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Summary

In this thesis we present detailed measurements of quantum phase-slips in Josephson
junction chains. The probability amplitude of the phase-slips is controlled by the ra-
tio between the Josephson energy, EJ , and the charging energy of each junction, EC .
We have measured complex superconducting networks containing tens of Josephson
junctions.

The central result of this thesis is the measurement of the effect of quantum
phase-slips on the ground state of Josephson junction networks (Pop et al., PRB
2008 and Nature Physics 2010). We have also observed the quantum interference
of phase slips, the Aharonov-Casher effect, which is the electromagnetic dual of the
well known Aharonov-Bohm effect. Our experimental results can be fitted in very
good agreement by considering a simple tight-binding model for quantum phase-
slips (Matveev et al. PRL 2002). We have shown that under phase-bias, a chain
of Josephson junctions can behave in a collective way, very similar to a single ma-
croscopic quantum object. These results open the way for possible use of quantum
phase-slips for the design of novel Josephson junction circuits, such as topologically
protected qubits or frequency-to-current conversion devices.

Résumé

Nous avons étudié la dynamique des sauts quantiques de phase (quantum phase-
slips) dans différents types de réseaux de jonctions Josephson. Les sauts de phase
sont contrôlés par le rapport entre l’énergie Josephson, EJ , et l’énergie de charge de
chaque jonction, EC . Nous avons étudié des réseaux qui contiennent jusqu’à quelques
dizaines de jonctions.

Le résultat central de la thèse est la mesure de l’effet des sauts de phase sur
l’état fondamental des réseaux de jonctions (POP et al., PRB 2008 et Nature Physics
2010). Nous avons aussi observé l’interférence quantique de sauts de phase, l’effet
Aharonov-Casher, qui est le dual électromagnétique de l’effet Aharonov-Bohm. Les
résultats de nos mesures sont en très bon accord avec les prédictions théoriques
de Matveev et al. (PRL 2002). Nous avons montré qu’une chaîne de jonctions Jo-
sephson polarisée en phase, présente un comportement collectif, similaire à un objet
quantique macroscopique. Les résultats de cette thèse ouvrent la voie pour la concep-
tion de nouveaux circuits Josephson, comme par exemple un qubit topologiquement
protégé ou un dispositif quantique pour la conversion fréquence-courant.
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Chapter 1

Introduction

Gordon Moore predicted in 1965 that the number of transistors on a chip will dou-
ble every two years [1]. Originally intended as a rule of thumb, that prediction has
become a principle for the industry in delivering ever-more-powerful semiconductor
chips. In 2011 it is expected that transistors with a gate width of only 22 nm will
be part of commercial products. For comparison, the inter-atomic distance in Alu-
minum is 0.4 nm, so the gate is a few tens of atoms wide. The rapid evolution of the
microelectronics industry toward faster and smaller processing units and memories
has pushed the physics of these devices close to the quantum regime. The resulting
structures are in the middle (in Greek: meso) between the quantum universe of
atoms and the classical macroscopic world. The physics at mesoscopic scale takes
into account the laws of quantum mechanics, but it still uses semiclassical models.

From the race to build smaller
and smaller objects, sophisticated tech-
niques emerged that enable the fabrica-
tion of novel devices with size of the or-
der of a few hundred nanometers. In
Fig. 1 we show an electron micro-
scope image of a mesoscopic electrical
circuit based on Al/AlOx/Al junctions
(the square shaped objects in the fig-
ure). In order to observe quantum be-
havior, we have to cool down these cir-
cuits to very low temperatures. At the
typical working temperature T ≃ 50mK, the circuit is superconducting.

Superconductivity, the property of some materials to have zero electrical
resistance at sufficiently low temperature, was first observed by Heike Kamerlingh
Onnes in 1911 [2]. The zero electrical resistance is a consequence of the fact that
inside a superconductor, the conduction electrons are all locked in the same state,
described by the same wave function. This more general phenomenon of particles
“rushing” to behave identically is a quantum effect, called Bose-Einstein condensa-
tion [3] and it only occurs for certain types of particles, called bosons. Electrons are
fermions, but under certain conditions, at low temperatures, two electrons can join
to form a bound state called a Cooper pair [4]. The two spins 1/2 of the electrons
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inside the Cooper pair align in a singlet state of total spin zero. At sufficiently low
temperatures, Cooper pairs condensate to form the superconducting state [5].

Since the prediction of the Josephson effect, in 1962 [6], the field of su-
perconducting electronics advanced very rapidly. In 1964 the first superconducting
quantum interference device (SQUID) was measured [7,8]. SQUIDs are widely used
now in applications such as: highly sensitive magnetometers, low noise and large
bandwidth amplifiers or detectors for transition-edge bolometers [9].

The development of superconducting electronics provided the means for
experiments testing the foundations of quantum mechanics at the mesoscopic scale.
Among these experiments, the measure-
ment of macroscopic quantum tunnel-
ing [10], the preparation of a quan-
tum superposition state of electrical
currents [11] or mechanical modes of
a resonator [12], the measurement of
Bell inequalities [13] or the entan-
glement of quantum states between
different superconducting devices [14–
18], represent remarkable confirma-
tions of the quantum theory at the
scale of large ensembles of atoms and
molecules.

The circuits we study are made of Josephson junctions which consist of two
aluminum electrodes, separated by a thin insulating layer. The electrical transport
through such a junction is based on tunneling of Cooper pairs. The strength of
the tunnel coupling between the electrodes is described by the Josephson energy
EJ of the junction. Junctions with large EJ are very transparent for Cooper pairs,
and therefore have a large supercurrent. On the other hand, the energy needed to
charge the capacitance of the junction with a single electron is given by the charging
energy EC . If EC is large, the conduction of Cooper pairs, which implies the succes-
sive charging and discharging of the junction capacitance with charge 2e, has a high
energy cost. Therefore the tunneling is progressively suppressed. The competition
between the two energy scales EJ and EC reflects the fact that charge Q on the junc-
tion capacitance and phase difference ϕ between the superconducting electrodes are
conjugated variables [19]. Thus they respect the Heisenberg uncertainty principle:
∆Q · ∆ϕ & h . If the charge is well defined, the superconducting phase fluctuates
and vice versa. A jump of 2π of the superconducting phase is called a phase-slip and
it can occur due to the quantum fluctuations of the phase. As charge and phase are
conjugate variables, the phase-slip is the dual effect to the tunneling of one Cooper
pair. Phase-slips have initially been studied in nanowires, in the context of the su-
perconducting to insulator transition [20–22]. However, the experimental control of
the phase-slip amplitude in nanowires is very difficult. Josephson junction chains
provide much more flexible and designable systems, where the relevant parameters
EJ and EC can be accurately tuned.

This thesis presents an experimental study of quantum phase-slips (QPS)
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in Josephson junctions circuits. Our research has been motivated by two possible
applications of QPS. The first one is the fabrication of a topologically protected

quantum bit and the second one is the possible definition of a new current standard,
based on a quantum phase-slip frequency-to-current conversion device. In the
following I will present a brief overview of these two devices based on phase-slips.

The topologically protected qubit A qubit is a quantum two level system
which constitutes the basic computational element in the architecture of a quan-
tum processor [23]. At the moment, superconducting circuits are among the most
promising candidates for the physical realization of a qubit [24, 25]. There are sev-
eral classes of superconducting qubits, depending on the physical nature of the |0〉
and |1〉 states. Charge qubits [26] use the two lowest charge states of a small super-
conducting island to define the logical states. In flux qubits the states are defined
by the direction of circular electrical currents [11] while in phase qubits [27] the
first two energy levels, associated to the phase dynamics of a Josephson junction,
define the |0〉 and |1〉 state. In the last few years, an impressive number of basic few
qubit manipulations have been demonstrated: high fidelity single shot readout [28]
and quantum non demolition measurement for single qubits [29, 30], microwave-
induced cooling of a superconducting qubit [31], two-qubit coupling and quantum
algorithms [16,32] or three-qubit entanglement [17,18]. However, the main drawback
in all these devices is the short coherence time, compared to the time needed for a
fault-free operation. The short coherence time is a direct consequence of the fact
that the qubit is coupled either to microscopic fluctuators [33, 34] or to the macro-
scopic electrical environment. Current research seeks to enhance the coherence time
of superconducting qubits either by improving the materials or by proposing vari-
ous decoupling schemes. Even though the typical coherence time of superconducting
qubits increased significantly in the last years [35,36], it is still too short for quantum
error correction codes to converge.

Recently, a new qubit design composed of 2D rhombi networks, has been
theoretically proposed [37–39]. Its building block, the rhombus, is a flux qubit
consisting of a superconducting loop, threaded by magnetic flux, containing four
identical Josephson junctions. A chain of N rhombi is characterized by complex
N −body quantum states. When the flux threading the rhombus is Φ0/2 (where Φ0 is
the flux quantum), the levels in the low energy spectrum become highly degenerated
and we only get two macroscopically different states. These states are separated from
the high energy spectrum by a gap G. It has been theoretically shown that at Φ0/2,
the levels are protected from a local noise M up to order (M/G)N .

The first experimental study of a topologically protected rhombi qubit was
done by S. Gladchenko et al. [40]. The simplest protected qubit is a chain of two
rhombi, connected to a superconducting island (Fig. 2a). The two degenerate quasi-
classical phase states for the island are |ϕ = 0〉 and |ϕ = π〉. A finite probability of
phase tunneling between the states (phase-slip) removes the degeneracy and results
in a small energy splitting ξ between the energy states of the qubit: 1/

√
2 (|0〉 ± |π〉).

The qubit energy splitting ξ depends on the parameters of the superconducting
circuit: the number of rhombi N in the chain, the ratio EJ/EC and the ground
coupling C0 of the middle island. In order to measure the qubit, we add a second,
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identical chain of rhombi on the right side of the island and thus, close the electrical
circuit (Fig. 2b).
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Fig. 2: The rhombi qubit design

Numerical simulations show that the qubit protection can be optimized by
using several rhombi chains in parallel to connect the central island to the leads [40],
as shown in Fig. 2c. In chapter 4 of this thesis we have studied both the 2D rhombi
network and the linear rhombi chain in the regime of strong and weak phase-slips.

Frequency-to-current conversion device Another possible application of QPS
is a frequency-to-current conversion device, that could be used to redefine the elec-
trical current unity, the Ampere, with better metrological accuracy. Single charge
effects in micrometer sized circuits have been measured since the begining of the
90’s [41–43]. In the last years significant progress has been made in the measure-
ment of current by counting single electrons [44–47]. The main problem with these
techniques for applications in metrology is the low value of the resulting electrical
current. A fundamentally alternative route is to exploit the duality between current
and voltage in a so called phase-slip junction. A phase-slip junction is a device
where instead of tunneling of Cooper pairs, tunneling of the superconducting phase
(quantum phase-slip) is dominant. Theoretically, by irradiating a phase-slip junc-
tion in the insulating state with microwave radiation at frequency f in the range of
GHz, we expect to measure current steps in the IV characteristic, at values up to a
few nA. Despite numerous efforts [48, 49], a clear step at I = 2ef has not yet been
measured. One of the reasons is that in order to keep quantum charge fluctuations
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small, the junction needs to be embedded in a high impedance environment, with
a typical value larger than the quantum resistance RQ = h/(2e)2 ≃ 6.5 kΩ. The
practical realization of such a high impedance is very challenging. Recently, super-
conducting nanowires [50] or Josephson junctions chains [51] have been proposed for
the implementation of a phase-slip junction.

In this thesis we study in detail QPS in Josephson junction chains of different
sizes (chapter 5). We have measured the quantum phase-slip rate in a chain of
6 junctions in the regime EJ ≥ EC , while tuning the parameter EJ , and found
the results to be in good agreement with the theoretical expectations [52]. We
have demonstrated the quantum nature of the phase-slips in a 6 junction chain by
measuring Aharonov-Casher interference [53,54] of phase-slips occurring on different
junctions of the chain. We induced polarization charges on the islands of the chain
and we observed complex interference patterns which we could fit using the basic
tight-binding model of K. Matveev et al. [52].

We have also measured a long, 400 Josephson junction chain (section 5.6
and 5.7). We found that for long chains, the stray capacitance C0 of the chain
islands to the ground plays an important role and limits in our case the quantum
phase-slip rate. Also, the ground coupling C0 lowers the characteristic frequency of
the plasma modes in the Josephson junction chain. For the 400 junction chain we
measured the resonance frequency of the three lowest standing-wave modes.

Structure of the manuscript

In chapter 2 we start with a detailed description of the mesoscopic device
fabrication and the measurement set-up. In the last sections of this chapter we dis-
cuss the junctions’ stability in time and the variance of the characteristic parameters
for identically fabricated junctions.

Chapter 3 is a theoretical introduction to the phase dynamics of a current
biased Josephson junction. We discuss the technical details of using a read-out
Josephson junction to measure the current-phase relation of a superconducting cir-
cuit. In the last section of the chapter we briefly present the theoretical methods
we used for the quantitative analysis of the measured current-phase relations.

In chapter 4 we study the ground state of several rhombi circuits. We
measure the ground state of an 8 rhombi chain, both in the classical EJ ≫ EC and
in the quantum limit EJ ≥ EC . We also measure the ground state of a 2D rhombi
network, which was designed to realize a topologically protected qubit.

We present a detailed study of QPS in Josephson junction chains in chapter
5. We have measured the effect of QPS on the ground state of a 6 junction chain.
We have also measured Aharonov-Casher interference of phase-slips. In the last
sections of the chapter we discuss phase-slips in long (N = 400) Josephson junction
chains.

Chapter 6 is devoted to a detailed study of the macroscopic quantum tunnel-
ing (MQT) of phase from an arbitrary shaped potential well. We present detailed
escape probability measurements which we compare with two theoretical models:
the numerical model of section 3.3 which takes into account the exact shape of the
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potential and an effective rectangular potential approximation which gives almost
accurate analytical solutions. In this chapter we also show that the accuracy of the
current-phase measurement is altered if the read-out junction is in the underdamped
phase diffusion (UPD) regime.



Chapter 2

Device fabrication and
measurement set-up

In this chapter we will present the experimental techniques we have used for the
fabrication of the studied superconducting circuits. The central elements of our
circuits are Al/AlOx/Al Josephson junctions. In section 2.1 and 2.2 we explain the
different steps of the sample fabrication. In the following sections we present the
sample wiring (section 2.3) and the measurement set-up (section 2.4). In section
2.5 we aim to answer the following question: how identical are identically fabricated
junctions? In section 2.6 we will present measurements that prove the extraordinary
time stability of the junctions parameters. We also discuss the essential fabrication
steps that allow us to obtain stable junctions.

The samples were fabricated at the Nanofab platform, in the Neel Institute,
CNRS Grenoble. The support of the technical team was essential in maintaining
a steady fabrication rythm. The key fabrication machines were the Leo 1530 SEM
equipped with a RAITH Elphy e-beam lithography system and the home built ultra
high vacuum (UHV) e-beam deposition chamber. During my thesis I have spent a
total of ∼ 30% of my time fabricating the samples.

2.1 Fabrication of Josephson junctions

All samples were fabricated in one lithography step, using standard bilayer tech-
niques. During the thesis we have also developed multiple lithography step pro-
cesses, which up to now have not been used for the fabrication of a working sample,
and therefore we will not discuss them. The main fabrication steps are represented
in Fig. 2.1 and we will describe them in detail in the following.

Resist deposition We start with a clean Si/SiO2 wafer. The SiO2 thickness
is 500nm. In order to be sure that the wafer is absolutely clean, we introduce it
for 1 minute in an oxygen plasma in the chamber of a Reactive Ion Etching (RIE)
machine. The first resist of the bilayer, the PMMA/MAA (ref. ARP 617.09) is
deposited on the Si/SiO2 wafer, using a spinner. The thickness of the resist layer
depends on the rotation speed of the spinner and is typically between 0.5µm and
1µm. The wafer is then baked for 5 minutes at 200oC on a hot plate. We then

7
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Figure 2.1: Representation of the main steps of the junction fabrication.

Figure 2.2: SEM images of Al/AlOx/Al Josephson junctions. The JJ in (a) was
deposited at low evaporation speed: 0.05nm/s and the one in (b) at high speed:
1nm/s. Notice the difference in roughness between the two aluminum films in (a)
and (b).
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deposit the second resist of the bilayer, the PMMA (ref. ARP 679.04). The typical
thickness of this layer is 100nm. We bake the wafer for 1 hour at 180oC to ensure
that the resists are solid and they will not bend during the next fabrication steps.
The complete recipe for the resist deposition is presented in the first part of Table
2.1. A graphic representation of the wafer after the deposition of the two resist
layers is shown in Fig. 2.1(1). The first resist layer is represented transparent for
pedagogical purposes, in order to facilitate the visualization of the 3D structures.

E-beam lithography The Si/SiO2 wafer with the two resist layers is patterned
by exposing it to a beam of electrons accelerated to 20 kV. For the e-beam exposure
we have used a LEO 1530 Field Emission Scanning Electron Microscope (FESEM)
piloted by a RAITH Elphy plus system. The e-beam lithography is used to write
both the fine structure of the pattern, that will define the Josephson junction circuit
within a write field of 100×100µm2, and the large features like the connecting wires
and bonding pads, for which we use a write field of 1.6× 1.6mm2. For the exposure
of patterns larger than the write fields, the system is equipped with a stage that
moves using a step motor with an accuracy of ±5µm. The typical parameters of the
e-beam exposure are presented in Table 2.1. The e-beam patterning of the resists
is represented in Fig. 2.1(2). Notice that the electron beam is scattered inside the
bottom resist layer and it exposes a larger volume than inside the top layer, where
the beam is still well focused.

Development and wafer cleaning After the e-beam exposure, the resists are
developed in chemicals which only dissolve the exposed areas. The development
is realized in three steps. We first drop the wafer in a mix with volume ratio 1/3
of MIBK (Methyl isobutyl ketone ) and IPA (Isopropanol), for 30 seconds. The
exposed inferior resist layer is three times more sensitive to the solvent than the
superior layer. Thus, an undercut is obtained, as represented in Fig. 2.1(3). In the
central areas of Fig. 2.1(3), where the bottom resist was completely removed, the
top layer forms a suspended bridge of resist. The second step consists in introducing
the wafer in a mix with volume ratio 1/x of Ethanol and IPA, for 1 minute. The
actual value of x is in the range between 1 and 3 and it needs to be optimized for
each mask design. During this step of the development, the Ethanol, which is a
stronger solvent than IPA, increases significantly the undercut and it also cleans
the wafer of resist residues. We will show in the following section that this step
is important for the fabrication of junctions stable in time. During this step, the
superior resist is almost unchanged. The last step of the development consists in
rinsing the wafer for 1 minute in pure IPA. Finally, after the development, the wafer
is cleaned with oxygen plasma using a RIE system, to remove any residues of resist.
The plasma is tuned to low power and high pressure to ensure a homogeneous, non
directional cleaning of the wafer regions exposed by the undercut. The junctions
will be deposited in these regions. The development parameters are synthesized in
Table 2.1.

Shadow evaporation The Al/AlOx/Al tunnel junctions are deposited on the
Si/SiO2 substrate using the well known shadow evaporation technique [55]. By



10

evaporating aluminum through the suspended resist mask, the pattern is projected
on the substrate. The displacement λ of the projection position on the substrate,

Figure 2.3: Schematic representation of the angle evaporation.

compared to the position of the resist pattern, depends on the tilt angle α of the wafer
plane with respect to the evaporation direction and the thickness d of the bottom
layer resist, as represented in Fig. 2.3. In a first approximation, the displacement λ
reads:

λ = d · tanα (2.1)

There are two types of deviations of the value λ from eq. (2.1). The first correction
is due to the thickness of the top layer, which shrinks the actual width of the
deposited pattern. Typical evaporation angles α are in the range of ±25o. Thus,
the corrections due to the thickness of the top layer are in the range of a few tens of
nanometers. The second correction comes from the fact that during the evaporation,
the openings in the top resist shrink due to deposited material on the walls of the
pattern. During one evaporation we typically deposit a film with a thickness of
20 − 50 nm. The corrections due to deposits on the walls of the resist pattern are
also in the range of a few tens of nanometers. Depending on the sample design,
these two types of deviations might need to be compensated.

When the metal is evaporated from two different angles, by carefully adjust-
ing the geometry, we can obtain an overlap between the two deposits (see Fig. 2.1(4)
and (5)). The surface of the overlap gives the surface of the junction. The aluminum
films are deposited in a UHV system with a base pressure of 10−9 mbar. The high
homogeneity of the aluminum films is essential because the aluminum superconduct-
ing gap is very sensitive to impurities [56]. If the purity of the two electrodes is not
well controlled, we might expect that different islands of the superconducting circuit
might have different gaps. It has been shown in Ref. [57] that islands with different
gap values practically form 1e quasiparticle traps, which can significantly perturb
the expected behavior of the measured superconducting devices.

The speed of the aluminum deposition has an important effect on the rough-
ness of the film. In Fig. 2.2 we present SEM images of two junctions obtained with



11

wafer cleaning
RIE - oxygen plasma - 1 minute -

resist deposition

bottom resist
PMMA/MAA (33%) diluted 9% in
1-methoxy-2-propanol (ARP 617.09 from AllResist)

spin speed 6000 RPM
spin acceleration 4000 RPM/s
time 30 s
thermal treatment 5 minutes at 200oC
measured thickness 500 nm

top resist
PMMA diluted 2% in Ethyl-Lactate (ARP 679.04
from AllResist diluted 50%)

spin speed 4000 RPM
spin acceleration 2000 RPM/s
time 30 s
thermal treatment 60 minutes at 180oC
measured thickness 100 nm

e-beam exposure at 20kV

high resolution
write field: 100× 100µm2, pixel size: 4.6nm,
aperture diameter: 7.5µm, e-beam current: 20 pA,
dose: 300µC/cm2

low resolution
write field: 1600× 1600µm2, pixel size: 60nm,
aperture diameter: 120µm, e-beam current: 4800 pA,
dose: 270µC/cm2

development
MIBK/IPA 1/3 during 30 s
Ethanol/IPA 1/x , 1 ≤ x ≤ 3 during 60 s
IPA during 60 s

wafer cleaning
RIE - high pressure, low power oxygen plasma - 20 s -

shadow evaporation

1st evaporation
α ≃ 20o, deposition speed: 0.2nm/s, thickness
∼ 20nm

oxidation
5 minutes at 5 · 10−2 mbar pure oxygen
the tunnel resistance is 100Ω · µm2

2nd evaporation
α ≃ −20o, deposition speed: 0.2nm/s, thickness
∼ 50nm

Table 2.1: Technical parameters of the circuit fabrication. The exact values of the
parameters are slightly different, optimized for each sample design.
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very different evaporation speeds. The typical deposition speed that we used for our
samples is 0.2 nm/s. We will come back to the influence of the film rugosity on the
junction parameters in section 2.5.

Between the first and the second deposition, the sample is moved to the
loading lock, which is at a pressure of 10−7 mbar and pure oxygen is let into the
chamber until the pressure reaches values in the range of 10−2 mbar. We then
wait for 5-10 minutes in order to allow the oxidation of the electrode and create the
barrier of the tunnel junction. The thickness of the tunnel barrier, and implicitly the
tunneling resistance of the junction, depends on the pressure during the oxidation.

Resist lift-off Once the second deposition is finished, the electrical circuit fab-
rication is over. We now need to clean the wafer by removing all the resist and
the aluminum deposited on top of it. The chip is plunged in NMP (N-Methyl-
2-pyrrolidone), a solvent that removes the resist mask. The resulting junction is
schematized in Fig. 2.1(6). In order to speed up the lift-off process, we heat the
solvent at 80oC for about one hour and then we apply ultrasound for one minute.
The ultrasonic power should be low in order to avoid damaging the aluminum films.
In Fig. 2.2 we present e-beam images of two junctions after lift-off.

2.2 Fabrication of SQUIDs and rhombi

In this section we present the masks and the evaporation sequence that we have
used to fabricate the SQUIDs and the rhombi. We call rhombi a superconducting
loop interrupted by 4 junctions. The steps of the fabrication are presented in detail
in the previous section (section 2.1).

In Fig. 2.4a, we represented the top resist mask, after development, which
was used for the fabrication of one SQUID. This design was used for the fabrication of
the 6 SQUID chain sample discussed in chapter 5. In Fig. 2.4b and c we schematized
the resulting aluminum films, after the first and the second angle evaporation. Notice
that the bottom electrode is always larger than the top one, in order to be able to
define precisely the surface of the junction. In Fig. 2.5 we present the SEM image
of the first SQUID in the chain.

In Fig. 2.6a, we represented the top resist mask, after development, which
was used for the fabrication of one rhombus. The mask design is optimized to
produce identical junctions. It accounts for the fact that there is a small hysteresis
in the e-Beam writer lenses, by always repeating the same drawing sequence for
the electrodes of the junctions. In Fig. 2.6b and c we schematized the resulting
aluminum films, after the first and the second angle evaporation. Notice that the
directions of the evaporation, represented by the arrows, are perpendicular to the
x-axis of the rhombus, compared to the evaporation axes for the SQUIDs, which
were parallel to the x-axis. This design was used for the fabrication of the 8 rhombi
chain sample presented in chapter 4. In Fig. 2.7 we plot the SEM image and the
AFM profile of one rhombi in the chain.
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Figure 2.4: Resist mask and evaporation sequence for the fabrication of a SQUID.
The two junctions of the SQUID are highlighted by the white circles in (c).

Figure 2.5: e-Beam image of the first SQUID in a chain.
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Figure 2.6: Resist mask and evaporation sequence for the fabrication of a rhombus.
The four junctions of the rhombus are highlighted by the white circles in (c).

Figure 2.7: e-Beam (a) and AFM profile (b) of a rhombus inside a rhombi chain.
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2.3 Design of the on-chip connecting wires and

bonding pads

In this section we discuss the technical details of connecting the Josephson junction
circuit to the measurement electronics. In Fig. 2.8 we present an e-beam image of
the entire sample chip. The image corresponds to the actually measured 6 SQUIDs
chain sample (see chapter 5). The aluminum circuit, fabricated using the lithography
method detailed in the previous sections, is visible on top of the Si/SiO2 wafer. The
background of the image is given by the conductive carbon adhesive tab, which is
used to glue the chip on the SEM sample holder.

Figure 2.8: SEM image of the entire sample circuit and the Si/SiO2 chip. The
image corresponds to a measured sample: the 6 SQUIDs chain. The traces from the
bonding wires are visible on the contact pads. The red line highlightes the mutual
inductive coupling region between the DC bias lines and the fast measurement pulse
line. In (b) we show a detailed view of the overlaping region between two succesive
e-beam write fields. In (c) we present a detailed image of the flux bias current loop.

In Fig. 2.8a we can see all 11 contact pads of the sample. On top of
the contact pads we can also see traces of the aluminum wires that were used to
contact the circuit. Two of the pads are redundant and they were not used. Notice
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the meander shaped pads, which were designed to avoid magnetic flux trapping.
In addition, the meanders also constitute a rugged surface, which is ideal for the
mechanical bonding of the contact wires.

The sample, which is located in the center of the wafer, is connected to the
current bias pads labeled in Fig. 2.8a by I+

bias and I−

bias. Between the sample and the
pads, we have used two types of connecting wires. Close to the pads, we used wide
(2000× 50 nm2) wires, which form a loop inductively coupled to the nanosecond
current pulse lines, labeled by i+

p and i−

p . In the red highlighted region in Fig. 2.8a
we can observe the fast current loop inductively coupled to the low frequency current
bias lines. The mutual inductance M is ∼ 50 pH. The position of the fast current
loop is optimized for minimum coupling to the sample loop. Close to the sample
we used thin lines (200× 50 nm2), which provide a significant kinetic inductance
L ≃ 6 nH and play an important role in decoupling the sample from the noise in
the bias lines. These thin lines were e-beam exposed in two successive steps, using a
small 300× 300µm2 write field. Once the exposure is completed in one write field,
the SEM sample holder moves to the new writing position. In order account for the
step motor positioning error of ±5µm, at the left end of each wire inside a write
field, we add a perpendicular line, 10µm long. Also, the write fields superpose over
10µm. In Fig. 2.8b we present a detailed image of the connecting area between two
writing fields.

Close to the sample, which is sensitive to magnetic flux, we added on-chip
current lines which we usually call flux lines. They allow us to independently tune
the overall perpendicular magnetic field and the magnetic flux in one region of the
sample. A detailed SEM image of a current loop is presented in Fig. 2.8c. The
maximum current that can pass through the lines, without heating the sample, is
approximately 100µA. This means that for a typical mutual coupling of 10 pH, we
can sweep the local flux from −Φ0/2 to Φ0/2, which is sufficient if the physics of the
studied system is Φ0 periodic.

As we mentioned before, the exact design we described above corresponds
to a particular sample: the chain of 6 SQUIDs. However, for the other samples that
we will discuss in this manuscript, even though the design might differ in details, it
remains very similar to the one presented in Fig. 2.8.

2.4 Measurement set-up

The majority of the measurements are performed in a dilution fridge at T = 50mK.
In this chapter we present the electrical set-up from room temperature down to the
dilution stage. Some of the measurements (see chapter 4) were performed in a 3He
refrigerator at T = 300mK. The electrical scheme inside the 3He refrigerator is
similar to the one of the dilution.

We have implemented two types of biasing schemes. Fig. 2.9 shows the
measurement set-up for the current biased samples, while Fig. 2.10 presents the
set-up for the voltage bias measurements. In the following we discuss each of these
set-ups separately.



17

Current bias Basically our experiments consist in measuring the switching cur-
rent of the superconducting sample to the dissipative regime. Figure 2.9 shows the
measurement set-up. All instruments are controlled by a PC via custom programed
LabV IEW programs. The current bias is realized by applying a voltage to a 500 kΩ
resistance in series with the sample, at room temperature. The resulting voltage
over the circuit is amplified at the top of the cryostat by a differential amplifier
LI − 75ANF and measured by a home-made electronic box [58] that compares
this voltage to a threshold voltage. This electronic box contains a fast switch that
cuts the bias current as soon as the voltage over the sample is larger than a cer-
tain threshold voltage. The value of the threshold voltage is typically set to 40µV,
which represents 10% of the superconducting gap voltage for aluminum. A control
card that has been optimized in the laboratory counts the number of times that the
voltage over the circuit exceeds the threshold voltage.

The high frequency signals (HF 1 and HF 2) are guided by 50Ω coax lines
which are 40 dB attenuated at low temperature. They have a band width up to 20
GHz. The DC lines used for current biasing (I+ and I−), voltage measurement
(V+ and V −) and gate voltage control (VG) contain RLC filters at the cryostat
entrance, at room temperature, with a cut-off frequency of 500 kHz. Under 1.5K
these lines consist of thermocoaxial cables of a length of 75 cm that attenuate signals
with frequency above 1GHz. They are followed by two  filters. The whole set-up
has an attenuation of −100dB for frequencies above 1GHz.

The cryostat is magnetically shielded by successive layers of soft magnetic
material µ − metal (a nickel-iron alloy) at room temperature and at 77K. At 4K,
the calorimeter is surrounded by a superconducting Pb layer, which freezes the value
of the magnetic flux. Inside the superconducting shield, but outside the calorimeter
lies a superconducting coil, which can produce magnetic fields up to B = 100Gauss.

The electrical environment close to the sample consists of a low-pass LC
filter. In Fig. 2.11 we present a photo of the sample holder (a) and the corresponding
electrical scheme (b). The inductance of the filter is typically Lw ≃ 10 nH that is
provided mainly by the kinetic inductance of long and thin superconducting current
biasing lines on the sample chip (see Figure 2.8). The sample is bonded in parallel
to a homemade [59] NbTi/Al2O3/NbT i capacitance, situated on a second chip. The
value of this capacitance is Cp = 270pF. The resonance frequency of this filter is in
the range of 100MHz.

Voltage bias Our experiments consist in measuring the electrical current I as a
function of the voltage bias V . Figure 2.10 shows the measurement set-up. We
use the same electrical lines in the dilution cryostat as explained in the previous
paragraph. The current I is measured using a FEMTO-DHPCA-100 variable gain
high speed current amplifier. The voltage source V and the voltmeter Vout which
reads the current amplifier output, are situated on a NI PCI-6281 M Series data
acquisition board, optimized for 18-bit analog input accuracy and controlled by a
PC. The ground of the PC is disconnected from the cryostat ground by a homemade
×1 amplifier. Special care has been taken to shield the sample against spurious
electromagnetic radiation and to avoid any ground loops which could induce current
noise.
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Figure 2.9: Experimental set-up for the switching current measurements. The sam-
ple is current biased. The superconducting coil is at 4K.
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Figure 2.10: Experimental set-up for the voltage biased samples. The supercon-
ducting coil is at 4K.
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Figure 2.11: Photo of the sample holder (a). The microwave cavity is defined by the
copper cap on top of the sample holder, which isolates a volume of approximately
3 × 3 × 1mm3, around the sample chip. (b) Electrical scheme of the environment
near the sample.

2.5 Measurement of the variance for identically

fabricated junctions

We will now address the following question: what is the tunnel barrier variance
for identically fabricated Al/AlOx/Al junctions? We have fabricated several sets of
∼ 100 junctions that we contact and measure individually at room temperature.
The junctions had critical current densities in the range of 500nA/µm2. The size of
the junctions depends on the sample, ranging from 0.02µm2 to 0.1µm2. This class
of Al/AlOx/Al junctions are widely used in superconducting quantum electronics. If
we fabricate complex circuits containing many junctions, the question of fabrication
reproducibility is crucial.

The sample design is presented in Fig. 2.12. The geometry of the sample
was optimized to enable the packing of a large number of junctions in a small area of
the wafer, in order to minimize the variations of resist thickness. The junctions are
connected individually, by wires of identical resistivity. As we can see in Fig. 2.12c
and b, we fabricated sets of 10 junctions, plus a reference wire, which are grouped
together within an area of a few mm2.

In Fig. 2.13 we present a typical measured histogram for the tunnel barrier
R at room temperature. For clarity, the x − axis is reported in units of the mean
value for the resistance: Rmean. The value of Rmean, depending on the sample, is of
the order of a few kΩ. The distribution is well fitted (see the blue line in Fig. 2.13)
by a Gaussian law:

NJ(R) = Ntot

1√
2πσ2

exp

[

−(R/Rmean − 1)2
2σ2

]

(2.2)

where σ2 is the variance, in units of R2
mean and Ntot is the total number of measured
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Figure 2.12: Images of the circuit fabricated to measure the junctions tunnel barrier
variance and time stability (see also section 2.6). In (a) we present a SEM image of
one junction. In (b) and (c) we show optical images of one of the measured samples
at different magnifications.
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Figure 2.13: Measured histogram of the tunnel barrier resistance. In the figure we
also represented the width at half height for the Gaussian fit, which is ∼ 2.35 · σ.
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junctions. The measurements in Fig. 2.13 can be well fitted by taking the value
σ = 3.5%. For a Gaussian distribution 70% of the measured tunnel barrier values
are in the interval [Rmean − σ, Rmean + σ] and 95% of the values are in the interval
[Rmean − 2σ, Rmean + 2σ]. Indeed, as we can observe in Fig. 2.13, the majority
of the junctions are found in the interval ±3.5% from Rmean and practically all
junctions are within an interval of ±7%.
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Figure 2.14: The measured tunnel barrier variance as a function of the junction
surface. The red line is a linear fit passing through zero.

In the following, we study the dependence of the variance of the tunnel
resistance with the size of the junctions. If we consider a model of randomly dis-
tributed conduction channels through the barrier of the junction, then we expect to
measure smaller junction variance for larger junctions:

σ2 = η
1

S
(2.3)

Here, the prefactor η depends on the density of conduction channels ρ and it reads:
η = 1/2ρ . The details of this model are presented in Appendix A.

In Fig. 2.14 we present the measured variance for sets of junctions with
different surfaces. The values of σ are given by fits with the Gaussian law (2.2).
The accuracy of each Gaussian fit is represented in Fig. 2.14 by the error bars
associated with each experimental point. The red line in Fig. 2.14 represents a
linear fit of the measured values for σ using eq. (2.3). The only fit parameter is
the density of conduction channels, for which we obtain ρ = 9 · 103 channels/µm2,
at room temperature. Using a conceptually different experiment, in Ref. [33] R.
Simmonds et al. report the measurement of 5 · 103 channels/µm2 in a similar type
of junction, at a temperature of 50mK. This agreement suggests the validity of the
random conduction channels model.
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Finaly we would like to make a comment on the influence of the junction
electrodes roughness on the oxidation process. In Fig. 2.2 we show SEM images
of two junctions deposited at very different evaporation speeds. The surface of the
electrodes deposited at high speed Fig. 2.2b is obviously smoother than the surface
of the low speed evaporated electrodes Fig. 2.2a. We would expect to observe
significant differences between the measured variance of the two sets of junctions.
However, for both sets of junctions, which are oxidized in similar conditions, we
measure practically the same variance and mean value of the tunnel resistance.
This result suggests that the obvious differences between the two aluminum layers
visible in Fig. 2.2, do not play in important role during the oxidation process.

In conclusion, measurements on large ensembles of junctions at room tem-
perature show that the variance of the tunnel barrier height is in the range of a few
percents. This spread is considered acceptable for most types of superconducting
circuits. We also showed that the size of the junction surface completely determines
the variance of the tunnel barrier resistance, which is insensitive to the aluminum
deposition speed.

2.6 Junction stability and the effect of annealing

In this section we report the fabrication of stable Al/AlOx/Al tunnel junctions,
which do not age in time. We also investigate the effect of thermal treatments on
the junction barrier. This issue is especially important for fabrication processes
which involve annealing the junction.

Submicron sized metal-AlOx-metal tunnel junctions are used in a wide range
of applications. However, the time instability of the junctions is a frequently reported
drawback. P. Koppinen et al. [60] reported systematic measurements of junction
aging and they showed that the tunnel barrier could double its value within a period
of a few weeks. A similar aging was observed in Ref. [61] for the capacitance C of
the junctions, which significantly reduces its value after only a few days.

The junction aging is usually associated with two types of phenomena. Ei-
ther (i) the diffusion of oxygen atoms from the oxide barrier to the electrodes or (ii)
the change of the chemical composition of the barrier, by absorption or desorption
of atoms or molecules other than oxygen. It has been shown that mechanism (i)
plays a secondary role, accounting only for the slow drift of the junction parameters
at long time scales, and it can can be suppressed by passivising the electrodes [62].
Mechanism (ii) is believed to play the dominant role in the time evolution of the
junction parameters [60,61,63]. It has been shown that vacuum anneals at temper-
atures between 350 oC and 450 oC will accelerate the chemical relaxation processes
in the barrier. The thermally treated junctions are stable and show improved char-
acteristics [60, 64].

P. Koppinen et al. [60] also reported a significant decrease in the junction
aging if the wafer is cleaned with an oxygen plasma just before the aluminum evap-
oration. As we will show in the following, we found that by aggressively cleaning
the Si/SiO2 substrate before the Al deposition, we could obtain perfectly stable
junctions.

As we mentioned in section 2.1, there are two steps in the fabrication process
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Figure 2.15: Imaging the undercut: SEM images of the wafer with the two resist
layers, after a zero angle deposition. The patterned resist layers are well visible. In
(a) the undercut can be observed in transparency as a more luminous region, that
we highlighted for clarity using the red contour. In (b) we use high voltage, intense
e-beam exposure to locally deform the resists and increase the gaps in the top layer.
By this method we can directly observe the undercut contour, as highlighted by the
red line.

that are essential to eliminate the resist residues on the substrate regions exposed
by the undercut. First, during the development process, we plunge the wafer for 1
minute in a mixture of Ethanol and IPA (see Table 2.1). Ethanol is an aggressive
solvent and it removes large volumes of resist from the undercut. This development
step increases the volume of the undercut approximately four times. The top resist
must be sufficiently strong and the pattern design must be adapted to avoid the
bending of the top resist. The undercut size was monitored by two methods briefly
presented in Fig. 2.15. We could either observe the undercut in transparency Fig.
2.15a, or directly, Fig. 2.15b, after opening larger gaps in the top resist layer.

The second wafer cleaning step is the RIE in oxygen plasma. The plasma
parameters were adapted to ensure isotropic etching. This is not obvious because
we have to clean a relatively large undercut surface, compared to the small access
opening in the top resist. In the same time we do not want to destroy the patterns
on the top layer of resist. The RIE process was optimized by the Nanofab team
under the coordination of T. Fournier.

We tested the tunnel resistance RN of the junctions at room temperature
immediately after the fabrication process RN (0) and a few weeks later RN (t). We
measured several ensembles of ∼ 100 junctions (see Fig. 2.12) for which the fabrica-
tion conditions and the storage were identical. The resistance RN is the average of
the individually measured resistances. The results of our observations are presented
in Table 2.2. For the junctions of chip A and B we did not observe any aging. For
sample C we measured a slight increase in the tunnel barrier, which we attribute
to the adsorption of oxygen from the surrounding atmosphere. This adsorption is
favored by the high reactivity of the barrier, which was very weakly oxidized. All
the measured tunnel barriers are practically stable if compared to the previously
reported increases of 100% up to 400% within the first weeks after the fabrication.

One of the junctions from group A was measured at low temperatures, in
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chip
oxidation

pressure during
fabrication

storage RN (t)−RN (0)
RN (0)

A 5 · 10−2 mbar 4 weeks in vacuum < 1%

B 4 · 10−2 mbar
4 weeks in air at
atm. pressure

< 1%

C 5 · 10−3 mbar
6 weeks in air at
atm. pressure

+10%

Table 2.2: Measurement of junction stability in time
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Figure 2.16: Current-voltage curves for the same junction (from group A) measured
2 weeks (in black), 12 weeks (in blue) and 24 weeks (in red) after the fabrication.
Between the measurements, the junction was stored at room temperature and at-
mospheric presure.
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the superconducting regime, at 2 weeks, 12 weeks and 24 weeks from the end of
the fabrication. The measured IV characteristics are plotted in Fig. 2.16. Notice
that the results of the 3 measurements at T = 50mK are practically identical.
We did not observe any aging of the the tunnel barrier, the critical current or the
retrapping current. Both switching and retrapping currents depend on the junction
capacitance C. Thus, we conclude that the capacitance of the junction is also
completely stabilized.

We continue our study of the oxide tunnel barrier by measuring the effects
of annealing. P. Koppinen et al. [60] show that samples annealed at 200 oC, although
not completely stabilized, increased their tunnel barrier by +50%. They also report
the complete stabilization of the tunnel barriers after annealing at 400 oC. The sta-
bilized tunnel barrier is 4 times larger compared to the value measured immediately
after the fabrication.

We have measured the effect of thermal cycles on the tunnel barrier of our
junctions. The steps of one thermal cycle are the following: 10 minutes heating,
10 minutes regulating the temperature to a constant value and 20 minutes cooling
down. In Table 2.3, we report results fundamentally different from Ref. [60], for
junctions fabricated using the Ethanol development and the RIE cleaning. For

chip annealing RN (t)−RN (0)
RN (0)

B 200 °C in vacuum < 1%
B 400 °C in vacuum −45%
D 200 °C under PMMA resist −26%
D 1 week after first anneal −23%
D 200 °C under PMMA resist −28%
D 4 weeks after second anneal −22%

Table 2.3: Influence of the different annealing on the measured tunnel barrier of the
junctions.

sample B, after annealing at 200 oC we observe no change in the tunnel barrier
resistance. This confirms the stability of our junctions. After annealing at 400 oC
we observe a decrease of the barrier by almost 50%. This decrease is expected, as
the oxygen in the barrier starts to be thermally activated for T & 300 oC and it
diffuses in the environment [65].

After annealing the junctions of sample D under a PMMA resist layer,
we observe a significant decrease of the tunnel barrier (see Table 2.3). This could
be explained by the contamination of the junction with hydrates(−OH) from the
resist, which combine with the oxide to form hydroxides (for example Al2O3(H2O)
or Al2O3 · 3(H2O) ) and thus decrease the barrier height, as suggested in Ref. [63].
After annealing under the PMMA resist layer, the junctions were unstable and
we measured a slow relaxation of the barrier value towards the initial state. In
one week, the barrier increased by 3%. After re-annealing the sample covered by
the resist in the same conditions, the value of the barrier returns to lower values, as
indicated in Table 2.3. After 4 weeks, the barrier relaxes again to a height 6% larger.
This reversible annealing-relaxing behavior could be explained by the absorption of
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hydrates during the annealing, which would account for the barrier decrease, while
the slow desorption of the hydrates would explain the measured relaxation.

We speculate that the aging measured in Ref. [60] can be explained by the
slow desorption of hydrates, which can greatly be accelerated by temperature [63].
Indeed, for samples cleaned using the RIE, thus less susceptible to absorb hydrates
from the resist, the measured aging in Ref. [60] is two orders of magnitude slower.
Moreover, in Ref. [66], similar junctions fabricated without using a resist bilayer,
show no aging over one year.

In conclusion, we have fabricated completely stable Al/AlOx/Al Josephson
junctions, which were monitored for as long as 6 months, without observing any
changes in the barrier parameters. We believe that the crucial processing step,
allowing the fabrication of stable junctions, is the aggressive cleaning of the substrate
before the aluminum evaporation. We performed the cleaning in two steps: an
Ethanol development step and an optimized, isotropic RIE oxygen-plasma cleaning.
We show that the junctions are stable to annealing up to 200 oC. We suggest that the
junction aging reported in the literature is associated with the resist contamination
in the vicinity of the junction. Our model is sustained by observation of aging on
previously stable junctions which have been deliberately contaminated with resist,
during annealing under a layer of PMMA.



Chapter 3

The phase dynamics of a current
biased Josephson junction

In this chapter we will present the general proprieties of the superconducting phase
dynamics of a current biased Josephson junction. We will show how to use such
a junction as a detector to measure the energy band of an unknown Josephson
circuit. Further on, we will describe the measurement protocol and we will discuss
the advantages but also the limitations of this detector. Finally, we will present the
theoretical methods needed for a quantitative understanding of the measurement
results.

3.1 RCSJ model for the Josephson junction

In 1962, Josephson predicted that a zero voltage supercurrent should flow between
two superconducting electrodes separated by a thin insulating barrier [6]:

IS = IC sin δ and δ = ∆ϕ − 2π

Φ0

 

−→
A · −→

dl (3.1)

Here δ is the gauge-invariant superconducting phase difference, which is the sum
of two contributions: the difference in the phase of the Ginzburg-Landau wave
function in the two electrodes ∆ϕ and the integral of the vector potential between
the electrodes [67]. IC is the critical current, the maximum supercurrent that the
junction can support. The critical current depends on the normal state resistance
of the junction RN , and on the temperature T . This dependence is known as the
Ambegaokar-Baratoff relation [68] and for temperatures T much lower than the
critical temperature of the superconductor TC , it reads:

IC =
π∆

2e

1

RN

(3.2)

We will use the Ambegaokar-Baratoff value given by eq. (3.2) for the critical current
of our junctions made of aluminum. All measurements are made at T = 50mK,
well below TC ≃ 1.4K, therefore the zero temperature limit can be used in good
approximation.

28
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The second theoretical prediction of Josephson [6] was the phase evolution
for a voltage biased junction:

dδ

dt
=
2e

~
V (3.3)

Looking at eq. (3.1) we see that the resulting current for a voltage biased junction
is alternating with an amplitude IC and a frequency νJ = (2e/h)V . The quantum
energy hνJ equals the energy needed for a charge 2e to cross the junction.

The DC and AC Josephson effects have been measured in detail since their
prediction. Josephson’s theoretical work initiated the field of superconducting elec-
tronics. By using equations (3.1) and (3.3), we can practically forget about all the
complex, microscopic many body phenomena inside the junction. We can design
electronic circuits with unique properties using Josephson junctions as a lumped
elements with a current-phase relation given by eq. (3.1).

I SS

(b)

(a)

Figure 3.1: (a) Schematic representation of a SIS Josephson junction. (b) e-Beam
image of a real Al/AlOx/Al junction. The two electrodes are highlighted in red and
blue for clarity and comparison with (a).

The realisation of a superconductor-insulator-superconductor (SIS) Joseph-
son junction (as schematized in Fig. 3.1), implies a capacitive coupling C between
the superconducting electrodes. The characteristic energy asociated to the junction
capacitance is the charging energy for one electron: EC =

e2

2C
. The effects of the

capacitance C are not taken into account in eq. (3.1). Also, the dissipative element
R, required for electrical transport at finite voltage, is missing in the simple model
described by eq. (3.1). A more complete description of the Josephson junction is
required. This is provided by the RCSJ (resistively and capacitively shunted junc-
tion) model [67] in which we replace the real junction with an ideal one described
by eq. (3.1), shunted by an impedance R and a capacitor C, as represented in Fig.
3.2a. The value of R is given by the impedance at the characteristic frequency of
the phase dynamics. For voltages V larger than the value of the superconducting
gap or for temperatures close to the critical temperature T ≃ TC , the value of the
impedance R is given by the normal state resistance of the junction: R = RN . Ex-
perimentally, RN is determined from the linear part of the measured IV curves, in
situ and at low temperatures (see. Fig. 3.3).

Let us analyze in more detail the RCSJ model [69,70]. If we write Kirchhoff’s
circuit laws for the electrical setup presented in Fig. 3.2a, we obtain the equation
of motion for the superconducting phase difference δ :



30

�

���

���

�

�
�

����
�

	

Figure 3.2: RCSJ model for one Josephson junction. (a) Electrical scheme of the
RCSJ model. (b) The physics of the system presented in (a) is described by the
dynamics of a phase particle in a tilted washboard potential (see eq. 3.5). We usually
call this potential the tilted washboard potential. The phase particle can escape from
the local minimum by thermal activation (TA) or by macroscopic quantum tunneling
(MQT).
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Figure 3.3: Measured current-voltage characteristic for a Josephson junction.
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C

(

φ0

2π

)2

δ̈ +
1

R

(

φ0

2π

)2

δ̇ +
∂Utot (δ)

∂δ
= 0 (3.4)

where:

Utot(δ) = −EJ

(

cos δ +
Ibias

IC

δ
)

(3.5)

Here EJ = φ0IC/ (2π) is the Josephson energy of the junction. Equation eq. (3.4)

describes the motion of a phase particle with mass C
(

φ0

2π

)2
, in the tilted washboard

potential Utot(δ) (see eq. (3.5) and Fig. 3.2b). The damping is given by the viscous

force 1
R

(

φ0

2π

)2
δ̇. The circuit is in the dissipation-less state (V = 0) as long as the

phase particle is trapped inside one of the minima of the washboard. As soon
as it escapes from the local minima, it will start to roll down the washboard in an
accelerated motion. The phase particle will reach a constant speed when the friction
force compensates the tilt of the washboard. The running state of the system is
characterized by non zero phase dynamics δ̇ Ó= 0, thus we expect to measure a
voltage drop on the circuit, according to the second Josephson relation (3.3).

The frequency of the small superconducting phase oscillations in the vicinity
of one local minimum of the washboard potential (3.5) is called the plasma frequency.
It reads:

ω0 =
1

~

√

8EJEC (3.6)

The quality factor Q quantifies the energy loss, due to the viscous force in eq. (3.4),
during one phase oscillation at the plasma frequency. It reads:

Q = ω0RC (3.7)

If the viscous force in in eq. (3.4) is small, the junction is under-damped and Q > 1.
If the viscous dissipation is important, the junction is over-damped and Q < 1.

The washboard model for the RCSJ circuit can explain quantitatively the
main features of the measured IV curve presented in Fig. 3.3. Close to zero current
bias the phase particle is trapped in one of the minima of the washboard and the
voltage is zero. If we tilt the washboard sufficiently, by increasing Ibias, at a current
ISW , the phase particle escapes into the running state and we measure a voltage V .
If the friction force is small, the junction is in the under-damped regime (Q > 1),
and immediately after the escape, the voltage jumps from zero to a value close to
the value of the superconducting gap (see Fig. 3.3). Since we get a very non linear
response of the junction as a function of the applied current, in the following section
(section 3.2) we will show that under-damped JJ can be used as detectors for the
measurement of the supercurrent in various junction devices. If we further increase
the current, above the value of the gap, we follow a linear IV relation (see dotted
line in Fig. 3.3) which gives the value of the normal state resistance of the junction
RN . When we decrease the current, we increase the depth of the local minima and
we decrease the slope of the washboard. For Q > 1, inertia preserves the running
state of the phase particle for currents inferior to the switching current ISW . At a
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sufficiently low current IR the phase particle is re-trapped into the local minima of
the washboard and the voltage V drops to zero.

In Fig. 3.3 we represented the critical current IC and the switching current
ISW for the measured junction. Notice that ISW is significantly smaller than IC .
This is because the phase particle can escape from the washboard local minimum,
before the minimum vanishes completely at Ibias = IC . As represented in Fig.
3.2b, the escape can occur either by thermal activation (TA) over the barrier or
by macroscopic quantum tunneling (MQT) through the barrier. In either case, the
escape to the running state is a stochastic event. In order to precisely characterize
the escape process, we need to measure the statistics of the switching currents as a
function of the current bias.
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Figure 3.4: Measuring procedure for ISW . (a) We apply current steps of equal am-
plitude. (b) We count the number of transitions to the voltage state. (c) Measured
switching histogram. The measured IV curve for the same junction is presented in
Fig. 3.3.

The switching current ISW of the junction is obtained by carrying out the
following sequence (see Fig. 3.4). We use a series of M current steps of equal
amplitude Ibias to bias the junction (Fig. 3.4a). We count the number MSW of
transitions to the voltage state (Fig. 3.4b) and thus obtain the value of the switching
probability PSW = MSW /M corresponding to the applied Ibias . By sweeping the
Ibias amplitude and repeating the above sequence, we measure a complete switching
histogram, PSW versus Ibias (Fig. 3.4c). The PSW = 50% bias current is called the
switching current of the circuit, ISW . The current difference between the value at
PSW = 80% and the value at PSW = 20% is called the histogram width w. Notice
that the measured switching histogram is approximately linear between the 20%
and 80% values.
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3.2 Using a Josephson junction to build a current

detector

In this section we discuss theoretically the electrical scheme that we have used to
test the energy versus phase relation E (γ) of different Josephson junction circuits.
The scheme of the readout device is presented in Fig. 3.5. The Josephson junction
circuit that we want to measure is inserted in a superconducting loop containing
a large read-out JJ. The magnetic flux ΦC through the loop tunes the phase bias
γ (see Fig. 3.5). The critical current of the read-out junction IC should be much
larger than the one of the studied JJ circuit iC . The condition IC ≫ iC minimizes
the back-action of the detector on the measured signal (see section 3.3).

V

JJ circuit

δ

Ibias

γ

Φ
C

Figure 3.5: Detection scheme for the measurement of the ground state of a Josephson
junction (JJ) circuit. We denote the phase over the read-out junction δ and the phase
bias for the JJ circuit γ.

We measure the total switching current ISW of the superconducting circuit
in Fig. 3.5 using the sequence detailed in the previous section and also presented in
Fig. 3.4. The ΦC dependence of the switching current ISW (ΦC) contains the infor-
mation about the current-phase relation of the studied Josephson junction circuit.
In a first order approximation, the oscillations of the switching current ISW (ΦC) can
be directly associated to the current-phase relation of the studied Josephson junc-
tion circuit. However, for an exact quantitative understanding of the measurements,
we need to study in detail the escape of the phase particle from the washboard of
the total circuit in Fig. 3.5 (read-out junction plus JJ circuit). As we will show in
the next section (see chapter 3.3), the corrections to the first order approximation
can be significant.

The principle of the read-out scheme was first implemented by D. Vion et
al. [26] and has since been used for the measurement of different superconducting
circuits: an asymmetric Cooper pair transistor [71], quBits [14,72], atomic contacts
[73] or complex Josephson junction networks [40]. Recently, hysteretic Josephson
junctions have also been proposed as detectors for studying phenomena like non-
Gaussian noise [74–76].



34

Point
Sym-
bol

Measured JJ circuit and its
critical current: iC

Read-out
junction:

IC

Ref.
Chap-
ter

 
6 junctions chain;

iC < 35nA
330nA 5
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12 rhombi network;
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Figure 3.6: (blue lines) Plot of the calculated width w of the histograms as a function
of the capacitance of the junction C, for three different critical currents IC . The
regions where the escape occurs via tunnel effect or thermal activation are denoted
by MQT and TA respectively. The green regions highlight the parameter space
where the junction is efficient as a detector. The four particular points (full and
empty black circles and squares) show the actual parameters of the different read-out
junctions we have used for the measurements presented in the following chapters. In
the above table we show a list of the corresponding critical currents of the read-out
junction and of the measured JJ circuit.
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Let us now discuss the signal to noise ratio for this type of detector. The
noise associated to the escape probability measurement originates from statistical
fluctuations of the PSW values, due to the finite number of current bias steps M .
The value of the measured PSW is given by the binomial distribution. The variance

of the switching probability σP is given by: σP =
√

PSW (1−PSw)
M

. The optimal bias
point for the junction is around PSW = 50% as the slope of the histogram is maximal
and so is the sensitivity to the bias current. Typically we apply M = 104 current
steps. The corresponding variance for the switching probability is σP = 0.5%.

The resulting noise δI of the current measurement depends on σP but also
on the width w of the histograms:

δI =
w

60
σP (3.8)

The factor 60 in the δI formula comes from the definition of the histogram width
as the difference between the current levels at 80% and 20%.

At the base temperature T = 50mK, the read-out junction can switch
to the running state either by thermal activation (TA) [77–79] or by tunnel effect
(MQT) [10, 80]. In Fig. 3.6 we plot (in blue lines) the calculated width of the
histograms w and the resulting statistical current noise δI for the typical value
M = 104, as a function of the capacitance C of the junction, for three different
critical currents IC . The green highlighted areas show the junction parameter space
where it can be used efficiently as a current detector. Fig. 3.6 also presents the
position of the read-out junctions we have used to perform our measurements. The
red highlighted regions mark the over-damped (Q < 1) or phase diffusion regimes.
Within these regions the junction cannot be used efficiently as a current detector in
the electrical scheme of Fig. 3.5. The phase diffusion boundry is represented by the
continous red diagonal line in Fig. 3.6 and it is given by the condition w = ISW . In
other words, in this region the phase δ becomes delocalised, because even at very
low bias current, the fluctuations are strong enough to induce the escape of the
phase-particle from the local minimum.

Figure 3.6 shows that the current noise due to statistical fluctuations δI
decreases with the critical current IC of the read-out junction. But IC cannot be
arbitrary small. It must remain significantly larger than the critical current iC of the
studied JJ circuit: IC ≫ iC . From figure 3.6 we infer a typical ratio IC/δI between
103 and 104. Thus, if the ratio IC/iC & 10, the signal to noise ratio iC/δI is in the
interval 100 → 1000.

As we can see from Fig. 3.6, all the read-out junctions that we have used
in our experiments, are in the MQT escape region. In the following chapter we
will analyze in detail the MQT escape from the total washboard potential, given by
the read-out junction potential plus the contribution from the measured JJ circuit
(see Fig. 3.5). The detailed understanding of the MQT switching to the dissipative
state is essential for a quantitative understanding of the measured switching curves
ISW (ΦC) .
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3.3 MQT escape from an arbitrary shaped wash-

board potential

The measured switching current of the circuit in Fig. 3.5 corresponds to the escape
process out of the total potential energy Utot containing the contributions of the
read-out junction and the JJ circuit:

Utot(δ,ΦC) = EJ cos(δ) + Eg(ΦC − δ)− ~

2e
Ibiasδ. (3.9)

Here Eg is the ground state of the studied JJ circuit. As EJ ≫ Eg, the main
component in Utot is the potential of the current-biased read-out junction EJ cos(δ)−
~

2e
Ibiasδ (which is the same as eq. (3.5)). In Fig. 3.7 we show for exemplification the

calculated escape potentials at constant bias-current for three different flux values
ΦC corresponding to three different biasing phases γ over a chain of 6 Josephson
junctions (see the point  in Fig. 3.6 and also chapter 5). Let us point out that the
position of the minimum of the potential Utot is to a good approximation independent
of the value of the flux ΦC . Therefore the bias phase difference γ over the chain
depends only on the flux ΦC and the backaction of the detector on the measured
system is neglectable. The three plots in Fig. 3.7 show how the ground state of the
JJ circuit, which changes as a function of the phase bias, modulates the shape of the
total washboard potential Utot. The MQT switching rate is very sensitive to these
changes. As a consequence, the ΦC dependence of the measured switching current
results from the γ dependence of the JJ circuit ground state.

For all our studied circuits, the escape from the total potential (3.9) occurs
via macroscopic quantum tunneling (MQT) (Fig. 3.6). Deppending on the shape of
the energy-phase relation for the measured JJ circuit, standard MQT calculations
[80,81] might not give sufficiently accurate results, if the potential Utot (δ) can not be
well approximated by a polynomial series expansion. The MQT rate for an arbitrary
potential was calculated in the thesis of N. Didier [82] in the limit of weak tunneling
using the dilute instanton-gas approximation [83]. Within this model, the escape
rate Γ out of the washboard potential Utot(γ) reads:

Γ = A exp [−B] (3.10)

Where the coeficients A and B are given by:

A =

√

~ω3
p

8πEC

σ eI with I =

 σ

0





√

√

√

√

~2ω2
p

16ECUtot (x)
− 1

x



 dx (3.11)

and

B = 2

 σ

0

√

~2Utot (x)

4EC

dx (3.12)

We have denoted by σ the width of the barrier and by x the phase coordinate
measured from the minimum of the washboard potential (see Fig. 3.7). The plasma
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Figure 3.7: Escape potentials for the read-out junction in parallel with the JJ circuit,
for three different flux biases ΦC in the read-out loop (see Fig. 3.5). The ground
state of the JJ circuit, which deppends on ΦC , clearly modifies the shape of the
escape potential.

frequency ωp corresponds to the small phase oscilations arround the local minimum
of Utot:

ωp =

√

√

√

√

8EC

~

d2Utot (x)

dx2

∣

∣

∣

∣

∣

x=0

(3.13)

where EC is the charging energy of the read-out junction.
Knowing the escape rate Γ, we can calculate the switching probability as a

function of the current bias Ibias and the length of the current pulse ∆t:

PSW (Ibias) = 1− exp [−Γ (Ibias)∆t] (3.14)

Using eq. (3.14) we can numerically calculate the switching curves from the
local minimum of an arbitrarely shaped potential. In chapter 6 we present a detailed
comparison between these calculations and the measured switching histograms. We
otain a good agreement. In chapter. 5 we use this technique to understand quanti-
tatively the measurements of quantum-phase slips in a 6 junction chain.



Chapter 4

Measurement of the ground state

of Josephson junction rhombi

chains

Arrays of small Josephson junctions are fascinating systems, as they exhibit a wide
variety of quantum states controlled by lattice geometry and magnetic frustration
[84]. A particularly interesting situation occurs in systems with highly degenerate
classical ground states where non trivial quantum states have been proposed in the
search for topologically protected qubit states [37]. The building block for such a
system is a rhombus with 4 Josephson junctions (fig. 4.1b) and the simplest system
is the linear chain of rhombi (fig. 4.1a) as proposed by Douçot and Vidal [85] along
the line of the so-called Aharonov-Bohm cages [86]. The main consequence of the
existence of the Aharonov-Bohm cages in the rhombi array is the destruction of the
(2e)-supercurrent when the transverse magnetic flux through one rhombus is exactly
half a superconducting flux quantum. This destructive interference is reminiscent
of the localization effect predicted for non interacting charges in [86] and observed
experimentally in both superconducting [87] and normal networks [88]. Interestingly,
in a rhombi chain made of small capacitance junctions, it was predicted that a finite
supercurrent carried by correlated pairs of Cooper pairs, carrying a charge of 4e,
will subsist at full frustration (ΦR = Φ0/2) [85], while the ordinary 2e supercurrent
dissappears.

I. Protopopov and M. Feigelman [89, 90] have studied the equilibrium su-
percurrent in frustrated rhombi chains. They have made quantitative predictions
for the magnitude of both, the 2e and the 4e supercurrents, as a function of the
relevant parameters : magnetic flux, ratio of Josephson to Coulomb energy, chain
length and quenched disorder. The ratio between the Josephson energy EJ = ic

~

2e

and the charging energy EC =
e2

2C
of the junctions determines whether the chain is

in the classical or in the quantum regime.
As we will show in detail further on, we observed the doubling of the current-

phase periodicity, which is a signature of coherent transport of pairs of Cooper pairs
(4e supercurrents), in two types of small size rhombi arrays. The junctions forming
the arrays are in the classical regime (EJ ≫ EC) [91]. In parallel, in the Rutgers
University experimental group, S. Gladchenko et al. observed the transport of pairs

38
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Figure 4.1: The different notations used in the text for the rhombi chain (a) and for
one rhombus (b). Each cross represents a Josephson junction. The lines represent
superconducting wires and the arrows represent gage invariant phase differences.
The magnetic flux ΦC inside the superconducting ring containing the rhombi chain
fixes the phase difference across the chain to γ = 2πΦc/Φ0. The phase differences
over each of the four junctions in one rhombus are denoted by χn where n = 1, 2, 3, 4.
The gauge-invariant phase θi will be referred to as the diagonal phase difference. ΦR

represents the magnetic flux inside one rhombus and the frustration parameter of
the rhombus is given by f = ΦR/Φ0.

of Cooper pairs in a rhombi array in the quantum regime (EJ & EC) [40]. In the
last section of this chapter we present the observation of quantum phase-slips in a
rhombi chain [91].

4.1 Classical rhombi chains

In this section we present the theory describing the states and the energy bands for
a rhombi chain in the classical phase limit, where the amplitude of the QPS can be
neglected (EJ ≫ EC). This theory is used later to understand the measurements of
the current phase relation of classical chains.

We are interested in the current phase relation IS(γ) of a rhombi chain for
different rhombus frustrations f = Φr/Φ0. Φr represents the magnetic flux inside
one rhombus and Φ0 =

h
2e
is the superconducting flux quantum. The phase difference

γ over the chain is fixed by introducing the rhombi chain into a superconducting
loop threaded by a magnetic flux Φc = Φ0γ/2π. The Josephson junctions circuit
and the notations that we will further refer to are represented in Fig. 4.1.

In the following we discuss the case where charging effects are negligible,
and therefore the superconducting phase is a classical variable. The effects of non
zero charging energy are discussed in section 4.3. The classical states of one rhom-
bus which depend on the diagonal phase difference θ and on the frustration f are
introduced in section 4.1.1. In section 4.1.2 we extend the classical description of
the energy states to a chain containing N rhombi. In this case the energy band
depends again on the frustration f and the phase difference γ over the whole chain.
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(a)

(b)

(c) (d)

Figure 4.2: Classical states of a single rhombus. a) The ground state energy as
a function of the diagonal phase difference θ over the rhombus for three different
frustrations f = 0, 1/4 and 1/2. The inset shows the two possible persistent current
states: a clockwise flowing supercurrent (blue lines) and a counterclockwise super-
current (red line). b) 3D plot showing the lowest energy band as a function of θ and
f . c) Two dimensional plot for the supercurrent across one rhombus. The amplitude
and sign of the supercurrent is illustrated by the background color: orange (positive
values) for currents flowing from left to right and violet (negative values) for currents
from right to left. d) Two dimensional plot for the amplitude and the direction of
the persistent current around the ring. The clockwise current states, denoted |↓〉,
are represented in blue, the counterclockwise current states, denoted |↑〉, in red. At
full frustration (f = 0.5) the ground state is degenerate for θ = ±π/2, and the two
eigenstates differ by the sign of the persistent current.
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4.1.1 Single Rhombus

We consider a single rhombus made of 4 identical Josephson junctions (Fig. 4.1b).
The single junction Josephson energy is EJ and its critical current ic =

2e
~

EJ . Ne-
glecting additional terms due to wire inductances, the potential energy of one rhom-
bus containing four identical junctions, is simply given by the sum of the Josephson
energies of the four junctions:

E(χ1, χ2, χ3, χ4) =
4

∑

n=1

EJ(1− cosχn) (4.1)

We can safely neglect wire inductances as the rhombi loops are small, thus the
corresponding geometric and kinetic inductances are orders of magnitude smaller
than the Josephson inductance of the junctions. The sum of the phases χn is fixed
by the flux inside the rhombus:

∑

χn = 2πf (4.2)

For simplicity we consider for the moment the ideal case where all junctions
are identical and we neglect any coupling of the islands to the ground. The current
flowing through each branch of the rhombus induces the same phase difference on
both junctions: χ1 = χ2 and χ3 = χ4. Using the notations defined earlier, the
ground state energy of one rhombus, in the classical regime (EJ ≫ EC), is found by
minimizing the energy (4.1) and depends only on the parameters θ and f :

E(θ, f)/EJ = 4− 2(|cos(θ/2 + πf/2)|+ |cos(θ/2− πf/2|) (4.3)

A complete description of the phase diagram for one rhombus is given in Fig. 4.2.
The circular current in the superconducting ring is ip(θ, f) = 2e

~

∂E(θ,f)
∂f

and it is

2π-periodic in θ and f (Fig. 4.2d). The supercurrent through one rhombus is given

by is(θ, f) = 2e
~

∂E(θ,f)
∂θ

and it is shown in Fig. 4.2c.
The interesting feature about this system is the change from 2π to π pe-

riodicity as a function of the bias phase θ over the rhombus when the frustration
f changes from 0 to 1/2. This property does not exist in the case of a dc SQUID,
as there is no modulation of the energy as a function of θ at full frustration. At
f = 1/2 the rhombus has two classical ground states, θ = 0, π (mod 2π), denoted in
analogy to the z-projection of the spin 1

2
by |↓〉 and |↑〉 respectively. These two states

have the same energy E(θ = 0, f = 0.5) = E(θ = π, f = 0.5) = 2(2 −
√
2)EJ but

opposite persistent currents (see Fig. 4.2d). In the case of a current biased rhom-
bus, the phase θ is controlled via the current phase relation of a single rhombus
is(θ, f) = 2e

~

∂E(θ,f)
∂θ

by the external current. The critical current of a single rhombus
is given by the maximum supercurrent through the rhombus for a given frustration
f : Ic = max(is(θ))f=const = max(

2e
~

∂E(θ,f)
∂θ

)f=const. It is periodic in f and varies from
a maximum of 2ic down to ic. For −1/2 ≤ f ≤ 1/2 it reads :

Ic = 2ic cos
2 πf

2
(4.4)

Notice that unlike in a SQUID, exactly at full frustration, the critical current
is not completely suppressed, but it is equal to the critical current of one junction
in the rhombus. This is an essential feature that will enable the formation of the 4e
superconducting state inside a chain of rhombi.
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4.1.2 Rhombi chain

Figure 4.3: a) Ground state energy of a classical 8 rhombi chain as a function of
the phase γ, for zero (a), intermediate (b) and full frustration (c). The plot colors
correspond to the |↓〉 state (blue) and |↑〉 state (red). The supercurrent flowing
through the chain is given by the derivative of the energy as a function of γ and
consists of a series of unequal sawtooth in the vicinity of f = 1/2. d) Identification
of the lowest energy states of the chain near full frustration (f = 0.495). The up
and down arrows indicate the spin states of the 8 rhombi. Note the change in the
parity for the number of switched rhombi between successive minima.

In order to understand the classical states of the chain we can start our
analysis with the case where each rhombus has a well defined diagonal phase differ-
ence across it. For a closed chain of N identical rhombi, the sum of all the diagonal
phase differences θn is fixed by the magnetic flux Φc to a total phase difference γ
over the chain (see Fig. 4.1a).

N
∑

n=1

θn = γ (4.5)

In the region where the frustration, 0 ≤ f ≪ 1, is small we obtain by
minimizing the total energy that the diagonal phase differences over each rhombus
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are identical up to a constant multiple of 2π. The phase difference across the diagonal
of the n-th rhombus in the state |m〉 is given by:

θn =
γ − 2πm

N
+ 2πmn , m =

∑

n

mn (4.6)

where m is the number of vortices inside the superconducting loop that contains the
rhombi chain, and mn is an integer corresponding to the number of vortices that
crossed the n-th rhombus. Therefore the ground energy of the chain is N times the
energy of a single rhombus:

E(γ, f)

EJ

= N ·
[

4− 2

(
∣

∣

∣

∣

∣

cos

(

γ − 2πm

2N
+

πf

2

)
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

cos

(

γ − 2πm

2N
− πf

2

)
∣

∣

∣

∣

∣

)]

(4.7)

At f = 0 and in the limit N >> 1 the expression above can be developed around
zero. The energies of the low-lying states are given by:

Em(γ) =
EJ

2N
(γ − 2πm)2 (4.8)

The ground state energy consists of a series of shifted arcs, with period 2π
as shown in Fig. 4.3a. In analogy to a single rhombus, at small frustration all
rhombi of the chain are in the |↓〉 state (see Fig. 4.2). The supercurrent through
the chain is given by the derivative of the ground state energy with respect to γ,
IS(γ, f) = 2e

~

∂E(γ,f)
∂γ

. Therefore the current-phase relation of an unfrustrated chain,
in the classical regime, is a 2π-periodic sawtooth function as for a single rhombus.
But in contrast to a single rhombus the critical current of a chain with large N is
approximately N times smaller than the critical current of a single junction. The
value for the critical current of the chain ic

π
N
can be easily calculated from the energy

expansion (4.8).
As f approaches 1/2, the total energy can be reduced by flipping the spin

state of one rhombus. The chain with N −1 rhombi in the |↓〉 state and one rhombus
in the |↑〉 state becomes energetically more favorable near γ = π (mod 2π) as shown
in Fig. 4.3a. Thus the energy diagram consists of an alternate sequence of arcs,
centered respectively at even and odd multiples of π. At full frustration f = 1/2,
the period as a function of γ turns to π (see Fig. 4.3a upper trace). Here, the energy
modulation π2

8N
√

2
EJ and the maximum supercurrent Is = ic

π
2
√

2N
are significantly

weaker than at zero frustration. The crossover point between these two regimes is
defined as the minimum frustration that induces at γ = π a flip from the |↓〉 state
to the |↑〉 state for one single rhombus in the chain. In Fig. 4.3b we represented the
state of the system for f slightly larger than the crossover frustration. For large N
the width of the frustration window scales with 1/N and can be approximated by
the condition :

1− tan
πf

2
<

π2

8N
(4.9)

Within this window, the supercurrent is expected to show a complex saw-
tooth variation as a function of the phase γ with unequal current steps. It is inter-
esting to discuss in more details the structure of the chain states in the vicinity of
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the full frustration region. In [89] it has been shown that near f = 0.5 the energy
of the different possible chain states can be approximated by the formula:

Em,Sz(γ) ≈ EJ

√
2

4N
(γ +Nπ/2 + πSz − 2πm)2 −

√
2δSzEJ + const (4.10)

where δ = 2πf − π. Here Sz = −1
2

∑

sign(sin(θn)) corresponds to the z-projection
of the total spin S describing the whole rhombi chain. Figure 4.3d shows the energy
diagram for the lowest energy chain states with N=8 in order to highlight the topo-
logical distinctions between branches with minimas at even and odd values of γ/π.
Near γ = 0 the ground state is obtained when all the rhombi are in the |↓〉 state.
Near the next minimum, one rhombus has flipped into the |↑〉 state. For the higher
energy levels one can conclude in general that at even values of γ/π, chain states
containing an even number of rhombi in the |↑〉 state (so called even states) show
a minimum. At odd values of γ/π chain states with an odd number of rhombi in
the |↑〉 state (so called odd states) show a minimum. At full frustration f = 1/2 all
chain states with an even and odd number of flipped rhombi become respectively
degenerate. Complete degeneracy is achieved at full frustration at γ = π/2 : even
and odd states have the same energy.

In conclusion, the current phase relation of the rhombi chain in the classical
regime should follow a sawtooth like function with a slowly varying amplitude as
a function of the frustration except for a small region around f = 0.5. Inside this
so called frustration window the periodicity of the sawtooth should be half and
its amplitude should drop by a factor of 2

√
2. In the next section, we present

measurements that precisely confirm these predictions.

4.2 Measurement of the current-phase relation of

classical rhombi chains

We have experimentally characterized two types of rhombi network designs. The
first design is a 1D chain of 8 rhombi. The aim of the experiment was to observe the
doubling of the current-phase periodicity around half flux quantum frustration. The
second type of device, which was fabricated in the experimental group of Michael
Gershenson at Rutgers University, is a network formed of three rhombi chains in
parallel, that is supposed to realise a quantum bit (quBit). In the following we will
describe in detail the measurement of each of these devices.

4.2.1 Current-phase relation of an 8 rhombi chain

In order to measure the current-phase relation, we introduced the rhombi chain in a
closed superconducting loop which contains an additional shunt Josephson junction
as shown in Fig.4.4. We have measured the switching current of this circuit. The
switching current was obtained from the switching histogram. We fixed the threshold
voltage at about one third of the shunt junction gap voltage. The histograms were
accumulated at a rate 10 kHz using a fast trigger circuit. The bias current was
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Figure 4.4: Schematic of the circuit for the measurement of the current phase relation
in a rhombi chain. The chain is closed by a superconducting line interrupted by an
additional Josephson junction referred to as the "read-out junction". An external
magnetic field B allows the control of both the rhombi frustration f and the total
phase of the closed chain γ.

automatically reset to zero immediately after each switching event. The switching
current ISW corresponds, in our definition, to an escape probability of 50%.

The critical current of the shunt read-out junction has a large value IRO
0 =

2.5µA, much larger than the critical current of the chain which is smaller than
50 nA. Near the switching event the phase difference over the read-out junction
is close to π/2. Therefore the flux Φc changes only the phase difference γ over the
chain. Unlike for the measurement of the SQUID chain (see chapter 5), in this case
the measurement is much simpler to analyze, as the switching occurs very close to
the maximal phase π/2 over the readout junction. In a first order approximation we
consider that the supercurrent of the chain changes the effective current bias of the
read-out junction. As we will see later, this approximation only gives a qualitative
understanding. For a quantitative analysis, a more accurate and complex treatment
is needed (see section 3.3 and chapter 6). The switching current through the parallel
circuit represented in Fig.4.4 can be written as the sum of the partial supercurrents
in the two branches:

ISW (γ) = IS(γ − π

2
) + IRO

0 sin(
π

2
) (4.11)

Here, IS(γ) is the supercurrent in the rhombi chain and IRO
0 is the read-out junction

critical current. Since IRO
0 ≫ IS, the γ dependence of the switching current of the

shunted rhombi chain directly reflects the current phase relation of the rhombi chain.
The frustration inside the rhombi and the flux inside the closed chain was

controlled by a constant external perpendicular magnetic field. The two parameters
γ and f are linked by the area ratio between the rhombus and the ring. Since the
rhombus area is ∼ 100 times smaller than the ring area, using small variations of
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the magnetic field B we can vary the phase γ for an approximately constant value
of f .

Figure 4.5: a) SEM image of a rhombi chain (N = 8) in the closed superconducting
circuit. The read-out junction is visible on the left vertical line (b). An enlarged
image of one rhombi is also presented (c). For small magnetic field variations, the
flux inside the rhombi practically remains constant, while the total phase on the
array varies.

The typical elementary junction area is 0.15 × 0.30µm2. The Josephson
energy was inferred from the experimental tunnel resistance of individual junctions
and the nominal Coulomb energy was estimated from the junction area using the
standard capacitance value of 50 fF/µm2 for aluminum junctions. EJ and EC as well
as the number of rhombi were chosen near the range of the optimum parameters
prescribed in Ref. [89]. The Josephson energy for one junction in the rhombus is
EJ = 9K and the charging energy EC = 0.45K. So the chain is well in the classical
regime, with EJ/EC = 20. The read-out junction has a Josephson energy of about
50K and a charging energy in the range of 50mK, so its phase is very well defined.

The sample was made by standard e-beam lithography and 2 angles shadow
evaporation, using an e-beam system and an ultra high vacuum evaporation cham-
ber. The array consists of small Al/AlOx/Al tunnel junctions deposited on oxi-
dized silicon substrates. The respective thicknesses of the Al layers were 20 and
30 nm. The tunnel barrier oxidation was achieved in pure oxygen at pressures
around 10−3 mbar during 5 minutes. The fabrication process is explained in detail
in chapter 2. The sample was mounted in a closed copper block which was thermally
anchored to the cold plate of either a He3 insert or a dilution fridge. All lines were
heavily filtered by thermocoaxial lines and π−filters integrated in the low tempera-
ture copper block. Additional low frequency noise filters were placed at the top of
the cryostat. For a detailed description of the measurement setup see chapter 2.4.
An electron beam image of a typically measured sample is shown in Fig. 4.5. A SEM
image of one rhombus is shown in Fig. 4.5c. The actual design of the resist mask
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was optimized to insure the best homogeneity of junction critical currents (section
2.2).

Bernard Pannetier has experimentally studied the classical current-phase
relation of a rhombi chain [91]. The observed dependence of the switching current
ISW vs the external magnetic flux is shown in Fig. 4.2.1. Both the rhombi frustration
f and the phase along the main ring γ are controlled by the magnetic field.

Figure 4.6: Experimental plot of the switching current vs external magnetic field
at different temperatures. The higher temperature measurements correspond to a
sample with a phase bias loop that has a smaller surface (compared to the sample
presented in fig. 4.5), so the observed oscillations vs magnetic field have a bigger
periodicity.

We observe a complex dependence of ISW as a function of the magnetic flux
with mainly one slow periodic envelop of period 2.57 Gauss that we attribute to the
frustration inside the rhombus and one fast sawtooth oscillation that we understand
as the modulation of the supercurrent as a function of the phase γ. The number of
periods differs for the two measured samples as expected from the difference between
the ring areas.

The fast oscillating component of the switching current represented in Fig.
4.2.1 is shown in Fig. 4.2.1. The main features of this experimental result follow
the theoretical predictions summarized in Fig. 4.3. Since by changing the magnetic
field we vary in the same time the frustration and the phase, we obtain supercurrent
oscillations with a modulated amplitude. In Fig. 4.2.1 we have also plotted the
theoretical envelop Ienv (dotted lines) of the supercurrent as calculated for the actual
junction parameters in the classical limit. This line is given by the maximum of the
supercurrent IS(γ) and except for the two small windows visible near f = ±1/2 it is
given by Ienv = ic

π
N
cos(f/2) (here N = 8). Within the frustration window (see eq.

(4.9)), Ienv falls linearly to its minimum value ic
π

2
√

2N
at f = ±1/2, as theoretically

expected.
Any single oscillation in Fig. 4.2.1 is practically the current-phase relation

for the rhombi chain at a fixed frustration. In fig. 4.8 we present current phase rela-
tions at f = 0 and in the vicinity of maximum frustration f ≈ 0.5. We have verified
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Figure 4.7: The fast oscillation component Is of the switching current at T =
310mK. The continuous plot represents the measured supercurrent through the
chain. The expected amplitude of the supercurrent is shown as red dotted lines.
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Figure 4.8: Experimental evidence of the doubling of the current-phase relation at
half flux quantum frustration. The black diamonds represent the measured current-
phase relation for the 8 rhombi chain at zero frustration. The red circles represent
the measured current-phase relation at maximum frustration: f = 0.5. The halving
of the current-phase periodicity is the signature of 4e transport.
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that the fast modulation is periodic with period h/2e except near f = 1/2 where
the period is h/4e (see Fig. 4.8). This result confirms precisely what is illustrated
in Fig. 4.3 : the chain states undergo a transition from phase periodicity 2π to
periodicity π when the rhombi are fully frustrated. Let us notice here that the half
periodicity is not actually visible over many periods since the control magnetic flux
changes both the frustration and the phase. Instead, we do observe a sequence of
saw teeth with unequal amplitudes which become regular only at exactly f = 1/2.
The doubling of the periodicity of the supercurrent is measured up to a temperature
of T = 800mK.

In conclusion, we have observed the doubling of the current-phase periodic-
ity at maximal frustration and the measured amplitude of the supercurrent coincides
fairly well with the classical value obtained from the nominal critical current of the
individual junctions. Considering the large ratio EJ/EC = 20, phase-slips are very
small. They only provide the necessary mechanism for the chain to relax in its
ground state. Therefore the supercurrent has the expected sawtooth-like shape.

4.2.2 Current-phase relation of a complex rhombi network

The geometry of the measured rhombi network was adapted to correspond to the
theoretical proposal for the topologically protected qubit [37–39]. The network
consists of three chains of four rhombi in parallel, with the middle islands connected
together (see. Fig. 4.9). We have used basically the same readout procedure as
described in the previous section. The only notable difference is the introduction of
a mutual inductive coupling M in the current bias line, which allows the application
of nanosecond current pulses.

The sample was fabricated in the group of M. Gershenson at Rutgers Uni-
versity, using a slightly different lithography procedure, the so called Manhattan

technique. This technique uses two angle evaporations perpendicular to a cross of
deep resist trenches [92]. Its main advantage is that it does not need the fabrication
of suspended resist bridges, which are often the most fragile element in the resist
mask. However, the main steps of the fabrication are the same as the ones we use
and that we described in detail in chapter 2.1. An electron beam image of the
measured rhombi network is presented in figure 4.10.

The physics of this type of rhombi networks is similar to the physics of
a single chain. The main effect of connecting three chains in parallel is that we
increase the critical current of the system. This corresponds to a higher barrier
between the states with γ = 0 and γ = π (see fig. 4.3) of the network in the
vicinity of maximal frustration. Thus, adding chains in parallel is a practical way of
increasing the barrier between the states 0 and π without increasing the EJ of the
individual junctions.

The Josephson junctions forming the network are classical junctions with
EJ/EC = 8. Both the charging and the Josephson energy scales are much bigger
than the thermal energy at the base temperature of 50mK: EC = 0.35K and
EJ = 2.9K. The critical current of the read-out junctions is IRO

C = 650nA.
The observed dependence of the switching current ISW vs the external mag-
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Figure 4.9: Experimental setup for the measurement of the topologically protected
rhombi network.

Figure 4.10: e-Beam image of the rhombi network. The neighboring junctions cor-
responding to the same rhombus have been marked by matching color X symbols.
The corresponding electrical scheme is shown in fig. 4.9.
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Figure 4.11: Experimental plot of the switching current of the rhombi network vs
external magnetic field B. The red dotted lines show the positions of the maximal
and zero rhombi frustration regions.

netic flux is shown in Fig.4.11. Both the rhombi frustration f and the phase along
the main ring γ are controlled by the magnetic field via the fluxes ΦR and ΦC re-
spectively. The fast oscillations are given by the rapid growing flux ΦC with the
magnetic field B. The slowest modulation corresponds to the sweeping of the the
flux ΦR inside one rhombus. In addition to these two periodicities, we also observe
an intermediate frequency modulation of the envelope of the oscillations. This mod-
ulation is given by the flux ΦP inside the loop in between two neighboring chains
(see fig. 4.9).

The measured switching curve shown in fig. 4.11 has a complex structure.
Besides the modulations arising from the three characteristic fluxes threading the
sample (ΦR, ΦC and ΦP ), we also observe an oscillation of the median line, defined as
the average position of the switching currents over a complete ΦC oscillation. Part
of the median line evolution with magnetic field B can be explained by junction
inhomogeneity in the rhombi network [40]. As we will show in chap. 6.5, additional
modulations of the median line are expected if we calculate more exactly the escape
process from the total washboard potential: read-out junction plus rhombi network.

In figure 4.12 we present measured current-phase relations for the rhombi
network in the ground state. We have used both long current pulses with ∆t = 50µs
and short pulses with ∆t = 10 ns. As expected, in the region around maximal
rhombi frustration f = 0.5 (Fig. 4.12b) we observe a halving of the current-phase
periodicity. The sample was designed in such a way that at f = 0.5, the parasitic
flux φP is an integer number of flux quantum, thus the associated persistent current
is zero. As in the case of the simple rhombi chain (see chap. 4.2.1) the change by
a factor of two of the switching current periodicity is a clear signature of the 4e
electrical transport.

The insets of figure 4.12 show the switching histograms at different points of
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Figure 4.12: Measured current-phase relations for the rhombi network at zero frus-
tration (a) and at maximal frustration (b) and (c). The duration of the measurement
pulses for (a) and (b) is∆t = 50µs. The results presented in (c) have been measured
using the fast current line, with a duration of the measurement pulse ∆t = 10ns.
The insets show the measured switching current histograms at different points in
the current-phase relations, indicated by the red arrows.



53

the current-phase relation. In fig. 4.12a, at γ ≃ 0 we measure the usual, monotonic
“s” shaped curve that we expect considering the standard MQT escape model [10]
out of a sinusoidal tilted washboard potential. In contrast, at γ ≃ π, we observe
a non monotonic switching histogram. It presents several peaks and its width is
considerably larger than at γ ≃ 0. The switching current of the circuit is defined as
the bias current for which we measure an escape probability PSW = 50%. Whenever
the height of one of the peaks in the histograms is large enough for the peak to
cross the 50% level, we will observe abrupt variations in the shape of the current-
phase relation. It is precisely what can be seen in fig. 4.12a for γ ≃ π. The
irregular structure of the histograms originates in the complex escape process from
the washboard of the total Josephson circuit composed of the read-out junction and
the rhombi network. A detailed analysis of MQT escape process from an arbitrary
shaped potential is presented in chapter 6.

At f = 0.5, as the critical current of the network is significantly diminished,
the washboard potential is closer to the standard tilted sinusoidal and the irregular-
ities in the switching histograms at γ ≃ π are smoothed. Nevertheless, we can still
observe non monotonic intervals in the histograms. They induce a deformation of
the current-phase relation shape at γ ≃ π, as shown in fig. 4.12b.

If we use fast measurement pulses, with ∆t ∼ 10 ns, to induce the escape,
we observe smooth histograms, even at γ ≃ π, as shown in the inset of fig. 4.12c.
The resulting current-phase relation of the rhombi network is very regular and we
no longer observe any jumps or deformations. The details of the method we have
used to apply the fast current pulses are presented in the next section (section 2.5).

In conclusion, we have measured the ground state of two types of rhombi
networks: a simple 8 rhombi chain and a structure of 3 chains in parallel, each con-
taining 4 rhombi. The Josephson junctions in the chains were in the classical phase
regime with EJ ≫ EC . Both systems show clear signatures of current transported
by correlated pairs of Cooper pairs of charge 4e, in the vicinity of half flux frustra-
tion inside the rhombi loops. Our results are in qualitative agreement with similar
measurements performed in Michael Gershenson’s group.

4.3 Quantum rhombi chains

In the region where the frustration is small, 0 ≤ f ≪ 1, a rhombi chain is very
similar to a simple JJ chain. The reason is that around zero frustration, the energy
of a single rhombus as a function of the diagonal phase difference has only one

minimum (see Fig. 4.2a). This implies the coincidence of the classification of the
classical states for our system and for the single Josephson junction chain. In this
section we present the theory of quantum fluctuations in a non-frustrated rhombi
chain which we used to fit the experimental data. In our analysis we assume that the
Josephson energy of the junctions is larger than the charging energy and quantum
phase fluctuations in individual Josephson junctions are small. However, as we will
see below, the fluctuations in the whole chain can become strong.

Quantum fluctuations (more precisely quantum phase-slips) lead to the mix-
ing of classical states described above. As we have shown in chapter 4.1.2, at large
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(a) (b)

Figure 4.13: The energy landscape for one rhombus at zero frustration (f = 0) (a)
and at maximal frustration (f = 0.5) (b) as a function of the phase differences χ1

and χ3 of Josephson junctions in opposite branches of the rhombus. The transition
of the chain from state |m〉 to state |m+ 1〉 corresponds to a 2π jump of one of the
diagonal rhombus phases θi. This transition implies a simultaneous flip of the two
phases χ1 and χ3 respectively by −2π and 2π. The arrow in the figure represents the
corresponding classical trajectory. The phenomenon can also be seen as the process
of one vortex crossing the rhombus ring.

EJ/EC this effect can be described within the tight-binding approximation (cf. [52]).
Classical states lie far from each other in the configuration space and are separated
by barriers of the order EJ (see Fig. 4.13a). At large EJ/EC the amplitude of
quantum tunneling from state |m〉 to |m′〉 is exponentially small and decreases fast
with the increase of the distance between |m〉 and |m′〉. For a given state |m〉 the
closest states in the configuration space are |m ± 1〉. To achieve the state |m+ 1〉
one needs to change the phase difference across the diagonal of one rhombus by 2π
(at large N , cf. eq. (4.6)). Since we need to maintain the sum of the phase differ-
ences around the rhombus (fixed by the zero flux inside it, see eq. (4.2)) we need to
change by ±2π the phase differences over two junctions in different branches of the
rhombus (see Fig. 4.13). Let us denote the amplitude of such a process by υ. In
a semi classical approximation this amplitude is determined by the vicinity of the
classical trajectory connecting states |m〉 and |m+ 1〉 in imaginary time [91]:

υ = 4.50 (E3
JEC)

1/4 exp (−S0) (4.12)

Here S0 is the imaginary-time action on the classical trajectory (instanton). As it
is easy to see from the preceding discussion, S0 is just twice the action describing a
phase-slip in a single junction. We thus have (cf. equation 7 of the reference [52],
note the difference in the definitions of EC):

S0 = 2

√

8EJ

EC

(4.13)

We can now construct the tight-binding Hamiltonian describing the effect
of the phase-slips on the properties of the chain

H|m〉 = Em|m〉+ 4Nυ|m+ 1〉+ 4Nυ|m − 1〉 (4.14)
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Figure 4.14: Measured switching current vs external magnetic field at the tempera-
ture T = 280mK. Red diamonds: the median component of the switching current.

The coefficient 4 in the total tunneling matrix element is due to the number of
possible tunneling paths within one rhombus while N appears here because of the
fact that a phase-slip in any rhombus brings the system to the same state.

By solving numerically the Hamiltonian (4.14) and using the general relation
IS =

2e
~

dE/dγ one can find the current-phase relation for the rhombi chain at
arbitrary fluctuations strength. This is the exact procedure that we have used in
the following section in order to fit the measured current-phase relation for quantum
chains. We found a very good agreement between the theoretical predictions and
the measured data.

4.4 Measurement of the current-phase relation of

a quantum rhombi chain

In order to characterize the regime of quantum fluctuations, we performed experi-
ments on an 8 rhombi chain with a ratio of EJ/EC ≈ 2. The circuit electrical scheme
is identical to the one presented in Fig.4.4. The fabrication process was practically
the same as for the classical rhombi chain (for details on the fabrication, see chapter
2). The relevant energy scales for the rhombi chain are given by EJ = 1.6K and
EC = 0.8K. The readout junction of this circuit has a critical current IRO

C ≃ 1µA.
Fig. 4.14 shows the dependence of the measured switching current as a

function of the applied magnetic field. As in the case of the classical chain, the
signal can be seen as a superposition of three components. The modulated oscillat-
ing component characterizes the dependence of the supercurrent of the chain as a
function of both the frustration f and the phase difference γ. The oscillations are
periodic with period h/2e. As we approach the frustrated regime no oscillations of
the supercurrent are measured: in the region f = 1/2 the supercurrent of the chain
is strongly suppressed and smaller than the ≈ 1 nA noise level of our experiment.

The median component Imed, shown in Fig.4.14, as in the case of the classical
chains, shows a periodic evolution as a function of the frustration. We measure an
amplitude of about 1 nA for the Imed oscillations. As we show in chapter 6 (fig.
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Figure 4.15: Measured switching current (black diamonds) vs external magnetic
field in the zero frustration region at T = 280mK. The line (in red) represents the
theoretical fit which gives an effective value for the Josephson energy E∗

J = 0.5EJ .
For clarity, from the measured switching current we have substracted the constant
switching current value of the read-out junction: Imed(f = 0) ≃ 743nA.

6.12 and fig. 6.11), this periodic behavior of Imed is an effect of the switching from
the total potential of the read-out junction plus the rhombi chain.

We did a detailed quantitative analysis of the current-phase relation at zero
flux frustration. Fig.4.15 shows the measured current phase relation in the non
frustrated regime that can be perfectly fitted by the theory described in section 4.3.
The only fitting parameter is the Josephson energy E∗

J for which we find half of the
experimental determined one. The experimental value for EJ has been deduced from
the normal state resistance measurement of the large Josephson junction that is in
parallel to the rhombi chain (similar to the measurement in Fig. 3.3). Unfortunately
the maximal current in the IV characteristic was two small and we did not reach the
linear regime. Thus, our estimated value for EJ might be significantly larger than
the real value.

This experimental result suggests the validity of the theoretical model ini-
tially proposed by Matveev et al. [52] for the current-phase relation in simple Joseph-
son junction chains, that we extended here for QPS occuring in the two dimensional
potential of the rhombus.

As we increase the applied magnetic field, the frustration inside the rhombi
modifies the value of the effective Josephson energy, which becomes EJcos(πf).
Using this value, we calculated the evolution of the critical current as a function
of the frustration f . Fig.4.16 presents both the results of the calculations and
the measured values for the critical current. We can see that the model gives a
quantitative description for the measured current amplitude dependence in the non
frustrated regime while it can only give a qualitative description in the frustrated
region. Indeed, if we compare the phase-slip quasiclassical trajectories at f = 0 and
close to f = 0.5 but outside the frustration window (eq. (4.9)), presented in Fig.
4.13a and b, we see that they are very different.

The width of the histograms at 300mK is w ≃ 45 nA. At low temperatures,
up to T = 400mK we observe a saturation of the histogram width w, which is a
signature of the MQT escape becoming dominant over the thermal escape [10]. At
higher temperatures the switching current decreases and so does the width of the
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Figure 4.16: In black: the measured switching current oscillations as a function of the
frustration f . The red dotted line gives the theoretical prediction for the amplitude
of the switching current oscillations by using an effective value E∗

J = 0.5EJ . For
clarity we have substracted the median component Imed.

450 500 550 600 650 700 750 800 850

0.0

0.5

1.0

400 600 800 1000
0

10

20

30

40

P
S

W

I
bias

 (nA)

 910 mK

 819 mK

 728 mK

 637 mK

 546 mK

 410 mK

 364 mK

 318 mK

(b)

w
 (

n
A

)

Temperature (mK)

(a)
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switching curves w (see fig. 4.17). The decrease of w can be explained by the fact
that the read-out junction is not strongly under damped, but it is rather in an in-
termediate regime with a quality factor Q = 3. Thus, we can expect more complex
switching dynamics, when the phase particle can be retrapped in the next well of
the washboard [93].

In conclusion, experiments on the rhombi chain in the quantum regime
(EJ/EC ≈ 2) show a significant reduction and rounding of the current-phase rela-
tion in the non frustrated region and a complete suppression of the supercurrent
at maximal frustration. In the non frustrated regime, the QPS model proposed
by Matveev et al. [52] fits the measured current phase-relation for an eight rhombi
quantum chain. These experiments qualitatively suggest the validity of the theo-
retical model. For an accurate quantitative comparison, in the next chapter (5) we
will present detailed measurements performed on Josephson junction chains.

4.5 Measurement of the effect of microwave irra-

diation on the state of a 2D rhombi network

In this section we present the results of an experiment where we shined microwaves
on a 2D rhombi network (see section 4.2.2), in order to attempt the excitation
the superior levels in the energy spectrum. Ideally, we would like to observe the
transition to the first excited state of the topologically protected rhombi qubit.
We start by discussing our experimental setup for the application of measurement
pulses with short rise and duration time. These pulses are essential for the detection
of physical states which decay rapidly in time. We will then continue with the
presentation of the response of the rhombi network to microwave irradiation.

In Fig. 4.18 we show a simplification of the electrical scheme of Fig. 4.9
for the circuit in the harmonic limit. We replaced the Josephson junction circuit by
an equivalent inductance LJ . Due to the fact that the inductance of the read-out
junctions is significantly smaller than that of the rhombi network, LRO

J ≪ Lrhombi,
the total inductance of the Josephson junction circuit is well approximated by LJ =
2LRO

J . The scheme represented in Fig. 4.18 is composed of two electrical circuits,
coupled by the mutual inductance M . The first circuit that we call primary is
directly connected to a high frequency generator. We denote the current in the
primary circuit by ip. The secondary circuit is a resonant LC circuit with a total
inductance Ltot = LJ + L ≃ 50 nH and a capacitance C = 270pF. The value of the
mutual coupling is M = 50 pH.

In Fig. 4.19, we show the resonant response of the LC secondary circuit,
to a microwave signal in the primary. At resonance, the switching probability of
the Josephson circuit increases and we measure a positive peak. The position of the
peak corresponds to the expected frequency: vLC = 1/

(

2π
√

LtotC
)

≃ 43MHz.
I would like to discuss the method we used to apply short measurement

pulses. As it can be seen in the electrical scheme in fig. 4.18, we induce the fast pulse
from the primary circuit via an inductive mutual coupling M into the secondary
circuit, which is equivalent to a LC underdamped oscillator. Any current step in the
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Figure 4.18: Simplified electrical scheme of the sample in Fig. 4.9, in the harmonic
limit. The rhombi network in parallel with the read-out junctions is replaced by an
equivalent inductance LJ . The arrows represented in the figure, indicate the positive
sign convention for the currents Ibias, ip and is.
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Figure 4.19: Measured resonance of the LC circuit represented in Fig. 4.18. The
red line shows a Lorentzian fit of the measured data. The inset shows the fitted
values for the frequency of resonance vLC and the width of the peak.
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primary circuit will produce oscillations in the secondary circuit. In order to induce
a short pulse in the sample circuit, the duration dt of the primary current pulse ip

needs to be carefully calculated and adjusted. Otherwise, current oscillations at the
eigenfrequency of the LC oscillator persist in the secondary circuit, long time after
the initial pulse in the primary circuit. The optimal value of the primary current
pulse duration is dt = 2π

√
LtotC ≃ 23 ns. For this value of dt there are no current

oscillations in the sample circuit after the end of the pulse in the primary (see Fig.
4.20a).

We calculated the response of the secondary circuit to a current pulse in the
primary one using the Laplace formalism. The response function of the secondary
circuit, in frequency representation, is given by:

Y (s) = L {is (t) , s} = M

Z (s)
L {ip (t) , s} (4.15)

where L {ip (t) , s} and L {is (t) , s} are the Laplace transforms of the primary and
secondary current pulses. M/Z (s) is the frequency dependent transfer function to
the secondary, where Z (s) is given by:

Z (s) = Ltot · s+
1

C · s
(4.16)

In order to obtain the current in the secondary we calculate the inverse Laplace
transform for the response function Y (s):

is (t) = L−1 {Y (s) , t} (4.17)

Fig. 4.20 shows the calculated current response is (t) of the sample circuit
for three different durations dt of the current pulses ip. In Fig. 4.20a, for the optimal
current pulse duration dt = 23 ns, we notice that the oscillations of the current is are
perfectly suppressed at the end of the pulse. We define the duration of the fast pulse
in the sample circuit ∆t, as the time interval for which the values of the current is

are positive. For the parameters of our LC circuit, ∆t ≃ 10 ns. Fig. 4.20b shows the
situation if the pulse duration is 5% longer than the optimum value. We observe
non negligible oscillations in the secondary circuit after the end of the current pulse
in the primary. For a current pulse with a duration 50% longer than the optimal
value, we observe an amplification of the current oscillations in the sample circuit
at the end of the pulse in the primary, as shown in Fig. 4.20c.

In order to measure the response of the rhombi network to microwaves, we
have performed the following measurement sequence. We apply microwaves via a HF
line that is capacitively coupled to the middle island of the network (as shown in Fig.
4.9). We apply a microwave pulse during 10µs, in order to excite the higher levels
in the energy spectrum of the rhombi network. The microwave pulse is immediately
followed by a fast measurement pulse (∆t = 10 ns), induced in the sample circuit as
we have explained above.

We observe several resonance peaks with resonance frequencies depending
on ΦR. A typical resonance peak is represented in Fig. 4.22. In Fig. 4.21 we
represented the position of the peaks as a function of the rhombi frustration f =
ΦR/Φ0. The signature of the resonant transition to the excited state of the rhombi
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network would be a resonance frequency depending periodically on ΦC , with a period
equal to 5 · 10−3ΦR. However, despite detailed frequency scans and excitations at
high microwave powers, we did not observe any peaks showing ΦC periodicity. We
would like to notice the high power needed for the observation of the resonances of
Fig. 4.21. We think that the peaks correspond to transitions to the excited states of
a single rhombus in the network. The weak coupling of the rhombus modes to the
microwaves in our setup would explain the large power needed for their observation.
Similar results have been reported by the experimental group of M. Gershenson at
Rutgers University.

In conclusion, we have tried to measure the excited states of a 2D rhombi
network, which was designed to realize a topologically protected qubit. The mea-
surements presented in this section suggest that the direct application of microwaves
on the middle island of the rhombi network, as depicted in Fig. 4.9 does not pro-
vide a sufficiently large coupling to excite the superior levels of the rhombi network.
With increasing power, we could only excite local modes of the network instead of
the collective 2D qubit modes.



Chapter 5

Measurement of quantum

phase-slips in a Josephson

junction chain

The interplay between superconductivity and Coulomb interactions has been stud-
ied for more than 20 years now [20, 52, 84, 94–103]. In low-dimensional systems,
superconductivity degrades in the presence of Coulomb repulsion: interactions tend
to suppress fluctuations of charge, thereby increasing fluctuations of phase. This
can lead to the occurrence of a superconducting–insulator transition, as has been
observed in thin superconducting films [97, 98], wires [20] and also in Josephson
junction arrays [84,99,101–103] (see Fig. 5.1). The last of these are very attractive

�
�

��

Figure 5.1: Electrical scheme of a chain of Josephson junctions. We denote the
polarization charges on the islands qi and the phase differences between the islands
θi.

systems, as they enable a relatively easy control of the relevant energies involved in
the competition between superconductivity and Coulomb interactions. As we have
shown in Chap. 3.1, to each Josephson junction in the chain we can associate two
energy scales: the Josephson energy, EJ = Ic

~

2e
, which quantifies the strength of

the Cooper pair tunneling through the junction, and the charging energy ,EC =
e2

2C
,

which quantifies the dual process, the strength of the Cooper pair localization due
to the junction capacitance. EJ and EC can be well controlled by carefully engi-
neering the fabrication process (chap. 2). Moreover, EJ can be tuned in situ, if the
junctions are realised in form of SQUIDs, by applying a magnetic flux ΦS inside
the SQUID loop. Josephson junction chains have already been successfully used to
create particular electromagnetic environments for the reduction of charge fluctua-
tions [36,104,105]. Recently Josephson junction arrays have again attracted interest
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as they could provide the basis for the realization of new types of superconducting
devices: new types of qubits [36,40], metamaterials, amplifiers [106,107] or quantum
current standards [51]. In view of the many possible applications of these systems
and the implementation of more complex circuits, it is important to understand
quantitatively the ground state properties of Josephson junction chains.

In the following we will present quantitative measurements of QPS in the
ground state of a Josephson junction chain [108]. In our experiments, we tune in
situ the strength of quantum phase fluctuations, either by tuning EJ or by inducing
polarization charges qi on the superconducting islands of the chain. In both cases,
we obtain an excellent agreement with the tight-binding model initially proposed by
K. A. Matveev and colleagues [52].

5.1 Theoretical description of QPS in Josephson

junction chains without polarization charges

In superconducting circuits, each electrical element such as an inductor, a capacitor
or the Josephson element can add a degree of freedom. In the case of small circuits,
by applying Devoret’s circuit theory [109], a complete analytical description that
takes into account all degrees of freedom can be obtained. However, when the
circuits contain an increasing number of elements, as for example Josephson junction
chains, even numerical solutions of the problem become very cumbersome to obtain
when taking into account all degrees of freedom. Nevertheless, our measurements
demonstrate that the ground state of a phase-biased Josephson junction chain (see
Fig. 5.2a) can be described by a single degree of freedom. Although the chain is a
multidimensional object, the effect of QPS can be described by a single variable, m,
that counts the number of phase-slips in the chain.

We start by giving a short introduction on the low-energy properties of a
Josephson junction chain analyzed in terms of QPS [52]. Let us consider the simplest
model for the Josephson junction chain, shown in Fig. 5.2a. The chain contains N
junctions and is biased with a phase γ.

Let θi be the phase differences over the junctions. Ignoring the charging
energy for the moment, in the classical (EJ ≫ EC) ground state the phase bias γ is
equally distributed on the N junctions: θi = γ/N , as illustrated by the solid line in
Fig. 5.2b. The resulting Josephson energy hence reads:

E0 =
N

∑

i=1

EJ (1− cos θi) = EJ
γ2

2N
(5.1)

The chain is simply equivalent to a large inductance N LJ , which is N times larger
than the Josephson inductance of one junction. If a phase-slip occurs on one of the
junctions, say the jth junction, then θj → θj + 2π. The constraint

∑

i θi = γ would
be violated after such a phase-slip event if the phases across all other junctions do
not adjust. Therefore, the phase difference θi over all other junctions changes a little
from γ/N to (γ − 2π) /N to accommodate the bias constraint (see the dashed line
in Fig. 5.2b). We notice that a phase-slip on a single junction leads to a collective
response of all junctions. Consequently, after m phase-slips, the Josephson energy
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Figure 5.2: Graphic representations describing the effect of QPS in a six-junction
chain and the resulting chain’s energy and supercurrent. (a) Schematic picture of
the phase-biased Josephson junction chain. (b) Representation of a phase-slip in
the chain. The filled diamonds show the initial configuration. The open diamonds
show the phase configuration after a 2π flip of the phase on the third junction θ3.
(c) Energy levels of a Josephson junction chain with N = 6 as a function of bias
phase γ for different ratios EJ/EC . For EJ/EC = 20 (black lines) no splitting
is visible at the crossing points. For EJ/EC = 3 (red lines) a gap emerges that
increases rapidly with decreasing EJ/EC . The blue lines show the energy levels for
EJ/EC = 1.3. For each EJ/EC , the two lowest-lying states have been calculated by
numerical diagonalization of the Hamiltonian (5.3). (d) Current–phase relation for
the ground state Eg (γ) for the same EJ/EC ratios as in (c). The supercurrent is
calculated from the derivative of the energy band: is = (2e/~) (∂Eg (γ) /∂γ). The
chain current is reported in units of the critical current of a single chain junction
i0 = (2e/~)EJ .
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of the entire chain changes from EJ
γ2

2N
to EJ

(γ−2πm)2

2N
. The classical ground state

energy of the chain consists of shifted parabolas that correspond respectively to a
fixed number m of phase-slips (see Fig. 5.2c). For the special values γ = π (2m+ 1),
the energies Em and Em+1 are degenerate.

If we now take into account the finite charging energy EC , QPS mix the
neighboring states |m〉 and |m ± 1〉. The effect is most powerful in the vicinity of
the points γ = π (2m+ 1), where the degeneracy is lifted and the crossing points
become anti crossings (see the difference between the red and black plots in Fig.
5.2c). In the limit of rare phase-slips, that is, EJ ≫ EC , the hopping element for
the QPS is just the width of the Bloch band for a single junction. Its value can be
approximated by [110,111]:

v = 16

√

EJEC

π

(

EJ

2EC

)0.25

e
−

√

8
EJ

EC (5.2)

As a phase-slip can take place on any of the N junctions, the hopping
term between the two states |m〉 and |m ± 1〉 is given by Nv. Therefore, using a
tight-binding approximation, the total Hamiltonian for the chain is:

H |m〉 = Em |m〉 − Nv [|m − 1〉+ |m+ 1〉] (5.3)

Figure 5.2c shows the numerical calculation of the two lowest eigenenergies
of the Hamiltonian (5.3) for three different ratios EJ/EC = 20, 3, and 1.3 in the case
of a six-junction chain. Figure 5.2d shows the corresponding current-phase relation
of the chain in the ground state. The chain’s supercurrent is obtained by the calcu-
lation of the derivative of the ground-state energy Eg (γ): is = (2e/~) (∂Eg (γ) /∂γ).

For large values of EJ/EC , quantum phase fluctuations are very small
(v → 0) and the current-phase relation has a sawtooth-like dependence. The critical
current of the chain is given by the maximum slope of the parabola arches, which
is at the crossing points γ = π (2m+ 1). The chain’s critical current is:

ic = (2e/~)

[

∂

(

EJ
γ2

2N

)

/∂γ

]
∣

∣

∣

∣

∣

γ=π

=
π

N
i0 (5.4)

where i0 is the critical current of one junction. So the critical current of the classical
chain is approximately N/π times smaller than that of a single junction of the
chain. We call this regime “classical” because the phase-slip amplitude is small and
the phases θi behave as quasi-classical variables.

When EJ/EC decreases, quantum phase fluctuations increase, the current-
phase relation becomes rounded and it tends ultimately to a sinusoidal (see fig.
5.2d). Thus, the critical current becomes exponentially suppressed with increasing
N and decreasing EJ/EC (ref. [52]).

5.2 Phase biasing schemes for the Josephson junc-

tion chain

We have seen that in the framework of the MLG theory of QPS it is essential to
lock the phase bias γ over the chain. In figure 5.3, I present different practical
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implementations of controlled phase bias.

ΦC
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γ γ
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(a) (b)
γ

(c)

Figure 5.3: Different practical implementations of the phase bias for the Josephson
chain.

The first possibility is to lock the the phase γ by inserting the Josephson
chain inside a superconducting loop, as depicted in figure 5.3a. γ is locked by the
superconducting wire and it is directly tuned by the magnetic flux ΦC applied on
the loop. The advantage of this technique is that it offers direct control of the
phase bias. In practice, using this scheme we can sweep γ from 0 to 2π with very
good precision, by using either mutual couplings to on chip loops, or by using a coil
which induces a perpendicular uniform magnetic field on the plane of the sample.
This phase biasing scheme was first implemented by D. Vion et al. [26] to bias a
superconducting quBit. It has since been used for the measurement of the ground
state of superconducting Josephson circuits [40,91] and atomic contacts [73].

The second possibility, shown in figure 5.3b, is to lock the phase γ using a
large capacitor C in parallel with the chain. In this case we fix the time evolution
of the phase to zero. The value of γ will be determined by the energy minimum of
the system in a given configuration. If for example we DC current bias the chain,
in the dissipation-less regime (V = 0) there will be a direct correspondence between
the current I and the phase γ. This relation is non other than the current-phase
relation, the phase derivative of the ground state energy landscape (for example see
fig. 5.2d).

The third option is to voltage bias the junction chain. Following the Joseph-
son equations, the time evolution of the phase will be fixed by the voltage V . This is
a particularly interesting biasing scheme in the limit of quantum chains, when phase-
slips strongly suppress superconductivity and induce an insulator state. The voltage
bias allows us to directly test the critical voltage of the insulator state. It has been
recently proposed in ref. [51] that a chain in the insulator regime, under microwave
irradiation, would exhibit a current-voltage characteristic with regions of constant
current. These current steps are given by a very simple relation I = 2e f , where f
is the frequency of the microwave irradiation. If this prediction is experimentally
confirmed, Josephson junction chains are good candidates for the realization of a
quantum current standard.

In the following paragraphs I will present measurements performed using
these three biasing schemes.
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5.3 Measurement of quantum phase-slips

To measure the effect of QPS on the ground state of a Josephson junction chain,
we have studied a chain of six junctions. Our measurement set-up and the junction
parameters are presented in Fig. 5.4 and Table 5.1. An electron beam image of the
measured sample is shown in Fig. 5.5. Each junction in the chain is realized by a
superconducting quantum interference device (SQUID) to enable tunable Josephson
coupling EJ . In this way we can tune in situ the EJ/EC ratio by applying a uniform
magnetic flux ΦS through all SQUIDs, and consequently we can control the strength
of the QPS amplitude v (see eq. 5.2). We have used the phase biasing scheme
presented in figure 5.3a and discussed in the previous section. We placed the chain
in a closed superconducting loop, threaded by the flux ΦC , containing an extra
shunt Josephson junction that is used for the read-out of the chain state. The flux
ΦC enables the control of the bias phase γ = ΦC − δ over the chain. δ is the phase
difference on the read-out junction. Since the Josephson energy ERO

J of the read-out
junction is much larger than the one of the chain, the phase difference δ is practically
independent on ΦC . In Fig. 5.5 we can see a gate electrode, capacitively coupled to
the middle island of the chain. For the moment we connect this gate to the ground
so that VG = 0. The influence of non zero gate voltage will be discussed in the
following sections (5.4 and 5.5).
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Figure 5.4: Measurement circuit. The 6-SQUID chain is inserted in a superconduct-
ing loop. The flux ΦC created by on-chip coils controls the phase difference over
the chain. The flux ΦS through the SQUIDs can be controlled independently by a
second coil. We denote the phase difference over the read-out junction δ.

We have measured the switching current of the entire Josephson junction
circuit containing both the chain and the read-out junction. The switching current
was determined from the switching probability at 50%. The switching probability
as a function of bias current Ibias has a width of 20 nA. We apply typically 104

bias-current pulses of amplitude Ibias and measure the switching probability as the
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Figure 5.5: e-Beam image of the measured sample. (b) The first SQUID in the
chain. (c) The read-out junction

Read-out junction SQUID at ΦS = 0

SRO = (121± 5)× 103 nm2 SSQ = (30± 2)× 103 nm2

CRO = 5.8± 0.2 fF CSQ = 1.4± 0.1 fF

RRO
N = 968± 5 Ω RSQ

N = 3800 ± 450 Ω

IRO
C = 330 ± 2 nA ISQ

C = 83 ± 9 nA

Table 5.1: Parameters of the sample: size, capacitance, normal-state resistance and
critical current of the read-out junction and a single SQUID of the chain. The
critical-current variance for the junctions in the chain is estimated to be smaller
than 4% (see Chap. 2.5).
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ratio between the number of switching events and the total number of pulses. The
current pulses have a rise time of 8µs and a total duration of 20µs. A detailed
description of the measurement sequence is presented in chapter 3.1 . From the
switching-current measurements we deduce the effect of QPS on the ground state of
the chain.
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Figure 5.6: Measured switching current (black diamonds) as a function of ΦC over
the chain for three different EJ/EC ratios. The measurement noise for each point is
about 0.2nA. The red lines represent the corresponding theoretical calculations for
the switching current.

The measured switching current corresponds to the escape process out of
the total potential energy Utot containing the contributions of the read-out junction
and the chain:

Utot (δ,ΦC) = ERO
J cos δ + Eg (ΦC − δ)− ~

2e
Ibiasδ (5.5)

Where Eg is the ground state of the 6-SQUID chain calculated by solving the Hamil-
tonian (5.3). The escape from the potential Utot occurs by macroscopic quantum
tunneling (MQT). I would like to point out that the total washboard potential (5.5)
has an arbitrary shape (especially in the limit of rare phase-slips) so the usual MQT
theory [10,80,81], that has been deduced for sinusoidal potentials, does not provide
a sufficiently accurate description. In ref. [82] the MQT rate for an arbitrary poten-
tial has been calculated in the limit of weak tunneling using the dilute instanton-gas
approximation [83]. The MQT model that we have constructed for an arbitrarily
shaped potential is discussed in chapter 3.3. Knowing the escape rate, we can cal-
culate the escape probability PSW as a function of Ibias and infer the theoretical
switching current (at PSW = 50%) for each polarization point ΦC .

The results of numerical calculations and the experimental data for the 6-
SQUID chain are shown in Fig. 5.6. The theory fits very well both in amplitude
and shape the oscillations of the measured switching current. Let us point out that
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Figure 5.7: Comparison between the measured and the calculated switching-current
amplitude as a function of the EJ/EC ratio. Black diamonds: measured; red open
circles: calculated. Note that the switching-current amplitude is divided by the flux-
dependent critical current of a single SQUID i0, to reveal the effect of quantum-phase
fluctuations. The top curve (blue open circles) shows the theoretical calculation of
the switching-current amplitude in the absence of quantum phase fluctuations. The
lines are guides for the eye.

we have used the nominal values for EJ and EC calculated from the characteristics
of the sample indicated in Table 5.1. We evaluate the precision of the determination
of EJ and EC to be in the range of 10%. This error bar on EJ and EC yields
an uncertainty of 15% for the phase-slip amplitude Nv. The eventual presence of
junction inhomogeneity or an important effect of background charges would imply
a significantly larger decrease of the phase-slip amplitude [52]. The good agreement
between theory and experiment confirms the homogeneity of our junctions. It also
excludes a significant contribution of background charges in the overall shape of the
switching curve and demonstrates the collective nature of the phase-slip events.

From the measurements in Fig. 5.6, we define the switching current ampli-
tude ∆ISW as half of the peak-to-peak variation of the switching current with the
flux ΦC . Figure 5.7 shows the measured ∆ISW and the corresponding theoretical
calculations as a function of EJ/EC . For each measurement, EJ has been calculated
using the flux dependence of the SQUID’s Josephson coupling: EJ (ΦS) =

~

2e
i0 (ΦS)

with i0 (ΦS) = ISQ
C cos (πΦS/Φ0). To distinguish between the suppression of the

switching current that is due to quantum phase fluctuations and the one that is
simply due to the well-known cancellation of the SQUID’s critical current as a func-
tion of flux, we plot the switching-current amplitude divided by the critical current
of a single SQUID i0. We see that the measured switching-current amplitude follows
very well the predicted theoretical suppression of the switching-current oscillations
in the presence of quantum phase fluctuations. From our measurements we can also
deduce the strength of the QPS amplitude. With decreasing EJ/EC ratio from 3 to
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1 the QPS amplitude Nv increases from 0.8 to 2.7 GHz. In addition, in Fig. 5.7
we have plotted for comparison the calculation for the switching-current amplitude
in the case when quantum phase fluctuations would be negligibly small: v ∼ 0. As
expected, we get a practically flat dependence as a function of EJ/EC .

Further on, the upper x axis of Fig. 5.7 shows the ratio EJ/kBT of the
Josephson energy with respect to the thermal energy at T = 50mK. As EJ ≫ kBT ,
thermal fluctuations are excluded to explain the suppression of the switching cur-
rent with decreasing EJ/EC . Further measurements (see fig. 6.7) reveal a constant
switching-current amplitude and width of the switching distribution up to a tem-
perature of T = 100mK.
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Figure 5.8: Intervals in the current-phase relation where the state of the chain is
sensitive to the gate voltage (highlighted blue regions).

In conclusion, we have presented a detailed experimental characterization
of the effect of QPS on the ground state of a Josephson junction chain. These
phase-slips are the result of quantum phase fluctuations induced by the finite charg-
ing energy of each Josephson junction in the chain. The experimental results can
be fitted in very good agreement by considering a simple tight-binding model for
the phase-slips [52]. The measurements also show that a Josephson junction chain
under phase-bias constraint can behave in a collective way very similar to a single
macroscopic quantum object.

We can now ask what is the influence of the island’s electric charges on the
ground state of the chain. Sweeping the voltage VG on the gate electrode visible in
Fig. 5.5 we induce polarization charges on the islands of the chain. In fig. 5.8, the
blue highlighted regions mark the phase intervals where we observe a change in the
switching current of the circuit as a function of the gate voltage VG. In the following
sections we will discuss in detail the influence of the islands charges on the QPS
amplitude.
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5.4 Theoretical description of QPS in the pres-

ence of polarization charges

In the Matveev-Larkin-Glazman (MLG) theory [52], the main ingredient is the in-
terference of QPS occurring in the different junctions. A direct way to probe this
interference is provided by the change in the geometric phase of the QPS induced
by the charge frustration of the chain islands, also known as Aharonov-Casher in-
terference [53]. The accumulation of a geometric phase by neutral particles with
a magnetic moment circling an electric charge is a physical phenomenon dual to
the well known Aharonov-Bohm [112, 113] interference of charged particles circling
magnetic field lines. The Aharonov-Casher model has been quantitatively confirmed
by experiments using neutron [114] and atomic [115] interferometry. In solid state
systems, in quantum well ring structures, conductance measurements [116] have
shown fluctuations as a function of the spin-orbit coupling strength. These fluc-
tuations are understood as a direct manifestation of the Aharonov-Casher phase.
In Josephson junctions circuits, measurements of the conductivity versus a central
gate voltage have shown a signature of the Aharonov-Casher interference for vortex
tunneling [117]. However, due to quasiparticle poisoning, no quantitative agreement
could be demonstrated.

As we have shown in the previous section, the MLG theory constructs a
model for the quantum fluctuations in a Josephson chain, using a tight-binding
approximation, which only couples neighboring flux states m:

H |m〉 = Em |m〉 − v∗ [|m − 1〉+ |m+ 1〉] (5.6)

Where Em = EJ

2N
(γ − 2πm)2 is the energy of the |m〉 state of the chain polarized

at phase γ. The coupling term v∗ depends on the ratio EJ/EC , the number of
junctions N in the chain and, as we will explain in the following, it also depends on
the configuration of polarization charges on the islands of the chain.

The complete Hamiltonian of the Josephson chain is the following:

H =
1

2

∑

i,j

[

C−1
]

ij
(Qi − qi) (Qj − qj) +

∑

i

EJ [1− cos (ϕi − ϕi−1)] (5.7)

Where Qi is the charge on the i-th island, qi is the polarization charge and ϕi is the
superconducting phase on the island. C−1 is the matrix of inverse capacitance of
the chain and EJ is the Josephson coupling. The first sum in the expression (5.7) is
the charging energy for the islands of the chain and the second sum represents the
total Josephson coupling for all the junctions in the chain.

In our experimental setup (see fig. 5.5a), the charge frustration qi on the
islands is tuned by a capacitive coupled gate electrode. In Fig.5.9a we show an
idealized view of a superconducting ring containing 5 islands connected by Josephson
junctions. In the vicinity of the ring we find the gate electrode that can induce
polarization charges qi on the chain islands. A gate voltage VG induces the charge
frustration qi = Cg

i VG/(2e) on the i-th island. As the couplings to the gate electrode
Cg

i are not equivalent for all islands, for a certain gate voltage, we will induce a charge
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configuration that will generally be denoted in the following way: (q1, q2, q3, q4, q5).
The white traces in Fig.5.9a represent the 6 possible paths for a vortex to cross
the ring, through one of the 6 Josephson junctions. The mathematical expressions
for the corresponding QPS probability amplitudes are also shown for each path.
Notice that the amplitudes differ only by the geometric (Aharonov-Casher) phase,
which is proportional to the induced charge frustrations qi on the islands. In the
next paragraphs,we will discuss the origin and the physical significance of these
geometrical phases.

Here we present the detailed derivation of the hopping term v∗ of the MLG
model in the charge frustrated chain. Similar calculations have been performed for
the Josephson chain [52] and for slightly different Josephson circuits [54, 118]. To
calculate the hopping term we need to find the classical trajectories connecting states
before and after one phase-slip event. There are N such trajectories, each of them
corresponding to the phase-slip occurring on a particular junction in the chain. In
a semi classical approximation, the contribution of the phase-slip in the junction i
to the hopping term is governed by the imaginary-time action Si:

vi = Ae−Si (5.8)

The prefactor A accounts for the contribution of the non-classical paths close to the
classical one that defines Si.

In order to calculate the actions Si, we need to derive the complete La-
grangian for the Josephson chain. The electrostatic effects in the Josephson chain
are described by the following Hamiltonian:

HC =
1

2

∑

i,j

[

C−1
]

ij
(Qi − qi) (Qj − qj) (5.9)

The polarization charges qi =
C

g

i
Vg

2e
are controlled by the gate voltage, as

depicted in Fig. 5.9b. We would like to mention that in our experimental setup we
have added screening lines to the central gate, in order to obtain a coupling to the
central island at least 10 times larger than the couplings to the rest of the chain:
Cg
3 ≃ 10 ∗ Cg

4 , Cg
2 ≃ 50 ∗ Cg

1 , Cg
5 .

Since the charges Qi and the phases of the islands ϕi are canonical conjugate
variables, the equation of motion for the phase reads:

ϕ̇i =
∂HC

∂Qi

=
∑

j

[

C−1
]

ij
(Qj − qj) =⇒ Qi =

∑

j

Cijϕ̇j + qi (5.10)

Using eq. (5.10) we can rewrite the charging Hamiltonian (5.9) in the phase
notation:

HC =
1

2

∑

i,j

Cijϕ̇iϕ̇j (5.11)

The charge part of the Lagrangian for the Josephson junction chain reads:

LC =
∑

i

Qiϕ̇i − HC (5.12)
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Figure 5.9: Schematic view of the experimental setup used to probe the QPS inter-
ference in a chain of 6 Josephson junctions. In (a) we show an idealized view of the
experimental design. The chain contains 5 small superconducting islands connected
to each other and to the leads by identical Josephson junctions. The islands are
coupled to a nearby gate electrode. In (b) we present the electrical scheme of the
measurement. The 6-SQUID chain is inserted in a superconducting loop. The flux
ΦC created by on-chip coils controls the phase difference γ over the chain. The in-
dependently controlled flux Φs through the SQUID loops is used to tune in situ the
ratio EJ/EC . The phase difference over the read-out junction is denoted by δ. The
gate electrode couples to the charge qi on island i via the capacitance Cg

i . The cou-
pling to the central island Cg

3 is at least 10 times larger than all other capacitances
and determines the dominant gate effect at low voltage.
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Following formula (5.12) and using the expressions (5.10) and (5.11) we get
for the charge Lagrangian the following expression:

LC =
∑

ij

Cijϕ̇iϕ̇j +
∑

i

qiϕ̇i − 1

2

∑

ij

Cijϕ̇iϕ̇j

LC =
1

2

∑

ij

Cijϕ̇iϕ̇j +
∑

i

qiϕ̇i (5.13)

The capacitance matrix Cij contains the values of all coupling between the
islands. However, in reality, due to the geometry of the sample, the capacitance
between first neighbors is orders of magnitude larger then the stray capacitance
between second order neighbors. This means that we can safely work within the so
called nearest neighbor capacitance approximation, and the matrix Cij only gets non
zero contributions for the elements closest to the main diagonal:

















2C −C 0 ... 0
−C 2C −C ... 0
0 −C 2C ... 0
... ... ... ... −C
0 0 0 −C 2C

















(5.14)

Where C is the capacitance of one junction in the chain.
Using the approximation (5.14) the expression of the charge Lagrangian is

simplified and it reads:

LC =
1

2

∑

i

C(ϕ̇i − ˙ϕi−1)
2 +

∑

i

qiϕ̇i (5.15)

Introducing the phase differences on the junctions θi = ϕi+1 − ϕi and in-
cluding the Josephson energy, we derive the complete Lagrangian of the chain:

L =
∑

i





˙(θi)
2

16EC

− EJ cos θi



 −
∑

i

piθ̇i , pi =
i−1
∑

j=1

qi (5.16)

We can see that the Lagrangian (5.16) has two components which have very
different physical consequences. The first sum that we call L0 is independent on the
frustration charges qi. It gives a contribution to the real part of the phase-slip
amplitude vi, that is given by the Bloch band width (cf. eq. 5.2). For identical
junctions in the chain, the real part of vi is independent on the path chosen by the
phase-slip. The second sum of the Lagrangian (5.16), which we call δL, has the form
of a total time derivative. Hence, this term does not change the classical equations
of motion and the real part of the classical action on a single trajectory. However,
δL gives the tunneling amplitude along each path its own phase factor. When a
phase-slip occurs on junction i, the other phase differences θj are changed by:

∆θj = −2π
N
+ 2πδij (5.17)

Thus, the contribution to the phase-slip action from the j-th junction in the presence
of charge frustration reads:
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δSj = −i

 

δL dt = −i
∑

k

pk∆θk = −2πipj − 2πi

N

∑

k

pk (5.18)

Since the last term in the expression above does not depend on j, it only adds an
overall phase term for the total phase-slip amplitude, thus has no physical effect on
the interference pattern and it can be dropped. Replacing this result in the formula
(5.8), we get the mathematical expression for the charge frustration dephasing factor
in the phase-slip probability amplitude of the j-th junction:

δvj = ei2πpj (5.19)

Combining equations (5.2) and (5.19), the phase-slip probability amplitude
on the j-th junction vj reads:

vj = v exp



i2π
j−1
∑

k=1

qk



 (5.20)

In other words, the absolute value of the probability amplitude for the
QPS is the same as in the absence of charge frustration, but the geometric phase
difference between the QPS is proportional to the total charge on the islands between
the junctions (see Fig. 5.9a). Finally, the full hopping term between the states |m〉
and |m+1〉 in the presence of charge frustration is the sum of phase-slip amplitudes
vi in all six junctions:

v∗ =
6

∑

i=1

vi (5.21)

At zero gate voltage, the expression (5.21) reduces to v∗ = Nv that was
used in the previous section to solve the Hamiltonian (5.3) and calculate the ex-
pected switching current represented in fig. 5.6 and fig. 5.7. Non-zero gate voltage
directly affects the interference of QPS by changing the geometrical (Aharonov-
Casher) phase difference between phase-slips in different junctions and thus provides
a direct test for the quantum nature of the chain’s ground state. By introducing the
hopping term v∗ into the tight binding Hamiltonian (5.6), we can obtain in principle
the full theoretical description of the charge frustrated chain, which can be used
to compare with the experimental data. However, in a real experiment, the gate
voltage Vg is not the only source of charge frustration. We should always expect a
significant contribution from random offset charges q0i :

qi =
Cg

i Vg

2e
+ q0i (5.22)

Static offset charges may significantly change the precise form of the re-
sponse of the chain to the gate voltage. Dynamical fluctuations of the offset charges
which are also expected, complicate the situation even more. If the random dy-
namics of stray charges would occur on the same timescale with the time needed
to acquire one experimental point, then any gate dependence would be washed out.
As we will show, the very fact that a significant gate effect is observed means that
the random charge dynamics is much slower than the typical time needed for one
experimental data point.
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5.5 Measurement of Aharonov-Casher QPS inter-

ference

Figure 5.10: QPS interferences controlled by the polarization charge induced on the
middle island of a 6 Josephson junction chain. (a) Schematic representations of
the 6 phase-slip probability amplitudes vi (in black) and the total QPS amplitude
v∗ (in red) as vectors in the complex plane. We show the representations of the
phase-slips in the case of four different charge configurations. The corresponding
charge configurations (shown in the figure) only differ by the charge on the middle
island. (b) (c) The black diamonds represent the measurement of the variation of
the switching current as a function of the induced charge on the middle island,
in the case of EJ/EC = 3 (b) and EJ/EC = 2 (c). The red lines represent the
corresponding theoretical calculations using the MLG model of QPS interference.
The chain was phase biased at a constant phase: γ = 0.9π. The working points for
the measurements presented in (b) and (c) are presented in the insets at the right
of each curve. The zero of the y axis corresponds to the switching current of the
zero charge configuration (0, 0, 0, 0, 0).

In the following we look in detail at a particularly simple case, where we
only induce charges on the middle island, thus obtaining the following charge con-

figuration: (0, 0,
C

g
3

Vg

2e
, 0, 0). In order to work in this this regime, we use the fact that

the central coupling Cg
3 is ∼ 10 times larger than any other coupling and we limit

the absolute value of the gate voltage to: |VG| ≪ 2e/Cg
4 . The charge frustration

on the middle island introduces a geometrical dephasing factor exp [i2πq3] between
the three QPS occurring on the junctions at the left of the middle island and the
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three QPS on the junctions at the right of the middle island. This dephasing pro-
cess is graphically represented for several charge configurations in Fig. 5.10a. The
expression (5.21) for the total QPS amplitude as a function of gate voltage when we
couple only to the central island can be rewritten in a simplified form:

|v ∗ | = 3v
√

√

√

√2 + 2 cos

(

πCg
3

e
Vg

)

(5.23)

Notice that from the expression (5.23), we expect v∗ = 0 for the charge configura-
tion (0, 0, 0.5, 0, 0) and v∗ = 6v for (0, 0, 0, 0, 0). We can now inject the expression
(5.23) for v∗ in the tight binding Hamiltonian (5.6) and calculate the dependence
of the chain’s ground state on the charge induced on the middle island. In order to
compare the measurements with the theoretical predictions for the switching cur-
rent, we need to go through one more step. As discussed in section 5.3, we have to
calculate the expected switching current of the read-out junction plus the ground
state of the chain (see eq. (5.5)), using the MQT equations for the arbitrary shaped
washboard potential (chapter 3.3). In Fig. 5.10 b and c, we show the experimental
results and the calculated oscillations of the switching current δISW as a function
of the charge induced on the middle island q3. For simplicity, in the definition
of the switching current δISW , we subtracted the value of the switching current
corresponding to the zero charge configuration (0, 0, 0, 0, 0). Around the charge con-
figuration (0, 0, 0.5, 0, 0) we expect a complete suppression of the total phase-slip
amplitude v∗ (see Fig. 5.10a), hence an increase of the supercurrent through the
chain. The expected change in the measured switching current due to the complete
suppression of phase-slips is ∼ 1 nA for EJ/EC = 3. If we increase the strength
of QPS by decreasing the ratio EJ/EC = 2, the complete suppression of QPS by
maximal charge frustration increases the switching current by almost 3 nA (see Fig.
5.10c).

In the case of both experimental curves presented in Fig. 5.10c, we have cor-
rected small horizontal shifts of the x-axis in order to compensate for static random
offset charges. However, we would like to mention that the corrections are small, in
the range of ∼ 0.2 (2e). Also, as it is visible from the shape of the curves, the charge
configuration does not change during the measurement. It is important to stress this
fact, as each measurement point implies 104 repeated switchings into the dissipative
state of the junctions. At every switching event, large numbers of quasiparticles are
excited in the circuit. The periodic dependence of the measured switching current
and the quantitative agreement with the theoretical predictions show that after each
switching event (that practically resets the charge configuration) the chain relaxes
back into the same charge state as before the switching. Moreover, we have directly
measured the frequency of random charge jumps (see fig. 5.13), by repeating the
same measurement several times and we observe a typical time of ∼ 5 minutes be-
tween changes in the island charge configuration. This time interval is sufficient in
our case as it enables the measurement of several hundreds of experimental data
points. Similar offset charge dynamics has been reported in experiments on Cooper
pair pumping [47].

We now go on to discuss more complex interferences of QPS, induced by
the charge on the central island and the two neighboring islands: q2, q3, q4 Ó= 0. We
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discuss the following charge configurations:

(0,
Cg
2Vg

2e
,
Cg
3Vg

2e
,
Cg
4Vg

2e
, 0) (5.24)

This regime is experimentally obtained for gate voltages |VG| & 2e/Cg
4 . In

this range of gate voltage, we induce a polarization charge of about 2e on the lateral
islands q2, q4 and a charge of several tens of Cooper pairs on the central island q3. In
our discussion we will use the fact that the hopping term v∗ remains constant upon
the change of the islands charge by an integer number n of Cooper pairs: qi → qi±n.
The polarization charges are effectively defined modulo 2e.

Figure 5.11: QPS interferences induced by the polarization charge on the middle
and the first two lateral islands (0, q2, q3, q4, 0) of the 6 Josephson junction chain at
EJ/EC = 3. (a) Schematic representations of the 6 phase-slip probability amplitudes
vi (in black) and the total QPS amplitude v∗ (in red) as vectors in the complex plane,
for several particularly chosen charge configurations. (b) The calculated switching
current change induced by the polarization charges δISW for a large sweep of the
gate voltage VG, at two different phase-biases. The polarization charge on the central
island q3 is shown on the lower x-axis and the charge on one of the lateral islands
q4 is shown on the higher x-axis. (c) The measured δISW over a large sweep of VG

at the same phase-biases γ as in (b). The value of γ for each curve is shown on the
right side of the figure.

The charge frustration on the middle and on the first two lateral islands
introduces geometrical dephasing factors between the QPS on each side of the sec-
ond, third and forth junctions. In Fig. 5.11a we represent the QPS as vectors in
the complex plane, for several particular charge configurations. Simply by looking
at Fig. 5.11a we can immediately see that the two extra degrees of freedom from
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γ q02(2e) q04(2e) Cg
2 (aF ) Cg

3 (aF ) Cg
4 (aF )

0.9π 0 0.65 25 410 42
1.1π −0.12 0.45

Table 5.2: Fit parameters for the calculated QPS interference patterns presented in
Fig. 5.11b. The fited values for the gate capacitances are close to the theoretically
estimated values (see appendix B), taking into account the exact geometry of the
sample. The value for Cg

3 is also confirmed by the FFT of the measured oscillations
as a function of temperature (Fig. 5.12).

the lateral islands add considerable complexity to the interference pattern. Thus,
we expect the switching current oscillations δISW , induced by a large gate voltage
sweep, to show a complex pattern, composed of a fast oscillation arising from the
strong Cg

3 coupling and a slower evolving envelope due to the weaker Cg
2 and Cg

4

couplings. In Fig. 5.11c we show the measured interference patterns at two different
phase biases γ of the Josephson junction chain. The two phase biases are chosen
close to γ = π where the response of the chain is maximal. In Fig. 5.11b we present
the calculated interference patterns for the same phase bias. For the top curves in
Fig. 5.11b and c we polarized the chain at γ . π so we expect the switching current
to increase when the phase-slips are suppressed. Similarly, for the bottom curves,
where γ & π, we expect the switching current to decrease when the chain becomes
classical. Also, the exact shape of the oscillations envelope strongly depends on the
configuration of offset charges. For the two calculated curves we have chosen the
offset charges configurations leading to the best fit of the experimental data. The
exact values of the fit parameters are shown in table. 5.2.

The positions of the four particular charge configurations detailed in Fig.
5.11a are indicated on the measured and calculated curves. Point (i) corresponds to
the same situation detailed in Fig. 5.10a. Its position is shifted on the x axis by the
offset charges on the islands 2 and 4. The fitted values for the offset charges q02 and
q04 are indicated in Fig. 5.11b for each curve. The absolute value of the total QPS
amplitude |v∗| oscillates between 0 and Nv, according to the formula (5.23). The
resulting switching current δISW oscillations have the largest amplitude possible.
The chain goes from the perfectly coherent phase-slips regime at q3 = 0, where the
switching current is minimum (the zero level in Fig. 5.10b and c), to the maximally
dephased configuration at q3 = 0.5 when the phase-slips are canceled, the chain is
classical and the critical current is enhanced. Point (ii) is interesting as it depicts
the situation when |v∗| never goes neither to zero nor to the maximum value of
Nv, independent on the value of the charge q3. In this case, we expect some small
amplitude oscillations situated somewhere in the middle of the interval spanned by
the maximum and the minimum of the oscillations from the point (i). Working point
(iii) shows the situation when the total QPS amplitude is suppressed at q3 = 0 and
it never reaches the maximum Nv for any value of q3. In this case we expect small
oscillations of δISW that reach the maximum supercurrent for the classical chain.
In the case depicted for the point (iv) we show that it is not necessary to have the
QPS perfectly aligned as in (i) in order to have a significant amplitude of δISW

oscillations. We see that the δISW oscillations in (iv) are comparable in amplitude
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to the ones around point (i).
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Figure 5.12: Temperature dependence for the periodicity of the switching current
vs. charge oscillations. We present four plots of fast Fourier transforms (FFT) for
the measured switching current oscillations at different temperatures. The carge
periodicity represented on the x-axis is calculated for Cg

3 = 410 aF . At low tem-
peratures the periodicity is 2e. At temperatures close to 300mK we observe the
emergence of a significant 1e periodicity peak. The small peak at 1e visible at low
temperature is associated with the anharmonicity of the measured switching current
oscillations. The curves are offset on the y-axys for clarity.

The Aharonov-Casher interference of phase-slips is an intrinsically 2e pe-
riodic effect, as explained in fig. 5.10. Random 1e quasiparticle poisoning of the
islands can prove to be a significant experimental problem [117]. This 1e contami-
nation practically reduces the accessible charge space interval from [0, 2e] to [0, 1e].
The consequences of the quasiparticle poisoning are the observation of a significantly
reduced amplitude of the interference pattern and a periodicity of 1e instead of 2e
for the interference fringes.

The exact value of the gate coupling is very difficult to evaluate numerically
with a sufficient accuracy to distinguish 1e from 2e periodicity (Appendix B). The
best proof of 2e periodicity at low temperatures is the emergence of 1e periodicity at
higher temperatures, when we strongly excite quasiparticles. In fig. 5.12 we present
the fast Fourier transforms (FFT) for interference patterns measured at different
temperatures. We see that at low temperatures (T = 50mK) the main peak in
the FFT is at 2e periodicity. With increasing temperature, at (T = 300mK), a
quasiparticle peak at periodicity 1e emerges.

Another experimental challenge in the measurement of the charge response
of the chain was the stability of the random offset charges. In figure 5.13 we show
repeated measurement of the same gate voltage VG interval. We observe a typical
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Figure 5.13: Repeated measurements on the same gate voltage interval. The gate
coupling is Cg

3 = 410 aF . The four curves in the middle graph are grouped together
as they correspond to the same offset charge configuration. The curves are measured
successively starting from the top plot. The time interval between the measurements
is ∼ 5 minutes. We see that after the first measurement the offset charge changed.
For the next four curves the offset charges remain fixed. Before the last measurement
the charges drift again.
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offset charge reset time of ∼ 5 minutes. Thus, if we measure an interference curve
in a total time interval shorter than a few minutes we have good chances to do a
measurement with fixed offset charge configuration, as shown for example in fig.
5.11.

In conclusion, the switching current measurements show that the ground
state of the 6-SQUIDs chain is sensitive to the configuration of charges on the is-
lands, in quantitative agreement with the MLG model. The sensitivity is limited to
an interval of phases γ around π. The shape of the switching current oscillations as
a function of the induced charges on the islands can be quantitatively understood
as a phase-slip interference pattern. Two phase-slip amplitudes on different junc-
tions can add constructively or destructively, depending on the total charge on the
superconducting islands between the junctions. This effect is a direct manifestation
of the Aharonov-Casher model for the interference of magnetic moments circling a
charged particle.

5.6 Phase-slips in a voltage biased 400 Josephson

junction chain

Our experimental work is motivated by recent theoretical results of W. Guichard and
F. Hekking (see ref. [51]). They show that in a long chain of Josephson junctions
the dynamics of the quasicharge is exactly dual to the standard phase dynamics
of a single Josephson junction. The quasicharge-phase duality has already been
experimentally observed for a Josephson junction embedded in a high impedance
environment [104]. The high impedance environment is essential for the localization
of the quasicharge. In ref. [51] it has been shown that the resistive environment can
be replaced by a large inductance. As experimentally it is not simple to fabricate
a junction in series with a large inductance, we investigate an alternative route. A
chain of Josephson junctions, each of them having a large EJ/EC-ratio, also consti-
tutes a phase-slip element. The central idea is that the phase-slip itself occurs on
only one of the junctions of the chain; the phases on the other junctions perform
small adjustments in the Josephson potential, thereby providing the necessary in-
ductance. Further on, as we have shown in the previous sections, in the absence of
offset charges, the total phase-slip amplitude v∗ is N times the phase-slip amplitude
for one junction: v∗ = Nv. The longer the chain is, the larger its inductance and the
total phase-slip amplitude. The chain realises a zero current state, that is interesting
to study.

We have measured a chain of N = 400 junctions. Given the large number
of junctions, within the MLG model of QPS, we expect a very strong phase-slip
amplitude and consequently a suppression of superconductivity. Experimentally, we
expect to measure an insulating state for the chain biased at voltages inferior to the
so called critical voltage: VC = N π∆

e
[51]. We will use the phase biasing scheme

presented in Fig. 5.3c, in order to try to directly measure the critical voltage.
The chain is biased at a voltage V and we measure the electrical current I.

The electrical scheme of the setup is presented in Fig. 5.14. The sample is thermally
connected to the cold plate of the dilution refrigerator at a temperature of ∼ 50mK.
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Figure 5.14: Electrical scheme of the voltage biased Josephson chain.

The current amplifier and the voltage source are at room temperature, isolated from
the sample by low band filters at the entrance of the cryostat. In order to reduce
the electromagnetic noise, special care has been taken to avoid ground loops and
to shield the sample from any radiation source. The junctions are fabricated in the
form of SQUIDs in order to enable tunable Josephson coupling EJ . At zero flux φ
inside the SQUID loops EJ = 3.3K and EJ/EC = 20. From the MLG model, we
expect a critical voltage VC ∼ 100µeV.

The results of the IV measurements for the 400 junctions chain are shown
in Fig. 5.15. Surprisingly, we do not observe any insulating region. At low voltage
we observe a low dissipation current branch that peaks around 20 nA. Moreover,
we observe a sequence of periodic current peaks with the voltage periodicity close
to the value of the Aluminum superconducting gap. A similar periodic current
peaks structure has been reported for Josephson junction chains by D. Haviland
in ref. [119]. We do not have a quantitative understanding of these structures.
We think that they are signatures of the voltage bias dropping on the weakest
junction in the chain, rather than distributing on the entire chain. Within this
model, at small voltage bias the phase-slips are distributed on the entire chain and
the current-voltage characteristic is linear. With increasing voltage, at a critical
value V ≃ 50µV, the phase-slips localize on the weakest junction in the chain and
block the conduction, so the current in the IV characteristic drops. When the
voltage reaches the value of the gap, the junction switches to the dissipative state,
so the conduction increases again and phase slips redistribute on the entire chain.
With increasing voltage, this process has the periodicity of the superconducting gap
∆ ≃ 420µV.

We observe a linear IV characteristic in the vicinity of zero bias (see Fig.
5.15b). At a voltage around V = ±50µV the system switches to a lower current
state. When we sweep the voltage in the opposite direction, going towards zero
voltage, we observe that the switching to the linear regime does not occur at the
same value, so we measure a hysteresis. The linear part in the IV curve is associated
with the tunneling of Cooper pairs through the junctions and dissipation in the
environment of the sample. This dependence was predicted theoretically [120] and
measured [121] in a superconducting transistor. At this point we do not have a
quantitative understanding of the measured IV curves.

In the following we will propose a simple explanation for the absence of the
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Figure 5.15: (a) Typical measured current vs voltage curve. (b) Zoom in the low
voltage region.

insulator region predicted by the MLG model. In the MLG model we have neglected
the self capacitance of the islands C0. We had very good reasons to do so as the
junction capacitances C are much larger than the stray coupling of the islands:
C ≫ C0. But if the number of junctions N in the chain is large, the island couplings
C0 which add in parallel their contributions can no longer be ignored. In the next
section we discuss these classical electromagnetic effects present in long Josephson
chains. Previously neglected in the MLG model, they can play a dominant role for
long Josephson chains.

5.7 Standing electromagnetic waves in a 400 Joseph-

son junction chain

In this chapter, we will discuss a simple harmonic model [122] that quantifies the
effect of the self capacitances C0 on the ground state of the chain. As we will see in
the following, we can define some characteristic length scale N∗ for the chain, called
the screening length. For N < N∗ the MLG model is valid and we can continue to
neglect the existence of C0. However, for N > N∗ the phase-slip amplitude will not
be independent on C0.

Before we continue with the description of the model, we would like to point
out the following fact. The self capacitances of the islands C0 are always non zero.
An island, that is a small piece of some material, will always have a capacitive
coupling with respect to infinity, even in vacuum and far from any electrodes. Of
course, by engineering the island shape and its environment, we can minimize this
coupling. But it will never be zero and thus, there will always be a maximum length
N∗ above which the effect of C0 must be taken into account.

In the limit EJ/EC ≫ 1 and N ≫ 1, we can assume the phase difference
between the neighboring islands is small and we can expand the Josephson relation
for the junctions in the lowest order:

ij = i0 sin (ϕj − ϕj−1) ≃ i0 (ϕj − ϕj−1) (5.25)
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Here ij is the current flowing through the j − th junction, i0 is the critical current of
one junction and ϕj is the superconducting phase of the island j. Within this
approximation, we can replace the Josephson elements in the chain with linear
inductances. The simplest model that approximates the chain of Josephson junctions
with non zero capacitances to the ground C0 is an array of harmonic oscillators, as
shown in fig. 5.16.
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Figure 5.16: Harmonic model for the Josephson junction array with non-zero capac-
itive coupling to the ground. The arrows represent our notations for the electrical
currents entering and leaving the island i.

In fig. 5.16 we have denoted by Vj the electrostatic potential of the j −
th island. The inductance L is the Josephson inductance of one junction in the
harmonic limit: L = ~/(2e i0). The Kirchhoff circuit laws for each elementary cell
of the chain are the following:

(Vj − Vj−1)Y = (Vj+1 − Vj)Y − iωC0Vj and Y =
1− LCω2

iωL
(5.26)

Here Y is the admittance of an LC block at frequency ω. Equation (5.26) has
solutions of the type:

Vj ∼ eikj (5.27)

which are propagating waves with k being the wave vector: k = 2πn/N . If we
replace (5.27) in (5.26), we get:

ω = ω0

√

√

√

√

1− cos k
1− cos k + 1

2

C0

C

(5.28)

Where ω0 = 1/
√

LC is the plasma frequency of one junction in the chain.
In order to get a clear physical image of the implications of eq. (5.28), let

us consider two limits:

(a) C0 ≫ C:
In this limit C0/C is very large, it is the dominant term in eq. (5.28), which

can be linearized in k:

ω = k
1√
LC0

(5.29)

Eq. (5.29) describes propagating waves in the chain with an effective “light velocity”
ceff =

a√
LC0

, where a is the lattice constant.
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(b) C ≫ C0:
In this limit C0 → 0 so eq. (5.28) simply reads:

ω = ω0 (5.30)

which describes a harmonic oscillator with frequency equal to the plasma frequency
of one junction: ω0 =

1√
LC
. In other words, the voltage drop over each junction is

oscillating with frequency ω0.
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Figure 5.17: Schematic image of the harmonic chain with fixed boundary conditions.

Let us now fix the voltage boundary conditions, as depicted in fig. (5.17):

V0 = V ; VN = 0 (5.31)

We search for solutions of the type:

Vj = A cos kj +B sin kj (5.32)

the resulting modes are the following:

Vj = V

(

cos kj − sin kj
cos kN

sin kN

)

(5.33)

In order to deduce the total admittance, we write the Kirchhoff law for the chain
seen as one element. The current through the first LC element is equal to the
current passing through the entire chain:

(V0 − V1)Y = V Ych (5.34)

where Ych is the admittance of the chain. Replacing eq. (5.33) in (5.34) we get the
expression for the chain admittance:

Ych =
1−

(

ω
ω0

)2

−iωL

[

sin k N − sin k (N − 1)
sin k N

]

(5.35)

Notice that the admittance of the chain Ych diverges for K N = m π, where m is
an integer number. The condition K = mπ

N
corresponds to the resonant modes that

produce standing electromagnetic waves inside the chain. The frequencies of the
resonant modes Ωk for which the admittance diverges, are given by the following
expression:

Ωk = ω0

√

√

√

√

√

1− cos
(

π
N

k
)

1− cos
(

π
N

k
)

+ 1

2

C0

C

, k ∈
[

−N

2
,
N

2

]

(5.36)
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Figure 5.18: Plot of the dispersion relations (5.36) for chains of 400 junctions with
different C/C0 ratios. Frequencies are plotted in units of the plasma frequency of
one junction ω0.
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Figure 5.19: Dispersion relation for chains of 400 junctions, in the region of small
wave vectors k. The lines are guides for the eye.
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In fig. 5.18, we have plotted the calculated modes Ωk for a 400 junctions
chain and for different C/C0 ratios. Notice how for large C/C0 ratios, the majority
of the modes are situated at values near the plasma frequency. For small C/C0 the
characteristic frequency of all modes is significantly lowered.

The low frequency resonant modes Ωk, act as an effective dissipative en-
vironement for QPS dynamics and therefore suppress the quantum phase-slip am-
plitude for the chain. We think this is the main reason why the 400 junctions
chain does not show the expected insulating region (see Fig. 5.15b). This is why,
in practice we would like to avoid the low lying modes which appear at low val-
ues of k. In fig. 5.19 we present a detailed view of the region around k = 0. In
the limit of small k, the dispersion relation (5.36) can be linearized and it reads:

Ωk−small = ω0
√

C/C0 (π/N) k. If we want to avoid the low energy modes, we need
to satisfy the condition: Ωk=1 ⋍ ω0. In conclusion, the maximum length of a Joseph-

son chain that has no low lying modes is N ≃ π
√

C
C0

. We notice how the ground
coupling C0 introduces a natural screening length for the chain with a characteristic

length ∼
√

C
C0

.
In the following I will present the experiment that we have designed to

measure the low lying modes in a chain of 400 Josephson junctions. Each junction
is made in the form of a superconducting quantum interference device (SQUID)
in order to enable tunable inductance, by applying a magnetic flux ΦS through
the SQUIDs. An e-beam image of two SQUIDs and the corresponding equivalent
circuits for one SQUID are presented in fig. 5.20. The inductances associated with
the superconducting wires connecting the SQUIDs Lch

W ⋍ 40 pH and forming the
SQUID loop LSQ

W ⋍ 60 pH, presented in fig. 5.20b, are much smaller than the
Josephson inductance LJ = 1.2 nH. In a first order approximation we can neglect
Lch

W and LSQ
W . The resulting circuit is presented in fig. 5.20c. Notice that the

equivalent circuit for a SQUID in the Josephson junction chain, as depicted in fig.
5.20c, is the same as the elementary cell in the harmonic model represented in fig.
5.16.

Junction chains with similar structure have been fabricated and measured
by K. Lehnert et al. [106,107] in the attempt to engineer a so called “metamaterial”;
a compact highly tunable microwave resonator. They characterised this quarter-
wave Josephson resonator by microwave reflection measurements.

Using an inductive coupling (see Fig. 5.14), we can excite the harmonic
modes of the chain by applying microwaves. The microwave lines are attenuated at
the cryostat entrance, at the 1K level and at the 50mK stage. For a detailed view
of the electrical scheme see fig. 2.9 in chapter 2 on fabrication and the experimental
setup.

Typical measured current voltage curves for the Josephson chain at zero
frustration φ = 0 are presented in fig. 5.21. In order to do spectroscopy measure-
ments we fix a certain working point on the IV curve and we sweep the microwave
frequency f . We have performed spectroscopies for different working points on the
IV curve shown in fig. 5.21. We only see resonances associated with the Josephson
junction chain for working points inside the linear region of the IV curve.

The shape of the resonance peaks depends on the position of the working
point in the linear region of the IV. Inside the hysteretic region the peaks show
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Figure 5.20: Elementary cell of the Josephson chain. (a) e-Beam image of two
SQUIDs in the chain. (b) Equivalent circuit for one SQUID in the linear limit. The
inductances of the superconducting wires are also shown. (c) Simplified circuit where
we neglect the wire inductances and we only consider the dominant contribution from
the SQUID inductance LSQ
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Figure 5.21: Biasing points on the IV curve for spectroscopy measurements of the
400 Josephson junction chain.
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Figure 5.22: Spectroscopy peak for the bias point in the hysteretic region. The
power of the microwave radiation is indicated for each curve in units of dBm. The
dotted lines are guides for the eye.
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Figure 5.23: Spectroscopy peak for the bias point in the so called “proportional
region” (see fig. 5.21), where the peaks heights and widths are increasing with the
microwave power. The power of the microwave radiation is indicated for each curve
in units of dBm. The dotted lines are guides for the eye.
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a switching behavior between two bistable states, as shown in fig. 5.22. When
increasing the power of the radiation, the peaks only gain in width without changing
their height. If the working point is chosen outside the hysteretic region, closer to
the zero voltage bias, the position of the peaks does not change, but the peaks shape
is closer to a Lorentzian and both height and width increase with the microwave
power, as indicated in fig. 5.23.

In figure 5.24 we present the measured current for a voltage bias in the pro-
portional region as a function of microwave frequency. The three curves correspond
to different flux frustrations φ in the SQUIDs. On the left side of the spectrum, at
low frequencies, we observe two resonance peaks, of width ∽ 50MHz, that have dif-
ferent positions at different frustrations. In the middle of the spectrum we observe
a series of large peaks that do not change position as a function of frustration and
which are associated with geometric resonances in the microwave environment close
to the sample. On the right side of the spectrum we observe a continuum where the
current I in the chain is suppressed. We associate this regime to the sequence of
overlapping resonance peaks that arises from the flat part of the dispersion relation
(5.36) at large wave vectors k.
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Figure 5.24: Full range spectroscopies of the 400 junctions chain, for three different
frustrations φ. The chain was voltage biased at V = −30µV . Notice that the first
three peaks change position with frustration.

The positions of the first two peaks should correspond to two of the low
lying modes of the 400 junctions chain. The dispersion relation (5.36) depends on
several physical parameters of the chain: the length N , the plasma frequency ω0 of
one junction in the chain, the capacitance of one junction C and the coupling to the
ground C0. All of these parameters, except C0, are well controlled by the geometry
and the fabrication of the sample. We can estimate C0 from analytical formulas or
by performing finite element numerical simulations. However, these methods only
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Figure 5.25: Frequency of the measured resonance peaks for the 400 Josephson
junction chain (black diamonds). The red lines show the theoretical positions of the
peaks given by eq. (5.36). The value of the corresponding wave vector k is indicated
for each curve.

give the order of magnitude of the coupling to the ground, and it is quite difficult
to obtain an exact estimation of C0.

We have measured in detail the position of the first three resonance peaks
as a function of the frustration φ. In figure 5.25 the black diamonds represent the
measured peaks positions as a function of φ. At frustrations close to 0.5 the critical
current of the SQUIDs is suppressed, the Josephson inductance increases and thus
the resonant frequency drops. We expect the following dependence of the Josephson
inductance as a function of the frustration:

LJ (φ) = LJ (0) cos (πφ) (5.37)

The red lines represent theoretical calculations using eq. (5.36), (5.37) and
the nominal values for the chain parameters LJ(0) = 1.2 nH and C = 2.6 fF. The
only fit parameter was C0 = 170 ± 10 aF. This value is close to the analytically
estimated value for C0 (see Appendix B for details). Notice the good agreement
between the measured and the calculated positions of the peaks for k = 2, 3 and 4.
However, no experimental peak is observed corresponding to the first mode k = 1.
One explanation could be that the chain’s IV characteristic is insensitive to the
change of the wave vector k from k = 0 to 1. Indeed we observe very different peak
heights for k = 2, 3 or 4, which suggests that the sensitivity of the IV curve to the
change of the wave vector k is strongly dependent on the actual value of k.

We would also like to point out the accuracy of the C0 value resulting from
the fit. We mentioned earlier that it is difficult to obtain a theoretical estimation
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of C0 with an accuracy better than a factor of 2. As shown in Fig. 5.25, using the
harmonic resonant response of the chain we can fit the value of C0 with a high accu-
racy of ±5%. This accurate measurement of C0 is important for the technological
development of new chain designs with minimal island self capacitance.

In conclusion, in the last two sections we discussed the effect of the self
capacitances C0 on the QPS amplitude. We have experimentally observed the sup-
pression of the QPS due to the couplings C0 which provide a dissipation mechanism
for the phase-slips. We have also constructed a harmonic model for the propagation
of electromagnetic waves in the Josephson junction chain. We have measured the
standing electromagnetic wave modes coresponding to k = 2, 3 and 4. These stand-
ing waves result from the fixed voltage boundary conditions over the chain. The fit
of the resonant peak positions provides an exact method for the measurement of the

self capacitance C0 of the chain islands. For chains shorter than π
√

C
C0

the plasma
modes of the chain are practically at the same frequency as the plasma frequency
of one junction.



Chapter 6

Measurement of MQT escape from

an arbitrary shaped potential

We showed in chapter 3 that a Josephson junction can be successfully used as a
current detector. The switching dynamics of the read-out junctions we have used in
our experiments is governed by MQT (see Fig. 3.6). If the shape of the washboard
potential deviates strongly from the tilted sinusoidal washboard, the standard MQT
theory does not give a sufficiently good approximation for the escape rate Γ. In
this chapter we report detailed experimental characterizations of MQT escape from
the local minimum of a metastable potential which has a shape different from the
standard tilted sinusoidal. The measured sample is the same as the one presented
in chapter 5, the 6-SQUIDs chain. In the following chapter we focus our attention
on the details of the MQT escape dynamics, rather than on the mesurement of
the current-phase relation of the chain. In chapter 3.3 we briefly presented the
theoretical methods developed in the group of Frank Hekking for the calculation
of the MQT in the case of an arbitrary shaped metastable potential (see also Ref.
[82]). This model, which takes into account the exact shape of the potential, gives
numerical solutions for the MQT escape rate. Recently the model was confirmed
by switching current measurements from the camelback shaped potential of a dc
SQUID [123]. In this chapter we will also discuss an approximation of the exact
model of chapter 3.3. This approximation is based on replacing the real potential,
with an effective one which has a rectangular shape and for which we can calculate
analytical formulas describing the MQT. We will present a detailed comparison
between the experimental data, the results of the calculations using the exact model
and the rectangular approximation. In the last sections of the chapter we discuss
the thermal activated (TA) switching and the influence of the retrapping current IR

on the sensitivity of the detector.

6.1 Description of the metastable potential for a

read-out junction in parallel with a JJ chain

We discuss in the following the switching to the dissipative state of the JJ chain
connected in parallel to the read-out junction (Fig. 6.1). As mentioned in chapter
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Figure 6.1: Simplified electrical scheme of the superconducting circuit: a chain of
junctions in parallel with the read-out junction.

3.3, eq. 3.9, the energy-phase relation of the circuit Utot (δ,ΦC) is a sum of the fol-
lowing contributions: the read-out junction with Josephson energy ERO

J , the ground
state energy Eg (ΦC − δ) of the chain and the current bias Ibias:

Utot (δ,ΦC) = ERO
J cos δ + Eg (ΦC − δ)− ~

2e
Ibiasδ (6.1)

In Fig. 6.2 we plot the energy-phase relations of the current biased read-
out junction (a), the junction chain (b) and the resulting total potential Utot (δ,ΦC).
Notice the distorted form of the total potential well (Fig. 6.2c), compared to the one
of the read-out junction (Fig. 6.2a). These distortions have a significant influence on
the escape rate and they are not accounted for in the standard MQT theory, which
is only valid for energy-phase relations of the type presented in Fig. 6.2a [80,81].

In order to get an intuitive physical image of the factors which come into
play in the complex MQT process, we define a set of characteristic parameters for
the shape of the total washboard potential Utot. We define the barrier height H as
the difference between the local maximum and minimum, the width W of the well,
measured at an energy level 1/2 · ~ω0 from the minimum, and the length L of the
barrier, at the same level of 1/2 · ~ω0 (Fig. 6.3). ω0 is the plasma frequency of the
read-out junction, so 1/2 · ~ω0 is the energy level of the ground state.

In Fig. 6.4 we present the calculated dependence of the height H of the
barrier, the width W of the well and the length L of the barrier for the complete
washboard potential Utot, as a function of the phase ΦC and the applied current Ibias.
As expected, all three parameters decrease with the applied current. The barrier
height H shows a regular periodic dependence with the phase bias ΦC . When H
increases, the escape probability decreases. The parameters W and L are also peri-
odic with ΦC , but they exhibit an additional peak structure around ΦC = π. When
W increases, the plasma frequency, which is the characteristic attempt frequency
for the tunneling, also decreases, so we expect a decrease in the tunnel amplitude.
Also, when the length L of the barrier increases, we expect an exponential decrease
of the escape probability. In conclusion, whenever one of the parameters H, W or
L increases, the MQT rate decreases and we measure an increase of the switching
current ISW . We will later show that we measure experimentally a switching current
which is periodic in ΦC and which shows positive switching peaks in the vicinity
of ΦC = π. We will argue that these switching current peaks are signatures of the
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Figure 6.2: Energy phase relations for the current biased read-out junction (a), the
Josephson junction chain in the ground state (b) and Utot (δ) (c). Utot (δ) is simply
the sum of the curves of (a) and (b). The different curves correspond to different
phase biases ΦC , labeled in the inset of (c). The MQT switching to the dissipative
state of the superconducting circuit schematized in Fig. 6.1 occurs from a local
minimum of the metastable potential represented in (c). The y − axis values are
represented in units of EJ , where EJ is the Josephson energy of one junction in the
chain. For presentation purposes, in order to highlight the chain contribution to the
switching potential, we considered a ratio EJ/ERO

J twice as large compared to the
one of the measured sample.
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Figure 6.3: Definition of the characteristic parameters for the washboard potential.
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irregularities in W and L, which are visible in Fig 6.4.

6.2 The effective rectangular washboard potential

approximation

Figure 6.5: The effective rectangular shaped potential (in red line) which has the
same height H, well width W and barrier length L as the real potential (in gray
line).

We now briefly discuss an effective model for the calculation of the MQT
escape from a local minimum of Utot. We replace the real potential with a rectangular
shaped potential with the same characteristic parameters H, W and L we already
studied in the previous section, as represented by the red plot in Fig. 6.5. The
interest of constructing this effective rectangular potential approximation is that
we can derive simple analytical formulas for the MQT (see eq. 6.3), which give an
intuitive understanding of the relevant physical parameters governing the tunneling
process.

The ground state energy E0 in the local minimum of the rectangular poten-
tial is given by [124]:

E0 =
~

2

2m

(

π

W

)2

= 4ERO
C

(

π

W

)2

(6.2)

where m = ~
2/

(

8ERO
C

)

is the mass of the phase quasiparticle in the RCSJ model

(see chapter 3.1) and ERO
C = e2/ (2C) is the charging energy of the read-out junction.

In the weak tunneling limit, the MQT escape rate Γeff is the following [124]:

Γeff = vtry · 16E0 (H − E0)

H2
· exp

[

−L

√

H − E0

ERO
C

]

(6.3)
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Where vtry is the escape attempt frequency, given by:

vtry =
2E0

h
(6.4)

The total switching probability is given by the decay equation and it reads:

PSW −eff = 1− exp [−Γeff △t] (6.5)

The analytical formulas of the effective rectangular potential model de-
scribed above constitute an approximation of the complete numerical solutions for
the escape rate obtained using the instanton model (eq. 3.10).

6.3 Measurement of the MQT switching

We present detailed measurements of the switching probability (in Fig. 6.6b) and
the results of the PSW calculations using the effective rectangular potential model
(in Fig. 6.6a) and the instanton model of chapter 3.3 applied to the exact shape
of Utot (in Fig. 6.6c). Both theoretical models give a fairly good description for
the amplitude and for the overall shape of the switching current oscillations as a
function of the phase ΦC . Notice the switching current peaks measured in the
vicinity of ΦC = π in Fig. 6.6b. Notice also that using the detailed instanton
calculations (plotted in Fig. 6.6c) we retrieve a pronounced current peak at the
same position in the current-phase characteristic.

If we now look at the width w of the switching histograms plotted in Fig.
6.6d, e and f, we observe that it is not constant as a function of the phase. This
effect is expected since w depends on the exact characteristics of the washboard
local minimum, which changes shape with ΦC (as shown in Fig. 6.4). We would
like to notice that both theoretical models give a good qualitative description for
the phase dependence of w. Moreover, the theoretical results given by the instanton
model are within an interval of only 15− 20% from the measured values.

From the results presented in Fig. 6.6 we conclude that the instanton cal-
culations give a reliable quantitative description of the MQT switching to the dissi-
pative regime, for a phase quasiparticle trapped in an arbitrary shaped metastable
potential. Also, the effective rectangular potential approximation, introduced in
section 6.2, gives a fairly accurate qualitative understanding. This fact is explained
by the following qualitative argument. From the instanton calculation of the MQT
(eq. 3.10 and eq. 3.12), we see that the escape rate Γ deppends mainly on the
area under the potential barrier. The effective rectangular washboard approximates
fairly well this area of the real Utot barrier. Morover, within the model of the rect-
angular washboard, the parameters H, W and L are independent and they map the
real shape of the potential Utot. This is not the case for the standard MQT theory,
which assumes a fixed relation between H, W and L.
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6.4 Measurement of the TA switching

We continue the characterization of the escape to the dissipative regime from the
metastable potential Utot, with measurements at higher temperatures. In Fig. 6.7 we
show the evolution of the histogram width w with temperature. Below T = 150mK,
we observe a saturation of the w values, for all phase biases, as we expect from
MQT switching. When we increase the temperature above 150mK, the histogram
width decreases, as the escape is mediated by thermal activation (TA). In case of
underdamped junctions, w typically increases with temperature. However, it has
been recently shown that in the case of junctions with quality factors Q close to 1,
in the TA regime, w decreases with temperature [93].

The reason for this counter intuitive decrease of the histogram width is the
following. If Q & 1, there will be a significant chance that after the initial escape of
the phase particle from the metastable potential, it will not continue to roll down
the washboard, and produce a measurable voltage signal, but it will get retrapped
in the next local minimum. In Fig. 6.8 we represent the re-trapping process for an
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Figure 6.7: Temperature dependence of the measured switching histograms width
w, at different phase biases ΦC . The corresponding phase bias for each curve is color
coded and labeled on the left side of the figure. The lines are guides for the eye.

underdamped junction with a quality factor close to unity. For the read-out junction
that we have used, the measured quality factor is Q ≃ 4. The succession of escape
and re-trapping events does not produce a voltage sufficiently large to be detected
and counted as a switching to the dissipative state. This phase evolution is called
underdamped phase diffusion (UPD), in analogy with the classical phase diffusion
which occurs in overdamped junctions. The re-trapping process becomes important
when the critical current and the retrapping current are close to each other, with
decreasing Ibias (Fig. 6.9). We now understand why at higher temperatures, where
the TA decreases the switching current, the UPD plays an increasingly important
role, significantly reducing the width of the histograms (as shown in Fig. 6.9).
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In Fig. 6.8, the curve corresponding to ΦC = 0.95π is an exception to the
general monotonic decrease of w with temperature. The measured w at phase biases
close to π has a non monotonic dependence with temperature. The histogram width
increases until T = 250mK, before dropping with temperature, as we would expect
from the UPD model described above. In the vicinity of ΦC = π, we have shown
in Fig. 6.4 that the width W of the local potential well and the length L of the
barrier for the metastable potential Utot, are very sensitive to small changes in the
shape of the energy-phase relation of the Josephson junction chain. The temperature
changes the shape of the metastable potential Utot. In the vicinity of ΦC = π, the
corresponding change in the escape probability competes with the one induced by
the UPD.

6.5 Influence of the current pulse duration on the

MQT switching

We continue the experimental study of the MQT escape with measurements of the
current-phase relations for different durations ∆t of the Ibias current pulse. The
measurements are taken at 50mK, in the MQT switching regime, for three values
of the current step duration: ∆t = 10µs, 50µs and 100µs (see Fig. 6.11b, d and f).
The rise time for the pulses is always ∼ 10µs and it is fixed by the cutoff of the low
pass filters connected to the current bias lines.

�
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Figure 6.10: Electrical scheme of the 6 Josephson junction chain in parallel with the
read-out junction. The junctions are made in form of SQUIDs. The current bias
line is mutually coupled by the inductance M to a fast current pulse generator ip.
It is used to perform fast switching measurements, by inducing nanosecond current
pulses in the bias line.

We present measurements performed on the same 6 SQUIDs chain sample
discussed in chapter 5. The complete electrical scheme of the circuit is shown in
Fig. 6.10. In Fig. 6.11 we show the measured switching current values as a function
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of the flux frustration ΦS/Φ0 in the SQUID loops of the junction chain. As we have
discussed in detail in section 5.3, with increasing flux ΦS we expect the amplitude of
the switching current-phase oscillations to decrease, because the Josephson energy
of the junctions is suppressed and the QPS amplitude grows. The theoretically
calculated envelope for the switching current oscillations is represented by the black
empty diamonds in Fig. 6.11. We have used the instanton model to calculate the
MQT escape from the total potential Utot. We would like to point out that we have
plugged into the calculations the measured shape of the applied current pulses Ibias,
shown in the right panels of Fig. 6.11. The measured switching at low current
bias is limited by the re-trapping current IR, below which the read-out junction is
in the UPD regime, as discussed in the previous section. The fitted value for the
re-trapping current is IR = 125 nA. Notice that for long current pulses (Fig. 6.11e
and f), the switching current decreases to a value close the re-trapping value IR and
we observe a saturation in the lower part of the switching current oscillations.
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Figure 6.11: (a),(b),(c): Measurement of the envelope of the switching current os-
cillations, for three different current pulse durations (gray points). IR marks the
value of the retrapping current. The measured current pulse shapes are respectively
plotted on the right: (d), (e) and (f). Empty diamonds: Calculated envelope of the
switching current as a function of ΦS/Φ0.

From the shape of the current pulses presented in Fig. 6.11 we can see that
if the pulse is short compared to the 10µs rise time, its shape is quite complex and
it cannot be simply approximated by a rectangular pulse. However, if the pulse is
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too long, the switching current oscillations enter the UPD region and the lower part
of the oscillations saturates. We can conclude that the optimal current bias pulses
for the measured read-out junction are in the range ∆t ≃ 20 → 50µs.
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Figure 6.12: Measured switching current vs phase, corresponding to three escape
probability levels: PSW = 20% in blue, PSW = 50% in magenta and PSW = 80% in
red. We present measured curves for different SQUID frustrations f = ΦS/Φ0, from
f = 0 up to f = 0.4, as indicated by the labels in the figure. The dashed lines are
guides for the eye, following the median line as a function of f .

In the last part of this section we present switching current measurements
performed using nanosecond current pulses. The pulses are induced via the mutual
coupling M (see Fig. 6.10). The duration of the pulses is dt = 4 ns and the current
intensity is fixed: is = 100 nA. We apply the pulses using the same procedure
which is explained in detail in section 4.5. The fast pulses is are superposed on the
slower Ibias steps, which have a typical duration of 50µs. When using the nanopulse,
the measured switching current ISW is smaller compared to the one measured with
standard micro seconds long pulses.

In Fig. 6.12 we present the measured Ibias currents, in the presence of the
is pulses, for three values of the switching probability: PSW = 20%, 50% and 80%.
First we notice that the amplitude ∆ISW of the 50% switching current oscillations
as a function of ΦC is at maximum 5 nA peak-to-peak, which is much smaller than
the previously measured amplitudes of ∼ 35 nA. Also, the ISW oscillations are twice
as large for the escape probability of 80% and almost completely suppressed for the
escape probability of 20%. The median line of the 80% level oscillations is almost
constant, while the median line of the 20% switching probability oscillations is
modulated by the frustration f , with an amplitude much larger than the amplitude
of the ΦC oscillations. This large modulation of the median line level is very similar
to the one measured for the classical 8 rhombi chain and presented in Fig. 4.2.1.

In the following, we argue that the observations presented above can be
qualitatively explained by the UPD model. Let us notice that due to the nanosecond
current pulse, the switching is induced for relatively small bias currents, very close
to the value of the re-trapping current IR ≃ 125 nA. Due to the re-trapping, the
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detection is less and less sensitive to the escape from the local metastable potential,
but more and more sensitive to the re-trapping current level. The re-trapping only
depends on the integral of the friction force along one quasi-period of the tilted
washboard potential. Thus, the re-trapping level is independent on local changes of
the potential shape, tuned by the phase bias ΦC over the chain. The smaller Ibias is,
the smaller the ΦC oscillations of the switching current are. In other words, close to
the retrapping current, the read-out junction loses its sensitivity to the changes in
the JJ chain state and the signal to noise ratio of the current detector is degraded.
Indeed, close to Ibias = 130 nA we observe that the current-phase relation of the
chain is practically lost in the noise.

However, the integral of the viscous force depends on the speed of the phase-
particle sliding down the tilted washboard. This speed is modulated by the ampli-
tude of the energy-phase relation of the chain, which is dependent on the SQUIDs
frustration f = ΦS/Φ0. Thus, the re-trapping level decreases with f and we measure
lower switching currents at high frustration, as shown in Fig. 6.12.

In conclusion, in this chapter we have presented a detailed experimental
characterisation of the MQT and TA switching to the dissipative state, for a phase
particle trapped in a metastable potential which does not have the usual tilted si-
nusoidal shape. We compared our measurements with two theoretical models. The
first model is a numerical calculation of the MQT, using the instantons technique
(discussed in section 3.3), for the real shape of the metastable potential Utot. The
second model is an effective rectangular potential approximation, which gives anali-
tycal results for the MQT escape rate. The agreement of the measured data with the
theoretical calculation is satisfactory for both models. The results of the instanton
calculation for the switching probability are in quantitative agreement with the mea-
surements. We have also shown that the phase dynamics of the read-out junction is
gouverned by UPD at temperatures T > 250mK and current biases Ibias . 130 nA.
The UPD degrades the sensitivity of the read-out junction. For an optimal signal
to noise ratio, the UPD region should be avoided.



Chapter 7

Conclusions and Perspectives

In this thesis we presented detailed measurements of quantum phase-slips in Joseph-
son junction chains. The measured phase-slips are the result of fluctuations induced
by the finite charging energy of each junction. Our experimental results can be fitted
in very good agreement by considering a simple tight-binding model for QPS [52].
We have shown that under phase-bias, a chain of Josephson junctions or rhombi
can behave in a collective way very similar to a single macroscopic quantum object.
These results open the way for possible use of quantum phase-slips for the design of
novel Josephson junction circuits, such as topologically protected rhombi qubits or
current-to-frequency conversion devices.

In chapter 5 we presented measurements of QPS in a phase biased 6 Joseph-
son junction chain, inserted in a superconducting loop. A QPS corresponds to the
tunneling a flux quantaum into or out of the loop. The QPS tunneling rate is
controlled by the ratio EJ/EC . By constructing each junction of the chain in the
form of a SQUID, we could continuously tune in situ the QPS rate. We also mea-
sured charge induced interference of QPS, which is a manifestation of the more
general Aharonov-Casher interference of magnetic moments circling a non zero elec-
tric charge. For this measurement we induced polarization charges on the islands
of the chain via a nearby gate electrode and we measured the resulting interference
patterns. All these results were found to be in good agreement with theoretical
expectations from the basic MLG tight-binding theory [52], which is valid in the
regime of weak quantum phase-slips EJ ≥ EC .

We have also measured the current-voltage characteristics of a long chain
of 400 junctions in which we observed the suppression of QPS due to the self ca-
pacitance C0 of the chain islands. We measured the first three modes of standing
electromagnetic waves in this chain, at frequencies between 2 and 5 GHz.

In my opinion, the next step would be the measurement and the quantitative
understanding of the strong phase-slip regime in longer chains with similar EJ/EC

ratio and smaller C0. We expect a complete suppression of the supercurrent in such
devices, so the measurement should be performed in a voltage bias scheme. Once
this regime is well controlled, we can address the problem of phase locking between
an applied microwave signal and the quasiclassical charge dynamics in the chain, for
the possible implementation of a frequency-to-current conversion device.

In chapter 4 we presented measurements of the ground state of classical
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and quantum Josephson rhombi circuits. In a linear chain of 8 rhombi and in a 2D
rhombi network with EJ ≫ EC , we measured the crossover from 2e Cooper pair
electrical transport to 4e transport by correlated pairs of Cooper pairs. We also
measured the suppression of the supercurrent due to QPS in a chain of 8 rhombi in
the quantum regime EJ ≥ EC . In a rhombus, the QPS tunneling evolves in a 2D
potential, whereas in the case of a single Josephson junction, the phase tunnels from
the 1D sinusoidal potential of the junction. We have shown that a slightly adapted
model, derived from the initial MLG theory for junction chains, fits the measured
current-phase relation for the chain of 8 rhombi. We have also tried to measure the
excited states of a 2D rhombi network, which was designed to realize a topologically
protected qubit. Due to the microwave coupling scheme, we could only excite local
modes of the network instead of the collective 2D qubit modes. I believe that for an
optimized coupling between the rhombi qubit and the applied microwaves, it should
be possible to excite the qubit, measure its coherence time and test the topological
protection idea.

In order to measure the current-phase relation of the Josephson junction
and rhombus chains, we employed a measurement technique originally developed
for qubit circuits [26]. In this thesis we pushed the read-out technique to its lim-
its, by measuring very low currents using a quantum read-out Josephson junction.
The switching to the voltage state of the read-out junction occurs via macroscopic
quantum tunneling. In chapter 6 we presented detailed measurements of the MQT
probability. We have also shown that we can quantitatively understand these re-
sults by two theoretical models. The first model, which gives the best results, is
a numerical calculation for the MQT from an arbitrary potential, developed in the
group of Frank Hekking. The second model is an effective rectangular potential
approximation.

Finally, the fabrication reproducibility and the time stability of the junctions
is essential for any device. At the beginning of my thesis we optimized the fabrication
process in order to obtain highly stable junctions. We also measured the variance
of the tunnel resistance in large sets of junctions fabricated in identical conditions.
We found that the typical standard deviation of our junctions is ±4%. This value
is sufficiently small for the observation of collective behavior in JJ chains.
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APPENDICES



Appendix A

Variance of the tunnel resistance

for random distributed conduction

channels

The electrical transport through the oxide barrier of the junction is not uniform.
The current mainly passes through a few conduction channels randomly distributed
on the surface of the junction. We denote by M the average number of conduction
channels in the junction. In Fig. A.1 we show a schematic representation of the
surface of an Al/AlOx/Al junction, with randomly distributed conduction channels,
as indicated by the red dots. The tunnel resistance R of the junction is:

Figure A.1: Schematic representation of the surface of a tunnel junction with ran-
domly distributed conduction channels (red dots).

R =
1

M · c0

(A.1)

Where c0 is the average conductance of one channel. By deriving eq. (A.1) with
respect to M , we find a direct link between the random variations of resistance δR
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from one junction to another and the variations δM of the number of conduction
channels:

δR =
1

M2c0

δM =⇒ δR

R
=

δM

M
(A.2)

In order to calculate the average value of δM , we will map our randomly
distributed conduction channels model on the well known random walk problem
[125]. Let us divide the surface of the junction in N identical cells, as indicated by
the grid in Fig. A.1. If N = 2 · M , we have either 1 or 0 conduction channels inside
the majority of the cells. We will neglect the less probable case where 2 conduction
channels occupy one cell.

We are interested in the deviation δM of the number of conduction channels
from the average value M . Starting from the first cell, we count δM in the following
way. At cell number k, if the cell contains a conduction channel then δMk =
δMk−1 + 0.5 and if the cell is empty then δMk = δMk−1 − 0.5. We can easily check
that if the junction contains exactly the average number of conduction channels,
half of the cells will be filled and half empty, so at the end of the count, δMN = 0.
So δMk corresponds to the total distance after the k − th step of a random walk
with steps equal to ±0.5. The square of δMk is:

δM2

k =











δM2

k−1
+ 2 · δMk−1 + 0.25 for a filled cell

or
δM2

k−1
− 2 · δMk−1 + 0.25 for an empty cell

(A.3)

From eq. (A.3) we can calculate the recursion relation for the mean squared devia-
tion:

〈

δM2

k

〉

=
〈

δM2

k−1

〉

+ 0.25 (A.4)

Thus, after N steps, we get the usual random walk scaling for the root mean square

(RMS) deviation:
√

〈δM2〉 = 0.5 ·
√

N . Considering eq. (A.2), the resulting RMS
deviation for the tunnel resistance is:

√

〈δR2〉
R

=

√
N

2
· 2

N
=

1√
N

(A.5)

The average number of conduction channels M is fixed by the surface S of the
junction and the density of conduction channels ρ:

M = ρ · S (A.6)

Since N = 2 · M , eq. (A.5) can be rewritten as a function of ρ and S:

σ2 =
1

2ρ
· 1

S
(A.7)

where σ2 =
〈δR2〉

R2 is the variance of the tunnel barrier resistance.



Appendix B

Evaluating the self capacitance C0

of an island in the junction chain

The main part of C0 is given by the coupling of the superconducting island to the
large (100× 200µm2) bonding plot, situated at a distance of ∼ 500µm on the wafer
(for example see Fig. 2.8). We approximate this coupling to be the capacitance
between two parallel wires of length l and width w at a distance of d ≃ 500µm, in
the particular electromagnetic environment of the sample. The parameters l and
w are the length and the width of the island. The third dimension of the island,
the thickness of the metal layer, is much smaller and it is neglected in the following
calculations. The value of the capacitive coupling C0 is given by [126]:

C0 =
ǫ0 (ǫr + 1)

2
· l ·

E
[√

1− k2

]

E [k]
and k =

d

d+ 2w
(B.1)

Here ǫr is the relative dielectric constant of the environment and E [k] is the so
called complete elliptic integral of the first kind, which reads:

E [k] =

 π

2

0

dθ√
1− k2sinθ

(B.2)

The typical parameters of an island in the 400 junctions chain discussed in
section 5.7 are: l = 10µm, w = 1µm and ǫr = 12 (Si substrate). Using the formulas
B.1 and B.2, we obtain C0 ≃ 200aF .

If we add a gate electrode in the vicinity of an island in the chain, as
discussed in section 5.5, the capacitive coupling CG will contain two contributions.
The first one, C

′

g is the coupling of the island to the bonding plot of the gate

electrode, as explained in the previous paragraph. The second contribution, C
′′

g

depends on the exact shape of the island and the gate. We calculate C
′′

g by using
a commercial, high precision electromagnetic analysis software: Sonnet. In Fig.
B.1 we present an e-beam image of the gate electrode and the corresponding circuit
simulated with Sonnet. For the parameters of the 6 SQUID chain sample discussed in
section 5.5, we obtain a total coupling to the central island C3

G = C
′

g+C
′′

g ≃ 220 aF+
200 aF = 420 aF , which is very close to the measured value. The capacitance of the
lateral islands, C2

G and C4

G, is mainly given by the coupling to the bonding plot of
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the gate electrode: C
′

g−lat ≃ 20 aF . The coupling of the lateral islands to the nearby
gate electrode is screened by the ground wires.

Figure B.1: SEM image of the central gate (a) and the corresponding Sonnet circuit
(b).
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