
HAL Id: tel-00585689
https://theses.hal.science/tel-00585689

Submitted on 13 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A complementary approach for testing system
robustness based on passive testing and fault injection

techniques
Fayçal Bessayah

To cite this version:
Fayçal Bessayah. A complementary approach for testing system robustness based on passive test-
ing and fault injection techniques. Other [cs.OH]. Institut National des Télécommunications, 2010.
English. �NNT : 2010TELE0030�. �tel-00585689�

https://theses.hal.science/tel-00585689
https://hal.archives-ouvertes.fr

Thèse n° 2010TELE0030

Ecole Doctorale EDITE

Thèse présentée pour l’obtention du diplôme de
Docteur de Télécom & Management SudParis

Doctorat conjoint Télécom & Management SudParis et Université Pierre et Marie Curie

Spécialité :

Informatique

Par

Fayçal Bessayah

Titre

Une Approche Complémentaire de Test de Robustesse
Basée sur l’Injection de Fautes et le Test Passif

Soutenue le 3 décembre 2010 devant le jury compos é de :

Nina Yevtushenko Université d’Etat de Tomsk Rapporteur
Ismael Rodríguez Laguna Université Complutense de Madrid Rapporteur
Fatiha Zaidi Université Paris-Sud XI Examinateur
Sébastien Tixeuil Université Pierre et Marie Curie Examinateur
Eliane Martins Université d’Etat de Campinas Co-Encadrant
Ana Cavalli IT/Telecom SudParis Directrice de thèse

Title

Doctoral School EDITE

Thesis submitted for obtaining the

PHD DEGREE IN COMPUTER SCIENCE

Doctorate jointly delivered by

Telecom & Management SudParis and Pierre et Marie Curie
University- Paris 6

Speciality:

COMPUTER SCIENCE

Presented by

Fayçal Bessayah

A Complementary Approach for Testing System
Robustness Based on Passive Testing and Fault Injec tion

Techniques

Committee in charge :

Nina Yevtushenko Reviewer Tomsk State University

Ismael Rodríguez Laguna Reviewer Complutense University of Madrid

Fatiha Zaidi Examiner Universisty of Paris-Sud XI

Sébastien Tixeuil Examiner Pierre et Marie Curie University

Eliane Martins Co-advisor State University of Campinas

Ana Cavalli Co-advisor IT/Telecom SudParis

A
knowledgmentsI would like to thank Professor Ana Cavalli for her ex
ellent support and dedi-
ation during all the time I spent working on this PhD thesis. I am very grateful forthe time she spent helping me and guiding my resear
hes. I would like also to thankher for granting me the freedom of developing my ideas and for her suggestions andadvi
es throughout this work.A spe
ial thanks also to my
o-adviser, Professor Eliane Martins from the StateUniversity of Campinas, for her advi
es and guidan
e in preparing this thesis. Ireally learned a lot of things by working with her and bene�ted from her experien
eas well as her ex
ellent resear
h and te
hni
al skills.I would like also to thank Do
tor Amel Mammar a le
turer at Tele
om SudPariswho helped me and en
ouraged me a lot. A parti
ular thanks to her for having readmy manus
ript and for all the suggestions she made to improve the quality of thisdo
ument.More thanks go to my thesis evaluation
ommittee
onsisting of Professor NinaYevtushenko, Professor Ismael Rodríguez Laguna, Professor Sébastien Tixeuil, Do
-tor Fatiha Zaidi, Professor Eliane Martins and Professor Ana Cavalli.Many thanks also to all my friends and
olleagues, in no parti
ular order, BakrSarakbi, Wissam Mallouli, Willy Jimenez, Mounir Lallali, Felipe lalanne, Mazen AlMaarabani, Anis laouiti, Anderson Morais, Farouk Aissanou, Jose Pablo Es
obar,Mohamed Ahmed Mohamed Sidi and Ba
har Wehbi. Thanks also to Mme. BrigitteLaurent and Mme. Jo
elyne Vallet for their help and support
ompleting the nonte
hni
al part of my work.Last and not least, I would like to thank my mother, my grandmother and all mybrothers and sisters Nassim, Souad and Radia for their en
ouragement and support.Thanks a lot.

RésuméQue
e soit dans le domaine des transports, des énergies ou des banques, lessystèmes informatiques sont immanquablement présents. Nous
on�ons
e que nousavons de plus
her, à savoir nos vies et nos biens, à des programmes informatiques.Parallèlement,
ela va sans dire que
es systèmes sont de plus en plus
omplexes.Une
omplexité due essentiellement à une expansion sans pré
édent de systèmeslargement distribués et hétérogènes. Sans parler de l'utilisation d'Internet
ommeprin
ipal réseau de transport de données, partagé par un nombre
olossal de servi
eset d'appli
ations Web. Fa
e à
ette
omplexité
roissante, tout dysfon
tionnement,même temporaire, de
es systèmes peut avoir de lourdes
onséquen
es é
onomiques,voire dans
ertains
as, humaines. A�n de s'assurer de la �abilité de tels systèmes,il importe don
 de véri�er leurs
omportements de la manière la plus rigoureusepossible.L'utilisation des méthodes formelles pour le test de logi
iels est probablement
equ'il y a de plus sûr en matière de te
hniques de véri�
ation. Ce
i s'explique sansdoute par les fondements mathématiques sur lesquels se basent
es méthodes,
e quipermet de développer un raisonnement plus rigoureux et de
e fait, plus �able.On peut requérir aux méthodes formelles pour spé
i�er les propriétés impor-tantes du système testé, mais aussi pour véri�er
es propriétés sur l'implantation�nale. L'utilisation de
es méthodes a permis de développer une théorie du test de
onformité dont l'obje
tif est de réaliser un test fon
tionnel qui permet de véri�er sile produit �ni
orrespond à la spé
i�
ation de référen
e. La re
her
he a
adémique apublié de nombreux travaux sur le test de
onformité. Globalement, on peut
lassi-�er l'ensemble de
es travaux en deux grandes
atégories: les méthodes de test a
tifet les méthodes de test passif.Le test a
tif
onsiste à appliquer au système sous test un ensemble de tests et à
omparer le
omportement observé ave
 la spé
i�
ation de référen
e. De nombreusesméthodes de génération automatique de tests de
onformité ont été proposées dansla littérature. Elles traitent généralement des systèmes proto
olaires et appli
atifsréa
tifs en faisant l'hypothèse de pouvoir interagir ave
 l'implantation sous test.

Le prin
ipe étant de stimuler le système testé en émettant des entrées parti
ulièrespour le faire réagir et de
olle
ter les sorties produites pour les
omparer ave

ellesattendues.Ce type de test n'est malheureusement pas toujours possible à exé
uter. Dansles systèmes de proto
oles en
ou
hes par exemple, il est rare qu'on puisse béné-�
ier d'un a

ès dire
t pour interagir ave
 une
ou
he parti
ulière du système etainsi appliquer les séquen
es de test. Aussi dans
ertains
as, la phase de test quimonopolise
omplètement le système, peut être très
outeuse pour les industriels.Dans
e genre de situations, le test passif s'avère parti
ulièrement intéressant.En e�et, le test passif ne requiert pas une intera
tion dire
te ave
 le systèmetesté. Il
onsiste à observer et à
olle
ter les entrées et les sorties produites parl'implantation sous test, et à analyser
ette séquen
e par rapport à la spé
i�
ationde référen
e. On véri�e alors si le
omportement de l'implantation est
onforme à
elui prévu par la spé
i�
ation.La réalisation d'un test de
onformité suppose que le système sous test s'exé
utedans des
onditions environnementales normales. On estime que dans de telles
on-ditions, le
omportement du système testé doit être
onforme à sa spé
i�
ation fon
-tionnelle. Cependant, lorsqu'un système informatique est sus
eptible d'évoluer dansun
ontexte hostile où les
onditions environnementales sont plus ou moins stres-santes, le test de
onformité n'est plus su�sant. En e�et dans
e genre de situations,on doit étudier le
omportement du système en tenant
ompte de
es
ontraintes
ontextuelles. Ce
i dé�nit un autre type de test qu'on appelle : test de robustesse.L'obje
tif prin
ipal du test de robustesse est d'étudier le
omportement d'une im-plantation s'exé
utant dans un environnement hostile. L'implantation testée est
onsidérée robuste si elle
ontinue à avoir une exé
ution
orre
te en présen
e defautes [1℄.Les appro
hes de test de robustesse peuvent être empiriques ou formelles. Lesappro
hes empiriques déterminent le niveau de robustesse du système étudié, tan-dis que les appro
hes formelles s'intéressent à la véri�
ation des propriétés de ro-bustesse [2℄. Les te
hniques d'inje
tion de fautes sont
ouramment utilisées pour

l'évaluation empirique de la robustesse d'une implantation. L'inje
tion de fautes
onsiste à introduire de façon délibérée, des erreurs dans un système lors de sonexé
ution et d'observer sa réa
tion. Cela permet, lors de la réalisation d'un test derobustesse, de simuler un environnent hostile. Par ailleurs, les appro
hes de test derobustesse formelles ont pour but de déterminer formellement la robustesse d'uneimplantation en véri�ant la satis�abilité d'un ensemble de propriétés de robustessesur
ette implantation. Ces dernières s'inspirent fortement des méthodes de test de
onformité a
tives à la di�éren
e près que le domaine d'entrées est i
i augmenté parl'introdu
tion d'un ensemble d'aléas (fautes). Ainsi, au lieu de stimuler le systèmesous test par des entrées valides, le testeur de robustesse, génère et exé
ute desséquen
es d'entrées
orrompues pour perturber le fon
tionnement du système testé.ContributionsLe test de robustesse est très important pour assurer la sé
urité et la �abilitédes systèmes logi
iels. Les te
hniques d'inje
tion de fautes appliquées au test derobustesse ont montré des résultats très intéressants. Elles sou�rent
ependant de nepas disposer d'ora
les de tests performants leurs permettant d'évaluer la robustessedu système testé de manière plus rigoureuse. En e�et,
es te
hniques ne véri�ent pasformellement la robustesse d'un système. Une implantation est
onsidérée robustesi elle peut
ontinuer son exé
ution en présen
e de fautes. En d'autres termes, si lesystème testé ne se bloque pas, il est
onsidéré
omme robuste. On sait
ependant,qu'un système peut très bien
ontinuer son exé
ution sans pour autant fournir le
omportement attendu. De
e fait, nous avons besoins de requérir à des appro
hesplus rigoureuses pour évaluer la robustesse d'un système.En outre, les te
hniques d'inje
tion de fautes ne
ontr�lent pas e�
a
ement lepro
essus d'inje
tion. Les fautes sont inje
tées de manière plus ou moins aléatoire etil n'y a au
un moyen de s'assurer de la bonne exé
ution des
ampagnes d'inje
tions(est
e que toutes les fautes ont été inje
tées
orre
tement ?).D'autre part, les te
hniques formelles de test de robustesse dé�nissent formelle-ment toutes les étapes du test. Les fautes sont générées à partir d'un modèle formelet les propriétés de robustesse sont véri�ées sur la base d'un ora
le de test bien dé�ni.

Toutefois, deux grandes questions peuvent être soulevées au sujet de
es méthodes.Tout d'abord, l'ensemble des fautes inje
tées est limité par le domaine d'entrées del'appli
ation testée. A l'opposé des appro
hes d'inje
tion de fautes empiriques quipeuvent inje
ter n'importe quel type de fautes, les te
hniques formelles existantes
réent le modèle de fautes en se référant au modèle fon
tionnel du système testé.Ce
i à l'avantage de permettre une inje
tion mieux
iblée et plus adaptée au systèmetesté, mais les types de fautes
onsidérées sont limitées par le modèle fon
tionnel. Si
e dernier ne prend pas en
ompte les aspe
ts temporels par exemple, on ne pourrapas inje
ter de fautes temporelles. En plus, le modèle fon
tionnel d'une implantationn'est pas toujours disponible.En�n, les méthodes formelles existantes appliquées au test de robustesse repren-nent la même ar
hite
ture que
elle utilisée par les méthodes a
tives de test de
onformité. Cette ar
hite
ture impose que le testeur interagisse dire
tement ave
le système testé. Par
onséquent,
es méthodes ne peuvent pas être utilisées pourtester des
omposants systèmes qui n'o�rent pas d'interfa
es d'intera
tions dire
tes,ou lorsque le système testé ne peut pas être monopolisé par le testeur pour unedurée importante.Le travail que nous présentons dans
e do
ument,
onsiste en un ensemble depropositions qui ont pour obje
tif de répondre aux dé�s auxquels font fa
e les ap-pro
hes de test de robustesse existantes. Nous
ontribuons sur quatre prin
ipauxaxes :En premier lieu, nous nous intéressons aux te
hniques d'inje
tion de fautes etplus parti
ulièrement au problème de
ontr�le du pro
essus d'inje
tion. Nous pro-posons de formaliser les fautes inje
tées en utilisant une extension temporelle de lalogique de Hoare [42℄. Notre étude étant plus portée sur les systèmes
ommuni
ants,nous proposons de spé
i�er
haque opération d'inje
tion par un triplet de Hoaredé
rivant les pré-
onditions qui doivent être satisfaites par les messages de
ommu-ni
ation inter
eptés avant l'exé
ution de l'opération d'inje
tion, ainsi qu'un ensemblede post-
onditions spé
i�ant
omment l'exé
ution de
ette opération devrait mod-i�er les états de
es messages. Nous utiliserons ensuite
ette formalisation
omme

ora
le de test pour véri�er la bonne exé
ution du pro
essus d'inje
tion. Ainsi, nousproposons un algorithme de test passif qui véri�e la
onformité de l'ensemble desfautes inje
tées (spé
i�ées
omme un ensemble de triplets de Hoare), sur une tra
ed'inje
tion. De
ette manière, nous pourrons
ontr�ler les
ampagnes d'inje
tionset ainsi apporter plus de �abilité à nos expérimentations.Notre se
onde
ontribution
on
erne la spé
i�
ation et la véri�
ation des pro-priétés de robustesse. Nous proposons de formaliser les propriétés de robustesse enutilisant une extension de la logique temporelle linéaire qui permet la spé
i�
ationde
ontraintes temps réel. Il s'agit de la logique temporelle à horloge expli
ite,XCTL (eXpli
it Clo
k Temporal Logi
) [32℄, dont l'expressivité permet à la fois despé
i�er des propriétés simples et
omplexes ave
 une aisan
e parti
ulière.Pour la véri�
ation de
es propriétés, nous proposons un algorithme de test passifqui véri�e la
onformité des formules XCTL sur une tra
e d'événements. Le
hoixd'une appro
he basée sur le test passif permet de s'a�ran
hir des limitations du testa
tif, mentionnées pré
édemment.Nous
ontribuons aussi par une nouvelle appro
he de test de robustesse. Nousproposons une appro
he hybride basée sur l'inje
tion de fautes et le test passif.L'inje
tion de fautes est utilisée pour
réer des
onditions environnementales stres-santes, et le test passif permet de véri�er la satis�abilité des propriétés de robustessesur les tra
es d'exé
ution
olle
tées. Les fautes inje
tées ainsi que les propriétés derobustesse sont formellement spé
i�ées. Nous utilisons la logique de Hoare pour laspé
i�
ation des fautes et la logique XCTL pour la formalisation des propriétés derobustesse. Ce qui nous permet de véri�er à la fois le pro
essus d'inje
tion et lesexigen
es de robustesse en appliquant les appro
hes de test passif proposées dansnos
ontributions pré
édentes.Finalement, nous proposons une plateforme de modélisation et de véri�
ationde la robustesse des servi
es Web. Les servi
es Web sont une te
hnologie émergentequi tend progressivement à s'imposer
omme un standard du paradigme de
om-muni
ation programme-à-programme. Ils fournissent aussi un ex
ellent exemple desystèmes hétérogènes fortement distribués. Les servi
es Web peuvent être simples

ou
omposés et ils sont largement utilisés pour la
réation d'appli
ations e-
ommer
eet de systèmes d'information distribués. Par
onséquent, ils
onstituent un très bonexemple de systèmes
ritiques où le test de robustesse prend toute sa dimension.La plateforme de test que nous proposons i
i, est en réalité une instan
iation denotre appro
he de test de robustesse, adaptée aux servi
es Web. Cette plateforme in-tègre un inje
teur de fautes innovant (WSInje
t) que nous avons
onçu et développépour pouvoir simuler un environnement d'exé
ution hostile. WSInje
t [36℄ est uninje
teur de fautes pour servi
es Web
apable d'inje
ter des fautes d'interfa
es etde
ommuni
ations, ou même de
ombiner les deux types de fautes en une seuleinje
tion. Il peut être utilisé pour le test de servi
es simples ou
omposés.Nous avons aussi implanté et intégré les algorithmes de test passif proposés pourla véri�
ation du pro
essus d'inje
tion et des exigen
es de robustesse et nous avons
onduit des expérimentations sur deux
as d'études pour illustrer l'utilisation denotre plateforme de test.Organisation du manus
ritLe présent manus
rit de thèse est organisé
omme suit :1. Dans le se
ond
hapitre, nous présentons l'état de l'art des appro
hes de testde
onformité et de robustesse. Pour le test de
onformité, nous introduisonsd'abord l'utilisation des méthodes formelles pour le test des systèmes logi-
iels. Ensuite, nous dé
rivons les appro
hes les plus importantes des deuxgrandes familles de test : le test a
tif et le test passif. La deuxième partie de
e
hapitre est
onsa
rée aux méthodes de test de robustesse. Nous
lassons
es méthodes en deux grandes
atégories. D'abord, nous exposons les te
h-niques empiriques basées sur l'inje
tion de fautes et ensuite nous abordons leste
hniques formelles.2. Le troisième
hapitre présente notre première
ontribution. Il s'agit de laformalisation et la véri�
ation de l'inje
tion de fautes. L'idée de base est despé
i�er les fautes inje
tées par un ensemble de triplets de Hoare, puis d'utiliser

ette spé
i�
ation
omme ora
le de test pour véri�er la bonne exé
ution dupro
essus d'inje
tion. Nous dé�nissons pour
ela un algorithme de test passifqui véri�e la satis�abilité des spé
i�
ations de fautes sur une tra
e d'inje
tion.Nous présentons aussi quelques exemples de spé
i�
ation pour illustrer notreappro
he.3. Dans le quatrième
hapitre, nous présentons notre appro
he de test de
on-traintes temps réel. Nous dis
utons en premier, les travaux existants qui trait-ent des méthodes formelles pour le test de propriétés temps réel. Ensuite, nousprésentons les formalismes permettant de spé
i�er
e type de propriétés et jus-ti�ons notre
hoix de XCTL [32℄. Nous présentons aussi notre algorithme detest passif pour la véri�
ation de formules XCTL sur des tra
es d'exé
utionset dis
utons les résultats obtenus au terme d'une évaluation expérimentale del'algorithme.4. Dans le
hapitre
inq, nous dé
rivons notre appro
he de test de robustesse. Ils'agit d'une appro
he
omplémentaire, basée sur l'inje
tion de fautes et le testpassif. Nous étudions d'abord les travaux existants sur le test de robustesse.Ensuite, nous présentons l'ar
hite
ture générale de notre appro
he et détaillons
ha
une de ses
omposantes. Nous utilisons dans
ette appro
he, la logiquede Hoare pour la spé
i�
ation et la validation des
ampagnes d'inje
tion et lalogique temporelle à horloge expli
ite (XCTL) pour le test des propriétés derobustesse.5. Finalement, dans le
hapitre six, nous présentons notre plateforme de test derobustesse pour les servi
es Web. Cette plateforme est une instan
iation denotre appro
he de test appliquée aux servi
es Web. Nous dé
rivons son ar
hi-te
ture générale et
ha
un de ses
omposants, plus parti
ulièrement l'inje
teurde fautes WSInje
t. Pour
e dernier, nous motivons notre
hoix de développerun inje
teur de fautes pour les servi
es Web et présentons son ar
hite
ture etses fon
tionnalités.Nous présentons aussi dans
e
hapitre, l'appli
ation de notre plateforme de

test sur deux
as d'études et montrons
omment
ela a permis de déte
ter
er-tains modes de défaillan
es que nous n'aurions pas pu dé
eler ave
 les méthodesde test traditionnelles.6. Le dernier
hapitre
on
lut notre travail. Nous rappelons nos prin
ipales
on-tributions, que
e soit dans le domaine du test de
onformité, de l'inje
tionde fautes ou du test de robustesse ; et nous présentons quelques perspe
tivespotentielles qui vont dans la
ontinuité de notre travail.

Abstra
tRobustness is a spe
ialized dependability attribute,
hara
terizing a system rea
-tion with respe
t to external faults. A

ordingly, robustness testing involves testinga system in the presen
e of faults or stressful environmental
onditions to study itsbehavior when fa
ing abnormal
onditions.Testing system robustness
an be done either empiri
ally or formally. Faultinje
tion te
hniques are very suitable for assessing the robustness degree of thetested system. They do not rely however, on formal test ora
les for validating theirtest. On the other hand, existing formal approa
hes for robustness testing formalizeboth the fault generation and the result analysis pro
ess. They have however somelimitations regarding the type of the handled faults as well as the kind of systemson whi
h they
an be applied.The work presented in this thesis manus
ript aims at addressing some of theissues of the existing robustness testing methods. First, we propose a formal ap-proa
h for the spe
i�
ation and the veri�
ation of the fault inje
tion pro
ess. Thisapproa
h
onsists in formalizing the inje
ted faults as a set of Hoare triples and then,verifying the good exe
ution of the inje
tion
ampaigns, based on a passive testingalgorithm that
he
ks the fault spe
i�
ation against a
olle
ted inje
tion tra
e.Our se
ond
ontribution fo
uses on providing a test ora
le for verifying real time
onstraints. We propose a passive testing algorithm to
he
k real time requirements,spe
i�ed as a set of XCTL (eXpli
it Clo
k Temporal Logi
) formulas, on
olle
tedexe
ution tra
es.Then, we propose a new robustness testing approa
h. It is a
omplementaryapproa
h that
ombines fault inje
tion and passive testing for testing system ro-bustness. The inje
ted faults are spe
i�ed as a set of Hoare triples and veri�edagainst the inje
tion tra
e to validate the inje
tion pro
ess. The robustness re-quirements are formalized as a set of XCTL formulas and are veri�ed on
olle
tedexe
ution tra
es. This approa
h allows one to inje
t a wide range of faults and
anbe used to test both simple and distributed systems.Finally, we propose an instantiation of our robustness testing approa
h for Web

servi
es. We
hose Web servi
es te
hnology be
ause it supports widely distributedand heterogeneous systems. It is therefore, a very good appli
ation example to showthe e�
ien
y of our approa
h.Keywords: Robustness Testing, Formal Spe
i�
ation, Fault Inje
tion, PassiveTesting, Tra
e Analysis.

Contents
1 Introdu
tion 181.1 General Context . 181.2 Contributions . 201.3 Thesis plan . 232 State of the Art 252.1 Formal Testing . 252.1.1 A
tive testing . 262.1.2 Passive testing . 312.2 Robustness Testing: Te
hniques and Tools 402.2.1 Fault inje
tion approa
hes . 412.2.2 Model-based approa
hes . 453 Spe
i�
ation and Veri�
ation of Fault Inje
tion Pro
ess 493.1 Introdu
tion . 503.2 Fault inje
tion spe
i�
ation . 523.2.1 Preliminaries . 523.2.2 Fault inje
tion formalism . 533.2.3 Time extension . 533.2.4 Spe
i�
ation language . 543.3 Spe
i�
ation examples . 553.3.1 Operation Delete . 553.3.2 Operation Delay . 5612

Contents3.3.3 Operation Repli
ate . 563.3.4 Operation Insert . 573.3.5 Operation Corrupt . 573.4 Passive testing approa
h . 573.5 Con
lusion . 604 A Formal Approa
h for Che
king Real Time Constraints 624.1 Introdu
tion . 634.2 Related work . 644.3 LTL and real time logi
s . 664.3.1 Real time extensions . 684.4 Passive testing algorithm . 704.4.1 XCTL and passive testing . 704.4.2 Test algorithm . 714.4.3 Corre
tness . 794.5 Real time patterns and experimental results 804.5.1 Periodi
ity . 804.5.2 Response . 804.5.3 Correlation . 814.5.4 Alternative . 814.6 Con
lusion . 825 A Complementary Approa
h for Testing System Robustness 845.1 Introdu
tion . 845.2 Related work . 865.3 Proposed approa
h . 875.3.1 Experimentation phase . 885.3.2 Veri�
ation of the inje
tion pro
ess 905.3.3 Veri�
ation of robustness requirements 915.4 Con
lusion . 9213

Contents6 A Framework for Modeling and Testing Web Servi
es Robustness 946.1 Introdu
tion . 956.2 Web servi
es te
hnology . 956.2.1 Servi
e Oriented Ar
hite
ture 966.2.2 Web servi
es . 976.2.3 Web servi
es
omposition . 1006.3 Instantiation of the robustness approa
h for Web servi
es 1026.3.1 Spe
i�
ation of robustness requirements 1046.3.2 Spe
i�
ation of the inje
tion pro
ess 1066.4 WSInje
t . 1086.4.1 Motivation . 1086.4.2 Tool presentation . 1106.5 Case study . 1186.5.1 The Heater Controlling System (HCS) 1186.5.2 The Travel Reservation Servi
e (TRS) 1246.6 Con
lusion . 1317 Con
lusion 1327.1 Perspe
tives . 135Bibliography 137

14

List of Figures
2.1 A
tive Testing Methodology . 272.2 Passive Testing Methodology . 322.3 Dedu
tion of variable values . 342.4 Information loss . 353.1 The passive testing approa
h: (a) Colle
ting the tra
e. (b) Che
kingtra
e
onforman
e w.r.t. inje
tion rules spe
i�
ation. 584.1 Experimental results . 825.1 Ar
hite
ture of the proposed robustness testing approa
h 885.2 Observation points for distributed systems 906.1 Fun
tional model of an SOA ar
hite
ture 966.2 Web servi
es model . 976.3 SOAP message stru
ture . 996.4 BPEL in the Web servi
es ar
hite
ture sta
k 1026.5 A framework for testing Web servi
es robustness 1036.6 An example of a Web servi
es or
hestration s
enario 1056.7 A
lient-side fault inje
tion ar
hite
ture 1096.8 WS-FIT ar
hite
ture . 1106.9 WSInje
t ar
hite
ture . 1116.10 S
ript language grammar . 1126.11 An example of an Abstra
t Syntax Tree 11615

List of Figures6.12 Initialization of WSInje
t's main
omponents 1176.13 WSInje
t's GUI . 1176.14 Sequen
e diagram of the Heater Controlling System 1186.15 Testbed ar
hite
ture of the heater
ontrolling system 1206.16 Sequen
e diagram of the TRS system 1266.17 Testbed ar
hite
ture of the TRS system 1276.18 Sequen
e diagram of the inje
tion pro
ess applied on TRS 127

16

List of Tables
6.1 Available
onditions . 1136.2 Available faults . 114

17

Chapter 1
Introdu
tion
1.1 General ContextNowadays, software systems are everywhere : transportation, health, banking, en-ergy, et
. We are a
tually entrusting our lives and our goods to programs andma
hines. On the other hand, the in
reasing
omplexity of those systems as well astheir widely distributed ar
hite
tures make them more di�
ult to
ontrol and/or tomanage. Moreover, the introdu
tion of modular and reusable
omponents in
om-muni
ation systems
reates new
hallenges. It is possible now and relatively easy, tobuild
omplex distributed systems based on a set of several heterogeneous
ompo-nents (as Web servi
es for example). It is however, more painful to have a
omplete
ontrol on those systems. Sometimes, developers do not even know where someof their system
omponents are hosted not to mention the environment
onditionswhere they are running in.Parallel to this, every single bug or failure that
an be raised in su
h systems,may lead to serious �nan
ial or even human damages. Therefore, the testing ofsoftware systems during and after the development pro
ess is essential and must beundertaken with the greatest possible
are. This testing step aims at guarantying the
orre
tness of a system behavior and at ensuring its reliability and its
onforman
ewith respe
t to the expe
tations made by its developers.Probably, the most rigorous approa
h for performing testing a
tivities is to rely18

Chapter 1. Introdu
tionon formal methods. Formal methods allow one to reason about system
orre
tnessbased on mathemati
al foundations. They
an be used to formalize the systemrequirements (as expe
ted by its administrators), as well as to verify their
orre
timplementation in the �nal produ
t. The use of formal methods in testing per-mitted the emergen
e of a testing theory
alled:
onforman
e testing. The goal of
onforman
e testing, is to ensure that a given implementation veri�es its expe
tedfun
tional requirements. The literature of the testing
ommunity has produ
ed ahuge number of
ontributions dealing with this theory. Basi
ally, we
an
lassify theset of existing
onforman
e testing approa
hes into two main
ategories: a
tive andpassive testing approa
hes. This
lassi�
ation is due to the way the test pro
ess isperformed. In a
tive testing, the tester intera
ts dire
tly with the tested system toissue a verdi
t about the
onforman
e of the system behavior with respe
t to thespe
i�ed requirements. In passive testing however, the tester does not
ommuni
atedire
tly with the tested system. Instead, an exe
ution tra
e is
olle
ted during thesystem exe
ution and then, the passive tester
he
ks on this tra
e the
onforman
eof the spe
i�ed requirements. Usually, we rely on passive testing when the testedimplementation does not provide any interfa
e to intera
t with the tester or whenwe are testing a system
omponent that we
ould not a

ess dire
tly.In
onforman
e testing, we assume that the tested system is running in its nor-mal environmental
onditions. We expe
t that in su
h situations, the fun
tionalrequirements should be veri�ed. However, when a given system or one of its
ompo-nents is likely to run in a hostile environment or stressful environmental
onditions,
onforman
e testing is no more su�
ient to validate its behavior. In su
h situa-tions, we need also to
he
k the behavior of the tested system when fa
ing abnormalenvironmental
ontexts. This kind of test is known as robustness testing. The goalhere is to study the system behavior when running in a hostile environment. Thesystem is
onsidered as robust if it
ontinues to have a
orre
t exe
ution in disturbed
onditions [1℄.Robustness testing approa
hes
an be either empiri
al or formal. Empiri
al ap-proa
hes usually aim at evaluating the degree of robustness of a given system; while19

1.2. Contributionsformal approa
hes fo
us on the veri�
ation of robustness properties [2℄. For empir-i
al evaluation, fault inje
tion te
hniques are very
ommonly used. Fault inje
tion
onsists in introdu
ing deliberate errors in a system and observe its rea
tion. Thiste
hnique is used in robustness testing to
reate stressful environmental
onditions.Then, we observe if the tested system is robust enough to keep running. Formalrobustness veri�
ation te
hniques however, aim at formally assessing the robustnessof a system by
he
king the satis�ability of a set of robustness requirements on thissystem. These te
hniques usually inspire from
onforman
e testing approa
hes, par-ti
ularly from a
tive testing. The main di�eren
e with respe
t to a
tive testing, isthe fault dimension of the input domain. Instead of stimulating the tested systemwith the valid inputs, robustness methods generate and exe
ute invalid entries todisturb the system behavior.1.2 ContributionsRobustness testing is very important to ensure the safety and the reliability ofsoftware systems. Most existing approa
hes however, still present some limitationsregarding their
onsisten
y and their
apabilities. Fault inje
tion te
hniques appliedfor robustness testing have shown interesting results, yet they are su�ering from ala
k of soundness, mainly be
ause they rely ex
lusively on empiri
al analysis. In thiskind of approa
hes, we do not spe
ify formally the robustness requirements that thetested system must guarantee. A system is
onsidered robust simply if it
ontinuesits exe
ution in presen
e of faults. In other words, if the tested system does nothang or
rash, it is
onsidered as robust. We know however, that a system may well
ontinue its exe
ution without providing the expe
ted behavior. Therefore, we needa more rigorous way to
he
k the robustness of the tested implementations. Also,fault inje
tion te
hniques do not
ontrol e�
iently the inje
tion pro
ess. Faults areinje
ted in a more or less random manner and we have no feedba
k about the goodexe
ution of the inje
tion
ampaigns (did all faults have been inje
ted
orre
tly ornot?).On the other hand, formal robustness testing te
hniques de�ne formally all the20

Chapter 1. Introdu
tiontesting steps. Faults are generated from a formal model and the robustness require-ments are veri�ed based on a formal test ora
le. As far as we know, all the existingformal approa
hes for testing system robustness follow the a
tive testing ar
hite
ture[46, 40, 37℄. Two main issues
an be raised regarding this kind of methods. First,the set of inje
ted faults is limited by the set of the input domain. At the oppositeto fault inje
tion approa
hes whi
h
an inje
t any kind of faults, existing formalte
hniques are
onstrained by the behavioral model of the tested system whi
h theyuse to generate the set of faults to inje
t (usually, a set of invalid inputs). Thus, ifthe behavioral model does not support time spe
i�
ation for example, there will beno temporal faults! Also, formal a
tive testing te
hniques for robustness veri�
a-tion present some limitations when applied on
omposed systems. These te
hniquesrequire dire
t intera
tions with the tested system
omponents whereases, it is notalways possible to have a dire
t a

ess to those
omponents. It is therefore, di�-
ult to inje
t faults or to disturb
ommuni
ation between the di�erent modules ofa
omposed appli
ation.The work we present in this PhD thesis, is a set of propositions whi
h aimat solving the main issues fa
ing the existing robustness testing te
hniques. Our
ontributions are then spread over four main axes:First, we are interested in fault inje
tion te
hniques be
ause they
an improve thefaults dete
tion power of the testing methods. To address the problem of soundnessin fault inje
tion, we propose a formal approa
h to spe
ify and verify the inje
tionpro
ess. We propose to formalize the fault inje
tion using a timed extension of Hoarelogi
 [42℄. We fo
us here on fault inje
tion for
ommuni
ation systems. Therefore,ea
h inje
tion operation is spe
i�ed as a Hoare triple des
ribing a set of pre
ondi-tions that must be satis�ed by the inter
epted
ommuni
ation messages before theinje
tion and a set of post
onditions whi
h spe
ify how the exe
uted inje
tion oper-ations should modify the state of those messages. This formalization is then used asa test ora
le. We propose a passive testing algorithm to verify the good exe
ution ofthe inje
tion pro
ess by
he
king the spe
i�
ation of the inje
ted faults (given as aset of Hoare triples) against the inje
tion tra
e,
olle
ted during experimentations.21

1.2. ContributionsThis way, one
an
ontrol the inje
tion pro
ess by verifying whether the inje
tionexperiments were well performed or not.Our se
ond
ontribution
on
erns the spe
i�
ation and the veri�
ation of robust-ness requirements. We believe that robustness requirement
ould be di�erent fromthe fun
tional ones. Therefore, instead of relying on a fun
tional model, we pro-pose to model system robustness as a set of real-time safety and liveness properties.We believe also that some requirements
an be rather
omplex. Thus, we proposeto spe
ify those requirements using a real-time extension of linear temporal logi
,
alled XCTL (eXpli
it Clo
k Temporal Logi
) [32℄, whi
h
an handle both simpleand
omplex properties. For the veri�
ation, we propose a passive testing algorithmto
he
k XCTL properties on exe
ution tra
es, and we study its e�
ien
y.We also
ontribute by a new robustness testing approa
h. We propose an hy-brid approa
h for testing system robustness,
ombining fault inje
tion and passivetesting te
hniques. Fault inje
tion is used to simulate the stressful environmental
onditions. Then, we use a passive testing te
hnique to
he
k the satis�ability of therobustness requirements against the
olle
ted exe
ution tra
es. The inje
ted faultsas well as the robustness properties are formally spe
i�ed. We use Hoare triples forfault spe
i�
ation and XCTL for robustness requirements. The spe
i�
ation of theinje
ted faults is then used to validate the inje
tion pro
ess and the spe
i�
ation ofrobustness requirements allows to assess formally the system robustness.Finally, we propose a robustness testing framework for modeling and verifyingWeb servi
es robustness. Web servi
es are an emerging te
hnology whi
h tends pro-gressively to be
ome a standard for program-to-program
ommuni
ation paradigm.They are also a very good example of widely distributed systems. Web servi
es
anbe either simple or very
omplex, integrating heterogeneous servi
e
omponents.They are widely used for building business pro
ess and distributed information sys-tems. Therefore, they provide a very interesting illustration of
riti
al distributedappli
ations. The framework we propose is a
tually an instantiation of our robust-ness testing approa
h for Web servi
es. It integrates an innovative Web servi
esfault inje
tor (WSInje
t [36℄) whi
h we developed to simulate hostile environments.22

Chapter 1. Introdu
tionWe also implemented the proposed passive testing algorithms to verify both theinje
tion pro
ess and the robustness requirements, and we tested our framework ontwo
ase studies to show its
apabilities.1.3 Thesis planThis thesis manus
ript is organized as follows:1. In the se
ond
hapter, we present the state of the art of both
onforman
e androbustness testing te
hniques. For
onforman
e testing, we �rst introdu
e theuse of formal methods for system testing. Then, we des
ribe the most relevantexisting approa
hes for both a
tive and passive testing. The se
ond part of this
hapter presents robustness testing. We
lassify robustness testing approa
hesinto two main
ategories. First, we expose those whi
h rely on fault inje
tionte
hniques and then, we present the formal robustness testing methods.2. The third
hapter presents our �rst
ontribution. It des
ribes our formal ap-proa
h for the spe
i�
ation and the veri�
ation of fault inje
tion pro
ess. Thebasi
 idea
onsists in formalizing the inje
ted faults as a set of Hoare triplesand then, to use this spe
i�
ation to verify the good exe
ution of the inje
tionexperiment. This veri�
ation is based on a proposed passive testing algorithmwhi
h
he
ks the spe
i�ed inje
tion operations on a
olle
ted inje
tion tra
e.A set of examples of inje
tion rules is also presented as matter of illustration.3. In the fourth
hapter, we present our passive testing approa
h for
he
kingreal-time
onstraints. We �rst dis
uss the related work ta
kling with formalapproa
hes for testing temporal properties. Then, we present the existingreal-time formalisms and justify our
hoi
e of the XCTL [32℄ language. Wealso present our passive testing algorithm for
he
king XCTL properties onexe
ution tra
es and dis
uss the obtained results of an experimental evalua-tion of the proposed algorithm. This evaluation
onsisted in
al
ulating thene
essary exe
ution time for
he
king a set of real-time patterns on tra
es ofdi�erent lengths. 23

1.3. Thesis plan4. In the
hapter �ve, we des
ribe our robustness testing approa
h. It is a
omple-mentary approa
h based on fault inje
tion and passive testing te
hniques. We�rst dis
uss the related work and the existing robustness testing approa
hes.Then, we present the general ar
hite
ture of our approa
h and detail ea
hstep of the testing pro
ess. In this approa
h, Hoare logi
 is used to spe
ifythe inje
ted faults; while the robustness requirements are spe
i�ed as a set ofsafety and liveness properties formalized as XCTL formulas.5. Finally in the sixth
hapter, we present our framework for testing Web servi
esrobustness. This framework is an instantiation of the proposed robustness test-ing approa
h, for Web servi
es. We �rst introdu
e Web servi
es te
hnologyand its main features. Then, we present the framework ar
hite
ture and de-s
ribe ea
h of its
omponents. This
hapter also presents WSInje
t whi
h isa fault inje
tion tool for Web servi
es. We motivate our
hoi
e of developingsu
h tool and des
ribe its ar
hite
ture and its
apabilities. We show in this
hapter also, how the abstra
t
on
epts presented in the previous
hapters areinstantiated for Web servi
es (spe
i�
ation of the inje
tion pro
ess and therobustness requirements) and we
arry out two
ase studies to illustrate theuse of our framework. We des
ribe for ea
h
ase study all the testing phasesand dis
uss the obtained results. We show parti
ularly how our frameworkwas able to dete
t important failures that
ould not be revealed by traditionaltesting methods.6. The last
hapter of this manus
ript
on
ludes our work. We summarize our
ontributions in the �elds of both
onforman
e and robustness testing, andpresent some perspe
tives and possible future dire
tions to extend our work.
24

Chapter 2
State of the ArtContents2.1 Formal Testing . 252.1.1 A
tive testing . 262.1.2 Passive testing . 312.2 Robustness Testing: Te
hniques and Tools 402.2.1 Fault inje
tion approa
hes . 412.2.2 Model-based approa
hes . 45
2.1 Formal TestingThe use of formal methods for software testing is motivated by the fa
t that, per-forming mathemati
al analysis
an
ontribute e�
iently to the reliability and the
onsisten
y of any testing approa
h. The main advantage of using formal languagesis to be able to automate the veri�
ation pro
ess of any software system based ondedi
ated tools.We
an rely on formal methods at di�erent system development phases, as fol-lows:
• The system behavior (i.e. what the system is supposed to do)
an be modeledusing a formal system. This model,
alled also system spe
i�
ation, is in fa
t25

2.1. Formal Testinga mathemati
al representation of the studied system.
• The Veri�
ation step
onsists to
he
k that the system spe
i�
ation does not
ontain any errors. For example, we
an
he
k that some spe
i�
 systemproperties are
orre
tly represented by the formal model.
• In the Implementation phase, the system be
omes real. In this step, we donot rely on any abstra
t model. The system developers are in
harge of
odingthe system behavior using the most suitable programming language.
• Testing is usually the last step in the development pro
ess. It
onsists to
he
kwhether the implemented system is
onform to its formal spe
i�
ation.We
an
lassify the set of existing formal testing methods into two main
ate-gories: the a
tive testing methods and the passive testing methods. Ea
h
ategory
ontains various approa
hes and ea
h approa
h
an use di�erent te
hniques. In thefollowing we present the basi

on
epts of ea
h testing family and introdu
e themost known approa
hes from ea
h
lass.2.1.1 A
tive testingA
tive testing
onsists at exe
uting a set of test s
enarios on an ImplementationUnder Test (IUT) and
he
k whether its behavior is
onform to the spe
i�ed re-quirements. In this kind of test, the tester intera
ts dire
tly with the IUT via itsexternal interfa
es. Its provides the IUT with a set of inputs (test
ases) and
olle
tsthe returned outputs whi
h it analyzes to issue a verdi
t about the
onforman
e ofthe IUT with respe
ts to its requirements.Conforman
e testingConforman
e testing aims at verifying whether the behavior of a given system
or-responds to its spe
i�
ation. This kind of test
an be performed following either abla
k-box, a white-box or a gray-box strategy.26

Chapter 2. State of the Art
• Bla
k-box testing, also
alled fun
tional testing,
onsists at observing the ex-
hanged inputs and outputs between the tester and the IUT without
onsid-ering the internal a
tions. The verdi
t is issued based on the analysis of theobserved events.
• White-box or stru
tural testing
onsiders the test of the implementation
ode.Here, we do not observe only the ex
hanged messages but also internal a
tions,data stru
tures, loops, et
. There exist spe
i�
 tools for this kind of test whi
hare able to generate and exe
ute test
ases a

ounting the implementationstru
ture.
• Gray-box testing
orresponds to an intermediate approa
h between the bla
kand the white box te
hniques. The idea here, is to
onsider some internal a
-tions and other implementation features while observing the ex
hanged mes-sages, without ne
essarily having a

ess to all implementation
ode details.A typi
al a
tive testing approa
h pro
eeds in two steps. First, an automati
generation of a set of test
ases from the system spe
i�
ation is performed. Then,the tester runs these test
ases on the IUT and dedu
es a
onforman
e verdi
t basedon the analysis of the system rea
tion to the stimulation (test inputs). Figure 2.1des
ribes the general a
tive testing ar
hite
ture.

Figure 2.1: A
tive Testing MethodologyThe standard ISO/IEC 9646 [3℄ suggests some useful de�nitions for di�erent
onforman
e testing
on
epts. Thus, the issued verdi
t
an be either Pass, Fail or27

2.1. Formal TestingIn
on
lusive. The verdi
t Pass is returned when the IUT outputs are the same asthe spe
i�ed ones. In this
ase, we say that the IUT is
onform to its spe
i�
ationas regard to the applied test
ases. However, if the IUT outputs are di�erent fromthe spe
i�ed ones, the issued verdi
t would be Fail whi
h means that the IUT is not
onform to its spe
i�
ation. In the
ase where the exe
ution of a test sequen
e doesnot lead to a Pass or a Fail verdi
t. The tester dedu
es an In
on
lusive verdi
t.This verdi
t does not reveal an IUT failure, rather the exe
ution of the test
asesdo not allow the veri�
ation of the test purpose. This
ould be due, for example,to a non-deterministi
 spe
i�
ation where a single input
an lead to di�erent paths.We need in this
ase to rerun the test
ases for a better analysis.This same standard [3℄ also introdu
es a set of terms to des
ribe the tests appliedon an IUT. A test
ase is de�ned as an elementary test. For a rea
tive system, atest
ase des
ribes a set of intera
tions between the tester and the IUT whi
h leadsto a validation of a parti
ular property of the tested system. This property is
alleda test purpose and is usually extra
ted from the system spe
i�
ation.A test
ase is generally
omposed of a preamble, a test body, an identi�
ationsequen
e and a postamble.The preamble is the initial part of a test
ase. It is a set of intera
tion sequen
esused to bring the implementation in a parti
ular state where the test body
an beexe
uted. The test body is the part of the test
ase used to verify the test purpose.The identi�
ation sequen
e is an intera
tion sequen
e whi
h allows the tester toidentify the state in whi
h the IUT is, after the appli
ation of the test body. Thepostamble is used to bring the IUT to a well identi�ed state (usually the initial state)to be able to apply another test
ase. Finally, we de�ne a test suite as a set of test
ases.Overview of a
tive testing approa
hesA wide set of a
tive testing te
hniques use Finite State Ma
hines (FSMs) as areferen
e spe
i�
ation for modeling the behavior of the tested system. A �nite statema
hine is a behavioral model with a �nite number of states, transitions between28

Chapter 2. State of the Artthose states and a
tions. It is formally de�ned as follows:De�nition 2.1 A �nite state ma
hine is a 6-tuple < S, I,O, σ, λ, s0 > where:
• S is a �nite set of states, where s0 ∈ S is the initial state;
• I is a �nite set of input events;
• O is a �nite state of output events;
• σ : S×I → S is the state transition fun
tion. We
an extend σ to σ∗ : S×I∗ →

S where I∗ is the set of all �nite input sequen
es in
luding the empty sequen
e
ε;

• λ : S × I → O. We
an extend λ to λ∗ : S × I∗ → O∗ where I∗ is the set ofall �nite input sequen
es in
luding the empty sequen
e ε and O∗ is the set ofall �nite output sequen
es in
luding the empty sequen
e ε;FSM-based testing methods suppose that we have a
omplete spe
i�
ation modelSpe
 and that we
an observe all inputs/outputs (I/O) of the implementation ma-
hine Imp. The spe
i�
ation ma
hine must be minimal,
omplete and strongly
on-ne
ted. Sin
e the implementation is tested as bla
k-box, the strongest
onforman
erelation that
an be
onsidered is the tra
e-equivalen
e.De�nition 2.2 Two FSMs are tra
e-equivalents if they
annot be told apart by anyinput sequen
e. That is, both the spe
i�
ation and the implementation will generatethe same outputs (a tra
e) for all spe
i�ed input sequen
es.To
he
k whether two ma
hines are equivalents, one needs to show that:
• There is a set of implementation states that are isomorphi
 to the states ofthe spe
i�
ation.
• Every transition in the spe
i�
ation has a
orresponding isomorphi
 transitionin the implementation. 29

2.1. Formal TestingTo
he
k for isomorphi
 states, one needs to
hara
terize ea
h state of the ma-
hine. Thus, the main di�eren
e between the various FSM-based a
tive testing ap-proa
hes lies in the way they
hara
terize the ma
hine states. [30℄ dis
usses the mostrelevant FSM-based te
hniques. We
an for example
hara
terize ma
hine states us-ing transition tours [51℄, distinguishing sequen
es [38℄,
hara
teristi
 sequen
es [28℄or unique I/O sequen
es [64℄. The algorithms proposed for these methods are allpolynomial in time and memory
onsumption.There is also another
lass of a
tive testing approa
hes whi
h do not rely onequivalen
e relation between the spe
i�
ation and the implementation. This kindof approa
hes
onsider that a system Imp
an implement a system Spe
 while thetwo systems are not ne
essarily equivalents. For example, it is
ommonly a

eptablethat a system implementation would be more deterministi
 than its spe
i�
ation.In fa
t, in this
ase, the abstra
t spe
i�
ation does not represent all implementationdetails.Therefore, in this kind of approa
hes, we need �rst to de�ne a formal
onfor-man
e relation between the implementation and its spe
i�
ation. Then, the testerwould be able to
he
k the
onforman
e of an implementation with respe
t to itsspe
i�
ation, based on this
onforman
e relation.E. Brinskma de�nes in [27℄ a
onforman
e relation
onf based on Labeled Tran-sition System (LTS) whi
h
an
he
k whether an implementation
ontains non-expe
ted lo
ks. This
onforman
e relation does not distinguish between systemevents whi
h are
ontrollable by the environment (the inputs) and those whi
h
anbe only observed (the outputs). The di�eren
e is however very important in pra
-ti
e as the tester needs to
hoose a set of inputs to stimulate the IUT so that it
anobserve the system outputs. Therefore, more expressiveness models were proposedto be able to reason about inputs and outputs su
h as Input Output State Ma
hineIOSM in [54℄ and Input Output Transition Systems IOTS in [67℄. In this kind ofmodels, transitions represent either an input, an output or an internal a
tion.In [67℄, the behavior of the spe
i�
ation and the implementation is formalized asIOTS. The authors de�ned a
onforman
e relation io
o whi
h
onsider spe
i�
ation30

Chapter 2. State of the Arttra
es as well as lo
ks. An implementation Imp is
onform to its spe
i�
ation Spe
for io
o if after every tra
e σ from Spe
, the set of outputs of Imp (in
luding lo
ks)is in
luded in the set of outputs of Spe
. The author
onsiders three kind of lo
ks:the deadlo
k, the outputlo
k and the livelo
k. The deadlo
k o

urs when the testedsystem
annot progress; the outputlo
k o

urs when the system is blo
ked while it iswaiting for an input from its environment, and the livelo
k o

urs when the systemloops for an in�nite sequen
e of internal a
tions.A work inspired from [27℄ was proposed in [54℄ and uses a spe
i�
ation formalismbased on IOSM. The author de�nes �ve implementation relations denoted by Ri asfollows:
• The relation R1 guarantees that all implementation outputs are expe
ted bythe spe
i�
ation. However, it a

epts that the implementation does not re-sponse even if the spe
i�
ation expe
t an output.
• The relation R2 re�nes the relation R1 by
onsidering lo
k situations.
• The relation R3 is based on the in
lusion of spe
i�
ation tra
es into imple-mentation tra
es.
• The relation R4
onsider that the tested system must implement at least allthe behavior expe
ted by its spe
i�
ation. The tested system
an howeverpresent more
omplex fun
tionalities.
• The relation R5 requires that the implementation behaves exa
tly as it isexpe
ted by its spe
i�
ation. R5 is in fa
t a tra
e equivalen
e relation.2.1.2 Passive testingPassive testing (also
alled monitoring)
onsists at observing input and output eventsof a running appli
ation without disturbing its exe
ution. The re
orded observationis
alled an event tra
e. It will be analyzed by the passive tester a

ording to thesystem spe
i�
ation to determine the
onforman
e relation between the appli
ationand its spe
i�
ation. It is important to note here, that when an event tra
e is31

2.1. Formal Testing
onform to the spe
i�
ation, it does not mean that the whole appli
ation is
onformto the spe
i�
ation. However, in the
ase where the tra
e does not
onform to thespe
i�
ation, we
an a�rm that the appli
ation does not
onform also.Unlike a
tive testing, passive testing does not in�uen
e the system under test.This has the huge advantage of not troubling the appli
ation exe
ution. Thus, we
an test a system running in its natural environmental
ondition. Also, passivetesting
an be run during all system life time in the opposite of a
tive testing test
ampaigns whi
h must be run for a spe
i�
 system development phases.

Figure 2.2: Passive Testing MethodologyFigure 2.2 des
ribes the passive testing methodology. The tra
e analysis pro-du
es either a PASS, a FAIL or an INCONCLUSIVE verdi
t. A PASS verdi
t isissued if the tra
e is
onform to the system spe
i�
ation (or properties) otherwise,a FAIL verdi
t is produ
ed. In the
ase where the tra
e is not long enough to allowa
omplete analysis, the tester provides an INCONCLUSIVE verdi
t.Several passive testing approa
hes were developed for di�erent testing purposes.We present in the following the main important ones.Passive testing by value determinationThe Extended Finite State Ma
hine (EFSM) model is an evolution of the
lassi
alFSM model whi
h o�ers more spe
i�
ation possibilities. It is formally de�ned asfollows: 32

Chapter 2. State of the ArtDe�nition 2.3An Extended Finite State Ma
hine M is a 7-tuple M = (S, s0, Sf , I,O,
→

x

, T) where:
• S is a �nite non empty set of states;
• s0 is the initial state;
• Sf is a �nite state of �nal states;
• I is a �nite set of input symbols, with or without parameters;
• O is a �nite set of output symbols, with or without parameters;
•

→

x= (x1, ..., xk) is a ve
tor denoting a �nite set of variables;
• T is a �nite set of transitions.Ea
h transition t is de�ned as a 6-tuple t = (st, ft, it, ot, Pt, At) where:
• st is a starting state;
• ft is an ending state;
• it is an input symbol;
• ot is an output symbol;
• Pt(

→

x) is a predi
ate on the variables (boolean formula);
• At(

→

x) is a sequen
e of a
tions.Thus, ea
h transition of the EFSM
an
ontain:
• input and output events eventually with parameters,
• a predi
ate (or a guard) to satisfy,
• a sequen
e of a
tions to perform. 33

2.1. Formal TestingUsing EFSM, passive testing approa
hes must not only
he
k the
orre
tness ofevent sequen
es (appearing in the
olle
ted tra
e), but also the variables and theparameter values. This �rst passive testing method is based on the dedu
tion ofvariable and parameter values from an event tra
e
onsidering an EFSM model.The s
hema in �gure 2.3 shows an example of this dedu
tion pro
ess.
Figure 2.3: Dedu
tion of variable valuesAssume that we know the
urrent state S1 but not the value of variable x. Ifthe next input/output
ouple from the tra
e is a/1 then, we
an dedu
e that afterthe transition is �red, the
urrent state be
omes the state S3 and x will be equalto 0. Based on this property, a passive testing algorithm was proposed in [66℄. It
onsiders that a transition is �red if :1. the input/output
ouple of the tra
e mat
hes with the input/output
ouple ofthe transition,2. either the transition predi
ate is true or it
annot be evaluated due to a la
kof information (values are not yet known).The problem of information loss Consider the example presented in �gure 2.4If we assume that the
urrent state is S1 and that variable x has been identi�edwith the value 3. If we
onsider that y is unknown, we must for any
ase �re the twotransitions S1 → S2 and S1 → S3 be
ause the I/O on both transitions are identi
al.Now that the two transitions give di�erent values of x; x be
omes UNDEFINED!We note here that unde�ned variables (y in this example)
an lead to losing alreadyfound values of other variables (x in this example).34

Chapter 2. State of the Art
Figure 2.4: Information lossThe testing algorithm The testing algorithm pro
eeds in two main steps. The�rst step is
alled homing phase of the
urrent state and the variable values. Inthis step, the following rules are
onsidered:

• for a given I/O
ouple, if there exists a set of possible transitions produ
ingdi�erent values for a same variable, then this variable be
omes UNDEFINED,
• the predi
ates involving the UNDEFINED variables are
onsidered to be true.The se
ond step is
alled fault dete
tion phase and
on
erns the
onforman
e
he
king of the remaining tra
e with respe
t to the spe
i�
ation.Passive testing by interval determinationWe saw that the algorithm presented previously su�ers from an information lossphenomenon. A more e�
ient passive testing algorithm was propose in [29℄. It isbased on three main
on
epts.1. Intervals to refer to the set of variable values su
h as R(v) = [a; b] for variable

v.2. Assertions whi
h are de�ned as predi
ates on variables denoted by asrt(
→

x)where →

x is the variable ve
tor.3. Candidate Con�guration Sets (CCS) to formalize the analyzed environ-ment of the system under test. A CCS is a triplet (s,R(
→

x), asrt(
→

x)) where sis the
urrent state of the spe
i�
ation.35

2.1. Formal TestingThis algorithm aims to determine the values of variables by using a set (in theform of interval) of possible values for ea
h variable. Intervals in whi
h variablestake their values are then, progressively re�ned.The intervals The intervals are a beginning answer to the information loss prob-lem. In the previous algorithm, a variable
ould not have more than one possiblevalue. In the
ase where several values were possible, the variable be
omes UNDE-FINED. Using intervals, a variable v whose value is between two integers a and bwill be de�ned by an interval R(v) su
h as R(v) = [a; b]. If v has a
onstant value
a, we will have R(v) = [a; a]. The variable v is then said de
ided. Three operationon intervals are possible:
• The sum of two intervals: [a; b] + [c; d] = [a + c; b + d]

• The subtra
tion of two intervals:[a; b] − [c; d] = [a− c; b− d]

• The multipli
ation of an interval by an integer:
w × [a; b] = [w × a;w × b] if w ≥ 0

w × [a; b] = [w × b;w × a] if w < 0The assertions An assertion asrt(
→

x) is a boolean formula on the variables ve
tor
→

x whi
h must be true at the
urrent state of the veri�
ation. Assertions are usedto re
ord
onstraints on variables, built based on transition predi
ates and a
tions.When a transition is �red, its predi
ate is added to the assertion as well as thea
tions that
ontain unde
ided variables in the right member of the equality. Forexample, if the a
tion x2 ← x1 + 1 updates the variable x2; every term of asrt(
→

x)
ontaining x2 must be deleted and the term x2 ← x1 +1 must be added to asrt(
→

x).Thus, as soon as we dis
over x2 we
an dedu
e easily the value of x2.The Candidate Con�guration Sets A Candidate Con�guration Set (CCS) isa triplet (s,R(
→

x), asrt(
→

x)) where:
• s is the
urrent spe
i�
ation state,36

Chapter 2. State of the Art
• R(

→

x) is the set of intervals,
• asrt(

→

x) is an assertion on the ve
tor of variables →

x .Candidate
on�gurations are used to model the states where the system undertest is. They spe
ify for ea
h state, the related set of variable
onstraints. Forexample, the
on�guration (S1, R(x) = [2; 6], (x < 4) ∧ (x > 4)) means that thesystem is in the state S1 and that the value of the variable x is
ontained between2 and 6 but not equal to 4.The algorithm de�nes two lists Q1 and Q2, where Q1 is the set of
urrent possibleCCS and Q2 is the set of possible CCS of the previous step. Thus, given Q1 andan event e, we should be able to obtain the
orresponding transition. A transition
t will be �red if it exists a
on�guration in Q1 whose
onstraints (the intervals ofvariables and the assertions) are
ompatible with the predi
ate p of t.Passive testing by ba
kward
he
kingThis te
hnique has been proposed in [26℄. The presented algorithm is widely in-spired from the one presented in [29℄. However, in this work, the tra
e is
he
kedba
kwardly. The authors built their algorithm based on the fa
t that the end of thetra
e
orresponds to a system state. Therefore, starting from the end of the tra
e,it is more e�
ient and easier to get
orre
t information about variable values bylooking to the past of the tra
e.This ba
kward
he
king algorithm pro
eeds in two phases. The �rst step
on-sists in tra
king a tra
e ω starting from its end and going ba
k to its beginningwhile mapping ω to the spe
i�
ation ma
hine. The goal is to rea
h all possible
on�gurations X that
an generate the tra
e ω. In other words, the algorithm looksfor all CCS from whi
h ω
ould begin.In the se
ond phase, the algorithm veri�es the past of the tra
e in order to vali-date at least one
on�guration from the set X. This validation
onsists in exploringall possible paths from a given
on�guration to verify that ω is rea
hable from theinitial
on�guration of the spe
i�
ation. The algorithm looks for a path p that
on-37

2.1. Formal Testingne
ts a
on�guration c and an element of X. p validates the tra
e ω if there existsa set of predi
ates and a
tions that
an
on�rm the
orre
tion of the element of X.The
omplexity of this approa
h is at worst equal to the total parsing of thesystem spe
i�
ation i.e. the
omplete exploration of its a

essibility graph.Passive testing by invariant
he
kingAll passive testing te
hniques dis
ussed previously are based on the same
on
eptwhi
h
onsists to
ompare a
olle
ted exe
ution tra
e with the formal spe
i�
ationof the system under test. The major problem with this kind of approa
hes lieson the high
omplexity of the used algorithm, parti
ularly when
onsidering non-deterministi
 spe
i�
ation. The veri�
ation of ea
h tra
e ne
essitates a partial (ora total) exploration of the whole spe
i�
ation.To address this problem, an invariant-based approa
h was proposed in [45℄ andimproved in [31℄. The basi
 idea of invariant-based testing
onsists in extra
tingfrom the system spe
i�
ation a set of properties to verify on the tra
e. Theseproperties must be satis�ed at any moment, hen
e the name of invariants.An input/output invariant is
omposed of two parts:
• The test, whi
h is an input or an output symbol.
• The preamble, whi
h is the sequen
e that must be found in the tra
e before
he
king the test.Based on this de�nition, three types of invariants are introdu
ed.
• Output invariants; de�ned when the test is an output symbol. These invariantsare used to spe
ify properties of the form : "immediately after the sequen
epreamble we must always have the output test". For example,
onsider thefollowing output invariants:� (i1

︸︷︷︸

preamble

/ o1
︸︷︷︸

test

) meaning that "i1 is always followed by o1".38

Chapter 2. State of the Art� (i1/o1)(i2
︸ ︷︷ ︸

preamble

/o2)
︸︷︷︸

test

meaning that "immediately after the sequen
e (i1/o1) andthe input i2, we must have the output o2". This invariant is said to bean invariant of length 2 be
ause its preamble
ontains two I/O
ouples.
• Input invariants; de�ned when the test is an input symbol. This kind ofinvariants is used to spe
ify properties of the form "immediately before thesequen
e preamble we must always have the input test". For example,
onsiderthe following input invariants.� (i1

︸︷︷︸

test

/ o1
︸︷︷︸

preamble

) meaning that "o1 is always pre
eded by i1".� (i1
︸︷︷︸

test

/o1)(i2/o2)
︸ ︷︷ ︸

preamble

meaning that "immediately before the sequen
e o1(i2/o2)we must have the input i1".
• Su

ession invariants; used to spe
ify
omplex properties su
h as loop prob-lems. For example, the following set of invariants
onstitutes a su

essioninvariant.� (i1/o1)(i2

︸ ︷︷ ︸

preamble

/o2)
︸︷︷︸

test� (i1/o1)(i2/o2)(i2
︸ ︷︷ ︸

preamble

/o2)
︸︷︷︸

test� (i1/o1)(i2/o2)(i2/o2)(i2
︸ ︷︷ ︸

preamble

/o3)
︸︷︷︸

testThis invariant for
es the transition (i2/o2) to hold twi
e before the transition
(i2/o3) must be �red. This kind of sequen
es is used to limit the numberof attempts for a given proto
ol operation before returning a failure. In thisexample, the number of attempts is limited to two and the output o3
anrepresent a failure event.The invariant-based approa
h is a powerful passive testing te
hnique though theextra
tion of the invariants from the system spe
i�
ation is still a hard task to per-form. If we delegate this task to a human it is likely to take a big amount of time39

2.2. Robustness Testing: Te
hniques and Toolsand
an lead to erroneous extra
tions. On the other hand, automati
 extra
tion al-gorithms su
h as the one presented in [31℄ are very sensitive to the non-determinismof the spe
i�
ation when the invariant length is greater than one. Also, this ap-proa
h
annot dete
t all types of errors and it is more likely designed to be used
omplementarity with other methods.2.2 Robustness Testing: Te
hniques and ToolsRobustness testing aims to determine whether a software system or a
omponent
an have an a

eptable behavior in the presen
e of faults or stressful environmental
onditions. This de�nition
overs a large spe
trum of approa
hes, whi
h
an be
lassi�ed a

ording to two viewpoints.The �rst viewpoint determines the input domain of interest. The input do-main
an be split into two main dimensions: the a
tivity (workload) and the faults(faultload). The workload and the faultload
an be given more or less emphasis, de-pending on the approa
hes. Workload-based approa
hes extend usual testing e�ortsby submitting the system to higher load tests while Faultload-based approa
hes fo-
us on the fault dimension and the behavior of the system subje
ted to a given setof faults.The two dimensions of the input domain
an
ombine their e�e
ts on a system.The so-
alled mixed workload- and faultload-based approa
hes, expli
itly
onsidersu
h
ombined e�e
ts.The se
ond viewpoint
on
erns the
lassi�
ation of robustness testing approa
hesa

ording to the target obje
tive: testing for veri�
ation or evaluation purposes.The veri�
ation of robustness is most often on the lineage of
lassi
al testingapproa
hes, where a model of the system (e.g., a behavioral model) is used as aguide for sele
ting test
ases (e.g., transition
overage is required). The evaluationof robustness rather builds on fault inje
tion and load testing approa
hes, for whi
hthe �rst-
lass
itizens are models of the input domain. For example, the workloadis sele
ted a

ording to a probabilisti
 model of the operational pro�le and thefaultload is based on a model of faults that are deemed representative of a
tual40

Chapter 2. State of the Artfaults in operation. Re
ent e�ort to standardize this kind of evaluation-orientedtesting has yielded the emergen
e of the
on
ept of dependability ben
hmarking.This se
ond
lassi�
ation is used to build the stru
ture of this se
tion. We �rstpresent work dealing with fault inje
tion as a robustness testing te
hnique. Then,we des
ribe relevant robustness testing approa
hes based on system modeling andtest
ase generation.2.2.1 Fault inje
tion approa
hesFault inje
tion
onsists to introdu
e deliberate errors in a system and observe itsbehavior. This te
hnique has been widely used for robustness testing be
ause itallows one to evaluate the behavior of a given system when running in a hostileenvironment. In the following, we present most relevant fault inje
tion tools fortesting robustness of
ommuni
ation proto
ols and distributed systems.DOCTORDOCTOR (integrateD sOftware Fault injeCTiOn enviRonment) [62℄ is a fault in-je
tion tool for distributed appli
ation. It
an synthesize the workload and emulatethe o

urren
e of faults in real time systems. It supports mainly three types offaults (pro
essor, memory and
ommuni
ation faults) and
an run three inje
tionmode: permanent, transient and intermittent. During experimentations, DOCTOR
olle
ts performan
e and reliability information providing testers with signi�
antevaluation data.ORCHESTRAORCHESTRA [61℄ is a s
ript-driven fault inje
tion tool designed for testing thereliability and the liveness of distributed proto
ols. A fault inje
tion layer is insertedbetween the tested proto
ol layer and the lower layers to �lter and manipulatemessages ex
hanged between the proto
ol parti
ipants.Messages
an be delayed, lost, reordered, dupli
ated and modi�ed. Also, newmessages
an be spontaneously introdu
ed into the tested system to bring it into a41

2.2. Robustness Testing: Te
hniques and Toolsparti
ular global state.The re
eption s
ript and the sending s
ript are written in TCL language anddetermine whi
h operations are to be performed on re
eived/sent messages. Theses
ripts are spe
i�ed with state ma
hines. Transitions in these ma
hines are drivenby the type of the message, its
ontents, the history of re
eived messages or otherinformation that was previously
olle
ted during the test exe
ution (e.g. lo
al time,number of re
eived messages, et
.).Message modi�
ations are however, spe
i�ed using a user-de�ned s
ript. Theresulting message is passed to the next layer of the proto
ol sta
k.ORCHESTRA is a "Message-level fault inje
tor" be
ause a fault inje
tion layeris inserted between two layers in the proto
ol sta
k. This kind of fault inje
torallows inje
ting faults without requiring the modi�
ation of the proto
ol sour
e
ode. However, the user has to implement his fault inje
tion layer for ea
h proto
olhe wants to test. The expressiveness of the fault s
enario is limited as there is no
ommuni
ation between the various state ma
hines exe
uted on every node. Also,be
ause the fault inje
tion is based on ex
hanged messages, the knowledge of thetype and the size of these messages is required [63℄.NFTAPEThe NFTAPE proje
t [65℄ arose from the double observation that no tool is su�-
ient to inje
t all fault models and that it is di�
ult to port a parti
ular tool todi�erent systems. NFTAPE provides me
hanisms for fault-inje
tion, triggering in-je
tions, produ
ing workloads, dete
ting errors, and logging results. Unlike othertools, NFTAPE separates these
omponents so that the user
an
reate his ownfault inje
tors and inje
tion triggers using the provided interfa
es.NFTAPE is a Lightweight Fault Inje
tor (LWFI). LWFIs are simpler than tradi-tional fault inje
tors as they do not need to integrate triggers, logging me
hanisms,and
ommuni
ation support. This way, NFTAPE
an inje
t faults using any faultinje
tion method and any fault model. Interfa
es for the other
omponents are alsode�ned to fa
ilitate portability to new systems.42

Chapter 2. State of the ArtIn NFTAPE, the exe
ution of a test s
enario is
entralized. A parti
ular
om-puter,
alled the
ontrol host, takes all
ontrol de
isions. This
omputer is generallyseparated from the set of
omputers that exe
ute the test. It exe
utes a s
ript writ-ten in Jython (Jython is a subset of the Python language) whi
h de�nes the faultss
enario. All parti
ipating
omputers are atta
hed to a pro
ess manager whi
h inturn
ommuni
ates with the
ontrol host. The
ontrol host sends
ommands topro
ess managers a

ording to the fault s
enario. When re
eiving a
ommand, thepro
ess manager exe
utes it. At the end of the exe
ution or if a
rash o

urs, thepro
ess manager noti�es the
ontrol host by sending a noti�
ation message.All de
isions are taken by the
ontroller, whi
h implies that every fault triggeredat every node indu
es a
ommuni
ation with the
ontroller. Then, a

ording to thede�ned s
enario, the
ontroller sends a fault inje
tion message to the appropriatepro
ess manager whi
h
an then inje
t the fault [63℄.DEFINEDEFINE (DistributEd Fault Inje
tion and moNitoring Environment) [48℄ is a faultinje
tor designed to evaluate system dependability, investigate fault propagationand validate fault tolerant me
hanisms of distributed systems. This tool
an inje
tsoftware faults as well as hardware-indu
ed software errors in any pro
ess runningin distributed systems either in user mode or supervisor mode. The inje
ted faults
an be
orrelated or independents.DEFINE is extended from it ante
edent FINE [47℄, with additional distributed
apability and inje
tion me
hanisms. It uses two fault inje
tion te
hniques:1. using hardware
lo
k interrupts to
ontrol the time of fault inje
tion and a
ti-vation whi
h allows inje
ting intermittent CPU/Bus faults in order to ensuretheir a
tivation,2. using software traps to inje
t faults and monitor fault a
tivation in order toassist monitor whether the faults are a
tivated and were they are a
tivated.Experiments using DEFINE were su

essfully
ondu
ted on SUN NFS-distributed43

2.2. Robustness Testing: Te
hniques and Tools�le system.FAIL-FCIFAIL-FCI [41℄ is a fault inje
tion tool developed by INRIA (Institut National deRe
her
he en Informatique et Autimatique). First, FAIL (for FAult Inje
tion Lan-guage) is a language that permits to easily des
ribed fault s
enarios. Se
ond, FCI(for FAIL Cluster Implementation) is a distributed fault inje
tion platform whoseinput language for des
ribing fault s
enarios is FAIL. Both
omponents aims atemulating large-s
ale networks on smaller
lusters or grids.The FAIL language allows de�ning fault s
enarios. A s
enario des
ribes, usinga high-level abstra
t language, state ma
hines whi
h model fault o

urren
es. TheFAIL language also des
ribes the asso
iation between these state ma
hines and a
omputer (or a group of
omputers) in the network. The FCI platform is
omposedof several building blo
ks:1. The FCI
ompiler: The fault s
enarios written in FAIL are pre-
ompiled bythe FCI
ompiler whi
h generates C++ sour
e �les and default
on�guration�les.2. The FCI library: The �les generated by the FCI
ompiler are bundled with theFCI library into several ar
hives, and then distributed a
ross the network tothe target ma
hines a

ording to the user-de�ned
on�guration �les. Both theFCI
ompiler generated �les and the FCI library �les are provided as sour
e
ode ar
hives, to enable support for heterogeneous
lusters.3. The FCI daemon: The sour
e �les that have been distributed to the targetma
hines are then extra
ted and
ompiled to generate spe
i�
 exe
utable �lesfor every
omputer in the system. Those exe
utables are referred to as theFCI daemons. When the experiment begins, the distributed appli
ation to betested is exe
uted through the FCI daemon installed on every
omputer, toallow its instrumentation and its handling a

ording to the fault s
enario.FCI is a Debugger-based Fault Inje
tor be
ause the inje
tion of faults and the44

Chapter 2. State of the Artinstrumentation of the tested appli
ation is made using a debugger. This makesit possible not to have to modify the sour
e
ode of the tested appli
ation, whileenabling the possibility of inje
ting arbitrary faults (modi�
ation of the program
ounter or the lo
al variables to simulate a bu�er over�ow atta
k, et
.). From theuser point of view, it is su�
ient to spe
ify a fault s
enario written in FAIL to de�nean experiment. The sour
e
ode of the fault inje
tion daemons is automati
allygenerated. These daemons
ommuni
ate between them expli
itly a

ording to theuser-de�ned s
enario. This allows the inje
tion of faults based either on a globalstate of the system or on more
omplex me
hanisms involving several ma
hines (e.g.a
as
ading fault inje
tion). In addition, the fully distributed ar
hite
ture of the FCIdaemons makes it s
alable, whi
h is ne
essary in the
ontext of emulating large-s
aledistributed systems. FCI daemons have two operating modes: a random mode and adeterministi
 mode. These two modes allow fault inje
tion based on a probabilisti
fault s
enario (for the �rst
ase) or based on a deterministi
 and reprodu
ible faults
enario (for the se
ond
ase). Using a debugger to trigger faults also permits tolimit the intrusion of the fault inje
tor during the experiment. Indeed, the debuggerpla
es breakpoints whi
h
orrespond to the user-de�ned fault s
enario and then runsthe tested appli
ation. As long as no breakpoint is rea
hed, the appli
ation runsnormally and the debugger remains ina
tive.2.2.2 Model-based approa
hesTesting system robustness based on behavioral models
an be seen as a
onforman
etesting problem. Compared to traditional
onforman
e testing, the only di�eren
eis the expli
it fault dimension in the input domain, sin
e faults are key inputs thatthe resilien
e me
hanism is expe
ted to deal with.It is important, however, to note that the fault dimension has a strong impa
ton the implementation of the testbed. The experiments may ne
essitate the devel-opment of
omplex test platforms to be able to inje
t faults, syn
hronize them withthe a
tivity, and observe their e�e
t.In the following, we present most relevant
ontributions on model-based robust-45

2.2. Robustness Testing: Te
hniques and Toolsness testing approa
hes.The work presented in [46℄, builds a robustness testing approa
h based on the
onforman
e testing of
orre
tness properties. Thus, given a robustness property
P , a system implementation is robust i� the property P is satis�ed in presen
e offaults. This approa
h is based on the following elements:
• A formal model S des
ribing the nominal system behavior. That is, theexpe
ted behavior of the tested system when running in normal environmental
onditions. In this work, authors formalized S as a set of LTS's (LabeledTransition Systems).
• A fault model F representing the set of faults that may a�e
t the tested systemand
ause failures. This fault model must be a set of mutations from the model

S obtained by modifying ex
hanged parameter values, system transitions, et
.
• A robustness property P whi
h spe
i�es the expe
ted system behavior in pres-en
e of faults. P is a linear property des
ribing the set of robust exe
utionsequen
es of the tested implementation.Test
ases are then generated as follows:
• Generation of a degraded model Sd by deriving a mutation of S based on thefault model F .
• Generation of an observer O. This observer is a Rabin automata [58℄ des
ribingthe set of sequen
es of P . It identi�es the set of non robust sequen
es of Sd

• Generation of test
ases from Sd and O: non robust exe
ution sequen
es areextra
ted from Sd and transformed to test
ases by
omputing an asymmetri
produ
t with the observer O.Another model-based approa
h is proposed in [40℄ and
on
erns spe
i�
ally em-bedded real time systems. In this work, we
onsider also two system spe
i�
ations:a nominal and a degraded one. The degraded spe
i�
ation des
ribes
riti
al sys-tem a
tions that must be handled in stressful and/or unexpe
ted environmental
onditions. The robustness testing pro
ess pro
eeds as follows:46

Chapter 2. State of the Art1. Generation of test sequen
es from the nominal spe
i�
ation;2. Appli
ation of magneti
 radiations on the system under test;3. Running the generated test sequen
es;4. End of magneti
 radiations;5. Result analysis and partial verdi
t;6. Generation of mutant test sequen
es;7. Running mutant test
ases;8. Result analysis and �nal verdi
t.Authors also proposed another testing pro
ess based on test
ases generationand exe
ution based on the degraded spe
i�
ation.In [37℄, authors presented a robustness testing framework based on a di�erentmodel-based approa
h. This framework pro
eeds in two phases:1. First, an in
reased spe
i�
ation is built by integrating hazards in the nominalspe
i�
ation;2. Then, robustness test
ases are generated from the in
reased spe
i�
ation andexe
uted on the implementation.Hazards denote any events not expe
ted in the nominal spe
i�
ation of thesystem. Authors identi�ed three kinds of
ontrollable and representable hazards:invalid inputs, inopportune inputs (a
tions belonging to the spe
i�
ation alphabetbut not expe
ted in the given state) and unexpe
ted outputs.The �rst phase
onsists to integrate the representable hazards in the model of thenominal spe
i�
ation. The obtained model is
alled in
reased spe
i�
ation. Then,the robustness of the implementation is evaluated with respe
t to this in
reasedspe
i�
ation by generating and exe
uting test
ases as follows:1. De�nition of a Robustness Test Purpose (RTP). RTP is a part of the totalspe
i�
ation. It allows one to fo
us on a pre
ise behavior of the system.47

2.2. Robustness Testing: Te
hniques and Tools2. Computation of the syn
hronous produ
t SA⊗RTP where SA is the in
reasedspe
i�
ation.3. Building a Robustness Test Graph (RTG) based on the result of the previous
omputation. This graph des
ribes all tests
orresponding to a given RTP. Itis then redu
ed to a Redu
ed Robustness Test Graph RRTG whi
h
ontainsonly paths des
ribing a

eptable behaviors (a

ording to the RTP).4. Generation and exe
ution of robustness test
ases from the RRTG.

48

Chapter 3
Spe
i�
ation and Veri�
ation ofFault Inje
tion Pro
ess
Contents3.1 Introdu
tion . 503.2 Fault inje
tion spe
i�
ation 523.2.1 Preliminaries . 523.2.2 Fault inje
tion formalism . 533.2.3 Time extension . 533.2.4 Spe
i�
ation language . 543.3 Spe
i�
ation examples . 553.3.1 Operation Delete . 553.3.2 Operation Delay . 563.3.3 Operation Repli
ate . 563.3.4 Operation Insert . 573.3.5 Operation Corrupt . 573.4 Passive testing approa
h . 573.5 Con
lusion . 6049

3.1. Introdu
tion3.1 Introdu
tionFault Inje
tion
onsists in introdu
ing deliberate errors in a system and observe itsbehavior. This te
hnique is usually used to assess error re
overy and fault tolerantme
hanisms, to perform some dependability measures su
h as availability, integrityand performan
e or simply to understand the e�e
t of real faults. Fault inje
tion
an be applied both to hardware systems (HWIFI: Hardware Implemented FaultInje
tion) and software systems (SWIFI: Software Implemented Fault Inje
tion)but there has been more resear
h on SWIFI based tools, mostly be
ause they donot require any expensive hardware.SWIFI approa
hes are
ategorized into several
lasses a

ording to the type ofthe inje
ted faults and the inje
tion level. Two of these
ategories are parti
ularlyinteresting in the
ontext of our work : interfa
e faults and
ommuni
ation faults.At interfa
e level, faults a�e
t fun
tions input/output parameters or proto
ol mes-sages �elds. The values attributed to these parameters are generated di�erentlyfrom an approa
h (or tool) to another: some fault inje
tors provide generi
 inputsto all parameters whatever their types, others generate type-spe
i�
 inputs (likeBallista [52℄ whi
h assigns a set of values to ea
h parameter type) and there arealso some tools like Fuzz [35℄ whi
h generate random inputs for ea
h parameter.For
ommuni
ation faults, the inje
tion
on
erns the message ex
hanges betweensystem
omponents. The inje
tor
an
orrupt, delay or repli
ate messages. It
analso perform other operations a

ording to the fault model spe
i�ed by the tester.The main goal of fault inje
tion is experimental validation. As mentioned before,a fault inje
tion test experiment lies in the introdu
tion of faults from a givens
enario into an implementation under test (IUT), the target, to observe how itbehaves under the presen
e of su
h faults. However, relying only on experimentalmethods may be insu�
ient and in some
ases
an be seen as a la
k of thoroughnessand soundness, mainly during results analysis and validation. This
an be widelyavoided using formal methods.The use of formal methods for software and hardware design is motivated bythe expe
tation that, as in other engineering dis
iplines, performing appropriate50

Chapter 3. Spe
i�
ation and Veri�
ation of Fault Inje
tion Pro
essmathemati
al analyses
an
ontribute to the reliability and robustness of a design.In software testing, we rely on formal spe
i�
ations at various stages during the testpro
ess. We spe
ify the behavior of the implementation under test, the propertiesthat must be analyzed and all the needed operations to a
hieve the test purposes.This allows us to avoid any ambiguity or
on�i
t that may appear when dependingonly on experimental methods. By using formal methods, we
an
learly spe
ify thetest purposes and the test methodology. Hen
e, results analysis will be based onmathemati
al
on
epts avoiding any false interpretations and/or verdi
t issues.If we
hoose to rely on fault inje
tion to perform any kind of test (robustness,se
urity or even fun
tional testing), we need, not only to spe
ify the tested properties(robustness, se
urity or fun
tional properties) but also the fault inje
tion itself.We should provide a formal des
ription of the inje
ted faults and the way theyare inje
ted. Be
ause the verdi
t whi
h will be issued, will strongly be dependentof the inje
ted errors. Also, if resear
hers spe
ify formally their entire inje
tionmethodology, then it
an be easily studied, analyzed and eventually reprodu
edand/or extended by other testers in future time. Therefore, it
an be the best wayto study the e�e
ts of errors on real systems.In this
hapter, we propose a formal method for fault inje
tion spe
i�
ation andveri�
ation. We aim to provide a generi
 and formal system for fault modeling toallow more rigor in error des
ription and to avoid spe
i�
ation ambiguities. Themain
ontributions we bring in this work are the following:
• First, we propose a fault inje
tion spe
i�
ation formalism based on Hoare logi
[42℄ and time
onstraints. The proposed formalism allows spe
i�
ation of sev-eral types of faults and
an be used to test both
ommuni
ation proto
ols anddistributed systems. It is formal as it is based on a mathemati
al logi
. Thisavoids spe
i�
ation ambiguities and allows fault inje
tion validation. It is alsoa generi
 formalism be
ause it uses a high level abstra
t syntax. Therefore, itis well appropriate for the spe
i�
ation and the veri�
ation of various inje
tionoperations.
• Then, we propose a passive testing approa
h to verify the
orre
tness of the51

3.2. Fault inje
tion spe
i�
ationinje
tion pro
ess. The idea is to exploit the formal spe
i�
ation of faults as atest ora
le to
he
k the good exe
ution of the inje
tion pro
ess.3.2 Fault inje
tion spe
i�
ation3.2.1 PreliminariesHoare logi
Hoare logi
 [42℄ is a formal system whi
h provides a set of logi
al rules based onmathemati
al logi
. Its
entral feature is the Hoare Triple whi
h des
ribes how anexe
ution of a set of a
tions
hanges the state of some variables. A Hoare triple isof the form {P}C{Q} where C is a program (a set of a
tions) and P and Q areassertions expressed in a �rst-order logi
. Informally, a triple {P}C{Q} has thefollowing meaning: if C is exe
uted in a state satisfying pre
ondition P and if Cterminates then the �nal state satis�es post
ondition Q. Hoare logi
 has also axiomsand inferen
e rules that
an be used to reason about the
orre
tness of
omputerprograms. However, in this paper we are mostly interested by the formalization.Therefore, we fo
us only on Hoare Triples (a
omplete presentation of Hoare axiomsand inferen
e rules
an be found in [42℄).Fault inje
tor lo
ation and
apabilitiesWe
an rely on SWIFI approa
hes to test various aspe
t of a given system. Depend-ing on the test purpose, fault
an be inje
ted at di�erent system lo
ations : memory,hard disk driver,
ommuni
ation interfa
es, et
. In this work, we address the
aseof
ommuni
ation and interfa
e faults applied on distributed systems. Therefore,we assume that the fault inje
tor would be pla
ed between two agents of a globalsystem: A1 and A2; and that is able to perform the following a
tions:
• Inter
ept every message ex
hanged between A1 and A2.
• Apply some operations on the inter
epted message.
• Resend the faulty message. 52

Chapter 3. Spe
i�
ation and Veri�
ation of Fault Inje
tion Pro
essWe note that the inje
tion pro
ess is performed during a �nite period of time.Therefore, the messages ex
hanged between A1 and A2 during the inje
tion pro
essare of a �nite number.3.2.2 Fault inje
tion formalismBased on the above assumptions, we propose to de�ne a fault inje
tion operationwith a Hoare triple as follows.De�nition 3.1: (Inje
tion operation) an inje
tion operation is a Hoare triple
{P}C{Q} where :
• P spe
i�es a pre
ondition on the inter
epted message (its state before the exe-
ution of the inje
tion operation);
• C denotes the operation itself (identi�ed by its name and eventually a set ofparameters);
• and Q is a post
ondition whi
h states the e�e
t of the operation exe
ution onthe inter
epted message.A
ommuni
ation message
an be
onsidered as a �nite set of elements. Ea
helement des
ribes a part or a �eld of this message. Therefore, we
an spe
ify formallya
ommuni
ation message as a �nite
olle
tion (a set where repli
ates are permitted)of elements S = {elt1, ..., eltn}. We spe
ify also the set of all inje
tion operationsexe
uted during an inje
tion experiment as a �nite set of inje
tion rules R su
h asea
h inje
tion rule r ∈ R spe
i�es a Hoare triple des
ribing an inje
tion operationapplied on an inter
epted message, as follows.

{P (S)} OperationName(param1, ..., paramn) {Q(S)}3.2.3 Time extensionThe fault inje
tion formalization presented above
an be used to spe
ify many in-je
tion operations. However, as it is based on the basi
 de�nition of Hoare logi
53

3.2. Fault inje
tion spe
i�
ationas it was introdu
ed in [42℄, it does not support time spe
i�
ation. Thus, we areunable to spe
ify timed inje
tion operations like for example the delaying of mes-sages; whereas time is probably one of the most important properties that must be
onsidered when testing system reliability. Therefore, instead of using the
lassi
alHoare logi
, we propose to rely on an extended version whi
h supports real-timespe
i�
ation.In [44℄, the authors extended Hoare logi
 to real-time. They de�ned spe
ialvariables and some primitives to allow time reasoning and illustrated their modelwith many spe
i�
ation examples. The proof of soundness and
ompleteness of thisextended model is given in [43℄.Based on this extension, we propose to spe
ify ea
h fault inje
tion operation asa Hoare triple where pre
onditions and post
onditions are expressed in �rst-orderlogi
 with the following primitives.
• We assume that the timing behavior of the fault inje
tor is des
ribed from theviewpoint of an external observer with his own
lo
k,
• we de�ne a time domain TIME = {τ ∈ ℜ|τ ≥ 0} and logi
al time variablesranging over TIME ∪ {∞}, su
h as t, t0, t1, ...

• We de�ne a spe
ial variable now whi
h ranges over TIME ∪ {∞} and refersto the global notion of time presented in the �rst point.3.2.4 Spe
i�
ation languageWe propose here a
ommon and generi
 spe
i�
ation language to be used for pre/-post
ondition spe
i�
ations.As we
onsider the
aptured messages as sets of elements, we de�ne a set of fun
-tions and predi
ates inspired from the set theory so that we will be able to spe
ifyall kinds of pre-and post
onditions related to sets.De�nition 3.2: (Spe
i�
ation primitives) given two sets A and B and a setelement elt, we de�ne the following primitives.
• A.isEmpty(): returns true i� A is an empty set;54

Chapter 3. Spe
i�
ation and Veri�
ation of Fault Inje
tion Pro
ess
• A.size(): returns the size (number of elements) of the set A;
• A.has(elt): tells whether the given element elt belongs to the set A;
• A.
ount(elt): tells how many time a given element elt o

urs in the
urrent setA;
• A.remove(elt): returns a set
ontaining the items in the
urrent set (A) ex
eptfor one of the given element elt.
• A.equals(B): returns true i� set A is equal to set B (they have the same sizeand the same elements);
• A.isSubSet(B):returns true i� every element of A is
ontained in B.We also de�ne a modi�er new(SetName) to refer to the set SetName after theexe
ution of an inje
tion operation. For example new(S) refers to the state of theset S after the inje
tion.3.3 Spe
i�
ation examplesWe present in this se
tion several examples to illustrate our spe
i�
ation formalism.Ea
h example des
ribes a possible inje
tion operation and provides its
orrespond-ing Hoare triple. As de�ned in the spe
i�
ation formalism, we will refer to ea
hinter
epted message as a set of elements S.3.3.1 Operation DeleteThe �rst operation whi
h we spe
ify is used to delete inter
epted messages. Weexpress it by a Hoare triple as follows.

{¬S.isEmpty()} Delete(S) {new(S).isEmpty()}We
an also spe
ify the deletion of one message element as follows.
{S.has(elt)} Delete(S, elt) {new(S).equals(S.remove(elt))}55

3.3. Spe
i�
ation examples3.3.2 Operation DelayThis operation is used to delay the forwarding of inter
epted messages. A parameter
n ∈ TIME spe
i�es the period of delay, whi
h means that the
aptured messagewill be kept for n time units before it is resent. The
orresponding Hoare triple isof the form:

{¬S.isEmpty() ∧ now = V al, V al ∈ TIME}

Delay(S, n)

{new(S).equals(S) ∧ now = V al + n + ε, ε ∈ TIME}In the pre
ondition, we spe
ify the time value before the exe
ution of operation
Delay. Then, in the post
ondition, we ensure that this value has been ex
eeded by
n time units. ε spe
i�es the very short extra delay that we may a

ept due to thedensity of the time domain.3.3.3 Operation Repli
ateThis operation is used to repli
ate message elements. The number of repli
ation isspe
i�ed by an argument n ∈ N+.

{S.has(elt)} Replicate(S, elt, n) {new(S).count(elt) = n ∗ S.count(elt)}We
an also spe
ify a repli
ation of all elements of the
aptured message asfollows.
{¬S.isEmpty()}

Replicate(S, n)

{∀ elt : S.has(elt)⇒ new(S).count(elt) = n ∗ S.count(elt)}We verify in the post
ondition that operation Replicate
reates n
opies of ea
helement
ontained in S. The universal quanti�er expression is true if for all elements
elt su
h as S.has(elt) is true, new(S).count(elt) = n ∗ S.count(elt) is also true.56

Chapter 3. Spe
i�
ation and Veri�
ation of Fault Inje
tion Pro
ess3.3.4 Operation Insert
{true} Insert(S, elt) {S.equals(new(S).remove(elt))}This inje
tion operation inserts extra data in the
aptured message. It
an be eithera mali
ious element or just a huge blo
 of insigni�
ant data in order to disturb the
ommuni
ation.3.3.5 Operation CorruptThis is a
ontent
orruption operation whi
h modi�es the
ontent of inter
eptedmessages before their forwarding. We spe
ify it with the following Hoare triple.

{¬S.isEmpty()}

Corrupt(S)

{new(S).size() = S.size() ∧ ¬new(S).equals(S)}In the post
ondition, we
he
k whether the message S keeps the same number ofelements, with a di�erent
ontent.3.4 Passive testing approa
hIf we want to in
lude a fault inje
tion me
hanism as a part of a
omplete testingmethodology, we have to verify and validate its behavior within the test
ontext.This is a very important step, be
ause it allows us to ensure that the spe
i�edinje
tion operations are properly implemented and performed. Otherwise, some
onfusion may o

ur during the test exe
ution. For example, if we are testing ase
urity proto
ol using a fault inje
tor that we
on�gured to delete some spe
i�
messages. Then, after the test exe
ution, how
an we be sure that the lost messageshave been e�e
tively deleted by the fault inje
tor and not lost due to a proto
olvulnerability or a system failure? This
onfusion
an be omitted if we had a meanto verify the good exe
ution of the performed inje
tion a
tions.It is also very important to note that this veri�
ation step must be performedafter ea
h experiment. The fa
t that the used fault inje
tor may have been already57

3.4. Passive testing approa
h

Figure 3.1: The passive testing approa
h: (a) Colle
ting the tra
e. (b) Che
kingtra
e
onforman
e w.r.t. inje
tion rules spe
i�
ation.tested and validated before, does not mean that it will behave
orre
tly in all situ-ations and
ontexts. The fault inje
tor is an extern element that we in
lude in ourtesting environment. Therefore, depending on this environment (whi
h may be ahostile or an experimental platform) it may work
orre
tly or not.In this se
tion, we present a passive testing approa
h to perform this kind ofveri�
ation. This approa
h allows one to
he
k the
onforman
e of a fault inje
tionpro
ess with respe
t to its formal spe
i�
ation given as a set of Hoare triple rules.Figure 3.1 gives an overview of the proposed te
hnique.First, we put some observation points (O.P.) at the fault inje
tor
ore to
olle
tan exe
ution tra
e during the inje
tion pro
ess. We assume here that we havea

ess to the fault inje
tor sour
e
ode so that we
an log all exe
uted operations orthat the used fault inje
tor provides a log �le
ontaining all ne
essary information.Otherwise, we
an put the O.P. at the fault inje
tor interfa
e (to
olle
t input/outputmessages), but in this
ase we
an just verify the pre/post
onditions independently58

Chapter 3. Spe
i�
ation and Veri�
ation of Fault Inje
tion Pro
essof the exe
uted operations, whi
h is not
onform to Hoare logi
 semanti
s.After the inje
tion experiment terminates, we analyze the
olle
ted tra
e to
he
kits
onforman
e with respe
t to the spe
i�ed fault inje
tion model (�gure 3.1.b). Wenote that this approa
h does not validate
ompletelty the used fault inje
tor but itallows testers to ensure if for a given experiment, the fault inje
tion has been wellperformed or not.The spe
i�
ation �le provided to the passive tester
ontains a set of inje
tionrules spe
i�ed as Hoare triples using the spe
i�
ation language presented in se
tion3.2.4. The passive tester will then exe
ute Algorithm 1 to
he
k whether the
olle
tedtra
e is
onform to the spe
i�ed inje
tion operations.Algorithm 1 Tra
e
he
king1: Require: HT[r℄: Hoare triple rules + Tr[l℄: tra
e �le;2: Ensure: Verdi
t[v℄: Verdi
t table;3: Initialization :4: for ea
h rule r ∈ HT do5: Verdi
t[r℄:=INCONCLUSIVE;6: for ea
h line l of Tr do7: if ∃r ∈ HT : (l |= r.precond) and (r.operation ≡ l.Operation) then8: if ¬(l |= r.postcond) then9: Verdi
t[r℄:=FAIL;10: (log the
urrent line whi
h violates the
urrent inje
tion rule)11: else12: if V erdict[r] 6= FAIL then13: Verdi
t[r℄:=PASS;The tra
e �le is formatted as follows. For ea
h exe
uted operation, the followinginformation are logged:
• Operation : the name and parameters of the exe
uted operation ;
• StartTime: the time at whi
h it starts its exe
ution;
• InMsg: the input message (the
aptured message on whi
h the
urrent opera-tion should be applied);
• OutMsg: the output message (the message returned by the
urrent operation);
• EndTime: the time at whi
h the
urrent operation �nishes its exe
ution.59

3.5. Con
lusionBased on that tra
e format, Algorithm 1 starts by an initialization step where itasso
iates an INCONCLUSIVE verdi
t to all inje
tion rules. INCONCLUSIVEverdi
t means that we are unable to verify the
orre
t implementation of a givenrule; either be
ause no line from the tra
e satis�es the rule pre
ondition or that theexe
uted operation is di�erent from the spe
i�ed one.After this �rst step, the algorithm veri�es for ea
h tra
e line l , if there ex-ists a rule r from the spe
i�
ation �le whose pre
ondition is satis�ed by l (l |=
r.precond) and if the exe
uted operation (l.Operation) mat
hes with the spe
i�edone (r.operation). If it does, the rule verdi
t is updated with a PASS/FAIL verdi
ta

ording to the
onforman
e of the spe
i�ed post
ondition (r.postcondition) w.r.t.the observed tra
e line.We note that ea
h inje
tion rule may be tested several times (ea
h time a tra
eline satis�es its pre
onditon). However, if the test failed on
e then the �nal verdi
tasso
iated to this rule will be FAIL. The
omplexity of the algorithm is straight-forward. At worst, an inje
tion operation might be
on
erned by all lines from thetra
e. Therefore, the
omplexity is O(n.m), where n is the number of the spe
i�edinje
tion rules (size of the table HT) and m is the tra
e length.In the
ase of a bla
k box testing, where we
annot log the exe
uted operations,we
an only observe the input/output messages with their relative input/outputtimes. Therefore, even if we
an modify Algorithm1 to
he
k whether the pre-andpost
onditions related to a given message are respe
ted, nothing
an be said aboutthe real implemented operations.3.5 Con
lusionFault inje
tion is a powerful strategy to test fault-tolerant proto
ols and distributedsystems. The �rst step in building a
omplete fault inje
tion pro
ess is the spe
i-�
ation of a fault s
enario for the test experiment. This in
ludes the spe
i�
ationof the fault inje
tor lo
ation and the type and time of inje
ted faults. In this
hap-ter, we presented a generi
 fault inje
tion formalism based on Hoare logi
 and timespe
i�
ation. We detailed its syntax and semanti
s and provided some spe
i�
ation60

Chapter 3. Spe
i�
ation and Veri�
ation of Fault Inje
tion Pro
essexamples to illustrate its use.On
e faults are spe
i�ed, one
an easily
ontrol the inje
tion pro
ess by verifyingits exe
ution. We proposed a passive testing approa
h whi
h uses the inje
tionspe
i�
ation to
he
k the inje
tion pro
ess. This way, we would be able to ensurethat the inje
tion is well performed and thus, we will avoid any ambiguity duringresult analysis.The proposed fault inje
tion formalism
ould also be exploited in other manners.For example, it would be interesting to study the possibility of automati
 generationof faults from the abstra
t Hoare spe
i�
ation, or to propose some fault inje
tionpatterns for di�erent testing purposes.

61

Chapter 4
A Formal Approa
h for Che
kingReal Time ConstraintsContents4.1 Introdu
tion . 634.2 Related work . 644.3 LTL and real time logi
s . 664.3.1 Real time extensions . 684.4 Passive testing algorithm . 704.4.1 XCTL and passive testing . 704.4.2 Test algorithm . 714.4.3 Corre
tness . 794.5 Real time patterns and experimental results 804.5.1 Periodi
ity . 804.5.2 Response . 804.5.3 Correlation . 814.5.4 Alternative . 814.6 Con
lusion . 8262

Chapter 4. A Formal Approa
h for Che
king Real Time Constraints4.1 Introdu
tionThe high
omplexity and the large variety of a
tual implemented systems as well asthe high degree required for their global performan
e, lead to in
reasingly
halleng-ing issues on developing approa
hes and te
hniques for veri�
ation and validationof
orre
tness properties.System requirements (also
alled
orre
tness properties) are a set of rules whi
hdes
ribe how data and other
riti
al resour
es of a given system should be managed.Usually, su
h requirements are de�ned by network and/or system administratorswhi
h are in
harge of implementing and
ontrolling the
riti
al me
hanisms of theirorganizations. Sin
e this set of rules
an be more or less
omplex, any spe
i�
ationambiguity
an lead to
on�i
ts or
reate se
urity threats. To avoid these dangeroussituations, administrators and test experts often rely on formal spe
i�
ation lan-guages to des
ribe their requirements. The
hoi
e of su
h formalism is
ru
ial as itdetermines the type of
orre
tness properties that
an be
arried and the reliabilityof the testing approa
h.De�ning time
onstraints as a way of
ontrolling system behaviors may be ane�
ient te
hnique to avoid temporal vulnerabilities. However, to ensure that asystem respe
ts the de�ned
onstraints, we need �rst to spe
ify them using the mostsuitable formalism (whi
h in this
ase must support time spe
i�
ations). Then,we may rely on formal testing methods whi
h o�er more rigor and e�
ien
y inveri�
ation pro
ess, to study the
onforman
e of the system behavior with respe
tto the spe
i�ed properties.Formal testing te
hniques
an be
ategorized into two main
lasses: (i) a
tivetesting approa
hes and (ii) passive testing approa
hes. In a
tive testing, systemimplementations are
he
ked by applying a set of test
ases (generated from a globalrequirement model) and analyzing their behavior; while in passive testing, we donot intera
t dire
tly with the tested system. Instead, we
olle
t system exe
utiontra
es and verify their
onforman
e with respe
t to
orre
tness properties.As a
tive testing requires dire
t intera
tion with the tested system, it is notalways possible to rely on it in all situations. For example, when the tested imple-63

4.2. Related workmentation does not provide any interfa
es or when the tested system is built upona set of
omponents running in their own environments and where there is no dire
tway to a

ess them (like
omposed Web servi
es for example). In su
h
ases, thereis a parti
ular interest of using passive testing te
hniques where the veri�
ation pro-
ess does not need any dire
t intera
tion with the tested system as it only analyzes
olle
ted exe
ution tra
es.In this
hapter, we propose a formal and generi
 framework for spe
i�
ation andveri�
ation of real time requirements on exe
ution tra
es. Our main
ontributionsare:
• A formal spe
i�
ation of real time properties. We formalize temporal prop-erties as XCTL(eXpli
ite Clo
k Temporal Logi
) [32℄ formulas to be able tospe
ify both simple and
omplex real time
onstraints.
• A passive testing algorithm to verify the
onforman
e of su
h requirementsagainst exe
ution tra
es;
• A proposition of real time patterns and an experimental study to show theperforman
e of the proposed algorithm.4.2 Related workLinear Temporal Logi
 (LTL) [55℄ is a well known mathemati
al logi
 whi
h hasbeen widely used in several testing domains. Broadly, we
an rely on LTL to spe
ifytwo types of
riti
al system requirements: safety properties and liveness properties.Safety properties state that nothing bad ever happens in the system. For example:an intruder never gets user or administrative privileges on the network or a
ontrollerdoes not allow the boiler temperature to rise above a
ertain level. On the otherhand, liveness requirements spe
ify the a
tive tasks that a system is designed todo i.e. they assert that "something good will eventually happen". For example, abanking system might have a liveness requirement stating that if a
he
k is depositedand su�
ient funds are available, the
he
k eventually
lears.64

Chapter 4. A Formal Approa
h for Che
king Real Time ConstraintsThese features made LTL strong enough to build frameworks for di�erent test-ing purposes su
h as se
urity, reliability and robustness. However, as it appearedthat LTL is very suitable for modeling se
urity issues, most resear
hes fo
used onproviding LTL-based approa
hes for testing system se
urity. In [23℄ for example,authors proposed a model
he
king approa
h for se
urity proto
ols based on the set-rewriting formalism
oupled with a subset of LTL. Their model allows spe
i�
ationsof assumptions on prin
ipals and
ommuni
ation
hannels as well as other se
urityrequirements. However, this approa
h does not support real time spe
i�
ations andit only validates se
urity properties with respe
t to the proto
ol spe
i�
ation andnot against its real implementation (a model
he
king approa
h).In [53℄, authors used temporal logi
 to build general intrusion dete
tion frame-work. They based their approa
h on a runtime monitoring algorithm to automat-i
ally verify temporal spe
i�
ations against a system exe
ution and raise intrusionalarms whenever the spe
i�
ation is violated. They used the EAGLE formalism tospe
ify temporal requirements. EAGLE [39℄ is a temporal logi
 formalism support-ing re
ursively de�ned temporal formulas parameterizable by both logi
al formulasand data expressions. Although it is possible to spe
ify some kind of real time prop-erties using this formalism (time interval spe
i�
ations), it is pra
ti
ally impossibleto address
omplex properties whi
h refer to
orrelated time
onstraints (temporal
onstraints de�ned with respe
t to other temporal
onstraints in the same formula).Another LTL-based framework for testing se
urity properties is presented in [68℄.In this paper, authors proposed to test se
urity poli
ies of a given system based ontest generation and exe
ution of se
urity rules from temporal logi
 spe
i�
ations.This approa
h su�ers from two main drawba
ks. First, they addressed a very limitedset of se
urity patterns as they restri
ted the syntax and semanti
s of their formalismto a small subset of linear temporal logi
. Se
ond, their approa
h does not supportreal time spe
i�
ations.It is important also to highlight other work whi
h aimed at providing real timeframeworks not based on LTL. For example in [69℄, authors proposed a generalframework for testing timed se
urity properties based on deonti
 logi
 and linear65

4.3. LTL and real time logi
stime spe
i�
ation. The same formalism was also used in [25℄ for monitoring Webservi
es. However, this formalism supports only spe
i�
ation of simple temporal
onstraints like those we
an spe
ify using bounded temporal operators (se
tion4.3.1). Moreover, the spe
i�
ation language is very
omplex (whi
h makes it hardto use in pra
ti
e) and the used deonti
 logi
 is highly se
urity oriented (whi
hmakes it di�
ult to apply on other testing purposes).The approa
h we propose in this work aims at providing a generi
 and formalframework for testing real time properties. We want to be as generi
 as possible sothat our approa
h
an be applied not only for se
urity testing (whi
h is a widelyknown appli
ation of LTL), but also for safety, robustness and other testing pur-poses.We propose to formalize real time requirements as XCTL formulas. This way,we would be able to spe
ify more
omplex temporal
onstraints than those
arriedby the above
ited approa
hes. Then, we propose an e�
ient monitoring algorithmbased on passive testing to
he
k su
h properties on exe
ution tra
es.4.3 LTL and real time logi
sLinear Temporal Logi
 (LTL) [55℄ is a spe
i�
 bran
h of temporal logi
 whi
h al-lows one to reason about both
ausal and temporal properties based on linear timesemanti
s.An LTL formula
onsists of atomi
 propositions, Boolean operators and temporaloperators. The operator © refers to the next state. E.g., ©a expresses that a hasto be true in the next state. ∪ is the until operator, where a∪ b means that a has tohold from the
urrent state up to a state where b is true. � is the always operator,stating that a
ondition has to hold at all states of a path, and ♦ is the eventuallyoperator that requires a
ertain
ondition to eventually hold at some time in thefuture. The syntax of LTL is given as follows, where AP denotes the set of atomi
propositions:De�nition 4.1 (LTL syntax) The BNF de�nition of LTL formulas is given asfollows: 66

Chapter 4. A Formal Approa
h for Che
king Real Time Constraints
φ := true|false|a ∈ AP |¬φ|φ1 ∧ φ2|φ1 ∨ φ2|φ1 → φ2|φ1 ≡ φ2|φ1 ∪ φ2| © φ|�φ|♦φThe semanti
s of LTL is expressed for in�nite tra
es. However, as in this workwe are dealing with "o�-line" testing using a pre-
olle
ted set of tra
es, we will
onsider the �nite LTL semanti
s as presented in [60℄.We de�ne a tra
e as a �nite list of events. Assume two partial fun
tions de�nedfor nonempty tra
es head : Trace → event and tail : Trace → Trace for takingthe head and tail respe
tively of a tra
e, and a total fun
tion length returning thelength of a �nite tra
e . That is, head(e t) = e, tail(e t) = t, length(end) = 0 and
length(e t) = 1 + length(t) where t is a tra
e, e is an event and end denotes theempty tra
e. Assume further that for any tra
e t that ti for some natural number i,denotes the su�x tra
e that starts at position i, whi
h position starting at 1. The�nite LTL semanti
s
an be de�ned as follows:De�nition 4.2 (LTL semanti
s) The satisfa
tion relation |=⊆ Trace×Formulawhi
h de�nes when a tra
e t satis�es a formula φ (written t |= φ) is de�ned indu
-tively over the stru
ture of the formulas as follows (where p is an atomi
 propositionand φ1 and φ2 are any formulas):
t |= true i� true,

t |= false i� false,

t |= p i� t 6= end and head(t) = p

t |= ¬p i� t 6|= p

t |= φ1 ∧ φ2 i� t |= φ1 and t |= φ2

t |= φ1 ∨ φ2 i� t |= φ1 or t |= φ2

t |= φ1 → φ2 i� t 6|= φ1 or t |= φ2

t |= φ1 ≡ φ2 i� t |= φ1 i� t |= φ2

t |= �φ i� (∀i ≤ length(t)) ti |= φ

t |= ♦φ i� (∃i ≤ length(t)) ti |= φ

t |= φ1 ∪ φ2 i� (∃i ≤ length(t)) (ti |= φ2 and (∀j < i) tj |= φ1)

t |=©φ i� t 6= end and tail(t) |= φ67

4.3. LTL and real time logi
s4.3.1 Real time extensionsAlthough LTL
an be used to spe
ify a wide range of temporal properties, it stillpresents some limitations regarding spe
i�
ations of real time systems as it does notprovide means to formalize real time
onstraints [56℄. Therefore, several approa
heshave been proposed to extend LTL formulas in order to support real time spe
i�
a-tions. These approa
hes
an be
lassi�ed into three main
ategories based on howtime values are spe
i�ed. In the following, we present and dis
uss these extensionsand justify our
hoi
e of XCTL.
Bounded temporal operatorsA
ommon way of introdu
ing real time in the syntax of LTL is to repla
e the un-restri
ted temporal operators by time-bounded versions. For example, the boundedoperator ♦[2,4] is interpreted as "eventually within 2 to 4 time units". Based on thisextension, one
an spe
ify properties like "every event p is followed by an event qwithin 3 time units" as follows.

�(p→ ♦[0,3]q)However, the bounded-operator notation
an relate only adja
ent temporal
on-texts. Consider, for instan
e, the property that "every request p is followed by aresponse q and, then, by another response r su
h that r is within 5 time units ofthe request p". While this kind of properties is very important, there is a
tuallyno dire
t way of expressing this "nonlo
al" timing requirement using time-boundedoperators.This short
oming of bounded temporal operators
an be remedied by extendingtemporal logi
 with expli
it referen
es to the times of temporal
ontexts. We dis
ussin the following paragraphs two of su
h methods: one based on freeze quanti�
ationand the other using a dynami
 state variable.68

Chapter 4. A Formal Approa
h for Che
king Real Time ConstraintsFreeze quanti�
ationThe idea of freeze quanti�
ation is based on the use of a freeze quanti�er ”x” insidean LTL formula to bind the asso
iated variable x to the time of the
urrent temporal
ontext: the formula x.φ(x) holds at the time t i� φ(t) does. Thus, in the formula
♦y.φ the time variable y is bound to the time of the state at whi
h φ is "eventually"true. By admitting atomi
 formulas that relate the times of di�erent states, we
anwrite the nonlo
al property that "every request p is followed by a response q and,then, by another response r su
h that r is within 5 time units of the request p" asfollows.

�x.(p→ ♦(q ∧ ♦z.(r ∧ z ≤ x + 5)))Expli
it
lo
k variableAnother way to spe
ify real time requirements is based on standard �rst ordertemporal logi
. The syntax uses a dynami
 state variable T (the
lo
k variable)and �rst order quanti�
ation for global variables overs the time domain. The
lo
kvariable assumes, in ea
h state the value of the
orresponding time. For example,the property "every request p is followed by a response q within 3 time units"
anbe spe
i�ed as follows.
�((p ∧ T = x)→ ♦(q ∧ T ≤ x + 3))Here, the global variable x is bound to the time of every state in whi
h p isobserved. We refer to the use of a
lo
k variable as the "expli
it-
lo
k" notation.The linear time logi
 whi
h is based on this te
hnique is
alled XCTL [32℄(eXpli
itClo
k Temporal Logi
). It is a real time logi
 whose assertion language for atomi
timing
onstraints allows the primitives of
omparisons and addition. Thus, thetiming
onstraints of XCTL are ri
her than those of the previous logi
s, whi
h pro-hibit the addition of time variables. Also, the de�nition of the
lo
k variable Tallows one to refer to the global time of the system, whi
h is not possible with freezequanti�
ation for example (as there is no global time referen
e) [56℄.69

4.4. Passive testing algorithmThese features make XCTL very suitable for spe
i�
ation and veri�
ation of
omplex real time properties. In fa
t, by using XCTL, one
an spe
ify both simpleand
orrelated time
onstraints and the use of a single global time variable makesthe spe
i�
ations easier. Therefore, we will rely on this logi
 to spe
ify real time
onstraints and propose a passive testing algorithm to
he
k this kind of
onstraintson events tra
es.4.4 Passive testing algorithmIn this se
tion we present our passive testing algorithm for veri�
ation and validationof real time properties. The algorithm inputs are a set of requirements spe
i�ed asXCTL formulas and an event tra
e. The aim is to provide a verdi
t about the
onforman
e of the tra
e with respe
t to the spe
i�ed properties.4.4.1 XCTL and passive testingFormally, we spe
ify the tra
e �le as a �nite set of
ouple {(e1, t1), ..., (ei, ti), ..., (en, tn)}where ea
h
ouple represents an event ei that o

urs at a time ti su
h as ∀i ∈
[1, n], ti < ti+1.As all time values in the tra
e represent event o

urren
e times, some typeof formulas
annot be
he
ked dire
tly. For example, a formula like P ∪ (T =

val)
annot be veri�ed be
ause T = val might not be observable on the tra
e(as it does not relate to an event o

urren
e). Therefore, we formally introdu
e thefollowing sub-grammar of XCTL whi
h allows to build only formulas where temporal
onstraints are
onne
ted to propositional variables with logi
al
onjun
tions.De�nition 4.3: The BNF de�nition of XCTL formulas addressed by our ap-proa
h is given as follows.
φ := true|false|p ∈ AP |p ∧ TC|¬φ|φ1 ∧ φ2|φ1 ∨ φ2|φ1 → φ2|φ1 ≡ φ2|φ1 ∪ φ2| ©

φ|�φ|♦φ

TC := T ∼ ax + cWhere ∼∈ {<,≤, >,≥,=}, T is the global
lo
k variable, x is a stati
 time variableand a, c are
onstants. 70

Chapter 4. A Formal Approa
h for Che
king Real Time ConstraintsThe de�nitions of the time domain and the set of
onstants are given in [32℄, aswell as the XCTL semanti
s whi
h we rely on, in this work.4.4.2 Test algorithmOur algorithm is based on the idea that LTL properties
an be
he
ked ba
kwardsby updating the verdi
t at ea
h step based on our knowledge of the future (as thetra
e is traversed from its end) [60℄. We will �rst start by an example of a simpleLTL formula (without temporal
onstraints) to show how it
an be
he
ked on atra
e. Consider, for instan
e, the following formula.
φ = �(P → ♦Q)The Breadth First Sear
h (BFS) order of this formula gives the following set ofsubfomulas.

φ1 = �(P → ♦Q)

φ2 = P → ♦Q

φ3 = P

φ4 = ♦Q

φ5 = QNow,
onsider a �nite tra
e of events trace = {e1, ..., en} (we will address time
onstraints later). One
an de�ne re
ursively a boolean matrix mat[1..n, 1..m] where
n is the length of the tra
e and m is the number of subformulas with the meaningthat mat[i, j] = true i� tracei |= φj . In our example it will be mat[1..n, 1..5] su
h as.
mat[i, 5] := (Q ∈ ei)

mat[i, 4] := mat[i, 5] ∨mat[i + 1, 4]

mat[i, 3] := (P ∈ ei)

mat[i, 2] := mat[i, 3]→ mat[i, 4] 71

4.4. Passive testing algorithm
mat[i, 1] := mat[i, 2] ∧mat[i + 1, 1]for all i < n, where ∨,∧,→ are ordinary boolean operators. For i = n, we needto initialize the matrix as follows.
mat[n, 5] := (Q ∈ en)

mat[n, 4] := mat[n, 5]

mat[n, 3] := (P ∈ en)

mat[n, 2] := mat[n, 3]→ mat[n, 4]

mat[n, 1] := mat[n, 2]An important observation is that, for ea
h event from the tra
e, we may needat worst informations about the previous event (the next one when addressed ba
k-wards). Therefore, instead to keep all the table mat[1..n, 1..m] whi
h would be quitelarge in pra
ti
e, one needs only to keep two rows mat1[i, 1..m] and mat2[i+1, 1..m]handling informations about the a
tual step and the next one. We will
all this ve
-tors now and next, respe
tively. We
an now present the passive testing algorithmwhi
h address all kind of LTL properties as in Algorithm 2 [60℄. Given an LTLformula φ and an event tra
e Tr = {e1, ..., en}, this algorithm
onsists of three mainphases:1. First we generate the set of subformulas in the BFS order of the tested LTLformula. Let {φ1, φ2, ..., φm} be the list of all generated subformulas. Thesemanti
s of �nite tra
e LTL allows us to determine the truth value of Tri |= φjfrom the truth values of Tri |= φj′ for all j < j′ ≤ m and the truth values of
Tri+1 |= φj′ for all j ≤ j′ ≤ m. This re
urren
e justify the ba
kward
he
kingorder of the algorithm.2. The se
ond step is an initialization loop. Before the main loop, we should�rst initialize the ve
tor next[1..m]. A

ording to the semanti
s of LTL, theve
tor next is �lled ba
kwards. For a given 1 ≤ j ≤ m, next[j] is
al
ulatedas follows: 72

Chapter 4. A Formal Approa
h for Che
king Real Time Constraints
• If φj is a variable then next[j] ← (φj ∈ en); Here, we only verify if theatomi
 proposition satis�es the last event from the tra
e;
• If φj is ¬φj′ for some j < j′ ≤ m then next[j]← not next[j′], where notis the negation operator on Booleans;
• If φj is φj1 Op φj2 for some j < j1, j2 ≤ m then next[j]← next[j1] op next[j2],where Op is any propositional operation and op is its
orrespondingBoolean operation;
• If φj is ©φj′ , �φj′ or ♦φj′ then
learly next[j] ← next[j′] due to thestationary semanti
s of the �nite tra
e LTL;
• If φj is φj1 ∪ φj2 for some j < j1, j2 ≤ m then next[j]← next[j2] for thesame reason as above.3. The last step is the main loop. Considering the dependen
es in the re
ursivede�nition of �nite tra
e LTL satisfa
tion relation, one must visit the remainingof the tra
e ba
kwards, so the loop index will vary from n− 1 down to 1. Theloop body will update the ve
tor now and at the end it will move it into theve
tor next to serve as basis for the next iteration. At a
ertain iteration i,the ve
tor now is updated ba
kwards as follows:
• If φj is a variable then now[j]← (φj ∈ en);
• If φj is ¬φj′ for some j < j′ ≤ m then now[j]← not now[j′]

• If φj is φj1 Op φj2 for some j < j1, j2 ≤ m then now[j]← now[j1] op now[j2],where Op is any propositional operation and op is its
orrespondingBoolean operation;
• If φj is ©φj′ then now[j] ← next[j′] sin
e φj holds now i� φj′ held atthe previous step (whi
h pro
essed the next event, the (i + 1)th);
• If φj is �φj′ then now[j] ← now[j′] ∧ next[j] be
ause φj holds now i�

φj′ holds now and φj held at the previous iteration;
• If φj is ♦φj′ then now[j]← now[j′]∨next[j] for similar reason as above;73

4.4. Passive testing algorithm
• If φj is φj1 ∪ φj2 for some j < j1, j2 ≤ m then now[j] ← now[j2] ∨

(now[j1] ∧ next[j]).After ea
h iteration next[1] says whether the initial LTL formula is validated by thetra
e. Therefore desired output is next[1] after the last iteration. The truth valueof this ve
tor element gives the �nal verdi
t (true ≡ PASS and false ≡ FAIL).Algorithm 2 Che
king LTL properties1: Require: An LTL formula φ and an event exe
ution tra
e Tr = {e1, ..., en}2: Ensure: A verdi
t about the
onforman
e of φ w.r.t. Tr3: Generate a set of subformulae in BFS order (φ1, ..., φm)4: / ∗ Initialization ∗ /5: for j=m downto 1 do6: if (φj is a variable) then7: next[j] := (φj ∈ en);8: if (φj == !φj′) then9: next[j] := (not next[j′]);10: if (φj == φj1 Op φj2) then11: next[j] := (next[j1] op next[j2]);12: if ((φj == ©φj′) || (φj == �φj′) || (φj == ♦φj′)) then13: next[j] := next[j′];14: if (φj == φj1 ∪ φj2) then15: next[j] := next[j2];16: /∗ Main loop ∗/17: for i=n-1 downto 1 do18: for j=m downto 1 do19: if (φj is a variable) then20: now[j] := (φj ∈ ei);21: if (φj == !φj′) then22: now[j] := (not now[j′]);23: if (φj == φj1 Op φj2) then24: now[j] := (now[j1] Op now[j2]);25: if (φj == ©φj′) then26: now[j] := next[j′];27: if (φj == �φj′) then28: now[j] := now[j′] ∧ next[j];29: if (φj == ♦φj′) then30: now[j] := now[j′] ∨ next[j];31: if (φj == φj1 ∪ φj2) then32: now[j] := now[j2] ∨ (next[j1] ∧ next[j]);33: next := now34: V erdict := next[1];The analysis of this algorithm is straightforward. Its
omplexity is ©(n.m)where n is the tra
e length and m is the number of subformulas generated from theLTL formula in the BFS order. 74

Chapter 4. A Formal Approa
h for Che
king Real Time ConstraintsWe now present our algorithm for
he
king an XCTL formula φ on a tra
e
Tr = {(e1, t1), ..., (en, tn)}. This algorithm is a extension of Algorithm 2 to supportreal time. It
onsists of the following steps:
• Initialization1. First, we link ea
h variable appearing in φ to a table
ontaining the set ofits temporal
onstraints. We de�ne therefore, the Temporal ConstraintsTable (TCT) su
h as: TCT [var, tci] returns the ith temporal
onstraintof the variable var;2. Then, we
reate a list ES whi
h
ontains all the temporal
onstraints ofthe XCTL formula. A
tually, this list represents an equation system. Ini-tially, all temporal
onstraints are marked as NOT_INSTANTIATED;3. After that, we generate the set of formulas in the BFS order of φ withouta

ounting the temporal
onstraints parts. It results for example in a setof formulas {φ1, φ2, ..., φm}.
• Initialization loop: This step is very similar to the initialization loop ofAlgorithm 2. We start by
al
ulating the truth value of the ve
tor next[j] for

1 ≤ j ≤ m, based on the last event from the tra
e (en, tn)� If φj is a variable var then next[j] ← (φj ∈ en). Then, if this variablesatis�es the
urrent event (next[j] ≡ true), we instantiate its temporal
onstraint with the timestamp of en i.e tn and we mark this temporal
onstraint as INSTANTIATED in the equation system ES. This isdue to the
onsidered XCTL grammar presented in De�nition 4.3, wherewe suppose that atomi
 propositions
an only be
onne
ted to temporal
onstraints by
onjun
tions.� the rest of
ases of φj is addressed exa
tly as in Algorithm 2.
• Main loop: The main loop is also similar to Algorithm 2 ex
ept for the
asewhere φj is a variable that satis�es the
urrent event tra
e ei (i.e now[j] ≡75

4.4. Passive testing algorithm
true) in whi
h
ase, it is addressed as above i.e we update its
urrent temporal
onstraint with the timestamp ti of
orresponding to the
urrent event.At the end of ea
h loop iteration, we update the �nal verdi
t based on thevalue of next[1], whi
h tells about the satis�ability of the tested formula without itstemporal
onstrains and the resolvability of the equation system ES. The equationsystem ES is resolvable i� all temporal
onstraints that it
ontains are instantiatedand that the system is
orre
t. The detailed algorithm is given in Algorithm 3.For illustration, let us take an example to show how this algorithm pro
eeds.Suppose we have an XCTL formula φ and a tra
e Tr su
h as:

φ = �((P ∧ T = x)→ ♦(Q ∧ T ≤ x + 3))

Tr = {(P, 5), (Q, 6)}The BFS order of formula φ without its temporal
onstraints gives the followingset of subformulas:
φ1 = �(P → ♦Q)

φ2 = P → ♦Q

φ3 = P

φ4 = ♦Q

φ5 = QThe Temporal Constraint Tables of variables P and Q and the equation system
ES are initialized as follows:
TCT [P, 0] = {T = x}

TCT [Q, 0] = {T ≤ x + 3}

ES = {(T = x, not_instantiated), (T ≤ x + 3, not_instantiated)}76

Chapter 4. A Formal Approa
h for Che
king Real Time Constraints
Algorithm 3 Che
king XCTL properties1: Require: An XCTL formula φ and an event exe
ution tra
e Tr = {(e1, t1), ..., (en, tn)}2: Ensure: A verdi
t about the
onforman
e of φ w.r.t. Tr3: Create a temporal
onstraint table TCT (TCT [var, tci] returns the ith temporal
onstraintrelated to variable var);4: Create a list ES
ontaining all temporal
onstraints (This is for the equation system);5: Generate a set of subformulas in BFS order (without a

ounting temporal
onstraint parts,i.e only LTL) (φ1, ..., φm)6: /∗ Initialization ∗/7: for j = m downto 1 do8: tc := 0; /∗To a

ess temporal
onstraints∗/9: if (φj is a variable var) then10: next[j] := (φj ∈ en);11: if (next[j]) then12: index := TCT [var, tc];13: tc := (tc + 1) mod NbTc(var);14: /∗NbT
(var) returns the number of temporal
onstraints related to variable var ∗/15: INSTANTIATE(ES, index, tn);16: /∗instantiates the
urrent temporal
onstraint based on the a
tual time value tn andmark it as "INSTANTIATED"∗/17: ...18: /∗ The rest of the initialization is like in Algorithm 2 ∗/19: if (all temporal
onstraints in ES are instantiated) then20: verdict := next[1] ∧ Resolve_ES(ES);21: /∗Resolve_ES(ES) returns true if the equation system is
orre
t∗/22: else23: verdict := next[1]24: if (Resolve_ES(ES)) then25: tc := 0;26: INIT (ES);27: /∗ INIT(ES) Undo all temporal
onstraints instantiations in ES and mark themNOT_INSTANTIATED ∗/28: /∗ Main loop ∗/29: for i = n − 1 downto 1 do30: for j = m downto 1 do31: if (φj is a variable var) then32: now[j] := (φj ∈ ei);33: if (now[j]) then34: index := TCT [var, tc];35: tc := (tc + 1) mod NbTc(var);36: INSTANTIATE(ES, index, ti);37: ...38: /∗ The rest of
ases is like in Algorithm 2 ∗/39: next := now;40: if (all temporal
onstraints in ES are instantiated) then41: verdict := next[1] ∧ Resolve_ES(ES);42: else43: verdict := next[1]44: if (Resolve_ES(ES)) then45: tc := 0;46: INIT (ES);

77

4.4. Passive testing algorithmFor the initialization loop, we would have en = Q and tn = 6. Therefore, theresult will be:
next[5] := true

next[4] := next[5] ≡ true

next[3] := false

next[2] := (next[3]→ next[4]) ≡ true

next[1] := next[2] ≡ trueThe temporal
onstraint of Q would be instantiated with the value of tn. There-fore, the equation system would be updated as follows:
ES = {(T = x, not_instantiated), (6 ≤ x + 3, instantiated)}For the main loop, we would have j = m = 5 and i = n−1 = 1 whi
h means thatthe
urrent event would be (P, 5). Thus, we would update the ve
tor now as follows:
now[5] := false

now[4] := (now[5] ∨ next[4]) ≡ true

now[3] := true

now[2] := (now[3]→ now[4]) ≡ true

now[1] := (now[2] ∧ next[1]) ≡ trueThe equations system would be:
ES = {(5 = x, instantiated), (6 ≤ x + 3, instantiated)}We
an see here, that all equations are instantiated and the system is
orre
t((x = 5) ∧ (x ≥ 3)). Therefore, the �nal verdi
t would be : PASS.78

Chapter 4. A Formal Approa
h for Che
king Real Time Constraints
next := now;

verdict := (next[1] ∧Resolve_ES(ES)) ≡ true

4.4.3 Corre
tnessWe now argue that Algorithm 3 is
orre
t with respe
t to the
he
king of an XCTLformula on a timed tra
e.Theorem 4.1: For a given tra
e Tr = {(e1, t1), ..., (en, tn)} and a given XCTLformula φ, Algorithm 3 issues a verdi
t PASS i� Tr |= φ.Proof: Algorithm 3 is an improvement of Algorithm 2 for
he
king real time
onstraints. It follows exa
tly the same logi
 and stru
ture of Algorithm 2 for
he
king the formula φ without its temporal parts (1). The
orre
tness of Algorithm2 is proven in [60℄ (2), therefore, we will fo
us here, on the treatment of the temporal
onstraints of φ.A

ording to the XCTL grammar presented in De�nition 4.3, ea
h propositionalvariable
an be
onne
ted to a temporal
onstraint of the form of T ∼ ax + c where
∼∈ {<,≤, >,≥,=}. Algorithm 3 starts by allo
ating a table TCT where it linksea
h propositional variable from φ to the list of its temporal
onstraints. Then,ea
h time a propositional variable from φ is validated on the tra
e Tr (a

ordingto Algorithm 2), Algorithm 3 instantiates its temporal
onstraint with the
urrenttimestamp from the tra
e and updates the table ES. The equation system table
ES gathers all temporal
onstraints of formula φ. Ea
h temporal
onstraints isinitially marked as not_instantiated and is updated to instantiated by Algorithm3. The instantiation
onsists of repla
ing the global time variable T of a giventemporal
onstraints by the timestamp ti of the tra
e event ei whi
h validates the
urrent propositional variable. At the end, the algorithm
he
ks if all temporal
onstraints in ES are instantiated and if the equation system is
orre
t i.e: ∀tc ∈
ES : tc is instantiated ∧ (

∧

i=1,n tci ≡ true) (tc is a temporal
onstraint).All temporal
onstraints are instantiated from the tra
e Tr itself (based on thesatis�ability relation of Algorithm 2) and the equation system is resolved based on79

4.5. Real time patterns and experimental resultsthese real timestamps values. Therefore, there
annot be any
ontradi
tion betweenthe addressed temporal values and those who appear really in the tra
e (3).Consequently, we
on
lude from (1), (2) and (3), that Algorithm 3 issues averdi
t PASS i� Tr |= φ.4.5 Real time patterns and experimental resultsIn this se
tion, we present an experimental study of our approa
h. First, we identifya set of real time requirements whi
h we formalize as XCTL formulas. Then, wetest an implementation of the presented algorithm and evaluate its performan
es.For more
onsisten
y, we propose to des
ribe these requirements as abstra
tpatterns spe
i�ed in XCTL. In the following, we introdu
e four of su
h patterns andillustrate them with real examples.4.5.1 Periodi
ityThe �rst pattern we identify relates to events that must be hold periodi
ally toprevent eventual se
urity/safety issues. Given a proposition P , we
an spe
ify theperiodi
 o

urren
e of P by the following XCTL formula.
�((P ∧ T = x)→ ♦(P ∧ T = x + c))where the
onstant c represents the period duration. An example of this property
an be illustrated by a system whi
h sends periodi
ally a liveness message to informadministrators about eventual
rashes.4.5.2 ResponseThis pattern is usually used to spe
ify a simple request/response paradigm. Giventwo propositions P and Q, the following XCTL formula spe
i�es that ea
h o

ur-ren
e of P must be followed by Q within (resp. in exa
tly or after) c time units.
�((P ∧ T = x)→ ♦(Q ∧ T ∼ x + c))80

Chapter 4. A Formal Approa
h for Che
king Real Time Constraintswhere ∼∈ {<,≤, >,≥,=}. For illustration, we
an spe
ify for example that a
on-ne
tion establishment must not ex
eed 5 se
onds.
�((ConnectReq ∧ T = x)→ ♦(ConnectResp∧ T ≤ x + 5))4.5.3 CorrelationThis pattern is an example of
orrelated temporal
onstraints that we are able tospe
ify in XCTL. It
orresponds to the following situation. Given three propositions

P , Q and S; when P holds at a time x, it will be followed by Q at a time y andlater by S whi
h must hold within (resp. in exa
tly or after) x + y time units. Thissituation
an be spe
i�ed by the following formula.
�((P ∧ T = x)→ ♦((Q ∧ T = y)→ ♦(S ∧ T ∼ x + y)))where ∼∈ {<,≤, >,≥,=}.4.5.4 AlternativeThis last pattern is used to spe
ify alternative situations. Given three propositions

P , Q and S, the XCTL formula bellow spe
i�es the following statement : " Q holdsif S does not respond to P within (resp. in exa
tly or after)c time units".
�(¬((P ∧ T = x)→ ♦(S ∧ T ∼ x + c))→ ♦Q)where ∼∈ {<,≤, >,≥,=}.We
an
onsider, as an example of this pattern, a reliable system where ea
hrequest must be followed by a a
knowledgment. In the
ase where no a
knowledg-ment is re
eived within 10 se
onds, a
an
ellation message must be sent to abortthe request.To study the performan
es of our approa
h, we relied on these patterns to testan implementation of Algorithm 3. Experiment results are shown in �gure 4.1.In this �gure, we vary the tra
e length and study the evolution of exe
ution timeof our algorithm with respe
t to the type of the used pattern. The �gure representsevolution time
urves of the four patterns presented above (periodi
ity and response81

4.6. Con
lusion

Figure 4.1: Experimental resultspattern are represented by a single
urve as we
onsider that periodi
ity pattern
anbe seen as a parti
ular
ase of response).The three
urves are growing in approximately a linear manner with a slightinterval di�eren
e between them due to the
omplexity of the addressed pattern.Periodi
ity and response patterns are less
omplex, therefore, their
urve is thelowest one. The performan
es shown by
orrelation and alternative patterns arealmost the same. Alternative
urve is higher be
ause we
hose a
omplex alternativeformula (whi
h in
ludes a response formula), otherwise it would be mu
h lower.The approximative linearity of
urves
on�rms the theoreti
al analysis of Algo-rithm 3. Indeed, in this algorithm ea
h state (event) from the tra
e is visited onlyon
e but it is used to
he
k the satis�ability of all derived formulas in BFS order.That is why the exe
ution time is proportional to the length and the
omplexity ofthe tested formula (in addition to the tra
e length).4.6 Con
lusionIn this
hapter, we proposed a formal approa
h to test real time properties spe
i-�ed as XCTL formulas. One of the main results we got in this work, is to be ableto spe
ify and
he
k
omplex
orre
tness properties with
orrelated temporal
on-straints i.e properties whi
h
ontain temporal
onstraints de�ned with respe
t toother temporal
onstrains in the same formula.82

Chapter 4. A Formal Approa
h for Che
king Real Time ConstraintsWe also tested the proposed passive testing algorithm on a set of real time pat-terns and dis
ussed the obtained results. These patterns are probably not exhaustiveand must be taken only as examples to illustrate the e�
ien
y and reliability of ourapproa
h.As future work, we are expe
ting to upgrade our algorithm for runtime
he
kingso that we
ould deploy it as an online monitor. This way we
ould dete
t violationsas soon as they happen and thus, avoid eventual atta
ks and/or dangerous s
enarios.

83

Chapter 5
A Complementary Approa
h forTesting System Robustness
Contents5.1 Introdu
tion . 845.2 Related work . 865.3 Proposed approa
h . 875.3.1 Experimentation phase . 885.3.2 Veri�
ation of the inje
tion pro
ess 905.3.3 Veri�
ation of robustness requirements 915.4 Con
lusion . 92
5.1 Introdu
tionThe in
reasing
omplexity of
urrent software system requires more rigorous testingand validation te
hniques as any failure of su
h systems may lead to
atastrophi
�nan
ial or human
onsequen
es.The main purpose of the various existing testing te
hniques is to �nd defe
tson system implementations. Formal methods for
onforman
e testing, for exam-ple, have been widely used to test distributed system and
ommuni
ation proto
ols.84

Chapter 5. A Complementary Approa
h for Testing SystemRobustnessThese te
hniques aim at providing a verdi
t about the
onforman
e of a systemimplementation with respe
t to its formal behavior spe
i�
ation when the systemis running in its normal (proper) environment. Approa
hes for
onforman
e testing
an be either a
tive or passive. In a
tive testing, the tester intera
ts dire
tly withthe implementation under test (IUT). It provides inputs and
olle
ts the returnedoutputs whi
h it analysis to issue the
onforman
e verdi
t. In passive testing how-ever, the tester does not intera
t dire
tly with the tested system. It only observes itsbehavior (as exe
ution tra
es) and veri�es its
onforman
e with respe
t to a givenformal spe
i�
ation.A software system may behave
orre
tly when running in its proper environ-mental
onditions. However, if the system environment is disturbed by externalor non-expe
ted events, the system behavior may be abnormal and unpredi
table.This non-expe
ted behavior
an reveal many system failures and dangerous s
enar-ios. Therefore it is very important for a tester to study this kind of situations,parti
ularly for
riti
al systems and appli
ations.Testing the behavior of a system running in stressful environmental
onditionsis known as Robustness Testing. At the opposite of
onforman
e testing, robustnesstesting te
hniques
onsider that the tested system is running in an hostile environ-ment. Therefore, they do not look for a
orre
t behavior but an a

eptable one[57℄. The a

eptable behavior
an be assessed either empiri
ally (the system doesnot
rash or hang for example) or formally (robustness requirements are formallyspe
i�ed and
he
ked against the system).In this
hapter, we propose a
omplementary approa
h for testing system robust-ness based on passive testing and fault inje
tion te
hniques. We use fault inje
tionas a perturbation me
hanism to
reate stressful environmental
onditions. Then, werely on a passive testing te
hnique to
he
k the satis�ability of robustness require-ments on system exe
ution tra
es. The inje
ted faults and the robustness propertiesare formally spe
i�ed. The spe
i�
ation of the inje
ted faults is used to validate theinje
tion pro
ess and the spe
i�
ation of robustness requirements is to formally assesthe system robustness. 85

5.2. Related work5.2 Related workAs we presented in se
tion 2.2, robustness testing approa
hes
an be
ategorizedinto two
lasses: fault inje
tion approa
hes and model-based approa
hes.Fault inje
tion approa
hes are based on deliberate introdu
tion of errors in arunning system and an observation of its behavior. Su
h te
hniques are very usefulfor simulating hostile environments as they
an inje
t various kind of faults (interfa
efaults,
ommuni
ation faults, et
.). There exist several fault inje
tion tools fordi�erent kind of systems [62, 61, 65, 48℄. In se
tion 2.2.1, we gave an overview ofthe most relevant ones for distributed systems.The major issue with the existing fault inje
tion te
hniques, is that they donot rely on any e�
ient test ora
le. The evaluation of system robustness is basedsimply on basi
 observations. Faults are inje
ted during system exe
ution and if thesystem does not
rash or hang, it is
onsidered as robust. Also, the inje
tion pro
essis not
ontrolled. The inje
ted faults are usually not formally spe
i�ed and thereis a
tually no way to validate the inje
tion i.e. to ensure that the inje
tor reallyinje
ts the faults that it is supposed to inje
t (Chapter 3).Model-based te
hniques for robustness testing pro
eed di�erently. They inspirefrom
onforman
e testing approa
hes and parti
ularly from a
tive testing. The basi
idea is to introdu
e a fault dimension in the input domain of traditional
onforman
ea
tive testing approa
hes. This way, it would be possible to generate faulty inputswhi
h
an eventually lead to system failures. This kind of te
hniques for robustnesstesting is relatively re
ent. We exposed in se
tion 2.2.2, the most relevant ones.Probably, the greatest advantage of model-based te
hniques is their formal as-pe
t. At the opposite of fault inje
tion te
hniques, model-based approa
hes formal-ize the inje
ted faults as well as the expe
ted robust behavior. This way, robustnesstesting experiments are
ompletely
ontrolled. Therefore, there is a
tually no pos-sibility to issue in
orre
t verdi
ts. Also, as one
an spe
ify formally the robustbehavior, results analysis is mu
h deeper than a simple observation of a
rash ora hang. In fa
t, with model-based approa
hes, one
an spe
ify a set of robustnessrequirements to verify. This is very important be
ause some system failures may86

Chapter 5. A Complementary Approa
h for Testing SystemRobustnessnot be revealed as a
rash or a hang. They
ould be for example, a violation of
riti
al safety and/or a liveness requirements.However, model-based approa
hes su�er from two main short
omings. First,the set of inje
ted fault is related to the nominal input domain. In fa
t, faultsare
reated as mutants of the input symbols from the original system spe
i�
ation.Thus, the set of faults is limited by the set of mutants that
an be generated anddepend strongly on the used spe
i�
ation formalism. For example, if we rely on anon temporal spe
i�
ation formalism to des
ribe the system behavior, we would beunable to generate temporal faults.The se
ond issue with model-based approa
hes is due to the a
tive testing ar-
hite
ture on whi
h they rely on. As far as we know, all existing model-based ap-proa
hes for testing system robustness follow the a
tive testing ar
hite
ture whi
himposes dire
t intera
tions with the tested system. This ar
hite
ture presents somelimitations when the tested system is built upon a set of
omponents that
ouldnot be a

essed dire
tly. In this
ase, it is di�
ult to inje
t faults or to disturb
ommuni
ation between these di�erent
omponents of the tested system.The approa
h we propose in this
hapter is an hybrid approa
h
ombining faultinje
tion and formal te
hniques. This way, we
an take advantage of fault inje
-tion te
hnique whi
h we use to inje
t faults simultaneously on di�erent appli
ation
omponents and rely on formal passive testing as a test ora
le to analyze the globalsystem behavior.5.3 Proposed approa
hWe introdu
e in this se
tion our robustness testing approa
h. Its general ar
hite
tureis presented in �gure 5.1.We
an see in this �gure that the robustness testing pro
ess involves three mainstages. The �rst step (�gure 5.1 (a)) fo
uses on experimentations. During this phase,faults are inje
ted while the system under test (SUT) is running and exe
ution tra
esof both the fault inje
tor and the SUT are
olle
ted.In the se
ond step (�gure 5.1 (b)), we verify the inje
tion pro
ess. The exe-87

5.3. Proposed approa
h

Figure 5.1: Ar
hite
ture of the proposed robustness testing approa
h
ution tra
e of the fault inje
tor is veri�ed against the formal spe
i�
ation of theinje
ted faults and a
onforman
e verdi
t is issued. This step tells whether the in-je
tion pro
ess has been well performed i.e. if all spe
i�ed faults have been
orre
tlyinje
ted.Finally, the last step (�gure 5.1 (
))
on
erns the veri�
ation of robustness re-quirements. In this step, we rely on passive testing to issue a verdi
t about the
onforman
e of the
olle
ted SUT's exe
ution tra
e with respe
t to the providedformal spe
i�
ation of robustness requirements. In what follows, we detail ea
h ofthese steps.5.3.1 Experimentation phaseWe introdu
e a fault inje
tion me
hanism into the SUT environment to simulatestressful environmental
onditions. The fault inje
tion tool should be able to in-ter
ept all messages ex
hanged between the SUT and its external environment. It88

Chapter 5. A Complementary Approa
h for Testing SystemRobustnessrepresents, in fa
t, the faultload entity whi
h is responsible for the generation andthe inje
tion of di�erent kind of faults. In the
ase of a distributed system, the ex-ternal environment of the SUT
ould be any
ommuni
ation partner su
h as a
lientappli
ation, a system
omponent or any other entity that
ould stimulate the SUT.This entity represents the main sour
e of the workload in our testing ar
hite
ture.The experiment
onsists to run simultaneously the fault inje
tor and the SUT.A

ording to a pre-spe
i�ed inje
tion
ampaign, the fault inje
tor will inter
eptand
orrupt some of the ex
hanged messages. The way the inje
tion
ampaign isspe
i�ed is usually proper to the used fault inje
tor. Some tools are s
ript-driveni.e. faults are spe
i�ed using a dedi
ated s
ript language while other ones are moreuser friendly providing a GUI (Graphi
al User Interfa
e) to help the tester to
reateits inje
tion
ampaign.This di�eren
e in the way fault
ampaigns are spe
i�ed brings us to propose aformal and a tool-independent spe
i�
ation language for fault des
ription. Thus,in addition to the tool-spe
i�
 des
ription of the inje
tion
ampaign, one needs toprovide its equivalent using a formal language. This formal spe
i�
ation of faultswill then be used to verify the inje
tion pro
ess as it is explained in
hapter 3.During the experimentations exe
ution, we
olle
t tra
es from both the SUT andthe fault inje
tor. We de�ne for that a set of Observation Points (O.P) at di�erentappli
ation levels. As we have dis
ussed it in se
tion 3.4, the observation points forthe fault inje
tor must be de�ned inside the inje
tion tool and not at its interfa
elevel. This is important be
ause we need, for the veri�
ation of the inje
tion pro
ess,not only information about the states of messages before and after the inje
tion, butalso the inje
tion operations that were exe
uted. In the
ase where we rely on athird-party fault inje
tor whi
h does not o�er any possibility to insert observationpoints, we
an simply use its log �les as an inje
tion tra
e. As far as we know, allof the most relevant existing fault inje
tor provides su
h tra
es.For the SUT, the observation points are implemented at interfa
e level as shownin �gure 5.1 (a). This way, we are able to
olle
t a tra
e of all input/output messagesof the SUT. This
on�guration is usually the most proper one for several types89

5.3. Proposed approa
hof appli
ations. However, in the
ase of a distributed system, it would be alsointeresting to
olle
t a tra
e from the external
ommuni
ation partners to have aglobal view of the system behavior (�gure 5.2). What is important in both those
on�gurations, is that erroneous messages must also appear in the
olle
ted tra
eas they are important for robustness evaluation.

Figure 5.2: Observation points for distributed systems5.3.2 Veri�
ation of the inje
tion pro
essAs we have already motivated it in se
tion 3.4, it is important to verify, after ea
hinje
tion experiment, that the inje
tion pro
ess has been
orre
tly performed. Thisis due to the fa
t that the fault inje
tor is an external me
hanism that we introdu
einto the SUT environment to disrupt its behavior. The robustness of the SUT is thenevaluated based on how the tested system rea
ts to the inje
ted faults. Therefore,any failure in the behavior of the fault inje
tor
an seriously a�e
t the robustnessanalysis and may lead to an erroneous verdi
t. Suppose for example that we aretesting a
ommuni
ation proto
ol using a fault inje
tor that we
on�gured to deletesome spe
i�
 messages. Then, after the test exe
ution, how
an we be sure that thelost messages have been e�e
tively deleted by the fault inje
tor and not lost due toa proto
ol vulnerability or a system failure? This
onfusion
an be omitted only ifwe have a mean to verify the good exe
ution of the performed inje
tion a
tions.For our robustness te
hnique, we propose to rely on the formal approa
h weproposed in
hapter 3 to verify the good exe
ution of the inje
tion pro
ess. Thus,90

Chapter 5. A Complementary Approa
h for Testing SystemRobustnesswe propose to formalize the set of the inje
tion operations that we want to inje
t asa set of Hoare triples [42℄. Then, we use the proposed passive testing algorithm to
he
k the
onforman
e of this formal spe
i�
ation against the inje
tion tra
e thatwe
olle
t during the experiment (Algorithm 1). This way, we
an avoid any verdi
tambiguity due to an eventual erroneous inje
tion behavior.5.3.3 Veri�
ation of robustness requirementsWe de�ne robustness requirements as the set of properties that the tested systemmust satisfy when running in stressful
onditions. Some model-based approa
hes
onsider these properties as a subset or a variant (mutants) of the nominal fun
tionalmodel of the tested system [37, 40℄ while others, like in [46℄, propose to formalizethe robustness observation model independently from the behavioral model.In our approa
h, we will also
onsider that robustness requirements
an be inde-pendent from the nominal fun
tional ones, as we believe that
riti
al systems maybehave quite di�erently when they are disrupted. Nevertheless, we a

ept that insome situations, the robust behavior
ould be a variant of the fun
tional one. Forexample, a nominal fun
tional property of a server appli
ation is to response the re-
eived requests within a relatively short period of time. In abnormal environmental
onditions however, the server
ould be
on�gured to rea
t di�erently. For instan
e,to avoid a server
rash, the administrators
an
on�gure the server to
lose all itsexternal
onne
tions when it re
eives a huge number of requests within a very shorttime interval. This
ould be seen as a robustness property.In [40℄, authors used timed automata for modeling both the nominal and thedegraded behavior of the tested systems; while in [37℄, the authors relied on theInput Output Labeled Transition System (IOLTS) to model the nominal and thein
reased spe
i�
ation (
hapter 2). Timed automata and IOLTS are both veryknown formalisms for the spe
i�
ation of fun
tional properties. Therefore, it isquite understandable that if we
onsider robustness requirements as di�erent fromthe fun
tional ones, we need to rely on another spe
i�
ation formalism. In [46℄ forexample, the authors propose to spe
ify ea
h robustness requirement as an LTL91

5.4. Con
lusionformula. The set of all robustness requirements is then represented as a Rabinautomaton [58℄ su
h that the language generated by this automaton represents therobust behavior.LTL is a very suitable formalism for the spe
i�
ation of safety and livenessproperties. Safety and liveness are both very important requirements for any
riti
alsystem. A safety property spe
i�es that something bad never happen while a livenessproperty spe
i�es that something good will eventually happen.We believe that robustness requirements
an be spe
i�ed as safety and livenessproperties. A safety robustness requirement des
ribes how the robust system mustavoid a dangerous s
enario and a liveness robustness property spe
i�es how thesystem must rea
t to a stressful situation. Therefore, we propose for our approa
h,to model robustness requirements as a set of safety and liveness properties.However, as we mentioned in
hapter 4, LTL is not expressive enough to model
omplex requirements. We saw that several extensions have been proposed to evolveLTL expressiveness and we argued about the expressiveness of XCTL. Therefore,in our approa
h, we will rely on XCTL as a mathemati
al formalism for modelingrobustness properties. We spe
ify robustness requirements of the tested system asa set of XCTL formulas a

ording to the grammar de�ned in De�nition 4.3. Then,we use Algorithm 3 to
he
k the
onforman
e of su
h formulas against the
olle
tedexe
ution tra
e.5.4 Con
lusionWe presented in this
hapter a
omplementary approa
h for
he
king system robust-ness. Our approa
h uses fault inje
tion and passive testing te
hniques to assess theability of a given system to behave
orre
tly in presen
e of faults.The robustness testing te
hnique we proposed, takes advantages from both faultinje
tion and model-based approa
hes. The use of fault inje
tion allows one tode�ne a huge set of faults independently from the behavioral model of the testedsystem. On the other hand, relying on formal spe
i�
ation and passive testing helpthe testers to verify the good exe
ution of the inje
tion pro
ess and to evaluate the92

Chapter 5. A Complementary Approa
h for Testing SystemRobustnessrobustness of their system.In the same way, the proposed approa
h avoids some weaknesses of fault inje
tionand model-based te
hniques. By providing a test ora
le, we
an formally assess therobustness requirements of the tested system instead of just an empiri
al evaluationof the inje
tion results. Also, by using fault inje
tion te
hniques, we are able toinje
t a larger set of faults and thus, we are not limited by the behavioral model ofthe SUT.

93

Chapter 6
A Framework for Modeling andTesting Web Servi
es Robustness
Contents6.1 Introdu
tion . 956.2 Web servi
es te
hnology . 956.2.1 Servi
e Oriented Ar
hite
ture 966.2.2 Web servi
es . 976.2.3 Web servi
es
omposition . 1006.3 Instantiation of the robustness approa
h for Web servi
es . 1026.3.1 Spe
i�
ation of robustness requirements 1046.3.2 Spe
i�
ation of the inje
tion pro
ess 1066.4 WSInje
t . 1086.4.1 Motivation . 1086.4.2 Tool presentation . 1106.5 Case study . 1186.5.1 The Heater Controlling System (HCS) 1186.5.2 The Travel Reservation Servi
e (TRS) 1246.6 Con
lusion . 13194

Chapter 6. A Framework for Modeling and Testing Web Servi
esRobustness6.1 Introdu
tionWeb servi
es are be
oming in
reasingly widespread te
hnology and tend to emergeas a standard paradigm for program-to-program intera
tions over Internet. Thestrength of this te
hnology
omes probably from its ability to manage
ommuni-
ation between heterogeneous appli
ations and systems with a dramati
ally lower
ost. Consequently, Web servi
es have been widely used for building all kind ofdistributed systems for di�erent areas: business, multimedia, se
urity, et
.However, these inherent and powerful
hara
teristi
s of Web servi
es (widely dis-tributed and heterogeneous appli
ations) are paradoxi
ally, also their main weaknesspoints. This is due primarily to the problem of reusing and integrating older and/orthird-party servi
e
omponents whi
h may lead to several interoperability, se
urityand/or performan
e issues.Testing Web servi
es is therefore, a very important pro
ess whi
h has to beperformed, not only during the development of new Web servi
e appli
ations, butalso before and after deployment.In this
hapter, we propose a framework for modeling and testing robustness re-quirements of Web servi
es. It is a
tually an instantiation of the robustness testingapproa
h proposed in the previous
hapter, adapted for Web servi
es. The frame-work we propose here
an be used to test both
omposed and single servi
es. Itin
ludes an innovative fault inje
tion tool (WSInje
t) and uses a monitoring ap-proa
h based on passive testing for
he
king robustness requirements. Also, ourframework
an be used to test both experimental and real world servi
es as it doesnot require the sour
e
ode of the tested system (bla
k box testing).6.2 Web servi
es te
hnologyIn this se
tion, we will present the Web servi
es te
hnology and the Servi
e OrientedAr
hite
ture. We will des
ribe the main standard proto
ols used by those te
hnolo-gies and introdu
e to the most widespread servi
es
omposition te
hniques: servi
eor
hestration and servi
e
horeography. 95

6.2. Web servi
es te
hnology6.2.1 Servi
e Oriented Ar
hite
tureServi
e Oriented Ar
hite
ture (SOA) [34, 33℄ is a software ar
hite
tural paradigmthat aims to a
hieve loose
oupling among intera
ting software agents. The goalis to allow organizing and utilizing distributed
apabilities that may be under the
ontrol of di�erent ownership domains and implemented using various te
hnologysta
ks. An SOA ar
hite
ture allows the use of existing servi
e appli
ations as wellas the deployment of new servi
e
omponents. The deployed servi
es
an be usedeither by other servi
es (
omposed servi
es) or
lient appli
ations.Figure 6.1 shows the fun
tional pro
ess of an SOA ar
hite
ture. The servi
eproviders publish their hosted servi
es in a servi
e dire
tory. This dire
tory
anbe then a

essed by users (other servi
es or
lient appli
ations) looking for servi
esthat verify a set of spe
i�

riteria or
orrespond to a
ertain des
ription. If theservi
e dire
tory �nds the requested servi
es, it sends ba
k the servi
e
ontra
ts(
ontaining all the needed information to exploit the servi
es) to the
lient whi
h
an then, sele
t the desired servi
es and invoke the respe
tive providers.

Figure 6.1: Fun
tional model of an SOA ar
hite
tureWeb servi
es are a
tually the most important a
hievement of the SOA ar
hite
-ture. The reason is that, they
an be easily
omposed to build new appli
ations.Furthermore, a Web servi
e
an invoke other Web servi
es as it
an be invoked byother servi
es and a servi
e
omposition
an be deployed as a Web servi
e.96

Chapter 6. A Framework for Modeling and Testing Web Servi
esRobustness6.2.2 Web servi
esThe World Wide Web Consortium (W3C) 1 de�nes a Web servi
e as :" a soft-ware system designed to support interoperable ma
hine-to-ma
hine intera
tion overa network. It has an interfa
e des
ribed in a ma
hine-pro
essable format (spe
i�-
ally WSDL). Other systems intera
t with the Web servi
e in a manner pres
ribedby its des
ription using SOAP messages, typi
ally
onveyed using HTTP with anXML serialization in
onjun
tion with other Web-related standards".In other words, Web servi
es are appli
ation
omponents deployed through theInternet whi
h
an
ommuni
ate between ea
h other without worrying about theplatforms on whi
h they are running neither about the programming languages thatwere used to build them. They rely on a set of standard Web te
hnologies based onXML data stru
turing: SOAP proto
ol for message ex
hanges, WSDL for servi
edes
ription, UDDI for servi
e dis
overing and BPEL for servi
e or
hestration. TheWeb servi
es model is illustrated in �gure 6.2. It is in fa
t an instantiation of theSOA ar
hite
ture presented in �gure 6.1, for Web servi
es.

Figure 6.2: Web servi
es modelIn the following, we present the set of standard Web te
hnologies used by Webservi
es.1www.w3.org 97

6.2. Web servi
es te
hnologyXMLThe Extensible Markup Language (XML) [4℄ is a set of rules for en
odingdo
uments in a textual form. It has been de�ned by the W3C and
an be used toformat message ex
hanged between di�erent kind of appli
ations. For Web servi
es,we rely mostly on XML s
hema [5℄ for des
ribing data stru
ture.HTTPThe Hypertext Transfer Proto
ol (HTTP) [6℄ is a networking proto
ol fordistributed information systems. It is the foundation of data
ommuni
ation for theWeb. In the
ase of Web servi
es, it is used to forward the ex
hanged messages.WSDLThe Web Servi
es Des
ription Language (WSDL) [7℄ is an XML format fordes
ribing network servi
es as a set of endpoints operating on messages
ontainingeither do
ument-oriented or pro
edure-oriented information.A WSDL do
ument de�nes servi
es as
olle
tions of network endpoints, orports. In WSDL, the abstra
t de�nition of endpoints and messages is separatedfrom their
on
rete network deployment or data format bindings. This allows thereuse of abstra
t de�nitions: messages, whi
h are abstra
t des
riptions of the databeing ex
hanged, and port types whi
h are abstra
t
olle
tions of operations.The
on
rete proto
ol and data format spe
i�
ations for a parti
ular port type
onstitutes a reusable binding. A port is de�ned by asso
iating a network addresswith a reusable binding, and a
olle
tion of ports de�ne a servi
e. Hen
e, a WSDLdo
ument uses the following elements in the de�nition of network servi
es:
• Types: a
ontainer for data type de�nitions.
• Message: an abstra
t, typed de�nition of the data being
ommuni
ated.
• Operation: an abstra
t des
ription of an a
tion supported by the servi
e.
• Port Type: an abstra
t set of operations supported by one or more endpoints.98

Chapter 6. A Framework for Modeling and Testing Web Servi
esRobustness
• Binding: a
on
rete proto
ol and data format spe
i�
ation for a parti
ularport type.
• Port: a single endpoint de�ned as a
ombination of a binding and a networkaddress.
• Servi
e: a
olle
tion of related endpoints.SOAPThe Simple Obje
t A

ess Proto
ol (SOAP) [8℄ is a lightweight proto
ol in-tended for ex
hanging stru
tured information in a de
entralized, distributed envi-ronment. It uses XML te
hnologies to de�ne an extensible messaging frameworkproviding a message
onstru
t that
an be ex
hanged over a variety of underlyingproto
ols. The framework has been designed to be independent of any parti
ularprogramming model and other implementation spe
i�
 semanti
s. A SOAP mes-sages is divided into two parts: the SOAP header whi
h
an be used to spe
ifyauthenti
ation and other session management data, and the SOAP body whereoperation names and parameters are spe
i�ed (�gure 6.3).

Figure 6.3: SOAP message stru
tureUDDIThe Universal Des
ription, Dis
overy and Integration (UDDI) [9℄ is aplatform-independent, XML-based registry. It has been designed to be interrogatedby SOAP messages to provide a

ess to WSDL do
uments des
ribing the proto
ol99

6.2. Web servi
es te
hnologybindings and message formats required to intera
t with the set of web servi
es listedin its dire
tory.6.2.3 Web servi
es
ompositionWeb servi
es are
onsidered as self-
ontained, self-des
ribing, modular appli
ationsthat
an be published, lo
ated, and invoked a
ross the Web. In the
ase where nosingle Web servi
e is able to satisfy the fun
tionality required by the user, there is apossibility to
ombine existing servi
es together in order to ful�ll the request. Theresult of this
ombination is
alled a servi
e
omposition and it
an be deployed asa new Web servi
e.A Web servi
e
omposition
an be organized either as an or
hestration or asa
horeography. A Web servi
e or
hestration des
ribes the way Web servi
es
anintera
t together. An or
hestration de�nes parti
ularly the message sequen
es andthe system work�ow of the
omposition and there is always a main pro
ess (theor
hestrator) whi
h is in
harge of managing and
ontrolling all intera
tions betweenthe servi
es of the
omposition (the servi
e partners). The Business Pro
essExe
ution Language (BPEL) [10℄ is the most known standard language forde�ning Web servi
e or
hestrations.Web servi
es
horeography des
ribes also a servi
es
ollaboration. At the oppo-site of an or
hestration, in a servi
e
horeography there is no main pro
ess. It is ade
entralized
oordination where ea
h servi
e partner is responsible of a part of thework�ow.BPELThe BPEL language has be
ome a standard language for implementing Web servi
esor
hestrations. It has been widely used for building servi
e oriented ar
hite
tures.The BPEL language allows one to des
ribe both the behavioral interfa
e as well asthe servi
es or
hestration.
• The behavioral interfa
e de�nes an abstra
t pro
ess des
ribing the messageex
hanges between servi
e partners.100

Chapter 6. A Framework for Modeling and Testing Web Servi
esRobustness
• The or
hestration de�nes an exe
utable pro
ess (the BPEL pro
ess) whi
hspe
i�es the types and the order of the messages ex
hanged between servi
epartners.Compared to other existing or
hestration languages, BPEL o�ers the followingfeatures:
• Ex
eption handling (parti
ularly, fault and event ex
eptions).
• Handling syn
hronous �ows and parallel exe
ution of a
tivities.
• Possibility to des
ribe stateful transa
tions.
• Handling message
orrelation.
• Compensation support. A
ompensation
onsists to undo some steps in thepro
ess that has been already
ompleted su

essfully. BPEL o�ers a relativelyeasy way to perform this kind of operations.A BPEL pro
ess is dire
tly exe
utable by a BPEL or
hestration engine likea
tiveBPEL [11℄ or Ora
le BPEL Pro
ess Manager [12℄. The deployment and thepubli
ation of a BPEL pro
ess is performed as for any other Web servi
es, usingWSDL. Thus, operations, data and bindings of the BPEL pro
ess are all des
ribed,as well as all the needed elements for intera
ting with its servi
e partners like theiraddresses, the used
ommuni
ation proto
ol, the available operations, et
.The BPEL language handles also other Web servi
es standards as :
• WS-Addressing [13℄ whi
h provides transport-neutral me
hanisms for for-warding SOAP messages in both syn
hronous and asyn
hronous mode.
• WS-Poli
y [14℄ whi
h is an extension of WSDL supporting des
ription ofsome fun
tional aspe
t of servi
e partners.
• WS-Se
urity [15℄ whi
h is a SOAP extension for se
uring message ex
hanges.
• WS-ReliableMessaging [16℄ whi
h des
ribes a proto
ol that allows SOAPmessages to be reliably delivered between servi
e partners in the presen
e ofsoftware,
omponent, system, or network failures.101

6.3. Instantiation of the robustness approa
h for Web servi
es
• WS-Transa
tions [17℄ whi
h de�nes interoperable me
hanisms that allowtransa
tions between di�erent servi
e domains.Figure 6.4 depi
ts the Web servi
es ar
hite
ture sta
ks.

Figure 6.4: BPEL in the Web servi
es ar
hite
ture sta
kThe des
ription of a BPEL pro
ess
ontains four main parts: (i) de
laration ofvariables using types des
ribed or imported from the WSDL interfa
e, (ii) des
rip-tion of servi
e partners, (iii) spe
i�
ation of fault handlers and (iv) the main a
tivitydes
ribing the pro
ess behavior.6.3 Instantiation of the robustness approa
h for Webservi
esIn this se
tion we present an instantiation of the proposed robustness testing ap-proa
h for Web servi
es. Figure 6.5 illustrates the ar
hite
ture of our robustnesstesting framework.We
an see in this �gure the use of a Web servi
e fault inje
tor (WSInje
t [36℄)that we have developed for our testing platform. A detailed des
ription of this toolis presented in se
tion 6.4. This tool is used to inter
ept and possibly modify all
ommuni
ation messages ex
hanged between a Web servi
e and its
lient appli
ation102

Chapter 6. A Framework for Modeling and Testing Web Servi
esRobustness

Figure 6.5: A framework for testing Web servi
es robustnessor between a main servi
e (a BPEL pro
ess for example) and its servi
e partners.Therefore, this framework
ould be used either to test single or
omposed servi
es.A set of observation points is implemented between the
lient appli
ation (or themain servi
e) and the fault inje
tor as well as between the fault inje
tor and the restof servi
es of the
omposition. The exe
ution tra
es
olle
ted by these observationpoints are then aggregated following a stri
t sequential order (based on timestampsof event o

urren
es) to build a global tra
e. This later will be used to
he
k the
onforman
e of the robustness requirements spe
i�ed as a set of XCTL formulas.WSInje
t also provides an inje
tion tra
e whi
h
ontains information about allinter
epted messages, the inje
tion operations that were exe
uted and the forwardedmessages. This tra
e will be used to verify the inje
tion pro
ess against the faultsspe
i�
ation given as a set of temporal Hoare triples.The testing framework follows the bla
k-box testing approa
h. Therefore, it103

6.3. Instantiation of the robustness approa
h for Web servi
esrelies essentially on SOAP messages ex
hanges between the
omponents of the testedsystem as they are the only observable events. This means also that all robustnessrequirements as well as the inje
ted faults must be spe
i�ed at the SOAP level.6.3.1 Spe
i�
ation of robustness requirementsWe propose here to spe
ify Web servi
es robustness properties as XCTL formulas.As we are fo
using on
ommuni
ation messages and be
ause SOAP messages
an
arry both pro
edure
alls (operations) and data, we spe
ify ea
h event from thetra
e as a SOAP operation with its expe
ted parameter values a

ording to thefollowing syntax.
OperationName(BooleanExpression(Parameter1), ..., BooleanExpression(Parametern))For example, we
an a spe
ify a login request of a user Bob as follows:

Login(username ="Bob") 2Where username is a parameter name and ”Bob” is a possible value. As aresponse, the invoked servi
e may send a login noti�
ation whi
h we spe
ify asfollows.
LoginResponse(username ="Bob", state ="CONNECTED")We will
onsider that this kind of expression
onstitutes an atomi
 proposition.Therefore, in the implementation of Algorithm 3 for Web servi
es, the satis�abilityof φj ∈ ei is validated by
he
king on the tra
e that the
urrent event
orrespondsto the operation spe
i�ed in φj with the appropriate parameter values.For illustration, we will take an example of a Web servi
es or
hestration and spe
-ify some robustness requirements. The s
enario is an example of a heater
ontrollingsystem whi
h deploys three Web servi
es: the HeaterCmd, the Thermocouple andthe HeaterController. These Web servi
es
an be seen as interfa
es of real hard-ware devi
es used to
ontrol and monitor a Heater Coil as illustrated in �gure 6.6.2Here, we spe
ify only important information for our test purposes. For example, if we do notneed to know the used password, we do not spe
ify it.104

Chapter 6. A Framework for Modeling and Testing Web Servi
esRobustness

Figure 6.6: An example of a Web servi
es or
hestration s
enarioThe HeaterCmd servi
e allows power to be applied in small in
rements via twooperations: incPower and decPower. The Thermocouple allows
urrent temper-ature to be read ba
k via the getHeaterTemp operation. There is also a
lientappli
ation (Client) whi
h intera
ts with the main servi
e HeaterController viaits two operations : getTemp and setTemp. The �rst operation (getTemp) returnsthe
urrent temperature (by invoking operation getHeaterTemp) while the se
ondone, setTemp, uses a time-based algorithm that invokes incPower and decPoweroperations provided by the HeaterCmd to set the
orre
t power level. The
ur-rent temperature is monitored by HeaterController to provide feedba
k into thealgorithm.We
an summarize the general behavior of this system as follows:The
lient appli
ation is deployed as a monitor whi
h periodi
ally asks for the
urrenttemperature (getTemp). The heater
oil temperature value must always be betweena minimum and a maximum threshold. Otherwise, the
lient invokes operation
setTemp to readjust it to an average value (this value is spe
i�ed as a parameterof operation setTemp). In that
ase, the HeaterController, uses its time-basedalgorithm to gradually regulate the temperature to its average value by invokingoperations incPower and decPower.Based on this s
enario, we
an de�ne a set of robustness requirements to des
ribe
riti
al safety and liveness properties. In the following, we give examples of su
hproperties spe
i�ed as XCTL formulas.Rule 1: The
lient appli
ation must ask for the
urrent temperature ea
h 10105

6.3. Instantiation of the robustness approa
h for Web servi
esse
onds (Periodi
ity).
�((getTemp() ∧ T = x)→ ♦(getTemp() ∧ T = x + 10000))We suppose here and in the following that time units are expressed in millise
onds.Rule 2: The
lient must re
eive a response to its request within the following 5se
onds.

�((getTemp() ∧ T = x)→ ♦(getTempResponse() ∧ T <= x + 5000))Rule 3: When the temperature ex
eeds 150◦C, the
lient appli
ation must, withinthe following 5 se
onds, ask the HeaterController to readjust it to 100◦C.
�((getTempResponse(return >= 150) ∧ T = x)→ ♦(setTemp(Tmp =

100) ∧ T <= x + 5000))36.3.2 Spe
i�
ation of the inje
tion pro
essWSInje
t is a SOAP level fault inje
tor. This means that all implemented inje
tionoperations
on
ern only SOAP messages. We have already shown in
hapter 3 howwe
an use a temporal extension of Hoare logi
 to spe
ify formally fault operations.The same formalism
an be instantiated for SOAP messages as follows.A SOAP message
an be
onsidered as a set of XML elements.
SoapMsg = {XML_elt1,XML_elt2, ...,XML_eltn}Therefore, we
an spe
ify ea
h inje
tion operation as a Hoare triple as follows:

{P (SoapMsg)} OperationName(Param1, ..., Paramn) {Q(SoapMsg)}Where P (SoapMsg) is a pre
ondition on the inter
epted message and Q(SoapMsg)is the post
ondition.3"return" spe
i�es the returned value. 106

Chapter 6. A Framework for Modeling and Testing Web Servi
esRobustnessEa
h XML element from the SOAP message
an be a

essed using a pathstru
ture. For example SoapMsg.LoginRequest.username denotes the parameter
username of the operation LoginRequest
arried by the
aptured SOAP message
SoapMsg.To verify the inje
tion pro
ess, we built a passive tester prototype whi
h im-plements an instantiation of Algorithm 1 for Web servi
es i.e. it addresses onlySOAP messages. We use this tester to
he
k the
onforman
e of the inje
tion tra
e�le (
olle
ted during the inje
tion experiment) against the spe
i�ed set of inje
tionrules. These inje
tion rules are spe
i�ed following a s
ript grammar inspired fromthe spe
i�
ation language proposed in se
tion 3.2.4. For example, if we
onsiderthe Web servi
e or
hestration s
enario presented in the previous subse
tion, we
anspe
ify the following inje
tions:Inje
tion rule 1: Delay the forwarding of all temperature requests for 10 se
onds.{SoapMsg.has(getTemp) and $val==now}delay(10000){new(SoapMsg).equals(SoapMsg) and $val+10000<=now<=$val+10050}4Inje
tion rule 2: Ea
h time the
lient invokes operation setTemp(), delete themessage
ontent and forward an empty message.{SoapMsg.has(setTemp)} empty() {new(SoapMsg).isEmpty()}Note:In se
tion 3.3, we presented a set of examples to illustrate the use of our faultinje
tion spe
i�
ation formalism. Those examples were spe
i�ed using a high levelabstra
t language where the inje
tion operation names were given just as matterof examples. In pra
ti
e however, we will spe
ify the inje
tion operations followingexa
tly the same syntax provided by the used fault inje
tor. Thus, in the inje
tionrules spe
i�ed above, we used the syntax of inje
tion operations de�ned by the Webservi
e fault inje
tor (WSInje
t) on whi
h we will rely for our experimentations.The next se
tion gives a detailed presentation of this tool.4Words preeded by a $ de�ne variables and time values are spe
i�ed in millise
onds107

6.4. WSInje
t6.4 WSInje
tIn this se
tion we present WSInje
t [36℄. A fault inje
tion tool for Web servi
es thatwe have developed and integrated in our testing framework.WSInje
t is a s
ript-driven fault inje
tor able to inje
t both interfa
e and
om-muni
ation faults. Unlike other existing Web servi
es fault inje
tors, WSInje
tallows users to
ombine several types of fault in one inje
tion statement and is ableto handle either single or
omposed servi
es.6.4.1 MotivationIn the
ase of Web servi
es, faults
an be inje
ted at both interfa
e and
ommuni-
ation levels. Interfa
e faults a�e
t operations input/output parameters and otherSOAP message �elds by
orrupting data or assigning invalid parameter values. Onthe other hand,
ommuni
ation faults
onsider SOAP messages as bla
k boxes. In-stead of
orrupting
arried data, SOAP messages are repli
ated, deleted or delayed.The existing fault inje
tion tools for Web servi
e
an be
ategorized into twomain
lasses. First, we �nd all network level fault inje
tors whi
h were not origi-nally developed for Web servi
es but whi
h
ould be very useful for inje
ting
om-muni
ation faults. Do
tor(integrateD sOftware fault injeCTiOn enviRonment) [62℄,Or
hestra [61℄ and DEFINE [48℄ are all good examples of su
h inje
tors whi
h �tperfe
tly on Web servi
es.However, as
ommuni
ation faults are not enough for testing Web servi
e de-pendability, other resear
hes fo
used on providing inje
tion tools able to de
odeSOAP messages so that they
an inje
t signi�
ant interfa
e faults. This
onstitutesthe se
ond fault inje
tor
lass: Web servi
es fault inje
tors.Although there exist several Web servi
e fault inje
tors able to de
ode and
or-rupt SOAP messages (WSBang [18℄, PUPPET [24℄, GENESIS [49℄,et
.), only a verysmall subset of them
an inje
t both interfa
e and
ommuni
ation faults. In fa
t,tools like WSBang, PUPPET and GENESIS are more like a
tive testers or
lient-side inje
tors than real network level fault inje
tion me
hanisms. They all pro
eedlike a
lient appli
ation whi
h
onsumes the tested Web servi
e (�gure 6.7). They108

Chapter 6. A Framework for Modeling and Testing Web Servi
esRobustnessparse the WSDL �le provided by the tested servi
e and generate a set of test suites.Ea
h test suite is a set of sequential invo
ations of the Web servi
e operations. Themain di�eren
e
ompared to a
tive testing tools is the fault inje
tion step. Beforeinvoking the tested servi
e, faults are inje
ted inside the SOAP messages to
orrupt
arried data.
Figure 6.7: A
lient-side fault inje
tion ar
hite
tureA
tually, this kind of tools su�ers from two main drawba
ks. First, they
an onlyinje
t interfa
e faults by
orrupting data and pro
edure parameters inside SOAPmessages (
ommuni
ation faults su
h as message delaying or message deletion
an-not be performed).The se
ond problem
on
erns the type of tests that
an be
ondu
ted. As su
htools pro
eed by simulating servi
e
lients, only simple Web servi
es
an be tested.The fault inje
tor needs to
onsume the tested servi
e. Therefore, it is impossibleto use it for testing
omposed Web servi
es (testing
ommuni
ation between ser-vi
e partners) or to test
ommuni
ation between a servi
e and its original
lientappli
ation (as it will be substituted by the inje
tor itself).To address these problems, we need to rely on a fault inje
tor me
hanism whi
h
ould inter
ept
ommuni
ation messages ex
hanged between servi
e partners or be-tween a servi
e and its
lient appli
ation.As far as we know, WS-FIT [50℄ is
urrently the only Web servi
e fault inje
torwhi
h really �ts to this ar
hite
ture. However, WS-FIT needs to implement a setof hooks and triggers at the SOAP proto
ol layers of every ma
hine hosting oneor more tested servi
es (�gure 6.8). This approa
h is very useful when testingse
ure SOAP
ommuni
ations where all messages are signed and/or en
rypted. Inthis
ase, the implemented hooks and triggers are used to inter
ept messages justbefore their en
ryption or signature, to be able to inje
t signi�
ant errors. However,there is absolutely no need to modify the proto
ol layers when testing unse
ured109

6.4. WSInje
t
ommuni
ation be
ause this approa
h is very intrusive and
an, unintentionally,disrupt the
ommuni
ation.

Figure 6.8: WS-FIT ar
hite
tureMoreover, WS-FIT
an only be used to test Web servi
es deployed in a
om-pletely
ontrolled testing environment (be
ause we need to modify the SOAP pro-to
ol layers). Thus, we
annot rely on this tool to test real world Web servi
es i.e.Web servi
es deployed by a third-party and running in their own environment.For all these reasons, we propose WSInje
t: a Web servi
e fault inje
tor able toinje
t both
ommuni
ation and interfa
e faults while being
ompletely independentfrom the environments of the tested servi
es. WSInje
t
an test
omposed andsimple Web servi
es regardless whether they are running on real world or on atesting environment.6.4.2 Tool presentationFigure 6.9 depi
ts WSInje
t ar
hite
ture, designed to be simple and loosely
oupled.Core WSInje
t
omponents are Proxy/Monitor and Fault Inje
tion Exe
u-tor. Proxy/Monitor is the SOAP messages inter
eption and failure monitoringpoint. Fault Inje
tion Exe
utor is the point where e�e
tive fault inje
tion o

urs.Other important
omponents are Controller, S
ript Compiler and Graphi
al110

Chapter 6. A Framework for Modeling and Testing Web Servi
esRobustness

Figure 6.9: WSInje
t ar
hite
tureUser Interfa
e (GUI). WSInje
t was fully developed in Java.Controller is the starting point of the tool; it a
tivates and starts other
om-ponents. S
ript Compiler is the
omponent that reads a fault inje
tion
ampaigns
ript and
onverts it into a pro
essable format and GUI is responsible for showingdata
olle
ted by the Proxy/Monitor. All these
omponents are explained belowin more details.Proxy/MonitorProxy/Monitor is a 2-in-1
omponent that inter
epts SOAP messages and monitorssystem behavior. User is able to sele
t the port on whi
h the proxy should be boundto. Servi
es of the
omposition should then be
on�gured to
onne
t through aproxy on the sele
ted port and on the IP address of the ma
hine where WSInje
t isrunning. If the tested system presents any kind of failure (like
rashing for example),Proxy/Monitor will keep tra
k of this behavior.More spe
i�
ally, Proxy is a so
ket-based HTTP proxy, implemented using thejava.net.So
ket and java.net.ServerSo
ket
lasses. It inter
epts every HTTP mes-sage ex
hanged by Web servi
e partners, parses it, sends it to the Fault Inje
tionExe
utor, re
eives the (possibly) modi�ed message and �nally sends it to its originaldestination. Non-SOAP HTTP messages are also inter
epted, but these su�er nomodi�
ation before being redire
ted to their original destination.111

6.4. WSInje
tS
ript CompilerFault inje
tion
ampaigns are des
ribed by s
ripts. S
ript Compiler is the
omponentresponsible for
ompiling a s
ript and transforming it into aCampaignDes
riptor.A CampaignDes
riptor is an Abstra
t Syntax Tree (AST) that is WSInje
t's internalrepresentation of a s
ript. It is part of the Fault Inje
tion Exe
utor
omponent, morethoroughly explained later.S
ripts are simple text �les
ontaining one or more FaultInje
tionStatements.FaultInje
tionStatements are
omposed of a ConditionSet and a FaultList. AConditionSet
onsists of one or more Conditions and a FaultList is
omposed ofone or more Faults. FaultInje
tionStatements work as
ondition-a
tion statements:when a message arrives, if it mat
hes a set of
onditions, a list of faults is inje
tedon it. Conditions are similar to boolean methods and faults are similar to voidmethods. Conditions have no de�ned order -hen
e being grouped in a set; faultsdo have a de�ned order -hen
e being grouped in a list. An abstra
t and simpli�edgrammar of the s
ript language is given in Figure 6.10.

Figure 6.10: S
ript language grammarTable 6.1 presents available
onditions and Table 6.2 presents available faults tobe inje
ted (or "a
tions" to be taken). Name/Class is both the name of that
on-dition or fault and its
orresponding Java
lass on WSInje
t
ode. Syntax des
ribeshow that
ondition or fault is expressed on the s
ript language.Interfa
e faults modify
ontents of SOAP messages, while
ommuni
ation faultsa�e
t the delivery of requests and/or responses. To emulate a message modi�
ation,user should simply
hoose the most appropriate interfa
e fault for his/her needs.112

Chapter 6. A Framework for Modeling and Testing Web Servi
esRobustness Name Syntax Des
riptionContainsCondition
ontains(StringstringPart) Mat
hes SOAP mes-sages
ontaining thespe
i�ed string.URICondition uri(String uri-Part) Mat
hes request mes-sages sent to a URI
ontaining the spe
i�edstring, and responses tothose messages.MessageDestinationCondition isRequest() Mat
hes request mes-sages, either from a
lient to a servi
e, orfrom a servi
e to an-other servi
e.isResponse() Mat
hes response mes-sages either from a ser-vi
e to a
lient, or froma servi
e to a anotherservi
e.OperationCondition operation(StringoperationName) Mat
hes request mes-sages sent to a WebServi
e operation whosename is the spe
i�edstring, and responses tothose messages.Table 6.1: Available
onditionsTo emulate an unresponsive Web Servi
e (i.e., network pa
ket loss), user has twooptions: (1) use DelayFault to delay a response message (possibly by a very largeamount of time); (2) use Conne
tionClosingFault to abruptly
lose the
one
tionbetween proxy and
lient without returning any HTTP answer to the
lient. Notethat a more a

urate emulation of unresponsive servi
es/pa
ket loss is not possibleworking at the HTTP level like WSInje
t does. A

ording to [59℄, this would requireworking at the network level.Conditions
an be
ombined by using the '&&' (AND) operator, meaning a Con-ditionSet will only be satis�ed when all individual
onditions are satis�ed. Faults
an be
ombined by the ',' (
omma) operator, meaning all of them will be inje
ted,on the spe
i�ed order. The following inje
tion rules show a sample s
ript:113

6.4. WSInje
tName Syntax Des
riptionINTERFACE FAULTSStringCorruptionFault stringCorrupt(StringfromString, StringtoString) Repla
es all o

uren
es offromString with toString.Works at String level. IgnoresXML syntax (may be used torepla
e XML
hara
ters like'<' and '>').XPathCorruptionFault xPathCorrupt(StringxPathExpression,String newValue) Repla
es all mat
hes of anXPath [19℄ expression to thevalue spe
i�ed. Can be usedto modify either elements orattributes.Multipli
ationFault multiply(StringxPathExpression,int multipli
ity) Multiplies a part of a messageby a number of times. Forexample, multiply("/", 2)dupli
ates the whole mes-sage
ontents, while multi-ply("/Envelope/MyNode",3)tripli
ates only the MyNodeXML element.EmptyingFault empty() Empties the SOAP message,delivering an HTTP messagewith no
ontents.COMMUNICATION FAULTSDelayFault delay(int delayInMil-lise
onds) Delays a message delivery bythe spe
i�ed number of mil-lise
onds.Conne
tionClosingFault
loseConne
tion() Closes the
onne
tion between
lient and proxy.Table 6.2: Available faultsuri("Hotel"): stringCorrupt("Name", "Age"), multiply("/", 2);uri("Airline"): stringCorrupt("Flight", "Might");
ontains("
aught ex
eption") && isResponse(): empty();This example has three FaultInje
tionStatements, one on ea
h text line. The �rstone has a ConditionSet of a single
ondition: aURICondition with a "Hotel" argu-ment. It also has a FaultList of two Faults: StringCorruptionFault with "Name"and "Age" arguments and a Multipli
ationFault with "/" and '2' arguments.114

Chapter 6. A Framework for Modeling and Testing Web Servi
esRobustnessThe se
ond FaultInje
tionStatement has a ConditionSet with a URICondition anda FaultList with a StringCorruptionFault. The last FaultInje
tionStatement has aConditionSet with two
onditions: a ContainsCondition and a MessageDesti-nationCondition; and a FaultList with an EmptyingFault. This s
ript des
ribesthe following
ampaign:
• Whenever a URI of a Web servi
e
all
ontains the string "Hotel":1. Repla
e all text o

urren
es of "Name" by "Age".2. Dupli
ate the whole SOAP message.
• Whenever a URI of a Web servi
e
all
ontains the string "Airline":1. Repla
e all text o

urren
es of "Flight" by "Might".
• Whenever a message
ontains the string "
aught ex
eption" and is a responseto a Web servi
e
aller:1. Empty the message.Fault Inje
tion Exe
utorFault Inje
tion Exe
utor is the
omponent in
harge of e�e
tively inje
ting faults. Itpro
esses the Abstra
t Syntax Tree (AST) produ
ed by S
ript Compiler and inje
tsfaults where appropriate. For example, when a message should be
orrupted, theExe
utor is the
omponent whi
h a
tually modi�es the message; when the messageshould be delayed, the Exe
utor is the
omponent whi
h a
tually inserts an emu-lated delay on the program exe
ution. Fault Inje
tion Exe
utor
ode is
alled forall messages inter
epted by the Proxy. For those that do satisfy the spe
i�ed Con-ditionSet, Exe
utor inje
ts the appropriate faults. For those that do not, it takesno a
tion.Representing sour
e
ode as ASTs is a
ommon approa
h in the
ompilers �eldwhi
h fa
ilitates the
ode pro
essing. On WSInje
t, a CampaignDes
riptor is anAST whi
h is an exa
t representation of a fault inje
tion s
ript. Ea
h element of115

6.4. WSInje
tthe s
ript
orresponds to an AST node, while ea
h AST node
orresponds to a Java
lass on WSInje
t
ode. Figure 6.11 shows the AST
orresponding to the s
riptexample given in the previous paragraph.

Figure 6.11: An example of an Abstra
t Syntax TreeControllerController is the
entral
omponent of WSInje
t. It starts the tool and a
tivatesother
omponents when required. WSInje
t
an be started in two modes: graphi
aluser interfa
e (GUI) or
ommand-line interfa
e (CLI).The initialization of WSInje
t with a fault inje
tion
ampaign is des
ribed onthe sequen
e diagram on �gure 6.12. First, the Controller asks the S
ript Compilerto
ompile the s
ript �le into a CampaignDes
riptor, whi
h represents the entirefault inje
tion
ampaign. Controller then
reates and
on�gures a Fault Inje
tionExe
utor, and passes it to the Proxy/Monitor. After these steps, WSInje
t is readyto identify desired messages and inje
t faults des
ribed on the s
ript �le. Final stepsare to start the Proxy/Monitor and to stop it after the experiment is
ompleted.Graphi
al User Interfa
e (GUI)The GUI
omponent is responsible for re
eiving user inputs and for showing SOAPmessages to the user. User inputs in
lude setting the proxy port, turning the proxyon/o� and loading/unloading s
ripts. Request and response messages
an be seen116

Chapter 6. A Framework for Modeling and Testing Web Servi
esRobustness

Figure 6.12: Initialization of WSInje
t's main
omponentsby
li
king their respe
tive tabs. The left and right white panels respe
tively showmessages
ontents before and after fault inje
tion. Figure 6.13 depi
ts WSInje
tstarted on graphi
al user interfa
e mode.

Figure 6.13: WSInje
t's GUI117

6.5. Case studyMonitor Data ManagerThe Monitor Data Manager is responsible for storing and retrieving data aboutmessages inter
epted by the Proxy/Monitor and also the log of WSInje
t.6.5 Case studyIn this se
tion we
arry out two
ase studies to illustrate our framework. First weapply our approa
h on the Heater Controlling System already introdu
ed in se
tion6.3.1 and then, we will experiment our framework on a third-party system (theTravel Reservation Servi
e) provided by Netbeans IDE 6.5.1 [20℄.6.5.1 The Heater Controlling System (HCS)The behavior of this system is illustrated by the sequen
e diagram presented in�gure 6.14.

Figure 6.14: Sequen
e diagram of the Heater Controlling SystemThe Client periodi
ally asks the HeaterController for the
urrent tempera-ture. The HeaterController forwards the request to the Thermocouple whi
hreturns the
urrent temperature value. If the temperature value is outside a mini-mum and a maximum thresholds, the Client asks the HeaterController to readjust118

Chapter 6. A Framework for Modeling and Testing Web Servi
esRobustnessit. The Controller will then use a time-based algorithm whi
h invokes operations
incPower() and decPower() of the servi
e HeaterCmd until the heater tempera-ture is adjusted to the right value. The heater
oil is simulated by a simple shareddatabase providing the
urrent temperature. Ea
h time the Thermocouple is in-voked, it returns the
urrent temperature and it updates its value randomly (either itin
reases or de
reases the
urrent value by �ve degrees ea
h time). The HeaterCmdservi
e also a

esses this database ea
h time operations incPower() or decPower()are invoked. A

ording to the invoked operation, the HeaterCmd in
reases or de-
reases the
urrent temperature value by �ve degrees ea
h time.The testbed ar
hite
ture is illustrated in �gure 6.15. It in
ludes all servi
e part-ners (the HeaterController, the Thermocouple and the HeaterCmd) and the
lientappli
ation whi
h is in
harge of monitoring the heater temperature and to adjustit when needed. The workload here, is impli
itly generated and exe
uted by the
Client. For the faultload, we use WSInje
t for disturbing
ommuni
ation betweenthe servi
es of the
omposition. Observation points for
olle
ting exe
ution tra
esare implemented at
ommuni
ation interfa
es of all servi
es of the
omposition. Thisway we are able to keep information about all message ex
hanges (tra
es are sortedin a sequential order a

ording to event o

urren
e times). In pra
ti
e, the tra
e
olle
tion is easy be
ause all servi
es are
on�gured to
ommuni
ate through WS-Inje
t's proxy. WSInje
t provides also its own exe
ution tra
e (the inje
tion tra
e)telling about all exe
uted inje
tion operations and the involved messages. This tra
ewill be used later for validating the inje
tion pro
ess.Robustness requirementsWe spe
ify �ve robustness requirements for this system.Requirement 1: The
lient must ask for the
urrent temperature ea
h 10 se
onds(Periodi
ity).

�((getTemp() ∧ T = x)→ ♦(getTemp() ∧ T = x + 10000))55Time values are spe
i�ed in millise
onds 119

6.5. Case study

Figure 6.15: Testbed ar
hite
ture of the heater
ontrolling systemRequirement 2: The
lient must re
eive a response to its request within thefollowing 5 se
onds.
�((getTemp() ∧ T = x)→ ♦(getTempResponse() ∧ T <= x + 5000))Requirement 3: The
lient must resend its request if it does not re
eive aresponse within the following 5 se
onds. At worst it must resend its request 2se
onds after the timeout.

�(¬((getTemp() ∧ T = x)→ ♦(getTempResponse() ∧ T <= x + 5000)) →

♦(getTemp() ∧ T ≤ x + 7000))Requirement 4: The temperature value must always be between 100◦C and150◦C. Outside this interval, the
lient appli
ation must, within the following 5se
onds, ask the HeaterController to readjust it to 100◦C.
�(((getTempResponse(return > 150) ∧ T = x) ∨ (getTempResponse(return <

100) ∧ T = x))→ ♦(setTemp(Tmp = 100) ∧ T <= x + 5000))Requirements 5: When the HeaterController is asked to readjust thetemperature, it must regulate the Heater power until it is stabilized in the rightvalue. 120

Chapter 6. A Framework for Modeling and Testing Web Servi
esRobustness
�(setTemp(Tmp = 100)→ ♦((incPower() ∨ decPower())

∪(getHeaterTemp()→ ♦getHeaterTempResponse(return = 100))))Inje
tion pro
essThe Heater Controlling System deploys 5 operations: getTemp(), setTemp(IntegerTemp), getHeaterTemp(), in
Power(), de
Power().WSInje
t provides 6 kinds of simple faults:
• 4 interfa
e faults:1. Stru
ture and
ontent message
orruption using either the StringCorrup-tionFault or the XPathCorruptionFault;2. Multipli
ationFault;3. EmptyingFault.
• 2
ommuni
ation faults : the DelayFault and the Conne
tionClosingFault.We will address
ontent
orruption faults later as they will not a�e
t all opera-tions. Therefore, we have for now 5 simple faults (3 interfa
e faults and 2
ommuni-
ation faults). WSInje
t
an also
ombine indi�erently between all these faults. Ifwe
hoose to
ombine only one interfa
e fault with one
ommuni
ation fault, we willhave 6 possibilities. This in
reases the total number of the possible faults to inje
t to11 (5 simple faults and 6
ombinations). Now, if we want to inje
t all possible faultson ea
h operation provided by the tested system in both request and responsesens, we will have 110 inje
tion
on�gurations (as there are 5 operations).Parameter values
orruption (
ontent
orruption)
an only be applied on theoperation setTemp(Integer Temp) (as a request) and on responses of operationsgetTemp() and getHeaterTemp(). If we rely on the Ballista approa
h [52℄ for integer
orruption, we will have 3 possibilities for ea
h parameter (-MaxInt,+MaxInt and0). Therefore, we have in all 9 possibilities; and if we
ombine ea
h possibility witha
ommuni
ation faults, we will have 18
on�gurations. Therefore, the total numberof all inje
tion
on�gurations is 128. 121

6.5. Case studyFor stru
ture
orruption, Multipli
ationFault and DelayFault, there are a in�-nite inje
tion possibilities. The number of inje
tion
on�gurations found above was
al
ulated while
onsidering one possibility for ea
h of these faults. For stru
ture
orruption, we inverse opening and
losing XML tags; for Multipli
ationFault wedupli
ate all the message body and for DelayFault, we delay the forwarding of mes-sages by a su�
ient amount of time for violating the spe
i�ed timeout. For example,when the Client asks for the
urrent temperature, the response is delayed for morethan 5 se
onds (as it should re
eive a response within the following 5 se
onds).Examples of inje
ted faultsWe give in the following some examples of the inje
ted faults.Eg.1: When the
lient asks for the
urrent temperature, delay the response for 10se
onds. operation("getTemp") && isResponse(): delay(10000);Eg.2: Corrupt the parameter value of operation setTemp().operation("setTemp"): xPathCorrupt("//Temp/text()","0");6Eg.3: Dupli
ate invo
ations of operation getHeaterTemp().operation("getHeaterTemp"): multiply("/",2);Eg.4: Forward empty messages ea
h time operations in
Power() and de
Power()are invoked. operation("in
Power"): empty();operation("de
Power"): empty();To verify the inje
tion pro
ess, we also spe
ify the inje
ted faults as Hoare triplesfollowing the proposed instantiation of this formalism for Web servi
es. The spe
i-�
ation of the above examples gives the following set of inje
tion rules.6When not spe
i�ed, faults are inje
ted on requests by default.122

Chapter 6. A Framework for Modeling and Testing Web Servi
esRobustnessInje
tion rule 1:{SoapMsg.has(getTempResponse) and $val==now}delay(10000){new(SoapMsg).equals(SoapMsg) and $val+10000<=now<=$val+10050}Inje
tion rule 2:{SoapMsg.has(setTemp)} xPathCorrupt("//Temp/text()","0"){new(SoapMsg).Temp=="0" }Inje
tion rule 3:{SoapMsg.has(getHeaterTemp)} multiply("/",2) { \forall $XML_elt;SoapMsg.has($XML_elt) \implies new(SoapMsg).
ount($XML_elt) ==2*SoapMsg.
ount($XML_elt) }Inje
tion rule 4:{SoapMsg.has(in
Power)} empty() { new(SoapMsg).isEmpty()}{SoapMsg.has(de
Power)} empty() { new(SoapMsg).isEmpty()}Test exe
ution and result analysisWe
ondu
ted 5 inje
tion
ampaigns (one for ea
h operation) and for ea
h
ampaign,we exe
uted the appropriate number of runs a

ording to the
onsidered operation.Therefore, we had 22 runs for operations: in
Power() and de
Power() as we
on-sidered both request and response senses based on 11 inje
tion possibilities. Foroperations: setTemp(integer Temp), getTemp() and getHeaterTemp(), we have 11basi

on�gurations for ea
h one whi
h gives 22 runs while
onsidering both
om-muni
ation senses. In addition we have the
ontent
orruptions whi
h produ
e 6possibilities for ea
h operation. Therefore, we will have at all, 28 runs for ea
h oneof these operations. The total number gives the previously
al
ulated number offault
on�gurations i.e. 128 possibilities (128 = (22 × 2) + (22 × 3) + (6× 3)).123

6.5. Case studyAfter experimentations, we �rst veri�ed the good exe
ution of the inje
tion pro-
ess using the instantiation of Algorithm 1 for Web servi
es. The issued verdi
t wasPASS whi
h means that, a

ording to the
olle
ted tra
e all inje
tion operationswere well performed. Then, we
he
ked the
olle
ted exe
ution tra
e with respe
tto the spe
i�ed robustness properties based on the Web servi
es instantiation ofAlgorithm 3. We summarize the obtained results in the following points:
• For the
ommuni
ation between the Client and the HeaterController, mostrobustness requirements were veri�ed. For example, when the responses ofthe HeaterController were delayed for more than 5 se
onds, the
lient re-sends its requests (satis�ability of robustness requirement 3) and when thereturned parameter values were
orrupted (with values outside the de�nedthresholds interval), the
lient always asks the HeaterController to readjustthe temperature (satis�ability of robustness requirement 4).
• The di�erent perturbations of in
Power and de
Power operations did notallow violation of robustness requirement 5. The HeaterController keepsinvoking those operations until the
urrent temperature value returned by the

Thermocouple was
onform to the de�ned minimum and maximum thresholds(satis�ability of robustness requirement 5).
• The CloseConne
tionFault stopped
ompletely the system exe
ution. Ea
htime we inje
t this fault on one system operation, the system stops its exe-
ution and all
ommuni
ations terminate. This is due probably to the fa
tthat all servi
e partners
omposing our system were deployed on the sameWeb appli
ation server (we used the server GlassFish v2.1 [21℄). Therefore,when we
lose the
onne
tion between two servi
es from the
omposition, itis a
tually the whole
onne
tion to the server whi
h is
losed.6.5.2 The Travel Reservation Servi
e (TRS)To show the reliability of our approa
h, we applied it also on a se
ond
ase studydeveloped by a third party. It is the Travel Reservation Servi
e (TRS) provided124

Chapter 6. A Framework for Modeling and Testing Web Servi
esRobustnessby Netbeans IDE 6.5.1 [20℄. TRS is a simulation of a real-life organization thatmanages airline, hotel and vehi
le reservations using Web servi
e partners. It is
omposed of three servi
es - Vehi
leReservationServi
e (VRS), AirlineReservation-Servi
e (ARS) and HotelReservationServi
e (HRS)- and one BPEL pro
ess (TRS),whi
h or
hestrates partner servi
es to build a travel itinerary.The TRS pro
ess assumes that an External Partner initiates the pro
ess bysending a message that
ontains a partial travel itinerary do
ument. The
lient'stravel itinerary may have: no pre-existing reservations, or a
ombination of pre-existing airline, vehi
le and/or hotel reservations.The TRS examines the in
oming
lient itinerary and pro
esses it for
ompletion.If the
lient itinerary does not
ontain a pre-existing airline reservation, the TRSpasses the itinerary to the ARS in order to add the airline reservation. The ARSpasses ba
k the modi�ed itinerary to the TRS. The TRS
ondu
ts similar logi
for both vehi
le and hotel reservations. In ea
h
ase it will delegate the a
tualprovisioning of the reservation to the VRS and HRS. Finally, the TRS passes the
ompleted itinerary ba
k to the original
lient,
ompleting the pro
ess.The TRS implements also some temporal
onstraints to regulate the reservationpro
ess. In fa
t, ea
h time the TRS passes the
lient itinerary to one of its servi
epartners, it waits for a response within the following 20 se
onds. In the
ase ofno response, it must send a
an
ellation message to abort the reservation request.Figure 6.16 shows the sequen
e diagram of the TRS system.Testbed ar
hite
tureThe testbed ar
hite
ture is presented in �gure 6.17. SoapUI [22℄ is a well known testtool for Web servi
es. We use it in our experiments for generating and running theworkload. It plays the role of a TRS's
lient, sending requests with travel itinerariesand a
tivating the BPEL pro
ess, whi
h in turn makes reservations with its partnerservi
es.All servi
es of the
omposition were deployed on the Glass�sh server v2.1. Then,SoapUI and GlassFish were
on�gured to make
onne
tions through WSInje
t's125

6.5. Case study

Figure 6.16: Sequen
e diagram of the TRS systemproxy
omponent. Thus, all
ommuni
ations between the
lient, the BPEL pro
essand the partner servi
es were inter
epted by WSInje
t, whi
h was able to inje
t126

Chapter 6. A Framework for Modeling and Testing Web Servi
esRobustness

Figure 6.17: Testbed ar
hite
ture of the TRS systemfaults on all ex
hanged SOAP messages. Figure 6.18 shows the sequen
e diagramof the inje
tion pro
ess.

Figure 6.18: Sequen
e diagram of the inje
tion pro
ess applied on TRS127

6.5. Case studySpe
i�
ation of robustness requirements of the TRSTRS de�nes two main temporal
onstraints whi
h
an be spe
i�ed as XCTL robust-ness requirements. The �rst is a simple response
onstraint spe
ifying that ea
htime the BPEL pro
ess sends a reservation requests to one of its servi
e partners, itmust re
eive a reservation
on�rmation within the following 20 se
onds. Therefore,we have in all 3 response
onstraints (one for ea
h servi
e partners). For the ARSfor example, we spe
ify this requirement as follows:Requirement 1:
�((reserveAirline() ∧ T = x)→ ♦(airlineReserved() ∧ T <= x + 20000))The se
ond robustness requirement is an illustration of the alternative patternpresented in se
tion 4.5. It spe
i�es that the BPEL pro
ess must send a
an
ellationmessage to its servi
e partner (to
an
el the reservation request it sent), if it does notre
eive the
on�rmation within 20 se
onds. For the ARS, we spe
ify this propertyas follows:Requirement 2:

�(¬((reserveAirline() ∧ T = x)→ ♦(airlineReserved() ∧ T <= x + 20000)) →

♦cancelAirline())This requirement
on
erns also the VRS and the HRS. Therefore, we will havein all 6 robustness requirements for the TRS system.Test exe
ution and resultsWorkloadThe workload of our experiments
onsisted of sending itinerary requests from theSoapUI tool. The TRS system
omes with pre-de�ned test
ases on NetBeans- hasAirline, hasHotel, hasVehi
le and hasNoReservations -, whi
h are fun
tionaltests to verify the
orre
t behavior of the system. hasAirline (resp. hasHotel or128

Chapter 6. A Framework for Modeling and Testing Web Servi
esRobustnesshasVehi
le) de�nes the
ase where the
lient has already an airline (resp. a Hotel ora vehi
le) reservation. The hasNoReservations test
ase means that the
lient doesnot have any pre-existing reservation.The SOAP requests from these test
ases were used to a
tivate the TRS duringthe fault inje
tion
ampaign. SOAP messages sent by SoapUI were always the same:the "Input" message taken from the hasNoReservations test
ase from TRS (alsonamed TestCase1 on some versions of NetBeans).FaultloadThe robustness requirements that we
an spe
ify for this
ase study do not involvedata. Also, the XSD �le de�ning the XML s
hema of the TRS is huge (morethan 17000 lines) and de�nes a large set of parameters. We
ondu
ted preliminaryexperiments involving parameter value and stru
ture
orruptions and we noti
edthat the TRS does not implement any data validation pro
edure [36℄. But thisa
tually does not a�e
t our robustness validation pro
ess as we are performing abla
k box testing and be
ause our robustness requirements are independent fromthe parameter values that may be handled.For these reasons, we do not
onsider in our faultload, the stru
ture and the
ontent
orruption faults. Therefore, we will have 8 possible types of faults (4simple faults and 4
ombinations).Communi
ation between servi
e partners involves the following set of messages:
• buildItinerary(): to a
tivate the BPEL pro
ess asking for an itinerary reserva-tion.
• itineraryProblem(): to inform about a possible itinerary fault.
• reserveAirline(); reserveVehi
le(); reserveHotel(): to request an airline, a ve-hi
le or a Hotel reservation.
•
an
elAirline();
an
elVehi
le();
an
elHotel(): to eventually
an
el and air-line, a vehi
le or a Hotel reservation request.129

6.5. Case study
• airlineReserved(); vehi
leReserved(); hotelReserved(): to
on�rm an airline, avehi
le or a Hotel reservation.If we
onsider inje
tions on all these messages, we will have at all 88 fault
on-�gurations. As we do not
onsider
ontent
orruptions for this
ase study, we willhave at all 11 inje
tion
ampaigns (one for ea
h message) and a uniform distributionof runs i.e. 8 runs for ea
h operation.Result analysisAfter we veri�ed the inje
tion pro
ess to ensure the good exe
ution of the inje
tion
ampaign, we
he
ked the robustness requirements on the
olle
ted exe
ution tra
e.We had the following results:
• Probably, the most important result we got, is when inje
ting the Delaying-Fault for testing the robustness requirement 1 and 2. Ea
h time we delay theforwarding of a request for more than 20 se
onds (for example when delay-ing invo
ation of operation reserveV ehicle provided by the VRS), the TRSsystem hangs until the Glass�sh server timeout is rea
hed (2 minutes) and no
an
ellation message was sent. The automati
 veri�
ation of the tra
e returnsa FAIL verdi
t (requirement 1 and 2 were violated). Also, when we delayedthe forwarding of the response message (reservation
on�rmation returned bythe VRS for instan
e), the
an
ellation message was not sent and thus, therequirements 1 and 2 were also violated. In fa
t, when we examined manuallythe
olle
ted tra
e, we noti
ed that the sun-bpel-engine sent an error messageindi
ating that there has been an instantiation error when sending the
an
el-lation message. This shows a bug in the implementation of the
an
ellationpro
ess.
• The EmptyingFault
aused an internal server error. Ea
h time we inje
ted thisfault between two
ommuni
ation partners of the TRS, the system exe
utionstops and all robustness requirements are violated. We examined the exe
utiontra
e and we noti
ed that an HTTP 500 error
ode is sent by the GlassFish130

Chapter 6. A Framework for Modeling and Testing Web Servi
esRobustnessserver to the
lient appli
ation notifying that the
onne
tion was
losed dueto an internal server error.
• The Conne
tionClosingFault had the same e�e
t as for the previous
ase study.When applied on any TRS operation, the whole
onne
tion is lost and thesystem exe
ution is stopped.The appli
ation of our approa
h on this
ase study allowed us to reveal animportant failure. We dis
overed that the
an
ellation pro
ess is a
tually neverhandled. This result demonstrates the e�
ien
y of our approa
h as this failure
ould not be dis
overed using traditional
onforman
e testing methods.6.6 Con
lusionWe presented in this
hapter a testing framework for modeling and assessing Webservi
es robustness. It is a
tually an instantiation of the robustness testing approa
hwe proposed in the previous
hapter for Web servi
es. The framework in
ludes afault inje
tion tool (WSInje
t) that we developed to inje
t interfa
e and
ommuni
a-tion faults on both single and
omposed servi
es. It also provides an implementationof Algorithm 1 and Algorithm 3 for Web servi
es. These implementations are usedto verify the inje
tion pro
ess as well as the robustness requirements of the testedservi
es.The proposed framework
an be used to test either simple or
omposed servi
es.For illustration, we presented at the end of this
hapter, an appli
ation on two
ase studies, where we detailed all the ne
essary testing steps starting from thedi�erent spe
i�
ations (spe
i�
ation of the robustness requirements and the inje
tionrules) till the test exe
ution and the result analysis. The results we obtained arevery promoter. We were able for example to dis
over some failures (for the se
ond
ase study) that
ould not be revealed using traditional testing methods. Thisdemonstrates the e�
ien
y of our approa
h and motivates us to study the possibilityto extend our framework to support other kinds of distributed systems.131

Chapter 7
Con
lusion
The main obje
tive of this PhD thesis was to address the problems fa
ing robust-ness testing and to propose a new and an innovative approa
h for assessing systemrobustness.We �rst presented, in
hapter two, the state of the art of the most relevantapproa
hes for both
onforman
e and robustness testing. For
onforman
e testing,we fo
used mainly on passive testing te
hniques, be
ause our proposed approa
hrelies on this testing theory. Then, for robustness testing methods, we
lassi�edthe existing approa
hes into two
ategories: those based on empiri
al fault inje
tionte
hniques and those who rely on model-based testing.The major issues with fault inje
tion te
hniques applied on robustness testingare : (i) the absen
e of a formal test ora
le for validating the test results and (ii)the la
k of
ontrol on the inje
tion pro
ess. The �rst problem
ould be resolved byrelying on formal robustness testing approa
hes. For the se
ond issue, we proposeda formal approa
h to spe
ify and to verify the inje
tion pro
ess. Our
ontribution
onsisted to de�ne a fault inje
tion formalism based on a timed extension of Hoarelogi
. We proposed to spe
ify ea
h inje
tion operation by a Hoare triple des
rib-ing the pre
onditions that must be satis�ed before the exe
ution of this operationand the post
onditions that must be veri�ed after its exe
ution. This way, one
anspe
ify the set of inje
ted faults for a given experiment and then, verify the goodexe
ution of the inje
tion pro
ess using a proposed passive testing algorithm. This132

Chapter 7. Con
lusionalgorithm
he
ks the satis�ability of the spe
i�ed inje
tion rules (a set of Hoaretriples) against inje
tion tra
es. The inje
tion tra
es are provided by the used faultinje
tor. They log all inje
tion operations exe
uted within an inje
tion experimentand the states of inter
epted
ommuni
ation messages before and after the exe
utionof those operations. This veri�
ation step must be performed after ea
h inje
tionpro
ess be
ause we
annot guarantee that a fault inje
tion me
hanism used for agiven experiment would work
orre
tly when integrated in another testing frame-work. We presented this approa
h in
hapter three and illustrated it with a set ofexamples of inje
tion spe
i�
ations.Formal robustness testing approa
hes inspire from a
tive testing te
hniques. Asfar as we know, they all
reate variants (mutants) of the behavioral model of thetested system, to generate and to exe
ute their test. We believe that robustnessrequirements
an be di�erent from the fun
tional ones. When fa
ing abnormalenvironmental
onditions, a software system may violate some of its fun
tional re-quirements provided that the set of its robustness requirements are satis�ed. Forexample, a fun
tional property of a server appli
ation
ould be to response all there
eived requests within a relatively short period of time. However, when re
eiving ahuge number of requests within a very short time interval (stressful
onditions), theserver appli
ation
ould be
on�gured to
lose all its external
onne
tions to avoidthe
rash. This
ould be seen as a robustness property. Therefore, we proposedto formalize the robustness requirements as a set of real-time safety and livenessproperties, using the expli
it
lo
k temporal language (XCTL). XCTL is an exten-sion of the
lassi
al linear temporal logi
 to support real time spe
i�
ations. Thesyntax of XCTL de�nes a dynami
 state variable over the time domain (the
lo
kvariable) whi
h
an be used to refer to the value of the global time of the testedsystem. In
hapter four, we dis
ussed the expressiveness of XCTL
ompared toother existing real-time formalisms and we proposed a ba
kward
he
king algorithmto
he
k XCTL formulas on exe
ution tra
es. This approa
h follows the passivetesting ar
hite
ture. Observation points are seeded in di�erent system lo
ation to
olle
t exe
ution tra
es. This way, one
an tra
k all system
omponents; whi
h is133

parti
ularly interesting when testing distributed and/or
omposed appli
ations.In
hapter �ve, we proposed a new robustness testing approa
h. The proposedte
hnique relies on both fault inje
tion and passive testing. The basi
 idea wasto use fault inje
tion as a perturbation me
hanism and then, verify the robustnessrequirements against the
olle
ted exe
ution tra
es. This way, the de�ned fault do-main would be mu
h larger, be
ause the set of faults whi
h is usually
onsidered byexisting formal robustness testing approa
hes is always limited by the original inputdomain. On the other hand, robustness requirements
ould be spe
i�ed indepen-dently from the fun
tional ones, as we are not
onstrained by the original behavioralmodel. Also, by
ombining fault inje
tion and passive testing, one
an study thebehavior of all
omponents of a distributed system. Faults are inje
ted betweendi�erent
ommuni
ation partners and tra
es are
olle
ted all over the
omposition.To
ontrol the inje
tion
ampaigns, we spe
ify the inje
ted faults as a set of Hoaretriples and we used this spe
i�
ation to verify the inje
tion pro
ess based on thealgorithm presented in
hapter three. For robustness assessment, we spe
ify therobustness requirements as a set of XCTL formulas and we use our passive test-ing algorithm, proposed in
hapter four, to
he
k their
orre
tness on the
olle
tedexe
ution tra
es.Finally, for our last
ontribution, we proposed in the sixth
hapter, a testingframework for modeling and testing Web servi
es robustness. We
hose Web ser-vi
es be
ause they present interesting testing
hallenges. They are distributed andheterogeneous systems, widely used for building business appli
ations and integra-tion softwares. They also provide two kinds of
ompositions: the or
hestration andthe
horeography. The proposed framework is an instantiation of our robustnesstesting approa
h for Web servi
es. We implemented in this framework, the pas-sive testing algorithms that we proposed for
he
king the inje
tion pro
ess and therobustness requirements on exe
ution tra
es. We also proposed and built an in-novative fault inje
tion tool for Web servi
es: WSInje
t. This tool was integratedin our framework to simulate hostile environments. Its main features are: (i) itsability to inje
t both interfa
e and
ommuni
ation faults and (ii) the way it
an be134

Chapter 7. Con
lusionused to test single and
omposed servi
es. We presented also, at the end of this
hapter, two
ase studies on Web servi
es
ompositions. The �rst one, is a simu-lation of a heater
ontrolling system. It des
ribes a
riti
al system s
enario whi
hillustrates an example of a system that requires a high robustness level. For these
ond
ase study, we
hose to test a third-party Web servi
e
omposition providedby NetBeans (the Travel Reservation Servi
e). For ea
h
ase study, we presentedthe
omplete testing steps and we des
ribed for ea
h step the spe
i�ed properties(robustness requirements and examples of the inje
ted faults). We also presentedthe used testing ar
hite
ture and dis
ussed the obtained results. Parti
ularly, forthe Travel Reservation Servi
e, we were able to dis
over interesting failures that
ould not be revealed using
lassi
al testing methods.7.1 Perspe
tivesFormal methods for robustness testing is a relatively re
ent dire
tion in the testingliterature. The work we presented in this manus
ript, is a set of
ontributionswhi
h aim at addressing the new
hallenges fa
ing this kind of testing. A possibleextension of our work
ould be to study the possibility of upgrading the proposedpassive testing algorithms to on-line monitoring. This way, one
an
he
k boththe inje
tion pro
ess and the robustness requirements during experimentations andraises ex
eptions as soon as some of the spe
i�ed properties are violated. This avoidsalso to
olle
t exe
ution tra
es and hen
e, makes the test exe
ution faster.The fault inje
tor we developed (WSInje
t),
an also be improved by imple-menting new fault inje
tion operations. It would be also interesting to study thepossibility of deploying it as a Web servi
e and thus, making it easily available forthe testing
ommunity to be able to perform larger and deeper experimentations.Another dire
tion that
ould be
onsidered for future work, is the possibility ofinstantiating the proposed robustness testing approa
h for other kind of systems.The Web servi
es testing framework that we proposed, is an example to show howour robustness testing te
hnique
ould be applied for testing real systems. Thisapproa
h is based on abstra
t
on
epts. Therefore, it
ould be easily implemented135

7.1. Perspe
tivesfor various kind of
ommuni
ation proto
ols and other distributed appli
ations.

136

Bibliography
[1℄ Glossary of Software Engineering Terminology- IEEE Std 610. 12-1990. 3, 19[2℄ Resilien
e-Building Te
hnologies: State of Knowledge. Delivrable D12. ReSIST:Resilien
e for Survivability in IST. http://www.resist-noe.org/. 3, 20[3℄ ISO/IEC 9646. Information Te
hnology- Open Systems Inter
onne
tion- Con-forman
e testing methodology and framework- Part 1-5. 27, 28[4℄ W3C. eXtensible Markup Language XML, 2008. http://www.w3.org/XML. 98[5℄ W3C. XML S
hema. http://www.w3.org/XML/S
hema. 98[6℄ W3C. HTTP - Hypertext Transfer Proto
ol. http://www.w3.org/Proto
ols/.98[7℄ W3C. WSDL- Web Servi
es Des
ription Language.http://www.w3.org/TR/wsdl. 98[8℄ W3C. Simple Obje
t A

ess Proto
ol SOAP (Version 1.1), May 2000.http://www.w3.org/TR/soap. 99[9℄ UDDI. Universal Des
ription, Dis
overy and Integration UDDI.http://www.uddi.org/. 99[10℄ OASIS Standard. WSBPEL Ver. 2.0, April 2007. http://do
s.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html. 100[11℄ A
tive endpoints. a
tiveBPEL. http://www.a
tivevos.
om/
ommunity-open-sour
e.php. 101 137

Bibliography[12℄ ORACLE. Ora
le BPEL Pro
ess Manager.http://www.ora
le.
om/te
hnology/produ
ts/ias/bpel/index.html. 101[13℄ W3C. WS-Addressing. http://www.w3.org/Submission/ws-addressing/. 101[14℄ W3C. WS-Poli
y. http://www.w3.org/TR/2007/REC-ws-poli
y-20070904/.101[15℄ W3C. WS-Se
urity. http://www.oasis-open.org/
ommittees/t
_home.php?wg_abbrev=wss. 101[16℄ OASIS. OASISWeb Servi
es Reliable Messaging. http://www.oasis-open.org/
ommittees/t
_home.php?wg_abbrev=wsrm. 101[17℄ IBM. WS-Transa
tions. http://www.ibm.
om/developerworks/library/spe
ifi
ation/ws-tx/. 102[18℄ WSBang at https://www.ise
partners.
om/wsbang.html. 108[19℄ W3C. XPATH. http://www.w3.org/TR/xpath. 114[20℄ NetbBeans IDE at http://netbeans.org/. 118, 125[21℄ The GlassFish Web appli
ation server at https://glass�sh.dev.java.net/. 124[22℄ SoapUI at http://www.soapui.org/. 125[23℄ R. Carbone A. Armando and L. Compagna. Ltl model
he
king for se
urityproto
ols. 20th IEEE Computer Se
urity Foundations Symposium (CSF 2007),Pro
eedings., 2007. 65[24℄ G. D. Angelis A. Bertolino and A. Polini. A qos test-bed generator for webservi
es,. In ICWE, ser. Le
ture Notes in Computer S
ien
e, L. Baresi, P.Fraternali, and G.-J. Houben, Eds., 4607:17�31, 2007. 108[25℄ W. Mallouli K. Li A. Cavalli, A. Benameur. A passive testing approa
h forse
urity
he
king and its pra
ti
al usage for web servi
es monitoring. 9èmeConféren
e Internationale sur les NOuvelles TE
hnologies de la REpartition(NOTERE09), June 29 - July 3, 2009. 66138

Bibliography[26℄ D. Chen D. Khuu B. Al
alde, A. Cavalli and D. Lee. Proto
ol system passivetesting for fault management : A ba
kward
he
king approa
h. In Formal Te
h-niques for Networked and Distributed Systems (FORTE), LNCS 3235, Springer,pages 150�166. 37[27℄ E. Brinskma. A theory for the derivation of tests. In S. Aggarwal and K.Sabnani editors , Proto
ol Spe
i�
ation, Testing and Veri�
ation, 8:63�74, 1988.30, 31[28℄ T. Chow. Testing software design modelled by �nite state ma
hines. In IEEETransa
tion on Software Engineering, 1989. 30[29℄ R. Hao R.E. Miller J. Wu D. Lee, D. Chen and X. Yin. A formal approa
h forpassive testing of proto
ol data portions. In Pro
eedings of the IEEE Interna-tional Conferen
e on Network Proto
ols, ICNP02, 2000. 35, 37[30℄ P.S. Deepinder and T.K. Leung. Formal methods for proto
ol testing: A de-tailed study. In IEEE Transa
tion on Software Engineering, 15:413�426, 1989.30[31℄ M. Nunez E. Bayse, A. Cavalli and F. Zaidi. A passive testing approa
h basedon invariants: Appli
ation to the wap. Computer Networks, 48:235�245, 2005.38, 40[32℄ O. Li
htenstein E. Harel and A. Pnueli. Expli
it
lo
k temporal logi
. Logi
 inComputer S
ien
e, 1990. LICS '90, Pro
eedings., Fifth Annual IEEE Sympo-sium on, 1990. 6, 8, 22, 23, 64, 69, 71[33℄ Thomas Erl. Servi
e-oriented ar
hite
ture : A �eld guide to integrating xmland web servi
es. Prenti
e Hall, 2004. 96[34℄ Thomas Erl. Servi
e-oriented ar
hite
ture : Con
epts, te
hnology, and design.Prenti
e Hall, 2005. 96 139

Bibliography[35℄ B. P. Miller et al. Fuzz revisited: A re-examination of the reliability of unixutilities and servi
es. Networked Computer S
ien
e Te
hni
al Reports LibraryCS-TR-95-1268, April 1995. 50[36℄ W. Maja E. Martins F. Bessayah, A. Cavalli and A.W. Valenti. A fault inje
tiontool for testing web servi
es
omposition,. In Testing Pra
ti
e and Resear
hTe
hniques (TAIC PART'10), LNCS 6303, pages 137�146, 2010. 7, 22, 102,108, 129[37℄ A. Rollet F. Saad-Khor
hef and R. Castanet. A framework and a tool forrobustness testing of
ommuni
ating software. In Pro
eedings of the 2007 ACMsymposium on Applied
omputing (SAC07), pages 1461�1466, 2007. 21, 47, 91[38℄ G. Gonen
. A method for the design of fault dete
tion experiments. In IEEETransa
tions Computer, pages 551�558, 1970. 30[39℄ K. Havelund H. Barringer, A. Goldberg and K. Sen. Rule-based runtime ver-i�
ation. 5th International Conferen
e on Veri�
ation, Model Che
king andAbstra
t Interpretation (VMCAI04), Pro
eedings., 2004. 65[40℄ A. Rollet H. Fou
hal and A. Tarhini. Robustness of
omposed timed systems.In 31st Annual Conferen
e on Current Trends in Theory and Pra
ti
e of Infor-mati
s (SOFSEM05), pages 155�164, 2005. 21, 46, 91[41℄ W. Hoarau and S. Tixeuil. A language-driven tool for fault inje
tion in dis-tributed appli
ations,. In Pro
eedings of the IEEE/ACMWorkshop GRID 2005,2005. 44[42℄ C.A.R. Hoare. An axiomati
 basis for
omputer programming,. Communi
a-tions of the ACM, 12, O
tober 1969. 5, 21, 51, 52, 54, 91[43℄ J. Hooman. Spe
i�
ation and
ompositional veri�
ation of real-time systems.PhD Thesis, 1991. 54[44℄ J. Hooman. Extending hoare logi
 to real-time. Formal Aspe
ts of Computing,6:6�801, 1994. 54 140

Bibliography[45℄ A. Cavalli J.A. Arnedo and M. Nunez. Fast testing of
riti
al properties throughpassive testing. In Dieter and Hogerefe and Anthony Wiles editors, TESTCOM.LNCS 2644, Springer, pages 295�310, 2003. 38[46℄ C. Pa
hon J.C. Fernandez, L. Mounier. A model-based approa
h for robustnesstesting. IFIP International Conferen
e on Testing of Communi
ation Systems(TESTCOM05), pages 333�348, 2005. 21, 46, 91[47℄ W.L. Kao and R.K. Iyer. Fine: A fault inje
tion and monitoring environment.IEEE Transa
tion on Software Engineering, pages 1105�1118, 1993. 43[48℄ W.L. Kao and R.K. Iyer. De�ne: A distributed fault inje
tion and monitoringenvironment. In Pro
eedings of IEEE Fault-Tolerant Parallel and DistributedSystems (IEEE-FTPDS'94), pages 252�259, 1994. 43, 86, 108[49℄ H.L. Truong L. Jusz
zyk and S. Dustdar. Genesis - a framework for automati
generation and steering of testbeds of
omplexweb servi
es,. In Pro
eedings ofthe 13th IEEE International Conferen
e on Engineering of Complex ComputerSystems(ICECCS'08), pages 131�140, 2008. 108[50℄ J. Xu N. Looker, M. Munro. Ws-�t: A tool for dependability analysis of webservi
es,. In Pro
eedings of the 28th Annual International Computer Softwareand Appli
ations Conferen
e,, 2004. 109[51℄ S. Naito and M. Tsunoyama. Fault dete
tion for sequential ma
hines by tran-sitions tours. In IEEE Fault Tolerant Computer Systems, 2007. 30[52℄ K. DeVale J. DeVale K. Fernsler D. Guttendorf N. Kropp J. Pan C. SheltonY. Shi P. Koopman, D. Siewiorek. Ballista proje
t:
ots software robustnesstesting. 1998. 50, 121[53℄ K. Sen P. Naldurg and P. Thati. A temporal logi
 based framework for intrusiondete
tion. Formal Te
hniques for Networked and Distributed Systems (FORTE2004), Pro
eedings., 2004. 65 141

Bibliography[54℄ M. Phalippou. Relation d'implantation et hypothèse de test sur des automatesa entrées et sorties. PhD Thesis, Universite de Bordeaux I, 1994. 30, 31[55℄ Amir Pnueli. The temporal logi
 of programs,. In 18th Annual Symposium onFoundations of Computer S
ien
e, 1977. 64, 66[56℄ T.A. Henzinger R. Alur. An overview of existing tools for fault-inje
tion anddependability ben
hmarking in grids,. Real-Time: Theory in Pra
ti
e. Le
tureNotes in Computer S
ien
e 600, Springer-Verlag, pages 74�106, 1992. 68, 69[57℄ H. Waeselynk R. Castanet. Te
hniques avan
ées de test de systemes
omplexes:test de robustesse. report CNRS-AS23, 2003. 85[58℄ M.-O. Rabin. De
idability of se
ond order theories and automata on in�nitetrees. Transa
tions of the AMS, pages 1�35, 1969. 46, 92[59℄ P. Reine
ke and K. Wolter. Towards a multi-level fault-inje
tion test-bed forservi
e-oriented ar
hite
tures: Requirements for parameterisation,. In SRDSWorkshop on Sharing Field Data and Experiment Measurements on Resilien
eof Distributed Computing Systems, 2008. 113[60℄ G. Rosu and K. Havelund. Rewriting-based te
hniques for runtime veri�
ation.Automated Software Engineering, 2005. 67, 71, 72, 79[61℄ F. Jahanian S. Dawson and T. Mitton. Or
hestra: A probing and fault inje
tionenvironment for testing proto
ol implementations. 41, 86, 108[62℄ K. G. Shin S. Han and H. A. Rosenberg. Do
tor: An integrated software faultinje
tion environment for distributed realtime systems. Presented at Interna-tional
omputer performan
e and dependability symposium, 1995. 41, 86, 108[63℄ L. Silva S. Tixeuil, W. Hoarau. Logi
s and models of real time: A survey,.CoreGRID Te
hni
al Report Number TR-0041, 2006. 42, 43[64℄ K. Sabnani and A. Dahbura. A proto
ol test generation pro
edure. In ComputerNetworks and ISDN Systems, 15:285�297, 1988. 30142

Bibliography[65℄ D.T. Stott and al. Nftape: a framework for assessing dependability in dis-tributed systems with lightweight fault inje
tors. 42, 86[66℄ M. Tabourier and A. Cavalli. Passive testing and appli
ation to the gsm-mapproto
ol. Journal of Information and Software Te
hnology, 41:813�821, 1999.34[67℄ J. Tretmans. A formal approa
h to
onforman
e testing. PhD Thesis; TwenteUniversity, 1992. 30[68℄ J.L. Ri
hier V. Darmailla
q and R. Groz. Test generation and exe
ution forse
urity rules in temporal logi
. Software Testing Veri�
ation and ValidationWorkshop, IEEE International Conferen
e on, 0:252�259, 2008. 65[69℄ A.Cavalli W. Mallouli, F. Bessayah and A.Benameur. Se
urity rules spe
i�
a-tion and analysis based on passive testing. In Pro
eedings of The IEEE GlobalCommuni
ations Conferen
e, 2008. 65

143

