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Résumé

Que ce soit dans le domaine des transports, des énergies ou des banques, les
systémes informatiques sont immanquablement présents. Nous confions ce que nous
avons de plus cher, & savoir nos vies et nos biens, a des programmes informatiques.

Parallelement, cela va sans dire que ces systémes sont de plus en plus complexes.
Une complexité due essentiellement a une expansion sans précédent de systéemes
largement distribués et hétérogénes. Sans parler de l'utilisation d’Internet comme
principal réseau de transport de données, partagé par un nombre colossal de services
et d’applications Web. Face a cette complexité croissante, tout dysfonctionnement,
méme temporaire, de ces systémes peut avoir de lourdes conséquences économiques,
voire dans certains cas, humaines. Afin de s’assurer de la fiabilité de tels systémes,
il importe donc de vérifier leurs comportements de la maniére la plus rigoureuse
possible.

L’utilisation des méthodes formelles pour le test de logiciels est probablement ce
qu’il y a de plus sir en matiére de techniques de vérification. Ceci s’explique sans
doute par les fondements mathématiques sur lesquels se basent ces méthodes, ce qui
permet de développer un raisonnement plus rigoureux et de ce fait, plus fiable.

On peut requérir aux méthodes formelles pour spécifier les propriétés impor-
tantes du systéme testé, mais aussi pour vérifier ces propriétés sur I'implantation
finale. L’utilisation de ces méthodes a permis de développer une théorie du test de
conformité dont ’objectif est de réaliser un test fonctionnel qui permet de vérifier si
le produit fini correspond a la spécification de référence. La recherche académique a
publié de nombreux travaux sur le test de conformité. Globalement, on peut classi-
fier 'ensemble de ces travaux en deux grandes catégories: les méthodes de test actif
et les méthodes de test passif.

Le test actif consiste & appliquer au systéme sous test un ensemble de tests et &
comparer le comportement observé avec la spécification de référence. De nombreuses
méthodes de génération automatique de tests de conformité ont été proposées dans
la littérature. Elles traitent généralement des systémes protocolaires et applicatifs

réactifs en faisant ’hypothése de pouvoir interagir avec 'implantation sous test.



Le principe étant de stimuler le systéme testé en émettant des entrées particuliéres
pour le faire réagir et de collecter les sorties produites pour les comparer avec celles

attendues.

Ce type de test n’est malheureusement pas toujours possible & exécuter. Dans
les systémes de protocoles en couches par exemple, il est rare qu’on puisse béné-
ficier d’'un acces direct pour interagir avec une couche particuliere du systéme et
ainsi appliquer les séquences de test. Aussi dans certains cas, la phase de test qui
monopolise complétement le systéme, peut étre trés couteuse pour les industriels.

Dans ce genre de situations, le test passif s’avére particuliérement intéressant.

En effet, le test passif ne requiert pas une interaction directe avec le systéme
testé. Il consiste a observer et & collecter les entrées et les sorties produites par
I'implantation sous test, et & analyser cette séquence par rapport a la spécification
de référence. On vérifie alors si le comportement de I'implantation est conforme &

celui prévu par la spécification.

La réalisation d’un test de conformité suppose que le systéme sous test s’exécute
dans des conditions environnementales normales. On estime que dans de telles con-
ditions, le comportement du systéme testé doit étre conforme & sa spécification fonc-
tionnelle. Cependant, lorsqu’un systéme informatique est susceptible d’évoluer dans
un contexte hostile ou les conditions environnementales sont plus ou moins stres-
santes, le test de conformité n’est plus suffisant. En effet dans ce genre de situations,
on doit étudier le comportement du systéme en tenant compte de ces contraintes
contextuelles. Ceci définit un autre type de test qu’on appelle : test de robustesse.
L’objectif principal du test de robustesse est d’étudier le comportement d’une im-
plantation s’exécutant dans un environnement hostile. L’implantation testée est
considérée robuste si elle continue & avoir une exécution correcte en présence de

fautes [1].

Les approches de test de robustesse peuvent étre empiriques ou formelles. Les
approches empiriques déterminent le niveau de robustesse du systéme étudié, tan-
dis que les approches formelles s’intéressent & la vérification des propriétés de ro-

bustesse [2]. Les techniques d’injection de fautes sont couramment utilisées pour



I’évaluation empirique de la robustesse d’'une implantation. L’injection de fautes
consiste a introduire de facon délibérée, des erreurs dans un systéme lors de son
exécution et d’observer sa réaction. Cela permet, lors de la réalisation d’un test de
robustesse, de simuler un environnent hostile. Par ailleurs, les approches de test de
robustesse formelles ont pour but de déterminer formellement la robustesse d’une
implantation en vérifiant la satisfiabilité d’'un ensemble de propriétés de robustesse
sur cette implantation. Ces derniéres s’inspirent fortement des méthodes de test de
conformité actives a la différence prés que le domaine d’entrées est ici augmenté par
I'introduction d’un ensemble d’aléas (fautes). Ainsi, au lieu de stimuler le systéme
sous test par des entrées valides, le testeur de robustesse, génére et exécute des

séquences d’entrées corrompues pour perturber le fonctionnement du systéme testé.
Contributions

Le test de robustesse est trés important pour assurer la sécurité et la fiabilité
des systémes logiciels. Les techniques d’injection de fautes appliquées au test de
robustesse ont montré des résultats trés intéressants. Elles souffrent cependant de ne
pas disposer d’oracles de tests performants leurs permettant d’évaluer la robustesse
du systéme testé de maniére plus rigoureuse. En effet, ces techniques ne vérifient pas
formellement la robustesse d’un systéme. Une implantation est considérée robuste
si elle peut continuer son exécution en présence de fautes. En d’autres termes, si le
systéme testé ne se bloque pas, il est considéré comme robuste. On sait cependant,
qu’un systéme peut trés bien continuer son exécution sans pour autant fournir le
comportement attendu. De ce fait, nous avons besoins de requérir a des approches
plus rigoureuses pour évaluer la robustesse d’un systéme.

En outre, les techniques d’injection de fautes ne controlent pas efficacement le
processus d’injection. Les fautes sont injectées de maniére plus ou moins aléatoire et
il n’y a aucun moyen de s’assurer de la bonne exécution des campagnes d’injections
(est ce que toutes les fautes ont été injectées correctement 7).

D’autre part, les techniques formelles de test de robustesse définissent formelle-
ment toutes les étapes du test. Les fautes sont générées a partir d’'un modéle formel

et les propriétés de robustesse sont vérifiées sur la base d’un oracle de test bien défini.



Toutefois, deux grandes questions peuvent étre soulevées au sujet de ces méthodes.
Tout d’abord, ’ensemble des fautes injectées est limité par le domaine d’entrées de
I’application testée. A l'opposé des approches d’injection de fautes empiriques qui
peuvent injecter n’importe quel type de fautes, les techniques formelles existantes
créent le modéle de fautes en se référant au modele fonctionnel du systéme testé.
Ceci a 'avantage de permettre une injection mieux ciblée et plus adaptée au systéme
testé, mais les types de fautes considérées sont limitées par le modéle fonctionnel. Si
ce dernier ne prend pas en compte les aspects temporels par exemple, on ne pourra
pas injecter de fautes temporelles. En plus, le modeéle fonctionnel d’une implantation

n’est pas toujours disponible.

Enfin, les méthodes formelles existantes appliquées au test de robustesse repren-
nent la méme architecture que celle utilisée par les méthodes actives de test de
conformité. Cette architecture impose que le testeur interagisse directement avec
le systéme testé. Par conséquent, ces méthodes ne peuvent pas étre utilisées pour
tester des composants systémes qui n’offrent pas d’interfaces d’interactions directes,
ou lorsque le systéme testé ne peut pas étre monopolisé par le testeur pour une

durée importante.

Le travail que nous présentons dans ce document, consiste en un ensemble de
propositions qui ont pour objectif de répondre aux défis auxquels font face les ap-
proches de test de robustesse existantes. Nous contribuons sur quatre principaux

axes !

En premier lieu, nous nous intéressons aux techniques d’injection de fautes et
plus particuliérement au probléme de contréle du processus d’injection. Nous pro-
posons de formaliser les fautes injectées en utilisant une extension temporelle de la
logique de Hoare [42]. Notre étude étant plus portée sur les systémes communicants,
nous proposons de spécifier chaque opération d’injection par un triplet de Hoare
décrivant les pré-conditions qui doivent étre satisfaites par les messages de commu-
nication interceptés avant ’exécution de 'opération d’injection, ainsi qu’un ensemble
de post-conditions spécifiant comment ’exécution de cette opération devrait mod-

ifier les états de ces messages. Nous utiliserons ensuite cette formalisation comme



oracle de test pour vérifier la bonne exécution du processus d’injection. Ainsi, nous
proposons un algorithme de test passif qui vérifie la conformité de 1’ensemble des
fautes injectées (spécifiées comme un ensemble de triplets de Hoare), sur une trace
d’injection. De cette maniére, nous pourrons contrdler les campagnes d’injections

et ainsi apporter plus de fiabilité & nos expérimentations.

Notre seconde contribution concerne la spécification et la vérification des pro-
priétés de robustesse. Nous proposons de formaliser les propriétés de robustesse en
utilisant une extension de la logique temporelle linéaire qui permet la spécification
de contraintes temps réel. Il s’agit de la logique temporelle & horloge explicite,
XCTL (eXplicit Clock Temporal Logic) [32], dont I'expressivité permet & la fois de

spécifier des propriétés simples et complexes avec une aisance particuliére.

Pour la vérification de ces propriétés, nous proposons un algorithme de test passif
qui vérifie la conformité des formules XCTL sur une trace d’événements. Le choix
d’une approche basée sur le test passif permet de s’affranchir des limitations du test

actif, mentionnées précédemment.

Nous contribuons aussi par une nouvelle approche de test de robustesse. Nous
proposons une approche hybride basée sur l'injection de fautes et le test passif.
L’injection de fautes est utilisée pour créer des conditions environnementales stres-
santes, et le test passif permet de vérifier la satisfiabilité des propriétés de robustesse
sur les traces d’exécution collectées. Les fautes injectées ainsi que les propriétés de
robustesse sont formellement spécifiées. Nous utilisons la logique de Hoare pour la
spécification des fautes et la logique XCTL pour la formalisation des propriétés de
robustesse. Ce qui nous permet de vérifier & la fois le processus d’injection et les
exigences de robustesse en appliquant les approches de test passif proposées dans

nos contributions précédentes.

Finalement, nous proposons une plateforme de modélisation et de vérification
de la robustesse des services Web. Les services Web sont une technologie émergente
. : < :
qui tend progressivement a s’imposer comme un standard du paradigme de com-
munication programme-a-programme. Ils fournissent aussi un excellent exemple de

systemes hétérogenes fortement distribués. Les services Web peuvent étre simples



ou composés et ils sont largement utilisés pour la création d’applications e-commerce
et de systémes d’information distribués. Par conséquent, ils constituent un trés bon
exemple de systémes critiques ou le test de robustesse prend toute sa dimension.

La plateforme de test que nous proposons ici, est en réalité une instanciation de
notre approche de test de robustesse, adaptée aux services Web. Cette plateforme in-
tégre un injecteur de fautes innovant (WSInject) que nous avons congu et développé
pour pouvoir simuler un environnement d’exécution hostile. WSInject [36] est un
injecteur de fautes pour services Web capable d’injecter des fautes d’interfaces et
de communications, ou méme de combiner les deux types de fautes en une seule
injection. Il peut étre utilisé pour le test de services simples ou composés.

Nous avons aussi implanté et intégré les algorithmes de test passif proposés pour
la vérification du processus d’injection et des exigences de robustesse et nous avons
conduit des expérimentations sur deux cas d’études pour illustrer 'utilisation de

notre plateforme de test.

Organisation du manuscrit
Le présent manuscrit de thése est organisé comme suit :

1. Dans le second chapitre, nous présentons I’état de 'art des approches de test
de conformité et de robustesse. Pour le test de conformité, nous introduisons
d’abord l'utilisation des méthodes formelles pour le test des systémes logi-
ciels. Ensuite, nous décrivons les approches les plus importantes des deux
grandes familles de test : le test actif et le test passif. La deuxiéme partie de
ce chapitre est consacrée aux méthodes de test de robustesse. Nous classons
ces méthodes en deux grandes catégories. D’abord, nous exposons les tech-
niques empiriques basées sur l'injection de fautes et ensuite nous abordons les

techniques formelles.

2. Le troisiéme chapitre présente notre premiére contribution. Il s’agit de la
formalisation et la vérification de I'injection de fautes. L’idée de base est de

spécifier les fautes injectées par un ensemble de triplets de Hoare, puis d’utiliser



cette spécification comme oracle de test pour vérifier la bonne exécution du
processus d’injection. Nous définissons pour cela un algorithme de test passif
qui vérifie la satisfiabilité des spécifications de fautes sur une trace d’injection.
Nous présentons aussi quelques exemples de spécification pour illustrer notre

approche.

. Dans le quatriéme chapitre, nous présentons notre approche de test de con-
traintes temps réel. Nous discutons en premier, les travaux existants qui trait-
ent des méthodes formelles pour le test de propriétés temps réel. Ensuite, nous
présentons les formalismes permettant de spécifier ce type de propriétés et jus-
tifions notre choix de XCTL [32]. Nous présentons aussi notre algorithme de
test passif pour la vérification de formules XCTL sur des traces d’exécutions
et discutons les résultats obtenus au terme d’une évaluation expérimentale de

’algorithme.

. Dans le chapitre cinqg, nous décrivons notre approche de test de robustesse. Il
s’agit d’'une approche complémentaire, basée sur l'injection de fautes et le test
passif. Nous étudions d’abord les travaux existants sur le test de robustesse.
Ensuite, nous présentons ’architecture générale de notre approche et détaillons
chacune de ses composantes. Nous utilisons dans cette approche, la logique
de Hoare pour la spécification et la validation des campagnes d’injection et la
logique temporelle & horloge explicite (XCTL) pour le test des propriétés de

robustesse.

. Finalement, dans le chapitre six, nous présentons notre plateforme de test de
robustesse pour les services Web. Cette plateforme est une instanciation de
notre approche de test appliquée aux services Web. Nous décrivons son archi-
tecture générale et chacun de ses composants, plus particuliérement ’injecteur
de fautes WSInject. Pour ce dernier, nous motivons notre choix de développer
un injecteur de fautes pour les services Web et présentons son architecture et

ses fonctionnalités.

Nous présentons aussi dans ce chapitre, ’application de notre plateforme de



test sur deux cas d’études et montrons comment cela a permis de détecter cer-
tains modes de défaillances que nous n’aurions pas pu déceler avec les méthodes

de test traditionnelles.

. Le dernier chapitre conclut notre travail. Nous rappelons nos principales con-
tributions, que ce soit dans le domaine du test de conformité, de I'injection
de fautes ou du test de robustesse ; et nous présentons quelques perspectives

potentielles qui vont dans la continuité de notre travail.



Abstract

Robustness is a specialized dependability attribute, characterizing a system reac-
tion with respect to external faults. Accordingly, robustness testing involves testing
a system in the presence of faults or stressful environmental conditions to study its
behavior when facing abnormal conditions.

Testing system robustness can be done either empirically or formally. Fault
injection techniques are very suitable for assessing the robustness degree of the
tested system. They do not rely however, on formal test oracles for validating their
test. On the other hand, existing formal approaches for robustness testing formalize
both the fault generation and the result analysis process. They have however some
limitations regarding the type of the handled faults as well as the kind of systems
on which they can be applied.

The work presented in this thesis manuscript aims at addressing some of the
issues of the existing robustness testing methods. First, we propose a formal ap-
proach for the specification and the verification of the fault injection process. This
approach consists in formalizing the injected faults as a set of Hoare triples and then,
verifying the good execution of the injection campaigns, based on a passive testing
algorithm that checks the fault specification against a collected injection trace.

Our second contribution focuses on providing a test oracle for verifying real time
constraints. We propose a passive testing algorithm to check real time requirements,
specified as a set of XCTL (eXplicit Clock Temporal Logic) formulas, on collected
execution traces.

Then, we propose a new robustness testing approach. It is a complementary
approach that combines fault injection and passive testing for testing system ro-
bustness. The injected faults are specified as a set of Hoare triples and verified
against the injection trace to validate the injection process. The robustness re-
quirements are formalized as a set of XCTL formulas and are verified on collected
execution traces. This approach allows one to inject a wide range of faults and can
be used to test both simple and distributed systems.

Finally, we propose an instantiation of our robustness testing approach for Web



services. We chose Web services technology because it supports widely distributed
and heterogeneous systems. It is therefore, a very good application example to show

the efficiency of our approach.

Keywords: Robustness Testing, Formal Specification, Fault Injection, Passive

Testing, Trace Analysis.
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Chapter 1

Introduction

1.1 General Context

Nowadays, software systems are everywhere : transportation, health, banking, en-
ergy, etc. We are actually entrusting our lives and our goods to programs and
machines. On the other hand, the increasing complexity of those systems as well as
their widely distributed architectures make them more difficult to control and/or to
manage. Moreover, the introduction of modular and reusable components in com-
munication systems creates new challenges. It is possible now and relatively easy, to
build complex distributed systems based on a set of several heterogeneous compo-
nents (as Web services for example). It is however, more painful to have a complete
control on those systems. Sometimes, developers do not even know where some
of their system components are hosted not to mention the environment conditions
where they are running in.

Parallel to this, every single bug or failure that can be raised in such systems,
may lead to serious financial or even human damages. Therefore, the testing of
software systems during and after the development process is essential and must be
undertaken with the greatest possible care. This testing step aims at guarantying the
correctness of a system behavior and at ensuring its reliability and its conformance
with respect to the expectations made by its developers.

Probably, the most rigorous approach for performing testing activities is to rely
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on formal methods. Formal methods allow one to reason about system correctness
based on mathematical foundations. They can be used to formalize the system
requirements (as expected by its administrators), as well as to verify their correct
implementation in the final product. The use of formal methods in testing per-
mitted the emergence of a testing theory called: conformance testing. The goal of
conformance testing, is to ensure that a given implementation verifies its expected
functional requirements. The literature of the testing community has produced a
huge number of contributions dealing with this theory. Basically, we can classify the
set of existing conformance testing approaches into two main categories: active and
passive testing approaches. This classification is due to the way the test process is
performed. In active testing, the tester interacts directly with the tested system to
issue a verdict about the conformance of the system behavior with respect to the
specified requirements. In passive testing however, the tester does not communicate
directly with the tested system. Instead, an execution trace is collected during the
system execution and then, the passive tester checks on this trace the conformance
of the specified requirements. Usually, we rely on passive testing when the tested
implementation does not provide any interface to interact with the tester or when

we are testing a system component that we could not access directly.

In conformance testing, we assume that the tested system is running in its nor-
mal environmental conditions. We expect that in such situations, the functional
requirements should be verified. However, when a given system or one of its compo-
nents is likely to run in a hostile environment or stressful environmental conditions,
conformance testing is no more sufficient to validate its behavior. In such situa-
tions, we need also to check the behavior of the tested system when facing abnormal
environmental contexts. This kind of test is known as robustness testing. The goal
here is to study the system behavior when running in a hostile environment. The
system is considered as robust if it continues to have a correct execution in disturbed

conditions [1].

Robustness testing approaches can be either empirical or formal. Empirical ap-

proaches usually aim at evaluating the degree of robustness of a given system; while
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formal approaches focus on the verification of robustness properties [2]. For empir-
ical evaluation, fault injection techniques are very commonly used. Fault injection
consists in introducing deliberate errors in a system and observe its reaction. This
technique is used in robustness testing to create stressful environmental conditions.
Then, we observe if the tested system is robust enough to keep running. Formal
robustness verification techniques however, aim at formally assessing the robustness
of a system by checking the satisfiability of a set of robustness requirements on this
system. These techniques usually inspire from conformance testing approaches, par-
ticularly from active testing. The main difference with respect to active testing, is
the fault dimension of the input domain. Instead of stimulating the tested system
with the valid inputs, robustness methods generate and execute invalid entries to

disturb the system behavior.

1.2 Contributions

Robustness testing is very important to ensure the safety and the reliability of
software systems. Most existing approaches however, still present some limitations
regarding their consistency and their capabilities. Fault injection techniques applied
for robustness testing have shown interesting results, yet they are suffering from a
lack of soundness, mainly because they rely exclusively on empirical analysis. In this
kind of approaches, we do not specify formally the robustness requirements that the
tested system must guarantee. A system is considered robust simply if it continues
its execution in presence of faults. In other words, if the tested system does not
hang or crash, it is considered as robust. We know however, that a system may well
continue its execution without providing the expected behavior. Therefore, we need
a more rigorous way to check the robustness of the tested implementations. Also,
fault injection techniques do not control efficiently the injection process. Faults are
injected in a more or less random manner and we have no feedback about the good
execution of the injection campaigns (did all faults have been injected correctly or
not?).

On the other hand, formal robustness testing techniques define formally all the
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testing steps. Faults are generated from a formal model and the robustness require-
ments are verified based on a formal test oracle. As far as we know, all the existing
formal approaches for testing system robustness follow the active testing architecture
[46, 40, 37]. Two main issues can be raised regarding this kind of methods. First,
the set of injected faults is limited by the set of the input domain. At the opposite
to fault injection approaches which can inject any kind of faults, existing formal
techniques are constrained by the behavioral model of the tested system which they
use to generate the set of faults to inject (usually, a set of invalid inputs). Thus, if
the behavioral model does not support time specification for example, there will be
no temporal faults! Also, formal active testing techniques for robustness verifica-
tion present some limitations when applied on composed systems. These techniques
require direct interactions with the tested system components whereases, it is not
always possible to have a direct access to those components. It is therefore, diffi-
cult to inject faults or to disturb communication between the different modules of

a composed application.

The work we present in this PhD thesis, is a set of propositions which aim
at solving the main issues facing the existing robustness testing techniques. Our

contributions are then spread over four main axes:

First, we are interested in fault injection techniques because they can improve the
faults detection power of the testing methods. To address the problem of soundness
in fault injection, we propose a formal approach to specify and verify the injection
process. We propose to formalize the fault injection using a timed extension of Hoare
logic [42]. We focus here on fault injection for communication systems. Therefore,
each injection operation is specified as a Hoare triple describing a set of precondi-
tions that must be satisfied by the intercepted communication messages before the
injection and a set of postconditions which specify how the executed injection oper-
ations should modify the state of those messages. This formalization is then used as
a test oracle. We propose a passive testing algorithm to verify the good execution of
the injection process by checking the specification of the injected faults (given as a

set of Hoare triples) against the injection trace, collected during experimentations.
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This way, one can control the injection process by verifying whether the injection

experiments were well performed or not.

Our second contribution concerns the specification and the verification of robust-
ness requirements. We believe that robustness requirement could be different from
the functional ones. Therefore, instead of relying on a functional model, we pro-
pose to model system robustness as a set of real-time safety and liveness properties.
We believe also that some requirements can be rather complex. Thus, we propose
to specify those requirements using a real-time extension of linear temporal logic,
called XCTL (eXplicit Clock Temporal Logic) [32], which can handle both simple
and complex properties. For the verification, we propose a passive testing algorithm

to check XCTL properties on execution traces, and we study its efficiency.

We also contribute by a new robustness testing approach. We propose an hy-
brid approach for testing system robustness, combining fault injection and passive
testing techniques. Fault injection is used to simulate the stressful environmental
conditions. Then, we use a passive testing technique to check the satisfiability of the
robustness requirements against the collected execution traces. The injected faults
as well as the robustness properties are formally specified. We use Hoare triples for
fault specification and XCTL for robustness requirements. The specification of the
injected faults is then used to validate the injection process and the specification of

robustness requirements allows to assess formally the system robustness.

Finally, we propose a robustness testing framework for modeling and verifying
Web services robustness. Web services are an emerging technology which tends pro-
gressively to become a standard for program-to-program communication paradigm.
They are also a very good example of widely distributed systems. Web services can
be either simple or very complex, integrating heterogeneous service components.
They are widely used for building business process and distributed information sys-
tems. Therefore, they provide a very interesting illustration of critical distributed
applications. The framework we propose is actually an instantiation of our robust-
ness testing approach for Web services. It integrates an innovative Web services

fault injector (WSInject [36]) which we developed to simulate hostile environments.
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We also implemented the proposed passive testing algorithms to verify both the
injection process and the robustness requirements, and we tested our framework on

two case studies to show its capabilities.

1.3 Thesis plan

This thesis manuscript is organized as follows:

1. In the second chapter, we present the state of the art of both conformance and
robustness testing techniques. For conformance testing, we first introduce the
use of formal methods for system testing. Then, we describe the most relevant
existing approaches for both active and passive testing. The second part of this
chapter presents robustness testing. We classify robustness testing approaches
into two main categories. First, we expose those which rely on fault injection

techniques and then, we present the formal robustness testing methods.

2. The third chapter presents our first contribution. It describes our formal ap-
proach for the specification and the verification of fault injection process. The
basic idea consists in formalizing the injected faults as a set of Hoare triples
and then, to use this specification to verify the good execution of the injection
experiment. This verification is based on a proposed passive testing algorithm
which checks the specified injection operations on a collected injection trace.

A set of examples of injection rules is also presented as matter of illustration.

3. In the fourth chapter, we present our passive testing approach for checking
real-time constraints. We first discuss the related work tackling with formal
approaches for testing temporal properties. Then, we present the existing
real-time formalisms and justify our choice of the XCTL [32] language. We
also present our passive testing algorithm for checking XCTL properties on
execution traces and discuss the obtained results of an experimental evalua-
tion of the proposed algorithm. This evaluation consisted in calculating the
necessary execution time for checking a set of real-time patterns on traces of

different lengths.
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4. In the chapter five, we describe our robustness testing approach. It is a comple-
mentary approach based on fault injection and passive testing techniques. We
first discuss the related work and the existing robustness testing approaches.
Then, we present the general architecture of our approach and detail each
step of the testing process. In this approach, Hoare logic is used to specify
the injected faults; while the robustness requirements are specified as a set of

safety and liveness properties formalized as XCTL formulas.

5. Finally in the sixth chapter, we present our framework for testing Web services
robustness. This framework is an instantiation of the proposed robustness test-
ing approach, for Web services. We first introduce Web services technology
and its main features. Then, we present the framework architecture and de-
scribe each of its components. This chapter also presents WSInject which is
a fault injection tool for Web services. We motivate our choice of developing
such tool and describe its architecture and its capabilities. We show in this
chapter also, how the abstract concepts presented in the previous chapters are
instantiated for Web services (specification of the injection process and the
robustness requirements) and we carry out two case studies to illustrate the
use of our framework. We describe for each case study all the testing phases
and discuss the obtained results. We show particularly how our framework
was able to detect important failures that could not be revealed by traditional

testing methods.

6. The last chapter of this manuscript concludes our work. We summarize our
contributions in the fields of both conformance and robustness testing, and

present some perspectives and possible future directions to extend our work.
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State of the Art
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2.1 Formal Testing

The use of formal methods for software testing is motivated by the fact that, per-

forming mathematical analysis can contribute efficiently to the reliability and the

consistency of any testing approach. The main advantage of using formal languages

is to be able to automate the verification process of any software system based on

dedicated tools.

We can rely on formal methods at different system development phases, as fol-

lows:

e The system behavior (i.e. what the system is supposed to do) can be modeled

using a formal system. This model, called also system specification, is in fact
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a mathematical representation of the studied system.

e The Verification step consists to check that the system specification does not
contain any errors. For example, we can check that some specific system

properties are correctly represented by the formal model.

e In the Implementation phase, the system becomes real. In this step, we do
not rely on any abstract model. The system developers are in charge of coding

the system behavior using the most suitable programming language.

o Testing is usually the last step in the development process. It consists to check

whether the implemented system is conform to its formal specification.

We can classify the set of existing formal testing methods into two main cate-
gories: the active testing methods and the passive testing methods. Each category
contains various approaches and each approach can use different techniques. In the
following we present the basic concepts of each testing family and introduce the

most known approaches from each class.

2.1.1 Active testing

Active testing consists at executing a set of test scenarios on an Implementation
Under Test (IUT) and check whether its behavior is conform to the specified re-
quirements. In this kind of test, the tester interacts directly with the IUT via its
external interfaces. Its provides the IUT with a set of inputs (test cases) and collects
the returned outputs which it analyzes to issue a verdict about the conformance of

the IUT with respects to its requirements.

Conformance testing

Conformance testing aims at verifying whether the behavior of a given system cor-
responds to its specification. This kind of test can be performed following either a

black-box, a white-box or a gray-box strategy.
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e Black-box testing, also called functional testing, consists at observing the ex-
changed inputs and outputs between the tester and the IUT without consid-
ering the internal actions. The verdict is issued based on the analysis of the

observed events.

e White-box or structural testing considers the test of the implementation code.
Here, we do not observe only the exchanged messages but also internal actions,
data structures, loops, etc. There exist specific tools for this kind of test which
are able to generate and execute test cases accounting the implementation

structure.

e Gray-box testing corresponds to an intermediate approach between the black
and the white box techniques. The idea here, is to consider some internal ac-
tions and other implementation features while observing the exchanged mes-

sages, without necessarily having access to all implementation code details.

A typical active testing approach proceeds in two steps. First, an automatic
generation of a set of test cases from the system specification is performed. Then,
the tester runs these test cases on the IUT and deduces a conformance verdict based
on the analysis of the system reaction to the stimulation (test inputs). Figure 2.1

describes the general active testing architecture.

Environment

Verdict

|
UT Active Tester | =

[
Specification of the IUT ‘ Test Test Cases ‘

Generation =~
Figure 2.1: Active Testing Methodology

The standard ISO/IEC 9646 [3] suggests some useful definitions for different

conformance testing concepts. Thus, the issued verdict can be either Pass, Fail or
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Inconclusive. The verdict Pass is returned when the TUT outputs are the same as
the specified ones. In this case, we say that the IUT is conform to its specification
as regard to the applied test cases. However, if the IUT outputs are different from
the specified ones, the issued verdict would be Fail which means that the IUT is not
conform to its specification. In the case where the execution of a test sequence does
not lead to a Pass or a Fuil verdict. The tester deduces an Inconclusive verdict.
This verdict does not reveal an TUT failure, rather the execution of the test cases
do not allow the verification of the test purpose. This could be due, for example,
to a non-deterministic specification where a single input can lead to different paths.
We need in this case to rerun the test cases for a better analysis.

This same standard [3] also introduces a set of terms to describe the tests applied
on an TUT. A test case is defined as an elementary test. For a reactive system, a
test case describes a set of interactions between the tester and the IUT which leads
to a validation of a particular property of the tested system. This property is called
a test purpose and is usually extracted from the system specification.

A test case is generally composed of a preamble, a test body, an identification
sequence and a postamble.

The preamble is the initial part of a test case. It is a set of interaction sequences
used to bring the implementation in a particular state where the test body can be
executed. The test body is the part of the test case used to verify the test purpose.

The identification sequence is an interaction sequence which allows the tester to
identify the state in which the IUT is, after the application of the test body. The
postamble is used to bring the TUT to a well identified state (usually the initial state)
to be able to apply another test case. Finally, we define a test suite as a set of test

cases.

Overview of active testing approaches

A wide set of active testing techniques use Finite State Machines (FSMs) as a
reference specification for modeling the behavior of the tested system. A finite state

machine is a behavioral model with a finite number of states, transitions between
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those states and actions. It is formally defined as follows:

Definition 2.1 A finite state machine is a 6-tuple < S, 1,0, 0, A, sg > where:

e S is a finite set of states, where sy € S is the initial state;

I is a finite set of input events;

O is a finite state of output events;

e 0:SxI — S isthe state transition function. We can extend o to o* : SxI* —
S where I'* is the set of all finite input sequences including the empty sequence

g,

e A\:SXI— 0. We can extend X to \* : S x I" — O* where I* is the set of
all finite input sequences including the empty sequence € and O* is the set of

all finite output sequences including the empty sequence £;

FSM-based testing methods suppose that we have a complete specification model
Spec and that we can observe all inputs/outputs (I/O) of the implementation ma-
chine Imp. The specification machine must be minimal, complete and strongly con-
nected. Since the implementation is tested as black-box, the strongest conformance

relation that can be considered is the trace-equivalence.

Definition 2.2 Two FSMs are trace-equivalents if they cannot be told apart by any
mnput sequence. That is, both the specification and the implementation will generate
the same outputs (a trace) for all specified input sequences.

To check whether two machines are equivalents, one needs to show that:

e There is a set of implementation states that are isomorphic to the states of

the specification.

e Every transition in the specification has a corresponding isomorphic transition

in the implementation.
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To check for isomorphic states, one needs to characterize each state of the ma-
chine. Thus, the main difference between the various FSM-based active testing ap-
proaches lies in the way they characterize the machine states. [30] discusses the most
relevant FSM-based techniques. We can for example characterize machine states us-
ing transition tours [51], distinguishing sequences 38|, characteristic sequences |28]
or unique I/O sequences [64]. The algorithms proposed for these methods are all

polynomial in time and memory consumption.

There is also another class of active testing approaches which do not rely on
equivalence relation between the specification and the implementation. This kind
of approaches consider that a system Imp can implement a system Spec while the
two systems are not necessarily equivalents. For example, it is commonly acceptable
that a system implementation would be more deterministic than its specification.
In fact, in this case, the abstract specification does not represent all implementation

details.

Therefore, in this kind of approaches, we need first to define a formal confor-
mance relation between the implementation and its specification. Then, the tester
would be able to check the conformance of an implementation with respect to its

specification, based on this conformance relation.

E. Brinskma defines in [27] a conformance relation conf based on Labeled Tran-
sition System (LTS) which can check whether an implementation contains non-
expected locks. This conformance relation does not distinguish between system
events which are controllable by the environment (the inputs) and those which can
be only observed (the outputs). The difference is however very important in prac-
tice as the tester needs to choose a set of inputs to stimulate the IUT so that it can
observe the system outputs. Therefore, more expressiveness models were proposed
to be able to reason about inputs and outputs such as Input Qutput State Machine
I0SM in [54] and Input Output Transition Systems IOTS in [67]. In this kind of

models, transitions represent either an input, an output or an internal action.

In [67], the behavior of the specification and the implementation is formalized as

I0TS. The authors defined a conformance relation ioco which consider specification
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traces as well as locks. An implementation Imp is conform to its specification Spec
for ioco if after every trace o from Spec, the set of outputs of Imp (including locks)
is included in the set of outputs of Spec. The author considers three kind of locks:
the deadlock, the outputlock and the livelock. The deadlock occurs when the tested
system cannot progress; the outputlock occurs when the system is blocked while it is
waiting for an input from its environment, and the livelock occurs when the system
loops for an infinite sequence of internal actions.

A work inspired from [27] was proposed in [54] and uses a specification formalism
based on I0SM. The author defines five implementation relations denoted by R; as

follows:

e The relation R; guarantees that all implementation outputs are expected by
the specification. However, it accepts that the implementation does not re-

sponse even if the specification expect an output.
e The relation Ry refines the relation Ry by considering lock situations.

e The relation Rg is based on the inclusion of specification traces into imple-

mentation traces.

e The relation R4 consider that the tested system must implement at least all
the behavior expected by its specification. The tested system can however

present more complex functionalities.

e The relation Rj requires that the implementation behaves exactly as it is

expected by its specification. Rj is in fact a trace equivalence relation.

2.1.2 Passive testing

Passive testing (also called monitoring) consists at observing input and output events
of a running application without disturbing its execution. The recorded observation
is called an event trace. It will be analyzed by the passive tester according to the
system specification to determine the conformance relation between the application

and its specification. It is important to note here, that when an event trace is
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conform to the specification, it does not mean that the whole application is conform
to the specification. However, in the case where the trace does not conform to the
specification, we can affirm that the application does not conform also.

Unlike active testing, passive testing does not influence the system under test.
This has the huge advantage of not troubling the application execution. Thus, we
can test a system running in its natural environmental condition. Also, passive
testing can be run during all system life time in the opposite of active testing test

campaigns which must be run for a specific system development phases.

Environment ‘

b}

> Passive Tester Verdict
LSpeciﬁcation B ———

-

Figure 2.2: Passive Testing Methodology

Figure 2.2 describes the passive testing methodology. The trace analysis pro-
duces either a PASS, a FAIL or an INCONCLUSIVE verdict. A PASS verdict is
issued if the trace is conform to the system specification (or properties) otherwise,
a FAIL verdict is produced. In the case where the trace is not long enough to allow
a complete analysis, the tester provides an INCONCLUSIVE verdict.

Several passive testing approaches were developed for different testing purposes.

We present in the following the main important ones.

Passive testing by value determination

The Eztended Finite State Machine (EFSM) model is an evolution of the classical
FSM model which offers more specification possibilities. It is formally defined as

follows:

32



Chapter 2. State of the Art

Definition 2.3 An Extended Finite State Machine M is a 7-tuple M = (S, so, Sf, 1,0, T
,T') where:

e S is a finite non empty set of states;

so 15 the initial state;

Sy is a finite state of final states;

1 is a finite set of input symbols, with or without parameters;

O s a finite set of output symbols, with or without parameters;

—

o = (x1,...,x) is a vector denoting a finite set of variables;

T is a finite set of transitions.

FEach transition t is defined as a 6-tuple t = (sy, ft, i, 01, Py, Ay) where:
e s; is a starting state;

e fi is an ending state;

e iy is an inpul symbol;

e 0; is an outpul symbol;

° Pt(z) is a predicate on the variables (boolean formula);

° At(g) s a sequence of actions.

Thus, each transition of the EFSM can contain:

e input and output events eventually with parameters,
e a predicate (or a guard) to satisfy,

e a sequence of actions to perform.

33



2.1. Formal Testing

Using EFSM, passive testing approaches must not only check the correctness of
event sequences (appearing in the collected trace), but also the variables and the
parameter values. This first passive testing method is based on the deduction of
variable and parameter values from an event trace considering an EFSM model.

The schema in figure 2.3 shows an example of this deduction process.

Figure 2.3: Deduction of variable values

Assume that we know the current state S; but not the value of variable x. If
the next input/output couple from the trace is a/1 then, we can deduce that after
the transition is fired, the current state becomes the state S3 and = will be equal
to 0. Based on this property, a passive testing algorithm was proposed in [66]. It

considers that a transition is fired if :

1. the input/output couple of the trace matches with the input/output couple of

the transition,

2. either the transition predicate is true or it cannot be evaluated due to a lack

of information (values are not yet known).

The problem of information loss Consider the example presented in figure 2.4
If we assume that the current state is S; and that variable z has been identified
with the value 3. If we consider that y is unknown, we must for any case fire the two
transitions S; — So and S7 — S3 because the I/O on both transitions are identical.
Now that the two transitions give different values of x; x becomes UNDEFINED!
We note here that undefined variables (y in this example) can lead to losing already

found values of other variables (x in this example).

34



Chapter 2. State of the Art

Figure 2.4: Information loss

The testing algorithm The testing algorithm proceeds in two main steps. The
first step is called homing phase of the current state and the variable values. In

this step, the following rules are considered:

e for a given I/O couple, if there exists a set of possible transitions producing

different values for a same variable, then this variable becomes UNDEFINED,

e the predicates involving the UNDEFINED variables are considered to be true.

The second step is called fault detection phase and concerns the conformance

checking of the remaining trace with respect to the specification.

Passive testing by interval determination

We saw that the algorithm presented previously suffers from an information loss
phenomenon. A more efficient passive testing algorithm was propose in [29]. It is

based on three main concepts.

1. Intervals to refer to the set of variable values such as R(v) = [a; b] for variable

V.

2. Assertions which are defined as predicates on variables denoted by asrt(z)

.
where x is the variable vector.

3. Candidate Configuration Sets (CCS) to formalize the analyzed environ-
ment of the system under test. A CCS is a triplet (s, R(7), asrt(x)) where s

is the current state of the specification.
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This algorithm aims to determine the values of variables by using a set (in the
form of interval) of possible values for each variable. Intervals in which variables

take their values are then, progressively refined.

The intervals The intervals are a beginning answer to the information loss prob-
lem. In the previous algorithm, a variable could not have more than one possible
value. In the case where several values were possible, the variable becomes UNDE-
FINED. Using intervals, a variable v whose value is between two integers a and b
will be defined by an interval R(v) such as R(v) = [a;b]. If v has a constant value
a, we will have R(v) = [a;a]. The variable v is then said decided. Three operation

on intervals are possible:

e The sum of two intervals: [a;b] + [¢;d] = [a + ¢; b+ d]
e The subtraction of two intervals:[a;b] — [¢;d] = [a — ¢;b — d]

e The multiplication of an interval by an integer:
w X [a;b] = [w x a;w x b] if w>0

w X [a;b] = [w x byw x a] if w<0

The assertions An assertion asrt(z) is a boolean formula on the variables vector
2 which must be true at the current state of the verification. Assertions are used
to record constraints on variables, built based on transition predicates and actions.
When a transition is fired, its predicate is added to the assertion as well as the
actions that contain undecided variables in the right member of the equality. For
example, if the action x9 <+ x1 + 1 updates the variable xo; every term of a,srt(z)
containing xo must be deleted and the term x5 «— x1 + 1 must be added to asrt(z).

Thus, as soon as we discover x5 we can deduce easily the value of xs.

The Candidate Configuration Sets A Candidate Configuration Set (CCS) is
a triplet (s, R(z),asrt(x)) where:

e s is the current specification state,
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e R(x) is the set of intervals,

— —
e asrt(x) is an assertion on the vector of variables z.

Candidate configurations are used to model the states where the system under
test is. They specify for each state, the related set of variable constraints. For
example, the configuration (S, R(z) = [2;6],(z < 4) A (z > 4)) means that the
system is in the state S; and that the value of the variable x is contained between
2 and 6 but not equal to 4.

The algorithm defines two lists 1 and @2, where 1 is the set of current possible
CCS and @2 is the set of possible CCS of the previous step. Thus, given 1 and
an event e, we should be able to obtain the corresponding transition. A transition
t will be fired if it exists a configuration in Q1 whose constraints (the intervals of

variables and the assertions) are compatible with the predicate p of ¢.

Passive testing by backward checking

This technique has been proposed in [26]. The presented algorithm is widely in-
spired from the one presented in [29]. However, in this work, the trace is checked
backwardly. The authors built their algorithm based on the fact that the end of the
trace corresponds to a system state. Therefore, starting from the end of the trace,
it is more efficient and easier to get correct information about variable values by
looking to the past of the trace.

This backward checking algorithm proceeds in two phases. The first step con-
sists in tracking a trace w starting from its end and going back to its beginning
while mapping w to the specification machine. The goal is to reach all possible
configurations X that can generate the trace w. In other words, the algorithm looks
for all CCS from which w could begin.

In the second phase, the algorithm verifies the past of the trace in order to vali-
date at least one configuration from the set X. This validation consists in exploring
all possible paths from a given configuration to verify that w is reachable from the

initial configuration of the specification. The algorithm looks for a path p that con-
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nects a configuration ¢ and an element of X. p validates the trace w if there exists
a set of predicates and actions that can confirm the correction of the element of X.
The complexity of this approach is at worst equal to the total parsing of the

system specification i.e. the complete exploration of its accessibility graph.

Passive testing by invariant checking

All passive testing techniques discussed previously are based on the same concept
which consists to compare a collected execution trace with the formal specification
of the system under test. The major problem with this kind of approaches lies
on the high complexity of the used algorithm, particularly when considering non-
deterministic specification. The verification of each trace necessitates a partial (or
a total) exploration of the whole specification.

To address this problem, an invariant-based approach was proposed in [45] and
improved in [31]. The basic idea of invariant-based testing consists in extracting
from the system specification a set of properties to verify on the trace. These
properties must be satisfied at any moment, hence the name of invariants.

An input/output invariant is composed of two parts:

e The test, which is an input or an output symbol.

e The preamble, which is the sequence that must be found in the trace before

checking the test.
Based on this definition, three types of invariants are introduced.

e Output invariants; defined when the test is an output symbol. These invariants
are used to specify properties of the form : "immediately after the sequence
preamble we must always have the output test". For example, consider the

following output invariants:

— (41 / o1 ) meaning that "i; is always followed by o;".

preamble  test
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— (i1/01)(i2 /o2) meaning that "immediately after the sequence (i1 /01) and
——
preamble  test

the input o, we must have the output 0o". This invariant is said to be

an invariant of length 2 because its preamble contains two I/O couples.

e Input invariants; defined when the test is an input symbol. This kind of
invariants is used to specify properties of the form "immediately before the
sequence preamble we must always have the input test". For example, consider

the following input invariants.

(41 / o1 ) meaning that "o; is always preceded by i;".
~— =~
test  preamble
— (i1 /o1)(i2/02) meaning that "immediately before the sequence 01 (i2/02)
~ ——

test  preamble
we must have the input 71".
e Succession invariants; used to specify complex properties such as loop prob-
lems. For example, the following set of invariants constitutes a succession

invariant.

— (i1/01)(i2 /02)
S——

preamble  test

— (i1/01)(i2/02)(i2 /02)
~~

g

preamble test
— (i1/01)(iz/02)(i2/02)(iz [03)
~~
preamble test

This invariant forces the transition (iz/02) to hold twice before the transition
(i2/03) must be fired. This kind of sequences is used to limit the number
of attempts for a given protocol operation before returning a failure. In this
example, the number of attempts is limited to two and the output oz can

represent a failure event.

The invariant-based approach is a powerful passive testing technique though the
extraction of the invariants from the system specification is still a hard task to per-

form. If we delegate this task to a human it is likely to take a big amount of time
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and can lead to erroneous extractions. On the other hand, automatic extraction al-
gorithms such as the one presented in [31] are very sensitive to the non-determinism
of the specification when the invariant length is greater than one. Also, this ap-
proach cannot detect all types of errors and it is more likely designed to be used

complementarity with other methods.

2.2 Robustness Testing: Techniques and Tools

Robustness testing aims to determine whether a software system or a component
can have an acceptable behavior in the presence of faults or stressful environmental
conditions. This definition covers a large spectrum of approaches, which can be
classified according to two viewpoints.

The first viewpoint determines the input domain of interest. The input do-
main can be split into two main dimensions: the activity (workload) and the faults
(faultload). The workload and the faultload can be given more or less emphasis, de-
pending on the approaches. Workload-based approaches extend usual testing efforts
by submitting the system to higher load tests while Faultload-based approaches fo-
cus on the fault dimension and the behavior of the system subjected to a given set
of faults.

The two dimensions of the input domain can combine their effects on a system.
The so-called mixed workload- and faultload-based approaches, explicitly consider
such combined effects.

The second viewpoint concerns the classification of robustness testing approaches
according to the target objective: testing for verification or evaluation purposes.

The verification of robustness is most often on the lineage of classical testing
approaches, where a model of the system (e.g., a behavioral model) is used as a
guide for selecting test cases (e.g., transition coverage is required). The evaluation
of robustness rather builds on fault injection and load testing approaches, for which
the first-class citizens are models of the input domain. For example, the workload
is selected according to a probabilistic model of the operational profile and the

faultload is based on a model of faults that are deemed representative of actual
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faults in operation. Recent effort to standardize this kind of evaluation-oriented
testing has yielded the emergence of the concept of dependability benchmarking.
This second classification is used to build the structure of this section. We first
present work dealing with fault injection as a robustness testing technique. Then,
we describe relevant robustness testing approaches based on system modeling and

test case generation.

2.2.1 Fault injection approaches

Fault injection consists to introduce deliberate errors in a system and observe its
behavior. This technique has been widely used for robustness testing because it
allows one to evaluate the behavior of a given system when running in a hostile
environment. In the following, we present most relevant fault injection tools for

testing robustness of communication protocols and distributed systems.

DOCTOR

DOCTOR (integrateD sOftware Fault injeCTiOn enviRonment) [62] is a fault in-
jection tool for distributed application. It can synthesize the workload and emulate
the occurrence of faults in real time systems. It supports mainly three types of
faults (processor, memory and communication faults) and can run three injection
mode: permanent, transient and intermittent. During experimentations, DOCTOR
collects performance and reliability information providing testers with significant

evaluation data.

ORCHESTRA

ORCHESTRA [61] is a script-driven fault injection tool designed for testing the
reliability and the liveness of distributed protocols. A fault injection layer is inserted
between the tested protocol layer and the lower layers to filter and manipulate
messages exchanged between the protocol participants.

Messages can be delayed, lost, reordered, duplicated and modified. Also, new

messages can be spontaneously introduced into the tested system to bring it into a
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particular global state.

The reception script and the sending script are written in TCL language and
determine which operations are to be performed on received/sent messages. These
scripts are specified with state machines. Transitions in these machines are driven
by the type of the message, its contents, the history of received messages or other
information that was previously collected during the test execution (e.g. local time,
number of received messages, etc.).

Message modifications are however, specified using a user-defined script. The
resulting message is passed to the next layer of the protocol stack.

ORCHESTRA is a "Message-level fault injector" because a fault injection layer
is inserted between two layers in the protocol stack. This kind of fault injector
allows injecting faults without requiring the modification of the protocol source
code. However, the user has to implement his fault injection layer for each protocol
he wants to test. The expressiveness of the fault scenario is limited as there is no
communication between the various state machines executed on every node. Also,
because the fault injection is based on exchanged messages, the knowledge of the

type and the size of these messages is required [63].

NFTAPE

The NFTAPE project [65] arose from the double observation that no tool is suffi-
cient to inject all fault models and that it is difficult to port a particular tool to
different systems. NFTAPE provides mechanisms for fault-injection, triggering in-
jections, producing workloads, detecting errors, and logging results. Unlike other
tools, NFTAPE separates these components so that the user can create his own
fault injectors and injection triggers using the provided interfaces.

NFTAPE is a Lightweight Fault Injector (LWFI). LWFIs are simpler than tradi-
tional fault injectors as they do not need to integrate triggers, logging mechanisms,
and communication support. This way, NFTAPE can inject faults using any fault
injection method and any fault model. Interfaces for the other components are also

defined to facilitate portability to new systems.
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In NFTAPE, the execution of a test scenario is centralized. A particular com-
puter, called the control host, takes all control decisions. This computer is generally
separated from the set of computers that execute the test. It executes a script writ-
ten in Jython (Jython is a subset of the Python language) which defines the faults
scenario. All participating computers are attached to a process manager which in
turn communicates with the control host. The control host sends commands to
process managers according to the fault scenario. When receiving a command, the
process manager executes it. At the end of the execution or if a crash occurs, the
process manager notifies the control host by sending a notification message.

All decisions are taken by the controller, which implies that every fault triggered
at every node induces a communication with the controller. Then, according to the
defined scenario, the controller sends a fault injection message to the appropriate

process manager which can then inject the fault [63].

DEFINE

DEFINE (DistributEd Fault Injection and moNitoring Environment) [48] is a fault
injector designed to evaluate system dependability, investigate fault propagation
and validate fault tolerant mechanisms of distributed systems. This tool can inject
software faults as well as hardware-induced software errors in any process running
in distributed systems either in user mode or supervisor mode. The injected faults
can be correlated or independents.

DEFINE is extended from it antecedent FINE [47], with additional distributed

capability and injection mechanisms. It uses two fault injection techniques:

1. using hardware clock interrupts to control the time of fault injection and acti-
vation which allows injecting intermittent CPU/Bus faults in order to ensure

their activation,

2. using software traps to inject faults and monitor fault activation in order to

assist monitor whether the faults are activated and were they are activated.
Experiments using DEFINE were successfully conducted on SUN NFS-distributed
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file system.

FAIL-FCI

FAIL-FCI [41] is a fault injection tool developed by INRIA (Institut National de
Recherche en Informatique et Autimatique). First, FAIL (for FAult Injection Lan-
guage) is a language that permits to easily described fault scenarios. Second, FCI
(for FAIL Cluster Implementation) is a distributed fault injection platform whose
input language for describing fault scenarios is FAIL. Both components aims at
emulating large-scale networks on smaller clusters or grids.

The FAIL language allows defining fault scenarios. A scenario describes, using
a high-level abstract language, state machines which model fault occurrences. The
FAIL language also describes the association between these state machines and a
computer (or a group of computers) in the network. The FCI platform is composed

of several building blocks:

1. The FCI compiler: The fault scenarios written in FAIL are pre-compiled by
the FCI compiler which generates C+-+ source files and default configuration

files.

2. The FCI library: The files generated by the FCI compiler are bundled with the
FCI library into several archives, and then distributed across the network to
the target machines according to the user-defined configuration files. Both the
FCI compiler generated files and the FCI library files are provided as source

code archives, to enable support for heterogeneous clusters.

3. The FCI daemon: The source files that have been distributed to the target
machines are then extracted and compiled to generate specific executable files
for every computer in the system. Those executables are referred to as the
FCI daemons. When the experiment begins, the distributed application to be
tested is executed through the FCI daemon installed on every computer, to

allow its instrumentation and its handling according to the fault scenario.
FCI is a Debugger-based Fault Injector because the injection of faults and the
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instrumentation of the tested application is made using a debugger. This makes
it possible not to have to modify the source code of the tested application, while
enabling the possibility of injecting arbitrary faults (modification of the program
counter or the local variables to simulate a buffer overflow attack, etc.). From the
user point of view, it is sufficient to specify a fault scenario written in FAIL to define
an experiment. The source code of the fault injection daemons is automatically
generated. These daemons communicate between them explicitly according to the
user-defined scenario. This allows the injection of faults based either on a global
state of the system or on more complex mechanisms involving several machines (e.g.
a cascading fault injection). In addition, the fully distributed architecture of the FCI
daemons makes it scalable, which is necessary in the context of emulating large-scale
distributed systems. FCI daemons have two operating modes: a random mode and a
deterministic mode. These two modes allow fault injection based on a probabilistic
fault scenario (for the first case) or based on a deterministic and reproducible fault
scenario (for the second case). Using a debugger to trigger faults also permits to
limit the intrusion of the fault injector during the experiment. Indeed, the debugger
places breakpoints which correspond to the user-defined fault scenario and then runs
the tested application. As long as no breakpoint is reached, the application runs

normally and the debugger remains inactive.

2.2.2 Model-based approaches

Testing system robustness based on behavioral models can be seen as a conformance
testing problem. Compared to traditional conformance testing, the only difference
is the explicit fault dimension in the input domain, since faults are key inputs that
the resilience mechanism is expected to deal with.

It is important, however, to note that the fault dimension has a strong impact
on the implementation of the testbed. The experiments may necessitate the devel-
opment of complex test platforms to be able to inject faults, synchronize them with
the activity, and observe their effect.

In the following, we present most relevant contributions on model-based robust-
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ness testing approaches.

The work presented in [46], builds a robustness testing approach based on the
conformance testing of correctness properties. Thus, given a robustness property
P, a system implementation is robust iff the property P is satisfied in presence of

faults. This approach is based on the following elements:

e A formal model S describing the nominal system behavior. That is, the
expected behavior of the tested system when running in normal environmental
conditions. In this work, authors formalized S as a set of LTS’s (Labeled

Transition Systems).

e A fault model F' representing the set of faults that may affect the tested system
and cause failures. This fault model must be a set of mutations from the model

S obtained by modifying exchanged parameter values, system transitions, etc.

e A robustness property P which specifies the expected system behavior in pres-
ence of faults. P is a linear property describing the set of robust execution

sequences of the tested implementation.

Test cases are then generated as follows:

e Generation of a degraded model Sy by deriving a mutation of S based on the

fault model F'.

e Generation of an observer O. This observer is a Rabin automata [58] describing

the set of sequences of P. It identifies the set of non robust sequences of Sy

e Generation of test cases from S; and O: non robust execution sequences are
extracted from Sy and transformed to test cases by computing an asymmetric

product with the observer O.

Another model-based approach is proposed in [40] and concerns specifically em-
bedded real time systems. In this work, we consider also two system specifications:
a nominal and a degraded one. The degraded specification describes critical sys-
tem actions that must be handled in stressful and/or unexpected environmental

conditions. The robustness testing process proceeds as follows:
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1. Generation of test sequences from the nominal specification;
2. Application of magnetic radiations on the system under test;
3. Running the generated test sequences;

4. End of magnetic radiations;

5. Result analysis and partial verdict;

6. Generation of mutant test sequences;

7. Running mutant test cases;

8. Result analysis and final verdict.

Authors also proposed another testing process based on test cases generation
and execution based on the degraded specification.
In [37], authors presented a robustness testing framework based on a different

model-based approach. This framework proceeds in two phases:

1. First, an increased specification is built by integrating hazards in the nominal

specification;

2. Then, robustness test cases are generated from the increased specification and

executed on the implementation.

Hazards denote any events not expected in the nominal specification of the
system. Authors identified three kinds of controllable and representable hazards:
invalid inputs, inopportune inputs (actions belonging to the specification alphabet
but not expected in the given state) and unexpected outputs.

The first phase consists to integrate the representable hazards in the model of the
nominal specification. The obtained model is called increased specification. Then,
the robustness of the implementation is evaluated with respect to this increased

specification by generating and executing test cases as follows:

1. Definition of a Robustness Test Purpose (RTP). RTP is a part of the total

specification. It allows one to focus on a precise behavior of the system.
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2. Computation of the synchronous product S4 ® RT P where S 4 is the increased

specification.

3. Building a Robustness Test Graph (RTG) based on the result of the previous
computation. This graph describes all tests corresponding to a given RTP. It
is then reduced to a Reduced Robustness Test Graph RRTG which contains

only paths describing acceptable behaviors (according to the RTP).

4. Generation and execution of robustness test cases from the RRTG.
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3.1 Introduction

Fault Injection consists in introducing deliberate errors in a system and observe its
behavior. This technique is usually used to assess error recovery and fault tolerant
mechanisms, to perform some dependability measures such as availability, integrity
and performance or simply to understand the effect of real faults. Fault injection
can be applied both to hardware systems (HWIFI: Hardware Implemented Fault
Injection) and software systems (SWIFI: Software Implemented Fault Injection)
but there has been more research on SWIFI based tools, mostly because they do
not require any expensive hardware.

SWIFT approaches are categorized into several classes according to the type of
the injected faults and the injection level. Two of these categories are particularly
interesting in the context of our work : interface faults and communication faults.
At interface level, faults affect functions input/output parameters or protocol mes-
sages fields. The values attributed to these parameters are generated differently
from an approach (or tool) to another: some fault injectors provide generic inputs
to all parameters whatever their types, others generate type-specific inputs (like
Ballista [52| which assigns a set of values to each parameter type) and there are
also some tools like Fuzz [35] which generate random inputs for each parameter.
For communication faults, the injection concerns the message exchanges between
system components. The injector can corrupt, delay or replicate messages. It can
also perform other operations according to the fault model specified by the tester.

The main goal of fault injection is experimental validation. As mentioned before,
a fault injection test experiment lies in the introduction of faults from a given
scenario into an implementation under test (IUT), the target, to observe how it
behaves under the presence of such faults. However, relying only on experimental
methods may be insufficient and in some cases can be seen as a lack of thoroughness
and soundness, mainly during results analysis and validation. This can be widely
avoided using formal methods.

The use of formal methods for software and hardware design is motivated by

the expectation that, as in other engineering disciplines, performing appropriate
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mathematical analyses can contribute to the reliability and robustness of a design.
In software testing, we rely on formal specifications at various stages during the test
process. We specify the behavior of the implementation under test, the properties
that must be analyzed and all the needed operations to achieve the test purposes.
This allows us to avoid any ambiguity or conflict that may appear when depending
only on experimental methods. By using formal methods, we can clearly specify the
test purposes and the test methodology. Hence, results analysis will be based on
mathematical concepts avoiding any false interpretations and/or verdict issues.

If we choose to rely on fault injection to perform any kind of test (robustness,
security or even functional testing), we need, not only to specify the tested properties
(robustness, security or functional properties) but also the fault injection itself.
We should provide a formal description of the injected faults and the way they
are injected. Because the verdict which will be issued, will strongly be dependent
of the injected errors. Also, if researchers specify formally their entire injection
methodology, then it can be easily studied, analyzed and eventually reproduced
and/or extended by other testers in future time. Therefore, it can be the best way
to study the effects of errors on real systems.

In this chapter, we propose a formal method for fault injection specification and
verification. We aim to provide a generic and formal system for fault modeling to
allow more rigor in error description and to avoid specification ambiguities. The

main contributions we bring in this work are the following:

e First, we propose a fault injection specification formalism based on Hoare logic
[42] and time constraints. The proposed formalism allows specification of sev-
eral types of faults and can be used to test both communication protocols and
distributed systems. It is formal as it is based on a mathematical logic. This
avoids specification ambiguities and allows fault injection validation. It is also
a generic formalism because it uses a high level abstract syntax. Therefore, it
is well appropriate for the specification and the verification of various injection

operations.
e Then, we propose a passive testing approach to verify the correctness of the
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injection process. The idea is to exploit the formal specification of faults as a

test oracle to check the good execution of the injection process.

3.2 Fault injection specification

3.2.1 Preliminaries
Hoare logic

Hoare logic [42] is a formal system which provides a set of logical rules based on
mathematical logic. Its central feature is the Hoare Triple which describes how an
execution of a set of actions changes the state of some variables. A Hoare triple is
of the form {P}C{Q} where C is a program (a set of actions) and P and @ are
assertions expressed in a first-order logic. Informally, a triple {P}C{Q} has the
following meaning: if C' is executed in a state satisfying precondition P and if C
terminates then the final state satisfies postcondition ). Hoare logic has also axioms
and inference rules that can be used to reason about the correctness of computer
programs. However, in this paper we are mostly interested by the formalization.
Therefore, we focus only on Hoare Triples (a complete presentation of Hoare axioms

and inference rules can be found in [42]).

Fault injector location and capabilities

We can rely on SWIFI approaches to test various aspect of a given system. Depend-
ing on the test purpose, fault can be injected at different system locations : memory,
hard disk driver, communication interfaces, etc. In this work, we address the case
of communication and interface faults applied on distributed systems. Therefore,
we assume that the fault injector would be placed between two agents of a global

system: Al and A2; and that is able to perform the following actions:
e Intercept every message exchanged between A; and As.
e Apply some operations on the intercepted message.
e Resend the faulty message.
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We note that the injection process is performed during a finite period of time.
Therefore, the messages exchanged between Al and A2 during the injection process

are of a finite number.

3.2.2 Fault injection formalism

Based on the above assumptions, we propose to define a fault injection operation

with a Hoare triple as follows.

Definition 3.1: (Injection operation) an injection operation is a Hoare triple

{P}C{Q} where :

e P specifies a precondition on the intercepted message (its state before the exe-

cution of the injection operation);

e C denotes the operation itself (identified by its name and eventually a set of

parameters);

e and Q) 1s a postcondition which states the effect of the operation execution on

the intercepted message.

A communication message can be considered as a finite set of elements. Each
element describes a part or a field of this message. Therefore, we can specify formally
a communication message as a finite collection (a set where replicates are permitted)
of elements S = {elty,...,elt,}. We specify also the set of all injection operations
executed during an injection experiment as a finite set of injection rules R such as
each injection rule » € R specifies a Hoare triple describing an injection operation

applied on an intercepted message, as follows.

{P(S)} OperationName(paramy, ...,param,) {Q(S)}

3.2.3 Time extension

The fault injection formalization presented above can be used to specify many in-

jection operations. However, as it is based on the basic definition of Hoare logic
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as it was introduced in [42], it does not support time specification. Thus, we are
unable to specify timed injection operations like for example the delaying of mes-
sages; whereas time is probably one of the most important properties that must be
considered when testing system reliability. Therefore, instead of using the classical
Hoare logic, we propose to rely on an extended version which supports real-time
specification.

In [44], the authors extended Hoare logic to real-time. They defined special
variables and some primitives to allow time reasoning and illustrated their model
with many specification examples. The proof of soundness and completeness of this
extended model is given in [43].

Based on this extension, we propose to specify each fault injection operation as
a Hoare triple where preconditions and postconditions are expressed in first-order

logic with the following primitives.

e We assume that the timing behavior of the fault injector is described from the

viewpoint of an external observer with his own clock,

o we define a time domain TIMFE = {7 € |7 > 0} and logical time variables

ranging over TIME U {co}, such as t, g, t1, ...

e We define a special variable now which ranges over TIMFE U {oo} and refers

to the global notion of time presented in the first point.

3.2.4 Specification language

We propose here a common and generic specification language to be used for pre/-
postcondition specifications.

As we consider the captured messages as sets of elements, we define a set of func-
tions and predicates inspired from the set theory so that we will be able to specify
all kinds of pre-and postconditions related to sets.

Definition 3.2: (Specification primitives) given two sets A and B and a set

element elt, we define the following primitives.

o AisEmpty(): returns true iff A is an empty set;
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A.size(): returns the size (number of elements) of the set A;

A.has(elt): tells whether the given element elt belongs to the set A;

A.count(elt): tells how many time a given element elt occurs in the current set

A .

7

A.remove(elt): returns a set containing the items in the current set (A) except

for one of the given element elt.

o A.equals(B): returns true iff set A is equal to set B (they have the same size

and the same elements);
o A.isSubSet(B):returns true iff every element of A is contained in B.

We also define a modifier new(SetName) to refer to the set Set Name after the
execution of an injection operation. For example new(S) refers to the state of the

set S after the injection.

3.3 Specification examples

We present in this section several examples to illustrate our specification formalism.
Each example describes a possible injection operation and provides its correspond-
ing Hoare triple. As defined in the specification formalism, we will refer to each

intercepted message as a set of elements S.

3.3.1 Operation Delete

The first operation which we specify is used to delete intercepted messages. We

express it by a Hoare triple as follows.
{=S.isEmpty()} Delete(S) {new(S).isEmpty()}
We can also specify the deletion of one message element as follows.
{S.has(elt)} Delete(S,elt) {new(S).equals(S.remove(elt))}
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3.3.2 Operation Delay

This operation is used to delay the forwarding of intercepted messages. A parameter
n € TIME specifies the period of delay, which means that the captured message
will be kept for n time units before it is resent. The corresponding Hoare triple is

of the form:

{=S.isEmpty() Anow = Val, Val € TIMEY}
Delay(S,n)
{new(S).equals(S) Nnow =Val+n+e,e € TIME}

In the precondition, we specify the time value before the execution of operation
Delay. Then, in the postcondition, we ensure that this value has been exceeded by
n time units. e specifies the very short extra delay that we may accept due to the

density of the time domain.

3.3.3 Operation Replicate

This operation is used to replicate message elements. The number of replication is

specified by an argument n € NT.

{S.has(elt)} Replicate(S,elt,n) {new(S).count(elt) = n x S.count(elt)}

We can also specify a replication of all elements of the captured message as

follows.

{=S.isEmpty()}
Replicate(S,n)
{V elt: S.has(elt) = new(S).count(elt) = n x S.count(elt)}

We verify in the postcondition that operation Replicate creates n copies of each
element contained in S. The universal quantifier expression is true if for all elements

elt such as S.has(elt) is true, new(S).count(elt) = n x S.count(elt) is also true.
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3.3.4 Operation Insert

{true} Insert(S,elt) {S.equals(new(S).remove(elt))}

This injection operation inserts extra data in the captured message. It can be either
a malicious element or just a huge bloc of insignificant data in order to disturb the

communication.

3.3.5 Operation Corrupt

This is a content corruption operation which modifies the content of intercepted

messages before their forwarding. We specify it with the following Hoare triple.

{=S.isEmpty()}
Corrupt(S)
{new(S).size() = S.size() A —new(S).equals(S)}

In the postcondition, we check whether the message S keeps the same number of

elements, with a different content.

3.4 Passive testing approach

If we want to include a fault injection mechanism as a part of a complete testing
methodology, we have to verify and validate its behavior within the test context.
This is a very important step, because it allows us to ensure that the specified
injection operations are properly implemented and performed. Otherwise, some
confusion may occur during the test execution. For example, if we are testing a
security protocol using a fault injector that we configured to delete some specific
messages. Then, after the test execution, how can we be sure that the lost messages
have been effectively deleted by the fault injector and not lost due to a protocol
vulnerability or a system failure? This confusion can be omitted if we had a mean
to verify the good execution of the performed injection actions.

It is also very important to note that this verification step must be performed

after each experiment. The fact that the used fault injector may have been already
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Injector
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Figure 3.1: The passive testing approach: (a) Collecting the trace. (b) Checking
trace conformance w.r.t. injection rules specification.

tested and validated before, does not mean that it will behave correctly in all situ-
ations and contexts. The fault injector is an extern element that we include in our
testing environment. Therefore, depending on this environment (which may be a

hostile or an experimental platform) it may work correctly or not.

In this section, we present a passive testing approach to perform this kind of
verification. This approach allows one to check the conformance of a fault injection
process with respect to its formal specification given as a set of Hoare triple rules.

Figure 3.1 gives an overview of the proposed technique.

First, we put some observation points (O.P.) at the fault injector core to collect
an execution trace during the injection process. We assume here that we have
access to the fault injector source code so that we can log all executed operations or
that the used fault injector provides a log file containing all necessary information.
Otherwise, we can put the O.P. at the fault injector interface (to collect input/output

messages), but in this case we can just verify the pre/postconditions independently
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of the executed operations, which is not conform to Hoare logic semantics.

After the injection experiment terminates, we analyze the collected trace to check
its conformance with respect to the specified fault injection model (figure 3.1.b). We
note that this approach does not validate completelty the used fault injector but it
allows testers to ensure if for a given experiment, the fault injection has been well
performed or not.

The specification file provided to the passive tester contains a set of injection
rules specified as Hoare triples using the specification language presented in section
3.2.4. The passive tester will then execute Algorithm 1 to check whether the collected

trace is conform to the specified injection operations.

Algorithm 1 Trace checking
1: Require: HT[r|: Hoare triple rules + Tr[l]: trace file,
2: Ensure: Verdict|[v]: Verdict table;
3: Initialization :
4: for each rule r € HT do

5. Verdict[r]:~INCONCLUSIVE;

6: for each line [ of T'r do

7. if 3r € HT : (I |= r.precond) and (r.operation = l.Operation) then
8: if = (! |= r.postcond) then

9: Verdict[r|:=FAIL;

10: (log the current line which violates the current injection rule)
11: else

12: if Verdictr] # FAIL then

13: Verdict|[r|:=PASS;

The trace file is formatted as follows. For each executed operation, the following

information are logged:

e Operation : the name and parameters of the executed operation ;

StartTime: the time at which it starts its execution;

InMsg: the input message (the captured message on which the current opera-

tion should be applied);

OutMsg: the output message (the message returned by the current operation);

EndTime: the time at which the current operation finishes its execution.
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Based on that trace format, Algorithm 1 starts by an initialization step where it
associates an INCONCLUSIVE verdict to all injection rules. INCONCLUSIVE
verdict means that we are unable to verify the correct implementation of a given
rule; either because no line from the trace satisfies the rule precondition or that the
executed operation is different from the specified one.

After this first step, the algorithm verifies for each trace line [ , if there ex-
ists a rule r from the specification file whose precondition is satisfied by [ (I
r.precond) and if the executed operation (I.Operation) matches with the specified
one (r.operation). If it does, the rule verdict is updated with a PASS/FAIL verdict
according to the conformance of the specified postcondition (r.postcondition) w.r.t.
the observed trace line.

We note that each injection rule may be tested several times (each time a trace
line satisfies its preconditon). However, if the test failed once then the final verdict
associated to this rule will be FAIL. The complexity of the algorithm is straight-
forward. At worst, an injection operation might be concerned by all lines from the
trace. Therefore, the complexity is O(n.m), where n is the number of the specified
injection rules (size of the table HT') and m is the trace length.

In the case of a black box testing, where we cannot log the executed operations,
we can only observe the input/output messages with their relative input/output
times. Therefore, even if we can modify Algorithm1 to check whether the pre-and
postconditions related to a given message are respected, nothing can be said about

the real implemented operations.

3.5 Conclusion

Fault injection is a powerful strategy to test fault-tolerant protocols and distributed
systems. The first step in building a complete fault injection process is the speci-
fication of a fault scenario for the test experiment. This includes the specification
of the fault injector location and the type and time of injected faults. In this chap-
ter, we presented a generic fault injection formalism based on Hoare logic and time

specification. We detailed its syntax and semantics and provided some specification
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examples to illustrate its use.

Once faults are specified, one can easily control the injection process by verifying
its execution. We proposed a passive testing approach which uses the injection
specification to check the injection process. This way, we would be able to ensure
that the injection is well performed and thus, we will avoid any ambiguity during
result analysis.

The proposed fault injection formalism could also be exploited in other manners.
For example, it would be interesting to study the possibility of automatic generation
of faults from the abstract Hoare specification, or to propose some fault injection

patterns for different testing purposes.
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4.1 Introduction

The high complexity and the large variety of actual implemented systems as well as
the high degree required for their global performance, lead to increasingly challeng-
ing issues on developing approaches and techniques for verification and validation
of correctness properties.

System requirements (also called correctness properties) are a set of rules which
describe how data and other critical resources of a given system should be managed.
Usually, such requirements are defined by network and/or system administrators
which are in charge of implementing and controlling the critical mechanisms of their
organizations. Since this set of rules can be more or less complex, any specification
ambiguity can lead to conflicts or create security threats. To avoid these dangerous
situations, administrators and test experts often rely on formal specification lan-
guages to describe their requirements. The choice of such formalism is crucial as it
determines the type of correctness properties that can be carried and the reliability
of the testing approach.

Defining time constraints as a way of controlling system behaviors may be an
efficient technique to avoid temporal vulnerabilities. However, to ensure that a
system respects the defined constraints, we need first to specify them using the most
suitable formalism (which in this case must support time specifications). Then,
we may rely on formal testing methods which offer more rigor and efficiency in
verification process, to study the conformance of the system behavior with respect
to the specified properties.

Formal testing techniques can be categorized into two main classes: (i) active
testing approaches and (ii) passive testing approaches. In active testing, system
implementations are checked by applying a set of test cases (generated from a global
requirement model) and analyzing their behavior; while in passive testing, we do
not interact directly with the tested system. Instead, we collect system execution
traces and verify their conformance with respect to correctness properties.

As active testing requires direct interaction with the tested system, it is not

always possible to rely on it in all situations. For example, when the tested imple-
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mentation does not provide any interfaces or when the tested system is built upon
a set of components running in their own environments and where there is no direct
way to access them (like composed Web services for example). In such cases, there
is a particular interest of using passive testing techniques where the verification pro-
cess does not need any direct interaction with the tested system as it only analyzes
collected execution traces.

In this chapter, we propose a formal and generic framework for specification and
verification of real time requirements on execution traces. Our main contributions

are:

e A formal specification of real time properties. We formalize temporal prop-
erties as XCTL(eXplicite Clock Temporal Logic) [32] formulas to be able to

specify both simple and complex real time constraints.

e A passive testing algorithm to verify the conformance of such requirements

against execution traces;

e A proposition of real time patterns and an experimental study to show the

performance of the proposed algorithm.

4.2 Related work

Linear Temporal Logic (LTL) [55] is a well known mathematical logic which has
been widely used in several testing domains. Broadly, we can rely on LTL to specify
two types of critical system requirements: safety properties and liveness properties.
Safety properties state that nothing bad ever happens in the system. For example:
an intruder never gets user or administrative privileges on the network or a controller
does not allow the boiler temperature to rise above a certain level. On the other
hand, liveness requirements specify the active tasks that a system is designed to
do i.e. they assert that "something good will eventually happen'". For example, a
banking system might have a liveness requirement stating that if a check is deposited

and sufficient funds are available, the check eventually clears.
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These features made LTL strong enough to build frameworks for different test-
ing purposes such as security, reliability and robustness. However, as it appeared
that LTL is very suitable for modeling security issues, most researches focused on
providing LTL-based approaches for testing system security. In [23] for example,
authors proposed a model checking approach for security protocols based on the set-
rewriting formalism coupled with a subset of LTL. Their model allows specifications
of assumptions on principals and communication channels as well as other security
requirements. However, this approach does not support real time specifications and
it only validates security properties with respect to the protocol specification and

not against its real implementation (a model checking approach).

In [53], authors used temporal logic to build general intrusion detection frame-
work. They based their approach on a runtime monitoring algorithm to automat-
ically verify temporal specifications against a system execution and raise intrusion
alarms whenever the specification is violated. They used the EAGLE formalism to
specify temporal requirements. EAGLE [39] is a temporal logic formalism support-
ing recursively defined temporal formulas parameterizable by both logical formulas
and data expressions. Although it is possible to specify some kind of real time prop-
erties using this formalism (time interval specifications), it is practically impossible
to address complex properties which refer to correlated time constraints (temporal

constraints defined with respect to other temporal constraints in the same formula).

Another LTL-based framework for testing security properties is presented in [68].
In this paper, authors proposed to test security policies of a given system based on
test generation and execution of security rules from temporal logic specifications.
This approach suffers from two main drawbacks. First, they addressed a very limited
set of security patterns as they restricted the syntax and semantics of their formalism
to a small subset of linear temporal logic. Second, their approach does not support

real time specifications.

It is important also to highlight other work which aimed at providing real time
frameworks not based on LTL. For example in [69], authors proposed a general

framework for testing timed security properties based on deontic logic and linear
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time specification. The same formalism was also used in [25] for monitoring Web
services. However, this formalism supports only specification of simple temporal
constraints like those we can specify using bounded temporal operators (section
4.3.1). Moreover, the specification language is very complex (which makes it hard
to use in practice) and the used deontic logic is highly security oriented (which
makes it difficult to apply on other testing purposes).

The approach we propose in this work aims at providing a generic and formal
framework for testing real time properties. We want to be as generic as possible so
that our approach can be applied not only for security testing (which is a widely
known application of LTL), but also for safety, robustness and other testing pur-
poses.

We propose to formalize real time requirements as XCTL formulas. This way,
we would be able to specify more complex temporal constraints than those carried
by the above cited approaches. Then, we propose an efficient monitoring algorithm

based on passive testing to check such properties on execution traces.

4.3 LTL and real time logics

Linear Temporal Logic (LTL) [55] is a specific branch of temporal logic which al-
lows one to reason about both causal and temporal properties based on linear time
semantics.

An LTL formula consists of atomic propositions, Boolean operators and temporal
operators. The operator () refers to the next state. E.g., (Oa expresses that a has
to be true in the next state. U is the until operator, where a Ub means that a has to
hold from the current state up to a state where b is true. [J is the always operator,
stating that a condition has to hold at all states of a path, and ¢ is the eventually
operator that requires a certain condition to eventually hold at some time in the
future. The syntax of LTL is given as follows, where AP denotes the set of atomic
propositions:

Definition 4.1 (LTL syntax) The BNF definition of LTL formulas is given as

follows:

66



Chapter 4. A Formal Approach for Checking Real Time Constraints

¢ := true|falsela € AP|=¢|d1 A pa|d1 V da|d1 — d2|p1 = d2]|d1 U d2| O ¢|06|0¢

The semantics of LTL is expressed for infinite traces. However, as in this work
we are dealing with "off-line" testing using a pre-collected set of traces, we will

consider the finite LTL semantics as presented in [60].

We define a trace as a finite list of events. Assume two partial functions defined
for nonempty traces head : Trace — event and tail : Trace — Trace for taking
the head and tail respectively of a trace, and a total function length returning the
length of a finite trace . That is, head(e t) = e, tail(e t) = t, length(end) = 0 and
length(e t) = 1 + length(t) where t is a trace, e is an event and end denotes the
empty trace. Assume further that for any trace ¢ that ¢; for some natural number 7,
denotes the suffix trace that starts at position 4, which position starting at 1. The

finite LTL semantics can be defined as follows:

Definition 4.2 (LTL semantics) The satisfaction relation =C Tracex Formula
which defines when a trace t satisfies a formula ¢ (written t |= ¢) is defined induc-
tiwely over the structure of the formulas as follows (where p is an atomic proposition

and ¢1 and ¢y are any formulas):

tetrue  iff true,

tl false i false,

tEp iff ¢ # end and head(t) = p
tE-p iff tfEp

tEdiAde iff tl= ¢y and t = o
tEo1V o iff t=¢rorthdr

tE ¢ — giff tE gL ortE ¢
tEg=¢ iff t=o1iff t = oo

t =0O¢ iff (Vi <length(t)) t; E ¢
tE= O iff  (Ji <length(t)) t; E ¢
tE¢1Ug iff (3i <length(t)) (ti = ¢z and (Vj <i) t; = ¢1)
t= Q¢ iff ¢ # end and tail(t) = ¢
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4.3.1 Real time extensions

Although LTL can be used to specify a wide range of temporal properties, it still
presents some limitations regarding specifications of real time systems as it does not
provide means to formalize real time constraints [56]. Therefore, several approaches
have been proposed to extend LTL formulas in order to support real time specifica-
tions. These approaches can be classified into three main categories based on how
time values are specified. In the following, we present and discuss these extensions

and justify our choice of XCTL.

Bounded temporal operators

A common way of introducing real time in the syntax of LTL is to replace the un-
restricted temporal operators by time-bounded versions. For example, the bounded
operator Q4 is interpreted as "eventually within 2 to 4 time units". Based on this
extension, one can specify properties like "every event p is followed by an event ¢

within 3 time units" as follows.

Op — 0[0,3]61)

However, the bounded-operator notation can relate only adjacent temporal con-
texts. Consider, for instance, the property that "every request p is followed by a
response ¢ and, then, by another response r such that r is within 5 time units of
the request p". While this kind of properties is very important, there is actually
no direct way of expressing this "nonlocal" timing requirement using time-bounded
operators.

This shortcoming of bounded temporal operators can be remedied by extending
temporal logic with explicit references to the times of temporal contexts. We discuss
in the following paragraphs two of such methods: one based on freeze quantification

and the other using a dynamic state variable.
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Freeze quantification

The idea of freeze quantification is based on the use of a freeze quantifier ”x” inside
an LTL formula to bind the associated variable x to the time of the current temporal
context: the formula z.¢(z) holds at the time ¢ iff ¢(¢) does. Thus, in the formula
Qy.¢ the time variable y is bound to the time of the state at which ¢ is "eventually"
true. By admitting atomic formulas that relate the times of different states, we can
write the nonlocal property that "every request p is followed by a response ¢ and,
then, by another response r such that r is within 5 time units of the request p" as

follows.

Oz.(p — O(g A Qz.(r Az <z +5)))

Explicit clock variable

Another way to specify real time requirements is based on standard first order
temporal logic. The syntax uses a dynamic state variable T' (the clock variable)
and first order quantification for global variables overs the time domain. The clock
variable assumes, in each state the value of the corresponding time. For example,
the property "every request p is followed by a response ¢ within 3 time units" can

be specified as follows.

O((pAT =2) = O(gNANT < x+3))

Here, the global variable x is bound to the time of every state in which p is
observed. We refer to the use of a clock variable as the "explicit-clock" notation.

The linear time logic which is based on this technique is called XCTL [32](eXplicit
Clock Temporal Logic). It is a real time logic whose assertion language for atomic
timing constraints allows the primitives of comparisons and addition. Thus, the
timing constraints of XCTL are richer than those of the previous logics, which pro-
hibit the addition of time variables. Also, the definition of the clock variable T
allows one to refer to the global time of the system, which is not possible with freeze

quantification for example (as there is no global time reference) [56].

69



4.4. Passive testing algorithm

These features make XCTL very suitable for specification and verification of
complex real time properties. In fact, by using XCTL, one can specify both simple
and correlated time constraints and the use of a single global time variable makes
the specifications easier. Therefore, we will rely on this logic to specify real time
constraints and propose a passive testing algorithm to check this kind of constraints

on events traces.

4.4 Passive testing algorithm

In this section we present our passive testing algorithm for verification and validation
of real time properties. The algorithm inputs are a set of requirements specified as
XCTL formulas and an event trace. The aim is to provide a verdict about the

conformance of the trace with respect to the specified properties.

4.4.1 XCTL and passive testing

Formally, we specify the trace file as a finite set of couple {(e1, 1), ..., (€i,t;), ..., (én,tn)}
where each couple represents an event e; that occurs at a time t; such as Vi €
[1,n],t; <tiy1.

As all time values in the trace represent event occurrence times, some type
of formulas cannot be checked directly. For example, a formula like P U (T =
val) cannot be verified because T = wal might not be observable on the trace
(as it does not relate to an event occurrence). Therefore, we formally introduce the
following sub-grammar of XCTL which allows to build only formulas where temporal
constraints are connected to propositional variables with logical conjunctions.

Definition 4.3: The BNF definition of XCTL formulas addressed by our ap-
proach is given as follows.
¢ := truelfalselp € AP|p NTC|=d|op1 A d2|p1 V galdr — ol = ¢af1 U 2| O
mi)lete
TC:=T ~ax+c
Where ~€ {<,<,>,>,=}, T is the global clock variable, x is a static time variable

and a, ¢ are constants.
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The definitions of the time domain and the set of constants are given in [32], as

well as the XCTL semantics which we rely on, in this work.

4.4.2 Test algorithm

Our algorithm is based on the idea that LTL properties can be checked backwards
by updating the verdict at each step based on our knowledge of the future (as the
trace is traversed from its end) [60]. We will first start by an example of a simple
LTL formula (without temporal constraints) to show how it can be checked on a

trace. Consider, for instance, the following formula.

¢ =0(P —0Q)

The Breadth First Search (BFS) order of this formula gives the following set of

subfomulas.

¢l =0(P — 0Q)
P2 =P —0Q

3 =P

P4 =0Q

$5=Q

Now, consider a finite trace of events trace = {ey,...,e,} (we will address time
constraints later). One can define recursively a boolean matrix mat[1..n, 1..m| where
n is the length of the trace and m is the number of subformulas with the meaning

that matli, j] = trueiff trace; = ¢;. In our example it will be mat[1..n, 1..5] such as.

mat(i, 5] := (Q € e;)

matli, 4] := matli, 5] V mat[i + 1,4]
mat(i, 3] := (P € e;)

mat[i, 2] := mat[i, 3] — mat|i, 4]
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mat(i, 1] := mat[i, 2] A matli + 1, 1]

for all ¢ < n, where V, A, — are ordinary boolean operators. For ¢ = n, we need

to initialize the matrix as follows.

:= matn, 3] — matn, 4]

:= mat[n, 2]

An important observation is that, for each event from the trace, we may need
at worst informations about the previous event (the next one when addressed back-
wards). Therefore, instead to keep all the table mat[1..n, 1..m] which would be quite
large in practice, one needs only to keep two rows mat1[i, 1..m| and mat2[i+1, 1..m]
handling informations about the actual step and the next one. We will call this vec-
tors now and next, respectively. We can now present the passive testing algorithm
which address all kind of LTL properties as in Algorithm 2 [60]. Given an LTL
formula ¢ and an event trace Tr = {ey, ..., €, }, this algorithm consists of three main

phases:

1. First we generate the set of subformulas in the BFS order of the tested LTL
formula. Let {41, ¢2,...,m} be the list of all generated subformulas. The
semantics of finite trace LTL allows us to determine the truth value of T'r; |= ¢;
from the truth values of T'r; = ¢ for all j < j* < m and the truth values of
Triq1 = ¢y for all j < j < m. This recurrence justify the backward checking

order of the algorithm.

2. The second step is an initialization loop. Before the main loop, we should
first initialize the vector next[1l..m]. According to the semantics of LTL, the
vector next is filled backwards. For a given 1 < j < m, next[j] is calculated

as follows:
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o If ¢; is a variable then next[j] < (¢; € ey); Here, we only verify if the

atomic proposition satisfies the last event from the trace;

o If ¢; is = for some j < j < m then next[j| < not next[j'], where not

is the negation operator on Booleans;

o If ¢;is ¢, Op ¢, for some j < ji, jo < m then next[j] — next[ji] op next[ja],
where Op is any propositional operation and op is its corresponding

Boolean operation;

o If ¢; is O¢pjr, O¢j or O¢jr then clearly next[j] « next[j’] due to the
stationary semantics of the finite trace LTL;

o If ¢; is ¢j, U ¢, for some j < ji1,jo < m then newt[j] « next[js] for the

same reason as above.

3. The last step is the main loop. Considering the dependences in the recursive
definition of finite trace LTL satisfaction relation, one must visit the remaining
of the trace backwards, so the loop index will vary from n — 1 down to 1. The
loop body will update the vector now and at the end it will move it into the
vector next to serve as basis for the next iteration. At a certain iteration 7,

the vector now is updated backwards as follows:
o If ¢; is a variable then now[j] < (¢; € e,);

o If ¢; is =g, for some j < 5/ < m then now[j] — not now[j’]

o If ¢;is ¢, Op ¢, for some j < ji, jo < m then now[j] < now[j1] op now[j],
where Op is any propositional operation and op is its corresponding

Boolean operation;

o If ¢; is O¢; then now[j] «— newt[j’] since ¢; holds now iff ¢, held at

the previous step (which processed the next event, the (i + 1)");

o If ¢; is ¢ then now[j] «— now[j'] A next[j] because ¢; holds now iff

¢ holds now and ¢; held at the previous iteration;

o If ¢; is Q¢ then now[j] «+ now[j'] V next[j] for similar reason as above;
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o If ¢; is ¢;, U ¢, for some j < jl1,j2 < m then now[j] «— now[js] V

(now[j1] A nextlj]).

After each iteration next[1] says whether the initial LTL formula is validated by the
trace. Therefore desired output is next[1] after the last iteration. The truth value

of this vector element gives the final verdict (true = PASS and false = FAIL).

Algorithm 2 Checking LTL properties

1: Require: An LTL formula ¢ and an event execution trace Tr = {e1,...,en}
2: Emnsure: A verdict about the conformance of ¢ w.r.t. Tr
3: Generate a set of subformulae in BFS order (¢1, ..., ¢m)
4: /* Initialization * /
5: for j=m downto 1 do
6: if (¢; is a variable) then
7 next[j] == (¢; € en);
8 if (¢; == !¢;/) then
9: next[j] := (not next[j']);
10: if (¢; == &5, Op ¢;,) then
11: next[j] := (next[j1] op next[j2]);
12:if ((¢; == O9j) || (¢; == DOgyr) || (¢; == O¢;/)) then
13: next[j] := newt[j'];
14: if (¢; == ¢;; U;,) then
15: next[j] == next[ja);

16: /+ Main loop */
17: for i—=n-1 downto 1 do
18:  for j=m downto 1 do

19: if (¢; is a variable) then

20: nowlj] := (¢; € €;);

21: if (d)] = !d)j/) then

22: now[j] := (not now[j'));

23: if (¢; == ¢;, Op ¢;,) then

24: nowl[j] := (now[j1] Op now(j2]);
25: if (d)] —= Od)j/) then

26: nowl[j] := next[j’];

27: if (d)] —= D¢j/) then

28: nowlj] := nowl[j’] A next[j];

29: if (¢p; == O¢;s) then

30: nowlj] := nowl[j’] V next[j];

3L if (¢; == ¢;, U ¢;,) then

32: nowlj] := now[j2] V (nextj1] A next[j]);
33:  mnext := now

34: Verdict := next[1];

The analysis of this algorithm is straightforward. Its complexity is (O(n.m)
where n is the trace length and m is the number of subformulas generated from the

LTL formula in the BFS order.
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We now present our algorithm for checking an XCTL formula ¢ on a trace
Tr ={(e1,t1), ..., (en,tn)}. This algorithm is a extension of Algorithm 2 to support

real time. It consists of the following steps:

e Initialization

1. First, we link each variable appearing in ¢ to a table containing the set of
its temporal constraints. We define therefore, the Temporal Constraints
Table (TCT) such as: TCT[var,tc;] returns the i*" temporal constraint

of the variable var;

2. Then, we create a list ES which contains all the temporal constraints of
the XCTL formula. Actually, this list represents an equation system. Ini-
tially, all temporal constraints are marked as NOT INSTANTIATED;

3. After that, we generate the set of formulas in the BFS order of ¢ without

accounting the temporal constraints parts. It results for example in a set

of formulas {¢1, @2, ..., Om }-

e Initialization loop: This step is very similar to the initialization loop of
Algorithm 2. We start by calculating the truth value of the vector next[j] for

1 <7 < m, based on the last event from the trace (e, t,)

— If ¢; is a variable var then next[j] < (¢; € e,). Then, if this variable
satisfies the current event (next[j] = true), we instantiate its temporal
constraint with the timestamp of e, i.e ¢, and we mark this temporal
constraint as INSTANTIATED in the equation system FES. This is
due to the considered XCTL grammar presented in Definition 4.3, where
we suppose that atomic propositions can only be connected to temporal

constraints by conjunctions.

— the rest of cases of ¢; is addressed exactly as in Algorithm 2.

e Main loop: The main loop is also similar to Algorithm 2 except for the case

where ¢; is a variable that satisfies the current event trace e; (i.e now[j] =
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true) in which case, it is addressed as above i.e we update its current temporal

constraint with the timestamp ¢; of corresponding to the current event.

At the end of each loop iteration, we update the final verdict based on the
value of next[1], which tells about the satisfiability of the tested formula without its
temporal constrains and the resolvability of the equation system ES. The equation
system E'S is resolvable iff all temporal constraints that it contains are instantiated

and that the system is correct. The detailed algorithm is given in Algorithm 3.

For illustration, let us take an example to show how this algorithm proceeds.

Suppose we have an XCTL formula ¢ and a trace Tr such as:

dp=0(PAT=2)—=0(QANT <x+3))
Tr= {(P’5)’(Q76)}

The BFS order of formula ¢ without its temporal constraints gives the following

set of subformulas:

¢l =0(P — 0Q)
p2=P —0Q
¢p3 =P

P4 =0Q
$5=Q

The Temporal Constraint Tables of variables P and () and the equation system

ES are initialized as follows:
TCT[P,0] ={T =z}

TCT[Q,0l ={T <z + 3}
ES = {(T = z,not_instantiated), (T < x + 3,not__instantiated)}
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Algorithm 3 Checking XCTL properties

1: Require: An XCTL formula ¢ and an event execution trace Tr = {(e1,t1), ..., (€n,tn)}

2: Ensure: A verdict about the conformance of ¢ w.r.t. Tr

3: Create a temporal constraint table TCT (T'CT[var,tc;] returns the i*" temporal constraint
related to variable var);

Create a list ES containing all temporal constraints (This is for the equation system);
Generate a set of subformulas in BFS order (without accounting temporal constraint parts,
i.e only LTL) (¢1, ..., ¢m)

6: /* Initialization */

7: for j = m downto 1 do

8:  tc:=0; /" To access temporal constraints™/

9:  if (¢; is a variable var) then
10: next[j] := (¢; € en);
11: if (next[j]) then
12: index = TCT[var, tcl;
13: te := (tc+ 1) mod NbT'c(var);
14: /*NbTc(var) returns the number of temporal constraints related to variable var */
15: INSTANTIATE(ES, indez, t,);
16: /*instantiates the current temporal constraint based on the actual time value ¢, and

mark it as "INSTANTIATED""/
17:
18:  /* The rest of the initialization is like in Algorithm 2 */
19: if (all temporal constraints in ES are instantiated) then
20:  werdict := next[l] A Resolve_ES(ES);
21:  /*Resolve_ES(ES) returns true if the equation system is correct™/
22: else
23:  werdict := next[1]
24: if (Resolve ES(ES)) then
25: te .= 0;
26: INIT(ES);
27:  /* INIT(ES) Undo all temporal constraints instantiations in ES and mark them
NOT _INSTANTIATED */
28: /+ Main loop */
29: for i =n — 1 downto 1 do
30: for j =m downto 1 do

31: if (¢; is a variable var) then

32: nowlj] := (¢; € €;);

33: if (now[j]) then

34: index := TCT[var, tcl;

35: tc:= (tc+ 1) mod NbTc(var);

36: INSTANTIATE(ES,index,t;);

37:

38: /" The rest of cases is like in Algorithm 2 */
39: next := now;

40:  if (all temporal constraints in ES are instantiated) then
41: verdict := next[1] A Resolve_ES(ES);

42:  else

43: verdict := next[1]

44:  if (Resolve ES(ES)) then

45: te :=0;

46: INIT(ES);
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For the initialization loop, we would have e, = @ and t, = 6. Therefore, the

result will be:

next[5| := true

nextl[4] := next[5] = true

next[3] ;= false

next[2] := (next[3] — next[4]) = true
next[l] := next[2] = true

The temporal constraint of () would be instantiated with the value of ¢,,. There-

fore, the equation system would be updated as follows:

ES = {(T = z,not_instantiated), (6 < x + 3, instantiated)}

For the main loop, we would have j = m = 5 and ¢ = n—1 = 1 which means that

the current event would be (P, 5). Thus, we would update the vector now as follows:

now) := false
nowld] := (now5] V next[4]) = true
now[3] := t

now(2] := (now[3] — now[4]) = true
nowl1] := (now[2) A next[1]) = true

The equations system would be:

ES = {(5 = z,instantiated), (6 < x + 3,instantiated)}

We can see here, that all equations are instantiated and the system is correct

((x =5) A (z > 3)). Therefore, the final verdict would be : PASS.
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next := now;

verdict := (next[1] A Resolve_ES(ES)) = true

4.4.3 Correctness

We now argue that Algorithm 3 is correct with respect to the checking of an XCTL
formula on a timed trace.

Theorem 4.1: For a given trace Tr = {(e1,t1), ..., (én,tn)} and a given XCTL
formula ¢, Algorithm 3 issues a verdict PASS iff Tr = ¢.

Proof: Algorithm 3 is an improvement of Algorithm 2 for checking real time
constraints. It follows exactly the same logic and structure of Algorithm 2 for
checking the formula ¢ without its temporal parts (1). The correctness of Algorithm
2 is proven in [60] (2), therefore, we will focus here, on the treatment of the temporal
constraints of ¢.

According to the XCTL grammar presented in Definition 4.3, each propositional
variable can be connected to a temporal constraint of the form of T' ~ ax + ¢ where
~e {<,<,>,>,=}. Algorithm 3 starts by allocating a table TCT where it links
each propositional variable from ¢ to the list of its temporal constraints. Then,
each time a propositional variable from ¢ is validated on the trace Tr (according
to Algorithm 2), Algorithm 3 instantiates its temporal constraint with the current
timestamp from the trace and updates the table ES. The equation system table
ES gathers all temporal constraints of formula ¢. Each temporal constraints is
initially marked as not_instantiated and is updated to instantiated by Algorithm
3. The instantiation consists of replacing the global time variable T of a given
temporal constraints by the timestamp ¢; of the trace event e; which validates the
current propositional variable. At the end, the algorithm checks if all temporal
constraints in £S are instantiated and if the equation system is correct i.e: Vic €

ES :tcis instantiated N () te; = true) (te is a temporal constraint).

i=1n
All temporal constraints are instantiated from the trace T'r itself (based on the

satisfiability relation of Algorithm 2) and the equation system is resolved based on

79



4.5. Real time patterns and experimental results

these real timestamps values. Therefore, there cannot be any contradiction between
the addressed temporal values and those who appear really in the trace (3).

Consequently, we conclude from (1), (2) and (3), that Algorithm 3 issues a
verdict PASS iff Tr = ¢.

4.5 Real time patterns and experimental results

In this section, we present an experimental study of our approach. First, we identify
a set of real time requirements which we formalize as XCTL formulas. Then, we
test an implementation of the presented algorithm and evaluate its performances.
For more consistency, we propose to describe these requirements as abstract
patterns specified in XCTL. In the following, we introduce four of such patterns and

illustrate them with real examples.

4.5.1 Periodicity

The first pattern we identify relates to events that must be hold periodically to
prevent eventual security /safety issues. Given a proposition P, we can specify the

periodic occurrence of P by the following XCTL formula.
O(PAT =2)—=O(PANT =1z+c¢))

where the constant ¢ represents the period duration. An example of this property
can be illustrated by a system which sends periodically a liveness message to inform

administrators about eventual crashes.

4.5.2 Response

This pattern is usually used to specify a simple request/response paradigm. Given
two propositions P and @, the following XCTL formula specifies that each occur-

rence of P must be followed by @ within (resp. in exactly or after) ¢ time units.

OPAT=2)—>0(QAT ~z+¢))
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where ~€ {<,<,>, >, =}. For illustration, we can specify for example that a con-

nection establishment must not exceed 5 seconds.

O((ConnectReq N'T = z) — O(ConnectResp NT < x +5))

4.5.3 Correlation

This pattern is an example of correlated temporal constraints that we are able to
specify in XCTL. It corresponds to the following situation. Given three propositions
P, @ and S; when P holds at a time z, it will be followed by @ at a time y and
later by S which must hold within (resp. in exactly or after) = + y time units. This

situation can be specified by the following formula.
OPAT=2)—=0(QANT =y) = O(SAT ~x+1y)))

where ~€ {<, <, >, > =}.

4.5.4 Alternative

This last pattern is used to specify alternative situations. Given three propositions
P, @Q and S, the XCTL formula bellow specifies the following statement : " @ holds

if S does not respond to P within (resp. in exactly or after)c time units".
O-(PAT=2) > 0(SAT ~x+¢)) — 0Q)

where ~e {<, <, >, >, =}

We can consider, as an example of this pattern, a reliable system where each
request must be followed by a acknowledgment. In the case where no acknowledg-
ment is received within 10 seconds, a cancellation message must be sent to abort
the request.

To study the performances of our approach, we relied on these patterns to test
an implementation of Algorithm 3. Experiment results are shown in figure 4.1.

In this figure, we vary the trace length and study the evolution of execution time
of our algorithm with respect to the type of the used pattern. The figure represents

evolution time curves of the four patterns presented above (periodicity and response
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Figure 4.1: Experimental results

pattern are represented by a single curve as we consider that periodicity pattern can
be seen as a particular case of response).

The three curves are growing in approximately a linear manner with a slight
interval difference between them due to the complexity of the addressed pattern.
Periodicity and response patterns are less complex, therefore, their curve is the
lowest one. The performances shown by correlation and alternative patterns are
almost the same. Alternative curve is higher because we chose a complex alternative
formula (which includes a response formula), otherwise it would be much lower.

The approximative linearity of curves confirms the theoretical analysis of Algo-
rithm 3. Indeed, in this algorithm each state (event) from the trace is visited only
once but it is used to check the satisfiability of all derived formulas in BFS order.
That is why the execution time is proportional to the length and the complexity of

the tested formula (in addition to the trace length).

4.6 Conclusion

In this chapter, we proposed a formal approach to test real time properties speci-
fied as XCTL formulas. One of the main results we got in this work, is to be able
to specify and check complex correctness properties with correlated temporal con-
straints i.e properties which contain temporal constraints defined with respect to

other temporal constrains in the same formula.
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We also tested the proposed passive testing algorithm on a set of real time pat-
terns and discussed the obtained results. These patterns are probably not exhaustive
and must be taken only as examples to illustrate the efficiency and reliability of our
approach.

As future work, we are expecting to upgrade our algorithm for runtime checking
so that we could deploy it as an online monitor. This way we could detect violations

as soon as they happen and thus, avoid eventual attacks and/or dangerous scenarios.
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Chapter 5

A Complementary Approach for
Testing System Robustness
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5.1 Introduction

The increasing complexity of current software system requires more rigorous testing
and validation techniques as any failure of such systems may lead to catastrophic
financial or human consequences.

The main purpose of the various existing testing techniques is to find defects
on system implementations. Formal methods for conformance testing, for exam-

ple, have been widely used to test distributed system and communication protocols.
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These techniques aim at providing a verdict about the conformance of a system
implementation with respect to its formal behavior specification when the system
is running in its normal (proper) environment. Approaches for conformance testing
can be either active or passive. In active testing, the tester interacts directly with
the implementation under test (IUT). It provides inputs and collects the returned
outputs which it analysis to issue the conformance verdict. In passive testing how-
ever, the tester does not interact directly with the tested system. It only observes its
behavior (as execution traces) and verifies its conformance with respect to a given

formal specification.

A software system may behave correctly when running in its proper environ-
mental conditions. However, if the system environment is disturbed by external
or non-expected events, the system behavior may be abnormal and unpredictable.
This non-expected behavior can reveal many system failures and dangerous scenar-
ios. Therefore it is very important for a tester to study this kind of situations,

particularly for critical systems and applications.

Testing the behavior of a system running in stressful environmental conditions
is known as Robustness Testing. At the opposite of conformance testing, robustness
testing techniques consider that the tested system is running in an hostile environ-
ment. Therefore, they do not look for a correct behavior but an acceptable one
[57]. The acceptable behavior can be assessed either empirically (the system does
not crash or hang for example) or formally (robustness requirements are formally

specified and checked against the system).

In this chapter, we propose a complementary approach for testing system robust-
ness based on passive testing and fault injection techniques. We use fault injection
as a perturbation mechanism to create stressful environmental conditions. Then, we
rely on a passive testing technique to check the satisfiability of robustness require-
ments on system execution traces. The injected faults and the robustness properties
are formally specified. The specification of the injected faults is used to validate the
injection process and the specification of robustness requirements is to formally asses

the system robustness.
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5.2 Related work

As we presented in section 2.2, robustness testing approaches can be categorized
into two classes: fault injection approaches and model-based approaches.

Fault injection approaches are based on deliberate introduction of errors in a
running system and an observation of its behavior. Such techniques are very useful
for simulating hostile environments as they can inject various kind of faults (interface
faults, communication faults, etc.). There exist several fault injection tools for
different kind of systems [62, 61, 65, 48]. In section 2.2.1, we gave an overview of
the most relevant ones for distributed systems.

The major issue with the existing fault injection techniques, is that they do
not rely on any efficient test oracle. The evaluation of system robustness is based
simply on basic observations. Faults are injected during system execution and if the
system does not crash or hang, it is considered as robust. Also, the injection process
is not controlled. The injected faults are usually not formally specified and there
is actually no way to validate the injection i.e. to ensure that the injector really
injects the faults that it is supposed to inject (Chapter 3).

Model-based techniques for robustness testing proceed differently. They inspire
from conformance testing approaches and particularly from active testing. The basic
idea is to introduce a fault dimension in the input domain of traditional conformance
active testing approaches. This way, it would be possible to generate faulty inputs
which can eventually lead to system failures. This kind of techniques for robustness
testing is relatively recent. We exposed in section 2.2.2, the most relevant ones.

Probably, the greatest advantage of model-based techniques is their formal as-
pect. At the opposite of fault injection techniques, model-based approaches formal-
ize the injected faults as well as the expected robust behavior. This way, robustness
testing experiments are completely controlled. Therefore, there is actually no pos-
sibility to issue incorrect verdicts. Also, as one can specify formally the robust
behavior, results analysis is much deeper than a simple observation of a crash or
a hang. In fact, with model-based approaches, one can specify a set of robustness

requirements to verify. This is very important because some system failures may
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not be revealed as a crash or a hang. They could be for example, a violation of
critical safety and/or a liveness requirements.

However, model-based approaches suffer from two main shortcomings. First,
the set of injected fault is related to the nominal input domain. In fact, faults
are created as mutants of the input symbols from the original system specification.
Thus, the set of faults is limited by the set of mutants that can be generated and
depend strongly on the used specification formalism. For example, if we rely on a
non temporal specification formalism to describe the system behavior, we would be
unable to generate temporal faults.

The second issue with model-based approaches is due to the active testing ar-
chitecture on which they rely on. As far as we know, all existing model-based ap-
proaches for testing system robustness follow the active testing architecture which
imposes direct interactions with the tested system. This architecture presents some
limitations when the tested system is built upon a set of components that could
not be accessed directly. In this case, it is difficult to inject faults or to disturb
communication between these different components of the tested system.

The approach we propose in this chapter is an hybrid approach combining fault
injection and formal techniques. This way, we can take advantage of fault injec-
tion technique which we use to inject faults simultaneously on different application
components and rely on formal passive testing as a test oracle to analyze the global

system behavior.

5.3 Proposed approach

We introduce in this section our robustness testing approach. Its general architecture
is presented in figure 5.1.

We can see in this figure that the robustness testing process involves three main
stages. The first step (figure 5.1 (a)) focuses on experimentations. During this phase,
faults are injected while the system under test (SUT) is running and execution traces
of both the fault injector and the SUT are collected.

In the second step (figure 5.1 (b)), we verify the injection process. The exe-
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(c) Verification of robustness properties
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Figure 5.1: Architecture of the proposed robustness testing approach

cution trace of the fault injector is verified against the formal specification of the
injected faults and a conformance verdict is issued. This step tells whether the in-
jection process has been well performed i.e. if all specified faults have been correctly
injected.

Finally, the last step (figure 5.1 (c)) concerns the verification of robustness re-
quirements. In this step, we rely on passive testing to issue a verdict about the
conformance of the collected SUT’s execution trace with respect to the provided
formal specification of robustness requirements. In what follows, we detail each of

these steps.

5.3.1 Experimentation phase

We introduce a fault injection mechanism into the SUT environment to simulate
stressful environmental conditions. The fault injection tool should be able to in-

tercept all messages exchanged between the SUT and its external environment. It
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represents, in fact, the faultload entity which is responsible for the generation and
the injection of different kind of faults. In the case of a distributed system, the ex-
ternal environment of the SUT could be any communication partner such as a client
application, a system component or any other entity that could stimulate the SUT.

This entity represents the main source of the workload in our testing architecture.

The experiment consists to run simultaneously the fault injector and the SUT.
According to a pre-specified injection campaign, the fault injector will intercept
and corrupt some of the exchanged messages. The way the injection campaign is
specified is usually proper to the used fault injector. Some tools are script-driven
i.e. faults are specified using a dedicated script language while other ones are more
user friendly providing a GUI (Graphical User Interface) to help the tester to create
its injection campaign.

This difference in the way fault campaigns are specified brings us to propose a
formal and a tool-independent specification language for fault description. Thus,
in addition to the tool-specific description of the injection campaign, one needs to
provide its equivalent using a formal language. This formal specification of faults

will then be used to verify the injection process as it is explained in chapter 3.

During the experimentations execution, we collect traces from both the SUT and
the fault injector. We define for that a set of Observation Points (O.P) at different
application levels. As we have discussed it in section 3.4, the observation points for
the fault injector must be defined inside the injection tool and not at its interface
level. This is important because we need, for the verification of the injection process,
not only information about the states of messages before and after the injection, but
also the injection operations that were executed. In the case where we rely on a
third-party fault injector which does not offer any possibility to insert observation
points, we can simply use its log files as an injection trace. As far as we know, all

of the most relevant existing fault injector provides such traces.

For the SUT, the observation points are implemented at interface level as shown
in figure 5.1 (a). This way, we are able to collect a trace of all input/output messages

of the SUT. This configuration is usually the most proper one for several types
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of applications. However, in the case of a distributed system, it would be also
interesting to collect a trace from the external communication partners to have a
global view of the system behavior (figure 5.2). What is important in both those
configurations, is that erroneous messages must also appear in the collected trace

as they are important for robustness evaluation.

Environment

Fe N
N J Execution Trace
S---170.P

Figure 5.2: Observation points for distributed systems

5.3.2 Verification of the injection process

As we have already motivated it in section 3.4, it is important to verify, after each
injection experiment, that the injection process has been correctly performed. This
is due to the fact that the fault injector is an external mechanism that we introduce
into the SUT environment to disrupt its behavior. The robustness of the SUT is then
evaluated based on how the tested system reacts to the injected faults. Therefore,
any failure in the behavior of the fault injector can seriously affect the robustness
analysis and may lead to an erroneous verdict. Suppose for example that we are
testing a communication protocol using a fault injector that we configured to delete
some specific messages. Then, after the test execution, how can we be sure that the
lost messages have been effectively deleted by the fault injector and not lost due to
a protocol vulnerability or a system failure? This confusion can be omitted only if
we have a mean to verify the good execution of the performed injection actions.
For our robustness technique, we propose to rely on the formal approach we

proposed in chapter 3 to verify the good execution of the injection process. Thus,
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we propose to formalize the set of the injection operations that we want to inject as
a set of Hoare triples [42]. Then, we use the proposed passive testing algorithm to
check the conformance of this formal specification against the injection trace that
we collect during the experiment (Algorithm 1). This way, we can avoid any verdict

ambiguity due to an eventual erroneous injection behavior.

5.3.3 Verification of robustness requirements

We define robustness requirements as the set of properties that the tested system
must satisfy when running in stressful conditions. Some model-based approaches
consider these properties as a subset or a variant (mutants) of the nominal functional
model of the tested system [37, 40] while others, like in [46], propose to formalize
the robustness observation model independently from the behavioral model.

In our approach, we will also consider that robustness requirements can be inde-
pendent from the nominal functional ones, as we believe that critical systems may
behave quite differently when they are disrupted. Nevertheless, we accept that in
some situations, the robust behavior could be a variant of the functional one. For
example, a nominal functional property of a server application is to response the re-
ceived requests within a relatively short period of time. In abnormal environmental
conditions however, the server could be configured to react differently. For instance,
to avoid a server crash, the administrators can configure the server to close all its
external connections when it receives a huge number of requests within a very short
time interval. This could be seen as a robustness property.

In [40], authors used timed automata for modeling both the nominal and the
degraded behavior of the tested systems; while in [37], the authors relied on the
Input Output Labeled Transition System (IOLTS) to model the nominal and the
increased specification (chapter 2). Timed automata and IOLTS are both very
known formalisms for the specification of functional properties. Therefore, it is
quite understandable that if we consider robustness requirements as different from
the functional ones, we need to rely on another specification formalism. In [46] for

example, the authors propose to specify each robustness requirement as an LTL
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formula. The set of all robustness requirements is then represented as a Rabin
automaton [58] such that the language generated by this automaton represents the
robust behavior.

LTL is a very suitable formalism for the specification of safety and liveness
properties. Safety and liveness are both very important requirements for any critical
system. A safety property specifies that something bad never happen while a liveness
property specifies that something good will eventually happen.

We believe that robustness requirements can be specified as safety and liveness
properties. A safety robustness requirement describes how the robust system must
avoid a dangerous scenario and a liveness robustness property specifies how the
system must react to a stressful situation. Therefore, we propose for our approach,
to model robustness requirements as a set of safety and liveness properties.

However, as we mentioned in chapter 4, LTL is not expressive enough to model
complex requirements. We saw that several extensions have been proposed to evolve
LTL expressiveness and we argued about the expressiveness of XCTL. Therefore,
in our approach, we will rely on XCTL as a mathematical formalism for modeling
robustness properties. We specify robustness requirements of the tested system as
a set of XCTL formulas according to the grammar defined in Definition 4.3. Then,
we use Algorithm 3 to check the conformance of such formulas against the collected

execution trace.

5.4 Conclusion

We presented in this chapter a complementary approach for checking system robust-
ness. Our approach uses fault injection and passive testing techniques to assess the
ability of a given system to behave correctly in presence of faults.

The robustness testing technique we proposed, takes advantages from both fault
injection and model-based approaches. The use of fault injection allows one to
define a huge set of faults independently from the behavioral model of the tested
system. On the other hand, relying on formal specification and passive testing help

the testers to verify the good execution of the injection process and to evaluate the
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robustness of their system.

In the same way, the proposed approach avoids some weaknesses of fault injection
and model-based techniques. By providing a test oracle, we can formally assess the
robustness requirements of the tested system instead of just an empirical evaluation
of the injection results. Also, by using fault injection techniques, we are able to
inject a larger set of faults and thus, we are not limited by the behavioral model of

the SUT.
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6.1 Introduction

Web services are becoming increasingly widespread technology and tend to emerge
as a standard paradigm for program-to-program interactions over Internet. The
strength of this technology comes probably from its ability to manage communi-
cation between heterogeneous applications and systems with a dramatically lower
cost. Consequently, Web services have been widely used for building all kind of
distributed systems for different areas: business, multimedia, security, etc.

However, these inherent and powerful characteristics of Web services (widely dis-
tributed and heterogeneous applications) are paradoxically, also their main weakness
points. This is due primarily to the problem of reusing and integrating older and/or
third-party service components which may lead to several interoperability, security
and/or performance issues.

Testing Web services is therefore, a very important process which has to be
performed, not only during the development of new Web service applications, but
also before and after deployment.

In this chapter, we propose a framework for modeling and testing robustness re-
quirements of Web services. It is actually an instantiation of the robustness testing
approach proposed in the previous chapter, adapted for Web services. The frame-
work we propose here can be used to test both composed and single services. It
includes an innovative fault injection tool (WSInject) and uses a monitoring ap-
proach based on passive testing for checking robustness requirements. Also, our
framework can be used to test both experimental and real world services as it does

not require the source code of the tested system (black box testing).

6.2 Web services technology

In this section, we will present the Web services technology and the Service Oriented
Architecture. We will describe the main standard protocols used by those technolo-
gies and introduce to the most widespread services composition techniques: service

orchestration and service choreography.
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6.2.1 Service Oriented Architecture

Service Oriented Architecture (SOA) [34, 33| is a software architectural paradigm
that aims to achieve loose coupling among interacting software agents. The goal
is to allow organizing and utilizing distributed capabilities that may be under the
control of different ownership domains and implemented using various technology
stacks. An SOA architecture allows the use of existing service applications as well
as the deployment of new service components. The deployed services can be used

either by other services (composed services) or client applications.

Figure 6.1 shows the functional process of an SOA architecture. The service
providers publish their hosted services in a service directory. This directory can
be then accessed by users (other services or client applications) looking for services
that verify a set of specific criteria or correspond to a certain description. If the
service directory finds the requested services, it sends back the service contracts
(containing all the needed information to exploit the services) to the client which

can then, select the desired services and invoke the respective providers.

Service
Directory

Discover

Search

Invoke Service

Provider

Service
User

Figure 6.1: Functional model of an SOA architecture

Web services are actually the most important achievement of the SOA architec-
ture. The reason is that, they can be easily composed to build new applications.
Furthermore, a Web service can invoke other Web services as it can be invoked by

other services and a service composition can be deployed as a Web service.
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6.2.2 Web services

The World Wide Web Consortium (W3C) ! defines a Web service as :" a soft-
ware system designed to support interoperable machine-to-machine interaction over
a network. It has an interface described in a machine-processable format (specifi-
cally WSDL). Other systems interact with the Web service in a manner prescribed
by its description using SOAP messages, typically conveyed using HTTP with an

XML serialization in conjunction with other Web-related standards”.

In other words, Web services are application components deployed through the
Internet which can communicate between each other without worrying about the
platforms on which they are running neither about the programming languages that
were used to build them. They rely on a set of standard Web technologies based on
XML data structuring: SOAP protocol for message exchanges, WSDL for service
description, UDDI for service discovering and BPEL for service orchestration. The
Web services model is illustrated in figure 6.2. It is in fact an instantiation of the

SOA architecture presented in figure 6.1, for Web services.

Publish
I .
K1 Record Define service
------------------ WSDL e
uDDI > Provider
Directory
i
i
| Describe
Ask for Send the WSDL i Host
a service I
1

Consume

Figure 6.2: Web services model

In the following, we present the set of standard Web technologies used by Web

services.

Lwww.w3.org
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XML

The Extensible Markup Language (XML) [4] is a set of rules for encoding
documents in a textual form. It has been defined by the W3C and can be used to
format message exchanged between different kind of applications. For Web services,

we rely mostly on XML schema [5] for describing data structure.

HTTP

The Hypertext Transfer Protocol (HTTP) [6] is a networking protocol for
distributed information systems. It is the foundation of data communication for the

Web. In the case of Web services, it is used to forward the exchanged messages.

WSDL

The Web Services Description Language (WSDL) [7] is an XML format for
describing network services as a set of endpoints operating on messages containing
either document-oriented or procedure-oriented information.

A WSDL document defines services as collections of network endpoints, or
ports. In WSDL, the abstract definition of endpoints and messages is separated
from their concrete network deployment or data format bindings. This allows the
reuse of abstract definitions: messages, which are abstract descriptions of the data
being exchanged, and port types which are abstract collections of operations.
The concrete protocol and data format specifications for a particular port type
constitutes a reusable binding. A port is defined by associating a network address
with a reusable binding, and a collection of ports define a service. Hence, a WSDL

document uses the following elements in the definition of network services:

e Types: a container for data type definitions.

Message: an abstract, typed definition of the data being communicated.

Operation: an abstract description of an action supported by the service.

Port Type: an abstract set of operations supported by one or more endpoints.
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e Binding: a concrete protocol and data format specification for a particular

port type.

e Port: a single endpoint defined as a combination of a binding and a network

address.

e Service: a collection of related endpoints.

SOAP

The Simple Object Access Protocol (SOAP) [8] is a lightweight protocol in-
tended for exchanging structured information in a decentralized, distributed envi-
ronment. It uses XML technologies to define an extensible messaging framework
providing a message construct that can be exchanged over a variety of underlying
protocols. The framework has been designed to be independent of any particular
programming model and other implementation specific semantics. A SOAP mes-
sages is divided into two parts: the SOAP header which can be used to specify
authentication and other session management data, and the SOAP body where

operation names and parameters are specified (figure 6.3).

AOAP-ENV: Envelope \

4 )
SOAP-ENV: Header
\ J

~

(SOAP-ENV: Body

S /

Figure 6.3: SOAP message structure

UDDI

The Universal Description, Discovery and Integration (UDDI) [9] is a
platform-independent, XML-based registry. It has been designed to be interrogated
by SOAP messages to provide access to WSDL documents describing the protocol

99



6.2. Web services technology

bindings and message formats required to interact with the set of web services listed

in its directory.

6.2.3 Web services composition

Web services are considered as self-contained, self-describing, modular applications
that can be published, located, and invoked across the Web. In the case where no
single Web service is able to satisfy the functionality required by the user, there is a
possibility to combine existing services together in order to fulfill the request. The
result of this combination is called a service composition and it can be deployed as
a new Web service.

A Web service composition can be organized either as an orchestration or as
a choreography. A Web service orchestration describes the way Web services can
interact together. An orchestration defines particularly the message sequences and
the system workflow of the composition and there is always a main process (the
orchestrator) which is in charge of managing and controlling all interactions between
the services of the composition (the service partners). The Business Process
Execution Language (BPEL) [10] is the most known standard language for
defining Web service orchestrations.

Web services choreography describes also a services collaboration. At the oppo-
site of an orchestration, in a service choreography there is no main process. It is a
decentralized coordination where each service partner is responsible of a part of the

workflow.

BPEL

The BPEL language has become a standard language for implementing Web services
orchestrations. It has been widely used for building service oriented architectures.
The BPEL language allows one to describe both the behavioral interface as well as

the services orchestration.

e The behavioral interface defines an abstract process describing the message

exchanges between service partners.
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e The orchestration defines an executable process (the BPEL process) which
specifies the types and the order of the messages exchanged between service

partners.

Compared to other existing orchestration languages, BPEL offers the following

features:

e Exception handling (particularly, fault and event exceptions).
e Handling synchronous flows and parallel execution of activities.
e Possibility to describe stateful transactions.

e Handling message correlation.

e Compensation support. A compensation consists to undo some steps in the
process that has been already completed successfully. BPEL offers a relatively

easy way to perform this kind of operations.

A BPEL process is directly executable by a BPEL orchestration engine like
activeBPEL [11] or Oracle BPEL Process Manager [12]. The deployment and the
publication of a BPEL process is performed as for any other Web services, using
WSDL. Thus, operations, data and bindings of the BPEL process are all described,
as well as all the needed elements for interacting with its service partners like their
addresses, the used communication protocol, the available operations, etc.

The BPEL language handles also other Web services standards as :

e WS-Addressing [13] which provides transport-neutral mechanisms for for-

warding SOAP messages in both synchronous and asynchronous mode.

e WS-Policy [14| which is an extension of WSDL supporting description of

some functional aspect of service partners.
e WS-Security [15] which is a SOAP extension for securing message exchanges.

e WS-ReliableMessaging [16] which describes a protocol that allows SOAP
messages to be reliably delivered between service partners in the presence of

software, component, system, or network failures.
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e WS-Transactions [17] which defines interoperable mechanisms that allow

transactions between different service domains.

Figure 6.4 depicts the Web services architecture stacks.

BPEL

WSDL, XSD, Policy, UDDI, Inspection

J
4 )
Transactions
; Reliable
Security s
Coordination
L J
N
Other
[ SOAP ) [ Protocols ]
N
[ XML, encoding Other
Y Services

Figure 6.4: BPEL in the Web services architecture stack

The description of a BPEL process contains four main parts: (i) declaration of
variables using types described or imported from the WSDL interface, (ii) descrip-
tion of service partners, (iii) specification of fault handlers and (iv) the main activity

describing the process behavior.

6.3 Instantiation of the robustness approach for Web

services

In this section we present an instantiation of the proposed robustness testing ap-
proach for Web services. Figure 6.5 illustrates the architecture of our robustness
testing framework.

We can see in this figure the use of a Web service fault injector (WSInject [36])
that we have developed for our testing platform. A detailed description of this tool
is presented in section 6.4. This tool is used to intercept and possibly modify all

communication messages exchanged between a Web service and its client application
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Figure 6.5: A framework for testing Web services robustness

or between a main service (a BPEL process for example) and its service partners.
Therefore, this framework could be used either to test single or composed services.

A set of observation points is implemented between the client application (or the
main service) and the fault injector as well as between the fault injector and the rest
of services of the composition. The execution traces collected by these observation
points are then aggregated following a strict sequential order (based on timestamps
of event occurrences) to build a global trace. This later will be used to check the

conformance of the robustness requirements specified as a set of XCTL formulas.

WSInject also provides an injection trace which contains information about all
intercepted messages, the injection operations that were executed and the forwarded
messages. This trace will be used to verify the injection process against the faults

specification given as a set of temporal Hoare triples.

The testing framework follows the black-box testing approach. Therefore, it
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relies essentially on SOAP messages exchanges between the components of the tested
system as they are the only observable events. This means also that all robustness

requirements as well as the injected faults must be specified at the SOAP level.

6.3.1 Specification of robustness requirements

We propose here to specify Web services robustness properties as XCTL formulas.
As we are focusing on communication messages and because SOAP messages can
carry both procedure calls (operations) and data, we specify each event from the
trace as a SOAP operation with its expected parameter values according to the

following syntax.

OperationN ame(Boolean Expression(Parametery), ..., Boolean Expression(Parametery,))

For example, we can a specify a login request of a user Bob as follows:
Login(username ="Bob") 2

Where username is a parameter name and ”Bob” is a possible value. As a
response, the invoked service may send a login notification which we specify as

follows.
LoginResponse(username ="Bob", state ="CONNECTED")

We will consider that this kind of expression constitutes an atomic proposition.
Therefore, in the implementation of Algorithm 3 for Web services, the satisfiability
of ¢; € e; is validated by checking on the trace that the current event corresponds
to the operation specified in ¢; with the appropriate parameter values.

For illustration, we will take an example of a Web services orchestration and spec-
ify some robustness requirements. The scenario is an example of a heater controlling
system which deploys three Web services: the HeaterCmd, the T hermocouple and
the HeaterController. These Web services can be seen as interfaces of real hard-

ware devices used to control and monitor a Heater Coil as illustrated in figure 6.6.

2Here, we specify only important information for our test purposes. For example, if we do not
need to know the used password, we do not specify it.
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Figure 6.6: An example of a Web services orchestration scenario

The HeaterCmd service allows power to be applied in small increments via two
operations: incPower and decPower. The Thermocouple allows current temper-
ature to be read back via the getHeaterTemp operation. There is also a client
application (Client) which interacts with the main service HeaterController via
its two operations : getTemp and setTemp. The first operation (getTemp) returns
the current temperature (by invoking operation getHeaterTemp) while the second
one, setT'emp, uses a time-based algorithm that invokes incPower and decPower
operations provided by the HeaterCmd to set the correct power level. The cur-
rent temperature is monitored by HeaterController to provide feedback into the
algorithm.

We can summarize the general behavior of this system as follows:

The client application is deployed as a monitor which periodically asks for the current
temperature (getTemp). The heater coil temperature value must always be between
a minimum and a maximum threshold. Otherwise, the client invokes operation
setTemp to readjust it to an average value (this value is specified as a parameter
of operation setTemp). In that case, the HeaterController, uses its time-based
algorithm to gradually regulate the temperature to its average value by invoking
operations incPower and decPower.

Based on this scenario, we can define a set of robustness requirements to describe
critical safety and liveness properties. In the following, we give examples of such

properties specified as XCTL formulas.

Rule 1: The client application must ask for the current temperature each 10
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seconds (Periodicity).
O((getTemp() NT = x) — O(getTemp() AT = x + 10000))

We suppose here and in the following that time units are expressed in milliseconds.

Rule 2: The client must receive a response to its request within the following 5

seconds.
O((getTemp() NT = x) — O(getTempResponse() AT <= x + 5000))

Rule 3: When the temperature exceeds 150°C, the client application must, within

the following 5 seconds, ask the HeaterController to readjust it to 100°C.

O((getTempResponse(return >= 150) AT = x) — O(setTemp(Tmp =
100) AT <= x + 5000))3

6.3.2 Specification of the injection process

WSInject is a SOAP level fault injector. This means that all implemented injection
operations concern only SOAP messages. We have already shown in chapter 3 how
we can use a temporal extension of Hoare logic to specify formally fault operations.
The same formalism can be instantiated for SOAP messages as follows.

A SOAP message can be considered as a set of XML elements.
SoapMsg ={XML elty, XML _elty,...., XML elt,}
Therefore, we can specify each injection operation as a Hoare triple as follows:
{P(SoapMsg)} OperationName(Paramy, ..., Param,,) {Q(SoapMsg)}

Where P(SoapM sg) is a precondition on the intercepted message and Q(SoapM sg)

is the postcondition.

3Wpeturn" specifies the returned value.
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Each XML element from the SOAP message can be accessed using a path
structure. For example SoapM sg.Login Request.username denotes the parameter
username of the operation LoginRequest carried by the captured SOAP message
SoapM sg.

To verify the injection process, we built a passive tester prototype which im-
plements an instantiation of Algorithm 1 for Web services i.e. it addresses only
SOAP messages. We use this tester to check the conformance of the injection trace
file (collected during the injection experiment) against the specified set of injection
rules. These injection rules are specified following a script grammar inspired from
the specification language proposed in section 3.2.4. For example, if we consider
the Web service orchestration scenario presented in the previous subsection, we can

specify the following injections:
Injection rule 1: Delay the forwarding of all temperature requests for 10 seconds.

{SoapMsg.has(getTemp) and $val==now}
delay(10000)
{new(SoapMsg) .equals(SoapMsg) and $val+10000<=now<=$val+10050}*

Injection rule 2: Each time the client invokes operation setTemp(), delete the

message content and forward an empty message.
{SoaplMsg.has(setTemp)} empty() {new(SoapMsg).isEmpty()}
Note:

In section 3.3, we presented a set of examples to illustrate the use of our fault
injection specification formalism. Those examples were specified using a high level
abstract language where the injection operation names were given just as matter
of examples. In practice however, we will specify the injection operations following
exactly the same syntax provided by the used fault injector. Thus, in the injection
rules specified above, we used the syntax of injection operations defined by the Web
service fault injector (WSInject) on which we will rely for our experimentations.

The next section gives a detailed presentation of this tool.

“Words preeded by a $ define variables and time values are specified in milliseconds
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6.4 WSInject

In this section we present WSInject [36]. A fault injection tool for Web services that
we have developed and integrated in our testing framework.

WSInject is a script-driven fault injector able to inject both interface and com-
munication faults. Unlike other existing Web services fault injectors, WSInject
allows users to combine several types of fault in one injection statement and is able

to handle either single or composed services.

6.4.1 Motivation

In the case of Web services, faults can be injected at both interface and communi-
cation levels. Interface faults affect operations input/output parameters and other
SOAP message fields by corrupting data or assigning invalid parameter values. On
the other hand, communication faults consider SOAP messages as black boxes. In-
stead of corrupting carried data, SOAP messages are replicated, deleted or delayed.

The existing fault injection tools for Web service can be categorized into two
main classes. First, we find all network level fault injectors which were not origi-
nally developed for Web services but which could be very useful for injecting com-
munication faults. Doctor(integrateD sOftware fault injeCTiOn enviRonment) [62],
Orchestra [61] and DEFINE [48] are all good examples of such injectors which fit
perfectly on Web services.

However, as communication faults are not enough for testing Web service de-
pendability, other researches focused on providing injection tools able to decode
SOAP messages so that they can inject significant interface faults. This constitutes
the second fault injector class: Web services fault injectors.

Although there exist several Web service fault injectors able to decode and cor-
rupt SOAP messages (WSBang [18], PUPPET [24], GENESIS [49],etc.), only a very
small subset of them can inject both interface and communication faults. In fact,
tools like WSBang, PUPPET and GENESIS are more like active testers or client-
side injectors than real network level fault injection mechanisms. They all proceed

like a client application which consumes the tested Web service (figure 6.7). They

108



Chapter 6. A Framework for Modeling and Testing Web Services
Robustness

parse the WSDL file provided by the tested service and generate a set of test suites.
Each test suite is a set of sequential invocations of the Web service operations. The
main difference compared to active testing tools is the fault injection step. Before

invoking the tested service, faults are injected inside the SOAP messages to corrupt

octor || WebService
Injector

Figure 6.7: A client-side fault injection architecture

carried data.

Actually, this kind of tools suffers from two main drawbacks. First, they can only
inject interface faults by corrupting data and procedure parameters inside SOAP
messages (communication faults such as message delaying or message deletion can-

not be performed).

The second problem concerns the type of tests that can be conducted. As such
tools proceed by simulating service clients, only simple Web services can be tested.
The fault injector needs to consume the tested service. Therefore, it is impossible
to use it for testing composed Web services (testing communication between ser-
vice partners) or to test communication between a service and its original client

application (as it will be substituted by the injector itself).

To address these problems, we need to rely on a fault injector mechanism which
could intercept communication messages exchanged between service partners or be-

tween a service and its client application.

As far as we know, WS-FIT [50] is currently the only Web service fault injector
which really fits to this architecture. However, WS-FIT needs to implement a set
of hooks and triggers at the SOAP protocol layers of every machine hosting one
or more tested services (figure 6.8). This approach is very useful when testing
secure SOAP communications where all messages are signed and/or encrypted. In
this case, the implemented hooks and triggers are used to intercept messages just
before their encryption or signature, to be able to inject significant errors. However,

there is absolutely no need to modify the protocol layers when testing unsecured
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communication because this approach is very intrusive and can, unintentionally,

disrupt the communication.
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Figure 6.8: WS-FIT architecture

Moreover, WS-FIT can only be used to test Web services deployed in a com-
pletely controlled testing environment (because we need to modify the SOAP pro-
tocol layers). Thus, we cannot rely on this tool to test real world Web services i.e.
Web services deployed by a third-party and running in their own environment.

For all these reasons, we propose WSInject: a Web service fault injector able to
inject both communication and interface faults while being completely independent
from the environments of the tested services. WSInject can test composed and
simple Web services regardless whether they are running on real world or on a

testing environment.

6.4.2 Tool presentation

Figure 6.9 depicts WSInject architecture, designed to be simple and loosely coupled.

Core WSInject components are Proxy/Monitor and Fault Injection Execu-
tor. Proxy/Monitor is the SOAP messages interception and failure monitoring
point. Fault Injection Executor is the point where effective fault injection occurs.

Other important components are Controller, Script Compiler and Graphical
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Figure 6.9: WSInject architecture

User Interface (GUI). WSInject was fully developed in Java.

Controller is the starting point of the tool; it activates and starts other com-
ponents. Script Compiler is the component that reads a fault injection campaign
script and converts it into a processable format and GUT is responsible for showing
data collected by the Proxy/Monitor. All these components are explained below

in more details.

Proxy/Monitor

Proxy/Monitor is a 2-in-1 component that intercepts SOAP messages and monitors
system behavior. User is able to select the port on which the proxy should be bound
to. Services of the composition should then be configured to connect through a
proxy on the selected port and on the IP address of the machine where WSInject is
running. If the tested system presents any kind of failure (like crashing for example),
Proxy/Monitor will keep track of this behavior.

More specifically, Proxy is a socket-based HTTP proxy, implemented using the
java.net.Socket and java.net.ServerSocket classes. It intercepts every HTTP mes-
sage exchanged by Web service partners, parses it, sends it to the Fault Injection
Executor, receives the (possibly) modified message and finally sends it to its original
destination. Non-SOAP HTTP messages are also intercepted, but these suffer no

modification before being redirected to their original destination.
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Script Compiler

Fault injection campaigns are described by scripts. Script Compiler is the component
responsible for compiling a script and transforming it into a CampaignDescriptor.
A CampaignDescriptor is an Abstract Syntax Tree (AST) that is WSInject’s internal
representation of a script. It is part of the Fault Injection Executor component, more
thoroughly explained later.

Scripts are simple text files containing one or more FaultInjectionStatements.
FaultInjectionStatements are composed of a ConditionSet and a FaultList. A
ConditionSet consists of one or more Conditions and a FaultList is composed of
one or more Faults. FaultInjectionStatements work as condition-action statements:
when a message arrives, if it matches a set of conditions, a list of faults is injected
on it. Conditions are similar to boolean methods and faults are similar to void
methods. Conditions have no defined order -hence being grouped in a set; faults
do have a defined order -hence being grouped in a list. An abstract and simplified

grammar of the script language is given in Figure 6.10.

CampaignDescriptor --> FaultIlnjectionStatement [CampaignDescriptor ]
FaultInjectionStatement --> ConditionSet : FaultList ; [FaultInjectionStatement ]
ConditionSet --> Condition [&& ConditionSet ]

Condition --> operation(String) | contains(String) | uri(String) | isRequest () |
isResponse ()

FaultList --> Fault [, FaultList]

Fault --> delay(Integer) | multiply(String, Integer) | stringCorrupt (String, String) |
xPathCorrupt (String, String) | empty() || closeConnection ()

Figure 6.10: Script language grammar

Table 6.1 presents available conditions and Table 6.2 presents available faults to
be injected (or "actions" to be taken). Name/Class is both the name of that con-
dition or fault and its corresponding Java class on WSInject code. Syntax describes
how that condition or fault is expressed on the script language.

Interface faults modify contents of SOAP messages, while communication faults
affect the delivery of requests and/or responses. To emulate a message modification,

user should simply choose the most appropriate interface fault for his/her needs.
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Name Syntax Description
. . Matches SOAP mes-
: . contains(String .
ContainsCondition . sages containing the
stringPart) ) .
specified string.
Matches request mes-
uri(Strin wri | S8es sent to a URI
URICondition & containing the specified

Part)

string, and responses to
those messages.

MessageDestinationCondition

isRequest|()

Matches request mes-
sages, either from a
client to a service, or
from a service to an-
other service.

isResponse()

Matches response mes-
sages either from a ser-
vice to a client, or from
a service to a another
service.

OperationCondition

operation(String
operationName)

Matches request mes-
sages sent to a Web
Service operation whose
name is the specified
string, and responses to
those messages.

Table 6.1: Available conditions

To emulate an unresponsive Web Service (i.e., network packet loss), user has two
options: (1) use DelayFault to delay a response message (possibly by a very large
amount of time); (2) use ConnectionClosingFault to abruptly close the conection
between proxy and client without returning any HTTP answer to the client. Note
that a more accurate emulation of unresponsive services/packet loss is not possible

working at the HTTP level like WSInject does. According to [59], this would require

working at the network level.

Conditions can be combined by using the ’&&’ (AND) operator, meaning a Con-

ditionSet will only be satisfied when all individual conditions are satisfied. Faults

)

can be combined by the '’ (comma) operator, meaning all of them will be injected,

on the specified order. The following injection rules show a sample script:
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Name ‘ Syntax ‘ Description
INTERFACE FAULTS
StringCorruptionFault | stringCorrupt(String | Replaces all occurences of
fromString, String | fromString with  toString.
toString) Works at String level. Ignores
XML syntax (may be used to
replace XML characters like
<7 and ">").
XPathCorruptionFault | xPathCorrupt(String | Replaces all matches of an
xPathExpression, XPath [19] expression to the
String newValue) value specified. Can be used
to modify either elements or
attributes.
MultiplicationFault multiply(String Multiplies a part of a message
xPathExpression, by a number of times. For
int multiplicity) example, multiply("/", 2)
duplicates the whole mes-
sage contents, while multi-
ply("/Envelope/MyNode",3)
triplicates only the MyNode
XML element.
EmptyingFault empty|() Empties the SOAP message,

delivering an HTTP message
with no contents.

COMMUNICATION FAULTS

DelayFault delay(int delayInMil- | Delays a message delivery by
liseconds) the specified number of mil-

liseconds.
ConnectionClosingFault| closeConnection() Closes the connection between

client and proxy.

uri("Hotel"):

uri("Airline"):

contains("caught exception") && isResponse():

Table 6.2: Available faults

stringCorrupt ("Name", "Age"), multiply("/", 2);

stringCorrupt ("Flight", "Might");

empty ();

This example has three FaultInjectionStatements, one on each text line. The first

one has a ConditionSet of a single condition: a URICondition with a "Hotel" argu-

ment. It also has a FaultList of two Faults: StringCorruptionFault with "Name"

and "Age" arguments and a MultiplicationFault with "/" and ’2’ arguments.
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The second FaultInjectionStatement has a ConditionSet with a URICondition and
a FaultList with a StringCorruptionFault. The last FaultInjectionStatement has a
ConditionSet with two conditions: a ContainsCondition and a MessageDesti-
nationCondition; and a FaultList with an EmptyingFault. This script describes

the following campaign:

e Whenever a URI of a Web service call contains the string "Hotel":

1. Replace all text occurrences of "Name" by "Age".

2. Duplicate the whole SOAP message.
e Whenever a URI of a Web service call contains the string "Airline":
1. Replace all text occurrences of "Flight" by "Might".

e Whenever a message contains the string "caught exception" and is a response

to a Web service caller:

1. Empty the message.

Fault Injection Executor

Fault Injection Executor is the component in charge of effectively injecting faults. It
processes the Abstract Syntax Tree (AST) produced by Script Compiler and injects
faults where appropriate. For example, when a message should be corrupted, the
Executor is the component which actually modifies the message; when the message
should be delayed, the Executor is the component which actually inserts an emu-
lated delay on the program execution. Fault Injection Executor code is called for
all messages intercepted by the Proxy. For those that do satisfy the specified Con-
ditionSet, Executor injects the appropriate faults. For those that do not, it takes
no action.

Representing source code as ASTs is a common approach in the compilers field
which facilitates the code processing. On WSInject, a CampaignDescriptor is an

AST which is an exact representation of a fault injection script. Each element of
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the script corresponds to an AST node, while each AST node corresponds to a Java
class on WSInject code. Figure 6.11 shows the AST corresponding to the script

example given in the previous paragraph.

CampaignDescriptor
E“tlniectiBHEtah\mmEl Eul'dlljeclionStahmeEl Eﬂl‘tlﬂochansh‘hﬂm"'z'

ConditionSet FaultList Eondmonﬁezl E:aul‘ﬂ.ngl ondtbunSeEl E:an.ﬂl..ls

URIConditi: URICondition Corfup‘bonF
! ('Hetal')m Ir("A:I.l‘ne']:I ﬂ'::ght Wghta;‘—i / \M

StringCorruptionFault MultiplicationFault GontnmaCondmnn Mﬁasgeneatmshon
("Name", "Age") (/- 2) ("caught exeephon Oondmovn{cLlENT)

Figure 6.11: An example of an Abstract Syntax Tree

Controller

Controller is the central component of WSInject. It starts the tool and activates
other components when required. WSInject can be started in two modes: graphical
user interface (GUI) or command-line interface (CLI).

The initialization of WSInject with a fault injection campaign is described on
the sequence diagram on figure 6.12. First, the Controller asks the Script Compiler
to compile the script file into a CampaignDescriptor, which represents the entire
fault injection campaign. Controller then creates and configures a Fault Injection
Executor, and passes it to the Proxy/Monitor. After these steps, WSInject is ready
to identify desired messages and inject faults described on the script file. Final steps

are to start the Proxy/Monitor and to stop it after the experiment is completed.

Graphical User Interface (GUI)

The GUI component is responsible for receiving user inputs and for showing SOAP
messages to the user. User inputs include setting the proxy port, turning the proxy

on/off and loading/unloading scripts. Request and response messages can be seen
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Igc_ﬂpmompner | IFauIt Injection Execumr' [ Proxy/Monitor |

i Compile the script ~{

1 1
1 ]
1 1
1 I
1 1
CampaignDescriptor . :
4___Pf‘9_____P____U i E
Crgate the Fault Injection Execulor with the CampaignDeacrlénor E
] Ly I
| I
Fault Injecﬂon:Execulor ‘ :
R T e | !
1 1 )
Set the Fault Injection Executor in thi proxy i
i : ‘
1 1
| Start the Proxy/Monitor | .
| H
I 1
1 1 ‘
| Stop the Proxy/Monitor |
i i ‘
] 1
I 1
il | I
1 1

Figure 6.12: Initialization of WSInject’s main components

by clicking their respective tabs. The left and right white panels respectively show
messages contents before and after fault injection. Figure 6.13 depicts WSInject

started on graphical user interface mode.

FEEESS 2 2 2 2 2 2 2 2 2 )
File Proxy Log Script Database i
| # |Hitp Code| StartTime | Finish Time Reguester URI Error Message
1 200 193113 19:31:13 127.0:0.1:52041 hitp:/iNoteDoFi: 18181/ TravelRes ..

500 19:31:52 19:31:52 127.0:0.1:52052 hitp:/iMoteDoFi: 18181/ TravelRes...
| | Al
[ Reguest f Response

POST hitp:/NoteDoFi:18181/TravelReservationService/builditinerary HT]
\Accept-Encoding. gzip,deflate
Content-Type: textixml,charset=UTF-8

ccept-Encoding: gzip deflate
Content-Type: textsml;charset=UTF-8

R

L l»

FOST hitp:iMoteDoFi: 18181 TravelResenationService/builditinerary HT]

OAPAction: ™ SOAPAction: ™
User-Agent Jakara Commaons-HitpClient/3.1 User-Agent Jakara Commons-HitpClient3.1
ost: NoteDoFi 18181 Host: NoteDoFi: 18181
Proxy-Connection: Keep-Alive Froxy-Conneclion: Keep-Alive
Content-Length: 8034 Content-Length: 8114

=S0AP-ENV:Envelope xsi:schemalocation="http:#schemas xmisoap.o <HHHHE @M PN @@@F-ENV Envelope xsi:schemalocation="]

=SOAP-ENV Eody= HHHHOEE?IS%QREHHHE-ENV-Body=>
=Travelltinerary xmins="hitp:/fiwww opentravel.org/OTAI2003/05"= =Travelitinerary xmins="hitp:fwww.opentravel.org/OTA2003/05™
<ltineraryRef Type="14"ID="M839L W <ltineraryRef Type="14" |D="M839LW">
=UniquelD=Ma39LWHH=/UniquelD= =UniguelD=M839LWHH=/UniquelDi=
=fineraryRef = | =fltineraryRef = |
Cuctamarni | Cuctamarlafn; B
<] I+ ] i

Script: Loadsd Proxy: Staried

Figure 6.13: WSInject’s GUI
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Monitor Data Manager

The Monitor Data Manager is responsible for storing and retrieving data about

messages intercepted by the Proxy/Monitor and also the log of WSInject.

6.5 Case study

In this section we carry out two case studies to illustrate our framework. First we
apply our approach on the Heater Controlling System already introduced in section
6.3.1 and then, we will experiment our framework on a third-party system (the

Travel Reservation Service) provided by Netbeans IDE 6.5.1 [20].

6.5.1 The Heater Controlling System (HCS)

The behavior of this system is illustrated by the sequence diagram presented in

figure 6.14.

HeaterController. Thermocouple | HeaterCmd

Repeat each
10 seconds S

......

f---

1 getTemp ()
getHeaterTemp ()

-k
ik ‘Return(Temperature) L]

Return(Temp)

L
if (Temp<100 or femp>150)
1

setTemp(100) —

incPower ()/decPower ()

getHeaterTemp () ) | } T}

—— Return(Temperature)

JRA S
Repeat until
(Temperature=
100)

Figure 6.14: Sequence diagram of the Heater Controlling System

-------------{

The Client periodically asks the HeaterController for the current tempera-
ture. The HeaterController forwards the request to the Thermocouple which
returns the current temperature value. If the temperature value is outside a mini-

mum and a maximum thresholds, the Client asks the HeaterController to readjust
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it. The Controller will then use a time-based algorithm which invokes operations
incPower() and decPower() of the service HeaterCmd until the heater tempera-
ture is adjusted to the right value. The heater coil is simulated by a simple shared
database providing the current temperature. Each time the Thermocouple is in-
voked, it returns the current temperature and it updates its value randomly (either it
increases or decreases the current value by five degrees each time). The HeaterCmd
service also accesses this database each time operations incPower() or decPower()
are invoked. According to the invoked operation, the HeaterCmd increases or de-
creases the current temperature value by five degrees each time.

The testbed architecture is illustrated in figure 6.15. It includes all service part-
ners (the HeaterController, the Thermocouple and the HeaterCmd) and the client
application which is in charge of monitoring the heater temperature and to adjust
it when needed. The workload here, is implicitly generated and executed by the
Client. For the faultload, we use WSInject for disturbing communication between
the services of the composition. Observation points for collecting execution traces
are implemented at communication interfaces of all services of the composition. This
way we are able to keep information about all message exchanges (traces are sorted
in a sequential order according to event occurrence times). In practice, the trace
collection is easy because all services are configured to communicate through WS-
Inject’s proxy. WSInject provides also its own execution trace (the injection trace)
telling about all executed injection operations and the involved messages. This trace

will be used later for validating the injection process.

Robustness requirements

We specify five robustness requirements for this system.

Requirement 1: The client must ask for the current temperature each 10 seconds

(Periodicity).

O((getTemp() AT = x) — O(getTemp() AT = z + 10000))®

®Time values are specified in milliseconds
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Figure 6.15: Testbed architecture of the heater controlling system

Requirement 2: The client must receive a response to its request within the

following 5 seconds.
O((getTemp() NT = x) — O(getTempResponse() AT <= x + 5000))

Requirement 3: The client must resend its request if it does not receive a
response within the following 5 seconds. At worst it must resend its request 2

seconds after the timeout.

O(=((getTemp() NT = z) — O(getTempResponse() AT <= z + 5000)) —
O(getTemp() AT < z + 7000))

Requirement 4: The temperature value must always be between 100°C and
150°C. Outside this interval, the client application must, within the following 5

seconds, ask the HeaterController to readjust it to 100°C.

O(((getTempResponse(return > 150) AT = x) V (getTempResponse(return <
100) AT = z)) — O(setTemp(Tmp = 100) AT <= x + 5000))

Requirements 5: When the HeaterController is asked to readjust the
temperature, it must regulate the Heater power until it is stabilized in the right

value.
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O(setTemp(Tmp = 100) — O((incPower() V decPower())
U(getHeaterTemp() — QgetHeaterTempResponse(return = 100))))

Injection process

The Heater Controlling System deploys 5 operations: getTemp(), setTemp(Integer
Temp), getHeater Temp(), incPower(), decPower().

WSInject provides 6 kinds of simple faults:
e 4 interface faults:

1. Structure and content message corruption using either the StringCorrup-

tionFault or the XPathCorruptionFault;
2. MultiplicationFault;

3. EmptyingFault.
e 2 communication faults : the DelayFault and the ConnectionClosingFault.

We will address content corruption faults later as they will not affect all opera-
tions. Therefore, we have for now 5 simple faults (3 interface faults and 2 communi-
cation faults). WSInject can also combine indifferently between all these faults. If
we choose to combine only one interface fault with one communication fault, we will
have 6 possibilities. This increases the total number of the possible faults to inject to
11 (5 simple faults and 6 combinations). Now, if we want to inject all possible faults
on each operation provided by the tested system in both request and response
sens, we will have 110 injection configurations (as there are 5 operations).

Parameter values corruption (content corruption) can only be applied on the
operation setTemp(Integer Temp) (as a request) and on responses of operations
getTemp() and getHeaterTemp(). If we rely on the Ballista approach [52] for integer
corruption, we will have 3 possibilities for each parameter (-MaxInt,+MaxInt and
0). Therefore, we have in all 9 possibilities; and if we combine each possibility with
a communication faults, we will have 18 configurations. Therefore, the total number

of all injection configurations is 128.
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For structure corruption, MultiplicationFault and DelayFault, there are a infi-
nite injection possibilities. The number of injection configurations found above was
calculated while considering one possibility for each of these faults. For structure
corruption, we inverse opening and closing XML tags; for MultiplicationFault we
duplicate all the message body and for DelayFault, we delay the forwarding of mes-
sages by a sufficient amount of time for violating the specified timeout. For example,
when the Client asks for the current temperature, the response is delayed for more

than 5 seconds (as it should receive a response within the following 5 seconds).

Examples of injected faults
We give in the following some examples of the injected faults.

Eg.1: When the client asks for the current temperature, delay the response for 10

seconds.

operation("getTemp") && isResponse(): delay(10000);
Eg.2: Corrupt the parameter value of operation setTemp().
operation("setTemp"): xPathCorrupt("//Temp/text()","0") ;%
Eg.3: Duplicate invocations of operation getHeaterTemp().
operation("getHeaterTemp"): multiply("/",2);

Eg.4: Forward empty messages each time operations incPower() and decPower()

are invoked.

operation("incPower"): empty();

operation("decPower"): empty();

To verify the injection process, we also specify the injected faults as Hoare triples
following the proposed instantiation of this formalism for Web services. The speci-

fication of the above examples gives the following set of injection rules.

SWhen not specified, faults are injected on requests by default.
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Injection rule 1:

{Soaplsg.has(getTempResponse) and $val==now}
delay(10000)
{new(Soaplsg) .equals(SoapMsg) and $val+10000<=now<=$val+10050}

Injection rule 2:

{SoapMsg.has(setTemp)} xPathCorrupt("//Temp/text()","0")

{new(SoaplMsg) . Temp=="0" }

Injection rule 3:

{SoaplMsg.has(getHeaterTemp)} multiply("/",2) { \forall $XML_elt;
SoapMsg.has($XML_elt) \implies new(SoapMsg).count ($XML_elt) ==

2xSoapMsg. count ($XML_elt) 2

Injection rule 4:

{Soaplsg.has(incPower)} empty() { new(SoapMsg).isEmpty()}
{SoapMsg.has(decPower)} empty() { new(SoapMsg).isEmpty(}

Test execution and result analysis

We conducted 5 injection campaigns (one for each operation) and for each campaign,

we executed the appropriate number of runs according to the considered operation.

Therefore, we had 22 runs for operations: incPower() and decPower() as we con-

sidered both request and response senses based on 11 injection possibilities. For

operations: setTemp(integer Temp), getTemp() and getHeaterTemp(), we have 11

basic configurations for each one which gives 22 runs while considering both com-

munication senses. In addition we have the content corruptions which produce 6

possibilities for each operation. Therefore, we will have at all, 28 runs for each one

of these operations. The total number gives the previously calculated number of

fault configurations i.e. 128 possibilities (128 = (22 x 2) 4+ (22 x 3) + (6 x 3)).
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After experimentations, we first verified the good execution of the injection pro-
cess using the instantiation of Algorithm 1 for Web services. The issued verdict was
PASS which means that, according to the collected trace all injection operations
were well performed. Then, we checked the collected execution trace with respect
to the specified robustness properties based on the Web services instantiation of

Algorithm 3. We summarize the obtained results in the following points:

e For the communication between the Client and the HeaterController, most
robustness requirements were verified. For example, when the responses of
the HeaterController were delayed for more than 5 seconds, the client re-
sends its requests (satisfiability of robustness requirement 3) and when the
returned parameter values were corrupted (with values outside the defined
thresholds interval), the client always asks the HeaterController to readjust

the temperature (satisfiability of robustness requirement 4).

e The different perturbations of incPower and decPower operations did not
allow violation of robustness requirement 5. The HeaterController keeps
invoking those operations until the current temperature value returned by the
Thermocouple was conform to the defined minimum and maximum thresholds

(satisfiability of robustness requirement 5).

e The CloseConnectionFault stopped completely the system execution. Each
time we inject this fault on one system operation, the system stops its exe-
cution and all communications terminate. This is due probably to the fact
that all service partners composing our system were deployed on the same
Web application server (we used the server GlassFish v2.1 [21]|). Therefore,
when we close the connection between two services from the composition, it

is actually the whole connection to the server which is closed.

6.5.2 The Travel Reservation Service (TRS)

To show the reliability of our approach, we applied it also on a second case study

developed by a third party. It is the Travel Reservation Service (TRS) provided
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by Netbeans IDE 6.5.1 [20]. TRS is a simulation of a real-life organization that
manages airline, hotel and vehicle reservations using Web service partners. It is
composed of three services - VehicleReservationService (VRS), AirlineReservation-
Service (ARS) and HotelReservationService (HRS)- and one BPEL process (TRS),
which orchestrates partner services to build a travel itinerary.

The TRS process assumes that an External Partner initiates the process by
sending a message that contains a partial travel itinerary document. The client’s
travel itinerary may have: no pre-existing reservations, or a combination of pre-
existing airline, vehicle and/or hotel reservations.

The TRS examines the incoming client itinerary and processes it for completion.
If the client itinerary does not contain a pre-existing airline reservation, the TRS
passes the itinerary to the ARS in order to add the airline reservation. The ARS
passes back the modified itinerary to the TRS. The TRS conducts similar logic
for both vehicle and hotel reservations. In each case it will delegate the actual
provisioning of the reservation to the VRS and HRS. Finally, the TRS passes the
completed itinerary back to the original client, completing the process.

The TRS implements also some temporal constraints to regulate the reservation
process. In fact, each time the TRS passes the client itinerary to one of its service
partners, it waits for a response within the following 20 seconds. In the case of
no response, it must send a cancellation message to abort the reservation request.

Figure 6.16 shows the sequence diagram of the TRS system.

Testbed architecture

The testbed architecture is presented in figure 6.17. SoapUI [22] is a well known test
tool for Web services. We use it in our experiments for generating and running the
workload. It plays the role of a TRS’s client, sending requests with travel itineraries
and activating the BPEL process, which in turn makes reservations with its partner
services.

All services of the composition were deployed on the Glassfish server v2.1. Then,

SoapUI and GlassFish were configured to make connections through WSInject’s
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Figure 6.16: Sequence diagram of the TRS system

proxy component. Thus, all communications between the client, the BPEL process

and the partner services were intercepted by WSInject, which was able to inject
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Figure 6.17: Testbed architecture of the TRS system

faults on all exchanged SOAP messages. Figure 6.18 shows the sequence diagram

of the injection process.
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Figure 6.18: Sequence diagram of the injection process applied on TRS
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Specification of robustness requirements of the TRS

TRS defines two main temporal constraints which can be specified as XCTL robust-
ness requirements. The first is a simple response constraint specifying that each
time the BPEL process sends a reservation requests to one of its service partners, it
must receive a reservation confirmation within the following 20 seconds. Therefore,
we have in all 3 response constraints (one for each service partners). For the ARS

for example, we specify this requirement as follows:
Requirement 1:
O((reserveAirline() AT = z) — O(airlineReserved() AT <= z + 20000))

The second robustness requirement is an illustration of the alternative pattern
presented in section 4.5. It specifies that the BPEL process must send a cancellation
message to its service partner (to cancel the reservation request it sent), if it does not
receive the confirmation within 20 seconds. For the ARS, we specify this property

as follows:
Requirement 2:

O(—((reserveAirline() AT = x) — ((airlineReserved() AT <= x + 20000)) —
OQcancel Airline())

This requirement concerns also the VRS and the HRS. Therefore, we will have

in all 6 robustness requirements for the TRS system.

Test execution and results

Workload

The workload of our experiments consisted of sending itinerary requests from the
SoapUI tool. The TRS system comes with pre-defined test cases on NetBeans
- hasAirline, hasHotel, hasVehicle and hasNoReservations -, which are functional

tests to verify the correct behavior of the system. hasAirline (resp. hasHotel or
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hasVehicle) defines the case where the client has already an airline (resp. a Hotel or
a vehicle) reservation. The hasNoReservations test case means that the client does
not have any pre-existing reservation.

The SOAP requests from these test cases were used to activate the TRS during
the fault injection campaign. SOAP messages sent by SoapUI were always the same:
the "Input" message taken from the hasNoReservations test case from TRS (also

named TestCasel on some versions of NetBeans).

Faultload

The robustness requirements that we can specify for this case study do not involve
data. Also, the XSD file defining the XML schema of the TRS is huge (more
than 17000 lines) and defines a large set of parameters. We conducted preliminary
experiments involving parameter value and structure corruptions and we noticed
that the TRS does not implement any data validation procedure [36]. But this
actually does not affect our robustness validation process as we are performing a
black box testing and because our robustness requirements are independent from
the parameter values that may be handled.

For these reasons, we do not consider in our faultload, the structure and the
content corruption faults. Therefore, we will have 8 possible types of faults (4
simple faults and 4 combinations).

Communication between service partners involves the following set of messages:

e buildItinerary(): to activate the BPEL process asking for an itinerary reserva-

tion.
e itineraryProblem(): to inform about a possible itinerary fault.

o reserveAirline(); reserveVehicle(); reserveHotel(): to request an airline, a ve-

hicle or a Hotel reservation.

o cancelAirline(); cancelVehicle(); cancelHotel(): to eventually cancel and air-

line, a vehicle or a Hotel reservation request.
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e airlineReserved(); vehicleReserved(); hotelReserved(): to confirm an airline, a

vehicle or a Hotel reservation.

If we consider injections on all these messages, we will have at all 88 fault con-
figurations. As we do not consider content corruptions for this case study, we will
have at all 11 injection campaigns (one for each message) and a uniform distribution

of runs i.e. 8 runs for each operation.
Result analysis

After we verified the injection process to ensure the good execution of the injection
campaign, we checked the robustness requirements on the collected execution trace.

We had the following results:

e Probably, the most important result we got, is when injecting the Delaying-
Fault for testing the robustness requirement 1 and 2. Each time we delay the
forwarding of a request for more than 20 seconds (for example when delay-
ing invocation of operation reserveVehicle provided by the VRS), the TRS
system hangs until the Glassfish server timeout is reached (2 minutes) and no
cancellation message was sent. The automatic verification of the trace returns
a FAIL verdict (requirement 1 and 2 were violated). Also, when we delayed
the forwarding of the response message (reservation confirmation returned by
the VRS for instance), the cancellation message was not sent and thus, the
requirements 1 and 2 were also violated. In fact, when we examined manually
the collected trace, we noticed that the sun-bpel-engine sent an error message
indicating that there has been an instantiation error when sending the cancel-
lation message. This shows a bug in the implementation of the cancellation

process.

e The EmptyingFault caused an internal server error. Each time we injected this
fault between two communication partners of the TRS, the system execution
stops and all robustness requirements are violated. We examined the execution

trace and we noticed that an HTTP 500 error code is sent by the GlassFish
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server to the client application notifying that the connection was closed due

to an internal server error.

e The ConnectionClosingFault had the same effect as for the previous case study.
When applied on any TRS operation, the whole connection is lost and the

system execution is stopped.

The application of our approach on this case study allowed us to reveal an
important failure. We discovered that the cancellation process is actually never
handled. This result demonstrates the efficiency of our approach as this failure

could not be discovered using traditional conformance testing methods.

6.6 Conclusion

We presented in this chapter a testing framework for modeling and assessing Web
services robustness. It is actually an instantiation of the robustness testing approach
we proposed in the previous chapter for Web services. The framework includes a
fault injection tool (WSInject) that we developed to inject interface and communica-
tion faults on both single and composed services. It also provides an implementation
of Algorithm 1 and Algorithm 3 for Web services. These implementations are used
to verify the injection process as well as the robustness requirements of the tested
services.

The proposed framework can be used to test either simple or composed services.
For illustration, we presented at the end of this chapter, an application on two
case studies, where we detailed all the necessary testing steps starting from the
different specifications (specification of the robustness requirements and the injection
rules) till the test execution and the result analysis. The results we obtained are
very promoter. We were able for example to discover some failures (for the second
case study) that could not be revealed using traditional testing methods. This
demonstrates the efficiency of our approach and motivates us to study the possibility

to extend our framework to support other kinds of distributed systems.
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Conclusion

The main objective of this PhD thesis was to address the problems facing robust-
ness testing and to propose a new and an innovative approach for assessing system
robustness.

We first presented, in chapter two, the state of the art of the most relevant
approaches for both conformance and robustness testing. For conformance testing,
we focused mainly on passive testing techniques, because our proposed approach
relies on this testing theory. Then, for robustness testing methods, we classified
the existing approaches into two categories: those based on empirical fault injection
techniques and those who rely on model-based testing.

The major issues with fault injection techniques applied on robustness testing
are : (i) the absence of a formal test oracle for validating the test results and (ii)
the lack of control on the injection process. The first problem could be resolved by
relying on formal robustness testing approaches. For the second issue, we proposed
a formal approach to specify and to verify the injection process. Our contribution
consisted to define a fault injection formalism based on a timed extension of Hoare
logic. We proposed to specify each injection operation by a Hoare triple describ-
ing the preconditions that must be satisfied before the execution of this operation
and the postconditions that must be verified after its execution. This way, one can
specify the set of injected faults for a given experiment and then, verify the good

execution of the injection process using a proposed passive testing algorithm. This
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algorithm checks the satisfiability of the specified injection rules (a set of Hoare
triples) against injection traces. The injection traces are provided by the used fault
injector. They log all injection operations executed within an injection experiment
and the states of intercepted communication messages before and after the execution
of those operations. This verification step must be performed after each injection
process because we cannot guarantee that a fault injection mechanism used for a
given experiment would work correctly when integrated in another testing frame-
work. We presented this approach in chapter three and illustrated it with a set of

examples of injection specifications.

Formal robustness testing approaches inspire from active testing techniques. As
far as we know, they all create variants (mutants) of the behavioral model of the
tested system, to generate and to execute their test. We believe that robustness
requirements can be different from the functional ones. When facing abnormal
environmental conditions, a software system may violate some of its functional re-
quirements provided that the set of its robustness requirements are satisfied. For
example, a functional property of a server application could be to response all the
received requests within a relatively short period of time. However, when receiving a
huge number of requests within a very short time interval (stressful conditions), the
server application could be configured to close all its external connections to avoid
the crash. This could be seen as a robustness property. Therefore, we proposed
to formalize the robustness requirements as a set of real-time safety and liveness
properties, using the explicit clock temporal language (XCTL). XCTL is an exten-
sion of the classical linear temporal logic to support real time specifications. The
syntax of XCTL defines a dynamic state variable over the time domain (the clock
variable) which can be used to refer to the value of the global time of the tested
system. In chapter four, we discussed the expressiveness of XCTL compared to
other existing real-time formalisms and we proposed a backward checking algorithm
to check XCTL formulas on execution traces. This approach follows the passive
testing architecture. Observation points are seeded in different system location to

collect execution traces. This way, one can track all system components; which is
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particularly interesting when testing distributed and/or composed applications.

In chapter five, we proposed a new robustness testing approach. The proposed
technique relies on both fault injection and passive testing. The basic idea was
to use fault injection as a perturbation mechanism and then, verify the robustness
requirements against the collected execution traces. This way, the defined fault do-
main would be much larger, because the set of faults which is usually considered by
existing formal robustness testing approaches is always limited by the original input
domain. On the other hand, robustness requirements could be specified indepen-
dently from the functional ones, as we are not constrained by the original behavioral
model. Also, by combining fault injection and passive testing, one can study the
behavior of all components of a distributed system. Faults are injected between
different communication partners and traces are collected all over the composition.
To control the injection campaigns, we specify the injected faults as a set of Hoare
triples and we used this specification to verify the injection process based on the
algorithm presented in chapter three. For robustness assessment, we specify the
robustness requirements as a set of XCTL formulas and we use our passive test-
ing algorithm, proposed in chapter four, to check their correctness on the collected

execution traces.

Finally, for our last contribution, we proposed in the sixth chapter, a testing
framework for modeling and testing Web services robustness. We chose Web ser-
vices because they present interesting testing challenges. They are distributed and
heterogeneous systems, widely used for building business applications and integra-
tion softwares. They also provide two kinds of compositions: the orchestration and
the choreography. The proposed framework is an instantiation of our robustness
testing approach for Web services. We implemented in this framework, the pas-
sive testing algorithms that we proposed for checking the injection process and the
robustness requirements on execution traces. We also proposed and built an in-
novative fault injection tool for Web services: WSInject. This tool was integrated
in our framework to simulate hostile environments. Its main features are: (i) its

ability to inject both interface and communication faults and (ii) the way it can be
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used to test single and composed services. We presented also, at the end of this
chapter, two case studies on Web services compositions. The first one, is a simu-
lation of a heater controlling system. It describes a critical system scenario which
illustrates an example of a system that requires a high robustness level. For the
second case study, we chose to test a third-party Web service composition provided
by NetBeans (the Travel Reservation Service). For each case study, we presented
the complete testing steps and we described for each step the specified properties
(robustness requirements and examples of the injected faults). We also presented
the used testing architecture and discussed the obtained results. Particularly, for
the Travel Reservation Service, we were able to discover interesting failures that

could not be revealed using classical testing methods.

7.1 Perspectives

Formal methods for robustness testing is a relatively recent direction in the testing
literature. The work we presented in this manuscript, is a set of contributions
which aim at addressing the new challenges facing this kind of testing. A possible
extension of our work could be to study the possibility of upgrading the proposed
passive testing algorithms to on-line monitoring. This way, one can check both
the injection process and the robustness requirements during experimentations and
raises exceptions as soon as some of the specified properties are violated. This avoids
also to collect execution traces and hence, makes the test execution faster.

The fault injector we developed (WSInject), can also be improved by imple-
menting new fault injection operations. It would be also interesting to study the
possibility of deploying it as a Web service and thus, making it easily available for
the testing community to be able to perform larger and deeper experimentations.

Another direction that could be considered for future work, is the possibility of
instantiating the proposed robustness testing approach for other kind of systems.
The Web services testing framework that we proposed, is an example to show how
our robustness testing technique could be applied for testing real systems. This

approach is based on abstract concepts. Therefore, it could be easily implemented
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for various kind of communication protocols and other distributed applications.
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