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Chapter 0

Résumé en Français

L’homme est souvent s’inspire souvent de la nature pour construire des systèmes cogni-
tifs automatiques, comme un système auditif, dont les applications couvrent bien au-delà
de ce qui est suggéré par la nature. Cette thèse est centrée sur un problème d’ingénierie,
tels qui fait partie d’un système artificiel qui a son origine dans un problème biologique
cognitive. Une caractéristique importante des systèmes auditifs biologiques est la ca-
pacité à localiser l’origine des sons. Autrement dit, les organismes ont un moyen de
réaliser d’où provient le son dns l’espace de se rendre compte de l’endroit d’où provient
le son. Illustrons cela avec l’exemple suivant.

Fig. 1 représente le scénario d’un concert de musique classique, où un certain nombre
d’instruments de musique sont joués et le public arrive à écouter le son produit par
l’ensemble. Dans un tel contexte, ce qui est réellement entendu par les oreilles est un
mélange de sons différents qui sont générés par les différentes sources, les instruments.
Les coordonnées physiques des sources sont différentes et, partant, les sons provenant
de différents instruments empreuntent différents chemins multiples pour atteindre les
oreilles de l’auditeur. Ils lesattergnent non seulment par la voie directe, mais aussi par
de multiples réflexions depuis toutes les directions, comme représenté sur la figure.

Les systèmes humains-cognitifs sont capables de séparer les différentes sources mélange.
En outre, l’emplacement physique des sources peu également être identifié. Dans le
contexte biologique, le terme localisation de source signifie en grande partie la capacité
d’extraire à partir des mélanges des informations sur les emplacements physiques réels
des sources, directement ou indirectement, et séparation de source est la capacité à dis-
tinguer ou à séparer les différentes sons à partir des mélanges. Les systèmes biologiques
sont capables de localiser les différentes sources et de séparer les sources, en dépit des
interférences et du bruit ambiant.

Le problème d’ingénierie que nous traitons dans cette thèse est celui de la localisation
de source. Dans le contexte de l’ingénierie, le terme localisation s’étend bien au-delà
de la notion de simple spécification de l’emplacement physique des sources. En général,
cela signifie la spécification de caracteristiques acoustiques et / ou physiques entre les
sources et les oreilles (ou les capteurs, plus généralment). En outre, les problèmes de
localisation et de séparation sont intrinsèquement liés et souvent la localisation des

1



0. RÉSUMÉ EN FRANÇAIS

Figure 1: Représentation d’un scénario de concert de musique classique. Ce qui est
réellement entendu par les oreilles est la combinaison de sons qui sont générés par les
différents instruments.

source précède la séparation des sources. Par conséquent, chaque fois que nous nous
référons au terme separation de sources à partir de maintenant, il faut comprendre qu’il
inclut le problème de la localisation des sources.

Au cours des deux dernières décennies, des efforts ont été entrepris par des commu-
nautés scientifiques, de divers horizons tels que traitement du signal, mathématiques,
statistiques, réseaux de neurones, apprentissage, etc, pour construire des systèmes de
localisation et de séparation de sources. Le lecteur pourra se référer à [1] pour un
historique des recherches en séparation de sources. En dépit d’efforts considérables, la
question n’est pas complètement encore résolue et il reste encore beaucoup de problèmes
difficiles et sous-problèmes à résoudre afin de parvenir à une réponse satisfaisante.

Les systèmes de séparation de sources trouvent des applications dans une grande
variété de domaines tels que le traitement du signal de musique, le traitement des
signaux biomédicaux, de la radio-astronomie, de traitement d’image, etc. Les systèmes
de séparation de sources ont une importance significative sur les différents aspects de
la vie quotidienne et sur le développement de la science elle-même. Par conséquent, il
nous a motivés et incités à entreprendre l’étude du problème de séparation de sources.

2
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0.1 Le problème mathématique

0.1 Le problème mathématique

Prenons N signaux sources (signaux numériques) et notons-les sj(t), 1 ≤ j ≤ N . Con-
sidérons également M mélanges et notons-les xi(t), 1 ≤ i ≤ M . Lorsque M = 2,
on parle du cas des mélanges stéréo. Les trajects multiples dus aux réflexionq sont
modélisés par des réponses impulsionnelles discrètes de longueur L entre chaque paire
source-microphone, désignées par aij(t).

Le processus de mélange est modélisé comme un système linéaire, et à chaque micro
i les observations ne sont rien d’autre qu’une somme de toutes les sources sj(t) qui ont
été convoluées avec les filtres correspondants de mélange aij(t). Mathématiquement, on
peut abstraire le processus de mélange par:

xi(t) =

N∑

j=1

(aij ⋆ sj)(t) + vi(t), (1)

où aij(t) est un filtre de longueur L, et vi(t) est le bruit au ime enregistreur. Par souci
de concision, nous noterons les sources, les filtres, le bruit et les mélanges de sj, aij , vi
et xi respectivement, sans expliciter l’indice de temps.

Les réponses impulsionnelles aij , 1 ≤ i ≤ M, 1 ≤ j ≤ N dépendent de divers fac-
teurs tels que les positions relatives des sources et des micros, l’acoustique de l’environnement,
les propriétés physiques des appareils, etc. Si les caractéristiques physiques et acous-
tiques de l’environnement sont fixes, alors les seuls facteurs qui influent sur les réponses
impulsionnelles sont les positions relatives et ils caractérisent entierèment localisation
des sources.

En outre, le problème de localisation et de séparation des sources doit être résolu sans
la connaissance explicite du processus de mélange. C’est-a-dire qu’aucune information
sur les sources ou les filtres n’est à notre disposition, et donc le contexte est appelé
aveugle. Avec cette notion, nous pouvons maintenant poser la question qui est au cœur
de toutes les recherches enlocalisation aveugle de sources:

Question centrale en localisation de source: Etant donné les mélanges
xi(t), i = 1 . . .M , est-il possible d’obtenir des informations explicites sur les fil-
tres aij, 1 ≤ i ≤M, 1 ≤ j ≤ N?

Techniquement, la définition du modèle de mélange est générique par nature et la nature
exacte des signaux ( l’audio, image, etc) est sans importance pour la modélisation des
processus de mélange en soi. Cependant, il jouera un rôle crucial dans l’élaboration des
algorithmes et des systèmes de séparation, qui le plus souvent exploitent les propriétés
particulières des types de sources spécifiques. Cette thèse se situe dans le contexte de
signaux audio, et certaines propriétés spécifiques des signaux audio seront exploitées
dans nos contributions. En outre, la terme localisation de source fait physiquement
sens lorsque les sources sous-jacentes sont des sources sonores.

3
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0.2 Notations

Avant d’aller plus loin dans le problème, définissons d’abord quelques notations. Nous
considerons des signaux source de longueur T : sorient sj , j = 1, . . . , N les vecteurs
source, chacun de taille T × 1.

Soit aij ∈ R
L le vecteur correspondant au jme filtre aij , et définissons A(t) ∈

R
M×N , 1 ≤ t ≤ L la matrice des coefficients des filtres à l’indice de temps t. Le

coefficient (ij) de la matrice contient le vecteur filtre aij de longueur L, le long de la
troisième dimension.

De même, soient xi, i = 1, . . . ,M les vecteurs de longueur T +L− 1 correspondant
à la somme de mélanges xi, i = 1, . . . ,M .

Soit x(t) = [x1(t), . . . , xM (t)]T ∈ R
M×1 et s(t) = [s1(t), . . . , sN (t)]T ∈ R

N×1 les
vecteurs des mélanges et les sources, respectivement à l’indice de temps t. Ensuite, on
peut écrire (1) comme

x(t) =

L−1∑

ℓ=0

A(ℓ)s(t − ℓ) + v(t), (2)

où v(t) ∈ R
M×1 est un vecteur d’échantillons de bruit à l’indice de temps t. Par souci

de concision, nous utilisons aussi parfois les notations matricielles suivantes. Soit S ∈
R
N×T la matrice des vecteurs source définie comme S = [s1 . . . sN ]T et X ∈ R

M×(T+L−1)

la matrice des vecteurs mélange défini par X = [x1 . . .xM ]T.
En notation abrégée, le processus de mélange convolutif est souvent écrit comme:

X = A ⋆ S+V. (3)

où ⋆ représente l’opération de convolution.

0.3 Une architecture standard pour les systèmes de sépa-
ration de source

Une architecture typique pour les systèmes de séparation de source se compose de deux
étapes. Dans la première étape, une estimation des filtres de mélange ãij est d’abord
obtenue à partir de la somme de mélanges xi, avec une hypothèse appropriée sur les
sources et / ou sur les filtres eux-mêmes. Une fois obtenue une estimation des filtres,
une estimation s̃j des sources réelles est obtenue en utilisant les filtres estimes. Fig. 2
représente un système de séparation de sources typique à deux étages .

Il est clair que la première étape de cette architecture standard est la localisation
de source. Ainsi, en référence à l’architecture standard, l’objectif de cette thèse est la
première étape.

Si l’on regarde l’équation de mélange (1), si les sources sont numérotées de 1 à N , il
est clair que l’ordre des sources et des filtres correspondants n’a pas d’importance dans
le processus de mélange. Les sources sont ordonnées uniquement pour la commodité de
la modélisation. De même, les sources et les filtres peuvent être redimensionnés par des
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Estimate Filters Estimate Sources

Figure 2: Un système typique à deux étages de séparation de sources.

facteurs arbitraires réciproque sans changer les mélanges. Par conséquent, les systèmes
de séparation de sources permetent d’estimer les filtres, et les sources, seulment à une
permutation et facteur d’échelle près. Ces ambiguïtés sont designées par les termes
ambiguïtés de permutation et échelle. Elles sont inhérentes au modèle lui-même et par
conséquent, sont indépendantes du type d’algorithme ou de technique que nous utilisons
pour effectuer la séparation des sources.

Chaque étape d’un système de séparation aveugle de sources repose sur certaines
hypothèses sur les filtres de mélange, les sources ou les deux. Dans la section suivante,
nous décrivons l’hypothèse utilisée dans ces travaux de thèse sur les filtres de mélange
et sur les sources.

0.4 Filtres et sources parcimonieux

Lorsque l’environnement de mélange n’est pas réverbérant et quand il n’y a que quelques
chemins de réflexion entre les sources et les micros, ce genre de mélange est modélisé
par des filtres qui contiennent des pics très peu nombreux par rapport à la longueur des
filtres, comme le montre la Fig. 3, et ils sont appelés filtres parcimonieux (en Anglais:
sparse). Selon le dictionnaire de langue anglaise de l’Université d’Oxford, le mot sparse
signifie de finement dispersé, ce qui est approprié dans notre exemple.

On recontre des modèles parcimonieux dans plusieurs domaines applicatifs tels que
l’acoustique sous-marine, la géo-acoustique, les communications sans fil, etc. Dans cette
thèse, les filtres de mélange parcimonieux sont notre intérêt premier, et la notion de
filtre parcimonieux sera formalisée dans le chapitre 4.

Dans la plupart des approches de séparation de sources, les sources sont générale-
ment modélisées en fonction de leurs propriétés statistiques. Les sources sont carac-
térisées en fonction de leurs propriétés telles que l’indépendance statistique, la station-
narité, la non-négativité, etc et en function des différentes distributions qu’elles peuvent
suivre.

Outre les types ci-dessus mentionnés, les sources sont souvent modélisées comme
parcimonieuses dans un certain domaine transformé, comme le domaine temps-fréquence
(par exemple, la Transformée de Fourier à court terme (TFCT)), les ondelettes, etc.
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Figure 3: Un exemple d’un filtre clairsemée.

Intuitivement, une source est dite parcimonieuse dans un certain domaine de la trans-
formée si sa représentation dans le domaine transforme n’a que très peu de coefficients
significatifs.

Fig 4 montre un exemple d’une source parcimonieuse. Fig 4(a) montre la représen-
tation dans le domaine temporel d’un son de flûte et la figure 4(b) montre la courbe
d’amplitude du même signal dans le domaine TFCT, où les regions des plus claires
indiquent les coefficients de très faible amplitude. Notez que la source a un très petit
nombre coefficients TFCT importants et par conséquent, elle est parcimonieuse dans le
domaine TFCT.
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Figure 4: Une exemple d’une source parcimonieuse dans le domaine temps-fréquence

Dans cette thèse, nous nous appuyons sur l’hypothèse de la parcimonie des sources
et les détails techniques de cette hypothèse seront discutés plus tard dans le chapitre 2.
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0.5 Exploitation de la parcimonie

Dans cette section, nous examinons comment la parcimonie des filtres et des sources
peut être utilisée pour résoudre certains problèmes de séparation de sources. Tout
d’abord, nous examinerons le cas où les sources sont connues et où nous cherchons és à
obtenir les filtres, qui sont parcimonieux dans le domaine temporel. C’est le problème
de l’estimation de filtre (localisation de source) dans un cadre non-aveugle. Ensuite,
nous examinerons de la situation inverse où les filtres sont connus et où nous voulons
obtenir les sources, qui sont supposés être parcimonieux le domaine de la transformée
temps-fréquence.

0.5.1 Filtre parcimonieux

Supposons que nous observons x, la convolutions d’un signal s par un filtre a:

x = a ⋆ s. (4)

En supposant que le signal s et le filtre a sont de longueur finie, nous pouvons les
vectoriser en s et a. Ensuite, nous pouvons écrire l’équation (4) comme:

x = T[s] · a, (5)

où T[s] est la matrice de Toeplitz formée à partir du vecteur source, et x est le vecteur
d’observation.

Le problème à résoudre est maintenant d’estimer le filtre a à partir du vecteur
d’observation x, connaissant le vecteur source s. Il s’agit d’un problème souvent ren-
contré dans les systèmes de communication sans fil. Dans un tel système, les caractéris-
tiques du canal sont modélisées par un filtre à réponse impulsionnelle finie a et le signal
reçu x est donné par l’équation (4). Dans le jargon des communications, a est appelé
réponse impulsionnelle du canal.

Généralement, la réponse impulsionnelle d’un canal est estimée par l’envoi de sig-
naux d’etalonnage, dont la connaissance est disponible au niveau du récepteur, à in-
tervalles intermittents. La réponse du canal estimé impulsion est ensuite utilisée pour
estimer les signaux transmis.

Mathématiquement, l’équation (5) est une instance particulière d’une classe générale
de problèmes linéaire inverses. Dans un problème linéaire inverse, nous sommes in-
téressés à trouver un vecteur a en utilisant x, de sorte que

x = Φa, (6)

où Φ est une matrice. Eq. (5) est simplement un cas particulier de l’équation (6). avec
Φ = T[s].

En outre, si la taille du vecteur x est inférieure à celle du vecteur inconnu a, alors
nous avons un système sous-déterminé d’équations linéaires. Trouver des solutions aux
problèmes linéaires inverses sous-déterminés est un domaine plus vaste de la recherche
dont les implications sont bien au-delà de l’estimation de canal.
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Les problèmes sous-déterminés sont mal posés, dans le sens où ils n’ont pas de
solution unique et donc nous avons besoin de quelques hypothèses sur le genre de so-
lution que nous recherchons afin de les résoudre. Une hypothèse qui a reçu beaucoup
d’attention ces dernières années est la parcimonie de la solution. En général, nous
sommes intéressés à trouver une solution parcimonieuse au système sous-déterminé
d’équations linéaires, et cette famille de problèmes est collectivement appelé problèmes
de reconstruction parcimonieuse .

Une littérature abondante existe sur les problèmes de reconstruction parcimonieuse
dans une grande variété de contextes, et un résultat central de le problème est que si Φ
et a satisfont certaines conditions, alors une solution de l’équation (6) peut être trouvée
en résolvant un problème d’optimisation impliquant Φ et x.

Dans de nombreux contextes tels que l’acoustique sous-marine, l’exploration géologique,
les communications sans fil, etc. les réponses impulsionnelles des canaux sont parci-
monieux dans la nature et donc elles peuvent être estimées en résolvant un problème
d’optimisation approprié, utilisant la connaissance des sources.

0.5.2 Parcimonie des sources

Nous avons mentionné et illustrédans Sec. 0.4 que les sources audio sont parcimonieuses
dans le domaine temps-fréquence. Quand les filtres sont connus, la propriété de la
parcimonie des sources peut être utilisée pour les estimer. Dans le cadre simple d’une
seule source, la formulation du problème d’estimation de la source reste la même que
celle décrite dans la section précédente, mais les rôles du filtre et de la source sont
intervertis. Par conséquent, les sources peuvent être estimées en résolvant un problème
d’optimisation.

Dans le cas de sources multiples, il y a des approches dans la littérature [2] qui
exploitent la structure parcimonieuse des sources pour les estimer en utilisant la con-
naissance des filtres. En effet, l’hypothèse de source parcimonieuses a été largement
utilisée dans le cas des mélanges linéaire instantanés et anéchoïques pour estimer les
paramètres de mélange [3].

En plus de l’hypothèse de parcimonie des sources, on suppose qu’elles sont disjointes
dans le domaine temps-fréquence. Cela signifie qu’à chaque point temps-fréquence, une
seule de ces sources est active et contribue aux mélanges. Dans un tel cas, le processus
de mélange est trivialisé à chaque point temps-fréquence et cette propriété est exploitée
pour estimer les paramètres de mélange pour chaque source [4]. C’est l’idée sous-
jacante à l’exploitation de la parcimonie des sources pour la localisation, et plusieurs
généralisations et des améliorations ont été proposées dans la littérature [5, 6, 7].

Nous allons maintenant décrire la proposition de cette thèse, dont la contribution
centrale est le mariage de la parcimonie des filtres et de celle des sources pour la tâche
d’estimation aveugle de filtres.
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0.6 Proposition de la thèse

Dans Sec. 0.5.1, nous avons vu comment la connaissance explicite de la source et la parci-
monie du filtre peuvent être utilisées pour estimer un filtre, avec une seule observation.
Au lieu d’une seule observation, supposons que nous avons maintenant deux observa-
tions x1 et x2, à travers les filtres a1 et a2. Il s’agit du paradigme “Une entrée-Deux
sorties" (SITO: Single-Input-Two-Output), et en raison de la propriété de commutativ-
ité et d’associativité de l’opérateur de convolution,on peut écrire:

(x2 ⋆ a1 − x1 ⋆ a2)(t) = 0, ∀t. (7)

Cela implique la relation croisée (CR: Cross-Relation) [8]:

(x2 ⋆ a1)(t) = (x1 ⋆ a2)(t) = (a2 ⋆ a1 ⋆ s)(t), ∀t. (8)

La CR nous fournit une contrainte qui ne nécessite pas la connaissance des sources
explicitement. Ceci a été largement utilisé dans le domaine des communications pour
estimer les filtres de manière aveugle. De plus, si les filtres sont parcimonieuses, un
problème d’optimisation peut alors être formulé et résolu pour estimer a1 et a2 simul-
tanément. Il s’agit d’un système d’estimation aveugle, et on se place toujours dans le
cadre d’une unique source. La question que nous pouvons nous poser maintenant est:
comment pouvons-nous exploiter cette CR pour estimer des filtres de mélange dans le
cadre de sources multiples?

C’est à ce stade que la parcimonie des sources dans le domaine temps-fréquence
joue un rôle. Nous avons mentionné dans Sec. 0.5.2 qu’une hypothèse couramment
utilisée est que les sources sont parcimonieuses et disjointes dans le domaine temps-
fréquence. Avec cette hypothèse, nous pouvons trouver des points temps-fréquence
dans les mélanges, pour lesquels une seule des sources est active. Par conséquent, même
si la CR de l’équation (8) peut ne pas être satisfaite dans le domaine temporel pour
n’importe quelle source, en raison de la présence d’autres sources, une version adaptée
au domaine temps-fréquence de la CR sera satisfaite à ces points temps-fréquence où
une seule source est active. Ensuite, ces CR temps-fréquence pour chacun de ces points
peuvent être utilisées pour formuler un problème d’optimisation pour l’estimation de
filtre.

Cette thèse est axée sur l’élaboration d’un cadre qui repose sur la parcimonie dans
le domaine temps-fréquence et la disjonction des sources, ainsi que sur la version temps-
fréquence de la CR. Fig 5 représente un schéma symbolique de notre contribution.

Nous proposons un cadre qui exploite la parcimonie des filtres et des sources pour
la tâche d’estimation de multiples filtres parcimonieux à partir de mélanges convolutifs.
Les principales tâches qui sont impliquées dans un tel cadre sont les suivantes: 1)
Identifier les points temps-fréquence dans les mélanges où une seule source est active,
et les regrouper entre eux selon les sources et 2) estimer le filtres en exploitant la CR
temps-fréquence CR dans chaque groupe.

Un tel système aurait un flux de travail tel que décrit dans la figure 6. Les étapes
peuvent être résumées comme suit:
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Time-frequency domain

source sparsity

Time domain 

filter sparsity

Our contributions

Sparse component analysis Sparse recovery problem

A combination of source and

filter sparsities

Figure 5: La contribution de notre la thèse.

1. Transformation des mélanges dans le domaine temps-fréquence, où la structure
parcimonieuse des sources est rendue explicite;

2. Identification des points temps-fréquence où une seule source est active;

3. Regroupement des points et formulation du problème d’estimation de filtre;

4. Solution au problème d’estimation du filtre.

Transformation of
the mixtures

Time-frequency 
points

selection and 
clustering

Mixing filter 
estimation

Figure 6: Flux de travail du système d’estimation de filtre basé sur la parcimonie des
sources et des filtres de mélange.

Les chapitres 2 - 4 donnent un aperçu de l’état de l’art, les chapitres 5 - 8 présentant
nos contributions originales, et la thèse se conclut sur les perspectives de travaux futurs
dans le chapitre 9.
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Chapter 1

Introduction

Survival instinct has been a key driving force behind the evolution of Life on earth.
Nature has evolved efficient biological systems and subsystems in all the species that

proliferate our planet, over billions of years. Human beings, with all their intelligence
have been striving to mimic such perfect or near-perfect systems for their own benefit
in their day-to-day lives. The first important eon in the history of engineering gave us
the industrial revolution, where man built machines that mimicked the physical world.
After that, the next important phase came in the form of information revolution. In the
past few decades, scientists and engineers have been trying to build intelligent systems
that can sense and process information in various physical forms.

Human beings are endowed with five information sensing systems and processing
systems in the brain corresponding to the following information types: vision, sound,
smell, taste and touch. Of all these, visual and sound information are generally processed
continuously in a human brain. The very fact that the sensory organ for vision, the
eye, has lids to cut off information, whereas the corresponding organ for sound, the ear,
has no such facility, hints that sound is a very fundamental kind of information. This
particular ability to process sound information efficiently has been the key to the very
survival of many different species. For example, birds attract their mates by singing
elaborate bird songs, they alert their own kind for some danger (predator birds) through
distress calls, etc. Each purpose has a sound associated with it, and it is very important
for a species to have an efficient sound sensing, processing and interpreting system.

Wherever there is information, then correspondingly associated with that is interfer-
ence or noise. In a complex system such as our natural world, noise could originate from
various sources and it is inevitable for the species to handle interference from unwanted
sources. To that extent, Nature has done a fairly excellent job of evolving cognitive
systems that can successfully separate the necessary information and unwanted inter-
ference. For example, we can easily follow a conversation in a crowded party hall, or
follow the notes of a particular instrument in a music concert, etc. in spite of all the
unwanted sources of sound that are present simultaneously.

It is natural that man is often inspired by Nature to build such cognitive systems
artificially, and whose application scenarios span well beyond what is suggested by
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Nature. This thesis is focussed on one such engineering problem which forms a part of
an artificial system that has its origins in a biological cognitive problem.

In the rest of this chapter, we shall informally introduce the problem that we will be
dealing throughout this thesis, and present a bird’s eye view of the standard approaches
used to tackle it. Then, we briefly describe the central hypothesis on which this thesis
is based on and we end this chapter by providing the layout of the thesis.

1.1 Source localisation and separation

As it was discussed previously, biological cognitive systems are highly sophisticated
to differentiate between various sources of sound. That is, organisms are capable of
separating various sounds that are heard simultaneously. This is achieved by the help of
various cues that are associated with sounds such as the location of the sources, temporal
and other structure of the sources, etc. One important feature of these biological systems
is also the ability to localise the origin of the sounds. That is, the organisms have a way
to realise the location from which the sound is originating. Let us illustrate this with
the following example.

Fig. 1.1 depicts the scenario of a typical music concert, where a number of musical
instruments are played and the audience gets to listen to the collective sound. In such
a setting, what is actually heard by the ears is a mixture of various sounds that are
generated by the various sources, the instruments. The physical co-ordinates of the
sources are different and hence the sounds originating from different instruments take
different multiple paths to reach the human ears. They not only reach the human ears
via the direct path, but also through multiple reflections from all directions, as depicted
in the figure.

In the biological context, the term source localisation largely means the ability to
extract information from the mixtures about the actual physical locations of the sources
directly or indirectly, and source separation is the ability to distinguish or separate
multiple sounds from the mixtures. Biological systems are capable of localising the
different sources and also separating the sources, in spite of interference and ambient
noise.

Though the material presented in the first four chapters of the thesis is related to
both source separation and localisation, the key engineering problem that we are dealing
with is that of source localisation. In the engineering context, the term localisation ex-
tends well beyond the notion of simply specifying the physical locations of the sources.
In general, it means the specification of some acoustic and/or physical characteristics
between the sources and the ears (sensors, in general). Also, the problems of source
localisation and separation are inherently connected and often source localisation pre-
cedes source separation. Hence, whenever we refer to the term source separation from
now on, it should be understood that it includes the problem of source localisation.

Over the last couple of decades, efforts have been undertaken by the scientific com-
munity, from various backgrounds such as Signal Processing, Mathematics, Statistics,
Neural Networks, Machine Learning, etc., to build source localisation and separation
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Figure 1.1: Depiction of a typical musical concert scenario. What is actually heard by
the ears is the combination of sounds that are generated by the different instruments.

systems. For historical notes on source separation research, please refer to [1]. Re-
searchers have studied the source separation problem at various levels of complexity,
and have come up with different approaches and systems. In spite of the huge efforts,
the question is not completely answered yet and there remains a lot of difficult problems
and sub-problems to be solved in order to arrive at a satisfactory answer.

In such a juncture, one might ponder about the significance of such systems. There
are various reasons and use cases where source separation systems find applications, and
here we will primarily quote the applications related to audio. We have already quoted
the example of separating musical instruments from the recordings in a concert. Per-
forming such a separation has various applications such as music transcription, selective
enhancement, track extraction, etc. A related application is de-noising of general audio
signals, where one wishes to separate out all the noise from the actual audio content.

Source separation also finds applications in biomedical signal processing. Suppose
one wishes to measure the heart activity signal of an individual. The signals that are
actually picked up by the sensors are a combination of the signals originating from the
heart and other parts of the human body and noise. In such a scenario, it becomes
increasingly important to separate out unwanted signals from the signal of interest.
Hence, source separation is very relevant in this context.

In radio-astronomy, one studies the properties of stars and other astronomical ob-
jects by observing the radio signals that are emitted by them. It is very well known
that the outer space consists of billions of stars and other bodies, and hence the signals
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that are sensed by the antennas on earth are highly corrupted. If one wishes to extract
the signals of interest, then source separation is the way.

Source separation also has a number of applications in image processing, such as
de-noising, etc.

With these representative applications, we can confidently say that source separation
systems have a significant impact on the various aspects of day-to-day life, and more
importantly, on the development of Science itself. Hence, it motivates and excites us to
undertake the study of the source separation problem.

1.2 Abstraction of the problem

In all the above discussion, we have been very vague about the terms: sources, mixtures,
mixing process, localisation and separation. Let us make them more precise in this
section. Though in a real acoustic environment, the sound signals that are heard by
human ears are nothing but mechanical waves that are continuous in nature, in practice
the sound signals are digitized for the purposes of storing and processing them on digital
computers. Hence, all the signals that we talk about in the source separation problem
are digital signals.

Let us consider N source signals and denote them by sj(t), 1 ≤ j ≤ N . Also, let
us consider M mixtures and denote them by xi(t), 1 ≤ i ≤ M . When M = 2, then
it is referred to as stereo mixtures case. The multiple reflection paths are modelled by
discrete impulse responses of length L between each pair of source and microphone, and
this is denoted by aij(t). An abstraction of the mixing scenario is illustrated in the
Fig. 1.2. The circles on the left side of the diagram represent the microphones which
observe the mixtures and the circles on the right side represent the sources. Between
each pair of source and microphone is an impulse response that is represented by an
arrow.

The mixing process is modelled as a linear system, and at each microphone i the
observations are nothing but a summation of all the sources sj(t) that have been con-
volved with the corresponding mixing filters aij(t). Mathematically, we can abstract
the mixing process as

xi(t) =

N∑

j=1

(aij ⋆ sj)(t) + vi(t), (1.1)

where aij(t) is a filter of length L, vi(t) is the noise at the ith recorder and ⋆ is the
convolution operation. For brevity, we denote the sources, filters, noise and mixtures
by sj, aij , vi and xi respectively, by dropping the time index.

The impulse responses aij , 1 ≤ i ≤M, 1 ≤ j ≤ N depend upon various factors such
as the relative locations of the sources and the microphones, acoustics of the environ-
ment, physical properties of the devices, etc. If the physical and acoustic characteristics
of the environment are fixed, then the only factor that influences the impulse responses
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Figure 1.2: Abstraction of the mixing process.

are the relative physical locations and they completely characterise the localisation of
the sources.

Further, source separation and localisation problems have to be solved without the
explicit knowledge of the mixing process. That is, no information about either the
sources or the filters are available to us, and hence the context is referred to as blind.
With this notion, we can now pose the question that is at the heart of all the blind
source localisation research:

Central question in source localisation: Given the mixtures xi(t), i = 1 . . .M ,
is it possible to obtain explicit information about the filters aij, 1 ≤ i ≤M, 1 ≤ j ≤
N?

Technically, the mixing model definition is generic in nature and the exact nature of
the signals, like audio, image, etc. is immaterial to the modeling of the mixing process
per se. However, it will play a crucial role in devising the separation algorithms and
systems, which more often than not exploit the special properties of specific source
types. This thesis is set in the context of audio signals, and certain specific properties
of audio signals will be exploited in our contributions. Also, the term source localisation
makes a physical sense when the underlying source signals are audio.

1.2.1 Notations

Before we proceed further into the problem, let us first setup some notations. Let us
consider sources of length T and let sj , j = 1, . . . , N be the source vectors, each of size
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T × 1. Let aij ∈ R
L be the vector corresponding the the filter aij, and let us define

A(t) ∈ R
M×N , 1 ≤ t ≤ L to be the matrix of filter coefficients at time index t.

Similarly, let xi, i = 1, . . . ,M be the vectors of length T + L − 1 corresponding
to the mixtures xi, i = 1, . . . ,M . Let x(t) = [x1(t), . . . , xM (t)]T ∈ R

M×1 and s(t) =
[s1(t), . . . , sN (t)]T ∈ R

N×1 be vectors of mixtures and sources respectively at time index
t. Then, we can write (1.1) as

x(t) =

L−1∑

ℓ=0

A(ℓ)s(t − ℓ) + v(t), (1.2)

where v(t) ∈ R
M×1 is a vector of noise samples at time index t. For the sake of brevity

we shall also sometimes use the following matrix notations. Let S ∈ R
N×T be the

matrix of source vectors defined as S = [s1 . . . sN ]T and let X ∈ R
M×(T+L−1) be the

matrix of mixture vectors defined as X = [x1 . . .xM ]T.
As a shorthand notation, the convolutive mixing process is often written as

X = A ⋆ S+V. (1.3)

where ⋆ represents the convolution operation.

1.2.2 A standard architecture for source separation systems

A typical system level architecture for source separation systems consists of two stages.
In the first stage, an estimate of the mixing filters ãij is first obtained starting from
the mixtures xi, with some suitable hypothesis on either the sources and/or the filters
themselves. Once an estimate of the filters are obtained, then an estimate s̃j of the
actual sources are obtained using the filter estimates. Fig. 1.3 depicts a typical two-
stage source separation system.

Estimate Filters Estimate Sources

Figure 1.3: A typical two-stage source separation system.

It is clear that the first stage of this standard architecture is source localisation. So,
with reference to the standard architecture, the focus of this thesis is the first stage.

If we look at the mixing equation (1.1), though the sources are numbered from 1
to N , it is clear that the order of the sources and corresponding filters do not matter
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for the mixing process. The source ordering is just for the convenience of modelling.
Similarly, the sources and filters can be scaled by arbitrary reciprocal factors and still
the mixtures remain the same. As a consequence of this, source separation systems
can estimate filters and sources only up to a permutation and scaling factor. These
ambiguities are termed as the permutation and scaling ambiguities. These are inherent
to the model itself and hence it is independent of the kind of algorithm or technique we
use to perform source separation.

Each stage of a blind source separation system relies on certain hypotheses on either
the mixing filters or the sources or both. In the next section, let us describe some of the
common types of hypothesis that are assumed on the mixing filters and the sources.

1.2.3 Types of mixing filters

Several simplifications can be made to the mixing filter model and in each case one
obtains a different kind of mixture. Fig. 1.4 shows the different possible types of the
mixing filters aij . In the simplest of the cases, the filter could be a delta function
aij = cij · δij(t), as illustrated in Fig. 1.4(a). In such a case, a mixture at a given time
index t is essentially a weighted sum of the source signals at the same time instant.
Hence, such mixtures are called linear-instantaneous mixtures.
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Figure 1.4: Types of mixing filters

The second kind of filters are shifted delta functions aij = cij · δij(t− tij), as shown
in Fig. 1.4(b). In this case, the mixtures are obtained by the summation of shifted and
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1. INTRODUCTION

scaled sources and hence the mixtures are called anechoic mixtures.
In a realistic environment the source signals will go through echos and reverbera-

tions and hence the linear instantaneous and anechoic filter models are not capable of
capturing the complexity of the mixing process. Hence, these kind of mixing is mod-
elled using finite impulse filters as shown in Fig. 1.4(c). The mixtures are then called
convolutive mixtures, and they are difficult to work with in general.

However, when the mixing environment is not reverberant and when there are only
a few reflection paths between the sources and the microphones, the complexity of the
mixing process lies in between the anechoic and fully convolutive cases. This kind of
mixing is modelled by filters which contain very few peaks compared to the length of
the filters as shown in Fig. 1.4(d), and they are called sparse filters. According to
the English language dictionary of Oxford University, the word sparse means thinly
dispersed or scattered, which is appropriate in our example.

Sparse filter models find application in several fields such as underwater acoustics,
geo-acoustics, wireless communications, etc. In this thesis, sparse mixing filters are of
our primary interest and the notion of filter sparsity will be formalised in chapter 4.

Over-determined, determined and underdetermined mixtures: Apart from
the classification of mixtures based on the kind of mixing filters, we can also have
a classification based on the relationship between the number of sources N and the
number of mixtures M .

When N < M , then the number of observable variables are more than the unknown
variables and hence it is referred to as an over-determined case. If N = M , then we
have as many observable variables as unknowns, and hence this is a determined case.
The most difficult case is when the number of unknowns are more than the number of
observable variables, N > M , which is aptly called the underdetermined case.

1.2.4 Types of sources

In most of the approaches for source separation, the sources are generally modelled based
on their statistical properties. The sources are characterised based on their properties
such as statistical independence, stationarity, non-negativity, etc. and the distributions
they assume in various cases.

Apart from the above mentioned types, sources are often modelled as sparse in a
certain transform domain such as the time-frequency (e.g. Short Time Fourier Trans-
form (STFT)), Wavelets, etc. Intuitively, a source is said to be sparse in a certain
transform domain if its transform domain representation has only a very few significant
coefficients.

Fig. 1.5 shows an example of a sparse source. Fig. 1.5(a) shows the time domain
plot of a flute sound and Fig. 1.5(b) shows the magnitude plot of the same signal in
the STFT domain, and the lighter regions indicate the very low magnitude coefficients.
Notice that the source has only a very few significant STFT coefficients and hence it is
sparse in the STFT domain.
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Figure 1.5: An example of time-frequency domain sparse signal

In this thesis, we rely on the assumption of the sparsity of sources and the technical
details of the hypothesis will be discussed later in chapter 2.

1.3 Exploitation of sparsity

As we have mentioned repeatedly, sparsity of mixing filters and sources is the central
theme of this thesis. In this section, let us examine how the sparsity of these objects
helps us to solve different problems. Firstly, we will look at the case where the sources
are known to us and we are interested in obtaining the filters, which are assumed to be
sparse in the time-domain. This is the problem of filter estimation (source localisation)
in a non-blind setting. Then, we will look at the converse situation where the filters are
known to us and we want to obtain the sources, which are assumed to be sparse in a
time-frequency transform domain.

1.3.1 Filter sparsity

Suppose we observe x, a signal s which is convolved with a filter a:

x = a ⋆ s. (1.4)

Assuming finite lengths for the signal s and the filter a, we can vectorise them as s

and a. Then we can write Eq. (1.4) as:

x = T[s] · a, (1.5)

where T[s] is the Toeplitz matrix formed using the source vector, and x is the observation
vector.

The problem at hand now is to estimate the filter a from the observation vector x,
with the knowledge of the source vector s. This is a problem that is often encountered
in wireless communication systems. In such a system, the channel characteristics are
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1. INTRODUCTION

modelled by a finite impulse response filter a and the received signal x is given by
Eq. (1.4). In the communications engineering parlance, a is known as channel impulse
response.

Typically, the impulse response of a channel is estimated by sending out pilot signals,
whose knowledge is available at the receiver, at intermittent intervals. The estimated
channel impulse response is then used to estimate the transmitted signals.

Mathematically, Eq. (1.5) is a particular instance of a general class of linear inverse
problems. In a linear inverse problem, we are interested in finding a vector a using x,
such that

x = Φa, (1.6)

where Φ is a matrix. Eq. (1.5) is just a special case of Eq. (1.6) with Φ = T[s].
Further, if the size of the vector x is smaller than the unknown vector a, then we have

an underdetermined system of linear equations. Finding solutions to underdetermined
linear inverse problems is a broader area of research whose implications are much beyond
channel estimation.

Underdetermined problems are ill-posed in the sense that they do not have unique
solutions and hence we need some hypothesis about the kind of solution we are looking
for in order to solve them. One such hypothesis that has received a lot of attention in
the recent years is the sparsity of the solution. In general, we are interested in finding
a sparse solution to underdetermined system of linear equations, and this family of
problems is collectively called as sparse recovery problems.

A large body of literature exists concerning sparse recovery problems in a wide
variety of settings, and a central result of sparse recovery is that if the matrix Φ and
vector a satisfy certain conditions, then a sparse solution of Eq. (1.6) can be found by
solving an optimisation problem involving Φ and x.

In many settings such as underwater acoustics [9], geological exploration [10], wire-
less communications [11], etc. the concerned channel impulse responses are sparse in the
time-domain and hence they can be estimated by solving an appropriate optimisation
problem, with the knowledge of the sources.

1.3.2 Source sparsity

We mentioned in Sec. 1.2.4 that audio sources are sparse in the time-frequency domain,
and also saw an illustration. When the filters are known to us, then the sparsity property
of the sources can be utilised to estimate them. In the simple setting of one source,
the formulation of the source estimation problem remains the same as described in the
previous section, but the roles of the filter and the source are interchanged. Hence, the
sources can be estimated by solving an optimisation problem.

In the case of multiple sources, there are approaches in literature [2] that exploit the
sparse structure of the sources to estimate them by using the knowledge of the filters.
Indeed, sparse source hypothesis has been extensively used in the linear-instantaneous
and anechoic mixtures cases to blindly estimate the mixing parameters [3].
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Along with the hypothesis that the sources are sparse, they are also assumed to be
disjoint in the time-frequency domain. This means that at each time-frequency point,
only one of the sources is active and contributes to the mixtures. This property is then
exploited to estimate the mixing parameters for each source [4]. This has been the basic
idea behind exploiting source sparsity for source localisation, and several generalisations
and improvements have been proposed in literature [5, 6, 7].

We now describe the proposition of this thesis, whose central contribution is the
marriage of filter sparsity and source sparsity for the task of blind filter estimation.

1.4 The big picture

In this section, we shall take a bird’s eye view of the approaches that we have presented
till now, and motivate the contribution chapters.

Fig. 1.6 is a depiction of the landscape of approaches for source localisation and
separation problems. The x-axis represents the possible hypothesis that one can assume
about the mixing filters and y-axis represents the possible hypothesis about the sources.
In chapter 2, we discuss briefly about the usage of different kinds of source hypotheses
such as independence and sparseness that can be used for source separation. ICA based
techniques were primarily developed to solve instantaneous mixtures problem, and they
were extended to also anechoic and convolutive settings with appropriate modifications.
ICA or the source sparsity based approaches do not assume anything about the sparsity
of the mixing filters.

Sparsity based techniques were first developed to handle underdetermined settings
for linear-instantanous and anechoic mixtures, and then extended to convolutive mix-
tures primarily based on the narrowband approximation. As it was described in the
previous section, narrowband approximation based approaches for convolutive source
separation which exploit source sparsity, involve two steps: 1) a clustering step to iden-
tify the time-frequency points in the mixtures which belong to one of the sources and
2) a permutation solving step before the actual parameter estimation.

In chapter 4, we look at the problem of estimating channel impulse responses from
observations in single source and multiple source settings in general. Further, assuming
that the filters are sparse, we discussed a specific family of approaches based on the cross-
relation across channels for blind filter estimation in single source setting. Subsequently,
a particular work on the extension of single source CR based filter estimation method
to multiple source setting was discussed. In this discussion, no hypothesis about the
time-frequency domain sparsity of sources was placed.

It should be noted that non-sparse methods for convolutive source separation suffer
from arbitrary permutation and scaling of subbands. Also, source separation using SCA
requires the knowledge of the mixing matrix A. The objective of our effort is to develop
an approach for estimating mixing filters blindly in the multiple source setting, which
inherently handles the permutation and scaling problems. From this requirement point
of view, we can summarise our discussion as follow:

1. On the one hand, methods relying on source sparsity for convolutive source locali-
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Figure 1.6: The landscape of approaches for source localisation and the placement of
our contributions of this thesis.

sation have to perform clustering and permutation alignment in order to estimate
the filters.

2. On the other hand, sparsity hypothesis of filters enables us to formulate an ℓ1

minimisation problem for blind filter estimation but it is effective only in the
single source setting.

The central idea in this thesis is to combine both the source and filter hypothesis
and propose a filter estimation framework. As depicted in Fig. 1.6, our contribution
falls in the region where both the sources and filters are assumed to be sparse. As a first
contribution, we first show the effectiveness of filter sparsity to solve the permutation
problem, when the filter coefficients are estimated using the narrowband approxima-
tion. Subsequently, we develop a framework which relies on the time-frequency domain
source sparsity to formulate ℓ1 minimisation problems for filter estimation, which inher-
ently incorporates the filter sparsity to effectively mitigate the permutation and scaling
problems.

1.5 Plan of the thesis

This thesis is divided into three parts:
– State of the art
– Contributions
– Conclusions and perspectives
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1.5 Plan of the thesis

The first part of the thesis focusses on the state of the art in sparse methods for source
localisation. Firstly we present a formal introduction to the general problem of source
localisation and separation, describe special cases of the problem and a survey of existing
approaches and techniques in literature. Chapter 2 contains a mathematical introduc-
tion to the problem and the notations and terminologies used in the thesis. An overview
of source separation methods based on different kinds of hypothesis about the sources
(independent sources, sparsity, etc.) and separation criteria is presented.

The second half of chapter 2 exclusively focusses on approaches that have sparsity
of sources or mixing filters as their main tool for source localisation. Firstly the use of
sparsity of sources for mixing parameter estimation for linear-instantaneous and ane-
choic mixtures are described. These methods are based on the assumption that in the
time-frequency domain, the sources have almost-disjoint support and this enables us to
estimate the mixing parameters geometrically. We describe a very well known approach
known as Degenerate Unmixing Estimation Technique (DUET) [4], which was pro-
posed for anechoic stereo mixtures of fully disjoint sources. Subsequent improvements
and generalisations are also presented.

The usage of sparsity to find solutions for underdetermined systems of linear equa-
tion is the topic of chapter 3. We present an introduction to the problem and a brief
survey of grand families of approaches based on sparsity for approaching this problem.

Chapter 4 focusses on the problem of channel estimation in communication systems.
The problem is introduced, and parallels are with the source localisation problem. A
brief overview of non-blind methods that are developed by the communications engi-
neering community is presented.

The second part of chapter 4 deals with the techniques that have been developed
specifically for estimating sparse channels. Sparse channel estimation has flourished in
the recent years, after an affluence of theoretical and algorithmic developments in the
area of sparse recovery. We describe the relevant work in this context and point out
their limitations.

The chapter is concluded with the positioning of the problem that is explored in this
thesis within the big picture of various problem types and the corresponding standard
approaches.

Chapters 5 to 8 contain the contributions of the thesis.
In chapter 5, our focus is on the assessment of the usage of sparsity criterion for

solving a specific problem that arises in convolutive source localisation: the permuta-
tion ambiguity. We consider the permutation problem in isolation and we explore the
possibility of using the sparsity of filters as a tool to correct the permutation ambigu-
ity. Assuming that the mixing filters in the frequency domain are already estimated
by an independent technique, with sub-bands that are randomly permuted, we aim to
correct these permutations using the time-domain sparsity of the filters as a consistency
measure. We first demonstrate how the sub-band permutations of the filters affect the
overall time-domain sparsity of the filters, and substantiate the usage of sparsity as a
consistency measure.

A combinatorial algorithm to correct the permutation ambiguity is then presented
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and the algorithm is experimentally evaluated for its performance.
Theoretical connections between filter sparsity and permutations are presented in

chapter 6.
In chapter 7, we consider the problem of estimating sparse filters in a Single-Input-

Two-Output (SITO) setting using cross-relation based approach. We introduce a time-
frequency domain version of the time-domain CR, based on the narrowband approxi-
mation, and formulate a convex optimisation problem for estimating the filters. Experi-
mental evaluation of the time-frequency domain narrowband CR based filter estimation
approach is presented in the second half of the chapter.

In chapter 8, we present a two-stage framework for estimating multiple sparse fil-
ters from stereo mixtures, which generalises the approach for single filter estimation
presented in chapter 7. The filters corresponding to each source are estimated by two
steps:(i) a time-frequency points clustering step which exploits the source sparsity to
gather points in the mixture which satisfy the CR and (ii) a sparse filter recovery step
which uses the cluster obtained in stage (i). The clustering stage enables us to for-
mulate a SITO problem to estimate filters corresponding to each of the sources. The
experimental evaluation focusses on the filter estimation stage of the framework, by
assuming that the clustering stage is solved using side information about the sources or
true mixing filters.

In the second part of chapter 8 we develop a second time-frequency domain version
of the CR that is not based on the narrowband approximation. This form of CR is
more accurate than the narrowband CR and we refer to this as the wideband CR.
The two-stage framework for multiple filter estimation is tailored for wideband CR and
experimental assessment of the filter estimation stage is presented.

The last part of chapter 8 focusses on a specific type of mixtures which involves only
two sources: one sources which is mixed with convolutive filters and the remaining source
is mixed with anechoic filters. In such a setting, the time-frequency points clustering
can be performed blindly and they can be used to estimate the filters. Experiments
with real audio sources to demonstrate the blind clustering and filter estimation stages
are presented.

In chapter 9, we conclude the thesis and we propose some perspectives for the
improvement and generalisation of the filter estimation framework that is presented in
Chapter 8, especially to make the framework completely blind in a generic setting.

1.6 Publications related to thesis contributions

1. S. Arberet, P. Sudhakar and R. Gribonval, A wideband doubly-sparse approach for
MIMO sparse filter estimation, Accepted for publication in ICASSP 2011, Prague,
Czech Republic.

2. P. Sudhakar, S. Arberet and R. Gribonval, Double Sparsity: Towards blind es-
timation of multiple channels, In Proc. of Latent Variable Analysis and Signal
Separation 2010, St. Malo, France.
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3. P. Sudhakar and R. Gribonval, Sparse filter models for solving permutation in-
determinacy in convolutive blind source separation, In SPARS’09, St. Malo,
France.

4. P. Sudhakar and R. Gribonval, A sparsity-based method to solve the permutation
indeterminacy in frequency domain convolutive blind source separation, In Proc.
of Independent Component Analysis and Signal Separation 2009, Paraty, Brazil.

25



1. INTRODUCTION

26



Part I

State of the art

27





Chapter 2

The source separation problem

In this chapter, we will describe the state of the art mixing filter estimation problem
in the source separation setting.

2.1 Introduction

As discussed in the introduction chapter, a standard architecture for source separation
is the two step approach: a first step where the mixing filters are estimated and a second
step where the estimated mixing filters are used to estimate the sources. An advantage
of having a two stage approach is that it offers modularity and we can mix and match
any mixing filter estimation technique with any source estimation technique. However,
some of the earlier approaches to source separation aimed at directly recovering the
sources, without explicitly estimating the mixing filters.

Although we are primarily interested in the mixing parameter estimation problem
in convolutive setting, we will also briefly describe the classical families of approaches
where either the sources are estimated directly or the mixing filters and the sources are
estimated jointly.

There has been a proliferation of literature on the source separation methods, and in
this chapter we provide a brief overview of the underlying principles of different families
of approaches. For a detailed survey of methods, please refer to the Handbook of Blind
Source Separation [1]. However, our focus in this thesis is on the methods which rely
on the sparsity hypothesis of the sources and mixing filters, we will deal with that in
detail in chapter 3.

2.1.1 Trivial setting

In the case of linear instantaneous mixing process, the mixtures are nothing but a
sum of scaled versions of the sources, and the mixing matrix A becomes a usual two-
dimensional matrix of size M×N . So, in the absence of noise the mixing equation (1.3)
can be written as:

X = AS. (2.1)
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2. THE SOURCE SEPARATION PROBLEM

Suppose that the source matrix S is known to us explicitly, then we can estimate
the mixing matrix by simply inverting the source matrix. That is, the estimate Ã of
the filter matrix is given by

Ã = XS†,

where S† is the pseudo-inverse of the matrix S. However, in a blind setting where
no explicit knowledge about the sources is available, the problem of mixing parameter
estimation becomes very challenging. In such cases, we need additional prior knowledge
on the sources in order to estimate the mixing parameters. In what follows, we describe
different kinds of prior knowledge that is assumed about the sources and the methods
that exploit them to estimate the mixing parameters.

2.1.2 Plan of the chapter

We present two grand families of approaches for source localisation and separation in
the following sections, which are based on two different types of hypothesis of sources
and mixing processes. Firstly, we describe the principle behind Independent Component
Analysis (ICA) approach, where the sources are assumed to be statistically independent,
and describe its application to source separation.

Then, we introduce Sparse Component Analysis (SCA) where the sources are as-
sumed to be sparse in the time-frequency domain. We begin with the general concept
of redundant representations of data and recollect the definition of sparsity and then
introduce the idea of disjointness of the time-frequency support of the sources and then
we describe the general principle of SCA.

Subsequently, a brief survey of methods which exploit the time-frequency domain
disjointness of the sources to estimate mixing parameters in case of linear instantaneous
and anechoic settings is presented. We then look at the convolutive setting and describe
the difficulties involved in directly extending the methods used for anechoic case.

2.2 Independent Component Analysis (ICA)

The first significant breakthrough in source separation for instantaneous mixtures came
with the advent of Independent Component Analysis (ICA). ICA was first proposed for
the separation of instantaneous mixtures in the (over)-determined setting. In such a
setting, ICA aims at directly extracting the source components S from the mixtures X.

2.2.1 Hypothesis and principle of ICA

The rows of the matrix S contains individual sources and each source is regarded as a
component of the mixture. The hypothesis on which ICA is based is that the sources
S that combine to yield the mixtures X are assumed to be statistically independent of
each other. That is, the joint probability distribution of the sources PS(S) is assumed
to be the product of the probability distribution of individual sources Psj (sj):
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2.2 Independent Component Analysis (ICA)

PS(S) =
∏

j

Psj (sj). (2.2)

Therefore, the principle of ICA is to achieve separation of sources by maximising
the independence between the estimated sources [12], or equivalently, minimising the
dependency between the estimated sources. Hence the name independent component
analysis.

In a determined setting, if A is the M ×M mixing matrix which is unknown but in-
versible, we seek another matrix B̃, known as un-mixing matrix such that, the estimated
sources

S̃ = B̃X

has independent components. That is, we are interested in a matrix B̃ that maximises
the statistical independence between the rows of the matrix BX. Mathematically, the
matrix B̃ is obtained by solving the following optimisation problem:

B̃ = argmax
B

I(BX), (ICA)

where I(BX) measures the statistical independence between the rows of the matrix
BX.

The exact definition of statistical independence to be used and the specific algorithm
to maximise the same vary on the context of usage, and hence there exists several
variants of ICA.

One of the popular measures of dependence is the mutual information, which mea-
sures the similarity of statistical distributions in terms of the information measure.
Given a matrix Y whose rows yj are random vectors, the mutual information between
these vectors is defined as [13]:

I(Y) := K(PY|
∏

j

Pyj ), (2.3)

where PY is the joint probability distribution of the rows of the matrix Y, Pyj is the
marginal distribution of the jth row of Y and K(f |g) is the Kullback-Leibler divergence.
The Kullback-Leibler divergence between two probability distributions f and g is defined
by:

K(f |g) :=
∫

f(x) log

(
f(x)

g(x)

)
dx. (2.4)

Mutual information is a non-negative quantity (but can be +∞) and it vanishes only if
the sources are mutually independent. It can be also written as:

I(Y) =

N∑

j=1

H(yj)−H(Y), (2.5)
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where H(Y) and H(yj) are the joint entropy and marginal entropies. The entropy1 of
a probability distribution f is defined by:

H (f(x)) := −
∫

f(x) log f(x)dx.

Mutual information, defined by Eqs. (2.3) and (2.5) is a theoretical quantity as it
involves the integrals with probability distributions and hence approximations are used
in practice [14].

2.2.2 Algorithms for ICA

ICA, as described in the previous section, is a separation principle which is based on
minimising an objective function. However, researchers have proposed various algo-
rithms to minimise the criteria, depending on the kind of probability distributions that
the sources admit. The pioneering algorithm for ICA was first proposed by Jutten and
Hérault [15] based on the neuro-mimetic architecture. Bell and Sejnowski proposed
an algorithm based on the Infomax principle of neural networks [16]. Other popular
algorithm are the fastICA [17], algorithms proposed by Comon based on the higher
order cumulants [14], and the algorithm based on the higher order statistics [18], the
algorithm JADE [19] and other notable algorithms based on the joint diagonalisation
principle proposed by Pham [20] and Cardoso [21].

2.2.3 Limitations of ICA

The primary limitation of ICA is the fact that it assumes the mixing matrix A is invert-
ible. Moreover, ICA inherently suffers from the permutation and scaling ambiguities,
which are described next.

Permutation and scaling indeterminacy

In general, the definition of statistical independence is immune to the scaling of sources,
and also the order of the sources. For example, from Eq. (2.5) it is evident that the
mutual information is invariant to the order of the sources. Also, mutual information
is invariant to scaling of sources [14]. Hence, ICA based techniques can estimate the
sources only up to a scaling factor on each of the sources and a permutation of the
sources. Hence, the un-mixing matrix obtained using ICA will be of the form

B̃A = ΛP,

where Λ is a diagonal scaling matrix and P is a permutation matrix2.
The permutation and scaling indeterminacies are in fact inherent to the source

separation problem itself. Hence, irrespective of the techniques used (ICA and many
other techniques), the permutation and scaling ambiguities occur.

1Technically, the definition is for differential entropy of continuous random variables, which is not
the limit of Shannon’s entropy for discrete random variables. However, it is called entropy in short.

2An N×N permutation matrix is an N×N Identity matrix, with permuted columns. For example,
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2.2 Independent Component Analysis (ICA)

2.2.4 ICA for convolutive mixtures

The application of ICA for source separation problem was first shown for instantaneous
mixtures, but the principle of ICA has been applied to separating convolutive mixtures
as well with adequate adaptation. In this section, we present a short overview of methods
that use the independence prior of the source to achieve source separation in convolutive
settings. A survey of methods for convolutive source separation can be found in [22].

2.2.4.1 Time domain methods

The first efforts on source separation of convolved mixtures were made in the time
domain, mainly inspired by the blind deconvolution methods. Torkolla [23] modelled
the unmixing procedure as FIR filtering of the mixtures themselves. That is,

s̃j =
∑

i

bji ⋆ xi, (2.6)

where bji are the unmixing filters. In order to estimate them, he used an information
maximisation approach as described in [16].

Lee et al. [24] looked at modelling the unmixing procedure as an IIR filter and
derived a solution for this problem, noting that the recording environment had to be
minimum phase. The time domain techniques for convolutive mixtures are computation
intensive, and one way to deal wit the problem is to work in the frequency domain.

2.2.4.2 Frequency domain methods

One of the standard ways of dealing with the convolutive problem is to transform the
mixtures into the time-frequency domain using a suitable transform such as the Short
Time Fourier Transform (STFT). Consider a discrete signal s(t) with 0 ≤ t < T , and
let w(t) be a discrete window function whose support is [−F/2, F/2] with unit ℓ2 norm
‖w‖2 = 1. Then the STFT of s(t) is defined as

ŝ(τ, f) =

T−1∑

t=0

s(t)w(τ − t)e−2iπft, (2.7)

where f is the frequency index and τ is the frame index. The STFT coefficients are
computed on a discrete grid specified by: τ = qF/2, q ∈ Z and f = l/F, 0 ≤ l ≤ F/2.
STFT maps the time domain representation of a signal into a two dimensional time-
frequency representation. The choices of the window function w(t) and the window
length F are dependent on the signal one wishes to analyse, and the specific properties
one is looking for in the signal. Please refer to [25] for further details on the choices of
the window function and their properties.




1 0 0
0 0 1
0 1 0



 is a 3× 3 permutation matrix. The identity matrix IN×N is also a (trivial) permutation

matrix.
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2. THE SOURCE SEPARATION PROBLEM

As a result of STFT, the convolutions in the time-domain are now transformed into
complex multiplications in the frequency domain. By narrowband approximation, we
can write the time-frequency domain coefficients of the mixtures as a product-and-sum
of the frequency domain filter coefficients and the time-frequency domain coefficients of
the sources [26].

Let x̂i(τ, f) be the time-frequency domain representation of the ith mixture at frame
index τ and frequency f , then by assuming that the filters are fixed over time and by
narrowband approximation, we have:

x̂i(τ, f) ≈
N∑

j=1

âij(f)ŝj(τ, f), 1 ≤ i ≤M, (2.8)

where ŝj(τ, f) is the time-frequency domain representation of the jth source, and âij(f)
is the frequency domain representation of the filter between jth source and ith sensor.

With this transformation, a single real-valued convolutive source separation prob-
lem has been converted into several instantaneous mixtures problem, possibly complex
valued, in each frequency bin. Hence, ICA algorithms for instantaneous mixtures can
be used to achieve separation in each frequency bin f . However in such a case, each
separated frequency bin of the sources will be arbitrarily scaled and permuted due to
the inherent nature of the ICA principle. That is, if ŝ(τ, f) and s̃(τ, f) are vectors con-
taining the STFT coefficients of all the true and estimated sources at the time-frequency
index (τ, f), then they are related in the following way:

s̃(τ, f) = P(f)Λ(f)ŝ(τ, f) (2.9)

where P(f) is a permutation matrix and Λ(f) is a diagonal scaling matrix, which are
frequency dependent. The permutation and scaling ambiguities have to be corrected
before transforming the estimated sources back into the time-domain.

Some of the frequency domain methods for convolutive source separation is based
on the non-stationarity assumption of the sources. Let SS(τ, f) = ŝ(τ, f)ŝ(τ, f)T be
the covariance matrix of STFT of the source signals at the time-frequency index (τ, f),
then the covariance matrix of the STFT of the mixtures at the time-frequency index
(τ, f) is given by

SX(τ, f) = Â(f)SS(τ, f)Â
∗(f) (2.10)

where ∗ denotes the transpose conjugated, and Â(f) is the matrix of DFT coefficients
of the filters at frequency f .

Pham et al. [27] proposed the idea of finding another set of matrices B(f) such that
the covariance matrices B(f)S̃X(τ, f)B

∗(f) at different time points τ are as close to
diagonal as possible, where S̃X(τ, f) are estimates of SX(τ, f). For a single matrix (at
a given τ and f), the diagonality measure is given by

1

2

{
log det diag

[
B(f)S̃X(τ, f)B∗(f)

]
− log det [B(f)SX(τ, f)B∗(f)]

}
, (2.11)
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where diag(·) denotes the operator which builds a diagonal matrix from its argument.
Parra and Spence also use a similar kind of argument for diagonalisation of the time

varying spectra of the observed mixtures, and they have come up with their own version
of the diagonality measure [28].

Mitianoudis and Davies [29] propose a fast frequency domain ICA framework for the
separation of convolutive audio mixtures. They assume frequency independent priors
for the unmixing matrix B̃(f) and the separated sources s̃(τ, f), the unmixing matrix
B̃(f) is found for each frequency bin by maximising the following log-likelihood:

log P
(
x̂(τ, f)|B̃(f)

)
= E

{
log P

(
B̃(f)x̂(τ, f)

)}
+ log detB̃(f). (2.12)

They also alter the natural gradient algorithm [30] to incorporate some information
about the scaling of the signal with time, and hence they have been effectively able to
handle the permutation problem as well simultaneously.

2.3 Sparse Component Analysis (SCA)

The structure of this section largely follows chapter 10 of [1] by Gribonval and Zibulevsky.
In Sec. 1.2.4, we introduced the intuitive notion of sparse sources and illustrated it

with an example. Sparsity of signals such as audio and images has been exploited for
a long time for coding or compression purposes. However, sparsity as a tool for source
separation has been in use only in the last decade or so [31, 6, 4, 5, 32].

Unlike in the ICA setting, where the sources were directly estimated from the mix-
tures using the independence assumption, most of the methods based on source sparsity
performs source separation by first estimating the mixing matrix, and then subsequently
the sources. The sparsity hypothesis plays a role in both the stages of source localisation
and source estimation. Sparsity hypothesis enables us to estimate the mixing matrix
and perform source estimation even in the underdetermined mixtures cases.

Hypothesis and principle of SCA

As the name suggests, the approaches that constitute sparse component analysis as-
sume that the sources are sparse. The sparsity hypothesis means that a lot of source
coefficients are zero or close to zero. The identification of the mixing matrix X and the
source matrix S using SCA is unique up to a permutation and a scaling factor, under
certain conditions on the structure of A and the sparsity of the sources S [33]. This
is true even for the underdetermined cases and hence SCA makes an attractive tool to
deal with underdetermined problems.

In the simplest case of instantaneous mixtures, when the mixing matrix is known,
the principle of source estimation is the following: estimate the sources by maximising
the sparsity of the sources under the equality condition X = AS.

The sparsity of a given vector s = [s(0), . . . , s(T − 1)]T is measured by the number
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2. THE SOURCE SEPARATION PROBLEM

of non-zero coefficients in the vector, which is called the ℓ0 norm1, defined as:

‖s‖0 := #{t, s(t) 6= 0} =
∑

l

|s(t)|0 . (2.13)

Hence, by minimising the ℓ0 norm of the sources under the condition X = AS,
one estimates the sources in SCA. However, the ℓ0 norm is a discrete norm and its
minimisation is combinatorial in nature and hence it is a NP-hard problem [34]. So in
practice, relaxed versions of the ℓ0 norm, such as the ℓp norm is generally used for this
purpose. For p > 0, the ℓp norm of a vector s is defined by

‖s‖p :=

[
∑

t

|s(t)|p
] 1

p

, (2.14)

with the convention that ‖s‖∞ := maxt |s(t)|. Hence, to estimate the source, one solves
the following optimisation problem in SCA:

min
s
‖s‖p subject to X = AS. (SCA)

For values of p ≥ 1, the ℓp norm is convex and hence the optimisation problem is
also convex. If p < 1 and p→ 0, the norm is closer to the true definition of sparsity, the
ℓ0 norm, but it is no more convex. Hence, the ℓ1 norm is a norm that is closest to the
ℓ0 norm and also convex. Due to the ease in designing algorithms for convex problems,
ℓ1 norm is widely used when looking for sparse solutions.

Generally, source signals are not sparse in the time-domain, as it was assumed while
introducing the concept of SCA in the beginning of this section. However, signals
might be sparse in a different domain such as the time-frequency domain, wavelets, etc.
Hence, most often the sources are not estimated directly in the time-domain but they
are estimated in the transform domain in which the sources are sparse.

Further, the sources are often assumed to have disjoint or near disjoint supports
in the transform domain. This hypothesis will also aid the estimation of the mixing
parameters A from the mixtures X.

Hence, SCA is composed of the following steps:

1. Transformation of the mixtures X into a domain in which the sources are assumed
to be sparse, to yield X̂;

2. Estimation of the mixing parameters Ã from X̂;

3. Estimation of sources in the transform domain by solving the problem in Eq. (SCA);

1Technically, this is not a norm but a quasi-norm.
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2.3 Sparse Component Analysis (SCA)

2.3.1 Sparse representations

In Sec. 1.2.4 we introduced the concept of time-frequency domain sparsity of sources
informally with an illustration and in Sec. 2.3 we formalised the notion of source spar-
sity and briefly described the principle of sparse component analysis (SCA) for source
localisation and separation. During the formalisation of the notion of source sparsity in
Eqs. (2.13) and (2.14) and the description of sparse component analysis in (SCA), we
inherently assumed that the sources are sparse in the time-domain.

While the assumption of source sparsity in the time-domain was sufficient to describe
the principle of SCA, it is not often true that the sources are sparse in the time-domain
representation. However, it might be possible to change the representation of the source
signals such that it is sparse in the new representation. Such representations which allow
signals to be sparse are called sparse representations. The role of sparse representations
span much beyond sparse component analysis, and the problem of finding sparse solu-
tions to underdetermined systems can be generalised with sparse representations [35].

The idea behind sparse representations of signals is this: Any general signal vector
s can be (approximately) represented by a linear combination of few elementary signals
ϕn, possibly complex valued, which are called atoms. Though we retained the notation
of a source signal to describe sparse representations, this holds good for any arbitrary
signal. Therefore, mathematically this means that a signal vector s = [s(1), . . . , s(T )]T

can be written as:

s =
∑

n

cnϕn, (2.15)

where cn is the coefficient corresponding to ϕn. Such a collection of atoms is known
as a dictionary, and if there are a finite number of atoms then we can collect all the
atoms as the columns of a matrix Φ, called a dictionary matrix, and the coefficients
in a vector c called the coefficient vector. These atoms are usually normalised to have
unit ℓ2 norm. Then, Eq. (2.15) can be written as s = Φc.

If the number of atoms in the dictionary is a finite number Nφ then Φ ∈ C
T×Nφ

and c ∈ C
Nφ×1.

We say that a source signal s admits a sparse representation with respect to a
particular dictionary Φ if the corresponding coefficient vector c has only a few non-zero
coefficients compared to its size. Hence, the concept of sparsity of source signals is
generic and the sparsity of source signals is now measured using the coefficient vector c
instead of s directly. The measures of sparsity introduced in Sec. 2.3, namely the family
of ℓp (p ≥ 0) norms still hold good on the coefficient vector c.

With Φ = IT×T , the atoms are simply the Dirac functions ϕn(t) = δ(t − n), 1 ≤
n ≤ T and we return back to the notion of sparsity of signals in the time-domain. Van
Hulle [36] considered this simple model of sparsity in time domain for separation of
speech signals.

The dictionary Φ could also simply be a basis for the space R
T , like the Discrete

Fourier Transform (DFT) or Modified Discrete Cosine Transform (MDCT), in which
case the dictionary is square. A basis spans the entire space and hence it is referred
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2. THE SOURCE SEPARATION PROBLEM

to as a complete dictionary. It should be noted that in the case where the dictionary
is a basis, the representation of a signal vector is unique. But, signals often might
not be sparsely representable in a basis and hence we need to look for redundant or
overcomplete dictionaries which allow sparse representation. This could be as simple
as a concatenation of bases [37, 38, 39] to specialized construction of dictionaries like
curvelets, ridgelets, noiselets, etc.

Most of the research effort in sparse signal processing is related to the study of
sparse representations of general classes of signals in given a dictionary, and the design
and analysis of algorithms for performing signal processing tasks exploiting sparsity.
Another field of research in applied and computational harmonic analysis is to build or
find dictionaries which allow sparse representations of a given class of signals. Recent
research efforts by the community is focussed on finding techniques to learn dictionaries
from training samples for specific class of signals and this is referred to as dictionary
learning [35, 40, 41, 42].

Sparse representations have been quite extensively used in general audio and music
signal processing, from coding to source separation [3]. We shall now turn our focus
onto audio signals, their sparse representation and its relevance to source localisation
and separation.

2.3.1.1 Sparsity of audio signals

Audio signals are known to be sparse in the Short-Time Fourier Transform (STFT)
domain.

Let us recollect the example of time-frequency domain sparse signals. Fig. 2.1(a)
shows the time domain plot of a flute signal. Note that the signal is active at almost
all the times and hence the time domain sparsity assumption of Van Hulle is violated.
Fig. 2.1(b) shows the magnitude of the STFT of the same signal with a frame size
F = 2048 samples and sine window. We can clearly observe the sparse behaviour of
the source. The frequency content of the source, although varying over time, is limited
to only a few bins in each STFT frame. This property of sparseness of audio signals
is central to a family of techniques developed for estimating the mixing parameters
in linear-instantaneous and anechoic mixtures, and also the subsequent estimation of
source signals.

2.3.1.2 Disjointness of the time-frequency supports

A closely related concept to sparsity is the disjointness of the supports of the sources
in the time-frequency domain. Intuitively, the sources are said to be disjoint in the
time-frequency domain if their time-frequency supports do not overlap with each other.

Let us illustrate the idea of time-frequency disjointness with an example. Fig. 2.2
shows the the STFT magnitude plot of two sources: Fig. 2.2(a) is a flute signal and
Fig. 2.2(b) is a guitar signal. The dark regions in the plots indicate the presence of the
source and it is visually noticeable that the sources are active at disjoint time-frequency
locations when the frame index τ ≤ 4000, after which they overlap.
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Figure 2.1: An example of time-frequency domain sparse signal
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Figure 2.2: STFT of the two sources: (a) source s1 is a flute sound and (b) source s2 is
a guitar sound.

Jourjine et al. [4] formalised the notion of time-frequency disjointness and intro-
duced the concept of w-disjoint orthogonality of source signals. Two sources sj1 and sj2
are said to be w-disjoing orthogonal, if their corresponding STFTs obtained with the
window function w(t) have the following property:

ŝj1(τ, f)ŝj2(τ, f) = 0, ∀ j1 6= j2, ∀ τ, f. (2.16)

Many a times, it is not possible for the sources to satisfy this w-disjoint orthogonality
in the true sense. Yilmaz et al. [32] introduced the concept of approximate w-disjoint
orthogonality and used it to achieve the separation of speech signals in anechoic settings.
We shall now describe the general principle behind using the concepts of source sparsity
and disjointness for mixing parameter estimation.
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2.3.1.3 General principle of mixing parameter estimation

Let us begin our discussion with the simplest case of linear instantaneous mixtures in
the absence of noise. The model that we are interested in is X = AS. Let x̂i(τ, f) and
ŝj(τ, f) be the STFT coefficients of the ith mixture and jth source respectively, at the
time-frequency point (τ, f) obtained using (2.7) with a window function w(t). Let aij
be the mixing parameter between the ith mixture and jth source. Then we have the
following relation:

x̂i(τ, f) =
∑

j

aij · ŝj(τ, f). (2.17)

Let us assume that the sources are w-disjoint orthogonal and hence the supports
are non-overlapping. Let Ωj be the set of all time-frequency points where only the jth

source is active. Then, by (2.17) we have

x̂i(τ, f) = aij · ŝj(τ, f), ∀ (τ, f) ∈ Ωj. (2.18)

It is evident from Eq. (2.18) that the mixtures at the time-frequency points Ωj are
nothing but scaled version of the mixing parameter aij, appropriately scaled by the
factor sj(τ, f). If we collect all the M mixtures at a time-frequency point (τ, f) in a
vector x̂(τ, f), then we can write Eq. (2.18) as

x̂(τ, f) = ŝj(τ, f) ·Aj, ∀(τ, f) ∈ Ωj, (2.19)

where Aj = [a1j , . . . , aMj]
T is the jth column of the matrix A. In other words, we can

say that the set of points
{
x̂(τ, f) ∈ C

M , (τ, f) ∈ Ωj

}
is aligned along the straight line

passing through the origin and directed by the vector Aj ∈ C
M .

While it is hard to visualise the above statement in a general M dimensional setting,
we can visualise the same easily when we have stereo mixtures, that is when M = 2,
with the help of scatter plots. A scatter plot is basically a 2-dimensional plot of ordered
pairs of real numbers. The STFT coefficients of the mixtures are complex numbers, and
hence we plot either the real part ℜe x̂(τ, f) or the imaginary part ℑm x̂(τ, f) of the
vector x̂(τ, f).

Fig. 2.3(a) shows the time-domain plots of three audio signals, and Fig. 2.3(b) shows
the time domain plots of the stereo mixtures of the sources. Fig. 2.3(c) shows the STFT
magnitude plots of the mixtures and finally Fig. 2.3(d) shows the scatter plot of the real
part of the STFT of stereo mixtures. Notice that the points in the scatter plot tend
to cluster around the vectors Aj which are aligned towards the columns of the mixing
matrix.

This geometrical structure of the scatter plots can be exploited to obtain the es-
timates Ãj of the columns of the mixing matrix. Clustering algorithms [43] can be
used to cluster the data points and estimate the columns of the mixing matrix. These
geometrical methods can be cleverly extended to the anechoic mixtures setting as well.

Fig. 2.4 depicts a typical mixing parameter estimation system that is primarily based
on the source sparsity and disjointness assumption. The mixtures are transformed into
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Figure 2.3: Geometric structure of scatter plot

a domain that admits sparse representation of the sources, the mixing parameters are
then estimated using a clustering approach. Sparsity based methods are proven to be
very effective for the undetermined mixtures setting. In the subsequent sections, let us
review some of the key approaches based on the source sparsity hypothesis for linear
instantaneous and anechoic mixtures setting.
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2. THE SOURCE SEPARATION PROBLEM

Figure 2.4: Workflow of a typical mixing parameter estimation system based on the
scatter plot of the mixtures.

2.3.2 Linear instantaneous mixtures

In this section we shall review some approaches that are based on clustering of time-
frequency points to estimate the mixing parameters in the linear instantaneous setting.
Let us consider the linear instantaneous mixture model without noise: X = AS. We
wish to estimate the number of sources N , the mixing matrix A from the mixtures
X. Since we neither know A nor S, the identification of A is possible only up to
a permutation and a scale factor [44]. However, barring the permutation, what we
are really interested in is the relative amplitudes of the mixing parameters of a given
source across all the channels. Hence, without loss of generality we can assume the
mixing parameters across the channels to be normalized:

∑
i a

2
ij = 1 and a1j ≥ 0 for

1 ≤ j ≤ N .
In the stereo mixtures case (M = 2), each column Aj of A is a two dimensional

vector, and they are assumed to be normalised having unit ℓ2 norm. Hence, we can
parameterize each column Aj by an angle θj, that is, the columns can be written as:

Aj =

[
cos θj
sin θj

]
∈ R

2. (2.20)

The parameter tan θj is called the intensity difference and the parameter θj ∈] −
π/2, π/2] is called the intensity parameter. Hence, in the case of linear instantaneous
stereo mixtures, all that is needed to characterise the mixing parameters are the intensity
parameter θj for all 1 ≤ j ≤ N .

2.3.2.1 Estimation of intensity parameter using global scatter plots

Suppose the sources are w-disjoint orthogonal, then from Eq. (2.19) it is clear that at
each time-frequency point (τ, f) the following is valid
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∀(τ, f) ∈ Ωj,

{
ℜe x̂(τ, f) = ℜe ŝj(τ, f) ·Aj

ℑm x̂(τ, f) = ℑm ŝj(τ, f) ·Aj ,
(2.21)

and hence we have the following relation

∀(τ, f) ∈ Ωj,
ℜe x2(τ, f)
ℜe x1(τ, f)

=
ℑmx2(τ, f)

ℑmx1(τ, f)
=

x2(τ, f)

x1(τ, f)
= tan θj. (2.22)

for some source index j.
Hence, at each time-frequency point (τ, f) , the ratio in Eq. (2.22) provides an

estimate θ̃j(τ,f) of the intensity parameter at the time-frequency point (τ, f), for some
source j. Now, all that remains is to combine the information about these angles from all
the time-frequency points and arrive at the global estimates of the intensity parameter
θ̃j for each source j.

Global scatter plot methods use all the time-frequency points simultaneously to
arrive at the estimates. A naive approach is to calculate a histogram of the angles
θ̃j(τ,f) and detect the peaks of the histogram to infer the estimates θ̃j. The scatter plot
contains a number of points of low magnitude, and hence these points might not well
represent the column directions of the mixing matrix, making the histogram a poor
choice for detecting the peaks.

A slightly sophisticated way to detect the angles is to use weighted histograms. A
weighted histogram can be calculated in an efficient manner and may be smoothed with
“potential functions", also called Parzen windows [5]. The weighting aims to obtain a
histogram that depends on a small number of points with large amplitudes rather than
a majority of points with negligible amplitudes, making the histogram more viable to
detect peaks.

2.3.2.2 Estimation of intensity parameter using local scatter plots

Though the global scatter plots display geometric patterns which suggest the alignment
of the points along the columns of the mixing matrix, the most traditional clustering
approaches such as the K-means [43] might struggle to estimate the directions. While
K-means algorithm is easy to implement, the performance of the algorithm depends on
the proper initialisation and the pre-determination of the number of clusters. The usage
of global scatter plots become much more difficult in the presence of noise, or when the
w-disjoint orthogonality is not completely satisfied.

While the global scatter plot might fail to display any alignment of points, we can
detect smaller regions of time-frequency points where the sources are disjoint and hence
the local scatter plots display distinct directions. Abrard et al. [45], in their approach
known as TIFROM, have proposed to use the local scatter plots to calculate the variance
of the ratio defined in Eq. (2.22), in the local regions. In these regions, if there is only
one dominant source then the variance will be close to zero and the mean of the ratio will
be a good estimate of the intensity difference tan θ̃j. Hence, the core step in TIFROM
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2. THE SOURCE SEPARATION PROBLEM

is to identify time-frequency regions with small variance of the ratio, and then using
the mean of the ratio in that region to obtain an estimate of the angle.

A variant of TIFROM, called TIFCORR was proposed by Deville et al. [46] which
uses a different approach to obtain the regions in which only one source is dominant.
However, the basic principle of estimating the angles from the local scatter plots remains
the same. A similar approach consists in performing Principal Component Analysis
(PCA) of the local scatter plots and selecting the regions whose main direction is the
most dominant relative to others [47].

2.3.3 Anechoic mixtures

In this section, let us see how the scatter plot based methods can be extended to
mixing parameter estimation in anechoic mixtures setting. The anechoic mixtures in
the absence of noise can be modelled by

si(t) =

N∑

j=1

aijsj(t− δij). (2.23)

The only difference between the linear instantaneous model and anechoic model is
the introduction of the delay δij . The delay δij represents the time interval between
the origin of the sound by the jth source and the observation of the same by the ith

microphone. Here again, we are not interested in the absolute delays, but only the
relative delays between the channels and hence we can assume that δ1j = 0, 1 ≤ j ≤ N .

On the same lines as the instantaneous mixtures, we can also assume that the
coefficients aij are normalised:

∑
i a

2
ij = 1 and a1j ≥ 0 for 1 ≤ j ≤ N .

In the STFT domain, we have the relation (2.19) still valid even in the case of
anechoic mixtures, but with the only difference that the columns Aj of the matrix A

have the following structure: Aj = [a1j , a2je
−2iπδ2jf , . . . , aMje

−2iπδMjf ]T.
In case of stereo mixtures (M = 2), each column Aj now can be written as:

Aj =

[
cos θj
sin θj · e−2iπδjf

]
∈ C

2. (2.24)

The parameter tan θj is called the intensity difference and the parameter θj ∈] −
π/2, π/2] is called the intensity parameter. The parameter δj ∈ R is the delay associated
with the jth source between the channels. Hence, in the case of anechoic mixtures, all
that is needed to characterise the mixing parameters are the intensity parameter and
the delay pairs (θj , δj) for all 1 ≤ j ≤ N .

If the sources satisfy the w-disjoint orthogonal hypothesis, then the following ratio

R21(τ, f) :=
x̂2(τ, f)

x̂1(τ, f)
, x̂1(τ, f) 6= 0 (2.25)

provides the necessary information about the parameters (θj, δj). Specifically, the rela-
tionship will be:
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2.3 Sparse Component Analysis (SCA)

R21(τ, f) = tan θj · e−2iπδjf , (2.26)

for some source j. DUET [4, 32] proposes to extract the intensity parameter and delay
parameter using the following relationships:

θj := tan−1 |R21(τ, f)| , (2.27)

δj := − 1

2πf
∠R21(τ, f), (2.28)

where ∠z ∈]−π, π] is the phase of the complex number z. Hence, for each time frequency
point (τ, f), an estimate θ̃j(τ, f) of the intensity difference and an estimate δ̃j(τ, f) of
the delay can be found for some unknown source j. Using these local estimates, a
clustering approach can be used to estimate the global intensity difference and delay
parameters (θ̃j , δ̃j) for 1 ≤ j ≤ N . DUET uses a two dimensional potential function
(one for the intensity difference and another for the delay) and a K-means clustering
algorithm is used to identify the peaks of the potential function.

In the next section, we will have a look at the convolutive mixtures setting and the
challenges it poses for clustering based mixing parameter estimation technique.

2.3.4 Convolutive mixtures

Sparsity of sources has been explored to design systems to perform source localisation
and separation in the convolutive settings as well. In this section, we would like to
provide an overview of a few such approaches.

As a first approach, the convolutive mixtures can be transformed into complex
instantaneous mixtures using the narrowband approximation assuming that the mix-
ing filters are shorter compared to the STFT window size, as it was introduced in
Sec. 2.2.4.2. Then for each frequency sub-band f , we can estimate the mixing param-
eters independently by clustering of the mixtures in each sub-band, as it is done for
instantaneous mixtures that was described in the previous sections. However, with this
scheme, we run into the problem of arbitrary scaling and permutations in each sub-
band. That is, in each sub-band, the order of the filter estimates corresponding to the
sources are arbitrary and hence the sub-bands will not be aligned in order to recover
back the time-domain mixing filters. Hence, the permutation and scaling problems have
to be solved before obtaining the time-domain filters.

Fig. 2.5 shows the workflow of a typical mixing filter estimation system based on
narrowband approximation, which exploits source sparsity to estimate the mixing pa-
rameters in each sub-band. A typical system consists of the following steps:

1. Transform the mixtures into the time-frequency domain.

2. For each frequency sub-band f , obtain an estimate of the mixing filters by using
the scatter plots of the mixtures. Let us denote the output of this stage by Ă. This
new notation indicates that the sub-bands are arbitrarily permuted and scaled.
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2. THE SOURCE SEPARATION PROBLEM

Figure 2.5: Workflow of a typical frequency domain based mixing parameter estimation
for convolutive mixtures.

3. Solve the permutation and scaling problem to obtain the filter estimates Ã.

The contribution of this thesis is to propose a framework to estimate the mixing
filters from the mixtures by exploiting the time-frequency domain sparsity of the sources
and the time-domain sparsity of the mixtures.

2.3.4.1 Brief review of existing methods for blind estimation of S̃

Several methods for source separation in the convolutive setting, which exploit source
sparsity, has been proposed based on the architecture presented in Fig. 2.5. However, as
the goal a of source separation system is to estimate the sources, most of the methods
which rely on this clustering approach directly estimate the sources by using a time-
frequency mask obtained using the clusters, without going through the intermediate step
of filter estimation. Time-frequency masks can just either be indicator functions over
the entire time-frequency plane under consideration, which indicate the membership of
time-frequency points to different sources, or they can be probabilistic masks allowing
soft classification of points.

The central problems that are studied in the case of convolutive source separation
based on narrowband approximation 2.8 and source sparsity are clustering and permu-
tation correction.

Reju et al. [48] have recently proposed a deterministic method to cluster the time-
frequency points of the mixtures based on the Hermitian angles between the mixture
vectors. This approach is generic for mixtures with more than two components. Hermi-
tian angles between the mixture vectors and a reference vector are analysed and they
are clustered using k-means or a fuzzy c-means algorithm. Subsequently, the masks are
obtained using the clusters, and the permutations are aligned using the mask functions
rather than the time-frequency points themselves.

Sawada et al. [49, 50] have proposed a probabilistic approach for clustering of time-
frequency points in the mixtures, and the subsequent permutation correction. The
mixture vectors are modelled using a Gaussian mixture model, and an Expectation-
Maximisation (EM) algorithm is then used to estimate the model parameters and the
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2.4 Summary

classes to which the mixtures belong to. Mandel et al. [51] also have proposed a clus-
tering scheme based on the probability distributions of the interaural phase and level
differences in a stereo convolutive setting.

2.3.4.2 Estimation of S̃ when A is known

As an alternative to the narrowband formulation, the sparsity of sources can be exploited
to estimate them directly in the time domain itself without resorting to the narrowband
approximation, thus avoiding the problems of permutation and scaling. While this task
is difficult in general, Kowalski et al. [2] have reported an interesting work regarding
sparse source estimation using time-domain mixing equation and by assuming that
the mixing filters are known (hence, it is not a blind setting). The authors refer to this
approach to as wideband formulation because it directly uses the time-domain equations.

Let us describe the wideband formulation informally and for the sake of simplicity,
let us use the following simplified, albeit abusive, notation. Let S = [s1, . . . , sN ] be the
matrix of sources, and let X = [x1, . . . ,xM ] be the matrix of mixtures. Let us use the
shorthand notation X = A⋆S to indicate the convolutive mixing process without noise,
where A is the mixing filter matrix.

Let the sources admit sparse representations in a dictionary Φ ∈ C
T such that S =

ΦC, where each column of C contains the vector of sparse representation coefficients
for each source. Hence we have

X = A ⋆ (ΦC). (2.29)

Now, if the filter matrix A is known to us, and if we assume that the coefficients C

are sparse, then we can use Eq. (2.30) to formulate an ℓ1 minimisation problem in order
to estimate the source coefficients. That is, one can solve the following optimisation
problem in order to estimate the source coefficients C̃:

min
C̃

λ‖C̃‖1 +
1

2
‖X−A ⋆ (ΦC̃)‖22. (2.30)

Instead of plainly minimising the ℓ1 norm of the sources, the authors in [2] propose
to use specialised norms, called mixed norms, that promote certain specific structures
on the sparse signals that one is looking for.

2.4 Summary

In this chapter, we provided an overview of two families approaches for solving the
source separation problem, namely independent component analysis (ICA) and sparse
component analysis (SCA).

ICA assumes that the sources which combine to form the mixtures are statistically
independent and hence the objective of ICA is to separate them by maximising their
independence. SCA is based on the hypothesis that the sources are sparse in the time-
frequency domain. Source separation is generally performed by first estimating the
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mixing parameters and subsequently estimating the sources by solving an optimisation
problem that maximises the sparsity of the sources.

We described a general principle behind mixing parameter estimation based on the
scatter plots of the mixtures in the stereo setting. This approach consists of a clustering
step and a parameter estimation step and we described a few important clustering based
parameter estimation techniques for linear-instantaneous and anechoic mixtures.

Parameter estimation techniques for convolutive cases based on the clustering ap-
proach suffer from permutation and scaling ambiguities, and these have to be corrected.
We briefly described a few methods which rely on source sparsity for parameter es-
timation and have permutation correction stage in their workflow. Lastly, a source
estimation method in a non-blind setting which exploits source sparsity is described.

In the next chapter we introduce the problem of finding solutions to underdetermined
systems of linear equations and the role of sparsity in such tasks.
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Chapter 3

Solutions of underdetermined linear

systems

This chapter is dedicated to an introduction to the problem of finding sparse solutions
to underdetermined systems of linear equations.

3.1 Introduction

Finding solutions to systems of linear equations is a central problem in numerical linear
algebra, which in turn forms the basis for most of the engineering sciences. In a standard
setting, we would like to solve a system of linear equations represented by the following
matrix equation:

x = Φa, (3.1)

where x ∈ R
d is the known vector, Φ ∈ R

d×D is a known matrix and a ∈ R
D is an

unknown vector.
The vector x can be interpreted as a vector of linear measurements or observations

of the unknown vector a through the matrix Φ.
If the dimension of x is less than the dimension of A, that is if d < D, then the

system is referred to as underdetermined, for there are lesser number of measurements
available that the dimension of the unknown vector. If d = D, then it is referred to
as determined system and Φ is a square matrix. Lastly, if d > D then it is called an
overdetermined system of linear equations.

In the determined setting, if the matrix Φ has full rank d then it has an inverse Φ−1

and the unknown vector can be found by simply inverting the system: a = Φ−1x. If the
matrix does not have an inverse, then the system is equivalent to an underdetermined
system and finding an exact solution is not so straightforward when the system is
underdetermined.

In the overdetermined case, if the matrix Φ has full rank d, then finding an exact
solution for the system is generally difficult, and hence one looks for an approximate
solution which minimises the least squares error between Φa and x [52]. That is, one
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3. SOLUTIONS OF UNDERDETERMINED LINEAR SYSTEMS

solves: mina ‖Φa − x‖2. If the rank of the matrix is less than d, then the system can
be transformed either into an underdetermined system.

When the system is underdetermined, then the system admits infinitely many solu-
tions and hence it is not unique unless additional hypothesis is placed on the nature of
the solution. As one possibility, we can look for a solution which has minimum ℓ2 norm
among all the admissible solutions, and this is called the minimum norm solution.

Alternatively, if we know that the solution that we are looking for is sparse, then
we can incorporate this information to efficiently find the solution, which is possibly
unique. This is the well known sparse recovery problem.

3.2 Sparse recovery problem

In a general sparse recovery problem, the challenge is to find a sparse solution to an
underdetermined system of linear equations. As discussed in Sec. 2.3, the sparsity of
a vector is measured using its ℓ0 norm or the number of non-zero coefficients in the
vector. Hence, the sparse recovery problem can be mathematically expressed as

min
a
‖a‖0 subject to x = Φa. (3.2)

To solve (3.2) directly, we must examine all possible combinations of non-zero co-
efficients of the vector a. This is equivalent to the subset selection problem and it is
intractable because the search space is exponentially large [53].

To mitigate this combinatorial complexity, there are two approaches that are con-
sidered.

3.2.1 Algorithmic approaches

Firstly, one can solve (3.2) by using heuristics such as greedy approaches. The idea
behind a greedy approach is the following: the vector x is successively approximated by
choosing columns of the matrix Φ one at a time in a greedy fashion, and forming a linear
combination of them. The approach consists of two steps: 1) finding which columns to
choose and 2) finding the contribution of the chosen columns to the linear combination
and obtaining a residual. The different ways in which the residual is computed gives rise
to several flavours of the approach, collectively known as the greedy pursuit algorithms.

Examples of greedy pursuit algorithms include Matching Pursuit (MP) by Mallat
and Zhang [54], Orthogonal Matching Pursuit (OMP) [55], Stagewise OMP (StOMP)
[56], Regularized OMP (ROMP) [57, 58], etc. Free implementations of all these al-
gorithms are available on the Internet. For example, see Matching Pursuit ToolKit
(MPTK) by Krstulovic and Gribonval [59], Sparsify by Blumensath [60], etc.

The other approach that is commonly taken is to replace the ℓ0 quasi-norm with
the ℓ1 norm to obtain the following optimisation problem

min
a
‖a‖1 subject to x = Φa. (BP)
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We noted in Sec. 2.3 that the ℓ1 norm is the convex norm that is closest to the
ℓ0 quasi-norm and hence (BP) is a convex program. This substitution of the norms is
called as convex relaxation and the mathematical program to find sparse solution to an
underdetermined system is called basis pursuit [61].

The basis pursuit problem can be cast as a linear program and standard algorithms
such as the interior point methods, homotopy methods, etc. can be used to solve it [62].
There are several standard numerical algorithm packages that are made freely available
on the internet by the research community. Examples include ℓ1-magic by Candés and
Romberg [63], Sparselab by Donoho [64], CVX by Boyd and Grant [65], etc. There
are also algorithms such as the FOcal Underdetermined System Solver (FOCUSS) [66]
which aim at recovering an approximate solution of (BP).

The basis pursuit (BP) demands the solution to satisfy an exact equality x = Φa.
However, one might not be able to find an exact sparse solution always, say for example
when there is additive noise on the measurements. Even in such cases, a modified version
of (BP) can be used to recover the sparse solution by allowing some error margin on
the constraint:

min
a
‖a‖1 subject to ‖x−Φa‖2 ≤ ǫ. (BP-error)

It is also known that the solution to (BP-error) is exactly the same as the solution
to the following unconstrained convex program, known as basis pursuit denoising, for
an appropriate Lagrange multiplier λ

min
a

λ‖a‖1 +
1

2
‖x−Φa‖22. (BPDN)

The convex program (BP-error) can be cast as Second Order Cone Program (SOCP)
and interior method points can be used to solve it [62]. The basis pursuit denoising
problem (BPDN) is referred to as Least Absolute Shrinkage and Selection Operator
(LASSO) [67] by the statistics community and a numerical method proposed in [68]
solves (BPDN) for all possible values of λ at once. Several other methods to solve
(BPDN) have been proposed in the literature such as Iterative Reweighted Least Squares
(IRLS) for sparse recovery [69], etc.

Of late, a new family of numerical algorithms has been conceived to solve (BPDN)
which are collectively called iterative-shrinkage algorithms. These algorithms are very
simple in nature and can solve the optimisation problem very efficiently when the prob-
lem sizes are huge. A very elegant overview of these algorithms can be found in [70].

A framework called SMALLBox [71, 72] to evaluate various sparse recovery algo-
rithms has been developed recently, which provides a common interface and interoper-
ability among various sparse recovery toolboxes available on the Internet as open source
implementations.

We can ponder about the ability of the greedy methods and the convex relaxation
methods (BP), (BP-error) and (BPDN) to find a correct and unique solution to the
problem (3.2) that we are originally interested in. The conditions under which the so-
lution can be found and its uniqueness can be assessed are called recovery conditions.
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Lately, there has been an explosion of results on the recovery conditions for both al-
gorithmic approiaches and almost all the theoretical results are primarily characterised
by the properties of the matrix Φ and the sparsity of the vector a.

3.2.2 Recovery guarantees

One of the properties of the matrix Φ that governs the recovery abilities of (BP) is its
coherence.

Coherence: If the columns ϕn, 1 ≤ n ≤ D of the matrix Φ are normalised to have
unit ℓ2 norm, i.e., ‖ϕn‖2 = 1, 1 ≤ n ≤ D then the coherence of Φ is defined as

µ := max
m6=n
|〈ϕm,ϕn〉|. (3.3)

In other words, the coherence of a matrix Φ is the maximum absolute off-diagonal
element of its Gram matrix ΦTΦ. Coherence tells us about the similarity between the
columns of the matrix Φ. If the columns of Φ are orthogonal to each other, then its
coherence is µ = 0. Hence, if the value of µ of a matrix is smaller then the columns are
nearly orthogonal to each other.
Another property that was introduced by Candès and Tao is the Restricted Isometry
Property (RIP) of a given matrix Φ [73].

Restricted isometry property: For a matrix Φ of size d with ℓ2 normalised columns,
and for an integer k ≤ D, let Φk denote a sub-matrix containing k columns of Φ. Then
the matrix Φ is said to posses k-RIP with a constant δk if the following holds true

∀c ∈ R
k (1− δk)‖c‖22 ≤ ‖Φkc‖22 ≤ (1 + δk)‖c‖22 (3.4)

for all sub-matrices Φk of Φ . This property means that any sub-matrix of Φ containing
k or less columns behaves like almost an orthonormal system.

These properties of the matrices are used to quantitatively establish the recovery
performances of the algorithms. Results concerning the uniqueness and stability of
the solution obtained by greedy pursuits and convergence of the algorithms in various
problem settings are available in the literature [74, 75, 76, 77].

Results concerning the stability of solutions to (BP-error) and (BPDN), under ran-
dom noise, based on the coherence of the dictionary can be found in [78].

3.3 Summary

This chapter provides an introdution to the problem of finding sparse solutions to un-
derdetermined systems of linear equations, generally referred to as the sparse recovery
problem. A brief overview of the two main approaches that have been developed to
solve the sparse recovery problem has been given.
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3.3 Summary

Greedy methods such as the matching pursuit and its variants find a sparse solution
to a given system of linear equations in a step by step manner by choosing one coefficient
of the solution at a time. Convex relaxation methods such as the ℓ1 minimisation
involves solving a convex mathematical program to obtain the solution.
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Chapter 4

Role of sparsity in channel

estimation

Chapter 2 focussed on the general source separation problem and we introduced
grand families of approaches that are found in literature. Chapter 3 introduced the

standard sparse recovery problem and this chapter is focussed on the problem of chan-
nel estimation in both blind and non-blind settings, specifically using the convolutive
observations.

4.1 Introduction

In the context of communications engineering, data transmitted over a channel is influ-
enced by the channel characteristics. More so in wireless communications, because of
the multiple reflection paths in the environment and the fading characteristics of the
channels. When data is received at the receiver, due to the influence of the channel on
the data, it will not be the same as the data that is originally transmitted at the source.
So, one has to undo the influence of the channel in order to estimate or recover back
the original source signal. In the communications engineering parlance, this is known
as channel equalisation.

Communication channels (space, underwater, etc.) are often modelled by discrete
finite impulse response filters and they are called channel impulse responses. Channel
equalisation refers to finding a new set of filters called equalisation filters, which compen-
sate the effect of channel impulse responses on the observations to provide an estimate
of the source signals. In most cases, explicit knowledge of channels is not available and
one has to estimate the equalisation filters by analysing the received signals, with or
without the explicit knowledge of the source signals.

Estimating equalisation filters is a very well established area of research in commu-
nications engineering and most of the techniques that are used commonly are non-blind
in nature. That is, the filters are estimated by periodically sending out known probe sig-
nals over the channels, and subsequently estimating the filters by analysing the received
signals. These probe signals are called training or pilot signals.
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In a typical multi-user communication system, where several users are sharing the
transmission medium over the same time-frequency-code slot, the signals from various
spatial origins interfere with the signal of interest (to a particular user) and hence it
gives rise to spatial mixtures. This is called co-channel interference and this can be
modelled as a blind source separation problem of linear-instantaneous mixtures. These
transmission scenarios are known as instantaneous or static Multi-Input-Multi-Output
(MIMO) channels.

The second kind of interference, called the intersymbol interference (ISI), arises
when a transmitted signal gets corrupted by the time-delayed versions of itself. The
time-delayed versions could arise due to multipath propagation of the signals, and what
is received at the end is known as temporal mixtures. In a time-dispersive (MIMO)
channel, which is often the case in multi-user wireless communication systems, the co-
channel interference and the intersymbol interference have to be tackled simultaneously.
This kind of equalisation is called spatio-temporal equalisation, which in the parlance of
blind source separation, amounts to a convolutive source separation problem.

It should be possible to use the standard methods for convolutive mixtures to han-
dle the channel equalisation methods. However, digital communication channels present
particular features that can be capitalized to improve filter estimation and source re-
covery. The source signals in digital communications have a finite number of possible
complex amplitudes, arising from the modulation techniques. Contrast functions that
exploit this property make an excellent choice for source separation in communications
context. Also, as mentioned earlier, pilot symbols are transmitted at regular intervals
to aid the channel equalization.

Plan of the chapter

We start by briefly describing some of the classical approaches that are developed by the
communications engineering community for channel equalisation, both blind and non-
blind. We then turn our attention to the problem of estimating the channel impulse
responses directly instead of the equalisation filters and describe a particular blind
method for the same.

4.2 Methods for channel equalisation

A standard semi-blind method for channel equalisation in a single user setting is the
optimal Wiener filter or the minimum mean square error (MMSE) equaliser. Consider
a single source signal s(t) of length T and a single user that receives the source signal
that is transmitted through a channel whose impulse response is modelled by a(t) of
length L. Let the observed signal at the user be x(t). By definition, the observed signal
is related to the source signal by the following

x(t) = (s ⋆ a)(t) + v(t), (4.1)

56



4.3 Cross relation method for channel estimation

where x(t) is of length T + L− 1, and v(t) is the additive noise at the receiver, which
is independent of the signal. Let s,a,x an v denote the vectors corresponding to
s(t), a(t), x(t) and v(t). Then, (4.1) can be written as

x = s ⋆ a+ v. (4.2)

What we seek as an equaliser is another vector b such that

s̃ = b ⋆ x

is an accurate estimate of the source vector s.
To achieve this, the supervised MMSE criterion aims at the minimisation of the cost

function

ERRORMMSE(b) := E
{
‖s̃− s‖22

}
= E

{
‖b ⋆ x− s‖22

}
. (4.3)

This is a non-blind method because it requires an explicit knowledge of the source
term s. Another widely used optimisation criterion is the standardized cumulant due
to Donoho [79] . At fourth order, the standard cumulant is known as kurtosis, and is
given by

ERRORKM(b) =
cum4{s̃}
cum2

2{s̃}
(4.4)

where cum2{s̃} is the variance of s̃ and cum4{s̃} is defined as

cum4{s̃} = E
{
|̃s|4
}
− 2E

{
|̃s|2
}2 −

∣∣E
{
s̃2
}∣∣ .

Cumulant based techniques do not require explicit knowledge of the original sources
and hence they are blind.

Kurtosis maximisation has been widely used for MIMO channel equalisation [80] as
well as source separation in instantaneous linear mixtures. Cumulant based method for
coloured sources has been dealt with in [81].

Apart from the methods that are based on second order and higher order statistics,
a host of other approaches are available to deal with the channel estimation prob-
lem [82, 83, 8, 84]. Our focus in this thesis is on channel estimation rather than channel
equalisation and hence we shall not delve more on channel equalisation.

4.3 Cross relation method for channel estimation

We shall now focus on an interesting set of techniques for channel estimation in a blind
Single-Input-Multi-Output scenario, based on the commutative and associative property
of the convolution operation. Let us start with the simplest case of estimating filters
when there is only one source s and two observations x1 and x2. This is the single-
input-two-output (SITO) case and we have:

xi(t) = (ai ⋆ s)(t) + vi(t), i = 1, 2.
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Let the length of s be T and the length of the filters be L, then the length of xi will be
T + L− 1. In the absence of noise, we have the following cross-relation (CR):

(x2 ⋆ a1)(t) = (x1 ⋆ a2)(t). (4.5)

This is the key equation on which a number of blind channel estimation algorithms
and methods have been proposed and we will exploit this relation in chapters 7 and 8
to propose a general framework for filter estimation. For convenience, let us associate
the signal ai to the column vector ai = [ai(t)]

L
t=1 and likewise s to s and xi to xi.

The convolution xi ⋆ aj is associated to the multiplication between the Toeplitz
matrix1

T[xi] =




xi(1) 0 · · · 0
xi(2) xi(1) · · · 0

...
. . .

...
xi(L) xi(L− 1) · · · xi(1)

xi(L+ 1) xi(L) · · · xi(2)
...

. . .
...

xi(T + L− 1) xi(T + L− 2) · · · xi(T )




, (4.6)

and the vector aj . By using the shorthand B[x1,x2] =
[
T[x2],−T[x1]

]
, we can write

the CR (4.5) as

B[x1,x2] · a = 0, where a =

[
a1
a2

]
. (4.7)

When there are multiple channels instead of only two, we can write a relationship
of the form (4.7) for every pair of channels, and then they can be stacked up to form a
larger system of equations.

In contrast to the statistical approaches, the CR based approach relies only on
solving a system of linear equations, which might lead to simpler implementations. Xu
et al. [83] have proposed to minimise the squared energy of the term B[x1,x2] · a in
order to obtain a solution. That is

min
a
‖B[x1,x2] · a‖22. (4.8)

They have further studied the identifiability properties of the problem and have de-
rived the necessary and sufficient conditions for the solution to exist. The fundamental
requirements of identifiability are 1) the polynomials corresponding to the filters a1
and a2 share no common roots and 2) the input signal s(t) has sufficient “modes" or
“diversity". The diversity of the input signal is nothing but the number of roots of a
polynomial which characterises a rank deficient Hankel matrix (a square matrix with
constant skew-diagonals) built using the input signal.

Similar methods which rely on the above cross relation include the component nor-
malisation method by Avadeno et al. [85]. Huang and Benesty derive least mean square

1Calligraphic letters will denote operators that map a vector to a matrix, e.g. T[xi].
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and Newton algorithms based on the cross relation for blind channel identification in
single-input-multi-output settings [86], and they further derive frequency domain algo-
rithms, based on the same cross relation in [87].

Aïssa-El-Bey et al. [88] have further extended the formulation of the cross rela-
tion used in [8], and introduce a new identification method referred to as Minimum
Cross-Relations (MCR) method which exploits the spatial diversity among the channel
outputs. They also present a modified version of the MCR referred to as the "unbiased
MCR" that leads to unbiased estimation of the channel parameters.

In all the representative approaches described till now in this section, the channel
impulse responses were not assumed to be having any special structure. However, we
are interested in the blind estimation of channels which are sparse in the time domain.
Blind estimation of sparse channels is a recent trend in communication systems. In the
next section, we shall embark upon the problem of sparse channel estimation and study
study some of these recent approaches that are based on the CR.

4.4 Sparse filter estimation

In the previous section, we described a few techniques that are generally used for esti-
mating channel impulse responses in blind and semi-blind settings. In this section let us
focus on the methods which take into account the sparse structure of the filters in order
to aid its estimation. Before we get into sparse channel estimation approaches, we shall
first describe the problem of recovering sparse vectors from its linear measurements in
underdetermined settings. This is nothing but the problem of finding sparse solutions
to underdetermined linear systems.

4.4.1 Sparse channel estimation: Single source setting

In the previous section, we described the general sparse recovery problem in the standard
setting that is commonly addressed in the literature. In this section, let us re-examine
the problem of channel impulse response estimation using the cross-relation approach
that was already introduced the in beginning of this chapter, in the light of sparse
recovery problem. The objective is to recast the channel estimation problem as a con-
strained ℓ1 minimisation problem by considering the sparse structure of the channel
impulse responses.

Let us recall that the impulse response of a communication channel can be inter-
preted as the multiple paths through which the signals get transmitted, and the mag-
nitude of the impulse response peaks are the different attenuation and delays that are
associated with the paths. In a variety of settings such as underwater communication,
geological acoustics, etc., the number of reflection paths that the source signals take are
very few compared to the delays associated and hence the channel impulse responses
are sparse in the time-domain.

In the single source setting, we introduced the notion of cross relation (CR) between
the channels in Eq (4.5), and the corresponding matrix form in Eq. (4.7). Now, with
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4. ROLE OF SPARSITY IN CHANNEL ESTIMATION

the additional assumption that the vector a = [a1 a2]
T is sparse and denoting B :=

B[x1,x2], the channel estimation problem can be cast as the following ℓ1 minimisation
problem:

minimize ‖a‖1 subject to B · a = 0. (4.9)

Solving this convex problem without further assumptions on the nature of a will
not be fruitful because the algorithm would give us the trivial solution a = 0, which
satisfies the constraint and also has the least possible ℓ1 norm. Hence, we need additional
constraint that prevents this. Also, it is sometimes unreasonable to expect the filters
to satisfy an exact equality B · a = 0 because of truncated source signals, noise at the
observations, etc. Hence, it is more appropriate to allow a margin of error and solve a
(BP-error) type of problem in order to estimate the filters.

Aïssa-El Bey et al. [89] have proposed to use the constraint ‖a‖2 = 1 for avoiding
the trivial solution and they formulate the channel estimation problem in the following
way:

minimize ‖a‖1 subject to ‖B · a‖2 ≤ ǫ and ‖a‖2 = 1. (4.10)

However, the normalisation ‖a‖2 = 1 makes the problem non-convex and therefore,
as an alternative, we use the constraint a1(t0) = 1, where t0 is an arbitrarily chosen
time index which results in the following convex problem:

minimize ‖a‖1 subject to ‖B · a‖2 ≤ ǫ and a1(t0) = 1. (4.11)

As mentioned in the previous section, any standard algorithmic package such as the
CVX [65] can be used to solve (4.11). It is this template of the convex problem that is
central to the framework that we eventually develop in this thesis.

In the following section, let us consider the problem of estimating channel impulse
responses in the presence of multiple sources and how the CR based method can be
tailored to approach the problem.

4.4.2 Sparse channel estimation: Multiple source setting

In a setting where there are multiple sources sj(t), 1 ≤ j ≤ N instead of just one,
the CR formulation (4.7) is not valid anymore for any particular source sj(t). This is
because the sources interfere with each other and what is observed at the receiver will be
a sum of filtered versions of different source signals. This is exactly the model of source
mixtures (1.1) that was introduced in Sec. 1.2. However, it is possible to use the CR
based approach to identify channel impulse responses with some additional assumption
on the sources.

Aïssa-El Bey et al. [90] have extended the CR in SITO based approach to a setting
with N sources. The authors assume that there exists time segments in general where
only one source is active alone and all the other sources are inactive. They further
assume that at least one time segment is available for each of the sources and therefore
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corresponding to these time segments, there are segments in the observations where the
contribution is only from one of the sources. If these segments are identified from the
observations, then the multiple source setting is now reduced to SITO setting for each
segment, and a CR can be formulated locally at such segments.

Let us illustrate this using a simple example of two sources. Fig. 4.1(a) shows the
time-domain plot of two sources s1 and s2. Notice that at time segment I1, only source
s1 is active and at I2 only source s2 is active. Fig. 4.1(b) shows the plot of their
mixtures, x1 and x2, obtained by convolving the sources with the filters aij , i = 1, 2.
These mixtures do not satisfy the CR (4.7) over the entire time frame because of time
segments where both the sources are active simultaneously. However, corresponding to
the time intervals I1 and I2 of the sources, there exists time intervals Ĩ1 and Ĩ2 in the
observations, where only one source is contributing.

If the time intervals Ĩ1 and Ĩ2 can be identified, then we can extract the mixtures
at these time segments to obtain y

(j)
i = {xi(t)}t∈Ĩj , which depend on only one source j.

The vectors y
(j)
i corresponding to y

(j)
i now satisfy the CR B[y

(j)
1 ,y

(j)
2 ] · a(j) ≈ 0.

Note that the relationship is not an equality due to the boundary effect of convolution.
Therefore, this relationship can be used to estimate the filters for source j by solving
the optimisation problem (4.11) with B = B[y

(j)
1 ,y

(j)
2 ].

The authors of [90] have developed a multiple channel estimation framework based
on the assumption of time-domain disjointness of sources. The framework consists of
the following steps:

• Blindly estimate the number of sources and the intervals Ĩj , 1 ≤ j ≤ N based on
the rank of the covariance matrices of the mixtures at various instances.

• Extract the mixtures at each of these intervals and solve the channel estimation
problem using the CR.

• It could so happen that multiple time intervals for the same source are identified
and hence the channel impulse responses are identified multiple times for the same
source. Hence, a clustering step follows the filter estimation step to cluster the
impulse responses belonging to the same source.

The key factor which enables the use of CR based method to estimate channels in
multiple source setting is the time-domain disjointness of the sources. The framework
that is developed in this thesis is a generalisation of the work presented in [90], and it
is based on the time-frequency domain disjointness of the sources, which has been dealt
with in chapter 2.

4.5 Summary

In this chapter, we introduced the problem of estimating channel impulse responses
from the observed signals in the context of communication systems for channel equal-
isation purposes. We first described some of the legacy approaches that are used in
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(a) Sources with intervals where only one source is active.

(b) Mixtures from the sources.

Figure 4.1: An example of time-frequency domain sparse signal

the communication systems for channel equalisation. We then looked at the channel
estimation problem and described a blind approach based on the cross-relation that
exists between the channels in the SITO setting.

Later, we described how the sparse information about the filters can be incorporated
in the channel estimation problem to formulat a convex program for filter estimation
in the single source setting. Then we described an existing work about the extension
of SITO based sparse filter estimation approach in the multiple source setting, which
primarily relies on the time-domain disjointness of the sources.
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Part II

Contributions
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Proposition of the thesis

In Sec. 1.3.1, we saw how the explicit knowledge of the source and the sparsity of the
filter can be used to estimate a filter, with just one observation. Instead of a single
observation, suppose we have two observations x1 and x2, through the filters a1 and a2.
This is the single-input-two-output (SITO) setting, and due to the commutativity and
associativity property of the convolution operator the following holds

(x2 ⋆ a1)(t) = (x1 ⋆ a2)(t) = (a2 ⋆ a1 ⋆ s)(t), ∀t. (4.12)

This implies the cross-relation (CR) [8]:

(x2 ⋆ a1 − x1 ⋆ a2)(t) = 0, ∀t. (4.13)

The CR provides us with a constraint that does not require the knowledge of the
sources explicitly. This has been extensively used in communications engineering to
estimate the filters blindly and further if the filters are sparse, then an optimisation
problem can be formulated and solved to estimate a1 and a2 simultaneously. This is a
blind estimation scheme, and it is still in the single source setting. The question now
we can ask is: how can we exploit this CR to estimate mixing filters in the multiple
source setting?

It is at this juncture that the time-frequency domain sparsity of the sources plays
a role. We have mentioned in Sec. 1.3.2 that a commonly used hypothesis is that the
sources are sparse and disjoint in the time-frequency domain. With this hypothesis, we
can find time-frequency points in the mixtures where only one of the sources is active.
Hence, even though the CR in Eq (4.12) might not satisfied in the time-domain for
any source, because of the presence of other sources, a suitable time-frequency domain
version of the CR will be satisfied at those time-frequency points where only one source
is active. Then these time-frequency domain CR for each such point can be used to
formulate an optimisation problem for filter estimation.

This thesis is focussed on the development of a framework which relies on the time-
frequency domain sparsity and disjointness of the sources and the time-frequency do-
main version of the CR. Fig. 4.2 shows a symbolic diagram of our contribution in the
thesis.

We propose a framework which exploits the source and filter sparsities for the task
of estimating multiple sparse filters from stereo convolutive mixtures. The main tasks
that are involved in such a framework are: 1) Identifying the time-frequency points
in the mixtures where only one source is active, and clustering them according to the
sources and 2) estimating the filters by exploiting the time-frequency domain CR in
each cluster.

Such a system would have a workflow as depicted in the Fig. 4.3. The steps involved
can be summarized as:

1. Transformation of the mixtures into the time-frequency domain where the sparse
structure of the sources are made explicit;
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Time-frequency domain

source sparsity

Time domain 

filter sparsity

Our contributions

Sparse component analysis Sparse recovery problem

A combination of source and

filter sparsities

Figure 4.2: Our contribution in the thesis.

2. Identification of the time-frequency points where only one source is active;

3. Clustering of the points and formulation of the filter estimation problem;

4. Solution of the filter estimation problem.

Transformation of
the mixtures

Time-frequency 
points

selection and 
clustering

Mixing filter 
estimation

Figure 4.3: Workflow of the filter estimation system based on the sparsity of sources
and mixing filters.

Before we go on with the development of a framework for multiple sparse filter
estimation, we first study the utility of sparsity of mixing filters to solve the problem
of permutation ambiguity in blind source localisation with convolutive filters.
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Chapter 5

Convolutive source localisation:

Could we exploit filter sparsity?

One of the classical approaches for convolutive blind source localisation and sep-
aration is to transform a single, time domain convolutive mixtures problem into

multiple, time-frequency domain instantaneous mixture problems using the narrowband
approximation. This transformation enables us to use the techniques developed for sep-
arating linear instantaneous mixtures, such as independent component analysis (ICA)
and sparse component analysis (SCA), to perform localisation and separation in each
frequency sub-band. However, as pointed out in Sec. 2.3.4, this scheme gives rise to the
arbitrary permutation and scaling in each sub-band of the estimated objects (filters or
sources) and they have to be corrected in order to perform localisation and separation.

As it was mentioned in chapter 2, the permutation and scaling problems are inher-
ent to the mathematical formulation of the source separation itself. Hence, whenever
we intend to solve the convolutive problem using the narrowband approximation, these
problems are bound to arise irrespective of which technique we use to tackle the problem.
One possibility to avoid these problems is to handle the problem in the time-domain
itself, like the time-domain convolutive ICA. However, these time-domain techniques
also suffer from the permutation and scaling ambiguities [29] and also they are com-
putationally very intensive and hence it is advantageous to work in the time-frequency
domain.

Another advantage of working with the time-frequency domain and narrowband
approximation is that we can exploit the sparsity of the sources in the time-frequency
domain. As it was discussed in chapter 2, the time-frequency domain sparsity of the
sources can be very elegantly exploited to design techniques for source localisation and
separation. And with this time-frequency domain approach, it is imperative that we
have to solve the permutation and scaling ambiguities.

In this chapter, we only consider the permutation ambiguity of filter coefficients. We
suppose that the filter estimates in each frequency sub-band are obtained by using one of
the techniques that we have described in chapter 2, and the contribution of this chapter
is to assess the potential of sparsity to solve the permutation ambiguity by exploiting the
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time-domain sparsity of the mixing filters. A combinatorial ℓ1 minimisation algorithm
is also presented to correct the permutation ambiguities in the absence of scaling.

Plan of the chapter

We begin with a recollection of the narrowband approximation of the convolutive mix-
ture model and state the permutation and scaling problems. Then, a brief survey of
approaches that are found in the literature to solve these problems is presented. Subse-
quently, we show how the sparsity of mixing filters can be used to solve the permutation
problem by presenting some experimental results which bring out the connections be-
tween the sparsity of the filters and permutations. Motivated by these experimental
results, we then present combinatorial algorithm to solve the permutation problem.
The algorithm is experimentally evaluated and theoretical connections between filter
permutations and filter sparsity is presented at the end.

5.1 Permutation and scaling problems: State of the art

Let us consider NT short time Fourier transform (STFT) frames of the mixtures xi, 1 ≤
i ≤ M , with a framesize F . If the STFT window size F is sufficiently larger than the
filter length L, then the mixtures can be approximated by:

x̂i(τ, f) ≈
N∑

j=1

âij(f)ŝj(τ, f), 1 ≤ i ≤M, 1 ≤ τ ≤ NT , 0 ≤ f < F, (5.1)

where x̂i(τ, f) and ŝj(τ, f) represent the time-frequency representation of the mixtures
and sources respectively at the time-frequency index (τ, f) and âij(f) represents the
Discrete Fourier Transform (DFT) of the filters at frequency f . This formulation trans-
forms a single convolutive source separation problem into F independent complex in-
stantaneous mixtures problem in the time-frequency domain.

Let us denote the filter coefficients aij(t) at a given time index t by a matrix A(t)
whose size if M × N . That is, the (ij)th element of A(t) is aij(t). Similarly, let us
denote the DFT coefficients of the filters at a frequency f by a matrix Â(f) of size
M ×N .

Using the narrowband approximation, we can estimate the filter matrices Â(f)
independently for each frequency bin f using one of the techniques based on ICA,
or NMF or SCA. Irrespective of the approach used, the filter matrices can be only
estimated up to a permutation and scaling, which might differ for each frequency sub-
band f . Hence, the filter estimates are of the form

Ă(f) = Â(f)Λ(f)P(f), 0 ≤ f ≤ F/2, (5.2)

where Λ(f) is an N×N diagonal matrix containing arbitrary complex scaling factors and
P(f) is an N×N permutation matrix. Because of the conjugate symmetric structure of
the DFT, the conjugate frequencies f and F −L are permuted in a similar way and they
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are scaled by conjugates. Hence, it is sufficient to have the frequency indices running
only up to F/2.

Due to these permutation and scaling ambiguities, the frequency domain filters can-
not be right away transformed back into the time domain. Hence, the filter estimation
stage of any source separation system that relies on the narrowband approximation has
to correct these ambiguities before the filters are used in the source estimation stage.

We recall that Fig. 2.5 shows a typical architecture of a filter estimation block of a
convolutive source separation system that is based on narrowband approximation. The
estimates of the filter sub-bands Ă(f) are obtained for each frequency f , which has a
form of (5.2). The permutation and scaling correction stage has to resolve the ambigu-
ities for each sub-band to obtain the corrected estimates Ã(f), 0 ≤ f ≤ F/2. However,
there still could be a global permutation and a global scaling, which is independent
of the frequencies. This global ambiguity does not pose any further problems for the
source estimation stage, and hence it is often considered to be not an issue. Concisely,
the goal of the permutation and scaling correction stage of the filter estimation process
can be summarised as:

Goal of the permutation and scaling correction stage: Starting with the filter
estimates Ă(f), obtain a scaling and permutation corrected version Ã(f) up to a
global scaling Λg and global permutation Pg with respect to the true filter matrices

Â(f), such that
Ã(f) = Â(f)ΛgPg, ∀f. (5.3)

However, in this chapter we will assume that the filter estimates do not posses any
scaling ambiguity and we deal only with filter permutations. Hence, Λ(f) = IN×N , ∀f
and Ă(f) = Â(f)P(f), ∀f . Though in reality the filter estimates suffer from scaling
ambiguities also, we will consider only the permutation ambiguity in this chapter to
show that the time-domain sparsity can indeed help solve the permutation problem.

Due to the fact that a global permutation of the filters is immaterial to the source
separation step, we can arbitrarily fix a permutation, whose permutation matrix is Pg,
as a reference permutation for the purpose of aligning the sub-bands. Clearly, in this
case we only need to align the sub-bands which have undergone permutations other than
the permutation corresponding to the matrix Pg. Let us denote the set of frequency
sub-bands, whose permutations are other than the one corresponding to Pg, by Ω(Pg).
That is:

f ∈ Ω(Pg) ⇐⇒ P(f) 6= Pg. (5.4)

With this definition of the set Ω(Pg), we can now state that the goal of the permu-
tation correction stage is to make the set Ω(Pg) = ∅, for some choice of Pg.

5.1.1 Notations

For further discussions related to sub-band permutations, let us set up some additional
notations. In Sec. 1.2.3 we introduced the notion of sparse filters, and in Sec. 4.4
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we introduced the relevance of using ℓ1 norm of vectors to measure its sparsity. In a
standard sparse recovery problem, we are interested in recovering a single sparse vector
and hence the ℓ1 norm of that single vector is sufficient for consideration. However, in
the context of source localisation with N sources and M channels we have M ×N filter
vectors aij , 1 ≤ i ≤ M, 1 ≤ j ≤ N , and we are interested in the ℓ1 norm the entire
filter matrix.

Let ATD be a shorthand notation for representing all the MN time-domain filter
vectors aij . By a straightforward extension of the definition of the ℓ1 norm for a single
vector, we can define the ℓ1 norm of A as the sum of the individual ℓ1 norms of each
filter aij. That is:

‖ATD‖1 :=
M∑

i=1

N∑

j=1

‖aij‖1. (5.5)

It should be noted that the sparsity of the filter matrix is measured in the time
domain, whereas the permutations occur in the frequency domain. In order to study
the interplay between sub-band permutations and filter sparsity, we have to often switch
between the frequency-domain and time-domain representations and hence it is impor-
tant to distinguish the notations. Table 5.1 list the notations the we shall use and their
associated meanings.

Notation Meaning
A(t) An M ×N matrix which contains all the filter coefficients at time t

Â(f) An M×N matrix which contains all the filter coefficients at frequency
f

ATD Shorthand notation representing all the MN time-domain filter vec-
tors aij

Â
fd

Shorthand notation representing all the MN frequency-domain filter
vectors âij

Ă(f) An M ×N filter matrix of the form Ă(f) = Â(f)P(f)

Ă
fd

Shorthand notation for the frequency domain matrices Ă(f), ∀f

ĂTD Shorthand notation for the time-domain filters obtained by the inverse
DFT of Ă

fd

Ã
fd

Shorthand notation for the permutation corrected frequency domain
matrices Ã(f), ∀f

ÃTD Shorthand notation for the time-domain filters obtained by the inverse
DFT of Ã

fd

Table 5.1: List of notations.
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Before we go ahead with the description of our contributions, let us first look at
some of the existing work in the literature which are aimed at tackling the permutation
problem.

5.1.2 Existing approaches for permutation correction

In the two stage source separation architecture which relies on narrowband approxima-
tion for filter estimation, the permutations can be corrected either on the sub-bands of
the estimated filter coefficients, or on the sub-bands of the estimated source signals, or
jointly on both. Irrespective of whether the permutation correction is done on the filter
sub-bands or on the estimated source signals, the underlying idea is to exploit some
sort of consistency across the sub-bands of the underlying object (filters or sources).
As mentioned in the beginning of this chapter, our contribution is to show how the
permutations of the estimated filter coefficients can be corrected using filter sparsity as
a consistency measure. Therefore we discuss only the methods that aim to correct the
permutations on the estimated filter coefficients.

Several approaches that are found in the literature use different methods to establish
the consistency of filter coefficients across the sub-bands. For example, constraints on
the length of the filters, information about the location of the sources, etc.

Exploiting spectral consistency

One simple way of measuring the consistency of filter coefficients is to look at the conti-
nuity of the filter values across the sub-bands in the frequency domain. A naive approach
could be to pick those permutations that minimise the Euclidean distance between
neighbouring frequencies [91]. That is, the set of permutation matrices {P(f)}Ff=1are
chosen such that

min
{P(f)}Ff=1

F∑

f=1

|Ă(f)P(f)− Ă(f − 1)|. (5.6)

Continuity in frequency domain can also be interpreted as the smoothness of the
filter coefficients in the frequency domain, and smooth frequency domain representation
implies a limited temporal support of the filters. A simple way to ensure this is to zero-
pad the time domain filters (essentially, increasing the frequency resolution by zero
padding) before frequency transformation [92].

Instead of using merely the differences between adjacent frequency sub-bands, Asano
et al. have suggested to use the cosine of the angle between the filter coefficients of
different frequencies for measuring the smoothness across the sub-bands [93]. They
assume that due to the smooth nature of the filters in the time domain the columns
of the mixing filter matrix for adjacent frequencies have minimal angle. Hence, the
permutations can be corrected by maximising the cosine of the angle between adjacent
frequencies. Given two adjacent frequencies f1 and f2, the cosine of the angle between
the columns of Ă(f1) and Ă(f2) is defined by
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cosα
(j)
(f1,f2)

=
Ăj(f1)

HĂj(f2)

‖Ăj(f1)H‖2‖Ăj(f2)‖2
, (5.7)

where Ăj(f) indicates the jth column of the matrix Ă(f). Hence, the permutation
across adjacent frequencies can be corrected by maximising the following cost function

C =

F∑

f=1

N∑

j=1

cosα
(j)
(f,f−1). (5.8)

Exploiting spatial information

Continuity across the frequencies can also be assessed in terms of the estimated spatial
locations of the sources. The mixing filters are essentially the impulse responses between
the source locations and the microphone locations and hence the location information
such as the Direction Of Arrival (DOA) can be used to correct the permutations. Meth-
ods which use this information are known as beamforming approaches. However, most
beamforming approaches work on the unmixing filters rather than the mixing filters
[94, 95, 96, 97].

If the sources are at a sufficient distance from a microphone array, then the sound
waves arrive as plane waves to the microphones. Let the microphone array have a
separation distance of d, and the plane waves from a given source be incident on the
microphone array at an angle θ, called the DOA. Then the microphones sense the sound
waves with a delay δ which is given by

δ =
d

c
sin θ (5.9)

where c is the velocity of the sound waves.
The separation filters can be interpreted as null-steering beamformers which respond

only to a particular source and reject all other sources. A beamforming filter which
responds constructively to a specific DOA and reject other interfering DOA has to
account for the delay in arrival of sound waves, and these delays correspond to the
phase characteristics of the filter. Hence, DOA information can be used for correcting
permutations of the separation filters. DOA information is generally estimated from
the observed signals and estimated separation filter matrices at different frequencies.

Other methods

Several other methods based on various assumptions have also been proposed. Methods
utilising the visual clues of the sources [98], maximum likelihood approach [99], split
spectral difference [100], etc. have been proposed. Table 5.2 is a partial reproduction
of table 4 from [101] which contains a a listing of various consistency measures that are
used for correcting filter permutations, along with the references.

In what follows, we propose to use the time-domain sparsity of the mixing filters as
a consistency measure to correct the permutations.
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Metric used Reference
Smooth spectrum [92], [28]
Source locations [102]
Directivity pattern [99], [94], [95]
Location vectors [93]
Direction of arrival [96], [97], [103]
Adjacent matrix distance [91]
Invariances [104]
Split spectrum [100]
Vision [98]

Table 5.2: List of metrics used to solve the permutation problem in the frequency
domain and their corresponding references.

5.2 Assessing the impact of permutations on ℓ
1 norm of

filters

In this section, we shall demonstrate that the ℓ1 norm of the filters is effectively corre-
lated to the permutations, by assuming that the mixing filters are sparse in the time-
domain.

In order to establish the connection between permutations and the ℓ1 norm of the
filter matrix, we present some experimental results that shows empirically that if the
filters are sparse, then only when all the permutations are aligned correctly the ℓ1

norm of the filters reaches the minimum. We illustrate this claim with two types of
experiments:

Experiment Type 1: The purpose of this experiment is to demonstrate that the ℓ1

norm of the filter matrix has its minimum only when all the permutations are
correctly aligned.

Experiment Type 2: The purpose of this experiment is to demonstrate the sensitivity
of the ℓ1 norm of the filter matrix.

We shall reiterate that we are treating the permutation problem alone in the absence
of scaling. That is Λ(f) = IN×N , 0 ≤ f ≤ F/2, where IN×N is an identity matrix of
size N ×N .

For both types of the experiments, we shall use the following filter generation
method.

Sparse filter generation for both experiments

For each time-domain filter aij(t) of length L and sparsity k, let Γij denote the support
of filters such that |Γij | = k. That is

Γij := {t | aij(t) 6= 0} . (5.10)
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In all our experiments, the non-zero coefficients of each filter aij(t) are generated as
i.i.d. Gaussian with mean zero and variance one and the support sets Γij of size k are
selected uniformly at random from the set {1, 2, . . . , L}. That is

aij(t) =

{
∼ N(0, 1) if t ∈ Γij ,
0 otherwise.

(5.11)

These filters are transformed into the frequency domain by taking their discrete
Fourier transform (DFT) of length F = L and subsequently the matrices of filter coef-
ficients Â(f), 0 ≤ f < L are obtained. These are our original filters and let us denote
their ℓ1 norm by ‖A

td
‖1.

Protocol for experiment type 1:

The set of frequencies at which the filter matrices undergo permutation is denoted by Ω
and in this experiment, the set Ω ⊆ {0, 1, . . . , L/2} is chosen by selecting randomly the
frequency indices. For each f ∈ Ω, a permutation matrix P(f) is randomly generated
and the permuted matrices Ă(f) = Â(f)P(f) are obtained. For every f , the same
permutation is applied on the corresponding mirror sub-band as well. That is

Ă(f) =

{
Â(f)P(f) if f ∈ Ω or (L− f) ∈ Ω,

Â(f) otherwise.
(5.12)

With these permuted matrices Ă(f), 0 ≤ f < L, the corresponding time domain
filters Ă

td
are obtained by the inverse DFT, and their ℓ1 norm ‖Ă

td
‖1 is computed

using (5.5).

Results

We conducted experiments with filter matrices having the number of channels M = 3,
number of sources N = 4, filter length L = 1024 for different values of sparsity k of
individual filters. Fig. 5.1 shows the plot of maximum, minimum and mean of the
relative difference in ℓ1 norms (‖Ă

td
‖1 − ‖Atd

‖1)/‖Atd
‖1 versus |Ω| over 50 draws for

different values of k.
We can notice from the figures that in each draw of the experiment, the quantity

‖Ă
td
‖1 − ‖Atd

‖1 is never negative, which means that the ℓ1 norm tends to increase
when the sub-bands are not aligned. Also, the trend is the same for larger values of |Ω|.

We conducted experiments for different configurations of the problem sizes and the
observations were consistent with the ones presented here.

Conclusion

From the experimental results presented in this section, we conclude that when the
filter sub-bands are permuted randomly the sparse structure of the filters is disturbed
and the ℓ1 norm of the filters increases compared to the true ℓ1 norm. Therefore, the
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Figure 5.1: Plots showing the increase of ℓ1 norm of filter matrices due to permutations.

sparsity of the filters can be effectively used as a consistency measure to correct the
permutations.

Now that we have established that random permutations in the sub-bands increase
the ℓ1 norm, we shall see how sensitive the ℓ1 norm of the filters is to the permutations
in the next experiment.

Protocol for experiment type 2:

The previous experiment empirically established that random permutations of the sub-
bands does increase the ℓ1 norm of the filters. The following experiment shows that even
a single permutation between two sources in only one sub-band (|Ω| = 1) can increase
the ℓ1 norm of the filters.

The frequency f at which we wish to permute the sources is chosen randomly from
the set {0, 1, . . . , L/2}. At a single frequency f and its conjugate, we swap only two
sources j1 and j2 that are pre-determined to obtain the permuted matrices Ă(f). Let
us call this as j1 − j2 source-pair permutation. The corresponding time domain filters
Ă(t) are obtained by the inverse DFT, and their ℓ1 norm ‖Ă

td
‖1 is computed using

(5.5).

Results

We conducted experiments with filter matrices having the number of channels M = 3,
number of sources N = 4, filter length L = 1024 for different values of sparsity k of

75

Chapter4/Chapter4Figs/EPS/M3N4L1024K4_new.eps
Chapter4/Chapter4Figs/EPS/M3N4L1024K8_new.eps
Chapter4/Chapter4Figs/EPS/M3N4L1024K16_new.eps
Chapter4/Chapter4Figs/EPS/M3N4L1024K32_new.eps


5. CONVOLUTIVE SOURCE LOCALISATION: COULD WE EXPLOIT
FILTER SPARSITY?

individual filters. Fig. 5.2 shows the box plot of the relative difference in ℓ1 norms
(‖Ă

td
‖1−‖Atd

‖1)/‖Atd
‖1 versus k over 50 draws for different source-pair permutation.

For a given sparsity level and a trial number, and at a random frequency f , we
can have

(
N
2

)
different source pair permutations. Fig. 5.2(a) shows the variation in ℓ1

norm when the sources 2 and 3 are permuted at a single randomly chosen frequency
index using Matlab’s boxplot() function. Similarly, Figs. 5.2(b), 5.2(c) and 5.2(d)
correspond to 1− 4, 4− 2 and 3− 1 source pair permutations.
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Figure 5.2: Box plots showing the sensitivity of ℓ1 norm of filter matrices due to a single
permutation of two sources.

On each box, the central horizontal line in red colour is the median, the edges of
the box in blue colour are the 25th and 75th percentiles. The extreme data points that
are not considered outliers are marked by the whiskers in black colour.

Here again, we can notice from the figures that in each draw of the experiment, the
quantity ‖Ă

td
‖1 − ‖Atd

‖1 is never negative, which means that the ℓ1 norm increases
even when one sub-band is permuted.

Conclusion

From the above experiments, we have gathered an empirical evidence that when the
mixing filters are sparse, the sub-band permutations perturb the sparse structure of
the filters and they increase the ℓ1 norm from their true ℓ1 norm, in the absence of
any scaling of sub-bands. Hence, we can use the time-domain sparsity of the filters,
quantified using the ℓ1 norm, as a consistency measure to correct the permutations of
the filter sub-bands. Inspired by this, we now propose a combinatorial ℓ1 minimisation
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5.3 Combinatorial ℓ1 minimisation for solving permutation ambiguity

algorithm to correct the sub-band permutations in the absence of scaling.

5.3 Combinatorial ℓ1 minimisation for solving permutation
ambiguity

The objective of a permutation correction algorithm based on the time-domain sparsity
of the filters can be summarised as:

Given the frequency domain estimates of the filter matrix Ă(f), 0 ≤ f < L, find a
set of permutations P(f), 0 ≤ f < L such that the time-domain filters Ã

td
, which

are obtained as the Inverse Discrete Fourier Transform (IDFT) of the matrices
Ã(f) = Ă(f)P(f), 0 ≤ f < L, has the least ℓ1 norm.

If there are N sources, then at each sub-band there are N ! possible permutations
for the sources, and hence there are totally (N !)F/2+1 possible permutations (due to
the symmetry of the sub-bands) of the filter sub-bands. A straightforward approach
to align the permutations is to explore all the possible permutations, compute the ℓ1

norm for each possible permutation, and choose the set of permutations which yields the
minimum ℓ1 norm. However, this is a very expensive affair. Even for a small problem
size like N = 2 and L = 32, the number of permutations to be explored is 217, which is
already a big number.

We now propose our algorithm to minimise the ℓ1 norm of the filter matrix. The
algorithm which operates iteratively on each frequency at a time and chooses a permuta-
tion which has the least ℓ1 norm among possible permutations. The proposed algorithm
is based on the greedy principle, where in at each step of the algorithm a permutation
is chosen to locally minimise the ℓ1 norm.

5.3.1 Algorithm

Let denote the set of all the possible source permutations by P (|P| = N !). Starting
with the first sub-band till the last, at each sub-band the sources are permuted using
every possible P ∈ P, keeping the other sub-bands fixed. For each of these explored
source permutations, the ℓ1 norm of the filter matrix is computed and that permutation
which minimises the ℓ1 norm is retained and declared as the optimal permutation for
that particular sub-band. This ensures that ℓ1-norm of the filter matrix is lowered to
the local minimum at each step by aligning one particular sub-band. At the end of the
first sweep through all the sub-bands, the norm of the filter matrix would be less that
what was started with. However, as the sub-bands are locally examined, the resulting
norm may not be the global minimum. Hence, the entire process of sweeping through
the sub-bands is repeated until the difference in the filter norms between two successive
sweeps is less than a certain threshold ǫ. The pseudocode of the algorithm is presented
in Algorithm 1.
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Algorithm 1: Algorithm to solve the permutation indeterminacy by minimizing
the ℓ1-norm of the time domain filter matrix.

Input: Ă(f), 0 ≤ f < L and ǫ: The estimated sub-band coefficients and a
threshold

Output: Ã(f), 0 ≤ f < L: The sub-band coefficient matrix after solving for the
permutations

(1) Initialize ;1

Ã(f)← Ă(f), 0 ≤ f < L;2

(2) Update all the sub-bands;3

foreach f = 1 : L do4

oldÃ(f)← Ã(f);5

foreach P ∈ P do6

Ã(f)← Ă(f)P;7

Ã
td
← IDFT

(
Ã(f ′), 0 ≤ f ′ < L

)
;

8

val(P)← ‖Ã
td
‖1;9

P(f)← argmin
P∈P

val(P);
10

Ã(f)← Ă(f)P(f);11

(3) Test if the algorithm should stop;12

if ‖Ã
td
‖1 ≥

{
‖oldÃ

td
‖1 − ǫ

}
then Output Ã(f), 0 ≤ f < L;

13

else Go to step (2)14

5.3.2 Complexity of the algorithm

To evaluate the ℓ1 norm of the filters, the frequency domain filter coefficients have
to be transformed back into the time domain by IDFT and for each filter, the cost
of IDFT through a Fast Fourier Transform (FFT) is L logL. There are MN filters
totally and hence the cost of ℓ1 norm evaluation for a given configuration of sub-bands
is MNL logL.

The brute force approach described in Sec. 5.3 to solve the ℓ1-minimisation prob-
lem would then need (N !)LMNL logL operations. In the case of Algorithm 1, each
sweep needs to explore N !L permutations and hence, the complexity of each sweep is
N !MNL2 logL. This is still expensive because the computational cost grows in facto-
rial with the number of sources and in square with the filter length, but it is tractable
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for small problem sizes and very efficient compared to the brute force approach.
In the next section, we shall demonstrate the working of the algorithm with exper-

imental results.

5.3.3 Experimental results

In this section we shall present the experimental results that evaluate the performance
of the proposed algorithm. Firstly, we will consider an ideal situation where in the
frequency domain estimates of the filters are noiseless and perfect, but only the sub-
bands are permuted, then we will consider a scenario where the estimates are assumed
to be imperfect and this is modelled by an additive noise term to the filter estimates in
the frequency domain.

5.3.3.1 Recovery in noiseless condition

In this set of experiments, we assume that the sub-band coefficients are estimated
without noise and without scaling ambiguity. The filter generation protocol and the
way in which the permuted matrices Ă(f), 0 ≤ f < L are obtained for a given Ω is the
same as described for the first experiment in Sec. 5.2.

50 filter matrices with N = 3,M = 2 and L = 1024 for different values of sparsity
k are created, transformed and sub-bands are randomly permuted with various sizes of
|Ω| and fed as the input to the proposed algorithm.

The output of the algorithm is transformed back to the time domain to compute the
reconstruction error. The following definition of output Signal-to-Noise Ratio (SNR) is
used for performance evaluation.

SNRout = 20 log10

(
‖A

td
‖2

‖A
td
− Ã

td
‖2

)
. (5.13)

The recovered filters A
td

suffer from a global permutation ambiguity and hence it
has to be taken into account while computing the output SNR. The output SNR is
computed with all the possible (N !) global permutations of A

td
, and the permutation

which yields minimum error is retained and then the corresponding output SNR is taken
into account for analysis purposes.

Fig 5.3 shows the performance of the algorithm in the noiseless condition in terms
of average output SNR of the recovered filters and the number of sweeps the algorithm
needs for convergence. Fig. 5.3(a) shows the phase transition diagram of the filter
recovery with respect to the filter sparsity k and the number of sub-bands permuted |Ω|.
The white region represents a very high SNR of the recovered filters, indicating success
and the black region corresponds to very low (almost zero) output SNR which indicates
recovery failure. The transition is quite sharp as in there is not much of gray region.
When the sparsity k and the number of sub-bands permuted |Ω| are simultaneously
high, the recovery fails.

The thick dark diagonal line on the figure is the straightline given by k+ |Ω| = L/2.
As a rule of thumb we can say that the recovery is successful if k + |Ω| ≤ L/2. With
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(b) Average number of sweeps versus |Ω| for different values of sparsity k.

Figure 5.3: Performance of Algorithm 1 in terms of average output SNR and number
of sweeps.

|Ω| > L/4, the recovery fails when k + |Ω| > L/2. For |Ω| < L/16, the recovery
is successful even when k = L/2. In chapter 6 we present a theoretical analysis of
the effect of permutations on filter sparsity which throws light on the recoverability
conditions.

Fig. 5.3(b) shows the average number of sweeps that is needed for the algorithm to
converge with the convergence threshold ǫ set to 10−4. We can observe that for smaller
values of k and |Ω|, the algorithm takes at most two sweeps to converge. As expected,
the number of sweeps increases for larger values of k and |Ω|.
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Conclusion

These experimental results in noiseless condition support our claim that we can correct
the permutation ambiguity of the filter matrices by minimising the ℓ1 norm of the
filters. However, the filter estimation is not always perfect and hence the robustness of
the algorithm is very important. In the next section, let us study how the algorithm
performs in the presence of noise.

5.3.3.2 Robustness to noise

The estimation of Ă(f) by an actual BSS algorithm invariably involves some level of
noise (as well as scaling, which we do not deal with here). Hence, the permutation
solving algorithm needs to be robust to certain level of noise. In this section, we present
experiments results that establish the effectiveness of sparsity criterion and the proposed
algorithm for solving the permutation problem when the estimates are not perfect.

The following model was used to introduce noise to the filter sub-bands:

Ă(f) = Â(f)P(f) + V̂(f), (5.14)

where V̂(f) is a M × N matrix having entries that are i.i.d. complex Gaussian with
mean zero and variance σ2.

The filter generation protocol and the way in which the permuted matrices Ă(f), 0 ≤
f < L are obtained for a given Ω is same as described for the first experiment in Sec. 5.2.
The only change being the addition of noise in each sub-band. The extent of noise added
is measured with the following definition of oracle input SNR:

SNRoracle
in = 20 log10

(‖A
td
‖2

‖V
td
‖2

)
. (5.15)

where V
td

is the noise in the time-domain obtained by taking the inverse DFT of
V̂(f), 0 ≤ f < L. The input SNR defined by

SNRin = 20 log10

(
‖Ă

td
‖2

‖Ã
td
−A

td
‖2

)
. (5.16)

is actually much larger than the oracle input SNR. That is SNRin ≫ SNRoracle
in .

Note that the output SNR is measured in the time domain, and hence it becomes
easier if the input SNR is also measured in the time domain even though the noise added
is in the frequency domain. For a specified input SNR and a specific realisation of the
filter matrix A

td
the noise power is computed using Eq. (5.15). Then the time-domain

noise signal V
td

is generated with i.i.d. Gaussian distribution with zero mean and unit
variance and it is scaled to match the required noise power. This noise signal is then
transformed into the frequency domain to obtain V̂(f), 0 ≤ f < L and added to the
frequency domain filter matrices.
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Results

50 filter matrices with N = 3,M = 2 and L = 1024 for different values of sparsity k are
created, transformed and sub-bands are randomly permuted with various sizes of |Ω|.
Noise is then added to the frequency domain filters such that the input SNR is made
to vary between -30 dB and 30 dB in steps of 10 dB. These frequency domain filter
matrices are fed as input to the proposed algorithm.

The output of the algorithm is transformed back into the time domain and the
reconstruction error is computed using Eq. 5.13 after taking care of the global permu-
tation.

Fig 5.4 shows the performance of the algorithm in the noisy settings.Fig. 5.4(a)
(resp. 5.4(c) and 5.4(e)) shows the plot of average output SNR (Eq. (5.13)) versus
input SNR for |Ω| = 8 (resp. |Ω| = 40 and |Ω| = 64) for various filter sparsity values k.

We observe that SNRout = SNRoracle
in within 0.01 dB when −30 dB ≤ SNRoracle

in ≤
30 dB. This means that the output SNR closely follows the input SNR, and the algorithm
can recover the filters to an output SNR level as good as the input SNR.

Fig. 5.4(b) (resp. 5.4(d) and 5.4(f)) shows the average number of sweeps that is
needed for the algorithm to converge against the input SNR level for |Ω| = 8 (resp. |Ω| =
40 and |Ω| = 64) with the convergence threshold ǫ set to 10−4 . We can observe that
for low SNR levels, the algorithm takes more number of sweeps to converge compared
to high levels of SNR.

5.4 Summary

In this chapter, we dealt with the problem of permutation and scaling ambiguities that
arises in the context of frequency domain convolutive blind source separation based on
the narrowband approximation approach. We presented a brief survey of approaches
found in the literature to solve these problems explicitly. Then, we assessed the use of
the time-domain sparsity of the mixing filters as a consistency measure to correct the
permutations in the absence of scaling. Our experiments showed that the permutations
can be corrected by minimising the ℓ1 norm of the filters.

Motivated by the empirical evidence of the connections between ℓ1 norm and filter
permutations, we proposed a combinatorial ℓ1 norm minimisation algorithm for permu-
tation correction. We experimentally evaluated the algorithm under noiseless and noisy
conditions, and demonstrated the ability of the algorithm to correct the permutation
ambiguity effectively.
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(b) Average number of sweeps versus input
SNR for |Ω| = 8.
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(c) Output Vs input SNR for |Ω| = 40.
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(d) Average number of sweeps versus input
SNR for |Ω| = 40.
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(e) Output Vs input SNR for |Ω| = 64.
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(f) Average number of sweeps versus input
SNR for |Ω| = 64.

Figure 5.4: Performance of Algorithm 1 in terms of average output SNR and number
of sweeps under noisy settings.
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Chapter 6

Permutations and Sparsity: Theory

Chapter 5 was devoted to the empirical demonstration of the connections between the
time-domain sparsity of the filters and sub-band permutations and the possibility of

using of sparsity of filters as a consistency criterion for solving the permutation problem
in the absence of scaling. This chapter presents some theoretical connections between
sparsity and permutations.

The experiments presented in Sec. 5.2 show that for a set of filters with a given
sparsity level k, the ℓ1 norm of the filters defined in Eq. (5.5) increases only if the size of
the set of frequencies where the permutations occur |Ω| is smaller than a certain number.
In this chapter, our objective is to understand analytically how the filter sparsity and
number of permuted frequencies are related to ℓ1 norms of the filters before and after
permutations.

6.1 Notations

To simplify the analysis let us consider the single channel setting i = 1 with N sources.
Let aj ∈ C

L, 1 ≤ j ≤ N be the true filter vectors with sparsity less than or equal to k
with support sets Γj. Let âj = F∗aj , 1 ≤ j ≤ N , be the true frequency-domain filter
vectors aj, where F∗ ∈ C

L×L, is the forward Fourier matrix.
Let ăj, 1 ≤ j ≤ N be the frequency-domain filters obtained after permuting the

frequency-domain true filters at frequencies given by the set Ω and ãj = Făj be the
corresponding time-domain filters where F ∈ C

L×L, is the inverse Fourier matrix.
We are interested in knowing for what values of k and |Ω| we can expect the ℓ1 norm∑N

j=1 ‖ãj‖1 to be greater than
∑N

j=1 ‖aj‖1.

6.2 Main results

The first main result is related to the setting where the supports of the filters are
pairwise disjoint. In such a case the ℓp, 0 ≤ p ≤ 1 norm of the filters obtained after
permutations is bounded below by the ℓp, 0 ≤ p ≤ 1 norm of the true filters, irrespective
of the size of the permuted frequency set.
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Theorem 6.1. Let aj ∈ R
L, 1 ≤ j ≤ N with support sets Γj . Assume Γi ∩ Γj = ∅ for

i 6= j, then for 0 ≤ p ≤ 1, we have
∑N

j=1 ‖ãj‖
p
p ≥

∑N
j=1 ‖aj‖

p
p.

If the value of sparsity k is very small compared to the length of the filters L, and if
there are only a few filters (i.e. small N), then the chance of having filters with disjoint
supports is high and hence Theorem 6.1 is relevant in such situations.

The second main result is related to ℓ0 norm of the vectors in a two filter setting.

Theorem 6.2. Let aj ∈ R
L, 1 ≤ j ≤ 2 with ‖a‖0 ≤ k with support sets Γj and let Ω

be the set of frequencies where the permutations occur.

(a) If |Ω| < L/2k then
∑2

j=1 ‖ãj‖0 >
∑2

j=1 ‖aj‖0.

(b) If |Ω| = L/2k and Γ1 ∩Γ2 = ∅, then
∑2

j=1 ‖ãj‖0 ≥
∑2

j=1 ‖aj‖0, with equality iff

either i) ãj = aj, ∀j, or ii) ã1 = a2 and ã2 = a1 .

Part (a) of Theorem 6.2 gives a condition for the sum of ℓ0 norms of the new vectors
to be strictly greater than the sum of the ℓ0 norms of the true vectors, irrespective of
the supports of the filters. Part (b) tells that if the supports are disjoint and when the
sum of ℓ0 norms of the new vectors is equal to the sum of the ℓ0 norms of the true
vectors, then it implies a global permutation of the filters.

Experimental results in Sec. 5.3.3.1 showed that under noiseless conditions sparse
filters can be successfully recovered when k + |Ω| ≤ L/2, but theorem 6.2 states that
recovery is possible when k · |Ω| ≤ L/2. This theoretical result is pessimistic compared
to the experimental observations.

6.3 Proofs

In this section, we present the proofs of the stated theorems.

6.3.1 Proof of Theorem 6.1

Consider the vector
∑N

j=1 ăj . This vector has the same discrete Fourier transform

(DFT) as the vector
∑N

j=1 âj. This is due to the fact that the vectors ăj and âj are
related through permutations at certain frequency indices. Hence,

N∑

j=1

ăj =
N∑

j=1

âj

Therefore, the corresponding time-domain vectors are also the same. That is

N∑

j=1

ãj =

N∑

j=1

Făj = F




N∑

j=1

ăj


 = F




N∑

j=1

âj


 =

N∑

j=1

Fâj =

N∑

j=1

aj
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Hence the pth power of their ℓp norms are equal:
∥∥∥∥∥∥

N∑

j=1

ãj

∥∥∥∥∥∥

p

p

=

∥∥∥∥∥∥

N∑

j=1

aj

∥∥∥∥∥∥

p

p

=

N∑

j=1

‖aj‖pp (Due to disjoint supports)

(6.1)

By generalised Triangle inequality, we also have

N∑

j=1

‖ãj‖pp ≥

∥∥∥∥∥∥

N∑

j=1

ãj

∥∥∥∥∥∥

p

p

, 0 ≤ p ≤ 1 (6.2)

Therefore, by Eqs. (6.1) and (6.2) we have

N∑

j=1

‖ãj‖pp ≥
N∑

j=1

‖aj‖pp.

6.3.2 Proof of Theorem 6.2

To prove Theorem 6.2 we make use of the following lemma from Elad and Bruckstein
(Theorem 1, [37]), which characterises the ℓ0 norms of a vector in Dirac and Fourier
representations.

Lemma 6.1 (Elad and Bruckstein). Let ∆ ∈ C
L and F ∈ C

L×L be the inverse Fourier
matrix. Then, a) we have the uncertainty principle ‖∆‖0‖F∆‖0 ≥ L and b) equality
implies the non-zero values of ∆ have constant magnitude:

∃c,Γ |∆l| =
{

0 if l ∈ Γ,
c if l /∈ Γ.

In the case of two vectors, a permutation of sub-bands is nothing but just the
swapping of the coefficients and hence it is easier to characterise the permutations.
The difference between the vectors âj and ăj, j = 1, 2, are only due to the coefficients
swapped at the locations indexed by Ω.

Let 11Ω be the characteristic function of Ω:

11Ω =

{
1 at Ω,
0 elsewhere;

and therefore the vector that captures the difference between the vectors â1 and â2
at frequency indices given by Ω is

∆ = diag(11Ω) · (â2 − â1) (6.3)
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where diag(11Ω) is a diagonal matrix whose diagonal is the characteristic function 11Ω.
Now, clearly we have

ă1 = â1 +∆,

ă2 = â2 −∆.
(6.4)

and

ã1 = a1 + F∆,

ã2 = a2 − F∆.
(6.5)

Let C
(2)
0 (Ω) =

∑2
j=1 {‖ãj‖0 − ‖aj‖0}. Let Γ1 and Γ2 be the support sets of the

vectors a1 and a2 respectively, and Γc
1 and Γc

2 be the complements of the support sets.
That is Γc

j = {l : aj(l) = 0}.

Proof of (a)

By recalling the definition of ∆ in Eq. (6.3), and by using Eq. (6.5) we have

C
(2)
0 (Ω) = ‖a1 + F∆‖0 + ‖a2 − F∆‖0 − ‖a1‖0 − ‖a2‖0

= ‖(a1 + F∆)|Γ1‖0 + ‖(F∆)|Γc
1
‖0 + ‖(a2 −F∆)|Γ2‖0 + ‖(F∆)|Γc

2
‖0

−‖a1‖0 − ‖a2‖0

≥ ‖(F∆)Γc
1
‖0 + ‖(F∆)Γc

2
‖0 − ‖(F∆)Γ1‖0 − ‖(F∆)Γ2‖0

(By Triangle inequality)

= 2‖F∆‖0 − 2‖(F∆)Γ1‖0 − 2‖(F∆)Γ2‖0

≥ 2
L

|Ω| − 2|Γ1| − 2|Γ2| (Using Lemma 6.1)

≥ 2
L

|Ω| − 4k.

Therefore if |Ω| < L/2k, then
∑2

j=1 ‖ãj‖0 >
∑2

j=1 ‖aj‖0.

Proof of (b)

The trivial case is ∆ = 0.

∆ = 0 =⇒ F∆ = 0 =⇒ ă1 = a1, ă2 = a2

When ∆ 6= 0 then by Lemma 6.1 we have
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‖∆‖0‖F∆‖0 ≥ L

and by assumption

|Ω| · k =
L

2
=⇒ ‖∆‖0 = |Ω| =

L

2k
=⇒ ‖F∆‖0 ≥ 2k (6.6)

Since C
(2)
0 (Ω) = 0, ‖ã1‖0 + ‖ã2‖0 = ‖a1‖0 + ‖a2‖0 = 2k, i.e.

2k = ‖a1‖0 + ‖a2‖0 = ‖(a1 + F∆)|Γ1‖0 + ‖(F∆)|Γc
1
‖0

+‖(a2 − F∆)|Γ2‖0 + ‖(F∆)|Γc
2
‖0 (6.7)

Moreover, using Eq. (6.6)

‖(F∆)|Γc
1
‖0 = ‖(F∆)‖0 − ‖(F∆)|Γ1‖0 ≥ 2k − k = k

‖(F∆)|Γc
2
‖0 = ‖(F∆)‖0 − ‖(F∆)|Γ2‖0 ≥ 2k − k = k

With the above conditions, Eq. (6.7) can be satisfied only when

‖(a1 + F∆)|Γ1‖0 = 0 (6.8)

‖(a2 − F∆)|Γ2‖0 = 0 (6.9)

and
‖(F∆)|Γc

1
‖0 = k

‖(F∆)|Γc
2
‖0 = k

Eqs. (6.8) and (6.9) imply

F∆|Γ1 = −a1|Γ1

F∆|Γ2 = a2|Γ2

We then have

‖(F∆)‖0 = ‖(F∆)|Γ1‖0 + ‖(F∆)|Γc
1
‖0 = ‖ − a1‖0 + k = k + k = 2k

Since Γ1 ∩ Γ2 = ∅, we have

‖(F∆)|Γ1 + (F∆)|Γ2‖0 = ‖(F∆)|Γ1‖0 + ‖(F∆)|Γ2‖0 = ‖a1‖0 + ‖a2‖0 = 2k = ‖(F∆)‖0
So,

F∆ = F∆|Γ1 + F∆|Γ2 = −a1 + a2

with
Γ1 ∪ Γ2 = support(F∆)

Hence,

ã1 = a1 + F∆ = a2,

ã2 = a2 − F∆ = a1.
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6.4 Summary

This chapter focussed on the theoretical connections between filter permutations and
sparsity. The first result is regarding filters with disjoint supports and second result is
about a special case of two filters and ℓ0 norm. In comparison with the empirical results
from chapter 5, we notice that the theoretical results are pessimistic.
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Chapter 7

A convex optimisation framework

for single source localisation in

sparse convolutive setting

In the blind source separation problem, the objects of primary interest are the sources
and the mixing filters. Several properties of these objects (independence, non-negativity,

short filters, etc.) are exploited, either individually or jointly, to perform source separa-
tion. As it was discussed in chapter 2, sparsity of sources in the time-frequency domain
is a property that has been widely used for designing source separation systems. This
category of approaches, collectively called by the name sparse component analysis, forms
an important tool to approach the source separation problem on the one hand.

On the other hand, sparse channel (filter) estimation in the single source, semi-blind
setting is a widely studied problem in the context of communication systems. As we
discussed in chapter 4, the problem of sparse channel estimation in a semi-blind setting
can be formulated as a convex optimisation problem by exploiting the cross-relation
that exists across the channels. The motivation for convex optimisation approach for
filter estimation stems from the more generic field of sparse recovery problems which
was discussed in chapter 3.

In this chapter, we shall present a generalised form of the cross-relation between
the channels in the time-frequency domain, and formulate an ℓ1 minimisation problem
for filter estimation in the single source setting. We also present experimental results
regarding the recovery performance of the proposed approach.

Plan of the chapter

In the following section, we will introduce the time-frequency domain cross-relation and
show how to exploit the cross-relation for sparse filter estimation in the single source
setting. Subsequently, we will evaluate the filter estimation method based on the time-
frequency domain CR for different kinds of data models.
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7.1 Time-frequency domain cross-relation

Let us recall the time-domain CR, with a single source signal s(t) of length T and two
observations xi(t), i = 1, 2 of the source after being filtered by filters ai(t) of length L,
in the absence of noise. That is

xi(t) = (s ⋆ ai) (t) , i = 1, 2. (7.1)

The length of each mixture1 xi(t), i = 1, 2 is T + L− 1. We have

(x2 ⋆ a1) (t) = (x1 ⋆ a2) (t) , ∀t.

and therefore the following time-domain CR holds:

(x2 ⋆ a1) (t)− (x1 ⋆ a2) (t) = 0, ∀t. (CR-TIME)

We shall now see how the time-domain CR (CR-TIME) can be transformed into the
time-frequency domain. As a first approach, one can transform the mixtures xi(t) into
the time-frequency domain and then write down the CR equality. Let us call this as
the narrowband approximation of the CR.

7.1.1 Narrowband approximation

Let us now consider the time-frequency representation of the mixtures using the Short-
Time Fourier Transform (STFT). The definition of the STFT for source signals is given
by Eq. (2.7), and the STFT of the mixtures is defined likewise. Let us consider NT

frames of STFT of the mixtures, obtained with a window length of F . Let ŝ(τ, f) and
x̂i(τ, f) denote the STFT coefficients of the source and ith mixture at frame index τ
and frequency index f . Then by using the narrowband approximation [26], we have

x̂i(τ, f) ≈ âi(f) · ŝ(τ, f), i = 1, 2, (7.2)

where âi(f) is the DFT coefficient of the filter ai(t) at frequency index f . Note that
the filters do not vary with time and hence the DFT coefficients, of length F , are not
dependent on τ .

7.1.2 Time-frequency domain cross-relation

We can write the narrowband time-frequency domain CR (equivalent to the time-domain
CR (CR-TIME)) as

â2(f) · x̂1(τ, f)− â1(f) · x̂2(τ, f) ≈ 0, ∀(τ, f). (CR-NB)

Alternatively we have:

1When there is only one source, xi(t), i = 1, 2 are technically not mixtures. However, we will abuse
the terminology and call them mixtures.
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[x̂2(τ, f) − x̂1(τ, f)]

[
â1(f)
â2(f)

]
≈ 0. (7.3)

Let x̂i(τ) = [x̂i(τ, f)]f be the vector corresponding to the STFT coefficients of ith

mixture at frame τ at all the frequencies. Also, let âi = [âi(f)]f be the DFT vector
corresponding to the time domain filter vector ai. Then, we have

âi = F∗ ·
[
ai
0(F−L)

]
, i = 1, 2, (7.4)

where F∗ is the forward Fourier matrix of size F × F and 0(F−L) is a zero vector of
length (F − L) .

Using (CR-NB) and (7.4) the time-frequency domain CR can be written in the
matrix form as




diag (x̂2(1)) −diag (x̂1(1))
diag (x̂2(2)) −diag (x̂1(2))

...
...

diag (x̂2(NT )) −diag (x̂1(NT ))




[
F∗ 0

0 F∗

]

︸ ︷︷ ︸
BNB




a1
0(F−L)

a2
0(F−L)


 ≈ 0, (7.5)

where diag (x̂i(τ)) is an operator which maps the vector x̂i(τ) into a diagonal matrix,
whose diagonal entries are the elements of the vector x̂i(τ).

For brevity, let’s denote the product of the first two matrices in (7.5) by BNB, and
let

a =




a1
0(F−L)

a2
0(F−L)


 . (7.6)

Hence we have

BNB · a ≈ 0. (7.7)

The matrix BNB is of size (NT · F )× 2F and each row of the matrix corresponds to
a time-frequency point of the mixture. Hence, the rows of this matrix can be indexed
by the ordered pair (τ, f), 1 ≤ τ ≤ NT , 0 ≤ f ≤ F − 1.

7.1.3 Filter estimation by convex optimisation

If we have a single source, then from Eq. (7.2) it is clear that the mixture coefficient
x̂i(τ, f) indirectly gives us some information about âi(f), at every frequency f . Thus,
the mixture vector in the time-frequency domain x̂i(τ) can be regarded as a linear
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measurement of the frequency domain filter coefficient vector ai at frame index τ . At
each (τ, f), what we actually observe is âi(f) which is modulated by ŝ(τ, f).

The aim of blind filter estimation is to recover the sparse filters ai, i = 1, 2 from
the mixtures xi(τ), 1 ≤ τ ≤ NT . We can regard this problem as the task of recovering
sparse filters from their indirect linear observations at various frequencies.

Recovering sparse vectors from their frequency information is a well studied problem
in the area of compressed sensing. If we are allowed to observe the coefficients âi(f), i =
1, 2 directly for all the frequencies f , then recovering the filter is a simple straightforward
task of inverting the discrete Fourier transform, even when the filters are not sparse.
However, if we have an incomplete set of observations (direct observations on only on a
partial set of frequencies Ω), then results from compressed sensing literature [105] show
that it is still possible to recover the filter by solving an ℓ1 minimisation problem, as
long as it is sparse enough and the size of the set of observed frequencies Ω are large
enough, though incomplete.

Notice that the vector a is a time domain vector and when the filters ai are sparse
in the time domain, in the spirit of the sparse recovery problems we propose to solve
the following ℓ1 minimisation problem to estimate the filters.

minimize ‖a‖1 subject to ‖B · a‖2 ≤ ǫ and a1(t0) = 1, (7.8)

where B := BNB. The normalisation a1(t0) = 1 is forced to avoid the all-zero trivial
solution. It should be noted that this constraint also makes the problem convex and
efficient algorithms can be used to solve the problem. In all our experiments, we used
the CVX [65] package to solve the ℓ1 minimisation problem.

For a given sparsity k of a vector, the ℓ1 minimisation problem can successfully re-
cover the vector provided Ω is big enough. Theoretical and empirical limits of recovery
have been established in literature for sparse recovery with incomplete frequency obser-
vations [105]. However, in our current setting, we don’t observe the filter coefficients
directly at various frequencies and we don’t use the same formulation of the ℓ1 min-
imisation problem as that of direct observations setting. Hence the existing recovery
results for direct observations cannot be used to asses the recovery performance in our
setting.

Notice the similarity of (7.8) with the ℓ1 minimisation problem (4.11) corresponding
to the time-domain CR. The form of the problem is same but for the way in which the
matrix B is constructed.

7.2 Filter recovery in single source setting: Experiments

In this section, we shall evaluate the filter recovery performance of the narrowband CR
approach in the single source setting. The objective of the experiments are twofold:

1. To assess the empirical recovery performance of the narrowband CR based ap-
proach and
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2. To experimentally demonstrate the possibility of sparse recovery with incomplete
information.

By the term recovery performance we mean that we are interested in knowing the
range of values of sparsity k for which the filters are recovered with a certain output
performance level. Hence, the problem complexity is driven by the sparsity level k and
the number of observations |Ω|. We shall consider these two factors to be given by the
problem setting.

The parameter that influences the performance of the presented approach is the
error term ǫ. In the single source case, the only factor that affects the accuracy of the
CR is the extent of narrowband approximation, which is governed by the length of the
DFT F . For large sizes of F compared to the filter length L, the CR is accurate enough
to choose and fix a small value for ǫ.

7.2.1 Data models and performance measure

Before we go on to describe the experimental evaluation of the narrowband CR approach
in the single source setting, let us first describe the different data models that we will be
using throughout this chapter and Chapter 8. The data generation protocol is generic
and we shall reference this section at appropriate places in the rest of the thesis.

7.2.1.1 Sparse filter generation

Each filter ai, i = 1, 2 of length L is generated to have k/2 non-zero coefficients, for
various values of k. That is, ‖ai‖0 = k/2, i = 1, 2. The k/2 support indices on each
channel are chosen uniformly at random in the set (L4 ,

3L
4 ) (See explanation below).

The filter coefficients are generated i.i.d. Gaussian with zero mean, unit variance and
sorted to have decreasing magnitudes along the time axis within the support. Every
filter a1(t) is then normalised and shifted to have a1(L/2) = 1. Hence, the vector a

defined in the Eq. (7.6) has k non-zero coefficients.
When k = 2, it refers to the case where there is only one peak in each filter and hence

it corresponds to anechoic filters. Also, given a solution ã to the convex problem (7.8),
arbitrarily shifted and scaled versions of ã are also valid solutions due to the properties
of DFT and the formulation of the optimisation problem. The solvers which solve the
convex program (7.8) arbitrarily fixes the shift of the solution depending on its non-zero
values, and the scaling is fixed by the constraint imposed on the solution. Hence, in
order to avoid a rollover of the support of the estimated filters, we restrict the support
of the input filters to the set (L4 ,

3L
4 ).

7.2.1.2 Source generation

We generate the sources according to one of the three models described below.
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Source Type 1: Gaussian

The length of the sources is set to T = 3L and to ensure the source activity across all
frequencies, they are generated as i.i.d. Gaussian with zero mean and unit variance.

Source Type 2: Sinusoid

For each source j, NT independent time frames sτj (t), 1 ≤ τ ≤ NT are generated. Each
frame sτj (t) of length T = 3L is a sum of NF sinusoids:

sτj (t) =

NF∑

w=1

Aτ
jw sin(2πf τ

jwt+ φτ
jw), (7.9)

where the frequencies f τ
jw are chosen uniformly at random in [0, 1/2]. The amplitudes

Aτ
jw are generated i.i.d. Gaussian with zero mean, unit variance, and the phases φτ

jw

are chosen uniformly at random in [0, 2π].
The number of sinusoids NF can be considered as the source sparsity per frame. It

should be noted that even though NF remains fixed across the frames, the frequency
content of the sources is varying to provide spectral diversity to the sources, and hence
to the observations.

Source Type 3: Gabor

Each source signal of length T is generated as a sum of sinusoids of random durations
at random locations with Gaussian envelopes. We choose the name Gabor for this type
of source as a mnemonic for referencing in the rest of this thesis.

Given the length of a source T , we first generate a set of window lengths {Wjn}Λn=1
randomly according to an exponential distribution with parameter λ, such that

∑
nWjn ≤

T . Then, we set the starting indices {tjn}Λn=1 of the windows as

tj1 = 1,
tjn = tj(n−1) +Wj(n−1).

We generate NF such sets of window lengths and their corresponding starting in-
dices, for each source j. Hence, we add one more index m, 1 ≤ m ≤ NF , which indexes
the set of window lengths, and the number of windows Λ now depends on m. Hence,
we have for each source j:

{
Wm

jn

}Λm,NF

n=1,m=1
: NF sets of window lengths, each set having Λm windows.

{
tmjn

}Λm,NF

n=1,m=1
: NF sets of starting indices, each set having Λm indices.

With these parameters, we generate the sources as
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sj(t) =

NF∑

m=1

Λm∑

n=1

sin
(
2πfm

jnt+ φm
jn

)
· wWm

jn

(
t− tmjn

)
(7.10)

where the frequencies fm
jn are chosen uniformly at random in [0, 1/2], the phases φm

jn

are chosen uniformly at random in [0, 2π] and wW (t) is a discrete Gaussian window of
length W centered at (W − 1)/2, defined by

wW (t) = e
− 1

2

(
t−(W−1)/2
σ(W−1)/2

)2

. (7.11)

We use the default value of σ = 0.4 as set by the Matlab function gausswin(). The
sources generated using this model will have at most NF active frequencies at any given
time index.

7.2.1.3 Performance measure

In the case of narrowband CR, the unknown vector a (7.6) is of length 2F , but each
filter that we are looking for is of length L < F . Due to the nature of the convex
problem at hand, the solution obtained by (7.8) has a shift ambiguity, and is also scaled
appropriately to satisfy the normalisation constraint. Eq. (7.12) is the definition of SNR
in decibel (dB), which accounts for the scaling and shift ambiguity. The definition of
output SNR, which is generic for N sources (which will be used further in our discussion),
is used as the recovery performance measure.

SNRout = 10 log10

( ∑N
j=1 ‖a(j)‖22∑N

j=1mint′,µ
∑

t

(
|a(j)(t)− µ · ã(j)(t− t′)|2

)
)
, (7.12)

where a(j) represents the filter vector corresponding to the jth source and a(j)(t) is its
coefficient at index t.

It should be highlighted that by observing Eq. (7.6), we can infer that the vector
ã that we are looking for has only 2L unknowns and is k-sparse, in spite of its actual
length being 2F . Once the estimated vectors are obtained, the output Signal-to-Noise
Ratio (SNR) is computed using Eq. (7.12).

7.2.2 Recovery with full set of observations

The first set of experiments concerns the limit of recovery when the observations (mix-
tures) are available at all frequencies. This is an ideal situation: the recovery perfor-
mance in this setting puts a limit on the recovery capability of the ℓ1 minimisation
formulation.
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Experimental protocol

The sparse filters that are needed for this experiment are generated according to the
procedure described in Sec. 7.2.1.1 and the source model used is Gaussian, described in
Sec. 7.2.1.2. In all the experiments the filter length is set to L = 256. For each value of
k between 2 and 60, in steps of 2, 50 sets of the filters and sources are generated.

In each experimental realisation, each mixture xi, i = 1, 2 of length T + L − 1,
obtained according to Eq. (7.1) is treated as a single frame and the corresponding
frequency domain representation (DFT) x̂i is computed. Hence, the total number of
frames is NT = 1 and the window length is F = T + L − 1. Then, the matrix BNB is
built according to Eq. (7.5) and the ℓ1 minimisation problem (7.8) is solved to obtain
the filter estimate ã. In all the experiments, the value of the parameter ǫ is set to 10−3.

Results
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Figure 7.1: Average output SNR versus sparsity k

Fig. 7.1 shows the plot of average SNRout as a function of sparsity k, when the
filters are recovered using the full set of frequencies. The output SNR drops below
20dB when k > 30. Therefore, with the narrowband CR approach, we can recover pairs
of filters of length L = 256 having up to k/2 = 15 non-zero coefficients each (Note that
by convention each filter ai, i = 1, 2 has k/2 non-zero coefficients) with more than 20dB
output SNR, when the full set of frequencies are available.

98

Chapter5/Chapter5Figs/EPS/recovery_N1_fullFreqs.eps


7.2 Filter recovery in single source setting: Experiments

7.2.3 Recovery with limited set of observations

In the previous section, we provided the recovery results in a case where the source
is active in all the frequencies and hence the filters can be observed at all possible
frequencies. However, this might not be the case always and hence we might not be
able to observe the filters at all the frequencies. We shall now describe this with an
example.

Fig. 7.2(a) shows the magnitude of the STFT {|ŝ(τ, f)|}(τ,f) of a source signal in the
deciBel (dB) scale. The blue region represents the source inactivity and we can notice
that the source is inactive for most of the time-frequency regions.

Fig 7.2(b) shows the magnitude of the STFT {|x̂i(τ, f)|}(τ,f) of a mixture obtained
by convolving the source with a filter ai in the dB scale. The right hand side of the
figure symbolically shows the frequencies along which the observation are available.
The shaded boxes indicate the presence of observations and the white boxes indicate
the missing frequencies.

We now present experimental results that show the recovery performance of the
time-frequency domain CR based method varies with respect to |Ω|, the size of the set
of frequencies over which the observations are available.

(a) STFT magnitude of a source s(t)

(b) STFT magnitude of a mixture xi(t)

Figure 7.2: Illustration of a mixture with limited activity of the source in the time-
frequency domain.
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7. A CONVEX OPTIMISATION FRAMEWORK FOR SINGLE SOURCE
LOCALISATION IN SPARSE CONVOLUTIVE SETTING

Experimental protocol

The sparse filters that are needed for this experiment are generated according to the
procedure described in Sec. 7.2.1.1 and the source model used is Gaussian, described in
Sec. 7.2.1.2. In all the experiments the filter length is set to L = 256. For each value of
k between 2 and 60, in steps of 2, 50 sets of the filters and sources are generated.

In each experimental realisation the mixtures xi, i = 1, 2 of length T + L − 1,
obtained according to Eq. (7.1), are treated as a single frame and the corresponding
frequency domain representation (DFT) x̂i is found. Hence, the total number of frames
is NT = 1 and the window length is F = T + L − 1. Then, the matrix BNB is built
according to Eq. (7.5). Recall from Sec. 7.1 that the rows of this matrix can be indexed
by the ordered pair (τ, f). Since we have only one frame of the mixtures, the matrix
BNB is of size F × 2F and the row indices are {(1, f)}0≤f≤F−1.

In order to recover the filters using observations over only a subset of frequencies
of a given size, we randomly generate the set ω ⊂ {0, 1, . . . , F − 1}. And, given a set
of frequencies ω, let Ω = {(1, f) : f ∈ ω} be the set of time-frequency indices and BΩ

NB

be the restriction of matrix BNB to the rows indexed by the set Ω. The estimate ã of
the filters are obtained by solving the convex program (7.8) using B = BΩ

NB. In all the
experiments, the value of the parameter ǫ is set to 10−3.

Results

Fig. 7.3 shows the transition diagram of the average recovery performance in SNR as
a function of the size of the set of observed frequencies Ω relative to the number of
unknowns 2L in percentage and the sparsity of the filters.

For sparsity levels k ≤ 26, the output SNR is at least 20dB when the number of
observations is greater than 30% of 2L. For sparsity levels k > 40, the output SNR is
close to zero even when the relative size of observations is 90%, and this is consistent
with the plot obtained for full set of observations on Fig. 7.1. As the size of the set
Ω decreases, the recovery performance also gradually drops. Only for k = 2, which
corresponds to anechoic setting, the performance is very good even when the relative
size of Ω is as low as 10%.

7.3 Summary

This chapter focussed on the development of a time-frequency domain CR based on the
narrowband approximation of the mixtures and the usage of this time-frequency domain
CR in filter estimation. We empirically demonstrated the ability of an ℓ1 minimisation
approach to recover sparse filters from their indirect observations.

In the experiments we presented Sec. 7.2.3 concerning the recoverability of filters
using limited observations, the experimental setup was such that the observations were
discarded deliberately in spite of its availability. This was actually to empirically demon-
strate the possibility of sparse filter recovery even with limited information. As the
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Figure 7.3: Transition diagram for sparse filter recovery as a function of |Ω|/2L and
sparsity k.

experiments suggested, we can recover filters of sparsity k ≤ 30 with more than 20dB
output SNR even with small set of observations.

Further, the sources can actually be sparse in the time-frequency domain and hence
we might not be able to observe the filters at all the frequencies. But, thanks to the
sparsity of filters, it is still possible for us to recover them with limited information.

In the next chapter, we shall consider the multiple source setting and describe how
the sparsity of sources can help us to formulate multiple ℓ1 minimisation problems of
the form (7.8) for each pair of filters corresponding the sources. These ℓ1 minimisation
problems can in turn be solved to estimate the filters.
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LOCALISATION IN SPARSE CONVOLUTIVE SETTING

102



Chapter 8

A convex optimisation framework

for multiple source localisation in

sparse convolutive setting

In this chapter we present an approach to generalise the time-frequency domain CR
based method for filter estimation presented in Chapter 7 to the multiple source

setting by exploiting the time-frequency domain sparsity of the sources.
We shall recall that sparse component analysis for blind source separation task in

linear-instantaneous and anechoic settings largely utilises the sparsity property of the
sources, sparse channel estimation using sparse recovery techniques rely on the sparsity
of the channels.

This chapter proposes an approach to combine these two different notions of sparsity
and presents a unified framework for multiple filter estimation in the multiple source
setting. The proposed framework consists of two stages: 1) a time-frequency points clus-
tering stage where the source sparsity is exploited and 2) an ℓ1 minimisation formulation
for filter estimation where the filter sparsity is exploited.

Plan of the chapter

In the first part of the chapter we describe the basic idea about how to exploit source
sparsity in the time-frequency domain to formulate a CR for each of the sources involved
and then present a two-stage framework for filter estimation. We then present experi-
mental results which evaluate the filter estimation stage of the framework by assuming
that the time-frequency clusters are available as side information.

We then develop a time-frequency domain cross-relation that is not based on the
narrowband approximation of the mixtures. We call this a wideband cross-relation and
we describe how to use the wideband CR for multiple filter estimation. We present
the experimental results which evaluate the filter estimation stage by assuming the
availability of clusters by some side information, as it is done for the narrowband CR
experiments.
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8. A CONVEX OPTIMISATION FRAMEWORK FOR MULTIPLE
SOURCE LOCALISATION IN SPARSE CONVOLUTIVE SETTING

In the last part of this chapter, we shall consider a special setting of only two sources
where only one of them is mixed though a convolutive filter and the remaining source
is mixed in an anechoic fashion. In such a setting, we show that it is possible to blindly
obtain the clusters and they can be subsequently used for filter estimation. We will
present the filter recovery results for this particular setting.

8.1 General idea

In chapter 7, the time-frequency domain cross-relation (CR-NB) played the key role in
the formulation of the ℓ1 minimisation problem (7.8) for filter estimation.

When we consider a general case of (N ≥ 2) sources, the mixtures xi in the time-
frequency domain using the narrowband approximation will be of the form

x̂i(τ, f) ≈
N∑

j=1

âij(τ, f) · ŝj(τ, f), i = 1, 2, (8.1)

at each time frequency point (τ, f). Therefore the narrowband CR (CR-NB) is not valid
anymore due to the contribution of multiple sources.

In such cases, the time-frequency domain sparsity and disjointness of the sources
enables enable us to formulate the time-frequency domain CR locally at points where
there is at most one source is active. These points where the CR is satisfied can then be
grouped together according to the sources and subsequently used to estimate the filters
by formulating and solving a convex problem of the form (7.8) for each source.

Let us recall the approximate w-disjoint orthogonality [4, 32] hypothesis of the
sources introduced in the Sec. 2.3.1.1. Two sources s1(t) and s2(t) are said be ap-
proximately w-disjoint orthogonal when

ŝ1(τ, f)ŝ2(τ, f) ≈ 0, ∀ τ, f. (8.2)

Approximate w-disjoint orthogonality of sources implies that at each time-frequency
point, there is at most only one dominant source. Let Ωj , 1 ≤ j ≤ N be the set of
time-frequency points where only source j is dominant, then by using the narrowband
approximation of the mixing equations we have

x̂i(τ, f) ≈ âij(f) · ŝj(τ, f), ∀(τ, f) ∈ Ωj, i = 1, 2. (8.3)

Hence, when a time-frequency point belongs to a set Ωj, then it satisfies the nar-
rowband CR (CR-NB) for source j. Even though the time-domain CR breaks down
due to the presence of multiple sources, the narrowband CR is still satisfied at certain
time-frequency points due to the time-freqency domain disjointness of the sources.

If the sets of time-frequency points Ωj, 1 ≤ j ≤ N are known to us, then we can

build the matrices B = B
Ωj

NB for each source j as the restrictions of the matrix BNB

defined in (7.5), to the rows indexed by the sets of time-frequency points Ωj. Then
these matrices can be used in the ℓ1 minimisation problem (7.8) in order to estimate
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8.2 A two stage framework

the filters ã(j), 1 ≤ j ≤ N . The filter vector ã(j) has the same structure as in (7.6),
but with an extra index to the sources.

Fig. 8.1 illustrates the idea pictorially. On the first column of the figure are the
STFT magnitude plots of two sources which are sparse in the time-frequency domain
in dB scale. The yellow ellipses show the time-frequency regions where only source 2
is active and source 1 is inactive. The second column shows the STFT magnitude of
the mixtures. The yellow ellipses in the mixtures correspond to the second source, and
hence the corresponding time-frequency indices belong to the set Ω2. With this set,
we can form the matrix B

Ωj

NB and use it to estimate the filters corresponding to source
number 2.

Sources Mixtures
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Figure 8.1: Illustration of the time-frequency domain sparsity and disjointness of
sources.

Let us henceforth refer to the sets of time-frequency points Ωj, 1 ≤ j ≤ N as clusters
and the process of identifying them as clustering.

8.2 A two stage framework

Sec. 8.1 described the way in which we can exploit the narrowband approximation and
time-frequency domain sparsity of sources to formulate the ℓ1 minimisation problem
for filter estimation in the multiple source setting. A key step in this approach is the
identification of time-frequency points where the cross-relations are satisfied. The sparse
filter estimation process can now be summarised in the following steps.

1. Compute the time-frequency representations x̂i, i = 1, 2.

2. For each source j,
P1

{
(a) Identify the set Ωj .

P2

{
(b) Build the matrix B := B

Ωj

NB .

(c) Solve (7.8) with ǫ to obtain the estimated filter ã(j).
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8. A CONVEX OPTIMISATION FRAMEWORK FOR MULTIPLE
SOURCE LOCALISATION IN SPARSE CONVOLUTIVE SETTING

It is clear that the framework consists of two distinct stages: 1) a time-frequency
points clustering stage for each source and 2) a filter estimation stage by forming the
cross-relation and solving a convex optimisation problem. Fig. 8.2 shows the block
diagram of the filter estimation framework that we have proposed. The block P1
performs the clustering step by exploiting the time-frequency sparsity of the sources.
Once the clusters are found, then P2 formulates and solves an ℓ1 minimisation problem
of the form in (7.8) for each source to estimate the filters.

P1 P2

and solve the 

convex optimisation 

problem

Source Sparsity Filter Sparsity

S
T

F
T

Figure 8.2: Block diagram of the proposed framework.

Solving both P1 and P2 simultaneously from the mixtures in a blind setting is a
very hard problem. Also, the performance of the filter estimation stage P2 depends on
the performance of the clustering stage P1. Hence we shall first experimentally study
the performance of the filter estimation step by performing the clustering step using
side information about either the sources or filters.

Unlike the single source case where the accuracy of the CR is affected only by the
narrowband approximation, in the multiple source case the accuracy of the CR for
a given source depends on the interference from the other sources as well. This is
because when we assume only one source to be dominant at a given time-frequency
point, the other sources are likely to be nearly zero but not exactly zero. Hence, the
error parameter ǫ has to be carefully chosen in order to accommodate for both the
sources of error: a) due to narrowband approximation and b) due to interference from
other sources. Choosing ǫ is a difficult task and in all our experiments it was fixed to a
value which gave best results after experiments with different values.

8.3 Multiple filter recovery using oracle clustering

In this section, we shall study the performance of the filter estimation stage in a non-
blind setting when the clustering is performed using side information from either the

106

Chapter6/Chapter6Figs/EPS/workFlowFinal.eps


8.3 Multiple filter recovery using oracle clustering

sources or the filters. For the experiments that we present in this section, we will be
using source models Type 2 (sums of sinusoids) and Type 3 (sources with Gabor atoms)
described in Sec. 7.2.1.2.

As in the single source setting, we are interested in knowing the range of values of
sparsity k for which the filters are recovered with a certain output performance level.
The problem complexity is driven by the sparsity level k, the number of sources N and
the size of the sets Ωj for each source j, which in turn depends on the length of the
sources.

The performance of the filter estimation stage depends on two factors: a) the ac-
curacy of the CR at the time-frequency points where only one source is dominant and
b) the clustering step where the time-frequency points which satisfy the CR for each
source are identified and clustered. The accuracy of the CR in turn depends on the
time-frequency domain sparsity of the sources and hence it is useful to have a control
on the sparsity of the sources. Hence, for the experiments we present in this section
we use the sinusoid and Gabor synthetic source models, where the number of active
frequencies of the sources can be controlled while generation.

In all the experiments, we fix the length of the filters L and the sources T , and study
the recovery performance for different filter sparsity and source sparsity levels.

The clustering step in the experiments is performed using some side information
about either the sources or the filters and the quality of clustering step is driven by
a threshold parameter. We shall describe the clustering step in detail at appropriate
places.

8.3.1 Experiments with sinusoid sources

Data generation

The sparse filters that are needed for this experiment is generated according to the
procedure described in Sec. 7.2.1.1 and the sources the source model used is sinusoid,
described in Sec. 7.2.1.2. In all the experiments, the length of the filters was set to
L = 256.

How many number of source frames NT?
For a given filter sparsity k, the recovery performance depends on the number of obser-
vations available, which is related to the spectral diversity of the sources in each frame
and that in turn depends on source sparsity NF . Hence, for a fixed source sparsity NF ,
different values of filter sparsity k demands different number of source frames for a fixed
performance guarantee.

For all our experiments, we first determine the number of frames needed for a filter
recovery performance guarantee of 20dB in the single source setting with missing fre-
quencies as described in the Sec. 7.2.3 . This value depends on k and NF and hence let
us denote this by #(k,NF ). Fig. 8.3 shows the plot #(k,NF ) for NF = 30.

For the multiple source setting, for a given k and NF , we generate
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Figure 8.3: Number of source frames required for the output SNR to reach 20dB in the
single source seting N = 1.

NT (k,NF ) = 2 · (#(k, 30) · 30)/NT (8.4)

frames per source.

Experimental protocol

For every combination of filter sparsity k and source sparsity NF , 20 sets of sources and
filters are generated according to the protocol described previously. In each trial, the
mixtures xi are obtained and the vectors x̂i are formed. For each source j, P1 and P2
are solved as described below:

P1: Obtaining Ωj using side information:

The set Ωj is constructed using as side information the frequencies {f τ
jw}NF

w=1 that are
used to generate the source in (7.9). Let ŝτj be the time-frequency domain vector of
length F = T +L− 1 obtained by appropriate zero-padding and transformation of the
frame τ of the jth source sτj (t).

For a fixed threshold ν, we construct the set Ωj as follows: a time-frequency index
(τ, f) belongs to Ωj iff the magnitude of the coefficient of jth source ŝτj (f) dominates
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8.3 Multiple filter recovery using oracle clustering

all other sources ŝτj′(f), j
′ 6= j in magnitude at (τ, f) by at least ν dB. That is

(τ, f) ∈ Ωj ⇐⇒ f ∈ {f τ
jw}NF

w=1 and 20 · log10

(
|̂sτj (f)|
|̂sτj′(f)|

)
≥ ν, ∀j′ 6= j. (8.5)

P2: Filter estimation by ℓ1 minimisation:

For each source j, the matrix B
Ωj

NB is built using the set Ωj as a restriction of the matrix
BNB to the rows indexed by the set Ωj. Then, the resulting convex optimisation problem
(7.8) is solved with ǫ = 10−3 to obtain the filter estimates ã(j).

The performance measure defined in Eq. (7.2.1.3) is used to assess the recovery
performance. In the following section, we present the results.

Results

Figures 8.4(a) and 8.4(b) show the average output SNR for various filter sparsity k
and source sparsity NF for 2 and 3 sources respectively, with the parameter ν = 10dB.
In both cases, the anechoic filters (k = 2) are recovered with very high SNR, and the
output SNR is at least 10dB when NF ≤ 3 and k ≤ 10. For a given sparsity k, the
output SNR drops as the number of sinusoids per frames NF increases.We experimented
with higher values of NF and we found that the performance continues to degrade.

This is possibly because the sources tend to interfere more as NF increases, thereby
violating the CR badly. Indeed, even though we generated sums of sinusoids, their
Fourier transform has peaks at the associated frequencies that can have a large main
lobe and secondary lobes, leading to interference. This could be compensated by setting
a higher threshold ν to obtain the set Ωj, at the price of a smaller number of “visible"
frequencies per time frame, which in turn could be compensated by increasing the
number of observed time frames NT . However, as the sinusoid source model under
consideration is extremely simple, we shall not delve further into the experiments for
different values of the threshold ν.

8.3.2 Experiments with Gabor sources

In the previous section, the idea of having independent frames with varying frequency
content as sources was to simplify the “clustering" step using the source frequencies. In
this section, we shall consider another synthetic source model described in Sec. 7.2.1.2.
The clustering stage is performed using a heuristic based on the true filters.

Data generation

The sparse filters that are needed for this experiment is generated according to the
procedure described in Sec. 7.2.1.1 and the sources the source model used is Gabor,
described in Sec. 7.2.1.2. In all the experiments, the length of the filters was set to
L = 256.

109



8. A CONVEX OPTIMISATION FRAMEWORK FOR MULTIPLE
SOURCE LOCALISATION IN SPARSE CONVOLUTIVE SETTING

2 4 6 8 10 12 14 16
0

20

40

60

80

Filter sparsity: Number of spikes

O
ut

pu
t S

N
R

 

 

1
2
3
4
5

Number of sinusoids
 per frame

(a) Recovery result for number of sources N = 2.
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(b) Recovery result for number of sources N = 3.

Figure 8.4: Recovery performance of the filter estimation stage based on narrowband CR
approach for Type 2 sources when the clusters Ωj are obtained using side information.

Experimental protocol

For every combination of filter sparsity k and source sparsity NF , 20 sets of filters and
sources are generated according to the protocol described previously. In each trial, the
mixtures xi are obtained and the STFT vectors of the mixtures x̂i(τ) = [x̂i(τ, f)]f are
obtained with a window length of F using a Blackman-Harris window [25]. For each
source j, P1 and P2 are solved as described below:
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8.3 Multiple filter recovery using oracle clustering

P1: Obtaining Ωj using side information:

Unlike the previous experiment, we shall solve the clustering step by using the knowledge
about the true filters themselves. For a give source j, the true filter a(j) indeed satisfies
the cross relation at those time-frequency points where only source j is dominant. Hence,
we can identify the time-frequency points where source j is active by looking at the
points where the CR vanishes. However, if the DFT coefficients of the filters at a
frequency f , a(j)1 and a

(j)
2 , are simultaneously close to zero, then the CR

x̂2(τ, f)â
(j)
1 (f)− x̂1(τ, f)â

(j)
2 (f)

is satisfied at all the time frames τ for frequency f , irrespective of the magnitude of the
sources.

One heuristic to measure the strength of the filters at a given frequency is to look
at the term x̂2(τ, f)â

(j)
1 (f)+ x̂1(τ, f)â

(j)
2 (f). We would like to classify a time-frequency

point as belonging to source j when the CR is satisfied and the term x̂2(τ, f)â
(j)
1 (f) +

x̂1(τ, f)â
(j)
2 (f) does not vanish.

Denoting

Num(j) = x̂2(τ, f)â
(j)
1 (f) + x̂1(τ, f)â

(j)
2 (f),

Den(j) = x̂2(τ, f)â
(j)
1 (f)− x̂1(τ, f)â

(j)
2 (f),

we consider the following time-frequency points clustering method with side information,
given a threshold parameter ν:

(τ, f) ∈ Ωj ⇐⇒ 20 · log10

(
|Num(j)|
|Den(j)|

)
≥ ν. (8.6)

P2: Filter estimation by ℓ1 minimisation:

For each source j, the matrix B
Ωj

NB is built using the set Ωj as a restriction of the matrix
BNB to the rows indexed by the set Ωj. Then, the resulting convex optimisation problem
(7.8) is solved with ǫ = 6× 10−4 to obtain the filter estimates ã(j).

The performance measure defined in Eq. (7.2.1.3) is used to assess the recovery
performance. In the following section, we present the results.

Results

There are two important parameters that drive the performance of the proposed ap-
proach: a) The size of the STFT window chosen for the transforming the mixtures into
the time-frequency domain and b) the value of the clustering threshold parameter ν.
Recovery experiments for three sources case N = 3 are performed for input data with
various filter and source sparsity levels for various settings of the STFT window sizes
and the clustering parameter ν.
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Effect of STFT window size

Three Gabor sources of length T = 30000 samples are generated along with correspond-
ing mixing filters with λ = 1/512 and 1 ≤ NF ≤ 4. Fig. 8.5 shows the performance
of the NB CR based filter recovery approach for different STFT window sizes for four
different values of NF with clustering threshold ν = 30 dB.

2 6 10 14 18 22 26 30
0

5

10

15

20

25

30

35

40

Filter sparsity k

O
u
tp

u
t

S
N

R

 

 

F = 256
F = 512
F = 1024

(a) NF = 1
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(b) NF = 2
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(c) NF = 3
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(d) NF = 4

Figure 8.5: Effect of STFT window size on the performance of narrowband CR approach.

In all the four figures we notice that for sparsity k ≤ 6 the performance is almost
the same irrespective of the STFT window size, whereas for k > 6, the performance
improves when the window size increases. This is due to the reason that the narrowband
approximation is more accurate for longer window sizes compared to the filter length
and hence the CR is satisfied more accurately.

Also, we can note that the performance is comparable for different source sparsity
levels NF . Even with NF = 4, the sources are sparse enough to have time-frequency
points with only one active source.
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8.3 Multiple filter recovery using oracle clustering

Effect of clustering threshold ν

Fig. 8.6 shows the recovery performance with three different values of clustering thresh-
old ν for four different values of NF with F = 1024.
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(b) NF = 2
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(c) NF = 3
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Figure 8.6: Effect of clustering threshold ν on narrowband CR approach.

When the threshold ν is increased, it means that the time-frequency points are
selected with a stronger requirement to satisfy the CR, resulting in lesser number of
good quality points. Hence we notice in the figures that the performance for ν = 40 dB
is better compared to ν = 40 when k ≤ 6, whereas it falls down rapidly for bigger values
of k. For ν = 50 dB, the performance is comparable to ν = 40 dB for the anechoic
case (k = 2) but it falls off very rapidly for larger k. This is due to the reason that we
have fixed the length of the sources and having a higher threshold effectively reduces
the number of points available per source for reconstruction.

The narrowband CR based filter recovery method performs well when the size of the
STFT analysis window is larger compared to the filter length. The clustering threshold
also plays a role in the performance and it has to be chosen carefully depending upon
the sparsity of the filters to be recovered and the length of the sources (which decides
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the number of points available for recovery).

8.4 From narrowband to wideband cross-relation

To build the narrowband CR (CR-NB) we first obtained the STFT of the mixtures
and DFT of the filters and then formulated the CR. The STFT of the mixtures at a
given time-frequency point (t, f) is only approximated by the product of the STFT of
the source and the DFT of the filter at the same time-frequency point, because the
narrowband CR is intrinsically approximate.

As an alternative, we can consider directly the time-domain CR (CR-TIME), and
then examine the STFT of the same. This formulation does not depend upon the
narrowband approximation and hence it is called the wideband CR.

8.4.1 Time-frequency wideband formulation

Let xi(t), i = 1, 2 be the observations of a source s(t) convolved through the filters
ai(t), i = 1, 2 correspondingly in the absence of noise. If the time-domain CR (CR-TIME)
is satisfied across the observations, then we consider the time-frequency domain repre-
sentation of the sequence (x2 ⋆a1−x1 ⋆a2)(t). The sequence (x2 ⋆a1−x1⋆a2)(t) = 0, ∀t
and hence we have

0 = [x2 ⋆ a1 − x1 ⋆ a2] (τ, f)

=
∑

t

[x2 ⋆ a1 − x1 ⋆ a2] (t) · w(τ + t)e−2πift

=
∑

lt

[a1(l)x2(t− l)− a2(l)x1(t− l)] · w(τ + t)e−2πift

=
∑

l

(
a1(l)

[
∑

t

x2(t− l) · w(τ + t)e−2πift

]
− a2(l)

[
∑

t

x1(t− l) · w(τ + t)e−2πift

])
.

Consider only the term
∑

l a1(l)
[∑

t x2(t− l) · w(τ + t)e−2πift
]
and by making a change

of variable t′ = t− l, we have

∑

l

a1(l)

[
∑

t

x2(t− l) · w(τ + t)e−2πift

]
=
∑

l

a1(l)
∑

t′

x2(t
′) · w(τ + l + t′)e−2πift′e−2πifl.

(8.7)

We now notice that the term
∑

t′

x2(t
′) · w(τ + l + t′)e−2πift′ is nothing but the win-

dowed discrete Fourier transform of the mixture x2, evaluated at the time-frequency
index (τ + l, f). This is nothing but the projection of the mixture x2 onto the STFT
atom centered at (τ + l, f).
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Let us denote the STFT atom centered at (τ, f) by g(τ,f). Then we have

∑

l

a1(l)
∑

t′

x2(t
′) · w(τ + l + t′)e−2πift′e−2πifl =

∑

l

a1(l)e
−2πifl〈x2, g(τ+l,f)〉. (8.8)

Further, the product e−2πifl〈x2, g(τ+l,f)〉 is nothing but the windowed DFT of the mix-
ture x2 shifted by l. Let us denote the DFT of x2 shifted by l at (τ, f) by x̂2,l(τ, f).
Therefore, by Eqs. (8.7) and (8.8), we have

∑

l

a1(l)

[
∑

t

x2(t− l) · w(τ + t)e−2πift

]
=
∑

l

a1(l)x̂2,l(τ, f) (8.9)

and similarly we have

∑

l

a2(l)

[
∑

t

x1(t− l) · w(τ + t)e−2πift

]
=
∑

l

a2(l)x̂1,l(τ, f). (8.10)

Therefore the CR at a time-frequency point (τ, f) can be written as

∑

l

a1(l)x̂2,l(τ, f)−
∑

l

a2(l)x̂1,l(τ, f) = 0. (8.11)

Let x̂τ
j,l = {x̂j,l(τ, f)}f be the vector of STFT coefficients of the sequence xj shifted by

l samples at frame index τ . Considering NT such STFT frames of the mixtures, we can
now build the matrix BWB

BWB =




BWB,1

BWB,2
...

BWB,NT


 (8.12)

with
BWB,τ =

[
T[{x̂τ

2,l}l] − T[{x̂τ
1,l}l]

]
(8.13)

where

T[{x̂τ
j,l}l] =




x̂j,0(τ, 0) x̂j,1(τ, 0) . . . x̂j,L−1(τ, 0)
x̂j,0(τ, 1) x̂j,1(τ, 1) . . . x̂j,L−1(τ, 1)

...
... . . .

...
x̂j,0(τ, F − 1) x̂j,1(τ, F − 1) . . . x̂j,L−1(τ, F − 1)


 . (8.14)

Let us recall that x̂j,l(τ, f) is the STFT coefficient at (τ, f) of xj shifted by l samples.
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In the single source setting, the matrix BWB is of size (F ·NT )× (2L) and it satisfies
the CR BWB · a = 0, with

a =

[
a1
a2

]
. (8.15)

Therefore, we can estimate the filters by solving the ℓ1 minimisation problem (7.8)
with BWB.

Modification of the two-stage framework for wideband CR approach

In the case of multiple source setting, we again rely on the time-frequency domain
sparsity of the sources to formulate an ℓ1 minimisation problem to estimate each pair of
filters. In case of the narrowband CR based approach for multiple filter estimation, to
assert a time-frequency point of the mixture at (τ, f) to belong to a particular source,
it is sufficient that all the other sources at (τ, f) has negligible energy so that the
narrowband CR is satisfied.

In the case of wideband CR, the relation in Eq. (8.11) depends on L STFT points of
the mixtures at (τ, f) obtained using L one-sample shifts of the mixtures. This means
that if the CR has to be satisfied for a particular source j at a time-frequency point
(τ, f), then a sufficient condition is that all the other sources (j′ 6= j) should have their
STFT to be equal zero at (τ, f) with 2L one-sample shifts.

That is, the CR at (τ, f) is satisfied for source j if

ŝj′,l(τ, f) = 0, 0 ≤ l ≤ 2L− 1, j′ 6= j. (8.16)

Therefore, the wideband CR is more demanding than the narrowband CR.
For each source j, if we can identify sets of time-frequency points Ωj where the

other sources satisfy Eq. (8.16), then we can obtain the matrices B
Ωj

WB as a restriction
of the matrix BWB to the rows indexed by Ωj. We then can solve the ℓ1 minimisation

problem (7.8) with the matrices B
Ωj

WB to estimate the filters.
The two-stage framework based on the wideband CR can now be written as:

1. Compute the STFT of the mixtures xj , j = 1, 2 with shifts 0 ≤ l ≤ L − 1:
x̂j,l(τ, f), 1 ≤ τ ≤ NT , 0 ≤ f < F .

2. For each source j,
P1

{
(a) Identify the set Ωj.

P2

{
(b) Build the matrix B := B

Ωj

WB .
(c) Solve (7.8) with ǫ to obtain the estimated filter ã(j).
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8.4.2 Experiments with Gabor sources

In this section, we shall present the experimental results for filter estimation using the
wideband CR based approach. We shall only consider Gabor sources in this section.
The input data that was used for the experiments reported in Sec. 8.3.2 is used for the
current set of experiments as well.

For every combination of filter sparsity k and source sparsity NF , 20 sets of filters
and sources are generated. In each trial, the mixtures xi are obtained and the STFT
vectors of the mixtures x̂i(τ) = [x̂i(τ, f)]f are obtained with a window length of F using
a Blackman-Harris window. For each source j, P1 and P2 are solved as described below:

P1: Obtaining Ωj using side information:

The clustering of the time-frequency points is done by using the true filters as the
side information. The strategy is similar to the one reported in Sec. 8.3.2 for the
narrowband CR method: to make use of the CR with the true filters for identifying the
time-frequency points where only one source is dominant. For a given source j, the idea
is to locate the points where the CR is satisfied. We define the following two terms

Num(j) =
∑

l

x̂2,l(τ, f)a
(j)
1 (l) +

∑

l

x̂1,l(τ, f)a
(j)
2 (l),

Den(j) =
∑

l

x̂2,l(τ, f)a
(j)
1 (l)−

∑

l

x̂1,l(τ, f)a
(j)
2 (l),

and the time-frequency points clusters, given a threshold parameter ν, are obtained by
evaluating:

(τ, f) ∈ Ωj ⇐⇒ 20 · log10

(
|Num(j)|
|Den(j)|

)
≥ ν. (8.17)

P2: Filter estimation by ℓ1 minimisation:

For each source j, the matrix B
Ωj

WB is built using the set Ωj as a restriction of the matrix
BWB to the rows indexed by the set Ωj. Then, the resulting convex optimisation problem
(7.8) is solved with ǫ = 6× 10−4 to obtain the filter estimates ã(j).

The performance measure defined in Eq. (7.2.1.3) is used to assess the recovery
performance. In the following section, we present the results.

Results

As in the case of the narrowband CR method, there are two important parameters
that drive the performance of the proposed approach: a) The size of the STFT window
chosen for the transforming the mixtures into the time-frequency domain and b) the
value of the clustering parameter ν. Recovery experiments are performed for input data
with various filter and source sparsity levels for various settings of the STFT window
sizes and the clustering parameter ν.
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Effect of STFT window size

Three Gabor sources of length T = 30000 samples are generated along with correspond-
ing mixing filters with λ = 1/512 and 1 ≤ NF ≤ 4. Fig. 8.7 shows the performance
of the WB CR based filter recovery approach for different STFT window sizes for four
different values of NF with clustering threshold ν = 30 dB.
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Figure 8.7: Effect of STFT window size on the performance of wideband CR approach.

As opposed to the narrowband CR approach, the performance of the wideband CR
approach deteriorates when the STFT window size increases relative to the filter size.
As described in Sec. 8.4.1, the wideband CR is satisfied for a source at a time-frequency
point (τ, f) when there is only one active source in the neighbourhood of length L
samples. When the STFT analysis window is longer than the filter length, then the
STFT coefficient at (τ, f) will be computed considering a neighbourhood longer than
L samples which results in the interference from outside the neighbourhood. This will
affect the wideband CR and hence the performance goes down. Alternatively, when the
STFT window size is smaller compared to the filter length, smaller neighbourhoods are
considered for analysis and hence there is less chance of interference, which leads to a
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8.4 From narrowband to wideband cross-relation

good satisfaction of the wideband CR.

Effect of clustering threshold ν

Fig. 8.8 shows the recovery performance with four different values of clustering threshold
ν for four different values of NF with F = 128.
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Figure 8.8: Effect of clustering threshold ν on wideband CR approach.

The performance of the wideband CR approach significantly improves when the
clustering threshold ν is increased. In the anechoic (k = 2) case, the improvement is
over 15 dB when the threshold is increased from 30 dB to 50 dB. The performance with
ν = 50 is better than that of ν = 30 till k = 18 after which they are similar and poor.

Even though increasing the threshold decreases the number of time-frequency points
available for filter recovery, the wideband CR recovers the filters with better output SNR
compared to smaller thresholds.

Comparing Fig. 8.7 with Fig. 8.5 we can say that the wideband CR approach per-
forms better than the narrowband CR approach when the STFT window size is smaller
than the filter length, and viceversa. Similarly by comparing Figs. 8.8 and 8.6 we can
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say that the wideband CR approach with a larger threshold and smaller STFT size
performs better than the narrowband CR approach with a larger threshold and longer
STFT size.

8.5 Blind clustering and filter estimation in a special con-
volutive setting

In the previous sections, the focus was on the experimental evaluation of the filter
estimation stage, when the clustering is performed using side information, both in the
narrowband and wideband CR approach. In this section, we will consider a simple
setting of the sources that enables blind clustering of the time-frequency points and
subsequent estimation of filters.

8.5.1 Setting and approach

We consider a scenario in which all the sources but one are mixed instantaneously.
Let us denote the length of the associated filters by Lj = 1, and each such source is
associated to a Intensity Parameter (IP) θj = tan−1(a2j/a1j), introduced in Sec. 2.3.3.

As we discussed in Sec. 2.3.1.3, intensity parameter estimation by clustering the
time-frequency points in linear instantaneous and anechoic settings has been studied
extensively and many methods like DEMIX [7] can be used to do the same. Hence, if
the time-frequency points associated to the “instantaneous" sources (sources that are
instantaneously mixed) can be detected and removed from the time-frequency plane,
then the remaining points can be considered as belonging to the “convoluted" source.
With these points, we can form a CR and perform filter estimation.

For simplicity let us consider one “instantaneous" source s1 and one “convoluted"
source s2. Existing algorithms such as DEMIX [7] can both estimate the IP θ1 of the
instantaneous source s1 and the TF region Ω1 where it is prominently active . This is
done simply by looking at the deviation between the estimated angle θ1 of the source
to the inverse tangent of the ratio of the mixtures at each time-frequency point. That
is, given a threshold η

(τ, f) ∈ Ω1 ⇐⇒
∣∣tan−1 (|(x̂2(τ, f)/x̂1(τ, f)|)− θ1

∣∣ < η. (8.18)

We can then build a set Ω1 containing all TF points closed in time or in frequency
to the points in Ω1, and obtain the set Ω2 as the complement of Ω1.

Fig. 8.9 shows an example of STFT of two sources, and Fig. 8.10(a) displays
the STFT of one of the mixtures x1 (black corresponds to high energy, white to low
energy). Figure 8.10(b) illustrates the set Ω2 obtained with the described approach
(white indicates points in Ω2), and we can see that as expected Ω2 only contains TF
points where source s1 is not very active.
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Figure 8.9: Spectrograms of the two sources: (a) source s1 is a flute sound and (b)
source s2 is a guitar sound.
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Figure 8.10: (a) Spectrogram of mixture x1. (b) Time-frequency mask. The white
pixels correspond to the points in the set Ω2

8.5.2 Experiments with audio sources

Experiments are conducted to assess the recovery performance of the wideband and
narrowband CR based methods in a special setting with two real audio sources: s1 a
flute sound and s2 a guitar sound. The flute sound is mixed using a pair of anechoic
filters with a known intensity parameter θ1, and the guitar sound is mixed with filters
of sparsity k and length L = 256 generated according to the procedure described in
Sec. 7.2.1.1.

Experimental protocol

For each sparsity level k, 20 sets of filters are generated and the mixtures are obtained.
The STFT of the mixtures are then computed using a Blackman-Harris window of size
F = 512. We then blindly build the sets Ω1 and Ω2 with η = 0.1 using Eq. (8.18). The
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set Ω2 is used to then build the matrices B
Ω2
NB and B

Ω2
WB as described in Secs. 8.1 and 8.4

respectively.
To reduce the computations, the sizes of the matrices BΩ2

NB and BΩ2
WB are reduced by

merging the rows corresponding to the identical frequency bins f . This merging is done
by averaging for each frequency bin f the normalized rows of the matrices corresponding
to f . Also, the sources are simultaneously active in the time segment between t = 4000
and t = 5000, and hence we keep only the points in this segment.

The filters are then estimated by solving the ℓ1 minimisation problem (7.8) with
B := BΩ2

NB and B := BΩ2
WB for the narrowband and wideband approach respectively with

ǫ = 6× 10−4.

Debiasing step

Suppose the sparsity k of the filters is available to us as side-information, then a least
squares problem can be solved by selecting the support of the k largest coefficients (in
magnitude) of the estimated filters and the corresponding columns of the matrix B, in
both narrowband and wideband cases. We shall refer to this step as the debiasing (DB)
step.

Let Γj be the set of indices of k largest coefficients of the estimated vector ã(j). To
estimate the vector ã(j), the optimisation problem in Eq. 7.8 is solved with a constraint
a1(L/2) = 1 and hence L/2 ∈ Γj . Let bL/2 be the (L/2)th column vector of the matrix
B and let BΓ′ be a matrix built using the columns of B whose indices are in the set

Γ′, where Γ′ = Γ− {L/2}. The debiasing step computes the least squares solution ˜̃a
(j)

using
˜̃a
(j)

= B
†
Γ′ · −bL/2. (8.19)

where B
†
Γ′ is the Moore-Penrose pseudoinverse of the matrix BΓ′ .

Results

Fig. 8.11 shows the performance curves for the narrowband and wideband CR based
approach with and without the debiasing step. We notice that the wideband approach
outperforms the narrowband approach by between 5 and 20 dB, both with and without
debiasing.

A comparison with the state of the art method for anechoic filter estimation using
GCC-PHAT [106], is also done. The delays associated with the anechoic filters are esti-
mated using GCC-PHAT and the magnitudes of the peaks are estimated by averaging
the intensity parameter of all the time-frequency points in Ω1.

GCC -PHAT works better than the wideband and narrowband CR based approach
but we notice that the wideband CR based approach with debiasing has around 10
dB improved performance compared to GCC-PHAT for the anechoic k = 2 case. The
comparison of the performance of GCC-PHAT for k > 2 is not fair because GCC-PHAT
can be used only for estimating the delays associated with anechoic filters.
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Figure 8.11: Performance of filter recovery using narrowband and wideband CR ap-
proach for θ1 = 0.2 radian.

8.6 Summary

In this chapter, we developed a framework for estimating multiple sparse mixing filters
from convolutive mixtures based on the time-frequency domain cross-relation (CR). We
first developed the framework based on the narrowband approximation of the time-
domain cross-relation. The framework consists of two steps: 1) a clustering step to
identify time-frequency points of the mixtures where only one source is active and b) a
filter estimation step using the clusters obtained in step 1.

As a consequence of the time-frequency domain sparsity of the sources, the mixtures
will contain several time-frequency points where only one source contributes to the
mixture and the objective of the first stage of the framework is to identify these sets of
time-frequency points. These sets of time-frequency points are used to obtain the CR
for each source and the second step uses these cross-relations to formulate and solve an
ℓ1 minimisation problem for each of the sources to estimate the filters.

Experiments are conducted to evaluate the performance of the filter estimation stage
by asuming that the clustering step is performed using some side information. A heuris-
tic approach is developed using information about the sources to perform the clustering
of time-frequency points. The filter estimation stage is experimentally evaluated for
different factors that drive the complexity of the problem and different parameters that
influence the performance of the filter estimation.

Subsequently, a wideband version of the time-frequency domain cross-relation is de-
veloped which retains the exactness of the time-domain cross-relation. The application
of wideband CR for filter estimation in the multiple source setting is presented and the
two-stage framework is appropriately modified to suit the wideband CR. The wideband
CR requires a neighbourhood of points in the mixtures where only one source is active,
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as opposed to a single point in the narrowband case. Hence, the wideband CR is more
stringent than the narrowband CR.

Experimental evaluation of the filter estimation stage using wideband CR is done
by performing the clustering using a heuristc which requires the knowledge of the true
filters as side-information. The wideband CR approach is shown to be better than the
narrowband CR approach under certain settings.

In the last part of the chapter, a special setting where only one source is convolutively
mixed is considered and a simple approach to blindly cluster the time-frequency points
is presented. Filter recovery experiments with two real audio sources are presented and
it is shown that the wideband CR based approach combined with a post-processing step
performs very well compared to the narrowband approach.

In the following chapter, we conclude the thesis and discuss certain possibilities for
the extensions and generalisations of the current work.
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Chapter 9

Conclusions and perspectives

The work presented in this thesis is based centrally on the sparsity of the objects
involved: filters and sources. The following section summarises and concludes the

thesis.

Conclusions

Chapter 5 shows that filter sparsity can be effectively used as a consistency measure to
correct the filter permutation problem in the absence of scaling. The sparsity of the fil-
ters and the number of permuted sub-bands have a nice interplay which is demonstrated
in Fig. 5.1. A simple combinatorial ℓ1 minimisation algorithm such as Algorithm 1 can
effectively recover correct permutations. In noiseless conditions, the experiments show
that as long as the sum of filter sparsity and number of permutations does not cross
half the filter length, the permutations can be successfully recovered. Even under noisy
conditions, an ℓ1 minimisation based approach for correcting permutations can recover
filters upto the input SNR level. Hence, we can conclude that as long as the filters are
sparse and the number of permutations is not too large, minimising the ℓ1 norm of the
filters is indeed a good way to correct the permutations in the absence of scaling, even
under noisy conditions.

Chapter 6 attempts to theoretically establish the connections between filter sparsity
and permutations and explain the experimental observations in chapter 5. In the case
where the filters have mutually disjoint supports theorem 6.1 showed that permuta-
tions can only increase the ℓ1 norm of the filters and hence ℓ1 minimisation recovers
the correct permutations. In case of two filters with arbitrary supports, theorem 6.2
provides a condition on the recoverability of the filters in terms of the product of filter
sparsity and number of permutations. However, this result is pessimistic compared to
the experimental observations.

Chapter 7 presents an approach to estimate sparse filters from stereo convolutive
observations in the single source setting. The idea is to exploit the time-frequency
domain cross-relation between the channels and formulate an ℓ1 minimisation problem
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for filter estimation. The time-frequency domain CR is developed by the narrowband
approximation of the time-domain CR.

It is shown experimentally with synthetically generated Gaussian sources that the
time-frequency domain narrowband CR method can recover filters having upto 15 spikes
with more than 20 dB output SNR (as defined in (7.12)). The single Gaussian source
case is the ideal problem setting where the time-frequency CR is valid over the entire
time-frequency plane, and the corresponding recovery performance is the best we can
have with the narrowband CR approach.

However, the advantage of using time-frequency domain CR in place of the time-
domain CR is that the time-frequency domain CR method is capable of recovering filters
even with missing frequency information about the filters. This has been demonstrated
experimentally and filters having upto 15 spikes can be recovered with an output SNR
of at least 20 dB even when only 50% of the frequency information, relative to the size
of the filters, is available. It is the due to the sparsity of filters that it is possible to
estimate them even with missing information, and this fact plays an important role in
the task of estimating filters in the presence of multiple sources.

Chapter 8 builds upon the idea of time-frequency cross-relation presented in chap-
ter 7 to propose a framework for estimating multiple sparse filters from stereo convolu-
tive mixtures of several sources. In the presence of multiple sources which are disjoint
in the time-frequency domain, a clustering step identifies the time-frequency points in
the mixtures where only one particular source contributes and these points are used
to form the cross-relation. Using the CR, the filters are estimated as it is done in the
single source case.

Firstly, the sparsity of sources is helping us to form the CR for each source and
secondly the sparsity of filters is helping in estimating them even with missing informa-
tion. The clustering step is crucial because it is this step which is inherently solving the
permutation ambiguity. The way in which the filter estimation problem is formulated
takes care of the scaling ambiguity. Therefore, two important problems associated with
convolutive source localisation are completely taken care of by the proposed framework.
However, it should be mentioned that clustering time-frequency points is a difficult task
in iteslf.

The experimental evaluation primarily focusses on the filter estimation stage and
the clustering is performed heuristically using side information about the sources them-
selves. The STFT window size influences the performance of the algorithm: larger the
window size relative to the filters, better the narrowband approximation and this re-
sults in improved performance. Also, with the presented heuristic clustering scheme,
the clustering threshold parameter plays an important role: for a fixed source size, a
large threshold selects few good quality points and hence one can recover only highly
sparse filters with very good quality, whereas a smaller threshold selects many points,
possibly not all of them satisfying the CR strictly which results in reduced performance
for highly sparse filters, but an improvement for filters with relatively larger number of
spikes.

To avoid the problem of approximation, a wideband version of the time-frequency
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domain CR is proposed. This retains the exact nature of the time-domain CR even
in the time-frequency domain, but places additional restrictions on the time-frequency
points in order to satisfy the CR. The framework for multiple filter estimation tailored
for wideband CR also contains a clustering step and a filter estimation step.

Experimental evaluation of the wideband CR based filter estimation approach shows
that the wideband CR has good performance when the STFT window sizes are smaller
compared to the filter length. More importantly, even though larger values of the
clustering threshold selects fewer points, the wideband CR method performs better
compared to the smaller thresholds. If the STFT window size and the threshold are
chosen carefully, the wideband CR based method outperforms the narrowband CR based
method for same sparsity levels of the filters.

In a special setting with two real audio sources, with only one of them being con-
volutively mixed, we presented a method to blindly cluster the time-frequency points
of the mixtures. With these clusters, the wideband CR based method is shown to be
superior compared to the narrowband CR method, and also a post-processing step can
boost the results significantly.

For highly sparse filters (k ≤ 6 when filter length L = 256), the performance of both
the narrowband and wideband approaches are comparable when the STFT window sizes
are appropriately chosen (longer for narrowband and shorter for wideband). When the
number of spikes increases, then the wideband CR method with shorter STFT window
size and larger clustering threshold gives better performance then the narrowband one.

In the following section we shall present some of the possible extensions and gener-
alisations of the work presented in this thesis.

Perspectives

Sparsity based method to solve the scaling ambiguity

In chapter 5, we have presented an ℓ1 norm minimisation based approach for solving
the permutation problem for source localisation in convolutive setting. Although we
considered solving the permutation problem in isolation, it is often accompanied by the
scaling problem as well. Hence, we can explore the possibility of using sparsity as a tool
to solve the scaling problem too.

If sparsity based methods proves to be successful for solving the scaling problem,
then we can explore the possibility of developing an ℓ1 minimisation approach for solving
the permutation and scaling problems simultaneously.

Efficient ℓ
1 minimisation algorithm

The ℓ1 minimisation algorithm to solve the permutation problem that is presented in
chapter 5 is combinatorial in nature. The algorithm is not scalable when the number
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of sources is large. Hence, an efficient algorithm to minimise the ℓ1 norm of the filters
is essential.

As a simple improvement to the proposed algorithm, one can replace the combinato-
rial brute force search method for finding a permutation in each sub-band f to minimise
the ℓ1 norm by an optimisation step which searches for a matrix P(f) that minimises
the ℓ1 norm, under the constraint that P(f) is a permutation matrix.

Permutations, scaling and sparsity: Theoretical connections

Theoretical connections between filter permutations/scaling and sparsity will help us to
understand the regime under which the ℓ1 minimisation based approach will succeed in
recovering the permutations and scaling. It will be interesting to generalise the work
that we have presented in chapter 5. Understanding the connections between these
ambiguities and sparsity could also enable us to come up with efficient algorithms for
solving the ℓ1 minimisation problem.

Improved methods for blind clustering of time-frequency points

In chapter 7, we proposed a framework for multiple sparse filter estimation from stereo
mixtures, which consists of a time-frequency point clustering stage and a filter recovery
stage. A fully blind way of clustering the time-frequency points was proposed only
for a special setting where only one source is convolutively mixed and another source
is mixed instantaneously. The clustering stage has to be improved and generalised to
handle multiple sources that are convolutively mixed.

A fully blind system to cluster the time-frequnecy points involves two steps: 1) iden-
tification of points where only one source is active and 2) association of those points
to the sources. We can either extend the existing time-frequency points identification
methods proposed for instantaneous and anechoic mixtures such as [7], or use the meth-
ods proposed for convolutive mixtures such as [49, 48]

Once the points where a single source is active are identified, then subspace based
method such as the Generalized Principal Component Analysis (GPCA) [107, 108] can
be used to cluster the time-frequency points efficiently. GPCA is an algebraic method
which involves solving a set of linear equations for clustering the points.

An another interesting avenue to explore is clustering of time-frequency points via
dictionary learning. The idea is to learn dictionaries from the mixtures which allow
sparse representations of sources and at the same time provide discrimination between
the sources.

Alternation of clustering and filter estimation stages

At the end of chapter 7, we mentioned about the possibility of using an alternating
scheme to simultaneously estimate the filters and clusters. We can assume that anechoic
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approximations of the mixing filters are given to us and starting with these approximate
filters, we can alternatively estimate the clusters of time-frequency points and the actual
sparse mixing filters. It will be interesting to study whether such an alternating scheme
converges to true clusters and true filters.

Efficient optimisation algorithm for filter estimation

In all our experiments, the convex program in the filter estimation step was solved using
a readymade convex optimisation library CVX. While CVX is an easy to use package for
modelling and solving small scale convex problems, it is unable to efficiently handle
large scale problems. Hence, an efficient optimisation algorithm has to be designed to
solve the filter estimation problem, with which we can study the performance of the
filter estimation stage for large problem sizes.

Iterated threshold and shrinkage algorithms [70] have been gaining popularity in
the last few years for solving ℓ1 minimisation algorithms, for its simple structure and
efficiency. It would be an interesting line of work to study the use of one such algorithm
for filter estimation purpose.

From source localisation to source separation

As mentioned in the beginning of the thesis, often the goal of mixing filter estimation
is to recover the sources. So, this will be a natural extension of our work.

Estimation of sources by exploiting their sparse representations and by using the
explicit knowledge of mixing filters has been studied by Kowalski et al. [2]. If we have
good estimates of the filters using our framework, then it will be interesting to use these
filters for source estimation.

Extension to multiple channel setting

The work we presented in this thesis deals with the case of stereo channels (Number
of channels M = 2). We can generalise the framework to multiple channels setting by
extending the multiple channel cross-relation (CR) based approach reported in [89].
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Abstract

Blind source separation from underdetermined mixtures is usually a two-step process:
the estimation of the mixing filters, followed by that of the sources. An enabling as-
sumption is that the sources are sparse and disjoint in the time-frequency domain. For
convolutive mixtures, the solution is not straightforward due to the permutation and
scaling ambiguities. The sparsity of the filters in the time-domain is also an enabling
factor for blind filter estimation approaches that are based on cross-relation. However,
such approaches are restricted to the single source setting.

In this thesis, we jointly exploit the sparsity of the sources and mixing filters for
blind estimation of sparse filters from stereo convolutive mixtures of several sources.
First, we show why the sparsity of the filters can help solve the permutation problem
in convolutive source separation, in the absence of scaling. Then, we propose a two-
stage estimation framework, which is primarily based on the time-frequency domain
cross-relation and an ℓ1 minimisation formulation: a) a clustering step to group the
time-frequency points where only one source is active, for each source; b) a convex
optimisation step which estimates the filters. The resulting algorithms are assessed on
audio source separation and filter estimation problems.

Résumé

La séparation aveugle de sources à partir de mélanges sous-déterminés se fait tradition-
nellement en deux étapes: l’estimation des filtres de mélange, puis celle des sources.
L’hypothèse de parcimonie temps-fréquence des sources facilite la séparation, qui reste
cependant difficile dans le cas de mélanges convolutifs à cause des ambiguiŢtés de per-
mutation et de mise à l’échelle. Par ailleurs, la parcimonie temporelle des filtres facilite
les techniques d’estimation aveugle de filtres fondées sur des corrélations croisées, qui
restent cependant limitées au cas où une seule source est active.

Dans cette thèse, on exploite conjointement la parcimonie des sources et des filtres de
mélange pour l’estimation aveugle de filtres parcimonieux à partir de mélanges convolu-
tifs stéréophoniques de plusieurs sources. Dans un premier temps, on montre comment
la parcimonie des filtres permet de résoudre le problème de permutation, en l’absence
de problème de mise à l’échelle. Ensuite, on propose un cadre constitué de deux étapes
pour l’estimation, basé sur des versions temps-fréquence de la corrélation croisée et sur
la minimisation de norme ℓ1 : a) un clustering qui regroupe les points temps-fréquence
oùİ une seule source est active; b) la résolution d’un problème d’optimisation convexe
pour estimer les filtres. La performance des algorithmes qui en résultent est évalués
numériquement sur des problèmes de filtre d’estimation de filtres et de séparation de
sources audio.
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