ative testing testampaigns whih must be run for a spei� system development phases.

Figure 2.2: Passive Testing MethodologyFigure 2.2 desribes the passive testing methodology. The trae analysis pro-dues either a PASS, a FAIL or an INCONCLUSIVE verdit. A PASS verdit isissued if the trae is onform to the system spei�ation (or properties) otherwise,a FAIL verdit is produed. In the ase where the trae is not long enough to allowa omplete analysis, the tester provides an INCONCLUSIVE verdit.Several passive testing approahes were developed for di�erent testing purposes.We present in the following the main important ones.Passive testing by value determinationThe Extended Finite State Mahine (EFSM) model is an evolution of the lassialFSM model whih o�ers more spei�ation possibilities. It is formally de�ned asfollows: 32



Chapter 2. State of the ArtDe�nition 2.3An Extended Finite State Mahine M is a 7-tuple M = (S, s0, Sf , I,O,
→

x

, T ) where:
• S is a �nite non empty set of states;
• s0 is the initial state;
• Sf is a �nite state of �nal states;
• I is a �nite set of input symbols, with or without parameters;
• O is a �nite set of output symbols, with or without parameters;
•

→

x= (x1, ..., xk) is a vetor denoting a �nite set of variables;
• T is a �nite set of transitions.Eah transition t is de�ned as a 6-tuple t = (st, ft, it, ot, Pt, At) where:
• st is a starting state;
• ft is an ending state;
• it is an input symbol;
• ot is an output symbol;
• Pt(

→

x) is a prediate on the variables (boolean formula);
• At(

→

x) is a sequene of ations.Thus, eah transition of the EFSM an ontain:
• input and output events eventually with parameters,
• a prediate (or a guard) to satisfy,
• a sequene of ations to perform. 33



2.1. Formal TestingUsing EFSM, passive testing approahes must not only hek the orretness ofevent sequenes (appearing in the olleted trae), but also the variables and theparameter values. This �rst passive testing method is based on the dedution ofvariable and parameter values from an event trae onsidering an EFSM model.The shema in �gure 2.3 shows an example of this dedution proess.
Figure 2.3: Dedution of variable valuesAssume that we know the urrent state S1 but not the value of variable x. Ifthe next input/output ouple from the trae is a/1 then, we an dedue that afterthe transition is �red, the urrent state beomes the state S3 and x will be equalto 0. Based on this property, a passive testing algorithm was proposed in [66℄. Itonsiders that a transition is �red if :1. the input/output ouple of the trae mathes with the input/output ouple ofthe transition,2. either the transition prediate is true or it annot be evaluated due to a lakof information (values are not yet known).The problem of information loss Consider the example presented in �gure 2.4If we assume that the urrent state is S1 and that variable x has been identi�edwith the value 3. If we onsider that y is unknown, we must for any ase �re the twotransitions S1 → S2 and S1 → S3 beause the I/O on both transitions are idential.Now that the two transitions give di�erent values of x; x beomes UNDEFINED!We note here that unde�ned variables (y in this example) an lead to losing alreadyfound values of other variables (x in this example).34



Chapter 2. State of the Art
Figure 2.4: Information lossThe testing algorithm The testing algorithm proeeds in two main steps. The�rst step is alled homing phase of the urrent state and the variable values. Inthis step, the following rules are onsidered:

• for a given I/O ouple, if there exists a set of possible transitions produingdi�erent values for a same variable, then this variable beomes UNDEFINED,
• the prediates involving the UNDEFINED variables are onsidered to be true.The seond step is alled fault detetion phase and onerns the onformaneheking of the remaining trae with respet to the spei�ation.Passive testing by interval determinationWe saw that the algorithm presented previously su�ers from an information lossphenomenon. A more e�ient passive testing algorithm was propose in [29℄. It isbased on three main onepts.1. Intervals to refer to the set of variable values suh as R(v) = [a; b] for variable

v.2. Assertions whih are de�ned as prediates on variables denoted by asrt(
→

x)where →

x is the variable vetor.3. Candidate Con�guration Sets (CCS) to formalize the analyzed environ-ment of the system under test. A CCS is a triplet (s,R(
→

x), asrt(
→

x)) where sis the urrent state of the spei�ation.35



2.1. Formal TestingThis algorithm aims to determine the values of variables by using a set (in theform of interval) of possible values for eah variable. Intervals in whih variablestake their values are then, progressively re�ned.The intervals The intervals are a beginning answer to the information loss prob-lem. In the previous algorithm, a variable ould not have more than one possiblevalue. In the ase where several values were possible, the variable beomes UNDE-FINED. Using intervals, a variable v whose value is between two integers a and bwill be de�ned by an interval R(v) suh as R(v) = [a; b]. If v has a onstant value
a, we will have R(v) = [a; a]. The variable v is then said deided. Three operationon intervals are possible:
• The sum of two intervals: [a; b] + [c; d] = [a + c; b + d]

• The subtration of two intervals:[a; b] − [c; d] = [a− c; b− d]

• The multipliation of an interval by an integer:
w × [a; b] = [w × a;w × b] if w ≥ 0

w × [a; b] = [w × b;w × a] if w < 0The assertions An assertion asrt(
→

x) is a boolean formula on the variables vetor
→

x whih must be true at the urrent state of the veri�ation. Assertions are usedto reord onstraints on variables, built based on transition prediates and ations.When a transition is �red, its prediate is added to the assertion as well as theations that ontain undeided variables in the right member of the equality. Forexample, if the ation x2 ← x1 + 1 updates the variable x2; every term of asrt(
→

x)ontaining x2 must be deleted and the term x2 ← x1 +1 must be added to asrt(
→

x).Thus, as soon as we disover x2 we an dedue easily the value of x2.The Candidate Con�guration Sets A Candidate Con�guration Set (CCS) isa triplet (s,R(
→

x), asrt(
→

x)) where:
• s is the urrent spei�ation state,36



Chapter 2. State of the Art
• R(

→

x) is the set of intervals,
• asrt(

→

x) is an assertion on the vetor of variables →

x .Candidate on�gurations are used to model the states where the system undertest is. They speify for eah state, the related set of variable onstraints. Forexample, the on�guration (S1, R(x) = [2; 6], (x < 4) ∧ (x > 4)) means that thesystem is in the state S1 and that the value of the variable x is ontained between2 and 6 but not equal to 4.The algorithm de�nes two lists Q1 and Q2, where Q1 is the set of urrent possibleCCS and Q2 is the set of possible CCS of the previous step. Thus, given Q1 andan event e, we should be able to obtain the orresponding transition. A transition
t will be �red if it exists a on�guration in Q1 whose onstraints (the intervals ofvariables and the assertions) are ompatible with the prediate p of t.Passive testing by bakward hekingThis tehnique has been proposed in [26℄. The presented algorithm is widely in-spired from the one presented in [29℄. However, in this work, the trae is hekedbakwardly. The authors built their algorithm based on the fat that the end of thetrae orresponds to a system state. Therefore, starting from the end of the trae,it is more e�ient and easier to get orret information about variable values bylooking to the past of the trae.This bakward heking algorithm proeeds in two phases. The �rst step on-sists in traking a trae ω starting from its end and going bak to its beginningwhile mapping ω to the spei�ation mahine. The goal is to reah all possibleon�gurations X that an generate the trae ω. In other words, the algorithm looksfor all CCS from whih ω ould begin.In the seond phase, the algorithm veri�es the past of the trae in order to vali-date at least one on�guration from the set X. This validation onsists in exploringall possible paths from a given on�guration to verify that ω is reahable from theinitial on�guration of the spei�ation. The algorithm looks for a path p that on-37



2.1. Formal Testingnets a on�guration c and an element of X. p validates the trae ω if there existsa set of prediates and ations that an on�rm the orretion of the element of X.The omplexity of this approah is at worst equal to the total parsing of thesystem spei�ation i.e. the omplete exploration of its aessibility graph.Passive testing by invariant hekingAll passive testing tehniques disussed previously are based on the same oneptwhih onsists to ompare a olleted exeution trae with the formal spei�ationof the system under test. The major problem with this kind of approahes lieson the high omplexity of the used algorithm, partiularly when onsidering non-deterministi spei�ation. The veri�ation of eah trae neessitates a partial (ora total) exploration of the whole spei�ation.To address this problem, an invariant-based approah was proposed in [45℄ andimproved in [31℄. The basi idea of invariant-based testing onsists in extratingfrom the system spei�ation a set of properties to verify on the trae. Theseproperties must be satis�ed at any moment, hene the name of invariants.An input/output invariant is omposed of two parts:
• The test, whih is an input or an output symbol.
• The preamble, whih is the sequene that must be found in the trae beforeheking the test.Based on this de�nition, three types of invariants are introdued.
• Output invariants; de�ned when the test is an output symbol. These invariantsare used to speify properties of the form : "immediately after the sequenepreamble we must always have the output test". For example, onsider thefollowing output invariants:� ( i1

︸︷︷︸

preamble

/ o1
︸︷︷︸

test

) meaning that "i1 is always followed by o1".38



Chapter 2. State of the Art� (i1/o1)(i2
︸ ︷︷ ︸

preamble

/o2)
︸︷︷︸

test

meaning that "immediately after the sequene (i1/o1) andthe input i2, we must have the output o2". This invariant is said to bean invariant of length 2 beause its preamble ontains two I/O ouples.
• Input invariants; de�ned when the test is an input symbol. This kind ofinvariants is used to speify properties of the form "immediately before thesequene preamble we must always have the input test". For example, onsiderthe following input invariants.� ( i1

︸︷︷︸

test

/ o1
︸︷︷︸

preamble

) meaning that "o1 is always preeded by i1".� (i1
︸︷︷︸

test

/o1)(i2/o2)
︸ ︷︷ ︸

preamble

meaning that "immediately before the sequene o1(i2/o2)we must have the input i1".
• Suession invariants; used to speify omplex properties suh as loop prob-lems. For example, the following set of invariants onstitutes a suessioninvariant.� (i1/o1)(i2

︸ ︷︷ ︸

preamble

/o2)
︸︷︷︸

test� (i1/o1)(i2/o2)(i2
︸ ︷︷ ︸

preamble

/o2)
︸︷︷︸

test� (i1/o1)(i2/o2)(i2/o2)(i2
︸ ︷︷ ︸

preamble

/o3)
︸︷︷︸

testThis invariant fores the transition (i2/o2) to hold twie before the transition
(i2/o3) must be �red. This kind of sequenes is used to limit the numberof attempts for a given protool operation before returning a failure. In thisexample, the number of attempts is limited to two and the output o3 anrepresent a failure event.The invariant-based approah is a powerful passive testing tehnique though theextration of the invariants from the system spei�ation is still a hard task to per-form. If we delegate this task to a human it is likely to take a big amount of time39



2.2. Robustness Testing: Tehniques and Toolsand an lead to erroneous extrations. On the other hand, automati extration al-gorithms suh as the one presented in [31℄ are very sensitive to the non-determinismof the spei�ation when the invariant length is greater than one. Also, this ap-proah annot detet all types of errors and it is more likely designed to be usedomplementarity with other methods.2.2 Robustness Testing: Tehniques and ToolsRobustness testing aims to determine whether a software system or a omponentan have an aeptable behavior in the presene of faults or stressful environmentalonditions. This de�nition overs a large spetrum of approahes, whih an belassi�ed aording to two viewpoints.The �rst viewpoint determines the input domain of interest. The input do-main an be split into two main dimensions: the ativity (workload) and the faults(faultload). The workload and the faultload an be given more or less emphasis, de-pending on the approahes. Workload-based approahes extend usual testing e�ortsby submitting the system to higher load tests while Faultload-based approahes fo-us on the fault dimension and the behavior of the system subjeted to a given setof faults.The two dimensions of the input domain an ombine their e�ets on a system.The so-alled mixed workload- and faultload-based approahes, expliitly onsidersuh ombined e�ets.The seond viewpoint onerns the lassi�ation of robustness testing approahesaording to the target objetive: testing for veri�ation or evaluation purposes.The veri�ation of robustness is most often on the lineage of lassial testingapproahes, where a model of the system (e.g., a behavioral model) is used as aguide for seleting test ases (e.g., transition overage is required). The evaluationof robustness rather builds on fault injetion and load testing approahes, for whihthe �rst-lass itizens are models of the input domain. For example, the workloadis seleted aording to a probabilisti model of the operational pro�le and thefaultload is based on a model of faults that are deemed representative of atual40



Chapter 2. State of the Artfaults in operation. Reent e�ort to standardize this kind of evaluation-orientedtesting has yielded the emergene of the onept of dependability benhmarking.This seond lassi�ation is used to build the struture of this setion. We �rstpresent work dealing with fault injetion as a robustness testing tehnique. Then,we desribe relevant robustness testing approahes based on system modeling andtest ase generation.2.2.1 Fault injetion approahesFault injetion onsists to introdue deliberate errors in a system and observe itsbehavior. This tehnique has been widely used for robustness testing beause itallows one to evaluate the behavior of a given system when running in a hostileenvironment. In the following, we present most relevant fault injetion tools fortesting robustness of ommuniation protools and distributed systems.DOCTORDOCTOR (integrateD sOftware Fault injeCTiOn enviRonment) [62℄ is a fault in-jetion tool for distributed appliation. It an synthesize the workload and emulatethe ourrene of faults in real time systems. It supports mainly three types offaults (proessor, memory and ommuniation faults) and an run three injetionmode: permanent, transient and intermittent. During experimentations, DOCTORollets performane and reliability information providing testers with signi�antevaluation data.ORCHESTRAORCHESTRA [61℄ is a sript-driven fault injetion tool designed for testing thereliability and the liveness of distributed protools. A fault injetion layer is insertedbetween the tested protool layer and the lower layers to �lter and manipulatemessages exhanged between the protool partiipants.Messages an be delayed, lost, reordered, dupliated and modi�ed. Also, newmessages an be spontaneously introdued into the tested system to bring it into a41



2.2. Robustness Testing: Tehniques and Toolspartiular global state.The reeption sript and the sending sript are written in TCL language anddetermine whih operations are to be performed on reeived/sent messages. Thesesripts are spei�ed with state mahines. Transitions in these mahines are drivenby the type of the message, its ontents, the history of reeived messages or otherinformation that was previously olleted during the test exeution (e.g. loal time,number of reeived messages, et.).Message modi�ations are however, spei�ed using a user-de�ned sript. Theresulting message is passed to the next layer of the protool stak.ORCHESTRA is a "Message-level fault injetor" beause a fault injetion layeris inserted between two layers in the protool stak. This kind of fault injetorallows injeting faults without requiring the modi�ation of the protool soureode. However, the user has to implement his fault injetion layer for eah protoolhe wants to test. The expressiveness of the fault senario is limited as there is noommuniation between the various state mahines exeuted on every node. Also,beause the fault injetion is based on exhanged messages, the knowledge of thetype and the size of these messages is required [63℄.NFTAPEThe NFTAPE projet [65℄ arose from the double observation that no tool is su�-ient to injet all fault models and that it is di�ult to port a partiular tool todi�erent systems. NFTAPE provides mehanisms for fault-injetion, triggering in-jetions, produing workloads, deteting errors, and logging results. Unlike othertools, NFTAPE separates these omponents so that the user an reate his ownfault injetors and injetion triggers using the provided interfaes.NFTAPE is a Lightweight Fault Injetor (LWFI). LWFIs are simpler than tradi-tional fault injetors as they do not need to integrate triggers, logging mehanisms,and ommuniation support. This way, NFTAPE an injet faults using any faultinjetion method and any fault model. Interfaes for the other omponents are alsode�ned to failitate portability to new systems.42



Chapter 2. State of the ArtIn NFTAPE, the exeution of a test senario is entralized. A partiular om-puter, alled the ontrol host, takes all ontrol deisions. This omputer is generallyseparated from the set of omputers that exeute the test. It exeutes a sript writ-ten in Jython (Jython is a subset of the Python language) whih de�nes the faultssenario. All partiipating omputers are attahed to a proess manager whih inturn ommuniates with the ontrol host. The ontrol host sends ommands toproess managers aording to the fault senario. When reeiving a ommand, theproess manager exeutes it. At the end of the exeution or if a rash ours, theproess manager noti�es the ontrol host by sending a noti�ation message.All deisions are taken by the ontroller, whih implies that every fault triggeredat every node indues a ommuniation with the ontroller. Then, aording to thede�ned senario, the ontroller sends a fault injetion message to the appropriateproess manager whih an then injet the fault [63℄.DEFINEDEFINE (DistributEd Fault Injetion and moNitoring Environment) [48℄ is a faultinjetor designed to evaluate system dependability, investigate fault propagationand validate fault tolerant mehanisms of distributed systems. This tool an injetsoftware faults as well as hardware-indued software errors in any proess runningin distributed systems either in user mode or supervisor mode. The injeted faultsan be orrelated or independents.DEFINE is extended from it anteedent FINE [47℄, with additional distributedapability and injetion mehanisms. It uses two fault injetion tehniques:1. using hardware lok interrupts to ontrol the time of fault injetion and ati-vation whih allows injeting intermittent CPU/Bus faults in order to ensuretheir ativation,2. using software traps to injet faults and monitor fault ativation in order toassist monitor whether the faults are ativated and were they are ativated.Experiments using DEFINE were suessfully onduted on SUN NFS-distributed43



2.2. Robustness Testing: Tehniques and Tools�le system.FAIL-FCIFAIL-FCI [41℄ is a fault injetion tool developed by INRIA (Institut National deReherhe en Informatique et Autimatique). First, FAIL (for FAult Injetion Lan-guage) is a language that permits to easily desribed fault senarios. Seond, FCI(for FAIL Cluster Implementation) is a distributed fault injetion platform whoseinput language for desribing fault senarios is FAIL. Both omponents aims atemulating large-sale networks on smaller lusters or grids.The FAIL language allows de�ning fault senarios. A senario desribes, usinga high-level abstrat language, state mahines whih model fault ourrenes. TheFAIL language also desribes the assoiation between these state mahines and aomputer (or a group of omputers) in the network. The FCI platform is omposedof several building bloks:1. The FCI ompiler: The fault senarios written in FAIL are pre-ompiled bythe FCI ompiler whih generates C++ soure �les and default on�guration�les.2. The FCI library: The �les generated by the FCI ompiler are bundled with theFCI library into several arhives, and then distributed aross the network tothe target mahines aording to the user-de�ned on�guration �les. Both theFCI ompiler generated �les and the FCI library �les are provided as soureode arhives, to enable support for heterogeneous lusters.3. The FCI daemon: The soure �les that have been distributed to the targetmahines are then extrated and ompiled to generate spei� exeutable �lesfor every omputer in the system. Those exeutables are referred to as theFCI daemons. When the experiment begins, the distributed appliation to betested is exeuted through the FCI daemon installed on every omputer, toallow its instrumentation and its handling aording to the fault senario.FCI is a Debugger-based Fault Injetor beause the injetion of faults and the44



Chapter 2. State of the Artinstrumentation of the tested appliation is made using a debugger. This makesit possible not to have to modify the soure ode of the tested appliation, whileenabling the possibility of injeting arbitrary faults (modi�ation of the programounter or the loal variables to simulate a bu�er over�ow attak, et.). From theuser point of view, it is su�ient to speify a fault senario written in FAIL to de�nean experiment. The soure ode of the fault injetion daemons is automatiallygenerated. These daemons ommuniate between them expliitly aording to theuser-de�ned senario. This allows the injetion of faults based either on a globalstate of the system or on more omplex mehanisms involving several mahines (e.g.a asading fault injetion). In addition, the fully distributed arhiteture of the FCIdaemons makes it salable, whih is neessary in the ontext of emulating large-saledistributed systems. FCI daemons have two operating modes: a random mode and adeterministi mode. These two modes allow fault injetion based on a probabilistifault senario (for the �rst ase) or based on a deterministi and reproduible faultsenario (for the seond ase). Using a debugger to trigger faults also permits tolimit the intrusion of the fault injetor during the experiment. Indeed, the debuggerplaes breakpoints whih orrespond to the user-de�ned fault senario and then runsthe tested appliation. As long as no breakpoint is reahed, the appliation runsnormally and the debugger remains inative.2.2.2 Model-based approahesTesting system robustness based on behavioral models an be seen as a onformanetesting problem. Compared to traditional onformane testing, the only di�ereneis the expliit fault dimension in the input domain, sine faults are key inputs thatthe resiliene mehanism is expeted to deal with.It is important, however, to note that the fault dimension has a strong impaton the implementation of the testbed. The experiments may neessitate the devel-opment of omplex test platforms to be able to injet faults, synhronize them withthe ativity, and observe their e�et.In the following, we present most relevant ontributions on model-based robust-45



2.2. Robustness Testing: Tehniques and Toolsness testing approahes.The work presented in [46℄, builds a robustness testing approah based on theonformane testing of orretness properties. Thus, given a robustness property
P , a system implementation is robust i� the property P is satis�ed in presene offaults. This approah is based on the following elements:
• A formal model S desribing the nominal system behavior. That is, theexpeted behavior of the tested system when running in normal environmentalonditions. In this work, authors formalized S as a set of LTS's (LabeledTransition Systems).
• A fault model F representing the set of faults that may a�et the tested systemand ause failures. This fault model must be a set of mutations from the model

S obtained by modifying exhanged parameter values, system transitions, et.
• A robustness property P whih spei�es the expeted system behavior in pres-ene of faults. P is a linear property desribing the set of robust exeutionsequenes of the tested implementation.Test ases are then generated as follows:
• Generation of a degraded model Sd by deriving a mutation of S based on thefault model F .
• Generation of an observer O. This observer is a Rabin automata [58℄ desribingthe set of sequenes of P . It identi�es the set of non robust sequenes of Sd

• Generation of test ases from Sd and O: non robust exeution sequenes areextrated from Sd and transformed to test ases by omputing an asymmetriprodut with the observer O.Another model-based approah is proposed in [40℄ and onerns spei�ally em-bedded real time systems. In this work, we onsider also two system spei�ations:a nominal and a degraded one. The degraded spei�ation desribes ritial sys-tem ations that must be handled in stressful and/or unexpeted environmentalonditions. The robustness testing proess proeeds as follows:46



Chapter 2. State of the Art1. Generation of test sequenes from the nominal spei�ation;2. Appliation of magneti radiations on the system under test;3. Running the generated test sequenes;4. End of magneti radiations;5. Result analysis and partial verdit;6. Generation of mutant test sequenes;7. Running mutant test ases;8. Result analysis and �nal verdit.Authors also proposed another testing proess based on test ases generationand exeution based on the degraded spei�ation.In [37℄, authors presented a robustness testing framework based on a di�erentmodel-based approah. This framework proeeds in two phases:1. First, an inreased spei�ation is built by integrating hazards in the nominalspei�ation;2. Then, robustness test ases are generated from the inreased spei�ation andexeuted on the implementation.Hazards denote any events not expeted in the nominal spei�ation of thesystem. Authors identi�ed three kinds of ontrollable and representable hazards:invalid inputs, inopportune inputs (ations belonging to the spei�ation alphabetbut not expeted in the given state) and unexpeted outputs.The �rst phase onsists to integrate the representable hazards in the model of thenominal spei�ation. The obtained model is alled inreased spei�ation. Then,the robustness of the implementation is evaluated with respet to this inreasedspei�ation by generating and exeuting test ases as follows:1. De�nition of a Robustness Test Purpose (RTP). RTP is a part of the totalspei�ation. It allows one to fous on a preise behavior of the system.47



2.2. Robustness Testing: Tehniques and Tools2. Computation of the synhronous produt SA⊗RTP where SA is the inreasedspei�ation.3. Building a Robustness Test Graph (RTG) based on the result of the previousomputation. This graph desribes all tests orresponding to a given RTP. Itis then redued to a Redued Robustness Test Graph RRTG whih ontainsonly paths desribing aeptable behaviors (aording to the RTP).4. Generation and exeution of robustness test ases from the RRTG.
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3.1. Introdution3.1 IntrodutionFault Injetion onsists in introduing deliberate errors in a system and observe itsbehavior. This tehnique is usually used to assess error reovery and fault tolerantmehanisms, to perform some dependability measures suh as availability, integrityand performane or simply to understand the e�et of real faults. Fault injetionan be applied both to hardware systems (HWIFI: Hardware Implemented FaultInjetion) and software systems (SWIFI: Software Implemented Fault Injetion)but there has been more researh on SWIFI based tools, mostly beause they donot require any expensive hardware.SWIFI approahes are ategorized into several lasses aording to the type ofthe injeted faults and the injetion level. Two of these ategories are partiularlyinteresting in the ontext of our work : interfae faults and ommuniation faults.At interfae level, faults a�et funtions input/output parameters or protool mes-sages �elds. The values attributed to these parameters are generated di�erentlyfrom an approah (or tool) to another: some fault injetors provide generi inputsto all parameters whatever their types, others generate type-spei� inputs (likeBallista [52℄ whih assigns a set of values to eah parameter type) and there arealso some tools like Fuzz [35℄ whih generate random inputs for eah parameter.For ommuniation faults, the injetion onerns the message exhanges betweensystem omponents. The injetor an orrupt, delay or repliate messages. It analso perform other operations aording to the fault model spei�ed by the tester.The main goal of fault injetion is experimental validation. As mentioned before,a fault injetion test experiment lies in the introdution of faults from a givensenario into an implementation under test (IUT), the target, to observe how itbehaves under the presene of suh faults. However, relying only on experimentalmethods may be insu�ient and in some ases an be seen as a lak of thoroughnessand soundness, mainly during results analysis and validation. This an be widelyavoided using formal methods.The use of formal methods for software and hardware design is motivated bythe expetation that, as in other engineering disiplines, performing appropriate50



Chapter 3. Spei�ation and Veri�ation of Fault Injetion Proessmathematial analyses an ontribute to the reliability and robustness of a design.In software testing, we rely on formal spei�ations at various stages during the testproess. We speify the behavior of the implementation under test, the propertiesthat must be analyzed and all the needed operations to ahieve the test purposes.This allows us to avoid any ambiguity or on�it that may appear when dependingonly on experimental methods. By using formal methods, we an learly speify thetest purposes and the test methodology. Hene, results analysis will be based onmathematial onepts avoiding any false interpretations and/or verdit issues.If we hoose to rely on fault injetion to perform any kind of test (robustness,seurity or even funtional testing), we need, not only to speify the tested properties(robustness, seurity or funtional properties) but also the fault injetion itself.We should provide a formal desription of the injeted faults and the way theyare injeted. Beause the verdit whih will be issued, will strongly be dependentof the injeted errors. Also, if researhers speify formally their entire injetionmethodology, then it an be easily studied, analyzed and eventually reproduedand/or extended by other testers in future time. Therefore, it an be the best wayto study the e�ets of errors on real systems.In this hapter, we propose a formal method for fault injetion spei�ation andveri�ation. We aim to provide a generi and formal system for fault modeling toallow more rigor in error desription and to avoid spei�ation ambiguities. Themain ontributions we bring in this work are the following:
• First, we propose a fault injetion spei�ation formalism based on Hoare logi[42℄ and time onstraints. The proposed formalism allows spei�ation of sev-eral types of faults and an be used to test both ommuniation protools anddistributed systems. It is formal as it is based on a mathematial logi. Thisavoids spei�ation ambiguities and allows fault injetion validation. It is alsoa generi formalism beause it uses a high level abstrat syntax. Therefore, itis well appropriate for the spei�ation and the veri�ation of various injetionoperations.
• Then, we propose a passive testing approah to verify the orretness of the51



3.2. Fault injetion spei�ationinjetion proess. The idea is to exploit the formal spei�ation of faults as atest orale to hek the good exeution of the injetion proess.3.2 Fault injetion spei�ation3.2.1 PreliminariesHoare logiHoare logi [42℄ is a formal system whih provides a set of logial rules based onmathematial logi. Its entral feature is the Hoare Triple whih desribes how anexeution of a set of ations hanges the state of some variables. A Hoare triple isof the form {P}C{Q} where C is a program (a set of ations) and P and Q areassertions expressed in a �rst-order logi. Informally, a triple {P}C{Q} has thefollowing meaning: if C is exeuted in a state satisfying preondition P and if Cterminates then the �nal state satis�es postondition Q. Hoare logi has also axiomsand inferene rules that an be used to reason about the orretness of omputerprograms. However, in this paper we are mostly interested by the formalization.Therefore, we fous only on Hoare Triples (a omplete presentation of Hoare axiomsand inferene rules an be found in [42℄).Fault injetor loation and apabilitiesWe an rely on SWIFI approahes to test various aspet of a given system. Depend-ing on the test purpose, fault an be injeted at di�erent system loations : memory,hard disk driver, ommuniation interfaes, et. In this work, we address the aseof ommuniation and interfae faults applied on distributed systems. Therefore,we assume that the fault injetor would be plaed between two agents of a globalsystem: A1 and A2; and that is able to perform the following ations:
• Interept every message exhanged between A1 and A2.
• Apply some operations on the interepted message.
• Resend the faulty message. 52



Chapter 3. Spei�ation and Veri�ation of Fault Injetion ProessWe note that the injetion proess is performed during a �nite period of time.Therefore, the messages exhanged between A1 and A2 during the injetion proessare of a �nite number.3.2.2 Fault injetion formalismBased on the above assumptions, we propose to de�ne a fault injetion operationwith a Hoare triple as follows.De�nition 3.1: (Injetion operation) an injetion operation is a Hoare triple
{P}C{Q} where :
• P spei�es a preondition on the interepted message (its state before the exe-ution of the injetion operation);
• C denotes the operation itself (identi�ed by its name and eventually a set ofparameters);
• and Q is a postondition whih states the e�et of the operation exeution onthe interepted message.A ommuniation message an be onsidered as a �nite set of elements. Eahelement desribes a part or a �eld of this message. Therefore, we an speify formallya ommuniation message as a �nite olletion (a set where repliates are permitted)of elements S = {elt1, ..., eltn}. We speify also the set of all injetion operationsexeuted during an injetion experiment as a �nite set of injetion rules R suh aseah injetion rule r ∈ R spei�es a Hoare triple desribing an injetion operationapplied on an interepted message, as follows.

{P (S)} OperationName(param1, ..., paramn) {Q(S)}3.2.3 Time extensionThe fault injetion formalization presented above an be used to speify many in-jetion operations. However, as it is based on the basi de�nition of Hoare logi53



3.2. Fault injetion spei�ationas it was introdued in [42℄, it does not support time spei�ation. Thus, we areunable to speify timed injetion operations like for example the delaying of mes-sages; whereas time is probably one of the most important properties that must beonsidered when testing system reliability. Therefore, instead of using the lassialHoare logi, we propose to rely on an extended version whih supports real-timespei�ation.In [44℄, the authors extended Hoare logi to real-time. They de�ned speialvariables and some primitives to allow time reasoning and illustrated their modelwith many spei�ation examples. The proof of soundness and ompleteness of thisextended model is given in [43℄.Based on this extension, we propose to speify eah fault injetion operation asa Hoare triple where preonditions and postonditions are expressed in �rst-orderlogi with the following primitives.
• We assume that the timing behavior of the fault injetor is desribed from theviewpoint of an external observer with his own lok,
• we de�ne a time domain TIME = {τ ∈ ℜ|τ ≥ 0} and logial time variablesranging over TIME ∪ {∞}, suh as t, t0, t1, ...

• We de�ne a speial variable now whih ranges over TIME ∪ {∞} and refersto the global notion of time presented in the �rst point.3.2.4 Spei�ation languageWe propose here a ommon and generi spei�ation language to be used for pre/-postondition spei�ations.As we onsider the aptured messages as sets of elements, we de�ne a set of fun-tions and prediates inspired from the set theory so that we will be able to speifyall kinds of pre-and postonditions related to sets.De�nition 3.2: (Spei�ation primitives) given two sets A and B and a setelement elt, we de�ne the following primitives.
• A.isEmpty(): returns true i� A is an empty set;54



Chapter 3. Spei�ation and Veri�ation of Fault Injetion Proess
• A.size(): returns the size (number of elements) of the set A;
• A.has(elt): tells whether the given element elt belongs to the set A;
• A.ount(elt): tells how many time a given element elt ours in the urrent setA;
• A.remove(elt): returns a set ontaining the items in the urrent set (A) exeptfor one of the given element elt.
• A.equals(B): returns true i� set A is equal to set B (they have the same sizeand the same elements);
• A.isSubSet(B):returns true i� every element of A is ontained in B.We also de�ne a modi�er new(SetName) to refer to the set SetName after theexeution of an injetion operation. For example new(S) refers to the state of theset S after the injetion.3.3 Spei�ation examplesWe present in this setion several examples to illustrate our spei�ation formalism.Eah example desribes a possible injetion operation and provides its orrespond-ing Hoare triple. As de�ned in the spei�ation formalism, we will refer to eahinterepted message as a set of elements S.3.3.1 Operation DeleteThe �rst operation whih we speify is used to delete interepted messages. Weexpress it by a Hoare triple as follows.

{¬S.isEmpty()} Delete(S) {new(S).isEmpty()}We an also speify the deletion of one message element as follows.
{S.has(elt)} Delete(S, elt) {new(S).equals(S.remove(elt))}55



3.3. Spei�ation examples3.3.2 Operation DelayThis operation is used to delay the forwarding of interepted messages. A parameter
n ∈ TIME spei�es the period of delay, whih means that the aptured messagewill be kept for n time units before it is resent. The orresponding Hoare triple isof the form:

{¬S.isEmpty() ∧ now = V al, V al ∈ TIME}

Delay(S, n)

{new(S).equals(S) ∧ now = V al + n + ε, ε ∈ TIME}In the preondition, we speify the time value before the exeution of operation
Delay. Then, in the postondition, we ensure that this value has been exeeded by
n time units. ε spei�es the very short extra delay that we may aept due to thedensity of the time domain.3.3.3 Operation RepliateThis operation is used to repliate message elements. The number of repliation isspei�ed by an argument n ∈ N+.

{S.has(elt)} Replicate(S, elt, n) {new(S).count(elt) = n ∗ S.count(elt)}We an also speify a repliation of all elements of the aptured message asfollows.
{¬S.isEmpty()}

Replicate(S, n)

{∀ elt : S.has(elt)⇒ new(S).count(elt) = n ∗ S.count(elt)}We verify in the postondition that operation Replicate reates n opies of eahelement ontained in S. The universal quanti�er expression is true if for all elements
elt suh as S.has(elt) is true, new(S).count(elt) = n ∗ S.count(elt) is also true.56



Chapter 3. Spei�ation and Veri�ation of Fault Injetion Proess3.3.4 Operation Insert
{true} Insert(S, elt) {S.equals(new(S).remove(elt))}This injetion operation inserts extra data in the aptured message. It an be eithera maliious element or just a huge blo of insigni�ant data in order to disturb theommuniation.3.3.5 Operation CorruptThis is a ontent orruption operation whih modi�es the ontent of intereptedmessages before their forwarding. We speify it with the following Hoare triple.

{¬S.isEmpty()}

Corrupt(S)

{new(S).size() = S.size() ∧ ¬new(S).equals(S)}In the postondition, we hek whether the message S keeps the same number ofelements, with a di�erent ontent.3.4 Passive testing approahIf we want to inlude a fault injetion mehanism as a part of a omplete testingmethodology, we have to verify and validate its behavior within the test ontext.This is a very important step, beause it allows us to ensure that the spei�edinjetion operations are properly implemented and performed. Otherwise, someonfusion may our during the test exeution. For example, if we are testing aseurity protool using a fault injetor that we on�gured to delete some spei�messages. Then, after the test exeution, how an we be sure that the lost messageshave been e�etively deleted by the fault injetor and not lost due to a protoolvulnerability or a system failure? This onfusion an be omitted if we had a meanto verify the good exeution of the performed injetion ations.It is also very important to note that this veri�ation step must be performedafter eah experiment. The fat that the used fault injetor may have been already57



3.4. Passive testing approah

Figure 3.1: The passive testing approah: (a) Colleting the trae. (b) Chekingtrae onformane w.r.t. injetion rules spei�ation.tested and validated before, does not mean that it will behave orretly in all situ-ations and ontexts. The fault injetor is an extern element that we inlude in ourtesting environment. Therefore, depending on this environment (whih may be ahostile or an experimental platform) it may work orretly or not.In this setion, we present a passive testing approah to perform this kind ofveri�ation. This approah allows one to hek the onformane of a fault injetionproess with respet to its formal spei�ation given as a set of Hoare triple rules.Figure 3.1 gives an overview of the proposed tehnique.First, we put some observation points (O.P.) at the fault injetor ore to olletan exeution trae during the injetion proess. We assume here that we haveaess to the fault injetor soure ode so that we an log all exeuted operations orthat the used fault injetor provides a log �le ontaining all neessary information.Otherwise, we an put the O.P. at the fault injetor interfae (to ollet input/outputmessages), but in this ase we an just verify the pre/postonditions independently58



Chapter 3. Spei�ation and Veri�ation of Fault Injetion Proessof the exeuted operations, whih is not onform to Hoare logi semantis.After the injetion experiment terminates, we analyze the olleted trae to hekits onformane with respet to the spei�ed fault injetion model (�gure 3.1.b). Wenote that this approah does not validate ompletelty the used fault injetor but itallows testers to ensure if for a given experiment, the fault injetion has been wellperformed or not.The spei�ation �le provided to the passive tester ontains a set of injetionrules spei�ed as Hoare triples using the spei�ation language presented in setion3.2.4. The passive tester will then exeute Algorithm 1 to hek whether the olletedtrae is onform to the spei�ed injetion operations.Algorithm 1 Trae heking1: Require: HT[r℄: Hoare triple rules + Tr[l℄: trae �le;2: Ensure: Verdit[v℄: Verdit table;3: Initialization :4: for eah rule r ∈ HT do5: Verdit[r℄:=INCONCLUSIVE;6: for eah line l of Tr do7: if ∃r ∈ HT : (l |= r.precond) and (r.operation ≡ l.Operation) then8: if ¬(l |= r.postcond) then9: Verdit[r℄:=FAIL;10: (log the urrent line whih violates the urrent injetion rule)11: else12: if V erdict[r] 6= FAIL then13: Verdit[r℄:=PASS;The trae �le is formatted as follows. For eah exeuted operation, the followinginformation are logged:
• Operation : the name and parameters of the exeuted operation ;
• StartTime: the time at whih it starts its exeution;
• InMsg: the input message (the aptured message on whih the urrent opera-tion should be applied);
• OutMsg: the output message (the message returned by the urrent operation);
• EndTime: the time at whih the urrent operation �nishes its exeution.59



3.5. ConlusionBased on that trae format, Algorithm 1 starts by an initialization step where itassoiates an INCONCLUSIVE verdit to all injetion rules. INCONCLUSIVEverdit means that we are unable to verify the orret implementation of a givenrule; either beause no line from the trae satis�es the rule preondition or that theexeuted operation is di�erent from the spei�ed one.After this �rst step, the algorithm veri�es for eah trae line l , if there ex-ists a rule r from the spei�ation �le whose preondition is satis�ed by l (l |=
r.precond) and if the exeuted operation (l.Operation) mathes with the spei�edone (r.operation). If it does, the rule verdit is updated with a PASS/FAIL verditaording to the onformane of the spei�ed postondition (r.postcondition) w.r.t.the observed trae line.We note that eah injetion rule may be tested several times (eah time a traeline satis�es its preonditon). However, if the test failed one then the �nal verditassoiated to this rule will be FAIL. The omplexity of the algorithm is straight-forward. At worst, an injetion operation might be onerned by all lines from thetrae. Therefore, the omplexity is O(n.m), where n is the number of the spei�edinjetion rules (size of the table HT ) and m is the trae length.In the ase of a blak box testing, where we annot log the exeuted operations,we an only observe the input/output messages with their relative input/outputtimes. Therefore, even if we an modify Algorithm1 to hek whether the pre-andpostonditions related to a given message are respeted, nothing an be said aboutthe real implemented operations.3.5 ConlusionFault injetion is a powerful strategy to test fault-tolerant protools and distributedsystems. The �rst step in building a omplete fault injetion proess is the spei-�ation of a fault senario for the test experiment. This inludes the spei�ationof the fault injetor loation and the type and time of injeted faults. In this hap-ter, we presented a generi fault injetion formalism based on Hoare logi and timespei�ation. We detailed its syntax and semantis and provided some spei�ation60



Chapter 3. Spei�ation and Veri�ation of Fault Injetion Proessexamples to illustrate its use.One faults are spei�ed, one an easily ontrol the injetion proess by verifyingits exeution. We proposed a passive testing approah whih uses the injetionspei�ation to hek the injetion proess. This way, we would be able to ensurethat the injetion is well performed and thus, we will avoid any ambiguity duringresult analysis.The proposed fault injetion formalism ould also be exploited in other manners.For example, it would be interesting to study the possibility of automati generationof faults from the abstrat Hoare spei�ation, or to propose some fault injetionpatterns for di�erent testing purposes.
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Chapter 4. A Formal Approah for Cheking Real Time Constraints4.1 IntrodutionThe high omplexity and the large variety of atual implemented systems as well asthe high degree required for their global performane, lead to inreasingly halleng-ing issues on developing approahes and tehniques for veri�ation and validationof orretness properties.System requirements (also alled orretness properties) are a set of rules whihdesribe how data and other ritial resoures of a given system should be managed.Usually, suh requirements are de�ned by network and/or system administratorswhih are in harge of implementing and ontrolling the ritial mehanisms of theirorganizations. Sine this set of rules an be more or less omplex, any spei�ationambiguity an lead to on�its or reate seurity threats. To avoid these dangeroussituations, administrators and test experts often rely on formal spei�ation lan-guages to desribe their requirements. The hoie of suh formalism is ruial as itdetermines the type of orretness properties that an be arried and the reliabilityof the testing approah.De�ning time onstraints as a way of ontrolling system behaviors may be ane�ient tehnique to avoid temporal vulnerabilities. However, to ensure that asystem respets the de�ned onstraints, we need �rst to speify them using the mostsuitable formalism (whih in this ase must support time spei�ations). Then,we may rely on formal testing methods whih o�er more rigor and e�ieny inveri�ation proess, to study the onformane of the system behavior with respetto the spei�ed properties.Formal testing tehniques an be ategorized into two main lasses: (i) ativetesting approahes and (ii) passive testing approahes. In ative testing, systemimplementations are heked by applying a set of test ases (generated from a globalrequirement model) and analyzing their behavior; while in passive testing, we donot interat diretly with the tested system. Instead, we ollet system exeutiontraes and verify their onformane with respet to orretness properties.As ative testing requires diret interation with the tested system, it is notalways possible to rely on it in all situations. For example, when the tested imple-63



4.2. Related workmentation does not provide any interfaes or when the tested system is built upona set of omponents running in their own environments and where there is no diretway to aess them (like omposed Web servies for example). In suh ases, thereis a partiular interest of using passive testing tehniques where the veri�ation pro-ess does not need any diret interation with the tested system as it only analyzesolleted exeution traes.In this hapter, we propose a formal and generi framework for spei�ation andveri�ation of real time requirements on exeution traes. Our main ontributionsare:
• A formal spei�ation of real time properties. We formalize temporal prop-erties as XCTL(eXpliite Clok Temporal Logi) [32℄ formulas to be able tospeify both simple and omplex real time onstraints.
• A passive testing algorithm to verify the onformane of suh requirementsagainst exeution traes;
• A proposition of real time patterns and an experimental study to show theperformane of the proposed algorithm.4.2 Related workLinear Temporal Logi (LTL) [55℄ is a well known mathematial logi whih hasbeen widely used in several testing domains. Broadly, we an rely on LTL to speifytwo types of ritial system requirements: safety properties and liveness properties.Safety properties state that nothing bad ever happens in the system. For example:an intruder never gets user or administrative privileges on the network or a ontrollerdoes not allow the boiler temperature to rise above a ertain level. On the otherhand, liveness requirements speify the ative tasks that a system is designed todo i.e. they assert that "something good will eventually happen". For example, abanking system might have a liveness requirement stating that if a hek is depositedand su�ient funds are available, the hek eventually lears.64



Chapter 4. A Formal Approah for Cheking Real Time ConstraintsThese features made LTL strong enough to build frameworks for di�erent test-ing purposes suh as seurity, reliability and robustness. However, as it appearedthat LTL is very suitable for modeling seurity issues, most researhes foused onproviding LTL-based approahes for testing system seurity. In [23℄ for example,authors proposed a model heking approah for seurity protools based on the set-rewriting formalism oupled with a subset of LTL. Their model allows spei�ationsof assumptions on prinipals and ommuniation hannels as well as other seurityrequirements. However, this approah does not support real time spei�ations andit only validates seurity properties with respet to the protool spei�ation andnot against its real implementation (a model heking approah).In [53℄, authors used temporal logi to build general intrusion detetion frame-work. They based their approah on a runtime monitoring algorithm to automat-ially verify temporal spei�ations against a system exeution and raise intrusionalarms whenever the spei�ation is violated. They used the EAGLE formalism tospeify temporal requirements. EAGLE [39℄ is a temporal logi formalism support-ing reursively de�ned temporal formulas parameterizable by both logial formulasand data expressions. Although it is possible to speify some kind of real time prop-erties using this formalism (time interval spei�ations), it is pratially impossibleto address omplex properties whih refer to orrelated time onstraints (temporalonstraints de�ned with respet to other temporal onstraints in the same formula).Another LTL-based framework for testing seurity properties is presented in [68℄.In this paper, authors proposed to test seurity poliies of a given system based ontest generation and exeution of seurity rules from temporal logi spei�ations.This approah su�ers from two main drawbaks. First, they addressed a very limitedset of seurity patterns as they restrited the syntax and semantis of their formalismto a small subset of linear temporal logi. Seond, their approah does not supportreal time spei�ations.It is important also to highlight other work whih aimed at providing real timeframeworks not based on LTL. For example in [69℄, authors proposed a generalframework for testing timed seurity properties based on deonti logi and linear65



4.3. LTL and real time logistime spei�ation. The same formalism was also used in [25℄ for monitoring Webservies. However, this formalism supports only spei�ation of simple temporalonstraints like those we an speify using bounded temporal operators (setion4.3.1). Moreover, the spei�ation language is very omplex (whih makes it hardto use in pratie) and the used deonti logi is highly seurity oriented (whihmakes it di�ult to apply on other testing purposes).The approah we propose in this work aims at providing a generi and formalframework for testing real time properties. We want to be as generi as possible sothat our approah an be applied not only for seurity testing (whih is a widelyknown appliation of LTL), but also for safety, robustness and other testing pur-poses.We propose to formalize real time requirements as XCTL formulas. This way,we would be able to speify more omplex temporal onstraints than those arriedby the above ited approahes. Then, we propose an e�ient monitoring algorithmbased on passive testing to hek suh properties on exeution traes.4.3 LTL and real time logisLinear Temporal Logi (LTL) [55℄ is a spei� branh of temporal logi whih al-lows one to reason about both ausal and temporal properties based on linear timesemantis.An LTL formula onsists of atomi propositions, Boolean operators and temporaloperators. The operator © refers to the next state. E.g., ©a expresses that a hasto be true in the next state. ∪ is the until operator, where a∪ b means that a has tohold from the urrent state up to a state where b is true. � is the always operator,stating that a ondition has to hold at all states of a path, and ♦ is the eventuallyoperator that requires a ertain ondition to eventually hold at some time in thefuture. The syntax of LTL is given as follows, where AP denotes the set of atomipropositions:De�nition 4.1 (LTL syntax) The BNF de�nition of LTL formulas is given asfollows: 66



Chapter 4. A Formal Approah for Cheking Real Time Constraints
φ := true|false|a ∈ AP |¬φ|φ1 ∧ φ2|φ1 ∨ φ2|φ1 → φ2|φ1 ≡ φ2|φ1 ∪ φ2| © φ|�φ|♦φThe semantis of LTL is expressed for in�nite traes. However, as in this workwe are dealing with "o�-line" testing using a pre-olleted set of traes, we willonsider the �nite LTL semantis as presented in [60℄.We de�ne a trae as a �nite list of events. Assume two partial funtions de�nedfor nonempty traes head : Trace → event and tail : Trace → Trace for takingthe head and tail respetively of a trae, and a total funtion length returning thelength of a �nite trae . That is, head(e t) = e, tail(e t) = t, length(end) = 0 and
length(e t) = 1 + length(t) where t is a trae, e is an event and end denotes theempty trae. Assume further that for any trae t that ti for some natural number i,denotes the su�x trae that starts at position i, whih position starting at 1. The�nite LTL semantis an be de�ned as follows:De�nition 4.2 (LTL semantis) The satisfation relation |=⊆ Trace×Formulawhih de�nes when a trae t satis�es a formula φ (written t |= φ) is de�ned indu-tively over the struture of the formulas as follows (where p is an atomi propositionand φ1 and φ2 are any formulas):
t |= true i� true,

t |= false i� false,

t |= p i� t 6= end and head(t) = p

t |= ¬p i� t 6|= p

t |= φ1 ∧ φ2 i� t |= φ1 and t |= φ2

t |= φ1 ∨ φ2 i� t |= φ1 or t |= φ2

t |= φ1 → φ2 i� t 6|= φ1 or t |= φ2

t |= φ1 ≡ φ2 i� t |= φ1 i� t |= φ2

t |= �φ i� (∀i ≤ length(t)) ti |= φ

t |= ♦φ i� (∃i ≤ length(t)) ti |= φ

t |= φ1 ∪ φ2 i� (∃i ≤ length(t)) (ti |= φ2 and (∀j < i) tj |= φ1)

t |=©φ i� t 6= end and tail(t) |= φ67



4.3. LTL and real time logis4.3.1 Real time extensionsAlthough LTL an be used to speify a wide range of temporal properties, it stillpresents some limitations regarding spei�ations of real time systems as it does notprovide means to formalize real time onstraints [56℄. Therefore, several approaheshave been proposed to extend LTL formulas in order to support real time spei�a-tions. These approahes an be lassi�ed into three main ategories based on howtime values are spei�ed. In the following, we present and disuss these extensionsand justify our hoie of XCTL.
Bounded temporal operatorsA ommon way of introduing real time in the syntax of LTL is to replae the un-restrited temporal operators by time-bounded versions. For example, the boundedoperator ♦[2,4] is interpreted as "eventually within 2 to 4 time units". Based on thisextension, one an speify properties like "every event p is followed by an event qwithin 3 time units" as follows.

�(p→ ♦[0,3]q)However, the bounded-operator notation an relate only adjaent temporal on-texts. Consider, for instane, the property that "every request p is followed by aresponse q and, then, by another response r suh that r is within 5 time units ofthe request p". While this kind of properties is very important, there is atuallyno diret way of expressing this "nonloal" timing requirement using time-boundedoperators.This shortoming of bounded temporal operators an be remedied by extendingtemporal logi with expliit referenes to the times of temporal ontexts. We disussin the following paragraphs two of suh methods: one based on freeze quanti�ationand the other using a dynami state variable.68



Chapter 4. A Formal Approah for Cheking Real Time ConstraintsFreeze quanti�ationThe idea of freeze quanti�ation is based on the use of a freeze quanti�er ”x” insidean LTL formula to bind the assoiated variable x to the time of the urrent temporalontext: the formula x.φ(x) holds at the time t i� φ(t) does. Thus, in the formula
♦y.φ the time variable y is bound to the time of the state at whih φ is "eventually"true. By admitting atomi formulas that relate the times of di�erent states, we anwrite the nonloal property that "every request p is followed by a response q and,then, by another response r suh that r is within 5 time units of the request p" asfollows.

�x.(p→ ♦(q ∧ ♦z.(r ∧ z ≤ x + 5)))Expliit lok variableAnother way to speify real time requirements is based on standard �rst ordertemporal logi. The syntax uses a dynami state variable T (the lok variable)and �rst order quanti�ation for global variables overs the time domain. The lokvariable assumes, in eah state the value of the orresponding time. For example,the property "every request p is followed by a response q within 3 time units" anbe spei�ed as follows.
�((p ∧ T = x)→ ♦(q ∧ T ≤ x + 3))Here, the global variable x is bound to the time of every state in whih p isobserved. We refer to the use of a lok variable as the "expliit-lok" notation.The linear time logi whih is based on this tehnique is alled XCTL [32℄(eXpliitClok Temporal Logi). It is a real time logi whose assertion language for atomitiming onstraints allows the primitives of omparisons and addition. Thus, thetiming onstraints of XCTL are riher than those of the previous logis, whih pro-hibit the addition of time variables. Also, the de�nition of the lok variable Tallows one to refer to the global time of the system, whih is not possible with freezequanti�ation for example (as there is no global time referene) [56℄.69



4.4. Passive testing algorithmThese features make XCTL very suitable for spei�ation and veri�ation ofomplex real time properties. In fat, by using XCTL, one an speify both simpleand orrelated time onstraints and the use of a single global time variable makesthe spei�ations easier. Therefore, we will rely on this logi to speify real timeonstraints and propose a passive testing algorithm to hek this kind of onstraintson events traes.4.4 Passive testing algorithmIn this setion we present our passive testing algorithm for veri�ation and validationof real time properties. The algorithm inputs are a set of requirements spei�ed asXCTL formulas and an event trae. The aim is to provide a verdit about theonformane of the trae with respet to the spei�ed properties.4.4.1 XCTL and passive testingFormally, we speify the trae �le as a �nite set of ouple {(e1, t1), ..., (ei, ti), ..., (en, tn)}where eah ouple represents an event ei that ours at a time ti suh as ∀i ∈
[1, n], ti < ti+1.As all time values in the trae represent event ourrene times, some typeof formulas annot be heked diretly. For example, a formula like P ∪ (T =

val) annot be veri�ed beause T = val might not be observable on the trae(as it does not relate to an event ourrene). Therefore, we formally introdue thefollowing sub-grammar of XCTL whih allows to build only formulas where temporalonstraints are onneted to propositional variables with logial onjuntions.De�nition 4.3: The BNF de�nition of XCTL formulas addressed by our ap-proah is given as follows.
φ := true|false|p ∈ AP |p ∧ TC|¬φ|φ1 ∧ φ2|φ1 ∨ φ2|φ1 → φ2|φ1 ≡ φ2|φ1 ∪ φ2| ©

φ|�φ|♦φ

TC := T ∼ ax + cWhere ∼∈ {<,≤, >,≥,=}, T is the global lok variable, x is a stati time variableand a, c are onstants. 70



Chapter 4. A Formal Approah for Cheking Real Time ConstraintsThe de�nitions of the time domain and the set of onstants are given in [32℄, aswell as the XCTL semantis whih we rely on, in this work.4.4.2 Test algorithmOur algorithm is based on the idea that LTL properties an be heked bakwardsby updating the verdit at eah step based on our knowledge of the future (as thetrae is traversed from its end) [60℄. We will �rst start by an example of a simpleLTL formula (without temporal onstraints) to show how it an be heked on atrae. Consider, for instane, the following formula.
φ = �(P → ♦Q)The Breadth First Searh (BFS) order of this formula gives the following set ofsubfomulas.

φ1 = �(P → ♦Q)

φ2 = P → ♦Q

φ3 = P

φ4 = ♦Q

φ5 = QNow, onsider a �nite trae of events trace = {e1, ..., en} (we will address timeonstraints later). One an de�ne reursively a boolean matrix mat[1..n, 1..m] where
n is the length of the trae and m is the number of subformulas with the meaningthat mat[i, j] = true i� tracei |= φj . In our example it will be mat[1..n, 1..5] suh as.
mat[i, 5] := (Q ∈ ei)

mat[i, 4] := mat[i, 5] ∨mat[i + 1, 4]

mat[i, 3] := (P ∈ ei)

mat[i, 2] := mat[i, 3]→ mat[i, 4] 71



4.4. Passive testing algorithm
mat[i, 1] := mat[i, 2] ∧mat[i + 1, 1]for all i < n, where ∨,∧,→ are ordinary boolean operators. For i = n, we needto initialize the matrix as follows.
mat[n, 5] := (Q ∈ en)

mat[n, 4] := mat[n, 5]

mat[n, 3] := (P ∈ en)

mat[n, 2] := mat[n, 3]→ mat[n, 4]

mat[n, 1] := mat[n, 2]An important observation is that, for eah event from the trae, we may needat worst informations about the previous event (the next one when addressed bak-wards). Therefore, instead to keep all the table mat[1..n, 1..m] whih would be quitelarge in pratie, one needs only to keep two rows mat1[i, 1..m] and mat2[i+1, 1..m]handling informations about the atual step and the next one. We will all this ve-tors now and next, respetively. We an now present the passive testing algorithmwhih address all kind of LTL properties as in Algorithm 2 [60℄. Given an LTLformula φ and an event trae Tr = {e1, ..., en}, this algorithm onsists of three mainphases:1. First we generate the set of subformulas in the BFS order of the tested LTLformula. Let {φ1, φ2, ..., φm} be the list of all generated subformulas. Thesemantis of �nite trae LTL allows us to determine the truth value of Tri |= φjfrom the truth values of Tri |= φj′ for all j < j′ ≤ m and the truth values of
Tri+1 |= φj′ for all j ≤ j′ ≤ m. This reurrene justify the bakward hekingorder of the algorithm.2. The seond step is an initialization loop. Before the main loop, we should�rst initialize the vetor next[1..m]. Aording to the semantis of LTL, thevetor next is �lled bakwards. For a given 1 ≤ j ≤ m, next[j] is alulatedas follows: 72



Chapter 4. A Formal Approah for Cheking Real Time Constraints
• If φj is a variable then next[j] ← (φj ∈ en); Here, we only verify if theatomi proposition satis�es the last event from the trae;
• If φj is ¬φj′ for some j < j′ ≤ m then next[j]← not next[j′], where notis the negation operator on Booleans;
• If φj is φj1 Op φj2 for some j < j1, j2 ≤ m then next[j]← next[j1] op next[j2],where Op is any propositional operation and op is its orrespondingBoolean operation;
• If φj is ©φj′ , �φj′ or ♦φj′ then learly next[j] ← next[j′] due to thestationary semantis of the �nite trae LTL;
• If φj is φj1 ∪ φj2 for some j < j1, j2 ≤ m then next[j]← next[j2] for thesame reason as above.3. The last step is the main loop. Considering the dependenes in the reursivede�nition of �nite trae LTL satisfation relation, one must visit the remainingof the trae bakwards, so the loop index will vary from n− 1 down to 1. Theloop body will update the vetor now and at the end it will move it into thevetor next to serve as basis for the next iteration. At a ertain iteration i,the vetor now is updated bakwards as follows:
• If φj is a variable then now[j]← (φj ∈ en);
• If φj is ¬φj′ for some j < j′ ≤ m then now[j]← not now[j′]

• If φj is φj1 Op φj2 for some j < j1, j2 ≤ m then now[j]← now[j1] op now[j2],where Op is any propositional operation and op is its orrespondingBoolean operation;
• If φj is ©φj′ then now[j] ← next[j′] sine φj holds now i� φj′ held atthe previous step (whih proessed the next event, the (i + 1)th);
• If φj is �φj′ then now[j] ← now[j′] ∧ next[j] beause φj holds now i�

φj′ holds now and φj held at the previous iteration;
• If φj is ♦φj′ then now[j]← now[j′]∨next[j] for similar reason as above;73



4.4. Passive testing algorithm
• If φj is φj1 ∪ φj2 for some j < j1, j2 ≤ m then now[j] ← now[j2] ∨

(now[j1] ∧ next[j]).After eah iteration next[1] says whether the initial LTL formula is validated by thetrae. Therefore desired output is next[1] after the last iteration. The truth valueof this vetor element gives the �nal verdit (true ≡ PASS and false ≡ FAIL).Algorithm 2 Cheking LTL properties1: Require: An LTL formula φ and an event exeution trae Tr = {e1, ..., en}2: Ensure: A verdit about the onformane of φ w.r.t. Tr3: Generate a set of subformulae in BFS order (φ1, ..., φm)4: / ∗ Initialization ∗ /5: for j=m downto 1 do6: if (φj is a variable) then7: next[j] := (φj ∈ en);8: if (φj == !φj′) then9: next[j] := (not next[j′]);10: if (φj == φj1 Op φj2) then11: next[j] := (next[j1] op next[j2]);12: if ((φj == ©φj′) || (φj == �φj′) || (φj == ♦φj′)) then13: next[j] := next[j′];14: if (φj == φj1 ∪ φj2) then15: next[j] := next[j2];16: /∗ Main loop ∗/17: for i=n-1 downto 1 do18: for j=m downto 1 do19: if (φj is a variable) then20: now[j] := (φj ∈ ei);21: if (φj == !φj′) then22: now[j] := (not now[j′]);23: if (φj == φj1 Op φj2) then24: now[j] := (now[j1] Op now[j2]);25: if (φj == ©φj′) then26: now[j] := next[j′];27: if (φj == �φj′) then28: now[j] := now[j′] ∧ next[j];29: if (φj == ♦φj′) then30: now[j] := now[j′] ∨ next[j];31: if (φj == φj1 ∪ φj2) then32: now[j] := now[j2] ∨ (next[j1] ∧ next[j]);33: next := now34: V erdict := next[1];The analysis of this algorithm is straightforward. Its omplexity is ©(n.m)where n is the trae length and m is the number of subformulas generated from theLTL formula in the BFS order. 74



Chapter 4. A Formal Approah for Cheking Real Time ConstraintsWe now present our algorithm for heking an XCTL formula φ on a trae
Tr = {(e1, t1), ..., (en, tn)}. This algorithm is a extension of Algorithm 2 to supportreal time. It onsists of the following steps:
• Initialization1. First, we link eah variable appearing in φ to a table ontaining the set ofits temporal onstraints. We de�ne therefore, the Temporal ConstraintsTable (TCT) suh as: TCT [var, tci] returns the ith temporal onstraintof the variable var;2. Then, we reate a list ES whih ontains all the temporal onstraints ofthe XCTL formula. Atually, this list represents an equation system. Ini-tially, all temporal onstraints are marked as NOT_INSTANTIATED;3. After that, we generate the set of formulas in the BFS order of φ withoutaounting the temporal onstraints parts. It results for example in a setof formulas {φ1, φ2, ..., φm}.
• Initialization loop: This step is very similar to the initialization loop ofAlgorithm 2. We start by alulating the truth value of the vetor next[j] for

1 ≤ j ≤ m, based on the last event from the trae (en, tn)� If φj is a variable var then next[j] ← (φj ∈ en). Then, if this variablesatis�es the urrent event (next[j] ≡ true), we instantiate its temporalonstraint with the timestamp of en i.e tn and we mark this temporalonstraint as INSTANTIATED in the equation system ES. This isdue to the onsidered XCTL grammar presented in De�nition 4.3, wherewe suppose that atomi propositions an only be onneted to temporalonstraints by onjuntions.� the rest of ases of φj is addressed exatly as in Algorithm 2.
• Main loop: The main loop is also similar to Algorithm 2 exept for the asewhere φj is a variable that satis�es the urrent event trae ei (i.e now[j] ≡75



4.4. Passive testing algorithm
true) in whih ase, it is addressed as above i.e we update its urrent temporalonstraint with the timestamp ti of orresponding to the urrent event.At the end of eah loop iteration, we update the �nal verdit based on thevalue of next[1], whih tells about the satis�ability of the tested formula without itstemporal onstrains and the resolvability of the equation system ES. The equationsystem ES is resolvable i� all temporal onstraints that it ontains are instantiatedand that the system is orret. The detailed algorithm is given in Algorithm 3.For illustration, let us take an example to show how this algorithm proeeds.Suppose we have an XCTL formula φ and a trae Tr suh as:

φ = �((P ∧ T = x)→ ♦(Q ∧ T ≤ x + 3))

Tr = {(P, 5), (Q, 6)}The BFS order of formula φ without its temporal onstraints gives the followingset of subformulas:
φ1 = �(P → ♦Q)

φ2 = P → ♦Q

φ3 = P

φ4 = ♦Q

φ5 = QThe Temporal Constraint Tables of variables P and Q and the equation system
ES are initialized as follows:
TCT [P, 0] = {T = x}

TCT [Q, 0] = {T ≤ x + 3}

ES = {(T = x, not_instantiated), (T ≤ x + 3, not_instantiated)}76



Chapter 4. A Formal Approah for Cheking Real Time Constraints
Algorithm 3 Cheking XCTL properties1: Require: An XCTL formula φ and an event exeution trae Tr = {(e1, t1), ..., (en, tn)}2: Ensure: A verdit about the onformane of φ w.r.t. Tr3: Create a temporal onstraint table TCT (TCT [var, tci] returns the ith temporal onstraintrelated to variable var);4: Create a list ES ontaining all temporal onstraints (This is for the equation system);5: Generate a set of subformulas in BFS order (without aounting temporal onstraint parts,i.e only LTL) (φ1, ..., φm)6: /∗ Initialization ∗/7: for j = m downto 1 do8: tc := 0; /∗To aess temporal onstraints∗/9: if (φj is a variable var) then10: next[j] := (φj ∈ en);11: if (next[j]) then12: index := TCT [var, tc];13: tc := (tc + 1) mod NbTc(var);14: /∗NbT(var) returns the number of temporal onstraints related to variable var ∗/15: INSTANTIATE(ES, index, tn);16: /∗instantiates the urrent temporal onstraint based on the atual time value tn andmark it as "INSTANTIATED"∗/17: ...18: /∗ The rest of the initialization is like in Algorithm 2 ∗/19: if (all temporal onstraints in ES are instantiated) then20: verdict := next[1] ∧ Resolve_ES(ES);21: /∗Resolve_ES(ES) returns true if the equation system is orret∗/22: else23: verdict := next[1]24: if (Resolve_ES(ES)) then25: tc := 0;26: INIT (ES);27: /∗ INIT(ES) Undo all temporal onstraints instantiations in ES and mark themNOT_INSTANTIATED ∗/28: /∗ Main loop ∗/29: for i = n − 1 downto 1 do30: for j = m downto 1 do31: if (φj is a variable var) then32: now[j] := (φj ∈ ei);33: if (now[j]) then34: index := TCT [var, tc];35: tc := (tc + 1) mod NbTc(var);36: INSTANTIATE(ES, index, ti);37: ...38: /∗ The rest of ases is like in Algorithm 2 ∗/39: next := now;40: if (all temporal onstraints in ES are instantiated) then41: verdict := next[1] ∧ Resolve_ES(ES);42: else43: verdict := next[1]44: if (Resolve_ES(ES)) then45: tc := 0;46: INIT (ES);
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4.4. Passive testing algorithmFor the initialization loop, we would have en = Q and tn = 6. Therefore, theresult will be:
next[5] := true

next[4] := next[5] ≡ true

next[3] := false

next[2] := (next[3]→ next[4]) ≡ true

next[1] := next[2] ≡ trueThe temporal onstraint of Q would be instantiated with the value of tn. There-fore, the equation system would be updated as follows:
ES = {(T = x, not_instantiated), (6 ≤ x + 3, instantiated)}For the main loop, we would have j = m = 5 and i = n−1 = 1 whih means thatthe urrent event would be (P, 5). Thus, we would update the vetor now as follows:
now[5] := false

now[4] := (now[5] ∨ next[4]) ≡ true

now[3] := true

now[2] := (now[3]→ now[4]) ≡ true

now[1] := (now[2] ∧ next[1]) ≡ trueThe equations system would be:
ES = {(5 = x, instantiated), (6 ≤ x + 3, instantiated)}We an see here, that all equations are instantiated and the system is orret((x = 5) ∧ (x ≥ 3)). Therefore, the �nal verdit would be : PASS.78
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next := now;

verdict := (next[1] ∧Resolve_ES(ES)) ≡ true

4.4.3 CorretnessWe now argue that Algorithm 3 is orret with respet to the heking of an XCTLformula on a timed trae.Theorem 4.1: For a given trae Tr = {(e1, t1), ..., (en, tn)} and a given XCTLformula φ, Algorithm 3 issues a verdit PASS i� Tr |= φ.Proof: Algorithm 3 is an improvement of Algorithm 2 for heking real timeonstraints. It follows exatly the same logi and struture of Algorithm 2 forheking the formula φ without its temporal parts (1). The orretness of Algorithm2 is proven in [60℄ (2), therefore, we will fous here, on the treatment of the temporalonstraints of φ.Aording to the XCTL grammar presented in De�nition 4.3, eah propositionalvariable an be onneted to a temporal onstraint of the form of T ∼ ax + c where
∼∈ {<,≤, >,≥,=}. Algorithm 3 starts by alloating a table TCT where it linkseah propositional variable from φ to the list of its temporal onstraints. Then,eah time a propositional variable from φ is validated on the trae Tr (aordingto Algorithm 2), Algorithm 3 instantiates its temporal onstraint with the urrenttimestamp from the trae and updates the table ES. The equation system table
ES gathers all temporal onstraints of formula φ. Eah temporal onstraints isinitially marked as not_instantiated and is updated to instantiated by Algorithm3. The instantiation onsists of replaing the global time variable T of a giventemporal onstraints by the timestamp ti of the trae event ei whih validates theurrent propositional variable. At the end, the algorithm heks if all temporalonstraints in ES are instantiated and if the equation system is orret i.e: ∀tc ∈
ES : tc is instantiated ∧ (

∧

i=1,n tci ≡ true) (tc is a temporal onstraint).All temporal onstraints are instantiated from the trae Tr itself (based on thesatis�ability relation of Algorithm 2) and the equation system is resolved based on79



4.5. Real time patterns and experimental resultsthese real timestamps values. Therefore, there annot be any ontradition betweenthe addressed temporal values and those who appear really in the trae (3).Consequently, we onlude from (1), (2) and (3), that Algorithm 3 issues averdit PASS i� Tr |= φ.4.5 Real time patterns and experimental resultsIn this setion, we present an experimental study of our approah. First, we identifya set of real time requirements whih we formalize as XCTL formulas. Then, wetest an implementation of the presented algorithm and evaluate its performanes.For more onsisteny, we propose to desribe these requirements as abstratpatterns spei�ed in XCTL. In the following, we introdue four of suh patterns andillustrate them with real examples.4.5.1 PeriodiityThe �rst pattern we identify relates to events that must be hold periodially toprevent eventual seurity/safety issues. Given a proposition P , we an speify theperiodi ourrene of P by the following XCTL formula.
�((P ∧ T = x)→ ♦(P ∧ T = x + c))where the onstant c represents the period duration. An example of this propertyan be illustrated by a system whih sends periodially a liveness message to informadministrators about eventual rashes.4.5.2 ResponseThis pattern is usually used to speify a simple request/response paradigm. Giventwo propositions P and Q, the following XCTL formula spei�es that eah our-rene of P must be followed by Q within (resp. in exatly or after) c time units.
�((P ∧ T = x)→ ♦(Q ∧ T ∼ x + c))80



Chapter 4. A Formal Approah for Cheking Real Time Constraintswhere ∼∈ {<,≤, >,≥,=}. For illustration, we an speify for example that a on-netion establishment must not exeed 5 seonds.
�((ConnectReq ∧ T = x)→ ♦(ConnectResp∧ T ≤ x + 5))4.5.3 CorrelationThis pattern is an example of orrelated temporal onstraints that we are able tospeify in XCTL. It orresponds to the following situation. Given three propositions

P , Q and S; when P holds at a time x, it will be followed by Q at a time y andlater by S whih must hold within (resp. in exatly or after) x + y time units. Thissituation an be spei�ed by the following formula.
�((P ∧ T = x)→ ♦((Q ∧ T = y)→ ♦(S ∧ T ∼ x + y)))where ∼∈ {<,≤, >,≥,=}.4.5.4 AlternativeThis last pattern is used to speify alternative situations. Given three propositions

P , Q and S, the XCTL formula bellow spei�es the following statement : " Q holdsif S does not respond to P within (resp. in exatly or after)c time units".
�(¬((P ∧ T = x)→ ♦(S ∧ T ∼ x + c))→ ♦Q)where ∼∈ {<,≤, >,≥,=}.We an onsider, as an example of this pattern, a reliable system where eahrequest must be followed by a aknowledgment. In the ase where no aknowledg-ment is reeived within 10 seonds, a anellation message must be sent to abortthe request.To study the performanes of our approah, we relied on these patterns to testan implementation of Algorithm 3. Experiment results are shown in �gure 4.1.In this �gure, we vary the trae length and study the evolution of exeution timeof our algorithm with respet to the type of the used pattern. The �gure representsevolution time urves of the four patterns presented above (periodiity and response81



4.6. Conlusion

Figure 4.1: Experimental resultspattern are represented by a single urve as we onsider that periodiity pattern anbe seen as a partiular ase of response).The three urves are growing in approximately a linear manner with a slightinterval di�erene between them due to the omplexity of the addressed pattern.Periodiity and response patterns are less omplex, therefore, their urve is thelowest one. The performanes shown by orrelation and alternative patterns arealmost the same. Alternative urve is higher beause we hose a omplex alternativeformula (whih inludes a response formula), otherwise it would be muh lower.The approximative linearity of urves on�rms the theoretial analysis of Algo-rithm 3. Indeed, in this algorithm eah state (event) from the trae is visited onlyone but it is used to hek the satis�ability of all derived formulas in BFS order.That is why the exeution time is proportional to the length and the omplexity ofthe tested formula (in addition to the trae length).4.6 ConlusionIn this hapter, we proposed a formal approah to test real time properties spei-�ed as XCTL formulas. One of the main results we got in this work, is to be ableto speify and hek omplex orretness properties with orrelated temporal on-straints i.e properties whih ontain temporal onstraints de�ned with respet toother temporal onstrains in the same formula.82



Chapter 4. A Formal Approah for Cheking Real Time ConstraintsWe also tested the proposed passive testing algorithm on a set of real time pat-terns and disussed the obtained results. These patterns are probably not exhaustiveand must be taken only as examples to illustrate the e�ieny and reliability of ourapproah.As future work, we are expeting to upgrade our algorithm for runtime hekingso that we ould deploy it as an online monitor. This way we ould detet violationsas soon as they happen and thus, avoid eventual attaks and/or dangerous senarios.
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Chapter 5
A Complementary Approah forTesting System Robustness
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5.1 IntrodutionThe inreasing omplexity of urrent software system requires more rigorous testingand validation tehniques as any failure of suh systems may lead to atastrophi�nanial or human onsequenes.The main purpose of the various existing testing tehniques is to �nd defetson system implementations. Formal methods for onformane testing, for exam-ple, have been widely used to test distributed system and ommuniation protools.84



Chapter 5. A Complementary Approah for Testing SystemRobustnessThese tehniques aim at providing a verdit about the onformane of a systemimplementation with respet to its formal behavior spei�ation when the systemis running in its normal (proper) environment. Approahes for onformane testingan be either ative or passive. In ative testing, the tester interats diretly withthe implementation under test (IUT). It provides inputs and ollets the returnedoutputs whih it analysis to issue the onformane verdit. In passive testing how-ever, the tester does not interat diretly with the tested system. It only observes itsbehavior (as exeution traes) and veri�es its onformane with respet to a givenformal spei�ation.A software system may behave orretly when running in its proper environ-mental onditions. However, if the system environment is disturbed by externalor non-expeted events, the system behavior may be abnormal and unpreditable.This non-expeted behavior an reveal many system failures and dangerous senar-ios. Therefore it is very important for a tester to study this kind of situations,partiularly for ritial systems and appliations.Testing the behavior of a system running in stressful environmental onditionsis known as Robustness Testing. At the opposite of onformane testing, robustnesstesting tehniques onsider that the tested system is running in an hostile environ-ment. Therefore, they do not look for a orret behavior but an aeptable one[57℄. The aeptable behavior an be assessed either empirially (the system doesnot rash or hang for example) or formally (robustness requirements are formallyspei�ed and heked against the system).In this hapter, we propose a omplementary approah for testing system robust-ness based on passive testing and fault injetion tehniques. We use fault injetionas a perturbation mehanism to reate stressful environmental onditions. Then, werely on a passive testing tehnique to hek the satis�ability of robustness require-ments on system exeution traes. The injeted faults and the robustness propertiesare formally spei�ed. The spei�ation of the injeted faults is used to validate theinjetion proess and the spei�ation of robustness requirements is to formally assesthe system robustness. 85



5.2. Related work5.2 Related workAs we presented in setion 2.2, robustness testing approahes an be ategorizedinto two lasses: fault injetion approahes and model-based approahes.Fault injetion approahes are based on deliberate introdution of errors in arunning system and an observation of its behavior. Suh tehniques are very usefulfor simulating hostile environments as they an injet various kind of faults (interfaefaults, ommuniation faults, et.). There exist several fault injetion tools fordi�erent kind of systems [62, 61, 65, 48℄. In setion 2.2.1, we gave an overview ofthe most relevant ones for distributed systems.The major issue with the existing fault injetion tehniques, is that they donot rely on any e�ient test orale. The evaluation of system robustness is basedsimply on basi observations. Faults are injeted during system exeution and if thesystem does not rash or hang, it is onsidered as robust. Also, the injetion proessis not ontrolled. The injeted faults are usually not formally spei�ed and thereis atually no way to validate the injetion i.e. to ensure that the injetor reallyinjets the faults that it is supposed to injet (Chapter 3).Model-based tehniques for robustness testing proeed di�erently. They inspirefrom onformane testing approahes and partiularly from ative testing. The basiidea is to introdue a fault dimension in the input domain of traditional onformaneative testing approahes. This way, it would be possible to generate faulty inputswhih an eventually lead to system failures. This kind of tehniques for robustnesstesting is relatively reent. We exposed in setion 2.2.2, the most relevant ones.Probably, the greatest advantage of model-based tehniques is their formal as-pet. At the opposite of fault injetion tehniques, model-based approahes formal-ize the injeted faults as well as the expeted robust behavior. This way, robustnesstesting experiments are ompletely ontrolled. Therefore, there is atually no pos-sibility to issue inorret verdits. Also, as one an speify formally the robustbehavior, results analysis is muh deeper than a simple observation of a rash ora hang. In fat, with model-based approahes, one an speify a set of robustnessrequirements to verify. This is very important beause some system failures may86



Chapter 5. A Complementary Approah for Testing SystemRobustnessnot be revealed as a rash or a hang. They ould be for example, a violation ofritial safety and/or a liveness requirements.However, model-based approahes su�er from two main shortomings. First,the set of injeted fault is related to the nominal input domain. In fat, faultsare reated as mutants of the input symbols from the original system spei�ation.Thus, the set of faults is limited by the set of mutants that an be generated anddepend strongly on the used spei�ation formalism. For example, if we rely on anon temporal spei�ation formalism to desribe the system behavior, we would beunable to generate temporal faults.The seond issue with model-based approahes is due to the ative testing ar-hiteture on whih they rely on. As far as we know, all existing model-based ap-proahes for testing system robustness follow the ative testing arhiteture whihimposes diret interations with the tested system. This arhiteture presents somelimitations when the tested system is built upon a set of omponents that ouldnot be aessed diretly. In this ase, it is di�ult to injet faults or to disturbommuniation between these di�erent omponents of the tested system.The approah we propose in this hapter is an hybrid approah ombining faultinjetion and formal tehniques. This way, we an take advantage of fault inje-tion tehnique whih we use to injet faults simultaneously on di�erent appliationomponents and rely on formal passive testing as a test orale to analyze the globalsystem behavior.5.3 Proposed approahWe introdue in this setion our robustness testing approah. Its general arhitetureis presented in �gure 5.1.We an see in this �gure that the robustness testing proess involves three mainstages. The �rst step (�gure 5.1 (a)) fouses on experimentations. During this phase,faults are injeted while the system under test (SUT) is running and exeution traesof both the fault injetor and the SUT are olleted.In the seond step (�gure 5.1 (b)), we verify the injetion proess. The exe-87



5.3. Proposed approah

Figure 5.1: Arhiteture of the proposed robustness testing approahution trae of the fault injetor is veri�ed against the formal spei�ation of theinjeted faults and a onformane verdit is issued. This step tells whether the in-jetion proess has been well performed i.e. if all spei�ed faults have been orretlyinjeted.Finally, the last step (�gure 5.1 ()) onerns the veri�ation of robustness re-quirements. In this step, we rely on passive testing to issue a verdit about theonformane of the olleted SUT's exeution trae with respet to the providedformal spei�ation of robustness requirements. In what follows, we detail eah ofthese steps.5.3.1 Experimentation phaseWe introdue a fault injetion mehanism into the SUT environment to simulatestressful environmental onditions. The fault injetion tool should be able to in-terept all messages exhanged between the SUT and its external environment. It88



Chapter 5. A Complementary Approah for Testing SystemRobustnessrepresents, in fat, the faultload entity whih is responsible for the generation andthe injetion of di�erent kind of faults. In the ase of a distributed system, the ex-ternal environment of the SUT ould be any ommuniation partner suh as a lientappliation, a system omponent or any other entity that ould stimulate the SUT.This entity represents the main soure of the workload in our testing arhiteture.The experiment onsists to run simultaneously the fault injetor and the SUT.Aording to a pre-spei�ed injetion ampaign, the fault injetor will intereptand orrupt some of the exhanged messages. The way the injetion ampaign isspei�ed is usually proper to the used fault injetor. Some tools are sript-driveni.e. faults are spei�ed using a dediated sript language while other ones are moreuser friendly providing a GUI (Graphial User Interfae) to help the tester to reateits injetion ampaign.This di�erene in the way fault ampaigns are spei�ed brings us to propose aformal and a tool-independent spei�ation language for fault desription. Thus,in addition to the tool-spei� desription of the injetion ampaign, one needs toprovide its equivalent using a formal language. This formal spei�ation of faultswill then be used to verify the injetion proess as it is explained in hapter 3.During the experimentations exeution, we ollet traes from both the SUT andthe fault injetor. We de�ne for that a set of Observation Points (O.P) at di�erentappliation levels. As we have disussed it in setion 3.4, the observation points forthe fault injetor must be de�ned inside the injetion tool and not at its interfaelevel. This is important beause we need, for the veri�ation of the injetion proess,not only information about the states of messages before and after the injetion, butalso the injetion operations that were exeuted. In the ase where we rely on athird-party fault injetor whih does not o�er any possibility to insert observationpoints, we an simply use its log �les as an injetion trae. As far as we know, allof the most relevant existing fault injetor provides suh traes.For the SUT, the observation points are implemented at interfae level as shownin �gure 5.1 (a). This way, we are able to ollet a trae of all input/output messagesof the SUT. This on�guration is usually the most proper one for several types89



5.3. Proposed approahof appliations. However, in the ase of a distributed system, it would be alsointeresting to ollet a trae from the external ommuniation partners to have aglobal view of the system behavior (�gure 5.2). What is important in both thoseon�gurations, is that erroneous messages must also appear in the olleted traeas they are important for robustness evaluation.

Figure 5.2: Observation points for distributed systems5.3.2 Veri�ation of the injetion proessAs we have already motivated it in setion 3.4, it is important to verify, after eahinjetion experiment, that the injetion proess has been orretly performed. Thisis due to the fat that the fault injetor is an external mehanism that we introdueinto the SUT environment to disrupt its behavior. The robustness of the SUT is thenevaluated based on how the tested system reats to the injeted faults. Therefore,any failure in the behavior of the fault injetor an seriously a�et the robustnessanalysis and may lead to an erroneous verdit. Suppose for example that we aretesting a ommuniation protool using a fault injetor that we on�gured to deletesome spei� messages. Then, after the test exeution, how an we be sure that thelost messages have been e�etively deleted by the fault injetor and not lost due toa protool vulnerability or a system failure? This onfusion an be omitted only ifwe have a mean to verify the good exeution of the performed injetion ations.For our robustness tehnique, we propose to rely on the formal approah weproposed in hapter 3 to verify the good exeution of the injetion proess. Thus,90



Chapter 5. A Complementary Approah for Testing SystemRobustnesswe propose to formalize the set of the injetion operations that we want to injet asa set of Hoare triples [42℄. Then, we use the proposed passive testing algorithm tohek the onformane of this formal spei�ation against the injetion trae thatwe ollet during the experiment (Algorithm 1). This way, we an avoid any verditambiguity due to an eventual erroneous injetion behavior.5.3.3 Veri�ation of robustness requirementsWe de�ne robustness requirements as the set of properties that the tested systemmust satisfy when running in stressful onditions. Some model-based approahesonsider these properties as a subset or a variant (mutants) of the nominal funtionalmodel of the tested system [37, 40℄ while others, like in [46℄, propose to formalizethe robustness observation model independently from the behavioral model.In our approah, we will also onsider that robustness requirements an be inde-pendent from the nominal funtional ones, as we believe that ritial systems maybehave quite di�erently when they are disrupted. Nevertheless, we aept that insome situations, the robust behavior ould be a variant of the funtional one. Forexample, a nominal funtional property of a server appliation is to response the re-eived requests within a relatively short period of time. In abnormal environmentalonditions however, the server ould be on�gured to reat di�erently. For instane,to avoid a server rash, the administrators an on�gure the server to lose all itsexternal onnetions when it reeives a huge number of requests within a very shorttime interval. This ould be seen as a robustness property.In [40℄, authors used timed automata for modeling both the nominal and thedegraded behavior of the tested systems; while in [37℄, the authors relied on theInput Output Labeled Transition System (IOLTS) to model the nominal and theinreased spei�ation (hapter 2). Timed automata and IOLTS are both veryknown formalisms for the spei�ation of funtional properties. Therefore, it isquite understandable that if we onsider robustness requirements as di�erent fromthe funtional ones, we need to rely on another spei�ation formalism. In [46℄ forexample, the authors propose to speify eah robustness requirement as an LTL91



5.4. Conlusionformula. The set of all robustness requirements is then represented as a Rabinautomaton [58℄ suh that the language generated by this automaton represents therobust behavior.LTL is a very suitable formalism for the spei�ation of safety and livenessproperties. Safety and liveness are both very important requirements for any ritialsystem. A safety property spei�es that something bad never happen while a livenessproperty spei�es that something good will eventually happen.We believe that robustness requirements an be spei�ed as safety and livenessproperties. A safety robustness requirement desribes how the robust system mustavoid a dangerous senario and a liveness robustness property spei�es how thesystem must reat to a stressful situation. Therefore, we propose for our approah,to model robustness requirements as a set of safety and liveness properties.However, as we mentioned in hapter 4, LTL is not expressive enough to modelomplex requirements. We saw that several extensions have been proposed to evolveLTL expressiveness and we argued about the expressiveness of XCTL. Therefore,in our approah, we will rely on XCTL as a mathematial formalism for modelingrobustness properties. We speify robustness requirements of the tested system asa set of XCTL formulas aording to the grammar de�ned in De�nition 4.3. Then,we use Algorithm 3 to hek the onformane of suh formulas against the olletedexeution trae.5.4 ConlusionWe presented in this hapter a omplementary approah for heking system robust-ness. Our approah uses fault injetion and passive testing tehniques to assess theability of a given system to behave orretly in presene of faults.The robustness testing tehnique we proposed, takes advantages from both faultinjetion and model-based approahes. The use of fault injetion allows one tode�ne a huge set of faults independently from the behavioral model of the testedsystem. On the other hand, relying on formal spei�ation and passive testing helpthe testers to verify the good exeution of the injetion proess and to evaluate the92



Chapter 5. A Complementary Approah for Testing SystemRobustnessrobustness of their system.In the same way, the proposed approah avoids some weaknesses of fault injetionand model-based tehniques. By providing a test orale, we an formally assess therobustness requirements of the tested system instead of just an empirial evaluationof the injetion results. Also, by using fault injetion tehniques, we are able toinjet a larger set of faults and thus, we are not limited by the behavioral model ofthe SUT.
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Chapter 6. A Framework for Modeling and Testing Web ServiesRobustness6.1 IntrodutionWeb servies are beoming inreasingly widespread tehnology and tend to emergeas a standard paradigm for program-to-program interations over Internet. Thestrength of this tehnology omes probably from its ability to manage ommuni-ation between heterogeneous appliations and systems with a dramatially lowerost. Consequently, Web servies have been widely used for building all kind ofdistributed systems for di�erent areas: business, multimedia, seurity, et.However, these inherent and powerful harateristis of Web servies (widely dis-tributed and heterogeneous appliations) are paradoxially, also their main weaknesspoints. This is due primarily to the problem of reusing and integrating older and/orthird-party servie omponents whih may lead to several interoperability, seurityand/or performane issues.Testing Web servies is therefore, a very important proess whih has to beperformed, not only during the development of new Web servie appliations, butalso before and after deployment.In this hapter, we propose a framework for modeling and testing robustness re-quirements of Web servies. It is atually an instantiation of the robustness testingapproah proposed in the previous hapter, adapted for Web servies. The frame-work we propose here an be used to test both omposed and single servies. Itinludes an innovative fault injetion tool (WSInjet) and uses a monitoring ap-proah based on passive testing for heking robustness requirements. Also, ourframework an be used to test both experimental and real world servies as it doesnot require the soure ode of the tested system (blak box testing).6.2 Web servies tehnologyIn this setion, we will present the Web servies tehnology and the Servie OrientedArhiteture. We will desribe the main standard protools used by those tehnolo-gies and introdue to the most widespread servies omposition tehniques: servieorhestration and servie horeography. 95



6.2. Web servies tehnology6.2.1 Servie Oriented ArhitetureServie Oriented Arhiteture (SOA) [34, 33℄ is a software arhitetural paradigmthat aims to ahieve loose oupling among interating software agents. The goalis to allow organizing and utilizing distributed apabilities that may be under theontrol of di�erent ownership domains and implemented using various tehnologystaks. An SOA arhiteture allows the use of existing servie appliations as wellas the deployment of new servie omponents. The deployed servies an be usedeither by other servies (omposed servies) or lient appliations.Figure 6.1 shows the funtional proess of an SOA arhiteture. The servieproviders publish their hosted servies in a servie diretory. This diretory anbe then aessed by users (other servies or lient appliations) looking for serviesthat verify a set of spei� riteria or orrespond to a ertain desription. If theservie diretory �nds the requested servies, it sends bak the servie ontrats(ontaining all the needed information to exploit the servies) to the lient whihan then, selet the desired servies and invoke the respetive providers.

Figure 6.1: Funtional model of an SOA arhitetureWeb servies are atually the most important ahievement of the SOA arhite-ture. The reason is that, they an be easily omposed to build new appliations.Furthermore, a Web servie an invoke other Web servies as it an be invoked byother servies and a servie omposition an be deployed as a Web servie.96



Chapter 6. A Framework for Modeling and Testing Web ServiesRobustness6.2.2 Web serviesThe World Wide Web Consortium (W3C) 1 de�nes a Web servie as :" a soft-ware system designed to support interoperable mahine-to-mahine interation overa network. It has an interfae desribed in a mahine-proessable format (spei�-ally WSDL). Other systems interat with the Web servie in a manner presribedby its desription using SOAP messages, typially onveyed using HTTP with anXML serialization in onjuntion with other Web-related standards".In other words, Web servies are appliation omponents deployed through theInternet whih an ommuniate between eah other without worrying about theplatforms on whih they are running neither about the programming languages thatwere used to build them. They rely on a set of standard Web tehnologies based onXML data struturing: SOAP protool for message exhanges, WSDL for serviedesription, UDDI for servie disovering and BPEL for servie orhestration. TheWeb servies model is illustrated in �gure 6.2. It is in fat an instantiation of theSOA arhiteture presented in �gure 6.1, for Web servies.

Figure 6.2: Web servies modelIn the following, we present the set of standard Web tehnologies used by Webservies.1www.w3.org 97



6.2. Web servies tehnologyXMLThe Extensible Markup Language (XML) [4℄ is a set of rules for enodingdouments in a textual form. It has been de�ned by the W3C and an be used toformat message exhanged between di�erent kind of appliations. For Web servies,we rely mostly on XML shema [5℄ for desribing data struture.HTTPThe Hypertext Transfer Protool (HTTP) [6℄ is a networking protool fordistributed information systems. It is the foundation of data ommuniation for theWeb. In the ase of Web servies, it is used to forward the exhanged messages.WSDLThe Web Servies Desription Language (WSDL) [7℄ is an XML format fordesribing network servies as a set of endpoints operating on messages ontainingeither doument-oriented or proedure-oriented information.A WSDL doument de�nes servies as olletions of network endpoints, orports. In WSDL, the abstrat de�nition of endpoints and messages is separatedfrom their onrete network deployment or data format bindings. This allows thereuse of abstrat de�nitions: messages, whih are abstrat desriptions of the databeing exhanged, and port types whih are abstrat olletions of operations.The onrete protool and data format spei�ations for a partiular port typeonstitutes a reusable binding. A port is de�ned by assoiating a network addresswith a reusable binding, and a olletion of ports de�ne a servie. Hene, a WSDLdoument uses the following elements in the de�nition of network servies:
• Types: a ontainer for data type de�nitions.
• Message: an abstrat, typed de�nition of the data being ommuniated.
• Operation: an abstrat desription of an ation supported by the servie.
• Port Type: an abstrat set of operations supported by one or more endpoints.98



Chapter 6. A Framework for Modeling and Testing Web ServiesRobustness
• Binding: a onrete protool and data format spei�ation for a partiularport type.
• Port: a single endpoint de�ned as a ombination of a binding and a networkaddress.
• Servie: a olletion of related endpoints.SOAPThe Simple Objet Aess Protool (SOAP) [8℄ is a lightweight protool in-tended for exhanging strutured information in a deentralized, distributed envi-ronment. It uses XML tehnologies to de�ne an extensible messaging frameworkproviding a message onstrut that an be exhanged over a variety of underlyingprotools. The framework has been designed to be independent of any partiularprogramming model and other implementation spei� semantis. A SOAP mes-sages is divided into two parts: the SOAP header whih an be used to speifyauthentiation and other session management data, and the SOAP body whereoperation names and parameters are spei�ed (�gure 6.3).

Figure 6.3: SOAP message strutureUDDIThe Universal Desription, Disovery and Integration (UDDI) [9℄ is aplatform-independent, XML-based registry. It has been designed to be interrogatedby SOAP messages to provide aess to WSDL douments desribing the protool99



6.2. Web servies tehnologybindings and message formats required to interat with the set of web servies listedin its diretory.6.2.3 Web servies ompositionWeb servies are onsidered as self-ontained, self-desribing, modular appliationsthat an be published, loated, and invoked aross the Web. In the ase where nosingle Web servie is able to satisfy the funtionality required by the user, there is apossibility to ombine existing servies together in order to ful�ll the request. Theresult of this ombination is alled a servie omposition and it an be deployed asa new Web servie.A Web servie omposition an be organized either as an orhestration or asa horeography. A Web servie orhestration desribes the way Web servies aninterat together. An orhestration de�nes partiularly the message sequenes andthe system work�ow of the omposition and there is always a main proess (theorhestrator) whih is in harge of managing and ontrolling all interations betweenthe servies of the omposition (the servie partners). The Business ProessExeution Language (BPEL) [10℄ is the most known standard language forde�ning Web servie orhestrations.Web servies horeography desribes also a servies ollaboration. At the oppo-site of an orhestration, in a servie horeography there is no main proess. It is adeentralized oordination where eah servie partner is responsible of a part of thework�ow.BPELThe BPEL language has beome a standard language for implementing Web serviesorhestrations. It has been widely used for building servie oriented arhitetures.The BPEL language allows one to desribe both the behavioral interfae as well asthe servies orhestration.
• The behavioral interfae de�nes an abstrat proess desribing the messageexhanges between servie partners.100
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• The orhestration de�nes an exeutable proess (the BPEL proess) whihspei�es the types and the order of the messages exhanged between serviepartners.Compared to other existing orhestration languages, BPEL o�ers the followingfeatures:
• Exeption handling (partiularly, fault and event exeptions).
• Handling synhronous �ows and parallel exeution of ativities.
• Possibility to desribe stateful transations.
• Handling message orrelation.
• Compensation support. A ompensation onsists to undo some steps in theproess that has been already ompleted suessfully. BPEL o�ers a relativelyeasy way to perform this kind of operations.A BPEL proess is diretly exeutable by a BPEL orhestration engine likeativeBPEL [11℄ or Orale BPEL Proess Manager [12℄. The deployment and thepubliation of a BPEL proess is performed as for any other Web servies, usingWSDL. Thus, operations, data and bindings of the BPEL proess are all desribed,as well as all the needed elements for interating with its servie partners like theiraddresses, the used ommuniation protool, the available operations, et.The BPEL language handles also other Web servies standards as :
• WS-Addressing [13℄ whih provides transport-neutral mehanisms for for-warding SOAP messages in both synhronous and asynhronous mode.
• WS-Poliy [14℄ whih is an extension of WSDL supporting desription ofsome funtional aspet of servie partners.
• WS-Seurity [15℄ whih is a SOAP extension for seuring message exhanges.
• WS-ReliableMessaging [16℄ whih desribes a protool that allows SOAPmessages to be reliably delivered between servie partners in the presene ofsoftware, omponent, system, or network failures.101



6.3. Instantiation of the robustness approah for Web servies
• WS-Transations [17℄ whih de�nes interoperable mehanisms that allowtransations between di�erent servie domains.Figure 6.4 depits the Web servies arhiteture staks.

Figure 6.4: BPEL in the Web servies arhiteture stakThe desription of a BPEL proess ontains four main parts: (i) delaration ofvariables using types desribed or imported from the WSDL interfae, (ii) desrip-tion of servie partners, (iii) spei�ation of fault handlers and (iv) the main ativitydesribing the proess behavior.6.3 Instantiation of the robustness approah for WebserviesIn this setion we present an instantiation of the proposed robustness testing ap-proah for Web servies. Figure 6.5 illustrates the arhiteture of our robustnesstesting framework.We an see in this �gure the use of a Web servie fault injetor (WSInjet [36℄)that we have developed for our testing platform. A detailed desription of this toolis presented in setion 6.4. This tool is used to interept and possibly modify allommuniation messages exhanged between a Web servie and its lient appliation102
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Figure 6.5: A framework for testing Web servies robustnessor between a main servie (a BPEL proess for example) and its servie partners.Therefore, this framework ould be used either to test single or omposed servies.A set of observation points is implemented between the lient appliation (or themain servie) and the fault injetor as well as between the fault injetor and the restof servies of the omposition. The exeution traes olleted by these observationpoints are then aggregated following a strit sequential order (based on timestampsof event ourrenes) to build a global trae. This later will be used to hek theonformane of the robustness requirements spei�ed as a set of XCTL formulas.WSInjet also provides an injetion trae whih ontains information about allinterepted messages, the injetion operations that were exeuted and the forwardedmessages. This trae will be used to verify the injetion proess against the faultsspei�ation given as a set of temporal Hoare triples.The testing framework follows the blak-box testing approah. Therefore, it103



6.3. Instantiation of the robustness approah for Web serviesrelies essentially on SOAP messages exhanges between the omponents of the testedsystem as they are the only observable events. This means also that all robustnessrequirements as well as the injeted faults must be spei�ed at the SOAP level.6.3.1 Spei�ation of robustness requirementsWe propose here to speify Web servies robustness properties as XCTL formulas.As we are fousing on ommuniation messages and beause SOAP messages anarry both proedure alls (operations) and data, we speify eah event from thetrae as a SOAP operation with its expeted parameter values aording to thefollowing syntax.
OperationName(BooleanExpression(Parameter1), ..., BooleanExpression(Parametern))For example, we an a speify a login request of a user Bob as follows:

Login(username ="Bob") 2Where username is a parameter name and ”Bob” is a possible value. As aresponse, the invoked servie may send a login noti�ation whih we speify asfollows.
LoginResponse(username ="Bob", state ="CONNECTED")We will onsider that this kind of expression onstitutes an atomi proposition.Therefore, in the implementation of Algorithm 3 for Web servies, the satis�abilityof φj ∈ ei is validated by heking on the trae that the urrent event orrespondsto the operation spei�ed in φj with the appropriate parameter values.For illustration, we will take an example of a Web servies orhestration and spe-ify some robustness requirements. The senario is an example of a heater ontrollingsystem whih deploys three Web servies: the HeaterCmd, the Thermocouple andthe HeaterController. These Web servies an be seen as interfaes of real hard-ware devies used to ontrol and monitor a Heater Coil as illustrated in �gure 6.6.2Here, we speify only important information for our test purposes. For example, if we do notneed to know the used password, we do not speify it.104
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Figure 6.6: An example of a Web servies orhestration senarioThe HeaterCmd servie allows power to be applied in small inrements via twooperations: incPower and decPower. The Thermocouple allows urrent temper-ature to be read bak via the getHeaterTemp operation. There is also a lientappliation (Client) whih interats with the main servie HeaterController viaits two operations : getTemp and setTemp. The �rst operation (getTemp) returnsthe urrent temperature (by invoking operation getHeaterTemp) while the seondone, setTemp, uses a time-based algorithm that invokes incPower and decPoweroperations provided by the HeaterCmd to set the orret power level. The ur-rent temperature is monitored by HeaterController to provide feedbak into thealgorithm.We an summarize the general behavior of this system as follows:The lient appliation is deployed as a monitor whih periodially asks for the urrenttemperature (getTemp). The heater oil temperature value must always be betweena minimum and a maximum threshold. Otherwise, the lient invokes operation
setTemp to readjust it to an average value (this value is spei�ed as a parameterof operation setTemp). In that ase, the HeaterController, uses its time-basedalgorithm to gradually regulate the temperature to its average value by invokingoperations incPower and decPower.Based on this senario, we an de�ne a set of robustness requirements to desriberitial safety and liveness properties. In the following, we give examples of suhproperties spei�ed as XCTL formulas.Rule 1: The lient appliation must ask for the urrent temperature eah 10105



6.3. Instantiation of the robustness approah for Web serviesseonds (Periodiity).
�((getTemp() ∧ T = x)→ ♦(getTemp() ∧ T = x + 10000))We suppose here and in the following that time units are expressed in milliseonds.Rule 2: The lient must reeive a response to its request within the following 5seonds.

�((getTemp() ∧ T = x)→ ♦(getTempResponse() ∧ T <= x + 5000))Rule 3: When the temperature exeeds 150◦C, the lient appliation must, withinthe following 5 seonds, ask the HeaterController to readjust it to 100◦C.
�((getTempResponse(return >= 150) ∧ T = x)→ ♦(setTemp(Tmp =

100) ∧ T <= x + 5000))36.3.2 Spei�ation of the injetion proessWSInjet is a SOAP level fault injetor. This means that all implemented injetionoperations onern only SOAP messages. We have already shown in hapter 3 howwe an use a temporal extension of Hoare logi to speify formally fault operations.The same formalism an be instantiated for SOAP messages as follows.A SOAP message an be onsidered as a set of XML elements.
SoapMsg = {XML_elt1,XML_elt2, ...,XML_eltn}Therefore, we an speify eah injetion operation as a Hoare triple as follows:

{P (SoapMsg)} OperationName(Param1, ..., Paramn) {Q(SoapMsg)}Where P (SoapMsg) is a preondition on the interepted message and Q(SoapMsg)is the postondition.3"return" spei�es the returned value. 106



Chapter 6. A Framework for Modeling and Testing Web ServiesRobustnessEah XML element from the SOAP message an be aessed using a pathstruture. For example SoapMsg.LoginRequest.username denotes the parameter
username of the operation LoginRequest arried by the aptured SOAP message
SoapMsg.To verify the injetion proess, we built a passive tester prototype whih im-plements an instantiation of Algorithm 1 for Web servies i.e. it addresses onlySOAP messages. We use this tester to hek the onformane of the injetion trae�le (olleted during the injetion experiment) against the spei�ed set of injetionrules. These injetion rules are spei�ed following a sript grammar inspired fromthe spei�ation language proposed in setion 3.2.4. For example, if we onsiderthe Web servie orhestration senario presented in the previous subsetion, we anspeify the following injetions:Injetion rule 1: Delay the forwarding of all temperature requests for 10 seonds.{SoapMsg.has(getTemp) and $val==now}delay(10000){new(SoapMsg).equals(SoapMsg) and $val+10000<=now<=$val+10050}4Injetion rule 2: Eah time the lient invokes operation setTemp(), delete themessage ontent and forward an empty message.{SoapMsg.has(setTemp)} empty() {new(SoapMsg).isEmpty()}Note:In setion 3.3, we presented a set of examples to illustrate the use of our faultinjetion spei�ation formalism. Those examples were spei�ed using a high levelabstrat language where the injetion operation names were given just as matterof examples. In pratie however, we will speify the injetion operations followingexatly the same syntax provided by the used fault injetor. Thus, in the injetionrules spei�ed above, we used the syntax of injetion operations de�ned by the Webservie fault injetor (WSInjet) on whih we will rely for our experimentations.The next setion gives a detailed presentation of this tool.4Words preeded by a $ de�ne variables and time values are spei�ed in milliseonds107



6.4. WSInjet6.4 WSInjetIn this setion we present WSInjet [36℄. A fault injetion tool for Web servies thatwe have developed and integrated in our testing framework.WSInjet is a sript-driven fault injetor able to injet both interfae and om-muniation faults. Unlike other existing Web servies fault injetors, WSInjetallows users to ombine several types of fault in one injetion statement and is ableto handle either single or omposed servies.6.4.1 MotivationIn the ase of Web servies, faults an be injeted at both interfae and ommuni-ation levels. Interfae faults a�et operations input/output parameters and otherSOAP message �elds by orrupting data or assigning invalid parameter values. Onthe other hand, ommuniation faults onsider SOAP messages as blak boxes. In-stead of orrupting arried data, SOAP messages are repliated, deleted or delayed.The existing fault injetion tools for Web servie an be ategorized into twomain lasses. First, we �nd all network level fault injetors whih were not origi-nally developed for Web servies but whih ould be very useful for injeting om-muniation faults. Dotor(integrateD sOftware fault injeCTiOn enviRonment) [62℄,Orhestra [61℄ and DEFINE [48℄ are all good examples of suh injetors whih �tperfetly on Web servies.However, as ommuniation faults are not enough for testing Web servie de-pendability, other researhes foused on providing injetion tools able to deodeSOAP messages so that they an injet signi�ant interfae faults. This onstitutesthe seond fault injetor lass: Web servies fault injetors.Although there exist several Web servie fault injetors able to deode and or-rupt SOAP messages (WSBang [18℄, PUPPET [24℄, GENESIS [49℄,et.), only a verysmall subset of them an injet both interfae and ommuniation faults. In fat,tools like WSBang, PUPPET and GENESIS are more like ative testers or lient-side injetors than real network level fault injetion mehanisms. They all proeedlike a lient appliation whih onsumes the tested Web servie (�gure 6.7). They108



Chapter 6. A Framework for Modeling and Testing Web ServiesRobustnessparse the WSDL �le provided by the tested servie and generate a set of test suites.Eah test suite is a set of sequential invoations of the Web servie operations. Themain di�erene ompared to ative testing tools is the fault injetion step. Beforeinvoking the tested servie, faults are injeted inside the SOAP messages to orruptarried data.
Figure 6.7: A lient-side fault injetion arhitetureAtually, this kind of tools su�ers from two main drawbaks. First, they an onlyinjet interfae faults by orrupting data and proedure parameters inside SOAPmessages (ommuniation faults suh as message delaying or message deletion an-not be performed).The seond problem onerns the type of tests that an be onduted. As suhtools proeed by simulating servie lients, only simple Web servies an be tested.The fault injetor needs to onsume the tested servie. Therefore, it is impossibleto use it for testing omposed Web servies (testing ommuniation between ser-vie partners) or to test ommuniation between a servie and its original lientappliation (as it will be substituted by the injetor itself).To address these problems, we need to rely on a fault injetor mehanism whihould interept ommuniation messages exhanged between servie partners or be-tween a servie and its lient appliation.As far as we know, WS-FIT [50℄ is urrently the only Web servie fault injetorwhih really �ts to this arhiteture. However, WS-FIT needs to implement a setof hooks and triggers at the SOAP protool layers of every mahine hosting oneor more tested servies (�gure 6.8). This approah is very useful when testingseure SOAP ommuniations where all messages are signed and/or enrypted. Inthis ase, the implemented hooks and triggers are used to interept messages justbefore their enryption or signature, to be able to injet signi�ant errors. However,there is absolutely no need to modify the protool layers when testing unseured109



6.4. WSInjetommuniation beause this approah is very intrusive and an, unintentionally,disrupt the ommuniation.

Figure 6.8: WS-FIT arhitetureMoreover, WS-FIT an only be used to test Web servies deployed in a om-pletely ontrolled testing environment (beause we need to modify the SOAP pro-tool layers). Thus, we annot rely on this tool to test real world Web servies i.e.Web servies deployed by a third-party and running in their own environment.For all these reasons, we propose WSInjet: a Web servie fault injetor able toinjet both ommuniation and interfae faults while being ompletely independentfrom the environments of the tested servies. WSInjet an test omposed andsimple Web servies regardless whether they are running on real world or on atesting environment.6.4.2 Tool presentationFigure 6.9 depits WSInjet arhiteture, designed to be simple and loosely oupled.Core WSInjet omponents are Proxy/Monitor and Fault Injetion Exeu-tor. Proxy/Monitor is the SOAP messages intereption and failure monitoringpoint. Fault Injetion Exeutor is the point where e�etive fault injetion ours.Other important omponents are Controller, Sript Compiler and Graphial110
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Figure 6.9: WSInjet arhitetureUser Interfae (GUI). WSInjet was fully developed in Java.Controller is the starting point of the tool; it ativates and starts other om-ponents. Sript Compiler is the omponent that reads a fault injetion ampaignsript and onverts it into a proessable format and GUI is responsible for showingdata olleted by the Proxy/Monitor. All these omponents are explained belowin more details.Proxy/MonitorProxy/Monitor is a 2-in-1 omponent that interepts SOAP messages and monitorssystem behavior. User is able to selet the port on whih the proxy should be boundto. Servies of the omposition should then be on�gured to onnet through aproxy on the seleted port and on the IP address of the mahine where WSInjet isrunning. If the tested system presents any kind of failure (like rashing for example),Proxy/Monitor will keep trak of this behavior.More spei�ally, Proxy is a soket-based HTTP proxy, implemented using thejava.net.Soket and java.net.ServerSoket lasses. It interepts every HTTP mes-sage exhanged by Web servie partners, parses it, sends it to the Fault InjetionExeutor, reeives the (possibly) modi�ed message and �nally sends it to its originaldestination. Non-SOAP HTTP messages are also interepted, but these su�er nomodi�ation before being redireted to their original destination.111



6.4. WSInjetSript CompilerFault injetion ampaigns are desribed by sripts. Sript Compiler is the omponentresponsible for ompiling a sript and transforming it into aCampaignDesriptor.A CampaignDesriptor is an Abstrat Syntax Tree (AST) that is WSInjet's internalrepresentation of a sript. It is part of the Fault Injetion Exeutor omponent, morethoroughly explained later.Sripts are simple text �les ontaining one or more FaultInjetionStatements.FaultInjetionStatements are omposed of a ConditionSet and a FaultList. AConditionSet onsists of one or more Conditions and a FaultList is omposed ofone or more Faults. FaultInjetionStatements work as ondition-ation statements:when a message arrives, if it mathes a set of onditions, a list of faults is injetedon it. Conditions are similar to boolean methods and faults are similar to voidmethods. Conditions have no de�ned order -hene being grouped in a set; faultsdo have a de�ned order -hene being grouped in a list. An abstrat and simpli�edgrammar of the sript language is given in Figure 6.10.

Figure 6.10: Sript language grammarTable 6.1 presents available onditions and Table 6.2 presents available faults tobe injeted (or "ations" to be taken). Name/Class is both the name of that on-dition or fault and its orresponding Java lass on WSInjet ode. Syntax desribeshow that ondition or fault is expressed on the sript language.Interfae faults modify ontents of SOAP messages, while ommuniation faultsa�et the delivery of requests and/or responses. To emulate a message modi�ation,user should simply hoose the most appropriate interfae fault for his/her needs.112



Chapter 6. A Framework for Modeling and Testing Web ServiesRobustness Name Syntax DesriptionContainsCondition ontains(StringstringPart) Mathes SOAP mes-sages ontaining thespei�ed string.URICondition uri(String uri-Part) Mathes request mes-sages sent to a URIontaining the spei�edstring, and responses tothose messages.MessageDestinationCondition isRequest() Mathes request mes-sages, either from alient to a servie, orfrom a servie to an-other servie.isResponse() Mathes response mes-sages either from a ser-vie to a lient, or froma servie to a anotherservie.OperationCondition operation(StringoperationName) Mathes request mes-sages sent to a WebServie operation whosename is the spei�edstring, and responses tothose messages.Table 6.1: Available onditionsTo emulate an unresponsive Web Servie (i.e., network paket loss), user has twooptions: (1) use DelayFault to delay a response message (possibly by a very largeamount of time); (2) use ConnetionClosingFault to abruptly lose the onetionbetween proxy and lient without returning any HTTP answer to the lient. Notethat a more aurate emulation of unresponsive servies/paket loss is not possibleworking at the HTTP level like WSInjet does. Aording to [59℄, this would requireworking at the network level.Conditions an be ombined by using the '&&' (AND) operator, meaning a Con-ditionSet will only be satis�ed when all individual onditions are satis�ed. Faultsan be ombined by the ',' (omma) operator, meaning all of them will be injeted,on the spei�ed order. The following injetion rules show a sample sript:113



6.4. WSInjetName Syntax DesriptionINTERFACE FAULTSStringCorruptionFault stringCorrupt(StringfromString, StringtoString) Replaes all ourenes offromString with toString.Works at String level. IgnoresXML syntax (may be used toreplae XML haraters like'<' and '>').XPathCorruptionFault xPathCorrupt(StringxPathExpression,String newValue) Replaes all mathes of anXPath [19℄ expression to thevalue spei�ed. Can be usedto modify either elements orattributes.MultipliationFault multiply(StringxPathExpression,int multipliity) Multiplies a part of a messageby a number of times. Forexample, multiply("/", 2)dupliates the whole mes-sage ontents, while multi-ply("/Envelope/MyNode",3)tripliates only the MyNodeXML element.EmptyingFault empty() Empties the SOAP message,delivering an HTTP messagewith no ontents.COMMUNICATION FAULTSDelayFault delay(int delayInMil-liseonds) Delays a message delivery bythe spei�ed number of mil-liseonds.ConnetionClosingFault loseConnetion() Closes the onnetion betweenlient and proxy.Table 6.2: Available faultsuri("Hotel"): stringCorrupt("Name", "Age"), multiply("/", 2);uri("Airline"): stringCorrupt("Flight", "Might");ontains("aught exeption") && isResponse(): empty();This example has three FaultInjetionStatements, one on eah text line. The �rstone has a ConditionSet of a single ondition: aURICondition with a "Hotel" argu-ment. It also has a FaultList of two Faults: StringCorruptionFault with "Name"and "Age" arguments and a MultipliationFault with "/" and '2' arguments.114



Chapter 6. A Framework for Modeling and Testing Web ServiesRobustnessThe seond FaultInjetionStatement has a ConditionSet with a URICondition anda FaultList with a StringCorruptionFault. The last FaultInjetionStatement has aConditionSet with two onditions: a ContainsCondition and a MessageDesti-nationCondition; and a FaultList with an EmptyingFault. This sript desribesthe following ampaign:
• Whenever a URI of a Web servie all ontains the string "Hotel":1. Replae all text ourrenes of "Name" by "Age".2. Dupliate the whole SOAP message.
• Whenever a URI of a Web servie all ontains the string "Airline":1. Replae all text ourrenes of "Flight" by "Might".
• Whenever a message ontains the string "aught exeption" and is a responseto a Web servie aller:1. Empty the message.Fault Injetion ExeutorFault Injetion Exeutor is the omponent in harge of e�etively injeting faults. Itproesses the Abstrat Syntax Tree (AST) produed by Sript Compiler and injetsfaults where appropriate. For example, when a message should be orrupted, theExeutor is the omponent whih atually modi�es the message; when the messageshould be delayed, the Exeutor is the omponent whih atually inserts an emu-lated delay on the program exeution. Fault Injetion Exeutor ode is alled forall messages interepted by the Proxy. For those that do satisfy the spei�ed Con-ditionSet, Exeutor injets the appropriate faults. For those that do not, it takesno ation.Representing soure ode as ASTs is a ommon approah in the ompilers �eldwhih failitates the ode proessing. On WSInjet, a CampaignDesriptor is anAST whih is an exat representation of a fault injetion sript. Eah element of115



6.4. WSInjetthe sript orresponds to an AST node, while eah AST node orresponds to a Javalass on WSInjet ode. Figure 6.11 shows the AST orresponding to the sriptexample given in the previous paragraph.

Figure 6.11: An example of an Abstrat Syntax TreeControllerController is the entral omponent of WSInjet. It starts the tool and ativatesother omponents when required. WSInjet an be started in two modes: graphialuser interfae (GUI) or ommand-line interfae (CLI).The initialization of WSInjet with a fault injetion ampaign is desribed onthe sequene diagram on �gure 6.12. First, the Controller asks the Sript Compilerto ompile the sript �le into a CampaignDesriptor, whih represents the entirefault injetion ampaign. Controller then reates and on�gures a Fault InjetionExeutor, and passes it to the Proxy/Monitor. After these steps, WSInjet is readyto identify desired messages and injet faults desribed on the sript �le. Final stepsare to start the Proxy/Monitor and to stop it after the experiment is ompleted.Graphial User Interfae (GUI)The GUI omponent is responsible for reeiving user inputs and for showing SOAPmessages to the user. User inputs inlude setting the proxy port, turning the proxyon/o� and loading/unloading sripts. Request and response messages an be seen116
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Figure 6.12: Initialization of WSInjet's main omponentsby liking their respetive tabs. The left and right white panels respetively showmessages ontents before and after fault injetion. Figure 6.13 depits WSInjetstarted on graphial user interfae mode.

Figure 6.13: WSInjet's GUI117



6.5. Case studyMonitor Data ManagerThe Monitor Data Manager is responsible for storing and retrieving data aboutmessages interepted by the Proxy/Monitor and also the log of WSInjet.6.5 Case studyIn this setion we arry out two ase studies to illustrate our framework. First weapply our approah on the Heater Controlling System already introdued in setion6.3.1 and then, we will experiment our framework on a third-party system (theTravel Reservation Servie) provided by Netbeans IDE 6.5.1 [20℄.6.5.1 The Heater Controlling System (HCS)The behavior of this system is illustrated by the sequene diagram presented in�gure 6.14.

Figure 6.14: Sequene diagram of the Heater Controlling SystemThe Client periodially asks the HeaterController for the urrent tempera-ture. The HeaterController forwards the request to the Thermocouple whihreturns the urrent temperature value. If the temperature value is outside a mini-mum and a maximum thresholds, the Client asks the HeaterController to readjust118



Chapter 6. A Framework for Modeling and Testing Web ServiesRobustnessit. The Controller will then use a time-based algorithm whih invokes operations
incPower() and decPower() of the servie HeaterCmd until the heater tempera-ture is adjusted to the right value. The heater oil is simulated by a simple shareddatabase providing the urrent temperature. Eah time the Thermocouple is in-voked, it returns the urrent temperature and it updates its value randomly (either itinreases or dereases the urrent value by �ve degrees eah time). The HeaterCmdservie also aesses this database eah time operations incPower() or decPower()are invoked. Aording to the invoked operation, the HeaterCmd inreases or de-reases the urrent temperature value by �ve degrees eah time.The testbed arhiteture is illustrated in �gure 6.15. It inludes all servie part-ners (the HeaterController, the Thermocouple and the HeaterCmd) and the lientappliation whih is in harge of monitoring the heater temperature and to adjustit when needed. The workload here, is impliitly generated and exeuted by the
Client. For the faultload, we use WSInjet for disturbing ommuniation betweenthe servies of the omposition. Observation points for olleting exeution traesare implemented at ommuniation interfaes of all servies of the omposition. Thisway we are able to keep information about all message exhanges (traes are sortedin a sequential order aording to event ourrene times). In pratie, the traeolletion is easy beause all servies are on�gured to ommuniate through WS-Injet's proxy. WSInjet provides also its own exeution trae (the injetion trae)telling about all exeuted injetion operations and the involved messages. This traewill be used later for validating the injetion proess.Robustness requirementsWe speify �ve robustness requirements for this system.Requirement 1: The lient must ask for the urrent temperature eah 10 seonds(Periodiity).

�((getTemp() ∧ T = x)→ ♦(getTemp() ∧ T = x + 10000))55Time values are spei�ed in milliseonds 119



6.5. Case study

Figure 6.15: Testbed arhiteture of the heater ontrolling systemRequirement 2: The lient must reeive a response to its request within thefollowing 5 seonds.
�((getTemp() ∧ T = x)→ ♦(getTempResponse() ∧ T <= x + 5000))Requirement 3: The lient must resend its request if it does not reeive aresponse within the following 5 seonds. At worst it must resend its request 2seonds after the timeout.

�(¬((getTemp() ∧ T = x)→ ♦(getTempResponse() ∧ T <= x + 5000)) →

♦(getTemp() ∧ T ≤ x + 7000))Requirement 4: The temperature value must always be between 100◦C and150◦C. Outside this interval, the lient appliation must, within the following 5seonds, ask the HeaterController to readjust it to 100◦C.
�(((getTempResponse(return > 150) ∧ T = x) ∨ (getTempResponse(return <

100) ∧ T = x))→ ♦(setTemp(Tmp = 100) ∧ T <= x + 5000))Requirements 5: When the HeaterController is asked to readjust thetemperature, it must regulate the Heater power until it is stabilized in the rightvalue. 120
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�(setTemp(Tmp = 100)→ ♦((incPower() ∨ decPower())

∪(getHeaterTemp()→ ♦getHeaterTempResponse(return = 100))))Injetion proessThe Heater Controlling System deploys 5 operations: getTemp(), setTemp(IntegerTemp), getHeaterTemp(), inPower(), dePower().WSInjet provides 6 kinds of simple faults:
• 4 interfae faults:1. Struture and ontent message orruption using either the StringCorrup-tionFault or the XPathCorruptionFault;2. MultipliationFault;3. EmptyingFault.
• 2 ommuniation faults : the DelayFault and the ConnetionClosingFault.We will address ontent orruption faults later as they will not a�et all opera-tions. Therefore, we have for now 5 simple faults (3 interfae faults and 2 ommuni-ation faults). WSInjet an also ombine indi�erently between all these faults. Ifwe hoose to ombine only one interfae fault with one ommuniation fault, we willhave 6 possibilities. This inreases the total number of the possible faults to injet to11 (5 simple faults and 6 ombinations). Now, if we want to injet all possible faultson eah operation provided by the tested system in both request and responsesens, we will have 110 injetion on�gurations (as there are 5 operations).Parameter values orruption (ontent orruption) an only be applied on theoperation setTemp(Integer Temp) (as a request) and on responses of operationsgetTemp() and getHeaterTemp(). If we rely on the Ballista approah [52℄ for integerorruption, we will have 3 possibilities for eah parameter (-MaxInt,+MaxInt and0). Therefore, we have in all 9 possibilities; and if we ombine eah possibility witha ommuniation faults, we will have 18 on�gurations. Therefore, the total numberof all injetion on�gurations is 128. 121



6.5. Case studyFor struture orruption, MultipliationFault and DelayFault, there are a in�-nite injetion possibilities. The number of injetion on�gurations found above wasalulated while onsidering one possibility for eah of these faults. For strutureorruption, we inverse opening and losing XML tags; for MultipliationFault wedupliate all the message body and for DelayFault, we delay the forwarding of mes-sages by a su�ient amount of time for violating the spei�ed timeout. For example,when the Client asks for the urrent temperature, the response is delayed for morethan 5 seonds (as it should reeive a response within the following 5 seonds).Examples of injeted faultsWe give in the following some examples of the injeted faults.Eg.1: When the lient asks for the urrent temperature, delay the response for 10seonds. operation("getTemp") && isResponse(): delay(10000);Eg.2: Corrupt the parameter value of operation setTemp().operation("setTemp"): xPathCorrupt("//Temp/text()","0");6Eg.3: Dupliate invoations of operation getHeaterTemp().operation("getHeaterTemp"): multiply("/",2);Eg.4: Forward empty messages eah time operations inPower() and dePower()are invoked. operation("inPower"): empty();operation("dePower"): empty();To verify the injetion proess, we also speify the injeted faults as Hoare triplesfollowing the proposed instantiation of this formalism for Web servies. The spei-�ation of the above examples gives the following set of injetion rules.6When not spei�ed, faults are injeted on requests by default.122



Chapter 6. A Framework for Modeling and Testing Web ServiesRobustnessInjetion rule 1:{SoapMsg.has(getTempResponse) and $val==now}delay(10000){new(SoapMsg).equals(SoapMsg) and $val+10000<=now<=$val+10050}Injetion rule 2:{SoapMsg.has(setTemp)} xPathCorrupt("//Temp/text()","0"){new(SoapMsg).Temp=="0" }Injetion rule 3:{SoapMsg.has(getHeaterTemp)} multiply("/",2) { \forall $XML_elt;SoapMsg.has($XML_elt) \implies new(SoapMsg).ount($XML_elt) ==2*SoapMsg.ount($XML_elt) }Injetion rule 4:{SoapMsg.has(inPower)} empty() { new(SoapMsg).isEmpty()}{SoapMsg.has(dePower)} empty() { new(SoapMsg).isEmpty()}Test exeution and result analysisWe onduted 5 injetion ampaigns (one for eah operation) and for eah ampaign,we exeuted the appropriate number of runs aording to the onsidered operation.Therefore, we had 22 runs for operations: inPower() and dePower() as we on-sidered both request and response senses based on 11 injetion possibilities. Foroperations: setTemp(integer Temp), getTemp() and getHeaterTemp(), we have 11basi on�gurations for eah one whih gives 22 runs while onsidering both om-muniation senses. In addition we have the ontent orruptions whih produe 6possibilities for eah operation. Therefore, we will have at all, 28 runs for eah oneof these operations. The total number gives the previously alulated number offault on�gurations i.e. 128 possibilities (128 = (22 × 2) + (22 × 3) + (6× 3)).123



6.5. Case studyAfter experimentations, we �rst veri�ed the good exeution of the injetion pro-ess using the instantiation of Algorithm 1 for Web servies. The issued verdit wasPASS whih means that, aording to the olleted trae all injetion operationswere well performed. Then, we heked the olleted exeution trae with respetto the spei�ed robustness properties based on the Web servies instantiation ofAlgorithm 3. We summarize the obtained results in the following points:
• For the ommuniation between the Client and the HeaterController, mostrobustness requirements were veri�ed. For example, when the responses ofthe HeaterController were delayed for more than 5 seonds, the lient re-sends its requests (satis�ability of robustness requirement 3) and when thereturned parameter values were orrupted (with values outside the de�nedthresholds interval), the lient always asks the HeaterController to readjustthe temperature (satis�ability of robustness requirement 4).
• The di�erent perturbations of inPower and dePower operations did notallow violation of robustness requirement 5. The HeaterController keepsinvoking those operations until the urrent temperature value returned by the

Thermocouple was onform to the de�ned minimum and maximum thresholds(satis�ability of robustness requirement 5).
• The CloseConnetionFault stopped ompletely the system exeution. Eahtime we injet this fault on one system operation, the system stops its exe-ution and all ommuniations terminate. This is due probably to the fatthat all servie partners omposing our system were deployed on the sameWeb appliation server (we used the server GlassFish v2.1 [21℄). Therefore,when we lose the onnetion between two servies from the omposition, itis atually the whole onnetion to the server whih is losed.6.5.2 The Travel Reservation Servie (TRS)To show the reliability of our approah, we applied it also on a seond ase studydeveloped by a third party. It is the Travel Reservation Servie (TRS) provided124



Chapter 6. A Framework for Modeling and Testing Web ServiesRobustnessby Netbeans IDE 6.5.1 [20℄. TRS is a simulation of a real-life organization thatmanages airline, hotel and vehile reservations using Web servie partners. It isomposed of three servies - VehileReservationServie (VRS), AirlineReservation-Servie (ARS) and HotelReservationServie (HRS)- and one BPEL proess (TRS),whih orhestrates partner servies to build a travel itinerary.The TRS proess assumes that an External Partner initiates the proess bysending a message that ontains a partial travel itinerary doument. The lient'stravel itinerary may have: no pre-existing reservations, or a ombination of pre-existing airline, vehile and/or hotel reservations.The TRS examines the inoming lient itinerary and proesses it for ompletion.If the lient itinerary does not ontain a pre-existing airline reservation, the TRSpasses the itinerary to the ARS in order to add the airline reservation. The ARSpasses bak the modi�ed itinerary to the TRS. The TRS onduts similar logifor both vehile and hotel reservations. In eah ase it will delegate the atualprovisioning of the reservation to the VRS and HRS. Finally, the TRS passes theompleted itinerary bak to the original lient, ompleting the proess.The TRS implements also some temporal onstraints to regulate the reservationproess. In fat, eah time the TRS passes the lient itinerary to one of its serviepartners, it waits for a response within the following 20 seonds. In the ase ofno response, it must send a anellation message to abort the reservation request.Figure 6.16 shows the sequene diagram of the TRS system.Testbed arhitetureThe testbed arhiteture is presented in �gure 6.17. SoapUI [22℄ is a well known testtool for Web servies. We use it in our experiments for generating and running theworkload. It plays the role of a TRS's lient, sending requests with travel itinerariesand ativating the BPEL proess, whih in turn makes reservations with its partnerservies.All servies of the omposition were deployed on the Glass�sh server v2.1. Then,SoapUI and GlassFish were on�gured to make onnetions through WSInjet's125



6.5. Case study

Figure 6.16: Sequene diagram of the TRS systemproxy omponent. Thus, all ommuniations between the lient, the BPEL proessand the partner servies were interepted by WSInjet, whih was able to injet126
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Figure 6.17: Testbed arhiteture of the TRS systemfaults on all exhanged SOAP messages. Figure 6.18 shows the sequene diagramof the injetion proess.

Figure 6.18: Sequene diagram of the injetion proess applied on TRS127



6.5. Case studySpei�ation of robustness requirements of the TRSTRS de�nes two main temporal onstraints whih an be spei�ed as XCTL robust-ness requirements. The �rst is a simple response onstraint speifying that eahtime the BPEL proess sends a reservation requests to one of its servie partners, itmust reeive a reservation on�rmation within the following 20 seonds. Therefore,we have in all 3 response onstraints (one for eah servie partners). For the ARSfor example, we speify this requirement as follows:Requirement 1:
�((reserveAirline() ∧ T = x)→ ♦(airlineReserved() ∧ T <= x + 20000))The seond robustness requirement is an illustration of the alternative patternpresented in setion 4.5. It spei�es that the BPEL proess must send a anellationmessage to its servie partner (to anel the reservation request it sent), if it does notreeive the on�rmation within 20 seonds. For the ARS, we speify this propertyas follows:Requirement 2:

�(¬((reserveAirline() ∧ T = x)→ ♦(airlineReserved() ∧ T <= x + 20000)) →

♦cancelAirline())This requirement onerns also the VRS and the HRS. Therefore, we will havein all 6 robustness requirements for the TRS system.Test exeution and resultsWorkloadThe workload of our experiments onsisted of sending itinerary requests from theSoapUI tool. The TRS system omes with pre-de�ned test ases on NetBeans- hasAirline, hasHotel, hasVehile and hasNoReservations -, whih are funtionaltests to verify the orret behavior of the system. hasAirline (resp. hasHotel or128



Chapter 6. A Framework for Modeling and Testing Web ServiesRobustnesshasVehile) de�nes the ase where the lient has already an airline (resp. a Hotel ora vehile) reservation. The hasNoReservations test ase means that the lient doesnot have any pre-existing reservation.The SOAP requests from these test ases were used to ativate the TRS duringthe fault injetion ampaign. SOAP messages sent by SoapUI were always the same:the "Input" message taken from the hasNoReservations test ase from TRS (alsonamed TestCase1 on some versions of NetBeans).FaultloadThe robustness requirements that we an speify for this ase study do not involvedata. Also, the XSD �le de�ning the XML shema of the TRS is huge (morethan 17000 lines) and de�nes a large set of parameters. We onduted preliminaryexperiments involving parameter value and struture orruptions and we notiedthat the TRS does not implement any data validation proedure [36℄. But thisatually does not a�et our robustness validation proess as we are performing ablak box testing and beause our robustness requirements are independent fromthe parameter values that may be handled.For these reasons, we do not onsider in our faultload, the struture and theontent orruption faults. Therefore, we will have 8 possible types of faults (4simple faults and 4 ombinations).Communiation between servie partners involves the following set of messages:
• buildItinerary(): to ativate the BPEL proess asking for an itinerary reserva-tion.
• itineraryProblem(): to inform about a possible itinerary fault.
• reserveAirline(); reserveVehile(); reserveHotel(): to request an airline, a ve-hile or a Hotel reservation.
• anelAirline(); anelVehile(); anelHotel(): to eventually anel and air-line, a vehile or a Hotel reservation request.129



6.5. Case study
• airlineReserved(); vehileReserved(); hotelReserved(): to on�rm an airline, avehile or a Hotel reservation.If we onsider injetions on all these messages, we will have at all 88 fault on-�gurations. As we do not onsider ontent orruptions for this ase study, we willhave at all 11 injetion ampaigns (one for eah message) and a uniform distributionof runs i.e. 8 runs for eah operation.Result analysisAfter we veri�ed the injetion proess to ensure the good exeution of the injetionampaign, we heked the robustness requirements on the olleted exeution trae.We had the following results:
• Probably, the most important result we got, is when injeting the Delaying-Fault for testing the robustness requirement 1 and 2. Eah time we delay theforwarding of a request for more than 20 seonds (for example when delay-ing invoation of operation reserveV ehicle provided by the VRS), the TRSsystem hangs until the Glass�sh server timeout is reahed (2 minutes) and noanellation message was sent. The automati veri�ation of the trae returnsa FAIL verdit (requirement 1 and 2 were violated). Also, when we delayedthe forwarding of the response message (reservation on�rmation returned bythe VRS for instane), the anellation message was not sent and thus, therequirements 1 and 2 were also violated. In fat, when we examined manuallythe olleted trae, we notied that the sun-bpel-engine sent an error messageindiating that there has been an instantiation error when sending the anel-lation message. This shows a bug in the implementation of the anellationproess.
• The EmptyingFault aused an internal server error. Eah time we injeted thisfault between two ommuniation partners of the TRS, the system exeutionstops and all robustness requirements are violated. We examined the exeutiontrae and we notied that an HTTP 500 error ode is sent by the GlassFish130



Chapter 6. A Framework for Modeling and Testing Web ServiesRobustnessserver to the lient appliation notifying that the onnetion was losed dueto an internal server error.
• The ConnetionClosingFault had the same e�et as for the previous ase study.When applied on any TRS operation, the whole onnetion is lost and thesystem exeution is stopped.The appliation of our approah on this ase study allowed us to reveal animportant failure. We disovered that the anellation proess is atually neverhandled. This result demonstrates the e�ieny of our approah as this failureould not be disovered using traditional onformane testing methods.6.6 ConlusionWe presented in this hapter a testing framework for modeling and assessing Webservies robustness. It is atually an instantiation of the robustness testing approahwe proposed in the previous hapter for Web servies. The framework inludes afault injetion tool (WSInjet) that we developed to injet interfae and ommunia-tion faults on both single and omposed servies. It also provides an implementationof Algorithm 1 and Algorithm 3 for Web servies. These implementations are usedto verify the injetion proess as well as the robustness requirements of the testedservies.The proposed framework an be used to test either simple or omposed servies.For illustration, we presented at the end of this hapter, an appliation on twoase studies, where we detailed all the neessary testing steps starting from thedi�erent spei�ations (spei�ation of the robustness requirements and the injetionrules) till the test exeution and the result analysis. The results we obtained arevery promoter. We were able for example to disover some failures (for the seondase study) that ould not be revealed using traditional testing methods. Thisdemonstrates the e�ieny of our approah and motivates us to study the possibilityto extend our framework to support other kinds of distributed systems.131



Chapter 7
Conlusion
The main objetive of this PhD thesis was to address the problems faing robust-ness testing and to propose a new and an innovative approah for assessing systemrobustness.We �rst presented, in hapter two, the state of the art of the most relevantapproahes for both onformane and robustness testing. For onformane testing,we foused mainly on passive testing tehniques, beause our proposed approahrelies on this testing theory. Then, for robustness testing methods, we lassi�edthe existing approahes into two ategories: those based on empirial fault injetiontehniques and those who rely on model-based testing.The major issues with fault injetion tehniques applied on robustness testingare : (i) the absene of a formal test orale for validating the test results and (ii)the lak of ontrol on the injetion proess. The �rst problem ould be resolved byrelying on formal robustness testing approahes. For the seond issue, we proposeda formal approah to speify and to verify the injetion proess. Our ontributiononsisted to de�ne a fault injetion formalism based on a timed extension of Hoarelogi. We proposed to speify eah injetion operation by a Hoare triple desrib-ing the preonditions that must be satis�ed before the exeution of this operationand the postonditions that must be veri�ed after its exeution. This way, one anspeify the set of injeted faults for a given experiment and then, verify the goodexeution of the injetion proess using a proposed passive testing algorithm. This132



Chapter 7. Conlusionalgorithm heks the satis�ability of the spei�ed injetion rules (a set of Hoaretriples) against injetion traes. The injetion traes are provided by the used faultinjetor. They log all injetion operations exeuted within an injetion experimentand the states of interepted ommuniation messages before and after the exeutionof those operations. This veri�ation step must be performed after eah injetionproess beause we annot guarantee that a fault injetion mehanism used for agiven experiment would work orretly when integrated in another testing frame-work. We presented this approah in hapter three and illustrated it with a set ofexamples of injetion spei�ations.Formal robustness testing approahes inspire from ative testing tehniques. Asfar as we know, they all reate variants (mutants) of the behavioral model of thetested system, to generate and to exeute their test. We believe that robustnessrequirements an be di�erent from the funtional ones. When faing abnormalenvironmental onditions, a software system may violate some of its funtional re-quirements provided that the set of its robustness requirements are satis�ed. Forexample, a funtional property of a server appliation ould be to response all thereeived requests within a relatively short period of time. However, when reeiving ahuge number of requests within a very short time interval (stressful onditions), theserver appliation ould be on�gured to lose all its external onnetions to avoidthe rash. This ould be seen as a robustness property. Therefore, we proposedto formalize the robustness requirements as a set of real-time safety and livenessproperties, using the expliit lok temporal language (XCTL). XCTL is an exten-sion of the lassial linear temporal logi to support real time spei�ations. Thesyntax of XCTL de�nes a dynami state variable over the time domain (the lokvariable) whih an be used to refer to the value of the global time of the testedsystem. In hapter four, we disussed the expressiveness of XCTL ompared toother existing real-time formalisms and we proposed a bakward heking algorithmto hek XCTL formulas on exeution traes. This approah follows the passivetesting arhiteture. Observation points are seeded in di�erent system loation toollet exeution traes. This way, one an trak all system omponents; whih is133



partiularly interesting when testing distributed and/or omposed appliations.In hapter �ve, we proposed a new robustness testing approah. The proposedtehnique relies on both fault injetion and passive testing. The basi idea wasto use fault injetion as a perturbation mehanism and then, verify the robustnessrequirements against the olleted exeution traes. This way, the de�ned fault do-main would be muh larger, beause the set of faults whih is usually onsidered byexisting formal robustness testing approahes is always limited by the original inputdomain. On the other hand, robustness requirements ould be spei�ed indepen-dently from the funtional ones, as we are not onstrained by the original behavioralmodel. Also, by ombining fault injetion and passive testing, one an study thebehavior of all omponents of a distributed system. Faults are injeted betweendi�erent ommuniation partners and traes are olleted all over the omposition.To ontrol the injetion ampaigns, we speify the injeted faults as a set of Hoaretriples and we used this spei�ation to verify the injetion proess based on thealgorithm presented in hapter three. For robustness assessment, we speify therobustness requirements as a set of XCTL formulas and we use our passive test-ing algorithm, proposed in hapter four, to hek their orretness on the olletedexeution traes.Finally, for our last ontribution, we proposed in the sixth hapter, a testingframework for modeling and testing Web servies robustness. We hose Web ser-vies beause they present interesting testing hallenges. They are distributed andheterogeneous systems, widely used for building business appliations and integra-tion softwares. They also provide two kinds of ompositions: the orhestration andthe horeography. The proposed framework is an instantiation of our robustnesstesting approah for Web servies. We implemented in this framework, the pas-sive testing algorithms that we proposed for heking the injetion proess and therobustness requirements on exeution traes. We also proposed and built an in-novative fault injetion tool for Web servies: WSInjet. This tool was integratedin our framework to simulate hostile environments. Its main features are: (i) itsability to injet both interfae and ommuniation faults and (ii) the way it an be134



Chapter 7. Conlusionused to test single and omposed servies. We presented also, at the end of thishapter, two ase studies on Web servies ompositions. The �rst one, is a simu-lation of a heater ontrolling system. It desribes a ritial system senario whihillustrates an example of a system that requires a high robustness level. For theseond ase study, we hose to test a third-party Web servie omposition providedby NetBeans (the Travel Reservation Servie). For eah ase study, we presentedthe omplete testing steps and we desribed for eah step the spei�ed properties(robustness requirements and examples of the injeted faults). We also presentedthe used testing arhiteture and disussed the obtained results. Partiularly, forthe Travel Reservation Servie, we were able to disover interesting failures thatould not be revealed using lassial testing methods.7.1 PerspetivesFormal methods for robustness testing is a relatively reent diretion in the testingliterature. The work we presented in this manusript, is a set of ontributionswhih aim at addressing the new hallenges faing this kind of testing. A possibleextension of our work ould be to study the possibility of upgrading the proposedpassive testing algorithms to on-line monitoring. This way, one an hek boththe injetion proess and the robustness requirements during experimentations andraises exeptions as soon as some of the spei�ed properties are violated. This avoidsalso to ollet exeution traes and hene, makes the test exeution faster.The fault injetor we developed (WSInjet), an also be improved by imple-menting new fault injetion operations. It would be also interesting to study thepossibility of deploying it as a Web servie and thus, making it easily available forthe testing ommunity to be able to perform larger and deeper experimentations.Another diretion that ould be onsidered for future work, is the possibility ofinstantiating the proposed robustness testing approah for other kind of systems.The Web servies testing framework that we proposed, is an example to show howour robustness testing tehnique ould be applied for testing real systems. Thisapproah is based on abstrat onepts. Therefore, it ould be easily implemented135



7.1. Perspetivesfor various kind of ommuniation protools and other distributed appliations.
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